Proving the Security of AES Substitution-Permutation Network

T. Baignères S. Vaudenay

SAC 2005

T. Baignères, S. Vaudenay Proving the Security of AES Substitution-Permutation Network

On the need to consider multipath characteristics

4 Towards the True Random Cipher

5 Further Results

What does Cryptanalysis mean?

- Breaking a cryptographic algorithm? Not only!
- Proving the security of a construction/algorithm

```
As breaking \neq proving security

\downarrow

different techniques must be applied.
```

~ An example: Linear Cryptanalysis

Example: Linear Cryptanalysis (LC)

Efficency of LC on a cipher C is measured by the Linear Probability: $LP^{C}(a, b) = (2 Pr_{X}[a \bullet X = b \bullet C(X)] - 1)^{2}$

Example: Linear Cryptanalysis (LC)

Computing the exact LP of a SPN is usually not practical. ~> concatenate round-LP's and apply the Piling-up Lemma

Example: Linear Cryptanalysis (LC)

Following [Nyberg94], the approximation corresponds to considering only one characteristic among a linear hull.

Example: Linear Cryptanalysis (LC)

How accurate is the approximation?

- It is ok when one characteristic is overwhelming (ex: DES)
- It is ok when it leads to an efficient attack
- This is not always the case (ex: AES)

It actually underestimates the LP!

→ an attack can only work better than expected...

 \rightsquigarrow ...a security proof becomes meaningless

Example: Linear Cryptanalysis (LC)

Conclusion

For security proofs, the LP cannot be approximated by the LP of one characteristic \rightsquigarrow linear hull must be taken into account.

For AES, two (rigorous) alternatives have been studied:

- Upperbound the LP (e.g., [Keliher-Meijer-Tavares01], [Park-Sung-Chee-Yoon-Lim02], and [Keliher04])
- Adopt a Luby-Rackoff-like approach (e.g., [Moriai-Vaudenay00] and [Keliher-Meijer-Tavares03])

A Luby-Rackoff-like approach in a SPN

- S* is a random permutation, uniformly distributed
- all random S-boxes are independent from each-other
- the subkey addition is included in S*

T. Baignères, S. Vaudenay Proving the Security of AES Substitution-Permutation Network

Results on AES^{*}

- AES* is made of all identical rounds, except for the last one which excludes both linear transformations
- The LP on AES* is taken on average over all the random S-boxes

Summary of our results

- AES* is protected against linear and differential cryptanalysis after 4 inner rounds
- AES* is protected against iterated attacks of order one after 10 inner rounds
- LP^{AES*} tends towards the LP of the perfect cipher as the number of rounds increases

On the Complexity of the Exact LP Computation

Given input/output masks c_0 and c_r ,

$$\mathsf{LP}^{\mathsf{AES}^*}(\mathbf{c}_0,\mathbf{c}_r) = \sum_{\mathbf{c}_1,\dots,\mathbf{c}_{r-1}} \prod_{i=1,\dots,r} \mathsf{LP}^{\mathsf{Round}_i^*}(\mathbf{c}_{i-1},\mathbf{c}_i)$$

Needs about $(2^{128})^3 \log r$ field operations \rightsquigarrow Prohibitive!

First reduction: summing over intermediate supports instead of intermediate masks

Masks and Supports

The support of a mask c is the 4 \times 4 array γ indicating which entries of c are zero and which are not:

Hamming weight of γ is denoted $|\gamma|$ (in this example, $|\gamma| = 13$)

Supports are useful to compute the LP on one round of AES*...

On the need to consider multipath characteristics AES*: A Luby-Rackoff-like approach for the SPN of AES Simplifying the LP computation for AES*

Towards the True Random Cipher Further Results

Average LP on SubBytes*

For any non-zero input/output masks a, b on S*

$$\mathsf{E}_{\mathsf{S}^*}[\mathsf{LP}^{\mathsf{S}^*}(a,b)] = \frac{1}{2^8 - 1} = \sigma^{-1}$$

Lemma

For any non-zero masks $a, b \in GF(2^8)^{16}$ of respective supports α and β

$$\mathsf{E}[\mathsf{LP}^{\mathsf{SubBytes}^*}(\mathbf{a},\mathbf{b})] = egin{cases} \sigma^{-|lpha|} & ext{if } lpha = eta \ 0 & ext{otherwise}. \end{cases}$$

Further Results

LP on LT = MixColumns o ShiftRows

- LT denotes MixColumns ShiftRows
- $\bullet~$ For any state ${\bf x}$ and masks ${\bf a}, {\bf b}$

$$\mathbf{a} \bullet \mathbf{x} = \mathbf{b} \bullet (\mathsf{LT} \times \mathbf{x}) \quad \Leftrightarrow \quad \mathbf{a} = \mathsf{LT}^T \times \mathbf{b}$$

We say that $\mathbf a$ and $\mathbf b$ are connected through LT

 N[α, β] denotes the number of possible connections through LT, given the input/output supports α and β. On the need to consider multipath characteristics AES*: A Luby-Rackoff-like approach for the SPN of AES Simplifying the LP computation for AES*

Towards the True Random Cipher Further Results

Average LP on AES*

Theorem

For any non-zero masks $c_0, c_r \in GF(2^8)^{16}$ of respective supports γ_0 and γ_r

$$\mathsf{E}[\mathsf{LP}^{\mathsf{AES}^*}(\mathbf{c}_0,\mathbf{c}_r)] = \sigma^{-|\gamma_r|} \times (\mathcal{M}^{r-1})_{\gamma_0,\gamma_r}$$

where \mathcal{M} is a $2^{16} \times 2^{16}$ matrix indexed by pairs of masks (γ_{i-1}, γ_i) such that

$$\mathcal{M}_{\gamma_{i-1},\gamma_i} = \sigma^{|\gamma_{i-1}|} \mathsf{N}[\gamma_{i-1},\gamma_i]$$

The computation roughly needs $(2^{16})^3 \log r$ field operations \rightsquigarrow almost feasible!

