Cryptography and Security

Serge Vaudenay

http://lasec.epfl.ch/

- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
 - 7 Case Studies I
- Public-Key Cryptography
- Irust Establishment

- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
- Case Studies I
- 8 Public-Key Cryptography
- Irust Establishment
- O Case Studies II

Ancient Cryptography

- Summary of this Chapter
- Terminology

1

- Cryptography Prehistory
- Pre-Modern Industrial Cryptography
- Cryptography and Information Theory

A 3-Phases Evolution

Prehistory

cryptography before communication systems (confidentiality)

Industrial era

communication and information systems (confidentiality)

Modern cryptography

since 1976 mass communication academic research (confidentiality, integrity, authentication, privacy, non-repudiation, fairness, access control, timestamping, etc)

Milestones of Prehistory

- security by obscurity: private encryption algorithms several techniques: substitutions and transpositions
- encryption with a configurable secret key e.g., Vigenère
- Kerckhoffs principle

 \rightarrow security should rely on the secrecy of the key only (not on the secrecy of the algorithm)

From Industrial Era to Modern Crypto

communicating

information theory mass communication (radio)

computing

computer science automata (electromechanic devices)

Early Milestones of Modern Cryptography

- Kerckhoffs (1883): principles of modern crypto
- Shannon (1949): an info-theoretical approach of cryptography
- Diffie-Hellman (1976): public-key cryptography
- DES (1977): encryption standard for non-military applications

Ancient Cryptography

- Summary of this Chapter
- Terminology
- Cryptography Prehistory
- Pre-Modern Industrial Cryptography
- Cryptography and Information Theory

Cryptography vs Coding Theory

Code

a system of symbols which represent information

Coding theory

science of code transformation which enables to send information through a communication channel in a reliable and efficient way $(\rightarrow dummy adversary)$

Cryptography

(a bit obsolete) the science of secret codes, enabling the confidentiality of communication through an insecure channel (\rightarrow malicious adversary)

Cipher

secret code, enabling the expression of a public code by a secret one by making the related information confidential

Cryptanalysis

- Cryptanalysis, cryptographic analysis, cryptoanalysis theory of security analysis of cryptographic systems
- To cryptanalyze a cryptosystem (\neq to break it)

to prove or to disprove the security provided by a cryptosystem

To break a cryptosystem

to prove insecurity (= to disprove security)

• Cryptology \neq cryptography

science of cryptography and cryptanalysis (sometimes also includes steganography)

● Steganography ≠ cryptography science of information hiding

Once Upon a Time, in the XIX-th Century

Alfred de Musset

George Sand

Steganography

[censored]

[censored]

[censored]

Cryptographic Problems

In ancient time:

encryption

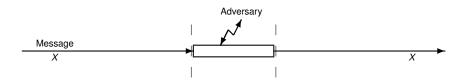
In modern cryptography:

- encryption
- detection malicious modification of information
- data authentication
- access control
- timestamping
- fair exchange
- digital rights management
- privacy

Applications

- bank cards
- Internet (e-commerce)
- mobile telephony (DECT, GSM, GPRS, EDGE, 3GPP...)
- e-passport
- mobile communication (Bluetooth, WiFi...)
- traceability, logistic & supply chains (RFID)
- pay-TV, DRM
- access control (car lock systems, metro...)
- payment (e-cash)
- electronic voting

The Fundamental Trilogy



- Confidentiality (C): only the legitimate receiver can get X
- Authentication + Integrity (A+I): only the legitimate sender can insert X and the received message must be equal to X

Basic Security Properties

Confidentiality

the information should not leak to any unexpected party

Integrity

the information must be protected against any malicious modification

Authentication

the information should make clear who is its author

Ancient Cryptography

- Summary of this Chapter
- Terminology
- Cryptography Prehistory
- Pre-Modern Industrial Cryptography
- Cryptography and Information Theory

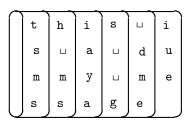
Secret Writing

Hieroglyphs!

Transpositions

Spartan scytales

 $\texttt{this}_{\sqcup}\texttt{is}_{\sqcup}\texttt{a}_{\sqcup}\texttt{dummy}_{\sqcup}\texttt{message}$



 $\texttt{TSMSH}_{\sqcup}\texttt{MSIAYAS}_{\sqcup\sqcup}\texttt{G}_{\sqcup}\texttt{DMEIUE}$

Simple Substitution: Caesar Cipher

Quiz:

Q: How to break this? A: ol fgngvfgvpny nanylfvf • ROT13

Simple Substitution: ROT13

Application: quiz

Q:Where can we find good quiz? A:va pnenzone pnaqvrf • ROT13

Simple Substitution: Random Substitution Table

a b c d e f g h i j k l m n o p q r s t u v w x y z H D L X O Q K W G S Z A P F T M V C B R E U Y I N J crypto --> LCNMRT

Number of possible tables: 26! $\approx 2^{88.4}$

Probabilities of Occurrence in English

letter	probability	letter	probability	letter	probability
A	0.082	J	0.002	S	0.063
В	0.015	K	0.008	Т	0.091
C	0.028	L	0.040	U	0.028
D	0.043	М	0.024	v	0.010
E	0.127	N	0.067	W	0.023
F	0.022	0	0.075	X	0.001
G	0.020	Р	0.019	Y	0.020
Н	0.061	Q	0.001	Z	0.001
I	0.070	R	0.060		

Rough Frequencies in English

most frequent: E

Very frequent: T A O I N S H R

I frequent: D L

- Interaction of the second second
- 🗿 very rare: V K J X Q Z

30 most common digrams (in decreasing order):

TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI *and* OF.

12 most common trigrams (in decreasing order):

THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR and DTH.

A Simple Substitution Cipher (from Stinson)

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

Step I: Frequency Analysis

letter	frequency	letter	frequency	letter	frequency
A	0	J	11	S	3
В	1	K	1	Т	2
C	15	L	0	U	5
D	13	М	16	v	5
E	7	Ν	9	W	8
F	11	0	0	Х	6
G	1	Р	1	Y	10
Н	4	Q	4	Z	20
I	5	R	10		

Solution

[homework]

Vigenère Cipher

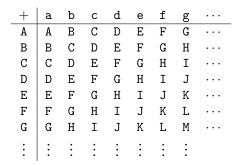
Plaintext: this is a dummy message Key: ABC

	this	is	а	dummy	message
+	ABCA	BC	А	BCABC	ABCABCA
=	TIKS	JU	Α	EWMNA	MFUSBIE

Ciphertext: TIKSJUAEWMNAMFUSBIE

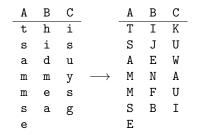
e.g. y + C = A.

Character Addition Rule



cultural remark: using the mapping (isomorphism) $a \leftrightarrow 0, b \leftrightarrow 1, c \leftrightarrow 2, ...$ this is the addition modulo 26 (group Z_{26})

Column-Dependent Substitution



Kasiski Test

to check a guess *n* for the key length

- look at repeating patterns at a distance multiple of n
- check that this is significant

Kasiski Test Example

 \rightarrow look at unexpectedly frequent patterns

CHR EE VOAHMAERATBIAX XWTNX BEEOPHBSBQMQEQERBW RVX UOAKXAOSX XWE AHBWG J MMQMNKGRFVGXWTRZXWIAK LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP WQAIIWXNRMGWOIIFKEE

CHR occurs at 1, 166, 236, 276, 286.

Question

In a random string of 313 characters from an alphabet of 26 letters, is it common to observe 5 occurences of the same trigram?

Reminders on Combinatorics

 number of k-tuples of elements in a set of size z: example z = 3, k = 2: 00, 01, 02, 10, 11, 12, 20, 21, 22

z^k

Application (k = 3, z = 26): #possible trigrams is $26^3 = 17576$

number of possible subsets of *t* elements in a set of size *n*: example *n* = 3, *t* = 2: {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}

$$\binom{n}{t} = \frac{n!}{t!(n-t)!} = \frac{n \cdot (n-1) \cdots (n-t+1)}{t \cdot (t-1) \cdots 1}$$

Application: probability to get ball u (drawn with probability p) exactly t times out of n samples: $\binom{n}{t} p^t (1-p)^{n-t}$ (binomial distribution)

Are 5 Occurrences Significant? — i

In a truly random sequence of 313 characters $x_1 x_2 \dots x_{313}$ with alphabet of 26 letters

- there are n = 311 trigrams $t_1 = x_1 x_2 x_3$, $t_2 = x_2 x_3 x_4$, ... $t_n = x_n x_{n+1} x_{n+2}$
- every possible trigram *abc* has a number of occurrences $n_{abc} = \sum_{i=1}^{n} \mathbf{1}_{t_i=abc}$
- approximation: all t_i 's are independent and uniformly distributed in a set of $\frac{1}{p} = 26^3 = 17576$ possibilities

•
$$\Pr[n_{abc} = t] = \binom{n}{t} p^t (1-p)^{n-t}$$

Note: $n \times p$ is small

Reminders on Calculus

• Stirling Formula:

$$n! pprox \sqrt{2\pi n} imes n^n e^{-n}$$

weaker formula: $\log n! \approx n(\log n - 1)$

• for $\lambda = n \times p \ll 1$: (example: $n = 311, p = \frac{1}{17576}, t \le 5$)

(binomial)
$$\binom{n}{t} p^t (1-p)^{n-t} \approx \frac{\lambda^t}{t!} e^{-\lambda}$$
 (Poisson)

• Taylor development on e^{λ} :

$$e^{\lambda} = \sum_{i=0}^{t-1} \frac{\lambda^i}{i!} + \int_0^{\lambda} \frac{(\lambda - x)^{t-1}}{(t-1)!} e^x dx$$

Are 5 Occurrences Significant? — ii

$$e^{\lambda} = \sum_{i=0}^{t-1} \frac{\lambda^{i}}{i!} + \int_{0}^{\lambda} \frac{(\lambda - x)^{t-1}}{(t-1)!} e^{x} dx$$

•
$$\Pr[n_{abc} = t] \approx \frac{\lambda^t}{t!} e^{-\lambda}$$
 with $\lambda = \frac{311}{17576}$

we have

$$Pr[n_{abc} \ge t] \approx 1 - \sum_{i=0}^{t-1} \frac{\lambda^i}{i!} e^{-\lambda}$$
$$= e^{-\lambda} \int_0^\lambda \frac{(\lambda - x)^{t-1}}{(t-1)!} e^x dx$$
$$\leq \int_0^\lambda \frac{(\lambda - x)^{t-1}}{(t-1)!} dx$$
$$= \frac{\lambda^t}{t!}$$

Are 5 Occurrences Significant? — iii

$$\Pr[n_{abc} \ge t] \le \frac{\lambda^t}{t!}$$

• maximize over all *abc*:

$$\max_{abc} \Pr[n_{abc} \ge t] \le \sum_{abc} \Pr[n_{abc} \ge t]$$

with t = 5 we have

$$\max_{abc} \Pr[n_{abc} \ge t] \le 26^3 \frac{\lambda^t}{t!} \le 10^{-6}$$

so the probability to get at least 5 occurrences of the same trigram is less that $10^{-6}\,$

• conclusion:

observing 5 occurrences of CHR is significantly odd

Where does CHR Come From?

key of length multiple of 5 + frequent trigram

•	·	·	·	·		·	·	·	·	·
t	h	е	•	•		С	Η	R	•	•
·	•	•	·	•		•	•	•	·	•
•	•	•	•	·		•	•	•	·	•
•	•	•	•	•	\longrightarrow	•	•	•	·	·
t	h	е	•	•		С	Η	R	·	•
•	•	·	·	•		·	•	·	·	·
t	h	е		•		С	Η	R	•	•

Index of Coincidence

$$Index(x_1,...,x_n) = \Pr_{I,J}[x_I = x_J | I < J] = \sum_{c \in Z} \frac{n_c(n_c - 1)}{n(n - 1)}$$

where $I, J \in \{1, \dots, n\}$ are independent and uniformly distributed

Proposition

For any permutation σ over Z, we have

$$\operatorname{Index}(\sigma(x_1),\ldots,\sigma(x_n)) = \operatorname{Index}(x_1,\ldots,x_n)$$

For any permutation σ of $\{1, \ldots, n\}$, we have

$$\operatorname{Index}(x_{\sigma(1)},\ldots,x_{\sigma(n)}) = \operatorname{Index}(x_1,\ldots,x_n)$$

the index of coincidence is invariant by substitution and transposition

- Index(English text) \rightarrow 0.065 when $n \rightarrow +\infty$
- Index(Random string) \rightarrow 0.038 when $n \rightarrow +\infty$

Application to the Vigenère Cipher

With the example TIKSJUAEWMNAMFUSBIE, if we guess that the key is of length 3, we can write

Т	Ι	Κ
S	J	U
А	Е	W
М	Ν	А
М	F	U
S	В	Ι
Е		

so we can compute the index of coincidence of TSAMMSE, IJENFB and KUWAUI.

Example — i

guess the key is of length 4

С	Η	R	Е
Е	V	0	А
Η	М	А	Е
R	Α	Т	В
Ι	Α	Х	Х
W	Т	N	Х
÷	÷	÷	÷

first column:

 ${\tt CEHRIWBPBEBXKSEWMKVTWLSTDTXIGSXLVUNWGXLSXLZLSNRMGEABJRRNXMNHAVEPEKAMBHDZCHAXGIE}$

(string of 79 characters)

```
Index(col) = Index(A^{4}B^{5}C^{2}D^{2}E^{7}G^{4}H^{4}I^{3}J^{1}K^{3}L^{5}M^{4}N^{4}P^{2}R^{4}S^{5}T^{3}U^{1}V^{3}W^{4}X^{7}Z^{2})
```

which is 0.0422: this is too low

SV 2016-17

Example — ii

guess the key is of length 5

С	Η	R	Е	Е
V	0	А	Η	М
А	Е	R	А	Т
В	I	А	Х	Х
W	Т	Ν	Х	В
Е	Е	0	Ρ	Η
÷	÷	÷	÷	÷

first column:

 ${\tt CVABWE BQBUAWWQRWWXANTBDPXXRDWBFAXCWMNJJFAIACNRNCATBWKDMCDCQQXWK}$

(string of 63 characters)

```
Index(col) = Index(\mathbb{A}^{7}\mathbb{B}^{6}\mathbb{C}^{6}\mathbb{D}^{4}\mathbb{E}^{1}\mathbb{F}^{2}\mathbb{I}^{1}\mathbb{J}^{2}\mathbb{K}^{2}\mathbb{M}^{2}\mathbb{N}^{4}\mathbb{P}^{1}\mathbb{Q}^{4}\mathbb{R}^{3}\mathbb{T}^{2}\mathbb{U}^{1}\mathbb{V}^{1}\mathbb{W}^{9}\mathbb{X}^{5}) = 0.0630
```

this is high enough!

SV 2016-17

Example — iii

- next step: find the first character of the key
- note that W is frequent while U and V are much less frequent and Y and Z are inexistent
- in English, h is frequent while f and g are much less frequent and j and k are sparse
- idea: guess that W is the encryption of h
- h + P = W
- the first character of the key may be P

Ancient Cryptography

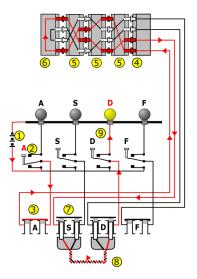
- Summary of this Chapter
- Terminology
- Cryptography Prehistory
- Pre-Modern Industrial Cryptography
- Cryptography and Information Theory

Enigma

- electro-mechanical encryption device (typewriter)
- could be plugged to a radio transmiter
- patented (1918)
- developped to be secure even with public specifications (Kerckhoffs principle), in hostile environment (battlefield)
- used by German armies in WW2
- preliminary attacks by polish mathematician Rejewski in 1932 (before Anschluss)
- "industrial" (over 2000 messages decrypted per day) attack by UK intelligence at Bletchley Park during WW2 (performing: Turing)

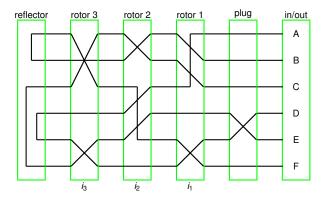
Picture of Enigma

Enigma Circuit



https://en.wikipedia.org/wiki/Enigma_machine

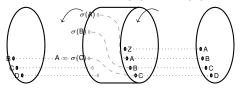
Example: DEAD BEEF



 $deadbeef \longrightarrow AADCCBBB$

Enigma Building Blocks

- given a permutation σ over Z = {A, B, ..., Z}, a fixed point is an element x ∈ Z such that σ(x) = x
- an involution over Z is a permutation σ of Z such that σ(σ(x)) = x for all x. Examples: reflector, plug board
- a rotor σ defines a set of permutations σ₀,..., σ₂₅ over Z the rotor in position *i* implements permutation σ_i such that σ_i = ρⁱ ∘ σ ∘ ρ⁻ⁱ where ρ(A) = B, ρ(B) = C, ..., ρ(Z) = A



The Enigma Cipher (Mathematically) — i

We define permutations over the 26-character alphabet.

Reflexion. π is a fixed involution with no fixed points.

Rotors. *S* be a set of five permutations over the alphabet. ρ is the circular rotation over the alphabet by one position.

 ρ^i thus denotes the circular rotation over the alphabet by *i* positions.

 α_i denotes $\rho^i \circ \alpha \circ \rho^{-i}$

Wire connection. σ is a configurable involution with 6 pairs (14 fixed points)

The Enigma Cipher (Mathematically) — Example

$$\begin{bmatrix} x: A & B & C & D & E & F \\ \hline \rho(x): & B & C & D & E & F & A \\ \hline \alpha(x): & C & A & B & D & F & E \\ \hline \alpha_0(x): & C & A & B & D & F & E \\ \hline \alpha_1(x): & F & D & B & C & E & A \\ \hline \alpha_2(x): & B & A & E & C & D & F \\ \hline \alpha_3(x): & A & C & B & F & D & E \\ \hline \alpha_4(x): & F & B & D & C & A & E \\ \hline \alpha_5(x): & F & A & C & E & D & B \end{bmatrix}$$

The Enigma Cipher (Mathematically) — ii

Secret key: 3 components:

• σ

- an ordered choice α, β, γ ∈ S of pairwise different permutations
- a number a

Plaintext: $x = x_1, \ldots, x_m$

Ciphertext: $y = y_1, \ldots, y_m$

Encryption:

$$\mathbf{y}_{i} = \sigma^{-1} \circ \alpha_{i_{1}}^{-1} \circ \beta_{i_{2}}^{-1} \circ \gamma_{i_{3}}^{-1} \circ \pi \circ \gamma_{i_{3}} \circ \beta_{i_{2}} \circ \alpha_{i_{1}} \circ \sigma(\mathbf{x}_{i})$$

where $i_3i_2i_1$ are the last three digits of the basis 26 numeration of i + a.

Key Entropy in Enigma

σ: number of involutions with 14 fixed points

$$\begin{pmatrix} 26\\14 \end{pmatrix} \times 11 \times 9 \times 7 \times \cdots \times 1$$

$$= 9657700 \times 11 \times 9 \times 7 \times \cdots \times 1$$

$$= 100391791500$$

$$\approx 2^{37}$$

• α, β, γ : number of choices for the rotors

 $5\times 4\times 3=60\approx 2^6$

• a: number of initial positions

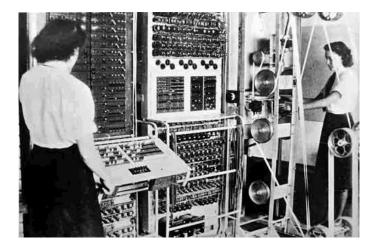
$$26^3 = 17\,576 \approx 2^{14}$$

total: 57 bits

SV 2016-17

Ancient Cryptography

A Turing Machine



Can we reasonably assume that the adversary ignores the cryptosystem?

The Laws of Modern Cryptography

Law I: the Kerckhoffs Principle security should not rely on the secrecy of the cryptosystem itself

motivation:

the adversary may get some information about the system (e.g. by reverse engineering, corruption, etc)

• meaning:

security analysis must assumes that the adversary knows the cryptosystem

o does not mean:

cryptosystem must be public

Kerckhoffs Principles

Kerckhoffs Principles

- Le système doit être matériellement, sinon mathématiquement, indéchiffrable;
- Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi;
- La clef doit pouvoir en être communiquée et retenue sans le secours de notes écrites, et être changée ou modifiée au gré des correspondants;
- Il faut qu'il soit applicable à la correspondance télégraphique;
- Il faut qu'il soit portatif et que son maniement ou son fonctionnement n'exige pas le concours de plusieurs personnes;
- Enfin, il est nécessaire, vu les circonstances qui en commandent l'application, que le système soit d'un usage facile, ne demandant ni tension d'esprit, ni la connaissance d'une longue série de règles à observer.

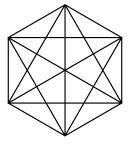
The Laws of Modern Cryptography

Law II: the *n*² Problem

in a network of *n* users, there is a number of potential pairs of users within the order of magnitude of n^2

- we cannot assume that every pair of users share a secret key
- we must find a way for any pair of users to establish a shared secret key

How Many Symmetric Keys?



for *n* users we may need up to $\frac{n(n-1)}{2}$ symmetric keys

SV 2016-17

Ancient Cryptography

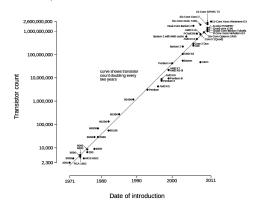
The Laws of Modern Cryptography

Law III: the Moore Law

the speed of CPUs doubles every 18-24 months

- we should wonder how long a system must remain secure
- we must estimate the speed of CPU at the end of this period
- we assess security against brute force attacks

Moore's Law



Microprocessor Transistor Counts 1971-2011 & Moore's Law

$$f_t \approx 10^9 \times 2^{\frac{1}{2 \text{ years}}(t-2004)} \times \text{cste}$$

number of keys per second which can be tested in an exhaustive search with technology at time t

SV 2016-17

Ancient Cryptography

CryptoSec 65 / 1037

Security by Key Length

 to offer security between current time t₀ until time t₀ + Δ, the key length must be at least

margin +
$$\log_2\left(\int_{t_0}^{t_0+\Delta} f_t dt\right)$$

• assuming that f_t is exponential, the key length must be $\Omega(\Delta)$

A 128-Bit Key

11000000	10010011	00000011	01001001
11010011	11110010	01111011	10100101
10101001	00110001	00110000	11011110
00101110	01001110	00011111	00100001

number of possible combinations:

Exhaustive Search on 128 Bits

- in 2007, a standard PC could test 1 000 000 keys per second
- to run exhaustive search within 15 billion years, we need 720 000 billons of 2007-PCs!
- if the Moore law goes on, in 2174, a single PC will do in within a second
- better create the Big Bang and take **15 billion years of vacations** to solve the problem within a second!

The Laws of Modern Cryptography

Law IV: the Murphy Law

if there is a single security hole, the system will fall into it

- never leave a security hole
- don't bet on security, rather prove it

Ancient Cryptography

- Summary of this Chapter
- Terminology
- Cryptography Prehistory
- Pre-Modern Industrial Cryptography
- Cryptography and Information Theory

Bitwise Exclusive Or

• exclusive or (XOR) of two bits:

- XOR: binary addition where carry bits are ignored
- XOR: addition modulo 2
- bitwise XOR of two bitstrings:

	10010		
\oplus	00111		
=	10101		

XOR properties

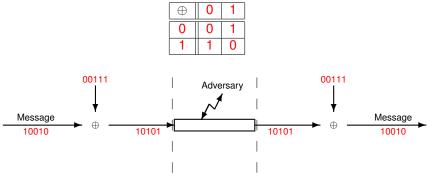
- closure: the XOR of bitstrings is a bitstring
- associative: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- commutative: $a \oplus b = b \oplus a$
- neutral element: $a \oplus [00 \cdots 0] = a$
- (self-)invertibility: $a \oplus a = [00 \cdots 0]$ (or + = -)

Vernam Cipher

- we use a uniformly distributed random key *K* (a bitstring)
- every message X requires a new K of same size (one-time pad)
- Encrypting X with K: compute $X \oplus K$
- Decrypting Y with K: compute $Y \oplus K$

	(X)	10010
\oplus	(K)	00111
=	(Y)	10101
\oplus	(<i>K</i>)	00111
=	(X)	10010

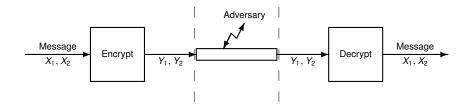
Vernam Cipher



When is this insecure?

Using the Same Key Twice

$$\begin{array}{rcl} Y_1 & = & X_1 \oplus K \\ Y_2 & = & X_2 \oplus K \end{array}$$



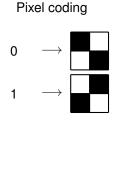
 $Y_1 \oplus Y_2 = (X_1 \oplus K) \oplus (X_2 \oplus K) = (X_1 \oplus X_2) \oplus (K \oplus K) = X_1 \oplus X_2$

leakage of the $X_1 \oplus X_2$ value

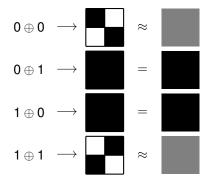
SV 2016-17

Ancient Cryptography

Visual Cryptography

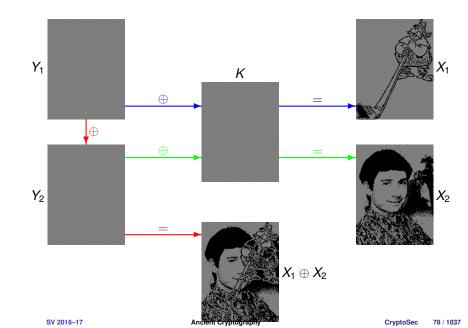


Pixel XOR



Example

Using the Same Key Twice



Insecurity Cases in the Vernam Cipher

if K is smaller than X

$$Y = (X_L \oplus K) || X_R$$

 \rightarrow insecure

• if K is not uniformly distributed

$$\Pr[K = k]$$
 high $\implies \Pr[X = y \oplus k]$ high

\rightarrow insecure

• if K is used twice and messages are redundant

 $Y_1 \oplus Y_2 = X_1 \oplus X_2 \Longrightarrow$ information about X_1 and X_2

 $\rightarrow \text{insecure}$

Summary of Security Requirements

- the key must have (at least) the same length of the message
- the key must be uniformly distributed
- the key must be thrown away after usage
- 🙁: this makes no sense for most of applications!
- \bigcirc : this provides perfect security
- makes sense to prepare emergency communication (red telephone)

keys are exchanged (through slow channels) before the messages to transmit are known

 bad news for other application: there is essentially no better cipher with this strong security property

Intuition on Why it is Perfectly Secure

• if the adversary gets Y = y then for any x

$$\Pr[X = x | Y = y] = \Pr[X = x | X \oplus K = y] = \Pr[X = x]$$

because X and $X \oplus K$ are statistically independent the adversary gets no information about X in knowing that Y = y

Abelian Group Laws

Definition

An **Abelian group** is a set *G* together with a mapping from $G \times G$ to *G* which maps (a, b) to an element denoted a + b and such that

- **1.** [closure] for any $a, b \in G$, we have $a + b \in G$
- **2.** [associativity] for any a, b, c, we have (a + b) + c = a + (b + c) (notation: *n.a* means $a + a + \cdots + a$ (*n* times))
- [neutral element] there exists an element denoted by 0 s.t. for any a, a + 0 = 0 + a = a
- **4.** [invertibility] for any *a* there exists an element denoted by -a s.t. a + (-a) = (-a) + a = 0 (notation: a b means a + (-b))
- **5.** [commutativity] for any $a, b \in G$, we have a + b = b + a
- Z with the regular addition
- $\{0,1\}^n$ with \oplus

•
$$\{0, 1, \dots, n-1\}$$
 with $(a, b) \mapsto \left\{ egin{array}{cc} a+b & ext{if } a+b < n \ a+b-n & ext{otherwise} \end{array}
ight.$

SV 2016-17

Useful Lemma

Lemma

Let X and K be two independent random variables in a given group. If K is uniformly distributed, then Y = K + X is uniformly distributed and independent from X.

Proof.

For any x and y:

P

$$Pr[X = x, Y = y] = Pr[X = x, K = y - x]$$

$$= Pr[X = x] \times Pr[K = y - x]$$

$$= Pr[X = x] \frac{1}{\# \text{group}}$$

$$Pr[Y = y] = \sum_{x} Pr[X = x, Y = y]$$

$$= \frac{1}{\# \text{group}}$$

Generalized Vernam Cipher

Let G be an Abelian group and consider an arbitrary plaintext source producing elements in G

- let *K* be uniformly distributed in *G* and independent from the plaintext
- given X, the encryption of X with key K is Y = K + X
- given *Y*, the decryption of *Y* with key *K* is X = (-K) + Y
- the key is used only once

Theorem

For any distribution of X over G, Y is independent from X and uniformly distributed.

(perfect secrecy)

Information Theory

Claude Shannon

[Claude Shannon]

skip reminders on Shannon entropy

▶ skip

CAUTION: in cryptography, "entropy" is often used in an informal way by meaning some kind of "effective bit-length"

Reminder on the Shannon Entropy — i

- *H*(*X*): number of bits of information to represent the value of *X*
- *H*(*X*, *Y*): entropy of (*X*, *Y*)
- H(X|Y) = H(X,Y) H(Y)

$$H(X) = -\sum_{x} \Pr[X = x] \log_2 \Pr[X = x]$$

$$H(X, Y) = -\sum_{x,y} \Pr[X = x, Y = y] \log_2 \Pr[X = x, Y = y]$$

$$H(X|Y) = -\sum_{x,y} \Pr[X = x, Y = y] \log_2 \Pr[X = x|Y = y]$$

Reminder on the Shannon Entropy — ii

• a real function f is convex on [a, b] iff

$$\forall \mathsf{set} \; S \quad \forall t : S \to [a, b] \quad \forall p : S \to]0, 1]$$
$$\sum_{x \in S} p_x = 1 \Longrightarrow \sum_{x \in S} p_x f(t_x) \ge f\left(\sum_{x \in S} p_x t_x\right)$$

- it is strictly convex if we further have the property that equality implies all *t_x* are equal
- a real function *f* which has a second derivative on]*a*, *b*[is strictly convex on [*a*, *b*] iff its second derivative is always > 0 on]*a*, *b*[

Reminder on the Shannon Entropy — iii

Proposition

 $H(X) \ge 0$ with equality if, and only if X is constant

Proof.

• $f(t) = -\log_2 t$ is strictly convex on [0, 1] take $t_x = p_x = \Pr[X = x]$ and get

$$H(X) \ge -\log_2\left(\sum_{x \in S} p_x^2\right)$$

clearly, $\sum_{x} p_{x}^{2} \leq 1$ so this log is positive

Assuming equality, we must have ∑_x p_x² = 1 so all p_x must be equal to 1 so there must be a single x (we cannot have two different values with probability 1) (i.e. X is constant equal to this x)

Reminder on the Shannon Entropy — iv

Proposition

 $H(X, Y) \ge H(X)$ with equality if, and only if Y can be written f(X)

Proof.

We write

$$H(Y|X) = \sum_{x} \Pr[X = x] \sum_{y} \Pr[Y = y|X = x] \log_2 \Pr[Y = y|X = x]$$

We know that for each x the inner sum is ≥ 0 with equality iff there is a single y = f(x) for which $\Pr[Y = y | X = x] > 0$

- Clearly: $H(Y|X) \ge 0$
- Assuming equality, for each x we define y = f(x) and get $\Pr[Y = f(x)|X = x] = 1$ for all x so, $\Pr[Y = f(X)] = 1$

$$H(Y|X) = -\sum_{x,y} \Pr[X = x, Y = y] \log_2 \Pr[Y = y|X = x]$$

Reminder on the Shannon Entropy — v

Proposition

 $H(X, Y) \leq H(X) + H(Y)$ with equality if, and only if X and Y are independent.

Proof.

• $t \mapsto t \ln t$ has second derivative $\frac{1}{t}$ so it is convex and

$$-\sum_{y} \Pr[Y=y]t_{y} \log_{2} t_{y} \leq -\left(\sum_{y} \Pr[Y=y]t_{y}\right) \log_{2}\left(\sum_{y} \Pr[Y=y]t_{y}\right)$$

with equality iff all t_y 's for $Pr[Y = y] \neq 0$ are equal • Applying this to $t_v = Pr[X = x | Y = y]$ yields

$$-\sum_{y} \Pr[X = x, Y = y] \log_2 \Pr[X = x | Y = y] \le -\Pr[X = x] \log_2 \Pr[X = x]$$

with equality iff Pr[X = x | Y = y] does not depend on y

 summing up for all x leads to H(X|Y) ≤ H(X) with equality iff X and Y are independent

Reminder on the Shannon Entropy — vi

Proposition

If $\Pr[X = x] \neq 0$ for *n* values of *x* then $H(X) \leq \log_2 n$ with equality if, and only if all non-zero $\Pr[X = x]$ are equal to $\frac{1}{n}$.

Proof.

• $t \mapsto -\ln t$ has second derivative $\frac{1}{t^2}$ so is convex and

$$\sum_{x} \Pr[X = x] \log_2 t_x \le \log_2 \left(\sum_{x} \Pr[X = x] t_x \right)$$

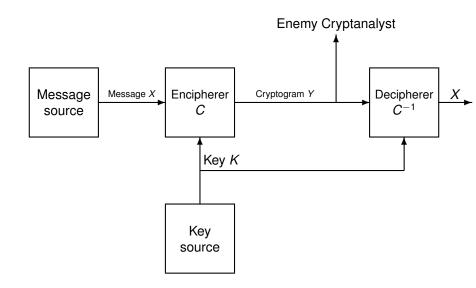
with equality iff all t_x 's for $Pr[X = x] \neq 0$ are equal

• Applying this to $t_x = 1 / \Pr[X = x]$ yields

 $H(X) \leq \log_2 n$

with equality iff all nonzero Pr[X = x] are equal

The Shannon Encryption Model



The Shannon Encryption Model

- message is a random variable with a given a priori distribution for later: with *any* a priori distribution
- key is a random variable with specified distribution, independent from the message
- correctness property: $\Pr[C_{\mathcal{K}}^{-1}(C_{\mathcal{K}}(X)) = X] = 1$
- adversary gets the random variable $Y = C_{\kappa}(X)$ only for other security models to be seen: other assumptions

Perfect Secrecy — i

Definition

Perfect secrecy means that the a posteriori distribution of the plaintext X after we know the ciphertext Y is equal to the a priori distribution of the plaintext:

$$\forall x, y \quad \Pr[Y = y] \neq 0 \Longrightarrow \Pr[X = x | Y = y] = \Pr[X = x].$$

The adversary learns nothing about X by intercepting Y. (Remark: this definition is relative to the distribution of X.)

Perfect Secrecy — ii

Proposition

Perfect secrecy is equivalent to the statistic independence of X and Y.

Proof.

Independence

Perfect Secrecy — iii

Proposition

Perfect secrecy is equivalent to H(X|Y) = H(X).

Proof.

Prefect secrecy is equivalent to statistic independence of *X* and *Y*. Statistic independence of *X* and *Y* is equivalent to H(X, Y) = H(X) + H(Y). Since H(X|Y) = H(X, Y) - H(Y) the result is trivial.

Vernam Cipher Provides Perfect Secrecy

Theorem

For any distribution of the plaintext, the generalized Vernam cipher provides perfect secrecy.

Influence of the Plaintext Distribution

Theorem

Let $C_{\mathcal{K}}$ be a cipher with \mathcal{K} following a given distribution. Let p and p' be two distributions for X such that $\operatorname{support}(p') \subseteq \operatorname{support}(p)$. $C_{\mathcal{K}}$ provides perfect secrecy with p implies that $C_{\mathcal{K}}$ provides perfect secrecy with p'.

Proof. If $\Pr_{p'}[Y = y] \neq 0$, there exists *k* and x_0 such that $C_k(x_0) = y$, $\Pr[K = k] \neq 0$, and $p'(x_0) \neq 0$. Since $\operatorname{support}(p') \subseteq \operatorname{support}(p)$, we have $p(x_0) \neq 0$ so $\Pr_p[Y = y] \neq 0$. Due to perfect secrecy,

$$\Pr_{p}[Y = y] = \Pr_{p}[Y = y | X = x] = \Pr[C_{\mathcal{K}}(x) = y] = \Pr_{p'}[Y = y | X = x]$$

then

$$\Pr_{p'}[Y = y] = \sum_{x} \Pr_{p'}[Y = y | X = x] p'(x) = \sum_{x} \Pr_{p}[Y = y] p'(x)$$
$$= \Pr_{p}[Y = y] \sum_{x} p'(x) = \Pr_{p}[Y = y] = \Pr_{p'}[Y = y | X = x]$$

Shannon Theorem

Theorem (Shannon 1949)

Perfect secrecy implies $H(K) \ge H(X)$.

Proof.

- we have $H(Y) \ge H(Y|K)$
- knowledge of K makes $X \leftrightarrow Y$, thus H(Y|K) = H(X|K)
- since X and K are independent, we obtain H(Y|K) = H(X)we thus have $H(Y) \ge H(X)$
- knowledge of X makes $K \rightarrow Y$, thus H(Y, K|X) = H(K|X)
- since X and K are independent, H(K|X) = H(K), so H(Y, K|X) = H(K)
- we have $H(Y, K|X) \ge H(Y|X)$, thus $H(K) \ge H(Y|X)$
- if we have perfect secrecy, we have H(Y|X) = H(X|Y) + H(Y) - H(X) = H(Y)thus, we have $H(K) \ge H(Y) \ge H(X)$

Other Form of the Shannon Theorem

Theorem (Shannon 1949)

Perfect secrecy implies that the support of K is at least as large as the support of X.

Proof. Let *y* be such that $Pr[Y = y] \neq 0$.

• since X and K must be independent

 $\Pr[X = x, Y = y] = \Pr[X = x, C_{K}(x) = y] = \Pr[X = x] \Pr[C_{K}(x) = y]$

- perfect secrecy implies $\Pr[C_{\mathcal{K}}(x) = y] = \Pr[Y = y | X = x] = \Pr[Y = y]$ for all x such that $\Pr[X = x] \neq 0$
- consequently, for all x in the support of X we have $Pr[C_K(x) = y] \neq 0$ so there exists one k in the support of K such that $C_k(x) = y$. Let write it k = f(x).
- for any x in the support of X we have C⁻¹_{f(x)}(y) = x.
 Clearly, f(x) = f(x') implies x = x'.
 Consequently, we have an injection from the support of X to the support of K.

SV 2016-17

The Negative Side of Shannon Theorem

Corollary

If we want to achieve perfect secrecy the number of possible keys must be at least as large of the number of possible plaintexts.

Conclusion: we cannot do better than the Vernam cipher

Other Consequences

Theorem

Perfect secrecy implies that X has a finite support.

Proof.

• let y s.t.
$$p = \Pr[Y = y] \neq 0$$

- due to perfect secrecy we have Pr[Y = y] = Pr[C_K(x) = y] for all x in the support
- since $[C_{K}^{-1}(y) = x] \iff [C_{K}(x) = y]$, we have $\Pr[C_{K}^{-1}(y) = x] \ge \Pr[C_{K}(x) = y] = p$ for all x in the support thus

$$1 \ge \sum_{x \in \text{support}} \Pr[C_K^{-1}(y) = x] \ge p.\#\text{support}$$

•
$$\#$$
Support(X) $\leq \frac{1}{p}$

Summary on the Shannon Results

- we have mathematically formalized the notion of perfect secrecy
- Vernam Cipher achieves perfect secrecy
- despite Vernam Cipher is expensive, there is no cheaper alternative

```
Q:Can the theory of cryptography stop here?
A:Abg lrg: jung zvffrf vf gur abgvba bs
pbzcyrkvgl
```

► ROT13

Information Theory vs Complexity Theory

Information Theory

Complexity Theory

Is information there or not?

How much does it cost to recover information?

Is it *possible* to recover information?

Is it *doable* to recover information?

security shall rather be based on lower bounding the complexity of breaking the system

The Early Days of Computer Science

Conclusion

- in prehistory: security by obscurity
- now a need for standard solutions
- perfect security requires an unreasonable cost
- conclusion: we must trade security against cost

References

- **Singh**. *The Code Book*. Fourth Estate. 2000. Easy reading stories
- Kahn. *The Codebreakers.* Smith & Daniel. 1997. Textbook about (pre)history of cryptography
- Levy. *Crypto.* Penguin. 2001. Easy reading story about the begining of public-key cryptography
- Hinsley-Stripp. *The Inside Story of Bletchley Park.* Oxford University Press. 1993.
- **Naor-Shamir**. Visual Cryptography. In *EUROCRYPT 1994*, LNCS 950.
- Shannon. Communication Theory of Secrecy Systems. 1949. Re-edited by Sloane-Wyner Eds in *Claude Elwood Shannon collected papers.* IEEE Press. 1993.

Must be Known

- Kerckhoffs principle
- the ACI trilogy (Authentication, Confidentiality, Integrity)
- Vernam cipher
- Shannon model of encryption
- perfect secrecy
- Shannon Theorem

Train Yourself

- Vigenère: final exam 2009–10 ex1
- Vernam: midterm exam 2010–11 ex3 midterm exam 2015–16 ex1
- entropy: final exam 2012-13 ex3

- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
- Case Studies I
- Public-Key Cryptography
- Irust Establishment
- Case Studies II

SV 2016-17

Roadmap

- reminders on arithmetics, groups, Z_n
- Diffie-Hellman key exchange over a group
- reminders on rings, fields, Z^{*}_p
- Diffie-Hellman key exchange, concretely
- ElGamal cryptosystem

Diffie-Hellman Cryptography

- Arithmetics and Z_n
- Some Notions of Groups Theory
- Algorithms for Big Numbers
- Z_n: The Ring of Residues Modulo n
- The **Z**_p Field
- The Diffie-Hellman Key Exchange, Concretely
- The ElGamal Public-Key Cryptosystem

Prime Numbers

Definition

A prime number is a positive integer which has exactly two positive factors: 1 and itself.

 $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, \ldots$

Unique Factorization

Theorem

Each integer n can be uniquely written

$$\boldsymbol{n} = \boldsymbol{u} \times \boldsymbol{p}_1^{\alpha_1} \times \cdots \times \boldsymbol{p}_r^{\alpha_r}$$

where $p_1 < \cdots < p_r$ are prime, $u = \pm 1$, and $\alpha_1, \ldots, \alpha_r$ are non-negative integers.

Modulo n

Operation $x \mod n$: remainder in the Euclidean division of x by n

Х

$$\begin{array}{c|c} x = 8273 & 143 = n \\ & -715 & 57 = \lfloor x/n \rfloor \\ & -1001 \\ mod \ n = 122 \end{array}$$

 $8273 \mod 143 = 122$

 $8273 = 122 + 143 \times 57$

Euclidean Division

Theorem (Euclidean Division)

For any $a \in \mathbf{Z}$ and any n > 0 there exists a unique pair $(q, r) \in \mathbf{Z}^2$ such that a = qn + r and $0 \le r < n$. We denote $r = a \mod n$ and have $q = \lfloor \frac{a}{n} \rfloor$.

Two Notations for "mod"

• without parentheses: x mod n

- \rightarrow a two-adic operator
- = remainder in the Euclidean division of x by n

• with parentheses: $a \equiv b \pmod{n}$

 \rightarrow an attribute to an equivalence relation (here: \equiv) means that b - a is divisible by n or equivalently: $a \mod n = b \mod n$

o do not mix up

$$a = b \mod n$$
 and $a \equiv b \pmod{n}$
 \uparrow
 $a \text{ set to } (b \mod n)$
 $a \text{ and } b \text{ are (equal modulo } n)$

Z_n for Dummies

- $\mathbf{Z}_n = \{0, 1, \dots, n-1\}$
- addition in \mathbf{Z}_n : $a \boxplus b = (a+b) \mod n$
- multiplication in \mathbf{Z}_n : $a \boxtimes b = (a \times b) \mod n$
- useful lemma: $(a + (b \mod n)) \mod n = (a + b) \mod n$
- useful lemma: $(a \times (b \mod n)) \mod n = (ab) \mod n$
- \boxplus and \boxtimes closure: comes from $x \mod n \in Z_n$ for any $x \in Z$
- ⊞ associativity: comes from the lemma:

 $a \boxplus (b \boxplus c) = (a + ((b + c) \mod n)) \mod n = (a + b + c) \mod n...$

■ ⊠ associativity: comes from the lemma:

 $a \boxtimes (b \boxtimes c) = (a \times ((bc) \mod n)) \mod n = (abc) \mod n...$

- neutral elements: 0 for ⊞ and 1 for ⊠
- invertibility for \boxplus : $(-a) \mod n$, comes from the lemma:

 $a\boxplus((-a) \bmod n) = (a+((-a) \bmod n)) \bmod n = (a-a) \bmod n = 0$

• distributivity: comes from the lemma:

 $a \boxtimes ((b+c) \mod n) = (a \times (b+c)) \mod n = (ab+ac) \mod n...$

2 Diffie-Hellman Cryptography

Arithmetics and Z_n

Some Notions of Groups Theory

- Algorithms for Big Numbers
- Z_n: The Ring of Residues Modulo n
- The **Z**_p Field
- The Diffie-Hellman Key Exchange, Concretely
- The ElGamal Public-Key Cryptosystem

Definition of a Group

Definition

A **group** is a set *G* together with a mapping from $G \times G$ to *G* which maps (a, b) to an element denoted $a \odot b$ and such that

- **1.** [closure] for any $a, b \in G$, we have $a \odot b \in G$
- **2.** [associativity] for any a, b, c, we have $(a \odot b) \odot c = a \odot (b \odot c)$
- **3.** [neutral element] there exists an element *e* s.t. for any *a*, $a \odot e = e \odot a = a$
- **4.** [invertibility] for any *a* there exists *b* s.t. $a \odot b = b \odot a = e$

Definition

An **Abelian group** is a set *G* together with a mapping from $G \times G$ to *G* which maps (a, b) to an element denoted $a \odot b$ and such that

- 1–4. [group] it is a group
 - **5.** [commutativity] for any a, b we have $a \odot b = b \odot a$

Additive vs Multiplicative Notations for Groups

	additive notations	multiplicative notations
group	(<i>G</i> , +)	(G, \times)
operation	a+b	ab
neutral element	0	1
inverse	- <i>a</i>	a ⁻¹
exponential	n.a	a ⁿ

(a and b are group elements; n is an integer)

Group Homomorphism

Homomorphism: given two groups (G_1, \times_1) and (G_2, \times_2) , a mapping *f* from G_1 to G_2 is a group homomorphism if for any $a, b \in G_1$

$$f(a \times_1 b) = f(a) \times_2 f(b)$$

Example: If $g \in G$, the mapping $\varphi : \mathbb{Z} \longrightarrow G$ defined by $\varphi(a) = g^a$ is a group homomorphism. $\forall a, b \in \mathbb{Z} \quad \varphi(a+b) = \varphi(a)\varphi(b)$

Isomorphism: a group homomorphism which is bijective is called an isomorphism

isomorphism = change of notation

Property: A group homomorphism is injective iff $\forall a \in G_1 \quad f(a) = 1 \implies a \text{ neutral in } G_1$

Group Constructions: Subgroups

Subgroups: given (G, \times) , and given $H \subseteq G$ which is nonempty and stable by \times and inversion, consider (H, \times)

Example:

•
$$5\mathbf{Z} = \{\dots, -15, -10, -5, 0, 5, 10, 15, \dots\}$$
 is a subgroup of **Z**

Subgroups of Z

Theorem

If H is a subgroup of **Z** not reduced to $\{0\}$, then $H = n\mathbf{Z}$ where n is the smallest positive element of H.

Proof.

- let $a \in H$ and write a = qn + r with $q, r \in \mathbb{Z}$ and $0 \le r < n$ (Euclidean division)
- since *H* is a group and $a, n \in H$ we have $r = a qn \in H$
- since 0 ≤ r < n and n is the smallest positive element of H we must have r = 0, thus a = qn ∈ nZ
- therefore, $H \subseteq n\mathbf{Z}$
- conversely, *rn* must be in *H* for all $r \in \mathbf{Z}$, therefore $H = n\mathbf{Z}$

Generators

• Given a group (G, .), an element g generates/spans a subgroup

$$\langle g \rangle = \{ \dots, g^{-2}, g^{-1}, g^0, g^1, g^2, \dots \}$$

• If $\langle g \rangle$ is finite, of cardinality *n*, then $g^n = 1$ and $\langle g \rangle = \{g^0, g^1, \dots, g^{n-1}\}$

(see next slide)

- if $x \in \langle g \rangle$, $\log_a x$ is uniquely determined up to some multiple of *n*:
 - log_g x is an element of Z_n
 - $i \mapsto g^i$ is a group isomorphism between Z_n and $\langle g \rangle$

Finite Groups and Orders

Definition

If (G, .) is a group and if G is a finite set, then the cardinality of G is called the group **order**.

If g generates a subgroup of order n, then n is called the **order** of g.

Proposition

The order of g is the smallest i > 0 s.t. $g^i = 1$.

Proof.

- the set of all *i* ∈ Z such that *gⁱ* = 1 is a subgroup of Z (preimage of subgroup {1} by group homomorphism *i* → *gⁱ*...)
- it must be of form $n\mathbf{Z}$ where n is the smallest among all i > 0
- $\{1, g, g^2, \dots, g^{n-1}\}$ is a non-repeating exhaustive list of all $\langle g \rangle$ elements

Consequence

if g is of order n...

