
Cryptography and Security

Serge Vaudenay

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

http://lasec.epfl.ch/

SV 2016–17 Cryptography and Security CryptoSec 1 / 1037

http://lasec.epfl.ch/

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Cryptography and Security CryptoSec 2 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Ancient Cryptography CryptoSec 3 / 1037

1 Ancient Cryptography
Summary of this Chapter
Terminology
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory

SV 2016–17 Ancient Cryptography CryptoSec 4 / 1037

A 3-Phases Evolution

Prehistory
cryptography before communication systems (confidentiality)
Industrial era
communication and information systems (confidentiality)
Modern cryptography
since 1976
mass communication
academic research
(confidentiality, integrity, authentication, privacy, non-repudiation,
fairness, access control, timestamping, etc)

SV 2016–17 Ancient Cryptography CryptoSec 5 / 1037

Milestones of Prehistory

1 security by obscurity: private encryption algorithms
several techniques: substitutions and transpositions

2 encryption with a configurable secret key
e.g., Vigenère

3 Kerckhoffs principle
→ security should rely on the secrecy of the key only
(not on the secrecy of the algorithm)

SV 2016–17 Ancient Cryptography CryptoSec 6 / 1037

From Industrial Era to Modern Crypto

communicating
information theory
mass communication (radio)
computing
computer science
automata (electromechanic devices)

SV 2016–17 Ancient Cryptography CryptoSec 7 / 1037

Early Milestones of Modern Cryptography

Kerckhoffs (1883): principles of modern crypto
Shannon (1949): an info-theoretical approach of cryptography
Diffie-Hellman (1976): public-key cryptography
DES (1977): encryption standard for non-military applications

SV 2016–17 Ancient Cryptography CryptoSec 8 / 1037

1 Ancient Cryptography
Summary of this Chapter
Terminology
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory

SV 2016–17 Ancient Cryptography CryptoSec 9 / 1037

Cryptography vs Coding Theory

Code
a system of symbols which represent information

Coding theory
science of code transformation which enables to send
information through a communication channel in a
reliable and efficient way (→ dummy adversary)

Cryptography
(a bit obsolete) the science of secret codes, enabling
the confidentiality of communication through an
insecure channel (→ malicious adversary)

Cipher
secret code, enabling the expression of a public code by
a secret one by making the related information
confidential

SV 2016–17 Ancient Cryptography CryptoSec 10 / 1037

Cryptanalysis

Cryptanalysis, cryptographic analysis, cryptoanalysis
theory of security analysis of cryptographic systems

To cryptanalyze a cryptosystem (̸= to break it)
to prove or to disprove the security provided by a
cryptosystem

To break a cryptosystem
to prove insecurity (= to disprove security)

Cryptology ̸= cryptography
science of cryptography and cryptanalysis (sometimes
also includes steganography)

Steganography ̸= cryptography
science of information hiding

SV 2016–17 Ancient Cryptography CryptoSec 11 / 1037

Once Upon a Time, in the XIX-th Century

Alfred de Musset George Sand

SV 2016–17 Ancient Cryptography CryptoSec 12 / 1037

Steganography

[censored]

SV 2016–17 Ancient Cryptography CryptoSec 13 / 1037

[censored]

SV 2016–17 Ancient Cryptography CryptoSec 14 / 1037

[censored]

SV 2016–17 Ancient Cryptography CryptoSec 15 / 1037

Cryptographic Problems

In ancient time:
encryption

In modern cryptography:
encryption
detection malicious modification of information
data authentication
access control
timestamping
fair exchange
digital rights management
privacy

SV 2016–17 Ancient Cryptography CryptoSec 16 / 1037

Applications

bank cards
Internet (e-commerce)
mobile telephony (DECT, GSM, GPRS, EDGE, 3GPP...)
e-passport
mobile communication (Bluetooth, WiFi...)
traceability, logistic & supply chains (RFID)
pay-TV, DRM
access control (car lock systems, metro...)
payment (e-cash)
electronic voting

SV 2016–17 Ancient Cryptography CryptoSec 17 / 1037

The Fundamental Trilogy

Message
X

- -
X

�
�

Adversary

Confidentiality (C): only the legitimate receiver can get X
Authentication + Integrity (A+I): only the legitimate sender can
insert X and the received message must be equal to X

SV 2016–17 Ancient Cryptography CryptoSec 18 / 1037

Basic Security Properties

Confidentiality
the information should not leak to any unexpected party
Integrity
the information must be protected against any malicious
modification
Authentication
the information should make clear who is its author

SV 2016–17 Ancient Cryptography CryptoSec 19 / 1037

1 Ancient Cryptography
Summary of this Chapter
Terminology
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory

SV 2016–17 Ancient Cryptography CryptoSec 20 / 1037

Secret Writing

Hieroglyphs!

SV 2016–17 Ancient Cryptography CryptoSec 21 / 1037

Transpositions
Spartan scytales

this␣is␣a␣dummy␣message

?

t h i s ␣ i

s ␣ a ␣ d u

m m y ␣ m e

s s a g e

?

TSMSH␣MSIAYAS␣␣G␣DMEIUE

SV 2016–17 Ancient Cryptography CryptoSec 22 / 1037

Simple Substitution: Caesar Cipher

a b c d e f g h i k l m n o p q r s t v x

D E F G H I K L M N O P Q R S T V X A B C

caesar −→ FDHXDV

Quiz:
Q: How to break this?

A: ol fgngvfgvpny nanylfvf
ROT13

SV 2016–17 Ancient Cryptography CryptoSec 23 / 1037

Simple Substitution: ROT13

a b c d e f g h i j k l m n o p q r s t u v w x y z

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

rot −→ EBG

Application: quiz
Q: Where can we find good quiz?

A: va pnenzone pnaqvrf
ROT13

SV 2016–17 Ancient Cryptography CryptoSec 24 / 1037

Simple Substitution: Random Substitution Table

a b c d e f g h i j k l m n o p q r s t u v w x y z

H D L X O Q K W G S Z A P F T M V C B R E U Y I N J

crypto −→ LCNMRT

Number of possible tables: 26! ≈ 288.4

SV 2016–17 Ancient Cryptography CryptoSec 25 / 1037

Probabilities of Occurrence in English

letter probability letter probability letter probability
A 0.082 J 0.002 S 0.063
B 0.015 K 0.008 T 0.091
C 0.028 L 0.040 U 0.028
D 0.043 M 0.024 V 0.010
E 0.127 N 0.067 W 0.023
F 0.022 O 0.075 X 0.001
G 0.020 P 0.019 Y 0.020
H 0.061 Q 0.001 Z 0.001
I 0.070 R 0.060

SV 2016–17 Ancient Cryptography CryptoSec 26 / 1037

Rough Frequencies in English

1 most frequent: E
2 very frequent: T A O I N S H R

3 frequent: D L

4 rare: C U M W F G Y P B

5 very rare: V K J X Q Z

30 most common digrams (in decreasing order):
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND,
OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI and OF.

12 most common trigrams (in decreasing order):
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR and DTH.

SV 2016–17 Ancient Cryptography CryptoSec 27 / 1037

A Simple Substitution Cipher (from Stinson)

--

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

--

NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

--

NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

--

XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

SV 2016–17 Ancient Cryptography CryptoSec 28 / 1037

Step I: Frequency Analysis

letter frequency letter frequency letter frequency
A 0 J 11 S 3
B 1 K 1 T 2
C 15 L 0 U 5
D 13 M 16 V 5
E 7 N 9 W 8
F 11 O 0 X 6
G 1 P 1 Y 10
H 4 Q 4 Z 20
I 5 R 10

SV 2016–17 Ancient Cryptography CryptoSec 29 / 1037

Solution

[homework]

SV 2016–17 Ancient Cryptography CryptoSec 30 / 1037

Vigenère Cipher

Plaintext: this is a dummy message

Key: ABC

this is a dummy message

+ ABCA BC A BCABC ABCABCA

= TIKS JU A EWMNA MFUSBIE

Ciphertext: TIKSJUAEWMNAMFUSBIE

e.g. y+ C = A.

SV 2016–17 Ancient Cryptography CryptoSec 31 / 1037

Character Addition Rule

+ a b c d e f g · · ·
A A B C D E F G · · ·
B B C D E F G H · · ·
C C D E F G H I · · ·
D D E F G H I J · · ·
E E F G H I J K · · ·
F F G H I J K L · · ·
G G H I J K L M · · ·
...

...
...

...
...

...
...

...

cultural remark: using the mapping (isomorphism) a↔ 0, b ↔ 1,
c ↔ 2, ... this is the addition modulo 26
(group Z26)

SV 2016–17 Ancient Cryptography CryptoSec 32 / 1037

Column-Dependent Substitution

A B C A B C

t h i T I K

s i s S J U

a d u A E W

m m y −→ M N A

m e s M F U

s a g S B I

e E

SV 2016–17 Ancient Cryptography CryptoSec 33 / 1037

Kasiski Test

to check a guess n for the key length
look at repeating patterns at a distance multiple of n
check that this is significant

SV 2016–17 Ancient Cryptography CryptoSec 34 / 1037

Kasiski Test Example

→ look at unexpectedly frequent patterns

C H R E E VOAHMA E R A T B I AX XWT NX B EEOPHBSBQMQEQE RBW
R V X UOA KXAOS X XWE A HBWG J MMQMNKGRF VGXWTRZXW I A K
L X F P S K AUTEMN D C MG TSXMX B TU I ADNGMGPSR E L XN J EL X
V R V P R T U LHDNQW T WD TYG B P HX T F AL J HASVB F XNGL L CHR
Z BWE L E KMS J I K N B HWRJ GNMG J SG LXFEYPHAGNRB I EQJ T
AMR V L CRREMN D G L X R R I MGN SNRWCHRQHAEYE V TAQE BB I
P E E WE V KAKOEWA D R EMXM T B HHC HRTKDNVRZ C HRCL QOHP
WQ A I I WXNRMGWO I I F KEE

CHR occurs at 1, 166, 236, 276, 286.

SV 2016–17 Ancient Cryptography CryptoSec 35 / 1037

Question

In a random string of 313 characters from an alphabet of
26 letters, is it common to observe 5 occurences of the

same trigram?

SV 2016–17 Ancient Cryptography CryptoSec 36 / 1037

Reminders on Combinatorics

number of k -tuples of elements in a set of size z:
example z = 3, k = 2: 00, 01, 02, 10, 11, 12, 20, 21, 22

zk

Application (k = 3, z = 26): #possible trigrams is 263 = 17 576
number of possible subsets of t elements in a set of size n:
example n = 3, t = 2: {0, 1}, {0, 2}, {0, 3}, {1,2}, {1, 3}, {2, 3}(n

t

)
=

n!
t!(n − t)!

=
n · (n − 1) · · · (n − t + 1)

t · (t − 1) · · · 1
Application: probability to get ball u (drawn with probability p)
exactly t times out of n samples:

(n
t

)
pt(1− p)n−t

(binomial distribution)

SV 2016–17 Ancient Cryptography CryptoSec 37 / 1037

Are 5 Occurrences Significant? — i

In a truly random sequence of 313 characters x1x2 . . . x313 with
alphabet of 26 letters

there are n = 311 trigrams t1 = x1x2x3, t2 = x2x3x4, ...
tn = xnxn+1xn+2

every possible trigram abc has a number of occurrences
nabc =

∑n
i=1 1ti=abc

approximation: all ti ’s are independent and uniformly distributed
in a set of 1

p = 263 = 17 576 possibilities

Pr[nabc = t] =
(n

t

)
pt(1− p)n−t

Note: n × p is small

SV 2016–17 Ancient Cryptography CryptoSec 38 / 1037

Reminders on Calculus

Stirling Formula:
n! ≈

√
2πn × nne−n

weaker formula: log n! ≈ n(log n − 1)
for λ = n × p ≪ 1:
(example: n = 311, p = 1

17 576 , t ≤ 5)

(binomial)
(n

t

)
pt(1− p)n−t ≈ λt

t!
e−λ (Poisson)

Taylor development on eλ:

eλ =
t−1∑
i=0

λi

i!
+

∫ λ

0

(λ− x)t−1

(t − 1)!
ex dx

SV 2016–17 Ancient Cryptography CryptoSec 39 / 1037

Are 5 Occurrences Significant? — ii

eλ =
t−1∑
i=0

λi

i!
+

∫ λ

0

(λ− x)t−1

(t − 1)!
ex dx

Pr[nabc = t] ≈ λt

t! e−λ with λ = 311
17 576

we have

Pr[nabc ≥ t] ≈ 1−
t−1∑
i=0

λi

i!
e−λ

= e−λ
∫ λ

0

(λ− x)t−1

(t − 1)!
ex dx

≤
∫ λ

0

(λ− x)t−1

(t − 1)!
dx

=
λt

t!

SV 2016–17 Ancient Cryptography CryptoSec 40 / 1037

Are 5 Occurrences Significant? — iii

Pr[nabc ≥ t] ≤ λt

t!

maximize over all abc:

max
abc

Pr[nabc ≥ t] ≤
∑
abc

Pr[nabc ≥ t]

with t = 5 we have

max
abc

Pr[nabc ≥ t] ≤ 263λ
t

t!
≤ 10−6

so the probability to get at least 5 occurrences of the same
trigram is less that 10−6

conclusion:
observing 5 occurrences of CHR is significantly odd

SV 2016–17 Ancient Cryptography CryptoSec 41 / 1037

Where does CHR Come From?

key of length multiple of 5 + frequent trigram

· · · · · · · · · ·
t h e · · C H R · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · −→ · · · · ·
t h e · · C H R · ·
· · · · · · · · · ·
t h e · · C H R · ·

SV 2016–17 Ancient Cryptography CryptoSec 42 / 1037

Index of Coincidence

Index(x1, . . . , xn) = Pr
I,J
[xI = xJ |I < J] =

∑
c∈Z

nc(nc − 1)
n(n − 1)

where I, J ∈ {1, . . . ,n} are independent and uniformly distributed

Proposition

For any permutation σ over Z , we have

Index(σ(x1), . . . , σ(xn)) = Index(x1, . . . , xn)

For any permutation σ of {1, . . . , n}, we have

Index(xσ(1), . . . , xσ(n)) = Index(x1, . . . , xn)

the index of coincidence is invariant by substitution and transposition
Index(English text)→ 0.065 when n→ +∞
Index(Random string)→ 0.038 when n→ +∞

SV 2016–17 Ancient Cryptography CryptoSec 43 / 1037

Application to the Vigenère Cipher

With the example TIKSJUAEWMNAMFUSBIE, if we guess that the key is
of length 3, we can write

T I K

S J U

A E W

M N A

M F U

S B I

E

so we can compute the index of coincidence of TSAMMSE, IJENFB and
KUWAUI.

SV 2016–17 Ancient Cryptography CryptoSec 44 / 1037

Example — i
guess the key is of length 4

C H R E

E V O A

H M A E

R A T B

I A X X

W T N X
...

...
...

...

first column:

CEHRIWBPBEBXKSEWMKVTWLSTDTXIGSXLVUNWGXLSXLZLSNRMGEABJRRNXMNHAVEPEKAMBHDZCHAXGIE

(string of 79 characters)

Index(col) = Index(A4B5C2D2E7G4H4I3J1K3L5M4N4P2R4S5T3U1V3W4X7Z2)

which is 0.0422: this is too low

SV 2016–17 Ancient Cryptography CryptoSec 45 / 1037

Example — ii
guess the key is of length 5

C H R E E

V O A H M

A E R A T

B I A X X

W T N X B

E E O P H
...

...
...

...
...

first column:

CVABWEBQBUAWWQRWWXANTBDPXXRDWBFAXCWMNJJFAIACNRNCATBWKDMCDCQQXWK

(string of 63 characters)

Index(col) = Index(A7B6C6D4E1F2I1J2K2M2N4P1Q4R3T2U1V1W9X5) = 0.0630

this is high enough!

SV 2016–17 Ancient Cryptography CryptoSec 46 / 1037

Example — iii

next step: find the first character of the key
note that W is frequent while U and V are much less frequent and
Y and Z are inexistent
in English, h is frequent while f and g are much less frequent and
j and k are sparse
idea: guess that W is the encryption of h
h+ P = W

the first character of the key may be P

SV 2016–17 Ancient Cryptography CryptoSec 47 / 1037

1 Ancient Cryptography
Summary of this Chapter
Terminology
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory

SV 2016–17 Ancient Cryptography CryptoSec 48 / 1037

Enigma

electro-mechanical encryption device (typewriter)
could be plugged to a radio transmiter
patented (1918)
developped to be secure even with public specifications
(Kerckhoffs principle), in hostile environment (battlefield)
used by German armies in WW2
preliminary attacks by polish mathematician Rejewski in 1932
(before Anschluss)
“industrial” (over 2000 messages decrypted per day) attack by
UK intelligence at Bletchley Park during WW2 (performing:
Turing)

SV 2016–17 Ancient Cryptography CryptoSec 49 / 1037

Picture of Enigma

SV 2016–17 Ancient Cryptography CryptoSec 50 / 1037

Enigma Circuit

https://en.wikipedia.org/wiki/Enigma_machine

SV 2016–17 Ancient Cryptography CryptoSec 51 / 1037

https://en.wikipedia.org/wiki/Enigma_machine

Example: DEAD BEEF

in/out

A

B

C

D

E

F

plugrotor 1

i1

rotor 2

i2

rotor 3

i3

reflector

deadbeef −→ AADCCBBB

SV 2016–17 Ancient Cryptography CryptoSec 52 / 1037

Enigma Building Blocks

given a permutation σ over Z = {A,B, . . . ,Z}, a fixed point is an
element x ∈ Z such that σ(x) = x
an involution over Z is a permutation σ of Z such that
σ(σ(x)) = x for all x .
Examples: reflector, plug board
a rotor σ defines a set of permutations σ0, . . . , σ25 over Z
the rotor in position i implements permutation σi
such that σi = ρi ◦ σ ◦ ρ−i where ρ(A) = B, ρ(B) = C, ..., ρ(Z) = A

C
B

A
Z

A = σ(C)

σ(B)

σ(A)

D
C

B
A

D
C

B

SV 2016–17 Ancient Cryptography CryptoSec 53 / 1037

The Enigma Cipher (Mathematically) — i

We define permutations over the 26-character alphabet.
Reflexion. π is a fixed involution with no fixed points.

Rotors. S be a set of five permutations over the alphabet.
ρ is the circular rotation over the alphabet by one
position.
ρi thus denotes the circular rotation over the alphabet
by i positions.
αi denotes ρi ◦ α ◦ ρ−i

Wire connection. σ is a configurable involution with 6 pairs (14 fixed
points)

SV 2016–17 Ancient Cryptography CryptoSec 54 / 1037

The Enigma Cipher (Mathematically) — Example

x : A B C D E F
ρ(x) : B C D E F A
α(x) : C A B D F E
α0(x) : C A B D F E
α1(x) : F D B C E A
α2(x) : B A E C D F
α3(x) : A C B F D E
α4(x) : F B D C A E
α5(x) : F A C E D B

αi = ρi ◦ α ◦ ρ−i

SV 2016–17 Ancient Cryptography CryptoSec 55 / 1037

The Enigma Cipher (Mathematically) — ii

Secret key: 3 components:
σ
an ordered choice α, β, γ ∈ S of pairwise different
permutations
a number a

Plaintext: x = x1, . . . , xm

Ciphertext: y = y1, . . . , ym

Encryption:

yi = σ−1 ◦ α−1
i1 ◦ β

−1
i2 ◦ γ

−1
i3 ◦ π ◦ γi3 ◦ βi2 ◦ αi1 ◦ σ(xi)

where i3i2i1 are the last three digits of the basis 26
numeration of i + a.

SV 2016–17 Ancient Cryptography CryptoSec 56 / 1037

Key Entropy in Enigma
σ: number of involutions with 14 fixed points(

26
14

)
× 11× 9× 7× · · · × 1

= 9 657 700× 11× 9× 7× · · · × 1
= 100 391 791 500
≈ 237

α, β, γ: number of choices for the rotors

5× 4× 3 = 60 ≈ 26

a: number of initial positions

263 = 17 576 ≈ 214

total: 57 bits

SV 2016–17 Ancient Cryptography CryptoSec 57 / 1037

A Turing Machine

SV 2016–17 Ancient Cryptography CryptoSec 58 / 1037

Q

Can we reasonably assume that the adversary ignores
the cryptosystem?

SV 2016–17 Ancient Cryptography CryptoSec 59 / 1037

The Laws of Modern Cryptography
Law I: the Kerckhoffs Principle

security should not rely on the secrecy of the cryptosystem itself
motivation:
the adversary may get some information about the system (e.g.
by reverse engineering, corruption, etc)
meaning:
security analysis must assumes that the adversary knows the
cryptosystem
does not mean:
cryptosystem must be public

SV 2016–17 Ancient Cryptography CryptoSec 60 / 1037

Kerckhoffs Principles

Kerckhoffs Principles

1 Le système doit être matériellement, sinon mathématiquement,
indéchiffrable;

2 Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi;

3 La clef doit pouvoir en être communiquée et retenue sans le secours de
notes écrites, et être changée ou modifiée au gré des correspondants;

4 Il faut qu’il soit applicable à la correspondance télégraphique;
5 Il faut qu’il soit portatif et que son maniement ou son fonctionnement

n’exige pas le concours de plusieurs personnes;
6 Enfin, il est nécessaire, vu les circonstances qui en commandent

l’application, que le système soit d’un usage facile, ne demandant ni
tension d’esprit, ni la connaissance d’une longue série de règles à
observer.

SV 2016–17 Ancient Cryptography CryptoSec 61 / 1037

The Laws of Modern Cryptography
Law II: the n2 Problem

in a network of n users, there is a number of potential pairs of users
within the order of magnitude of n2

we cannot assume that every pair of users share a secret key
we must find a way for any pair of users to establish a shared
secret key

SV 2016–17 Ancient Cryptography CryptoSec 62 / 1037

How Many Symmetric Keys?

for n users we may need up to n(n−1)
2 symmetric keys

SV 2016–17 Ancient Cryptography CryptoSec 63 / 1037

The Laws of Modern Cryptography
Law III: the Moore Law

the speed of CPUs doubles every 18–24 months
we should wonder how long a system must remain secure
we must estimate the speed of CPU at the end of this period
we assess security against brute force attacks

SV 2016–17 Ancient Cryptography CryptoSec 64 / 1037

Moore’s Law

ft ≈ 109 × 2
1

2 years (t−2 004) × cste

number of keys per second which can be tested in an exhaustive
search with technology at time t

SV 2016–17 Ancient Cryptography CryptoSec 65 / 1037

Security by Key Length

to offer security between current time t0 until time t0 +∆, the key
length must be at least

margin + log2

(∫ t0+∆

t0
ft dt

)

assuming that ft is exponential, the key length must be Ω(∆)

SV 2016–17 Ancient Cryptography CryptoSec 66 / 1037

A 128-Bit Key

11000000 10010011 00000011 01001001
11010011 11110010 01111011 10100101
10101001 00110001 00110000 11011110
00101110 01001110 00011111 00100001

number of possible combinations:

128 times︷ ︸︸ ︷
2× 2× 2× · · · × 2

= 2128

= 340 282 366 920 938 463 463 374 607 431 768 211 456︸ ︷︷ ︸
39 digits

SV 2016–17 Ancient Cryptography CryptoSec 67 / 1037

Exhaustive Search on 128 Bits

in 2007, a standard PC could test 1 000 000 keys per second
to run exhaustive search within 15 billion years, we need 720 000
billons of 2007-PCs!
if the Moore law goes on, in 2 174, a single PC will do in within a
second
better create the Big Bang and take 15 billion years of
vacations to solve the problem within a second!

SV 2016–17 Ancient Cryptography CryptoSec 68 / 1037

The Laws of Modern Cryptography
Law IV: the Murphy Law

if there is a single security hole, the system will fall into it
never leave a security hole
don’t bet on security, rather prove it

SV 2016–17 Ancient Cryptography CryptoSec 69 / 1037

1 Ancient Cryptography
Summary of this Chapter
Terminology
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory

SV 2016–17 Ancient Cryptography CryptoSec 70 / 1037

Bitwise Exclusive Or

exclusive or (XOR) of two bits:
⊕ 0 1
0 0 1
1 1 0

XOR: binary addition where carry bits are ignored
XOR: addition modulo 2
bitwise XOR of two bitstrings:

10010
⊕ 00111
= 10101

XOR properties
closure: the XOR of bitstrings is a bitstring
associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)
commutative: a⊕ b = b ⊕ a
neutral element: a⊕ [00 · · · 0] = a
(self-)invertibility: a⊕ a = [00 · · · 0] (or + = −)

SV 2016–17 Ancient Cryptography CryptoSec 71 / 1037

Vernam Cipher

we use a uniformly distributed random
key K (a bitstring)
every message X requires a new K of
same size (one-time pad)

Encrypting X with K : compute X ⊕ K
Decrypting Y with K : compute Y ⊕ K

⊕ 0 1
0 0 1
1 1 0

(X) 10010
⊕ (K) 00111
= (Y) 10101

⊕ (K) 00111
= (X) 10010

SV 2016–17 Ancient Cryptography CryptoSec 72 / 1037

Vernam Cipher

⊕ 0 1
0 0 1
1 1 0

-Message
10010

⊕
?

00111

-
10101

-
10101

⊕
?

00111

-Message
10010

�
�

Adversary

SV 2016–17 Ancient Cryptography CryptoSec 73 / 1037

Q

When is this insecure?

SV 2016–17 Ancient Cryptography CryptoSec 74 / 1037

Using the Same Key Twice

Y1 = X1 ⊕ K
Y2 = X2 ⊕ K

-Message
X1,X2

Encrypt -
Y1,Y2

-
Y1, Y2

Decrypt -Message
X1, X2

�
�

Adversary

Y1 ⊕ Y2 = (X1 ⊕ K)⊕ (X2 ⊕ K) = (X1 ⊕ X2)⊕ (K ⊕ K) = X1 ⊕ X2

leakage of the X1 ⊕ X2 value

SV 2016–17 Ancient Cryptography CryptoSec 75 / 1037

Visual Cryptography

Pixel coding

0 −→

1 −→

Pixel XOR

0⊕ 0 −→ ≈

0⊕ 1 −→ =

1⊕ 0 −→ =

1⊕ 1 −→ ≈

SV 2016–17 Ancient Cryptography CryptoSec 76 / 1037

Example

⊕

=

SV 2016–17 Ancient Cryptography CryptoSec 77 / 1037

Using the Same Key Twice

Y1

-⊕

K

-=

X1

Y2

-⊕ -=

X2

?
⊕

-=

X1 ⊕ X2

SV 2016–17 Ancient Cryptography CryptoSec 78 / 1037

Insecurity Cases in the Vernam Cipher

if K is smaller than X

Y = (XL ⊕ K)||XR

→ insecure
if K is not uniformly distributed

Pr[K = k] high =⇒ Pr[X = y ⊕ k] high

→ insecure
if K is used twice and messages are redundant

Y1 ⊕ Y2 = X1 ⊕ X2 =⇒ information about X1 and X2

→ insecure

SV 2016–17 Ancient Cryptography CryptoSec 79 / 1037

Summary of Security Requirements

the key must have (at least) the same length of the message
the key must be uniformly distributed
the key must be thrown away after usage

/: this makes no sense for most of applications!,: this provides perfect security
makes sense to prepare emergency communication (red
telephone)

keys are exchanged (through slow channels) before the
messages to transmit are known

bad news for other application: there is essentially no better
cipher with this strong security property

SV 2016–17 Ancient Cryptography CryptoSec 80 / 1037

Intuition on Why it is Perfectly Secure

if the adversary gets Y = y then for any x

Pr[X = x |Y = y] = Pr[X = x |X ⊕ K = y] = Pr[X = x]

because X and X ⊕ K are statistically independent
the adversary gets no information about X in knowing that Y = y

SV 2016–17 Ancient Cryptography CryptoSec 81 / 1037

Abelian Group Laws
Definition
An Abelian group is a set G together with a mapping from G ×G to
G which maps (a,b) to an element denoted a + b and such that

1. [closure] for any a,b ∈ G, we have a + b ∈ G
2. [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)

(notation: n.a means a + a + · · ·+ a (n times))
3. [neutral element] there exists an element denoted by 0 s.t. for

any a, a + 0 = 0 + a = a
4. [invertibility] for any a there exists an element denoted by −a s.t.

a + (−a) = (−a) + a = 0 (notation: a− b means a + (−b))
5. [commutativity] for any a, b ∈ G, we have a + b = b + a

Z with the regular addition
{0, 1}n with ⊕

{0, 1, . . . , n − 1} with (a, b) 7→
{

a + b if a + b < n
a + b − n otherwise

SV 2016–17 Ancient Cryptography CryptoSec 82 / 1037

Useful Lemma

Lemma
Let X and K be two independent random variables in a given group.
If K is uniformly distributed, then Y = K + X is uniformly distributed
and independent from X.

Proof.
For any x and y :

Pr[X = x ,Y = y] = Pr[X = x ,K = y − x]
= Pr[X = x]× Pr[K = y − x]

= Pr[X = x]
1

#group

Pr[Y = y] =
∑

x

Pr[X = x ,Y = y]

=
1

#group

SV 2016–17 Ancient Cryptography CryptoSec 83 / 1037

Generalized Vernam Cipher

Let G be an Abelian group and consider an arbitrary plaintext source
producing elements in G

let K be uniformly distributed in G and independent from the
plaintext
given X , the encryption of X with key K is Y = K + X
given Y , the decryption of Y with key K is X = (−K) + Y
the key is used only once

Theorem
For any distribution of X over G, Y is independent from X and
uniformly distributed.

(perfect secrecy)

SV 2016–17 Ancient Cryptography CryptoSec 84 / 1037

Information Theory
Claude Shannon

[Claude Shannon]

SV 2016–17 Ancient Cryptography CryptoSec 85 / 1037

skip reminders on Shannon entropy

skip

CAUTION: in cryptography, “entropy” is often used in an informal way
by meaning some kind of “effective bit-length”

Reminder on the Shannon Entropy — i

H(X): number of bits of information to represent the value of X
H(X ,Y): entropy of (X ,Y)

H(X |Y) = H(X ,Y)− H(Y)

H(X) = −
∑

x

Pr[X = x] log2 Pr[X = x]

H(X ,Y) = −
∑
x,y

Pr[X = x ,Y = y] log2 Pr[X = x ,Y = y]

H(X |Y) = −
∑
x,y

Pr[X = x ,Y = y] log2 Pr[X = x |Y = y]

SV 2016–17 Ancient Cryptography CryptoSec 87 / 1037

Reminder on the Shannon Entropy — ii

a real function f is convex on [a, b] iff

∀set S ∀t : S → [a, b] ∀p : S →]0, 1]∑
x∈S

px = 1 =⇒
∑
x∈S

px f (tx) ≥ f

(∑
x∈S

px tx

)

it is strictly convex if we further have the property that equality
implies all tx are equal
a real function f which has a second derivative on]a,b[is strictly
convex on [a, b] iff its second derivative is always > 0 on]a, b[

SV 2016–17 Ancient Cryptography CryptoSec 88 / 1037

Reminder on the Shannon Entropy — iii

Proposition

H(X) ≥ 0 with equality if, and only if X is constant

Proof.
f (t) = − log2 t is strictly convex on [0, 1]
take tx = px = Pr[X = x] and get

H(X) ≥ − log2

(∑
x∈S

p2
x

)

clearly,
∑

x p2
x ≤ 1 so this log is positive

Assuming equality, we must have
∑

x p2
x = 1 so all px must be

equal to 1 so there must be a single x (we cannot have two
different values with probability 1)
(i.e. X is constant equal to this x)

SV 2016–17 Ancient Cryptography CryptoSec 89 / 1037

Reminder on the Shannon Entropy — iv
Proposition

H(X ,Y) ≥ H(X) with equality if, and only if Y can be written f (X)

Proof.
We write

H(Y |X) =
∑

x

Pr[X = x]
∑

y

Pr[Y = y |X = x] log2 Pr[Y = y |X = x]

We know that for each x the inner sum is ≥ 0 with equality iff
there is a single y = f (x) for which Pr[Y = y |X = x] > 0
Clearly: H(Y |X) ≥ 0
Assuming equality, for each x we define y = f (x) and get
Pr[Y = f (x)|X = x] = 1 for all x
so, Pr[Y = f (X)] = 1

H(Y |X) = −
∑
x,y

Pr[X = x ,Y = y] log2 Pr[Y = y |X = x]

SV 2016–17 Ancient Cryptography CryptoSec 90 / 1037

Reminder on the Shannon Entropy — v
Proposition

H(X ,Y) ≤ H(X) + H(Y) with equality if, and only if X and Y are
independent.

Proof.
t 7→ t ln t has second derivative 1

t so it is convex and

−
∑

y

Pr[Y = y]ty log2 ty ≤ −

(∑
y

Pr[Y = y]ty

)
log2

(∑
y

Pr[Y = y]ty

)

with equality iff all ty ’s for Pr[Y = y] ̸= 0 are equal
Applying this to ty = Pr[X = x |Y = y] yields

−
∑

y

Pr[X = x, Y = y] log2 Pr[X = x|Y = y] ≤ −Pr[X = x] log2 Pr[X = x]

with equality iff Pr[X = x |Y = y] does not depend on y
summing up for all x leads to H(X |Y) ≤ H(X) with equality iff X
and Y are independent

SV 2016–17 Ancient Cryptography CryptoSec 91 / 1037

Reminder on the Shannon Entropy — vi

Proposition

If Pr[X = x] ̸= 0 for n values of x then H(X) ≤ log2 n with equality if,
and only if all non-zero Pr[X = x] are equal to 1

n .

Proof.
t 7→ − ln t has second derivative 1

t2 so is convex and

∑
x

Pr[X = x] log2 tx ≤ log2

(∑
x

Pr[X = x]tx

)

with equality iff all tx ’s for Pr[X = x] ̸= 0 are equal
Applying this to tx = 1/Pr[X = x] yields

H(X) ≤ log2 n

with equality iff all nonzero Pr[X = x] are equal

SV 2016–17 Ancient Cryptography CryptoSec 92 / 1037

The Shannon Encryption Model

Key
source

6
Key K

6

Message
source

-Message X Encipherer
C

-Cryptogram Y Decipherer
C−1

-X

6
Enemy Cryptanalyst

SV 2016–17 Ancient Cryptography CryptoSec 93 / 1037

The Shannon Encryption Model

message is a random variable with a given a priori distribution
for later: with any a priori distribution
key is a random variable with specified distribution, independent
from the message
correctness property: Pr[C−1

K (CK (X)) = X] = 1
adversary gets the random variable Y = CK (X) only
for other security models to be seen: other assumptions

SV 2016–17 Ancient Cryptography CryptoSec 94 / 1037

Perfect Secrecy — i

Definition
Perfect secrecy means that the a posteriori distribution of the
plaintext X after we know the ciphertext Y is equal to the a priori
distribution of the plaintext:

∀x , y Pr[Y = y] ̸= 0 =⇒ Pr[X = x |Y = y] = Pr[X = x].

The adversary learns nothing about X by intercepting Y .
(Remark: this definition is relative to the distribution of X .)

SV 2016–17 Ancient Cryptography CryptoSec 95 / 1037

Perfect Secrecy — ii

Proposition

Perfect secrecy is equivalent to the statistic independence of X and
Y .

Proof.
Independence
⇐⇒ ∀x , y Pr[X = x ,Y = y] = Pr[X = x]Pr[Y = y].
Since Pr[X = x |Y = y] = Pr[X=x,Y=y]

Pr[Y=y] by definition, the result is
trivial!

SV 2016–17 Ancient Cryptography CryptoSec 96 / 1037

Perfect Secrecy — iii

Proposition

Perfect secrecy is equivalent to H(X |Y) = H(X).

Proof.
Prefect secrecy is equivalent to statistic independence of X and Y .
Statistic independence of X and Y is equivalent to
H(X ,Y) = H(X) + H(Y).
Since H(X |Y) = H(X ,Y)− H(Y) the result is trivial.

SV 2016–17 Ancient Cryptography CryptoSec 97 / 1037

Vernam Cipher Provides Perfect Secrecy

Theorem
For any distribution of the plaintext, the generalized Vernam cipher
provides perfect secrecy.

SV 2016–17 Ancient Cryptography CryptoSec 98 / 1037

Influence of the Plaintext Distribution
Theorem
Let CK be a cipher with K following a given distribution. Let p and p′

be two distributions for X such that support(p′) ⊆ support(p).
CK provides perfect secrecy with p implies that CK provides perfect
secrecy with p′.

Proof. If Prp′ [Y = y] ̸= 0, there exists k and x0 such that Ck (x0) = y ,
Pr[K = k] ̸= 0, and p′(x0) ̸= 0. Since support(p′) ⊆ support(p), we
have p(x0) ̸= 0 so Prp[Y = y] ̸= 0. Due to perfect secrecy,

Pr
p
[Y = y] = Pr

p
[Y = y |X = x] = Pr[CK (x) = y] = Pr

p′
[Y = y |X = x]

then

Pr
p′
[Y = y] =

∑
x

Pr
p′
[Y = y |X = x]p′(x) =

∑
x

Pr
p
[Y = y]p′(x)

= Pr
p
[Y = y]

∑
x

p′(x) = Pr
p
[Y = y] = Pr

p′
[Y = y |X = x]

SV 2016–17 Ancient Cryptography CryptoSec 99 / 1037

Shannon Theorem

Theorem (Shannon 1949)

Perfect secrecy implies H(K) ≥ H(X).

Proof.
we have H(Y) ≥ H(Y |K)

knowledge of K makes X ↔ Y , thus H(Y |K) = H(X |K)

since X and K are independent, we obtain H(Y |K) = H(X)
we thus have H(Y) ≥ H(X)

knowledge of X makes K → Y , thus H(Y ,K |X) = H(K |X)

since X and K are independent, H(K |X) = H(K), so
H(Y ,K |X) = H(K)

we have H(Y ,K |X) ≥ H(Y |X), thus H(K) ≥ H(Y |X)

if we have perfect secrecy, we have
H(Y |X) = H(X |Y) + H(Y)− H(X) = H(Y)
thus, we have H(K) ≥ H(Y) ≥ H(X)

SV 2016–17 Ancient Cryptography CryptoSec 100 / 1037

Other Form of the Shannon Theorem
Theorem (Shannon 1949)

Perfect secrecy implies that the support of K is at least as large as
the support of X .

Proof. Let y be such that Pr[Y = y] ̸= 0.
since X and K must be independent

Pr[X = x ,Y = y] = Pr[X = x ,CK (x) = y] = Pr[X = x]Pr[CK (x) = y]

perfect secrecy implies
Pr[CK (x) = y] = Pr[Y = y |X = x] = Pr[Y = y] for all x such that
Pr[X = x] ̸= 0
consequently, for all x in the support of X we have
Pr[CK (x) = y] ̸= 0 so there exists one k in the support of K such
that Ck (x) = y . Let write it k = f (x).
for any x in the support of X we have C−1

f (x)(y) = x .
Clearly, f (x) = f (x ′) implies x = x ′.
Consequently, we have an injection from the support of X to the
support of K .

SV 2016–17 Ancient Cryptography CryptoSec 101 / 1037

The Negative Side of Shannon Theorem

Corollary

If we want to achieve perfect secrecy the number of possible keys
must be at least as large of the number of possible plaintexts.

Conclusion: we cannot do better than the Vernam cipher

SV 2016–17 Ancient Cryptography CryptoSec 102 / 1037

Other Consequences

Theorem
Perfect secrecy implies that X has a finite support.

Proof.
let y s.t. p = Pr[Y = y] ̸= 0
due to perfect secrecy we have Pr[Y = y] = Pr[CK (x) = y] for all
x in the support
since [C−1

K (y) = x]⇐= [CK (x) = y], we have
Pr[C−1

K (y) = x] ≥ Pr[CK (x) = y] = p for all x in the support
thus

1 ≥
∑

x∈support

Pr[C−1
K (y) = x] ≥ p.#support

#Support(X) ≤ 1
p

SV 2016–17 Ancient Cryptography CryptoSec 103 / 1037

Summary on the Shannon Results

we have mathematically formalized the notion of perfect secrecy
Vernam Cipher achieves perfect secrecy
despite Vernam Cipher is expensive, there is no cheaper
alternative

Q: Can the theory of cryptography stop here?

A: Abg lrg: jung zvffrf vf gur abgvba bs

pbzcyrkvgl
ROT13

SV 2016–17 Ancient Cryptography CryptoSec 104 / 1037

Information Theory vs Complexity Theory

Information Theory

Is information there or not?

Is it possible to recover information?

Complexity Theory

How much does it cost to recover
information?

Is it doable to recover information?

security shall rather be based on lower bounding the complexity of
breaking the system

SV 2016–17 Ancient Cryptography CryptoSec 105 / 1037

The Early Days of Computer Science
Alan Turing

SV 2016–17 Ancient Cryptography CryptoSec 106 / 1037

Conclusion

in prehistory: security by obscurity
now a need for standard solutions
perfect security requires an unreasonable cost
conclusion: we must trade security against cost

SV 2016–17 Ancient Cryptography CryptoSec 107 / 1037

References

Singh. The Code Book. Fourth Estate. 2000.
Easy reading stories
Kahn. The Codebreakers. Smith & Daniel. 1997.
Textbook about (pre)history of cryptography
Levy. Crypto. Penguin. 2001.
Easy reading story about the begining of public-key cryptography
Hinsley-Stripp. The Inside Story of Bletchley Park. Oxford
University Press. 1993.
Naor-Shamir. Visual Cryptography. In EUROCRYPT 1994,
LNCS 950.
Shannon. Communication Theory of Secrecy Systems. 1949.
Re-edited by Sloane-Wyner Eds in Claude Elwood Shannon
collected papers. IEEE Press. 1993.

SV 2016–17 Ancient Cryptography CryptoSec 108 / 1037

Must be Known

Kerckhoffs principle
the ACI trilogy (Authentication, Confidentiality, Integrity)
Vernam cipher
Shannon model of encryption
perfect secrecy
Shannon Theorem

SV 2016–17 Ancient Cryptography CryptoSec 109 / 1037

Train Yourself

Vigenère: final exam 2009–10 ex1
Vernam:
midterm exam 2010–11 ex3
midterm exam 2015–16 ex1
entropy: final exam 2012–13 ex3

SV 2016–17 Ancient Cryptography CryptoSec 110 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 113 / 1037

Roadmap

reminders on arithmetics, groups, Zn

Diffie-Hellman key exchange over a group
reminders on rings, fields, Z∗p
Diffie-Hellman key exchange, concretely
ElGamal cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 114 / 1037

2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 115 / 1037

Prime Numbers

Definition
A prime number is a positive integer which has exactly two positive
factors: 1 and itself.

2, 3,5, 7, 11,13, 17, 19,23, 29, 31, . . .

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 116 / 1037

Unique Factorization

Theorem
Each integer n can be uniquely written

n = u × pα1
1 × · · · × pαr

r

where p1 < · · · < pr are prime, u = ±1, and α1, . . . , αr are
non-negative integers.

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 117 / 1037

Modulo n

Operation x mod n: remainder in the Euclidean division of x by n

x = 8273 143 = n
−715 57 = ⌊x/n⌋

1123
−1001

x mod n = 122

8273 mod 143 = 122

8273 = 122 + 143× 57

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 118 / 1037

Euclidean Division

Theorem (Euclidean Division)

For any a ∈ Z and any n > 0 there exists a unique pair (q, r) ∈ Z2

such that a = qn + r and 0 ≤ r < n.
We denote r = a mod n and have q =

⌊ a
n

⌋
.

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 119 / 1037

Two Notations for “mod”

without parentheses: x mod n
→ a two-adic operator
= remainder in the Euclidean division of x by n
with parentheses: a ≡ b (mod n)
→ an attribute to an equivalence relation (here: ≡)
means that b − a is divisible by n
or equivalently: a mod n = b mod n
do not mix up

a = b mod n and a ≡ b (mod n)
↑ ↑

a set to (b mod n) a and b are (equal modulo n)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 120 / 1037

Zn for Dummies
Zn = {0, 1, . . . , n − 1}
addition in Zn: a ⊞ b = (a + b) mod n
multiplication in Zn: a ⊠ b = (a× b) mod n
useful lemma: (a + (b mod n)) mod n = (a + b) mod n
useful lemma: (a× (b mod n)) mod n = (ab) mod n
⊞ and ⊠ closure: comes from x mod n ∈ Zn for any x ∈ Z
⊞ associativity: comes from the lemma:

a ⊞ (b ⊞ c) = (a + ((b + c) mod n)) mod n = (a + b + c) mod n...

⊠ associativity: comes from the lemma:

a ⊠ (b ⊠ c) = (a× ((bc) mod n)) mod n = (abc) mod n...

neutral elements: 0 for ⊞ and 1 for ⊠
invertibility for ⊞: (−a) mod n, comes from the lemma:

a⊞((−a) mod n) = (a+((−a) mod n)) mod n = (a−a) mod n = 0

distributivity: comes from the lemma:

a ⊠ ((b + c) mod n) = (a× (b + c)) mod n = (ab + ac) mod n...

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 121 / 1037

2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 122 / 1037

Definition of a Group

Definition
A group is a set G together with a mapping from G ×G to G which
maps (a, b) to an element denoted a⊙ b and such that

1. [closure] for any a,b ∈ G, we have a⊙ b ∈ G
2. [associativity] for any a, b, c, we have (a⊙ b)⊙ c = a⊙ (b ⊙ c)
3. [neutral element] there exists an element e s.t. for any a,

a⊙ e = e ⊙ a = a
4. [invertibility] for any a there exists b s.t. a⊙ b = b ⊙ a = e

Definition
An Abelian group is a set G together with a mapping from G ×G to
G which maps (a,b) to an element denoted a⊙ b and such that

1–4. [group] it is a group
5. [commutativity] for any a, b we have a⊙ b = b ⊙ a

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 123 / 1037

Additive vs Multiplicative Notations for Groups

additive notations multiplicative notations
group (G,+) (G,×)
operation a + b ab
neutral element 0 1
inverse −a a−1

exponential n.a an

(a and b are group elements; n is an integer)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 124 / 1037

Group Homomorphism

Homomorphism: given two groups (G1,×1) and (G2,×2), a
mapping f from G1 to G2 is a group homomorphism if
for any a,b ∈ G1

f (a×1 b) = f (a)×2 f (b)

Example: If g ∈ G, the mapping φ : Z −→ G defined by
φ(a) = ga is a group homomorphism.
∀a, b ∈ Z φ(a + b) = φ(a)φ(b)

Isomorphism: a group homomorphism which is bijective is called an
isomorphism

isomorphism = change of notation
Property: A group homomorphism is injective iff
∀a ∈ G1 f (a) = 1 =⇒ a neutral in G1

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 125 / 1037

Group Constructions: Subgroups

Subgroups: given (G,×), and given H ⊆ G which is nonempty and
stable by × and inversion, consider (H,×)

Example:
5Z = {. . . ,−15,−10,−5, 0, 5,10, 15, . . .} is a subgroup of Z

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 126 / 1037

Subgroups of Z

Theorem
If H is a subgroup of Z not reduced to {0}, then H = nZ where n is
the smallest positive element of H.

Proof.
let a ∈ H and write a = qn + r with q, r ∈ Z and 0 ≤ r < n
(Euclidean division)
since H is a group and a, n ∈ H we have r = a− qn ∈ H
since 0 ≤ r < n and n is the smallest positive element of H we
must have r = 0, thus a = qn ∈ nZ
therefore, H ⊆ nZ
conversely, rn must be in H for all r ∈ Z, therefore H = nZ

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 127 / 1037

Generators

Given a group (G, .), an element g generates/spans a subgroup
⟨g⟩ = {. . . , g−2, g−1, g0, g1, g2, . . .}

If ⟨g⟩ is finite, of cardinality n, then gn = 1 and
⟨g⟩ = {g0,g1, . . . ,gn−1}

(see next slide)
if x ∈ ⟨g⟩, logg x is uniquely determined up to some multiple of n:

logg x is an element of Zn

i 7→ g i is a group isomorphism between Zn and ⟨g⟩

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 128 / 1037

Finite Groups and Orders

Definition
If (G, .) is a group and if G is a finite set, then the cardinality of G is
called the group order.
If g generates a subgroup of order n, then n is called the order of g.

Proposition

The order of g is the smallest i > 0 s.t. g i = 1.

Proof.
the set of all i ∈ Z such that g i = 1 is a subgroup of Z
(preimage of subgroup {1} by group homomorphism i 7→ g i ...)
it must be of form nZ where n is the smallest among all i > 0
{1, g,g2, . . . , gn−1} is a non-repeating exhaustive list of all ⟨g⟩
elements

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 129 / 1037

Consequence

if g is of order n...
then ⟨g⟩ = {1, g, g2, . . . , gn−1}
∀i g i = 1⇐⇒ n|i
∀i , j g i = g j ⇐⇒ i ≡ j (mod n)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 130 / 1037

Group Constructions: Product Groups

Product groups: given (G1,×1) and (G2,×2), consider G = G1 ×G2
and (a1,a2)× (b1, b2) = (a1 ×1 b1,a2 ×2 b2)

Power groups: given (G, .) and I, consider GI and
(ai)i∈I × (bi)i∈I = (ai .bi)i∈I

Example:
C∗ × {−1,+1} = {(z, s); z ∈ C∗, s = ±1} with
(z, s)× (z ′, s′) = (zz ′, ss′)
Z{a,b,c} is the set of mappings from D = {a, b, c} to Z with f + g
defined by (f + g)(x) = f (x) + g(x)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 131 / 1037

Functional vs Family Notations for Power Sets

functional notations family notations
function domain D index set I
function range R set S

finite domain f : {1, . . . , n} → R (x1, . . . , xn)
infinite domain f : D → R (xi)i∈I
input x ∈ D i ∈ I
image f (x) ∈ R xi ∈ S
set RD SI or Sn

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 132 / 1037

Group Constructions: Quotient Groups

Quotient groups: given a commutative group G and a subgroup H,
consider the set G/H of classes for congruence
modulo H with the law induced by +

a and b in G are said to be congruent modulo H if b − a ∈ H
notation: a ≡ b (mod H)

the relation “...is congruent to ... modulo H” is an equivalence
relation (reflexive, symmetric, transitive)
notation: for a ∈ G, a + H is the set of all G elements which can
be written a + h for some h ∈ H (elements congruent to a)
every class of equivalence can be written a + H for some a ∈ G
a is called a representative for the class

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 133 / 1037

Quotient of an Abelian Group by a Subgroup

0 a + c b

a c a + b

x a + c + x b + x

a + x c + x a + b + x

y a + c + y b + y

a + y c + y a + b + y

x + y

H

a + H

b + H

a + b + H

(a + H) + (b + H) = (a + b) + H

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 134 / 1037

Quotient Example: Z/6Z

0 5 2

1 4 3

6x 5 + 6x 2 + 6x

1 + 6x 4 + 6x 3 + 6x

6y 5 + 6y 2 + 6y

1 + 6y 4 + 6y 3 + 6y

6x + 6y

6Z

1 + 6Z

2 + 6Z

3 + 6Z

Z/H = {H, 1 + H, 2 + H, 3 + H,4 + H, 5 + H}

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 135 / 1037

Lagrange Theorem

Theorem (Lagrange)

In any finite group, the order of any element is a factor of the order of
the group.

