## Solution to Problem Set 9

Date: 14.11.2014
Not graded

## Problem 1.

(a) Base step. Let $n=1$. Since $\sum_{i=1}^{1} f_{i}^{2}=f_{i}^{2}=1$ and $f_{1} f_{2}=1$, then the assertion is true.

Induction step. Assume that $\sum_{i=1}^{n} f_{i}^{2}=f_{n} \cdot f_{n+1}$ for some $n \geq 1$. Then, using the induction hypothesis and the fact that $f_{n+2}=f_{n+1}+f_{n}$, we obtain that

$$
\sum_{i=1}^{n+1} f_{i}^{2}=\sum_{i=1}^{n} f_{i}^{2}+f_{n+1}^{2}=f_{n} \cdot f_{n+1}+f_{n+1}^{2}=f_{n+1}\left(f_{n}+f_{n+1}\right)=f_{n+1} \cdot f_{n+2}
$$

(b) Base step. Let $n=1$. Since $f_{2} f_{0}-f_{1}^{2}=0-1=-1$ and $(-1)^{1}=-1$, then the assertion is true.
Induction step. Assume that $f_{n+1} \cdot f_{n-1}-f_{n}^{2}=(-1)^{n}$ for some $n \geq 1$. Using the recursive definition $f_{n+2}=f_{n+1}+f_{n}, f_{n+1}=f_{n}+f_{n-1}$ and applying the induction hypothesis, we obtain

$$
\begin{aligned}
f_{n+2} f_{n}-f_{n+1}^{2} & =\left(f_{n+1}+f_{n}\right) f_{n}-f_{n+1}\left(f_{n}+f_{n-1}\right) \\
& =f_{n+1} f_{n}+f_{n}^{2}-f_{n+1} f_{n}-f_{n+1} f_{n-1} \\
& =-\left(f_{n+1} f_{n-1}-f_{n}^{2}\right) \\
& =(-1) \cdot(-1)^{n} \\
& =(-1)^{n+1} .
\end{aligned}
$$

(c) Base step. Let $n=1$. Observing that $\left[\begin{array}{ll}f_{2} & f_{1} \\ f_{1} & f_{0}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and recalling the definition of $A$, we easily check the equality.
Induction step. Assume that $A^{n}=\left[\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right]$. Then, using the recursive definition $f_{n+2}=f_{n+1}+f_{n}, f_{n+1}=f_{n}+f_{n-1}$ and applying the induction hypothesis, we obtain

$$
A^{n+1}=A^{n} A=\left[\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
f_{n+1}+f_{n} & f_{n+1} \\
f_{n}+f_{n-1} & f_{n}
\end{array}\right]=\left[\begin{array}{cc}
f_{n+2} & f_{n+1} \\
f_{n+1} & f_{n}
\end{array}\right] .
$$

## Problem 2.

Let $a_{n}$ be the answer to the problem and $n=3^{k}$. We have the following recursion : $a_{1}=1$, $a_{3^{k}}=3^{k}+a_{3^{k-1}}$, which follows immediately from the structure of the algorithm.
Claim: For all $k \geq 0$ we have that $a_{3^{k}}=\frac{3^{k+1}-1}{2}$.

## Proof by induction.

Base step: $a_{3}{ }^{0}=1$. [And indeed, if $n=1$, we print the sentence once.]

Induction step: Suppose that for $k \geq 0$ it is true that $a_{3^{k}}=\frac{3^{k+1}-1}{2}$. Then, using the recursion, we obtain $a_{3^{k+1}}=3^{k+1}+\frac{3^{k+1}-1}{2}=\frac{3^{k+2}-1}{2}$.

As a result, the phrase is printed $\frac{3^{k+1}-1}{2}=\frac{3 n-1}{2}$ times.
Problem 3. Let $v$ be a vertex of the regular convex $n$-gon. The number of diagonals departing from $v$ is $n-3$, because there are $n-3$ vertices which are not adjacent to $v$. If we go over the $n$ vertices and we sum the number of diagonals departing from each of them, we count every diagonal twice. Hence, the total number of diagonals is $\frac{n(n-3)}{2}$.

## Problem 4.

(a) The first 3 letters are fixed, while the remaining 5 are free. Hence, this is equivalent to counting the strings of length 5 where each letter can take 26 different values. The total number of such strings is $26^{5}$.
(b) We fix the first 2 and the last 2 letters, while the remaining 4 are free. Therefore, there are $26^{4}$ possible strings.
(c) The number of strings which begin with ab is $26^{6}$, the number of strings which end with yz is $26^{6}$ and the number of strings which begin with ab and end with yz is $26^{4}$. By inclusion-exclusion principle the number of strings which begin with $a b$ or end with $y z$ is $26^{6}+26^{6}-26^{4}$.
(d) First of all, let us count the ways in which one can choose the positions of these four q's. These are the combinations of 4 elements from a class of 12 without replacement, which means that there are $\binom{8}{4}$ different ways of chooosing the positions of the q's. The remaining four positions are occupied by any of the 25 letters which is different from a q. As a result, the total number of strings is $\binom{8}{4} \cdot 25^{4}$.
(e) (Bonus.) As concerns the first part of the question, counting the bit strings with exactly 4 1's is equivalent to counting the ways in which one can choose the positions of these four 1's. These are the combinations of 4 elements from a class of 12 without replacement. Therefore the solution is $\binom{12}{4}$.
As concerns the second part of the question, let $A$ be the set of bit strings of length 12 which have exactly four 1's such that none of these 1's are adjacent to each other. Let $B$ be the set of bit strings of length 9 with exactly four 1's.
Consider a string $a \in A$ : it has four 1's which are not adjacent to each other. Hence, each of the first three 1 's has to be followed by a 0 . Consider the function $f: A \rightarrow B$ which maps the string $a \in A$ into the string $b \in B$ such that $b$ is obtained removing the three 0 's immediately after each of the first three 1 's of $a$. It is easy to check that the function $f$ is a bijection. Consequently, so $|A|=|B|$. By reasons similar to those of point (d), $|B|=\binom{9}{4}$ and, as a result, the solution is $\binom{9}{4}$.