• then $\langle g
angle = \{1, g, g^2, \dots, g^{n-1}\}$

•
$$\forall i \quad g^i = 1 \iff n | i |$$

•
$$\forall i, j \quad g^i = g^j \iff i \equiv j \pmod{n}$$

Group Constructions: Product Groups

Product groups: given (G_1, \times_1) and (G_2, \times_2) , consider $G = G_1 \times G_2$ and $(a_1, a_2) \times (b_1, b_2) = (a_1 \times_1 b_1, a_2 \times_2 b_2)$

Power groups: given (G, .) and I, consider G^{I} and $(a_{i})_{i \in I} \times (b_{i})_{i \in I} = (a_{i}.b_{i})_{i \in I}$

Example:

•
$$\mathbf{C}^* \times \{-1, +1\} = \{(z, s); z \in \mathbf{C}^*, s = \pm 1\}$$
 with
(z, s) $\times (z', s') = (zz', ss')$

• $Z^{\{a,b,c\}}$ is the set of mappings from $D = \{a,b,c\}$ to Z with f + g defined by (f + g)(x) = f(x) + g(x)

Functional vs Family Notations for Power Sets

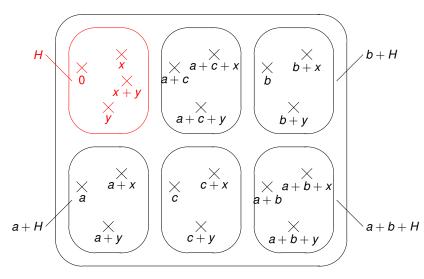
	functional notations	family notations
	function domain D	index set I
	function range R	set S
finite domain	$f: \{1, \ldots, n\} o R$	(x_1,\ldots,x_n)
infinite domain	f: D ightarrow R	$(x_i)_{i\in I}$
input	$x \in D$	$i \in I$
image	$f(x) \in R$	$x_i \in S$
set	R^{D}	S' or S^n

Group Constructions: Quotient Groups

Quotient groups: given a commutative group *G* and a subgroup *H*, consider the set G/H of classes for congruence modulo *H* with the law induced by +

- a and b in G are said to be congruent modulo H if b − a ∈ H notation: a ≡ b (mod H)
- the relation "...is congruent to ... modulo *H*" is an equivalence relation (reflexive, symmetric, transitive)
- notation: for a ∈ G, a + H is the set of all G elements which can be written a + h for some h ∈ H (elements congruent to a)
- every class of equivalence can be written *a* + *H* for some *a* ∈ *G a* is called a *representative* for the class

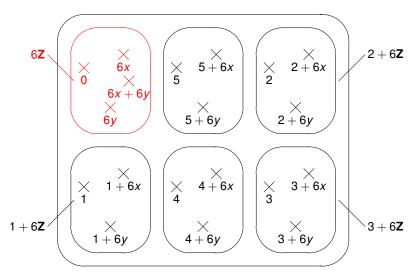
Quotient of an Abelian Group by a Subgroup



(a + H) + (b + H) = (a + b) + H

Diffie-Hellman Cryptography

Quotient Example: Z/6Z



 $Z/H = \{H, 1 + H, 2 + H, 3 + H, 4 + H, 5 + H\}$

Diffie-Hellman Cryptography

Lagrange Theorem

Theorem (Lagrange)

In any finite group, the order of any element is a factor of the order of the group.

Proof.

in $G/\langle g \rangle$, all $a + \langle g \rangle$ have same number of elements so #G (the order of *G*) is divisible by $\#\langle g \rangle$ (the order of *g*)

Consequence

 $\forall g \in G \quad g^{\#G} = 1$

Application: Generators in a Group of Prime Order

Theorem

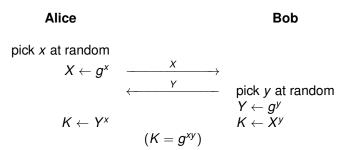
if G has prime order, all elements (except 1) are generators

Proof.

- let *p* be the order of *G*
- an element $x \in G$ such that $x \neq 1$ has an order n > 1
- due to the Lagrange Theorem, n|p, so n = p since p is prime
- g^0, \ldots, g^{n-1} must be pairwise different, so $n \le p$
- so n = p: g must generate G

The Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g (g is public)



security requirement: given (g, g^x, g^y) , it must be hard to compute g^{xy} (Computational Diffie-Hellman Problem)

Using the Diffie-Hellman Key Agreement Protocol

- allows to set up a secret key over a public channel (assuming authentication)
- no further need to set up pre-shared keys: sets up keys when needed
 - \rightarrow public-key cryptography
- Example of Diffie-Hellman groups:
 - \mathbf{Z}_{p}^{*} (compute $g^{x} \mod p$)
 - elliptic curves

2 Diffie-Hellman Cryptography

- Arithmetics and Z_n
- Some Notions of Groups Theory

Algorithms for Big Numbers

- Z_n: The Ring of Residues Modulo n
- The **Z**_p Field
- The Diffie-Hellman Key Exchange, Concretely
- The ElGamal Public-Key Cryptosystem

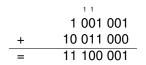
Addition with Big Numbers (in Decimal)

	11 1
	8 427 403
+	12 951 842
=	21 379 245

Input: two integers *a* and *b* of ℓ digits Output: one integer c = a + b1: $r \leftarrow 0$ 2: for i = 0 to $\ell - 1$ do 3: $d \leftarrow a_i + b_i + r$ 4: write $d = 10r + c_i$ with $c_i < 10$ 5: end for 6: $c_\ell \leftarrow r$

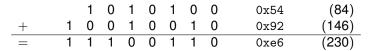
Addition in Binary

1 + 1 = 10



Input: *a* and *b*, two integers of at most ℓ bits Output: *c*, an integer of at most $\ell+1$ bits representing a+bComplexity: $\mathcal{O}(\ell)$ 1: $r \leftarrow 0$ 2: for i = 0 to $\ell - 1$ do 3: $d \leftarrow a_i + b_i + r$ 4: set c_i and *r* to bits such that $d = 2r + c_i$ 5: end for 6: $c_\ell \leftarrow r$

Addition (Binary/Hexadecimal/Decimal)



hexadecimal = compact way to represent bistrings (bits groupped into "nibbles" = packets of 4 bits)

Definition of a Monoid

Definition

A **monoid** is a set *G* together with a mapping from $G \times G$ to *G* which maps (a, b) to an element denoted a + b and such that

- **1.** [closure] for any $a, b \in G$, we have $a + b \in G$
- **2.** [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)
- 3. [neutral element] there exists an element 0 s.t. for any a, a + 0 = 0 + a = a

multiplication of a positive integer *n* by a monoid element *a*:

$$n.a = \underbrace{a + a + \dots + a}_{n \text{ times}}$$

Multiplication

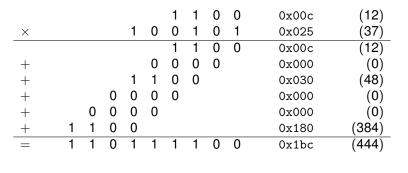
we want to multiply a monoid element (a = 12) by an integer (n = 100101 in binary):

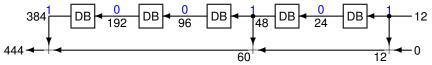
 $\begin{array}{rl} 12 \times 100101 \\ = & 12 \times \left(1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2 + 1 \right) \\ = & 12 \times \left(2^5 + 2^2 + 1 \right) \\ = & 12 \times 2^5 + 12 \times 2^2 + 12 \times 1 \end{array}$

multiplication by 2 consists of adding to itself (= a shift left for addition over the integers in binary) multiplication by 2^i consists of multiplying *i* times by 2

Multiplication Algorithm

 $12 \times 100101 = 444$





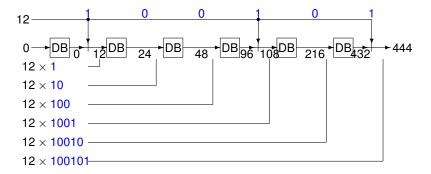
Double-and-Add From Right to Left

```
Input: a in monoid, n integer of at most \ell bits
    (n in binary)
Output: c = a \times n
Complexity: O(\ell) monoid additions
 1: x \leftarrow 0
 2: y \leftarrow a
 3: for i = 0 to \ell - 1 do
 4: if n_i = 1 then
 5: x \leftarrow x + y
 6: end if
 7: y \leftarrow y + y
 8: end for
```

9:
$$\mathbf{C} \leftarrow \mathbf{X}$$

From Left to Right

 $12\times \texttt{100101} = 444$



Double-and-Add From Left to Right

```
Input: a in monoid, n integer of at most \ell bits
    (n in binary)
Output: c = a \times n
Complexity: O(\ell) monoid additions
 1: x \leftarrow 0
 2: for i = \ell - 1 to 0 do
 3: x \leftarrow x + x
 4: if n_i = 1 then
 5: x \leftarrow x + a
 6: end if
 7: end for
 8: C \leftarrow X
```

From Double-and-Add to Square-and-Multiply

if we can compute a monoid law *a* + *b* in *O*(*T*) then we can compute *n*.*a* for *n* ∈ **N** in *O*(*T* log *n*) instead of *O*(*Tn*) by trivial algorithm

Example:

- monoid (Z, +): a positive integer multiplied by a Z element
- monoid (EC, +): an integer multiplied by a point
- monoid (\mathbf{Z}_m, \times) : a \mathbf{Z}_m element raised to some integral power

Same with multiplicative notation:

if we can compute a monoid law *ab* in O(T) then we can compute aⁿ for n ∈ N in O(T log n)

2 Diffie-Hellman Cryptography

- Arithmetics and Z_n
- Some Notions of Groups Theory
- Algorithms for Big Numbers
- Z_n: The Ring of Residues Modulo n
- The **Z**_p Field
- The Diffie-Hellman Key Exchange, Concretely
- The ElGamal Public-Key Cryptosystem

Definition of a Ring

Definition

A **ring** is an Abelian group (R, +) together with a mapping from $R \times R$ to R which maps (a, b) to an element denoted ab and such that

- **1-4.** [group] R with + is a group
 - **5.** [Abelian] for any a, b, we have a + b = b + a
 - **6.** [closure] for any $a, b \in R$, we have $ab \in R$
 - 7. [associativity] for any a, b, c, we have (ab)c = a(bc)
 - **8.** [neutral element] there exists 1 s.t. for any a, a1 = 1a = a
 - 9. [distributivity] for any a, b, c, we have a(b + c) = ab + ac and (a + b)c = ac + bc

Definition

A commutative ring is a ring R such that

- 1–9. [ring] it is a ring
 - **10.** [commutativity] for any a, b we have ab = ba

Group of Units

- not every element *x* in a ring *R* has an inverse for the multiplication
- we denote by R* the set of elements having a multiplicative inverse those elements are called units
- *R*^{*} with the multiplication is a group this is the **group of units** of the ring *R*

common mistake: $R^* = R - \{0\}$

Group and Ring Constructors

sub-structure (sub-group, ideal)
 subgroup: subset of a group stable by group law and inversion
 ideal: subgroup of a ring stable by multiplication by any ring
 element

spanned structure

set of all values generated by structure operations

product structure

set of pairs with inherited structure operations

opwer structure

set of tuples / set of functions of given domain with range in structure

 quotient (Abelian group by a subgroup, ring by an ideal) structure induced by grouping "equivalent" elements

Example: Z with addition

$$\textbf{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

- 1. Z is closed for the addition
- 2. the addition is associative in Z
- 3. 0 is neutral for the addition
- for any *a* ∈ Z we have −*a* ∈ Z which is the inverse of *a* for addition
- 5. the addition is commutative in Z
- 6. Z is closed for the multiplication
- 7. the multiplication is associative in Z
- 8. 1 is neutral for the multiplication
- 9. addition is distributive for multiplication
- 10. the multiplication is commutative in Z

Z is a commutative ring of infinite size

SV 2016-17

Diffie-Hellman Cryptography

Example: Z[X]

Z[X] = set of polynomials with coefficients in Z

example: $(5X^3 - 3X^2 + X - 4) + (X^2 - 2X + 1) = 5X^3 - 2X^2 - X - 3$

- **1-5.** Z[X] with the addition is an Abelian group (isomorphic to $Z^{(N)}$)
 - 6. **Z**[X] is closed under multiplication
 - 7. multiplication is associative in $\mathbf{Z}[X]$
 - 8. the constant polynomial 1 is neutral for the multiplication
 - 9. distributivity: we have A(X)(B(X) + C(X)) = A(X)B(X) + A(X)C(X) for all $A(X), B(X), C(X) \in \mathbf{Z}[X]$
- **10.** multiplication is commutative in $\mathbf{Z}[X]$

$\mathbf{Z}[X]$ is a commutative ring of infinite size

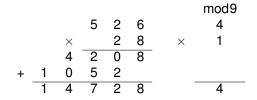
(same for R[X] for any commutative ring R)

Example: Modulo 9 Reduction of Large Numbers

296 527 mod 9

- $= (200\,000 + 90\,000 + 6\,000 + 500 + 20 + 7) \text{ mod } 9$
- $= (2 \times 100\,000 + 9 \times 10\,000 + 6 \times 1\,000 + 5 \times 100 + 2 \times 10 + 7) \text{ mod } 9$
- $= \quad (2 \times 10^5 + 9 \times 10^4 + 6 \times 10^3 + 5 \times 10^2 + 2 \times 10 + 7) \text{ mod } 9$
- $= (2 \times (10 \mod 9)^5 + 9 \times (10 \mod 9)^4 + 6 \times (10 \mod 9)^3 + 6 \times (10 \mod 9)^2 + 9 \times (10 \mod 9)^2 + 7 \mod 9$
 - $+5 \times (10 \mod 9)^2 + 2 \times (10 \mod 9) + 7) \mod 9$
- $= (2 \times 1^5 + 9 \times 1^4 + 6 \times 1^3 + 5 \times 1^2 + 2 \times 1 + 7) \text{ mod } 9$
- $= (2+9+6+5+2+7) \mod 9$
- = 31 mod 9
- $= (3+1) \mod 9$
- = 4 mod 9
- = 4

"Preuve par 9"



Example: the Ring of Residues Modulo n

$$\mathbf{Z}_n = \{0, 1, 2, 3, \dots, n-1\}$$

- 1. Z_n is closed for the addition modulo n
- 2. the addition modulo *n* is associative in **Z**_{*n*} (next slides)
- 3. 0 is neutral for the addition
- **4.** for any nonzero $a \in Z_n$ we have $n a \in Z_n$ which is the inverse of *a* for **addition modulo** *n* (0 is self-inverse)
- 5. the addition modulo *n* is commutative in **Z**_{*n*}
- **6. Z**_{*n*} is closed for the **multiplication modulo** *n*
- 7. the multiplication modulo *n* is associative in Z_n
- 8. 1 is neutral for the multiplication
- addition modulo n is distributed over multiplication modulo n (next slides)
- 10. the multiplication modulo *n* is commutative in Z_n

\mathbf{Z}_n is a commutative ring of *n* elements

SV 2016-17

Diffie-Hellman Cryptography

Cerebral Z_n

- nZ is an ideal of Z (with laws + and ×) (ideal generated by n)
- we can do the quotient Z/nZ of Z by nZ
- congruence modulo nZ is written

 $a \equiv b \pmod{n} \iff a - b \in n\mathbf{Z} \iff a \mod{n} = b \mod{n}$

an exhaustive list of equivalence classes is

 $0 + n\mathbf{Z}$, $1 + n\mathbf{Z}$, $2 + n\mathbf{Z}$, ..., $(n - 1) + n\mathbf{Z}$

- note that $(a + nZ) + (b + nZ) = ((a + b) \mod n) + nZ$
- note that $(a + n\mathbf{Z}) \times (b + n\mathbf{Z}) = ((a \times b) \mod n) + n\mathbf{Z}$
- we simply write a (the representative in [0, n 1]) instead of a + nZ

Z_n **Tips**

• for any polynomial $P(x) \in \mathbf{Z}[x]$ and any $a, n \in \mathbf{Z}$ we have

 $P(a) \mod n = P(a \mod n) \mod n$

can put "mod <u>n</u>" reductions in the ground floor

• if x has order m in \mathbf{Z}_n^* then for any $i \in \mathbf{Z}$

 $x^i \mod n = x^i \mod m \mod n$

can put "mod m" reductions in the upper floor

Exercise

\mathbf{Z}_{15} has order 15

- We have $\langle 5 \rangle = \{0, 5, 10\}$. This is a subgroup of order 3 5 has order 3 in \mathbf{Z}_{15}
- in Z₁₅: (2) = {0,2,4,6,8,10,12,14,1,3,5,7,9,11,13}.
 in Z₁₅, 2 has order 15 (so, 2 is a generator)
- We have $\langle 1 \rangle = \mathbf{Z}_{15}$ 1 is a generator
- $\mathbf{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
- in \mathbf{Z}_{15}^* , 2 has the order 4: $\langle 2 \rangle = \{1, 2, 4, 8\}$

Z_n Computations

Efficiently computable operations:

- addition: $(a + b) \mod n$
- multiplication: $(a \times b) \mod n$ (double-and-add)
- modulo: *a* mod *n* (Euclidean division)
- inverse: a⁻¹ mod n (when gcd(a, n) = 1) (extended Euclid algorithm)
- power: $a^e \mod n$ (for *e* integer only) (square-and-multiply)

Remaining problem: extracting roots: $\sqrt[n]{a} \mod n$ (or $a^r \mod n$ for r rational)

Addition in Z_n

Input: an integer *n* of ℓ bits, two integers *a* and *b* less than *n* Output: *c*, an integer which represents $a + b \mod n$ Complexity: $O(\ell)$ 1: add *a* and *b* in *c* 2: compare *c* and *n* 3: if $c \ge n$ then 4: subtract *n* from *c* 5: end if

remark: comparison and subtraction take $O(\ell)$ time as well

Multiplication in Z_n From Left to Right

```
Input: an integer n of \ell bits, a, b \in \mathbf{Z}_n
    (b in binary)
Output: c = a \times b \mod n
Complexity: O(\ell^2)
 1: x \leftarrow 0
 2: for i = \ell - 1 to 0 do
 3: x \leftarrow x + x \mod n
 4: if b_i = 1 then
 5: x \leftarrow x + a \mod n
 6: end if
 7: end for
 8: C \leftarrow X
```

Exponentiation From Left to Right

Square-and-Multiply

Input: *a* and *n*, two integers of at most ℓ bits, an integer *e* (*e* in binary) Output: $x = a^e \mod n$ Complexity: $\mathcal{O}(\ell^2 \log e)$ 1: $x \leftarrow 1$ 2: for $i = \log e - 1$ to 0 do 3: $x \leftarrow x \times x \mod n$ 4: if $e_i = 1$ then 5: $x \leftarrow x \times a \mod n$ 6: end if 7: end for we can just adapt the algorithm we have learnt at school (not trivial to implement!)

- for any $a \in \mathbf{Z}$ and n > 0 there exists a unique pair $(q, r) \in \mathbf{Z}^2$ such that a = qn + r and $0 \le r < n$ $q = \lfloor \frac{a}{n} \rfloor$ and $r = a \mod n$
- algorithm runs in $\mathcal{O}(\ell^2)$

Modular Inversion

Theorem

 $x \in \mathbf{Z}_n$ is invertible if and only if gcd(x, n) = 1.

Proof.

⇒ if gcd(x, n) = d > 1 then *d* divides $(x \cdot y) \mod n$ for any *y* so $(x \cdot y) \mod n \neq 1$ and *x* is non invertible. ⇐ to be seen later

Euclid Algorithm

Input: *a* and *b*, two integers of at most ℓ bits **Output**: $d = \gcd(a, b)$ **Complexity**: $\mathcal{O}(\ell^2)$ 1: $x \leftarrow a, y \leftarrow b$ 2: while y > 0 do 3: make an Euclidean division x = qy + r4: do simultaneously $x \leftarrow y$ and $y \leftarrow x - qy$ 5: end while 6: $d \leftarrow x$

Example

We run the algorithm with a = 22 and b = 35. We obtain the following sequence.

iteration	хуq
0	22-35×0
	✓ "
1	35-22×1
	∠ ∥
2	22-13×1
3	13-9×1
4	9 – 4 ×2
_	
5	$4 - 1 \times 4$
-	
6	1 0

Thus gcd(22, 35) = 1.

Why does it Work?

- it eventually stops (y strictly decreases and $y \ge 0$)
- a divisor of x and y is a divisor of x − qy for all q

•
$$x = (x - qy) - (-q)y$$

• *d* divides *x* and *y* \iff *d* divides *y* and *x* – *qy*

• for any
$$q$$
, $gcd(x, y) = gcd(y, x - qy)$

- gcd(x,0) = x
- conclusion: the algorithm terminates with gcd(a, b)
- to be discussed (in another course): runing time (complexity) is quadratic

Extended Euclid Algorithm

Input: *a* and *b*, two integers of at most ℓ bits Output: *d*, *u*, *v* such that d = au + bv = gcd(a, b)Complexity: $\mathcal{O}(\ell^2)$ 1: $\vec{x} \leftarrow (a, 1, 0), \vec{y} \leftarrow (b, 0, 1)$ 2: while $y_1 > 0$ do 3: make an Euclidean division $x_1 = qy_1 + r$ 4: do simultaneously $\vec{x} \leftarrow \vec{y}$ and $\vec{y} \leftarrow \vec{x} - q\vec{y}$ 5: end while 6: $(d, u, v) \leftarrow \vec{x}$

$$\vec{x}, \vec{y} \in \{(\alpha, \beta, \gamma); \alpha = a \cdot \beta + b \cdot \gamma\}$$

Example

We run the algorithm with a = 22 and b = 35. We obtain the following sequence of vectors.

iteration	$ \vec{x}$	ÿ	q
0	(22, 1, 0) –	(35, 0, 1)	×0
1	(35,0,1) /	(22,1,0) II	×1
2	(22, 1, 0) –	(13, -1, 1)	$\times 1$
	× ×		
3	(13, -1, 1) -	(9, 2, -1)	×1
4	(9,2,-1) -	∥ (4, −3, 2) ∥	×2
5	(4, -3, 2) -	(1,8,-5)	×4
6	(1,8,-5)	∥ (0, −35, 22)

Thus $1 = 22 \times 8 - 35 \times 5$.

Modular Inversion

to compute the inverse of *x* modulo *n*:

- In the Extended Euclid algorithm with input (x, n) and get u, v such that ux + vn = d = gcd(x, n)
- 2 if $d \neq 1$, x is not invertible: error!
- output *u*: it is such that $ux \mod n = 1$

Modular Inversion

Theorem

 $x \in \mathbf{Z}_n$ is invertible if and only if gcd(x, n) = 1.

Proof:

- \Rightarrow : already seen (slide 168)
- ⇐: if gcd(x, n) = 1, run the Extended Euclid algorithm and get an equation ux + vn = 1 then deduce ux mod n = 1

Conclusion: the Extended Euclid algorithm is an inversion algorithm with complexity $\mathcal{O}(\ell^2)$

Arithmetics with Big Numbers

- addition ($\mathcal{O}(\ell)$): $x, y \mapsto x + y$
- multiplication ($\mathcal{O}(\ell^2)$): $x, y \mapsto x \times y$
- Euclidean division ($\mathcal{O}(\ell^2)$): $x, n \mapsto x \mod n$
- Euclid Algorithm ($\mathcal{O}(\ell^2)$): $x, y \mapsto u, v$ s.t. ux + vy = gcd(x, y)

Modular Arithmetic

- addition ($\mathcal{O}(\ell)$): $x, y, n \mapsto (x + y) \mod n$
- multiplication ($\mathcal{O}(\ell^2)$): $x, y, n \mapsto (x \times y) \mod n$
- modulo ($\mathcal{O}(\ell^2)$): $x, n \mapsto x \mod n$
- fast exponential ($\mathcal{O}(\ell^2 \log e)$): $x, e, n \mapsto x^e \mod n$
- inversion in Z_n (O(ℓ²)): x, n → y s.t. xy mod n = 1 (when feasible)

FFT-based Multiplication

- we could have better complexities with a better multiplication algorithm
- in this lecture, we limit to the values form the school-book algorithm
- in practice, this algorithm is sufficient for the lengths we use

2 Diffie-Hellman Cryptography

- Arithmetics and Z_n
- Some Notions of Groups Theory
- Algorithms for Big Numbers
- Z_n: The Ring of Residues Modulo n
- The **Z**_p Field
- The Diffie-Hellman Key Exchange, Concretely
- The ElGamal Public-Key Cryptosystem

Definition of a Field

Definition

A field is a commutative ring $(K, +, \times)$ such that

1-9. [ring] *K* is a ring with + and \times

10. [commutativity] for any a, b, we have ab = ba

11. [invertibility] for any $a \neq 0$ there exists $b = a^{-1}$ s.t. ab = ba = 1 example:

- Q, R, C
- \mathbf{Z}_p for *p* prime (next slide)
- GF(2ⁿ) (in Chapter 4)

\mathbf{Z}_{ρ} Properties

Theorem (Z $_{\rho}$ structure)

Let p be a prime number.

2
$$\mathbf{Z}_{p}^{*} = \{1, \dots, p-1\}$$

- (Little Fermat Theorem) for any $x \in \mathbf{Z}_p^*$, we have $x^{p-1} \equiv 1 \pmod{p}$
- **3** \mathbf{Z}_{p}^{*} is a cyclic group. So, there exist g such that

$$\mathbf{Z}_p^* = \{g^0, g^1, g^2 ext{ mod } p, \dots, g^{p-2} ext{ mod } p\}$$

Proof

- if $1 \le x \le p 1$, since p is prime, we must have gcd(x, p) = 1thus $x \in \mathbf{Z}_p^*$
- ② due to the Lagrange Theorem, for any $x \in \mathbf{Z}_p^*$, we have $x^{p-1} \equiv 1 \pmod{p}$
- (hard)

To Be Seen Later

- we can generate large prime numbers
- we can verify the primality of a number
- we can find generators in **Z**^{*}_p
- we can find (p, q, g) such that p and q are prime, q divides p − 1, and g has order q in Z^{*}_p

The Discrete Logarithm Problem

```
(implicit: a parameter generator)
```

```
Discrete Logarithm (DL) Problem

Parameters: G, a group, g \in G and n, the order of g

Instance: y, power of g

Problem: find x such that y = g^x
```

Examples:

- Z_n: easy (use the Extended Euclid algorithm)
- Z_p^{*}: (maybe) hard
- over an elliptic curve: (maybe) hard

Some Facts About The Discrete Logarithm Problem

in a group of order n:

- easy on a quantum computer:
 - Shor algorithm
- easy if *n* has only small prime factors:
 - Pohlig-Hellman algorithm
- best algorithm for a subgroup of \mathbf{Z}_{p}^{*} with *n* and *p* prime:
 - General Number Field Sieve (GNFS) with complexity

$$e^{\left(\sqrt[3]{\frac{64}{9}+o(1)}\right)(\ln n)^{\frac{1}{3}}(\ln\ln n)^{\frac{2}{3}}}$$

this is mostly precomputation (without y)

the computation from *y* takes $e^{\left(\sqrt[3]{3+o(1)}\right)(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}}$

• generic algorithms in $\mathcal{O}(\sqrt{n})$:

- baby-step giant-step algorithm

Attacks based on Precomputation

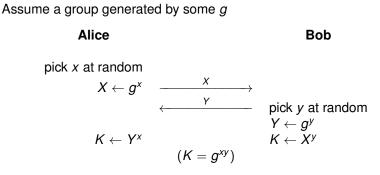
over \mathbf{Z}_{p}^{*} , the discrete logarithm can be solved in

p length	precomputation	attack
(bits)	(core-time)	(core-time)
512	10.2 years	10 minutes
768	36 500 years	2 days
1 024	45 000 000 years	30 days

remember SSH2 uses a fixed p of 1 024 bits...

- Arithmetics and Z_n
- Some Notions of Groups Theory
- Algorithms for Big Numbers
- Z_n: The Ring of Residues Modulo n
- The **Z**_p Field
- The Diffie-Hellman Key Exchange, Concretely
- The ElGamal Public-Key Cryptosystem

The Diffie-Hellman Key Agreement Protocol (again)



security requirement: given (g, g^x, g^y) , it must be hard to compute g^{xy} (Computational Diffie-Hellman Problem)

Passive Adversaries

- **passive adversary:** just listens to communications and tries to decrypt communications (e.g. by recovering the key)
- the Diffie-Hellman shall resist to passive attacks: given only *g*, *X*, and *Y*, it must be hard to compute *K*

The Computational Diffie-Hellman Problem

(implicit: a parameter generator)

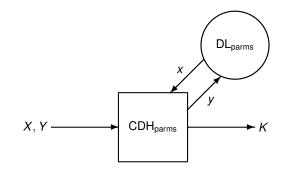
Computational Diffie-Hellman (CDH) Problem Parameters: *G*, a group, $g \in G$ and *n*, the order of *g* Instance: *X*, $Y \in \langle g \rangle$ Problem: find $K = g^{xy}$ where $X = g^x$ and $Y = g^y$

hardness requires the Discrete Logarithm Problem to be hard (see next slide) Examples:

- a subgroup of Z^{*}_p of prime order q
- an elliptic curve

$\mathsf{DL} \Longrightarrow \mathsf{CDH}$

The CDH Problem Reduces to the DL Problem



parms \rightarrow (*g*, *n*)

- set *y* = *X*
- submit y
- get x
- compute $K = Y^x$

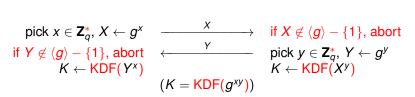
Problems with the Original Diffie-Hellman Protocol

• problems with subgroups of $\langle g
angle$

- subgroup {1} (unavoidable): if either X or Y is 1, then K = 1 for sure
- other subgroups (avoidable): the discrete logarithm problem may become easy in subgroups
- problem with g^{xy} having a bad distribution (elements in (g) may be sparse, so there is a structured information in g^{xy})

Correct Diffie-Hellman Key Exchange

Assume a group $\langle g \rangle$ generated by some g of prime order q



KDF: a Key Derivation Function since \mathbf{Z}_{q}^{*} is cyclic,

Alice

• if Bob is honest, his X^{y} is uniformly distributed in $\langle g \rangle - \{1\}$

Bob

RFC 2631

Diffie-Hellman Key Agreement Method

- group parameters (p, q, g) (meant to be defined by a CA): p
 prime, q prime, q divides p − 1, g = h^{p−1/q} mod p, h is random such that 1 < h < p − 1 and g > 1
- secret keys: x_A , x_B between 1 and q 1
- public keys: $y_A = g^{x_A} \mod p$, $y_B = g^{x_B} \mod p$
- 3 modes:
 - ephemeral-ephemeral mode: both keys are fresh
 - ephemeral-static mode: recipient uses a static public key
 - static-static mode: both participants use a static public key
- shared secret: $ZZ = g^{x_A x_B} \mod p$ (ZZ is the notation from the RFC, sorry!)

Exercise

group parameters (p, q, g) (meant to be defined by a CA): p
 prime, q prime, q divides p − 1, g = h^{p−1/q} mod p, h is random such that 1 < h < p − 1 and g > 1

Show that *g* generates a subgroup of Z_p^* of order *q*.

Key Wrapping in RFC 2631

Objective: make a key transfer protocol based on Diffie-Hellman Alice wants to send a content-encryption key CEK to Bob

- keying material: KM = SHA1(ZZ||OtherInfo)
 OtherInfo includes algorithm, counter (we can generate many KM blocks from the same ZZ), some ad-hoc string and the length of the KEK to generate
- key-encryption key: $KEK = trunc(KM_1 || KM_2 || \cdots)$
- to tranfer CEK: send Enc_{KEK}(CEK) (key wrap)

Example: Semi-Authenticated Key Exchange in SSH2

- *I_C* and *I_S*: negotiation of crypto algorithms
- *K_S*: public key of the server (may come with a certificate)
- for diffie-hellman-group1-sha1 key exchange: $p = 2^{1024} - 2^{960} - 1 + 2^{64} \lfloor 2^{894}\pi + 129093 \rfloor, g = 2, q = \frac{p-1}{2}$

Client

Server

$$\begin{array}{c} \text{version } V_{C}, \text{ initial message } I_{C} & \xrightarrow{V_{C}, I_{C}} \\ & & \swarrow \\ \text{pick } x, e = g^{x} \mod p & \xrightarrow{e} \\ & & \swarrow \\ pick y, f = g^{y} \mod p, K = e^{y} \mod p \\ & H = \text{hash}(V_{C}||V_{S}||I_{C}||I_{S}||K_{S}||e||f||K) \\ & & \swarrow \\ K = f^{x} \mod p, \text{check } K_{S} \\ \text{s hash}(V_{C}||V_{S}||I_{C}||I_{S}||K_{S}||e||f||K) \\ & & \forall \\ Ver_{K_{C}}(s, H) \end{array}$$

H =

Parameter Validation in RFC 2631

- p and q are prime, $g^q \mod p = 1$
- group parameters validation: q divides p 1, and (optional) p and q follow parameter generation algorithm from seed and counter
- public key validation: $2 \le y \le p 1$, $y^q \mod p = 1$

An Interesting Result

 $(\langle g \rangle \text{ is the } \textit{unique subgroup of } \mathbf{Z}^*_{
ho} \text{ of order } q)$

Theorem

Let p, q, g be integers such that p and q are prime, q divides p - 1, g mod $p \neq 1$, and $g^q \mod p = 1$. Then

• $\langle g \rangle$ is a subgroup of \mathbf{Z}_p^* of order q

•
$$\langle g
angle = \{ y \in \mathbf{Z}_{p}^{*}; y^{q} \bmod p = 1 \}$$

Application to RFC 2631: we can check that *y* is in the group generated by *g* by checking $y^q \mod p = 1$

Proof

• $\langle g \rangle$ is a subgroup of \mathbf{Z}_{ρ}^{*} of order q: clear

•
$$\langle g \rangle \subseteq \{ y \in \mathbf{Z}_p^*; y^q \mod p = 1 \}$$
: clear

•
$$\langle g \rangle \supseteq \{ y \in \mathbf{Z}_{p}^{*}; y^{q} \mod p = 1 \}$$
:
let $y \in \mathbf{Z}_{p}^{*}$ be such that $y^{q} \mod p = 1$

- let $\theta \in \mathbf{Z}_{p}^{*}$ be a generator of \mathbf{Z}_{p}^{*} , write $g = \theta^{a} \mod p$, $y = \theta^{b} \mod p$
- since $g^q \equiv y^q \equiv 1 \pmod{p}$, we have $qa \equiv qb \equiv 0 \pmod{p-1}$
- so, we can write $a = \frac{p-1}{q}a'$ and $b = \frac{p-1}{q}b'$ with $a', b' \le q$
- since $g \mod p \neq 1$, we have $1 \le a' < q$
- since q is prime, there exists c such that a' c mod q = 1

we have

$$g^{b'c}\equiv heta^{ab'c}\equiv heta^{a'bc}\equiv y^{a'c}\equiv y^{1+kq}\equiv y\pmod{p}$$
 so, $y\in\langle g
angle$

Group Parameter Generation in RFC 2631

1: $m = \text{required length for } q, m' = \left\lceil \frac{m}{160} \right\rceil$

2: repeat

- 3: pick a random seed
- 4: $U = \sum_{i=0}^{m'-1} 2^{160i} (SHA1(seed + i) \oplus SHA1(seed + m' + i))$
- 5: $q = U \text{ OR 1 OR 2}^m$
- 6: **until** q is prime
- 7: L = required length for p, $L' = \lceil \frac{L}{160} \rceil$
- 8: counter = 0
- 9: repeat

10:
$$R = \text{seed} + 2m' + (L' * \text{counter})$$

11:
$$W = \left(\sum_{i=0}^{L'} 2^{160i} \text{SHA1}(R+i)\right) \mod 2^{L}$$

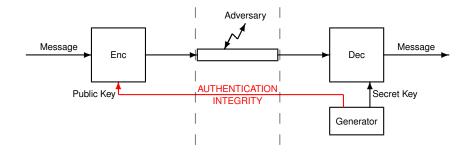
12:
$$X = W \text{ OR } 2^{L-1}$$

13:
$$p = X - (X \mod (2q)) + 1$$

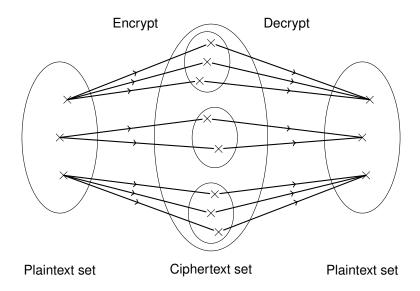
- 14: counter \leftarrow counter + 1
- 15: if counter \geq 4096*N* then abort (fail)
- 16: **until** $p > 2^{L-1}$ and p is prime
- 17: output p, q, seed, counter

- Arithmetics and Z_n
- Some Notions of Groups Theory
- Algorithms for Big Numbers
- Z_n: The Ring of Residues Modulo n
- The **Z**_p Field
- The Diffie-Hellman Key Exchange, Concretely
- The ElGamal Public-Key Cryptosystem

Public-Key Cryptosystem

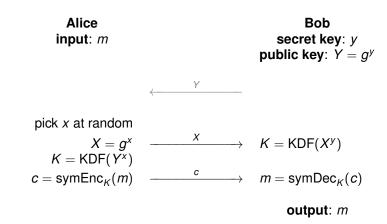


Non-Deterministic Encryption



Semi-Static-DH to Public-Key Encryption

Towards ElGamal Encryption



The Plain ElGamal Encryption Case

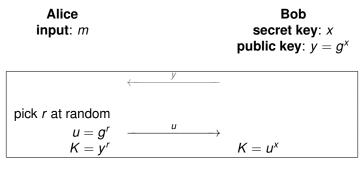
- no KDF
- symEnc is one-time-pad, adapted in the DH group

ElGamal Cryptosystem

Public parameters: (g, n), a group $\langle g \rangle$ of order *n* generated by some a **Set up:** generate a random $x \in \mathbf{Z}_n$, and compute $y = q^x$ **Message:** an element $m \in \langle g \rangle$ **Public key:** $K_p = y$ Secret key: $K_s = x$ **Encryption:** pick a random $r \in \mathbf{Z}_n$, compute $u = g^r$, and $v = my^r$ The ciphertext is (u, v)**Decryption:** extract the *u* and *v* parts of the ciphertext and compute $m = v u^{-x}$

ElGamal Cryptosystem

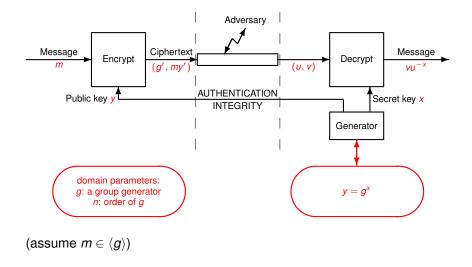
Semi-Static DH + Vernam Generalized



$$v = mK \longrightarrow m = vK^{-1}$$

output: m

Plain ElGamal Encryption



ElGamal Encryption Complexity

in subgroups of \mathbf{Z}_{p}^{*} with p of length ℓ :

- Domain parameter selection: \$\mathcal{O}(\ell^4)\$ (prime numbers generation to be seen in next chapter)
- Generator: $\mathcal{O}(\ell^3)$
- Encryption: $\mathcal{O}(\ell^3)$
- Decryption: $\mathcal{O}(\ell^3)$

ElGamal Security: ElGamal Problems

(implicit: a parameter generator)

```
EIGamal Decryption (EGD) Problem

Parameters: G, a group, g \in G and n, the order of g

Input: (y, u, v) such that y, u, v \in \langle g \rangle.

Problem: compute m such that there exists r such that u = g^r

and v = my^r.
```

EIGamal Key Recovery (EGKR) Problem

```
Parameters: G, a group, g \in G and n, the order of g
```

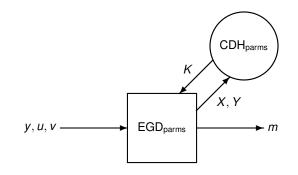
```
Input: y such that y \in \langle g \rangle.
```

Problem: compute *x* such that $y = g^x$.

 $\begin{array}{rcl} \mbox{decryption problem} & \Longleftrightarrow & \mbox{Diffie-Hellman problem} \\ \mbox{key recovery problem} & = & \mbox{discrete logarithm problem} \end{array}$

$CDH \Longrightarrow EGD$

The EGD Problem Reduces to the CDH Problem

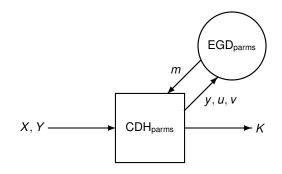


parms \rightarrow (*g*, *n*)

- set X = u and Y = y
- submit (X, Y)
- get K (this should be g^{xr})
- compute m = v/K

$\textbf{EGD} \Longrightarrow \textbf{CDH}$

The CDH Problem Reduces to the EGD Problem



parms \rightarrow (*g*, *n*)

- set u = X, y = Y, pick a random $v \in \langle g \rangle$
- submit (y, u, v)
- get m
- compute K = v/m

ElGamal Encryption Security

- key recovery is equivalent to the discrete logarithm problem
- decryption is equivalent to the Diffie-Hellman problem
- some tricky things about the selection of groups (left for another course)

Conclusion

- **Z**_n ring, **Z**_p field: a nice playground for cryptography
- algorithmic number theory: easy to add multiply, invert, compute exponentials in Z_n and Z_p
- DL and CDH problems: some cryptosystems based on their hardness
- Diffie-Hellman key exchange: can set up a symmetric key over a public channel, resist to passive adversaries
- ElGamal encryption: an example of probabilistic cryptosystem

References

- **Shoup**. A Computational Introduction to Number Theory and Algebra. Cambridge University Press. 2005. http://shoup.net/ntb Textbook on algebra for cryptographers and applications.
- Menezes-van Oorschot-Vanstone. Handbook of Applied Cryptography. CRC. 1997. http://www.cacr.math.uwaterloo.ca/hac/ Reference book
- Vaudenay. A Classical Introduction to Cryptography Applications for Communications Security. Springer. 2005. http://www.vaudenay.ch/crypto/ Textbook on cryptography
- **Diffie-Hellman**. New Directions in Cryptography. *IEEE Transactions on Information Theory* vol. 22, 1976.

Must be Known

groups, rings, fields:

- orders
- Lagrange Theorem
- **Z**_n **ring**: invertibility
- Z_p field: the multiplicative group is cyclic

algorithmic number theory:

- square-and-multiply
- extended Euclid algorithm

Diffie-Hellman key exchange:

- resist to passive adversaries
- man-in-the-middle active adversary
- ephemeral or static mode
- better on a goup of prime order
- requires the hardness of DL

ElGamal encryption:

- requires the hardness of CDH
- encrypt group elements
- better on a group of prime order

2 Diffie-Hellman Cryptography

3 RSA Cryptography

- Elliptic Curve Cryptography
- Symmetric Encryption
- Integrity and Authentication
- Case Studies I
- Public-Key Cryptography
- Irust Establishment
- Case Studies II

Roadmap

- more on number theory
- prime number generation
- RSA cryptosystem
- square roots
- factoring problem

RSA Cryptography

• Euler and Other Chinese

- Orders in a Group
- Primality Testing
- RSA Basics
- Quadratic Residuosity
- The Factoring Problem

Euler Totient Function

 $\varphi(n)$ is the order of \mathbf{Z}_n^*

Theorem

Given an integer n, we have the following results.

- For all $x \in \mathbf{Z}_n$ we have $x \in \mathbf{Z}_n^* \iff \gcd(x, n) = 1$.
- Z_n is a field $\iff Z_n^* = Z_n \setminus \{0\} \iff \varphi(n) = n 1 \iff n$ is prime
- For all $x \in \mathbf{Z}_n^*$ we have $x^{\varphi(n)} \equiv 1 \pmod{n}$.
- if e is such that gcd(e, φ(n)) = 1, we let d = e⁻¹ mod φ(n). For all x ∈ Z_n^{*}, x^d mod n is the only eth root of x modulo n

Proof — i

For all $x \in \mathbf{Z}_n$ we have $x \in \mathbf{Z}_n^* \iff \operatorname{gcd}(x, n) = 1$.

Proof.

 \implies : if gcd(x, n) = d > 1, then d divides ($x \cdot y$) mod n for any y so (xy) mod n cannot be equal to 1.

 \Leftarrow : if gcd(*x*, *n*) = 1, the extended Euclid algorithm constructs an inverse of *x* (see slide 175)

Proof — ii

$$Z_n$$
 is a field $\iff Z_n^* = Z_n \setminus \{0\} \iff \varphi(n) = n - 1 \iff n$ is prime

Proof. By definition, Z_n is a field $\iff Z_n^* = Z_n \setminus \{0\}$. Since $Z_n^* \subseteq Z_n \setminus \{0\}$, Z_n^* and $Z_n \setminus \{0\}$ are equal iff they have the same cardinality.

We have $\#\mathbf{Z}_n^* = \varphi(n)$ and $\#\mathbf{Z}_n \setminus \{0\} = n - 1$, so we deduce $\mathbf{Z}_n^* = \mathbf{Z}_n \setminus \{0\} \iff \varphi(n) = n - 1$.

$$\mathbf{Z}_n^* = \mathbf{Z}_n \setminus \{\mathbf{0}\} \iff \forall x \in \{1, \dots, n-1\} \quad \gcd(x, n) = 1$$
$$\iff n \text{ is prime}$$

 $(\mathbf{Z}_n \text{ field} \longleftarrow n \text{ prime was seen on slide 181})$

Proof — iii

For all $x \in \mathbf{Z}_n^*$ we have $x^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof. Due to the Lagrange Theorem, the order *k* of *x* divides the order $\varphi(n)$ of \mathbb{Z}_n^* . Let $\varphi(n) = k \cdot r$. We have $x^{\varphi(n)} \equiv x^{k \cdot r} \equiv (x^k)^r \equiv 1^r \equiv 1$.

Proof — iv

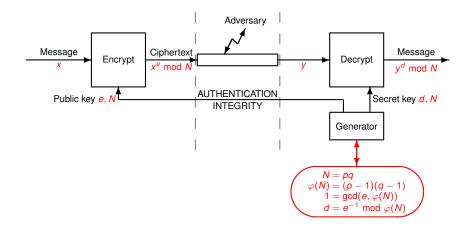
If *e* is such that $gcd(e, \varphi(n)) = 1$, we let $d = e^{-1} \mod \varphi(n)$. For all $x \in \mathbf{Z}_n^*$, $x^d \mod n$ is the only *e*th root of *x* modulo *n*

Proof. We have $e \cdot d = 1 + k \cdot \varphi(n)$ for some k. $y \equiv x^d \implies y^e \equiv x^{1+k \cdot \varphi(n)} \equiv x$ so $y = x^d$ is a *e*th root of x. If $x \equiv y^e$, we have $y \in \mathbf{Z}_n^*$ because

 $\left(x^{-1}y^{e-1}\right)y\equiv 1$

we have $x \equiv y^e \Longrightarrow x^d \equiv y^{1+k \cdot \varphi(n)} \equiv y$ so a *e*th root of *x* must be unique.

Application: RSA Cryptosystem



Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let *m* and *n* be two integers such that gcd(m, n) = 1. For any $a, b \in \mathbf{Z}$, there exists $x \in \mathbf{Z}$ such that

Furthermore, for all such solution, x mod (mn) is unique.

Example: (m = 5, n = 7, mn = 35, a = 3, b = 4)We find that x = 18 is a solution and for all solution, $x \mod (mn) = 18$

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

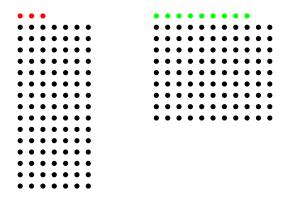
Let *m* and *n* be two integers such that gcd(m, n) = 1. We have

- *f* : Z_{mn} → Z_m × Z_n defined by *f*(*x*) = (*x* mod *m*, *x* mod *n*) is a ring isomorphism
- $f^{-1}(a, b) \equiv an(n^{-1} \mod m) + bm(m^{-1} \mod n) \pmod{m}$

Example:
$$(m = 5, n = 7, mn = 35)$$

Application: $\varphi(pq) = (p-1)(q-1)$ when p and q are two different primes

Application 1: Count Soldiers



$$x \equiv 3 \cdot 11 \cdot (11^{-1} \mod 7) + 9 \cdot 7 \cdot (7^{-1} \mod 11) \pmod{77}$$

$$\equiv 3 \times 22 + 9 \times 56 \pmod{77}$$

$$\equiv 31 \pmod{77}$$

... there must be 108 soldiers

Application 2: Equality Modulo Composite Numbers

Theorem

For any $a, b, m, n \in \mathbf{Z}$ such that gcd(m, n) = 1, then

$$\left.\begin{array}{l} a \equiv b \pmod{m} \\ a \equiv b \pmod{n} \end{array}\right\} \Longleftrightarrow a \equiv b \pmod{mn}$$

Indeed, $f(a \mod (mn)) = f(b \mod (mn))$ hence $a \mod (mn) = b \mod (mn)$

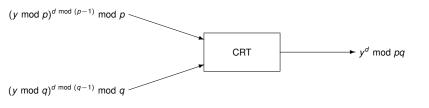
Application 3: Correctness of RSA

- let N = pq be the product of two different prime numbers p and q
- for any x ∈ Z such that x mod p ≠ 0 we have (x^e mod N)^d mod N ≡ x (mod p) (comes from p − 1 divides φ(N) thus ed mod (p − 1) = 1)

- similarly: for any $x \in \mathbf{Z}$ we have $(x^e \mod N)^d \mod N \equiv x \pmod{q}$
- from CRT (Application 2): for any $x \in \mathbf{Z}$ we have $(x^e \mod N)^d \mod N \equiv x \pmod{N}$
- for any $x \in \mathbf{Z}_N$ we have $(x^e \mod N)^d \mod N = x$

Application 4: Exponentiation Acceleration

$$\log_2 p \approx \log_2 q \approx \frac{\ell}{2}$$



 $2 \times \mathcal{O}\left(\left(\frac{\ell}{2}\right)^3\right) \qquad \qquad \mathcal{O}\left(\ell^3\right)$

Proof of CRT — i

Fact 1: *f* is a ring homomorphism from Z_{mn} to $Z_m \times Z_n$

• $f(x + z_{mn} y) = f(x) + z_{m \times Z_{n}} f(y)$ indeed:

 $((x + y) \mod (mn)) \mod m = ((x \mod m) + (y \mod m)) \mod m$ $((x + y) \mod (mn)) \mod n = ((x \mod n) + (y \mod n)) \mod n$

•
$$f(x \times_{\mathsf{Z}_{mn}} y) = f(x) \times_{\mathsf{Z}_m \times \mathsf{Z}_n} f(y)$$

(same)

• f(1) = (1, 1)

Proof of CRT — ii

Fact 2: f is an isomorphism

- f(x) = (0,0) implies m and n divide x since gcd(m, n) = 1, mn divides x (see next slide) thus x mod (mn) = 0
- *f* is injective: for all $x, y \in \mathbb{Z}_{mn}$, if f(x) = f(y) then f(x y) = (0, 0) thus $x y \mod (mn) = 0$ hence x = y
- *f* is an isomorphism: Z_{mn} and $Z_m \times Z_n$ have the same cardinality and *f* is injective thus *f* is a bijection since *f* is further a homomorphism, *f* is an isomorphism

Euclid Lemma

Lemma

If p is prime and p divides ab, then p divides a or p divides b.