Proof.
in G/⟨g⟩, all a + ⟨g⟩ have same number of elements so #G (the order
of G) is divisible by #⟨g⟩ (the order of g)

Consequence

∀g ∈ G g#G = 1

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 136 / 1037

Application: Generators in a Group of Prime Order

Theorem
if G has prime order, all elements (except 1) are generators

Proof.
let p be the order of G
an element x ∈ G such that x ̸= 1 has an order n > 1
due to the Lagrange Theorem, n|p, so n = p since p is prime
g0, . . . ,gn−1 must be pairwise different, so n ≤ p
so n = p: g must generate G

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 137 / 1037

The Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g (g is public)

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−→

Y←−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x K ← X y

(K = gxy)

security requirement: given (g,gx , gy), it must be hard to compute
gxy (Computational Diffie-Hellman Problem)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 138 / 1037

Using the Diffie-Hellman Key Agreement Protocol

allows to set up a secret key over a public channel
(assuming authentication)
no further need to set up pre-shared keys: sets up keys when
needed
→ public-key cryptography

Example of Diffie-Hellman groups:
Z∗p (compute gx mod p)
elliptic curves

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 139 / 1037

2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 140 / 1037

Addition with Big Numbers (in Decimal)

1 1 1

8 427 403
+ 12 951 842
= 21 379 245

Input: two integers a and b of ℓ digits
Output: one integer c = a + b
1: r ← 0
2: for i = 0 to ℓ− 1 do
3: d ← ai + bi + r
4: write d = 10r + ci with ci < 10
5: end for
6: cℓ ← r

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 141 / 1037

Addition in Binary

1 + 1 = 10

1 1

1 001 001
+ 10 011 000
= 11 100 001

Input: a and b, two integers of at most ℓ bits
Output: c, an integer of at most ℓ+1 bits representing

a + b
Complexity: O(ℓ)
1: r ← 0
2: for i = 0 to ℓ− 1 do
3: d ← ai + bi + r
4: set ci and r to bits such that d = 2r + ci

5: end for
6: cℓ ← r

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 142 / 1037

Addition (Binary/Hexadecimal/Decimal)

1 0 1 0 1 0 0 0x54 (84)
+ 1 0 0 1 0 0 1 0 0x92 (146)
= 1 1 1 0 0 1 1 0 0xe6 (230)

hexadecimal = compact way to represent bistrings
(bits groupped into “nibbles” = packets of 4 bits)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 143 / 1037

Definition of a Monoid

Definition
A monoid is a set G together with a mapping from G ×G to G which
maps (a, b) to an element denoted a + b and such that

1. [closure] for any a,b ∈ G, we have a + b ∈ G
2. [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)
3. [neutral element] there exists an element 0 s.t. for any a,

a + 0 = 0 + a = a

multiplication of a positive integer n by a monoid element a:

n.a = a + a + · · ·+ a︸ ︷︷ ︸
n times

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 144 / 1037

Multiplication

we want to multiply a monoid element (a = 12) by an integer
(n = 100101 in binary):

12× 100101
= 12×

(
1× 25 + 0× 24 + 0× 23 + 1× 22 + 0× 2 + 1

)
= 12×

(
25 + 22 + 1

)
= 12× 25 + 12× 22 + 12× 1

multiplication by 2 consists of adding to itself
(= a shift left for addition over the integers in binary)
multiplication by 2i consists of multiplying i times by 2

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 145 / 1037

Multiplication Algorithm

12× 100101 = 444

1 1 0 0 0x00c (12)
× 1 0 0 1 0 1 0x025 (37)

1 1 0 0 0x00c (12)
+ 0 0 0 0 0x000 (0)
+ 1 1 0 0 0x030 (48)
+ 0 0 0 0 0x000 (0)
+ 0 0 0 0 0x000 (0)
+ 1 1 0 0 0x180 (384)
= 1 1 0 1 1 1 1 0 0 0x1bc (444)

�444
?

3841

� +

DB �
192

0 DB �
96
0 DB �

�+
?

60

48
1 DB �

24
0 DB �

+�?
12 0

121

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 146 / 1037

Double-and-Add From Right to Left

Input: a in monoid, n integer of at most ℓ bits
(n in binary)

Output: c = a× n
Complexity: O(ℓ) monoid additions

1: x ← 0
2: y ← a
3: for i = 0 to ℓ− 1 do
4: if ni = 1 then
5: x ← x + y
6: end if
7: y ← y + y
8: end for
9: c ← x

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 147 / 1037

From Left to Right

12× 100101 = 444

0 -DB -+-
0 12

12

?

1

DB -
24

0

DB -
48

0

DB -+-
96 108

?

1

DB -
216

0

DB -+-
432 444

?

1

12× 1

12× 10

12× 100

12× 1001

12× 10010

12× 100101

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 148 / 1037

Double-and-Add From Left to Right

Input: a in monoid, n integer of at most ℓ bits
(n in binary)

Output: c = a× n
Complexity: O(ℓ) monoid additions

1: x ← 0
2: for i = ℓ− 1 to 0 do
3: x ← x + x
4: if ni = 1 then
5: x ← x + a
6: end if
7: end for
8: c ← x

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 149 / 1037

From Double-and-Add to Square-and-Multiply

if we can compute a monoid law a + b in O(T) then we can
compute n.a for n ∈ N in O(T log n) instead of O(Tn) by trivial
algorithm

Example:
monoid (Z,+): a positive integer multiplied by a Z element
monoid (EC,+): an integer multiplied by a point
monoid (Zm,×): a Zm element raised to some integral power

Same with multiplicative notation:
if we can compute a monoid law ab in O(T) then we can
compute an for n ∈ N in O(T log n)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 150 / 1037

2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 151 / 1037

Definition of a Ring
Definition
A ring is an Abelian group (R,+) together with a mapping from R×R
to R which maps (a, b) to an element denoted ab and such that
1-4. [group] R with + is a group

5. [Abelian] for any a, b, we have a + b = b + a
6. [closure] for any a,b ∈ R, we have ab ∈ R
7. [associativity] for any a, b, c, we have (ab)c = a(bc)
8. [neutral element] there exists 1 s.t. for any a, a1 = 1a = a
9. [distributivity] for any a, b, c, we have a(b + c) = ab + ac and

(a + b)c = ac + bc

Definition
A commutative ring is a ring R such that

1–9. [ring] it is a ring
10. [commutativity] for any a, b we have ab = ba

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 152 / 1037

Group of Units

not every element x in a ring R has an inverse for the
multiplication
we denote by R∗ the set of elements having a multiplicative
inverse
those elements are called units
R∗ with the multiplication is a group
this is the group of units of the ring R

common mistake: R∗ = R − {0}

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 153 / 1037

Group and Ring Constructors

sub-structure (sub-group, ideal)
subgroup: subset of a group stable by group law and inversion
ideal: subgroup of a ring stable by multiplication by any ring
element
spanned structure
set of all values generated by structure operations
product structure
set of pairs with inherited structure operations
power structure
set of tuples / set of functions of given domain with range in
structure
quotient (Abelian group by a subgroup, ring by an ideal)
structure induced by grouping “equivalent” elements

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 154 / 1037

Example: Z with addition

Z = {. . . ,−3,−2,−1, 0,1, 2, 3, . . .}

1. Z is closed for the addition
2. the addition is associative in Z
3. 0 is neutral for the addition
4. for any a ∈ Z we have −a ∈ Z which is the inverse of a for

addition
5. the addition is commutative in Z
6. Z is closed for the multiplication
7. the multiplication is associative in Z
8. 1 is neutral for the multiplication
9. addition is distributive for multiplication

10. the multiplication is commutative in Z

Z is a commutative ring of infinite size

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 155 / 1037

Example: Z[X]

Z[X] = set of polynomials with coefficients in Z

example: (5X 3− 3X 2 +X − 4) + (X 2− 2X + 1) = 5X 3− 2X 2−X − 3
1-5. Z[X] with the addition is an Abelian group (isomorphic to Z(N))

6. Z[X] is closed under multiplication
7. multiplication is associative in Z[X]

8. the constant polynomial 1 is neutral for the multiplication
9. distributivity: we have

A(X)(B(X) + C(X)) = A(X)B(X) + A(X)C(X) for all
A(X),B(X),C(X) ∈ Z[X]

10. multiplication is commutative in Z[X]

Z[X] is a commutative ring of infinite size

(same for R[X] for any commutative ring R)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 156 / 1037

Example: Modulo 9 Reduction of Large Numbers

296 527 mod 9
= (200 000 + 90 000 + 6 000 + 500 + 20 + 7) mod 9
= (2× 100 000 + 9× 10 000 + 6× 1 000 + 5× 100 + 2× 10 + 7) mod 9
= (2× 105 + 9× 104 + 6× 103 + 5× 102 + 2× 10 + 7) mod 9
= (2× (10 mod 9)5 + 9× (10 mod 9)4 + 6× (10 mod 9)3 +

+5× (10 mod 9)2 + 2× (10 mod 9) + 7) mod 9
= (2× 15 + 9× 14 + 6× 13 + 5× 12 + 2× 1 + 7) mod 9
= (2 + 9 + 6 + 5 + 2 + 7) mod 9
= 31 mod 9
= (3 + 1) mod 9
= 4 mod 9
= 4

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 157 / 1037

“Preuve par 9”

mod9
5 2 6 4

× 2 8 × 1
4 2 0 8

+ 1 0 5 2
1 4 7 2 8 4

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 158 / 1037

Example: the Ring of Residues Modulo n

Zn = {0, 1, 2, 3, . . . , n − 1}

1. Zn is closed for the addition modulo n
2. the addition modulo n is associative in Zn (next slides)
3. 0 is neutral for the addition
4. for any nonzero a ∈ Zn we have n − a ∈ Zn which is the inverse

of a for addition modulo n (0 is self-inverse)
5. the addition modulo n is commutative in Zn

6. Zn is closed for the multiplication modulo n
7. the multiplication modulo n is associative in Zn

8. 1 is neutral for the multiplication
9. addition modulo n is distributed over multiplication modulo n

(next slides)
10. the multiplication modulo n is commutative in Zn

Zn is a commutative ring of n elements

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 159 / 1037

Cerebral Zn

nZ is an ideal of Z (with laws + and ×) (ideal generated by n)
we can do the quotient Z/nZ of Z by nZ
congruence modulo nZ is written

a ≡ b (mod n) ⇐⇒ a− b ∈ nZ ⇐⇒ a mod n = b mod n

an exhaustive list of equivalence classes is

0 + nZ , 1 + nZ , 2 + nZ , . . . , (n − 1) + nZ

note that (a + nZ) + (b + nZ) = ((a + b) mod n) + nZ
note that (a + nZ)× (b + nZ) = ((a× b) mod n) + nZ
we simply write a (the representative in [0, n − 1]) instead of
a + nZ

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 160 / 1037

Zn Tips

for any polynomial P(x) ∈ Z[x] and any a, n ∈ Z we have

P(a) mod n = P(a mod n) mod n

can put “modn” reductions in the ground floor
if x has order m in Z∗n then for any i ∈ Z

x i mod n = x i mod m mod n

can put “modm” reductions in the upper floor

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 161 / 1037

Exercise

Z15 has order 15
We have ⟨5⟩ = {0, 5,10}.
This is a subgroup of order 3
5 has order 3 in Z15

in Z15: ⟨2⟩ = {0, 2, 4, 6, 8, 10, 12, 14,1, 3, 5, 7, 9, 11, 13}.
in Z15, 2 has order 15 (so, 2 is a generator)
We have ⟨1⟩ = Z15
1 is a generator
Z∗15 = {1,2, 4, 7,8, 11, 13,14}
in Z∗15, 2 has the order 4: ⟨2⟩ = {1,2, 4, 8}

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 162 / 1037

Zn Computations

Efficiently computable operations:
addition: (a + b) mod n
multiplication: (a× b) mod n (double-and-add)
modulo: a mod n (Euclidean division)
inverse: a−1 mod n (when gcd(a,n) = 1) (extended Euclid
algorithm)
power: ae mod n (for e integer only) (square-and-multiply)

Remaining problem: extracting roots: e
√

a mod n (or ar mod n for r
rational)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 163 / 1037

Addition in Zn

Input: an integer n of ℓ bits, two integers a and
b less than n

Output: c, an integer which represents a +
b mod n

Complexity: O(ℓ)
1: add a and b in c
2: compare c and n
3: if c ≥ n then
4: subtract n from c
5: end if

remark: comparison and subtraction take O(ℓ) time as well

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 164 / 1037

Multiplication in Zn From Left to Right

Input: an integer n of ℓ bits, a, b ∈ Zn
(b in binary)

Output: c = a× b mod n
Complexity: O(ℓ2)

1: x ← 0
2: for i = ℓ− 1 to 0 do
3: x ← x + x mod n
4: if bi = 1 then
5: x ← x + a mod n
6: end if
7: end for
8: c ← x

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 165 / 1037

Exponentiation From Left to Right
Square-and-Multiply

Input: a and n, two integers of at most ℓ bits, an
integer e (e in binary)

Output: x = ae mod n
Complexity: O(ℓ2 log e)

1: x ← 1
2: for i = log e − 1 to 0 do
3: x ← x × x mod n
4: if ei = 1 then
5: x ← x × a mod n
6: end if
7: end for

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 166 / 1037

Euclidean Division

we can just adapt the algorithm we have learnt at school
(not trivial to implement!)

for any a ∈ Z and n > 0 there exists a unique pair (q, r) ∈ Z2

such that a = qn + r and 0 ≤ r < n
q =

⌊ a
n

⌋
and r = a mod n

algorithm runs in O(ℓ2)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 167 / 1037

Modular Inversion

Theorem
x ∈ Zn is invertible if and only if gcd(x , n) = 1.

Proof.
=⇒ if gcd(x , n) = d > 1 then d divides (x · y) mod n for any y so
(x · y) mod n ̸= 1 and x is non invertible.
⇐= to be seen later

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 168 / 1037

Euclid Algorithm

Input: a and b, two integers of at most ℓ bits
Output: d = gcd(a, b)
Complexity: O(ℓ2)

1: x ← a, y ← b
2: while y > 0 do
3: make an Euclidean division x = qy + r
4: do simultaneously x ← y and y ← x − qy
5: end while
6: d ← x

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 169 / 1037

Example
We run the algorithm with a = 22 and b = 35. We obtain the following
sequence.

iteration x y q
0 22−35×0

↙ =

1 35−22×1
↙ =

2 22−13×1
↙ =

3 13− 9 ×1
↙ =

4 9 − 4 ×2
↙ =

5 4 − 1 ×4
↙ =

6 1 0

Thus gcd(22,35) = 1.

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 170 / 1037

Why does it Work?

it eventually stops (y strictly decreases and y ≥ 0)
a divisor of x and y is a divisor of x − qy for all q
x = (x − qy)− (−q)y
d divides x and y ⇐⇒ d divides y and x − qy
for any q, gcd(x , y) = gcd(y , x − qy)
gcd(x , 0) = x
conclusion: the algorithm terminates with gcd(a, b)
to be discussed (in another course): runing time (complexity) is
quadratic

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 171 / 1037

Extended Euclid Algorithm

Input: a and b, two integers of at most ℓ bits
Output: d , u, v such that d = au + bv =

gcd(a, b)
Complexity: O(ℓ2)

1: x⃗ ← (a, 1, 0), y⃗ ← (b, 0, 1)
2: while y1 > 0 do
3: make an Euclidean division x1 = qy1 + r
4: do simultaneously x⃗ ← y⃗ and y⃗ ← x⃗ − qy⃗
5: end while
6: (d , u, v)← x⃗

x⃗ , y⃗ ∈ {(α, β, γ);α = a · β + b · γ}

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 172 / 1037

Example
We run the algorithm with a = 22 and b = 35. We obtain the following
sequence of vectors.

iteration x⃗ y⃗ q
0 (22, 1, 0) − (35,0, 1) ×0

↙ =

1 (35, 0, 1) − (22,1, 0) ×1
↙ =

2 (22, 1, 0) − (13,−1, 1) ×1
↙ =

3 (13,−1,1)− (9, 2,−1) ×1
↙ =

4 (9, 2,−1) − (4,−3, 2) ×2
↙ =

5 (4,−3,2) − (1, 8,−5) ×4
↙ =

6 (1, 8,−5) (0,−35, 22)

Thus 1 = 22× 8− 35× 5.

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 173 / 1037

Modular Inversion

to compute the inverse of x modulo n:
1 run the Extended Euclid algorithm with input (x , n) and get u, v

such that ux + vn = d = gcd(x , n)
2 if d ̸= 1, x is not invertible: error!
3 output u: it is such that ux mod n = 1

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 174 / 1037

Modular Inversion

Theorem
x ∈ Zn is invertible if and only if gcd(x , n) = 1.

Proof:
⇒: already seen (slide 168)
⇐: if gcd(x , n) = 1, run the Extended Euclid algorithm and get
an equation ux + vn = 1 then deduce ux mod n = 1

Conclusion: the Extended Euclid algorithm is an inversion algorithm
with complexity O(ℓ2)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 175 / 1037

Arithmetics with Big Numbers

addition (O(ℓ)): x , y 7→ x + y
multiplication (O(ℓ2)): x , y 7→ x × y
Euclidean division (O(ℓ2)): x , n 7→ x mod n

Euclid Algorithm (O(ℓ2)): x , y 7→ u, v s.t. ux + vy = gcd(x , y)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 176 / 1037

Modular Arithmetic

addition (O(ℓ)): x , y , n 7→ (x + y) mod n
multiplication (O(ℓ2)): x , y , n 7→ (x × y) mod n
modulo (O(ℓ2)): x , n 7→ x mod n

fast exponential (O(ℓ2 log e)): x , e, n 7→ xe mod n
inversion in Zn (O(ℓ2)): x , n 7→ y s.t. xy mod n = 1 (when
feasible)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 177 / 1037

FFT-based Multiplication

we could have better complexities with a better multiplication
algorithm
in this lecture, we limit to the values form the school-book
algorithm
in practice, this algorithm is sufficient for the lengths we use

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 178 / 1037

2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 179 / 1037

Definition of a Field

Definition
A field is a commutative ring (K ,+,×) such that
1-9. [ring] K is a ring with + and ×
10. [commutativity] for any a, b, we have ab = ba
11. [invertibility] for any a ̸= 0 there exists b = a−1 s.t. ab = ba = 1
example:

Q, R, C
Zp for p prime (next slide)
GF(2n) (in Chapter 4)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 180 / 1037

Zp Properties

Theorem (Zp structure)

Let p be a prime number.
1 Z∗p = {1, . . . , p − 1}
2 (Little Fermat Theorem) for any x ∈ Z∗p, we have xp−1 ≡ 1

(mod p)
3 Z∗p is a cyclic group. So, there exist g such that

Z∗p = {g0,g1,g2 mod p, . . . , gp−2 mod p}

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 181 / 1037

Proof

1 if 1 ≤ x ≤ p − 1, since p is prime, we must have gcd(x , p) = 1
thus x ∈ Z∗p

2 due to the Lagrange Theorem, for any x ∈ Z∗p, we have xp−1 ≡ 1
(mod p)

3 (hard)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 182 / 1037

To Be Seen Later

we can generate large prime numbers
we can verify the primality of a number
we can find generators in Z∗p
we can find (p,q,g) such that p and q are prime, q divides p − 1,
and g has order q in Z∗p

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 183 / 1037

The Discrete Logarithm Problem

(implicit: a parameter generator)

Discrete Logarithm (DL) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Instance: y , power of g
Problem: find x such that y = gx

Examples:
Zn: easy (use the Extended Euclid algorithm)
Z∗p: (maybe) hard
over an elliptic curve: (maybe) hard

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 184 / 1037

Some Facts About The Discrete Logarithm
Problem

in a group of order n:
easy on a quantum computer:

Shor algorithm

easy if n has only small prime factors:
Pohlig-Hellman algorithm

best algorithm for a subgroup of Z∗p with n and p prime:
General Number Field Sieve (GNFS) with complexity

e

(
3
√

64
9 +o(1)

)
(ln n)

1
3 (ln ln n)

2
3

this is mostly precomputation (without y)

the computation from y takes e
(

3
√

3+o(1)
)
(ln n)

1
3 (ln ln n)

2
3

generic algorithms in O(
√

n):
baby-step giant-step algorithm
Pollard ρ algorithm

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 185 / 1037

Attacks based on Precomputation

over Z∗p, the discrete logarithm can be solved in

p length precomputation attack
(bits) (core-time) (core-time)
512 10.2 years 10 minutes
768 36 500 years 2 days

1 024 45 000 000 years 30 days

remember SSH2 uses a fixed p of 1 024 bits...

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 186 / 1037

2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 187 / 1037

The Diffie-Hellman Key Agreement Protocol (again)

Assume a group generated by some g

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−→

Y←−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x K ← X y

(K = gxy)

security requirement: given (g,gx , gy), it must be hard to compute
gxy (Computational Diffie-Hellman Problem)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 188 / 1037

Passive Adversaries

passive adversary: just listens to communications and tries to
decrypt communications (e.g. by recovering the key)
the Diffie-Hellman shall resist to passive attacks: given only g, X ,
and Y , it must be hard to compute K

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 189 / 1037

The Computational Diffie-Hellman Problem

(implicit: a parameter generator)

Computational Diffie-Hellman (CDH) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Instance: X ,Y ∈ ⟨g⟩
Problem: find K = gxy where X = gx and Y = gy

hardness requires the Discrete Logarithm Problem to be hard (see
next slide)
Examples:

a subgroup of Z∗p of prime order q
an elliptic curve

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 190 / 1037

DL =⇒ CDH
The CDH Problem Reduces to the DL Problem

X ,Y - CDHparms - K

y
�	

x

DLparms

parms→ (g, n)
set y = X
submit y
get x
compute K = Y x

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 191 / 1037

Problems with the Original Diffie-Hellman Protocol

problems with subgroups of ⟨g⟩
subgroup {1} (unavoidable): if either X or Y is 1, then K = 1 for
sure
other subgroups (avoidable): the discrete logarithm problem may
become easy in subgroups

problem with gxy having a bad distribution
(elements in ⟨g⟩ may be sparse, so there is a structured
information in gxy)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 192 / 1037

Correct Diffie-Hellman Key Exchange

Assume a group ⟨g⟩ generated by some g of prime order q

Alice Bob

pick x ∈ Z∗q , X ← gx X−−−−−−−−−−−−→ if X ̸∈ ⟨g⟩ − {1}, abort

if Y ̸∈ ⟨g⟩ − {1}, abort Y←−−−−−−−−−−−− pick y ∈ Z∗q , Y ← gy

K ← KDF(Y x) K ← KDF(X y)
(K = KDF(gxy))

KDF: a Key Derivation Function
since Z∗q is cyclic,

if Bob is honest, his X y is uniformly distributed in ⟨g⟩ − {1}

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 193 / 1037

RFC 2631
Diffie-Hellman Key Agreement Method

group parameters (p, q, g) (meant to be defined by a CA): p
prime, q prime, q divides p − 1, g = h

p−1
q mod p, h is random

such that 1 < h < p − 1 and g > 1
secret keys: xA, xB between 1 and q − 1
public keys: yA = gxA mod p, yB = gxB mod p
3 modes:

ephemeral-ephemeral mode: both keys are fresh
ephemeral-static mode: recipient uses a static public key
static-static mode: both participants use a static public key

shared secret: ZZ = gxAxB mod p
(ZZ is the notation from the RFC, sorry!)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 194 / 1037

Exercise

group parameters (p, q, g) (meant to be defined by a CA): p
prime, q prime, q divides p − 1, g = h

p−1
q mod p, h is random

such that 1 < h < p − 1 and g > 1

Show that g generates a subgroup of Z∗p of order q.

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 195 / 1037

Key Wrapping in RFC 2631

Objective: make a key transfer protocol based on Diffie-Hellman
Alice wants to send a content-encryption key CEK to Bob

keying material: KM = SHA1(ZZ∥OtherInfo)
OtherInfo includes algorithm, counter (we can generate many
KM blocks from the same ZZ), some ad-hoc string and the length
of the KEK to generate
key-encryption key: KEK = trunc(KM1∥KM2∥ · · ·)
to tranfer CEK: send EncKEK(CEK) (key wrap)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 196 / 1037

Example: Semi-Authenticated Key Exchange in
SSH2

IC and IS: negotiation of crypto algorithms
KS: public key of the server (may come with a certificate)
for diffie-hellman-group1-sha1 key exchange:
p = 21024 − 2960 − 1 + 264

⌊
2894π + 129093

⌋
, g = 2, q = p−1

2

Client Server

version VC , initial message IC
VC ,IC−−−−−−−−−−−−→
VS ,IS←−−−−−−−−−−−− version VS , initial message IS

pick x , e = gx mod p e−−−−−−−−−−−−→
pick y , f = gy mod p, K = ey mod p
H = hash(VC ||VS ||IC ||IS ||KS ||e||f ||K)

KS ,f ,s
←−−−−−−−−−−−− s = Sig(H) (DSA usig p, q, g)

K = f x mod p, check KS
H = hash(VC ||VS ||IC ||IS ||KS ||e||f ||K)

VerKS
(s, H)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 197 / 1037

Parameter Validation in RFC 2631

p and q are prime, gq mod p = 1
group parameters validation: q divides p − 1, and (optional) p
and q follow parameter generation algorithm from seed and
counter
public key validation: 2 ≤ y ≤ p − 1, yq mod p = 1

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 198 / 1037

An Interesting Result

(⟨g⟩ is the unique subgroup of Z∗p of order q)

Theorem
Let p, q, g be integers such that p and q are prime, q divides p − 1,
g mod p ̸= 1, and gq mod p = 1. Then
⟨g⟩ is a subgroup of Z∗p of order q
⟨g⟩ = {y ∈ Z∗p; yq mod p = 1}

Application to RFC 2631: we can check that y is in the group
generated by g by checking yq mod p = 1

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 199 / 1037

Proof

⟨g⟩ is a subgroup of Z∗p of order q: clear
⟨g⟩ ⊆ {y ∈ Z∗p; yq mod p = 1}: clear
⟨g⟩ ⊇ {y ∈ Z∗p; yq mod p = 1}:
let y ∈ Z∗p be such that yq mod p = 1

let θ ∈ Z∗
p be a generator of Z∗

p , write g = θa mod p, y = θb mod p
since gq ≡ yq ≡ 1 (mod p), we have qa ≡ qb ≡ 0 (mod p − 1)
so, we can write a = p−1

q a′ and b = p−1
q b′ with a′, b′ ≤ q

since g mod p ̸= 1, we have 1 ≤ a′ < q
since q is prime, there exists c such that a′c mod q = 1
we have

gb′c ≡ θab′c ≡ θa′bc ≡ ya′c ≡ y1+kq ≡ y (mod p)

so, y ∈ ⟨g⟩

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 200 / 1037

Group Parameter Generation in RFC 2631
1: m = required length for q, m′ = ⌈ m

160⌉
2: repeat
3: pick a random seed
4: U =

∑m′−1
i=0 2160i (SHA1(seed + i)⊕ SHA1(seed + m′ + i))

5: q = U OR 1 OR 2m

6: until q is prime
7: L = required length for p, L′ = ⌈ L

160⌉
8: counter = 0
9: repeat

10: R = seed + 2m′ + (L′ ∗ counter)
11: W =

(∑L′

i=0 2160iSHA1(R + i)
)

mod 2L

12: X = W OR 2L−1

13: p = X − (X mod (2q)) + 1
14: counter← counter + 1
15: if counter ≥ 4096N then abort (fail)
16: until p > 2L−1 and p is prime
17: output p, q, seed, counter

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 201 / 1037

2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 202 / 1037

Public-Key Cryptosystem

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Enc - - Dec -Message�

�
Adversary

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 203 / 1037

Non-Deterministic Encryption

Encrypt Decrypt

Plaintext set Ciphertext set Plaintext set

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 204 / 1037

Semi-Static-DH to Public-Key Encryption
Towards ElGamal Encryption

Alice Bob
input: m secret key: y

public key: Y = gy

Y←−−−−−−−−−−−−

pick x at random
X = gx X−−−−−−−−−−−−→ K = KDF(X y)

K = KDF(Y x)

c = symEncK (m)
c−−−−−−−−−−−−→ m = symDecK (c)

output: m

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 205 / 1037

The Plain ElGamal Encryption Case

no KDF
symEnc is one-time-pad, adapted in the DH group

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 206 / 1037

ElGamal Cryptosystem

Public parameters: (g, n), a group ⟨g⟩ of order n generated by
some g

Set up: generate a random x ∈ Zn, and compute y = gx

Message: an element m ∈ ⟨g⟩
Public key: Kp = y
Secret key: Ks = x
Encryption: pick a random r ∈ Zn, compute u = gr , and v = my r

The ciphertext is (u, v)
Decryption: extract the u and v parts of the ciphertext and compute

m = vu−x

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 207 / 1037

ElGamal Cryptosystem
Semi-Static DH + Vernam Generalized

Alice Bob
input: m secret key: x

public key: y = gx

y←−−−−−−−−−−−−

pick r at random
u = gr u−−−−−−−−−−−−→
K = y r K = ux

v = mK v−−−−−−−−−−−−→ m = vK−1

output: m

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 208 / 1037

Plain ElGamal Encryption

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

(gr , my r)
-

(u, v)
Decrypt -Message

vu−x

�
�

Adversary

y = gx

6
?

domain parameters:
g: a group generator

n: order of g

(assume m ∈ ⟨g⟩)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 209 / 1037

ElGamal Encryption Complexity

in subgroups of Z∗p with p of length ℓ:

Domain parameter selection: O(ℓ4)
(prime numbers generation to be seen in next chapter)
Generator: O(ℓ3)

Encryption: O(ℓ3)

Decryption: O(ℓ3)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 210 / 1037

ElGamal Security: ElGamal Problems
(implicit: a parameter generator)

ElGamal Decryption (EGD) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Input: (y , u, v) such that y ,u, v ∈ ⟨g⟩.

Problem: compute m such that there exists r such that u = gr

and v = my r .

ElGamal Key Recovery (EGKR) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Input: y such that y ∈ ⟨g⟩.

Problem: compute x such that y = gx .

decryption problem ⇐⇒ Diffie-Hellman problem
key recovery problem = discrete logarithm problem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 211 / 1037

CDH =⇒ EGD
The EGD Problem Reduces to the CDH Problem

y , u, v - EGDparms - m

X ,Y
�	

K

CDHparms

parms→ (g, n)
set X = u and Y = y
submit (X ,Y)

get K (this should be gxr)
compute m = v/K

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 212 / 1037

EGD =⇒ CDH
The CDH Problem Reduces to the EGD Problem

X ,Y - CDHparms - K

y , u, v
�	

m

EGDparms

parms→ (g, n)
set u = X , y = Y , pick a random v ∈ ⟨g⟩
submit (y , u, v)
get m
compute K = v/m

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 213 / 1037

ElGamal Encryption Security

key recovery is equivalent to the discrete logarithm problem
decryption is equivalent to the Diffie-Hellman problem
some tricky things about the selection of groups
(left for another course)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 214 / 1037

Conclusion

Zn ring, Zp field: a nice playground for cryptography
algorithmic number theory: easy to add multiply, invert,
compute exponentials in Zn and Zp

DL and CDH problems: some cryptosystems based on their
hardness
Diffie-Hellman key exchange: can set up a symmetric key over
a public channel, resist to passive adversaries
ElGamal encryption: an example of probabilistic cryptosystem

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 215 / 1037

References

Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press. 2005.
http://shoup.net/ntb

Textbook on algebra for cryptographers and applications.
Menezes-van Oorschot-Vanstone. Handbook of Applied
Cryptography. CRC. 1997.
http://www.cacr.math.uwaterloo.ca/hac/

Reference book
Vaudenay. A Classical Introduction to Cryptography —
Applications for Communications Security. Springer. 2005.
http://www.vaudenay.ch/crypto/

Textbook on cryptography
Diffie-Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory vol. 22, 1976.

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 216 / 1037

http://shoup.net/ntb
http://www.cacr.math.uwaterloo.ca/hac/
http://www.vaudenay.ch/crypto/

Must be Known
groups, rings, fields:

orders
Lagrange Theorem

Zn ring: invertibility
Zp field: the multiplicative group is cyclic
algorithmic number theory:

square-and-multiply
extended Euclid algorithm

Diffie-Hellman key exchange:
resist to passive adversaries
man-in-the-middle active adversary
ephemeral or static mode
better on a goup of prime order
requires the hardness of DL

ElGamal encryption:
requires the hardness of CDH
encrypt group elements
better on a group of prime order

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 217 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 RSA Cryptography CryptoSec 225 / 1037

Roadmap

more on number theory
prime number generation
RSA cryptosystem
square roots
factoring problem

SV 2016–17 RSA Cryptography CryptoSec 226 / 1037

3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem

SV 2016–17 RSA Cryptography CryptoSec 227 / 1037

Euler Totient Function

φ(n) is the order of Z∗
n

Theorem
Given an integer n, we have the following results.

For all x ∈ Zn we have x ∈ Z∗n ⇐⇒ gcd(x , n) = 1.
Zn is a field⇐⇒ Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1⇐⇒ n is prime
For all x ∈ Z∗n we have xφ(n) ≡ 1 (mod n).
if e is such that gcd(e, φ(n)) = 1, we let d = e−1 mod φ(n). For
all x ∈ Z∗n, xd mod n is the only eth root of x modulo n

SV 2016–17 RSA Cryptography CryptoSec 228 / 1037

Proof — i

For all x ∈ Zn we have x ∈ Z∗n ⇐⇒ gcd(x , n) = 1.

Proof.
=⇒: if gcd(x ,n) = d > 1, then d divides (x · y) mod n for any y so
(xy) mod n cannot be equal to 1.
⇐=: if gcd(x ,n) = 1, the extended Euclid algorithm constructs an
inverse of x (see slide 175)

SV 2016–17 RSA Cryptography CryptoSec 229 / 1037

Proof — ii

Zn is a field⇐⇒ Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1⇐⇒ n is prime

Proof. By definition, Zn is a field⇐⇒ Z∗n = Zn\{0}.
Since Z∗n ⊆ Zn\{0}, Z∗n and Zn\{0} are equal iff they have the same
cardinality.
We have #Z∗n = φ(n) and #Zn\{0} = n − 1, so we deduce
Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1.

Z∗n = Zn\{0} ⇐⇒ ∀x ∈ {1, . . . , n − 1} gcd(x ,n) = 1
⇐⇒ n is prime

(Zn field⇐= n prime was seen on slide 181)

SV 2016–17 RSA Cryptography CryptoSec 230 / 1037

Proof — iii

For all x ∈ Z∗n we have xφ(n) ≡ 1 (mod n).

Proof. Due to the Lagrange Theorem, the order k of x divides the
order φ(n) of Z∗n.
Let φ(n) = k · r . We have xφ(n) ≡ xk·r ≡ (xk)r ≡ 1r ≡ 1.

SV 2016–17 RSA Cryptography CryptoSec 231 / 1037

Proof — iv

If e is such that gcd(e, φ(n)) = 1, we let d = e−1 mod φ(n). For all
x ∈ Z∗n, xd mod n is the only eth root of x modulo n

Proof. We have e · d = 1 + k · φ(n) for some k .
y ≡ xd =⇒ ye ≡ x1+k·φ(n) ≡ x so y = xd is a eth root of x .
If x ≡ ye, we have y ∈ Z∗n because(

x−1ye−1) y ≡ 1

we have x ≡ ye =⇒ xd ≡ y1+k·φ(n) ≡ y so a eth root of x must be
unique.

SV 2016–17 RSA Cryptography CryptoSec 232 / 1037

Application: RSA Cryptosystem

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?

SV 2016–17 RSA Cryptography CryptoSec 233 / 1037

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m,n) = 1. For any
a,b ∈ Z, there exists x ∈ Z such that

x ≡ a (mod m)

x ≡ b (mod n)

Furthermore, for all such solution, x mod (mn) is unique.

Example: (m = 5, n = 7, mn = 35, a = 3, b = 4)
We find that x = 18 is a solution and for all solution, x mod (mn) = 18

SV 2016–17 RSA Cryptography CryptoSec 234 / 1037

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m,n) = 1. We have
f : Zmn → Zm × Zn defined by f (x) = (x mod m, x mod n) is a
ring isomorphism
f−1(a, b) ≡ an(n−1 mod m) + bm(m−1 mod n) (mod mn)

Example: (m = 5, n = 7, mn = 35)

f−1(3, 4)=
(
3× 7× (7−1 mod 5) + 4× 5× (5−1 mod 7)

)
mod 35

=· · · = 18

Application: φ(pq) = (p − 1)(q − 1) when p and q are two different
primes

SV 2016–17 RSA Cryptography CryptoSec 235 / 1037

Application 1: Count Soldiers

x ≡ 3 · 11 · (11−1 mod 7) + 9 · 7 · (7−1 mod 11) (mod 77)
≡ 3× 22 + 9× 56 (mod 77)
≡ 31 (mod 77)

... there must be 108 soldiers
SV 2016–17 RSA Cryptography CryptoSec 236 / 1037

Application 2: Equality Modulo Composite
Numbers

Theorem
For any a, b,m,n ∈ Z such that gcd(m,n) = 1, then

a ≡ b (mod m)
a ≡ b (mod n)

}
⇐⇒ a ≡ b (mod mn).

Indeed, f (a mod (mn)) = f (b mod (mn)) hence
a mod (mn) = b mod (mn)

SV 2016–17 RSA Cryptography CryptoSec 237 / 1037

Application 3: Correctness of RSA

let N = pq be the product of two different prime numbers p and q
for any x ∈ Z such that x mod p ̸= 0 we have
(xe mod N)d mod N ≡ x (mod p)
(comes from p − 1 divides φ(N) thus ed mod (p − 1) = 1)
this also holds when x mod p = 0
similarly: for any x ∈ Z we have (xe mod N)d mod N ≡ x
(mod q)
from CRT (Application 2): for any x ∈ Z we have
(xe mod N)d mod N ≡ x (mod N)

for any x ∈ ZN we have (xe mod N)d mod N = x

SV 2016–17 RSA Cryptography CryptoSec 238 / 1037

Application 4: Exponentiation Acceleration

log2 p ≈ log2 q ≈ ℓ

2

(y mod q)d mod (q−1) mod q

(y mod p)d mod (p−1) mod p

1

q
CRT - yd mod pq

2×O
((

ℓ
2

)3
)

O
(
ℓ3
)

SV 2016–17 RSA Cryptography CryptoSec 239 / 1037

Proof of CRT — i

Fact 1: f is a ring homomorphism from Zmn to Zm × Zn

f (x +Zmn y) = f (x) +Zm×Zn f (y)
indeed:

((x + y) mod (mn)) mod m = ((x mod m) + (y mod m)) mod m
((x + y) mod (mn)) mod n = ((x mod n) + (y mod n)) mod n

f (x ×Zmn y) = f (x)×Zm×Zn f (y)
(same)
f (1) = (1, 1)

SV 2016–17 RSA Cryptography CryptoSec 240 / 1037

Proof of CRT — ii

Fact 2: f is an isomorphism
f (x) = (0, 0) implies m and n divide x
since gcd(m, n) = 1, mn divides x (see next slide)
thus x mod (mn) = 0
f is injective: for all x , y ∈ Zmn, if f (x) = f (y) then
f (x − y) = (0, 0) thus x − y mod (mn) = 0 hence x = y
f is an isomorphism: Zmn and Zm × Zn have the same cardinality
and f is injective thus f is a bijection
since f is further a homomorphism, f is an isomorphism

SV 2016–17 RSA Cryptography CryptoSec 241 / 1037

Euclid Lemma

Lemma
If p is prime and p divides ab, then p divides a or p divides b.

(Proof with a big hammer: Zp is a field!)

Lemma (Generalization)

If n divides ab and gcd(n, a) = 1, then n divides b.

Consequence: if n and a divide x and gcd(n, a) = 1, then na divides
x .
(take b = x/a)

SV 2016–17 RSA Cryptography CryptoSec 242 / 1037

Proof of CRT — iii

Fact 3: f (an(n−1 mod m) + bm(m−1 mod n)) = (a,b)

an(n−1 mod m) + bm(m−1 mod n) ≡ a (mod m)

an(n−1 mod m) + bm(m−1 mod n) ≡ b (mod n)

thus f of the left hand side is (a,b)

SV 2016–17 RSA Cryptography CryptoSec 243 / 1037

CRT Backward: Another Approach

Theorem (CRT Backward)

Let m and n be two integers such that gcd(m,n) = 1. Let
u = n(n−1 mod m) and v = m(m−1 mod n). The function

g : Zm × Zn −→ Zmn
(a, b) 7−→ au + bv mod (mn)

is well defined and is a ring isomorphism.

Note: g is well defined because

g : Z× Z −→ Zmn
(a, b) 7−→ (a + im)u + (b + jn)v mod (mn)

does not depend on i or j
Remark: (u + v) mod (mn) = g(1, 1) = 1

SV 2016–17 RSA Cryptography CryptoSec 244 / 1037

Proof

g : Zm × Zn −→ Zmn
(a, b) 7−→ au + bv mod (mn)

Proof.
g(a, b) + g(a′, b′) ≡ g(a + a′, b + b′) (mod mn) so g is a group
homomorphism
g(a, b) = 0 implies a mod m = 0 and b mod n = 0 so g is
injective
due to cardinality, g is bijective: so, a group isomorphism
g−1(x) = (x mod m, x mod n) is homomorphic for × so we have
a ring isomorphism

SV 2016–17 RSA Cryptography CryptoSec 245 / 1037

Euler Totient Function

Corollary

Let m and n be two integers such that gcd(m,n) = 1. We have
φ(mn) = φ(m)φ(n).

SV 2016–17 RSA Cryptography CryptoSec 246 / 1037

Proof

Fact: f is a bijection from Z∗mn to Z∗m × Z∗n (thus φ(mn) = φ(m)φ(n)):
if x ∈ Z∗mn then f (x).f (x−1) = f (1) = (1, 1) so both components of
f (x) are invertible: f (x) ∈ Z∗m × Z∗n
conversely, if (a, b) ∈ Z∗m × Z∗n, let x = f−1(a, b) and
y = f−1(a−1, b−1)
we have f (xy) = f (x).f (y) = (a, b).(a−1, b−1) = (1, 1) = f (1) so
xy = 1 so x ∈ Z∗mn

f is a bijection from Zmn to Zm × Zn, so a bijection from Z∗mn to
Z∗m × Z∗n

actually, Z∗mn and Z∗m × Z∗n are isomorphic groups (and f is such
isomorphism)

SV 2016–17 RSA Cryptography CryptoSec 247 / 1037

Computation of Euler Totient Function

φ(p) = p − 1 for p prime
φ(mn) = φ(m)× φ(n) when gcd(m,n) = 1
φ(pa) = (p − 1)pa−1 for p prime

φ
(
pa1

1 × · · · × par
r
)

= (p1 − 1)pa1−1
1 × · · · × (pr − 1)par−1

r

= pa1
1 × · · · × par

r
(p1 − 1)× · · · × (pr − 1)

p1 × · · · × pr

for pairwise different prime numbers p1, . . . ,pr

SV 2016–17 RSA Cryptography CryptoSec 248 / 1037

3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem

SV 2016–17 RSA Cryptography CryptoSec 249 / 1037

Structure Property of Z (Reminder)

(already seen, see slide 127)

Theorem
For all proper subgroup I of Z there exists n such that

I = nZ = {. . . ,−3n,−2n,−n, 0, n, 2n, 3n, . . .}

SV 2016–17 RSA Cryptography CryptoSec 250 / 1037

Element Order

Given x in a group G:
{i ∈ Z; x i = 1} is a subgroup of Z
so, {i ∈ Z; x i = 1} = nZ for some n which is the smallest positive
n such that xn = 1
n is called the order of x in G.
n is such that

x i = 1⇐⇒ (n divides i)

see slide 128

SV 2016–17 RSA Cryptography CryptoSec 251 / 1037

Group Exponent

Given a group G:
{i ∈ Z;∀x ∈ G x i = 1} is a subgroup of Z
so, {i ∈ Z;∀x ∈ G x i = 1} = λZ for some λ which is the smallest
positive λ such that ∀x ∈ G, xλ = 1
λ is called the exponent of G.
λ is such that (

∀x ∈ G x i = 1
)
⇐⇒ (λ divides i)

note that for all x , λ ∈ {i ∈ Z; x i = 1} = nZ so λ is a multiple of n,
the order of x
note that #G ∈ {i ∈ Z; ∀x ∈ G x i = 1} = λZ so λ is a factor of
#G
so, ∀x ∈ G order(x)|λ|#G
λ is the lcm of all order(x), x ∈ G

SV 2016–17 RSA Cryptography CryptoSec 252 / 1037

Orders in Z∗m

Z∗m is of order φ(m) (example: Z∗35 is of order 24)
Z∗m is of exponent λ(m) (example: Z∗35 is of exponent 12)
for m = pα1

1 × · · · × pαr
r with pairwise different prime numbers

p1, . . . , pr , we have

φ(m) = (p1 − 1)pα1−1
1 × · · · × (pr − 1)pαr−1

r

λ(m) = lcm
(
λ(pα1

1), · · · , λ(pαr
r)
)

we have λ(pα) = φ(pα), except for p = 2 and α ≥ 3 for which
λ(pα) = 1

2φ(p
α)

for any x ∈ Z∗m, order(x)|λ(m)|φ(m)

SV 2016–17 RSA Cryptography CryptoSec 253 / 1037

Checking a Generator of a Group with Known
Order Factorization

Input: an element g in an Abelian cyclic group
of order with known factorization n = pα1

1 ×
· · · × pαr

r
Output: say if g is a generator
Complexity: O(r) exponentials

1: for i = 1 to r do
2: y ← gn/pi

3: if y = 1 then
4: abort: g is not a generator
5: end if
6: end for
7: g is a generator

Proof. The order of g is a factor of n. If it is no factor of any n/pi then
it must be n.

SV 2016–17 RSA Cryptography CryptoSec 254 / 1037

Discussion

for g arbitrary, we need the factorization of n
if g is randomly selected, we only need the small factors of n
if n is hard to factor, we can still find generators

SV 2016–17 RSA Cryptography CryptoSec 255 / 1037

Picking a Generator in a Cyclic Group with Known
Order

Input: the order n of an Abelian cyclic group, a
bound B

Output: a generator g of the group
1: find the list p1, . . . , pr of all prime factors of n

which are less than B
2: repeat
3: pick a random g in the group
4: b ← true
5: for i = 1 to r do
6: y ← gn/pi

7: if y = 1 then
8: b ← false
9: end if

10: end for
11: until b

Pr[output g not a generator] ≤ 1
B log B

log n

SV 2016–17 RSA Cryptography CryptoSec 256 / 1037

Application

generate a generator of Z∗p for a prime p

SV 2016–17 RSA Cryptography CryptoSec 257 / 1037

Generating a Generator — i

We consider a cyclic group G of order n and we let n =
∏r

i=1 pαi
i with

pairwise different primes pi

g is a generator of G iff g
n
pi ̸= 1 for i = 1, . . . , r

given a random g ∈U G, events g
n
pi = 1 are independent:

g ∈U G is equivalent to its logarithm a ∈U Zn
this is equivalent to (ai)1≤i≤r ∈U Zpα1

1
× · · · × Zpαr

r

g
n
pi = 1 is equivalent to n

pi
a mod (n) = 0

this is equivalent to (0, . . . , 0,qip
αi−1
i ai mod pαi

i , 0, . . . , 0) = 0 for
some invertible qi modulo pαi

i

so, g
n
pi = 1 is equivalent to ai mod pi = 0 (independent, with

probability 1
pi

)

SV 2016–17 RSA Cryptography CryptoSec 258 / 1037

Generating a Generator — ii

Pr
g∈U G

[
g

n
pi = 1

]
=

1
pi

and these events are independent

we can just simply work with an incomplete factorization: we let
n = q

∏s
i=1 pαi

i which includes all small factors pi ≤ B (i.e. pi > B
for all i > s)
we say that g passes the test if g

n
pi ̸= 1 for i = 1, . . . , s

Pr[not generator|passed] = Pr
[
∃i > s g

n
pi = 1

∣∣∣ ∀i ≤ s g
n
pi ̸= 1

]
≤ 1

B
(r − s)

≤ log q
B log B

≤ log n
B log B

example: n of 1 024 bits and B = 232;
Pr[not generator|passed] ≤ 2−27

SV 2016–17 RSA Cryptography CryptoSec 259 / 1037

3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem

SV 2016–17 RSA Cryptography CryptoSec 260 / 1037

Trial Division Algorithm

Input: an integer n
Output: a list of prime numbers whose product

is n
Complexity: O(

√
n) arithmetic operations

1: b ← ⌊
√

n⌋, x ← n, i ← 2
2: while x > 1 and i ≤ b do
3: while i divides x do
4: print i
5: x ← x/i
6: b ← ⌊

√
x⌋

7: end while
8: i ← i + 1
9: end while

10: if x > 1 then print x

SV 2016–17 RSA Cryptography CryptoSec 261 / 1037

Fermat Test

Theorem (Little Fermat Theorem)

If n is prime, for any b ∈ {1, . . . , n − 1}, bn−1 mod n = 1.

?
pick b at random

?
bn−1 mod n = 1?

?
n composite

-yes

no

k iterations

?
end

n maybe prime

�

SV 2016–17 RSA Cryptography CryptoSec 262 / 1037

Fermat Test

Parameter: k , an integer
Input: n, an integer of ℓ bits
Output: notification of non-primality or pseudo-

primality
Complexity: O(kℓ3)

1: repeat
2: pick a random b such that 0 < b < n
3: x ← bn−1 mod n
4: if x ̸= 1 then
5: output “composite” and stop
6: end if
7: until k iterations are made
8: output “maybe prime” and stop

SV 2016–17 RSA Cryptography CryptoSec 263 / 1037

Significance of the Fermat Test

False Negative: Pr[output : composite|n prime] = 0
False Positive: there exist pathologic numbers n which are not
prime such that Pr[output : maybe prime|n] is high.
Carmichael Numbers n are composite such that for any b,
b ∈ Z∗n ⇐⇒ bn−1 mod n = 1. Hence

Pr[output : maybe prime|n] =
(

φ(n)
n−1

)k
.

SV 2016–17 RSA Cryptography CryptoSec 264 / 1037

Carmichael Numbers

Definition
We call Carmichael number any integer n which is a product of (at
least 2) pairwise different prime numbers pi such that pi − 1 is a factor
of n − 1.

Theorem
An integer n is a Carmichael number if and only if it is composite and
for any b s.t. gcd(b, n) = 1, we have bn−1 ≡ 1 (mod n).

Example: n = 561 = 3 · 11 · 17 is such that for all b s.t. gcd(b,n) = 1,
we have bn−1 ≡ 1 (mod n).

SV 2016–17 RSA Cryptography CryptoSec 265 / 1037

Carmichael Numbers: the 561 Case

Example: n = 561 = 3 · 11 · 17 is such that for all b s.t. gcd(b,n) = 1,
we have bn−1 ≡ 1 (mod n).
Proof (of⇒ in the 561 case). We notice that n − 1 = 560 = 24 · 5 · 7
which is a multiple of 3− 1, 11− 1, and 17− 1. Therefore, if b is
prime with 3, we have bn−1 ≡ 1 (mod 3) and the same for 11 and 17.
Hence, from the Chinese Remainder Theorem we obtain that if b is
prime with n we have bn−1 ≡ 1 (mod n).

The test may be wrong with probability(
φ(n)
n − 1

)k

=

(
2× 10× 16

560

)k

=

(
4
7

)k

SV 2016–17 RSA Cryptography CryptoSec 266 / 1037

Carmichael Numbers: the 949 631 589 089 Case

949 631 589 089 = 6917× 10193× 13469
949 631 589 088 = 25 × 73 × 13× 19× 37× 9467

6917 is prime, 6916 = 22 × 7× 13× 19
10193 is prime, 10192 = 24 × 72 × 13
13469 is prime, 13468 = 22 × 7× 13× 37
the test may be wrong with probability(

φ(n)
n − 1

)k

=

(
9464
9467

)k

≈ (1− 0.000317)k

example: for k = 20 the error probability is approximately
1− 0.00631

SV 2016–17 RSA Cryptography CryptoSec 267 / 1037

Towards The Miller-Rabin Test

We write n − 1 = 2st with t odd
If n is prime, we have

bn−1 mod n =
(
· · ·
(
(bt)2

)2 · · ·
)2

mod n = 1

If n is prime, +1 and −1 are the only possible square roots of 1

SV 2016–17 RSA Cryptography CryptoSec 268 / 1037

The Miller-Rabin Test

bt mod n -̸= 1
SQ -̸= 1

SQ -̸= 1 · · · -̸= 1
SQ -̸= 1

SQ - 1

?6
is it ≡ −1?

at most s︷ ︸︸ ︷

Miller-Rabin test: check that the sequence (bt , b2t , . . . , b2s t) is of form
either (1,1, . . . , 1) or (⋆, . . . , ⋆,−1, 1, . . . , 1)

SV 2016–17 RSA Cryptography CryptoSec 269 / 1037

The Miller-Rabin Primality Test

Parameter: k , an integer
Input: n, an integer of ℓ bits
Output: notification of non-

primality or pseudo-primality
Complexity: O(kℓ3)

1: if n = 2 then
2: output “prime” and stop
3: end if
4: if n is even then
5: output “composite” and stop
6: end if
7: write n = 2st + 1 with t odd

8: repeat
9: pick b ∈ {1, . . . ,n − 1}

10: x ← bt mod n, i ← 0
11: if x ̸= 1 then
12: while x ̸= n − 1 do
13: x ← x2 mod n, i ← i + 1
14: if i = s or x = 1 then
15: output “composite”

and stop
16: end if
17: end while
18: end if
19: until k iterations are made
20: output “maybe prime” and stop

SV 2016–17 RSA Cryptography CryptoSec 270 / 1037

Miller-Rabin Criterion

Theorem
An integer n is prime if and only it passes the Miller-Rabin test for all
b ∈ Z∗n.

Proof (Sketch).
⇒ trivial
⇐ observe that passing Miller-Rabin implies passing Fermat
→ just prove that Carmichael numbers do not pass

SV 2016–17 RSA Cryptography CryptoSec 271 / 1037

Bounding Errors

Theorem (Miller-Rabin)

If more than a quarter of b ∈ Z∗n pass the Miller-Rabin test, then all
b ∈ Z∗n do so.

Consequence: false positives are negligible:

Pr[output maybe prime|n composite] ≤ 4−k

SV 2016–17 RSA Cryptography CryptoSec 272 / 1037

Prime Number Generation
Theorem (Prime Number Theorem)

Let p(N) denote the number of prime numbers in {2, 3, . . . ,N}. We
have p(N) ∼ N

ln N when N increases toward the infinity.