> . Further Results

Exploiting MDS properties of LT

- In order to further reduce the complexity, we used properties inherent to any MDS matrix (not only the one in LT) which induce symmetries in the table N[·].
- After some (frightening) computations...
- ... using rather (horrible) notations...

On the need to consider multipath characteristics AES*: A Luby-Rackoff-like approach for the SPN of AES Simplifying the LP computation for AES*

Towards the True Random Cipher Further Results

Final Expression for the LP

(Simplified) Theorem

For any non-zero masks $c_0, c_r \in GF(2^8)^{16}$ of respective supports γ_0 and γ_r

$$\mathsf{E}[\mathsf{LP}^{\mathsf{AES}^*}(\mathbf{c}_0,\mathbf{c}_r)] = \mathcal{U}^T \times \mathcal{L}^{r-2} \times \mathcal{V}$$

where

- $\bullet \ \mathcal{U}$ only depends on the diagonal weights of \mathbf{c}_0
- \mathcal{V} only depends on the column weights of \mathbf{c}_r
- \mathcal{L} is a matrix 1001 imes 1001 matrix

Computing all the LP for AES* can be done on a laptop.

Experimental Results

 Maximum value of E[LP^{AES*}(a, b)] for various number of rounds:

2	3	4	5	6	7	8	9
2 ^{-33.9774}	2 ^{-55.9605}	2 ^{-127.9096}	2 ^{-127.9096}	2 ^{-127.9999}	2 ^{-127.9999}	$2^{-128.0}$	$2^{-128.0}$

- Conclusion: AES* is protected against linear cryptanalysis after 4 rounds
- These results can be extended to differential cryptanalysis and to various S-box sizes

Properties of the matrix \mathcal{M}

In the previous Theorem

$$\mathsf{E}[\mathsf{LP}^{\mathsf{AES}^*}(\mathbf{c}_0,\mathbf{c}_r)] = \sigma^{-|\gamma_r|} \times (\mathcal{M}^{r-1})_{\gamma_0,\gamma_r}$$

The $2^{16}\times 2^{16}$ matrix ${\cal M}$ actually looks like

$$\left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & \mathcal{M}' \end{array}\right)$$

where \mathcal{M}' is a $(2^{16} - 1) \times (2^{16} - 1)$ indexed by non-zero supports.

Properties of the matrix \mathcal{M}'

Property

 \mathcal{M}' is the transition matrix of a Markov chain, i.e., $\mathcal{M}'_{\gamma,\gamma'}$ is the transition probability from a non-zero support γ to a non-zero support γ' .

From the study of supports propagation (based on the MDS criterion) \rightsquigarrow the Markov chain is irreducible and aperiodic.

 \Rightarrow there exists a stationary distribution π , which can be determined. Then

$$(\mathcal{M}'^r)_{\gamma,\gamma'} \xrightarrow[r \to \infty]{} \pi_{\gamma'}$$

Further Results

Towards the LP of the True Random Cipher

Theorem

For any non-zero input/output masks a, b,

$$\lim_{r \to \infty} \mathsf{E}[\mathsf{LP}^{\mathsf{AES}^*}(\mathbf{a},\mathbf{b})] = \frac{1}{2^{128}-1}$$

Iterated Attacks of Order 1

Consider an adversary \mathcal{A} in the Luby-Rackoff model: unlimited computational power, limited access to an oracle \mathcal{O} implementing either AES* or the perfect cipher C*. \mathcal{A} must guess which is the case.

 \mathcal{A} can adapt x_2 depending on y_1

~> 2-limited adaptative distinguisher of advantage Adv2-limited

Iterated Attacks of Order 1

- Iterated attacks of order 1 are similar to linear cryptanalysis, except that the bit of information is not necessarily derived in a linear way (and that can make a huge difference, see [Baignères-Junod-Vaudenay04])
- Resistance against 2-limited adaptative distinguishers is sufficient to resist iterated attacks of order 1 (result from Decorrelation theory)

(Simplified) Theorem

Let
$$\epsilon = \max_{\mathbf{a}\neq\mathbf{0},\mathbf{b}} E[DP^{AES^*}(\mathbf{a},\mathbf{b})] - \frac{1}{2^{128}-1}$$
, then

$$\mathsf{Adv}_{2-\mathsf{limited}} \leq 2^{128} \epsilon$$

Iterated Attacks of Order 1: practical results

• Experimental values of ϵ depending on the number of rounds r:

2	3	4	5	6	7	8	9	10
2 ^{-33.98}	2 ^{-55.96}	2 ^{-131.95}	2 ^{-131.95}	2 ^{-152.17}	2 ^{-174.74}	2 ^{-200.39}	2 ^{-223.93}	2 ^{-270.82}

 Conclusion: provable security achieved for 10 rounds of AES*

Conclusion

- Study of the SPN of AES using a Luby-Rackoff-like approach → AES*
- AES* is protected against linear and differential cryptanalysis after 4 inner rounds
- LP^{AES*} tends towards the LP of the perfect cipher as the number of rounds increases
- AES* is protected against iterated attacks of order one after 10 inner rounds

Thank you for your attention!