(Proof with a big hammer: \mathbf{Z}_p is a field!)

Lemma (Generalization)

If n divides ab and gcd(n, a) = 1, then n divides b.

Consequence: if *n* and *a* divide *x* and gcd(n, a) = 1, then *na* divides *x*. (take b = x/a)

SV 2016-17

Proof of CRT — iii

Fact 3: $f(an(n^{-1} \mod m) + bm(m^{-1} \mod n)) = (a, b)$

$$an(n^{-1} \mod m) + bm(m^{-1} \mod n) \equiv a \pmod{m}$$
$$an(n^{-1} \mod m) + bm(m^{-1} \mod n) \equiv b \pmod{n}$$

thus f of the left hand side is (a, b)

CRT Backward: Another Approach

Theorem (CRT Backward)

Let *m* and *n* be two integers such that gcd(m, n) = 1. Let $u = n(n^{-1} \mod m)$ and $v = m(m^{-1} \mod n)$. The function

is well defined and is a ring isomorphism.

Note: g is well defined because

does not depend on *i* or *j* Remark: $(u + v) \mod (mn) = g(1, 1) = 1$

Proof

Proof.

- $g(a,b) + g(a',b') \equiv g(a + a', b + b') \pmod{mn}$ so g is a group homomorphism
- g(a, b) = 0 implies $a \mod m = 0$ and $b \mod n = 0$ so g is injective
- due to cardinality, *g* is bijective: so, a group isomorphism
- g⁻¹(x) = (x mod m, x mod n) is homomorphic for × so we have a ring isomorphism

Euler Totient Function

Corollary

Let *m* and *n* be two integers such that gcd(m, n) = 1. We have $\varphi(mn) = \varphi(m)\varphi(n)$.

Proof

Fact: *f* is a bijection from Z_{mn}^* to $Z_m^* \times Z_n^*$ (thus $\varphi(mn) = \varphi(m)\varphi(n)$):

- if $x \in \mathbf{Z}_{mn}^*$ then $f(x).f(x^{-1}) = f(1) = (1, 1)$ so both components of f(x) are invertible: $f(x) \in \mathbf{Z}_m^* \times \mathbf{Z}_n^*$
- conversely, if $(a, b) \in \mathbb{Z}_m^* \times \mathbb{Z}_n^*$, let $x = f^{-1}(a, b)$ and $y = f^{-1}(a^{-1}, b^{-1})$ we have $f(xy) = f(x).f(y) = (a, b).(a^{-1}, b^{-1}) = (1, 1) = f(1)$ so xy = 1 so $x \in \mathbb{Z}_{mn}^*$
- *f* is a bijection from Z_{mn} to $Z_m \times Z_n$, so a bijection from Z_{mn}^* to $Z_m^* \times Z_n^*$

actually, \mathbf{Z}_{mn}^* and $\mathbf{Z}_m^* \times \mathbf{Z}_n^*$ are isomorphic groups (and *f* is such isomorphism)

Computation of Euler Totient Function

•
$$\varphi(p) = p - 1$$
 for p prime
• $\varphi(mn) = \varphi(m) \times \varphi(n)$ when $gcd(m, n) = 1$
• $\varphi(p^{a}) = (p - 1)p^{a-1}$ for p prime
 $\varphi(p_{1}^{a_{1}} \times \cdots \times p_{r}^{a_{r}}) = (p_{1} - 1)p_{1}^{a_{1} - 1} \times \cdots \times (p_{r} - 1)p_{r}^{a_{r} - 1}$
 $= p_{1}^{a_{1}} \times \cdots \times p_{r}^{a_{r}} \frac{(p_{1} - 1) \times \cdots \times (p_{r} - 1)}{p_{1} \times \cdots \times p_{r}}$

for pairwise different prime numbers p_1, \ldots, p_r

• Euler and Other Chinese

Orders in a Group

- Primality Testing
- RSA Basics
- Quadratic Residuosity
- The Factoring Problem

Structure Property of Z (Reminder)

(already seen, see slide 127)

Theorem

For all proper subgroup I of Z there exists n such that

$$I = n\mathbf{Z} = \{\dots, -3n, -2n, -n, 0, n, 2n, 3n, \dots\}$$

Element Order

Given x in a group G:

- $\{i \in \mathbf{Z}; x^i = 1\}$ is a subgroup of \mathbf{Z}
- so, $\{i \in \mathbb{Z}; x^i = 1\} = n\mathbb{Z}$ for some *n* which is the smallest positive *n* such that $x^n = 1$

n is called the **order** of x in G.

n is such that

$$x^i = 1 \iff (n \text{ divides } i)$$

see slide 128

Group Exponent

Given a group G:

- $\{i \in \mathbf{Z}; \forall x \in G \ x^i = 1\}$ is a subgroup of \mathbf{Z}
- so, {*i* ∈ Z; ∀x ∈ G xⁱ = 1} = λZ for some λ which is the smallest positive λ such that ∀x ∈ G, x^λ = 1 λ is called the exponent of G.
- λ is such that

$$(\forall x \in G \ x^i = 1) \iff (\lambda \text{ divides } i)$$

- note that for all x, $\lambda \in \{i \in \mathbb{Z}; x^i = 1\} = n\mathbb{Z}$ so λ is a multiple of n, the order of x
- note that #G ∈ {i ∈ Z; ∀x ∈ G xⁱ = 1} = λZ so λ is a factor of #G
 so, ∀x ∈ G order(x)|λ|#G
- λ is the lcm of all order(x), $x \in G$

Orders in Z^{*}_m

• \mathbf{Z}_m^* is of order $\varphi(m)$ (example: \mathbf{Z}_{35}^* is of order 24) \mathbf{Z}_m^* is of exponent $\lambda(m)$ (example: \mathbf{Z}_{35}^* is of exponent 12) for $m = p_1^{\alpha_1} \times \cdots \times p_r^{\alpha_r}$ with pairwise different prime numbers p_1, \ldots, p_r , we have

$$\varphi(m) = (p_1 - 1)p_1^{\alpha_1 - 1} \times \cdots \times (p_r - 1)p_r^{\alpha_r - 1}$$

$$\lambda(m) = \operatorname{lcm} \left(\lambda(p_1^{\alpha_1}), \cdots, \lambda(p_r^{\alpha_r})\right)$$

we have $\lambda(p^{\alpha}) = \varphi(p^{\alpha})$, except for p = 2 and $\alpha \ge 3$ for which $\lambda(p^{\alpha}) = \frac{1}{2}\varphi(p^{\alpha})$

• for any $x \in \mathbf{Z}_m^*$, $\operatorname{order}(x)|\lambda(m)|\varphi(m)|$

Checking a Generator of a Group with Known Order Factorization

Input: an element g in an Abelian cyclic group of order with known factorization $n = p_1^{\alpha_1} \times$ $\cdots \times \mathcal{D}_r^{\alpha_r}$ **Output:** say if g is a generator **Complexity**: $\mathcal{O}(r)$ exponentials 1: **for** *i* = 1 to *r* **do** 2: $V \leftarrow q^{n/p_i}$ 3: **if** y = 1 **then** abort: g is not a generator 4: 5 end if 6: end for 7: g is a generator

Proof. The order of *g* is a factor of *n*. If it is no factor of any n/p_i then it must be *n*.

Discussion

- for *g* arbitrary, we need the factorization of *n*
- if g is randomly selected, we only need the small factors of n
- if *n* is hard to factor, we can still find generators

Picking a Generator in a Cyclic Group with Known Order

Input: the order *n* of an Abelian cyclic group, a bound *B*

Output: a generator *g* of the group

- 1: find the list p_1, \ldots, p_r of all prime factors of n which are less than B
- 2: repeat
- 3: pick a random *g* in the group
- 4: $b \leftarrow true$

6:
$$y \leftarrow g^{n/p_i}$$

7: **if**
$$y = 1$$
 then

8:
$$b \leftarrow false$$

- 9: end if
- 10: end for
- 11: **until** *b*

$$\Pr[\text{output } g \text{ not a generator}] \le \frac{1}{B \log B} \log n$$

Application

generate a generator of \mathbf{Z}_{p}^{*} for a prime p

Generating a Generator — i

We consider a cyclic group *G* of order *n* and we let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$ with pairwise different primes p_i

- *g* is a generator of *G* iff $g^{\frac{n}{p_i}} \neq 1$ for i = 1, ..., r
- given a random $g \in_U G$, events $g^{\frac{n}{p_i}} = 1$ are independent:

 $g \in_U G$ is equivalent to its logarithm $a \in_U Z_n$ this is equivalent to $(a_i)_{1 \leq i \leq r} \in_U Z_{p_1^{\alpha_1}} \times \cdots \times Z_{p_r^{\alpha_r}}$

 $g^{\frac{n}{p_i}} = 1$ is equivalent to $\frac{n}{p_i} a \mod (n) = 0$ this is equivalent to $(0, \ldots, 0, q_i p_i^{\alpha_i - 1} a_i \mod p_i^{\alpha_i}, 0, \ldots, 0) = 0$ for some invertible q_i modulo $p_i^{\alpha_i}$ so, $g^{\frac{n}{p_i}} = 1$ is equivalent to $a_i \mod p_i = 0$ (independent, with probability $\frac{1}{p_i}$)

Generating a Generator — ii

- $\Pr_{g \in UG} \left[g^{\frac{n}{p_i}} = 1 \right] = \frac{1}{p_i}$ and these events are independent
- we can just simply work with an incomplete factorization: we let
 n = q ∏^s_{i=1} p^{α_i}_i which includes all small factors p_i ≤ B (i.e. p_i > B
 for all i > s)

we say that g passes the test if $g^{\frac{n}{p_i}} \neq 1$ for $i = 1, \ldots, s$

$$\begin{aligned} \Pr[\text{not generator}|\text{passed}] &= \Pr\left[\exists i > s \ g^{\frac{n}{p_i}} = 1 \middle| \forall i \le s \ g^{\frac{n}{p_i}} \neq 1 \right] \\ &\le \frac{1}{B}(r-s) \\ &\le \frac{\log q}{B \log B} \\ &\le \frac{\log n}{B \log B} \end{aligned}$$

example: *n* of 1 024 bits and $B = 2^{32}$; Pr[not generator|passed] $\leq 2^{-27}$

- Euler and Other Chinese
- Orders in a Group
- Primality Testing
- RSA Basics
- Quadratic Residuosity
- The Factoring Problem

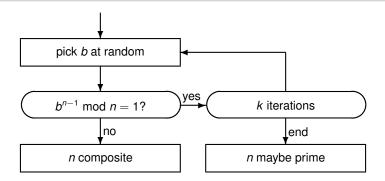
Trial Division Algorithm

Input: an integer n Output: a list of prime numbers whose product is n **Complexity**: $\mathcal{O}(\sqrt{n})$ arithmetic operations 1: $b \leftarrow |\sqrt{n}|, x \leftarrow n, i \leftarrow 2$ 2: while *x* > 1 and *i* < *b* do 3: while *i* divides x do 4: print *i* 5: $x \leftarrow x/i$ 6: $b \leftarrow |\sqrt{x}|$ 7: end while 8: $i \leftarrow i + 1$ 9: end while 10: if x > 1 then print x

Fermat Test

Theorem (Little Fermat Theorem)

If *n* is prime, for any $b \in \{1, ..., n-1\}$, $b^{n-1} \mod n = 1$.



Fermat Test

Parameter: k, an integer **Input**: n, an integer of ℓ bits **Output**: notification of non-primality or pseudoprimality **Complexity**: $O(k\ell^3)$

- 1: repeat
- 2: pick a random *b* such that 0 < b < n
- 3: $x \leftarrow b^{n-1} \mod n$
- 4: if $x \neq 1$ then
- 5: output "composite" and stop
- 6: end if
- 7: **until** *k* iterations are made
- 8: output "maybe prime" and stop

Significance of the Fermat Test

- False Negative: Pr[output : composite|*n* prime] = 0
- False Positive: there exist pathologic numbers *n* which are not prime such that Pr[output : maybe prime|*n*] is high.
 Carmichael Numbers *n* are composite such that for any *b*, *b* ∈ Z^{*}_n ⇔ bⁿ⁻¹ mod *n* = 1. Hence

Pr[output : maybe prime | n] = $\left(\frac{\varphi(n)}{n-1}\right)^k$.

Carmichael Numbers

Definition

We call Carmichael number any integer *n* which is a product of (at least 2) pairwise different prime numbers p_i such that $p_i - 1$ is a factor of n - 1.

Theorem

An integer n is a Carmichael number if and only if it is composite and for any b s.t. gcd(b, n) = 1, we have $b^{n-1} \equiv 1 \pmod{n}$.

Example: $n = 561 = 3 \cdot 11 \cdot 17$ is such that for all b s.t. gcd(b, n) = 1, we have $b^{n-1} \equiv 1 \pmod{n}$.

Carmichael Numbers: the 561 Case

Example: $n = 561 = 3 \cdot 11 \cdot 17$ is such that for all *b* s.t. gcd(b, n) = 1, we have $b^{n-1} \equiv 1 \pmod{n}$. **Proof** (of \Rightarrow in the 561 case). We notice that $n - 1 = 560 = 2^4 \cdot 5 \cdot 7$ which is a multiple of 3 - 1, 11 - 1, and 17 - 1. Therefore, if *b* is prime with 3, we have $b^{n-1} \equiv 1 \pmod{3}$ and the same for 11 and 17. Hence, from the Chinese Remainder Theorem we obtain that if *b* is prime with *n* we have $b^{n-1} \equiv 1 \pmod{n}$.

The test may be wrong with probability

$$\left(\frac{\varphi(n)}{n-1}\right)^{k} = \left(\frac{2 \times 10 \times 16}{560}\right)^{k} = \left(\frac{4}{7}\right)^{k}$$

Carmichael Numbers: the 949 631 589 089 Case

- 949 631 589 089 = $6917 \times 10193 \times 13469$ 949 631 589 088 = $2^5 \times 7^3 \times 13 \times 19 \times 37 \times 9467$
- $949631589088 = 2^{\circ} \times 7^{\circ} \times 13 \times 19 \times 37 \times 946$
- 6917 is prime, $6916 = 2^2 \times 7 \times 13 \times 19$
- 10193 is prime, $10192 = 2^4 \times 7^2 \times 13$
- 13469 is prime, $13468 = 2^2 \times 7 \times 13 \times 37$
- the test may be wrong with probability

$$\left(rac{arphi(n)}{n-1}
ight)^k = \left(rac{9464}{9467}
ight)^k pprox (1-0.000317)^k$$

example: for k = 20 the error probability is approximately 1 - 0.00631

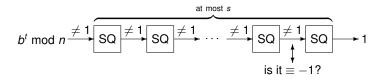
Towards The Miller-Rabin Test

- We write $n 1 = 2^{s}t$ with t odd
- If *n* is prime, we have

$$b^{n-1} \mod n = \left(\cdots \left((b^t)^2\right)^2 \cdots\right)^2 \mod n = 1$$

● If *n* is prime, +1 and -1 are the only possible square roots of 1

The Miller-Rabin Test



Miller-Rabin test: check that the sequence $(b^t, b^{2t}, \dots, b^{2^s t})$ is of form either $(1, 1, \dots, 1)$ or $(\star, \dots, \star, -1, 1, \dots, 1)$

The Miller-Rabin Primality Test

Parameter : k , an integer Input : n , an integer of ℓ bits
Output: notification of non-
primality or pseudo-primality
Complexity: $O(k\ell^3)$
1: if <i>n</i> = 2 then
 output "prime" and stop
3: end if
4: if <i>n</i> is even then
5: output "composite" and stop
o, and if

- 6: end if
- 7: write $n = 2^{s}t + 1$ with t odd

8: repeat pick $b \in \{1, ..., n-1\}$ 9: $x \leftarrow b^t \mod n, i \leftarrow 0$ 10: if $x \neq 1$ then 11: while $x \neq n-1$ do 12: $x \leftarrow x^2 \mod n, i \leftarrow i+1$ 13: if i = s or x = 1 then 14: "composite" 15: output and stop

- 16: **end if**
- 17: end while
- 18: end if
- 19: **until** *k* iterations are made
- 20: output "maybe prime" and stop

Miller-Rabin Criterion

Theorem

An integer n is prime if and only it passes the Miller-Rabin test for all $b \in \mathbf{Z}_n^*$.

Proof (Sketch).

- \Rightarrow trivial
- e observe that passing Miller-Rabin implies passing Fermat
 - \rightarrow just prove that Carmichael numbers do not pass

Bounding Errors

Theorem (Miller-Rabin)

If more than a quarter of $b \in \mathbf{Z}_n^*$ pass the Miller-Rabin test, then all $b \in \mathbf{Z}_n^*$ do so.

Consequence: false positives are negligible:

Pr[output maybe prime | *n* composite] $\leq 4^{-k}$

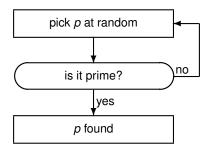
Prime Number Generation

Theorem (Prime Number Theorem)

Let p(N) denote the number of prime numbers in $\{2, 3, ..., N\}$. We have $p(N) \sim \frac{N}{\ln N}$ when N increases toward the infinity.

 \rightarrow the probability that a random ℓ -bit number is prime is $\approx \frac{1}{\ell \ln 2}$ Example: a 512-bit random integer is prime with probability $\approx \frac{1}{355}$

 \rightarrow generating a random ℓ -bit prime number takes $\mathcal{O}(\ell^4)$



Implementation

Input: ℓ

Output: a random prime number between $2^{\ell-1}$ and 2^{ℓ}

Complexity: $\mathcal{O}(\ell^4)$ arithmetic operations

- 1: repeat
- 2: pick a random number n of ℓ bits
- 3: **until** a primality test with *k* iterations accepts *n* as a prime number
- 4: output n

With $k = \frac{1}{2}(\log_2 \ell - \log_2 \varepsilon)$ the probability that this algorithm outputs a composite number is less than ε .

RSA Cryptography

- Euler and Other Chinese
- Orders in a Group
- Primality Testing

RSA Basics

- Quadratic Residuosity
- The Factoring Problem

Plain RSA Cryptosystem

Public parameter: an integer ℓ .

Set up: find two random different prime numbers p and q of size $\frac{\ell}{2}$ bits. Set N = pq. Pick a random e until gcd(e, (p-1)(q-1)) = 1. (Sometimes we pick special constant e like e = 17 or $e = 2^{16} + 1$.) Set $d = e^{-1} \mod ((p-1)(q-1))$.

Message: an element $x \in \mathbf{Z}_N$.

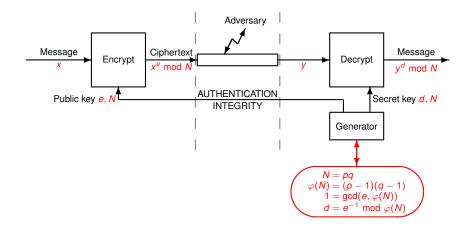
Public key: $K_{p} = (e, N)$.

Secret key: $K_s = (d, N)$.

Encryption: $y = x^e \mod N$.

Decryption: $x = y^d \mod N$.

Plain RSA



RSA Completeness

Theorem (Euler)

Let p, q be two different primes and $N = p \times q$. For any $x \in \{0, ..., N-1\}$ and any k, we have $x^{k\varphi(N)+1} \mod N = x$.

Consequence: RSA decryption works! **Proof.** from CRT...

RSA Complexity

RSA with a modulus of ℓ bits and a random *e*.

- Generator: $\mathcal{O}(\ell^4)$ (prime numbers generation)
- Encryption: $\mathcal{O}(\ell^3)$
- Decryption: $\mathcal{O}(\ell^3)$

RSA with a modulus of ℓ bits and a constant e (e.g. $e = 2^{16} + 1$).

- Generator: $\mathcal{O}(\ell^4)$ (prime numbers generation)
- Encryption: $\mathcal{O}(\ell^2)$
- Decryption: \$\mathcal{O}(\ell^3)\$

ElGamal vs RSA

- Complexity of Gen is much lower for ElGamal
- Problem: ElGamal encryption is length-increasing
- Can be easily adapted to other groups (e.g. elliptic curves)

RSA Cryptography

- Euler and Other Chinese
- Orders in a Group
- Primality Testing
- RSA Basics
- Quadratic Residuosity
- The Factoring Problem

Square Roots in Finite Fields

Lemma

Let **K** be a finite field. For any $x \in \mathbf{K}$ we have

$$x^2 = 1 \Longrightarrow \begin{cases} x = 1 \\ \text{or} \\ x = -1 \end{cases}$$

Proof. Assume that $x^2 = 1$. We know that $x^2 - 1 = (x - 1)(x + 1)$.

- Case 1: x − 1 = 0 thus x = 1.
- Case 2: $x 1 \neq 0$ so we can divide $0 = x^2 1$ by x 1 and obtain x + 1 = 0 thus x = -1.

Consequence: $x^2 = a$ has at most 2 roots in a finite field

Existence of Square Roots in Z_p

Theorem

Let p be an odd prime number.

 $b \in \mathbf{Z}_p^*$ has a square root if and only if $b^{\frac{p-1}{2}} \mod p = 1$. In that case, we say that b is a **quadratic residue**.

Proof:

•
$$\Rightarrow$$
 if $c^2 \equiv b$ then $b^{\frac{p-1}{2}} \equiv c^{p-1} = 1$

• \Leftarrow since \mathbf{Z}_{p}^{*} is cyclic, let g be a generator and write $b \equiv g^{e}$ we have $b^{\frac{p-1}{2}} \equiv 1$ so $\frac{p-1}{2}e$ is multiple of p-1thus e is even, let e = 2e' and we have $b \equiv g^{2e'} \equiv (g^{e'})^{2}$ so bhas a square root $g^{e'}$

Computing Square Roots in Z_p, $p = 3 \pmod{4}$

Lemma

Let p be a prime number such that $p \equiv 3 \pmod{4}$. For any $x \in \mathbf{Z}_p$ we have

$$y^2 \equiv x \pmod{p} \Longrightarrow \begin{cases} y \equiv x^{\frac{p+1}{4}} \pmod{p} \\ \text{or} \\ y \equiv -x^{\frac{p+1}{4}} \pmod{p} \end{cases}$$

Proof. In Z_p , we have

$$\left(x^{\frac{p+1}{4}}\right)^2 = x^{\frac{p+1}{2}} = y^{p+1} = y^{p-1} \times y^2 = y^2 = x$$
$$x^{\frac{p+1}{4}} = \pm y.$$

SO

Example

square root of 5 in Z_{11}

- remark that 11 mod 4 = 3
- remark that $5^{\frac{11-1}{2}} \mod 11 = 5 \times (5^2)^2 \mod 11 = 1$ so 5 has a square root modulo 11
- compute $5^{\frac{11+1}{4}} \mod 11 = 5 \times 5^2 \mod 11 = 4$
- remark that $4^2 \mod 11 = 5$ so 4 is a square root of 5
- other square root is -4 mod 11 = 7

Tonelli Algorithm

Input: a quadratic residue $a \in \mathbf{Z}_{p}^{*}$ where $p \geq 3$ is prime **Output**: b such that $b^2 \equiv a \pmod{p}$ **Complexity**: $\mathcal{O}((\log p)^3)$ 1: repeat 2: choose $g \in \mathbf{Z}_p^*$ at random 3: **until** g is not a quadratic residue 4: let $p - 1 = 2^{s}t$ with t odd 5: $e \leftarrow 0$ 6: **for** i = 2 to s_{n-1} **do** 7: **if** $(ag^{-e})^{\frac{p-1}{2^{i}}} \mod p \neq 1$ then 8: $e \leftarrow 2^{i-1} + e$ 9: end if 10: end for 11: $b \leftarrow q^{-t\frac{\theta}{2}}a^{\frac{t+1}{2}} \mod p$

Square Roots in Z_n , n = pq

Lemma

Let p, q be two different prime numbers and n = pq. Let $x \in Z_n$, and a and b such that

$$x \equiv a^2 \pmod{p}$$
$$x \equiv b^2 \pmod{q}$$

We have

$$x \equiv y^2 \pmod{n} \iff \begin{cases} y \equiv \pm a \pmod{p} \\ y \equiv \pm b \pmod{q} \end{cases}$$

Consequence: *x* has 4 square roots in Z_n . **Proof.** Thanks to the CRT $x \equiv y^2 \pmod{n}$ is equivalent to

$$\begin{array}{c} x \equiv y^2 \pmod{p} \\ x \equiv y^2 \pmod{q} \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} a^2 \equiv y^2 \pmod{p} \\ b^2 \equiv y^2 \pmod{q} \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} y \equiv \pm a \pmod{p} \\ y \equiv \pm b \pmod{q} \end{array} \right\}$$

Legendre and Jacobi Symbols

• Legendre Symbol: for *p* an odd prime

$$\begin{pmatrix} \frac{b}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } b \mod p = 0 \\ 1 & \text{if } b \text{ is a quadratic residue in } \mathbf{Z}_p^* \\ -1 & \text{if } b \text{ is not a quadratic residue in } \mathbf{Z}_p^*. \end{cases}$$

Jacobi Symbol: for n odd

$$\left(\frac{b}{n}\right) = \left(\frac{b}{p_1}\right)^{\alpha_1} \times \ldots \times \left(\frac{b}{p_r}\right)^{\alpha_r}$$

where $n = p_1^{\alpha_1} \times \ldots \times p_r^{\alpha_r}$ is the factorization of *n* into prime numbers (remark: for n = 1 the empty product leads us to (b/n) = +1)

Application to Quadratic Residuosity

- for b ∈ Z_p^{*}:
 b is a quadratic residue in Z_p^{*} ⇐⇒ (b/p) = +1
 (p is prime)
- for $b \in \mathbf{Z}_n^*$: *b* is a quadratic residue in $\mathbf{Z}_n^* \Longrightarrow (b/n) = +1$ BUT \longleftarrow IS WRONG! (*n* is composite)

Computing the Legendre Symbol

Let p be an odd prime

$$\left(\frac{b}{p}\right) = \begin{cases} 0 & \text{if } b^{\frac{p-1}{2}} \mod p = 0\\ 1 & \text{if } b^{\frac{p-1}{2}} \mod p = 1\\ -1 & \text{if } b^{\frac{p-1}{2}} \mod p = p - 1 \end{cases}$$

so (b/p) is the modulo p representative of $b^{\frac{p-1}{2}}$ in $\{-1, 0, +1\}$

Note that $x \mapsto (x/p)$ is a group homomorphism from \mathbf{Z}_p^* to $\{-1, +1\}$

Computing the Jacobi Symbol

- $\left(\frac{a}{b}\right) = \left(\frac{a \mod b}{b}\right)$ for *b* odd,
- $\left(\frac{ab}{c}\right) = \left(\frac{a}{c}\right) \left(\frac{b}{c}\right)$ for *c* odd,
- $\left(\frac{2}{a}\right) = 1$ if $a \equiv \pm 1 \pmod{8}$ and $\left(\frac{2}{a}\right) = -1$ if $a \equiv \pm 3 \pmod{8}$ for a odd,
- $\left(\frac{a}{b}\right) = -\left(\frac{b}{a}\right)$ if $a \equiv b \equiv 3 \pmod{4}$ and $\left(\frac{a}{b}\right) = \left(\frac{b}{a}\right)$ otherwise for a and b odd.

Example

$$\begin{pmatrix} \frac{b}{n} \end{pmatrix} = \begin{pmatrix} \frac{362}{561} \end{pmatrix} \qquad (factor 2 \text{ isolation}) = \begin{pmatrix} \frac{2 \times 9}{181} \end{pmatrix}$$

$$(factor 2 \text{ isolation}) = \begin{pmatrix} \frac{2 \times 181}{561} \end{pmatrix} \qquad (multiplicativity) = \begin{pmatrix} \frac{2}{181} \end{pmatrix} \times \begin{pmatrix} \frac{9}{181} \end{pmatrix}$$

$$(multiplicativity) = \begin{pmatrix} \frac{2}{561} \end{pmatrix} \times \begin{pmatrix} \frac{181}{561} \end{pmatrix} \qquad (181 \equiv 5 \pmod{8}) = -\begin{pmatrix} \frac{9}{181} \end{pmatrix}$$

$$(561 \equiv 1 \pmod{8}) = \begin{pmatrix} \frac{181}{561} \end{pmatrix} \qquad (quadratic reciprocity) = -\begin{pmatrix} \frac{181}{9} \end{pmatrix}$$

$$(quadratic reciprocity) = \begin{pmatrix} \frac{561}{181} \end{pmatrix} \qquad (modular reduction) = -\begin{pmatrix} \frac{1}{9} \end{pmatrix}$$

$$(modular reduction) = \begin{pmatrix} \frac{18}{181} \end{pmatrix}$$

The Group of Quadratic Residues

the Jacobi symbol is homomorphic:

$$\left(\frac{x}{n}\right)\left(\frac{y}{n}\right) = \left(\frac{xy}{n}\right)$$

let QR_n be the subgroup of Z_n^* of all quadratic residues we have the following properties:

- QR_n is included in the subgroup of \mathbf{Z}_n^* of all x such that $\left(\frac{x}{n}\right) = +1$. They match if n is prime.
- $x \in QR_n$ and $y \in QR_n$ implies $xy \in QR_n$
- $x \in QR_n$ and $y \in Z_n^* QR_n$ implies $xy \in Z_n^* QR_n$
- for p prime, $x \in \mathbf{Z}_p^* \mathsf{QR}_p$ and $y \in \mathbf{Z}_p^* \mathsf{QR}_p$ implies $xy \in \mathsf{QR}_p$
- this does not extend to composite *n*: $3 \in \mathbf{Z}_{35}^* - QR_{35}$ and $2 \in \mathbf{Z}_{35}^* - QR_{35}$ but $6 \notin QR_{35}$

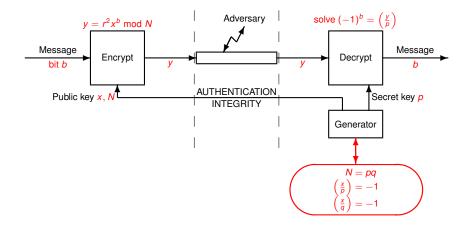
Conclusion

- algorithm to compute (b/n) in $\mathcal{O}(\ell^2)$
- can be used to check quadratic residuosity if *n* is prime

Use of Quadratic Residuosity

- Goldwasser-Micali cryptosystem
- Solovay-Strassen primality testing $b^{\frac{p-1}{2}} \equiv \left(\frac{b}{p}\right) \pmod{p}$
- breaking the DDH assumption in Z^{*}_p note: the ElGamal cryptosystem is IND-CPA secure iff the DDH assumption on the group is hard so, it is unsafe to use the ElGamal cryptosystem in Z^{*}_p
- mapping {1,..., q} to QR_p for p = 2q + 1 and use the ElGamal cryptosystem in QR_p (p and q prime)

Goldwasser-Micali Encryption



Solovay-Strassen Test

Theorem

Let n be an odd number. n is prime if and only if

$$\Pr\left[b^{\frac{n-1}{2}} \equiv \left(\frac{b}{n}\right) \pmod{n}\right] \ge \frac{1}{2}$$

for $b \in \mathbf{Z}_n^*$ with uniform distribution.

Note: the square of this equation is $b^{n-1} \equiv 1 \pmod{n}$ but we do not have a so strong result with the Fermat test.

Breaking the Decisional Diffie-Hellmann Assumption in Z_p^*

- Let p be an odd prime and g be a generator of Z^{*}_p
- We consider the following algorithm:

Algorithm $\mathcal{A}(g, X, Y, K)$

1: set
$$a = 1_{(K/p)=-1}$$

- 2: set $b = 1_{(X/p)=(Y/p)=-1}$
- 3: output $1_{a=b}$

• Let $x, y, k \in \mathbb{Z}_{p-1}$ be uniform and independent

- For $X = g^x$, $Y = g^y$, $K = g^k$, we have $\Pr[\mathcal{A}(g, X, Y, K) = 1] = \frac{1}{2}$
- For $X = g^x$, $Y = g^y$, $K = g^{xy}$, we have $\Pr[\mathcal{A}(g, X, Y, K) = 1] = 1$
- so, A(g, X, Y, K) can distinguish if K is random or the solution to the Diffie-Hellman problem with (g, X, Y).

Mapping a Number to an ElGamal Group Element

- Let p = 2q + 1 with p and q prime, we have (-1/p) = -1 so -1 is not a quadratic residue
- the group of quadratic residues QR_p is cyclic and of order q, not containing -1
- for all $x \in \mathbf{Z}_p^*$, either $x \in QR_p$ or $-x \in QR_p$ but not both
- so, map $(x) = x \times \begin{pmatrix} x \\ p \end{pmatrix}$ mod p maps $\{1, \dots, q\}$ onto QR_p
- we can define the ElGamal cryptosystem on QR_p and use map to represent messages

RSA Cryptography

- Euler and Other Chinese
- Orders in a Group
- Primality Testing
- RSA Basics
- Quadratic Residuosity
- The Factoring Problem

Factoring Problem

Factoring Problem

Parameters: Gen, a pseudorandom generator Instance: *n*, an integer produced by Gen Problem: factor *n*

Examples:

- Gen generates an RSA modulus
- Gen generates Mersenne numbers

Record using the Number Field Sieve Algorithm

Complexity: $e^{\mathcal{O}\left((\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}\right)}$

RSA768

- = 1230186684530117755130494958384962720772853569595334792197322452151726400507 2636575187452021997864693899564749427740638459251925573263034537315482685079 1702612214291346167042921431160222124047927473779408066535141959745985690214 3413
- = 3347807169895689878604416984821269081770479498371376856891243138898288379387 8002287614711652531743087737814467999489

 \times

3674604366679959042824463379962795263227915816434308764267603228381573966651 1279233373417143396810270092798736308917

factored in 2009 by an equivalent of 1500 years of computation on one core 2.2GHz Opteron.

Record using the Number Field Sieve Algorithm

```
2<sup>1039</sup> - 1
= 5080711
×
(306 digits)
= 5080711
×
5585366661993629126074920465831594496864652701848863764801005234631985328837
4753
×
2075818194644238276457048137035946951629397080073952098812083870379272909032
4679382343143884144834882534053344769112223028158327696525376091410189105241
993899334109711624358962065972167481161749004803659735573409253205425523689
factored in 2007 by an equivalent of 100 years of computation on a
PC 2.2GHz (Opteron).
```

Factorization Tomorrow

Factorization of *n* with complexity $O((\ln n)^2 \ln \ln n \ln \ln \ln n)$ by using Shor's algorithm

It only works on a quantum computer (if exists)

Factoring Algorithms on Classical Computers

GNFS: factor n

complexity =
$$e^{\sqrt[3]{\frac{64}{9}+o(1)}(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}}$$

best algorithm for RSA moduli

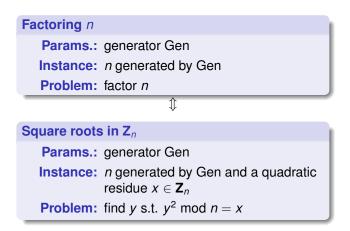
• ECM: finds a factor *p*

complexity =
$$e^{\sqrt{2+o(1)}(\ln p)^{\frac{1}{2}}(\ln \ln p)^{\frac{1}{2}}}$$

useful for numbers with a small prime factor

Square Roots in Z_{pq}

Gen: generates integers of form n = pq with $p \neq q$ both prime



Factoring $n \Longrightarrow$ Computing Square Roots in Z_n

Input: factorization n = pq and x **Output**: y such that $y^2 \mod n = x$ **Complexity**: $\mathcal{O}((\log n)^3)$

1: find y_p , a square roots of x modulo p by using efficient algorithms

(e.g. for $p \mod 4 = 3$ compute $x^{\frac{p+1}{4}} \mod p$)

2: find y_q , a square roots of x modulo q

3: $y = CRT_{p,q}(y_p, y_q)$

Computing Square Roots in $Z_n \implies$ **Factoring** *n*

- **Input**: *n*, access to a square root oracle SQRT
- **Output:** p, q prime such that n = pq

Complexity: $O((\log n)^2 + |\text{SQRT}|)$

1: repeat

2: pick
$$y_0 \in \{1, ..., n-1\}$$

3:
$$x = y_0^2 \mod n$$

4:
$$y = SQRT(n, x)$$

5: **until**
$$y \neq y_0$$
 and $y \neq -y_0$ mod n

6:
$$p = \gcd(y - y_0, n)$$

7: $q = n/p$

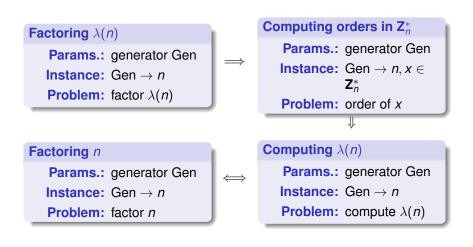
$$\dots, n-1$$
 • i

• since there are 4 square roots,
we have
$$Pr[y = y_0 \text{ or } y = -y_0 \mod n] = \frac{1}{2}$$

• in other cases, $y - y_0$ is zero modulo one of the two factors but not modulo the other: $gcd(y - y_0, n)$ is the former factor

Computing Element Orders in Z^{*}_n

Gen: generates integers of form n = pq with $p \neq q$ both prime



Factoring $\lambda(n) \Longrightarrow$ Computing Element Orders in \mathbf{Z}_n^*

Input: factorization $\lambda(n) = p_1^{\alpha_1} \cdots p_r^{\alpha_r}, x \in \mathbf{Z}_n^*$ **Output:** the order *u* of *x* **Complexity**: $\mathcal{O}(r)$ exponentials 1: $\mu \leftarrow \mathbf{1}$ 2: for *i* = 1 to *r* do 3: $v \leftarrow x^{\lambda(n)/p_i^{\alpha_i}} \mod n$ 4: while $y \neq 1$ do 5: $y \leftarrow y^{p_i} \mod n$ 6: $U \leftarrow U \times p_i$ 7: end while 8: end for

Fact. If the order of *x* is $p_1^{\beta_1} \cdots p_r^{\beta_r}$ then, for all *i*,

• $\beta_i \leq \alpha_i$ • $x^{\lambda(n)p_i^{\beta_i - \alpha_i}} \mod n = 1$ • $x^{\lambda(n)p_i^{\beta_i - \alpha_i - 1}} \mod n \neq 1$

Computing Element Orders in $Z_n^* \Longrightarrow$ Knowing $\lambda(n)$

Input: an element order oracle in Z_n^* **Output**: $\lambda(n)$

- 1: $\lambda \leftarrow \mathbf{1}$
- 2: repeat
- 3: pick a random x in \mathbf{Z}_n^*
- 4: compute the order u of x
- 5: $\lambda \leftarrow \operatorname{lcm}(\lambda, u)$
- 6: **until** λ has not changed for a while

Fact. With the same notations: for all *i*, $Pr[\beta_i < \alpha_i] \le 1/p_i$ Thus, the number of iterations is likely to be very small

Knowing $\lambda(n) \Longrightarrow$ Factoring n

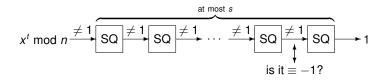
Input: $\lambda(n)$ (*n* odd) **Output:** a non trivial factor of n 1: write $\lambda(n) = 2^{s}t$ with t odd 2: repeat pick a random x in \mathbf{Z}_{n}^{*} 3: 4: $x \leftarrow x^t \mod n$ 5: $y \leftarrow \perp$ 6: while $x \neq 1$ do 7: $\mathbf{y} \leftarrow \mathbf{x}$ $x \leftarrow x^2 \mod n$ 8: end while 9: 10: **until** $y \neq \perp$ and $y \not\equiv -1$ (mod n)

11: output gcd(y - 1, n)

Fact. For $x \in \mathbb{Z}_n$, if $x^2 \mod n = 1$, $x \neq 1, x \neq n-1$ then $1 < \gcd(n, x-1) < n$ which is a non-trivial factor of *n*:

- *n* divides (*x* − 1)(*x* + 1)
- if gcd(n, x 1) = n then n divides x - 1 thus x = 1 which is wrong
- if gcd(n, x 1) = 1 then n divides x + 1 thus x = n - 1which is wrong

Factorization using $\lambda(n)$



Knowing $\lambda(n) \iff$ Factoring n

- \implies : previous slide
- \Leftarrow : $\lambda(p_1^{\alpha_1} \cdots p_r^{\alpha_r})$ is computed by

$$lcm((p_1-1)p_1^{\alpha_1-1},\ldots,(p_r-1)p_r^{\alpha_r-1})$$

- NB: knowing a multiple of λ(n) ⇐⇒ Factoring n (same proof)
- example: knowing $\varphi(n) \iff$ Factoring n

Conclusion: computing $\varphi(n)$ is hard, computing orders in \mathbf{Z}_n^* is hard

Consequence

- knowing K_p and K_s in RSA implies factoring N
- it is insecure to use common prime numbers between two RSA keys

Conclusion

- Euler φ function: to compute the order of Z^{*}_n
- Chinese Remainder Theorem: parallel Z_m and Z_n
- primality testing: efficient, used to generate prime numbers
- RSA cryptosystem: public-key cryptosystem
- factoring problem: believed to be hard

Computational Problems

easy

gcd

- inverse modulo n
- exponential
- square root mod n when factorization of n is known
- Legendre/Jacobi symbol
- checking primality
- finding a generator when group order is known
- computing order when factorization of group order is known

hard

- factoring
- discrete logarithm (sometimes)
- square root mod n
- computing $\varphi(n)$, $\lambda(n)$
- checking quadratic residuosity
- computing order in group

References

- **Shoup**. A Computational Introduction to Number Theory and Algebra. Cambridge University Press. 2005. http://shoup.net/ntb Textbook on algebra for cryptographers and applications.
- Menezes-van Oorschot-Vanstone. Handbook of Applied Cryptography. CRC. 1997. http://www.cacr.math.uwaterloo.ca/hac/ Reference book
- Vaudenay. A Classical Introduction to Cryptography Applications for Communications Security. Springer. 2005. http://www.vaudenay.ch/crypto/ Textbook on cryptography
- Rivest-Shamir-Adleman. A Method for Obtaining Digital Signatures and Public-key Cryptosystem. *Communications of the ACM* vol. 21, 1978.

Must be Known

- **Euler** ϕ **function**: formula, properties
- Chinese Remainder Theorem: how to use it
- orders: tricks to check/pick a generator
- primality testing: properties, how to use to generate prime numbers
- **RSA**: why it works, complexity
- quadratic residuosity: how to check, when it is easy to extract square roots
- factoring problem: some reductions to other problems

Train Yourself

- Chinese Remainder Theorem: midterm exam 2013–14 ex1 final exam 2012–13 ex1 midterm exam 2012–13 ex2 midterm exam 2011–12 ex2 midterm exam 2010–11 ex1 midterm exam 2010–11 ex2 midterm exam 2009–10 ex2 midterm exam 2008–09 ex1
- square roots, cubic roots: midterm exam 2013–14 ex2 midterm exam 2009–10 ex1
- quadratic residuosity: midterm exam 2012–13 ex1
- prime number generation: midterm exam 2014–15 ex1
- RSA variant: final exam 2015–16 ex2

- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
- Case Studies I
- Public-Key Cryptography
- Irust Establishment
- Case Studies II

Roadmap

- Galois fields
- elliptic curves over Z_p
- elliptic curves over GF(2^k)
- using standard curves
- Diffie-Hellman over elliptic curves
- ElGamal over elliptic curves
- pairing-based cryptography

- Elliptic Curves
- Elliptic Curves over a Prime Field
- Elliptic Curves over a Binary Field
- Using Elliptic Curves
- Elliptic Curve Cryptography
- Pairing-Based Cryptography

$GF(\rho^k)$ for Dummies

p: a prime number.

- Euclidean division in $Z_{\rho}[x]$: for any polynomials A(x) and P(x) such that $P \neq 0$, there exists polynomials R(x) and B(x) such that $A(x) = R(x) + P(x) \cdot B(x)$ and deg $(R) < \deg(P)$. We call $R(x) = A(x) \mod P(x)$ the remainder of $A(x) \mod P(x)$.
- Select a monic (i.e. with leading coefficient 1) irreducible (i.e. who cannot be expressed as a product of polynomials with smaller degree) polynomial P(x) of degree k in Z_p[x].
- Let GF(p^k) be the set of all polynomials in Z_p[x] of degree at most k - 1.
- Addition: regular polynomial addition modulo *p*.
- Multiplication: regular multiplication in Z_p[x] reduced modulo P(x).
- We can prove this constructs a field.

Example: GF(8)

In order to construct $GF(2^3)$:

- consider the ring **Z**₂[*x*] of polynomials
- take the monic irreducible polynomial P(x) = x³ + x + 1 of degree 3
- construct

$$GF(2^3) = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$$

Example: $(x + 1) + (x^2 + 1) = x^2 + x$ in GF(2³).
Example: $(x + 1) \times (x^2 + 1) = x^3 + x^2 + x + 1 = x^2$ in GF(2³).

Cerebral $GF(p^k)$

p: a prime number.

- $\mathbf{Z}_{\rho}[x]$ is a Euclidean ring.
- Select a monic irreducible polynomial P(x) of degree k in $\mathbf{Z}_p[x]$.
- P(x) spans a maximal ideal (P(x))
- Let $GF(p^k) = \mathbf{Z}_p[x]/(P(x))$ be the quotient of ring $\mathbf{Z}_p[x]$ by ideal (P(x)).
- We obtain a field who inherits the addition and multiplication from the ring structure of Z_p[x].

Galois Fields

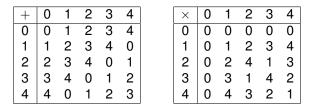
Theorem

We have the following results.

- The cardinality of any finite field is a prime power p^k.
- For any prime power p^k, there exists a finite field of cardinality p^k. p is called the **characteristic** of the field.
- Two finite fields of same cardinality are isomorphic, so the finite field of cardinality p^k is essentially unique. We denote it GF(p^k) as Galois field of cardinality p^k.
- $GF(p^k)$ is isomorphic to a subfield of $GF(p^{k \times \ell})$.
- GF(p^k) can be defined as the quotient of ring of polynomials with coefficients in Z_p by a principal ideal spanned by an irreducible polynomial of degree k: Z_p[x]/(P(x)).

Example: GF(5)

$$\mathsf{GF}(5) = \mathbf{Z}_5 = \{0, 1, 2, 3, 4\}$$



 $(\mathsf{GF}(5),+)\approx(\textbf{Z}_5,+)\ (\mathsf{GF}(5)^*,\times)\approx(\textbf{Z}_4,+)$

Example: GF(4)

$GF(4) = \{0, 1, x, x+1\} \neq \mathbf{Z}_4$										
+	0	1	X	<i>x</i> + 1		×	0	1	X	<i>x</i> + 1
0	0	1	X	<i>x</i> + 1		0	0	0	0	0
1	1	0	<i>x</i> + 1	X		1	0	1	X	<i>x</i> + 1
X	x	<i>x</i> + 1	0	1		х	0	Х	<i>x</i> + 1	1
<i>x</i> + 1	<i>x</i> + 1	X	1	0		<i>x</i> + 1	0	<i>x</i> + 1	1	x

 $(\mathsf{GF}(4),+) \approx (\mathbf{Z}_2 \times \mathbf{Z}_2,+) \quad (\mathsf{GF}(4)^*,\times) \approx (\mathbf{Z}_3,+)$ $P(x) = x^2 + x + 1$ irreducible in $Z_2[x]$, $GF(4) = Z_2[x]/(P(x))$

Example: $GF(2^8)$

Arithmetics in AES

A byte $a = a_7 \dots a_1 a_0$ represents an element of the finite field GF(2⁸) as a polynomial $a_0 + a_1 x + \dots + a_7 x^7$ modulo $x^8 + x^4 + x^3 + x + 1$ and modulo 2

byte	polynomial				
00x0	0				
0x01	1				
0x02	X				
0x03	<i>x</i> + 1				
0x1b	$x^4 + x^3 + x + 1$				

Addition: bitwise XOR Multiplication by 0x02: shift and XOR with 0x1b if carry

Most Important Finite Fields

- "prime field": \mathbf{Z}_{p} for a large prime p
- "binary field": GF(2^k)

	Z _p	$GF(2^k)$
representation	integers from 0 to $p-1$	polynomials in x of degree at most $k - 1$ with binary coef- ficients (k-bit strings) requires the choice of an ir- reducible polynomial $P(x)$ of degree k
addition	addition modulo p	bitwise XOR
multiplication	multiplication modulo p	ad-hoc algorithms multiplication by 0x2: shift to the left and XOR to a con- stant if carry

Characteristic 2 Tips

In $GF(2^k)$:

- 1 + 1 = 0
- minus = plus: −a = a
- square is linear: $(a + b)^2 = a^2 + b^2$
- power 2ⁱ is linear
- for k > 1, $a^{2^{k-1}}$ is the unique square root of a
- trace function: $\operatorname{Tr}(a) = a + a^2 + a^{2^2} + \dots + a^{2^{k-1}} \in \{0, 1\}$ (traces are roots of $z^2 = z$) Fact: Tr is linear: $\operatorname{Tr}(a + b) = \operatorname{Tr}(a) + \operatorname{Tr}(b)$ Fact: for all *a* in GF(2^{*k*}) we have $\operatorname{Tr}(a^2) = \operatorname{Tr}(a)$

Exercise

- Show that if z is a root of $a = z^2 + z$ then Tr(a) = 0 $Tr(a) = Tr(z^2 + z) = Tr(z^2) + Tr(z) = Tr(z) + Tr(z) = 0$
- Show that if Tr(a) = 0 then $a = z^2 + z$ has exactly two roots θ and $\theta + 1$

we have $(z + 1)^2 + (z + 1) = z^2 + 1 + z + 1 = z^2 + z$ so the mapping $z \mapsto z^2 + z$ has at most $\frac{1}{2}2^k$ images $z^2 + z = a$ cannot have more than two roots, to the mapping $z \mapsto z^2 + z$ has exactly $\frac{1}{2}2^k$ images and each image is reached exactly twice, by some $\{\theta, \theta + 1\}$ pair thanks to the first question, images are in the set of the $\frac{1}{2}2^k$ field

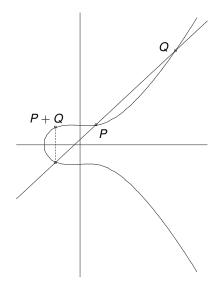
elements with trace zero

Galois Fields

Elliptic Curves

- Elliptic Curves over a Prime Field
- Elliptic Curves over a Binary Field
- Using Elliptic Curves
- Elliptic Curve Cryptography
- Pairing-Based Cryptography

Elliptic Curves



Addition in Elliptic Curves

Chord and Tangent Formula

$$E_{a,b} = \{\mathcal{O}\} \cup \{(x, y); y^2 = x^3 + ax + b\}$$

 we assume that *E_{a,b}(K)* is **non-singular**: when a point is non-singular we can define the tangent to this point

singular point \iff differential of $y^2 - (x^3 + ax + b)$ vanishes $\iff y = 0$ and $x^3 + ax + b = 0$ multiple root curve non-singular $\iff 4a^3 + 27b^2 \neq 0$

•
$$\lambda = \frac{y_Q - y_P}{x_Q - x_P}$$
 is the chord slope

•
$$\lambda = \frac{3x_{P}^{2}+a}{2y_{P}}$$
 is the tangent slope
 $(\lambda = \infty \iff y_{P} = 0 \iff P + P = \mathcal{O})$

 the sum of the 3 roots x of the intersection between E_{a,b}(K) and the straight line y = λx + μ is λ² = x_P + x_Q + x_R

Group Structure

$$E_{a,b} = \{O\} \cup \{(x,y); y^2 = x^3 + ax + b\}$$

- Given $P = (x_P, y_P)$, we define $-P = (x_P, -y_P)$ and $-\mathcal{O} = \mathcal{O}$.
- Given $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if Q = -P, we define P + Q = O.
- Given $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if $Q \neq -P$, we let

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } x_P \neq x_Q\\ \frac{3x_P^2 + a}{2y_P} & \text{if } x_P = x_Q \end{cases}$$
$$x_R = \lambda^2 - x_P - x_Q$$
$$y_R = (x_P - x_R)\lambda - y_P$$

 $R = (x_R, y_R)$ and P + Q = R.