→ the probability that a random ℓ-bit number is prime is ≈ 1
ℓ ln 2

Example: a 512-bit random integer is prime with probability ≈ 1
355

→ generating a random ℓ-bit prime number takes O(ℓ4)

pick p at random

?
is it prime?

?
p found

no

yes

�

SV 2016–17 RSA Cryptography CryptoSec 273 / 1037

Implementation

Input: ℓ
Output: a random prime number between 2ℓ−1

and 2ℓ

Complexity: O(ℓ4) arithmetic operations
1: repeat
2: pick a random number n of ℓ bits
3: until a primality test with k iterations accepts

n as a prime number
4: output n

With k = 1
2 (log2 ℓ− log2 ε) the probability that this algorithm outputs a

composite number is less than ε.

SV 2016–17 RSA Cryptography CryptoSec 274 / 1037

3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem

SV 2016–17 RSA Cryptography CryptoSec 275 / 1037

Plain RSA Cryptosystem

Public parameter: an integer ℓ.
Set up: find two random different prime numbers p and q of

size ℓ
2 bits. Set N = pq. Pick a random e until

gcd(e, (p − 1)(q − 1)) = 1. (Sometimes we pick special
constant e like e = 17 or e = 216 + 1.) Set
d = e−1 mod ((p − 1)(q − 1)).

Message: an element x ∈ ZN .
Public key: Kp = (e,N).
Secret key: Ks = (d ,N).
Encryption: y = xe mod N.
Decryption: x = yd mod N.

SV 2016–17 RSA Cryptography CryptoSec 276 / 1037

Plain RSA

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?

SV 2016–17 RSA Cryptography CryptoSec 277 / 1037

RSA Completeness

Theorem (Euler)

Let p, q be two different primes and N = p × q.
For any x ∈ {0, . . . ,N − 1} and any k, we have xkφ(N)+1 mod N = x.

Consequence: RSA decryption works!
Proof. from CRT...

SV 2016–17 RSA Cryptography CryptoSec 278 / 1037

RSA Complexity

RSA with a modulus of ℓ bits and a random e.
Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ3)

Decryption: O(ℓ3)

RSA with a modulus of ℓ bits and a constant e (e.g. e = 216 + 1).
Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ2)

Decryption: O(ℓ3)

SV 2016–17 RSA Cryptography CryptoSec 279 / 1037

ElGamal vs RSA

Complexity of Gen is much lower for ElGamal
Problem: ElGamal encryption is length-increasing
Can be easily adapted to other groups (e.g. elliptic curves)

SV 2016–17 RSA Cryptography CryptoSec 280 / 1037

3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem

SV 2016–17 RSA Cryptography CryptoSec 281 / 1037

Square Roots in Finite Fields

Lemma
Let K be a finite field. For any x ∈ K we have

x2 = 1 =⇒

 x = 1
or
x = −1

Proof. Assume that x2 = 1. We know that x2 − 1 = (x − 1)(x + 1).
Case 1: x − 1 = 0 thus x = 1.
Case 2: x − 1 ̸= 0 so we can divide 0 = x2 − 1 by x − 1 and
obtain x + 1 = 0 thus x = −1.

Consequence: x2 = a has at most 2 roots in a finite field

SV 2016–17 RSA Cryptography CryptoSec 282 / 1037

Existence of Square Roots in Zp

Theorem
Let p be an odd prime number.
b ∈ Z∗p has a square root if and only if b

p−1
2 mod p = 1.

In that case, we say that b is a quadratic residue.

Proof:
⇒ if c2 ≡ b then b

p−1
2 ≡ cp−1 = 1

⇐ since Z∗p is cyclic, let g be a generator and write b ≡ ge

we have b
p−1

2 ≡ 1 so p−1
2 e is multiple of p − 1

thus e is even, let e = 2e′ and we have b ≡ g2e′ ≡
(

ge′
)2

so b

has a square root ge′

SV 2016–17 RSA Cryptography CryptoSec 283 / 1037

Computing Square Roots in Zp, p = 3 (mod 4)

Lemma
Let p be a prime number such that p ≡ 3 (mod 4). For any x ∈ Zp we
have

y2 ≡ x (mod p) =⇒

y ≡ x

p+1
4 (mod p)

or
y ≡ −x

p+1
4 (mod p)

Proof.
In Zp, we have(

x
p+1

4

)2
= x

p+1
2 = yp+1 = yp−1 × y2 = y2 = x

so x
p+1

4 = ±y .

SV 2016–17 RSA Cryptography CryptoSec 284 / 1037

Example

square root of 5 in Z11

remark that 11 mod 4 = 3
remark that 5

11−1
2 mod 11 = 5× (52)2 mod 11 = 1 so 5 has a

square root modulo 11

compute 5
11+1

4 mod 11 = 5× 52 mod 11 = 4
remark that 42 mod 11 = 5 so 4 is a square root of 5
other square root is −4 mod 11 = 7

SV 2016–17 RSA Cryptography CryptoSec 285 / 1037

Tonelli Algorithm

Input: a quadratic residue a ∈ Z∗p where p ≥ 3
is prime

Output: b such that b2 ≡ a (mod p)
Complexity: O((log p)3)

1: repeat
2: choose g ∈ Z∗p at random
3: until g is not a quadratic residue
4: let p − 1 = 2st with t odd
5: e ← 0
6: for i = 2 to s do
7: if (ag−e)

p−1
2i mod p ̸= 1 then

8: e← 2i−1 + e
9: end if

10: end for
11: b ← g−t e

2 a
t+1

2 mod p

SV 2016–17 RSA Cryptography CryptoSec 286 / 1037

Square Roots in Zn, n = pq

Lemma
Let p, q be two different prime numbers and n = pq. Let x ∈ Zn, and a
and b such that

x ≡ a2 (mod p)
x ≡ b2 (mod q)

We have

x ≡ y2 (mod n)⇐⇒
{

y ≡ ±a (mod p)
y ≡ ±b (mod q)

Consequence: x has 4 square roots in Zn.
Proof. Thanks to the CRT x ≡ y2 (mod n) is equivalent to

x ≡ y2 (mod p)
x ≡ y2 (mod q)

}
⇔
{

a2 ≡ y2 (mod p)
b2 ≡ y2 (mod q)

}
⇔
{

y ≡ ±a (mod p)
y ≡ ±b (mod q)

SV 2016–17 RSA Cryptography CryptoSec 287 / 1037

Legendre and Jacobi Symbols

Legendre Symbol: for p an odd prime

(
b
p

)
=

0 if b mod p = 0
1 if b is a quadratic residue in Z∗p
−1 if b is not a quadratic residue in Z∗p.

Jacobi Symbol: for n odd(
b
n

)
=

(
b
p1

)α1

× . . .×
(

b
pr

)αr

where n = pα1
1 × . . .× pαr

r is the factorization of n into prime
numbers
(remark: for n = 1 the empty product leads us to (b/n) = +1)

SV 2016–17 RSA Cryptography CryptoSec 288 / 1037

Application to Quadratic Residuosity

for b ∈ Z∗p:
b is a quadratic residue in Z∗p ⇐⇒ (b/p) = +1
(p is prime)
for b ∈ Z∗n:
b is a quadratic residue in Z∗n =⇒ (b/n) = +1
BUT⇐= IS WRONG!
(n is composite)

SV 2016–17 RSA Cryptography CryptoSec 289 / 1037

Computing the Legendre Symbol

Let p be an odd prime

(
b
p

)
=

0 if b

p−1
2 mod p = 0

1 if b
p−1

2 mod p = 1
−1 if b

p−1
2 mod p = p − 1

so (b/p) is the modulo p representative of b
p−1

2 in {−1, 0,+1}

Note that x 7→ (x/p) is a group homomorphism from Z∗p to {−1,+1}

SV 2016–17 RSA Cryptography CryptoSec 290 / 1037

Computing the Jacobi Symbol

(a
b

)
=
(a mod b

b

)
for b odd,(ab

c

)
=
(a

c

) (b
c

)
for c odd,(2

a

)
= 1 if a ≡ ±1 (mod 8) and

(2
a

)
= −1 if a ≡ ±3 (mod 8) for a

odd,(a
b

)
= −

(b
a

)
if a ≡ b ≡ 3 (mod 4) and

(a
b

)
=
(b

a

)
otherwise for a

and b odd.

SV 2016–17 RSA Cryptography CryptoSec 291 / 1037

Example

(
b
n

)
=

(
362
561

)
(factor 2 isolation) =

(
2× 181

561

)
(multiplicativity) =

(
2

561

)
×

(
181
561

)
(561 ≡ 1 (mod 8)) =

(
181
561

)
(quadratic reciprocity) =

(
561
181

)
(modular reduction) =

(
18

181

)

(factor 2 isolation) =

(
2× 9
181

)
(multiplicativity) =

(
2

181

)
×

(
9

181

)
(181 ≡ 5 (mod 8)) = −

(
9

181

)
(quadratic reciprocity) = −

(
181

9

)
(modular reduction) = −

(
1
9

)
= − 1

SV 2016–17 RSA Cryptography CryptoSec 292 / 1037

The Group of Quadratic Residues

the Jacobi symbol is homomorphic:(x
n

)(y
n

)
=
(xy

n

)
let QRn be the subgroup of Z∗n of all quadratic residues
we have the following properties:

QRn is included in the subgroup of Z∗n of all x such that(x
n

)
= +1. They match if n is prime.

x ∈ QRn and y ∈ QRn implies xy ∈ QRn

x ∈ QRn and y ∈ Z∗n −QRn implies xy ∈ Z∗n −QRn

for p prime, x ∈ Z∗p −QRp and y ∈ Z∗p −QRp implies xy ∈ QRp

this does not extend to composite n:
3 ∈ Z∗35 −QR35 and 2 ∈ Z∗35 −QR35 but 6 ̸∈ QR35

SV 2016–17 RSA Cryptography CryptoSec 293 / 1037

Conclusion

algorithm to compute (b/n) in O(ℓ2)

can be used to check quadratic residuosity if n is prime

SV 2016–17 RSA Cryptography CryptoSec 294 / 1037

Use of Quadratic Residuosity

Goldwasser-Micali cryptosystem

Solovay-Strassen primality testing b
p−1

2 ≡
(

b
p

)
(mod p)

breaking the DDH assumption in Z∗p
note: the ElGamal cryptosystem is IND-CPA secure iff the DDH
assumption on the group is hard
so, it is unsafe to use the ElGamal cryptosystem in Z∗p
mapping {1, . . . , q} to QRp for p = 2q + 1 and use the ElGamal
cryptosystem in QRp (p and q prime)

SV 2016–17 RSA Cryptography CryptoSec 295 / 1037

Goldwasser-Micali Encryption

Generator

6Secret key pPublic key x, N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

N = pq(
x
p

)
= −1(

x
q

)
= −1

6
?

bit b

y = r2xb mod N

y y

solve (−1)b =
(

y
p

)

b

SV 2016–17 RSA Cryptography CryptoSec 296 / 1037

Solovay-Strassen Test

Theorem
Let n be an odd number.
n is prime if and only if

Pr
[
b

n−1
2 ≡

(
b
n

)
(mod n)

]
≥ 1

2

for b ∈ Z∗n with uniform distribution.

Note: the square of this equation is bn−1 ≡ 1 (mod n) but we do not
have a so strong result with the Fermat test.

SV 2016–17 RSA Cryptography CryptoSec 297 / 1037

Breaking the Decisional Diffie-Hellmann
Assumption in Z∗p

Let p be an odd prime and g be a generator of Z∗p
We consider the following algorithm:

Algorithm A(g,X ,Y ,K)
1: set a = 1(K/p)=−1
2: set b = 1(X/p)=(Y/p)=−1
3: output 1a=b

Let x , y , k ∈ Zp−1 be uniform and independent
For X = gx , Y = gy , K = gk , we have Pr[A(g,X ,Y ,K) = 1] = 1

2

For X = gx , Y = gy , K = gxy , we have Pr[A(g,X ,Y ,K) = 1] = 1
so, A(g,X ,Y ,K) can distinguish if K is random or the solution to
the Diffie-Hellman problem with (g,X ,Y).

SV 2016–17 RSA Cryptography CryptoSec 298 / 1037

Mapping a Number to an ElGamal Group Element

Let p = 2q + 1 with p and q prime, we have (−1/p) = −1 so −1
is not a quadratic residue
the group of quadratic residues QRp is cyclic and of order q, not
containing −1
for all x ∈ Z∗p, either x ∈ QRp or −x ∈ QRp but not both

so, map(x) = x ×
(

x
p

)
mod p maps {1, . . . ,q} onto QRp

we can define the ElGamal cryptosystem on QRp and use map
to represent messages

SV 2016–17 RSA Cryptography CryptoSec 299 / 1037

3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem

SV 2016–17 RSA Cryptography CryptoSec 300 / 1037

Factoring Problem

Factoring Problem

Parameters: Gen, a pseudorandom generator
Instance: n, an integer produced by Gen
Problem: factor n

Examples:
Gen generates an RSA modulus
Gen generates Mersenne numbers

SV 2016–17 RSA Cryptography CryptoSec 301 / 1037

Record using the Number Field Sieve Algorithm

Complexity: e
O
(
(ln n)

1
3 (ln ln n)

2
3

)

RSA768
= 1230186684530117755130494958384962720772853569595334792197322452151726400507

2636575187452021997864693899564749427740638459251925573263034537315482685079
1702612214291346167042921431160222124047927473779408066535141959745985690214
3413

= 3347807169895689878604416984821269081770479498371376856891243138898288379387
8002287614711652531743087737814467999489
×
3674604366679959042824463379962795263227915816434308764267603228381573966651
1279233373417143396810270092798736308917

factored in 2009 by an equivalent of 1500 years of computation on
one core 2.2GHz Opteron.

SV 2016–17 RSA Cryptography CryptoSec 302 / 1037

Record using the Number Field Sieve Algorithm

21039 − 1
= 5080711
×
(306 digits)

= 5080711
×
5585366661993629126074920465831594496864652701848863764801005234631985328837
4753
×
2075818194644238276457048137035946951629397080073952098812083870379272909032
4679382343143884144834882534053344769112223028158327696525376091410189105241
993899334109711624358962065972167481161749004803659735573409253205425523689

factored in 2007 by an equivalent of 100 years of computation on a
PC 2.2GHz (Opteron).

SV 2016–17 RSA Cryptography CryptoSec 303 / 1037

Factorization Tomorrow

Factorization of n with complexity O((ln n)2 ln ln n ln ln ln n) by using
Shor’s algorithm

It only works on a quantum computer (if exists)

SV 2016–17 RSA Cryptography CryptoSec 304 / 1037

Factoring Algorithms on Classical Computers

GNFS: factor n

complexity = e
3
√

64
9 +o(1)(ln n)

1
3 (ln ln n)

2
3

best algorithm for RSA moduli
ECM: finds a factor p

complexity = e
√

2+o(1)(ln p)
1
2 (ln ln p)

1
2

useful for numbers with a small prime factor

SV 2016–17 RSA Cryptography CryptoSec 305 / 1037

Square Roots in Zpq

Gen: generates integers of form n = pq with p ̸= q both prime

Factoring n

Params.: generator Gen
Instance: n generated by Gen
Problem: factor n

⇕

Square roots in Zn

Params.: generator Gen
Instance: n generated by Gen and a quadratic

residue x ∈ Zn

Problem: find y s.t. y2 mod n = x

SV 2016–17 RSA Cryptography CryptoSec 306 / 1037

Factoring n =⇒ Computing Square Roots in Zn

Input: factorization n = pq and x
Output: y such that y2 mod n = x
Complexity: O((log n)3)

1: find yp, a square roots of x modulo p by using
efficient algorithms
(e.g. for p mod 4 = 3 compute x

p+1
4 mod p)

2: find yq , a square roots of x modulo q
3: y = CRTp,q(yp, yq)

SV 2016–17 RSA Cryptography CryptoSec 307 / 1037

Computing Square Roots in Zn =⇒ Factoring n

Input: n, access to a square root
oracle SQRT

Output: p, q prime such that n =
pq

Complexity: O((log n)2 + |SQRT|)
1: repeat
2: pick y0 ∈ {1, . . . , n − 1}
3: x = y2

0 mod n
4: y = SQRT(n, x)
5: until y ̸= y0 and y ̸= −y0 mod

n
6: p = gcd(y − y0, n)
7: q = n/p

since there are 4 square roots,
we have Pr[y = y0 or y =
−y0 mod n] = 1

2

in other cases, y − y0 is zero
modulo one of the two factors
but not modulo the other:
gcd(y − y0, n) is the former
factor

SV 2016–17 RSA Cryptography CryptoSec 308 / 1037

Computing Element Orders in Z∗n

Gen: generates integers of form n = pq with p ̸= q both prime

Factoring λ(n)

Params.: generator Gen
Instance: Gen→ n
Problem: factor λ(n)

=⇒

Computing orders in Z∗n
Params.: generator Gen
Instance: Gen→ n, x ∈

Z∗n
Problem: order of x

⇓

Factoring n

Params.: generator Gen
Instance: Gen→ n
Problem: factor n

⇐⇒

Computing λ(n)

Params.: generator Gen
Instance: Gen→ n
Problem: compute λ(n)

SV 2016–17 RSA Cryptography CryptoSec 309 / 1037

Factoring λ(n) =⇒ Computing Element Orders in
Z∗n

Input: factorization
λ(n) = pα1

1 · · · p
αr
r , x ∈ Z∗n

Output: the order u of x
Complexity: O(r) exponentials

1: u ← 1
2: for i = 1 to r do
3: y ← xλ(n)/pαi

i mod n
4: while y ̸= 1 do
5: y ← ypi mod n
6: u ← u × pi
7: end while
8: end for

Fact. If the order of x is pβ1
1 · · · p

βr
r

then, for all i ,
βi ≤ αi

xλ(n)pβi−αi
i mod n = 1

xλ(n)pβi−αi−1
i mod n ̸= 1

SV 2016–17 RSA Cryptography CryptoSec 310 / 1037

Computing Element Orders in Z∗n =⇒ Knowing λ(n)

Input: an element order oracle in Z∗n
Output: λ(n)

1: λ← 1
2: repeat
3: pick a random x in Z∗n
4: compute the order u of x
5: λ← lcm(λ,u)
6: until λ has not changed for a while

Fact. With the same notations: for all i , Pr[βi < αi] ≤ 1/pi
Thus, the number of iterations is likely to be very small

SV 2016–17 RSA Cryptography CryptoSec 311 / 1037

Knowing λ(n) =⇒ Factoring n

Input: λ(n) (n odd)
Output: a non trivial factor of n

1: write λ(n) = 2st with t odd
2: repeat
3: pick a random x in Z∗n
4: x ← x t mod n
5: y ←⊥
6: while x ̸= 1 do
7: y ← x
8: x ← x2 mod n
9: end while

10: until y ̸=⊥ and y ̸≡ −1
(mod n)

11: output gcd(y − 1,n)

Fact. For x ∈ Zn, if x2 mod n = 1,
x ̸= 1, x ̸= n−1 then 1 < gcd(n, x−
1) < n which is a non-trivial factor of
n:

n divides (x − 1)(x + 1)
if gcd(n, x − 1) = n then n
divides x − 1 thus x = 1 which
is wrong
if gcd(n, x − 1) = 1 then n
divides x + 1 thus x = n − 1
which is wrong

SV 2016–17 RSA Cryptography CryptoSec 312 / 1037

Factorization using λ(n)

x t mod n -̸= 1
SQ -̸= 1

SQ -̸= 1 · · · -̸= 1
SQ -̸= 1

SQ - 1

?6
is it ≡ −1?

at most s︷ ︸︸ ︷

SV 2016–17 RSA Cryptography CryptoSec 313 / 1037

Knowing λ(n)⇐⇒ Factoring n

=⇒: previous slide
⇐=: λ(pα1

1 · · ·p
αr
r) is computed by

lcm((p1 − 1)pα1−1
1 , . . . , (pr − 1)pαr−1

r)

NB: knowing a multiple of λ(n)⇐⇒ Factoring n
(same proof)
example: knowing φ(n)⇐⇒ Factoring n

Conclusion: computing φ(n) is hard, computing orders in Z∗n is hard

SV 2016–17 RSA Cryptography CryptoSec 314 / 1037

Consequence

knowing Kp and Ks in RSA implies factoring N
it is insecure to use common prime numbers between two RSA
keys

SV 2016–17 RSA Cryptography CryptoSec 315 / 1037

Conclusion

Euler φ function: to compute the order of Z∗n
Chinese Remainder Theorem: parallel Zm and Zn

primality testing: efficient, used to generate prime numbers
RSA cryptosystem: public-key cryptosystem
factoring problem: believed to be hard

SV 2016–17 RSA Cryptography CryptoSec 316 / 1037

Computational Problems

easy hard

gcd
inverse modulo n
exponential
square root mod n when
factorization of n is known
Legendre/Jacobi symbol
checking primality
finding a generator when
group order is known
computing order when
factorization of group order
is known

factoring
discrete logarithm
(sometimes)
square root mod n
computing φ(n), λ(n)
checking quadratic
residuosity
computing order in group

SV 2016–17 RSA Cryptography CryptoSec 317 / 1037

References

Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press. 2005.
http://shoup.net/ntb

Textbook on algebra for cryptographers and applications.
Menezes-van Oorschot-Vanstone. Handbook of Applied
Cryptography. CRC. 1997.
http://www.cacr.math.uwaterloo.ca/hac/

Reference book
Vaudenay. A Classical Introduction to Cryptography —
Applications for Communications Security. Springer. 2005.
http://www.vaudenay.ch/crypto/

Textbook on cryptography
Rivest-Shamir-Adleman. A Method for Obtaining Digital
Signatures and Public-key Cryptosystem. Communications of
the ACM vol. 21, 1978.

SV 2016–17 RSA Cryptography CryptoSec 318 / 1037

http://shoup.net/ntb
http://www.cacr.math.uwaterloo.ca/hac/
http://www.vaudenay.ch/crypto/

Must be Known

Euler ϕ function: formula, properties
Chinese Remainder Theorem: how to use it
orders: tricks to check/pick a generator
primality testing: properties, how to use to generate prime
numbers
RSA: why it works, complexity
quadratic residuosity: how to check, when it is easy to extract
square roots
factoring problem: some reductions to other problems

SV 2016–17 RSA Cryptography CryptoSec 319 / 1037

Train Yourself
Chinese Remainder Theorem:
midterm exam 2013–14 ex1
final exam 2012–13 ex1
midterm exam 2012–13 ex2
midterm exam 2011–12 ex2
midterm exam 2010–11 ex1
midterm exam 2010–11 ex2
midterm exam 2009–10 ex2
midterm exam 2008–09 ex1
square roots, cubic roots:
midterm exam 2013–14 ex2
midterm exam 2009–10 ex1
quadratic residuosity:
midterm exam 2012–13 ex1
prime number generation:
midterm exam 2014–15 ex1
RSA variant:
final exam 2015–16 ex2

SV 2016–17 RSA Cryptography CryptoSec 320 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Elliptic Curve Cryptography CryptoSec 321 / 1037

Roadmap

Galois fields
elliptic curves over Zp

elliptic curves over GF(2k)

using standard curves
Diffie-Hellman over elliptic curves
ElGamal over elliptic curves
pairing-based cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 322 / 1037

4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 323 / 1037

GF(pk) for Dummies

p: a prime number.
Euclidean division in Zp[x]: for any polynomials A(x) and P(x)
such that P ̸= 0, there exists polynomials R(x) and B(x) such
that A(x) = R(x) + P(x) · B(x) and deg(R) < deg(P). We call
R(x) = A(x) mod P(x) the remainder of A(x) modulo P(x).
Select a monic (i.e. with leading coefficient 1) irreducible (i.e.
who cannot be expressed as a product of polynomials with
smaller degree) polynomial P(x) of degree k in Zp[x].
Let GF(pk) be the set of all polynomials in Zp[x] of degree at
most k − 1.
Addition: regular polynomial addition modulo p.
Multiplication: regular multiplication in Zp[x] reduced modulo
P(x).
We can prove this constructs a field.

SV 2016–17 Elliptic Curve Cryptography CryptoSec 324 / 1037

Example: GF(8)

In order to construct GF(23):
consider the ring Z2[x] of polynomials
take the monic irreducible polynomial P(x) = x3 + x + 1 of
degree 3
construct

GF(23) = {0, 1, x , x + 1, x2, x2 + 1, x2 + x , x2 + x + 1}

Example: (x + 1) + (x2 + 1) = x2 + x in GF(23).
Example: (x + 1)× (x2 + 1) = x3 + x2 + x + 1 = x2 in GF(23).

SV 2016–17 Elliptic Curve Cryptography CryptoSec 325 / 1037

Cerebral GF(pk)

p: a prime number.
Zp[x] is a Euclidean ring.
Select a monic irreducible polynomial P(x) of degree k in Zp[x].
P(x) spans a maximal ideal (P(x))
Let GF(pk) = Zp[x]/(P(x)) be the quotient of ring Zp[x] by ideal
(P(x)).
We obtain a field who inherits the addition and multiplication from
the ring structure of Zp[x].

SV 2016–17 Elliptic Curve Cryptography CryptoSec 326 / 1037

Galois Fields

Theorem
We have the following results.

The cardinality of any finite field is a prime power pk .
For any prime power pk , there exists a finite field of cardinality
pk . p is called the characteristic of the field.
Two finite fields of same cardinality are isomorphic, so the finite
field of cardinality pk is essentially unique. We denote it GF(pk)
as Galois field of cardinality pk .
GF(pk) is isomorphic to a subfield of GF(pk×ℓ).
GF(pk) can be defined as the quotient of ring of polynomials with
coefficients in Zp by a principal ideal spanned by an irreducible
polynomial of degree k: Zp[x]/(P(x)).

SV 2016–17 Elliptic Curve Cryptography CryptoSec 327 / 1037

Example: GF(5)

GF(5) = Z5 = {0, 1, 2, 3, 4}

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(GF(5),+) ≈ (Z5,+) (GF(5)∗,×) ≈ (Z4,+)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 328 / 1037

Example: GF(4)

GF(4) = {0, 1, x , x + 1} ̸= Z4

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

(GF(4),+) ≈ (Z2 × Z2,+) (GF(4)∗,×) ≈ (Z3,+)

P(x) = x2 + x + 1 irreducible in Z2[x], GF(4) = Z2[x]/(P(x))

SV 2016–17 Elliptic Curve Cryptography CryptoSec 329 / 1037

Example: GF(28)
Arithmetics in AES

A byte a = a7 . . .a1a0 represents an element of the finite field GF(28)
as a polynomial a0 + a1.x + . . .+ a7.x7 modulo x8 + x4 + x3 + x + 1
and modulo 2

byte polynomial
0x00 0
0x01 1
0x02 x
0x03 x + 1
0x1b x4 + x3 + x + 1

Addition: bitwise XOR
Multiplication by 0x02: shift and XOR with 0x1b if carry

SV 2016–17 Elliptic Curve Cryptography CryptoSec 330 / 1037

Most Important Finite Fields
“prime field”: Zp for a large prime p
“binary field”: GF(2k)

Zp GF(2k)

representation integers from 0 to p − 1 polynomials in x of degree at
most k − 1 with binary coef-
ficients (k -bit strings)
requires the choice of an ir-
reducible polynomial P(x) of
degree k

addition addition modulo p bitwise XOR
multiplication multiplication modulo p ad-hoc algorithms

multiplication by 0x2: shift to
the left and XOR to a con-
stant if carry

SV 2016–17 Elliptic Curve Cryptography CryptoSec 331 / 1037

Characteristic 2 Tips

In GF(2k):
1 + 1 = 0
minus = plus: −a = a
square is linear: (a + b)2 = a2 + b2

power 2i is linear

for k > 1, a2k−1
is the unique square root of a

trace function: Tr(a) = a + a2 + a22
+ · · ·+ a2k−1 ∈ {0, 1}

(traces are roots of z2 = z)
Fact: Tr is linear: Tr(a + b) = Tr(a) + Tr(b)
Fact: for all a in GF(2k) we have Tr(a2) = Tr(a)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 332 / 1037

Exercise

1 show that if z is a root of a = z2 + z then Tr(a) = 0
Tr(a) = Tr(z2 + z) = Tr(z2) + Tr(z) = Tr(z) + Tr(z) = 0

2 show that if Tr(a) = 0 then a = z2 + z has exactly two roots θ and
θ + 1
we have (z + 1)2 + (z + 1) = z2 + 1 + z + 1 = z2 + z so the
mapping z 7→ z2 + z has at most 1

2 2k images
z2 + z = a cannot have more than two roots, to the mapping
z 7→ z2 + z has exactly 1

2 2k images and each image is reached
exactly twice, by some {θ, θ + 1} pair
thanks to the first question, images are in the set of the 1

2 2k field
elements with trace zero

SV 2016–17 Elliptic Curve Cryptography CryptoSec 333 / 1037

4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 334 / 1037

Elliptic Curves

P

Q

P + Q

SV 2016–17 Elliptic Curve Cryptography CryptoSec 335 / 1037

Addition in Elliptic Curves
Chord and Tangent Formula

Ea,b = {O} ∪ {(x , y); y2 = x3 + ax + b}

we assume that Ea,b(K) is non-singular:
when a point is non-singular we can define the tangent to this
point
singular point⇐⇒ differential of y2 − (x3 + ax + b) vanishes
⇐⇒ y = 0 and x3 + ax + b = 0 multiple root
curve non-singular⇐⇒ 4a3 + 27b2 ̸= 0
λ = yQ−yP

xQ−xP
is the chord slope

λ =
3x2

P+a
2yP

is the tangent slope
(λ =∞⇐⇒ yP = 0⇐⇒ P + P = O)
the sum of the 3 roots x of the intersection between Ea,b(K) and
the straight line y = λx + µ is λ2 = xP + xQ + xR

SV 2016–17 Elliptic Curve Cryptography CryptoSec 336 / 1037

Group Structure

Ea,b = {O} ∪ {(x , y); y2 = x3 + ax + b}

Given P = (xP , yP), we define −P = (xP ,−yP) and −O = O.
Given P = (xP , yP) and Q = (xQ , yQ), if Q = −P, we define
P + Q = O.
Given P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P, we let

λ =

{ yQ−yP
xQ−xP

if xP ̸= xQ
3x2

P+a
2yP

if xP = xQ

xR = λ2 − xP − xQ

yR = (xP − xR)λ− yP

R = (xR , yR) and P + Q = R.
In addition, P +O = O + P = P and O +O = O.

SV 2016–17 Elliptic Curve Cryptography CryptoSec 337 / 1037

Elliptic Curves are Abelian Groups

by restricting to x , y ∈ K where K is a field (example: Q, R, C,
GF(pk))

1. Ea,b(K) is closed for the addition
2. the addition is associative in Ea,b(K)

HARD (from the chord and tangent formula)
3. O is neutral for the addition
4. for any P ∈ Ea,b(K) we have −P ∈ Ea,b(K) which is the inverse of

P for addition
5. the addition is commutative

Ea,b(K) is an Abelian group

SV 2016–17 Elliptic Curve Cryptography CryptoSec 338 / 1037

Remark on Points of Order 2 (Characteristic > 2)

P = (x , y) has order 2 ⇐⇒ P = −P and P ̸= O
⇐⇒ y = 0 and x3 + ax + b = 0

So, the number of points of order 2 is the number of roots of
x3 + ax + b in K

(If we have more than 1 root, the group cannot be cyclic!)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 339 / 1037

Recap

(for characteristic > 3)
EC are curves (set of points whose coordinate satisfy an
equation)
the curve must be non-singular (∆ ̸= 0 for some parameter ∆)
EC can (depending on the field) be defined by the equation
y2 = x3 + ax + b (need to add a point O)
EC have an addition rule, making a group structure
→ can multiply a point by an integer
→ some curves can be isomorphic
→ contrarily to Z∗p, EC are not always cyclic
(but we can work on a cyclic subgroup)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 340 / 1037

4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 341 / 1037

Roadmap

same formulas, but over Zp

notion of twist: elliptic curves come in pairs
notion of j-invariant: an invariant value by isomorphism
cardinality close to p

SV 2016–17 Elliptic Curve Cryptography CryptoSec 342 / 1037

Addition over an Elliptic Curve (Characteristic
p > 3)

(Field K of characteristic p > 3)

Ea,b(K) = {O} ∪ {(x , y) ∈ K2; y2 = x3 + ax + b}

Hypothesis: (discriminant) ∆ = −16(4a3 + 27b2) ̸= 0
for P = (xP , yP), we let −P = (xP ,−yP) and −O = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q = −P we let P + Q = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P we let

λ =

{ yQ−yP
xQ−xP

if xP ̸= xQ
3x2

P+a
2yP

if xP = xQ

xR = λ2 − xP − xQ

yR = (xP − xR)λ− yP

R = (xR , yR) and P + Q = R.
addition to O: P +O = O + P = P and O +O = O.

SV 2016–17 Elliptic Curve Cryptography CryptoSec 343 / 1037

Maybe Useful to Know p > 3

Hypothesis: field K of characteristic p > 3 and ∆ ̸= 0
Ea,b and Eu4a,u6b are isomorphic (by (x , y) 7→ (u2x , u3y))
Ea,b and Ev2a,v3b are twist of each other if v is not a square
NB: they become isomorphic in an extension of K where v
becomes a square

j-invariant: j = 1728 4a3

4a3+27b2

#Ea,b is between q + 1− 2
√

q and q + 1 + 2
√

q where q is the
cardinality of K (Hasse Theorem)
NB: for two twists, the average of #Ea,b is q + 1

SV 2016–17 Elliptic Curve Cryptography CryptoSec 344 / 1037

Other Example

E1,3 over GF(7) = Z7 is isomorphic to Z6
y2 = x3 + x + 3

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-

6

P

2P

3P
4P

5P

O

SV 2016–17 Elliptic Curve Cryptography CryptoSec 345 / 1037

Recap

EC can be defined by the equation y2 = x3 + ax + b (plus a point
O)
twist: pair of non-isomorphic curves which become isomorphic
when defined over a larger field
j-invariant: parameter which is always the same for isomorphic
curves and for twists
the order of a curve is close to the cardinality of the field

SV 2016–17 Elliptic Curve Cryptography CryptoSec 346 / 1037

4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 347 / 1037

Roadmap

similar, but with different formulas
again: notions of twist, j-invariant
a special case: “supersingular curves”
recent results on DL raise big concerns on their security

skip binary curves

SV 2016–17 Elliptic Curve Cryptography CryptoSec 348 / 1037

Addition over an Elliptic Curve (Characteristic
p = 2)

(Field K of characteristic p = 2)
case of curve non supersingular (= ordinary curve)

Ea2,a6(K) = {O} ∪ {(x , y) ∈ K2; y2 + xy = x3 + a2x2 + a6}

hypothesis: (discriminant) ∆ = a6 ̸= 0
for P = (xP , yP), we let −P = (xP , xP + yP) and −O = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q = −P, we let P + Q = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P, we let

λ =

{ yQ+yP
xQ+xP

if xP ̸= xQ
x2

P+yP
xP

if xP = xQ

xR = λ2 + λ+ a2 + xP + xQ

yR = (xP + xR)λ+ yP + xR

R = (xR , yR) and P + Q = R.
addition to O: P +O = O + P = P and O +O = O.

SV 2016–17 Elliptic Curve Cryptography CryptoSec 349 / 1037

Maybe Useful to Know (Non-supersingular, Binary)

Hypothesis: field K = GF(q) of characteristic 2 and ∆ ̸= 0,
non-supersingular elliptic curve

Ea2,a6(K) is non-singular:
a point is singular⇐⇒ the differential of
(y2 + xy)− (x3 + a2x2 + a6) vanishes⇐⇒ x = y = a6 = 0
existence⇐⇒ a6 = 0
Ea2,a6 and Ea2+u2+u,a6

are isomorphic (by (x , y) 7→ (x , ux + y))
Ea2,a6 and Ea2+v ,a6 are twist of each other if
tr2(v) =

∑
2i<q v2i

= 1 (they become isomorphic in an extension
of K in which tr2(v) vanishes)
j-invariant: j = 1/∆
#Ea2,a6 is between q + 1− 2

√
q and q + 1 + 2

√
q where q is the

cardinality of K (Hasse Theorem)
NB: for two twists, the average of #Ea2,a6 is q + 1

SV 2016–17 Elliptic Curve Cryptography CryptoSec 350 / 1037

The Supersingular Case
(Field K of characteristic p = 2)
case of curve supersingular

Ea3,a4,a6(K) = {O} ∪ {(x , y) ∈ K2; y2 + a3y = x3 + a4x + a6}

hypothesis: (discriminant) ∆ = a4
3 ̸= 0

for P = (xP , yP), we let −P = (xP , yP + a3) and −O = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q = −P, we let P + Q = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P, we let

λ =

{ yQ+yP
xQ+xP

if xP ̸= xQ
x2

P+a4
a3

if xP = xQ

xR = λ2 + xP + xQ

yR = (xP + xR)λ+ yP + a3

R = (xR , yR) and P + Q = R.
addition to O: P +O = O + P = P and O +O = O.

SV 2016–17 Elliptic Curve Cryptography CryptoSec 351 / 1037

Maybe Useful to Know (Supersingular, Binary)

Hypothesis: field K = GF(q) of characteristic 2 and ∆ ̸= 0,
supersingular curve

Ea3,a4,a6(K) is non-singular iff a3 ̸= 0:
a point is singular⇐⇒ the differential of
(y2 + a3y)− (x3 + a4x + a6) vanishes⇐⇒ x2 = a4, y2 = a6,
a3 = 0
existence⇐⇒ a3 = 0
the j-invariant vanishes (j = 0)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 352 / 1037

4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 353 / 1037

Hardness of the Discrete Logarithm

DL is easy in anomalous curves over Zp

binary curves may be exposed to recent attacks
there are other families of weak curves
in a group of order n, Pollard Rho algorithm solves DL in O(

√
n)

we can consider tradeoffs:
run precomputation of O(n 2

3) then compute any DL in O(n 2
3)

(people tend to use the very same curves...)

Note: curves which are bad for DL may be good for other things...
(e.g. pairing-based cryptography)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 354 / 1037

Using Point Compression (Prime Field Case)

Elliptic curve equation:

y2 = x3 + ax + b

A single x leads to two y which are opposite from each other.

→ we can get y from
x
the parity of y (y and p − y have different parity)

Format “hh hexstring”
hh = 00 point O (following: nothing)
hh = 02 point compression with y even (following: x)
hh = 03 point compression with y odd (following: x)
hh = 04 no compression (following: x and y)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 355 / 1037

Using Point Compression (Binary Field Case)

Elliptic curve equation:(y
x

)2
+

y
x
= x + a2 +

a6

x2

A single x leads to two y such that y
x = θ or θ + 1 for some θ

→ we can get y from
x
the constant term of y/x as a polynomial (the two roots
y/x have sum 1 thus only differ in their constant term)

Format “hh hexstring”
hh = 00 point O (following: nothing)
hh = 02 point compression with y/x even (following: x)
hh = 03 point compression with y/x odd (following: x)
hh = 04 no compression (following: x and y)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 356 / 1037

Manipulating Elliptic Curves in Practice

A representation problem:
bit strings
byte strings
integers
polynomials
field elements
elliptic curve points

see http://www.secg.org/sec1-v2.pdf for an example of
representation standard

SV 2016–17 Elliptic Curve Cryptography CryptoSec 357 / 1037

http://www.secg.org/sec1-v2.pdf

Domain Parameters

a field
either a prime number p
or a power q of 2 together with an irreducible polynomial over
GF(2) of degree log2 q

field elements defining an elliptic curve E
a point G in E
the order n of G in E (may be smaller than the order of E)
(for pseudorandom curves) a seed s (to generate a j-invariant)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 358 / 1037

Standard Curves

pseudorandom curves over Zp

y2 = x3 + ax + b
provide seed to generate j

→ Discrete Log is assumed to be hard
ordinary curves over a binary field

y2 + xy = x3 + a2x2 + a6

for pseudorandom curves: provide seed to generate j
for special curves (Koblitz curves): a6 = 1, a2 ∈ {0, 1}

SV 2016–17 Elliptic Curve Cryptography CryptoSec 359 / 1037

NIST Standard Curves (2013)

NIST Recommended Elliptic Curves for Federal Government Use
Appendix D of FIPS186–4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

pseudorandom over Zp: P192, P224, P256, P384, P521
ordinary curves over binary fields:

pseudorandom: B163, B233, B283, B409, B571
special: K163, K233, K283, K409, K571
(called Koblitz curves or anomalous binary curves (ABC))

SV 2016–17 Elliptic Curve Cryptography CryptoSec 360 / 1037

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

SECG Standard Curves (2000)

SEC2: Recommended Elliptic Curve Domain Parameters
http://www.secg.org/sec2-v2.pdf

pseudorandom over Zp: secp112r1, secp112r2, secp128r1,
secp128r2, secp160r1, secp160r2, secp192r1, secp224r1,
secp256r1, secp384r1, secp521r1
special over Zp: secp160k1, secp192k1, secp224k1, secp256k1
(called generalized Koblitz curves)
pseudorandom over binary fields: sect113r1, sect113r2,
sect131r1, sect131r2, sect163r1, sect163r2, sect193r1,
sect193r2, sect233r1, sect283r1, sect409r1, sect571r1
special over binary fields: sect163k1, sect233k1, sect239k1,
sect283k1, sect409k1, sect571k1
(called Koblitz curves or anomalous binary curves (ABC))

SV 2016–17 Elliptic Curve Cryptography CryptoSec 361 / 1037

http://www.secg.org/sec2-v2.pdf

Other Standards

ANSI X9.62
IEEE P1363

SV 2016–17 Elliptic Curve Cryptography CryptoSec 362 / 1037

Example: secp192r1 = P192

secp192r1 = {O} ∪ {(x , y) ∈ Zp; y2 = x3 + ax + b}

p = 6277101735386680763835789423207666416083908700390324961279

a = p − 3

= 6277101735386680763835789423207666416083908700390324961276

b = 2455155546008943817740293915197451784769108058161191238065

n = 6277101735386680763835789423176059013767194773182842284081

G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

= 03 : 602046282375688656758213480587526111916698976636884684818

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

note that p = 2192 − 264 − 1, 2192 − 295 < n < 2192, and n is prime

SV 2016–17 Elliptic Curve Cryptography CryptoSec 363 / 1037

Example: sect163r2 = B163

sect163r2 = {O} ∪ {(x , y) ∈ GF(q); y2 + xy = x3 + a2x2 + a6}

q = 2163

f (x) = x163 + x7 + x6 + x3 + 1

a2 = 1

a6 = 02 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd

n = 04 00000000 00000000 000292fe 77e70c12 a4234c33

= 5846006549323611672814742442876390689256843201587

G = 03 03 f0eba162 86a2d57e a0991168 d4994637 e8343e36

seed = 85e25bfe 5c86226c db12016f 7553f9d0 e693a268

note that 2162 < n < 2162 + 282 and n is prime

SV 2016–17 Elliptic Curve Cryptography CryptoSec 364 / 1037

Elliptic Curves are Real

secp256r1 = P256

used for digital signature in Swiss biometric passports

SV 2016–17 Elliptic Curve Cryptography CryptoSec 365 / 1037

Example: Curve25519

Curve25519 = {O} ∪ {(x , y) ∈ Zp; y2 = x3 + 486 662x2 + x}

p = 2255 − 19

xG = 9

order(G) = 2252 + 27742317777372353535851937790883648493

Some X25519 function comes with it for ECDH
equation different than previous ones!
optimized implementations
made by no company or government agency
used in SSH, Tor, Signal, Bitcoin, ...

SV 2016–17 Elliptic Curve Cryptography CryptoSec 366 / 1037

4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 367 / 1037

ECDH: Elliptic Curve Diffie-Hellman

specified in SEC1 (http://www.secg.org/sec1-v2.pdf) and
IEEE1363
used in Bluetooth 2.1
used in EAC for epassports

SV 2016–17 Elliptic Curve Cryptography CryptoSec 368 / 1037

http://www.secg.org/sec1-v2.pdf

ECDH

Participants: U and V
U and V agree on domain parameters T = (p, a, b,G, n, h) or
T = (m, f (x), a, b,G, n, h)
(h is the cofactor 1

n#E(GF(q)) with q = p or (q = 2m))
U resp. V selects his secret key dU resp. dV ∈ Z∗n and compute
his public key QU = dU .G resp. QV = dV .G
U and V exchange their public keys
both check Q ∈ E(GF(p)), Q ̸= O, n.Q = O
both compute P = dU .QV = dV .QU

set z = xP

convert the field element z into a byte string Z
use a KDF as agreed to derive a key K

SV 2016–17 Elliptic Curve Cryptography CryptoSec 369 / 1037

ECIES (EC Integrated Encryption Scheme)

Generator

K = kG

6Secret key kPublic key K 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

R∥c∥d

r ∈ Z∗
n

R = rG
(kE∥kM) = KDF(rK∥extra1)

c = EnckE (m)
d = MACkM (c∥extra2)

-
R∥c∥d

Decrypt

S = kR
(kE∥kM) = KDF(S∥extra1)

m = DeckE (c)

d ?
= MACkM (c∥extra2)

-Message
m

�
�

Adversary

select field, elliptic curve
G point of order n

n prime

SV 2016–17 Elliptic Curve Cryptography CryptoSec 370 / 1037

Principles of ECIES

use Diffie-Hellman to exchange a symmetric kE∥kM

use kE to encrypt
use kM for integrity protection

this is a hybrid encryption:
we use public-key cryptosystem to exchange a symmetric key and
symmetric cryptography to transport the message securely

SV 2016–17 Elliptic Curve Cryptography CryptoSec 371 / 1037

Exercise

identify the algebraic structure (group/ring/field), the corresponding
law(s) and neutral element(s)

Z26...

...is a ring for addition and multiplication modulo 26 and neutral
element 0 and 1

the set of permutations over the alphabet...

...is a group for composition and the identity permutation as a
neutral element

secp192r1...

...is a group for EC point addition law and the point at infinity as a
neutral element

GF(2128)...

...is a field for addition and multiplication of polynomials and the
constant polynomials 0 and 1 as neutral elements

SV 2016–17 Elliptic Curve Cryptography CryptoSec 372 / 1037

4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 373 / 1037

Pairing of Elliptic Curves
for some pairs of elliptic curves G1 and G2 we can construct a
function

e : G1 ×G2 → GT

to a group GT (with multiplicative notations) such that
e is bilinear: e(aP, bQ) = e(P,Q)ab for a, b ∈ Z, P ∈ G1, Q ∈ G2

e is non-degenerate: e(P,Q) ̸= 1 for some P ∈ G1 and Q ∈ G2

(we use supersingular curves)

consequences:
this may be bad for EC-security in G1 = G2 as we can distinguish
(P, xP, yP, xyP) from (P, xP, yP, zP) by checking
e(xP, yP) = e(P, xyP)
we call G1 = G2 a gap group because the computational
Diffie-Hellman problem may remain hard even though the
decitional Diffie-Hellman problem is easy
this may create new cryptographic primitives

SV 2016–17 Elliptic Curve Cryptography CryptoSec 374 / 1037

3-Party Diffie-Hellman Key Agreement in a Single
Round

let G generate a subgroup of order p of G1 = G2 such that
e(G,G) ̸= 1

Alice picks a ∈ Zp and broacasts A = aG
Bob picks b ∈ Zp and broacasts B = bG
Charly picks c ∈ Zp and broacasts C = cG
all compute K = e(G,G)abc

Alice computes e(B,C)a = K
Bob computes e(C,A)b = K
Charly computes e(A,B)c = K

SV 2016–17 Elliptic Curve Cryptography CryptoSec 375 / 1037

Popular Cryptographic Constructions based on
Pairings

Joux 2000: 3-party Diffie-Hellman key agreement in one round
Boneh-Franklin 2001: identity-based encryption
Boneh-Lynn-Shacham 2003: a signature scheme (short)
Sahai-Water 2004: attribute-based encryption

SV 2016–17 Elliptic Curve Cryptography CryptoSec 376 / 1037

Conclusion

elliptic curves are groups which can be used in cryptography
advantage: smaller parameters for the same security
better complexity than RSA
many standards are using elliptic curves

SV 2016–17 Elliptic Curve Cryptography CryptoSec 377 / 1037

References

Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press. 2005.
http://shoup.net/ntb

http://www.secg.org/sec1-v2.pdf

http://www.secg.org/sec2-v2.pdf

SV 2016–17 Elliptic Curve Cryptography CryptoSec 378 / 1037

http://shoup.net/ntb
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf

Must be Known

understand how to add points with the help of the formulas (don’t
learn them!)
understand how to manipulate objects (field elements, points,
integers)
understand point compression
understand the standards

SV 2016–17 Elliptic Curve Cryptography CryptoSec 379 / 1037

Train Yourself

finite fields: midterm 2008–09 ex3
projective coordinates: midterm 2013–14 ex3
discrete logarithm: final exam 2013–14 ex3
mapping a message to a point: midterm exam 2014–15 ex2
elliptic curve factoring method: midterm exam 2015–16 ex2

SV 2016–17 Elliptic Curve Cryptography CryptoSec 380 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Symmetric Encryption CryptoSec 385 / 1037

Roadmap

block ciphers: DES, triple-DES, AES
modes of operations: ECB, CBC, OFB, CFB, CTR, XTS
stream ciphers: RC4, A5/1
exhaustive search and tradefoffs
meet-in-the-middle attack

SV 2016–17 Symmetric Encryption CryptoSec 386 / 1037

5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2016–17 Symmetric Encryption CryptoSec 387 / 1037

Symmetric Encryption

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

Encrypt -
Y

-
Y

Decrypt -Message
X

�
�

Adversary

SV 2016–17 Symmetric Encryption CryptoSec 388 / 1037

Symmetric Encryption (Informal)

functionality
DecryptK (EncryptK (X)) = X

security
confidentiality is preserved

Alice and Bob, Generator, Encrypt, Decrypt
components

symmetric
encryption

SV 2016–17 Symmetric Encryption CryptoSec 389 / 1037

Example: Vernam Cipher

components: Alice and Bob, a parameter n
Generator: select K ∈ {0, 1}n uniformly at random
and set it up for Alice and Bob
Encrypt: for X ∈ {0,1}n, compute Y = X ⊕ K ,
send Y and discard K
Decrypt: for Y ∈ {0,1}n, compute X = Y ⊕ K and
discard K

functionality: for any X we have DecryptK (EncryptK (X)) = X
security: perfect secrecy (X and Y have independent

distribution)

Warning: use K only once

SV 2016–17 Symmetric Encryption CryptoSec 390 / 1037

Two Categories of Symmetric Encryption

stream ciphers block ciphers
RC4 DES

GSM–A5/1 3DES
Bluetooth–E0 IDEA

CSS BLOWFISH
... RC5

AES
KASUMI
SAFER

CS-Cipher
FOX

...

SV 2016–17 Symmetric Encryption CryptoSec 391 / 1037

5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2016–17 Symmetric Encryption CryptoSec 392 / 1037

DES: the Data Encryption Standard

US Standard from NBS (now NIST), branch of the Department of
Commerce in 1977
secret design by IBM based on a call for proposal
based on LUCIFER by Horst Feistel (from IBM)
design influenced by the NSA
rationales of the design published by Don Coppersmith in 1994

dedicated to hardware implementation
block cipher with 64-bit blocks
key of 56 effective bits

SV 2016–17 Symmetric Encryption CryptoSec 393 / 1037

DES

IP−1

?
64 bits Y

Feistel

?

IP

?

?

64 bits
X

�
K16

�

616× 48 bits

K1
�

K2

...
schedule

?

56 bits

K

SV 2016–17 Symmetric Encryption CryptoSec 394 / 1037

DES−1

IP−1

?
X

Feistel

?

IP

?

?
Y

�
K1

�K16
�
K15

...
schedule′

?

K

SV 2016–17 Symmetric Encryption CryptoSec 395 / 1037

Feistel Scheme

transform function over {0, 1} n
2 into permutations over {0, 1}n

inverse permutations have same structure
alternate round functions and halve swaps
final halve swap omitted

SV 2016–17 Symmetric Encryption CryptoSec 396 / 1037

(Direct) Feistel Scheme

Ψ(F K1 ,F K2 ,F K3)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K1

F

K2

F

K3

n
2 bits n

2 bits

SV 2016–17 Symmetric Encryption CryptoSec 397 / 1037

(Inverse) Feistel Scheme

Ψ−1(F K1 ,F K2 ,F K3) = Ψ(F K3 ,F K2 ,F K1)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K3

F

K2

F

K1

SV 2016–17 Symmetric Encryption CryptoSec 398 / 1037

(Direct + Inverse) Feistel Scheme

⊕
?? ��

⊕
?? ��

⊕
?? ��

a b

b c

c d

F
K1

F
K2

F
K3

⊕
?? ��

⊕
?? ��

⊕
?

?