• In addition, P + O = O + P = P and O + O = O.

Elliptic Curves are Abelian Groups

by restricting to $x, y \in \mathbf{K}$ where \mathbf{K} is a field (example: $\mathbf{Q}, \mathbf{R}, \mathbf{C}, GF(p^k)$)

- **1.** $E_{a,b}(\mathbf{K})$ is closed for the addition
- the addition is associative in *E_{a,b}*(K) HARD (from the chord and tangent formula)
- **3.** \mathcal{O} is neutral for the addition
- **4.** for any $P \in E_{a,b}(\mathbf{K})$ we have $-P \in E_{a,b}(\mathbf{K})$ which is the inverse of P for addition
- 5. the addition is commutative

$E_{a,b}(\mathbf{K})$ is an Abelian group

Remark on Points of Order 2 (Characteristic > 2)

$$P = (x, y)$$
 has order 2 \iff $P = -P$ and $P \neq O$
 \iff $y = 0$ and $x^3 + ax + b = 0$

So, the number of points of order 2 is the number of roots of $x^3 + ax + b$ in **K**

(If we have more than 1 root, the group cannot be cyclic!)

Recap

(for characteristic > 3)

- EC are curves (set of points whose coordinate satisfy an equation)
- the curve must be non-singular ($\Delta \neq 0$ for some parameter Δ)
- EC can (depending on the field) be defined by the equation $y^2 = x^3 + ax + b$ (need to add a point \mathcal{O})
- EC have an addition rule, making a group structure
 - \rightarrow can multiply a point by an integer
 - \rightarrow some curves can be isomorphic
 - \rightarrow contrarily to \mathbf{Z}_{ρ}^{*} , EC are not always cyclic

(but we can work on a cyclic subgroup)

Elliptic Curve Cryptography

Galois Fields

4

Elliptic Curves

• Elliptic Curves over a Prime Field

- Elliptic Curves over a Binary Field
- Using Elliptic Curves
- Elliptic Curve Cryptography
- Pairing-Based Cryptography

Roadmap

- same formulas, but over Z_p
- notion of twist: elliptic curves come in pairs
- notion of *j*-invariant: an invariant value by isomorphism
- cardinality close to p

Addition over an Elliptic Curve (Characteristic p > 3)

(Field **K** of characteristic p > 3)

$$E_{a,b}(\mathbf{K}) = \{\mathcal{O}\} \cup \{(x, y) \in \mathbf{K}^2; y^2 = x^3 + ax + b\}$$

Hypothesis: (discriminant) $\Delta = -16(4a^3 + 27b^2) \neq 0$

- for $P = (x_P, y_P)$, we let $-P = (x_P, -y_P)$ and $-\mathcal{O} = \mathcal{O}$.
- for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if Q = -P we let P + Q = O.
- for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if $Q \neq -P$ we let

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } x_P \neq x_Q\\ \frac{3x_P^2 + a}{2y_P} & \text{if } x_P = x_Q \end{cases}$$
$$x_R = \lambda^2 - x_P - x_Q$$
$$y_R = (x_P - x_R)\lambda - y_P$$

 $R = (x_R, y_R)$ and P + Q = R.

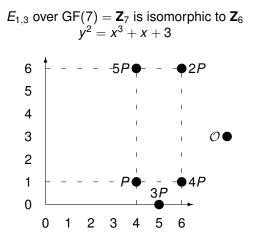
• addition to \mathcal{O} : $P + \mathcal{O} = \mathcal{O} + P = P$ and $\mathcal{O} + \mathcal{O} = \mathcal{O}$.

Maybe Useful to Know p > 3

Hypothesis: field **K** of characteristic p > 3 and $\Delta \neq 0$

- $E_{a,b}$ and E_{u^4a,u^6b} are isomorphic (by $(x,y) \mapsto (u^2x,u^3y)$)
- *E*_{*a,b*} and *E*_{*v*²*a*,*v*³*b*} are **twist** of each other if *v* is not a square NB: they become isomorphic in an extension of **K** where *v* becomes a square
- *j*-invariant: $j = 1728 \frac{4a^3}{4a^3 + 27b^2}$
- $\#E_{a,b}$ is between $q + 1 2\sqrt{q}$ and $q + 1 + 2\sqrt{q}$ where q is the cardinality of **K** (Hasse Theorem) NB: for two twists, the average of $\#E_{a,b}$ is q + 1

Other Example



Recap

- EC can be defined by the equation $y^2 = x^3 + ax + b$ (plus a point O)
- twist: pair of non-isomorphic curves which become isomorphic when defined over a larger field
- *j*-invariant: parameter which is always the same for isomorphic curves and for twists
- the order of a curve is close to the cardinality of the field

Elliptic Curve Cryptography

- Galois Fields
- Elliptic Curves
- Elliptic Curves over a Prime Field
- Elliptic Curves over a Binary Field
- Using Elliptic Curves
- Elliptic Curve Cryptography
- Pairing-Based Cryptography

Roadmap

- similar, but with different formulas
- again: notions of twist, j-invariant
- a special case: "supersingular curves"
- recent results on DL raise big concerns on their security

skip binary curves

Addition over an Elliptic Curve (Characteristic

p = 2) (Field K of characteristic p = 2) case of curve **non supersingular** (= **ordinary** curve)

$$E_{a_2,a_6}(\mathbf{K}) = \{\mathcal{O}\} \cup \{(x,y) \in \mathbf{K}^2; y^2 + xy = x^3 + a_2x^2 + a_6\}$$

hypothesis: (**discriminant**) $\Delta = a_6 \neq 0$

- for $P = (x_P, y_P)$, we let $-P = (x_P, x_P + y_P)$ and $-\mathcal{O} = \mathcal{O}$.
- for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if Q = -P, we let P + Q = O.
- for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if $Q \neq -P$, we let

$$\lambda = \begin{cases} \frac{y_Q + y_P}{x_Q + x_P} & \text{if } x_P \neq x_Q \\ \frac{x_P + y_P}{x_P} & \text{if } x_P = x_Q \end{cases}$$
$$x_R = \lambda^2 + \lambda + a_2 + x_P + x_Q$$
$$y_R = (x_P + x_R)\lambda + y_P + x_R$$

 $R = (x_R, y_R)$ and P + Q = R.

• addition to \mathcal{O} : $P + \mathcal{O} = \mathcal{O} + P = P$ and $\mathcal{O} + \mathcal{O} = \mathcal{O}$.

Maybe Useful to Know (Non-supersingular, Binary)

Hypothesis: field $\mathbf{K} = GF(q)$ of characteristic 2 and $\Delta \neq 0$, non-supersingular elliptic curve

• $E_{a_2,a_6}(\mathbf{K})$ is **non-singular**: a point is singular \iff the differential of $(y^2 + xy) - (x^3 + a_2x^2 + a_6)$ vanishes $\iff x = y = a_6 = 0$ existence $\iff a_6 = 0$

•
$$E_{a_2,a_6}$$
 and $E_{a_2+u^2+u,a_6}$ are isomorphic (by $(x,y)\mapsto (x,ux+y)$)

- E_{a_2,a_6} and $E_{a_2+\nu,a_6}$ are **twist** of each other if $\operatorname{tr}_2(\nu) = \sum_{2^i < q} \nu^{2^i} = 1$ (they become isomorphic in an extension of **K** in which $\operatorname{tr}_2(\nu)$ vanishes)
- *j*-invariant: *j* = 1/△
- $\#E_{a_2,a_6}$ is between $q + 1 2\sqrt{q}$ and $q + 1 + 2\sqrt{q}$ where q is the cardinality of **K** (Hasse Theorem) NB: for two twists, the average of $\#E_{a_2,a_6}$ is q + 1

The Supersingular Case

(Field **K** of characteristic p = 2) case of curve **supersingular**

 $\textit{\textit{E}}_{a_{3},a_{4},a_{6}}(\textit{\textbf{K}}) = \{\mathcal{O}\} \cup \{(x,y) \in \textit{\textbf{K}}^{2}; y^{2} + a_{3}y = x^{3} + a_{4}x + a_{6}\}$

hypothesis: (**discriminant**) $\Delta = a_3^4 \neq 0$

- for $P = (x_P, y_P)$, we let $-P = (x_P, y_P + a_3)$ and $-\mathcal{O} = \mathcal{O}$.
- for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if Q = -P, we let P + Q = O.
- for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if $Q \neq -P$, we let

$$\lambda = \begin{cases} \frac{y_Q + y_P}{x_Q + x_P} & \text{if } x_P \neq x_Q \\ \frac{x_P^2 + a_4}{a_3} & \text{if } x_P = x_Q \end{cases}$$
$$x_R = \lambda^2 + x_P + x_Q$$
$$y_R = (x_P + x_R)\lambda + y_P + a_3$$

 $R = (x_R, y_R)$ and P + Q = R.

• addition to \mathcal{O} : $P + \mathcal{O} = \mathcal{O} + P = P$ and $\mathcal{O} + \mathcal{O} = \mathcal{O}$.

Maybe Useful to Know (Supersingular, Binary)

Hypothesis: field $\mathbf{K} = GF(q)$ of characteristic 2 and $\Delta \neq 0$, supersingular curve

- $E_{a_3,a_4,a_6}(\mathbf{K})$ is **non-singular** iff $a_3 \neq 0$: a point is singular \iff the differential of $(y^2 + a_3y) - (x^3 + a_4x + a_6)$ vanishes $\iff x^2 = a_4, y^2 = a_6, a_3 = 0$ existence $\iff a_3 = 0$
- the *j*-invariant vanishes (j = 0)

Elliptic Curve Cryptography

- Galois Fields
- Elliptic Curves
- Elliptic Curves over a Prime Field
- Elliptic Curves over a Binary Field

Using Elliptic Curves

- Elliptic Curve Cryptography
- Pairing-Based Cryptography

Hardness of the Discrete Logarithm

- DL is easy in anomalous curves over Z_p
- binary curves may be exposed to recent attacks
- there are other families of weak curves
- in a group of order *n*, Pollard Rho algorithm solves DL in $O(\sqrt{n})$
- we can consider tradeoffs: run precomputation of $\mathcal{O}(n^{\frac{2}{3}})$ then compute any DL in $\mathcal{O}(n^{\frac{2}{3}})$ (people tend to use the very same curves...)

Note: curves which are bad for DL may be good for other things... (e.g. pairing-based cryptography)

Using Point Compression (Prime Field Case)

Elliptic curve equation:

$$y^2 = x^3 + ax + b$$

A single x leads to two y which are opposite from each other.

 \rightarrow we can get y from

X

• the parity of y (y and p - y have different parity)

Format "hh hexstring"

- hh = 00 point O (following: nothing)
- hh = 02 point compression with y even (following: x)
- hh = 03 point compression with y odd (following: x)
- *hh* = 04 no compression (following: *x* and *y*)

Using Point Compression (Binary Field Case)

Elliptic curve equation:

$$\left(\frac{y}{x}\right)^2 + \frac{y}{x} = x + a_2 + \frac{a_6}{x^2}$$

A single x leads to two y such that $\frac{y}{x} = \theta$ or $\theta + 1$ for some θ

- \rightarrow we can get y from
 - X
 - the constant term of y/x as a polynomial (the two roots y/x have sum 1 thus only differ in their constant term)

Format "hh hexstring"

- hh = 00 point O (following: nothing)
- hh = 02 point compression with y/x even (following: x)
- hh = 03 point compression with y/x odd (following: x)
- *hh* = 04 no compression (following: *x* and *y*)

Manipulating Elliptic Curves in Practice

A representation problem:

- bit strings
- byte strings
- integers
- polynomials
- field elements
- elliptic curve points

see http://www.secg.org/sec1-v2.pdf for an example of representation standard

Domain Parameters

a field

- either a prime number p
- or a power *q* of 2 together with an irreducible polynomial over GF(2) of degree log₂ *q*
- field elements defining an elliptic curve E
- a point G in E
- the order *n* of *G* in *E* (may be smaller than the order of *E*)
- (for pseudorandom curves) a seed s (to generate a j-invariant)

Standard Curves

pseudorandom curves over Z_p

•
$$y^2 = x^3 + ax + b$$

provide seed to generate j

- \rightarrow Discrete Log is assumed to be hard
- ordinary curves over a binary field

•
$$y^2 + xy = x^3 + a_2x^2 + a_6$$

- for pseudorandom curves: provide seed to generate j
- for special curves (Koblitz curves): $a_6 = 1, a_2 \in \{0, 1\}$

NIST Standard Curves (2013)

NIST Recommended Elliptic Curves for Federal Government Use Appendix D of FIPS186–4

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

- pseudorandom over Z_ρ: P192, P224, P256, P384, P521
- ordinary curves over binary fields:
 - pseudorandom: B163, B233, B283, B409, B571
 - special: K163, K233, K283, K409, K571 (called **Koblitz curves** or **anomalous binary curves (ABC)**)

SECG Standard Curves (2000)

SEC2: Recommended Elliptic Curve Domain Parameters http://www.secg.org/sec2-v2.pdf

- pseudorandom over Z_p: secp112r1, secp112r2, secp128r1, secp128r2, secp160r1, secp160r2, secp192r1, secp224r1, secp256r1, secp384r1, secp521r1
- special over Z_ρ: secp160k1, secp192k1, secp224k1, secp256k1 (called generalized Koblitz curves)
- pseudorandom over binary fields: sect113r1, sect113r2, sect131r1, sect131r2, sect163r1, sect163r2, sect193r1, sect193r2, sect233r1, sect283r1, sect409r1, sect571r1
- special over binary fields: sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1 (called Koblitz curves or anomalous binary curves (ABC))

Other Standards

- ANSI X9.62
- IEEE P1363

Example: secp192r1 = P192

secp192r1 =
$$\{\mathcal{O}\} \cup \{(x, y) \in \mathbf{Z}_{\rho}; y^2 = x^3 + ax + b\}$$

note that $p = 2^{192} - 2^{64} - 1$, $2^{192} - 2^{95} < n < 2^{192}$, and *n* is prime

Example: sect163r2 = B163

sect163r2 =
$$\{\mathcal{O}\} \cup \{(x, y) \in \mathsf{GF}(q); y^2 + xy = x^3 + a_2x^2 + a_6\}$$

$$\begin{array}{rcl} q &=& 2^{163} \\ f(x) &=& x^{163} + x^7 + x^6 + x^3 + 1 \\ a_2 &=& 1 \\ a_6 &=& 02\ 0a601907\ b8c953ca\ 1481eb10\ 512f7874\ 4a3205fd \\ n &=& 04\ 0000000\ 0000000\ 000292fe\ 77e70c12\ a4234c33 \\ &=& 5846006549323611672814742442876390689256843201587 \\ G &=& 03\ 03\ f0eba162\ 86a2d57e\ a0991168\ d4994637\ e8343e36 \\ seed &=& 85e25bfe\ 5c86226c\ db12016f\ 7553f9d0\ e693a268 \end{array}$$

note that $2^{162} < n < 2^{162} + 2^{82}$ and *n* is prime

Elliptic Curves are Real

secp256r1 = P256

used for digital signature in Swiss biometric passports

Example: Curve25519

Curve25519 = {
$$\mathcal{O}$$
} ∪ { $(x, y) \in \mathbf{Z}_p$; $y^2 = x^3 + 486\ 662x^2 + x$ }

$$\begin{array}{rcl} p & = & 2^{255} - 19 \\ x_G & = & 9 \\ order(G) & = & 2^{252} + 27742317777372353535851937790883648493 \end{array}$$

Some X25519 function comes with it for ECDH

- equation different than previous ones!
- optimized implementations
- made by no company or government agency
- used in SSH, Tor, Signal, Bitcoin, ...

- Galois Fields
- Elliptic Curves
- Elliptic Curves over a Prime Field
- Elliptic Curves over a Binary Field
- Using Elliptic Curves
- Elliptic Curve Cryptography
- Pairing-Based Cryptography

ECDH: Elliptic Curve Diffie-Hellman

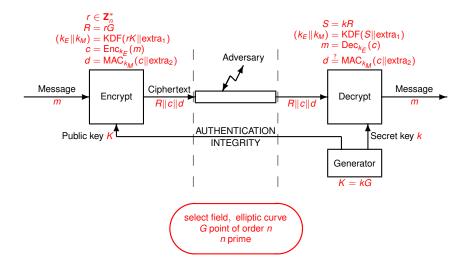
- specified in SEC1 (http://www.secg.org/sec1-v2.pdf) and IEEE1363
- used in Bluetooth 2.1
- used in EAC for epassports

ECDH

Participants: U and V

- *U* and *V* agree on domain parameters T = (p, a, b, G, n, h) or T = (m, f(x), a, b, G, n, h)(*h* is the cofactor $\frac{1}{n} \# E(GF(q))$ with q = p or $(q = 2^m)$)
- U resp. V selects his secret key d_U resp. d_V ∈ Z^{*}_n and compute his public key Q_U = d_U.G resp. Q_V = d_V.G
- U and V exchange their public keys
- both check $Q \in E(GF(p)), Q \neq O, n.Q = O$
- both compute $P = d_U \cdot Q_V = d_V \cdot Q_U$
- set $z = x_P$
- convert the field element z into a byte string Z
- use a KDF as agreed to derive a key K

ECIES (EC Integrated Encryption Scheme)



Principles of ECIES

- use Diffie-Hellman to exchange a symmetric $k_E || k_M$
- use k_E to encrypt
- use k_M for integrity protection

this is a hybrid encryption:

we use public-key cryptosystem to exchange a symmetric key and symmetric cryptography to transport the message securely

Exercise

identify the algebraic structure (group/ring/field), the corresponding law(s) and neutral element(s)

- **Z**₂₆...
- the set of permutations over the alphabet...

- secp192r1...
- GF(2¹²⁸)...

- Galois Fields
- Elliptic Curves
- Elliptic Curves over a Prime Field
- Elliptic Curves over a Binary Field
- Using Elliptic Curves
- Elliptic Curve Cryptography
- Pairing-Based Cryptography

Pairing of Elliptic Curves

for some pairs of elliptic curves G_1 and G_2 we can construct a function

 $\textit{e}:\textit{G}_1 \times \textit{G}_2 \rightarrow \textit{G}_T$

to a group G_T (with multiplicative notations) such that

- *e* is bilinear: $e(aP, bQ) = e(P, Q)^{ab}$ for $a, b \in \mathbb{Z}$, $P \in G_1$, $Q \in G_2$
- *e* is **non-degenerate**: $e(P, Q) \neq 1$ for some $P \in G_1$ and $Q \in G_2$ (we use supersingular curves)

consequences:

- this may be bad for EC-security in G₁ = G₂ as we can distinguish (P, xP, yP, xyP) from (P, xP, yP, zP) by checking e(xP, yP) = e(P, xyP) we call G₁ = G₂ a gap group because the *computational Diffie-Hellman problem* may remain hard even though the *decitional Diffie-Hellman problem* is easy
- this may create new cryptographic primitives

3-Party Diffie-Hellman Key Agreement in a Single Round

let G generate a subgroup of order p of $G_1 = G_2$ such that $e(G, G) \neq 1$

- Alice picks $a \in \mathbf{Z}_p$ and broacasts A = aG
- Bob picks $b \in \mathbf{Z}_p$ and broacasts B = bG
- Charly picks $c \in \mathbf{Z}_{p}$ and broacasts C = cG
- all compute $K = e(G, G)^{abc}$ Alice computes $e(B, C)^a = K$ Bob computes $e(C, A)^b = K$ Charly computes $e(A, B)^c = K$

Popular Cryptographic Constructions based on Pairings

- Joux 2000: 3-party Diffie-Hellman key agreement in one round
- Boneh-Franklin 2001: identity-based encryption
- Boneh-Lynn-Shacham 2003: a signature scheme (short)
- Sahai-Water 2004: attribute-based encryption

Conclusion

- elliptic curves are groups which can be used in cryptography
- advantage: smaller parameters for the same security
- better complexity than RSA
- many standards are using elliptic curves

References

- **Shoup**. A Computational Introduction to Number Theory and Algebra. Cambridge University Press. 2005. http://shoup.net/ntb
- http://www.secg.org/sec1-v2.pdf
- http://www.secg.org/sec2-v2.pdf

Must be Known

- understand how to add points with the help of the formulas (don't learn them!)
- understand how to manipulate objects (field elements, points, integers)
- understand point compression
- understand the standards

Train Yourself

- finite fields: midterm 2008-09 ex3
- projective coordinates: midterm 2013–14 ex3
- discrete logarithm: final exam 2013–14 ex3
- mapping a message to a point: midterm exam 2014–15 ex2
- elliptic curve factoring method: midterm exam 2015–16 ex2

- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
 - Integrity and Authentication
- Case Studies I
- 8 Public-Key Cryptography
- Irust Establishment
- Case Studies II

SV 2016-17

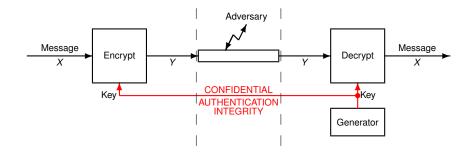
Roadmap

- block ciphers: DES, triple-DES, AES
- modes of operations: ECB, CBC, OFB, CFB, CTR, XTS
- stream ciphers: RC4, A5/1
- exhaustive search and tradefoffs
- meet-in-the-middle attack

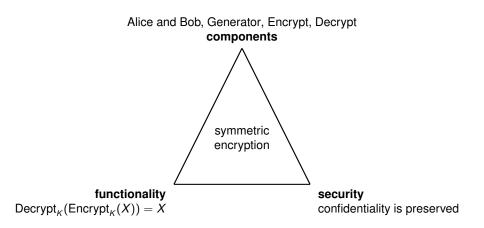
5 Symmetric Encryption A Cryptographic Primitive

- Block Ciphers
- Stream Ciphers
- Bruteforce Inversion Algorithms
- Subttle Bruteforce Inversion Algorithms
- Pushing the Physical Limits
- Formalism

Symmetric Encryption



Symmetric Encryption (Informal)



Example: Vernam Cipher

components: Alice and Bob, a parameter n

- **Generator**: select $K \in \{0, 1\}^n$ uniformly at random and set it up for Alice and Bob
- Encrypt: for X ∈ {0,1}ⁿ, compute Y = X ⊕ K, send Y and discard K
- **Decrypt**: for $Y \in \{0, 1\}^n$, compute $X = Y \oplus K$ and discard K

functionality: for any X we have $\text{Decrypt}_{\mathcal{K}}(\text{Encrypt}_{\mathcal{K}}(X)) = X$

security: perfect secrecy (*X* and *Y* have independent distribution)

Warning: use K only once

Two Categories of Symmetric Encryption

stream ciphers	block ciphers
RC4	DES
GSM–A5/1	3DES
Bluetooth-E0	IDEA
CSS	BLOWFISH
	RC5
	AES
	KASUMI
	SAFER
	CS-Cipher
	FOX

5 Symmetric Encryption

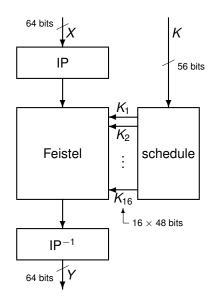
A Cryptographic Primitive

Block Ciphers

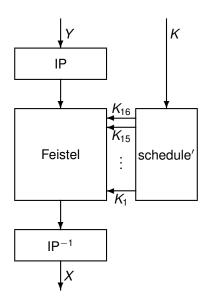
- Stream Ciphers
- Bruteforce Inversion Algorithms
- Subttle Bruteforce Inversion Algorithms
- Pushing the Physical Limits
- Formalism

DES: the Data Encryption Standard

- US Standard from NBS (now NIST), branch of the Department of Commerce in 1977
- secret design by IBM based on a call for proposal
- based on LUCIFER by Horst Feistel (from IBM)
- design influenced by the NSA
- rationales of the design published by Don Coppersmith in 1994
- dedicated to hardware implementation
- block cipher with 64-bit blocks
- key of 56 effective bits



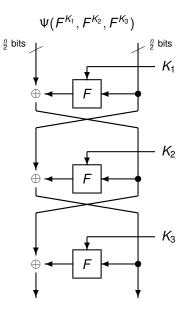
DES⁻¹



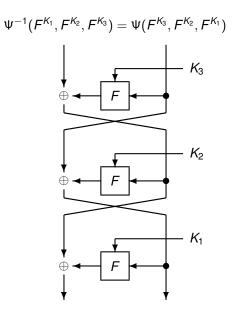
Feistel Scheme

- transform function over $\{0,1\}^{\frac{n}{2}}$ into permutations over $\{0,1\}^n$
- inverse permutations have same structure
- alternate round functions and halve swaps
- final halve swap omitted

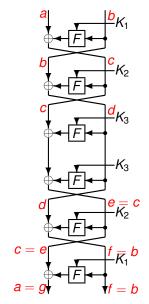
(Direct) Feistel Scheme



(Inverse) Feistel Scheme



(Direct + Inverse) Feistel Scheme



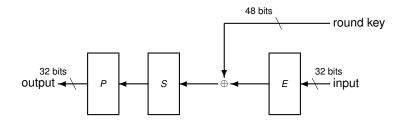
• $e = c \oplus F^{K_3}(d) \oplus F^{K_3}(d) = c$

•
$$f = d \oplus F^{K_2}(e) =$$

 $(b \oplus F^{K_2}(c)) \oplus F^{K_2}(c) = b$

•
$$g = e \oplus F^{K_1}(f) = c \oplus F^{K_1}(b) = (a \oplus F^{K_1}(b)) \oplus F^{K_1}(b) = a$$

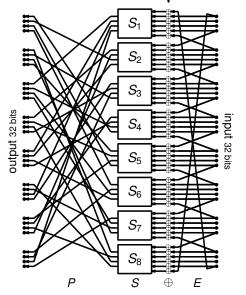
DES Round Function Overview



- E: expansion (32 to 48 bits)
- *S*: eight 6-bit to 4-bit S-boxes (substitution boxes)
- P: permutation

DES Round Function

round key 48 bits



12 13 14 15 9 14 3 15 10 13 2 12

Example: $S_3(111000) = 0101$:

DES Key Schedule

schedule(K) 1: $K \xrightarrow{PC1} (C, D)$ 2: for i = 1 to 16 do 3: $C \leftarrow \text{ROL}r_i(C)$ 4: $D \leftarrow \text{ROL}r_i(D)$ 5: $K_i \leftarrow \text{PC2}(C, D)$ 6: end for

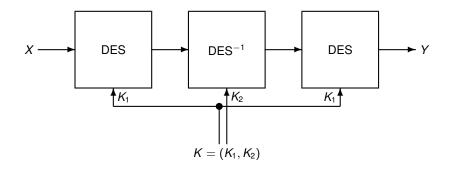
K: 56-bit register *C*, *D*: two 28-bit registers K_1, \ldots, K_{16} : sixteen 48-bit registers

DES Inverse Key Schedule

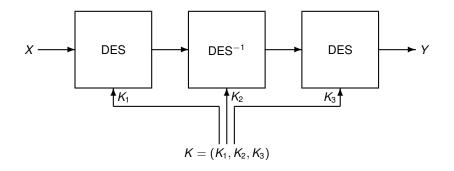
schedule'(K) 1: $K \xrightarrow{PC1} (C, D)$ 2: for i = 16 down to 1 do 3: $K_i \leftarrow PC2(C, D)$ 4: $C \leftarrow RORr_i(C)$ 5: $D \leftarrow RORr_i(D)$ 6: end for

K: 56-bit register *C*, *D*: two 28-bit registers K_1, \ldots, K_{16} : sixteen 48-bit registers

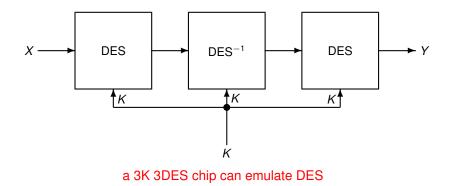
Two-Key Triple DES



Three-Key Triple DES



From Triple DES to DES



Security Notions

- adversary objective: learn confidential information
- typically: key recovery
- ciphertext only attack: using ciphertexts in transit only
- known plaintext attack: same + know (or guess) the corresponding plaintexts
- chosen plaintext attack: force the sender to encrypt some messages selected by the adversary
- chosen ciphertext attack: force the receiver to decrypt some messages selected by the adversary

Attacks on DES

- weak keys (1977)
- optimized exhaustive search (Hellman 1980)
- chosen plaintext attack against 2-key TDES using 2⁵⁶ chosen plaintexts, 2⁵⁶ time and 2⁵⁶ memory (Merkle-Hellman 1981)
- known plaintext attack against 2-key TDES using 2^t known plaintexts, 2^{120-t} time (van Oorschot-Wiener 1990)
- study on dedicated hardware (Diffie-Hellman 1977, Wiener 1993)
- chosen plaintext attack with 2⁴⁷ chosen plaintexts (Biham-Shamir 1992)
- known plaintext attack with 2⁴³ known plaintexts (Matsui 1994) or actually a little less 2⁴⁰ (Junod 2001)
- optimized exhaustive search within 4 days on a dedicated hardware (EFF 1998)
- bruteforce on 3-key TDES using 2³² known plaintexts, 2¹¹³ time and 2⁸⁸ memory (Lucks 1998)

AES: the Advanced Encryption Standard

- US Standard from NIST, branch of the Department of Commerce in 2001
- public process based on a call for proposal
- standard version of Rijndael
- Rijndael was designed by Joan Daemen and Vincent Rijmen in Belgium
- dedicated to software on 8-bit microprocessors
- block cipher with 128-bit blocks
- key of length 128, 192, or 256
- cartoon: www.moserware.com/2009/09/ stick-figure-guide-to-advanced.html animation: www.formaestudio.com/rijndaelinspector/ archivos/rijndaelanimation.html

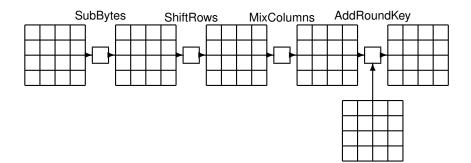
Rijndael Skeleton

- 128-bit block \longrightarrow 4 \times 4 square matrix of bytes
- Nr = 10, 12 or 14 rounds depending on the key size of 128, 192 or 256 bits

AES encryption(s, W)

- 1: AddRoundKey (s, W_0)
- 2: **for** r = 1 to Nr 1 **do**
- 3: SubBytes(s)
- 4: ShiftRows(s)
- 5: MixColumns(s)
- 6: **AddRoundKey**(s, W_r)
- 7: end for
- 8: SubBytes(s)
- 9: ShiftRows(s)
- 10: AddRoundKey(s, W_{Nr})

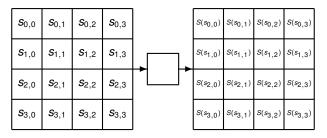
One Non-Terminal Round of Rijndael



SubBytes

SubBytes(s) 1: for i = 0 to 3 do 2: for j = 0 to 3 do 3: $s_{i,j} \leftarrow S\text{-box}(s_{i,j})$ 4: end for

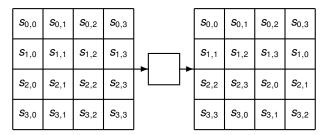
5: end for



ShiftRows

ShiftRows(s)

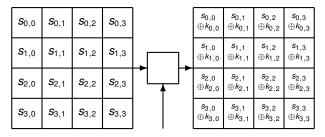
1: replace $[s_{1,0}, s_{1,1}, s_{1,2}, s_{1,3}]$ by $[s_{1,1}, s_{1,2}, s_{1,3}, s_{1,0}]$ 2: replace $[s_{2,0}, s_{2,1}, s_{2,2}, s_{2,3}]$ by $[s_{2,2}, s_{2,3}, s_{2,0}, s_{2,1}]$ 3: replace $[s_{3,0}, s_{3,1}, s_{3,2}, s_{3,3}]$ by $[s_{3,3}, s_{3,0}, s_{3,1}, s_{3,2}]$



AddRoundKey

AddRoundKey(s, k) 1: **for** *i* = 0 to 3 **do** for *i* = 0 to 3 do 2: $s_{i,i} \leftarrow s_{i,j} \oplus k_{i,j}$ 3: end for

- 4:
- 5: end for



Introduction to GF Arithmetics in Rijndael

look at slide 330

we use the following representation rule

byte	bit string	polynomial
В	$b_7 \cdots b_2 b_1 b_0$	$b_7.x^7 + \cdots + b_2.x^2 + b_1.x + b_0$

- we replace every 2 by 0 in polynomials hence 3 = 2 + 1 is replaced by 0 + 1 = 1, 4 is replaced by 0, ... → monomial coefficients are binary
- we replace every x⁸ by x⁴ + x³ + x + 1 in polynomials hence x⁹ = x⁸ × x is replaced by x⁵ + x⁴ + x² + x, ... → polynomials have degree at most 7

Examples

• 0x5c + 0x2a = 0x76

byte bit string polynomial $x^{6} + x^{4} + x^{3} + x^{2}$ 0x5c 01011100 00101010 $x^{5} + x^{3} + x$ 0x2a + $x^{6} + x^{5} + x^{4} + 2x^{3} + x^{2} + x$ = $x^{6} + x^{5} + x^{4} + x^{2} + x$ 01110110 = 0x76 • $0x9e \times 0x02 = 0x27$ bit string byte polynomial $x^7 + x^4 + x^3 + x^2 + x$ 0x9e 10011110 00000010 0x02Х Х $x^8 + x^5 + x^4 + x^3 + x^2$ = $x^{5} + 2 \cdot x^{4} + 2 \cdot x^{3} + x^{2} + x + 1$ = $x^5 + x^2 + x + 1$ 00100111 = 0x27

GF Arithmetics

A byte $a = a_7 \dots a_1 a_0$ represents an element of the finite field GF(2⁸) as a polynomial $a_0 + a_1 x + \dots + a_7 x^7$ modulo $x^8 + x^4 + x^3 + x + 1$ and modulo 2

byte	bit string	polynomial
0x00	00000000	0
0x01	00000001	1
0x02	00000010	x
0x03	00000011	<i>x</i> + 1
0x1b	00011011	$x^4 + x^3 + x + 1$

Addition: a simple XOR Multiplication by 0x01: nothing Multiplication by 0x02: shift and XOR with 0x1b if carry Multiplication by 0x03: XOR of multiplications by 0x01 and 0x02

MixColumns

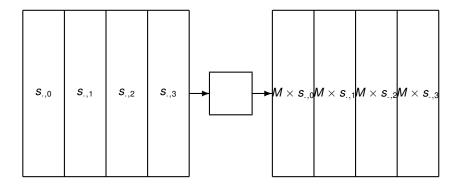
MixColumns(s)

- 1: **for** *i* = 0 to 3 **do**
- 2: let *v* be the 4-dimensional vector with coordinates $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$
- 3: replace $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$ by $M \times v$
- 4: end for

$$M = \left(\begin{array}{rrrr} 0x02 & 0x03 & 0x01 & 0x01 \\ 0x01 & 0x02 & 0x03 & 0x01 \\ 0x01 & 0x01 & 0x02 & 0x03 \\ 0x03 & 0x01 & 0x01 & 0x02 \end{array}\right)$$

٠

MixColumns



InvMixColumns

${\rm InvMixColumns}(s)$

- 1: **for** *i* = 0 to 3 **do**
- 2: let *v* be the 4-dimensional vector with coordinates $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$
- 3: replace $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$ by $M^{-1} \times v$
- 4: end for

$$M^{-1} = \left(egin{array}{ccccc} 0x0e & 0x0b & 0x0d & 0x09 \ 0x09 & 0x0e & 0x0b & 0x0d \ 0x0d & 0x09 & 0x0e & 0x0b \ 0x0b & 0x0d & 0x09 & 0x0e \end{array}
ight)$$

٠

Key Expansion

- we consider W as a sequence of 4(Nr + 1) = 44 (resp. 52, 60) rows (32-bit words) w
- we consider the key as a sequence of Nk = 4 (resp. 6, 8) rows
- the *w_i* are iteratively loaded:
 - the first w_i are loaded with the key
 - w_i is loaded with $w_{i-Nk} \oplus w_{i-1}$
 - every Nk iterations, the w_i is modified before the XOR
 - for Nk = 8, we add an extra modification

Key Expansion

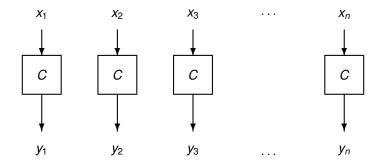
KeyExpansion(key, Nk)

- 1: **for** *i* = 0 to Nk − 1 **do**
- 2: $w_i \leftarrow \text{key}_i$
- 3: end for
- 4: for i = Nk to 4(Nr + 1) 1 do
- 5: $t \leftarrow W_{i-1}$
- 6: **if** *i* mod Nk = 0 **then**
- 7: replace $[t_1, t_2, t_3, t_4]$ by $[t_2, t_3, t_4, t_1]$ in t
- 8: apply S-box to the four bytes of *t*
- 9: XOR $x^{i/Nk-1}$ (in GF) onto the first byte of *t*
- 10: else if Nk = 8 and $i \mod Nk = 4$ then
- 11: apply S-box to the four bytes of *t*
- 12: end if
- 13: $W_i \leftarrow W_{i-Nk} \oplus t$
- 14: end for

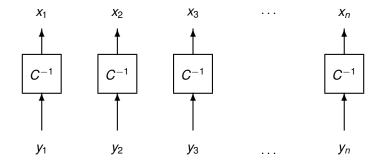
Modes of Operation

- transform a block cipher into a symmetric encryption with variable message length
- encrypt and decrypt "on the fly" (online encryption)
- in some sense: transform a block cipher into a stream cipher
- may require an Initialization Vector (IV)
- typically: message length must be multiple of the block length

ECB Mode



ECB Decryption



Note on the ECB Mode

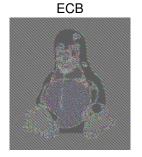
Information leakage for blocks with low entropy

Chablozuuuuuu^{Presidentuuuuuuu⁷⁸964.31 Zuffereyuuuuuuu^{Manager}uuuuuuuuu²³321.16 Neuenschwanderuuu^{Consultant}uuuuuu³⁴445.22 Schneideruuuuuu^{Affirmative}uuuuuu³⁸206.51 Cottiuuuuuuuu²¹489.15}

C(1) for Neuenschwander = C(1) for Schneider

ECB vs CBC

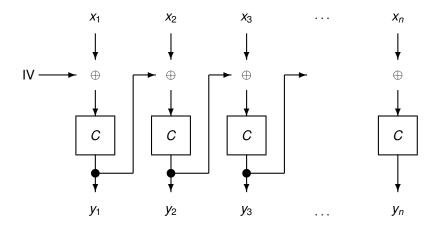
original



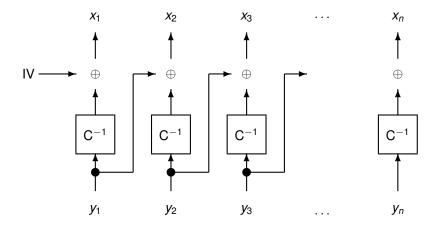
CBC

en.wikipedia.org

CBC Mode



CBC Decryption

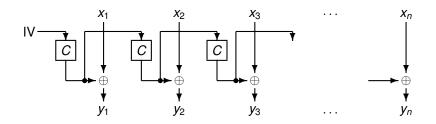


Note on the CBC Mode

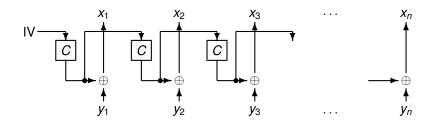
Three possibilities for dealing with IV

- Using a (non secret) constant IV example: MRTD (IV= 0)
- Using a secret IV which is part of the key example: **TLS**
- Using a random IV which is sent in clear with the ciphertext

OFB Mode



OFB Decryption

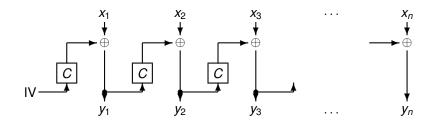


Note on the OFB Mode

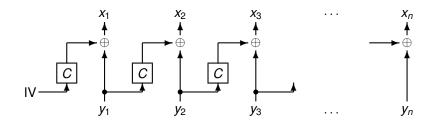
- IV must be new for every plaintext!
- Use a random one which is sent in clear...
- ... or use a counter-based IV
- This is not only a property of the OFB mode: property of stream ciphers
- OFB actually transforms a block cipher into a stream cipher

IV is used as a **nonce** (<u>n</u>umber used <u>once</u>)

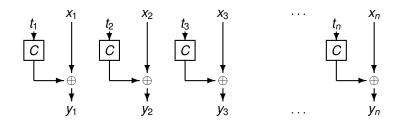
CFB Mode



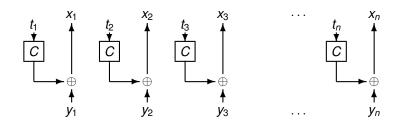
CFB Decryption



CTR Mode



CTR Decryption



Note on the CTR Mode

- t_i must be new for every block! (a nonce) Example 1: $t_i = msg$ counter||blk counter Example 2: $t_i = t_1 + (i - 1)$ where t_1 is the last t_n plus 1 Example 3: $t_i = t_1 + (i - 1)$ where t_1 is a (unique) nonce
- CTR also transforms a block cipher into a stream cipher

XTS Mode

- used to encrypt a hard disk
- hard disks are made of "sectors" of various lengths lengh may not be a multiple of the block length
- requirements:

encryption shall not increase space encryption shall allow random access with small overhead

uses two keys (K₁, K₂)

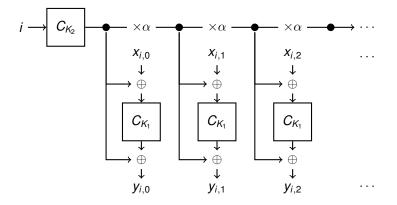
• for a block of index *j* in sector of index *i*:

 $y_{i,j} = \mathsf{Enc}_{i,j}(x_{i,j}) = C_{\mathcal{K}_1}(x_{i,j} \oplus t_{i,j}) \oplus t_{i,j} \quad t_{i,j} = \alpha^j \times C_{\mathcal{K}_2}(i)$

in a GF structure, with a constant α

• use ciphertext stealing for the last two blocks

XTS

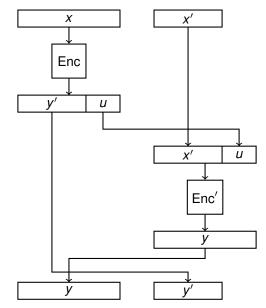


Ciphertext Stealing

- used to encrypt two blocks x and x' (typically, the last two)
- Case 1 (easy): if x and x' have regular length, encrypt normally y = Enc(x), y' = Enc'(x')
- Case 2: if x' is shorter than usual.