? ��
?

d e = c

c = e f = b

a = g f = b

F
K3

F
K2

F
K1

e = c ⊕ F K3(d)⊕ F K3(d) = c
f = d ⊕ F K2(e) =
(b ⊕ F K2(c))⊕ F K2(c) = b
g = e ⊕ F K1(f) = c ⊕ F K1(b) =
(a⊕ F K1(b))⊕ F K1(b) = a

SV 2016–17 Symmetric Encryption CryptoSec 399 / 1037

DES Round Function Overview

output input

round key

� P � S � ⊕� E �?32 bits 32 bits

48 bits

E : expansion (32 to 48 bits)
⊕: bitwise XOR to a round key
S: eight 6-bit to 4-bit S-boxes (substitution boxes)
P: permutation

SV 2016–17 Symmetric Encryption CryptoSec 400 / 1037

DES Round Function

P S ⊕ E

ou
tp

ut
32

bi
ts input

32
bits

round key 48 bits

S1

S2

S3

S4

S5

S6

S7

S8

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕

SV 2016–17 Symmetric Encryption CryptoSec 401 / 1037

S3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Example: S3(111000) = 0101:

1 1100 0 = 56
1100 = 12
10 = 2

0101 = 5

SV 2016–17 Symmetric Encryption CryptoSec 402 / 1037

DES Key Schedule

schedule(K)

1: K PC1−→ (C,D)
2: for i = 1 to 16 do
3: C ← ROLri(C)
4: D ← ROLri(D)
5: Ki ← PC2(C,D)
6: end for

K : 56-bit register
C,D: two 28-bit registers
K1, . . . ,K16: sixteen 48-bit registers

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ri 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

SV 2016–17 Symmetric Encryption CryptoSec 403 / 1037

DES Inverse Key Schedule

schedule′(K)

1: K PC1−→ (C,D)
2: for i = 16 down to 1 do
3: Ki ← PC2(C,D)
4: C ← RORri(C)
5: D ← RORri(D)
6: end for

K : 56-bit register
C,D: two 28-bit registers
K1, . . . ,K16: sixteen 48-bit registers

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ri 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

SV 2016–17 Symmetric Encryption CryptoSec 404 / 1037

Two-Key Triple DES

X - DES - DES−1 - DES - Y

6K1 6K16K2

K = (K1,K2)

SV 2016–17 Symmetric Encryption CryptoSec 405 / 1037

Three-Key Triple DES

X - DES - DES−1 - DES - Y

6K1 6K36K2

K = (K1,K2,K3)

SV 2016–17 Symmetric Encryption CryptoSec 406 / 1037

From Triple DES to DES

X - DES - DES−1 - DES - Y

6K 6K6K

K

a 3K 3DES chip can emulate DES

SV 2016–17 Symmetric Encryption CryptoSec 407 / 1037

Security Notions

adversary objective: learn confidential information
typically: key recovery
ciphertext only attack: using ciphertexts in transit only
known plaintext attack: same + know (or guess) the
corresponding plaintexts
chosen plaintext attack: force the sender to encrypt some
messages selected by the adversary
chosen ciphertext attack: force the receiver to decrypt some
messages selected by the adversary

SV 2016–17 Symmetric Encryption CryptoSec 408 / 1037

Attacks on DES

weak keys (1977)
optimized exhaustive search (Hellman 1980)
chosen plaintext attack against 2-key TDES using 256 chosen
plaintexts, 256 time and 256 memory (Merkle-Hellman 1981)
known plaintext attack against 2-key TDES using 2t known
plaintexts, 2120−t time (van Oorschot-Wiener 1990)
study on dedicated hardware (Diffie-Hellman 1977, Wiener 1993)
chosen plaintext attack with 247 chosen plaintexts (Biham-Shamir
1992)
known plaintext attack with 243 known plaintexts (Matsui 1994) or
actually a little less 240 (Junod 2001)
optimized exhaustive search within 4 days on a dedicated
hardware (EFF 1998)
bruteforce on 3-key TDES using 232 known plaintexts, 2113 time
and 288 memory (Lucks 1998)

SV 2016–17 Symmetric Encryption CryptoSec 409 / 1037

AES: the Advanced Encryption Standard

US Standard from NIST, branch of the Department of Commerce
in 2001
public process based on a call for proposal
standard version of Rijndael
Rijndael was designed by Joan Daemen and Vincent Rijmen in
Belgium

dedicated to software on 8-bit microprocessors
block cipher with 128-bit blocks
key of length 128, 192, or 256

cartoon: www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

animation: www.formaestudio.com/rijndaelinspector/
archivos/rijndaelanimation.html

SV 2016–17 Symmetric Encryption CryptoSec 410 / 1037

www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
www.formaestudio.com/rijndaelinspector/archivos/rijndaelanimation.html
www.formaestudio.com/rijndaelinspector/archivos/rijndaelanimation.html

Rijndael Skeleton

128-bit block −→ 4× 4 square matrix of bytes
Nr = 10, 12 or 14 rounds depending on the key size of 128, 192
or 256 bits

AES encryption(s,W)
1: AddRoundKey(s,W0)
2: for r = 1 to Nr− 1 do
3: SubBytes(s)
4: ShiftRows(s)
5: MixColumns(s)
6: AddRoundKey(s,Wr)
7: end for
8: SubBytes(s)
9: ShiftRows(s)

10: AddRoundKey(s,WNr)

SV 2016–17 Symmetric Encryption CryptoSec 411 / 1037

One Non-Terminal Round of Rijndael

SubBytes ShiftRows MixColumns AddRoundKey

- - - - - - - -
6

SV 2016–17 Symmetric Encryption CryptoSec 412 / 1037

SubBytes

SubBytes(s)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si,j ← S-box(si,j)
4: end for
5: end for

- -

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

S(s0,0) S(s0,1) S(s0,2) S(s0,3)

S(s1,0) S(s1,1) S(s1,2) S(s1,3)

S(s2,0) S(s2,1) S(s2,2) S(s2,3)

S(s3,0) S(s3,1) S(s3,2) S(s3,3)

SV 2016–17 Symmetric Encryption CryptoSec 413 / 1037

ShiftRows

ShiftRows(s)
1: replace [s1,0, s1,1, s1,2, s1,3] by [s1,1, s1,2, s1,3, s1,0]
2: replace [s2,0, s2,1, s2,2, s2,3] by [s2,2, s2,3, s2,0, s2,1]
3: replace [s3,0, s3,1, s3,2, s3,3] by [s3,3, s3,0, s3,1, s3,2]

- -

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

SV 2016–17 Symmetric Encryption CryptoSec 414 / 1037

AddRoundKey

AddRoundKey(s, k)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si,j ← si,j ⊕ ki,j
4: end for
5: end for

- -

6

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0
⊕k0,0

s0,1
⊕k0,1

s0,2
⊕k0,2

s0,3
⊕k0,3

s1,0
⊕k1,0

s1,1
⊕k1,1

s1,2
⊕k1,2

s1,3
⊕k1,3

s2,0
⊕k2,0

s2,1
⊕k2,1

s2,2
⊕k2,2

s2,3
⊕k2,3

s3,0
⊕k3,0

s3,1
⊕k3,1

s3,2
⊕k3,2

s3,3
⊕k3,3

SV 2016–17 Symmetric Encryption CryptoSec 415 / 1037

Introduction to GF Arithmetics in Rijndael

look at slide 330

we use the following representation rule
byte bit string polynomial

B b7 · · · b2b1b0 b7.x7 + · · ·+ b2.x2 + b1.x + b0

we replace every 2 by 0 in polynomials
hence 3 = 2 + 1 is replaced by 0 + 1 = 1, 4 is replaced by 0, ...
→ monomial coefficients are binary
we replace every x8 by x4 + x3 + x + 1 in polynomials
hence x9 = x8 × x is replaced by x5 + x4 + x2 + x , ...
→ polynomials have degree at most 7

SV 2016–17 Symmetric Encryption CryptoSec 416 / 1037

Examples

0x5c + 0x2a = 0x76

byte bit string polynomial
0x5c 01011100 x6 + x4 + x3 + x2

+ 0x2a 00101010 x5 + x3 + x
= x6 + x5 + x4 + 2.x3 + x2 + x
= 0x76 01110110 x6 + x5 + x4 + x2 + x

0x9e × 0x02 = 0x27

byte bit string polynomial
0x9e 10011110 x7 + x4 + x3 + x2 + x

× 0x02 00000010 x
= x8 + x5 + x4 + x3 + x2

= x5 + 2.x4 + 2.x3 + x2 + x + 1
= 0x27 00100111 x5 + x2 + x + 1

SV 2016–17 Symmetric Encryption CryptoSec 417 / 1037

GF Arithmetics

A byte a = a7 . . .a1a0 represents an element of the finite field GF(28)
as a polynomial a0 + a1.x + . . .+ a7.x7 modulo x8 + x4 + x3 + x + 1
and modulo 2

byte bit string polynomial
0x00 00000000 0
0x01 00000001 1
0x02 00000010 x
0x03 00000011 x + 1
0x1b 00011011 x4 + x3 + x + 1

Addition: a simple XOR
Multiplication by 0x01: nothing
Multiplication by 0x02: shift and XOR with 0x1b if carry
Multiplication by 0x03: XOR of multiplications by 0x01 and 0x02

SV 2016–17 Symmetric Encryption CryptoSec 418 / 1037

MixColumns

MixColumns(s)
1: for i = 0 to 3 do
2: let v be the 4-dimensional vector with co-

ordinates s0,is1,is2,is3,i
3: replace s0,is1,is2,is3,i by M × v
4: end for

M =

0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

 .

SV 2016–17 Symmetric Encryption CryptoSec 419 / 1037

MixColumns

- -s.,0 s.,1 s.,2 s.,3 M × s.,0M × s.,1M × s.,2M × s.,3

SV 2016–17 Symmetric Encryption CryptoSec 420 / 1037

InvMixColumns

InvMixColumns(s)
1: for i = 0 to 3 do
2: let v be the 4-dimensional vector with co-

ordinates s0,is1,is2,is3,i
3: replace s0,is1,is2,is3,i by M−1 × v
4: end for

M−1 =

0x0e 0x0b 0x0d 0x09

0x09 0x0e 0x0b 0x0d

0x0d 0x09 0x0e 0x0b

0x0b 0x0d 0x09 0x0e

 .

SV 2016–17 Symmetric Encryption CryptoSec 421 / 1037

Key Expansion

we consider W as a sequence of 4(Nr + 1) = 44 (resp. 52, 60)
rows (32-bit words) w
we consider the key as a sequence of Nk = 4 (resp. 6, 8) rows
the wi are iteratively loaded:

the first wi are loaded with the key
wi is loaded with wi−Nk ⊕ wi−1

every Nk iterations, the wi is modified before the XOR
for Nk = 8, we add an extra modification

SV 2016–17 Symmetric Encryption CryptoSec 422 / 1037

Key Expansion

KeyExpansion(key,Nk)
1: for i = 0 to Nk− 1 do
2: wi ← keyi
3: end for
4: for i = Nk to 4(Nr + 1)− 1 do
5: t ← wi−1
6: if i mod Nk = 0 then
7: replace [t1, t2, t3, t4] by [t2, t3, t4, t1] in t
8: apply S-box to the four bytes of t
9: XOR x i/Nk−1 (in GF) onto the first byte

of t
10: else if Nk = 8 and i mod Nk = 4 then
11: apply S-box to the four bytes of t
12: end if
13: wi ← wi−Nk ⊕ t
14: end for

SV 2016–17 Symmetric Encryption CryptoSec 423 / 1037

Modes of Operation

transform a block cipher into a symmetric encryption with
variable message length
encrypt and decrypt “on the fly” (online encryption)
in some sense: transform a block cipher into a stream cipher
may require an Initialization Vector (IV)
typically: message length must be multiple of the block length

SV 2016–17 Symmetric Encryption CryptoSec 424 / 1037

ECB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?

C

?

?

C

?

?

C

?

?

C

?

SV 2016–17 Symmetric Encryption CryptoSec 425 / 1037

ECB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6

C−1

6

6

C−1

6

6

C−1

6

6

C−1

6

SV 2016–17 Symmetric Encryption CryptoSec 426 / 1037

Note on the ECB Mode

Information leakage for blocks with low entropy

Chabloz␣␣␣␣␣␣␣␣␣␣␣President␣␣␣␣␣␣␣␣␣␣␣␣78’964.31

Zufferey␣␣␣␣␣␣␣␣␣␣Manager␣␣␣␣␣␣␣␣␣␣␣␣␣␣23’321.16

Neuenschwander␣␣␣␣Consultant␣␣␣␣␣␣␣␣␣␣␣34’445.22

Schneider␣␣␣␣␣␣␣␣␣Affirmative␣␣␣␣␣␣␣␣␣␣38’206.51

Cotti␣␣␣␣␣␣␣␣␣␣␣␣␣Audiovisual␣␣␣␣␣␣␣␣␣␣21’489.15

C(␣␣␣␣␣␣␣3) for Neuenschwander = C(␣␣␣␣␣␣␣3) for Schneider

SV 2016–17 Symmetric Encryption CryptoSec 427 / 1037

ECB vs CBC

original ECB CBC

en.wikipedia.org

SV 2016–17 Symmetric Encryption CryptoSec 428 / 1037

CBC Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?
⊕

?

C

?

-
?
⊕

?

C

?

-
?
⊕

?

C

?

-
?
⊕

?

C

?

-IV

SV 2016–17 Symmetric Encryption CryptoSec 429 / 1037

CBC Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-IV

SV 2016–17 Symmetric Encryption CryptoSec 430 / 1037

Note on the CBC Mode

Three possibilities for dealing with IV
Using a (non secret) constant IV
example: MRTD (IV= 0)
Using a secret IV which is part of the key
example: TLS
Using a random IV which is sent in clear with the ciphertext

SV 2016–17 Symmetric Encryption CryptoSec 431 / 1037

OFB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?-

?IV

SV 2016–17 Symmetric Encryption CryptoSec 432 / 1037

OFB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn
6
⊕

6
C

?

-
6
⊕

6
C

?

-
6
⊕

6
C

?

-
6
⊕

6

-

?IV

SV 2016–17 Symmetric Encryption CryptoSec 433 / 1037

Note on the OFB Mode

IV must be new for every plaintext!
Use a random one which is sent in clear...
... or use a counter-based IV
This is not only a property of the OFB mode:
property of stream ciphers
OFB actually transforms a block cipher into a stream cipher

IV is used as a nonce (number used once)

SV 2016–17 Symmetric Encryption CryptoSec 434 / 1037

CFB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?
⊕

?

C
6

- ?
⊕

?

C
6

- ?
⊕

?

C
6

- ?
⊕

?

-

6IV

SV 2016–17 Symmetric Encryption CryptoSec 435 / 1037

CFB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6
⊕
6

C
6

- 6
⊕
6

C
6

- 6
⊕
6

C
6

- 6
⊕
6

-

6IV

SV 2016–17 Symmetric Encryption CryptoSec 436 / 1037

CTR Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

t1 t2 t3 tn

?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-

SV 2016–17 Symmetric Encryption CryptoSec 437 / 1037

CTR Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

t1 t2 t3 tn

6
⊕

6
C
?

-
6
⊕

6
C
?

-
6
⊕

6
C
?

-
6
⊕

6
C
?

-

SV 2016–17 Symmetric Encryption CryptoSec 438 / 1037

Note on the CTR Mode

ti must be new for every block! (a nonce)
Example 1: ti = msg counter∥blk counter
Example 2: ti = t1 + (i − 1) where t1 is the last tn plus 1
Example 3: ti = t1 + (i − 1) where t1 is a (unique) nonce
CTR also transforms a block cipher into a stream cipher

SV 2016–17 Symmetric Encryption CryptoSec 439 / 1037

XTS Mode

used to encrypt a hard disk
hard disks are made of “sectors” of various lengths
lengh may not be a multiple of the block length
requirements:
encryption shall not increase space
encryption shall allow random access with small overhead
uses two keys (K1,K2)

for a block of index j in sector of index i :

yi,j = Enci,j(xi,j) = CK1(xi,j ⊕ ti,j)⊕ ti,j ti,j = αj × CK2(i)

in a GF structure, with a constant α
use ciphertext stealing for the last two blocks

SV 2016–17 Symmetric Encryption CryptoSec 440 / 1037

XTS

i CK2 ×α ×α ×α · · ·

xi,0 xi,1 xi,2 · · ·

⊕ ⊕ ⊕

CK1 CK1 CK1

⊕ ⊕ ⊕

yi,0 yi,1 yi,2 · · ·

SV 2016–17 Symmetric Encryption CryptoSec 441 / 1037

Ciphertext Stealing

used to encrypt two blocks x and x ′ (typically, the last two)
Case 1 (easy): if x and x ′ have regular length, encrypt normally
y = Enc(x), y ′ = Enc′(x ′)
Case 2: if x ′ is shorter than usual.

1: split Enc(x) = y ′∥u with y ′ of same length as x ′

2: y = Enc′(x ′∥u)
3: give y and y ′

to decrypt y and y ′:
1: split Dec′(y) = x ′∥u with x ′ of same length as y ′

2: x = Dec(y ′∥u)
3: give x and x ′

SV 2016–17 Symmetric Encryption CryptoSec 442 / 1037

Ciphertext Stealing
x x ′

Enc

y ′ u

x ′ u

Enc′

y

y y ′

SV 2016–17 Symmetric Encryption CryptoSec 443 / 1037

To Be Known About Modes of Operation

ECB should be avoided
CBC (very popular) requires IV
OFB (stream cipher) requires a nonce
CTR (stream cipher) requires a nonce

SV 2016–17 Symmetric Encryption CryptoSec 444 / 1037

Classical Skeletons for Block Ciphers

Feistel schemes
...and extensions
DES, 3DES, BLOWFISH, KASUMI
Lai-Massey scheme
IDEA, FOX
Substitution-permutation network (SPN)
SAFER, CS-Cipher, AES

SV 2016–17 Symmetric Encryption CryptoSec 445 / 1037

Block Ciphers Characteristics

cipher release block key # rounds comment
DES 1977 64 56 16 secretly developed

3DES 1985 64 112,168 48 pragmatic solution
IDEA 1990 64 128 8.5

SAFER K-64 1993 64 64 6
BLOWFISH 1994 64 0–448 16

RC5 1996 2–256 0–255 0–255 64/128/12 recommended
CS-Cipher 1998 64 0–128 8

AES 2001 128 128,192,256 10,12,14 dependent parameters
KASUMI 2002 64 128 8 dedicated

FOX 2003 64,128 0–256 12–255

SV 2016–17 Symmetric Encryption CryptoSec 446 / 1037

5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2016–17 Symmetric Encryption CryptoSec 447 / 1037

Stream Ciphers

adapt the Vernam cipher
use a pseudorandom generator to generate a key stream
the PRNG avoids having to store large secret keys
seed the PRNG with a fixed secret key and a nonce: a number
to be used only once
the nonce avoids reuse of the same keystream
variant 1: participants are synchronized to a nonce (e.g. a
counter or the clock value)
variant 2: the encrypting nonce is sent in clear with the ciphertext
(asynchronous)

SV 2016–17 Symmetric Encryption CryptoSec 448 / 1037

Stream Ciphers from a High Level

plaintext stream

nonce

key

-

-
key schedule init. state- automaton -key strm ⊕ - ciphertext stream

6

SV 2016–17 Symmetric Encryption CryptoSec 449 / 1037

RC4

Designed at MIT in 1987 by Ronald Rivest
Trade secret of RSA Security Inc.
illegally disclosed in 1994
well known to be used in SSL/TLS

dedicated to software on 8-bit microprocessors
stream cipher with bytes streams
key length from 40 bits to 256 (ℓ = 5 to 32 bytes)

SV 2016–17 Symmetric Encryption CryptoSec 450 / 1037

RC4 (Alleged)

?

6

automaton

Key

?
key schedule

?
registers i and j
permutation
S[0],S[1], . . . ,S[255]

?

1: i ← i + 1 mod 256
2: j ← j + S[i] mod 256
3: swap S[i] and S[j]
4: b = S[S[i] + S[j] mod 256]

�

?
output byte b

SV 2016–17 Symmetric Encryption CryptoSec 451 / 1037

RC4 Key Schedule

1: j ← 0
2: for i = 0 to 255 do
3: S[i]← i
4: end for
5: for i = 0 to 255 do
6: j ← j + S[i] + K [i mod ℓ] mod 256
7: swap S[i] and S[j]
8: end for
9: i ← 0

10: j ← 0

SV 2016–17 Symmetric Encryption CryptoSec 452 / 1037

RC4 in Security Protocols

In SSL/TLS:
key is used only once
state is kept from one message to the other

In WEP:
key is the concatenation of a 3-byte nonce (sent in clear) and a
5-byte key

SV 2016–17 Symmetric Encryption CryptoSec 453 / 1037

Known Weaknesses

some correlations between some output bytes and key bytes
when the nonce is known
→ (passive) key recovery attack in WEP after seeing 22500
packets
output bytes are not uniformly distributed
→ ciphertext-only decryption attacks in TLS if a plaintext is
encrypted several times (e.g. secure http cookies)
speculations that some state agencies can break RC4
RC4 is now prohibited (RFC 7465 and similar recommendations)

SV 2016–17 Symmetric Encryption CryptoSec 454 / 1037

GSM A5/1

Designed at ETSI by the SAGE group
Trade secret of the GSM consortium
reverse engineered

dedicated to lightweight hardware
stream cipher with bit streams
64-bit key and 22-bit counter

SV 2016–17 Symmetric Encryption CryptoSec 455 / 1037

A5/1 from a High Level

plaintext frame

Count

KC
-

-
key schedule 64 bits- automaton -114 bits ⊕ - ciphertext frame

6

SV 2016–17 Symmetric Encryption CryptoSec 456 / 1037

Linear Feedback Shift Register (LFSR)

when CLK = 1, increment t , load Ri with Ri+1 and Rd−1 with a
XOR of some Ri ’s

- - - - - - - - - --

⊕
6
� ⊕

6
� ⊕

6
�

R0
xt

R1
xt+1

R2
xt+2

R3
xt+3

R4
xt+4

R5
xt+5

R6
xt+6

R7
xt+7

R8
xt+8

R9
xt+9

xt

xt+10

at time t , Ri = xt+i

xt+d = ad−1xt+d−1 ⊕ · · · ⊕ a0xt for any t (linear recursion)
adxt+d ⊕ · · · ⊕ a1xt+1 ⊕ a0xt = 0 for any t (ad = 1)
connection polynomial: adxd + · · ·+ a1x + a0
example: x10 + x5 + x2 + x + 1
maximal period⇐⇒ primitive polynomial =⇒ irreducible
polynomial

SV 2016–17 Symmetric Encryption CryptoSec 457 / 1037

A5/1 Automaton

(19)
	

CLK1

(22)
	

CLK2

(23)
	

CLK3

?

6
�⊕�

- ?
⊕

?
⊕ - ?

⊕

�

- ?
⊕

�

- ?
⊕

?
⊕ - ?

⊕

�

t1

t2

t3

asynchronous: CLKi = CLK if ti = majority(t1, t2, t3), 0 otherwise

SV 2016–17 Symmetric Encryption CryptoSec 458 / 1037

x19 + x18 + x17 + x14 + 1
x22 + x21 + 1

x23 + x22 + x21 + x8 + 1

A5/1 in Key Schedule

	
CLK1

	
CLK2

	
CLK3

- ?
⊕

?
⊕ - ?

⊕

� ⊕�

- ?
⊕

� ⊕�

- ?
⊕

?
⊕ - ?

⊕

� ⊕�

synchronous: CLK1 = CLK2 = CLK3 = CLK

SV 2016–17 Symmetric Encryption CryptoSec 459 / 1037

A5/1 Key Schedule

1: set all registers to zero
2: for i = 0 to 63 do
3: R1[0]← R1[0]⊕ KC[i]
4: R2[0]← R2[0]⊕ KC[i]
5: R3[0]← R3[0]⊕ KC[i]
6: clock registers (synchronous)
7: end for
8: for i = 0 to 21 do
9: R1[0]← R1[0]⊕ Count[i]

10: R2[0]← R2[0]⊕ Count[i]
11: R3[0]← R3[0]⊕ Count[i]
12: clock registers (synchronous)
13: end for
14: for i = 0 to 99 do
15: clock registers (asynchronous)
16: end for

SV 2016–17 Symmetric Encryption CryptoSec 460 / 1037

Known Weaknesses

key recovery known plaintext attack
(kind of time-memory tradeoff)
active attacks on GSM (chosen cipher attack)
ciphertext-only key recovery attack
(optimized bruteforce)

SV 2016–17 Symmetric Encryption CryptoSec 461 / 1037

5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2016–17 Symmetric Encryption CryptoSec 462 / 1037

The Random Key Guessing Game

Parameters: a set K, a setup algorithm
1 (setup) the challenger runs the setup algorithm to select an

element K ∈ K
he may send some clue w to the adversary

2 (guessing) the adversary may send some chosen k ’s to the
challenger who would respond if k ̸= K

3 the adversary wins if K = k

SV 2016–17 Symmetric Encryption CryptoSec 463 / 1037

Example: Opening a Safe (Online Attack)

For any k , we can ask the safe whether the key K is equal to k

attack - key

k
�	

yes/no
safe

SV 2016–17 Symmetric Encryption CryptoSec 464 / 1037

Distribution Cases

Setup selects K following a probability distribution
D is uniform
D is arbitrary
D is fixed and known to the adversary

SV 2016–17 Symmetric Encryption CryptoSec 465 / 1037

Key Recovery Game - Online with no Clue

Adversary Challenger
pick K ∈D K

try k1
query k1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

no←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k1 ̸= K

try k2
query k2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

no←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k2 ̸= K
...

query k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
yes←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k = K

win if answers “yes”

SV 2016–17 Symmetric Encryption CryptoSec 466 / 1037

Exhaustive Search Algorithm (Uniform Case)
(online with no clue and D uniform)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: for all i = 1 to N do
2: if query ki answers yes then
3: yield ki and stop
4: end if
5: end for

E(#iterations) =
N∑

i=1

Pr[K = ki]i

=
N∑

i=1

1
N

i

=
N + 1

2

SV 2016–17 Symmetric Encryption CryptoSec 467 / 1037

Exhaustive Search Algorithm (Optimal Case)

(online with no clue and D known)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: take the permutation σ of {1, . . . ,N} sorting

kσ(i) by decreasing order of likelihood
2: for all i = 1 to N do
3: if query kσ(i) answers yes then
4: yield kσ(i) and stop
5: end if
6: end for

E(#iterations) = min
σ

(
N∑

i=1

Pr[K = kσ(i)]i

)
which is sometimes called the guesswork entropy of D

SV 2016–17 Symmetric Encryption CryptoSec 468 / 1037

Exhaustive Search Algorithm (Any Case)
(online with no clue)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: pick a random permutation σ of {1, . . . ,N}
2: for all i = 1 to N do
3: if query kσ(i) answers yes then
4: yield kσ(i) and stop
5: end if
6: end for

E(#iterations) =
N∑

i=1

E(Pr[K = kσ(i)])i

since σ is random we have E(Pr[K = kσ(i)]) = 1
N for all i :

E(#iterations) =
N∑

i=1

1
N

i =
N + 1

2

SV 2016–17 Symmetric Encryption CryptoSec 469 / 1037

Complexity Analysis (All Cases)

key of distribution D in a set of N elements

number of iterations
worst case complexity N
average complexity D unknown N+1

2
D known smaller

SV 2016–17 Symmetric Encryption CryptoSec 470 / 1037

Metrics of Algorithms

for comparing algorithms, we must look at:
precomputation time
memory complexity
time complexity
number of online queries
probability of success

SV 2016–17 Symmetric Encryption CryptoSec 471 / 1037

Key Recovery Game - Offline with a Clue

Adversary Challenger
pick a random K

witness=F (K)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

yield k win if k = K

SV 2016–17 Symmetric Encryption CryptoSec 472 / 1037

Using Deterministic Clues

chosen plaintext attack:
get CK (x) for some fixed x chosen by the adversary
password hash (coming up in next slides)
get CK (x0) for some constant x0 (e.g. x0 = 0)

SV 2016–17 Symmetric Encryption CryptoSec 473 / 1037

Using Non-Deterministic Clues

no chosen plaintext attack:
known plaintext attack with random W = (x ,CK (x)) pair
ciphertext only attack with redundant plaintexts
randomized key hash:
instead of leaking CK (x0), leak W = (F (K , salt), salt) with salt
randomly selected by the challenger

SV 2016–17 Symmetric Encryption CryptoSec 474 / 1037

More General Clues
We use a stop test function which tells whether the key candidate is
consistent with the witness

attack - key

k
�	

yes/no

stop test

Examples:

witness stop test
known plaintext attack W = (x ,CK (x)) Ck (W1) = W2

ciphertext only attack W = ciphertext C−1
k (W) meaningful

salted key hash W = (F (K , salt), salt) F (k ,W2) = W1

SV 2016–17 Symmetric Encryption CryptoSec 475 / 1037

Password Recovery from a Password Hash

assumption: at enrolment, the hash by F of the password is
stored in a database
to check a typed password, just hash it and compare with the
hash in database
remark: in this case, we do not care if the password is wrong; we
just want one with the right hash to pass authentication
→ the adversary has to find one password with correct hash
(the problem is to invert F)

SV 2016–17 Symmetric Encryption CryptoSec 476 / 1037

Inversion (Preimage) Game

(assume a deterministic function F)

Adversary Challenger

w←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

yield k win if F (k) = w

SV 2016–17 Symmetric Encryption CryptoSec 477 / 1037

Inversion by Exhaustive Search

Input: an image w
1: shuffle K with a random permutation
2: for all i = 1 to N do
3: if F (ki) = w then
4: yield ki and stop
5: end if
6: end for

If F is a uniformly distributed random function, #X = N, #Y = M:

Pr[success] = 1−
(

1− 1
M

)M

≈ 1− e−
N
M for N ≫ M

Pr[complexity > i] =

(
1− 1

M

)i

SV 2016–17 Symmetric Encryption CryptoSec 478 / 1037

Complexity of an Inversion Attack

E(complexity) =
N−1∑
i=0

i Pr[complexity = i]

=
N−1∑
i=0

Pr[complexity > i]

=
N−1∑
i=0

x i with x = 1− 1
M

=
1− xN

1− x

∼ 1− e−
N
M

1− x
as

N
M
→ +∞

= M
(

1− e−
N
M

)
≈ M for N ≫ M

SV 2016–17 Symmetric Encryption CryptoSec 479 / 1037

Dictionary Inversion Attack (Full Book)

(assume a deterministic function F)

Preprocessing
Input: access to function F

1: for all candidates K do
2: compute F (K)
3: insert (F (K),K) in a dictionary
4: end for
5: output the dictionary

Attack
Input: a witness w = F (K), a dictionary

6: look at w in the dictionary
7: for all (w ,K) in the dictionary do
8: yield K and stop
9: end for

SV 2016–17 Symmetric Encryption CryptoSec 480 / 1037

Dictionary Inversion Attack (Smaller Dictionary)

(assume a deterministic function F)

Preprocessing
Input: access to function F

1: for D different candidates K do
2: compute F (K)
3: insert (F (K),K) in a dictionary
4: end for
5: output the dictionary

Attack
Input: a witness w = F (K), a dictionary

6: look at w in the dictionary
7: for all (w ,K) in the dictionary do
8: yield K and stop
9: end for

10: search failed

SV 2016–17 Symmetric Encryption CryptoSec 481 / 1037

Complexity Analysis

Precomputation time D
Memory complexity D
Time complexity ≈ 1
Probability of success (with randomly selected dictionary keys)

D/N

SV 2016–17 Symmetric Encryption CryptoSec 482 / 1037

Summary of Single-Target Brute Force Attacks

strategy preprocessing memory time success proba.
exhaustive search 0 1 N 1
dictionary attack N N 1 1
tradeoffs N N

2
3 N

2
3 cte

partial ex. search 0 1 D D/N
dictionary attack D D 1 D/N

SV 2016–17 Symmetric Encryption CryptoSec 483 / 1037

Application to DES

strategy preprocessing memory time
exhaustive search 0 1 256

dictionary attack 256 256 1
tradeoffs 256 237 237

→ the key of DES is too short!

SV 2016–17 Symmetric Encryption CryptoSec 484 / 1037

Security of Passwords with less than 48 Bits of
Entropy

An 8 i.u.d. random characters password in {a, . . . , z, A, . . . , Z, 0, . . . , 9}
has less than 48 bits of entropy

classical conventional cryptography may require about 300
cycles on a P4 2GHz to check a guess (= 222.6 guesses per
second)
−→ 256d to find a password with a PC
time-memory tradeoffs cracked a (36-bit entropy) password
within a few seconds (complexity N

2
3 + precomputation N)

−→ 1h to find a password (+ a year of precomputation)
special purpose hardwares cracked 56-bit keys within a day
−→ 5 min to find a password
distributed.net cracked 64-bit keys in 2002 after 1757 days
−→ 40 min to find a password

SV 2016–17 Symmetric Encryption CryptoSec 485 / 1037

Extension: Multi-Target Dictionary Inversion
Attack

(assume a deterministic function F)

Preprocessing
Input: access to function F

1: for D different candidates K do
2: compute F (K)
3: insert (F (K),K) in a dictionary
4: end for
5: output the dictionary

Attack
Input: T many witnesses wi = F (Ki), a dictio-

nary
6: for i = 1 to T do
7: look at wi in the dictionary
8: for all (wi ,K) in the dictionary do
9: yield i ,K

10: end for
11: end for

SV 2016–17 Symmetric Encryption CryptoSec 486 / 1037

Complexity Analysis

Precomputation time D
Memory complexity D
Time complexity T

Probability of success 1−
(
1− D

N

)T ≈ 1− e−
DT
N

This is quite interesting when D ≈ T ≈
√

N...

SV 2016–17 Symmetric Encryption CryptoSec 487 / 1037

The Role of Salt

mitigates dictionary attacks and tradeoffs
(makes dictionaries much larger)
best offline inversion attack with large enough salt:

Input: a set of possible keys K = {k1, . . . , kN}, a
salted witness W = (W1,W2) (salt is W2)

Challenger interface: input is an element of K,
output is Boolean

1: pick a random permutation σ of {1, . . . ,N}
2: for all i = 1 to N do
3: if F (kσ(i),W2) = W1 then
4: yield kσ(i) and stop
5: end if
6: end for
7: search failed

SV 2016–17 Symmetric Encryption CryptoSec 488 / 1037

5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2016–17 Symmetric Encryption CryptoSec 489 / 1037

Double DES

X - DES -Z
DES - Y

6K1 6K2

K = (K1,K2)

this is not much more secure than single DES

SV 2016–17 Symmetric Encryption CryptoSec 490 / 1037

Meet-in-the-Middle Attack

Input: two encryption schemes C′ and C′′ with
two corresponding sets of possible keys K′
and K′′, an (x , y) pair with y = C′′K2

(C′K1
(x))

1: for all k1 ∈ K′ do
2: compute z = C′k1

(x)
3: insert (z, k1) in a hash table (indexed with

the first entry)
4: end for
5: for all k2 ∈ K′′ do
6: compute z = C′′−1

k2
(y)

7: for all (z, k1) in the hash table do
8: yield (k1, k2) as a possible key
9: end for

10: end for

SV 2016–17 Symmetric Encryption CryptoSec 491 / 1037

Complexity Analysis

Memory complexity #K′ (256 for double DES)
Time complexity #K′ +#K′′ (257 for double DES)
Probability of success 1

SV 2016–17 Symmetric Encryption CryptoSec 492 / 1037

Triple DES

X - DES - DES−1 - DES - Y

6K1 6K36K2

K = (K1,K2,K3)

3-key triple DES: K1, K2, K3

2-key triple DES: K1 = K3, K2

DES: K1 = K2 = K3

SV 2016–17 Symmetric Encryption CryptoSec 493 / 1037

Generic Attacks on Triple DES

2 keys

key length: 112
chosen plaintext (×256):
time complexity 257

memory complexity 257

[Merkle-Hellman 1981]
[exercise 2.5 in exercise book]
known plaintext (×232):
time complexity 288

memory complexity 257

[van Oorschot-Wiener 1990]

3 keys

key length: 168
known plaintext (×3):
time complexity 2113

memory complexity 256

[meet-in-the-middle]

SV 2016–17 Symmetric Encryption CryptoSec 494 / 1037

Time-Memory Tradeoffs — i

Input: a deterministic function F
Parameter: ℓ,m, t
Preprocessing

1: for s = 1 to ℓ do
2: pick a reduction function Rs at random and

define fs : k 7→ Rs(F (k))
3: for i = 1 to m do
4: pick k ′ at random
5: k ← k ′

6: for j = 1 to t do
7: compute k ← fs(k)
8: end for
9: insert (k , k ′) in table Ts

10: end for
11: end for

SV 2016–17 Symmetric Encryption CryptoSec 495 / 1037

Precomputed Tables

k1
1,0

f17→ k1
1,1

f17→ k1
1,2

f17→ k1
1,3

f17→ · · ·
f17→ k1

1,t−1
f17→ k1

1,t (k1
1,t , k1

1,0)

k1
2,0

f17→ k1
2,1

f17→ k1
2,2

f17→ k1
2,3

f17→ · · ·
f17→ k1

2,t−1
f17→ k1

2,t (k1
2,t , k1

2,0)

T1 : k1
3,0

f17→ k1
3,1

f17→ k1
3,2

f17→ k1
3,3

f17→ · · ·
f17→ k1

3,t−1
f17→ k1

3,t ⇒ (k1
3,t , k1

3,0)

...
...

...
...

...
...

...
...

k1
m,0

f17→ k1
m,1

f17→ k1
m,2

f17→ k1
m,3

f17→ · · ·
f17→ k1

3,t−1
f17→ k1

m,t (k1
m,t , k1

m,0)

...

kℓ
1,0

fℓ7→ kℓ
1,1

fℓ7→ kℓ
1,2

fℓ7→ kℓ
1,3

fℓ7→ · · ·
fℓ7→ kℓ

1,t−1
fℓ7→ kℓ

1,t (kℓ
1,t , kℓ

1,0)

kℓ
2,0

fℓ7→ kℓ
2,1

fℓ7→ kℓ
2,2

fℓ7→ kℓ
2,3

fℓ7→ · · ·
fℓ7→ kℓ

2,t−1
fℓ7→ kℓ

2,t (kℓ
2,t , kℓ

2,0)

Tℓ : kℓ
3,0

fℓ7→ kℓ
3,1

fℓ7→ kℓ
3,2

fℓ7→ kℓ
3,3

fℓ7→ · · ·
fℓ7→ kℓ

3,t−1
fℓ7→ kℓ

3,t ⇒ (kℓ
3,t , kℓ

3,0)

...
...

...
...

...
...

...
...

kℓ
m,0

fℓ7→ kℓ
m,1

fℓ7→ kℓ
m,2

fℓ7→ kℓ
m,3

fℓ7→ · · ·
fℓ7→ kℓ

3,t−1
fℓ7→ kℓ

m,t (kℓ
m,t , kℓ

m,0)

SV 2016–17 Symmetric Encryption CryptoSec 496 / 1037

Time-Memory Tradeoffs — ii

Attack
Attack input: y = F (K)
1: for s = 1 to ℓ do
2: set i to 0
3: set k to Rs(y)
4: while Ts contains no (k , .) entry

and i < t do
5: increment i
6: k ← fs(k)
7: end while

8: if Ts contains a (k , .) entry then
9: get the (k , k ′) entry from table

Ts

10: while F (k ′) ̸= y and i < t do
11: increment i
12: k ′ ← fs(k ′)
13: end while
14: if F (k ′) = y then
15: yield k ′ as a possible key
16: end if
17: end if
18: end for

SV 2016–17 Symmetric Encryption CryptoSec 497 / 1037

Complexity Analysis

Precomputation time ℓ×m × t
Memory complexity ℓ×m
Time complexity ℓ× t
Probability of success can be shown to be greater than 1

2 for
ℓ ≈ m ≈ t ≈ 3

√
N

time and memory complexity of N
2
3

SV 2016–17 Symmetric Encryption CryptoSec 498 / 1037

5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2016–17 Symmetric Encryption CryptoSec 499 / 1037

Order of Magnitudes

for exhaustive search on a 128-bit key:
clock cycles needed to perform a typical cryptographic
operation (encryption of one block): 300
clock rate in 2007: 2GHz
age of the universe: 15BY= 15× 109Y≈ 473× 1015s
machines to do the exhaustive search within 15BY: 108× 1012

SV 2016–17 Symmetric Encryption CryptoSec 500 / 1037

Moore’s Law
Gordon Moore 1965: # transistors / IC doubles every year
Gordon Moore 1975: # transistors / IC doubles every 2 years
popular version: speed of CPU’s doubles every 18 months

SV 2016–17 Symmetric Encryption CryptoSec 501 / 1037

Better Strategy (of Metaphysical Interest)

create the universe then take 15BY of vacations

humankind will create itself, invent computers, and solve the problem

SV 2016–17 Symmetric Encryption CryptoSec 502 / 1037

Energy Bill

we can compute without burning energy! [Bennett 1973]
need supraconductors and invertible computation gates

but all computations must be invertible!
exhaustive search must keep lots of garbage in memory
minimal energy spent to erase one bit: kT ln 2 [Landauer 1961]
k = 1.38× 10−23J/K (Boltzmann constant)
T : absolute temperature (absolute 0 is −273C)
example: assume we run an exhaustive search with 2128 loops
but we erase 128 bits per loop
assume the computer operates at 3µK (very cold!)
energy bill: 1.2× 109J
if we want to do it within 1s we need a 1 200MW nuclear
powerplant

SV 2016–17 Symmetric Encryption CryptoSec 503 / 1037

Conclusion

symmetric encryption: stream ciphers (RC4, A5/1), block
ciphers (DES, AES), modes of operation (ECB, CBC, OFB, CFB,
CTR, XTS)
bruteforce inversion within complexity O (#domain)

tradeoffs within complexity O
(
(#domain)

2
3

)
after

precomputation with complexity O (#domain)

SV 2016–17 Symmetric Encryption CryptoSec 504 / 1037

Ciphers to Remember

cipher release block key design
DES 1977 64 56 Feistel scheme
3DES 1985 64 112,168 triple DES
RC4 1987 8 40–256 stream cipher
AES 2001 128 128,192,256 SPN

SV 2016–17 Symmetric Encryption CryptoSec 505 / 1037

Several Types of Symmetric Encryption

fixed message length vs variable message length
block ciphers: use fixed message length
modes of operation: adapt to variable message length
stream ciphers: encrypt messages “on-the-fly”
deterministic vs probabilistic
most common case for symmetric encryption: deterministic

synchronous (stateful) vs asynchronous (stateless)
authenticating or not (not in this chapter)

SV 2016–17 Symmetric Encryption CryptoSec 506 / 1037

Stream Ciphers vs Block Ciphers

stream cipher block cipher

small granularity (encrypt
bits or bytes)
based on the Vernam
cipher, requires a nonce
(number to be used only
once)
very high speed rate, very
cheap on hardware
low confidence on security

large granularity (encrypt
blocks of 64 or 128 bits),
require padding techniques
for messages with arbitrary
length
high rate, nice for software
implementation, can be
adapted to various
platforms (8-bit, 32-bit, or
64-bit microprocessors)
well established security

SV 2016–17 Symmetric Encryption CryptoSec 507 / 1037

5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2016–17 Symmetric Encryption CryptoSec 508 / 1037

Block Cipher

Definition

A block cipher is a tuple ({0,1}k , {0, 1}n,Enc,Dec) with a key
domain {0,1}k , a block domain {0, 1}n, and two efficient deterministic
algorithms Enc and Dec. It is such that

∀K ∈ {0, 1}k ∀X ∈ {0, 1}n Dec(K ,Enc(K ,X)) = X

Write CK (·) = Enc(K , .) and C−1
K (·) = Dec(K , .).

(operate on bitstrings)

SV 2016–17 Symmetric Encryption CryptoSec 509 / 1037

Variable-Length Symmetric Encryption

Definition
A (variable-length, length-preserving) symmetric encryption
scheme is a tuple ({0, 1}k ,D,Enc,Dec) with a key domain {0, 1}k , a
plaintext domain D ⊆ {0, 1}∗, and two efficient deterministic
algorithms Enc and Dec.
It is such that

∀K ∈ {0, 1}k ∀X ∈ D
{

Dec(K ,Enc(K ,X)) = X
|Enc(K ,X)| = |X |

Write CK (·) = Enc(K , .) and C−1
K (·) = Dec(K , .).

→ can be made from block ciphers using a mode of operation

SV 2016–17 Symmetric Encryption CryptoSec 510 / 1037

Nonce-Based Symmetric Encryption

Definition
A (nonce-based, variable-length, length-preserving) symmetric
encryption scheme is a tuple ({0, 1}k ,D,N ,Enc,Dec) with a key
domain {0, 1}k , a plaintext domain D ⊆ {0,1}∗, a nonce domain N ,
and two efficient deterministic algorithms Enc and Dec.
It is such that

∀K ∈ {0, 1}k ∀X ∈ D ∀N ∈ N
{

Dec(K ,N,Enc(K ,N,X))=X
|Enc(K ,N,X)|=|X |

N is supposed to be used only once for encryption
random nonce (beware of random repetitions), counter, sent in clear
or synchronized
→ could be a mode of operation (IV...), a stream cipher

SV 2016–17 Symmetric Encryption CryptoSec 511 / 1037

Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure against key recovery under chosen plaintext
attacks if for any nonce-respecting probabilistic algorithm A limited to
a time complexity t and to q queries,

Pr[AEnc(K ,.,.) → K] ≤ ε

where K ∈ {0, 1}k is random.
It is (q, t , ε)-secure against key recovery under chosen
plaintext/ciphertext attacks if for any similar A,

Pr[AEnc(K ,.,.),Dec(K ,.,.) → K] ≤ ε

(nonce-respecting: A is not allowed to make two encryption queries
with the same nonce; it is ok to repeat nonces for decryption queries)

SV 2016–17 Symmetric Encryption CryptoSec 512 / 1037

CCA Security is Stronger than CPA Security

If AEnc(K ,.,.) is a CPA adversary, we can define it as AEnc(K ,.,.),Dec(K ,.,.)

but making no use of Dec(K , ., .).
So,

CPA-breaking =⇒ CCA-breaking

So,
CCA-secure =⇒ CPA-secure

SV 2016–17 Symmetric Encryption CryptoSec 513 / 1037

Security against Decryption

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure against decryption under chosen plaintext attacks
if for any nonce-respecting probabilistic algorithm A limited to a time
complexity t and to q queries,

Pr[AEnc(K ,.,.)(N,Enc(K ,N,X))→ X] ≤ ε

where K ∈ {0, 1}k , N ∈ N , and X ∈ D are random.
It is (q, t , ε)-secure against decryption under chosen
plaintext/ciphertext attacks if for any similar A,

Pr[AEnc(K ,.,.),Dec(K ,.,.)(N,Enc(K ,N,X))→ X] ≤ ε

(A is not allowed to query the decryption oracle with its input
(N,Enc(K ,N,X)))

SV 2016–17 Symmetric Encryption CryptoSec 514 / 1037

Decryption Security is Stronger than Key
Recovery Security

If A is a key recovery adversary, we can define

1: run A → K
2: compute X ′ = Dec(K ,N,Y)
3: return X ′

So,
key recovery-breaking =⇒ decryption-breaking

So,
decryption-secure =⇒ key recovery-secure

SV 2016–17 Symmetric Encryption CryptoSec 515 / 1037

Not Good Enough Security

some parts of the plaintext may be more private than others
how about a cipher letting half of the plaintext in clear and
strongly encrypting the other half?
it would be secure against decryption
the “ideal cipher”: given K , for each N, we pick a random
permutation ΠN and define

Enc(K ,N,X) = ΠN(X)

security would mean that we cannot tell the real cipher and the
ideal one apart from a black-box usage

SV 2016–17 Symmetric Encryption CryptoSec 516 / 1037

Security against Distinguisher

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure under chosen plaintext attacks if for any
nonce-respecting probabilistic algorithm A limited to a time
complexity t and to q queries,

Pr[AEnc(K ,.,.) → 1]− Pr[AΠ(.,.) → 1] ≤ ε

where K ∈ {0, 1}k is random and Π(N, .) is a random
length-preserving permutation over D for every N.
It is (q, t , ε)-secure under chosen plaintext/ciphertext attacks if for
any similar A,

Pr[AEnc(K ,.,.),Dec(K ,.,.) → 1]− Pr[AΠ(.,.),Π−1(.,.) → 1] ≤ ε

SV 2016–17 Symmetric Encryption CryptoSec 517 / 1037

Security Notions

key recovery decryption distinguisher
CPA weaker security
CCA stronger security

if we can recover the key, we can decrypt
if we can decrypt, we can recognize from the ideal cipher
if we can break without chosen ciphertext, we can also break with

SV 2016–17 Symmetric Encryption CryptoSec 518 / 1037

References

Schneier. Applied Cryptography. Wiley & Sons. 1996.
Crypto for dummies!
Ferguson–Schneier. Practical Cryptography. Wiley & Sons.
2003.
Crypto for dummies!

SV 2016–17 Symmetric Encryption CryptoSec 519 / 1037

Must be Known

types of symmetric encryption
parameters of block ciphers: DES, 3DES, AES
modes of operation: ECB, CBC, OFB, CTR
Feistel scheme
parameters of stream ciphers: RC4
exhaustive search
meet-in-the-middle

SV 2016–17 Symmetric Encryption CryptoSec 520 / 1037

Train Yourself

encryption:
final exam 2013–14 ex1
midterm exam 2012–13 ex3
modes of operation:
midterm exam 2009–10 ex3
midterm exam 2011–12 ex1
Moore’s law:
midterm exam 2008–09 ex1
multitarget password recovery:
final exam 2014–15 ex3

SV 2016–17 Symmetric Encryption CryptoSec 521 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Integrity and Authentication CryptoSec 529 / 1037

Roadmap

hash functions: MD5, SHA-1
message authentication codes: HMAC, CBCMAC, WC-MAC
other primitives: commitment, key derivation
birthday paradox

SV 2016–17 Integrity and Authentication CryptoSec 530 / 1037

Message Authentication Code

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

MAC -
X , c

-
X , c

Check
-

ok?

-Message
X�

�
Adversary

SV 2016–17 Integrity and Authentication CryptoSec 531 / 1037

Message Authentication Code (Informal)

functionality
CheckK (MACK (X)) = (X , ok)

security
cannot forge

Alice and Bob, Generator, MAC, Check
components

MAC

SV 2016–17 Integrity and Authentication CryptoSec 532 / 1037

Hash Function (Informal)

functionality
fixed output length

security
many

Setup, H
components

hash
function

SV 2016–17 Integrity and Authentication CryptoSec 533 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 534 / 1037

Commitment to Play Rock-Paper-Scissors

Alice

damn, I
lose

commit(“rock”)−−−−−−−−−−−−−−−→
commit(“paper”)←−−−−−−−−−−−−−−−

open−−−−−−−−−−−−−−−→

Bob

what’s
inside?