1: split
$$\operatorname{Enc}(x) = y' || u$$
 with y' of same length as x'
2: $y = \operatorname{Enc}'(x' || u)$
3: give y and y'
to decrypt y and y' :
1: split $\operatorname{Dec}'(y) = x' || u$ with x' of same length as y'
2: $x = \operatorname{Dec}(y' || u)$
3: give x and x'

Ciphertext Stealing



To Be Known About Modes of Operation

- ECB should be avoided
- CBC (very popular) requires IV
- OFB (stream cipher) requires a nonce
- CTR (stream cipher) requires a nonce

Classical Skeletons for Block Ciphers

- Feistel schemes

 ...and extensions
 DES, 3DES, BLOWFISH, KASUMI
- Lai-Massey scheme IDEA, FOX
- Substitution-permutation network (SPN) SAFER, CS-Cipher, AES

Block Ciphers Characteristics

cipher	release	block	key	# rounds	comment
DES	1977	64	56	16	secretly developed
3DES	1985	64	112,168	48	pragmatic solution
IDEA	1990	64	128	8.5	
SAFER K-64	1993	64	64	6	
BLOWFISH	1994	64	0–448	16	
RC5	1996	2–256	0–255	0–255	64/128/12 recommended
CS-Cipher	1998	64	0–128	8	
AES	2001	128	128,192,256	10,12,14	dependent parameters
KASUMI	2002	64	128	8	dedicated
FOX	2003	64,128	0–256	12–255	

- A Cryptographic Primitive
- Block Ciphers

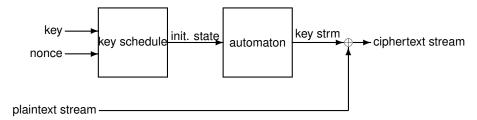
Stream Ciphers

- Bruteforce Inversion Algorithms
- Subttle Bruteforce Inversion Algorithms
- Pushing the Physical Limits
- Formalism

Stream Ciphers

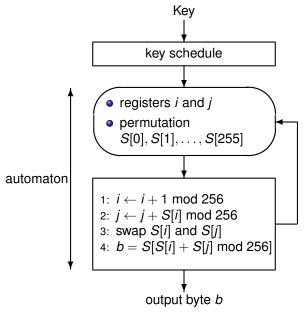
- adapt the Vernam cipher
- use a pseudorandom generator to generate a key stream the PRNG avoids having to store large secret keys
- seed the PRNG with a fixed secret key and a nonce: a number to be used only once the nonce avoids reuse of the same keystream
- variant 1: participants are synchronized to a nonce (e.g. a counter or the clock value)
- variant 2: the encrypting nonce is sent in clear with the ciphertext (asynchronous)

Stream Ciphers from a High Level



- Designed at MIT in 1987 by Ronald Rivest
- Trade secret of RSA Security Inc.
- illegally disclosed in 1994
- well known to be used in SSL/TLS
- dedicated to software on 8-bit microprocessors
- stream cipher with bytes streams
- key length from 40 bits to 256 ($\ell = 5$ to 32 bytes)

RC4 (Alleged)



RC4 Key Schedule

1:
$$j \leftarrow 0$$

2: for $i = 0$ to 255 do
3: $S[i] \leftarrow i$
4: end for
5: for $i = 0$ to 255 do
6: $j \leftarrow j + S[i] + K[i \mod \ell] \mod 256$
7: swap $S[i]$ and $S[j]$
8: end for
9: $i \leftarrow 0$
10: $j \leftarrow 0$

RC4 in Security Protocols

In SSL/TLS:

- key is used only once
- state is kept from one message to the other
- In WEP:
 - key is the concatenation of a 3-byte nonce (sent in clear) and a 5-byte key

Known Weaknesses

 some correlations between some output bytes and key bytes when the nonce is known

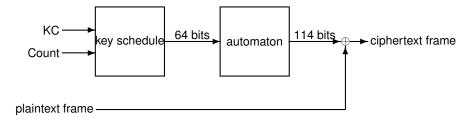
 \rightarrow (passive) key recovery attack in WEP after seeing 22500 packets

- output bytes are not uniformly distributed
 → ciphertext-only decryption attacks in TLS if a plaintext is encrypted several times (e.g. secure http cookies)
- speculations that some state agencies can break RC4
- RC4 is now prohibited (RFC 7465 and similar recommendations)

GSM A5/1

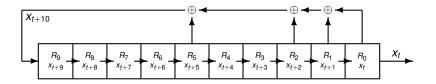
- Designed at ETSI by the SAGE group
- Trade secret of the GSM consortium
- reverse engineered
- dedicated to lightweight hardware
- stream cipher with bit streams
- 64-bit key and 22-bit counter

A5/1 from a High Level

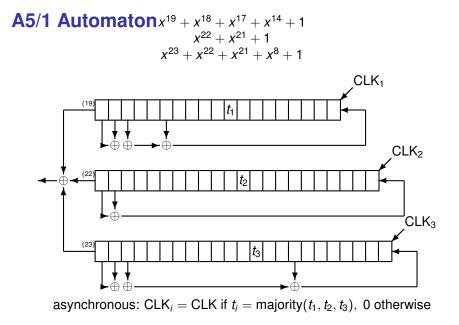


Linear Feedback Shift Register (LFSR)

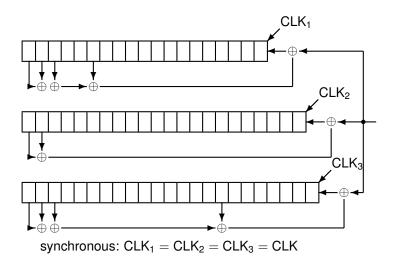
• when CLK = 1, increment *t*, load R_i with R_{i+1} and R_{d-1} with a XOR of some R_i 's



- at time t, $R_i = x_{t+i}$
- $x_{t+d} = a_{d-1}x_{t+d-1} \oplus \cdots \oplus a_0x_t$ for any *t* (linear recursion)
- $a_d x_{t+d} \oplus \cdots \oplus a_1 x_{t+1} \oplus a_0 x_t = 0$ for any $t (a_d = 1)$
- connection polynomial: $a_d x^d + \cdots + a_1 x + a_0$ example: $x^{10} + x^5 + x^2 + x + 1$
- maximal period \(\low \) primitive polynomial \(\low \) irreducible polynomial



A5/1 in Key Schedule



A5/1 Key Schedule

- 1: set all registers to zero
- 2: for *i* = 0 to 63 do
- 3: $R_1[0] \leftarrow R_1[0] \oplus \mathrm{KC}[i]$
- 4: $R_2[0] \leftarrow R_2[0] \oplus \mathrm{KC}[i]$
- 5: $R_3[0] \leftarrow R_3[0] \oplus \mathrm{KC}[i]$
- 6: clock registers (synchronous)
- 7: end for
- 8: for *i* = 0 to 21 do
- 9: $R_1[0] \leftarrow R_1[0] \oplus \text{Count}[i]$
- 10: $R_2[0] \leftarrow R_2[0] \oplus \text{Count}[i]$
- 11: $R_3[0] \leftarrow R_3[0] \oplus \text{Count}[i]$
- 12: clock registers (synchronous)
- 13: end for
- 14: **for** *i* = 0 to 99 **do**
- 15: clock registers (asynchronous)
- 16: end for

Known Weaknesses

- key recovery known plaintext attack (kind of time-memory tradeoff)
- active attacks on GSM (chosen cipher attack)
- ciphertext-only key recovery attack (optimized bruteforce)

- A Cryptographic Primitive
- Block Ciphers
- Stream Ciphers

Bruteforce Inversion Algorithms

- Subttle Bruteforce Inversion Algorithms
- Pushing the Physical Limits
- Formalism

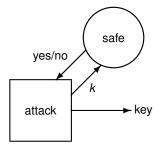
The Random Key Guessing Game

Parameters: a set \mathcal{K} , a setup algorithm

- (setup) the challenger runs the setup algorithm to select an element K ∈ K
 he may send some clue w to the adversary
- (guessing) the adversary may send some chosen k's to the challenger who would respond if $k \neq K$
- 3 the adversary wins if K = k

Example: Opening a Safe (Online Attack)

For any k, we can ask the safe whether the key K is equal to k

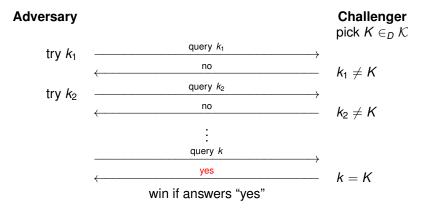


Distribution Cases

Setup selects K following a probability distribution

- D is uniform
- D is arbitrary
- D is fixed and known to the adversary

Key Recovery Game - Online with no Clue



Exhaustive Search Algorithm (Uniform Case)

(online with no clue and D uniform)

Input: a set of possible keys $\mathcal{K} = \{k_1, \dots, k_N\}$ **Challenger interface**: input is an element of \mathcal{K} , output is Boolean

- 1: **for** all *i* = 1 to *N* **do**
- 2: if query k_i answers yes then
- 3: yield k_i and stop
- 4: end if
- 5: end for

$$E(\#\text{iterations}) = \sum_{i=1}^{N} \Pr[K = k_i]i$$
$$= \sum_{i=1}^{N} \frac{1}{N}i$$
$$= \frac{N+1}{2}$$

Exhaustive Search Algorithm (Optimal Case)

(online with no clue and *D* known)

Input: a set of possible keys $\mathcal{K} = \{k_1, \dots, k_N\}$ **Challenger interface**: input is an element of \mathcal{K} , output is Boolean

- 1: take the permutation σ of $\{1, ..., N\}$ sorting $k_{\sigma(i)}$ by decreasing order of likelihood
- 2: **for** all *i* = 1 to *N* **do**
- 3: if query $k_{\sigma(i)}$ answers yes then
- 4: yield $k_{\sigma(i)}$ and stop
- 5: end if
- 6: end for

$$m{E}(\# ext{iterations}) = \min_{\sigma} \left(\sum_{i=1}^{N} \Pr[m{K} = m{k}_{\sigma(i)}] i
ight)$$

which is sometimes called the guesswork entropy of D

Exhaustive Search Algorithm (Any Case)

(online with no clue)

Input: a set of possible keys $\mathcal{K} = \{k_1, \dots, k_N\}$ **Challenger interface**: input is an element of \mathcal{K} , output is Boolean

- 1: pick a random permutation σ of $\{1, \ldots, N\}$
- 2: **for** all *i* = 1 to *N* **do**
- 3: if query $k_{\sigma(i)}$ answers yes then
- 4: yield $k_{\sigma(i)}$ and stop
- 5: end if
- 6: **end for**

$$E(\# \text{iterations}) = \sum_{i=1}^{N} E(\Pr[K = k_{\sigma(i)}])i$$

since σ is random we have $E(\Pr[K = k_{\sigma(i)}]) = \frac{1}{N}$ for all *i*:

$$E(\#\text{iterations}) = \sum_{i=1}^{N} \frac{1}{N}i = \frac{N+1}{2}$$

Complexity Analysis (All Cases)

key of distribution D in a set of N elements

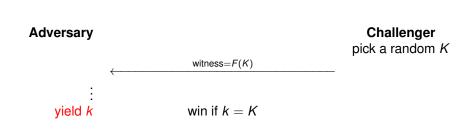
		number of iterations
worst case complexit	N	
average complexity	D unknown	$\frac{N+1}{2}$
	<i>D</i> known	smaller

Metrics of Algorithms

for comparing algorithms, we must look at:

- precomputation time
- memory complexity
- time complexity
- number of online queries
- probability of success

Key Recovery Game - Offline with a Clue



Using Deterministic Clues

chosen plaintext attack:

get $C_{\mathcal{K}}(x)$ for some fixed x chosen by the adversary

• **password hash** (coming up in next slides) get $C_{\mathcal{K}}(x_0)$ for some constant x_0 (e.g. $x_0 = 0$)

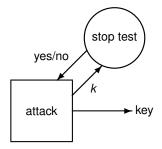
Using Non-Deterministic Clues

- no chosen plaintext attack:
 known plaintext attack with random W = (x, C_K(x)) pair
 ciphertext only attack with redundant plaintexts
- randomized key hash:

instead of leaking $C_{\mathcal{K}}(x_0)$, leak $W = (\mathcal{F}(\mathcal{K}, \text{salt}), \text{salt})$ with **salt** randomly selected by the challenger

More General Clues

We use a stop test function which tells whether the key candidate is consistent with the witness



Examples:

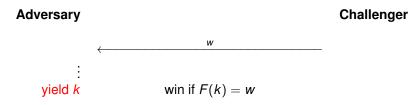
	witness	stop test
known plaintext attack	$W = (x, C_{\mathcal{K}}(x))$	$C_k(W_1) = W_2$
ciphertext only attack	W = ciphertext	$C_k^{-1}(W)$ meaningful
salted key hash	W = (F(K, salt), salt)	$F(k, W_2) = W_1$

Password Recovery from a Password Hash

- assumption: at enrolment, the hash by F of the password is stored in a database to check a typed password, just hash it and compare with the hash in database
- remark: in this case, we do not care if the password is wrong; we just want one with the right hash to pass authentication
 → the adversary has to find **one** password with correct hash
 (the problem is to **invert** *F*)

Inversion (Preimage) Game

(assume a deterministic function F)



Inversion by Exhaustive Search

Input: an image w1: shuffle \mathcal{K} with a random permutation 2: for all i = 1 to N do 3: if $F(k_i) = w$ then 4: yield k_i and stop 5: end if 6: end for

If *F* is a uniformly distributed random function, #X = N, #Y = M:

$$Pr[success] = 1 - \left(1 - \frac{1}{M}\right)^{M} \approx 1 - e^{-\frac{N}{M}} \text{ for } N \gg M$$
$$Pr[complexity > i] = \left(1 - \frac{1}{M}\right)^{i}$$

Complexity of an Inversion Attack

$$E(\text{complexity}) = \sum_{i=0}^{N-1} i \Pr[\text{complexity} = i]$$

$$= \sum_{i=0}^{N-1} \Pr[\text{complexity} > i]$$

$$= \sum_{i=0}^{N-1} x^{i} \quad \text{with } x = 1 - \frac{1}{M}$$

$$= \frac{1 - x^{N}}{1 - x}$$

$$\sim \frac{1 - e^{-\frac{N}{M}}}{1 - x} \quad \text{as } \frac{N}{M} \to +\infty$$

$$= M \left(1 - e^{-\frac{N}{M}}\right)$$

$$\approx M \text{ for } N \gg M$$

Dictionary Inversion Attack (Full Book)

(assume a deterministic function F)

Preprocessing

Input: access to function F

- 1: for all candidates K do
- 2: compute F(K)
- 3: insert (F(K), K) in a dictionary
- 4: end for
- 5: output the dictionary

Attack

Input: a witness w = F(K), a dictionary

- 6: look at w in the dictionary
- 7: for all (w, K) in the dictionary do
- 8: yield K and stop
- 9: end for

Dictionary Inversion Attack (Smaller Dictionary)

(assume a deterministic function F)

Preprocessing

Input: access to function F

- 1: for D different candidates K do
- 2: compute F(K)
- 3: insert (F(K), K) in a dictionary
- 4: end for
- 5: output the dictionary

Attack

Input: a witness w = F(K), a dictionary

- 6: look at w in the dictionary
- 7: for all (w, K) in the dictionary do
- 8: yield *K* and stop
- 9: end for
- 10: search failed

Complexity Analysis

Summary of Single-Target Brute Force Attacks

strategy	preprocessing	memory	time	success proba.	
exhaustive search	0	1	Ν	1	
dictionary attack	Ν	Ν	1	1	
tradeoffs	N	$N^{\frac{2}{3}}$	$N^{\frac{2}{3}}$	cte	
partial ex. search dictionary attack	0 D	1 D	D 1	D/N D/N	

Application to DES

strategy	preprocessing	memory	time
exhaustive search	0	1	2 ⁵⁶
dictionary attack	2 ⁵⁶	2 ⁵⁶	1
tradeoffs	2 ⁵⁶	2 ³⁷	2 ³⁷

 \rightarrow the key of DES is too short!

Security of Passwords with less than 48 Bits of Entropy

An 8 i.u.d. random characters password in $\{a, \ldots, z, A, \ldots, Z, 0, \ldots, 9\}$ has less than 48 bits of entropy

 classical conventional cryptography may require about 300 cycles on a P4 2GHz to check a guess (= 2^{22.6} guesses per second)

 \longrightarrow 256*d* to find a password with a PC

- time-memory tradeoffs cracked a (36-bit entropy) password within a few seconds (complexity N^{2/3} + precomputation N) → 1 h to find a password (+ a year of precomputation)
- special purpose hardwares cracked 56-bit keys within a day \rightarrow 5 *min* to find a password
- distributed.net cracked 64-bit keys in 2002 after 1757 days \rightarrow 40 min to find a password

Extension: Multi-Target Dictionary Inversion Attack

(assume a deterministic function F)

Preprocessing

Input: access to function F

- 1: for D different candidates K do
- 2: compute F(K)
- 3: insert (F(K), K) in a dictionary
- 4: end for
- 5: output the dictionary

Attack

Input: T many witnesses $w_i = F(K_i)$, a dictio-

nary

6: for *i* = 1 to *T* do

- 7: look at *w_i* in the dictionary
- 8: **for** all (w_i, K) in the dictionary **do**
- 9: yield *i*, *K*
- 10: end for
- 11: end for

Complexity Analysis

Precomputation time *D* Memory complexity *D* Time complexity *T* Probability of success $1 - (1 - \frac{D}{N})^T \approx 1 - e^{-\frac{DT}{N}}$ This is quite interesting when $D \approx T \approx \sqrt{N}$...

The Role of Salt

mitigates dictionary attacks and tradeoffs

(makes dictionaries much larger)

best offline inversion attack with large enough salt:

Input: a set of possible keys $\mathcal{K} = \{k_1, \dots, k_N\}$, a salted witness $W = (W_1, W_2)$ (salt is W_2) **Challenger interface**: input is an element of \mathcal{K} , output is Boolean

- 1: pick a random permutation σ of $\{1, \ldots, N\}$
- 2: for all *i* = 1 to *N* do

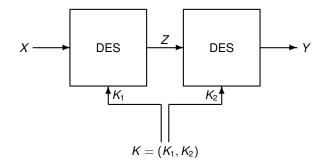
3: if
$$F(k_{\sigma(i)}, W_2) = W_1$$
 then

- 4: yield $k_{\sigma(i)}$ and stop
- 5: end if
- 6: end for
- 7: search failed

5 Symmetric Encryption

- A Cryptographic Primitive
- Block Ciphers
- Stream Ciphers
- Bruteforce Inversion Algorithms
- Subttle Bruteforce Inversion Algorithms
- Pushing the Physical Limits
- Formalism

Double DES



this is not much more secure than single DES

Meet-in-the-Middle Attack

Input: two encryption schemes *C'* and *C''* with two corresponding sets of possible keys \mathcal{K}' and \mathcal{K}'' , an (x, y) pair with $y = C''_{\mathcal{K}_2}(C'_{\mathcal{K}_1}(x))$

- 1: for all $k_1 \in \mathcal{K}'$ do
- 2: compute $z = C'_{k_1}(x)$
- 3: insert (z, k_1) in a hash table (indexed with the first entry)
- 4: end for

5: for all
$$k_2 \in \mathcal{K}''$$
 do

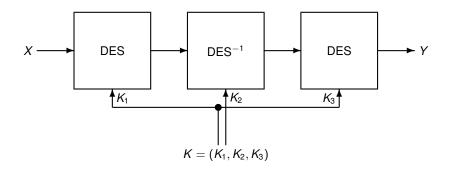
6: compute
$$z = C''_{k_2}^{-1}(y)$$

- 7: for all (z, k_1) in the hash table do
- 8: yield (k_1, k_2) as a possible key
- 9: end for
- 10: end for

Complexity Analysis

Memory complexity $\#\mathcal{K}'$ (2⁵⁶ for double DES) Time complexity $\#\mathcal{K}' + \#\mathcal{K}''$ (2⁵⁷ for double DES) Probability of success 1

Triple DES



- 3-key triple DES: K₁, K₂, K₃
- 2-key triple DES: $K_1 = K_3$, K_2
- DES: $K_1 = K_2 = K_3$

Generic Attacks on Triple DES

2 keys

- key length: 112
- chosen plaintext (×2⁵⁶): time complexity 2⁵⁷ memory complexity 2⁵⁷ [Merkle-Hellman 1981] [exercise 2.5 in exercise book]
- known plaintext (×2³²): time complexity 2⁸⁸ memory complexity 2⁵⁷ [van Oorschot-Wiener 1990]

3 keys

- key length: 168
- known plaintext (×3): time complexity 2¹¹³ memory complexity 2⁵⁶ [meet-in-the-middle]

Time-Memory Tradeoffs — i

Input: a deterministic function F **Parameter**: ℓ, m, t Preprocessing 1: for s = 1 to ℓ do pick a reduction function $R_{\rm s}$ at random and 2: define $f_s: k \mapsto R_s(F(k))$ 3: **for** i = 1 to *m* **do** 4: pick k' at random 5: $k \leftarrow k'$ 6: **for** j = 1 to t **do** compute $k \leftarrow f_s(k)$ 7: 8: end for insert (k, k') in table T_s 9: end for 10:

11: end for

Precomputed Tables

<i>T</i> ₁ :	$ \begin{array}{c} k_{1,0}^{1} \\ k_{2,0}^{1} \\ k_{3,0}^{1} \\ \vdots \\ k_{m,0}^{1} \end{array} $	$\stackrel{f_1}{\mapsto} \stackrel{f_1}{\mapsto}$	$k_{2,1}^1$ $k_{3,1}^1$	$\stackrel{f_1}{\stackrel{\mapsto}{\mapsto}}$	$k_{2,2}^1$ $k_{3,2}^1$	$\stackrel{f_1}{\stackrel{\mapsto}{\mapsto}}$	$k_{2,3}^1$ $k_{3,3}^1$	$\stackrel{f_1}{\stackrel{\mapsto}{\mapsto}}$	· · · · · · ·	$\stackrel{f_1}{\stackrel{\mapsto}{\mapsto}}$	$ \begin{array}{c} k_{1,t-1}^{1} \\ k_{2,t-1}^{1} \\ k_{3,t-1}^{1} \\ \vdots \\ k_{3,t-1}^{1} \end{array} $	$\stackrel{f_1}{\stackrel{f_1}{\mapsto}}$	$k_{2,t}^{1}$ $k_{3,t}^{1}$	⇒	$(k_{1,t}^{1}, k_{1,0}^{1}) \\ (k_{2,t}^{1}, k_{2,0}^{1}) \\ (k_{3,t}^{1}, k_{3,0}^{1}) \\ \vdots \\ (k_{m,t}^{1}, k_{m,0}^{1})$
T_ℓ :	$\begin{matrix} k_{1,0}^{\ell} \\ k_{2,0}^{\ell} \\ k_{3,0}^{\ell} \\ \vdots \\ k_{m,0}^{\ell} \end{matrix}$:		:				:		$ \begin{array}{c} k_{1,t-1}^{\ell} \\ k_{2,t-1}^{\ell} \\ k_{3,t-1}^{\ell} \\ \vdots \\ k_{3,t-1}^{\ell} \end{array} $	$\begin{array}{c} f_{\ell} \\ {\mapsto} \\ f_{\ell} \\ {\mapsto} \\ f_{\ell} \\ {\mapsto} \end{array}$	÷	⇒	$(k_{1,t}^{\ell}, k_{1,0}^{\ell}) \\ (k_{2,t}^{\ell}, k_{2,0}^{\ell}) \\ (k_{3,t}^{\ell}, k_{3,0}^{\ell}) \\ \vdots \\ (k_{m,t}^{\ell}, k_{m,0}^{\ell})$

Time-Memory Tradeoffs — ii

Attack Attack input: y = F(K)1: for s = 1 to ℓ do set i to 0 2: 3: set k to $R_s(y)$ while T_s contains no (k, .) entry 4: and *i* < *t* **do** increment i 5:

$$6: \qquad k \leftarrow f_s(k)$$

7: end while 8: if T_s contains a (k, .) entry then

- get the (k, k') entry from table 9: $T_{\rm s}$
- while $F(k') \neq y$ and i < t do 10: 11:
 - increment i
 - $k' \leftarrow f_s(k')$
- end while 13:

4: **if**
$$F(k') = y$$
 then

- yield k' as a possible key
- 16: end if
- 17: end if

12:

1

15:

18: end for

Complexity Analysis

Precomputation time $\ell \times m \times t$ Memory complexity $\ell \times m$ Time complexity $\ell \times t$ Probability of success can be shown to be greater than $\frac{1}{2}$ for $\ell \approx m \approx t \approx \sqrt[3]{N}$

time and memory complexity of $N^{\frac{2}{3}}$

5 Symmetric Encryption

- A Cryptographic Primitive
- Block Ciphers
- Stream Ciphers
- Bruteforce Inversion Algorithms
- Subttle Bruteforce Inversion Algorithms
- Pushing the Physical Limits
- Formalism

Order of Magnitudes

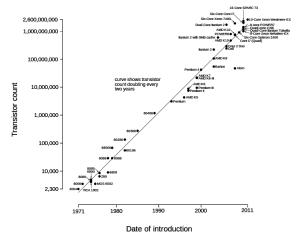
for exhaustive search on a 128-bit key:

- # clock cycles needed to perform a typical cryptographic operation (encryption of one block): 300
- clock rate in 2007: 2GHz
- age of the universe: $15BY=15 \times 10^9 Y \approx 473 \times 10^{15} s$
- # machines to do the exhaustive search within 15BY: 108×10^{12}

Moore's Law

- Gordon Moore 1965: # transistors / IC doubles every year
- Gordon Moore 1975: # transistors / IC doubles every 2 years
- popular version: speed of CPU's doubles every 18 months

Microprocessor Transistor Counts 1971-2011 & Moore's Law



Symmetric Encryption

Better Strategy (of Metaphysical Interest)

create the universe then take 15BY of vacations

humankind will create itself, invent computers, and solve the problem

Energy Bill

 we can compute without burning energy! [Bennett 1973] need supraconductors and invertible computation gates

but all computations must be invertible!

exhaustive search must keep lots of garbage in memory

• minimal energy spent to erase one bit: $kT \ln 2$ [Landauer 1961] $k = 1.38 \times 10^{-23} J/K$ (Boltzmann constant) T: absolute temporature (absolute 0 is 273.C)

T: absolute temperature (absolute 0 is -273C)

example: assume we run an exhaustive search with 2¹²⁸ loops but we erase 128 bits per loop assume the computer operates at 3μK (very cold!) energy bill: 1.2 × 10⁹J if we want to do it within 1s we need a 1200MW nuclear powerplant

Conclusion

- **symmetric encryption**: stream ciphers (RC4, A5/1), block ciphers (DES, AES), modes of operation (ECB, CBC, OFB, CFB, CTR, XTS)
- bruteforce inversion within complexity $\mathcal{O}(\#$ domain)
- tradeoffs within complexity \$\mathcal{O}\$ ((#domain)^{\frac{2}{3}}) after precomputation with complexity \$\mathcal{O}\$ (#domain)

Ciphers to Remember

cipher	release	block	key	design
DES	1977	64	56	Feistel scheme
3DES	1985	64	112,168	triple DES
RC4	1987	8	40–256	stream cipher
AES	2001	128	128,192,256	SPN

Several Types of Symmetric Encryption

 fixed message length vs variable message length block ciphers: use fixed message length modes of operation: adapt to variable message length stream ciphers: encrypt messages "on-the-fly"

deterministic vs probabilistic most common case for symmetric encryption: deterministic

- synchronous (stateful) vs asynchronous (stateless)
- authenticating or not (not in this chapter)

Stream Ciphers vs Block Ciphers

stream cipher	block cipher	
 small granularity (encrypt bits or bytes) 	 large granularity (encrypt blocks of 64 or 128 bits), require padding techniques for messages with arbitrary length 	
 based on the Vernam cipher, requires a nonce 		
(number to be used only once)	 high rate, nice for software implementation, can be 	
 very high speed rate, very cheap on hardware 	adapted to various platforms (8-bit, 32-bit, or	
 low confidence on security 	64-bit microprocessors)well established security	

- A Cryptographic Primitive
- Block Ciphers
- Stream Ciphers
- Bruteforce Inversion Algorithms
- Subttle Bruteforce Inversion Algorithms
- Pushing the Physical Limits
- Formalism

Block Cipher

Definition

A **block cipher** is a tuple $(\{0, 1\}^k, \{0, 1\}^n, \text{Enc, Dec})$ with a key domain $\{0, 1\}^k$, a block domain $\{0, 1\}^n$, and two <u>efficient</u> <u>deterministic</u> algorithms Enc and Dec. It is such that

 $\forall K \in \{0,1\}^k \quad \forall X \in \{0,1\}^n \quad \mathsf{Dec}(K,\mathsf{Enc}(K,X)) = X$

Write $C_{\mathcal{K}}(\cdot) = \text{Enc}(\mathcal{K}, .)$ and $C_{\mathcal{K}}^{-1}(\cdot) = \text{Dec}(\mathcal{K}, .)$.

(operate on bitstrings)

Variable-Length Symmetric Encryption

Definition

A (variable-length, length-preserving) symmetric encryption scheme is a tuple ($\{0, 1\}^k$, D, Enc, Dec) with a key domain $\{0, 1\}^k$, a plaintext domain $D \subseteq \{0, 1\}^*$, and two <u>efficient deterministic</u> algorithms Enc and Dec. It is such that

$$\forall K \in \{0,1\}^k \quad \forall X \in \mathcal{D} \quad \left\{ \begin{array}{rcl} \mathsf{Dec}(K,\mathsf{Enc}(K,X)) &=& X \\ |\mathsf{Enc}(K,X)| &=& |X| \end{array} \right.$$

Write $C_{\mathcal{K}}(\cdot) = \text{Enc}(\mathcal{K}, .)$ and $C_{\mathcal{K}}^{-1}(\cdot) = \text{Dec}(\mathcal{K}, .)$.

 \rightarrow can be made from block ciphers using a mode of operation

Nonce-Based Symmetric Encryption

Definition

A (nonce-based, variable-length, length-preserving) symmetric encryption scheme is a tuple ($\{0,1\}^k, \mathcal{D}, \mathcal{N}, \text{Enc}, \text{Dec}$) with a key domain $\{0,1\}^k$, a plaintext domain $\mathcal{D} \subseteq \{0,1\}^*$, a nonce domain \mathcal{N} , and two <u>efficient</u> deterministic algorithms Enc and Dec. It is such that

$$\forall K \in \{0,1\}^k \quad \forall X \in \mathcal{D} \quad \forall N \in \mathcal{N} \quad \begin{cases} \mathsf{Dec}(K,N,\mathsf{Enc}(K,N,X)) = X \\ |\mathsf{Enc}(K,N,X)| = |X| \end{cases}$$

N is supposed to be used only once for encryption random nonce (beware of random repetitions), counter, sent in clear or synchronized

 \rightarrow could be a mode of operation (IV...), a stream cipher

Security against Key Recovery

Definition

A symmetric encryption scheme ($\{0, 1\}^k, \mathcal{D}, \mathcal{N}, \text{Enc, Dec}$) is (q, t, ε) -secure against key recovery under chosen plaintext attacks if for any nonce-respecting probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries,

 $\Pr[\mathcal{A}^{\mathsf{Enc}(K,.,.)} \to K] \leq \varepsilon$

where $K \in \{0, 1\}^k$ is random.

It is (q, t, ε) -secure against key recovery under chosen plaintext/ciphertext attacks if for any similar A,

$$\Pr[\mathcal{A}^{\mathsf{Enc}(\mathcal{K},.,.),\mathsf{Dec}(\mathcal{K},.,.)} \to \mathcal{K}] \leq \varepsilon$$

(nonce-respecting: A is not allowed to make two encryption queries with the same nonce; it is ok to repeat nonces for decryption queries)

CCA Security is Stronger than CPA Security

If $\mathcal{A}^{\text{Enc}(K,.,.)}$ is a CPA adversary, we can define it as $\mathcal{A}^{\text{Enc}(K,.,.),\text{Dec}(K,.,.)}$ but making no use of Dec(K,.,.). So,

 $\mathsf{CPA}\text{-}\mathsf{breaking} \Longrightarrow \mathsf{CCA}\text{-}\mathsf{breaking}$

So,

 $\mathsf{CCA}\text{-}\mathsf{secure} \Longrightarrow \mathsf{CPA}\text{-}\mathsf{secure}$

Security against Decryption

Definition

A symmetric encryption scheme ($\{0, 1\}^k, \mathcal{D}, \mathcal{N}, \text{Enc, Dec}$) is (q, t, ε) -secure against decryption under chosen plaintext attacks if for any nonce-respecting probabilistic algorithm \mathcal{A} limited to a time complexity *t* and to *q* queries,

 $\Pr[\mathcal{A}^{\operatorname{Enc}(K,.,.)}(N,\operatorname{Enc}(K,N,X)) \to X] \leq \varepsilon$

where $K \in \{0, 1\}^k$, $N \in \mathcal{N}$, and $X \in \mathcal{D}$ are random. It is (q, t, ε) -secure against decryption under chosen plaintext/ciphertext attacks if for any similar \mathcal{A} ,

 $\Pr[\mathcal{A}^{\mathsf{Enc}(\mathcal{K},.,.),\mathsf{Dec}(\mathcal{K},.,.)}(\mathcal{N},\mathsf{Enc}(\mathcal{K},\mathcal{N},\mathcal{X}))\to\mathcal{X}]\leq\varepsilon$

(A is not allowed to query the decryption oracle with its input (N, Enc(K, N, X)))

Decryption Security is Stronger than Key Recovery Security

If $\ensuremath{\mathcal{A}}$ is a key recovery adversary, we can define

```
1: run \mathcal{A} \to \mathcal{K}

2: compute X' = Dec(\mathcal{K}, N, Y)

3: return X'

So,

key recovery-breaking \Longrightarrow decryption-breaking

So
```

So,

decryption-secure \Longrightarrow key recovery-secure

Not Good Enough Security

- some parts of the plaintext may be more private than others how about a cipher letting half of the plaintext in clear and strongly encrypting the other half? it would be secure against decryption
- the "ideal cipher": given K, for each N, we pick a random permutation Π_N and define

 $Enc(K, N, X) = \Pi_N(X)$

 security would mean that we cannot tell the real cipher and the ideal one apart from a black-box usage

Security against Distinguisher

Definition

A symmetric encryption scheme ($\{0, 1\}^k, \mathcal{D}, \mathcal{N}, \text{Enc, Dec}$) is (q, t, ε) -secure under chosen plaintext attacks if for any nonce-respecting probabilistic algorithm \mathcal{A} limited to a time complexity *t* and to *q* queries,

$$\Pr[\mathcal{A}^{\mathsf{Enc}(K,.,.)} o 1] - \Pr[\mathcal{A}^{\Pi(.,.)} o 1] \le \varepsilon$$

where $K \in \{0, 1\}^k$ is random and $\Pi(N, .)$ is a random length-preserving permutation over \mathcal{D} for every N. It is (q, t, ε) -secure under chosen plaintext/ciphertext attacks if for any similar \mathcal{A} ,

$$\Pr[\mathcal{A}^{\mathsf{Enc}(\mathcal{K},.,.),\mathsf{Dec}(\mathcal{K},.,.)} \to 1] - \Pr[\mathcal{A}^{\Pi(.,.),\Pi^{-1}(.,.)} \to 1] \leq \varepsilon$$

Security Notions

	key recovery	decryption	distinguisher
CPA	weaker security		
CCA			stronger security

- if we can recover the key, we can decrypt
- if we can decrypt, we can recognize from the ideal cipher
- if we can break without chosen ciphertext, we can also break with

References

- Schneier. Applied Cryptography. Wiley & Sons. 1996. Crypto for dummies!
- Ferguson–Schneier. *Practical Cryptography.* Wiley & Sons. 2003.

Crypto for dummies!

Must be Known

- types of symmetric encryption
- parameters of block ciphers: DES, 3DES, AES
- modes of operation: ECB, CBC, OFB, CTR
- Feistel scheme
- parameters of stream ciphers: RC4
- exhaustive search
- meet-in-the-middle

Train Yourself

- encryption: final exam 2013–14 ex1 midterm exam 2012–13 ex3
- modes of operation: midterm exam 2009–10 ex3 midterm exam 2011–12 ex1
- Moore's law: midterm exam 2008–09 ex1
- multitarget password recovery: final exam 2014–15 ex3

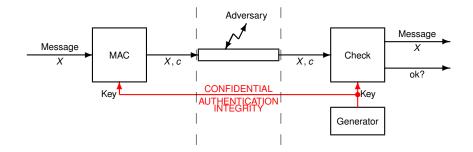
- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
 - 7 Case Studies I
- Public-Key Cryptography
- Irust Establishment
- Case Studies II

SV 2016-17

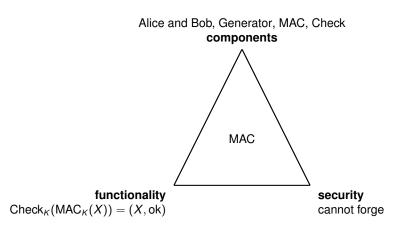
Roadmap

- hash functions: MD5, SHA-1
- message authentication codes: HMAC, CBCMAC, WC-MAC
- other primitives: commitment, key derivation
- birthday paradox

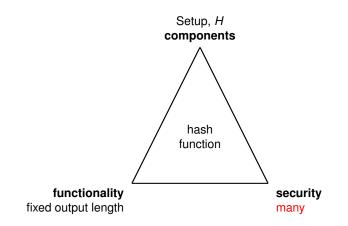
Message Authentication Code



Message Authentication Code (Informal)



Hash Function (Informal)

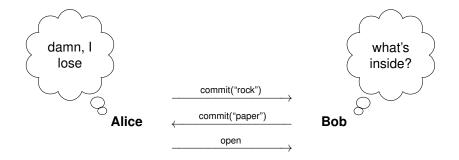


Integrity and Authentication

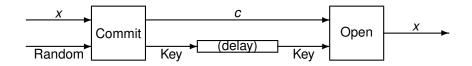
Commitment Scheme

- Key Derivation Function and Pseudorandom Generator
- Cryptographic Hash Function
- Message Authentication Codes
- Formalism
- Bruteforce Collision Search Algorithms
- How to Select Security Parameters?
- Other Reasons why Security Collapses

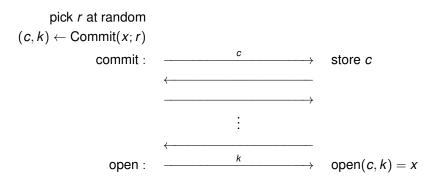
Commitment to Play Rock-Paper-Scissors



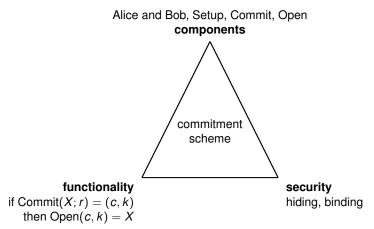
Commitment



Using a Commitment Scheme

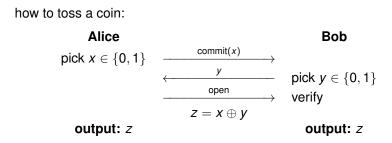


Commitment Scheme (Informal)



- hiding: Bob does not get a clue on X from c
- binding: Alice cannot produce c, k, k' such that Open(c, k) ≠ Open(c, k')

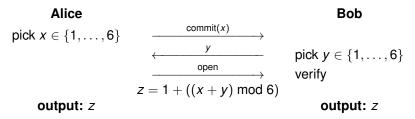
Application Example: Tossing a Coin



z is the outcome of the tossed coin

Application Example: Playing Dices

how to throw a 6-face die:



z is the outcome of the thrown die

Several Types of Commitment Schemes

- interactive vs non-interactive
- perfectly/statistically/computationally hiding
- perfectly/statistically/computationally binding
- using a common reference string or not

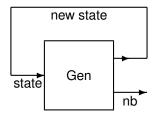
Examples

- a BAD one: Commit(x; r) = (Enc_r(x), (x, r)) (not binding)
- a BAD one: Commit(x; r) = (H(x), x) (not hiding)
- a not-too-bad one: Commit(x; r) = (H(r||x), (x, r)) (problem: most likely, H was not designed for that)

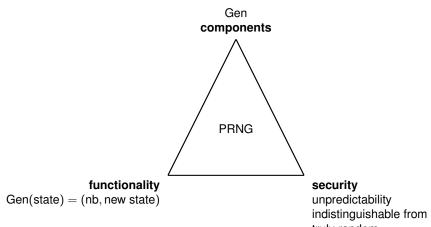
Integrity and Authentication

- Commitment Scheme
- Key Derivation Function and Pseudorandom Generator
- Cryptographic Hash Function
- Message Authentication Codes
- Formalism
- Bruteforce Collision Search Algorithms
- How to Select Security Parameters?
- Other Reasons why Security Collapses

Pseudorandom Number Generator (PRNG)



PRNG (Informal)



truly random

PRNG Examples

- stream ciphers: RC4, A5/1...
- block ciphers with OFB or CTR mode of operation
- finite automaton with an internal state (time, key, Seed) (time is updated by hardware)

$$J = \text{Enc}_{\text{key}}(\text{time})$$

 $r = \text{Enc}_{\text{key}}(J \oplus \text{Seed})$

and the seed is replaced by

NextSeed =
$$Enc_{key}(J \oplus r)$$

and the output is r

Famous Failure Cases

 early version of SSL (Goldberg-Wagner 1996): initial seed computed from the time in microseconds and the pid and ppid numbers (not enough entropy)

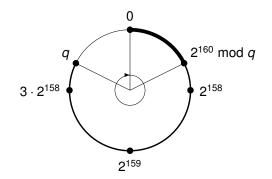
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

 Debian OpenSSL implementation until 2008: initial seed computed from the pid (15 bits) (other randomness removed due to complains by the compiler purify tool)

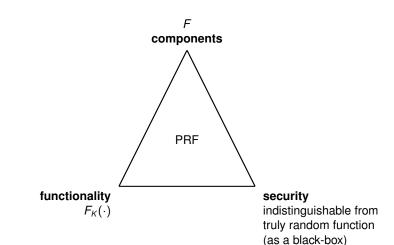
http://metasploit.com/users/hdm/tools/debian-openssl/

Other Famous Failure Case

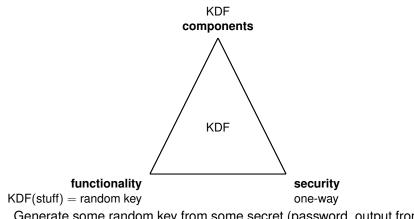
 DSA (Bleichenbacher 2001): the 160-bit random number was reduced modulo a 160-bit prime number q so that the final distribution was biased



Pseudorandom Function (PRF)



Key Derivation Function (KDF)



Generate some random key from some secret (password, output from key agreement protocols) and non-secret objects (salt, domain parameters, exchange messages)

KDF Examples

- typically: a standard hash function (MD5, SHA-1, ...)
- PKCS#5/RFC 2898 example:

PBKDF1(password, salt, c, ℓ) = trunc $_{\ell}(H^{c}(password||salt))$

where H^c is H iterated c times NB: ℓ shall not be larger than the H length

HKDF (RFC 5869)

 $\mathsf{HKDF}(\mathsf{salt},\mathsf{input},\mathsf{extra},L) = K_1 \|K_2\| \cdots \|\mathsf{trunc}\left(K_{\left\lfloor\frac{L}{\mathsf{HMAC},\mathsf{length}}\right\rfloor}\right)$

- $\mathsf{PRK} = \mathsf{HMAC}_{\mathsf{salt}}(\mathsf{input})$
 - $K_1 = HMAC_{PRK}(extra||0)$

$$K_{i+1} = HMAC_{PRK}(K_i \| extra \| i)$$

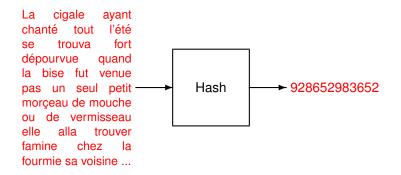
Integrity and Authentication

- Commitment Scheme
- Key Derivation Function and Pseudorandom Generator

Cryptographic Hash Function

- Message Authentication Codes
- Formalism
- Bruteforce Collision Search Algorithms
- How to Select Security Parameters?
- Other Reasons why Security Collapses

Cryptographic Hashing



- can hash a string of arbitrary length
- produce digests (hashes) of standard length (e.g. 160 bits)

A Swiss Army Knife Cryptographic Primitive

Domain expander: hash bitstrings of arbitrary length into bitstrings of fixed length.

Application: instead of specifying digital signature algorithms on set of bitstring with arbitrary length, we specify them with bitstrings of fixed length and use the hash-and-sign paradigm.

Commitment: "uniquely" characterizes a bitstring without revealing information on it.

Application: commitment which is binding and hiding.

Pseudorandom generator: generate bitstrings from seeds which are unpredictable.

Application: generation of cryptographic keys from a seed.

Constructing Other Primitives with Hash Functions

• commitment:

Commit(X; random)	=	$(H(Key), Key = X \ random)$	
Open(c, X random)	=	$\begin{cases} X & \text{if } H(X \ \text{random}) = c \\ \bot & \text{otherwise} \end{cases}$	

PRNG:

```
generation = H(seed \| counter)
```

KDF:

seed \longrightarrow trunc ($H(\text{seed}||1)||H(\text{seed}||2)||H(\text{seed}||3)||\cdots$)

• domain extender for authentication (MAC or signature):

Authenticate(H(X))

Security Properties for Hash Functions

Collision resistance: hash function *h* for which it is hard to find *x* and *x'* such that h(x) = h(x') and $x \neq x'$.

 \rightarrow digital fingerprint of the bitstring

One-wayness: hash function *h* for which given *y* it is hard to find even one *x* such that y = h(x).

 \rightarrow witness for a password

Pseudo-randomness : hash function *h* such that for any given *f* and $g_i = h(f^i(x))$ for i = 0, ..., n-1 with a random (unknown) *x* such that $f^i(x)$ is not cycling, it is hard to predict $h(f^n(x))$.

ightarrow pseudo-random generation

Threat Models for Hash Functions

Collision attack: find *x* and *x'* such that $x \neq x'$ and h(x) = h(x'). **First preimage attack:** given *y* find *x* such that y = h(x). **Second preimage attack:** given *x* find *x'* such that $x \neq x'$ and h(x) = h(x').

Bruteforce First Preimage Attack

Input: access to a hash function *h*, an image *y* **Output**: *x* such that h(x) = y

- 1: pick a random ordering of all inputs x_1, x_2, \ldots
- 2: for all i do
- 3: compute $h(x_i)$
- 4: **if** $h(x_i) = y$ **then**
- 5: yield $x = x_i$ and stop
- 6: end if
- 7: end for
- 8: search failed

Bruteforce Second Preimage Attack

Input: access to a hash function *h* onto a domain of size *N*, an input *x*

Output: x' such that $x \neq x'$ and h(x) = h(x')

- 1: compute h(x)
- 2: pick a random ordering of all inputs x_1, x_2, \ldots
- 3: for all *i* such that $x_i \neq x$ do
- 4: compute $h(x_i)$

5: **if**
$$h(x_i) = h(x)$$
 then

6: yield
$$x' = x_i$$
 and stop

- 7: end if
- 8: end for
- 9: search failed

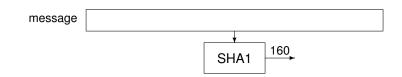
Scenarii for Threat Models

- Substitution in the integrity check process
 → second preimage attack
- Substitution in a commitment scheme → collision attack
- Information retrieval in a commitment scheme
 → first preimage attack

Cryptographic Hashing

- "Message Digest" (MD) devised by Ronald Rivest
- "Secure Hash Algorithm" (SHA) standardized by NIST
- MD4 in 1990 (128-bit digest)
- MD5 in 1991 (128-bit digest) published as RFC 1321 in 1992
- SHA in 1993 (160-bit digest) (obsolete, sometimes called SHA0)
- SHA-1 in 1995 (160-bit digest)
- collision found on MD4 (Dobbertin 1996)
- preimage attack on MD4 (Dobbertin 1997)
- SHA-2 in 2002: SHA256, SHA384, SHA512 (256-, 384-, and 512-bit digest)
- collision found on SHA0 (Joux+ 2004)
- collision found on MD5 (Wang+ 2004)
- theoretical attack on SHA1 (Wang+ 2005)
- SHA-3

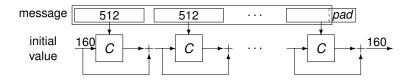
Cryptographic Hashing



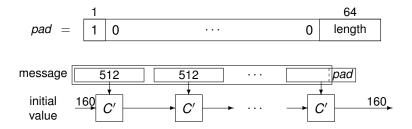
Encryption to Hashing

On-line hashing:

- the message is padded following the Merkle-Damgård scheme;
- each block is processed using an encryption function *C* in a feedback mode according to the Davies–Meyer.



Merkle-Damgård's Extension



Note: maximal length is $2^{64} - 1$ bits

$$SHA1: \bigcup_{\ell=0}^{2^{64}-1} \{0,1\}^\ell \longrightarrow \{0,1\}^{160}$$

Merkle-Damgård Theorem

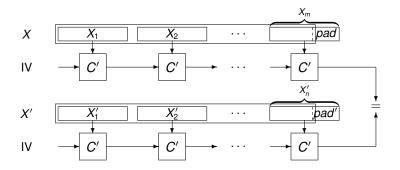
Theorem (Merkle-Damgård 1989)

We construct a cryptographic hash function h from a compression function C' by using the Merkle-Damgård scheme. If the compression function C' is collision-resistant, then the hash function h is collision-resistant as well.

Proof.

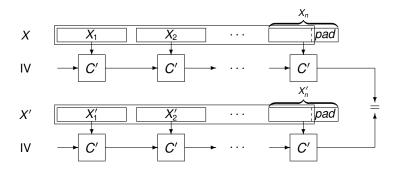
Case 1: messages of different length Case 2: messages of same length

Proof of Merkle-Damgård Theorem - Case 1



 $C'(H_m, X_m) = C'(H'_n, X'_n)$

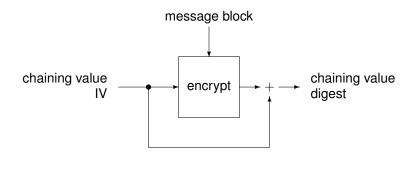
Proof of Merkle-Damgård Theorem - Case 2



$$C'(H_i, X_i) = C'(H'_i, X'_i)$$

where *i* is the last index such that $H_i \neq H'_i$ or $X_i \neq X'_i$

Davies–Meyer Scheme



+ is a group law

Bitwise Boolean Functions in SHA1

$$f_1(b, c, d) = \text{if } b \text{ then } c \text{ else } d$$

- = (*b* AND *c*) OR (NOT(*b*) AND *d*)
- $f_2(b, c, d) = b \operatorname{XOR} c \operatorname{XOR} d$
- $f_3(b, c, d) = majority(b, c, d)$
 - = (*b* AND *c*) OR (*c* AND *d*) OR (*d* AND *b*)

 $f_4(b, c, d) = b \operatorname{XOR} c \operatorname{XOR} d$

Implementation of SHA-1 Compression

Input: an initial hash *a*, *b*, *c*, *d*, *e*, a message block $x_0, ..., x_{15}$ Output: a hash *a*, *b*, *c*, *d*, *e* 1: for *i* = 16 to 79 do 2: $x_i \leftarrow \text{ROTL}^1 (x_{i-3} \text{ XOR } x_{i-8} \text{ XOR } x_{i-14} \text{ XOR } x_{i-16})$ 3: end for 4: FOR *i* = 1 to 4 DO 5: FOR *j* = 0 to 19 DO 6: $t \leftarrow \text{ROTL}^5(a) + f_i(b, c, d) + e + x_{20(i-1)+j} + k_i$

 $e \leftarrow d$ 7: 8: $d \leftarrow c$ 9: $c \leftarrow \text{ROTL}^{30}(b)$ 10: $b \leftarrow a$ 11: a ← t end for 12: end for 13: 14: $a \leftarrow a + a_{\text{initial}}$ 15: $b \leftarrow b + b_{\text{initial}}$ 16: $C \leftarrow C + C_{\text{initial}}$ 17: $d \leftarrow d + d_{\text{initial}}$ 18: $e \leftarrow e + e_{initial}$

SHA-3 based on Keccak

- designed by Bertoni, Daemen, Peeters, and Van Assche (STMicroelectronics and NXP Semiconductors, Belgium)
- based on a sponge construction
- uses a permutation Keccak-f[b] (or just f) with
 b = 1 600 = 25 × 2⁶ (could use b = 25 × 2^ℓ with 0 ≤ ℓ ≤ 6)
- operates on states bitstrings *s* represented as 3-dimensional $5 \times 5 \times 2^{\ell}$ arrays *a* of bits

$$a_{x,y,z} = s[2^{\ell}(5y+x)+z]$$

in what follows, x, y, z are taken modulo their dimension

• *f* is a sequence of $n_r = 12 + 2\ell$ rounds

$$\boldsymbol{R} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

One Round of *f* — i

$$\boldsymbol{R} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

• θ is a linear diffusion layer using the parity of columns

$$\theta(a)_{x,y,z} = a_{x,y,z} \oplus \bigoplus_{j=0}^4 a_{x-1,j,z} \oplus \bigoplus_{j=0}^4 a_{x+1,j,z-1}$$

• ρ permutes some lanes

$$\rho(a)_{x,y,z} = a_{x,y,z-\frac{(t+1)(t+2)}{2}} \quad \text{with} \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}^t \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
for $t = 0, \dots, 23$ (+ use $\rho(a)_{0,0,z} = a_{0,0,z}$)

One Round of *f* — ii

$$\pmb{R} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

• π permutes the slices

$$\pi(a)_{X,Y,z} = a_{X,Y,z}$$
 with $\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

• χ has degree two

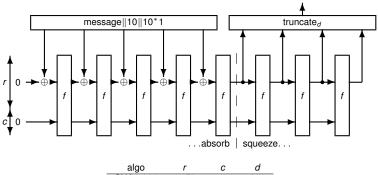
$$\chi(a)_{x,y,z} = a_{x,y,z} \oplus (a_{x+1,y,z} \oplus 1)a_{x+2,y,z}$$

• ι adds a constant for x = y = 0

$$\iota(a)_{x,y,z} = \begin{cases} a_{0,0,z} \oplus \mathsf{RC}[i_r]_z & \text{if } x = y = 0\\ a_{x,y,z} & \text{otherwise} \end{cases}$$

where i_r is the round index

The Sponge



r	С	а
1 1 5 2	448	224
1 088	512	256
832	768	384
576	1 0 2 4	512
	1 088 832	1 088 512 832 768

Hash Functions to Remember

algorithm	release	digest	comment
MD5	1991	128	broken
SHA1	1995	160	still surviving
SHA3	2015	224, 256, 384, 512	-

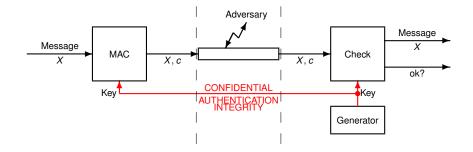
Integrity and Authentication

- Commitment Scheme
- Key Derivation Function and Pseudorandom Generator
- Cryptographic Hash Function

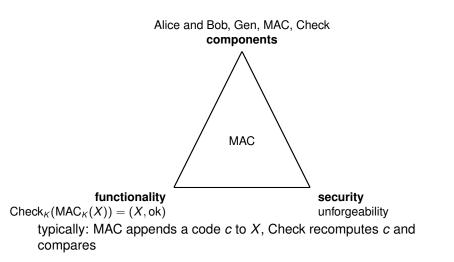
Message Authentication Codes

- Formalism
- Bruteforce Collision Search Algorithms
- How to Select Security Parameters?
- Other Reasons why Security Collapses

MAC



MAC Primitive



Security

- adversary objective: forge new messages
- typically: key recovery
- **known message attack** (previous picture): using authenticated messages in transit only
- chosen message attack: force the sender to authenticate some messages selected by the adversary

Hashing to Authentication: HMAC [RFC 2104]

Computing the MAC of *t* bytes for a message *X* with a key *K* using a Merkle-Damgård hash function with block size *B* bytes, digest size *L* bytes. (t = L by default.) E.g. H = SHA-1, B = 64, L = 20.