SV 2016–17 Integrity and Authentication CryptoSec 535 / 1037

Commitment

-x

-
Random

Commit
-c

-
Key

(delay) -
Key

Open -x

SV 2016–17 Integrity and Authentication CryptoSec 536 / 1037

Using a Commitment Scheme

pick r at random
(c, k)← Commit(x ; r)

commit : c−−−−−−−−−−−−−−−−−−−→ store c
←−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−→

...
←−−−−−−−−−−−−−−−−−−−

open :
k−−−−−−−−−−−−−−−−−−−→ open(c, k) = x

SV 2016–17 Integrity and Authentication CryptoSec 537 / 1037

Commitment Scheme (Informal)

functionality
if Commit(X ; r) = (c, k)

then Open(c, k) = X

security
hiding, binding

Alice and Bob, Setup, Commit, Open
components

commitment
scheme

hiding: Bob does not get a clue on X from c
binding: Alice cannot produce c, k , k ′ such that
Open(c, k) ̸= Open(c, k ′)

SV 2016–17 Integrity and Authentication CryptoSec 538 / 1037

Application Example: Tossing a Coin

how to toss a coin:

Alice Bob

pick x ∈ {0, 1} commit(x)−−−−−−−−−−−−−−→
y←−−−−−−−−−−−−−− pick y ∈ {0, 1}

open−−−−−−−−−−−−−−→ verify
z = x ⊕ y

output: z output: z

z is the outcome of the tossed coin

SV 2016–17 Integrity and Authentication CryptoSec 539 / 1037

Application Example: Playing Dices

how to throw a 6-face die:

Alice Bob

pick x ∈ {1, . . . , 6} commit(x)−−−−−−−−−−−−−−→
y←−−−−−−−−−−−−−− pick y ∈ {1, . . . ,6}

open−−−−−−−−−−−−−−→ verify
z = 1 + ((x + y) mod 6)

output: z output: z

z is the outcome of the thrown die

SV 2016–17 Integrity and Authentication CryptoSec 540 / 1037

Several Types of Commitment Schemes

interactive vs non-interactive
perfectly/statistically/computationally hiding
perfectly/statistically/computationally binding
using a common reference string or not

SV 2016–17 Integrity and Authentication CryptoSec 541 / 1037

Examples

a BAD one: Commit(x ; r) = (Encr (x), (x , r))
(not binding)
a BAD one: Commit(x ; r) = (H(x), x)
(not hiding)
a not-too-bad one: Commit(x ; r) = (H(r∥x), (x , r))
(problem: most likely, H was not designed for that)

SV 2016–17 Integrity and Authentication CryptoSec 542 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 543 / 1037

Pseudorandom Number Generator (PRNG)

Gen-
-

-
nb

state

new state

SV 2016–17 Integrity and Authentication CryptoSec 544 / 1037

PRNG (Informal)

functionality
Gen(state) = (nb, new state)

security
unpredictability
indistinguishable from
truly random

Gen
components

PRNG

SV 2016–17 Integrity and Authentication CryptoSec 545 / 1037

PRNG Examples

stream ciphers: RC4, A5/1...
block ciphers with OFB or CTR mode of operation
finite automaton with an internal state (time, key,Seed)
(time is updated by hardware)

J = Enckey(time)
r = Enckey(J ⊕ Seed)

and the seed is replaced by

NextSeed = Enckey(J ⊕ r)

and the output is r

SV 2016–17 Integrity and Authentication CryptoSec 546 / 1037

Famous Failure Cases

early version of SSL (Goldberg-Wagner 1996):
initial seed computed from the time in microseconds and the pid
and ppid numbers (not enough entropy)

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

Debian OpenSSL implementation until 2008:
initial seed computed from the pid (15 bits) (other randomness
removed due to complains by the compiler purify tool)

http://metasploit.com/users/hdm/tools/debian-openssl/

SV 2016–17 Integrity and Authentication CryptoSec 547 / 1037

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://metasploit.com/users/hdm/tools/debian-openssl/

Other Famous Failure Case

DSA (Bleichenbacher 2001): the 160-bit random number was
reduced modulo a 160-bit prime number q so that the final
distribution was biased

0

2158

2159

3 · 2158

2160 mod qq
-

SV 2016–17 Integrity and Authentication CryptoSec 548 / 1037

Pseudorandom Function (PRF)

functionality
FK (·)

security
indistinguishable from
truly random function
(as a black-box)

F
components

PRF

SV 2016–17 Integrity and Authentication CryptoSec 549 / 1037

Key Derivation Function (KDF)

functionality
KDF(stuff) = random key

security
one-way

KDF
components

KDF

Generate some random key from some secret (password, output from
key agreement protocols) and non-secret objects (salt, domain
parameters, exchange messages)

SV 2016–17 Integrity and Authentication CryptoSec 550 / 1037

KDF Examples

typically: a standard hash function (MD5, SHA-1, ...)
PKCS#5/RFC 2898
example:

PBKDF1(password, salt, c, ℓ) = truncℓ(Hc(password∥salt))

where Hc is H iterated c times
NB: ℓ shall not be larger than the H length
HKDF (RFC 5869)

HKDF(salt, input, extra, L) = K1∥K2∥ · · · ∥trunc
(

K⌈ L
HMAC length⌉

)
PRK = HMACsalt(input)

K1 = HMACPRK(extra∥0)
Ki+1 = HMACPRK(Ki∥extra∥i)

SV 2016–17 Integrity and Authentication CryptoSec 551 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 552 / 1037

Cryptographic Hashing

La cigale ayant
chanté tout l’été
se trouva fort
dépourvue quand
la bise fut venue
pas un seul petit
morçeau de mouche
ou de vermisseau
elle alla trouver
famine chez la
fourmie sa voisine ...

- Hash - 928652983652

can hash a string of arbitrary length
produce digests (hashes) of standard length (e.g. 160 bits)

SV 2016–17 Integrity and Authentication CryptoSec 553 / 1037

A Swiss Army Knife Cryptographic Primitive

Domain expander: hash bitstrings of arbitrary length into bitstrings
of fixed length.
Application: instead of specifying digital signature
algorithms on set of bitstring with arbitrary length, we
specify them with bitstrings of fixed length and use the
hash-and-sign paradigm.

Commitment: “uniquely” characterizes a bitstring without revealing
information on it.
Application: commitment which is binding and hiding.

Pseudorandom generator: generate bitstrings from seeds which
are unpredictable.
Application: generation of cryptographic keys from a
seed.

SV 2016–17 Integrity and Authentication CryptoSec 554 / 1037

Constructing Other Primitives with Hash
Functions

commitment:

Commit(X ; random) = (H(Key),Key = X∥random)

Open(c,X∥random) =

{
X if H(X∥random) = c
⊥ otherwise

PRNG:
generation = H(seed∥counter)

KDF:

seed −→ trunc (H(seed∥1)∥H(seed∥2)∥H(seed∥3)∥ · · ·)

domain extender for authentication (MAC or signature):

Authenticate(H(X))

SV 2016–17 Integrity and Authentication CryptoSec 555 / 1037

Security Properties for Hash Functions

Collision resistance: hash function h for which it is hard to find x
and x ′ such that h(x) = h(x ′) and x ̸= x ′.

→ digital fingerprint of the bitstring

One-wayness: hash function h for which given y it is hard to find
even one x such that y = h(x).

→ witness for a password

Pseudo-randomness : hash function h such that for any given f and
gi = h(f i(x)) for i = 0, . . . ,n − 1 with a random
(unknown) x such that f i(x) is not cycling, it is hard to
predict h(f n(x)).

→ pseudo-random generation

SV 2016–17 Integrity and Authentication CryptoSec 556 / 1037

Threat Models for Hash Functions

Collision attack: find x and x ′ such that x ̸= x ′ and h(x) = h(x ′).
First preimage attack: given y find x such that y = h(x).
Second preimage attack: given x find x ′ such that x ̸= x ′ and

h(x) = h(x ′).

SV 2016–17 Integrity and Authentication CryptoSec 557 / 1037

Bruteforce First Preimage Attack

Input: access to a hash function h, an image y
Output: x such that h(x) = y

1: pick a random ordering of all inputs x1, x2, . . .
2: for all i do
3: compute h(xi)
4: if h(xi) = y then
5: yield x = xi and stop
6: end if
7: end for
8: search failed

SV 2016–17 Integrity and Authentication CryptoSec 558 / 1037

Bruteforce Second Preimage Attack

Input: access to a hash function h onto a do-
main of size N, an input x

Output: x ′ such that x ̸= x ′ and h(x) = h(x ′)
1: compute h(x)
2: pick a random ordering of all inputs x1, x2, . . .
3: for all i such that xi ̸= x do
4: compute h(xi)
5: if h(xi) = h(x) then
6: yield x ′ = xi and stop
7: end if
8: end for
9: search failed

SV 2016–17 Integrity and Authentication CryptoSec 559 / 1037

Scenarii for Threat Models

Substitution in the integrity check process
→ second preimage attack
Substitution in a commitment scheme
→ collision attack
Information retrieval in a commitment scheme
→ first preimage attack

SV 2016–17 Integrity and Authentication CryptoSec 560 / 1037

Cryptographic Hashing

“Message Digest” (MD) devised by Ronald Rivest
“Secure Hash Algorithm” (SHA) standardized by NIST
MD4 in 1990 (128-bit digest)
MD5 in 1991 (128-bit digest) published as RFC 1321 in 1992
SHA in 1993 (160-bit digest) (obsolete, sometimes called SHA0)
SHA-1 in 1995 (160-bit digest)
collision found on MD4 (Dobbertin 1996)
preimage attack on MD4 (Dobbertin 1997)
SHA-2 in 2002: SHA256, SHA384, SHA512 (256-, 384-, and
512-bit digest)
collision found on SHA0 (Joux+ 2004)
collision found on MD5 (Wang+ 2004)
theoretical attack on SHA1 (Wang+ 2005)
SHA-3

SV 2016–17 Integrity and Authentication CryptoSec 561 / 1037

Cryptographic Hashing

message

?

SHA1 -160

SV 2016–17 Integrity and Authentication CryptoSec 562 / 1037

Encryption to Hashing

On-line hashing:
the message is padded following the Merkle-Damgård scheme;
each block is processed using an encryption function C in a
feedback mode according to the Davies–Meyer.

initial
value

message

- C -+

6

512
?

- C -+

6

512
?

. . .

. . .

- C -+

6

pad
?

-160 160

SV 2016–17 Integrity and Authentication CryptoSec 563 / 1037

Merkle-Damgård’s Extension

pad = 1
1

0 . . . 0 length
64

initial
value

message

- -- C′

512
?

C′

512
?

. . .

. . .

- C′

pad
?

-160 160

Note: maximal length is 264 − 1 bits

SHA1 :
264−1∪
ℓ=0

{0, 1}ℓ −→ {0, 1}160

SV 2016–17 Integrity and Authentication CryptoSec 564 / 1037

Merkle-Damgård Theorem

Theorem (Merkle-Damgård 1989)

We construct a cryptographic hash function h from a compression
function C′ by using the Merkle-Damgård scheme. If the compression
function C′ is collision-resistant, then the hash function h is
collision-resistant as well.

Proof.
Case 1: messages of different length
Case 2: messages of same length

SV 2016–17 Integrity and Authentication CryptoSec 565 / 1037

Proof of Merkle-Damgård Theorem - Case 1

IV - -- C′
?

C′
?

. . .

. . .

- C′
?

IV - -- C′
?

C′
?

. . .

. . .

- C′
?

pad ′

pad

X ′
1 X ′

2

X1 X2

X ′
n︷ ︸︸ ︷

Xm︷ ︸︸ ︷
X

X ′
6

?
=

C′(Hm,Xm) = C′(H ′n,X
′
n)

SV 2016–17 Integrity and Authentication CryptoSec 566 / 1037

Proof of Merkle-Damgård Theorem - Case 2

IV - -- C′
?

C′
?

. . .

. . .

- C′

pad
?

IV - -- C′
?

C′
?

. . .

. . .

- C′

pad
?

X ′
1 X ′

2

X1 X2

X ′
n︷ ︸︸ ︷

Xn︷ ︸︸ ︷
X

X ′
6

?
=

C′(Hi ,Xi) = C′(H ′i ,X
′
i)

where i is the last index such that Hi ̸= H ′i or Xi ̸= X ′i

SV 2016–17 Integrity and Authentication CryptoSec 567 / 1037

Davies–Meyer Scheme

chaining value
IV

- encrypt - + - chaining value
digest

6

?

message block

+ is a group law

SV 2016–17 Integrity and Authentication CryptoSec 568 / 1037

Bitwise Boolean Functions in SHA1

f1(b, c, d) = if b then c else d
= (b AND c) OR (NOT(b) AND d)

f2(b, c, d) = b XOR c XOR d
f3(b, c, d) = majority(b, c, d)

= (b AND c) OR (c AND d) OR (d AND b)
f4(b, c, d) = b XOR c XOR d

SV 2016–17 Integrity and Authentication CryptoSec 569 / 1037

Implementation of SHA-1 Compression

Input: an initial hash a,b, c, d ,e, a
message block x0, . . . , x15

Output: a hash a, b, c, d , e
1: for i = 16 to 79 do
2: xi ← ROTL1 (xi−3 XOR xi−8 XOR xi−14

XOR xi−16)

3: end for
4: FOR i = 1 to 4 DO
5: FOR j = 0 to 19 DO
6: t ← ROTL5(a) + fi(b, c, d) +

e + x20(i−1)+j + ki

7: e← d
8: d ← c
9: c ← ROTL30(b)

10: b ← a
11: a← t
12: end for
13: end for
14: a← a + ainitial
15: b ← b + binitial
16: c ← c + cinitial
17: d ← d + dinitial
18: e← e + einitial

SV 2016–17 Integrity and Authentication CryptoSec 570 / 1037

SHA-3 based on Keccak

designed by Bertoni, Daemen, Peeters, and Van Assche
(STMicroelectronics and NXP Semiconductors, Belgium)
based on a sponge construction
uses a permutation Keccak-f [b] (or just f) with
b = 1 600 = 25× 26 (could use b = 25× 2ℓ with 0 ≤ ℓ ≤ 6)
operates on states bitstrings s represented as 3-dimensional
5× 5× 2ℓ arrays a of bits

ax,y,z = s[2ℓ(5y + x) + z]

in what follows, x , y , z are taken modulo their dimension
f is a sequence of nr = 12 + 2ℓ rounds

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

SV 2016–17 Integrity and Authentication CryptoSec 571 / 1037

One Round of f — i

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

θ is a linear diffusion layer using the parity of columns

θ(a)x,y,z = ax,y,z ⊕
4⊕

j=0

ax−1,j,z ⊕
4⊕

j=0

ax+1,j,z−1

ρ permutes some lanes

ρ(a)x,y,z = ax,y,z− (t+1)(t+2)
2

with
(

x
y

)
=

(
0 1
2 3

)t (1
0

)
for t = 0, . . . , 23 (+ use ρ(a)0,0,z = a0,0,z)

SV 2016–17 Integrity and Authentication CryptoSec 572 / 1037

One Round of f — ii

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

π permutes the slices

π(a)X ,Y ,z = ax,y,z with
(

X
Y

)
=

(
1 3
1 0

)(
x
y

)
χ has degree two

χ(a)x,y,z = ax,y,z ⊕ (ax+1,y,z ⊕ 1)ax+2,y,z

ι adds a constant for x = y = 0

ι(a)x,y,z =

{
a0,0,z ⊕ RC[ir]z if x = y = 0
ax,y,z otherwise

where ir is the round index

SV 2016–17 Integrity and Authentication CryptoSec 573 / 1037

The Sponge

c

r

6
?

6

?
0

0

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-

6

f

-

-

6

f

-

-

6

f

6
message∥10∥10∗1 truncated

6

. . .absorb squeeze. . .

algo r c d
SHA3-224 1 152 448 224
SHA3-256 1 088 512 256
SHA3-384 832 768 384
SHA3-512 576 1 024 512

SV 2016–17 Integrity and Authentication CryptoSec 574 / 1037

Hash Functions to Remember

algorithm release digest comment
MD5 1991 128 broken
SHA1 1995 160 still surviving
SHA3 2015 224, 256, 384, 512

SV 2016–17 Integrity and Authentication CryptoSec 575 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 576 / 1037

MAC

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

MAC -
X , c

-
X , c

Check
-

ok?

-Message
X�

�
Adversary

SV 2016–17 Integrity and Authentication CryptoSec 577 / 1037

MAC Primitive

functionality
CheckK (MACK (X)) = (X , ok)

security
unforgeability

Alice and Bob, Gen, MAC, Check
components

MAC

typically: MAC appends a code c to X , Check recomputes c and
compares

SV 2016–17 Integrity and Authentication CryptoSec 578 / 1037

Security

adversary objective: forge new messages
typically: key recovery
known message attack (previous picture): using authenticated
messages in transit only
chosen message attack: force the sender to authenticate some
messages selected by the adversary

SV 2016–17 Integrity and Authentication CryptoSec 579 / 1037

Hashing to Authentication: HMAC [RFC 2104]

Computing the MAC of t bytes for a message X with a key K using a
Merkle-Damgård hash function with block size B bytes, digest size L
bytes. (t = L by default.) E.g. H = SHA-1, B = 64, L = 20.

1 If K has more than B bytes, we first replace K by H(K).
(Having a key of such a long size does not increase the security.)

2 We append zero bytes to the right of K until it has exactly B
bytes.

3 We compute

H((K ⊕ opad)∥H((K ⊕ ipad)∥X))

where ipad and opad are two fixed bitstrings of B bytes. The ipad
consists of B bytes equal to 0x36 in hexadecimal. The opad
consists of B bytes equal to 0x5c in hexadecimal.

4 We truncate the result to its t leftmost bytes. We obtain
HMACK (X).

SV 2016–17 Integrity and Authentication CryptoSec 580 / 1037

HMAC [RFC 2104]

MAC
?

trunc
?

H
?

?

H
?

?
⊕ipad
?

?

message

?
⊕opad
?

key∥0 · · ·0

SV 2016–17 Integrity and Authentication CryptoSec 581 / 1037

Examples

algo hash B L t

TLS
MD5 MD5 64 16 16
SHA SHA1 64 20 20

SSH
hmac md5 MD5 64 16 16
hmac md5 96 MD5 64 16 12
hmac sha1 SHA1 64 20 20
hmac sha 96 SHA1 64 20 12

SV 2016–17 Integrity and Authentication CryptoSec 582 / 1037

CBCMAC - (A Bad MAC)

CK CK CK

?

?
⊕
?

-
?
⊕
?

- -

CK

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

MAC

= last ciphertext block of CBC encryption (IV = 0)
SV 2016–17 Integrity and Authentication CryptoSec 583 / 1037

A MAC Forgery

X1 = random MAC(X1) = c
X2 = random MAC(X2) = c′

X3 = X1∥B MAC(X3) = CK (c ⊕ B)

X4 = X2∥B′ MAC(X4) = CK (c′ ⊕ B′)
B′ = B ⊕ c ⊕ c′ MAC(X4) = MAC(X3)

X1

CBCMAC

c

B

⊕

CK

CK (c ⊕ B)

X2

CBCMAC

c′

B′

⊕

CK

CK (c′ ⊕ B′)

=

=

SV 2016–17 Integrity and Authentication CryptoSec 584 / 1037

Other Attack with 1 Known Message

X1 = B1∥ · · · ∥Bn arbitrary
c = MAC(X1)

X2 = X1∥B′∥B2∥ · · · ∥Bn with B′ = c ⊕ B1

forgery: c = MAC(X2)

B1

CK

B2, . . . ,Bn

c

B′

⊕

CK

B2, . . . ,Bn

c′

=

=

c = c′

SV 2016–17 Integrity and Authentication CryptoSec 585 / 1037

Result on CBCMAC

insecure when used alone as a MAC
secure when restricted to messages of same fixed length
might be secure if encrypted (next constructions)

SV 2016–17 Integrity and Authentication CryptoSec 586 / 1037

EMAC (Encrypted MAC) - (A Better CBCMAC
Variant)

CK1 CK1 CK1

?

?
⊕
?

-
?
⊕
?

- -

CK1

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

CK2

?
MAC

SV 2016–17 Integrity and Authentication CryptoSec 587 / 1037

ISO/IEC 9797 - (An Even Better CBCMAC Variant)

CK1 CK1 CK1

?

?
⊕
?

-
?
⊕
?

- -

CK1

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

CK2

?

trunc

?
MAC

SV 2016–17 Integrity and Authentication CryptoSec 588 / 1037

CMAC [RFC4493] - (Best CBCMAC Variant)

CK CK CK

?

?
⊕
?

-
?
⊕
?

- -

CK

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn(|pad)

trunc

?
MAC

� kcase

CK : AES with 128-bit key K

SV 2016–17 Integrity and Authentication CryptoSec 589 / 1037

CMAC

(previously called OMAC1)
case 1: xn was not padded
case 2: the message length is not multiple of the block length
pad it with a bit 1 and as many bits 0 as required to reach this
length
L = CK (0) (encryption of the zero block)
k1 is L shifted to the left by one bit XOR the carry constant if any
k2 is k1 shifted to the left by one bit XOR the carry constant if any
actually, this is the GF multiplication by the variable x
carry constant:
0x000000000000001b for 64-bit blocks and
0x00000000000000000000000000000087 for 128-bit blocks

SV 2016–17 Integrity and Authentication CryptoSec 590 / 1037

WC-MAC

Let (hK)K∈UK be a ε-XOR-universal family of hash functions, over the
output domain {0, 1}m, defined by a random key K which is chosen
uniformly at random in K.
Given K and a sequence of keys K1,K2, . . . which are independent
and uniformly distributed over {0,1}m, we define a MAC algorithm
which changes the key for every new message: the MAC of the
message xi of sequence number i is a pair (i , ci) with ci defined by

ci = hK (xi)⊕ Ki

Theorem (Wegman-Carter 1981)

No chosen message attack can forge a new authenticated message
with a probability of success greater than ε.

SV 2016–17 Integrity and Authentication CryptoSec 591 / 1037

Universal Hash Function

Definition (Krawczyk 1994)

Let (hK)K∈UK be a family of hash functions over the output domain
{0,1}m defined by a random key K which is chosen uniformly at
random in a key space K.
This family is ε-XOR-universal if for any a and x ̸= y we have

Pr[hK (x)⊕ hK (y) = a] ≤ ε.

Note: 1 =
∑

a Pr[hK (x)⊕ hK (y) = a] ≤ 2mε so ε ≥ 2−m

SV 2016–17 Integrity and Authentication CryptoSec 592 / 1037

WC-MAC - Proof — i

Proof.
At the end, the attacker collects d triplets (xi , i , ci) for i = 1, . . . , d and
forges (x , j , c) with x ̸= xi for any i .

If j is not in the [1, d] interval, then Kj is uniformly distributed and
independent from this information, so the probability that c is a valid
MAC of (x , j) is 2−m. (Note that 2−m ≤ ε.)

SV 2016–17 Integrity and Authentication CryptoSec 593 / 1037

WC-MAC - Proof — ii

If j is in the interval [1, d], let I = {hK (xi)⊕ Ki = ci ; i ∈ [1, d], i ̸= j}.
The success probability is

P = Pr[hK (x)⊕ Kj = c|hK (xj)⊕ Kj = cj , I]

Due to the distribution of K1, . . . ,Kj−1,Kj+1, . . . ,Kd , we can see that I
is useless in the probability.

P = Pr[hK (x)⊕ Kj = c|hK (xj)⊕ Kj = cj]

= Pr[hK (x)⊕ hK (xj) = c ⊕ cj |hK (xj)⊕ Kj = cj]

=
Pr[Kj = hK (xj)⊕ cj |hK (x)⊕ hK (xj) = c ⊕ cj]

Pr[Kj = hK (xj)⊕ cj]

×Pr[hK (x)⊕ hK (xj) = c ⊕ cj] (Bayes)
= Pr[hK (x)⊕ hK (xj) = c ⊕ cj] ≤ ε

since Kj is independent from K .

SV 2016–17 Integrity and Authentication CryptoSec 594 / 1037

WC-MAC - Proof — iii

Pr[success] = Pr[success|j > d]Pr[j > d] + Pr[success|j ≤ d]Pr[j ≤ d]
≤ εPr[j > d] + εPr[j ≤ d]
= ε

SV 2016–17 Integrity and Authentication CryptoSec 595 / 1037

Example of Universal Hashing (Krawczyk 1994)

(LFSR-based Toeplitz hash function)
Given m and n, we define a family of hash functions hK from
{0, 1}∗ to {0, 1}m

K is the set of all K = (p, s) where p(x) =
∑m

j=0 pjx j is an
irreducible polynomial of degree m over GF(2) and an
s = (s0, . . . , sm−1) is an m-bit string.
K defines an LFSR with connexion polynomial p(x) and initial
state s

st+m =
m−1⊕
j=0

pjst+j hK (x0, . . . , xn−1) =
⊕

0≤t<n
xt=1

(st , . . . , st+m−1)

For any m and n, the family of all hK defined from {0, 1}≤n to
{0, 1}m is n21−m-XOR-universal

SV 2016–17 Integrity and Authentication CryptoSec 596 / 1037

Example

p(x) = 1 + x + x4, s = (1, 0,0, 0)
compute

hK (1, 1,0, 1, 0)

� � �

-⊕
�

1 0 0 0

=

⊕
1

0 0 0 1

⊕
1

0 0 0 0

⊕
0

0 1 0 0

⊕

1 0 0 1

1

0 0 0 0

1 1 0 1

0

hK (1, 1, 0,1, 0) = (1, 1, 0,1)

SV 2016–17 Integrity and Authentication CryptoSec 597 / 1037

WC-MAC using a Stream Cipher

N ← nonce
MACK ,K ′(x) =

(
N,hK (x)⊕ KeystreamK ′,N

)
idea: “encrypt hK (x) using a stream cipher”

SV 2016–17 Integrity and Authentication CryptoSec 598 / 1037

Example (Taken From GCM Mode)

(mac) GMACK (IV,A)
1: set H = CK (0128)
2: set S = GHASHH(A∥0v∥length(A)∥0128)
3: set T = trunc(GCTRK ((IV∥0311),S))
4: return T

(hash) GHASHH(X1, . . . ,Xm) = X1Hm + · · ·+ XmH in GF(2128)

(CTR encryption) GCTRK (ct,X) =
trunclength(X) (CK (ct)∥CK (ct + 1)∥CK (ct + 2) · · ·)⊕ X

SV 2016–17 Integrity and Authentication CryptoSec 599 / 1037

Authenticated Modes of Operation

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message

-
nonce

nonce
6

Enc/MAC - - Dec/Check
-

ok?

-Message
�

�
Adversary

SV 2016–17 Integrity and Authentication CryptoSec 600 / 1037

CCM (Counter with CBC-MAC)

Roughly speaking:
1: select a nonce N (way to select and synchronize are free)
2: let T = CBCMAC(message) using N
3: encrypt T∥message in CTR mode using N

More precisely, the CCM mode is defined by
a block cipher which accepts 16-Byte blocks
an even parameter M between 4 and 16 (size of the CBCMAC in
bytes)
a parameter L between 2 and 8 (size of the length field in bytes)

SV 2016–17 Integrity and Authentication CryptoSec 601 / 1037

CCM

⊕?

trunc
?

CBC-MAC
??

message pad nonce

?

?

CTR

�
�⊕

� -

key

? ?
head body

SV 2016–17 Integrity and Authentication CryptoSec 602 / 1037

CCM Processing

pad X with enough zero bytes to reach the block boundary
split X∥pad as B1∥ · · · ∥Bn

make B0 = byte1∥N∥length(X) where byte1 encodes M and L
compute the CBCMAC of B0∥B1∥ · · · ∥Bn, truncate it to M bytes,
and get T
make Ai = byte2∥N∥i where byte2 encodes L
encrypt T∥X by

Y = (T∥X)⊕ (truncM(CK (A0))∥trunc(CK (A1)∥ · · · ∥CK (An)))

SV 2016–17 Integrity and Authentication CryptoSec 603 / 1037

Processing with an Extra Data

If we wish to send X together with a protocol data a which also needs
to be authenticated (e.g. a sequence number, and IP address...)

add a special bit in byte1 which tells that a is used
if a has a length between 1 and 65279 bytes, encode this length
on two bytes, make length(a)∥a∥pad′ where pad′ consists of
enough zero bytes to reach the block boundary
insert it between B0 and B1 before the CBCMAC computation

SV 2016–17 Integrity and Authentication CryptoSec 604 / 1037

GCM Mode

(authenticated encryption) GCMAEK (IV,P,A) with plaintext P
and extra data A

1: set H = CK (0128)
2: set J0 = IV∥0311 (IV concatenated with a 32-bit counter)
3: set C = GCTRK (J0 + 1,P)
4: concatenate A and C with 0 bits to reach a length multiple of

128 and get A∥0v and C∥0u

5: set S = GHASHH(A∥0v∥C∥0u∥length(A)∥length(C))
6: set T = trunc(GCTRK (J0,S))
7: return (C,T)

(MAC) GMACK (IV,A) = GCMAEK (IV, ∅,A)
(hash) GHASHH(X1, . . . ,Xm) = X1Hm + · · ·+ XmH in GF(2128)

(CTR encryption) GCTRK (ct,X) =
trunclength(X) (CK (ct)∥CK (ct + 1)∥CK (ct + 2) · · ·)⊕ X

SV 2016–17 Integrity and Authentication CryptoSec 605 / 1037

GCM

?

⊕
?

message IV

?
CTR �key

�

?
h-

- - ⊕extra

?
body tail

SV 2016–17 Integrity and Authentication CryptoSec 606 / 1037

Authenticated Modes to Remember

mode comment
CCM CTR + CBCMAC
GCM CTR + WC-MAC

SV 2016–17 Integrity and Authentication CryptoSec 607 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 608 / 1037

Hash Function

Definition
A hash function is a tuple (D, {0, 1}τ ,h) with a message domain
D ⊆ {0, 1}∗, an output domain {0, 1}τ , and one efficient deterministic
algorithm h implementing a function

h : D −→ {0, 1}τ
X 7−→ h(X)

SV 2016–17 Integrity and Authentication CryptoSec 609 / 1037

One-Wayness

Definition
A hash function (D, {0, 1}τ , h) is (t , ε)-one-way if for any probabilistic
algorithm A limited to a time complexity t ,

Pr[h(A(y)) = y] ≤ ε

where y ∈ {0, 1}τ is random.

(= first preimage attack)

SV 2016–17 Integrity and Authentication CryptoSec 610 / 1037

Security Against Collision Attack (Bad Definition)

Definition
A hash function (D, {0, 1}τ , h) is (t , ε)-secure against collision
attacks if for any probabilistic algorithm A limited to a time complexity
t ,

Pr[h(x) = h(x ′), x ̸= x ′] ≤ ε

where (x , x ′) is the output of A

Following this definition, no hash function with #D > 2τ is secure:
collision exist, so A can just print one!

Making a correct definition is beyond the scope of this course

SV 2016–17 Integrity and Authentication CryptoSec 611 / 1037

Message Authentication Code

(most common construction)

Definition

A message authentication code is a tuple ({0, 1}k ,D, {0, 1}τ ,MAC)
with a key domain {0, 1}k , a message domain D ⊆ {0,1}∗, an output
domain {0, 1}τ , and one efficient deterministic algorithm MAC
implementing a function

MAC : {0, 1}k ×D −→ {0, 1}τ
(K ,X) 7−→ MACK (X)

SV 2016–17 Integrity and Authentication CryptoSec 612 / 1037

Security against Key Recovery

Definition

A message authentication code ({0, 1}k ,D, {0,1}τ ,MAC) is
(q, t , ε)-secure against key recovery under chosen message
attacks if for any probabilistic algorithm A limited to a time complexity
t and to q queries,

Pr[AMAC(K ,.) → K] ≤ ε

where K ∈ {0, 1}k is random.

(+ similar notion with known message attacks)

SV 2016–17 Integrity and Authentication CryptoSec 613 / 1037

Security against Forgery

Definition

A message authentication code ({0, 1}k ,D, {0,1}τ ,MAC) is
(q, t , ε)-secure against forgery under chosen message attacks if
for any probabilistic algorithm A limited to a time complexity t and to
q queries,

Pr[AMAC(K ,.) forges] ≤ ε

where K ∈ {0, 1}k is random, (X , c) a pair of random variables
defined as the output of AMAC(K ,.), and “AMAC(K ,.) forges” is the event
that MACK (X) = c and that A did not query X to the authentication
oracle.

(+ similar notion with known message attacks)

SV 2016–17 Integrity and Authentication CryptoSec 614 / 1037

Forgery Security is Stronger than Key Recovery
Security

If A is a key recovery adversary, we can define

1: run A → K
2: pick a fesh X arbitrarily
3: compute c = MAC(K ,X)
4: return (X , c)

So,
key recovery-breaking =⇒ forge

So,
forgery-secure =⇒ key recovery-secure

SV 2016–17 Integrity and Authentication CryptoSec 615 / 1037

Security against Distinguisher

Definition

A message authentication code ({0, 1}k ,D, {0,1}τ ,MAC) is a
(q, t , ε)-pseudorandom function (PRF) if for any probabilistic
algorithm A limited to a time complexity t and to q queries,

Pr[AMAC(K ,.) → 1]− Pr[AF (·) → 1] ≤ ε

where K ∈ {0, 1}k is random and F (·) is a random function from D to
{0,1}τ .

SV 2016–17 Integrity and Authentication CryptoSec 616 / 1037

Security Notions

key recovery forgery PRF
KMA weaker security
CMA stronger security

SV 2016–17 Integrity and Authentication CryptoSec 617 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 618 / 1037

Birthday Paradox

Theorem
If we pick independent random numbers in {1, 2, . . . ,N} with uniform
distribution, θ

√
N times, we get at least one number twice with

probability

1− N!

Nθ
√

N(N − θ
√

N)!
−→

N→+∞
1− e−

θ2
2 .

For N = 365, we obtain the following figures.

θ
√

N 10 15 20 25 30 35 40
θ 0.52 0.79 1.05 1.31 1.57 1.83 2.09

probability 12% 25% 41% 57% 71% 81% 89%

SV 2016–17 Integrity and Authentication CryptoSec 619 / 1037

Birthday Paradox - Informal Proof

n = θ
√

N

p ≈ 1−
(

1− 1
N

)(n
2)

≈ 1−
(

1− 1
N

) n2
2

= 1− e
n2
2 ln(1− 1

N)

≈ 1− e−
n2
2N

= 1− e−
θ2
2

SV 2016–17 Integrity and Authentication CryptoSec 620 / 1037

Birthday Paradox - Proof — i

Proof. We use the Stirling Approximation

n! ∼
n→+∞

√
2πne−nnn

We have

1− p =
N!

Nθ
√

N(N − θ
√

N)!

∼
(

1− θ√
N

)−N+θ
√

N

e−θ
√

N

= exp
[
−θ
√

N + (−N + θ
√

N) log
(

1− θ√
N

)]

SV 2016–17 Integrity and Authentication CryptoSec 621 / 1037

Birthday Paradox - Proof — ii

We now use log(1− ε) = −ε− ε2

2 + o(ε2)

1− p ∼ exp
[
−θ
√

N + (−N + θ
√

N) log
(

1− θ√
N

)]
∼ exp

[
−θ2

2
+ o(1)

]
−→ e−

θ2
2

SV 2016–17 Integrity and Authentication CryptoSec 622 / 1037

Collision Search I

Input: a cryptographic hash function h onto a
domain of size N

Output: a pair (x , x ′) such that x ̸= x ′ and
h(x) = h(x ′)

1: for θ
√

N many different x do
2: compute y = h(x)
3: if there is a (y , x ′) pair in the hash table

then
4: yield (x , x ′) and stop
5: end if
6: insert (y , x) in the hash table
7: end for
8: search failed

SV 2016–17 Integrity and Authentication CryptoSec 623 / 1037

Collision Search II

Input: a cryptographic hash function h onto a
domain of size N

Output: a pair (x , x ′) such that x ̸= x ′ and
h(x) = h(x ′)

1: repeat
2: pick a (new) random x
3: compute y = h(x)
4: insert (y , x) in the hash table
5: until there is already another (y , x ′) pair in

the hash table
6: yield (x , x ′)

we can show that the expected number of iterations is
√

π
2 ×
√

N
(Buffon’s needles...)

SV 2016–17 Integrity and Authentication CryptoSec 624 / 1037

Collision Search Complexity

strategy memory time success proba.

collision search I θ
√

N θ
√

N 1− e−
θ2
2

collision search II
√

π
2 ×
√

N
√

π
2 ×
√

N 1

example for SHA1: N = 2160, complexity ∼ 280

SV 2016–17 Integrity and Authentication CryptoSec 625 / 1037

Example: Birthday Attack on EMAC
First get

√
2MAC length many messages until we get two messages X1

and X2 such that MAC(X1) = MAC(X2) by using the birthday paradox.
Deduce CBCMAC(X1) = C−1

K2
(c) = CBCMAC(X2)

Pick B arbitrarily. Query MAC(X1∥B) = c′

Deduce MAC(X2∥B) = c′

X1

CBCMACK1

CK2

c

B

⊕

CK1

CK2

c′

X2

CBCMACK1

CK2

c

B

⊕

CK1

CK2

c′

=

=

=

SV 2016–17 Integrity and Authentication CryptoSec 626 / 1037

(Almost) Memoryless Collision Search
The Rho (ρ) Effect

x0

6
x1

6
x2

6
x3

6
x4

6
x5

6
x6

�
x7 �

x8 *
x9 -x10

j x11

R x12

U x13

?x14

�
x15	

x16�
x17

�
x18

Yx19

I
x20

K

xi+1 = F (xi)

ρ shape (due to finite set)
tail λ = 5
loop τ = 16
collision F (xλ−1) = F (xλ+τ−1)

Lemma
If F is a random function over a set
of cardinality N, we have
E(λ) = E(τ) =

√
πN/8.

SV 2016–17 Integrity and Authentication CryptoSec 627 / 1037

Floyd Cycle Finding Algorithm (1967)
Tortoise and the Hare

Output: a collision for F
Complexity: O(

√
N) F mappings

1: set x0 at random
2: a← x0 (tortoise)
3: b ← x0 (hare)
4: repeat
5: a← F (a)
6: b ← F (F (b))
7: until a = b
8: a← x0
9: while a ̸= b do

10: aold ← a
11: bold ← b
12: a← F (a)
13: b ← F (b)
14: end while
15: output aold, bold

whenever x2i = xi we must
have τ |i
we find i = τ × ⌈max(λ,1)

τ ⌉
exact complexity is 5i
computations F
which is on average

5×
(

E(λ) +
1
2

E(τ)

)
= 7.5

√
π/8×

√
N

SV 2016–17 Integrity and Authentication CryptoSec 628 / 1037

Why it Works

let xi = F (xi−1)

after iteration i of the repeat-until loop, we have a = xi and
b = x2i
a = b is equivalent to (i ≥ λ and τ |i)
there exists a minimum i = i0 = τ × ⌈λτ ⌉ satisfying this condition
after iteration i of the while-endwhile loop, we have a = xi and
b = xi0+i
a = b is equivalent to i ≥ λ
so, the loop ends with the correct value of λ
the correct value of τ is found with the additional repeat-until
loop

SV 2016–17 Integrity and Authentication CryptoSec 629 / 1037

Cycle Detection Algorithms

Floyd (1967)
Gosper (1972)
Brent (1980)
Sedgewick-Szymanski-Yao (1982)
Quisquater-Delescaille (1989)
van Oorschot-Wiener (1999)
Nivasch (2004)

SV 2016–17 Integrity and Authentication CryptoSec 630 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 631 / 1037

Summary of Generic Attacks against Symmetric
Encryption

if we have a n-bit key, (N = 2n)

strategy preprocessing memory time success proba.
exhaustive search 0 1 2n 1
dictionary attack 2n 2n 1 1
tradeoffs 2n 2

2
3 n 2

2
3 n cte

Want a security of 2s?
select n ≥ s

SV 2016–17 Integrity and Authentication CryptoSec 632 / 1037

Summary of Generic Attacks against Hash
Functions

if we hash onto n bits, (N = 2n)

attack complexity
preimage attack 2n

collision attack 2
n
2

Want a security of 2s?
want security against inversion only: select n ≥ s
want security against collisions: select n ≥ 2s

SV 2016–17 Integrity and Authentication CryptoSec 633 / 1037

Breaking Symmetric Cryptography

we do not know how to prove security
we know generic attacks are unavoidable
empirical security: assume (hope) there is no better attack then
known ones
security =⇒ generic attacks are untractable
security parameter for encryption/authentication: key length
Caveat: hash length must be twice the security parameter due to
the birthday paradox

SV 2016–17 Integrity and Authentication CryptoSec 634 / 1037

6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2016–17 Integrity and Authentication CryptoSec 635 / 1037

Cryptanalytic Advances

security is often empirical
→ dedicated attacks
heuristic security against attack methods
→ arguments may be wrong, other attack methods can be
discovered
all eggs in the same basket (lack of crypto-diversity)
→ more exposure, attacks more devastating
the quantum threat
→ quantum computers to factor, compute discrete logarithms, or
even half security parameters [Grover 1996]
side channel attacks
wrong proofs, wrong models
security interference: secure + secure may be insecure

SV 2016–17 Integrity and Authentication CryptoSec 636 / 1037

Conclusion

MAC: HMAC, CBCMAC, WC-MAC, CCM mode, GCM mode
hash functions: MD5, SHA-1
commitment
bruteforce collision within complexity O

(√
#range

)

SV 2016–17 Integrity and Authentication CryptoSec 637 / 1037

Dedicated Primitives and Reductions

Hash functions

Block Ciphers

?

DM + MD schemes

MAC

Stream Ciphers

?

WC MAC

-OFB, CTR modes

-
HMAC

q

CBCMAC

SV 2016–17 Integrity and Authentication CryptoSec 638 / 1037

References

Schneier. Applied Cryptography. Wiley & Sons. 1996.
Crypto for dummies!
Ferguson–Schneier. Practical Cryptography. Wiley & Sons.
2003.
Crypto for dummies!
Oechslin. Making a Faster Cryptanalytic Time-Memory
Trade-Off. In CRYPTO 2003, LNCS 2729.

other references:
Barkan-Biham-Shamir. Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs. In CRYPTO 2006, LNCS 4117.
Nivasch. Cycle Detection Using a Stack. Information Processing
Letters vol. 90 pp. 135–140, 2004.

SV 2016–17 Integrity and Authentication CryptoSec 639 / 1037

Must be Known

Merkle-Damgård and Davies-Meyer schemes
parameters of hash functions: MD5, SHA1
MAC: (principles of) HMAC, CBCMAC
existence of authenticated encryption modes: CCM, GCM
collision search based on the birthday paradox
security from key length

SV 2016–17 Integrity and Authentication CryptoSec 640 / 1037

Train Yourself

hash functions:
final exam 2008–09 ex3
midterm exam 2011–12 ex3
collisions:
final exam 2013–14 ex2
final exam 2012–13 ex2
final exam 2010–11 ex1

SV 2016–17 Integrity and Authentication CryptoSec 641 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Case Studies I CryptoSec 649 / 1037

Roadmap

mobile telephony: GSM, 3G
WiFi: WEP, WPA
Bluetooth
access control: password, challenge-response, strong
authentication

SV 2016–17 Case Studies I CryptoSec 650 / 1037

7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains

SV 2016–17 Case Studies I CryptoSec 651 / 1037

GSM Architecture

principle 1: authentication of mobile system
principle 2: privacy protection in the wireless link

challenge-response protocol based on Ki
encryption key for a limited period of time (derived from Ki)
identity IMSI replaced by a pseudonym TMSI as soon as possible
Ki never leaves the security module (SIM card) or home security
database (HLR)

SV 2016–17 Case Studies I CryptoSec 652 / 1037

GSM Slang

GSM: Global System for Mobile telecommunications
MS: Mobile Station
SIM: Subscriber Identity Module (part of MS)
HLR: Home Location Register
VLR: Visitor Location Register
IMSI: International Mobile Subscriber Identity (stored in SIM)
Ki: subscriber Integrity Key (securely stored in SIM)

SV 2016–17 Case Studies I CryptoSec 653 / 1037

GSM Protocol

SIM Telephone Radio Network Operator

A5

?

-

Plaintext

A8

A3

-� Ciphertext
A5

?

�

Plaintext

-Response
Compare � A3

A8

Random

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?

SV 2016–17 Case Studies I CryptoSec 654 / 1037

GSM Authentication

A3/8(Ki,RAND) = (SRES,KC)

SIM MS (wireless) VLR (secure) HLR
(Ki) IMSI−−−−−−−−−−→ IMSI−−−−−−−−−−−−−→ (Ki)

RAND←−−−−−−−−−− RAND←−−−−−−−−−− store
n×(RAND,SRES,KC)←−−−−−−−−−−−−−

SRES,KC−−−−−−−−−−→ SRES−−−−−−−−−−→ check
CKC(TMSI)←−−−−−−−−−−

...
TMSI−−−−−−−−−−→

RAND←−−−−−−−−−− RAND←−−−−−−−−−−
SRES,KC−−−−−−−−−−→ SRES−−−−−−−−−−→ check

SV 2016–17 Case Studies I CryptoSec 655 / 1037

Security of Authentication

Ki never leaves the SIM card or the secure database of the
operator (assuming SIM card is tamper proof and HLR is secure)
assuming that A3/8 are secure PRF then authentication to
network is secure
A3/8 not standard: chosen by operator
problem with weak A3/8 (e.g. COMP128)

security: ,

SV 2016–17 Case Studies I CryptoSec 656 / 1037

GSM Encryption

several standard algorithms: A5/0, A5/1, A5/2, A5/3
cipher imposed by network
new KC for each session
synchronized frame counter (see A5/1 on slide 455)

SV 2016–17 Case Studies I CryptoSec 657 / 1037

Security of Privacy protections

blinding the identity: telephone identifies itself in clear at the first
time then using a pseudonym given by the local network
not effective at all:

challenges can be replayed to trace mobile telephones
fake network can force identification in clear (re-synchronization
protocol)

security of A5/0 (no encryption) void
security of A5/2 weak
security of A5/1 not high
security of A5/3 high
fake network can force to weak encryption (they all use the same
key)
replaying a challenge will force reusing a key in one-time pad
message integrity protection is ineffective

security: /
SV 2016–17 Case Studies I CryptoSec 658 / 1037

Improvements in 3G Mobile Telephony

challenges are authenticated (fake network cannot forge them)
integrity protection (MAC)
protection against challenge-replay attacks
uses a block cipher KASUMI instead of the stream cipher A5/1

SV 2016–17 Case Studies I CryptoSec 659 / 1037

The UMTS Crypto Menagery

communication: f8 (encryption) and f9 (MAC) based on KASUMI
signaling communication: f6 (encryption) and f7 (MAC) based on
AES
challenge pseudorandom generator: f0
MILENAGE (key establishment): f1, f1*, f2, f3, f4, f5, f5*
f1 and f5: challenge computation for synchronized entities
f1* and f5*: challenge computation for re-synchronization
f2: response to challenge (replaces A3)
f3: key derivation for encryption (replaces A8)
f4: key derivation for MAC

SV 2016–17 Case Studies I CryptoSec 660 / 1037

MILENAGE Protocol

USIM Telephone Radio Network Operator

f8-f9

?

-

Plaintext

?
OK?

f3-f4

f2

f1-f5

-� Ciphertext
f8-f9

?

�

Plaintext

-Response
Compare �

Nonce

�
f1-f5

f2

f3-f4

Rnd

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?

SV 2016–17 Case Studies I CryptoSec 661 / 1037

MILENAGE Challenges

Challenge
?
⊕

f1

?

f5

�

Nonce

?

?

Key

? ?

Rnd

?

? ?

challenge authenticated based on f1
freshness protection based on a nonce
nonce may be counter-based (USIM and operator synchronized)
privacy protection: the nonce is encrypted by f5

SV 2016–17 Case Studies I CryptoSec 662 / 1037

MILENAGE Challenge Verification

Challenge

6
⊕

f1

?

6
=

f5

�

check

6
?

Key

? ?? ?

1 extract Rnd
2 decrypt Nonce by computing f5(Key,Rnd)
3 check authentication (f1)
4 check Nonce is correct

SV 2016–17 Case Studies I CryptoSec 663 / 1037

Security Misses

network is not authenticated (network only proves he received
authorization from operator)
→ attack by fake network rerouting through expensive networks
of unencrypted network
no encryption awareness

SV 2016–17 Case Studies I CryptoSec 664 / 1037

Mobile Telephony (In)security

2G 3G
confidentiality / ,
message authentication / ,
message integrity / ,
challenge freshness / ,
mobile authentication , ,
network authentication / /
key establishment / ,
frame sequentiality , ,
privacy / ,

SV 2016–17 Case Studies I CryptoSec 665 / 1037

Other Standards

DECT: wireless telephone (connected to fixed base line)
DSAA: DECT standard Authentication Algorithm
DSC: DECT standard Cipher
standard is not public (but published and broken!)
EDGE (used to be GPRS)
GEA: GPRS Encryption Algorithm
standard is not public
cdmaOne (also called IS-95 or CDMA)
no SIM card
CAVE: Cellular Authentication and Voice Encryption
ORYX: encryption algorithm (stream cipher)
CMEA: Cellular Message Encryption Algorithm

SV 2016–17 Case Studies I CryptoSec 666 / 1037

7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains

SV 2016–17 Case Studies I CryptoSec 667 / 1037

IEEE 802.11 in a Nutshell

protocol for wireless local area network (WLAN) at the link level
since 1997
corporate or ad-hoc mode
secure communication by wired equivalent privacy (WEP)
station authentication by Shared Key Authentication (SKA)
since 2003: interim Wi-Fi Protected Access (WPA)
due to security issues
since 2004: added WPA2 (complete change)

SV 2016–17 Case Studies I CryptoSec 668 / 1037

WEP Security Goals

privacy as if communication was through a wired connection
protect against unauthorized access

use up to 4 (common) pre-shared key to be manually set
→ key not frequently changed
→ key not too long (40 or 104 bits)
→ key stored at many places
entirely based on RC4 stream cipher

SV 2016–17 Case Studies I CryptoSec 669 / 1037

WEP Encryption

plaintext frame

IV

key

-

-
KSA init. state- PRGA -key frm ⊕ - ciphertext frame

- append ICV (CRC32)

6

- IV

self-synchronizing stream cipher (24-bit IV sent in clear)
integrity protection using CRC32

→ packets are easily malleable (Borisov-Goldberg-Wagner 2001)

Enckey(IV, plaintext)⊕ [∆∥CRC32(∆)] = Enckey(IV,plaintext⊕∆)

SV 2016–17 Case Studies I CryptoSec 670 / 1037

WEP and SKA Issues

collision on IV’s
a 24-bit IV repeats itself, sooner or later
use linearity of CRC32
if modification injected, make it coherent with CRC32 encoding
dedicated attack on WEP/RC4 encryption
Fluhrer-Mantin-Shamir 2001 and follow up’s
passive ciphertext only attack
(with some bytes of each frame known)
after sniffing 20 000 packets, probability to recover the key is 1

2
Sepehrdad-Vaudenay-Vuagnoux 2012

SV 2016–17 Case Studies I CryptoSec 671 / 1037

WEP (In)security

security is snake oil:

confidentiality /
message authentication /
message integrity /
message freshness no protection
key establishment (pre-shared)
message sequentiality no protection
privacy /

SV 2016–17 Case Studies I CryptoSec 672 / 1037

WPA: a Dirty Quick Fix

WPA-TKIP (Temporal Key Integrity Protocol):
make the RC4 key change for every packet (based on a master
key)
message integrity (with a bad MAC...)
check IV increases to protect against replay attacks
set up master key using EAP (Extensible Authentication
Protocol)

PSK (Pre-Shared Key)
one of the possible authentication protocols form 802.1x using an
authentication server (e.g. RADIUS)

SV 2016–17 Case Studies I CryptoSec 673 / 1037

EAP

EAP-PSK (Pre Shared Key) derive master key from passphrase
EAP-TLS need a certificate for server and station
EAP-TTLS (Tunneled TLS) need a certificate for server then a
login and password for station
EAP-PEAP similar as TTLS with a different protocol
EAP-SIM using a SIM card in GSM network
EAP-AKA same as SIM but for UMTS
EAP-LEAP (Cisco protocol) no longer recommended
EAP-FAST (Cisco protocol to replace LEAP)

SV 2016–17 Case Studies I CryptoSec 674 / 1037

WPA (In)security

confidentiality ,// (academic attacks)
message authentication / (MICHAEL is broken)
message integrity /
message freshness ,
key establishment depends
message sequentiality no protection (packet drops)
privacy /

SV 2016–17 Case Studies I CryptoSec 675 / 1037

WPA2

RC4 replaced by AES CCMP (CCM Protocol = AES in CCM mode)
128 or 256 bit key

SV 2016–17 Case Studies I CryptoSec 676 / 1037

WPA2 (In)security

confidentiality ,
message authentication ,
message integrity ,
message freshness ,
key establishment depends
message sequentiality no protection (packet drops)
privacy /

SV 2016–17 Case Studies I CryptoSec 677 / 1037

7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains

SV 2016–17 Case Studies I CryptoSec 678 / 1037

The Bluetooth Project
short-range wireless technology
designed to transmit voice and data
for a variety of mobile devices (computing, communicating, ...)
bring together various markets

1Mbit/sec up to 10 meters over the 2.4-GHz radio fequency
robustness, low complexity, low power, low cost

SV 2016–17 Case Studies I CryptoSec 679 / 1037

Bluetooth History

10th Century: Viking King Harald Blåtand (Harold Bluetooth)
tried to unify Denmark, Norway, and Sweden
1994: Ericsson initiated a study to investigate the feasibility
May 20, 1998: Bluetooth announced, controled by the Special
Interest Group (SIG) formed by

Ericsson, IBM, Intel, Nokia, and Toshiba
1999: Bluetooth 1.0 Specification Release
2004: Bluetooth 2.0 Specification Release
2007: Bluetooth 2.1 Specification Release (add SSP)
2009: Bluetooth 3.0 Specification Release (add 802.11)
2010: Bluetooth 4.0 Specification Release (add LE)

SV 2016–17 Case Studies I CryptoSec 680 / 1037

Bluetooth Security

mode 1: non-secure
mode 2: service level enforced security
mode 3: link level enforced security
mode 4 (since v4.0): service+link level enforced security

SV 2016–17 Case Studies I CryptoSec 681 / 1037

Bluetooth Security Basics (Link Level)

can switch device to
non connectable (Bluetooth is off)
connectable but not discoverable (invisible without knowing the
MAC address)
discoverable (introduce itself upon any broadcast request)

pairing to set up link keys between devices
typically based on a random PIN
(dummy device) using a built-in PIN

can manage a database of paired devices

SV 2016–17 Case Studies I CryptoSec 682 / 1037

Cycles in Bluetooth

set discoverable mode

?
pairing protocol

?
set non-discoverable mode

?
peer authentication

?
encrypted communication

?
go to sleep

�

6

?

user monitored

SV 2016–17 Case Studies I CryptoSec 683 / 1037

A Strange Integrity Protection

plaintext frame

CLK

BD ADDR

Kc

-

-

-

Encryption -2745 bits⊕ - ciphertext frame

- append a CRC

6

→ packets are easily malleable (Borisov-Goldberg-Wagner 2001)

SV 2016–17 Case Studies I CryptoSec 684 / 1037

Device Pairing

Device 1 Device 2

Operator

PIN

� request, . . . -

PIN

U
�

protocol
-

Klink Klink

SV 2016–17 Case Studies I CryptoSec 685 / 1037

Legacy Pairing Protocol

? ?