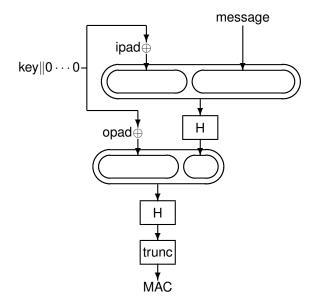
- If K has more than B bytes, we first replace K by H(K).
 (Having a key of such a long size does not increase the security.)
- We append zero bytes to the right of K until it has exactly B bytes.
- We compute

 $H((K \oplus \text{opad}) \| H((K \oplus \text{ipad}) \| X))$

where ipad and opad are two fixed bitstrings of *B* bytes. The ipad consists of *B* bytes equal to 0x36 in hexadecimal. The opad consists of *B* bytes equal to 0x5c in hexadecimal.

We truncate the result to its *t* leftmost bytes. We obtain HMAC_K(X).

HMAC [RFC 2104]



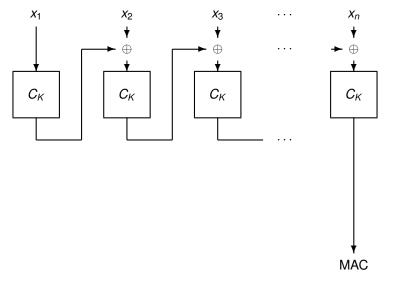
Examples

algo	hash	В	L	t
------	------	---	---	---

TLS				
MD5	MD5	64	16	16
SHA	SHA1	64	20	20

SSH				
hmac_md5	MD5	64	16	16
hmac_md5_96	MD5	64	16	12
hmac_sha1	SHA1	64	20	20
hmac_sha_96	SHA1	64	20	12

CBCMAC - (A Bad MAC)

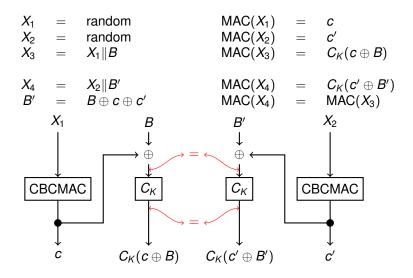


= last ciphertext block of CBC encryption (IV = 0)

SV 2016-17

Integrity and Authentication

A MAC Forgery

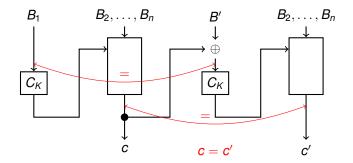


Other Attack with 1 Known Message

• $X_1 = B_1 \| \cdots \| B_n$ arbitrary

•
$$c = MAC(X_1)$$

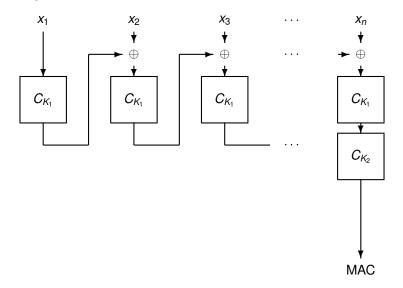
- $X_2 = X_1 ||B'||B_2 || \cdots ||B_n$ with $B' = c \oplus B_1$
- forgery: $c = MAC(X_2)$



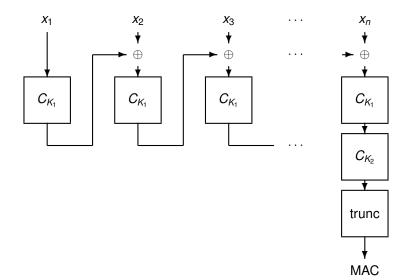
Result on CBCMAC

- insecure when used alone as a MAC
- secure when restricted to messages of same fixed length
- might be secure if encrypted (next constructions)

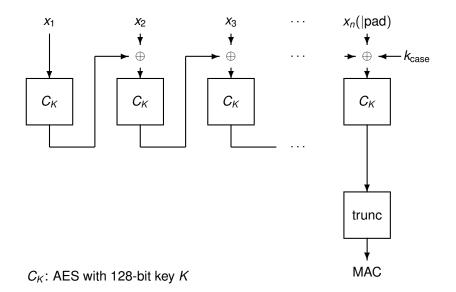
EMAC (Encrypted MAC) - (A Better CBCMAC Variant)



ISO/IEC 9797 - (An Even Better CBCMAC Variant)



CMAC [RFC4493] - (Best CBCMAC Variant)



SV 2016-17

CMAC

(previously called OMAC1)

- case 1: *x_n* was not padded
- case 2: the message length is not multiple of the block length pad it with a bit 1 and as many bits 0 as required to reach this length
- $L = C_{\kappa}(0)$ (encryption of the zero block)
- k₁ is L shifted to the left by one bit XOR the carry constant if any
- k_2 is k_1 shifted to the left by one bit XOR the carry constant if any

WC-MAC

Let $(h_{\mathcal{K}})_{\mathcal{K} \in U\mathcal{K}}$ be a ε -**XOR-universal** family of hash functions, over the output domain $\{0, 1\}^m$, defined by a random key \mathcal{K} which is chosen uniformly at random in \mathcal{K} .

Given *K* and a sequence of keys K_1, K_2, \ldots which are independent and uniformly distributed over $\{0, 1\}^m$, we define a MAC algorithm which changes the key for every new message: the MAC of the message x_i of sequence number *i* is a pair (i, c_i) with c_i defined by

$$c_i = h_K(x_i) \oplus K_i$$

Theorem (Wegman-Carter 1981)

No chosen message attack can forge a new authenticated message with a probability of success greater than ε .

Universal Hash Function

Definition (Krawczyk 1994)

Let $(h_K)_{K \in U\mathcal{K}}$ be a family of hash functions over the output domain $\{0,1\}^m$ defined by a random key K which is chosen uniformly at random in a key space \mathcal{K} .

This family is ε -**XOR-universal** if for any *a* and $x \neq y$ we have

 $\Pr[h_{\mathcal{K}}(x) \oplus h_{\mathcal{K}}(y) = a] \leq \varepsilon.$

Note: $1 = \sum_{a} \Pr[h_{\mathcal{K}}(x) \oplus h_{\mathcal{K}}(y) = a] \le 2^{m} \varepsilon$ so $\varepsilon \ge 2^{-m}$

WC-MAC - Proof — i

Proof.

At the end, the attacker collects *d* triplets (x_i, i, c_i) for i = 1, ..., d and forges (x, j, c) with $x \neq x_i$ for any *i*.

If *j* is not in the [1, *d*] interval, then K_j is uniformly distributed and independent from this information, so the probability that *c* is a valid MAC of (x, j) is 2^{-m} . (Note that $2^{-m} \le \varepsilon$.)

WC-MAC - Proof — ii

If *j* is in the interval [1, *d*], let $I = \{h_{\mathcal{K}}(x_i) \oplus K_i = c_i; i \in [1, d], i \neq j\}$. The success probability is

$$P = \Pr[h_{\mathcal{K}}(x) \oplus \mathcal{K}_j = c | h_{\mathcal{K}}(x_j) \oplus \mathcal{K}_j = c_j, I]$$

Due to the distribution of $K_1, \ldots, K_{j-1}, K_{j+1}, \ldots, K_d$, we can see that *I* is useless in the probability.

$$P = \Pr[h_{\mathcal{K}}(x) \oplus \mathcal{K}_{j} = c | h_{\mathcal{K}}(x_{j}) \oplus \mathcal{K}_{j} = c_{j}]$$

$$= \Pr[h_{\mathcal{K}}(x) \oplus h_{\mathcal{K}}(x_{j}) = c \oplus c_{j} | h_{\mathcal{K}}(x_{j}) \oplus \mathcal{K}_{j} = c_{j}]$$

$$= \frac{\Pr[\mathcal{K}_{j} = h_{\mathcal{K}}(x_{j}) \oplus c_{j} | h_{\mathcal{K}}(x) \oplus h_{\mathcal{K}}(x_{j}) = c \oplus c_{j}]}{\Pr[\mathcal{K}_{j} = h_{\mathcal{K}}(x_{j}) \oplus c_{j}]}$$

$$\times \Pr[h_{\mathcal{K}}(x) \oplus h_{\mathcal{K}}(x_{j}) = c \oplus c_{j}] \quad (Bayes)$$

$$= \Pr[h_{\mathcal{K}}(x) \oplus h_{\mathcal{K}}(x_{j}) = c \oplus c_{j}] \leq \varepsilon$$

since K_i is independent from K.

WC-MAC - Proof — iii

$\begin{aligned} \mathsf{Pr}[\mathsf{success}] &= \mathsf{Pr}[\mathsf{success}|j > d] \, \mathsf{Pr}[j > d] + \mathsf{Pr}[\mathsf{success}|j \le d] \, \mathsf{Pr}[j \le d] \\ &\leq \varepsilon \, \mathsf{Pr}[j > d] + \varepsilon \, \mathsf{Pr}[j \le d] \\ &= \varepsilon \end{aligned}$

Example of Universal Hashing (Krawczyk 1994)

(LFSR-based Toeplitz hash function)

- Given *m* and *n*, we define a family of hash functions $h_{\mathcal{K}}$ from $\{0,1\}^*$ to $\{0,1\}^m$
- \mathcal{K} is the set of all $\mathcal{K} = (p, s)$ where $p(x) = \sum_{j=0}^{m} p_j x^j$ is an irreducible polynomial of degree *m* over GF(2) and an $s = (s_0, \dots, s_{m-1})$ is an *m*-bit string.
- *K* defines an LFSR with connexion polynomial *p*(*x*) and initial state *s*

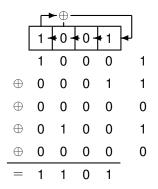
$$s_{t+m} = \bigoplus_{j=0}^{m-1} p_j s_{t+j}$$
 $h_K(x_0, \dots, x_{n-1}) = \bigoplus_{\substack{0 \le t < n \\ x_t=1}} (s_t, \dots, s_{t+m-1})$

• For any *m* and *n*, the family of all h_K defined from $\{0, 1\}^{\leq n}$ to $\{0, 1\}^m$ is $n2^{1-m}$ -XOR-universal

Example

$$p(x) = 1 + x + x^4, s = (1, 0, 0, 0)$$

compute
 $h_{\mathcal{K}}(1, 1, 0, 1, 0)$



$$h_{\mathcal{K}}(1,1,0,1,0) = (1,1,0,1)$$

WC-MAC using a Stream Cipher

$$N \leftarrow \text{nonce}$$

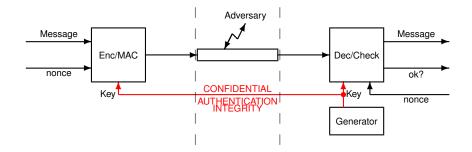
 $MAC_{K,K'}(x) = (N, h_K(x) \oplus \text{Keystream}_{K',N})$

idea: "encrypt $h_{\mathcal{K}}(x)$ using a stream cipher"

Example (Taken From GCM Mode)

- (mac) GMAC_K(IV, A)
 - 1: set $H = C_K(0^{128})$
 - 2: set $S = \text{GHASH}_H(A \| 0^{\nu} \| \text{length}(A) \| 0^{128})$
 - 3: set $T = \operatorname{trunc}(\operatorname{GCTR}_{\mathcal{K}}((\operatorname{IV} \| 0^{31}1), S))$
 - 4: return T
- (hash) GHASH_H($X_1, ..., X_m$) = $X_1 H^m + \cdots + X_m H$ in GF(2¹²⁸)
- (CTR encryption) GCTR_K(ct, X) = trunc_{length(X)} (C_K (ct) $\|C_K$ (ct + 1) $\|C_K$ (ct + 2)...) $\oplus X$

Authenticated Modes of Operation



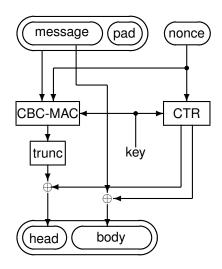
CCM (Counter with CBC-MAC)

Roughly speaking:

- 1: select a nonce N (way to select and synchronize are free)
- 2: let T = CBCMAC(message) using N
- 3: encrypt $T \parallel message$ in CTR mode using N

More precisely, the CCM mode is defined by

- a block cipher which accepts 16-Byte blocks
- an even parameter *M* between 4 and 16 (size of the CBCMAC in bytes)
- a parameter *L* between 2 and 8 (size of the length field in bytes)



CCM Processing

- pad X with enough zero bytes to reach the block boundary
- split $X \parallel pad$ as $B_1 \parallel \cdots \parallel B_n$
- make $B_0 = byte_1 ||N|| length(X)$ where $byte_1$ encodes M and L
- compute the CBCMAC of $B_0 || B_1 || \cdots || B_n$, truncate it to *M* bytes, and get *T*
- make $A_i = byte_2 ||N||i$ where $byte_2$ encodes L
- encrypt T || X by

 $Y = (T || X) \oplus (\operatorname{trunc}_{\mathcal{M}}(C_{\mathcal{K}}(A_0)) || \operatorname{trunc}(C_{\mathcal{K}}(A_1) || \cdots || C_{\mathcal{K}}(A_n)))$

Processing with an Extra Data

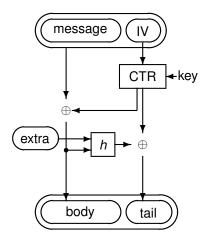
If we wish to send X together with a protocol data a which also needs to be authenticated (e.g. a sequence number, and IP address...)

- add a special bit in byte₁ which tells that a is used
- if a has a length between 1 and 65279 bytes, encode this length on two bytes, make length(a)||a||pad' where pad' consists of enough zero bytes to reach the block boundary
- insert it between B_0 and B_1 before the CBCMAC computation

GCM Mode

- (authenticated encryption) GCMAE_K(IV, P, A) with plaintext P and extra data A
 - 1: set $H = C_{\mathcal{K}}(0^{128})$
 - 2: set $J_0 = IV || 0^{31} 1$ (IV concatenated with a 32-bit counter)
 - 3: set $C = \text{GCTR}_{\mathcal{K}}(J_0 + 1, P)$
 - 4: concatenate A and C with 0 bits to reach a length multiple of 128 and get A||0^v and C||0^u
 - 5: set $S = \text{GHASH}_H(A || 0^v || C || 0^u || \text{length}(A) || \text{length}(C))$
 - 6: set $T = trunc(GCTR_{K}(J_{0}, S))$
 - 7: return (*C*, *T*)
- (MAC) $GMAC_{\mathcal{K}}(IV, A) = GCMAE_{\mathcal{K}}(IV, \emptyset, A)$
- (hash) $GHASH_H(X_1, ..., X_m) = X_1 H^m + \cdots + X_m H$ in $GF(2^{128})$
- (CTR encryption) GCTR_K(ct, X) = trunc_{length(X)} ($C_{K}(ct) || C_{K}(ct + 1) || C_{K}(ct + 2) \cdots$) $\oplus X$

GCM



Authenticated Modes to Remember

mode	comment
CCM	CTR + CBCMAC
GCM	CTR + WC-MAC

Integrity and Authentication

- Commitment Scheme
- Key Derivation Function and Pseudorandom Generator
- Cryptographic Hash Function
- Message Authentication Codes

Formalism

- Bruteforce Collision Search Algorithms
- How to Select Security Parameters?
- Other Reasons why Security Collapses

Hash Function

Definition

A hash function is a tuple $(\mathcal{D}, \{0, 1\}^{\tau}, h)$ with a message domain $\mathcal{D} \subseteq \{0, 1\}^*$, an output domain $\{0, 1\}^{\tau}$, and one <u>efficient</u> <u>deterministic</u> algorithm *h* implementing a function

$$egin{array}{cccc} h: & \mathcal{D} & \longrightarrow & \{0,1\}^{ au} \ & X & \longmapsto & h(X) \end{array}$$

One-Wayness

Definition

A hash function $(\mathcal{D}, \{0, 1\}^{\tau}, h)$ is (t, ε) -**one-way** if for any probabilistic algorithm \mathcal{A} limited to a time complexity t,

$$\Pr[h(\mathcal{A}(y)) = y] \leq \varepsilon$$

where $y \in \{0, 1\}^{\tau}$ is random.

(= first preimage attack)

Security Against Collision Attack (Bad Definition)

Definition

A hash function $(\mathcal{D}, \{0, 1\}^{\tau}, h)$ is (t, ε) -secure against collision attacks if for any probabilistic algorithm \mathcal{A} limited to a time complexity t,

$$\Pr[h(x) = h(x'), x \neq x'] \leq \varepsilon$$

where (x, x') is the output of A

Following this definition, no hash function with $\#D > 2^{\tau}$ is secure: collision exist, so A can just print one!

Making a correct definition is beyond the scope of this course

Message Authentication Code

(most common construction)

Definition

A message authentication code is a tuple $(\{0,1\}^k, \mathcal{D}, \{0,1\}^{\tau}, MAC)$ with a key domain $\{0,1\}^k$, a message domain $\mathcal{D} \subseteq \{0,1\}^*$, an output domain $\{0,1\}^{\tau}$, and one <u>efficient</u> <u>deterministic</u> algorithm MAC implementing a function

Security against Key Recovery

Definition

A message authentication code $(\{0, 1\}^k, \mathcal{D}, \{0, 1\}^\tau, MAC)$ is (q, t, ε) -secure against key recovery under chosen message attacks if for any probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries,

$$\mathsf{Pr}[\mathcal{A}^{\mathsf{MAC}(K,.)} o K] \leq \varepsilon$$

where $K \in \{0, 1\}^k$ is random.

(+ similar notion with known message attacks)

Security against Forgery

Definition

A message authentication code $(\{0,1\}^k, \mathcal{D}, \{0,1\}^\tau, MAC)$ is (q, t, ε) -secure against forgery under chosen message attacks if for any probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries,

 $\Pr[\mathcal{A}^{MAC(K,.)} \text{ forges}] \leq \varepsilon$

where $K \in \{0, 1\}^k$ is random, (X, c) a pair of random variables defined as the output of $\mathcal{A}^{MAC(K,.)}$, and " $\mathcal{A}^{MAC(K,.)}$ forges" is the event that $MAC_K(X) = c$ and that \mathcal{A} did not query X to the authentication oracle.

(+ similar notion with known message attacks)

Forgery Security is Stronger than Key Recovery Security

If $\ensuremath{\mathcal{A}}$ is a key recovery adversary, we can define

- 1: run $\mathcal{A} \to K$
- 2: pick a fesh X arbitrarily
- 3: compute c = MAC(K, X)
- 4: return (*X*, *c*)

So,

key recovery-breaking \Longrightarrow forge

So,

forgery-secure \Longrightarrow key recovery-secure

Security against Distinguisher

Definition

A message authentication code $(\{0, 1\}^k, \mathcal{D}, \{0, 1\}^\tau, MAC)$ is a (q, t, ε) -**pseudorandom function (PRF)** if for any probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries,

$$\Pr[\mathcal{A}^{MAC(K,.)} \to 1] - \Pr[\mathcal{A}^{F(\cdot)} \to 1] \leq \varepsilon$$

where $K \in \{0,1\}^k$ is random and $F(\cdot)$ is a random function from \mathcal{D} to $\{0,1\}^{\tau}$.

Security Notions

	key recovery	forgery	PRF
KMA	weaker security		
CMA			stronger security

Integrity and Authentication

- Commitment Scheme
- Key Derivation Function and Pseudorandom Generator
- Cryptographic Hash Function
- Message Authentication Codes
- Formalism

Bruteforce Collision Search Algorithms

- How to Select Security Parameters?
- Other Reasons why Security Collapses

Birthday Paradox

Theorem

If we pick independent random numbers in $\{1, 2, ..., N\}$ with uniform distribution, $\theta \sqrt{N}$ times, we get at least one number twice with probability

$$1 - \frac{N!}{N^{\theta \sqrt{N}}(N - \theta \sqrt{N})!} \underset{N \to +\infty}{\longrightarrow} 1 - e^{-\frac{\theta^2}{2}}.$$

For N = 365, we obtain the following figures.

$\theta \sqrt{N}$	10	15	20	25	30	35	40
			1.05				
probability	12%	25%	41%	57%	71%	81%	89%

Birthday Paradox - Informal Proof

 $n = \theta \sqrt{N}$

$$p \approx 1 - \left(1 - \frac{1}{N}\right)^{\binom{n}{2}}$$
$$\approx 1 - \left(1 - \frac{1}{N}\right)^{\frac{n^2}{2}}$$
$$= 1 - e^{\frac{n^2}{2}\ln(1 - \frac{1}{N})}$$
$$\approx 1 - e^{-\frac{n^2}{2N}}$$
$$= 1 - e^{-\frac{\theta^2}{2}}$$

Birthday Paradox - Proof — i

Proof. We use the Stirling Approximation

$$n! \sim \sqrt{2\pi n} e^{-n} n^n$$

We have

$$1 - p = \frac{N!}{N^{\theta \sqrt{N}} (N - \theta \sqrt{N})!}$$

$$\sim \left(1 - \frac{\theta}{\sqrt{N}}\right)^{-N + \theta \sqrt{N}} e^{-\theta \sqrt{N}}$$

$$= \exp\left[-\theta \sqrt{N} + (-N + \theta \sqrt{N}) \log\left(1 - \frac{\theta}{\sqrt{N}}\right)\right]$$

Birthday Paradox - Proof — ii

We now use $\log(1 - \varepsilon) = -\varepsilon - \frac{\varepsilon^2}{2} + o(\varepsilon^2)$

$$1 - p \sim \exp\left[-\theta\sqrt{N} + (-N + \theta\sqrt{N})\log\left(1 - \frac{\theta}{\sqrt{N}}\right)\right]$$
$$\sim \exp\left[-\frac{\theta^2}{2} + o(1)\right]$$
$$\longrightarrow e^{-\frac{\theta^2}{2}}$$

Collision Search I

Input: a cryptographic hash function *h* onto a domain of size *N*

Output: a pair (x, x') such that $x \neq x'$ and $h(x) = \underline{h}(x')$

1: for $\theta \sqrt{N}$ many different x do

2: compute
$$y = h(x)$$

- 3: if there is a (y, x') pair in the hash table then
- 4: yield (x, x') and stop
- 5: end if
- 6: insert (y, x) in the hash table
- 7: end for
- 8: search failed

Collision Search II

Input: a cryptographic hash function *h* onto a domain of size *N*

- **Output:** a pair (x, x') such that $x \neq x'$ and h(x) = h(x')
 - 1: repeat
 - 2: pick a (new) random x
 - 3: compute y = h(x)
 - 4: insert (y, x) in the hash table
 - 5: **until** there is already another (y, x') pair in the hash table
 - 6: yield (x, x')

we can show that the expected number of iterations is $\sqrt{\frac{\pi}{2}} \times \sqrt{N}$ (Buffon's needles...)

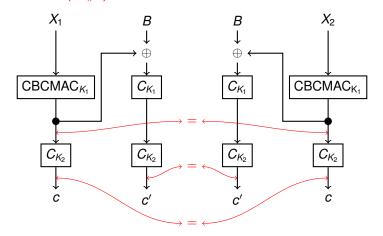
Collision Search Complexity

strategy	memory	time	success proba.
collision search I	$\theta \sqrt{N}$	$\theta \sqrt{N}$	$1 - e^{-\frac{\theta^2}{2}}$
collision search II	$\sqrt{\frac{\pi}{2}} \times \sqrt{N}$	$\sqrt{rac{\pi}{2}} imes \sqrt{N}$	1

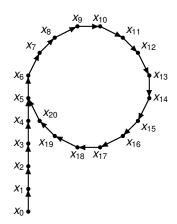
example for SHA1: $N = 2^{160}$, complexity $\sim 2^{80}$

Example: Birthday Attack on EMAC

First get $\sqrt{2^{MAC \text{ length}}}$ many messages until we get two messages X_1 and X_2 such that MAC $(X_1) = MAC(X_2)$ by using the birthday paradox. Deduce CBCMAC $(X_1) = C_{K_2}^{-1}(c) = CBCMAC(X_2)$ Pick *B* arbitrarily. Query MAC $(X_1 || B) = c'$ Deduce MAC $(X_2 || B) = c'$



(Almost) Memoryless Collision Search The Rho (p) Effect



- $x_{i+1} = F(x_i)$
- ρ shape (due to finite set)
- tail $\lambda = 5$
- loop $\tau = 16$
- collision $F(x_{\lambda-1}) = F(x_{\lambda+\tau-1})$

Lemma

If F is a random function over a set of cardinality N, we have $E(\lambda) = E(\tau) = \sqrt{\pi N/8}.$

Floyd Cycle Finding Algorithm (1967)

Tortoise and the Hare

Output: a collision for F **Complexity**: $\mathcal{O}(\sqrt{N})$ *F* mappings 1: set x_0 at random 2: $a \leftarrow x_0$ (tortoise) 3: $b \leftarrow x_0$ (hare) 4: repeat 5: $a \leftarrow F(a)$ 6: $b \leftarrow F(F(b))$ 7: until a = b8: $a \leftarrow x_0$ 9: while $a \neq b$ do 10: $a_{old} \leftarrow a$ 11: $b_{old} \leftarrow b$ 12: $a \leftarrow F(a)$ 13: $b \leftarrow F(b)$ 14: end while 15: output a_{old}, b_{old}

 whenever x_{2i} = x_i we must have τ | i

• we find
$$i = \tau \times \lceil \frac{\max(\lambda, 1)}{\tau} \rceil$$

- exact complexity is 5*i* computations *F*
- which is on average

$$5 \times \left(E(\lambda) + \frac{1}{2}E(\tau) \right)$$
$$= 7.5\sqrt{\pi/8} \times \sqrt{N}$$

Why it Works

let $x_i = F(x_{i-1})$

• after iteration *i* of the **repeat-until** loop, we have $a = x_i$ and

 $b = x_{2i}$

a = b is equivalent to $(i \ge \lambda \text{ and } \tau | i)$

there exists a minimum $i = i_0 = \tau \times \lceil \frac{\lambda}{\tau} \rceil$ satisfying this condition

• after iteration *i* of the **while-endwhile** loop, we have $a = x_i$ and $b = x_{i_0+i}$

$$a = b$$
 is equivalent to $i \ge \lambda$

so, the loop ends with the correct value of $\boldsymbol{\lambda}$

• the correct value of τ is found with the additional **repeat-until** loop

Cycle Detection Algorithms

- Floyd (1967)
- Gosper (1972)
- Brent (1980)
- Sedgewick-Szymanski-Yao (1982)
- Quisquater-Delescaille (1989)
- van Oorschot-Wiener (1999)
- Nivasch (2004)

Integrity and Authentication

- Commitment Scheme
- Key Derivation Function and Pseudorandom Generator
- Cryptographic Hash Function
- Message Authentication Codes
- Formalism
- Bruteforce Collision Search Algorithms

• How to Select Security Parameters?

Other Reasons why Security Collapses

Summary of Generic Attacks against Symmetric Encryption

if we have a *n*-bit key, $(N = 2^n)$

strategy	preprocessing	memory	time	success proba.
exhaustive search	0	1	2 ⁿ	1
dictionary attack	2 ⁿ	2 ⁿ	1	1
tradeoffs	2 ⁿ	2 ^{2/3} n	2 ^{2/3} n	cte

Want a security of 2s?

• select $n \ge s$

Summary of Generic Attacks against Hash Functions

if we hash onto *n* bits, $(N = 2^n)$

attack	complexity
preimage attack	2 ⁿ
collision attack	2 ^{<i>n</i>} / ₂

Want a security of 2^s?

- want security against inversion only: select $n \ge s$
- want security against collisions: select n ≥ 2s

Breaking Symmetric Cryptography

- we do not know how to prove security
- we know generic attacks are unavoidable
- empirical security: assume (hope) there is no better attack then known ones
- security \implies generic attacks are untractable
- security parameter for encryption/authentication: key length
- Caveat: hash length must be twice the security parameter due to the birthday paradox

Integrity and Authentication

- Commitment Scheme
- Key Derivation Function and Pseudorandom Generator
- Cryptographic Hash Function
- Message Authentication Codes
- Formalism
- Bruteforce Collision Search Algorithms
- How to Select Security Parameters?
- Other Reasons why Security Collapses

Cryptanalytic Advances

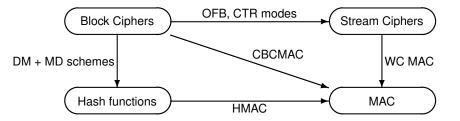
- security is often empirical
 - \rightarrow dedicated attacks
- heuristic security against attack methods

 → arguments may be wrong, other attack methods can be discovered
- all eggs in the same basket (lack of crypto-diversity)
 → more exposure, attacks more devastating
- the quantum threat
 - \rightarrow quantum computers to factor, compute discrete logarithms, or even half security parameters [Grover 1996]
- side channel attacks
- wrong proofs, wrong models
- security interference: secure + secure may be insecure

Conclusion

- MAC: HMAC, CBCMAC, WC-MAC, CCM mode, GCM mode
- hash functions: MD5, SHA-1
- commitment
- bruteforce collision within complexity $\mathcal{O}\left(\sqrt{\#\text{range}}\right)$

Dedicated Primitives and Reductions



References

- Schneier. Applied Cryptography. Wiley & Sons. 1996. Crypto for dummies!
- Ferguson–Schneier. *Practical Cryptography.* Wiley & Sons. 2003.

Crypto for dummies!

• **Oechslin**. Making a Faster Cryptanalytic Time-Memory Trade-Off. In *CRYPTO 2003*, LNCS 2729.

other references:

- Barkan-Biham-Shamir. Rigorous Bounds on Cryptanalytic Time/Memory Tradeoffs. In *CRYPTO 2006*, LNCS 4117.
- Nivasch. Cycle Detection Using a Stack. *Information Processing Letters* vol. 90 pp. 135–140, 2004.

Must be Known

- Merkle-Damgård and Davies-Meyer schemes
- parameters of hash functions: MD5, SHA1
- MAC: (principles of) HMAC, CBCMAC
- existence of authenticated encryption modes: CCM, GCM
- collision search based on the birthday paradox
- security from key length

Train Yourself

- hash functions: final exam 2008–09 ex3 midterm exam 2011–12 ex3
- collisions: final exam 2013–14 ex2 final exam 2012–13 ex2 final exam 2010–11 ex1

- Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- 6 Integrity and Authentication
- Case Studies I
- Public-Key Cryptography
- 9 Trust Establishment
- O Case Studies II

Roadmap

- mobile telephony: GSM, 3G
- WiFi: WEP, WPA
- Bluetooth
- access control: password, challenge-response, strong authentication

Mobile Telephony

- WEP/WPA/WPA2
- Bluetooth
- Cryptography Based on Short Authenticated Strings
- Access Control
- Forward Secrecy: the Case of Signal
- Block Chains

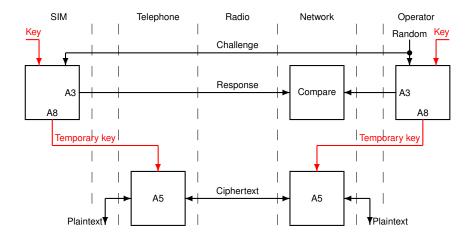
GSM Architecture

- principle 1: authentication of mobile system
- principle 2: privacy protection in the wireless link
- challenge-response protocol based on Ki
- encryption key for a limited period of time (derived from Ki)
- identity IMSI replaced by a pseudonym TMSI as soon as possible
- Ki never leaves the security module (SIM card) or home security database (HLR)

GSM Slang

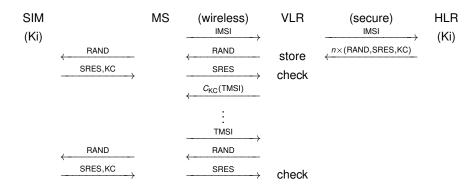
- GSM: Global System for Mobile telecommunications
- MS: Mobile Station
- SIM: Subscriber Identity Module (part of MS)
- HLR: Home Location Register
- VLR: Visitor Location Register
- IMSI: International Mobile Subscriber Identity (stored in SIM)
- Ki: subscriber Integrity Key (securely stored in SIM)

GSM Protocol



GSM Authentication

A3/8(Ki, RAND) = (SRES, KC)



Security of Authentication

- Ki never leaves the SIM card or the secure database of the operator (assuming SIM card is tamper proof and HLR is secure)
- assuming that A3/8 are secure PRF then authentication to network is secure
- A3/8 not standard: chosen by operator
- problem with weak A3/8 (e.g. COMP128)

security: 🙂

GSM Encryption

- several standard algorithms: A5/0, A5/1, A5/2, A5/3
- cipher imposed by network
- new KC for each session
- synchronized frame counter (see A5/1 on slide 455)

Security of Privacy protections

- blinding the identity: telephone identifies itself in clear at the first time then using a pseudonym given by the local network not effective at all:
 - challenges can be replayed to trace mobile telephones
 - fake network can force identification in clear (re-synchronization protocol)
- security of A5/0 (no encryption) void
- security of A5/2 weak
- security of A5/1 not high
- security of A5/3 high
- fake network can force to weak encryption (they all use the same key)
- replaying a challenge will force reusing a key in one-time pad
- message integrity protection is ineffective

security: 🙂

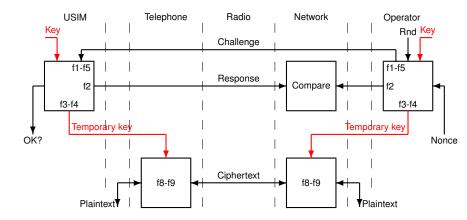
Improvements in 3G Mobile Telephony

- challenges are authenticated (fake network cannot forge them)
- integrity protection (MAC)
- protection against challenge-replay attacks
- uses a block cipher KASUMI instead of the stream cipher A5/1

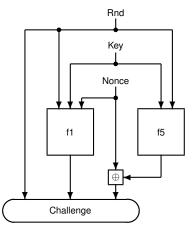
The UMTS Crypto Menagery

- communication: f8 (encryption) and f9 (MAC) based on KASUMI
- signaling communication: f6 (encryption) and f7 (MAC) based on AES
- challenge pseudorandom generator: f0
- MILENAGE (key establishment): f1, f1*, f2, f3, f4, f5, f5* f1 and f5: challenge computation for synchronized entities f1* and f5*: challenge computation for re-synchronization
 - f2: response to challenge (replaces A3)
 - f3: key derivation for encryption (replaces A8)
 - f4: key derivation for MAC

MILENAGE Protocol



MILENAGE Challenges

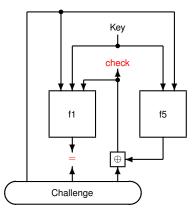


- challenge authenticated based on f1
- freshness protection based on a nonce nonce may be counter-based (USIM and operator synchronized)
- privacy protection: the nonce is encrypted by f5

SV 2016-17

Case Studies I

MILENAGE Challenge Verification



- extract Rnd
- decrypt Nonce by computing f5(Key, Rnd)
- Output State (1) Contraction (1) Output State (1) Outp
- Check Nonce is correct

SV 2016-17

Security Misses

- network is not authenticated (network only proves he received authorization from operator)
 - \rightarrow attack by fake network rerouting through expensive networks of unencrypted network
- no encryption awareness

Mobile Telephony (In)security

- confidentiality
- message authentication
- message integrity
- challenge freshness
- mobile authentication
- network authentication
- key establishment
- frame sequentiality
- privacy

 2G
 3G

 (a)
 (b)

 (a)
 (c)

 (b)
 (c)

 (a)
 (c)

Other Standards

- DECT: wireless telephone (connected to fixed base line) DSAA: DECT standard Authentication Algorithm DSC: DECT standard Cipher standard is not public (but published and broken!)
- EDGE (used to be GPRS) GEA: GPRS Encryption Algorithm standard is not public
- cdmaOne (also called IS-95 or CDMA) no SIM card CAVE: Cellular Authentication and Voice Encryption ORYX: encryption algorithm (stream cipher) CMEA: Cellular Message Encryption Algorithm

Mobile Telephony

WEP/WPA/WPA2

- Bluetooth
- Cryptography Based on Short Authenticated Strings
- Access Control
- Forward Secrecy: the Case of Signal
- Block Chains

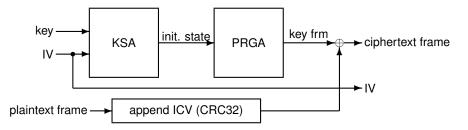
IEEE 802.11 in a Nutshell

- protocol for wireless local area network (WLAN) at the link level
- since 1997
- corporate or ad-hoc mode
- secure communication by wired equivalent privacy (WEP)
- station authentication by Shared Key Authentication (SKA)
- since 2003: <u>interim</u> Wi-Fi Protected Access (WPA) due to security issues
- since 2004: added WPA2 (complete change)

WEP Security Goals

- privacy as if communication was through a wired connection
- protect against unauthorized access
- use up to 4 (common) pre-shared key to be manually set
 - \rightarrow key not frequently changed
 - \rightarrow key not too long (40 or 104 bits)
 - \rightarrow key stored at many places
- entirely based on RC4 stream cipher

WEP Encryption



- self-synchronizing stream cipher (24-bit IV sent in clear)
- integrity protection using CRC32
- \rightarrow packets are easily malleable (Borisov-Goldberg-Wagner 2001)

 $Enc_{key}(IV, plaintext) \oplus [\Delta \| CRC32(\Delta)] = Enc_{key}(IV, plaintext \oplus \Delta)$

WEP and SKA Issues

collision on IV's

a 24-bit IV repeats itself, sooner or later

use linearity of CRC32

if modification injected, make it coherent with CRC32 encoding

dedicated attack on WEP/RC4 encryption Fluhrer-Mantin-Shamir 2001 and follow up's

passive ciphertext only attack (with some bytes of each frame known) after sniffing 20 000 packets, probability to recover the key is ¹/₂ Sepehrdad-Vaudenay-Vuagnoux 2012

WEP (In)security

security is snake oil:

- confidentiality
- message authentication
- message integrity
- message freshness
- key establishment
- message sequentiality
- privacy

no protection
 (pre-shared)
 no protection
 (

 (\vdots)

 \odot

WPA: a Dirty Quick Fix

- WPA-TKIP (Temporal Key Integrity Protocol): make the RC4 key change for every packet (based on a master key)
- message integrity (with a bad MAC...)
- check IV increases to protect against replay attacks
- set up master key using EAP (Extensible Authentication Protocol)
 - PSK (Pre-Shared Key)
 - one of the possible authentication protocols form 802.1x using an authentication server (e.g. RADIUS)

EAP

- EAP-PSK (Pre Shared Key) derive master key from passphrase
- EAP-TLS need a certificate for server and station
- EAP-TTLS (Tunneled TLS) need a certificate for server then a login and password for station
- EAP-PEAP similar as TTLS with a different protocol
- EAP-SIM using a SIM card in GSM network
- EAP-AKA same as SIM but for UMTS
- EAP-LEAP (Cisco protocol) no longer recommended
- EAP-FAST (Cisco protocol to replace LEAP)

WPA (In)security

- confidentiality
- message authentication
- message integrity
- message freshness
- key establishment
- message sequentiality
- privacy

```
    (academic attacks)
    (MICHAEL is broken)
    (academic attacks)
    (MICHAEL is broken)
    (academic attacks)
    (academic attac
```

RC4 replaced by AES CCMP (CCM Protocol = AES in CCM mode) 128 or 256 bit key

WPA2 (In)security

- confidentiality
- message authentication
- message integrity
- message freshness
- key establishment
- message sequentiality
- privacy

depends no protection (packet drops)

 \odot

Mobile Telephony

• WEP/WPA/WPA2

Bluetooth

- Cryptography Based on Short Authenticated Strings
- Access Control
- Forward Secrecy: the Case of Signal
- Block Chains

The Bluetooth Project

- short-range wireless technology
- designed to transmit voice and data
- for a variety of mobile devices (computing, communicating, ...)
- bring together various markets

- 1Mbit/sec up to 10 meters over the 2.4-GHz radio fequency
- robustness, low complexity, low power, low cost

SV 2016-17

Case Studies I

Bluetooth History

- 10th Century: Viking King Harald Blåtand (Harold Bluetooth) tried to unify Denmark, Norway, and Sweden
- 1994: Ericsson initiated a study to investigate the feasibility
- May 20, 1998: Bluetooth announced, controled by the Special Interest Group (SIG) formed by

Ericsson, IBM, Intel, Nokia, and Toshiba

- 1999: Bluetooth 1.0 Specification Release
- 2004: Bluetooth 2.0 Specification Release
- 2007: Bluetooth 2.1 Specification Release (add SSP)
- 2009: Bluetooth 3.0 Specification Release (add 802.11)
- 2010: Bluetooth 4.0 Specification Release (add LE)

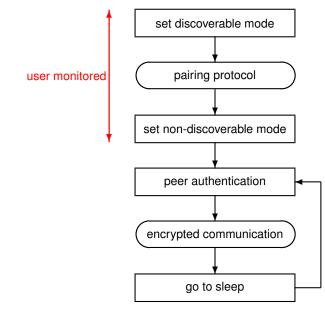
Bluetooth Security

- mode 1: non-secure
- mode 2: service level enforced security
- mode 3: link level enforced security
- mode 4 (since v4.0): service+link level enforced security

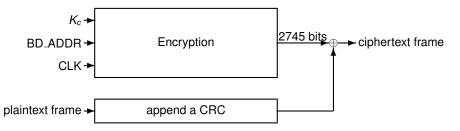
Bluetooth Security Basics (Link Level)

- can switch device to
 - non connectable (Bluetooth is off)
 - connectable but not discoverable (invisible without knowing the MAC address)
 - discoverable (introduce itself upon any broadcast request)
- pairing to set up link keys between devices
 - typically based on a random PIN
 - (dummy device) using a built-in PIN
- can manage a database of paired devices

Cycles in Bluetooth

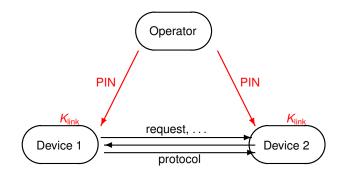


A Strange Integrity Protection

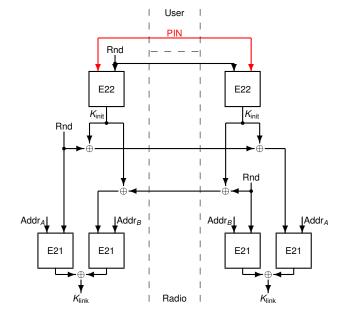


 \rightarrow packets are easily malleable (Borisov-Goldberg-Wagner 2001)

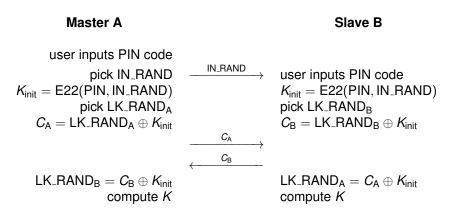
Device Pairing



Legacy Pairing Protocol

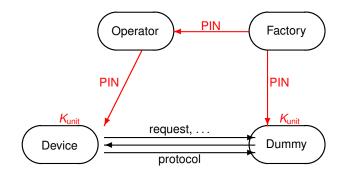


Legacy Pairing Protocol

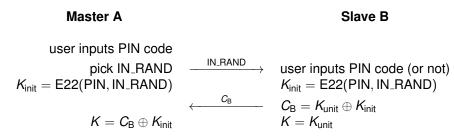


 $K = E21(LK_RAND_A, BD_ADDR_A) \oplus E21(LK_RAND_B, BD_ADDR_B)$

Pairing with a Dummy Device



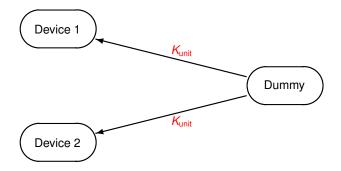
Legacy Pairing with a Dummy Device



link key is forced to be the unit key

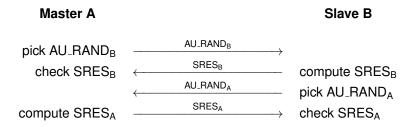
 \rightarrow problem if dummy device is (or has been) paired with multiple devices

Dummy Devices: Unit Key is Shared with Many Devices



scenario: user A paired his headset (Dummy) with his telephone (Device 1) then user B took the headset for a few seconds to pair it with his computer (Device 2)...

Peer Authentication



 $SRES_d = E1(K, AU_RAND_d, BD_ADDR_d)$

Missing Security Protection

- Oryptographic pseudorandom generator
 → some device may have poor generators
- Liveliness + session sequentiality
 → some packets may be removed (Kügler 2003)
- Strong anonymity
 - \rightarrow traceability (Jakobsson-Wetzel 2001)

Insecurity Summary

- dummy devices use the same key with many devices
- suspicious security of cryptographic primitives
- academic attacks on E0 encryption
- integrity protection is void
- messages can be maliciously erased in the radio channel
- privacy protection is weak (low entropy BD_ADDR)
- pairing protocol weak against passive attacks (next slides)

Key Establishment (In)security

Theorem

The pairing protocol is secure if either PIN has large entropy or the protocol is run through a private channel (under some "reasonable assumptions" about the cryptographic algorithms).

- © a cheap pragmatic security
- pretty weak security

devastating sniffing attacks in other cases! (Jakobsson-Wetzel 2001)

Sniffing + Offline Attack

Assumption: pairing not made in a private environment (channel not confidential) and guessable PIN (lazzy operator)

- sniff the pairing protocol, get IN_RAND, C_A, C_B
- **2** \longrightarrow can compute K_{link} from PIN
- Sniff a peer-authentication protocol, get rand, $F(rand, K_{link})$
- \longrightarrow can check a guess on K_{link}
- Irun an offline exhaustive search on PIN

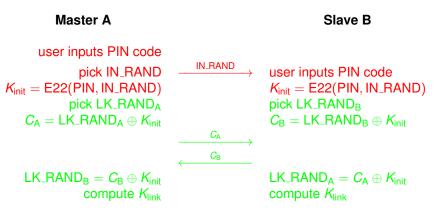
Online Impersonation Attack

Slave Adversary receive PIN IN_RAND C_A C_B compute K_{link} AU_Rand_B RESR $RES_B = E1(K_{link}, AU_Rand_B)$ exhaustive search on PIN s.t. $RES_B = E1(f(PIN, IN_RAND, C_A, C_B), AU_Rand_B)$ compute $K_{\text{link}} = f(\text{PIN}, \text{IN}_{\text{RAND}}, C_A, C_B)$ AU_Rand A RES⊿ $RES_A = E1(K_{link}, AU_Rand_B)$

Possible Countermeasures

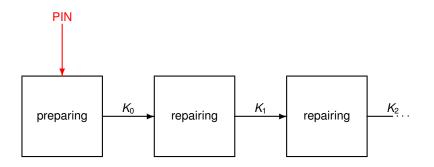
- do not use short PIN
 → not realistic
- only make pairing in a bunker \rightarrow not realistic
- live with it and make it resilient \rightarrow feasible by refreshing K_{link}

Pairing in Two Phases: Preparing and Repairing



preparing and repairing

A Possible Better Usage



- if K_{t-1} is compromised and repairing is private, then K_t is safe
- if K_i is securely set up and if K_{i+t} is the first compromised key, all communications using K_i,..., K_{i+t-1} are safe (forward secrecy)

Bluetooth v2.0 Summary

- light weight cryptography
- initial authenticated channel by human interaction with devices
- key exchanged based on a PIN and E21, E22 (pairing)
- derivation of a single 128-bit long term link key
- secure channel based on E0, E1, E3
- several missing security properties: packet authentication, detection of packet loss, privacy, ...

Bluetooth v2.0 (In)security

Current (mode 3) security is rather poor:

- confidentiality
- message integrity
- message authentication
- frame freshness
- key establishment v2.0
- frame sequentiality
- oprivacy

- (attacks still academic so far)
- ② (auth. by encryption without integrity)
 - (based on clock value)
- ⓒ (pragmatic repairing possible)
- 🙁 (message loss)

 (\vdots)

Moral

PIN has low entropy

(humans cannot generate ephemeral PINs with high entropy)

- offline passive key recovery: key agreement is based on conventional cryptography (so cannot resist to passive adversaries)
- online impersonation attack: assuming the adversary is second to authenticate itself, the password-based key agreement does not even resist impersonation
- next generation needs
 - be user friendly
 - be device friendly (no expensive crypto)
 - resist passive and active adversaries
 - \rightarrow use SAS-based cryptography (to be seen in Chapter 9)

Bluetooth v2.1: Secure Simple Pairing

4 variants

- numeric comparison
- passkey entry
- just works (same as numeric comparison with no human work)
- out-of-band (use an ad-hoc secure channel e.g. cable or near field communication)

resist active adversary

resist passive adversary only (out-of-band may resist to active adversaries depending on the secure channel)

Common Protocol

Device A		Device B
DHKey	ECDH	DHKey
	authentication stage 1 (protocol dependent)	
N_A, N_B, r_A, r_B $E_A = f3(\cdots)$ check LK = f2(\cdots)	$\xrightarrow{E_A} \xrightarrow{E_B}$	N_A, N_B, r_A, r_B check $E_B = f3(\cdots)$ LK = f2(\cdots)
	secure channel	

Common Protocol

- **step 1**: public key exchange exchange ECDH public keys using standard parameters (may be ephemeral or static) leading to a key DHKey
- steps 2–8: authentication stage 1 (protocol dependent) this stage authenticates the ECDH public keys and exchange some values N_A, N_B, r_A, r_B
- steps 9–11: authentication stage 2 <u>mutual authentication</u> after ECDH protocol using N_A, N_B, r_A, r_B: A resp. B produces E_A resp. E_B and checks E_B resp. E_A
 - $E_A = f3(DHKey, N_A, N_B, r_B, IOcap_A, BD_ADDR_A, BD_ADDR_B)$
 - $E_B = f3(DHKey, N_B, N_A, r_A, IOcap_B, BD_ADDR_B, BD_ADDR_A)$
- **step 12**: link key calculation key derivation from DHKey, Na, Nb, and the addresses

 $LK = f2(DHKey, N_{master}, N_{slave}, btlk, BD_ADDR_{master}, BD_ADDR_{slave})$

• step 13: encryption (business as usual)

SV 2016-17

Case Studies I

ECDH Common Protocol

• domain parameters: use secp192r1 = P192, the elliptic curve of order *r* over the Z_p field defined by $y^2 = x^3 + ax + b$ which is generated by *G*:

$$p = 2^{192} - 2^{64} - 1$$

- $a = -3 \mod p$
- $b \quad = \quad 2455155546008943817740293915197451784769108058161191238065$
- r = 6277101735386680763835789423176059013767194773182842284081
- $G_x = 188$ da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
 - *=* 602046282375688656758213480587526111916698976636884684818
- $G_{\rm V}$ = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

= 174050332293622031404857552280219410364023488927386650641

note that $2^{192} - 2^{95} < r < 2^{192}$ and *r* is prime

 key agreement function: given an integer u and a point V, P192(u, V) is the x-coordinate of the point uV

 $DHKey = P192(SK_A, PK_B) = P192(SK_B, PK_A)$

The New Bluetooth Menagery

$\begin{aligned} f1(U, V, X, Z) &= trunc_{128} (HMAC_X(U || V || Z)) \\ g(U, V, X, Y) &= SHA256_X(U || V || X || Y) \mod 2^{32} \\ f2(W, N_1, N_2, \text{keyID}, A_1, A_2) &= trunc_{128} (HMAC_W(N_1 || N_2 || \text{keyID} || A_1 || A_2)) \\ f3(W, N_1, N_2, R, IOcap, A_1, A_2) &= trunc_{128} (HMAC_W(N_1 || N_2 || R || IOcap || A_1 || A_2)) \end{aligned}$

variable	A_i	Ni	U	V	W	X	Y	Ζ	keyID	lOcap
# bits	48	128	192	192	192	128	128	8	32	48

• HMAC is HMAC-SHA256

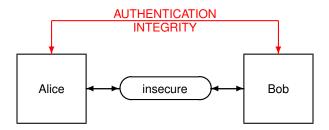
• the value of keyID for "btlk" is 0x62746c6b

Bluetooth Simple Secure Pairing Variants — i

Numeric Comparison

Device A Device B input: PK_A, PK_B input: PKA, PKB pick $N_A \in U \{0, 1\}^{128}$ pick $N_B \in U \{0, 1\}^{128}$ set $r_A = r_B = 0$ set $r_A = r_B = 0$ CR $c_B \leftarrow f1(PK_B, PK_A, N_B, 0)$ NA N_B $\hat{c}_B \stackrel{\prime}{=} f1(\hat{P}\hat{K}_B, PK_A, \hat{N}_B, 0)$ $V_A \leftarrow q(\mathsf{PK}_A, \widehat{\mathsf{PK}}_B, N_A, \widehat{N}_B)$ $V_B \leftarrow q(\hat{P}\hat{K}_A, PK_B, \hat{N}_A, N_B)$ display V_{A} display V_R check $V_A = V_B$ output: N_A , \hat{N}_B , r_A , r_B output: \hat{N}_A, N_B, r_A, r_B

Security from Human-Monitored Short String Authentication



- communication over a cheap/efficient but insecure channel
- security set up with the help of a short authenticated string (SAS)
- authentication based on human monitoring

Numeric Comparison Analysis

Device A Adversary Device B input: PK₄, PK_B input: PK₄, PK_B pick $N_A \in U \{0, 1\}^{128}$ pick $N_B \in U \{0, 1\}^{128}$ set $r_A = r_B = 0$ set $r_A = r_B = 0$ $\underbrace{\stackrel{\hat{c}_B}{\longleftarrow} ??}{\leftarrow} c_B \leftarrow f1(PK_B, \widehat{PK}_A, N_B, 0)$ N_A 22 \hat{N}_A $\hat{c}_B \stackrel{?}{=} f1(\widehat{\mathsf{PK}}_B,\mathsf{PK}_A,\hat{N}_B,0) \quad \stackrel{\hat{N}_B}{\longleftarrow} ?? \stackrel{N_B}{\longleftarrow}$ $V_A \leftarrow g(\mathsf{PK}_A, \widehat{\mathsf{PK}}_B, N_A, \hat{N}_B)$ $V_B \leftarrow q(\widehat{PK}_A, PK_B, \widehat{N}_A, N_B)$ display V_{A} display V_B check $V_A = V_B$

output: N_A , \hat{N}_B , r_A , r_B

output: \hat{N}_A, N_B, r_A, r_B

if $(PK_A, \widehat{PK}_B) \neq (\widehat{PK}_A, PK_B)$: Adversary does not know V_B before he selects \hat{N}_A Adversary does not know V_A (cannot influence it) before N_A is given

Note on Numerical Comparison

- idea: c_B is a commitment to N_B which is revealed after N_A is received, V's are hash of the public keys and N's if the public keys are corrupted, the adversary must adapt the N's so that the v's match but no N is free as soon as one is revealed
- "just works" is a variant where no check is made (vulnerable to active attacks)
- presumably, not many human users will carefully compare the 32-bit strings V_A and V_B

Bluetooth Simple Secure Pairing Variants — ii

Passkey Entry

Device A Device B input: PK_A, PK_B input: PKA, PKB type $r_1 \cdots r_k$ FOR i = 1 to k pick $N_A \in U \{0, 1\}^{128}$ pick $N_B \in U \{0, 1\}^{128}$ $c_{A} \leftarrow f1(\mathsf{PK}_{A}, \widehat{\mathsf{PK}}_{B}, N_{A}, r_{i})$ с_А CB $c_B \leftarrow f1(PK_B, PK_A, N_B, r_i)$ NA $\hat{c}_A \stackrel{?}{=} f1(\widehat{PK}_A, PK_B, \hat{N}_A, r_i)$ N_B $\hat{c}_{\mathsf{R}} \stackrel{?}{=} \mathrm{f1}(\widehat{\mathrm{PK}}_{\mathsf{R}}, \mathrm{PK}_{\mathsf{A}}, \hat{N}_{\mathsf{R}}, r_i)$ ENDFOR keep the last N_A and N_B

output: N_A , \hat{N}_B , r, r

output: \hat{N}_A, N_B, r, r

note: not really SAS-based since *r* must be secret until the end of the protocol

SV 2016-17

Case Studies I

Pass Entry Analysis

If $(\mathsf{PK}_A, \widehat{\mathsf{PK}}_B) \neq (\widehat{\mathsf{PK}}_A, \mathsf{PK}_B)$:

- Adversary cannot forge \hat{c}_A and \hat{c}_B with a probability higher than $\frac{1}{2}$ in each iteration (by trying to guess r_i)
- So, he cannot pass with probability higher than 2^{-k}

Bluetooth Simple Secure Pairing Variants — iii Out-of-Band

Device A Device B input: PK_A, PK_B input: PKA, PKB pick $r_A \in [1]{0, 1}^{128}$ pick $r_B \in [1]{0, 1}^{128}$ $c_A \leftarrow f1(PK_A, PK_A, r_A, 0)$ $c_B \leftarrow f1(PK_B, PK_B, r_B, 0)$ authenticate_A(r_A, c_A) authenticate_B(r_B, c_B) $c_{A} \stackrel{?}{=} f1(\widehat{PK}_{A}, \widehat{PK}_{A}, r_{A}, 0)$ $c_B \stackrel{?}{=} f1(\widehat{PK}_B, \widehat{PK}_B, r_B, 0)$ N_A pick $N_A \in \mathcal{U} \{0, 1\}^{128}$ N_{B} pick $N_B \in U \{0, 1\}^{128}$ output: N_A , \hat{N}_B , r_A , r_B output: \hat{N}_A , N_B , r_A , r_B

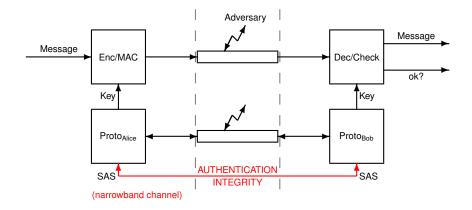
Bluetooth Low Energy (LE) in v4.0

previously known as WiBree (developped by Nokia)

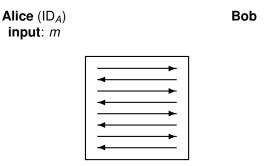
- similar association models, but no public-key crypto anymore
- some ill-designed association model
- a strange key hierarchy with not so much entropy in session key derivation

- Mobile Telephony
- WEP/WPA/WPA2
- Bluetooth
- Cryptography Based on Short Authenticated Strings
- Access Control
- Forward Secrecy: the Case of Signal
- Block Chains

SAS-Based Secure Comunication



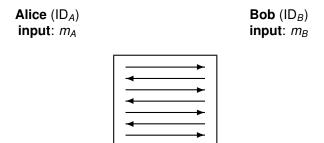
Message Authentication Protocols



output: ID, m

- functionality: $ID = ID_A$ and $\hat{m} = m$
- security: if $ID = ID_A$ then $\hat{m} = m$
- application: semi-A key agreement (*m* is a symmetric key for secure channel so that Bob knows he is talking to Alice)

Message Cross-Authentication Protocols

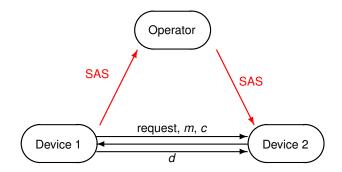


output: ID_B, m_B

output: ID_A, m_A

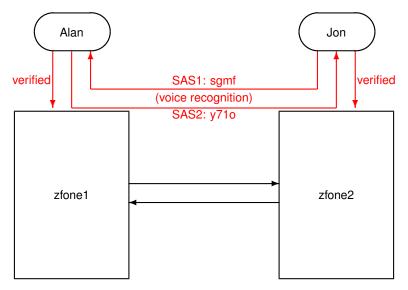
- two message authentication protocols at the same time
- application: authenticated key agreement (m_A and m_B are Diffie-Hellman public keys)

Application I: Personal Area Network Setup



Application II: Voice over IP

Existing Standard: ZRTP



Application III: Peer-to-Peer PGP Channel Setup

9.0		000	Receive authenticated file	
00	Send authenticated file File Authentication		File Authentica	tion
		Port number	4711	
le to be sent	//PGP Key.asc Browse	File destination	//PGP Key.asc	Browse
st name rt number	localhost 4711	Verbose	0	Waiting authenticatio
bose mode	Start authentication	Start listening on		,
a SAS you mu		Enter the SAS for	rauthentification : 94 84 58	Ok
,	usi transmi is 94 84 58 Close			Close
Send comm Receive Rs= No need to	18344249377792897121 ht =8a.3c.ea.3e.a4;7e.96;53;4b.ce:26;75;a4;b5;8f;22;35;f5;47 =44657 send the file =5644344249377792897121 801	Start SAS pro Receive com Send Rs=44 Send Reque Receive Rcm Check comm Waiting for 1 The SAS is 5	mit=8a:3c:ea:3e:a4:7e:96:53:4b:ce:26 657 st=0. = 56448344249377792897121 :3801 mit=8a:3c:ea:3e:a4:7e:96:53:4b:ce:26: 5AS	
))4+)4+

Application IV: Disaster Recovery

- on the road, after a key loss (computer crash, stolen laptop)
 → set up of a security association
- PKI collapse (company bankrupt, main key sold, act of God)
 → set up of a security association

Semi-Authenticated Non-Interactive: Application

Faculté informatique et communications Institut de systèmes de communication Laboratoire de sécurité et de cryptographie

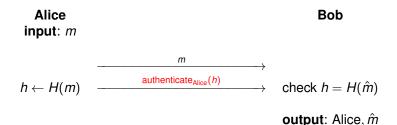
Serge VAUDENAY

Professeur

EPFL IC ISC LASEC INF 241 Station 14 CH - 1015 Lausanne Tél.: +41 21 6937696 Fax: +41 21 6936870 serge.vaudenay@epfl.ch http://:lasecwww.epfl.ch

12E7 CAE2 2119 086C DC3D 8EAB 2EA5 9621 5E8C 7956

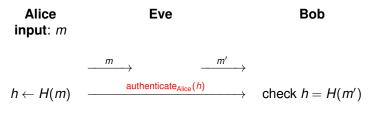
Folklore (Balfanz-Smetters-Stewart-Chi Wong 2002)



efficient, provably security assuming collision resistance
 this requires SAS of at least 160 bits

A Collision Attack

if SAS is so short that we can find collisions h(m) = h(m'), $m \neq m'$, make Alice run the protocol with *m* but change the message to Bob to m'



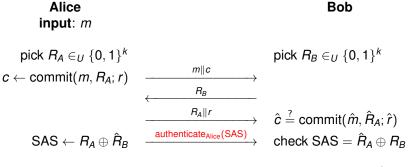
output: Alice, m'

Pasini-Vaudenay 2006: SAS-Based NIMAP

- 🙂 provable security, efficient
- \odot can work with SAS of 80 bits (the least possible for NIMAP)

Semi-Authenticated Interactive

Vaudenay 2005

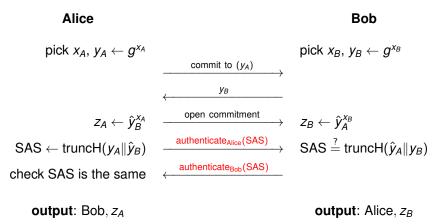


output: Alice, m

- © provable security, efficient
- 🙂 can work with SAS of 20 bits

Authenticated Interactive

Zimmermann 1995: PGPfone



Attack on a Variant Without Commitment

Alice Bob pick $\hat{x}_A, \hat{y}_A \leftarrow g^{\hat{x}_A}$ pick x_A pick x_B $\xrightarrow{\hat{y}_A} \quad y_B \leftarrow g^{x_B}$ $y_A \leftarrow g^{x_A} \xrightarrow{y_A} \rightarrow$, ^yB____ pick $\hat{x}_B, \hat{y}_B \leftarrow g^{\hat{x}_B}$ s.t. , ^ŷ₿____ $h(y_A \| \hat{y}_B) = h(\hat{y}_A \| y_B)$ $z_A \leftarrow y_A^{\hat{x}_B}, z_B \leftarrow y_B^{\hat{x}_A}$ $z_A \leftarrow \hat{y}_B^{x_A}$ $z_B \leftarrow \hat{y}_A^{x_B}$ authenticate Alice (SAS) SAS $\stackrel{?}{=} h(\hat{y}_A || y_B)$ SAS $\leftarrow h(v_A \| \hat{v}_B)$ \rightarrow authenticate Bob (SAS) check SAS output: Bob, ZA output: Alice, ZB Z_A, Z_B

Conclusion on Manual Key Establishment

- secure communications over insecure channels can be manually set up by a human operator
- public-key -less solutions: although pretty weak, Bluetooth standards can offer a pragmatic costless security when properly used
- applications: personal area network, VoIP, peer-to-peer, disaster rescue

References on SAS-Based Cryptography

D. Balfanz, D. K. Smetters, P. Stewart, H. Chi Wong.

Talking to Strangers: Authentication in Ad-Hoc Wireless Networks. In Network and Distributed System Security Symposium Conference (NDSS 02), 2002.

2 C. Gehrmann, C. Mitchell, K. Nyberg.

Manual Authentication for Wireless Devices.

In RSA Cryptobytes, vol. 7, pp. 29-37, 2004.

S. Vaudenay.

Secure Communications over Insecure Channels Based on Short Authenticated Strings.

In Advances in Cryptology (CRYPTO'05), LNCS vol. 3621, pp. 309-326, 2005.

S. Pasini, S. Vaudenay.

Secure Communications over Insecure Channels Using an Authenticated Channel.

In Topics in Cryptology (CT-RSA'06), LNCS vol. 3860, pp. 280–294, 2006.

S. Pasini, S. Vaudenay.

SAS-Based Authenticated Key Agreement.

In Public Key Cryptography (PKC'06), LNCS vol. 3958, pp. 385-409, 2006.

- Mobile Telephony
- WEP/WPA/WPA2
- Bluetooth
- Cryptography Based on Short Authenticated Strings
- Access Control
- Forward Secrecy: the Case of Signal
- Block Chains

Application: Access Control

many scenarios:

- access of human user to a computer
- access of a person to a door: "Sésame"
- access of human user to a mailbox
- access of human user to a service through the Internet

access control = peer authentication

Password Authentication Protocol (Step 1)

- PROBLEM: authenticate a client to a server
- HYPOTHESIS 1: channel to server keeps confidentiality
- example:
 - physical access
 - secure channel from semi-authenticated setup (client authenticates the server e.g. using a PKI)

Password Authentication Protocol — i

- server keeps a database of (ID, password) entries
- channel to server keeps confidentiality

Client

Server

ID,password

get entry (ID, w)check w = password

Problem: if adversary has access to database he can get the password

 \rightarrow

Password Authentication Protocol — ii

- server keeps a database of (ID, OW(password)) entries
- channel to server keeps confidentiality

Client

Server

ID,password

get entry (ID, w) check w = OW(password)

Problem: multi-target invertion attacks (specially when password have low entropy)

 \rightarrow

Password Authentication Protocol — iii

- server keeps a database of (ID, salt, OW(password, salt)) entries
- channel to server keeps confidentiality

Client

Server

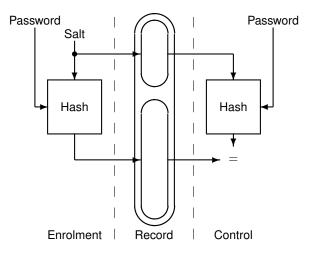
ID,password

get entry (ID, salt, w) check w = OW(password, salt)

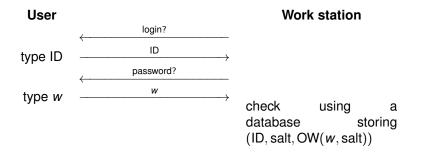
advantages:

avoid <u>multi-target</u> bruteforce attacks from database
 (does not avoid single-target exhaustive search from database)

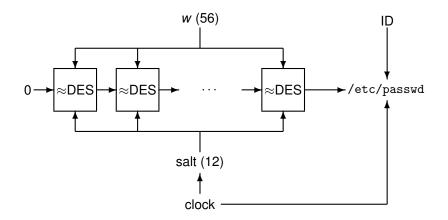
Password Access Control Using Salt



Example: UNIX Password Access Protocol



UNIX Passwords



Online and Offline Passwords Recovery

	online	offline
method	try to connect us- ing a guess for the password until it works	get a witness look for a guess which is consistent with the witness
countermeasure	 increasing delay before new attempt blocked after xx trials 	 password with large entropy use salt

Examples

- Basic Access Control in HTTP [RFC2617]
- IMAP4rev1 [RFC2060]
- tequila authentication at EPFL

Pros and Cons

Pros

- the server does not keep the password (only a digest)
- the client need not run any calculation (nice for human clients!)

Cons

 does not work through a channel without confidentiality protection: the password can be compromised

Password Authentication Protocol (Step 2)

- PROBLEM: authenticate a client to a server
- HYPOTHESIS 2: adversary is passive
- example: unencrypted semi-authenticated channel (client authenticates the server e.g. using a PKI but they are not allowed to use encryption)

Passive vs Active Adversary

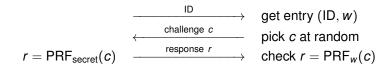
- passive adversary: only listen to communications and tries to get credential to later pass access control
- active adversary: can interfere with client or server communications e.g. man-in-the-middle

Challenge/Response Protocol

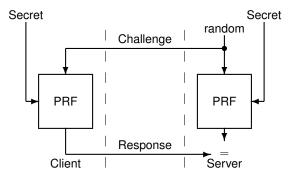
- server keeps a database of (ID, secret) entries
- adversary is passive

Client

Server



Challenge/Response Protocol



Pros and Cons

Pros

resistance to passive adversary (if secret has large entropy)

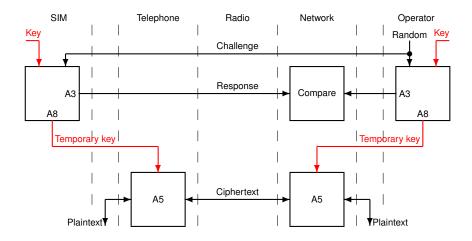
Cons

- the server must keep the secret and strongly protect the database
- vulnerable to relay attacks
- vulnerable to passive offline attacks (if secret has low entropy)
- vulnerable to active adversary

Examples

- GSM
- CHAP Access Control in PPP [RFC1334]
- Digest Access Control in HTTP [RFC2617]
- Bluetooth peer authentication
- access control to UBS account (later in this chapter)

The GSM Case



S/Key - OTP [RFC2289]

possible hash function H: md4, md5, sha1

Client Server W s at random choose w $s, p_1, ..., p_N$ $p_i \leftarrow H^{N+1-i}(w, s)$ store p_1, \ldots, p_N $i \leftarrow 1$ $i \leftarrow 1, p \leftarrow p_0$ ŝ reauest otp- $\langle H \rangle$ is recompute or from list У check H(y) = p $y \leftarrow p_i$ ÷ $p \leftarrow v, i \leftarrow i + 1$

challenges must be authenticated responses shall be protected against delays in delivery

Pros and Cons

Pros

- the server does not keep the secret
- resistance to passive adversary

Cons

- used with a single server (or securely synchronized ones)
- not user-friendly: user has to work (e.g. wear a long list and check passwords in it)
- still vulnerable to relay attacks

Human Factor against Password Access Control

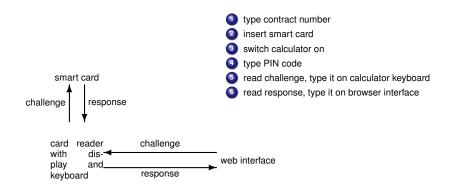
- weak passwords: short, trivial (in dictionaries, first name)
- long passwords are hard to remember
- people are lazy (or don't want to be bothered) write passwords on post'it, bypass security protocols, ...

Alternate Authentication Means

- from what you know: password
 always available (unless forgotten)
 must address the human factor
- from what you possess: secure token (smart card, dongle, secureID, key lock)
 tamper proof, can perform cryptographic operations
 can be stolen, lost, forgotten
- from what you are: biometrics
 - ©always available
 - © fuzzy, not very secure, threat to humankind

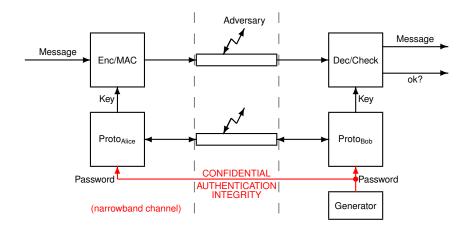
strong authentication = authentication using at least two methods (2-way authentication) example: smart card + PIN code

Example: UBS E-Banking



- smart card + external reader (calculator)
- challenge-response protocol

Password-based Authenticated Key Exchange (PAKE)



Password vs Secret Keys

- secret keys are stored by computers (can be pretty long)
- passwords are also kept in human memories
- typically: password have less than 48 bits of entropy

How to Solve the Problem?

- with no other setup assumptions (no secure token)
- cannot assume a password with large entropy
- find a pragmatic and technical solution
 - \longrightarrow leak no information which could be used to run offline attacks
 - \longrightarrow live with online dictionary attacks (slow down tests, audit, ...)

Online Dictionary Attack: a Generic Attack

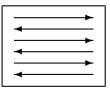
generic

- 1: repeat
- 2: make a new guess \hat{w} following a dictionary
- 3: simulate Alice with password \hat{w}
- 4: launch an instance of the Bob protocol
- 5: make the simulator and Bob talk to each other
- 6: until Bob accepts
- 7: print ŵ

a protocol is secure if this attack is the best one

Password-Based Authenticated Key Agreement

Alice password: w random tape: r_A Bob password: *w* random tape: *r*_B



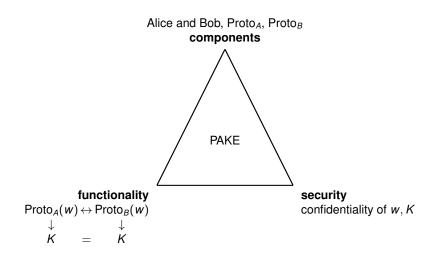
output: K_A

- functionality: $K_A = K_B = K$
- security
 - active adversary learns (almost) nothing about w
 - if party ends on K the active adversary has no clue about K

SV 2016-17

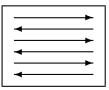
Case Studies I

A New Primitive



Subproblem: Password-based Access Control

Alice password: w random tape: r_A Bob password: *w* random tape: *r*_B



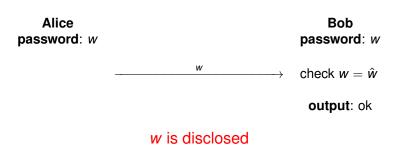
output: ok

- functionality: the protocol completes
- security
 - active adversary learns (almost) nothing about w
 - if Bob completes then Alice has the same view on the protocol

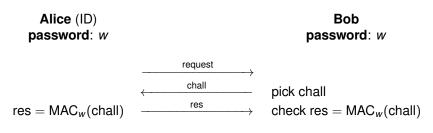
SV 2016-17

Case Studies I

1st (Bad) Example: Password Access Control



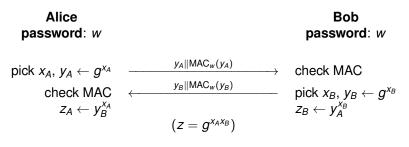
2nd (Bad) Example: Challenge/Response Protocol



output: ok

subject to offline exhaustive search

Key Agreement: a (Bad) Idea

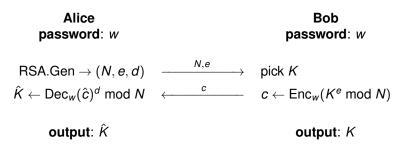


output: ZA

output: *z*_B

subject to offline exhaustive search

Key Agreement: Another (Bad) Idea

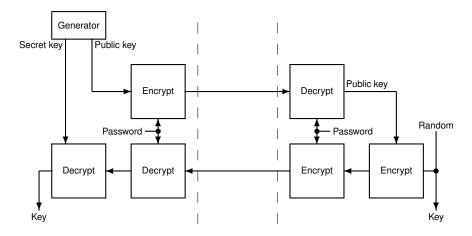


if *K* can later be tested, offline exhaustive search possible partition attack: eliminate all \hat{w} such that $\text{Dec}_{\hat{w}}(c) \ge N$

Existing Protocols

- Bellovin-Merritt 1992: EKE
 - general construction paradigm
 - can be based on ElGamal, Diffie-Hellman, RSA or other
 - informal (no security proof)
- Lucks 1997: OKE (later broken)
- Wu 1997: SRP (Secure Remote Password), quite popular
- EKE variants based on Diffie-Hellman
 - Bellare-Pointcheval-Rogaway 2000: EKE2
 - Boyko-MacKenzie-Patel 2000: PAK
 - Bellare-Rogaway 2000: AuthA (several variants)
 - Katz-Ostrovski-Yung 2001 (security proof without random oracles)
 - MacKenzie 2002: the PAK suite (PPK, PAK-X, PAK-Y, PAK-Z, ...)
 - Abdalla-Chevassut-Pointcheval 2005: another EKE+AuthA variant
 - others: SPEKE, augmented EKE, B-SPEKE, AMP, Jiang-Gong, ...
- protocols based on RSA
 - MacKenzie-Patel-Swaminathan 2000: SNAPI
 - Zhang 2004: PEKEP

EKE (Bellovin-Merritt 1992)



EKE (Bellovin-Merritt 1992) based on ElGamal

Alice password: w		Bob password: <i>w</i>
$ ext{pick } x_A, y_A \leftarrow g^{x_A} \ ext{pick } R_A \in_U \{0,1\}^k, \ c_A \leftarrow ext{enc}_w(y_A) \ ext{}$		pick x_B , $y_B \leftarrow g^{x_B}$ pick $R_B \in_U \{0,1\}^k$ $\hat{y}_A \leftarrow \operatorname{dec}_w(\hat{c}_A)$ pick k_B , $z \leftarrow k_B \hat{y}_A^{x_B}$ $d_B \leftarrow \operatorname{enc}_{k_B}(R_B)$
$\hat{y}_B \ \hat{z} \leftarrow dec_{w}(\hat{c}_B) \ k_{\mathcal{A}} \leftarrow \hat{z} / \hat{y}_B^{X_{\mathcal{A}}}$	<i>C</i> _B ∥ <i>d</i> _B	$c_B \leftarrow \operatorname{enc}_w(y_B \ z)$
$\hat{R}_B \leftarrow dec_{k_A}(\hat{d}_B) \ d_A \leftarrow enc_{k_A}(R_A \ \hat{R}_B)$	$\xrightarrow{d_A}$	$\hat{R}_A \ \hat{R} \leftarrow dec_{k_B}(\hat{d}_A)$ check $\hat{R} = R_B$
check $R_{A}={\sf dec}_{k_{A}}(\hat{e}_{B})$	<i>€</i>	$e_B \leftarrow \operatorname{enc}_{k_B}(\hat{R}_A)$
output: k _A		output: k _B

Wu 2002: Secure Remote Password Protocol (SRP-6)

Alice Bob password: w secret: $V = g^{H(s || ID_A || w)}$ **db entry**: $ID_A || s || group || V$ ID_A *s*∥group check group, $W \leftarrow H(\hat{s} || ID_A || w)$ retreive *s*||group||*V* pick $x_A, y_A \leftarrow g^{x_A} \xrightarrow{y_A}$ pick x_B , $t \leftarrow 3V + g^{x_B}$ $\hat{r} \leftarrow H(y_A \| \hat{t}) \quad \xleftarrow{t} \quad r \leftarrow H(\hat{y}_A \| t)$ $k_A \leftarrow H((\hat{t} - 3g^W)^{x_A + \hat{r}W})$ $k_{\mathsf{R}} \leftarrow H((\hat{y}_{\mathsf{A}} V^{\mathsf{r}})^{\mathsf{x}_{\mathsf{B}}})$ $d_A \leftarrow H(y_A \| \hat{t} \| k_A) \xrightarrow{d_A} \text{ check } \hat{d}_A = H(\hat{y}_A \| t \| k_B)$ $\longleftarrow d_B \leftarrow H(\hat{y}_A \| \hat{d}_A \| k_B)$ check $\hat{d}_B = H(v_A || d_A || k_A)$

> output: $H(k_A)$ output: $H(k_B)$ (group = (g, p), g generator of \mathbf{Z}_p^* , p and $\frac{p-1}{2}$ prime)

References on Password-Based Cryptography

• C. Boyd, A. Mathuria.

Protocols for Authentication and Key Establishment. Information Security and Cryptography, Springer Verlag, 2003.

 S. M. Bellovin, M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary Attacks. In *IEEE symposium on Research in Security and Privacy*, IEEE Computer Society Press, pp. 72–84, 1992.

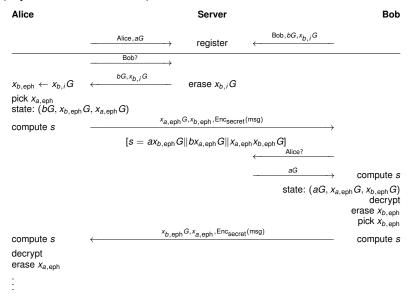
- Mobile Telephony
- WEP/WPA/WPA2
- Bluetooth
- Cryptography Based on Short Authenticated Strings
- Access Control
- Forward Secrecy: the Case of Signal
- Block Chains

Signal

used in WhatsApp

- secure messaging (confidentiality, authenticity, integrity of messages)
- forward and future secrecy (confidentiality preserved even though secrets leak)
- deniability (no transferable proof of message authorship leaks)
- asynchronous (can be done offline)
- detect replay/reorder/deletion attacks
- allow decryption of out-of-order messages
- don't leak metadata

Initial Key Agreement (keys are in Curve25519)



Ratchet

A ratchet is a mechanical device which can only move forward.

- forward secrecy: protects past sessions against future compromises of *long-term* secret keys
- future secrecy: protects future sessions against compromises of *ephemeral* secret keys

Double Ratchet in Signal

- 3DH: a ratchet for every time the direction of exchange changes needs synchronization between the two participants good forward and future secrecy
- a ratchet for every message in the same direction no real future secrecy plausible deniability

Ratchet for Messages

given $x_{a,eph}x_{b,eph}G$, Alice and Bob devide a sequence $CK_0, MK_0, CK_1, MK_1, ...$

the message *i* is encrypted using MK_i with encrypt-then-MAC using AES256 and HMAC-SHA256

other techniques to send sequence numbers, total number of messages, etc

- Mobile Telephony
- WEP/WPA/WPA2
- Bluetooth
- Cryptography Based on Short Authenticated Strings
- Access Control
- Forward Secrecy: the Case of Signal
- Block Chains

Bitcoins

- virtual currency
- launched in 2009 by an anonymous guy (pseudo Satoshi Nakamoto)
- completely decentralized, there is no authority
- anyone creates its own account
- broadcast transactions on a public ledger

A Bitcoin Transaction

"*I*, pk, holder of UTXO link₁, ..., link_n pay x_1 to pk₁, ..., x_m to pk_m" [signature]

- UTXO = unspent transaction output
- requirement: $x_1 + \cdots + x_m$ equals sum of given UTXO
- then, amounts from [link₁], ..., [link_n] to pk become spent and amounts from transaction become new UTXO with a link
- problem: how to make sure that UTXO is really unspent
- equivalent problem: how to make everybody "see" the same list of transactions

Block Chain

a block from the block chain:

- hash of the previous block (except for the genesis block)
- list of transactions from the last period
- proof-of-work (PoW) based on the above

scheme for miners (every 10 minutes):

- take the longest valid block chain
- collect all broadcast valid transactions with respect to this chain
- make a new block and PoW
- broadcast it
- (the block can be used as an UTXO reward to the miner)

block shall contains for PoW value such that

SHA256(block) starts with 69 zero bits

69 is the difficulty of June 2016 it is constantly calibrated

Conclusion

- Lightweight networks based on conventional cryptography only (GSM, Bluetooth, ...)
- Although limited, we can make many protocols with only conventional cryptography
- Assembling cryptographic primitives in a protocol is not trivial
- access control based on
 - what you know (password)
 - what you have (a key in a secure token for challenge-response)
 - what you are (biometrics)
- New notions: forward secrecy, plausible deniability, block chain, proof-of-work

References

- Borisov-Goldberg-Wagner. Intercepting Mobile Communications: the Insecurity of 802.11. In *MOBICOM 2001*, ACM.
- Jakobsson-Wetzel. Security Weaknesses in Bluetooth. In CT-RSA 2001, LNCS 2020.
- Vaudenay. On Bluetooth Repairing: Key Agreement based on Symmetric-Key Cryptography. In *CISC 2005*, LNCS 3822.
- Beck-Tews. Practical Attacks against WEP and WPA. In *WiSec 2009*, ACM 2009.

Must Be Known

- GSM security infrastructure
- mobile telephony security
- Bluetooth pairing
- challenge-response protocol
- password-based cryptography
- techniques for access control
- how PAKE works
- foward secrecy

Train Yourself

 bad EKE variant: final exam 2014–15 ex4

- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
- 7) Case Studies I
- Public-Key Cryptography
 - Trust Establishment

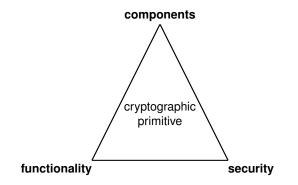
Roadmap

- Diffie-Hellman: new directions in cryptography
- RSA standards for encryption and signature
- the ElGamal signature dynasty

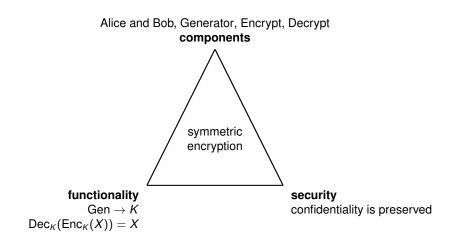
Public-Key Cryptography Public-Key Cryptography

- Diffie-Hellman Key Exchange
- RSA Cryptography
- ElGamal Cryptography
- Selecting Key Lengths
- Formalism
- Towards Post-Quantum Cryptography?
- Other Primitives

Cryptographic Primitive (Reminder)



Symmetric Encryption (Reminder)



Diffie-Hellman

"New Directions in Cryptography" (1976)

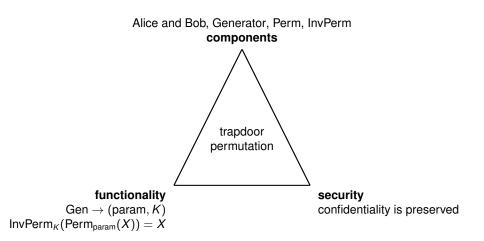
[Merkle, Hellman, Diffie]

- notion of "trapdoor permutation" (no instance)
- building a public-key cryptosystem from it
- building a digital signature scheme from it
- key agreement protocol

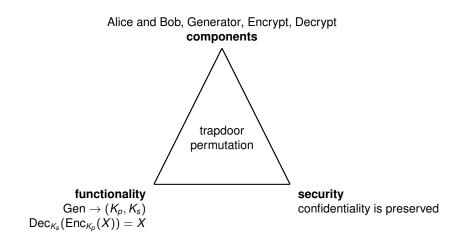
Trapdoor Permutation

- we use an encryption Perm that is easy to compute in one way
- ...but hard in the other (to compute InvPerm)
- ...except using a trapdoor K

Trapdoor Permutation

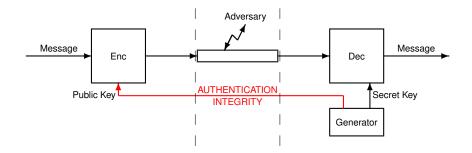


Public-Key Cryptosystem



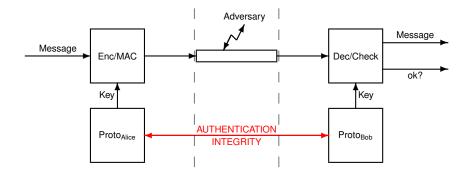
Confidentiality using an Authenticated Channel

Public Key Cryptosystem

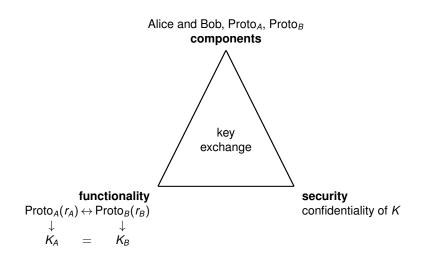


Confidentiality using an Authenticated Channel

Key Exchange Protocol

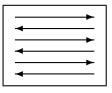


Key Exchange Protocol



Key Exchange Protocol

Alice random tape: r_A Bob random tape: r_B



output: K_A

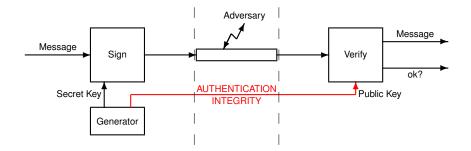
• functionality: $K_A = K_B = K$

• security: passive adversary cannot infer K from the exchanges

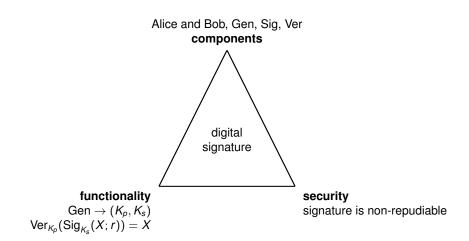
Terminology

- key exchange: there is no exchange of keys, just exchange of data to derive a common secret key often assumes no prior common secret
- = key agreement: same
- = **key establishment**: same (may be more general)
- **key transfer**: one participant chooses a key and sends it to the second participant

Digital Signature Scheme



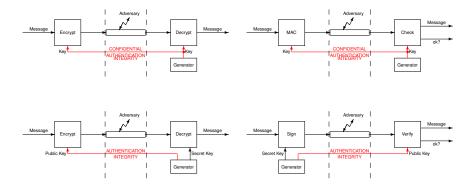
Digital Signature Primitive



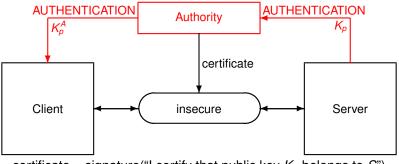
Big Picture

confidential transmission

authenticated transmission



Application: Certificates



certificate = signature("I certify that public key K_p belongs to S")

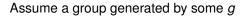
Public-Key Cryptography

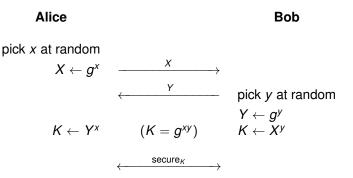
- Public-Key Cryptography
- Diffie-Hellman Key Exchange
- RSA Cryptography
- ElGamal Cryptography
- Selecting Key Lengths
- Formalism
- Towards Post-Quantum Cryptography?
- Other Primitives

Static versus Ephemeral Diffie-Hellman

- Ephemeral DH: X and Y are fresh (and destroyed after protocol completes)
- Static DH: X and Y are used like public keys
- Semi-static DH: one key is fixed (public key), the other is fresh

Ephemeral Diffie-Hellman Key Agreement Protocol





Semi-Static Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g

Alice secret key: xpublic key: $X = g^x$

 $\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Bob

Static Diffie-Hellman Key Agreement Protocol

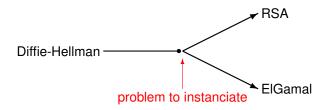
Assume a group generated by some g

AliceBobsecret key: xsecret key: ypublic key: $X = g^x$ public key: $Y = g^y$ $K \leftarrow Y^x$ $(K = g^{xy})$ $K \leftarrow X^y$ \leftarrow

Forward Secrecy

- **forward secrecy**: communication is still private if long term secret keys are disclosed example: ephemeral Diffie-Hellman (no long term secret)
- no forward secrecy: communication might be decrypted if long term secret keys leak in the future example: static or semi-static Diffie-Hellman

Diffie-Hellman Cryptography



- trapdoor permutation: operation in Z^{*}_n which can be inverted with the factorization of n
- probabilistic encryption: encryption returns g^x along with symEnc_{KDF(Y^x)}(message) for $Y^x = DH(g, g^x, Y)$

Public-Key Cryptography

- Public-Key Cryptography
- Diffie-Hellman Key Exchange

RSA Cryptography

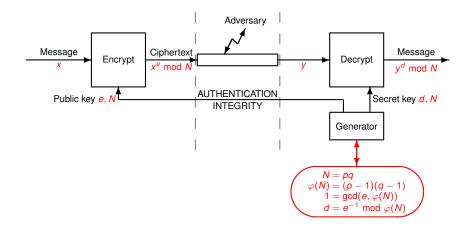
- ElGamal Cryptography
- Selecting Key Lengths
- Formalism
- Towards Post-Quantum Cryptography?
- Other Primitives

Rivest-Shamir-Adleman (RSA) (1978)

[Shamir, Rivest, Adleman]

- concrete trapdoor permutation
- \longrightarrow public-key cryptosystem
- \longrightarrow signature scheme

Plain RSA



Why "Plain" RSA

plain RSA

- = textbook RSA
- = vanilla RSA
- = raw RSA
- = RSA for mathematicians

in practice, things are a little more complicated because

- messages are not elements of Z_N
- RSA has homomorphic properties (Enc(ab) = Enc(a)Enc(b)) which are quite dangerous
- RSA engineering leads us to security concerns

PKCS#1v1.5

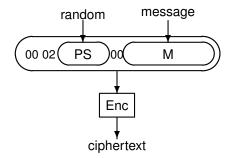
(Modulus of k bytes, message M of at most k - 11 bytes.) Encryption: Decryption:

- generate a pseudorandom string PS of non-zero bytes so that *M*||PS is of *k* – 3 bytes
- construct string 00||02||PS||00||*M* of *k* bytes
- convert it into an integer
- perform the plain RSA encryption
- convert the result into a string of k bytes

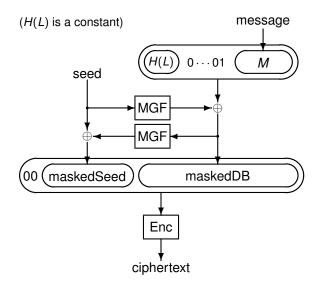
- convert the ciphertext into an integer, reject it if it is greater than the modulus
- perform the plain RSA decryption and obtain another integer
- convert back the integer into a byte string
- check that the string has the 00||02||PS||00||*M* format for some byte strings PS and *M* where PS has no zero bytes

output M

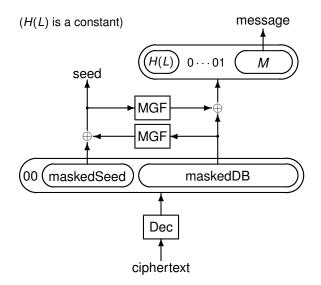
PKCS#1v1.5 Encryption



RSA-OAEP Encryption



RSA-OAEP Decryption



Mask Generation Function in RSA-OAEP

The PKCS specifications further suggests an mask generation function MGF1 which is based on a hash function. The MGF1_{ℓ}(*x*) string simply consists of the ℓ leading bytes of

 $H(x||0000000)||H(x||0000001)||H(x||0000002)||\cdots$

in which x is concatenated to a four-byte counter.

Rabin Cryptosystem

Set up: find two prime numbers p and q, set N = pq and pick a random $B \in \mathbf{Z}_N$ (e.g. B = 0)

Messages: $x \in \mathbf{Z}_N$

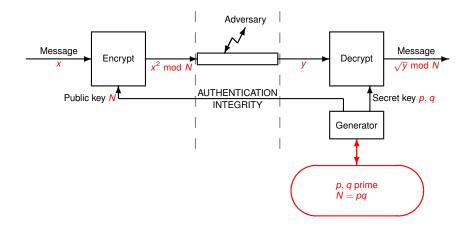
Public key: *B*, *N*

Secret key: *B*, *p*, *q*

Encryption: $E(x) = x(x + B) \mod N$

Decryption: D(y) is one of the four square roots of $\frac{B^2}{4} + y$ minus $\frac{B}{2}$ $y = x(x + B) \iff (x + \frac{B}{2})^2 = \frac{B^2}{4} + y$

Plain Rabin Encryption (B = 0)



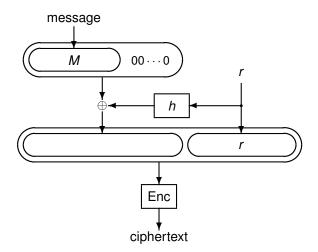
Ensuring Non-Ambiguity in the Decryption

- we add redundancy in the plaintext so that valid plaintexts are spare
- we make sure that no other square root has valid redundancy (hard without K_s)
- we take the only expected square root with valid redundancy
- we reject ciphertexts which fail to decrypt

Rabin Complexity

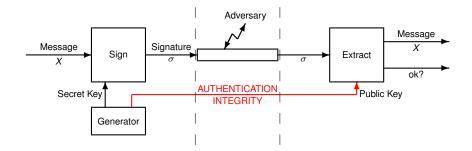
- Generator: $\mathcal{O}(\ell^4)$ (prime numbers generation)
- Encryption: $\mathcal{O}(\ell^2)$
- Decryption: $\mathcal{O}(\ell^3)$

SAEP: Simple OAEP Padding for Rabin

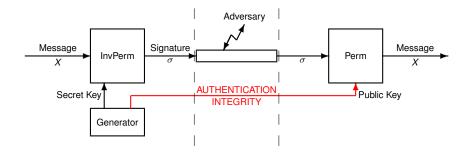


pad with enough 0's to ensure non-ambiguity

Signature with Message Recovery



Trapdoor Permutation to Signature with Message Recovery



Plain RSA Signature

Set up: find two random different prime numbers p and q of size $\frac{\ell}{2}$ bits. Set N = pq. Pick a random e until gcd(e, (p-1)(q-1)) = 1. (Sometimes we pick special constant e like e = 17 or $e = 2^{16} + 1$.) Set $d = e^{-1} \mod ((p-1)(q-1))$.

Secret key:
$$K_s = (d, N)$$
.

Public key: $K_p = (e, N)$.

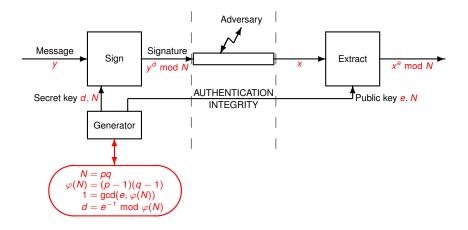
Message: an element $y \in \mathbf{Z}_N$.

Signature generation: $x = y^d \mod N$.

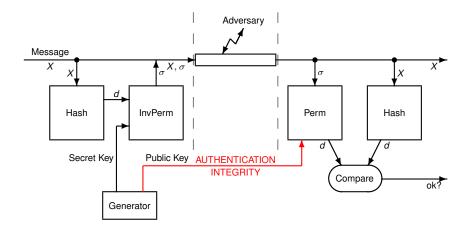
Extraction: $y = x^e \mod N$.

(Signature with message recovery)

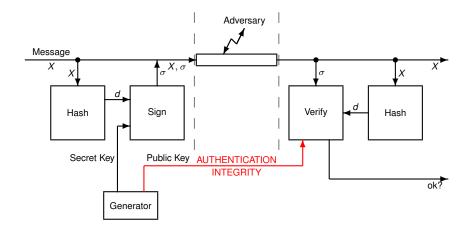
Plain RSA Signature



Trapdoor Permutation to Signature



More Generally: Hash-and-Sign Paradigm



PKCS#1v1.5

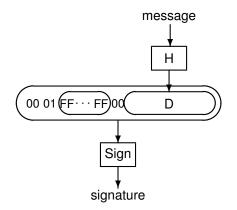
We are given a modulus *N* of *k* bytes.

- hash the message (for instance with SHA-1) and get a message digest.
- encode the message digest and the identifier of the hash algorithm into a string *D*.
- pad it with a zero byte to the left, then with many FF bytes in order to reach a length of k 2 bytes, then with a 01 byte. We obtain k 1 bytes.
- This byte string 00||01||FF ···· FF||00||D is converted into an integer.
- compute the plain RSA signature.
- convert the result into a string of k bytes.

Signature Verification

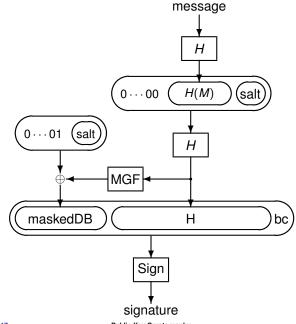
- convert the signature into an integer. Reject it if it is greater than the modulus.
- erform the plain RSA verification and obtain another integer.
- convert back the integer into a byte string.
- Check that the string has the 00||01||FF...FF||00||D format for a byte string D.
- decode the data D and obtain the message digest and the hash algorithm. Check that the hash algorithm is acceptable.
- hash the message and check the message digest.