PIN

Rnd

? ?
E22 E22

User

Kinit Kinit

?

? ?

?
Rnd

?

-⊕ -⊕

?

⊕
Rnd

?

�⊕�

?? ? ? ?
AddrA AddrB AddrB AddrA

E21 E21 E21 E21

- � - �⊕ ⊕

? ?
Klink KlinkRadio

SV 2016–17 Case Studies I CryptoSec 686 / 1037

Legacy Pairing Protocol

Master A Slave B

user inputs PIN code
pick IN RAND IN RAND−−−−−−−−−→ user inputs PIN code

Kinit = E22(PIN, IN RAND) Kinit = E22(PIN, IN RAND)
pick LK RANDA pick LK RANDB

CA = LK RANDA ⊕ Kinit CB = LK RANDB ⊕ Kinit
CA−−−−−−−−−→
CB←−−−−−−−−−

LK RANDB = CB ⊕ Kinit LK RANDA = CA ⊕ Kinit
compute K compute K

K = E21(LK RANDA,BD ADDRA)⊕ E21(LK RANDB,BD ADDRB)

SV 2016–17 Case Studies I CryptoSec 687 / 1037

Pairing with a Dummy Device

Device Dummy

Operator Factory

PIN

?

PIN�

Kunit

PIN

� request, . . . -�
protocol

-

Kunit

SV 2016–17 Case Studies I CryptoSec 688 / 1037

Legacy Pairing with a Dummy Device

Master A Slave B

user inputs PIN code
pick IN RAND IN RAND−−−−−−−−−→ user inputs PIN code (or not)

Kinit = E22(PIN, IN RAND) Kinit = E22(PIN, IN RAND)
CB←−−−−−−−−− CB = Kunit ⊕ Kinit

K = CB ⊕ Kinit K = Kunit

link key is forced to be the unit key

→ problem if dummy device is (or has been) paired with multiple
devices

SV 2016–17 Case Studies I CryptoSec 689 / 1037

Dummy Devices: Unit Key is Shared with Many
Devices

Device 2

Dummy

Device 1

Kunit

y

Kunit9

scenario: user A paired his headset (Dummy) with his telephone
(Device 1) then user B took the headset for a few seconds to pair it
with his computer (Device 2)...

SV 2016–17 Case Studies I CryptoSec 690 / 1037

Peer Authentication

Master A Slave B

pick AU RANDB
AU RANDB−−−−−−−−−−−−−−−−−−−→

check SRESB
SRESB←−−−−−−−−−−−−−−−−−−− compute SRESB

AU RANDA←−−−−−−−−−−−−−−−−−−− pick AU RANDA

compute SRESA
SRESA−−−−−−−−−−−−−−−−−−−→ check SRESA

SRESd = E1(K ,AU RANDd ,BD ADDRd)

SV 2016–17 Case Studies I CryptoSec 691 / 1037

Missing Security Protection

Cryptographic pseudorandom generator
→ some device may have poor generators
Liveliness + session sequentiality
→ some packets may be removed (Kügler 2003)
Strong anonymity
→ traceability (Jakobsson-Wetzel 2001)

SV 2016–17 Case Studies I CryptoSec 692 / 1037

Insecurity Summary

dummy devices use the same key with many devices
suspicious security of cryptographic primitives
academic attacks on E0 encryption
integrity protection is void
messages can be maliciously erased in the radio channel
privacy protection is weak (low entropy BD ADDR)
pairing protocol weak against passive attacks (next slides)

SV 2016–17 Case Studies I CryptoSec 693 / 1037

Key Establishment (In)security

Theorem
The pairing protocol is secure if either PIN has large entropy or the
protocol is run through a private channel (under some “reasonable
assumptions” about the cryptographic algorithms).

, a cheap pragmatic security/ pretty weak security

devastating sniffing attacks in other cases! (Jakobsson-Wetzel 2001)

SV 2016–17 Case Studies I CryptoSec 694 / 1037

Sniffing + Offline Attack

Assumption: pairing not made in a private environment (channel not
confidential) and guessable PIN (lazzy operator)

1 sniff the pairing protocol, get IN RAND,CA,CB

2 −→ can compute Klink from PIN
3 sniff a peer-authentication protocol, get rand,F (rand,Klink)

4 −→ can check a guess on Klink

5 run an offline exhaustive search on PIN

SV 2016–17 Case Studies I CryptoSec 695 / 1037

Online Impersonation Attack

Adversary Slave

receive PIN
IN RAND−−−−−−−−−−−−−→

CA−−−−−−−−−−−−−→
CB←−−−−−−−−−−−−− compute Klink

AU RandB−−−−−−−−−−−−−→
RESB←−−−−−−−−−−−−− RESB = E1(Klink,AU RandB)

exhaustive search on PIN s.t.
RESB = E1(f (PIN, IN RAND,CA,CB),AU RandB)
compute Klink = f (PIN, IN RAND,CA,CB)

AU RandA←−−−−−−−−−−−−−
RESA = E1(Klink,AU RandB)

RESA−−−−−−−−−−−−−→

SV 2016–17 Case Studies I CryptoSec 696 / 1037

Possible Countermeasures

do not use short PIN
→ not realistic
only make pairing in a bunker
→ not realistic
live with it and make it resilient
→ feasible by refreshing Klink

SV 2016–17 Case Studies I CryptoSec 697 / 1037

Pairing in Two Phases: Preparing and Repairing

Master A Slave B

user inputs PIN code
pick IN RAND IN RAND−−−−−−−−−→ user inputs PIN code

Kinit = E22(PIN, IN RAND) Kinit = E22(PIN, IN RAND)
pick LK RANDA pick LK RANDB

CA = LK RANDA ⊕ Kinit CB = LK RANDB ⊕ Kinit
CA−−−−−−−−−→
CB←−−−−−−−−−

LK RANDB = CB ⊕ Kinit LK RANDA = CA ⊕ Kinit
compute Klink compute Klink

preparing and repairing

SV 2016–17 Case Studies I CryptoSec 698 / 1037

A Possible Better Usage

preparing

?

PIN

-K0 repairing -K1 repairing K2· · ·

if Kt−1 is compromised and repairing is private, then Kt is safe
if Ki is securely set up and if Ki+t is the first compromised key, all
communications using Ki , . . . ,Ki+t−1 are safe (forward secrecy)

SV 2016–17 Case Studies I CryptoSec 699 / 1037

Bluetooth v2.0 Summary

light weight cryptography

initial authenticated channel by human interaction with devices
key exchanged based on a PIN and E21, E22 (pairing)
derivation of a single 128-bit long term link key
secure channel based on E0, E1, E3

several missing security properties: packet authentication,
detection of packet loss, privacy, ...

SV 2016–17 Case Studies I CryptoSec 700 / 1037

Bluetooth v2.0 (In)security

Current (mode 3) security is rather poor:

confidentiality , (attacks still academic so far)
message integrity /
message authentication / (auth. by encryption without integrity)
frame freshness , (based on clock value)
key establishment v2.0 / (pragmatic repairing possible)
frame sequentiality / (message loss)
privacy /

SV 2016–17 Case Studies I CryptoSec 701 / 1037

Moral

PIN has low entropy
(humans cannot generate ephemeral PINs with high entropy)

offline passive key recovery:
key agreement is based on conventional cryptography (so cannot
resist to passive adversaries)
online impersonation attack:
assuming the adversary is second to authenticate itself, the
password-based key agreement does not even resist
impersonation
next generation needs

be user friendly
be device friendly (no expensive crypto)
resist passive and active adversaries

→ use SAS-based cryptography (to be seen in Chapter 9)

SV 2016–17 Case Studies I CryptoSec 702 / 1037

Bluetooth v2.1: Secure Simple Pairing

4 variants
numeric comparison
passkey entry
just works (same as numeric comparison with no human work)
out-of-band (use an ad-hoc secure channel e.g. cable or near
field communication)

resist active adversary
resist passive adversary only (out-of-band may resist to active
adversaries depending on the secure channel)

SV 2016–17 Case Studies I CryptoSec 703 / 1037

Common Protocol

Device A Device B

ECDH
DHKey DHKey

authentication stage 1
(protocol dependent)

NA,NB, rA, rB NA,NB, rA, rB

EA = f3(· · ·) EA−−−−−−−−−−−−−→ check

check
EB←−−−−−−−−−−−−− EB = f3(· · ·)

LK = f2(· · ·) LK = f2(· · ·)
secure channel

SV 2016–17 Case Studies I CryptoSec 704 / 1037

Common Protocol
step 1: public key exchange
exchange ECDH public keys using standard parameters (may be
ephemeral or static) leading to a key DHKey
steps 2–8: authentication stage 1 (protocol dependent)
this stage authenticates the ECDH public keys and exchange
some values NA, NB, rA, rB

steps 9–11: authentication stage 2
mutual authentication after ECDH protocol using NA, NB, rA, rB:
A resp. B produces EA resp. EB and checks EB resp. EA

EA = f3(DHKey,NA,NB, rB, IOcapA,BD ADDRA,BD ADDRB)

EB = f3(DHKey,NB,NA, rA, IOcapB,BD ADDRB,BD ADDRA)

step 12: link key calculation
key derivation from DHKey, Na, Nb, and the addresses

LK = f2(DHKey,Nmaster,Nslave, btlk,BD ADDRmaster,BD ADDRslave)

step 13: encryption (business as usual)

SV 2016–17 Case Studies I CryptoSec 705 / 1037

ECDH Common Protocol
domain parameters:
use secp192r1 = P192, the elliptic curve of order r over the Zp

field defined by y2 = x3 + ax + b which is generated by G:

p = 2192 − 264 − 1

a = −3 mod p

b = 2455155546008943817740293915197451784769108058161191238065

r = 6277101735386680763835789423176059013767194773182842284081

Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

= 602046282375688656758213480587526111916698976636884684818

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

= 174050332293622031404857552280219410364023488927386650641

note that 2192 − 295 < r < 2192 and r is prime
key agreement function: given an integer u and a point V ,
P192(u,V) is the x-coordinate of the point uV

DHKey = P192(SKA,PKB) = P192(SKB,PKA)

SV 2016–17 Case Studies I CryptoSec 706 / 1037

The New Bluetooth Menagery

f1(U,V ,X ,Z) = trunc128 (HMACX (U∥V∥Z))
g(U,V ,X ,Y) = SHA256X (U∥V∥X∥Y) mod 232

f2(W ,N1,N2, keyID,A1,A2) = trunc128 (HMACW (N1∥N2∥keyID∥A1∥A2))
f3(W ,N1,N2,R, IOcap,A1,A2) = trunc128 (HMACW (N1∥N2∥R∥IOcap∥A1∥A2))

variable Ai Ni U V W X Y Z keyID IOcap
bits 48 128 192 192 192 128 128 8 32 48

HMAC is HMAC-SHA256

the value of keyID for “btlk” is 0x62746c6b

SV 2016–17 Case Studies I CryptoSec 707 / 1037

Bluetooth Simple Secure Pairing Variants — i
Numeric Comparison

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

set rA = rB = 0 set rA = rB = 0
cB←−−−−−−−−−−−−− cB ← f1(PKB, P̂KA,NB, 0)
NA−−−−−−−−−−−−−→

ĉB
?
= f1(P̂KB,PKA, N̂B , 0)

NB←−−−−−−−−−−−−−
VA ← g(PKA, P̂KB,NA, N̂B) VB ← g(P̂KA,PKB, N̂A,NB)

display VA display VB

check VA = VB

output: NA, N̂B, rA, rB output: N̂A,NB, rA, rB

SV 2016–17 Case Studies I CryptoSec 708 / 1037

Security from Human-Monitored Short String
Authentication

Alice Bob-� insecure -�

? ?

AUTHENTICATION
INTEGRITY

communication over a cheap/efficient but insecure channel
security set up with the help of a short authenticated string (SAS)
authentication based on human monitoring

SV 2016–17 Case Studies I CryptoSec 709 / 1037

Numeric Comparison Analysis

Device A Adversary Device B
input: PKA, P̂KB input: P̂KA,PKB

pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

set rA = rB = 0 set rA = rB = 0
ĉB←−−−??

cB←−−− cB ← f1(PKB, P̂KA,NB, 0)
NA−−−→??

N̂A−−−→

ĉB
?
= f1(P̂KB,PKA, N̂B, 0)

N̂B←−−−??
NB←−−−

VA ← g(PKA, P̂KB,NA, N̂B) VB ← g(P̂KA,PKB, N̂A,NB)
display VA display VB

check VA = VB

output: NA, N̂B, rA, rB output: N̂A,NB , rA, rB

if (PKA, P̂KB) ̸= (P̂KA,PKB):
Adversary does not know VB before he selects N̂A
Adversary does not know VA (cannot influence it) before NA is given

SV 2016–17 Case Studies I CryptoSec 710 / 1037

Note on Numerical Comparison

idea: cB is a commitment to NB which is revealed after NA is
received, V ’s are hash of the public keys and N ’s
if the public keys are corrupted, the adversary must adapt the N ’s
so that the v ’s match but no N is free as soon as one is revealed
“just works” is a variant where no check is made
(vulnerable to active attacks)
presumably, not many human users will carefully compare the
32-bit strings VA and VB

SV 2016–17 Case Studies I CryptoSec 711 / 1037

Bluetooth Simple Secure Pairing Variants — ii
Passkey Entry

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

type r1 · · · rk

FOR i = 1 to k
pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

cA ← f1(PKA, P̂KB,NA, ri)
cA−−−−−−−−−−−−−→
cB←−−−−−−−−−−−−− cB ← f1(PKB, P̂KA,NB, ri)
NA−−−−−−−−−−−−−→ ĉA

?
= f1(P̂KA,PKB, N̂A, ri)

ĉB
?
= f1(P̂KB ,PKA, N̂B, ri)

NB←−−−−−−−−−−−−−
ENDFOR

keep the last NA and NB

output: NA, N̂B, r , r output: N̂A,NB, r , r

note: not really SAS-based since r must be secret until the end of the
protocol

SV 2016–17 Case Studies I CryptoSec 712 / 1037

Pass Entry Analysis

If (PKA, P̂KB) ̸= (P̂KA,PKB):
Adversary cannot forge ĉA and ĉB with a probability higher than 1

2
in each iteration (by trying to guess ri)
So, he cannot pass with probability higher than 2−k

SV 2016–17 Case Studies I CryptoSec 713 / 1037

Bluetooth Simple Secure Pairing Variants — iii
Out-of-Band

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

pick rA ∈U {0, 1}128 pick rB ∈U {0, 1}128

cA ← f1(PKA,PKA, rA, 0) cB ← f1(PKB,PKB, rB, 0)
authenticateA(rA,cA)−−−−−−−−−−−−−→
authenticateB(rB ,cB)←−−−−−−−−−−−−−

cB
?
= f1(P̂KB, P̂KB, rB, 0) cA

?
= f1(P̂KA, P̂KA, rA, 0)

pick NA ∈U {0, 1}128 NA−−−−−−−−−−−−−→
NB←−−−−−−−−−−−−− pick NB ∈U {0, 1}128

output: NA, N̂B, rA, rB output: N̂A,NB, rA, rB

SV 2016–17 Case Studies I CryptoSec 714 / 1037

Bluetooth Low Energy (LE) in v4.0

previously known as WiBree (developped by Nokia)
similar association models, but no public-key crypto anymore
some ill-designed association model
a strange key hierarchy with not so much entropy in session key
derivation

SV 2016–17 Case Studies I CryptoSec 715 / 1037

7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains

SV 2016–17 Case Studies I CryptoSec 716 / 1037

SAS-Based Secure Comunication

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6AUTHENTICATION
INTEGRITY

(narrowband channel)

SAS SAS

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Case Studies I CryptoSec 717 / 1037

Message Authentication Protocols
Alice (IDA) Bob
input: m

-
�

-
�

-
�

-
�

output: ID, m̂

functionality: ID = IDA and m̂ = m
security: if ID = IDA then m̂ = m
application: semi-A key agreement
(m is a symmetric key for secure channel so that Bob knows he
is talking to Alice)

SV 2016–17 Case Studies I CryptoSec 718 / 1037

Message Cross-Authentication Protocols

Alice (IDA) Bob (IDB)
input: mA input: mB

-
�

-
�

-
�

-
�

output: IDB,mB output: IDA,mA

two message authentication protocols at the same time
application: authenticated key agreement
(mA and mB are Diffie-Hellman public keys)

SV 2016–17 Case Studies I CryptoSec 719 / 1037

Application I: Personal Area Network Setup

Device 1 Device 2

Operator

request, m, c -�
d

-

SAS
�

SAS

U

SV 2016–17 Case Studies I CryptoSec 720 / 1037

Application II: Voice over IP
Existing Standard: ZRTP

Alan Jon

zfone1 zfone2

?

verified

6

SAS2: y71o

6
SAS1: sgmf

(voice recognition) ?

verified

-
�

SV 2016–17 Case Studies I CryptoSec 721 / 1037

Application III: Peer-to-Peer PGP Channel Setup

SV 2016–17 Case Studies I CryptoSec 722 / 1037

Application IV: Disaster Recovery

on the road, after a key loss (computer crash, stolen laptop)
−→ set up of a security association
PKI collapse (company bankrupt, main key sold, act of God)
−→ set up of a security association

SV 2016–17 Case Studies I CryptoSec 723 / 1037

Semi-Authenticated Non-Interactive: Application

SV 2016–17 Case Studies I CryptoSec 724 / 1037

Folklore (Balfanz-Smetters-Stewart-Chi Wong
2002)

Alice Bob
input: m

m−−−−−−−−−−−−−−−−−−−−−−→
h← H(m)

authenticateAlice(h)−−−−−−−−−−−−−−−−−−−−−−→ check h = H(m̂)

output: Alice, m̂

, efficient, provably security assuming collision resistance/ this requires SAS of at least 160 bits

SV 2016–17 Case Studies I CryptoSec 725 / 1037

A Collision Attack

if SAS is so short that we can find collisions h(m) = h(m′), m ̸= m′,
make Alice run the protocol with m but change the message to Bob to
m′

Alice Eve Bob
input: m

m−−−−−→ m′

−−−−−→

h← H(m)
authenticateAlice(h)−−−−−−−−−−−−−−−−−−−−→ check h = H(m′)

output: Alice,m′

SV 2016–17 Case Studies I CryptoSec 726 / 1037

Pasini-Vaudenay 2006: SAS-Based NIMAP

Alice Bob
input: m

c ← commit(m; r)
m∥r−−−−−−−−−−−−−−→ ĉ ← commit(m̂, r̂)

SAS← H(c)
authenticateAlice(SAS)−−−−−−−−−−−−−−→ check SAS = H(ĉ)

output: Alice, m̂

, provable security, efficient, can work with SAS of 80 bits (the least possible for NIMAP)

SV 2016–17 Case Studies I CryptoSec 727 / 1037

Semi-Authenticated Interactive
Vaudenay 2005

Alice Bob
input: m

pick RA ∈U {0, 1}k pick RB ∈U {0, 1}k

c ← commit(m,RA; r)
m∥c−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−

RA∥r−−−−−−−−−−−−−−→ ĉ ?
= commit(m̂, R̂A; r̂)

SAS← RA ⊕ R̂B
authenticateAlice(SAS)−−−−−−−−−−−−−−→ check SAS = R̂A ⊕ RB

output: Alice, m̂

, provable security, efficient, can work with SAS of 20 bits

SV 2016–17 Case Studies I CryptoSec 728 / 1037

Authenticated Interactive
Zimmermann 1995: PGPfone

Alice Bob

pick xA, yA ← gxA pick xB, yB ← gxB

commit to (yA)−−−−−−−−−−−−−−−→
yB←−−−−−−−−−−−−−−−

zA ← ŷxA
B

open commitment−−−−−−−−−−−−−−−→ zB ← ŷxB
A

SAS← truncH(yA∥ŷB)
authenticateAlice(SAS)−−−−−−−−−−−−−−−→ SAS ?

= truncH(ŷA∥yB)

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−

output: Bob, zA output: Alice, zB

SV 2016–17 Case Studies I CryptoSec 729 / 1037

Attack on a Variant Without Commitment

Alice Bob

pick xA pick x̂A, ŷA ← g x̂A pick xB

yA ← gxA
yA−−−→

ŷA−−−→ yB ← gxB

pick x̂B , ŷB ← g x̂B s.t.
yB←−−−

ŷB←−−− h(yA∥ŷB) = h(ŷA∥yB)

zA ← ŷxA
B zA ← y x̂B

A , zB ← y x̂A
B zB ← ŷxB

A

SAS← h(yA∥ŷB)
authenticateAlice(SAS)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SAS ?
= h(ŷA∥yB)

check SAS
authenticateBob(SAS)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

output: Bob, zA zA, zB output: Alice, zB

SV 2016–17 Case Studies I CryptoSec 730 / 1037

Conclusion on Manual Key Establishment

secure communications over insecure channels can be manually
set up by a human operator
public-key -less solutions: although pretty weak, Bluetooth
standards can offer a pragmatic costless security when properly
used
applications: personal area network, VoIP, peer-to-peer, disaster
rescue

SV 2016–17 Case Studies I CryptoSec 731 / 1037

References on SAS-Based Cryptography
1 D. Balfanz, D. K. Smetters, P. Stewart, H. Chi Wong.

Talking to Strangers: Authentication in Ad-Hoc Wireless Networks.
In Network and Distributed System Security Symposium Conference (NDSS 02), 2002.

2 C. Gehrmann, C. Mitchell, K. Nyberg.
Manual Authentication for Wireless Devices.
In RSA Cryptobytes, vol. 7, pp. 29–37, 2004.

3 S. Vaudenay.
Secure Communications over Insecure Channels Based on Short
Authenticated Strings.
In Advances in Cryptology (CRYPTO’05), LNCS vol. 3621, pp. 309–326, 2005.

4 S. Pasini, S. Vaudenay.
Secure Communications over Insecure Channels Using an
Authenticated Channel.
In Topics in Cryptology (CT-RSA’06), LNCS vol. 3860, pp. 280–294, 2006.

5 S. Pasini, S. Vaudenay.
SAS-Based Authenticated Key Agreement.
In Public Key Cryptography (PKC’06), LNCS vol. 3958, pp. 385–409, 2006.

SV 2016–17 Case Studies I CryptoSec 732 / 1037

7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains

SV 2016–17 Case Studies I CryptoSec 733 / 1037

Application: Access Control

many scenarios:
access of human user to a computer
access of a person to a door: “Sésame”
access of human user to a mailbox
access of human user to a service through the Internet

access control = peer authentication

SV 2016–17 Case Studies I CryptoSec 734 / 1037

Password Authentication Protocol (Step 1)

PROBLEM: authenticate a client to a server
HYPOTHESIS 1: channel to server keeps confidentiality
example:

physical access
secure channel from semi-authenticated setup
(client authenticates the server e.g. using a PKI)

SV 2016–17 Case Studies I CryptoSec 735 / 1037

Password Authentication Protocol — i

server keeps a database of (ID,password) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID,w)
check w = password

Problem: if adversary has access to database he can get the
password

SV 2016–17 Case Studies I CryptoSec 736 / 1037

Password Authentication Protocol — ii

server keeps a database of (ID,OW(password)) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID,w)
check w = OW(password)

Problem: multi-target invertion attacks
(specially when password have low entropy)

SV 2016–17 Case Studies I CryptoSec 737 / 1037

Password Authentication Protocol — iii

server keeps a database of (ID, salt,OW(password, salt)) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID, salt,w)
check w = OW(password, salt)

advantages:
avoid multi-target bruteforce attacks from database

(does not avoid single-target exhaustive search from database)

SV 2016–17 Case Studies I CryptoSec 738 / 1037

Password Access Control Using Salt

Password Password

- �

?

-

?

Salt

Hash Hash

- - =

?

Enrolment Record Control

SV 2016–17 Case Studies I CryptoSec 739 / 1037

Example: UNIX Password Access Protocol

User Work station
login?←−−−−−−−−−−−−−−−−−−−

type ID ID−−−−−−−−−−−−−−−−−−−→
password?←−−−−−−−−−−−−−−−−−−−

type w w−−−−−−−−−−−−−−−−−−−→
check using a
database storing
(ID, salt,OW(w , salt))

SV 2016–17 Case Studies I CryptoSec 740 / 1037

UNIX Passwords

clock

6

6
salt (12)

6 6 6

0 -≈DES -≈DES - · · · -≈DES -/etc/passwd

? ? ?

w (56) ID

?

SV 2016–17 Case Studies I CryptoSec 741 / 1037

Online and Offline Passwords Recovery

online offline
method try to connect us-

ing a guess for
the password until
it works

get a witness look
for a guess which is
consistent with the
witness

countermeasure
increasing
delay before
new attempt
blocked after
xx trials

password with
large entropy
use salt

SV 2016–17 Case Studies I CryptoSec 742 / 1037

Examples

Basic Access Control in HTTP [RFC2617]
IMAP4rev1 [RFC2060]
tequila authentication at EPFL

SV 2016–17 Case Studies I CryptoSec 743 / 1037

Pros and Cons

Pros
the server does not keep the password (only a digest)
the client need not run any calculation (nice for human clients!)

Cons
does not work through a channel without confidentiality
protection: the password can be compromised

SV 2016–17 Case Studies I CryptoSec 744 / 1037

Password Authentication Protocol (Step 2)

PROBLEM: authenticate a client to a server
HYPOTHESIS 2: adversary is passive
example: unencrypted semi-authenticated channel (client
authenticates the server e.g. using a PKI but they are not
allowed to use encryption)

SV 2016–17 Case Studies I CryptoSec 745 / 1037

Passive vs Active Adversary

passive adversary: only listen to communications and tries to
get credential to later pass access control
active adversary: can interfere with client or server
communications e.g. man-in-the-middle

SV 2016–17 Case Studies I CryptoSec 746 / 1037

Challenge/Response Protocol

server keeps a database of (ID, secret) entries
adversary is passive

Client Server

ID−−−−−−−−−−−−−−→ get entry (ID,w)
challenge c←−−−−−−−−−−−−−− pick c at random

r = PRFsecret(c)
response r−−−−−−−−−−−−−−→ check r = PRFw (c)

SV 2016–17 Case Studies I CryptoSec 747 / 1037

Challenge/Response Protocol

Secret Secret

- �

?

Challenge

Response

?

random

PRF PRF

- =

?

Client Server

SV 2016–17 Case Studies I CryptoSec 748 / 1037

Pros and Cons

Pros
resistance to passive adversary (if secret has large entropy)

Cons
the server must keep the secret and strongly protect the
database
vulnerable to relay attacks
vulnerable to passive offline attacks (if secret has low entropy)
vulnerable to active adversary

SV 2016–17 Case Studies I CryptoSec 749 / 1037

Examples

GSM
CHAP Access Control in PPP [RFC1334]
Digest Access Control in HTTP [RFC2617]
Bluetooth peer authentication
access control to UBS account (later in this chapter)

SV 2016–17 Case Studies I CryptoSec 750 / 1037

The GSM Case

SIM Telephone Radio Network Operator

A5

?

-

Plaintext

A8

A3

-� Ciphertext
A5

?

�

Plaintext

-Response
Compare � A3

A8

Random

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?

SV 2016–17 Case Studies I CryptoSec 751 / 1037

S/Key - OTP [RFC2289]

possible hash function H: md4, md5, sha1

Client Server

choose w w−−−−−−−−−−−−−−→ s at random
store p1, . . . , pN

s,p1,...,pN←−−−−−−−−−−−−−− pi ← HN+1−i(w , s)

i ← 1 i ← 1, p ← p0
...

request−−−−−−−−−−−−−−→
recompute or from list

otp-⟨H⟩ i s←−−−−−−−−−−−−−−
y ← pi

y−−−−−−−−−−−−−−→ check H(y) = p
... p ← y , i ← i + 1

challenges must be authenticated
responses shall be protected against delays in delivery

SV 2016–17 Case Studies I CryptoSec 752 / 1037

Pros and Cons

Pros
the server does not keep the secret
resistance to passive adversary

Cons
used with a single server (or securely synchronized ones)
not user-friendly: user has to work (e.g. wear a long list and
check passwords in it)
still vulnerable to relay attacks

SV 2016–17 Case Studies I CryptoSec 753 / 1037

Human Factor against Password Access Control

weak passwords: short, trivial (in dictionaries, first name)
long passwords are hard to remember
people are lazy (or don’t want to be bothered)
write passwords on post’it, bypass security protocols, ...

SV 2016–17 Case Studies I CryptoSec 754 / 1037

Alternate Authentication Means

from what you know: password,always available (unless forgotten)/must address the human factor
from what you possess: secure token (smart card, dongle,
secureID, key lock),tamper proof, can perform cryptographic operations/can be stolen, lost, forgotten
from what you are: biometrics,always available/fuzzy, not very secure, threat to humankind

strong authentication = authentication using at least two methods
(2-way authentication)
example: smart card + PIN code

SV 2016–17 Case Studies I CryptoSec 755 / 1037

Example: UBS E-Banking

card reader
with dis-
play and
keyboard

smart card

web interface
� challenge

-
response

6
challenge

?
response

1 type contract number
2 insert smart card
3 switch calculator on
4 type PIN code
5 read challenge, type it on calculator keyboard
6 read response, type it on browser interface

smart card + external reader (calculator)
challenge-response protocol

SV 2016–17 Case Studies I CryptoSec 756 / 1037

Password-based Authenticated Key Exchange
(PAKE)

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY
(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Case Studies I CryptoSec 757 / 1037

Password vs Secret Keys

secret keys are stored by computers (can be pretty long)
passwords are also kept in human memories
typically: password have less than 48 bits of entropy

SV 2016–17 Case Studies I CryptoSec 758 / 1037

How to Solve the Problem?

with no other setup assumptions (no secure token)
cannot assume a password with large entropy
find a pragmatic and technical solution
−→ leak no information which could be used to run offline attacks
−→ live with online dictionary attacks (slow down tests, audit, ...)

SV 2016–17 Case Studies I CryptoSec 759 / 1037

Online Dictionary Attack: a Generic Attack

generic
1: repeat
2: make a new guess ŵ following a dictionary
3: simulate Alice with password ŵ
4: launch an instance of the Bob protocol
5: make the simulator and Bob talk to each

other
6: until Bob accepts
7: print ŵ

a protocol is secure if this attack is the best one

SV 2016–17 Case Studies I CryptoSec 760 / 1037

Password-Based Authenticated Key Agreement
Alice Bob

password: w password: w
random tape: rA random tape: rB

-
�

-
�

-
�

output: KA output: KB

functionality: KA = KB = K
security

active adversary learns (almost) nothing about w
if party ends on K the active adversary has no clue about K

SV 2016–17 Case Studies I CryptoSec 761 / 1037

A New Primitive

functionality
ProtoA(w)↔ProtoB(w)
↓ ↓
K = K

security
confidentiality of w ,K

Alice and Bob, ProtoA, ProtoB

components

PAKE

SV 2016–17 Case Studies I CryptoSec 762 / 1037

Subproblem: Password-based Access Control
Alice Bob

password: w password: w
random tape: rA random tape: rB

-
�

-
�

-
�

output: ok

functionality: the protocol completes
security

active adversary learns (almost) nothing about w
if Bob completes then Alice has the same view on the protocol

SV 2016–17 Case Studies I CryptoSec 763 / 1037

1st (Bad) Example: Password Access Control

Alice Bob
password: w password: w

w−−−−−−−−−−−−−−−−−−−−−−→ check w = ŵ

output: ok

w is disclosed

SV 2016–17 Case Studies I CryptoSec 764 / 1037

2nd (Bad) Example: Challenge/Response Protocol

Alice (ID) Bob
password: w password: w

request−−−−−−−−−−−−−−→
chall←−−−−−−−−−−−−−− pick chall

res = MACw (chall) res−−−−−−−−−−−−−−→ check res = MACw (chall)

output: ok

subject to offline exhaustive search

SV 2016–17 Case Studies I CryptoSec 765 / 1037

Key Agreement: a (Bad) Idea

Alice Bob
password: w password: w

pick xA, yA ← gxA
yA∥MACw (yA)−−−−−−−−−−−−−−−−−−−→ check MAC

check MAC
yB∥MACw (yB)←−−−−−−−−−−−−−−−−−−− pick xB, yB ← gxB

zA ← yxA
B zB ← yxB

A
(z = gxAxB)

output: zA output: zB

subject to offline exhaustive search

SV 2016–17 Case Studies I CryptoSec 766 / 1037

Key Agreement: Another (Bad) Idea

Alice Bob
password: w password: w

RSA.Gen→ (N,e,d) N,e−−−−−−−−−−→ pick K

K̂ ← Decw (ĉ)d mod N c←−−−−−−−−−− c ← Encw (K e mod N)

output: K̂ output: K

if K can later be tested, offline exhaustive search possible

partition attack: eliminate all ŵ such that Decŵ(c) ≥ N

SV 2016–17 Case Studies I CryptoSec 767 / 1037

Existing Protocols

Bellovin-Merritt 1992: EKE
general construction paradigm
can be based on ElGamal, Diffie-Hellman, RSA or other
informal (no security proof)

Lucks 1997: OKE (later broken)
Wu 1997: SRP (Secure Remote Password), quite popular
EKE variants based on Diffie-Hellman

Bellare-Pointcheval-Rogaway 2000: EKE2
Boyko-MacKenzie-Patel 2000: PAK
Bellare-Rogaway 2000: AuthA (several variants)
Katz-Ostrovski-Yung 2001 (security proof without random oracles)
MacKenzie 2002: the PAK suite (PPK, PAK-X, PAK-Y, PAK-Z, ...)
Abdalla-Chevassut-Pointcheval 2005: another EKE+AuthA variant
others: SPEKE, augmented EKE, B-SPEKE, AMP, Jiang-Gong, ...

protocols based on RSA
MacKenzie-Patel-Swaminathan 2000: SNAPI
Zhang 2004: PEKEP

SV 2016–17 Case Studies I CryptoSec 768 / 1037

EKE (Bellovin-Merritt 1992)

Generator

?

-

Public keySecret key

Password 6
?

Password6
? ?

Decrypt
Public key-Encrypt

Random

Key
?

Encrypt�Encrypt�Decrypt�Decrypt

?
Key

SV 2016–17 Case Studies I CryptoSec 769 / 1037

EKE (Bellovin-Merritt 1992) based on ElGamal

Alice Bob
password: w password: w

pick xA, yA ← gxA pick xB, yB ← gxB

pick RA ∈U {0, 1}k , pick RB ∈U {0, 1}k

cA ← encw (yA)
cA−−−−−−−−−→ ŷA ← decw (ĉA)

pick kB, z ← kB ŷxB
A

dB ← enckB (RB)

ŷB∥ẑ ← decw (ĉB)
cB∥dB←−−−−−−−−− cB ← encw (yB∥z)

kA ← ẑ/ŷxA
B

R̂B ← deckA(d̂B)

dA ← enckA(RA∥R̂B)
dA−−−−−−−−−→ R̂A∥R̂ ← deckB (d̂A)

check R̂ = RB

check RA = deckA(êB)
eB←−−−−−−−−− eB ← enckB (R̂A)

output: kA output: kB

SV 2016–17 Case Studies I CryptoSec 770 / 1037

Wu 2002: Secure Remote Password Protocol
(SRP-6)

Alice Bob
password: w secret: V = gH(s∥IDA∥w)

db entry: IDA∥s∥group∥V
IDA−−−−→

check ĝroup, W ← H(ŝ∥IDA∥w)
s∥group←−−−− retreive s∥group∥V

pick xA, yA ← gxA
yA−−−−→ pick xB, t ← 3V + gxB

r̂ ← H(yA∥t̂)
t←−−−− r ← H(ŷA∥t)

kA ← H((̂t − 3gW)xA+r̂W) kB ← H((ŷAV r)xB)

dA ← H(yA∥t̂∥kA)
dA−−−−→ check d̂A = H(ŷA∥t∥kB)

check d̂B = H(yA∥dA∥kA)
dB←−−−− dB ← H(ŷA∥d̂A∥kB)

output: H(kA) output: H(kB)

(group = (g, p), g generator of Z∗p, p and p−1
2 prime)

SV 2016–17 Case Studies I CryptoSec 771 / 1037

References on Password-Based Cryptography

C. Boyd, A. Mathuria.
Protocols for Authentication and Key Establishment.
Information Security and Cryptography, Springer Verlag, 2003.
S. M. Bellovin, M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary Attacks.
In IEEE symposium on Research in Security and Privacy, IEEE
Computer Society Press, pp. 72–84, 1992.

SV 2016–17 Case Studies I CryptoSec 772 / 1037

7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains

SV 2016–17 Case Studies I CryptoSec 773 / 1037

Signal

used in WhatsApp
secure messaging (confidentiality, authenticity, integrity of
messages)
forward and future secrecy (confidentiality preserved even
though secrets leak)
deniability (no transferable proof of message authorship leaks)
asynchronous (can be done offline)
detect replay/reorder/deletion attacks
allow decryption of out-of-order messages
don’t leak metadata

SV 2016–17 Case Studies I CryptoSec 774 / 1037

Initial Key Agreement
(keys are in Curve25519)

Alice Server Bob

Alice,aG−−−−−−−−−−−−−→ register
Bob,bG,xb,i G←−−−−−−−−−−−−−

Bob?−−−−−−−−−−−−−→

xb,eph ← xb,i G
bG,xb,i G←−−−−−−−−−−−−− erase xb,i G

pick xa,eph
state: (bG, xb,ephG, xa,ephG)

compute s
xa,ephG,xb,eph,Encsecret(msg)

−−→
[s = axb,ephG∥bxa,ephG∥xa,ephxb,ephG]

Alice?←−−−−−−−−−−−−−
aG−−−−−−−−−−−−−→ compute s

state: (aG, xa,ephG, xb,ephG)
decrypt

erase xb,eph
pick xb,eph

compute s
xb,ephG,xa,eph,Encsecret(msg)

←−− compute s

decrypt
erase xa,eph

...

SV 2016–17 Case Studies I CryptoSec 775 / 1037

Ratchet

A ratchet is a mechanical device which can only move forward.

forward secrecy: protects past sessions against future
compromises of long-term secret keys
future secrecy: protects future sessions against compromises
of ephemeral secret keys

SV 2016–17 Case Studies I CryptoSec 776 / 1037

Double Ratchet in Signal

3DH: a ratchet for every time the direction of exchange changes
needs synchronization between the two participants
good forward and future secrecy
a ratchet for every message in the same direction
no real future secrecy
plausible deniability

SV 2016–17 Case Studies I CryptoSec 777 / 1037

Ratchet for Messages

given xa,ephxb,ephG, Alice and Bob devide a sequence
CK0,MK0,CK1,MK1, . . .

MKi+1 = HMAC-SHA256CKi (0)
CKi+1 = HMAC-SHA256CKi (1)

the message i is encrypted using MKi with encrypt-then-MAC using
AES256 and HMAC-SHA256

other techniques to send sequence numbers, total number of
messages, etc

SV 2016–17 Case Studies I CryptoSec 778 / 1037

7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains

SV 2016–17 Case Studies I CryptoSec 779 / 1037

Bitcoins

virtual currency
launched in 2009 by an anonymous guy
(pseudo Satoshi Nakamoto)
completely decentralized, there is no authority
anyone creates its own account
broadcast transactions on a public ledger

SV 2016–17 Case Studies I CryptoSec 780 / 1037

A Bitcoin Transaction

“I, pk, holder of UTXO link1, . . . , linkn pay x1 to pk1, ..., xm to pkm”
[signature]

UTXO = unspent transaction output
requirement: x1 + · · ·+ xm equals sum of given UTXO
then, amounts from [link1], ..., [linkn] to pk become spent and
amounts from transaction become new UTXO with a link
problem: how to make sure that UTXO is really unspent
equivalent problem: how to make everybody “see” the same list
of transactions

SV 2016–17 Case Studies I CryptoSec 781 / 1037

Block Chain

a block from the block chain:
hash of the previous block (except for the genesis block)
list of transactions from the last period
proof-of-work (PoW) based on the above

scheme for miners (every 10 minutes):
take the longest valid block chain
collect all broadcast valid transactions with respect to this chain
make a new block and PoW
broadcast it
(the block can be used as an UTXO reward to the miner)

SV 2016–17 Case Studies I CryptoSec 782 / 1037

Proof-ok-Work

block shall contains for PoW value such that

SHA256(block) starts with 69 zero bits

69 is the difficulty of June 2016
it is constantly calibrated

SV 2016–17 Case Studies I CryptoSec 783 / 1037

Conclusion

Lightweight networks based on conventional cryptography only
(GSM, Bluetooth, ...)
Although limited, we can make many protocols with only
conventional cryptography
Assembling cryptographic primitives in a protocol is not trivial
access control based on

what you know (password)
what you have (a key in a secure token for challenge-response)
what you are (biometrics)

New notions: forward secrecy, plausible deniability, block chain,
proof-of-work

SV 2016–17 Case Studies I CryptoSec 784 / 1037

References

Borisov-Goldberg-Wagner. Intercepting Mobile
Communications: the Insecurity of 802.11. In MOBICOM 2001,
ACM.
Jakobsson-Wetzel. Security Weaknesses in Bluetooth. In
CT-RSA 2001, LNCS 2020.
Vaudenay. On Bluetooth Repairing: Key Agreement based on
Symmetric-Key Cryptography. In CISC 2005, LNCS 3822.
Beck-Tews. Practical Attacks against WEP and WPA. In WiSec
2009, ACM 2009.

SV 2016–17 Case Studies I CryptoSec 785 / 1037

Must Be Known

GSM security infrastructure
mobile telephony security
Bluetooth pairing
challenge-response protocol
password-based cryptography
techniques for access control
how PAKE works
foward secrecy

SV 2016–17 Case Studies I CryptoSec 786 / 1037

Train Yourself

bad EKE variant:
final exam 2014–15 ex4

SV 2016–17 Case Studies I CryptoSec 787 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Public-Key Cryptography CryptoSec 793 / 1037

Roadmap

Diffie-Hellman: new directions in cryptography
RSA standards for encryption and signature
the ElGamal signature dynasty

SV 2016–17 Public-Key Cryptography CryptoSec 794 / 1037

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 795 / 1037

Cryptographic Primitive (Reminder)

functionality security

components

cryptographic
primitive

SV 2016–17 Public-Key Cryptography CryptoSec 796 / 1037

Symmetric Encryption (Reminder)

functionality
Gen→ K

DecK (EncK (X)) = X

security
confidentiality is preserved

Alice and Bob, Generator, Encrypt, Decrypt
components

symmetric
encryption

SV 2016–17 Public-Key Cryptography CryptoSec 797 / 1037

Diffie-Hellman
“New Directions in Cryptography” (1976)

[Merkle, Hellman, Diffie]

notion of “trapdoor permutation” (no instance)
building a public-key cryptosystem from it
building a digital signature scheme from it
key agreement protocol

SV 2016–17 Public-Key Cryptography CryptoSec 798 / 1037

Trapdoor Permutation

we use an encryption Perm that is easy to compute in one way
...but hard in the other (to compute InvPerm)
...except using a trapdoor K

SV 2016–17 Public-Key Cryptography CryptoSec 799 / 1037

Trapdoor Permutation

functionality
Gen→ (param,K)

InvPermK (Permparam(X)) = X

security
confidentiality is preserved

Alice and Bob, Generator, Perm, InvPerm
components

trapdoor
permutation

SV 2016–17 Public-Key Cryptography CryptoSec 800 / 1037

Public-Key Cryptosystem

functionality
Gen→ (Kp,Ks)

DecKs (EncKp (X)) = X

security
confidentiality is preserved

Alice and Bob, Generator, Encrypt, Decrypt
components

trapdoor
permutation

SV 2016–17 Public-Key Cryptography CryptoSec 801 / 1037

Confidentiality using an Authenticated Channel
Public Key Cryptosystem

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Enc - - Dec -Message�

�
Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 802 / 1037

Confidentiality using an Authenticated Channel
Key Exchange Protocol

ProtoBobProtoAlice

6KeyKey

-� AUTHENTICATION
INTEGRITY

6

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 803 / 1037

Key Exchange Protocol

functionality
ProtoA(rA)↔ProtoB(rB)
↓ ↓

KA = KB

security
confidentiality of K

Alice and Bob, ProtoA, ProtoB

components

key
exchange

SV 2016–17 Public-Key Cryptography CryptoSec 804 / 1037

Key Exchange Protocol

Alice Bob
random tape: rA random tape: rB

-
�

-
�

-
�

output: KA output: KB

functionality: KA = KB = K
security: passive adversary cannot infer K from the exchanges

SV 2016–17 Public-Key Cryptography CryptoSec 805 / 1037

Terminology

key exchange: there is no exchange of keys, just exchange of
data to derive a common secret key
often assumes no prior common secret

= key agreement: same
= key establishment: same (may be more general)

key transfer: one participant chooses a key and sends it to the
second participant

SV 2016–17 Public-Key Cryptography CryptoSec 806 / 1037

Digital Signature Scheme

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 807 / 1037

Digital Signature Primitive

functionality
Gen→ (Kp,Ks)

VerKp (SigKs
(X ; r)) = X

security
signature is non-repudiable

Alice and Bob, Gen, Sig, Ver
components

digital
signature

SV 2016–17 Public-Key Cryptography CryptoSec 808 / 1037

Big Picture

confidential transmission authenticated transmission

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
MAC - - Check

-
ok?

-Message
�

�
Adversary

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 809 / 1037

Application: Certificates

Client Server-� insecure -�

?

�Authority
K A

p Kp

AUTHENTICATION AUTHENTICATION

?

certificate

certificate = signature(“I certify that public key Kp belongs to S”)

SV 2016–17 Public-Key Cryptography CryptoSec 810 / 1037

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 811 / 1037

Static versus Ephemeral Diffie-Hellman

Ephemeral DH: X and Y are fresh (and destroyed after protocol
completes)
Static DH: X and Y are used like public keys
Semi-static DH: one key is fixed (public key), the other is fresh

SV 2016–17 Public-Key Cryptography CryptoSec 812 / 1037

Ephemeral Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−−→

Y←−−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x (K = gxy) K ← X y

secureK←−−−−−−−−−−−−→

SV 2016–17 Public-Key Cryptography CryptoSec 813 / 1037

Semi-Static Diffie-Hellman Key Agreement
Protocol

Assume a group generated by some g

Alice Bob
secret key: x

public key: X = gx

Y←−−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x (K = gxy) K ← X y

secureK←−−−−−−−−−−−−→

SV 2016–17 Public-Key Cryptography CryptoSec 814 / 1037

Static Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g

Alice Bob
secret key: x secret key: y

public key: X = gx public key: Y = gy

K ← Y x (K = gxy) K ← X y

secureK←−−−−−−−−−−−−→

SV 2016–17 Public-Key Cryptography CryptoSec 815 / 1037

Forward Secrecy

forward secrecy: communication is still private if long term
secret keys are disclosed
example: ephemeral Diffie-Hellman (no long term secret)
no forward secrecy: communication might be decrypted if long
term secret keys leak in the future
example: static or semi-static Diffie-Hellman

SV 2016–17 Public-Key Cryptography CryptoSec 816 / 1037

Diffie-Hellman Cryptography

Diffie-Hellman
6

problem to instanciate

* RSA

j ElGamal

trapdoor permutation: operation in Z∗n which can be inverted with
the factorization of n
probabilistic encryption: encryption returns gx along with
symEncKDF(Y x)(message) for Y x = DH(g, gx ,Y)

SV 2016–17 Public-Key Cryptography CryptoSec 817 / 1037

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 818 / 1037

Rivest-Shamir-Adleman (RSA)
(1978)

[Shamir, Rivest, Adleman]

concrete trapdoor permutation
−→ public-key cryptosystem
−→ signature scheme

SV 2016–17 Public-Key Cryptography CryptoSec 819 / 1037

Plain RSA

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?

SV 2016–17 Public-Key Cryptography CryptoSec 820 / 1037

Why “Plain” RSA

plain RSA
= textbook RSA
= vanilla RSA
= raw RSA
= RSA for mathematicians

in practice, things are a little more complicated because
messages are not elements of ZN

RSA has homomorphic properties (Enc(ab) = Enc(a)Enc(b))
which are quite dangerous
RSA engineering leads us to security concerns

SV 2016–17 Public-Key Cryptography CryptoSec 821 / 1037

PKCS#1v1.5

(Modulus of k bytes, message M of at most k − 11 bytes.)
Encryption:

1 generate a pseudorandom
string PS of non-zero bytes so
that M∥PS is of k − 3 bytes

2 construct string
00∥02∥PS∥00∥M of k bytes

3 convert it into an integer
4 perform the plain RSA

encryption
5 convert the result into a string

of k bytes

Decryption:
1 convert the ciphertext into an

integer, reject it if it is greater
than the modulus

2 perform the plain RSA
decryption and obtain another
integer

3 convert back the integer into a
byte string

4 check that the string has the
00∥02∥PS∥00∥M format for
some byte strings PS and M
where PS has no zero bytes

5 output M

SV 2016–17 Public-Key Cryptography CryptoSec 822 / 1037

PKCS#1v1.5 Encryption

ciphertext
?

Enc
?

00 02 PS 00 M
?

random

?

message

SV 2016–17 Public-Key Cryptography CryptoSec 823 / 1037

RSA-OAEP Encryption

(H(L) is a constant)

ciphertext
?

Enc
?

00 maskedSeed maskedDB
?

⊕� MGF�

?

⊕-MGF-

?

?

seed
H(L) 0 · · · 01 M

?

message

SV 2016–17 Public-Key Cryptography CryptoSec 824 / 1037

RSA-OAEP Decryption

(H(L) is a constant)

ciphertext
6

Dec

6

00 maskedSeed maskedDB

6
⊕� MGF�

6
⊕-MGF-

6 6
seed

H(L) 0 · · · 01 M

6
message

SV 2016–17 Public-Key Cryptography CryptoSec 825 / 1037

Mask Generation Function in RSA-OAEP

The PKCS specifications further suggests an mask generation
function MGF1 which is based on a hash function. The MGF1ℓ(x)
string simply consists of the ℓ leading bytes of

H(x∥00000000)∥H(x∥00000001)∥H(x∥00000002)∥ · · ·

in which x is concatenated to a four-byte counter.

SV 2016–17 Public-Key Cryptography CryptoSec 826 / 1037

Rabin Cryptosystem

Set up: find two prime numbers p and q, set N = pq and pick a
random B ∈ ZN (e.g. B = 0)

Messages: x ∈ ZN

Public key: B,N
Secret key: B, p, q
Encryption: E(x) = x(x + B) mod N

Decryption: D(y) is one of the four square roots of B2

4 + y minus B
2

y = x(x + B) ⇐⇒
(
x + B

2

)2
= B2

4 + y

SV 2016–17 Public-Key Cryptography CryptoSec 827 / 1037

Plain Rabin Encryption (B = 0)

Generator

6Secret key p, qPublic key N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

p, q prime
N = pq

6
?

x x2 mod N y √
y mod N

SV 2016–17 Public-Key Cryptography CryptoSec 828 / 1037

Ensuring Non-Ambiguity in the Decryption

- -
xRedundancy Encryption -

x2
-

y Decryption -
�

Adversary

we add redundancy in the plaintext so that valid plaintexts are
spare
we make sure that no other square root has valid redundancy
(hard without Ks)
we take the only expected square root with valid redundancy
we reject ciphertexts which fail to decrypt

SV 2016–17 Public-Key Cryptography CryptoSec 829 / 1037

Rabin Complexity

Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ2)

Decryption: O(ℓ3)

SV 2016–17 Public-Key Cryptography CryptoSec 830 / 1037

SAEP: Simple OAEP Padding for Rabin

ciphertext
?

Enc
?

r
?

⊕� h �

?

r

?

00 · · · 0M
?

message

pad with enough 0’s to ensure non-ambiguity

SV 2016–17 Public-Key Cryptography CryptoSec 831 / 1037

Signature with Message Recovery

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
X

Sign -Signature
σ

-
σ Extract

-
ok?

-Message
X�

�
Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 832 / 1037

Trapdoor Permutation to Signature with Message
Recovery

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
X

InvPerm -Signature
σ

-
σ Perm -Message

X

�
�

Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 833 / 1037

Plain RSA Signature

Set up: find two random different prime numbers p and q of
size ℓ

2 bits. Set N = pq. Pick a random e until
gcd(e, (p − 1)(q − 1)) = 1. (Sometimes we pick special
constant e like e = 17 or e = 216 + 1.) Set
d = e−1 mod ((p − 1)(q − 1)).

Secret key: Ks = (d ,N).
Public key: Kp = (e,N).

Message: an element y ∈ ZN .
Signature generation: x = yd mod N.
Extraction: y = xe mod N.

(Signature with message recovery)

SV 2016–17 Public-Key Cryptography CryptoSec 834 / 1037

Plain RSA Signature

Generator

6Secret key d, N Public key e, N6AUTHENTICATION
INTEGRITY

-Message
y Sign -Signature

yd mod N
-

x Extract -
xe mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?

SV 2016–17 Public-Key Cryptography CryptoSec 835 / 1037

Trapdoor Permutation to Signature

-Message
X

Hash

?
X

-d
InvPerm

6σX , σ
-

X

?

Perm

U

Hash

�
d d

σ
?
X

Compare -
ok?

Generator

6
AUTHENTICATION

INTEGRITY

-

Secret Key Public Key

�
�

Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 836 / 1037

More Generally: Hash-and-Sign Paradigm

-Message
X

Hash

?
X

-d
Sign

6σX , σ
-

X

?

Verify Hash�d

σ
?
X

-
ok?

Generator

6
AUTHENTICATION

INTEGRITY

-

Secret Key Public Key

�
�

Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 837 / 1037

PKCS#1v1.5

We are given a modulus N of k bytes.
1 hash the message (for instance with SHA-1) and get a message

digest.
2 encode the message digest and the identifier of the hash

algorithm into a string D.
3 pad it with a zero byte to the left, then with many FF bytes in

order to reach a length of k − 2 bytes, then with a 01 byte. We
obtain k − 1 bytes.

4 This byte string 00∥01∥FF · · ·FF∥00∥D is converted into an
integer.

5 compute the plain RSA signature.
6 convert the result into a string of k bytes.

SV 2016–17 Public-Key Cryptography CryptoSec 838 / 1037

Signature Verification

1 convert the signature into an integer. Reject it if it is greater than
the modulus.

2 perform the plain RSA verification and obtain another integer.
3 convert back the integer into a byte string.
4 check that the string has the 00∥01∥FF . . .FF∥00∥D format for a

byte string D.
5 decode the data D and obtain the message digest and the hash

algorithm. Check that the hash algorithm is acceptable.
6 hash the message and check the message digest.

SV 2016–17 Public-Key Cryptography CryptoSec 839 / 1037

PKCS#1v1.5 Signature

signature
?

Sign
?

00 01 FF· · · FF 00 D
?

H
?

message

RSA signature without message recovery

SV 2016–17 Public-Key Cryptography CryptoSec 840 / 1037

RSA-PSS

signature
?

Sign
?

bcmaskedDB H
?

⊕� MGF�

?

H
?

?

0 · · · 01 salt

H(M)0 · · · 00 salt
?

H
?

message

SV 2016–17 Public-Key Cryptography CryptoSec 841 / 1037

RSA-PSS Verification

signature
6

Extract

6

bcmaskedDB H

6
⊕� MGF�

6

H
= - 0/1

?

6

0 · · · 01 salt

H(M)0 · · · 00 salt
?

H
?

message

SV 2016–17 Public-Key Cryptography CryptoSec 842 / 1037

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 843 / 1037

ElGamal Signature

Public parameters: a large prime number p, a generator g of Z∗p.
Set up: generate a random x ∈ Zp−1 and compute

y = gx mod p.
Secret key: Ks = x .
Public key: Kp = y .

Message digest: h = H(M) ∈ Zp−1.
Signature generation: pick a random k ∈ Z∗p−1, compute

r = gk mod p and s = h−xr
k mod p − 1, the signature is

σ = (r , s).
Verification: check that y r r s ≡ gh (mod p) and 0 ≤ r < p.

SV 2016–17 Public-Key Cryptography CryptoSec 844 / 1037

ElGamal Signature

Generator

y = gx mod p

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
M

k ∈ Z∗
p−1

r = gk mod p
s = H(M)−xr

k mod p − 1

Sign -
M, r , s

-
M, r , s

0 ≤ r < p
y r r s ≡ gH(M) (mod p)

Verify
-

ok?

-Message
M�

�
Adversary

p prime
g generator of Z∗

p

SV 2016–17 Public-Key Cryptography CryptoSec 845 / 1037

Drawbacks of ElGamal Signatures

signatures are pretty long
security issues related to subgroups
lack of security proof for arbitrary public parameter

SV 2016–17 Public-Key Cryptography CryptoSec 846 / 1037

The ElGamal Dynasty

1984 ElGamal signatures
1989 Schnorr signatures: introduced p and q
1995 DSA: US signatures
1995 Nyberg-Rueppel signatures
1997 Pointcheval-Vaudenay signatures
1998 KCDSA: Korean signatures
1998 ECDSA
...

SV 2016–17 Public-Key Cryptography CryptoSec 847 / 1037

Generating the Public Parameters

pick a prime number q
take a random p = aq + 1 until it is prime
take a random number in Z∗p, raise it to the power a modulo p,
and get g
if g = 1, try again (otherwise, it must be of order q in Z∗p)

SV 2016–17 Public-Key Cryptography CryptoSec 848 / 1037

Benefits

signatures are shorter
no proper subgroup (only {1} and the group itself)
some form of provable security (related to interactive proofs)

SV 2016–17 Public-Key Cryptography CryptoSec 849 / 1037

DSA Signature (DSS)

Public parameters (p,q,g): pick a 160-bit prime number q, a large
prime number p = aq + 1, h of Z∗p raised to the power a,
g = ha mod p such that g ̸= 1 (an element of order q).

Set up: pick x ∈ Zq and compute y = gx mod p.
Secret key: Ks = x .
Public key: Kp = y .

Signature generation: pick a random k ∈ Z∗q , compute
r = (gk mod p) mod q, and s = H(M)+xr

k mod q, the
signature is σ = (r , s).

Verification: check that r =
(

g
H(M)

s mod qy
r
s mod q mod p

)
mod q.

SV 2016–17 Public-Key Cryptography CryptoSec 850 / 1037

DSA Signature

Generator

y = gx mod p

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
M

k ∈ Z∗
q

r = gk mod p mod q
s = H(M)+xr

k mod q

Sign -
M, r , s

-
M, r , s

compare r and

g
H(M)

s y
r
s mod p mod q

Verify
-

ok?

-Message
M�

�
Adversary

q prime
p = aq + 1 prime
g = randoma mod p > 1

SV 2016–17 Public-Key Cryptography CryptoSec 851 / 1037

ECDSA

Public parameters: we use a field of cardinality q (either a power of
2, or a large prime), an elliptic curve C defined by two
field elements a and b, a prime number n larger than
2160, and an element G of C of order n. (The elliptic
curve equation over GF(q) is y2 + xy = x3 + ax2 + b in
the characteristic two case and y2 = x3 + ax + b in the
prime field case.) Public parameters are subject to
many security criteria.

Set up: pick an integer d in [1, n − 1], compute Q = dG. Output
(Kp,Ks) = (Q,d).

SV 2016–17 Public-Key Cryptography CryptoSec 852 / 1037

ECDSA

Signature generation: pick k in [1, n − 1] at random and compute

(x1, y1) = kG
r = x1 mod n

s =
H(M) + dr

k
mod n

(x1 is a standard way to convert a field element x1 into
an integer.) If r = 0 or s = 0, try again. Output the
signature σ = (r , s)

Verification: check that Q ̸= O, Q ∈ C, and nQ = O. Check that r
and s are in [1, n − 1] and that r = x1 mod n for
(x1, y1) = u1G + u2Q, u1 = H(M)

s mod n, and
u2 = r

s mod n.

SV 2016–17 Public-Key Cryptography CryptoSec 853 / 1037

ECDSA Signature

Generator

6Secret key d Public key Q6AUTHENTICATION
INTEGRITY

-Message
Sign - - Ver

-
ok?

-Message
�

�
Adversary

select field, elliptic curve
G point of order n

n prime

Q = d.G

M

k ∈ Z∗
n

r = (k.G)1 mod n
s = H(M)+dr

k mod n

M, r , s M, r , s

compare r and(
H(M)

s G + r
s Q

)
1

mod n

M

SV 2016–17 Public-Key Cryptography CryptoSec 854 / 1037

Example of Public Parameters

secp192r1:

q = 6277101735386680763835789423207666416083908700390324961279

a = ffffffff ffffffff ffffffff fffffffe ffffffff fffffffc

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

n = 6277101735386680763835789423176059013767194773182842284081

G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

(the leading “03” is for point compression)

SV 2016–17 Public-Key Cryptography CryptoSec 855 / 1037

Example of Keys

d = 651056770906015076056810763456358567190100156695615665659

Q = 02 62b12d60 690cdcf3 30babab6 e69763b4 71f994dd 702d16a5

(the leading “02” is for point compression)

SV 2016–17 Public-Key Cryptography CryptoSec 856 / 1037

ECDSA Parameters Generation
1 Choose the finite field Fq .

2 Pseudo-randomly generate a c from seed. Take an elliptic curve
defined by some a and b such that the j-invariant is
j = 6912 4c

4c+27 for q prime (i.e. c = a3/b2) and j = 1
c (i.e. c = b)

otherwise.
3 For q prime, check that 4a3 + 27b2 mod q ̸= 0. For q a power of

two, check that b ̸= 0. If this is not the case, go back to Step 2.
4 Count the number of points on the elliptic curve and isolate a

prime factor n greater than 2160. If this does not work or if
n ≤ 4

√
q, go back to Step 2.

5 Check the MOV and anomalous condition for C. If this does not
hold, go back to Step 2.

6 Pick a random point on the elliptic curve and raise it to the
cofactor of n power in order to get G. If G is the point at infinity,
try again.

Set parameters to (q, representation, a, b,n,G, seed).

SV 2016–17 Public-Key Cryptography CryptoSec 857 / 1037

ECDSA Parameters Validation

Parameters: (q, representation,a, b, n,G, seed).
1 Check that q is an odd prime or a power of 2 of appropriate size.

In the latter case, check that the field representation choice is
valid.

2 Check that a, b, xG, yG (where G = (xG, yG)) lie in Fq .
3 Check that seed certifies a and b by generating c again and

checking that a3

b2 = c or b = c depending on the field type.
4 For q prime, check that 4a3 + 27b2 mod q ̸= 0. For q a power of

two, check that b ̸= 0. Check that G lies in the elliptic curve.
Check that n is a prime greater than both 2160 and 4

√
q. Check

that nG = O, the neutral element. Check the MOV and
anomalous condition.

SV 2016–17 Public-Key Cryptography CryptoSec 858 / 1037

ECDSA Parameters Selection: Conclusion

making new parameters is not easy
rather use parameters from standards

SV 2016–17 Public-Key Cryptography CryptoSec 859 / 1037

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 860 / 1037

Breaking RSA Cryptography by Factoring

Best attack (ideally): factoring

Fact
If we can factor N = pq then from an RSA public key, we can
compute the secret key.

To have RSA cryptography secure, the factoring problem must be
hard
Parameter for the factoring problem: modulus length

SV 2016–17 Public-Key Cryptography CryptoSec 861 / 1037

Breaking DH Cryptography by Discrete Logarithm

Best attack (ideally): discrete logarithm computation

Fact
If we can compute the discrete logarithm x of gx then from g, gx , gy

we can compute gxy .

To have DH cryptography secure then the discrete logarithm problem
must be hard for the proposed parameters:

prime order of the generated subgroup
overall structure type:

multiplicative group of a finite field
elliptic curve

random over prime field
random over binary field
special

SV 2016–17 Public-Key Cryptography CryptoSec 862 / 1037

Reading the Tables

tables give equivalent security levels over time depending on
applications

symmetric: bitlength of the key for symmetric encryption or MAC
also: half of the hash length for hashing
asymmetric: bitlength of the RSA modulus or of p for Z∗p
(sub)groups
subgroup DL: bitlength of the order of the generator g
(in multiplicative groups and elliptic curves as well)
EC: bitlength of the field cardinality on which the random elliptic
curve is considered

SV 2016–17 Public-Key Cryptography CryptoSec 863 / 1037

Meta-comparison of Cryptographic Strengths
Following http://www.keylength.com by Quisquater

method year sym. asym. DL EC hash
Lenstra-Verheul 2015 82 1613 145 1613 154 163
Lenstra updated 2015 78 1245 156 1245 156 156
ECRYPT II 2011–15 80 1248 160 1248 160 160
NIST 2011–30 112 2048 224 2048 224 224
FNISA 2010–20 100 2048 200 2048 200 200
BSI 2011–15 – 1976 224 2048 224 224

SV 2016–17 Public-Key Cryptography CryptoSec 864 / 1037

http://www.keylength.com

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 865 / 1037

PKC

Definition
A public-key cryptosystem is a tuple (Gen,M,Enc,Dec) with a
plaintext domainM and three efficient algorithms Gen, Enc, and
Dec. The algorithm Dec is deterministic and outputs either something
inM or an error ⊥. It is such that

∀X ∈M Pr[Dec(Ks,Enc(Kp,X)) = X] = 1

where (Kp,Ks) is generated from running Gen. The probability is over
the randomness used in Gen and Enc.

SV 2016–17 Public-Key Cryptography CryptoSec 866 / 1037

How to Define Security?

the adversary holds the public key so he can encrypt whatever
he wants without using any external oracle
so, for predictible plaintext, if encryption is deterministic, it is easy
to recognize form the ciphertext
example: the encryption of a salary, the encryption of “yes” or
“no”
we should add randomness in the encryption and make the
encryption of arbitrary messages hard to distinguish

SV 2016–17 Public-Key Cryptography CryptoSec 867 / 1037

Security against Distinguisher

Definition
A PKC (Gen,M,Enc,Dec) is (t , ε)-secure under chosen plaintext
attacks (IND-CPA-secure) if for any interactive process A limited to a
time complexity t , given a bit b, when we first run the following steps

1: Gen→ (Kp,Ks)
2: A(Kp)→ (m0,m1) such that |m0| = |m1|
3: Enc(mb)→ c
4: A(Kp, c)→ x

we have
Pr[x = 1|b = 0]− Pr[x = 1|b = 1] ≤ ε

It is (q, t , ε)-secure under chosen plaintext/ciphertext attacks
(IND-CCA-secure) if the same holds for any similar interactive
process ADec(Ks,.) who is limited to q queries to a decryption oracle
Dec(Ks, .) but not allowed to send it c.

SV 2016–17 Public-Key Cryptography CryptoSec 868 / 1037

Problem with Deterministic Cryptosystems

this is a modern notion of security
problem: if Enc is deterministic, then PKC is insecure!
modern PKC are probabilistic
example: ElGamal cryptosystem (and variants)

SV 2016–17 Public-Key Cryptography CryptoSec 869 / 1037

ElGamal Cryptosystem Generalized (Reminder)

Alice Bob
input: m secret key: x

public key: y = gx

y←−−−−−−−−−−−−

pick r at random
u = gr u−−−−−−−−−−−−→
K = y r K = ux

v = mK v−−−−−−−−−−−−→ m = vK−1

output: m

SV 2016–17 Public-Key Cryptography CryptoSec 870 / 1037

Signature Scheme

Definition
A digital signature scheme is a tuple (Gen,D,Sig,Ver) with a
message domain D ⊆ {0,1}∗ and three efficient algorithms Gen, Sig,
and Ver. The algorithm Ver is deterministic and outputs 0 (reject) or 1
(accept). It is such that

∀X ∈ D Pr[Ver(Kp,Sig(Ks,X)) = 1] = 1

where (Kp,Ks) is generated from running Gen. The probability is over
the randomness used in Gen and Sig.

SV 2016–17 Public-Key Cryptography CryptoSec 871 / 1037

EF-CMA Security

Definition
A digital signature scheme (Gen,D,Sig,Ver) is (q, t , ε)-secure
against existential forgery under chosen message attacks
(EF-CMA) if for any probabilistic algorithm A limited to a time
complexity t and to q queries,

Pr[ASig(Ks,.) forges] ≤ ε

where (Kp,Ks) is the output of Gen, (X , c) a pair of random variables
defined as the output of ASig(Ks,.), and “ASig(Ks,.) forges” is the event
that Ver(Kp,X) = 1 and that A did not query X to the signing oracle.

SV 2016–17 Public-Key Cryptography CryptoSec 872 / 1037

Other Public-Key Cryptosystems

RSA
Rabin
ECC
HECC
Paillier cryptosystem
NTRU
lattice-based cryptosystem
McEliece cryptosystem
TCHo
...

SV 2016–17 Public-Key Cryptography CryptoSec 873 / 1037

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 874 / 1037

Some Alternate Constructions Based on Lattices
or Codes

NTRU
lattice-based crypto
McEliece cryptosystem
TCHo

why this?
resilience to quantum computing
it finds other applications:

fully homomorphic encryption (clouds..., privacy-by-design...)
multilinear mapping (multiparty cryptography...)

SV 2016–17 Public-Key Cryptography CryptoSec 875 / 1037

An Example: NTRUEncryption

N prime, q > p, p and q coprime
f ,g polynomials with degree at most N − 1 and coefficients in
{−1, 0, 1}
f must be such that there exists fp and fq such that f × fp = 1 in
Zp[x]/(xN − 1) and f × fq = 1 in Zq[x]/(xN − 1)
secret key: (f , fp)
public key: h such that h = pfqg in Zq[x]/(xN − 1)
message: a polynomial m with degree at most N − 1 and
coefficients in {−1, 0, 1}
encryption: pick a random polynomial r with degree at most
N − 1 and small coefficients, then e = rh + m in Zq[x]/(xN − 1)
decryption: a = fe in Zq[x]/(xN − 1)
note that a = prg + fm
by having rg small, we have a mod q mod p = fm mod p, so we
compute b = fm in Zp[x]/(xN − 1)
then c = fpb = m in Zp[x]/(xN − 1)

SV 2016–17 Public-Key Cryptography CryptoSec 876 / 1037

The Regev Public-Key Cryptosystem

Generator

6Secret key s⃗Public key A, b⃗ 6 AUTHENTICATION
INTEGRITY

-Message
x ∈ {0, 1}

pick v⃗ ∈ {0, 1}m

c1 = v⃗ t A mod p
c2 = x

⌊ p
2

⌋
+ v⃗ t b⃗ mod p

Encrypt -Ciphertext
(c1, c2)

-
(c1, c2)

d = c2 − c1s⃗ mod p
x′ s.t. d − x ′ ⌊ p

2

⌋
small

Decrypt -Message

x ′

�
�

Adversary

s⃗ ∈ Zn
p

A ∈ Zm×n
p

ei ← χ i = 1, . . . , n
b = A⃗s + e⃗ mod p

6
?

p prime, ε > 0
n2 ≤ p ≤ 2n2, m = (1 + ε)(n + 1) log2 p
α = 1√

n log2
2 n

χ: Ei ∼ N (0, αp), ei = ⌊Ei⌉

SV 2016–17 Public-Key Cryptography CryptoSec 877 / 1037

Lattice-Based Cryptography

lattice: discrete subgroup of Rm

specified by a basis:

L(a⃗1, . . . , a⃗n) =

{
n∑

i=1

si a⃗i ; s1, . . . , sn ∈ Z

}

it is hard to find short vectors x⃗ ∈ L(a⃗1, . . . , a⃗n)

given b⃗, it is hard to find x⃗ ∈ L(a⃗1, . . . , a⃗n) making ∥b⃗ − x⃗∥ small
many cryptographic algorithms
fully homomorphic encryption
problem: public keys are a bit large
likely to be used in practice in near future

SV 2016–17 Public-Key Cryptography CryptoSec 878 / 1037

8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives

SV 2016–17 Public-Key Cryptography CryptoSec 879 / 1037

Key and Data Encapsulation Mechanisms
Hybrid Encryption

DEM: same as symmetric encryption
KEM: public-key algorithm producing an encrypted
(encapsulated) key
≈ generate a random symmetric key and encrypt it using
public-key encryption

SV 2016–17 Public-Key Cryptography CryptoSec 880 / 1037

KEM Primitive

functionality
if KemEncKp → (K ,C)

then KemDecKs (C) = K

security
key is confidential

Generator, KemEnc, KemDec
components

KEM

SV 2016–17 Public-Key Cryptography CryptoSec 881 / 1037

KEM

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

� Key
K

KemEnc -
C

-
C

KemDec -Key
K

�
�

Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 882 / 1037

KEM + DEM

Generator

KemDecKemEnc

6 6KK

- -�
�

6 AUTHENTICATION
INTEGRITY

6Public Key Secret Key

-Message
DemEnc -

C

-

C

DemDec
-

ok?

-Message
�

�
Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 883 / 1037

Commitment Scheme

functionality
Commit(X ; r)→ c

security
hiding, binding

Setup, Commit
components

commitment
scheme

to commit to X : pick r at random and release Commit(X ; r)
to open c: release r to check Commit(X ; r) = c

SV 2016–17 Public-Key Cryptography CryptoSec 884 / 1037

Pedersen Commitment

setup generates two large primes p and q s.t. q|(p − 1) (e.g.
1024 resp. 160 bit-long), an element g ∈ Z∗p of order q,
a ∈ Z∗q , and h = ga mod p
Domain parameters: ⟨p, q, g,h⟩

commit Commit(X ; r) = gX hr mod p
unconditionally hiding given c in the subgroup spanned by g, any

X has a related r such that Commit(X ; r) = c
computationally binding commiting to X and opening to X ′ ̸= X

leads to solving gX hr ≡ gX ′
hr ′ (mod p) hence

a = X ′−X
r−r ′ mod q

This is equivalent to solving the discrete logarithm
problem with the domain parameters

SV 2016–17 Public-Key Cryptography CryptoSec 885 / 1037

Conclusion

two families: RSA (factoring-based) and DH (discrete log-based)
does not replace symmetric cryptography: used for key
exchange only
more compact data using elliptic curves

SV 2016–17 Public-Key Cryptography CryptoSec 886 / 1037

Systematic Classification of Cryptography

Feistel SPN Lai-Massey sync. selfsync. numbers other numbers GF EC

block cipher stream cipher RSA Diffie-Hellman post-quantum

symmetric asymmetric

encryption

	 ? R � U � U 	 ? R

� j � U j

) q

SV 2016–17 Public-Key Cryptography CryptoSec 887 / 1037

References

Lenstra-Verheul. Selecting Cryptographic Key Sizes. Journal of
Cryptology vol. 14, 2001.
Regev. On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography. Journal of the ACM vol. 56(6), 2009.

SV 2016–17 Public-Key Cryptography CryptoSec 888 / 1037

Must be Known

the big picture with the 4 primitives
Diffie-Hellman key agreement protocol
ElGamal cryptosystem
RSA
PKCS#1
Rabin cryptosystem

SV 2016–17 Public-Key Cryptography CryptoSec 889 / 1037

Train Yourself

RSA encryption: midterm exam 2008–09 ex2
RSA signature: final exam 2010–11 ex2
PKC construction: final exam 2009–10 ex3
signature construction: final exam 2008–09 ex2
trapdoor in DSA: final exam 2014–15 ex1
DSA with related randomness: final exam 2014–15 ex2
bad DL-based signature: final exam 2015–16 ex1
Pedersen commitment: final exam 2012–13 ex5

SV 2016–17 Public-Key Cryptography CryptoSec 890 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Trust Establishment CryptoSec 897 / 1037

Roadmap

secure communication channels
setup by password
setup by short authenticated strings
setup by a trusted third party: Kerberos, PKI

SV 2016–17 Trust Establishment CryptoSec 898 / 1037

9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography

SV 2016–17 Trust Establishment CryptoSec 899 / 1037

The Cryptographic Trilogy

Message
X

- -
X

�
�

Adversary

Confidentiality (C): only the legitimate receiver can get X
Authentication + Integrity (A+I): only the legitimate sender can
insert X and the received message must be equal to X

SV 2016–17 Trust Establishment CryptoSec 900 / 1037

Enforcing Confidentiality by Encryption

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 901 / 1037

Enforcing Integrity by Hash Function

-Message

Hash

?

-
INTEGRITY

Digest

-

Hash

?

Message

?
Compare -

ok?

�
�

Adversary

SV 2016–17 Trust Establishment CryptoSec 902 / 1037

Enforcing Authenticity + Integrity by MAC

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

MAC -
X , c

-
X , c

Check
-

ok?

-Message
X�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 903 / 1037

Authentication and Integrity

Message integrity: we make sure that the received message is
equal to the sent one
Message authentication: we make sure about who sent the
message
good authentication means often enforce integrity
at the same time
symmetric encryption is sometimes used for message
authentication but this is a BAD practice
but there are weird authentication means not protecting it
example: problem in GSM/WEP/Bluetooth/... (see slide 670)

SV 2016–17 Trust Establishment CryptoSec 904 / 1037

A+I+C by Symmetric Cryptography

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message

-
nonce

nonce
6

Enc/MAC - - Dec/Check
-

ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 905 / 1037

A+I+C Symmetric Constructions

encrypt-then-MAC
MAC-then-encrypt
authenticated modes of operation

CCM CS CWC EAX GCM IACBC IAPM OCB PCFB XCBC ...

SV 2016–17 Trust Establishment CryptoSec 906 / 1037

Encrypt-then-MAC

Message

?
Enc

?

?
Cipher Key

- MAC

?

?

Extra

?
MAC Key

6�
�

Adversary

- MAC- =

6

?
Extra

?
MAC Key

Dec

6

6

Message

?
Cipher Key

SV 2016–17 Trust Establishment CryptoSec 907 / 1037

MAC-then-Encrypt

Message

- MAC

?

?

Extra

?
MAC Key

?
Enc

6�
�

Adversary-Cipher Key Dec
6

Message

� Cipher Key

- MAC - =

6

?

Extra

?
MAC Key

SV 2016–17 Trust Establishment CryptoSec 908 / 1037

Some Tricky Additional Things

as soon as padding occurs, some combination may be weak
some problems when adversary can get advantage of a return
channel
many standards weak, fixed by implementations
example (2003): MAC-then-Pad-then-Encrypt in TLS using block
ciphers is weak

SV 2016–17 Trust Establishment CryptoSec 909 / 1037

TLS using Block Ciphers

Text - MAC -
PAD

- CBC - DEC - - VER - Text

�bad record mac

�decryption failed

S E C R E T A

C C E S S

block 1

block 28 # $

* = k % ! block 32 2 2

SV 2016–17 Trust Establishment CryptoSec 910 / 1037

Padding Oracle Attack: Encryption

Client Adversary

P A S S W O R D

x & @ 3 P $ + c

7 7 7 7 7 7 7 7

9 w @ G = u P +

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

-

-

-

Enc -

?
Enc -⊕-

?
Enc -⊕-

We would like to decrypt 9w@G=uP+

SV 2016–17 Trust Establishment CryptoSec 911 / 1037

Padding Oracle Attack: Decryption

Adversary Server

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9 w @ G = u P +

P A S S W O R D

6?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

-

-

-

Dec -

?
Dec -⊕-

?
Dec -⊕-

f 4 = S . o w t

) g $ K 9 s X d

decryption failed

t⊕D=d

SV 2016–17 Trust Establishment CryptoSec 912 / 1037

Security Property of Communication Channels

Message
X

- -
X

�
�

Adversary

Confidentiality, Authentication, Integrity
Freshness: the received X was not received before
(a message in transit cannot be replayed)
Liveliness: a sent message X is eventually delivered
(a message in transit cannot be discarded)
Timeliness: (> liveliness) time of delivery is upper bounded
(a message cannot be overly delayed)

SV 2016–17 Trust Establishment CryptoSec 913 / 1037

From Packet Security to Session Security

-
�

-

-
�

-

�
�

Adversary

Key establishment: set up A/I/C key material for message
security
Session integrity: the sequence of protocol messages is
eventually the same at both ends
(messages in transit cannot be swapped)
Privacy: many different notions at this time!
(cannot identify sender or receiver)
(cannot link that two messages by same sender)

SV 2016–17 Trust Establishment CryptoSec 914 / 1037

Enforcing Session Integrity

Assuming that channels enforce A+I+C and that key establishment is
secure, session integrity splits in two problems

Sequentiality: whenever a participant has seen a message
sequence starting with X1, . . . ,Xt , Xt coming in, then the other
participant has seen a message sequence whose first t
messages are X1, . . . ,Xt,: easy to protect: just number the messages and apply A+I
protection on message numbers
Termination fairness: making sure that the last message on
both ends is the same one/: no cheap way to enforce it if liveliness is not guaranteed

SV 2016–17 Trust Establishment CryptoSec 915 / 1037

Sequentiality using A + I Message Security

common methods:
acknowledge receipt of every message
authenticate a sequence number in packets and check that
received packets have consecutive sequence numbers
authenticate an increasing nonce value (e.g. a clock value) +
check for no packet loss by other means

TLS or SSH: Y = Enc(X∥MAC(seq∥X)) where seq is implicit

SV 2016–17 Trust Establishment CryptoSec 916 / 1037

Fair Termination Problems

example: contract signing
Alice and Bob have signed a contract and want to be sure that
they both consider the contract as valid
there must be one critical message in the protocol such that
one participant thinks his counterpart has a valid contract
the other does not think the transaction is valid
this reduces to synchronizing on an exit status bit

SV 2016–17 Trust Establishment CryptoSec 917 / 1037

Fair Termination by Synchronization Protocol

Alice Bob

-
�

-
�

-
�

a← exit status b ← exit status

synchronization
protocol

output: a′ output: b′

exit status: 1 (normal termination case) or 0 (failure case)
functionality: a′ = b′ = a× b

SV 2016–17 Trust Establishment CryptoSec 918 / 1037

Keep-in-Touch (KiT) Synchronization Protocol

Alice Bob
input: a input: b

if a = 0, output 0

pick N
[N]−−−−−−−−−−−−−−−−−−−→ if b = 0, output 0
(0)←−−−−−−−−−−−−−−−−−−−
(1)−−−−−−−−−−−−−−−−−−−→
(2)←−−−−−−−−−−−−−−−−−−−
...

(N)−−−−−−−−−−−−−−−−−−−→
wait

output: 1 output: 1

(in the case of timeout: output 0)

SV 2016–17 Trust Establishment CryptoSec 919 / 1037

KiT Protocol Security

Theorem (Avoine-Vaudenay 2006)

Communication complexity: at most E(C) = 2 +
∑

i i Pr[N = i]
Probability of asymmetric termination: at most

pa = maxi Pr[N = i]

For any synchronization protocol with parameters C and pa, there
exists a KiT protocol with parameters C′ and p′a, such that
Pr[C′ ≤ C] = 1 and p′a ≤ pa.

Example: Pr[N = i] = 1
N so pa = 1

N and E(C) = N+3
2

SV 2016–17 Trust Establishment CryptoSec 920 / 1037

Bad News

Theorem (Avoine-Vaudenay 2006)

For any synchronization protocol with parameters C and pa we have

E(C)− 2 ≥ 1
2

(
1
pa
− 1
)

example: if we want pa ≤ 2−20 we need E(C) ≥ 219

morality: synchronization must be expensive
morality: it is hard to beat the KiT protocol set up with N uniform

SV 2016–17 Trust Establishment CryptoSec 921 / 1037

Summary for Secure Channel (so far)

level property toolkit
packet A+I MAC

confidentiality symmetric encryption
A+I+C integrated modes
freshness (comes with sequentiality)
liveliness (must live without)

session key establishment setup protocols (next)
sequentiality various protocol options
termination synchronization protocol

all privacy ?

SV 2016–17 Trust Establishment CryptoSec 922 / 1037

9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography

SV 2016–17 Trust Establishment CryptoSec 923 / 1037

Problem

Q: How to setup a secure channel over an insecure

channel?

A: hfr n frpher punaary
ROT13

SV 2016–17 Trust Establishment CryptoSec 924 / 1037

Virtual Channels by Combination of Channels

66

-� [assumptions]

-Message
X

-
Y

-
Y

-
X

Message�
�

Adversary

SV 2016–17 Trust Establishment CryptoSec 925 / 1037

Secure Channel from A+I+C Channel

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 926 / 1037

Next Step: Strongly Secure Channel From Weakly
Secure Channel

Q: How to relax security properties at setup?

A: hfr choyvp-xrl pelcgbtencul
ROT13

SV 2016–17 Trust Establishment CryptoSec 927 / 1037

... with A+I Channel: Key Agreement Protocol

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 928 / 1037

Security of Key Exchange Protocols

Secrecy: by looking at the communication protocol, it is
impossible to guess the exchanged key

SV 2016–17 Trust Establishment CryptoSec 929 / 1037

The Diffie-Hellman Key Agreement Protocol

Assume a group ⟨g⟩ generated by some g of prime order q

Alice Bob

pick x ∈ Z∗q , X ← gx X−−−−−−−−−−−−→ if X ̸∈ ⟨g⟩ − {1}, abort

if Y ̸∈ ⟨g⟩ − {1}, abort Y←−−−−−−−−−−−− pick y ∈ Z∗q , Y ← gy

K ← KDF(Y x) K ← KDF(X y)
(K = KDF(gxy))

SV 2016–17 Trust Establishment CryptoSec 930 / 1037

Key Transfer by Public-Key Encryption

Alice Bob

Kp←−−−−−−−−−−−− (Kp,Ks)← Gen
pick K

Y ← EncKp(K)
Y−−−−−−−−−−−−→ K ← DecKs(Y)

SV 2016–17 Trust Establishment CryptoSec 931 / 1037

Passive vs Active Adversaries

active adversary: can interfere with communication (modify
messages, insert messages, replay messages)
The Diffie-Hellman protocol requires A+I channel to protect
against it
example: static keys authenticated by ad hoc means
passive adversary: just listen to communications and tries to
decrypt communications (e.g. by recovering the key)
The Diffie-Hellman protocol resists to passive adversaries with
no extra assumptions

SV 2016–17 Trust Establishment CryptoSec 932 / 1037

An Active Attack: Man-in-the-Middle Attack

Alice Eve Bob

X−−−−−−→ X ′

−−−−−−→
Y ′

←−−−−−− Y←−−−−−−
(K1) (K2)

SV 2016–17 Trust Establishment CryptoSec 933 / 1037

Approaches to Build an Initial Authenticated
Channel

using really secure initial channel
setup cable, Near Field Comm. (see Bluetooth simple pairing)
by user monitoring
caution: humans are not so reliable for security (e.g. Bluetooth)
relies on strong assumptions (genuine software, correct public
keys...)
→ password-based, SAS-based
using a trusted third party
examples: secure token, key server, certificate authority

SV 2016–17 Trust Establishment CryptoSec 934 / 1037

Summary

we need specific means to A+I-securely transmit a public key
we agree on a master key using public key cryptography
we use conventional cryptography to set up secure channels

we derive several symmetric keys using key derivation functions
we use symmetric encryption and MAC

we must live with the fear that termination may be unfair

SV 2016–17 Trust Establishment CryptoSec 935 / 1037

9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography

SV 2016–17 Trust Establishment CryptoSec 936 / 1037

Secure Communication Step 1
Conventional Cryptography

Generator

66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

KeyKey

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 937 / 1037

Secure Communication Step 2
Public-Key Cryptography

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 938 / 1037

Secure Communication Step 3
Password-Based Cryptography

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY

(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 939 / 1037

Secure Communication Step 4
Cryptography Based on Short Authenticated Strings

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6AUTHENTICATION
INTEGRITY

(narrowband channel)

SAS SAS

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 940 / 1037

Secure Communication Steps 1–4

with confidential channel without confidential channel

Generator

66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

KeyKey

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY

(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6AUTHENTICATION
INTEGRITY

(narrowband channel)

SAS SAS

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 941 / 1037

Adversary Capabilities on the Secure Channel

Regular channels: the adverary can do whatever he/she wants with
the messages: modify, create, swap, remove, stall, ...

(Weak) authenticated channels: the adversary cannot modify nor
create messages. He/she can swap, remove, stall, ...

(Strong) authenticated channels: same plus some additional
assumptions!
E.g. messages must be either deliver at once or
removed (stall-free channels).

SV 2016–17 Trust Establishment CryptoSec 942 / 1037

9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography

SV 2016–17 Trust Establishment CryptoSec 943 / 1037

Several Trusted 3rd Party Approach

soft 3rd party: user monitoring
password-based, SAS-based
pervasive 3rd party: secure token
smart cards, secureID, trusted computing platform
key server: Kerberos
symmetric cryptography only, for corporate network
certificate authority: PKI
for global network

SV 2016–17 Trust Establishment CryptoSec 944 / 1037

Example: Kerberos

Client

KClient,Ksession

Server

KServer,Ksession

Authority

KClient,KServer

request

�

timed ticket+Ksession

�
ticket -

timed ticket+Ksession encrypted with KClient

ticket encrypted with KServer

SV 2016–17 Trust Establishment CryptoSec 945 / 1037

Kerberos

Hypotheses:
there is an online (trusted) authentication server (AS)
AS shares KC with client IC
AS shared KS with server IS

Goal: to help IC and IS to share a session key K (and to help
careless users to get privacy)

SV 2016–17 Trust Establishment CryptoSec 946 / 1037

Server-Aided Authentication (Bad Protocol)

AS Client Server

request IC to IS←−−−−−−−−−−−−−−

pick K
CKC

(K),CKS
(K)

−−−−−−−−−−−−−−→
CKS

(K),IC−−−−−−−−−−−−−−→

Problem: there is no authentication: an attacker can replace IC or IS

SV 2016–17 Trust Establishment CryptoSec 947 / 1037

Attack

AS Adv. Server

request IA to IS←−−−−−−−−−−−−−−

pick K
CKA (K),CKS

(K)
−−−−−−−−−−−−−−→

CKS
(K),IC−−−−−−−−−−−−−−→

Server thinks he is talking to IC !

SV 2016–17 Trust Establishment CryptoSec 948 / 1037

Attack

AS (Adv.) Client Adv.
↓

request IC to IA←−−−−−−−−−−−−−−

pick K
CKC

(K),CKA (K)
−−−−−−−−−−−−−−→

CKA (K),IC−−−−−−−−−−−−−−→

Client thinks he is talking to IS!

SV 2016–17 Trust Establishment CryptoSec 949 / 1037

Needham-Schroeder Authentication (Still Bad)

AS Client Server

request IC to IS ,N1←−−−−−−−−−−−−−− pick N1

pick K
CKC

(K ,IS ,N1,CKS
(K ,IC))−−−−−−−−−−−−−−→

CKS
(K ,IC)−−−−−−−−−−−−−−→

CK (N2)←−−−−−−−−−−−−−− pick N2
CK (N2+1)−−−−−−−−−−−−−−→

Problem: replay attack by impersonating C after K gets compromised

SV 2016–17 Trust Establishment CryptoSec 950 / 1037

Basic Kerberos Protocol

AS Client Server

request IC to IS ,N←−−−−−−−−−−−−−−−−−−− pick N

pick K
CKC

(K ,IS ,N,T ,L),CKS
(K ,IC ,T ,L)

−−−−−−−−−−−−−−−−−−−→
CKS

(K ,IC ,T ,L),CK (IC ,T)
−−−−−−−−−−−−−−→

CK (T+1)←−−−−−−−−−−−−−−

T : clock value; L: validity period

SV 2016–17 Trust Establishment CryptoSec 951 / 1037

The Certificate Authority Model

Client Server-� insecure -�

?

�Authority
K CA

p Kp

AUTHENTICATION AUTHENTICATION

?

certificate

SV 2016–17 Trust Establishment CryptoSec 952 / 1037

Critical Secure Channels

Authority

+
K CA

p

Client 3

� K CA
p

Client 2

k
K CA

p

Client 1

k

K 3
p

Server 3

� K 2
p

Server 2

+

K 1
p

Server 1

SV 2016–17 Trust Establishment CryptoSec 953 / 1037

Public-Key Certificate

Generator

6 CA Public KeyCA Secret Key 6AUTHENTICATION
INTEGRITY

-Public Key
Sign -Certificate -Certificate Verify

-
ok?

-Public Key
�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 954 / 1037

Semi-A Key Exchange Using Certificates

Client Server

Authority

K CA
p

�

Kp

K

certificate

Urequest, . . . -
�

-
EncKp (K)

K ,Kp K

SV 2016–17 Trust Establishment CryptoSec 955 / 1037

Semi-Authentication: Key Transmission using
PKC

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Key
Encrypt - - Decrypt -Key�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 956 / 1037

Semi-Authenticated Channel

one participant authenticates the other
(typical for client-server communication)

client receives the authenticated (static) key of the server
client and server run a key establishment protocol
secure A+I+C channel is set up

client knows he is talking to the correct server
server has no clue to which client he is talking to

SV 2016–17 Trust Establishment CryptoSec 957 / 1037

A Typical TLS Session

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:cipher suite, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−− select cipher suite

pre master secret
ClientKeyExchange:ENC(pre master secret)−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

(key derivation)

MACC−−−−−−−−−−−−−−−−−−−−−−−−−−→ check

check
MACS←−−−−−−−−−−−−−−−−−−−−−−−−−−

(open tunnel)

[authentication?]←−−−−−−−−−−−−−−−−−−−−−−−−−−
[login, password]−−−−−−−−−−−−−−−−−−−−−−−−−−→ check

SV 2016–17 Trust Establishment CryptoSec 958 / 1037

An X.509 Certificate Example: Overall Structure

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 674866 (0xa4c32)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=ZA, ST=Western Cape, L=Cape Town,

O=Thawte Consulting cc, OU=Certification Services Division,

CN=Thawte Server CA/Email=server-certs@thawte.com

Validity

Not Before: Jun 2 13:10:11 2003 GMT

Not After : Jun 11 10:21:15 2005 GMT

...

X509v3 extensions:

X509v3 Extended Key Usage: TLS Web Server Authentication

X509v3 Basic Constraints: critical CA:FALSE

Signature Algorithm: md5WithRSAEncryption

8d:7b:78:60:88:c4:13:4e:94:0d:bc:3b:1b:1c:b6:c9:bc:b1:

0b:ed:7d:eb:6f:08:3a:ba:6d:21:36:93:38:36:66:7b:a7:bc:

c0:3f:c4:e0:cf:b4:02:58:be:a6:b9:1d:45:a2:c4:58:38:07:

e4:63:1a:d9:b9:8d:27:7c:93:67:31:82:6f:a3:3c:86:0c:e0:

10:71:de:f2:e9:74:af:ac:76:b4:5b:8e:48:57:9d:8f:12:f6:

72:63:8a:79:b4:74:e0:ba:ca:ac:1a:36:b4:16:38:c1:c5:d2:

73:ed:e8:64:b0:ae:9e:e2:36:d7:0c:77:92:cc:c7:c0:e0:8a:

54:24

SV 2016–17 Trust Establishment CryptoSec 959 / 1037

An X.509 Certificate Example: Subject

Subject: C=CH, ST=Bern, L=Bern,

O=Switch - Teleinformatikdienste fuer Lehre und Forschung,

CN=nic.switch.ch

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:d0:0e:b7:16:bf:86:59:c3:97:e6:02:33:59:90:

65:29:b0:69:73:64:83:03:1b:df:62:a8:4d:c0:4f:

3c:d9:12:6b:8c:57:95:e1:57:e8:48:a6:7f:dd:15:

8b:9d:ad:93:dc:78:af:06:1a:ce:0f:7b:cc:c4:6f:

a0:06:26:40:73:04:d3:da:7b:20:c1:15:37:8c:2f:

58:c4:d4:c1:4b:18:84:5c:54:f1:b1:a0:44:3c:e2:

0e:8a:a2:63:48:6b:34:c7:10:9d:a1:23:56:77:f5:

4e:3d:38:9a:70:5e:03:02:30:45:ee:81:e4:94:96:

47:18:9e:47:37:bb:18:f6:87

Exponent: 65537 (0x10001)

SV 2016–17 Trust Establishment CryptoSec 960 / 1037

Two Approaches to Revocations

certificate revocation lists (CRL):
regularly, or under emergency cases, revocation lists are
released by CA
clients should always check for new CRLs (at the nearest
repository) and go through the list before treating any certificate
drawback: high bandwidth
online certificate status protocol (OCSP):
clients should send certificates to the CA for approval
drawback: subject to DoS attacks

SV 2016–17 Trust Establishment CryptoSec 961 / 1037

Several 3rd-Party Based Trust Infrastructure

Kerberos
symmetric-crypto with key escrow
PKI
advantage: widely available
identity-based cryptography: have public keys implicit from
identities and time
advantage: time-based revocation with small period
certificateless encryption: combine the two models
advantage: requires no key escrow
certificate-based encryption: certificate is private, required for
decryption
≈ equivalent to certificaless encryption (name is confusing)

SV 2016–17 Trust Establishment CryptoSec 962 / 1037

Public-Key Infrastructure

Sender Receiver

Authority

Generator

�

Public Key

6Secret Key

-�
�

Adversary

-

Certificate

6

Sign

Setup

6Master Key

�

INTEGRITY
AUTHENTICATION

CA Public Key

-Message
Encrypt

�

Decrypt -Message

�
�

Adversary

SV 2016–17 Trust Establishment CryptoSec 963 / 1037

Identity-Based Encryption

Sender Receiver

Authority

6

Identity+Time

Extract

Setup

?

6

Identity+Time

Master Key

6

�

INTEGRITY
AUTHENTICATION

Parameters

Secret Key

-Message
Encrypt - - Decrypt -Message�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 964 / 1037

Certificateless Encryption

Sender Receiver

Authority

Generator

?
Secret key 2

��
�

Adversary

Public key

?

6

Identity+Time

Extract

Setup

?

6

Identity+Time

Master key

-

�

�

INTEGRITY
AUTHENTICATION

6

Parameters

Secret key 1

-Message
Encrypt - - Decrypt -Message�

�
Adversary

SV 2016–17 Trust Establishment CryptoSec 965 / 1037

Boneh-Franklin Identity-Based Encryption

Sender Receiver

Authority

6

ID

Extract
QID = H1(ID)
dID = sQID

Setup
pick s ∈ Z∗

q
Kpub = sP

construct q, P, e : q prime, P generator, e pairing
construct H1, H2

?

6

ID

Master Key s

6

�

AUTHENTICATION+INTEGRITY
Parameters q,P, e,H1,H2,Kpub

Secret Key dID

-Message m
Encrypt

QID = H1(ID)
pick r ∈ Z∗

q
u = rP
v = m ⊕ H2(e(QID, Kpub)

r)

-(u, v) -(u, v)

m = v ⊕ H2(e(dID, u))

Decrypt -Message m�
�

Adversary

SV 2016–17 Trust Establishment CryptoSec 966 / 1037

Some Popular Trust Model

TLS: trust model based on a PKI
clients hold a list of CA public keys and retrieve server certificates
SSH: trust model based on cache
clients keep in cache the public key of servers
(first connection may be insecure)
PGP: trust model monitored by users
users set up their confidence level in obtained public keys
a “web of trust” can be used to check a public key
(to check who has put a higher confidence level to this key)

SV 2016–17 Trust Establishment CryptoSec 967 / 1037

9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography

SV 2016–17 Trust Establishment CryptoSec 968 / 1037

Metacryptography
Can we Trust Crypto?

2nd law of thermodynamics:
no matter the real strength of crypto designs, security decreases
with time (Moore’s law or cryptanalysis)
wrong hypotheses:
e.g. we might figure out that factoring is easy
−→ need for crypto-diversity
academic system failure:
crypto results are done under pressure: too many conferences,
too many papers, too many beans to get
−→ many results are wrong
−→ need for automatic proof verification
threat model definition issues:
some models are complicated and later happen to be irrelevant
security does not add: secure + secure may be insecure
−→ need for good composability models

SV 2016–17 Trust Establishment CryptoSec 969 / 1037

Chain of Trust in the PKI Model

authority software manufacturer retailer environment human

CA must issue correct certificate
sofware must include correct CA public keys
harware must execute what it is supposed to
retailer must not add malicious software
environment must not bypass secure software
human user must care invalid certificates

SV 2016–17 Trust Establishment CryptoSec 970 / 1037

Chain of Trust in Real Life

software companies add CA’s on commercial basis
some CA’s are corruptable
worms may corrupt CA lists
users pay no attention to browser warnings

consequence: phishing attacks

further thoughts: this is no longer a cryptographic issue
−→ education, psychology, ergonomy, technology

SV 2016–17 Trust Establishment CryptoSec 971 / 1037

Several Approaches to Certificate Verification

TLS: verify a certificate every time the public key is used
SSH: verify that a public key has not changed since the last time
PGP: use a public key ring set up by the user (manual
verification based on reputation)

SV 2016–17 Trust Establishment CryptoSec 972 / 1037

Conclusion

secure communication is essentially solved as long as birth
and death are secure

birth: need for means to authenticate public keys
death: no solution, just behave as if we would never die

crypto offers many different models
PKI, password-based, ID-based, certificateless, SAS-based

correct solution must be determined on a case-by-case basis
trust establishment is not a pure-crypto issue

need to address the human factor
need to deal with trust management:

logistic, software engineering network security

SV 2016–17 Trust Establishment CryptoSec 973 / 1037

References

Merkle. Secure Communications over Insecure Channels.
Communications of the ACM vol. 21, 1978.
Gentry. Certificate-Based Encryption and the Certificate
Revocation Problem. EUROCRYPT 2003, LNCS 2656.
Bellovin-Merritt. Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks. IEEE symposium
on Research in Security and Privacy, 1992.
C. Gehrmann, C. Mitchell, K. Nyberg. Manual Authentication
for Wireless Devices. RSA Cryptobytes vol. 7, 2004.

SV 2016–17 Trust Establishment CryptoSec 974 / 1037

Must be Known

secure channels
Kerberos
public-key cryptography and man-in-the-middle attacks
PKI, certificate validation model
password-based cryptography
SAS-based cryptography

SV 2016–17 Trust Establishment CryptoSec 975 / 1037

Train Yourself

secure channel:
final exam 2012–13 ex3
final exam 2009–10 ex2

SV 2016–17 Trust Establishment CryptoSec 976 / 1037

1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Case Studies II CryptoSec 977 / 1037

10 Case Studies II
TLS: Transport Layer Security
The Biometric Passport
NFC Creditcard Payment

SV 2016–17 Case Studies II CryptoSec 978 / 1037

Example of Critical Application

[E-banking from a browser]

SV 2016–17 Case Studies II CryptoSec 979 / 1037

Requirements

strong bidirectional authentication
confidentiality of communication
integrity of communication
non-repudiation of transaction
resilience to clients in hostile environment

SV 2016–17 Case Studies II CryptoSec 980 / 1037

History

SSLv1 by Netscape in 1994
Microsoft version PCT in 1995
SSLv3 by Netscape in 1995
TLS/1.0 in 1999 [RFC2246]
TLS/1.1 in 2006 [RFC4346]
TLS/1.2 in 2008 [RFC5246]
TLS/1.3: still draft

Goal: secure any communication (e.g. HTTP) based on TCP/IP

SV 2016–17 Case Studies II CryptoSec 981 / 1037

TLS Record Protocols

Record Protocol is based on TCP

Here are the four protocols based on the Record Protocol:
Handshake Protocol (for initiating a session)
Change Cipher Spec Protocol (for setting up cryptographic
algorithms)
Alert Protocol (for managing warnings and fatal errors)
Application Data Protocol

SV 2016–17 Case Studies II CryptoSec 982 / 1037

Session State

Session identifier
Peer certificate (if any)
Cipher suite choice

Algorithm for authentication and key exchange during handshake
Cipher Spec: symmetric algorithms (encryption and MAC)

Master secret (a 48-byte symmetric key)
nonces (from the client and the server)
sequence numbers (one for each communication direction)
compression algorithm (if any)

SV 2016–17 Case Studies II CryptoSec 983 / 1037

Original TLS 1.0 Cipher Suites — i

CipherSuite Key Exchange Cipher Hash
TLS NULL WITH NULL NULL NULL NULL NULL
TLS RSA WITH NULL MD5 RSA NULL MD5
TLS RSA WITH NULL SHA RSA NULL SHA-1
TLS RSA EXPORT WITH RC4 40 MD5 RSA RC4 40 MD5
TLS RSA WITH RC4 128 MD5 RSA RC4 128 MD5
TLS RSA WITH RC4 128 SHA RSA RC4 128 SHA-1
TLS RSA EXPORT WITH RC2 CBC 40 MD5 RSA RC2 40 MD5
TLS RSA WITH IDEA CBC SHA RSA IDEA SHA-1
TLS RSA EXPORT WITH DES40 CBC SHA RSA DES40 SHA-1
TLS RSA WITH DES CBC SHA RSA DES SHA-1
TLS RSA WITH 3DES EDE CBC SHA RSA 3DES EDE SHA-1
TLS DH DSS EXPORT WITH DES40 CBC SHA DH DSS DES40 SHA-1
TLS DH DSS WITH DES CBC SHA DH DSS DES SHA-1
TLS DH DSS WITH 3DES EDE CBC SHA DH DSS 3DES EDE SHA-1
TLS DH RSA EXPORT WITH DES40 CBC SHA DH RSA DES40 SHA-1
TLS DH RSA WITH DES CBC SHA DH RSA DES SHA-1
TLS DH RSA WITH 3DES EDE CBC SHA DH RSA 3DES EDE SHA-1

SV 2016–17 Case Studies II CryptoSec 984 / 1037

Original TLS 1.0 Cipher Suites — ii

CipherSuite Key Exchange Cipher Hash
TLS DHE DSS EXPORT WITH DES40 CBC SHA DHE DSS DES40 SHA-1
TLS DHE DSS WITH DES CBC SHA DHE DSS DES SHA-1
TLS DHE DSS WITH 3DES EDE CBC SHA DHE DSS 3DES EDE SHA-1
TLS DHE RSA EXPORT WITH DES40 CBC SHA DHE RSA DES40 SHA-1
TLS DHE RSA WITH DES CBC SHA DHE RSA DES SHA-1
TLS DHE RSA WITH 3DES EDE CBC SHA DHE RSA 3DES EDE SHA-1
TLS DH anon EXPORT WITH RC4 40 MD5 DH anon RC4 40 MD5
TLS DH anon WITH RC4 128 MD5 DH anon RC4 128 MD5
TLS DH anon EXPORT WITH DES40 CBC SHA DH anon DES40 SHA-1
TLS DH anon WITH DES CBC SHA DH anon DES SHA-1
TLS DH anon WITH 3DES EDE CBC SHA DH anon 3DES EDE SHA-1

many more in 1.2:
cipher: AES GCM, AES CCM, CAMELLIA, ARIA
hash: SHA2
“key exchange”: ECDSA, PSK

SV 2016–17 Case Studies II CryptoSec 985 / 1037

A Typical TLS 1.0 Session

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:cipher suite, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−− select cipher suite

pre master secret
ClientKeyExchange:ENC(pre master secret)−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

(key derivation)

MACC−−−−−−−−−−−−−−−−−−−−−−−−−−→ check

check
MACS←−−−−−−−−−−−−−−−−−−−−−−−−−−

(open tunnel)

[authentication?]←−−−−−−−−−−−−−−−−−−−−−−−−−−
[login, password]−−−−−−−−−−−−−−−−−−−−−−−−−−→ check

SV 2016–17 Case Studies II CryptoSec 986 / 1037

RSA Key Exchange

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:TLS RSA cipher hash, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pre master secret
ClientKeyExchange:ENC(pre master secret)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

RSA encryption is PKCS#1v1.5
the RSA public key must be authenticated

SV 2016–17 Case Studies II CryptoSec 987 / 1037

Key Derivation

nonceC (32B)
nonceS (32B)

pre master secret

??

- PRF - master secret
(48B)

??

- PRF

-
-
-
-
-
-

Aut. C → S
Aut. S → C
Enc. C → S
Enc. S → C
IV C → S
IV S → C

pre master secret is 48B for RSA key exchange or the obtained
Diffie-Hellman key for DH RSA, DH DSS, DHE RSA, DHE DSS, and
DH anon

SV 2016–17 Case Studies II CryptoSec 988 / 1037

Application Data Record Protocol

split the application data into fragments of at most 214 Bytes and
send the fragments separately.
(optional) compress the fragment
append a MAC to the fragment
The MAC is computed on a sequence number, the compression
and TLS version materials, the compressed fragment.
encrypt all this
send this after a record header (type, version, length)

SV 2016–17 Case Studies II CryptoSec 989 / 1037

Secure Channel in TLS (Using CBC Encryption)

fragment

-MAC

?

?

seq num

?MAC key

?
Enc

6�
�

Adversary
-
-

IV
Enc key Dec

6

fragment

�
�

IV
Enc key

-MAC- =
6

?

seq num

? MAC key

SV 2016–17 Case Studies II CryptoSec 990 / 1037

TLS 1.3

cipher suite in the form

TLS KEA AUTH WITH CIPHER HASH

key exchange (KEA) and authentication (AUTH) are separated
things
KEA is (EC)DHE
AUTH is the way to authenticate peers, it can be with a certificate
(RSA or ECDSA) or PSK
PSK:
just makes pre master secret be the result of (EC)DH
concatenated with a pre-shared key
CIPHER: AES-GCM, AES-CCM, CHACHA20-POLY1305
hash: SHA2

SV 2016–17 Case Studies II CryptoSec 991 / 1037

TLS 1.3 Cipher Suites
TLS DHE RSA WITH AES 128 GCM SHA256
TLS DHE RSA WITH AES 256 GCM SHA384
TLS ECDHE ECDSA WITH AES 128 GCM SHA256 (mandatory)
TLS ECDHE ECDSA WITH AES 256 GCM SHA384 (recommended)
TLS ECDHE RSA WITH AES 128 GCM SHA256 (mandatory)
TLS ECDHE RSA WITH AES 256 GCM SHA384 (recommended)
TLS DHE RSA WITH AES 128 CCM
TLS DHE RSA WITH AES 256 CCM
TLS DHE RSA WITH AES 128 CCM 8
TLS DHE RSA WITH AES 256 CCM 8
TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 (recommended)
TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256 (recommended)
TLS DHE RSA WITH CHACHA20 POLY1305 SHA256
TLS DHE PSK WITH AES 128 GCM SHA256
TLS DHE PSK WITH AES 256 GCM SHA384
TLS DHE PSK WITH AES 128 CCM
TLS DHE PSK WITH AES 256 CCM
TLS PSK DHE WITH AES 128 CCM
TLS PSK DHE WITH AES 256 CCM
TLS ECDHE PSK WITH AES 128 GCM SHA256
TLS ECDHE PSK WITH AES 256 GCM SHA384
TLS ECDHE PSK WITH AES 128 CCM 8 SHA256
TLS ECDHE PSK WITH AES 128 CCM SHA256
TLS ECDHE PSK WITH AES 256 CCM SHA384
TLS ECDHE PSK WITH CHACHA20 POLY1305 SHA256
TLS DHE PSK WITH CHACHA20 POLY1305 SHA256

mandatory curve: secp256r1 (NIST P-256)
recommended curve: X25519 [RFC7748]

SV 2016–17 Case Studies II CryptoSec 992 / 1037

10 Case Studies II
TLS: Transport Layer Security
The Biometric Passport
NFC Creditcard Payment

SV 2016–17 Case Studies II CryptoSec 993 / 1037

ICAO-MRTD Objectives

(MRTD=Machine Readable Travel Document)

more secure identification of visitors at border control
→ biometrics
→ contactless IC chip
→ digital signature + PKI

maintained by UN/ICAO (International Civil Aviation Organization)

SV 2016–17 Case Studies II CryptoSec 995 / 1037

How to Distinguish a Compliant MRTD

SV 2016–17 Case Studies II CryptoSec 996 / 1037

MRTD History

1968: ICAO starts working on MRTD
1980: first standard (OCR-B Machine Readable Zone (MRZ))
1997: ICAO-NTWG (New Tech. WG) starts working on
biometrics
2001 9/11: US want to speed up the process
2002 resolution: ICAO adopts facial recognition
(+ optional fingerprint and iris recognition)
2003 resolution: ICAO adopts MRTD with contactless IC media
(instead of e.g. 2D barcode)
2004: version 1.1 of standard with ICC
2005: deployment of epassports in several countries
2006: extended access control under development in the EU
2007: deployment of extended access control (+ more
biometrics)
now part of Doc9303

SV 2016–17 Case Studies II CryptoSec 997 / 1037

MRZ Example

PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

document type
issuing country
holder name
doc. number + CRC
nationality
date of birth + CRC
gender
date of expiry + CRC
options + CRC

SV 2016–17 Case Studies II CryptoSec 998 / 1037

MRTD in a Nutshell

MRTD

MRZ LDS

? ?????
optical access radio access

data authentication by digital signature + PKI
aka passive authentication
access control + key agreement based on MRZ info
aka basic access control (BAC)
chip authentication by public-key cryptography
aka active authentication (AA)

SV 2016–17 Case Studies II CryptoSec 999 / 1037

Access Control Options

none: anyone can query the ICC, communication in clear
basic: uses secure channel with authenticated key
establishment from MRZ
extended: up to bilateral agreements (no ICAO standard)
EU common criteria: now being implemented

SV 2016–17 Case Studies II CryptoSec 1000 / 1037

LDS Example

- PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

DG1: same as MRZ
DG2: encoded face
DG3: encoded finger
SOD

6
,

?

-
[h(DG1),h(DG2), h(DG3)]
signature
certificate CDS

SV 2016–17 Case Studies II CryptoSec 1001 / 1037

LDS Structure

KENC, KMAC, KPrAA

COM: present data groups

DG1: same as MRZ

DG2: encoded face

DG3: encoded finger(s)

DG4: encoded eye(s)

DG5: displayed portrait

DG6: (reserved)

DG7: displayed signature

DG8: data feature(s)

DG9: structure feature(s)

DG10: substance feature(s)

DG11: add. personal detail(s)

DG12: add. document detail(s)

DG13: optional detail(s)

DG14: security options

DG15: KPuAA

DG16: person(s) to notify

SOD

SV 2016–17 Case Studies II CryptoSec 1002 / 1037

SOD Structure

list of hash for data groups DG1–DG15
formatted signature by DS (include: information about DS)
(optional) CDS

SV 2016–17 Case Studies II CryptoSec 1003 / 1037

(Country-wise) PKI

DG1 DG2

h(DG2)

LDS21 LDS22

SOD

DS1 DS2

CDS

CSCA - visited country
CCSCA

+ revocation protocol

one CSCA (Country Signing Certificate Authority)
several DS (Document Signer) per country
SOD: signature of LDS
fingerprint of a DG

SV 2016–17 Case Studies II CryptoSec 1004 / 1037

Passive Authentication

goal authenticate LDS
after getting SOD, check the included certificate CDS and the
signature
when loading a data group from LDS, check its hash with what is
in SOD

→ stamp by DS on LDS

SV 2016–17 Case Studies II CryptoSec 1005 / 1037

Passport: From Paper to Bits

paper passport

invisible if not shown
hard to copy
photocopies are non-binding
needs human check
access control by the holder

MRTD

detectable, recognizable
easy to copy with no AA
SOD is a digital evidence
readable automatically
needs specific access control

SV 2016–17 Case Studies II CryptoSec 1006 / 1037

Basic Access Control

goal prevent from unauthorized access by the holder (privacy)
read MRZ (OCR-B)
extract MRZ info
run an authenticated key exchange based on MRZ info
open secure messaging based on the exchanged symmetric key

→ proves that reader knows MRZ info

SV 2016–17 Case Studies II CryptoSec 1007 / 1037

MRZ info

PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

document type
issuing country
holder name
doc. number + CRC
nationality
date of birth + CRC
gender
date of expiry + CRC
options + CRC

SV 2016–17 Case Studies II CryptoSec 1008 / 1037

Basic Access Control
Authenticated Key Exchange Based on MRZ info

IFD ICC

(derive KENC and KMAC from MRZ info)

GET CHALLENGE−−−−−−−−−−−−−−→
pick RND.IFD, K.IFD

RND.ICC←−−−−−−−−−−−−−− pick RND.ICC, K.ICC

S ← RND.IFD∥RND.ICC∥K.IFD
[S]KENC,KMAC−−−−−−−−−−−−−−→ check RND.ICC

check RND.IFD
[R]KENC,KMAC←−−−−−−−−−−−−−− R ← RND.ICC∥RND.IFD∥K.ICC

(derive KSENC and KSMAC from Kseed = K.ICC⊕ K.IFD)

SV 2016–17 Case Studies II CryptoSec 1009 / 1037

Active Authentication

goal authenticate the chip
proves that ICC knows some secret key KPrAA linked to a public
key KPuAA by a challenge-response protocol
(KPuAA in LDS authenticated by passive authentication)

→ harder to clone a chip

SV 2016–17 Case Studies II CryptoSec 1010 / 1037

Active Authentication Protocol

IFD ICC

pick RND.IFD RND.IFD−−−−−−−−−−−−−−−−−−−→ F ← nonce∥RND.IFD
check Σ←−−−−−−−−−−−−−−−−−−− Σ← SignKPrAA

(F)

SV 2016–17 Case Studies II CryptoSec 1011 / 1037

With vs Without Active Authentication

No Active Authentication

ICC can be cloned
simple computations to
perform

Active Authentication

protection against clones
requires public-key
cryptography in ICC

SV 2016–17 Case Studies II CryptoSec 1012 / 1037

RFID Private Collision Avoidance Protocol
(ISO 14443)

for each new singulation protocol
ICC introduces himself with a pseudo (32-bit number)
singulation to establish a communication link between reader
and ICC of given pseudo
pseudo is either a constant or a random number starting with 08

SV 2016–17 Case Studies II CryptoSec 1013 / 1037

Implementation Discrepencies (2007 Survey)

shield singulation BAC AA
Switzerland none random 08xxxxxx used not implemented
United Kingdom none random 08xxxxxx used not implemented
France none random 08xxxxxx ? ?
Australia none random xxxxxxxx used ?
New Zealand none constant used ?
USA yes random xxxxxxxx used ?
Italy ? constant ? ?
Belgium none cste then 08... used implemented
Czech Republic none random 08xxxxxx used implemented
Japan none ? not used not implemented

SV 2016–17 Case Studies II CryptoSec 1014 / 1037

With vs Without Faraday Cages

Regular Document

can access to ICC without the
holder approval

Metalic Cover

document must be opened to
access to ICC
more expensive
not fully effective

SV 2016–17 Case Studies II CryptoSec 1015 / 1037

Algorithms (2007 Survey)

certificate SOD AA
Switzerland ecdsa with sha1 824b ecdsa 512b n/a
United Kingdom sha256withRSA 4096b RSA 2048b n/a
Czech Republic rsaPSS (sha256) 3072b RSA 2048b RSA 1024b
Belgium sha1withRSA 4096b RSA 2048b RSA 1024b
Germany ecdsa with sha1 560b ecdsa 464b n/a
Italy sha1withRSA 4096b RSA 2048b ?
New-Zealand sha256withRSA 4096b RSA 2048b ?
USA sha256withRSA 4096b RSA 2048b ?
Japan sha256withRSA 4096b RSA 2048b n/a
Ireland sha256withRSA 4096b RSA 2048b ?
Netherland sha256withRSA 3072b RSA 2048b ?
South Korea rsaPSS (sha256) 3072b RSA 2048b ?
Sweden rsaPSS (sha256) 2048b RSA 2048b ?

SV 2016–17 Case Studies II CryptoSec 1016 / 1037

Security and Privacy Issues

collision avoidance discrepancies
→ deviating from standard induce leakages
MRZ info entropy
→ online attack or offline decryption from skimming
underestimated wireless range limits
→ claimed to be possible at a distance of 25m
identity theft (by stealing/cloning MRTD)
→ facial recognition is weak
remote passport detection
→ nice to find passports to steal
relay attacks
denial of services
...

SV 2016–17 Case Studies II CryptoSec 1017 / 1037

Identity Theft

? ?

biometry picture

-
6

steal identity

a few 100 customers are enough

SV 2016–17 Case Studies II CryptoSec 1018 / 1037

Extended Access Control (EAC)

PACE > BAC
Chip Authentication > AA
Terminal Authentication to access non-mandatory data
more biometrics (finger) for more secure identification

using state-of-the-art cryptography
(public-key crypto, PAKE, elliptic curves)
secure access control but requires a heavy PKI for readers

in-process standard: protocols with different versions, variants,
described in different documents, with different notations...

SV 2016–17 Case Studies II CryptoSec 1019 / 1037

Sequence of Steps for Basic Inspection

(optional) run PACE (or BAC), start secure messaging,
provide access to less-sensitive data
passive authentication of SOD

(optional) run AA
read and verify less-sensitive data

SV 2016–17 Case Studies II CryptoSec 1020 / 1037

Sequence of Steps for Advanced Inspection

(optional) run PACE (or BAC), start secure messaging,
provide access to less-sensitive data
(if not done in PACE) run Chip Authentication, restart secure
messaging
passive authentication of SOD

(optional) run AA
run Terminal Authentication v1,
provide access to more data
read and verify data

SV 2016–17 Case Studies II CryptoSec 1021 / 1037

PACE (GM v2)
better protocol (than BAC) based on π = MRZinfo
can include Chip Authentication

PCD IC
password: π password: π

secret key: SKIC

(g ∈ DICC) pub key: PKIC = gSKIC ,DIC

pick s at random
PKIC,DIC←−−−−−−−−−−

z = ENCKπ (s)
z−−−−−−−−−−→ s = DECKπ (z)

pick SKMAP,PCD, PKMAP,PCD = gSKMAP,PCD
PKMAP,PCD−−−−−−−−−−→ pick SKMAP,IC, PKMAP,IC = gSKMAP,IC

ĝ = gsPK
SKMAP,PCD
MAP,IC

PKMAP,IC←−−−−−−−−−− ĝ = gsPK
SKMAP,IC
MAP,PCD

pick SKDH,PCD, PKDH,PCD = ĝSKDH,PCD
PKDH,PCD−−−−−−−−−−→ pick SKDH,IC, PKDH,IC = ĝSKDH,IC

K = PK
SKDH,PCD
DH,IC

PKDH,IC←−−−−−−−−−− K = PK
SKDH,IC
DH,PCD

derive KSENC,KSMAC from K derive KSENC,KSMAC from K

TPCD = MACKSMAC(PKDH,PCD)
TPCD−−−−−−−−−−→ check TPCD

check TIC
TIC←−−−−−−−−−− TIC = MACKSMAC(PKDH,IC)

CAIC = DECKSENC(AIC), check CAIC
AIC←−−−−−−−−−− CAIC =

SKMAP,IC
SKIC

, AIC = ENCKSENC(CAIC)

output: KSENC,KSMAC,X = PKDH,PCD output: KSENC,KSMAC,X = PKDH,PCD

SV 2016–17 Case Studies II CryptoSec 1022 / 1037

Chip Authentication

chip has a static Diffie-Hellman key in DG14 (SOD-authenticated)
semi-static ECDH with domain parameters DICC

replace the secure messaging keys

→ resists passive attacks

IFD ICC
secret key: SKICC

(g ∈ DICC) pub key: PKICC = gSKICC ,DICC

pick x at random
PKICC,DICC←−−−−−−−−−−−−−−−

X = gx X−−−−−−−−−−−−−−−→
K = KDF(PKx

ICC) K = KDF(X SKICC)
derive KENC, KMAC from K derive KENC, KMAC from K

output: K , KENC, KMAC,X output: K ,KENC, KMAC, X

SV 2016–17 Case Studies II CryptoSec 1023 / 1037

Terminal Authentication

terminal sends a certificate to chip (ECDSA)
terminal signs a challenge + ephemeral key X from Chip
Authentication
IDICC set to serial number (for BAC) or to ephemeral key of ICC
(for PACE)

→ strong access control

IFD ICC

certificate(PKIFD)−−−−−−−−−−−−→ check
F ← IDICC∥ricc∥H(X)

ricc←−−−−−−−−−−−− pick ricc

sIFD ← SignSKIFD
(F)

sIFD−−−−−−−−−−−−→ check

SV 2016–17 Case Studies II CryptoSec 1024 / 1037

Terminal Authentication Issues

Terminal revocation issue:
MRTDs are not online!
MRTDs have no reliable clock

−→ MRTD must trust readers to revoke themselves

SV 2016–17 Case Studies II CryptoSec 1025 / 1037

Information Leakage

SOD leaks the digest of protected DGs before passing EAC
could be used to recover missing parts from exhaustively search
could be used to get a proof if DG is known

SV 2016–17 Case Studies II CryptoSec 1026 / 1037

Conclusion on MRTD

LDS: contains too much private information
passive authentication: leaks evidence for LDS
BAC: does a poor job
secure messaging: OK
AA: leaks digital evidences, subject to MITM
EAC: much better, but still leaks + revocation issue
RFID: leaks
biometrics: leaks template

“Les passeports ne servent jamais qu’à gêner les
honnêtes gens et à favoriser la fuite des coquins.”

Jules Verne, 1872
Le tour du monde en 80 jours

SV 2016–17 Case Studies II CryptoSec 1027 / 1037

10 Case Studies II
TLS: Transport Layer Security
The Biometric Passport
NFC Creditcard Payment

SV 2016–17 Case Studies II CryptoSec 1028 / 1037

(Simplified) EMV PayPass Protocol

PrivC,KM -Cert(PubC,SSAD),PAN,CDOL
verify

� UN, amount, info
pick UNinc. ATC

-ATC,SDAD
compute verify

KM

?

AC
amount

ATC
info

PAN: serial number of the card

SSAD: info about the card including PAN

CDOL: description of what is needed in info

ATC: number of the transaction

AC = MACEncKM
(ATC)(amount,ATC, info)

SDAD = SignPrivC(AC,UN, amount,ATC, info)

SV 2016–17 Case Studies II CryptoSec 1029 / 1037

From Paper to Bits...

holder is not aware a payment is happening
holder is not aware of the payment amount
no access control of the payment terminal (no PIN)
payee is not authenticated (info could be anyone)
privacy issue (SSAD leaks)

SV 2016–17 Case Studies II CryptoSec 1030 / 1037

Skimming

PrivC,KM -Cert(PubC,SSAD),PAN,CDOL

get name on card, credit card number, expiration date, etc

SV 2016–17 Case Studies II CryptoSec 1031 / 1037

Relay Attacks

honest
prover

honest
verifier

adversary

-a -a -a

�b � b �b

-c -c -c

SV 2016–17 Case Studies II CryptoSec 1032 / 1037

Relay Attacks in Real

opening cars and ignition (key with no button)
RFID access to buildings or hotel room
toll payment system
NFC credit card (for payment with no PIN)
access to public transport
...

SV 2016–17 Case Studies II CryptoSec 1033 / 1037

Playing against two Chess Grandmasters

�

-

SV 2016–17 Case Studies II CryptoSec 1034 / 1037

Conclusion

TLS: standard for e-commerce, suffer from PKI weaknesses
MRTD: secure data authentication, poor privacy
EMV PayPass: secure for payee, not payer, poor privacy

they all put together all cryptographic ingredients quite nicely
they are permanently improved to fix mistakes and use the
state-of-the-art cryptography

SV 2016–17 Case Studies II CryptoSec 1035 / 1037

References

Juels-Molnar-Wagner. Security and Privacy Issues in
E-Passports. In SecureComm 2005, IEEE.
Chaabouni-Vaudenay. The Extended Access Control for
Machine Readable Travel Documents. In Biosig 2009, LNI 155.

SV 2016–17 Case Studies II CryptoSec 1036 / 1037

Train Yourself

biometric passport: final exam 2015–16 ex3

SV 2016–17 Case Studies II CryptoSec 1037 / 1037

	Ancient Cryptography
	Summary of this Chapter
	A 3-Phases Evolution
	Milestones of Prehistory

	From Industrial Era to Modern Crypto
	Early Milestones of Modern Cryptography

	Terminology
	Cryptography vs Coding Theory
	Cryptanalysis
	Once Upon a Time, in the XIX-th Century
	Steganography
	!adult content!
	!adult content!

	Cryptographic Problems
	Applications

	The Fundamental Trilogy
	Basic Security Properties

	Cryptography Prehistory
	Secret Writing
	Transpositions
	Simple Substitution: Caesar Cipher
	Simple Substitution: ROT13
	Simple Substitution: Random Substitution Table
	Probabilities of Occurrence in English
	Rough Frequencies in English

	A Simple Substitution Cipher (from Stinson)
	Step I: Frequency Analysis
	Solution

	Vigenère Cipher
	Character Addition Rule
	Column-Dependent Substitution

	Kasiski Test
	Kasiski Test Example
	Question
	Reminders on Combinatorics
	Are 5 Occurrences Significant? — i
	Reminders on Calculus
	Are 5 Occurrences Significant? — ii
	Are 5 Occurrences Significant? — iii
	Where does CHR Come From?

	Index of Coincidence
	Application to the Vigenère Cipher
	Example — i
	Example — ii
	Example — iii

	Pre-Modern Industrial Cryptography
	Enigma
	Picture of Enigma
	Enigma Circuit
	Example: DEAD BEEF
	Enigma Building Blocks
	The Enigma Cipher (Mathematically) — i
	The Enigma Cipher (Mathematically) — Example
	The Enigma Cipher (Mathematically) — ii
	Key Entropy in Enigma
	A Turing Machine

	Q
	The Laws of Modern Cryptography
	Kerckhoffs Principles
	The Laws of Modern Cryptography
	How Many Symmetric Keys?
	The Laws of Modern Cryptography
	Moore's Law
	Security by Key Length
	A 128-Bit Key
	Exhaustive Search on 128 Bits
	The Laws of Modern Cryptography

	Cryptography and Information Theory
	Bitwise Exclusive Or
	Vernam Cipher
	Vernam Cipher
	Q
	Using the Same Key Twice

	Visual Cryptography
	Example
	Using the Same Key Twice

	Insecurity Cases in the Vernam Cipher
	Summary of Security Requirements
	Intuition on Why it is Perfectly Secure

	Abelian Group Laws
	Useful Lemma
	Generalized Vernam Cipher

	Information Theory
	Reminder on the Shannon Entropy — i
	Reminder on the Shannon Entropy — ii
	Reminder on the Shannon Entropy — iii
	Reminder on the Shannon Entropy — iv
	Reminder on the Shannon Entropy — v
	Reminder on the Shannon Entropy — vi

	The Shannon Encryption Model
	The Shannon Encryption Model

	Perfect Secrecy - i
	Perfect Secrecy - ii
	Perfect Secrecy - iii
	Vernam Cipher Provides Perfect Secrecy
	Influence of the Plaintext Distribution

	Shannon Theorem
	Other Form of the Shannon Theorem

	The Negative Side of Shannon Theorem
	Other Consequence

	Summary on the Shannon Results
	Information Theory vs Complexity Theory

	The Early Days of Computer Science
	Conclusion
	References
	Must be Known
	Train Yourself

	Diffie-Hellman Cryptography
	Roadmap
	Arithmetics and Zn
	Prime Numbers
	Unique Factorization

	Modulo n
	Euclidean Division
	Two Notations for "mod"

	Zn for Dummies

	Some Notions of Groups Theory
	Definition of a Group
	Additive vs Multiplicative Notations for Groups
	Group Homomorphism
	Group Constructions: Subgroups

	Subgroups of Z
	Generators
	Finite Groups and Orders
	Consequence
	Group Constructions: Product Groups
	Functional vs Family Notations for Power Sets
	Group Constructions: Quotient Groups
	Quotient of an Abelian Group by a Subgroup
	Quotient Example: Z/6Z

	Lagrange Theorem
	Application: Generators in a Group of Prime Order

	The Diffie-Hellman Key Agreement Protocol
	Using the Diffie-Hellman Key Agreement Protocol

	Algorithms for Big Numbers
	Addition with Big Numbers (in Decimal)
	Addition in Binary
	Addition (Binary/Hexadecimal/Decimal)
	Definition of a Monoid
	Multiplication
	Multiplication Algorithm
	Double-and-Add From Right to Left
	From Left to Right
	Double-and-Add From Left to Right
	From Double-and-Add to Square-and-Multiply

	Zn: The Ring of Residues Modulo n
	Definition of a Ring
	Group of Units
	Group and Ring Constructors
	Example: Z with addition
	Example: Z[X]
	Example: Modulo 9 Reduction of Large Numbers
	Preuve par 9

	Example: the Ring of Residues Modulo n
	Cerebral Zn
	Zn Tips
	Exercise

	Zn Computations
	Addition in Zn
	Multiplication in Zn From Left to Right
	Exponentiation From Left to Right
	Euclidean Division

	Modular Inversion
	Euclid Algorithm
	Example
	Why does it Work?
	Extended Euclid Algorithm
	Example
	Modular Inversion
	Modular Inversion

	Arithmetics with Big Numbers
	Modular Arithmetic
	FFT-based Multiplication

	The Zp Field
	Definition of a Field
	Zp Properties
	Proof

	To Be Seen Later
	The Discrete Logarithm Problem
	Some Facts About The Discrete Logarithm Problem
	Attacks based on Precomputation

	The Diffie-Hellman Key Exchange, Concretely
	The Diffie-Hellman Key Agreement Protocol (again)
	Passive Adversaries
	The Computational Diffie-Hellman Problem
	DL => CDH

	Problems with the Original Diffie-Hellman Protocol
	Correct Diffie-Hellman Key Exchange
	RFC 2631
	Exercise
	Key Wrapping in RFC 2631
	Example: Semi-Authenticated Key Exchange in SSH2
	Parameter Validation in RFC 2631
	An Interesting Result
	Proof
	Group Parameter Generation in RFC 2631

	The ElGamal Public-Key Cryptosystem
	Public-Key Cryptosystem
	Non-Deterministic Encryption

	Semi-Static-DH to Public-Key Encryption
	The Plain ElGamal Encryption Case

	ElGamal Cryptosystem
	ElGamal Cryptosystem
	Plain ElGamal Encryption
	ElGamal Encryption Complexity

	ElGamal Security: ElGamal Problems
	CDH => EGD
	EGD => CDH
	ElGamal Encryption Security

	Conclusion
	References
	Must be Known

	RSA Cryptography
	Roadmap
	Euler and Other Chinese
	Euler Totient Function
	Proof - i
	Proof - ii
	Proof - iii
	Proof - iv
	Application: RSA Cryptosystem

	Chinese Remainder Theorem
	Chinese Remainder Theorem
	Application 1: Count Soldiers
	Application 2: Equality Modulo Composite Numbers
	Application 3: Correctness of RSA
	Application 4: Exponentiation Acceleration
	Proof of CRT - i
	Proof of CRT - ii
	Euclid Lemma
	Proof of CRT - iii
	CRT Backward: Another Approach
	Proof
	Euler Totient Function
	Proof
	Computation of Euler Totient Function

	Orders in a Group
	Structure Property of Z (Reminder)
	Orders in Zm*

	Checking a Generator of a Group with Known Order Factorization
	Discussion
	Picking a Generator in a Cyclic Group with Known Order
	Application

	Generating a Generator — i
	Generating a Generator — ii

	Primality Testing
	Trial Division Algorithm
	Fermat Test
	Fermat Test
	Significance of the Fermat Test
	Carmichael Numbers
	Carmichael Numbers: the 561 Case
	Carmichael Numbers: the 949631589089 Case

	Towards The Miller-Rabin Test
	The Miller-Rabin Test
	The Miller-Rabin Primality Test
	Miller-Rabin Criterion
	Bounding Errors

	Prime Number Generation
	Implementation

	RSA Basics
	Plain RSA Cryptosystem
	Plain RSA
	RSA Completeness
	RSA Complexity
	ElGamal vs RSA

	Quadratic Residuosity
	Square Roots in Finite Fields
	Existence of Square Roots in Zp
	Computing Square Roots in Zp, p=3 mod 4
	Example
	Tonelli Algorithm

	Square Roots in Zn, n=pq
	Legendre and Jacobi Symbols
	Application to Quadratic Residuosity
	Computing the Legendre Symbol
	Computing the Jacobi Symbol
	Example
	The Group of Quadratic Residues

	Conclusion
	Use of Quadratic Residuosity
	Goldwasser-Micali Encryption
	Solovay-Strassen Test
	Breaking the Decisional Diffie-Hellmann Assumption in Zp*
	Mapping a Number to an ElGamal Group Element

	The Factoring Problem
	Factoring Problem
	Record using the Number Field Sieve Algorithm
	Record using the Number Field Sieve Algorithm
	Factorization Tomorrow
	Factoring Algorithms on Classical Computers

	Square Roots in Zpq
	Factoring n => Computing Square Roots in Zn
	Computing Square Roots in Zn => Factoring n

	Computing Element Orders in Zn*
	Factoring lambda(n) => Computing Element Orders in Zn*
	Computing Element Orders in Zn* => Knowing lambda(n)
	Knowing lambda(n) => Factoring n
	Factorization using lambda(n)
	Knowing lambda(n) <=> Factoring n
	Consequence

	Conclusion
	Computational Problems
	References
	Must be Known
	Train Yourself

	Elliptic Curve Cryptography
	Roadmap
	Galois Fields
	GF(q) for Dummies
	Example: GF(8)
	Cerebral GF(q)

	Galois Fields
	Example: GF(5)
	Example: GF(4)
	Example: GF(256)
	Most Important Finite Fields
	Characteristic 2 Tips
	Exercise

	Elliptic Curves
	Elliptic Curves
	Addition in Elliptic Curves
	Group Structure
	Elliptic Curves are Abelian Groups

	Remark on Points of Order 2 (Characteristic >2)
	Recap

	Elliptic Curves over a Prime Field
	Roadmap
	Addition over an Elliptic Curve (Characteristic p>3)
	Maybe Useful to Know p>3
	Other Example

	Recap

	Elliptic Curves over a Binary Field
	Roadmap
	Addition over an Elliptic Curve (Characteristic p=2)
	Maybe Useful to Know (Non-supersingular, Binary)

	The Supersingular Case
	Maybe Useful to Know (Supersingular, Binary)

	Using Elliptic Curves
	Hardness of the Discrete Logarithm
	Using Point Compression (Prime Field Case)
	Using Point Compression (Binary Field Case)
	Manipulating Elliptic Curves in Practice

	Domain Parameters
	Standard Curves
	NIST Standard Curves (2013)
	SECG Standard Curves (2000)
	Other Standards
	Example: secp192r1 = P192
	Example: sect163r2 = B163
	Elliptic Curves are Real
	Example: Curve25519

	Elliptic Curve Cryptography
	ECDH: Elliptic Curve Diffie-Hellman
	ECDH

	ECIES (EC Integrated Encryption Scheme)
	Principles of ECIES

	Exercise
	Pairing-Based Cryptography
	Pairing of Elliptic Curves
	3-Party Diffie-Hellman Key Agreement in a Single Round
	Popular Cryptographic Constructions based on Pairings

	Conclusion
	References
	Must be Known
	Train Yourself

	Symmetric Encryption
	Roadmap
	A Cryptographic Primitive
	Symmetric Encryption
	Symmetric Encryption (Informal)
	Example: Vernam Cipher
	Two Categories of Symmetric Encryption

	Block Ciphers
	DES: the Data Encryption Standard
	DES
	DES Inverse
	Feistel Scheme
	(Direct) Feistel Scheme
	(Inverse) Feistel Scheme
	(Direct + Inverse) Feistel Scheme
	DES Round Function Overview
	DES Round Function
	S-box S3
	DES Key Schedule
	DES Inverse Key Schedule

	Two-Key Triple DES
	Three-Key Triple DES
	From Triple DES to DES

	Security Notions
	Attacks on DES
	AES: the Advanced Encryption Standard
	Rijndael Skeleton
	One Non-Terminal Round of Rijndael
	SubBytes
	ShiftRows
	AddRoundKey
	Introduction to GF Arithmetics in Rijndael
	Examples
	GF Arithmetics
	MixColumns
	MixColumns
	InvMixColumns
	Key Expansion
	Key Expansion

	Modes of Operation
	ECB Mode
	ECB Decryption
	Note on the ECB Mode
	ECB vs CBC
	CBC Mode
	CBC Decryption
	Note on the CBC Mode
	OFB Mode
	OFB Decryption
	Note on the OFB Mode
	CFB Mode
	CFB Decryption
	CTR Mode
	CTR Decryption
	Note on the CTR Mode
	XTS Mode
	XTS
	Ciphertext Stealing
	Ciphertext Stealing
	To Be Known About Modes of Operation

	Classical Skeletons for Block Ciphers
	Block Ciphers Characteristics

	Stream Ciphers
	Stream Ciphers
	Stream Ciphers from a High Level

	RC4
	RC4 (Alleged)
	RC4 Key Schedule
	RC4 in Security Protocols
	Known Weaknesses

	GSM A5/1
	A5/1 from a High Level
	Linear Feedback Shift Register (LFSR)
	A5/1 Automaton
	A5/1 in Key Schedule
	A5/1 Key Schedule
	Known Weaknesses

	Bruteforce Inversion Algorithms
	The Random Key Guessing Game
	Example: Opening a Safe (Online Attack)
	Distribution Cases
	Key Recovery Game - Online with no Clue
	Exhaustive Search Algorithm (Uniform Case)
	Exhaustive Search Algorithm (Optimal Case)
	Exhaustive Search Algorithm (Any Case)
	Complexity Analysis (All Cases)

	Metrics of Algorithms
	Key Recovery Game - Offline with a Clue
	Using Deterministic Clues
	Using Non-Deterministic Clues
	More General Clues
	Password Recovery from a Password Hash
	Inversion (Preimage) Game
	Inversion by Exhaustive Search
	Complexity of an Inversion Attack

	Dictionary Inversion Attack (Full Book)
	Dictionary Inversion Attack (Smaller Dictionary)
	Complexity Analysis

	Summary of Single-Target Brute Force Attacks
	Application to DES
	Security of Passwords with less than 48 Bits of Entropy
	Extension: Multi-Target Dictionary Inversion Attack
	Complexity Analysis

	The Role of Salt

	Subttle Bruteforce Inversion Algorithms
	Double DES
	Meet-in-the-Middle Attack
	Complexity Analysis
	Triple DES
	Generic Attacks on Triple DES

	Time-Memory Tradeoffs — i
	Precomputed Tables
	Time-Memory Tradeoffs — ii
	Complexity Analysis

	Pushing the Physical Limits
	Order of Magnitudes
	Moore's Law
	Better Strategy (of Metaphysical Interest)
	Energy Bill

	Conclusion
	Ciphers to Remember
	Several Types of Symmetric Encryption
	Stream Ciphers vs Block Ciphers

	Formalism
	Block Cipher
	Variable-Length Symmetric Encryption
	Nonce-Based Symmetric Encryption
	Security against Key Recovery
	CCA Security is Stronger than CPA Security
	Security against Decryption
	Decryption Security is Stronger than Key Recovery Security
	Not Good Enough Security
	Security against Distinguisher
	Security Notions

	References
	Must be Known
	Train Yourself

	Integrity and Authentication
	Roadmap
	Message Authentication Code
	Message Authentication Code (Informal)

	Hash Function (Informal)

	Commitment Scheme
	Commitment to Play Rock-Paper-Scissors
	Commitment
	Using a Commitment Scheme
	Commitment Scheme (Informal)
	Application Example: Tossing a Coin
	Application Example: Playing Dices
	Several Types of Commitment Schemes

	Examples

	Key Derivation Function and Pseudorandom Generator
	Pseudorandom Number Generator (PRNG)
	PRNG (Informal)
	PRNG Examples
	Famous Failure Cases
	Other Famous Failure Case

	Pseudorandom Function (PRF)
	Key Derivation Function (KDF)
	KDF Examples

	Cryptographic Hash Function
	Cryptographic Hashing
	A Swiss Army Knife Cryptographic Primitive
	Constructing Other Primitives with Hash Functions

	Security Properties for Hash Functions
	Threat Models for Hash Functions
	Bruteforce First Preimage Attack
	Bruteforce Second Preimage Attack

	Scenarii for Threat Models
	Cryptographic Hashing
	Cryptographic Hashing
	Encryption to Hashing
	Merkle-Damgaard's Extension
	Merkle-Damgaard Theorem
	Proof of Merkle-Damgaard Theorem - Case 1
	Proof of Merkle-Damgaard Theorem - Case 2

	Davies-Meyer Scheme
	Bitwise Boolean Functions in SHA1
	Implementation of SHA-1 Compression

	SHA-3 based on Keccak
	One Round of f - i
	One Round of f - ii
	The Sponge

	Hash Functions to Remember

	Message Authentication Codes
	MAC
	MAC Primitive
	Security

	Hashing to Authentication: HMAC [RFC 2104]
	HMAC [RFC 2104]
	Examples

	CBCMAC
	A MAC Forgery
	Other Attack with 1 Known Message
	Result on CBCMAC
	EMAC (Encrypted MAC) - (A Better CBCMAC Variant)
	ISO/IEC 9797 - (An Even Better CBCMAC Variant)
	CMAC [RFC4493] - (Best CBCMAC Variant)
	CMAC

	WC-MAC
	Universal Hash Function
	WC-MAC - Proof — i
	WC-MAC - Proof — ii
	WC-MAC - Proof — iii
	Example of Universal Hashing (Krawczyk 1994)
	Example
	WC-MAC using a Stream Cipher
	Example (Taken From GCM Mode)

	Authenticated Modes of Operation
	CCM (Counter with CBC-MAC)
	CCM
	CCM Processing
	Processing with an Extra Data
	GCM Mode
	GCM

	Authenticated Modes to Remember

	Formalism
	Hash Function
	One-Wayness
	Security Against Collision Attack (Bad Definition)

	Message Authentication Code
	Security against Key Recovery
	Security against Forgery
	Forgery Security is Stronger than Key Recovery Security
	Security against Distinguisher
	Security Notions

	Bruteforce Collision Search Algorithms
	Birthday Paradox
	Birthday Paradox - Informal Proof
	Birthday Paradox - Proof — i
	Birthday Paradox - Proof — ii

	Collision Search I
	Collision Search II
	Collision Search Complexity

	Example: Birthday Attack on EMAC
	(Almost) Memoryless Collision Search
	Floyd Cycle Finding Algorithm (1967)
	Why it Works
	Cycle Detection Algorithms

	How to Select Security Parameters?
	Summary of Generic Attacks against Symmetric Encryption
	Summary of Generic Attacks against Hash Functions
	Breaking Symmetric Cryptography

	Other Reasons why Security Collapses
	Cryptanalytic Advances

	Conclusion
	Dedicated Primitives and Reductions
	References
	Must be Known
	Train Yourself

	Case Studies I
	Roadmap
	Mobile Telephony
	GSM Architecture
	GSM Slang
	GSM Protocol
	GSM Authentication
	Security of Authentication
	GSM Encryption
	Security of Privacy protections

	Improvements in 3G Mobile Telephony
	The UMTS Crypto Menagery
	MILENAGE Protocol
	MILENAGE Challenges
	MILENAGE Challenge Verification

	Security Misses
	Mobile Telephony (In)security
	Other Standards

	WEP/WPA/WPA2
	IEEE 802.11 in a Nutshell
	WEP Security Goals
	WEP Encryption
	WEP and SKA Issues
	WEP (In)security

	WPA: a Dirty Quick Fix
	EAP
	WPA (In)security

	WPA2
	WPA2 (In)security

	Bluetooth
	The Bluetooth Project
	Bluetooth History
	Bluetooth Security
	Bluetooth Security Basics (Link Level)
	Cycles in Bluetooth
	A Strange Integrity Protection

	Device Pairing
	Legacy Pairing Protocol
	Legacy Pairing Protocol
	Pairing with a Dummy Device
	Legacy Pairing with a Dummy Device
	Dummy Devices: Unit Key is Shared with Many Devices
	Peer Authentication

	Missing Security Protection
	Insecurity Summary
	Key Establishment (In)security
	Sniffing + Offline Attack
	Online Impersonation Attack
	Possible Countermeasures
	Pairing in Two Phases: Preparing and Repairing
	A Possible Better Usage

	Bluetooth v2.0 Summary
	Bluetooth v2.0 (In)security
	Moral

	Bluetooth v2.1: Secure Simple Pairing
	Common Protocol
	Common Protocol
	ECDH Common Protocol
	The New Bluetooth Menagery

	Bluetooth Simple Secure Pairing Variants — i
	Security from Human-Monitored Short String Authentication
	Numeric Comparison Analysis
	Note on Numerical Comparison
	Bluetooth Simple Secure Pairing Variants — ii
	Pass Entry Analysis
	Bluetooth Simple Secure Pairing Variants — iii

	Bluetooth Low Energy (LE) in v4.0

	Cryptography Based on Short Authenticated Strings
	SAS-Based Secure Comunication
	Message Authentication Protocols
	Message Cross-Authentication Protocols

	Application I: Personal Area Network Setup
	Application II: Voice over IP
	Application III: Peer-to-Peer PGP Channel Setup
	Application IV: Disaster Recovery

	Semi-Authenticated Non-Interactive: Application
	Folklore (Balfanz-Smetters-Stewart-Chi Wong 2002)
	A Collision Attack
	Pasini-Vaudenay 2006: SAS-Based NIMAP

	Semi-Authenticated Interactive
	Authenticated Interactive
	Attack on a Variant Without Commitment

	Conclusion on Manual Key Establishment
	References on SAS-Based Cryptography

	Access Control
	Application: Access Control
	Password Authentication Protocol (Step 1)
	Password Authentication Protocol — i
	Password Authentication Protocol — ii
	Password Authentication Protocol — iii
	Password Access Control Using Salt
	Example: UNIX Password Access Protocol
	UNIX Passwords
	Online and Offline UNIX Passwords Recovery
	Examples
	Pros and Cons
	Password Authentication Protocol (Step 2)
	Passive vs Active Adversary

	Challenge/Response Protocol
	Challenge/Response Protocol
	Pros and Cons
	Examples
	The GSM Case

	S/Key - OTP [RFC2289]
	Pros and Cons

	Human Factor against Password Access Control
	Alternate Authentication Means
	Example: UBS E-Banking

	Password-based Authenticated Key Exchange (PAKE)
	Password vs Secret Keys
	How to Solve the Problem?
	Online Dictionary Attack: a Generic Attack

	Password-Based Authenticated Key Agreement
	A New Primitive

	Subproblem: Password-based Access Control
	1st (Bad) Example: Password Access Control
	2nd (Bad) Example: Challenge/Response Protocol
	Key Agreement: a (Bad) Idea
	Key Agreement: Another (Bad) Idea
	Existing Protocols

	EKE (Bellovin-Merritt 1992)
	EKE (Bellovin-Merritt 1992) based on ElGamal
	Wu 2002: Secure Remote Password Protocol (SRP-6)

	References on Password-Based Cryptography

	Forward Secrecy: the Case of Signal
	Signal
	Initial Key Agreement
	Ratchet
	Double Ratchet in Signal
	Ratchet for Messages

	Block Chains
	Bitcoins
	A Bitcoin Transaction
	Block Chain
	Proof-ok-Work

	Conclusion
	References
	Must Be Known
	Train Yourself

	Public-Key Cryptography
	Roadmap
	Public-Key Cryptography
	Cryptographic Primitive (Reminder)
	Symmetric Encryption (Reminder)

	Diffie-Hellman
	Trapdoor Permutation
	Trapdoor Permutation
	Public-Key Cryptosystem
	Confidentiality using an Authenticated Channel

	Confidentiality using an Authenticated Channel
	Key Exchange Protocol
	Key Exchange Protocol
	Terminology

	Digital Signature Scheme
	Digital Signature Primitive
	Big Picture
	Application: Certificates

	Diffie-Hellman Key Exchange
	Static versus Ephemeral Diffie-Hellman
	Ephemeral Diffie-Hellman Key Agreement Protocol
	Semi-Static Diffie-Hellman Key Agreement Protocol
	Static Diffie-Hellman Key Agreement Protocol
	Forward Secrecy

	Diffie-Hellman Cryptography

	RSA Cryptography
	Rivest-Shamir-Adleman (RSA)
	Plain RSA
	Why "Plain" RSA

	PKCS#1v1.5
	PKCS#1v1.5 Encryption

	RSA-OAEP Encryption
	RSA-OAEP Decryption
	Mask Generation Function in RSA-OAEP

	Rabin Cryptosystem
	Plain Rabin Encryption (B=0)
	Ensuring Non-Ambiguity in the Decryption
	Rabin Complexity
	SAEP: Simple OAEP Padding for Rabin

	Signature with Message Recovery
	Trapdoor Permutation to Signature with Message Recovery

	Plain RSA Signature
	Plain RSA Signature

	Trapdoor Permutation to Signature
	More Generally: Hash-and-Sign Paradigm

	PKCS#1v1.5
	Signature Verification
	PKCS#1v1.5 Signature

	RSA-PSS
	RSA-PSS Verification

	ElGamal Cryptography
	ElGamal Signature
	ElGamal Signature
	Drawbacks of ElGamal Signatures

	The ElGamal Dynasty
	Generating the Public Parameters
	Benefits

	DSA Signature (DSS)
	DSA Signature

	ECDSA
	ECDSA
	ECDSA Signature
	Example of Public Parameters
	Example of Keys
	ECDSA Parameters Generation
	ECDSA Parameters Validation
	ECDSA Parameters Selection: Conclusion

	Selecting Key Lengths
	Breaking RSA Cryptography by Factoring
	Breaking DH Cryptography by Discrete Logarithm
	Reading the Tables

	Meta-comparison of Cryptographic Strengths

	Formalism
	PKC
	How to Define Security?
	Security against Distinguisher
	Problem with Deterministic Cryptosystems
	ElGamal Cryptosystem Generalized (Reminder)

	Signature Scheme
	EF-CMA Security

	Other Public-Key Cryptosystems

	Towards Post-Quantum Cryptography?
	Some Alternate Constructions Based on Lattices or Codes
	An Example: NTRUEncryption
	The Regev Public-Key Cryptosystem
	Lattice-Based Cryptography

	Other Primitives
	Key and Data Encapsulation Mechanisms
	KEM Primitive
	KEM
	KEM + DEM

	Commitment Scheme
	Pedersen Commitment

	Conclusion
	Systematic Classification of Cryptography
	References
	Must Be Known
	Train Yourself

	Trust Establishment
	Roadmap
	From Secure Channel to Secure Communications
	The Cryptographic Trilogy
	Enforcing Confidentiality by Encryption
	Enforcing Integrity by Hash Function
	Enforcing Authenticity + Integrity by MAC
	Authentication and Integrity
	A+I+C by Symmetric Cryptography
	A+I+C Symmetric Constructions
	Encrypt-then-MAC
	MAC-then-Encrypt
	Some Tricky Additional Things
	TLS using Block Ciphers
	Padding Oracle Attack: Encryption
	Padding Oracle Attack: Decryption

	Security Property of Communication Channels
	From Packet Security to Session Security
	Enforcing Session Integrity
	Sequentiality using A + I Message Security

	Fair Termination Problems
	Fair Termination by Synchronization Protocol
	Keep-in-Touch (KiT) Synchronization Protocol
	KiT Protocol Security
	Bad News

	Summary for Secure Channel (so far)

	Setup of Secure Channels
	Problem
	Virtual Channels by Combination of Channels
	Key Exchange Protocols

	Next Step: Strongly Secure Channel From Weakly Secure Channel
	Key Agreement Protocol

	Security of Key Exchange Protocols
	The Diffie-Hellman Key Agreement Protocol

	Key Transfer by Public-Key Encryption
	Passive vs Active Adversaries
	An Active Attack: Man-in-the-Middle Attack

	Approaches to Build an Initial Authenticated Channel
	Summary

	Setup by Narrowband Secure Channel
	Secure Communication Step 1
	Secure Communication Step 2
	Secure Communication Step 3
	Secure Communication Step 4
	Secure Communication Steps 1–4
	Adversary Capabilities on the Secure Channel

	Setup by a Trusted Third Party
	Several Trusted 3rd Party Approach
	Example: Kerberos

	Kerberos
	Server-Aided Authentication (Bad Protocol)
	Attack
	Attack
	Needham-Schroeder Authentication (Still Bad)
	Basic Kerberos Protocol

	The Certificate Authority Model
	Critical Secure Channels
	Public-Key Certificate
	Semi-A Key Exchange Using Certificates
	Semi-Authentication: Key Transmission using PKC
	Semi-Authenticated Channel
	A Typical TLS Session
	An X.509 Certificate Example: Overall Structure
	An X.509 Certificate Example: Subject
	Two Approaches to Revocations

	Several 3rd-Party Based Trust Infrastructure
	Public-Key Infrastructure
	Identity-Based Encryption
	Certificateless Encryption

	Boneh-Franklin Identity-Based Encryption
	Some Popular Trust Model

	Trust Management and Cryptography
	Metacryptography
	Chain of Trust in the PKI Model
	Chain of Trust in Real Life

	Several Approaches to Certificate Verification

	Conclusion
	References
	Must be Known
	Train Yourself

	Case Studies II
	TLS: Transport Layer Security
	Example of Critical Application
	Requirements

	History
	TLS Record Protocols
	Session State
	Original TLS 1.0 Cipher Suites — i
	Original TLS 1.0 Cipher Suites — ii

	A Typical TLS 1.0 Session
	Different Key Exchange Protocols
	Key Derivation
	Application Data Record Protocol
	Secure Channel in TLS (Using CBC Encryption)

	TLS 1.3
	TLS 1.3 Cipher Suites

	The Biometric Passport
	ICAO-MRTD Objectives
	How to Distinguish a Compliant MRTD
	MRTD History
	MRZ Example
	MRTD in a Nutshell
	Access Control Options
	LDS Example
	LDS Structure
	SOD Structure
	(Country-wise) PKI

	Passive Authentication
	Passport: From Paper to Bits
	Basic Access Control
	MRZinfo
	Basic Access Control

	Active Authentication
	Active Authentication Protocol
	With vs Without Active Authentication

	RFID Private Collision Avoidance Protocol (ISO 14443)
	Implementation Discrepencies (2007 Survey)
	With vs Without Faraday Cages
	Algorithms (2007 Survey)

	Security and Privacy Issues
	Identity Theft

	Extended Access Control (EAC)
	Sequence of Steps for Basic Inspection
	Sequence of Steps for Advanced Inspection
	PACE (GM v2)
	Chip Authentication
	Terminal Authentication

	Terminal Authentication Issues
	Information Leakage

	Conclusion on MRTD

	NFC Creditcard Payment
	(Simplified) EMV PayPass Protocol
	From Paper to Bits...
	Skimming
	Relay Attacks
	Relay Attacks in Real
	Playing against two Chess Grandmasters

	Conclusion
	References
	Train Yourself