PKCS#1v1.5 Signature



RSA signature without message recovery

RSA-PSS



message Н H(M)0...00 (salt) 0...01 salt Н ▶ 0/1 MGF maskedDB Н bc Extract signature

RSA-PSS Verification

Public-Key Cryptography

- Public-Key Cryptography
- Diffie-Hellman Key Exchange
- RSA Cryptography

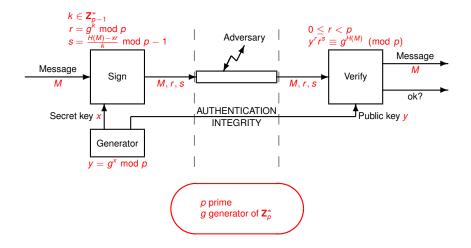
ElGamal Cryptography

- Selecting Key Lengths
- Formalism
- Towards Post-Quantum Cryptography?
- Other Primitives

ElGamal Signature

Public parameters: a large prime number p, a generator g of Z_{p}^{*} . **Set up:** generate a random $x \in \mathbf{Z}_{p-1}$ and compute $y = q^x \mod p$. Secret key: $K_s = x$. **Public key:** $K_{p} = y$. Message digest: $h = H(M) \in \mathbb{Z}_{p-1}$. **Signature generation:** pick a random $k \in \mathbb{Z}_{p-1}^*$, compute $r = q^k \mod p$ and $s = \frac{h - xr}{k} \mod p - 1$, the signature is $\sigma = (\mathbf{r}, \mathbf{s}).$ Verification: check that $y^r r^s \equiv g^h \pmod{p}$ and 0 < r < p.

ElGamal Signature



Drawbacks of ElGamal Signatures

- signatures are pretty long
- security issues related to subgroups
- lack of security proof for arbitrary public parameter

The ElGamal Dynasty

- 1984 ElGamal signatures
- 1989 Schnorr signatures: introduced p and q
- 1995 DSA: US signatures
- 1995 Nyberg-Rueppel signatures
- 1997 Pointcheval-Vaudenay signatures
- 1998 KCDSA: Korean signatures
- 1998 ECDSA
- ...

Generating the Public Parameters

- pick a prime number q
- take a random p = aq + 1 until it is prime
- take a random number in Z^{*}_p, raise it to the power *a* modulo *p*, and get *g*
- if g = 1, try again (otherwise, it must be of order q in \mathbf{Z}_{p}^{*})

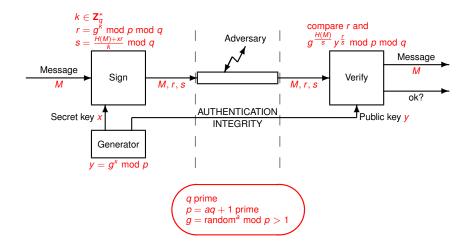
Benefits

- signatures are shorter
- no proper subgroup (only {1} and the group itself)
- some form of provable security (related to interactive proofs)

DSA Signature (DSS)

Public parameters (p, q, g): pick a 160-bit prime number q, a large prime number p = aq + 1, *h* of \mathbf{Z}_{p}^{*} raised to the power *a*, $g = h^a \mod p$ such that $g \neq 1$ (an element of order q). **Set up:** pick $x \in \mathbf{Z}_q$ and compute $y = q^x \mod p$. **Secret key:** $K_s = x$. **Public key:** $K_p = y$. **Signature generation:** pick a random $k \in \mathbf{Z}_{a}^{*}$, compute $r = (q^k \mod p) \mod q$, and $s = \frac{H(M) + xr}{k} \mod q$, the signature is $\sigma = (r, s)$. **Verification:** check that $r = \left(g^{\frac{H(M)}{s} \mod q} y^{\frac{r}{s} \mod q} \mod p\right) \mod q$.

DSA Signature



ECDSA

Public parameters: we use a field of cardinality *q* (either a power of 2, or a large prime), an elliptic curve *C* defined by two field elements *a* and *b*, a prime number *n* larger than 2^{160} , and an element *G* of *C* of order *n*. (The elliptic curve equation over GF(*q*) is $y^2 + xy = x^3 + ax^2 + b$ in the characteristic two case and $y^2 = x^3 + ax + b$ in the prime field case.) Public parameters are subject to many security criteria.

Set up: pick an integer d in [1, n-1], compute Q = dG. Output $(K_p, K_s) = (Q, d)$.

ECDSA

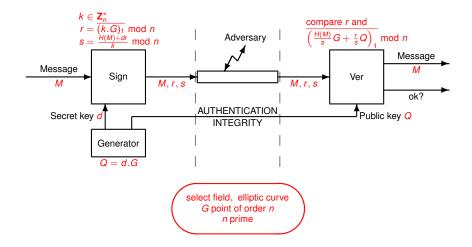
Signature generation: pick k in [1, n - 1] at random and compute

$$\begin{aligned} (x_1, y_1) &= kG \\ r &= \overline{x_1} \mod n \\ s &= \frac{H(M) + dr}{k} \mod n \end{aligned}$$

($\overline{x_1}$ is a standard way to convert a field element x_1 into an integer.) If r = 0 or s = 0, try again. Output the signature $\sigma = (r, s)$

Verification: check that $Q \neq O$, $Q \in C$, and nQ = O. Check that r and s are in [1, n - 1] and that $r = \overline{x_1} \mod n$ for $(x_1, y_1) = u_1G + u_2Q$, $u_1 = \frac{H(M)}{s} \mod n$, and $u_2 = \frac{r}{s} \mod n$.

ECDSA Signature



Example of Public Parameters

secp192r1:

- $q \quad = \quad 6277101735386680763835789423207666416083908700390324961279$
- b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1
- n = 6277101735386680763835789423176059013767194773182842284081
- G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
- seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

(the leading "03" is for point compression)

Example of Keys

- $d \quad = \quad 651056770906015076056810763456358567190100156695615665659$
- Q = 02 62b12d60 690cdcf3 30babab6 e69763b4 71f994dd 702d16a5

(the leading "02" is for point compression)

ECDSA Parameters Generation

- Choose the finite field \mathbf{F}_q .
- **2** Pseudo-randomly generate a *c* from seed. Take an elliptic curve defined by some *a* and *b* such that the *j*-invariant is $j = 6912 \frac{4c}{4c+27}$ for *q* prime (i.e. $c = a^3/b^2$) and $j = \frac{1}{c}$ (i.e. c = b) otherwise.
- For *q* prime, check that $4a^3 + 27b^2 \mod q \neq 0$. For *q* a power of two, check that $b \neq 0$. If this is not the case, go back to Step 2.
- Count the number of points on the elliptic curve and isolate a prime factor *n* greater than 2^{160} . If this does not work or if $n \le 4\sqrt{q}$, go back to Step 2.
- Check the MOV and anomalous condition for C. If this does not hold, go back to Step 2.
- Pick a random point on the elliptic curve and raise it to the cofactor of *n* power in order to get *G*. If *G* is the point at infinity, try again.

Set parameters to (*q*, representation, *a*, *b*, *n*, *G*, seed).

SV 2016-17

Public-Key Cryptography

ECDSA Parameters Validation

Parameters: (*q*, representation, *a*, *b*, *n*, *G*, seed).

- Check that q is an odd prime or a power of 2 of appropriate size. In the latter case, check that the field representation choice is valid.
- 2 Check that a, b, x_G, y_G (where $G = (x_G, y_G)$) lie in \mathbf{F}_q .
- Check that seed certifies *a* and *b* by generating *c* again and checking that $\frac{a^3}{b^2} = c$ or b = c depending on the field type.
- For *q* prime, check that $4a^3 + 27b^2 \mod q \neq 0$. For *q* a power of two, check that $b \neq 0$. Check that *G* lies in the elliptic curve. Check that *n* is a prime greater than both 2^{160} and $4\sqrt{q}$. Check that nG = O, the neutral element. Check the MOV and anomalous condition.

ECDSA Parameters Selection: Conclusion

- making new parameters is not easy
- rather use parameters from standards

Public-Key Cryptography

- Public-Key Cryptography
- Diffie-Hellman Key Exchange
- RSA Cryptography
- ElGamal Cryptography
- Selecting Key Lengths
- Formalism
- Towards Post-Quantum Cryptography?
- Other Primitives

Breaking RSA Cryptography by Factoring

Best attack (ideally): factoring

Fact

If we can factor N = pq then from an RSA public key, we can compute the secret key.

- To have RSA cryptography secure, the factoring problem must be hard
- Parameter for the factoring problem: modulus length

Breaking DH Cryptography by Discrete Logarithm

Best attack (ideally): discrete logarithm computation

Fact

If we can compute the discrete logarithm x of g^x then from g, g^x, g^y we can compute g^{xy} .

To have DH cryptography secure then the discrete logarithm problem must be hard for the proposed parameters:

- prime order of the generated subgroup
- overall structure type:
 - multiplicative group of a finite field
 - elliptic curve
 - random over prime field
 - random over binary field
 - special

Reading the Tables

tables give equivalent security levels over time depending on applications

- **symmetric**: bitlength of the key for symmetric encryption or MAC also: half of the hash length for hashing
- asymmetric: bitlength of the RSA modulus or of p for Z^{*}_p (sub)groups
- **subgroup DL**: bitlength of the order of the generator *g* (in multiplicative groups and elliptic curves as well)
- EC: bitlength of the field cardinality on which the random elliptic curve is considered

Meta-comparison of Cryptographic Strengths

Following http://www.keylength.com by Quisquater

method	year	sym.	asym.	DL		EC	hash
Lenstra-Verheul	2015	82	1613	145	1613	154	163
Lenstra updated	2015	78	1245	156	1245	156	156
ECRYPTII	2011–15	80	1248	160	1248	160	160
NIST	2011–30	112	2048	224	2048	224	224
FNISA	2010–20	100	2048	200	2048	200	200
BSI	2011–15	—	1976	224	2048	224	224

Public-Key Cryptography

- Public-Key Cryptography
- Diffie-Hellman Key Exchange
- RSA Cryptography
- ElGamal Cryptography
- Selecting Key Lengths

Formalism

- Towards Post-Quantum Cryptography?
- Other Primitives

PKC

Definition

A **public-key cryptosystem** is a tuple (Gen, \mathcal{M} , Enc, Dec) with a plaintext domain \mathcal{M} and three <u>efficient</u> algorithms Gen, Enc, and Dec. The algorithm Dec is deterministic and outputs either something in \mathcal{M} or an error \bot . It is such that

$$\forall X \in \mathcal{M} \quad \Pr[\operatorname{\mathsf{Dec}}(K_s,\operatorname{\mathsf{Enc}}(K_p,X))=X]=1$$

where (K_p, K_s) is generated from running Gen. The probability is over the randomness used in Gen and Enc.

How to Define Security?

- the adversary holds the public key so he can encrypt whatever he wants without using any external oracle
- so, for predictible plaintext, if encryption is deterministic, it is easy to recognize form the ciphertext example: the encryption of a salary, the encryption of "yes" or "no"
- we should add randomness in the encryption and make the encryption of arbitrary messages hard to distinguish

Security against Distinguisher

Definition

A PKC (Gen, M, Enc, Dec) is (t, ε) -secure under chosen plaintext attacks (IND-CPA-secure) if for any interactive process A limited to a time complexity t, given a bit b, when we first run the following steps

1: Gen $\rightarrow (K_{\rho}, K_{s})$ 2: $\mathcal{A}(K_{\rho}) \rightarrow (m_{0}, m_{1})$ such that $|m_{0}| = |m_{1}|$ 3: Enc $(m_{b}) \rightarrow c$ 4: $\mathcal{A}(K_{\rho}, c) \rightarrow x$

we have

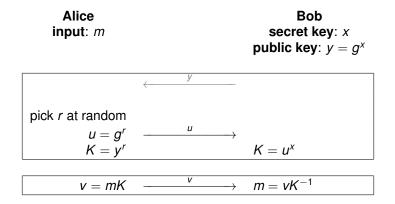
$$\Pr[x = 1 | b = 0] - \Pr[x = 1 | b = 1] \le \varepsilon$$

It is (q, t, ε) -secure under chosen plaintext/ciphertext attacks (IND-CCA-secure) if the same holds for any similar interactive process $\mathcal{A}^{\text{Dec}(\mathcal{K}_{s},.)}$ who is limited to q queries to a decryption oracle $\text{Dec}(\mathcal{K}_{s},.)$ but not allowed to send it c.

Problem with Deterministic Cryptosystems

- this is a modern notion of security
- problem: if Enc is deterministic, then PKC is insecure!
- modern PKC are probabilistic
- example: ElGamal cryptosystem (and variants)

ElGamal Cryptosystem Generalized (Reminder)



output: m

Signature Scheme

Definition

A digital signature scheme is a tuple (Gen, D, Sig, Ver) with a message domain $D \subseteq \{0, 1\}^*$ and three <u>efficient</u> algorithms Gen, Sig, and Ver. The algorithm Ver is deterministic and outputs 0 (reject) or 1 (accept). It is such that

$$\forall X \in \mathcal{D} \quad \Pr[\operatorname{Ver}(K_{\rho}, \operatorname{Sig}(K_{s}, X)) = 1] = 1$$

where (K_p, K_s) is generated from running Gen. The probability is over the randomness used in Gen and Sig.

EF-CMA Security

Definition

A digital signature scheme (Gen, D, Sig, Ver) is (q, t, ε) -secure against existential forgery under chosen message attacks (EF-CMA) if for any probabilistic algorithm A limited to a time complexity *t* and to *q* queries,

 $\Pr[\mathcal{A}^{\operatorname{Sig}(K_{s},.)} \text{ forges}] \leq \varepsilon$

where (K_p, K_s) is the output of Gen, (X, c) a pair of random variables defined as the output of $\mathcal{A}^{\text{Sig}(K_s,.)}$, and " $\mathcal{A}^{\text{Sig}(K_s,.)}$ forges" is the event that $\text{Ver}(K_p, X) = 1$ and that \mathcal{A} did not query X to the signing oracle.

Other Public-Key Cryptosystems

- RSA
- Rabin
- ECC
- HECC
- Paillier cryptosystem
- NTRU
- lattice-based cryptosystem
- McEliece cryptosystem
- TCHo
- ...

Public-Key Cryptography

- Public-Key Cryptography
- Diffie-Hellman Key Exchange
- RSA Cryptography
- ElGamal Cryptography
- Selecting Key Lengths
- Formalism

Towards Post-Quantum Cryptography?

Other Primitives

Some Alternate Constructions Based on Lattices or Codes

- NTRU
- Iattice-based crypto
- McEliece cryptosystem
- TCHo
- why this?
 - resilience to quantum computing
 - it finds other applications:
 - fully homomorphic encryption (clouds..., privacy-by-design...)
 - multilinear mapping (multiparty cryptography...)

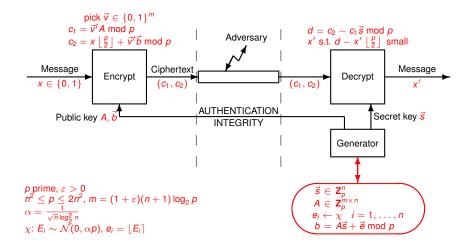
An Example: NTRUEncryption

- *N* prime, q > p, *p* and *q* coprime
- *f*, *g* polynomials with degree at most *N* − 1 and coefficients in {−1, 0, 1}
 f must be such that there exists *f*_p and *f*_q such that *f* × *f*_p = 1 in

 $\mathbf{Z}_p[x]/(x^N-1)$ and $f \times f_q = 1$ in $\mathbf{Z}_q[x]/(x^N-1)$

- secret key: (f, f_p)
- public key: *h* such that $h = pf_qg$ in $\mathbf{Z}_q[x]/(x^N 1)$
- message: a polynomial *m* with degree at most *N* 1 and coefficients in {-1,0,1}
- encryption: pick a random polynomial *r* with degree at most N-1 and small coefficients, then e = rh + m in $\mathbb{Z}_q[x]/(x^N 1)$
- decryption: a = fe in $\mathbb{Z}_q[x]/(x^N 1)$ note that a = prg + fmby having rg small, we have $a \mod q \mod p = fm \mod p$, so we compute b = fm in $\mathbb{Z}_p[x]/(x^N - 1)$ then $c = f_p b = m$ in $\mathbb{Z}_p[x]/(x^N - 1)$

The Regev Public-Key Cryptosystem



Lattice-Based Cryptography

- lattice: discrete subgroup of R^m
- specified by a basis:

$$\mathcal{L}(\vec{a}_1,\ldots,\vec{a}_n) = \left\{\sum_{i=1}^n s_i \vec{a}_i; s_1,\ldots,s_n \in \mathbf{Z}
ight\}$$

- it is hard to find short vectors $\vec{x} \in \mathcal{L}(\vec{a}_1, \dots, \vec{a}_n)$
- given \vec{b} , it is hard to find $\vec{x} \in \mathcal{L}(\vec{a}_1, \dots, \vec{a}_n)$ making $\|\vec{b} \vec{x}\|$ small
- many cryptographic algorithms
- fully homomorphic encryption
- problem: public keys are a bit large
- likely to be used in practice in near future

Public-Key Cryptography

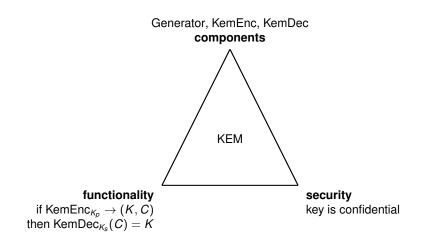
- Public-Key Cryptography
- Diffie-Hellman Key Exchange
- RSA Cryptography
- ElGamal Cryptography
- Selecting Key Lengths
- Formalism
- Towards Post-Quantum Cryptography?
- Other Primitives

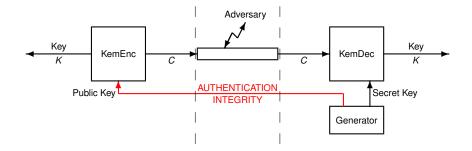
Key and Data Encapsulation Mechanisms

Hybrid Encryption

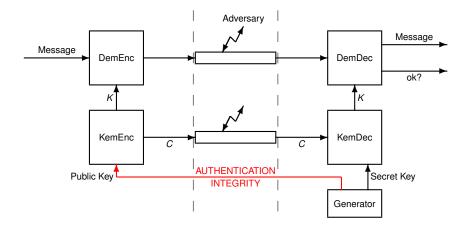
- DEM: same as symmetric encryption
- KEM: public-key algorithm producing an encrypted (encapsulated) key
 ≈ generate a random symmetric key and encrypt it using public-key encryption

KEM Primitive

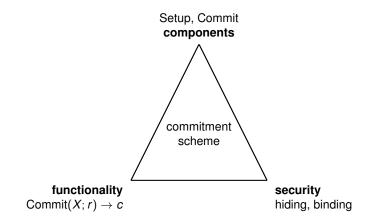




KEM + DEM



Commitment Scheme



- to commit to X: pick r at random and release Commit(X; r)
- to open *c*: release *r* to check Commit(X; r) = c

Pedersen Commitment

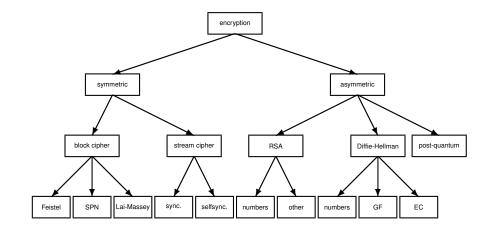
setup generates two large primes p and q s.t. q|(p-1) (e.g. 1024 resp. 160 bit-long), an element $g \in \mathbb{Z}_p^*$ of order q, $a \in \mathbb{Z}_q^*$, and $h = g^a \mod p$ Domain parameters: $\langle p, q, g, h \rangle$ commit Commit(X; r) = $g^X h^r \mod p$ unconditionally hiding given c in the subgroup spanned by g, any X has a related r such that Commit(X; r) = ccomputationally binding commiting to X and opening to $X' \neq X$ leads to solving $g^X h^r \equiv g^{X'} h^{r'} \pmod{p}$ hence

> $a = \frac{X'-X}{r-r'} \mod q$ This is equivalent to solving the discrete logarithm problem with the domain parameters

Conclusion

- two families: RSA (factoring-based) and DH (discrete log-based)
- does not replace symmetric cryptography: used for key exchange only
- more compact data using elliptic curves

Systematic Classification of Cryptography



References

- Lenstra-Verheul. Selecting Cryptographic Key Sizes. *Journal of Cryptology* vol. 14, 2001.
- Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. *Journal of the ACM* vol. 56(6), 2009.

Must be Known

- the big picture with the 4 primitives
- Diffie-Hellman key agreement protocol
- ElGamal cryptosystem
- RSA
- PKCS#1
- Rabin cryptosystem

Train Yourself

- RSA encryption: midterm exam 2008–09 ex2
- RSA signature: final exam 2010–11 ex2
- PKC construction: final exam 2009–10 ex3
- signature construction: final exam 2008–09 ex2
- trapdoor in DSA: final exam 2014–15 ex1
- DSA with related randomness: final exam 2014–15 ex2
- bad DL-based signature: final exam 2015–16 ex1
- Pedersen commitment: final exam 2012–13 ex5

- Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
- Case Studies I
- 8 Public-Key Cryptography
- Trust Establishment

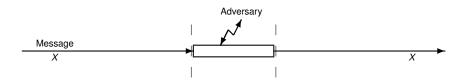
Roadmap

- secure communication channels
- setup by password
- setup by short authenticated strings
- setup by a trusted third party: Kerberos, PKI

Trust Establishment

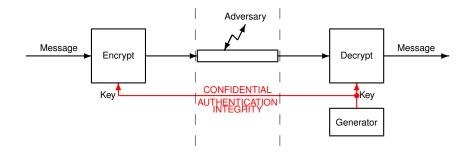
- From Secure Channel to Secure Communications
- Setup of Secure Channels
- Setup by Narrowband Secure Channel
- Setup by a Trusted Third Party
- Trust Management and Cryptography

The Cryptographic Trilogy

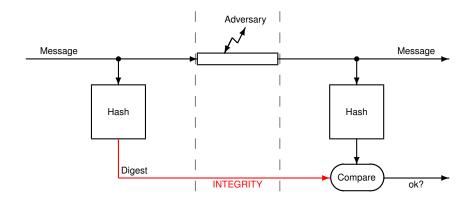


- Confidentiality (C): only the legitimate receiver can get X
- Authentication + Integrity (A+I): only the legitimate sender can insert *X* and the received message must be equal to *X*

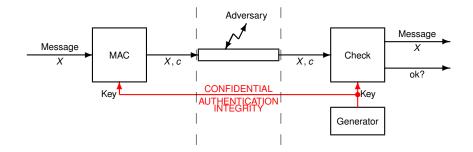
Enforcing Confidentiality by Encryption



Enforcing Integrity by Hash Function



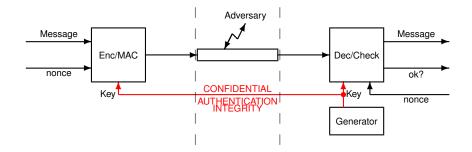
Enforcing Authenticity + Integrity by MAC



Authentication and Integrity

- Message integrity: we make sure that the received message is equal to the sent one
- Message authentication: we make sure about who sent the message
- good authentication means often enforce integrity <u>at the same time</u> symmetric encryption is sometimes used for message authentication but this is a BAD practice
- but there are weird authentication means not protecting it example: problem in GSM/WEP/Bluetooth/... (see slide 670)

A+I+C by Symmetric Cryptography

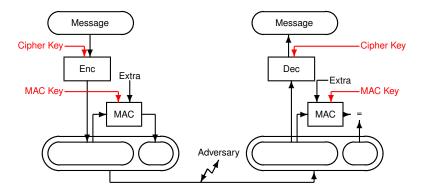


A+I+C Symmetric Constructions

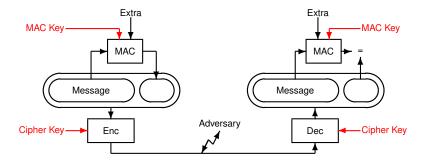
- encrypt-then-MAC
- MAC-then-encrypt
- authenticated modes of operation

CCM CS CWC EAX GCM IACBC IAPM OCB PCFB XCBC ...

Encrypt-then-MAC



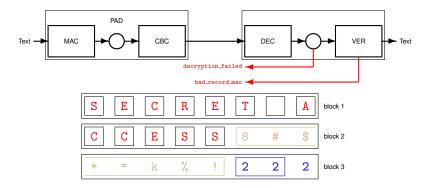
MAC-then-Encrypt



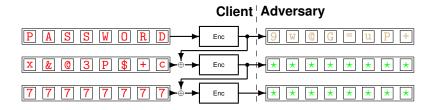
Some Tricky Additional Things

- as soon as padding occurs, some combination may be weak
- some problems when adversary can get advantage of a return channel
- many standards weak, fixed by implementations
- example (2003): MAC-then-Pad-then-Encrypt in TLS using block ciphers is weak

TLS using Block Ciphers

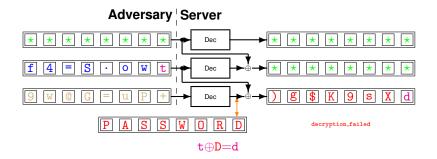


Padding Oracle Attack: Encryption

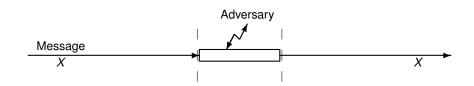


We would like to decrypt 9w@G=uP+

Padding Oracle Attack: Decryption



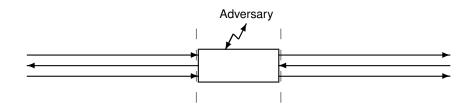
Security Property of Communication Channels



Confidentiality, Authentication, Integrity

- **Freshness**: the received *X* was not received before (a message in transit cannot be replayed)
- Liveliness: a sent message X is eventually delivered (a message in transit cannot be discarded)
- **Timeliness**: (> liveliness) time of delivery is upper bounded (a message cannot be overly delayed)

From Packet Security to Session Security



- Key establishment: set up A/I/C key material for message security
- Session integrity: the sequence of protocol messages is eventually the same at both ends (messages in transit cannot be swapped)
- Privacy: many different notions at this time! (cannot identify sender or receiver) (cannot link that two messages by same sender)

Enforcing Session Integrity

Assuming that channels enforce A+I+C and that key establishment is secure, session integrity splits in two problems

• Sequentiality: whenever a participant has seen a message sequence starting with X_1, \ldots, X_t , X_t coming in, then the other participant has seen a message sequence whose first t messages are X_1, \ldots, X_t

©: easy to protect: just number the messages and apply A+I protection on message numbers

• Termination fairness: making sure that the last message on both ends is the same one

🙁: no cheap way to enforce it if liveliness is not guaranteed

Sequentiality using A + I Message Security

common methods:

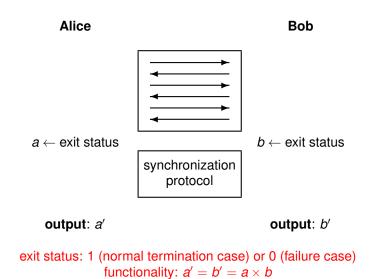
- acknowledge receipt of every message
- authenticate a sequence number in packets and check that received packets have consecutive sequence numbers
- authenticate an increasing nonce value (e.g. a clock value) + check for no packet loss by other means

TLS or SSH: Y = Enc(X || MAC(seq || X)) where seq is implicit

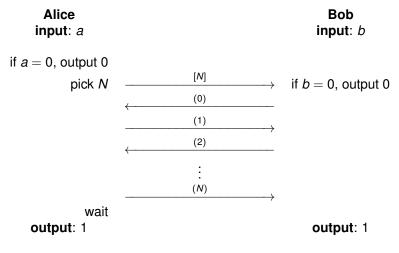
Fair Termination Problems

- example: contract signing Alice and Bob have signed a contract and want to be sure that they both consider the contract as valid
- there must be one critical message in the protocol such that one participant thinks his counterpart has a valid contract the other does not think the transaction is valid
- this reduces to synchronizing on an exit status bit

Fair Termination by Synchronization Protocol



Keep-in-Touch (KiT) Synchronization Protocol



(in the case of timeout: output 0)

KiT Protocol Security

Theorem (Avoine-Vaudenay 2006)

Communication complexity: at most $E(C) = 2 + \sum_i i \Pr[N = i]$

Probability of asymmetric termination: at most

 $p_a = \max_i \Pr[N = i]$

For any synchronization protocol with parameters *C* and p_a , there exists a KiT protocol with parameters *C'* and p'_a , such that $\Pr[C' \leq C] = 1$ and $p'_a \leq p_a$.

Example: $Pr[N = i] = \frac{1}{N}$ so $p_a = \frac{1}{N}$ and $E(C) = \frac{N+3}{2}$

Bad News

Theorem (Avoine-Vaudenay 2006)

For any synchronization protocol with parameters C and p_a we have

$$E(C)-2\geq \frac{1}{2}\left(\frac{1}{p_a}-1\right)$$

- example: if we want $p_a \leq 2^{-20}$ we need $E(C) \geq 2^{19}$
- morality: synchronization must be expensive
- morality: it is hard to beat the KiT protocol set up with N uniform

Summary for Secure Channel (so far)

level	property	toolkit
packet	A+I	MAC
	confidentiality	symmetric encryption
	A+I+C	integrated modes
	freshness	(comes with sequentiality)
	liveliness	(must live without)
session	key establishment	setup protocols (next)
	sequentiality	various protocol options
	termination	synchronization protocol
all	privacy	?

Trust Establishment

• From Secure Channel to Secure Communications

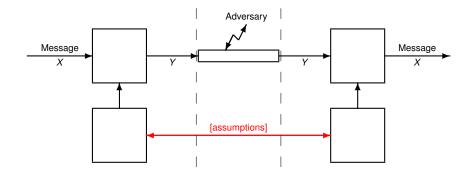
Setup of Secure Channels

- Setup by Narrowband Secure Channel
- Setup by a Trusted Third Party
- Trust Management and Cryptography

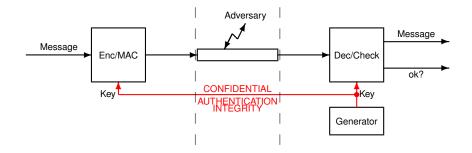
Problem

Q:How to setup a secure channel over an insecure channel? A:hfr n frpher punaary ROT13

Virtual Channels by Combination of Channels



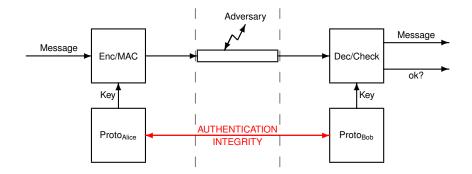
Secure Channel from A+I+C Channel



Next Step: Strongly Secure Channel From Weakly Secure Channel

Q: How to relax security properties at setup? A: hfr choyvp-xrl pelcgbtencul

... with A+I Channel: Key Agreement Protocol



Security of Key Exchange Protocols

Secrecy: by looking at the communication protocol, it is impossible to guess the exchanged key

The Diffie-Hellman Key Agreement Protocol

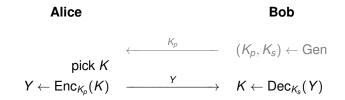
Assume a group $\langle g \rangle$ generated by some g of prime order q

Alice

Bob

pick $x \in \mathbf{Z}_q^*$, $X \leftarrow g^x$	\xrightarrow{X}	if $X \not\in \langle g \rangle - \{1\}$, abort
if $Y \notin \langle g \rangle - \{1\}$, abort	<y< td=""><td>pick $y \in \mathbf{Z}_q^*, \ Y \leftarrow g^y$</td></y<>	pick $y \in \mathbf{Z}_q^*, \ Y \leftarrow g^y$
$K \leftarrow KDF(Y^x)$		$K \leftarrow KDF(X^y)$
	$(K = KDF(g^{xy}))$	

Key Transfer by Public-Key Encryption



Passive vs Active Adversaries

- active adversary: can interfere with communication (modify messages, insert messages, replay messages)
 The Diffie-Hellman protocol requires A+I channel to protect against it
 example: static keys authenticated by ad hoc means
- **passive adversary:** just listen to communications and tries to decrypt communications (e.g. by recovering the key) The Diffie-Hellman protocol resists to passive adversaries with no extra assumptions

An Active Attack: Man-in-the-Middle Attack



Approaches to Build an Initial Authenticated Channel

using really secure initial channel

setup cable, Near Field Comm. (see Bluetooth simple pairing)

by user monitoring

caution: humans are not so reliable for security (e.g. Bluetooth) relies on strong assumptions (genuine software, correct public keys...)

 \rightarrow password-based, SAS-based

using a trusted third party

examples: secure token, key server, certificate authority

Summary

- we need specific means to A+I-securely transmit a public key
- we agree on a master key using public key cryptography
- we use conventional cryptography to set up secure channels
 - we derive several symmetric keys using key derivation functions
 - we use symmetric encryption and MAC
- we must live with the fear that termination may be unfair

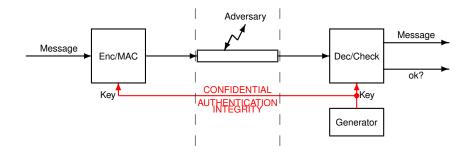
Irust Establishment

- From Secure Channel to Secure Communications
- Setup of Secure Channels

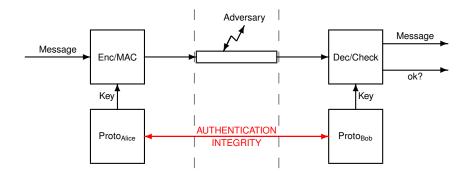
• Setup by Narrowband Secure Channel

- Setup by a Trusted Third Party
- Trust Management and Cryptography

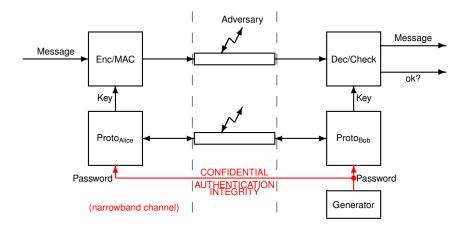
Conventional Cryptography



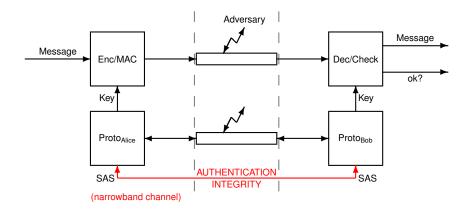
Public-Key Cryptography



Password-Based Cryptography

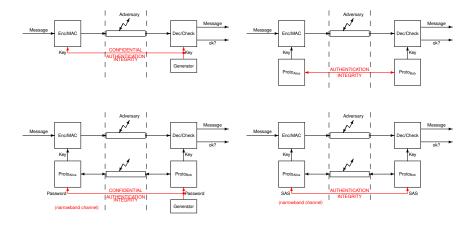


Cryptography Based on Short Authenticated Strings



with confidential channel

without confidential channel



Adversary Capabilities on the Secure Channel

Regular channels: the adverary can do whatever he/she wants with the messages: modify, create, swap, remove, stall, ...

(Weak) authenticated channels: the adversary cannot modify nor create messages. He/she can swap, remove, stall, ...

(Strong) authenticated channels: same plus some additional assumptions!

E.g. messages must be either deliver at once or removed (stall-free channels).

Irust Establishment

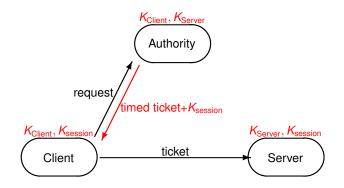
- From Secure Channel to Secure Communications
- Setup of Secure Channels
- Setup by Narrowband Secure Channel
- Setup by a Trusted Third Party
- Trust Management and Cryptography

Several Trusted 3rd Party Approach

- soft 3rd party: user monitoring password-based, SAS-based
- pervasive 3rd party: secure token smart cards, secureID, trusted computing platform
- **key server**: Kerberos symmetric cryptography only, for corporate network
- certificate authority: PKI

for global network

Example: Kerberos



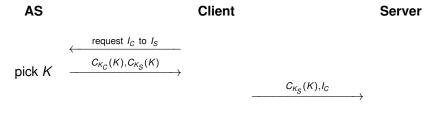
- timed ticket+K_{session} encrypted with K_{Client}
- ticket encrypted with K_{Server}

Kerberos

Hypotheses:

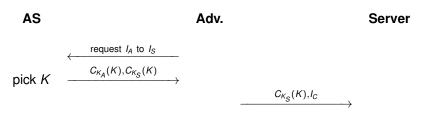
- there is an online (trusted) authentication server (AS)
- AS shares K_C with client I_C
- AS shared K_S with server I_S
- Goal: to help *I_C* and *I_S* to share a session key *K* (and to help careless users to get privacy)

Server-Aided Authentication (Bad Protocol)



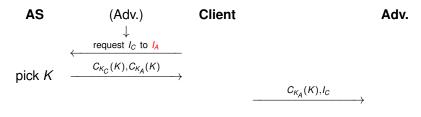
Problem: there is no authentication: an attacker can replace I_C or I_S

Attack



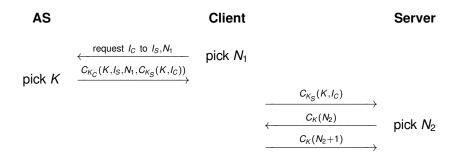
Server thinks he is talking to I_C !

Attack



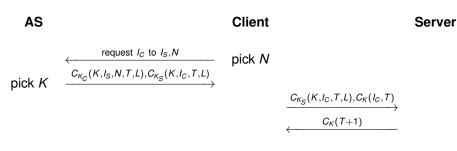
Client thinks he is talking to $I_S!$

Needham-Schroeder Authentication (Still Bad)



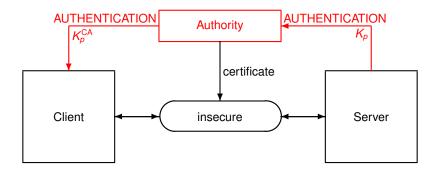
Problem: replay attack by impersonating C after K gets compromised

Basic Kerberos Protocol

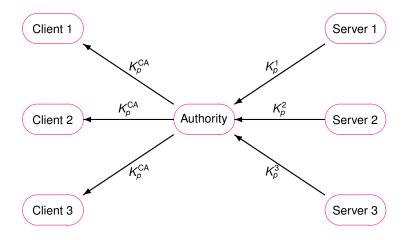


T: clock value; L: validity period

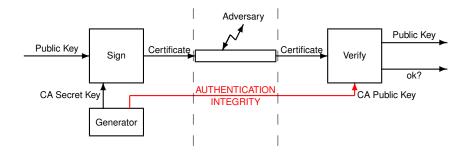
The Certificate Authority Model



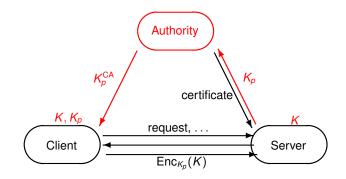
Critical Secure Channels



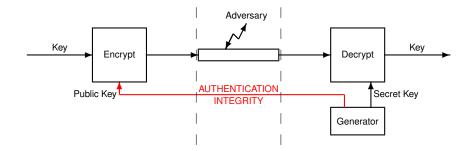
Public-Key Certificate



Semi-A Key Exchange Using Certificates



Semi-Authentication: Key Transmission using PKC

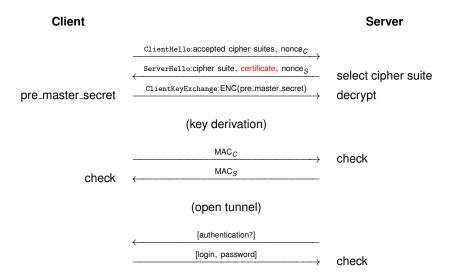


Semi-Authenticated Channel

one participant authenticates the other (typical for client-server communication)

- client receives the authenticated (static) key of the server
- client and server run a key establishment protocol
- secure A+I+C channel is set up
 - client knows he is talking to the correct server
 - server has no clue to which client he is talking to

A Typical TLS Session



An X.509 Certificate Example: Overall Structure

```
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 674866 (0xa4c32)
        Signature Algorithm: md5WithRSAEncryption
        Issuer: C=ZA, ST=Western Cape, L=Cape Town,
            O=Thawte Consulting cc. OU=Certification Services Division.
            CN=Thawte Server CA/Email=server-certs@thawte.com
        Validity
            Not Before: Jun 2 13:10:11 2003 GMT
            Not After . Jun 11 10.21.15 2005 GMT
        X509v3 extensions:
            X509v3 Extended Key Usage: TLS Web Server Authentication
            X509v3 Basic Constraints: critical CA:FALSE
    Signature Algorithm: md5WithRSAEncrvption
        8d.7b.78.60.88.c4.13.4e.94.0d.bc.3b.1b.1c.b6.c9.bc.b1.
        0b.ed.7d.eb.6f.08.3a.ba.6d.21.36.93.38.36.66.7b.a7.bc.
        c0:3f:c4:e0:cf:b4:02:58:be:a6:b9:1d:45:a2:c4:58:38:07:
        e4.63.1a.d9.b9.8d.27.7c.93.67.31.82.6f.a3.3c.86.0c.e0.
        10:71:de:f2:e9:74:af:ac:76:b4:5b:8e:48:57:9d:8f:12:f6:
        72:63:8a:79:b4:74:e0:ba:ca:ac:1a:36:b4:16:38:c1:c5:d2:
        73.ed.e8.64.b0.ae.9e.e2.36.d7.0c.77.92.cc.c7.c0.e0.8a.
        54:24
```

An X.509 Certificate Example: Subject

Subject: C=CH, ST=Bern, L=Bern, O=Switch - Teleinformatikdienste fuer Lehre und Forschung. CN=nic.switch.ch Subject Public Kev Info: Public Key Algorithm: rsaEncryption RSA Public Kev: (1024 bit) Modulus (1024 bit): 00:d0:0e:b7:16:bf:86:59:c3:97:e6:02:33:59:90: 65:29:b0:69:73:64:83:03:1b:df:62:a8:4d:c0:4f: 3c+d9+12+6b+8c+57+95+e1+57+e8+48+a6+7f+dd+15+ 8b:9d:ad:93:dc:78:af:06:1a:ce:0f:7b:cc:c4:6f: a0:06:26:40:73:04:d3:da:7b:20:c1:15:37:8c:2f: 58:c4:d4:c1:4b:18:84:5c:54:f1:b1:a0:44:3c:e2: 0e:8a:a2:63:48:6b:34:c7:10:9d:a1:23:56:77:f5: 4e:3d:38:9a:70:5e:03:02:30:45:ee:81:e4:94:96: 47:18:9e:47:37:bb:18:f6:87 Exponent: 65537 (0x10001)

Two Approaches to Revocations

• certificate revocation lists (CRL):

regularly, or under emergency cases, revocation lists are released by CA clients should always check for new CRLs (at the nearest repository) and go through the list before treating any certificate drawback: high bandwidth

online certificate status protocol (OCSP): clients should send certificates to the CA for approval drawback: subject to DoS attacks

Several 3rd-Party Based Trust Infrastructure

Kerberos

symmetric-crypto with key escrow

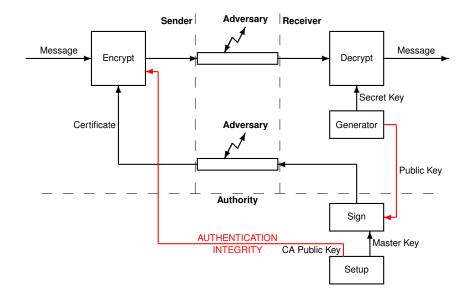
PKI

advantage: widely available

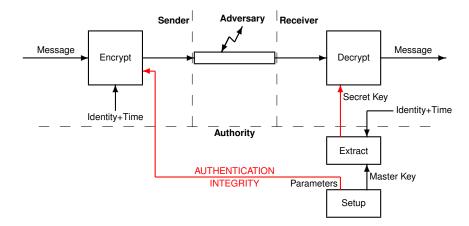
- identity-based cryptography: have public keys implicit from identities and time advantage: time-based revocation with small period
- certificateless encryption: combine the two models advantage: requires no key escrow
- certificate-based encryption: certificate is private, required for decryption
 certificate to certificate encryption (nome is certificate)

pprox equivalent to certificaless encryption (name is confusing)

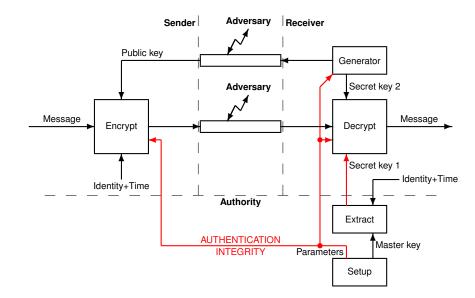
Public-Key Infrastructure



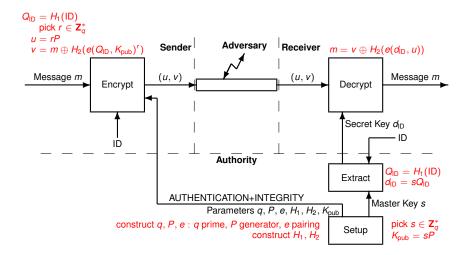
Identity-Based Encryption



Certificateless Encryption



Boneh-Franklin Identity-Based Encryption



Some Popular Trust Model

- TLS: trust model based on a PKI clients hold a list of CA public keys and retrieve server certificates
- SSH: trust model based on cache clients keep in cache the public key of servers (first connection may be insecure)
- **PGP**: trust model monitored by users users set up their confidence level in obtained public keys a "web of trust" can be used to check a public key (to check who has put a higher confidence level to this key)

Irust Establishment

- From Secure Channel to Secure Communications
- Setup of Secure Channels
- Setup by Narrowband Secure Channel
- Setup by a Trusted Third Party
- Trust Management and Cryptography

Metacryptography

Can we Trust Crypto?

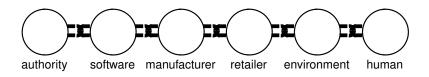
- 2nd law of thermodynamics: no matter the real strength of crypto designs, security decreases with time (Moore's law or cryptanalysis)
- wrong hypotheses:
 - e.g. we might figure out that factoring is easy
 - \longrightarrow need for crypto-diversity
- academic system failure:

crypto results are done under pressure: too many conferences, too many papers, too many beans to get

- \longrightarrow many results are wrong
- \longrightarrow need for automatic proof verification
- threat model definition issues: some models are complicated and later happen to be irrelevant
- security does not add: secure + secure may be insecure

 — need for good composability models

Chain of Trust in the PKI Model



- CA must issue correct certificate
- sofware must include correct CA public keys
- harware must execute what it is supposed to
- retailer must not add malicious software
- environment must not bypass secure software
- human user must care invalid certificates

Chain of Trust in Real Life

- software companies add CA's on commercial basis
- some CA's are corruptable
- worms may corrupt CA lists
- users pay no attention to browser warnings

consequence: phishing attacks

further thoughts: this is no longer a cryptographic issue \rightarrow education, psychology, ergonomy, technology

Several Approaches to Certificate Verification

- TLS: verify a certificate every time the public key is used
- SSH: verify that a public key has not changed since the last time
- PGP: use a public key ring set up by the user (manual verification based on reputation)

Conclusion

- secure communication is essentially solved as long as birth and death are secure
 - birth: need for means to authenticate public keys
 - death: no solution, just behave as if we would never die
- crypto offers many different models

PKI, password-based, ID-based, certificateless, SAS-based

- correct solution must be determined on a case-by-case basis
- trust establishment is not a pure-crypto issue
 - need to address the human factor
 - need to deal with trust management:

logistic, software engineering network security

References

- Merkle. Secure Communications over Insecure Channels. *Communications of the ACM* vol. 21, 1978.
- **Gentry**. Certificate-Based Encryption and the Certificate Revocation Problem. *EUROCRYPT 2003*, LNCS 2656.
- Bellovin-Merritt. Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary Attacks. *IEEE symposium* on Research in Security and Privacy, 1992.
- C. Gehrmann, C. Mitchell, K. Nyberg. Manual Authentication for Wireless Devices. *RSA Cryptobytes* vol. 7, 2004.

Must be Known

- secure channels
- Kerberos
- public-key cryptography and man-in-the-middle attacks
- PKI, certificate validation model
- password-based cryptography
- SAS-based cryptography

Train Yourself

• secure channel: final exam 2012–13 ex3 final exam 2009–10 ex2

- Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- 3 RSA Cryptography
- Elliptic Curve Cryptography
- 5 Symmetric Encryption
- Integrity and Authentication
- Case Studies I
- 8 Public-Key Cryptography
- 9 Trust Establishment

SV 2016-17

0 Case Studies II

• TLS: Transport Layer Security

- The Biometric Passport
- NFC Creditcard Payment

Example of Critical Application

[E-banking from a browser]

Requirements

- strong bidirectional authentication
- confidentiality of communication
- integrity of communication
- non-repudiation of transaction
- resilience to clients in hostile environment

History

- SSLv1 by Netscape in 1994
- Microsoft version PCT in 1995
- SSLv3 by Netscape in 1995
- TLS/1.0 in 1999 [RFC2246]
- TLS/1.1 in 2006 [RFC4346]
- TLS/1.2 in 2008 [RFC5246]
- TLS/1.3: still draft

Goal: secure any communication (e.g. HTTP) based on TCP/IP

TLS Record Protocols

Record Protocol is based on TCP

Here are the four protocols based on the Record Protocol:

- Handshake Protocol (for initiating a session)
- Change Cipher Spec Protocol (for setting up cryptographic algorithms)
- Alert Protocol (for managing warnings and fatal errors)
- Application Data Protocol

Session State

- Session identifier
- Peer certificate (if any)
- Cipher suite choice
 - Algorithm for authentication and key exchange during handshake
 - Cipher Spec: symmetric algorithms (encryption and MAC)
- Master secret (a 48-byte symmetric key)
- nonces (from the client and the server)
- sequence numbers (one for each communication direction)
- compression algorithm (if any)

Original TLS 1.0 Cipher Suites — i

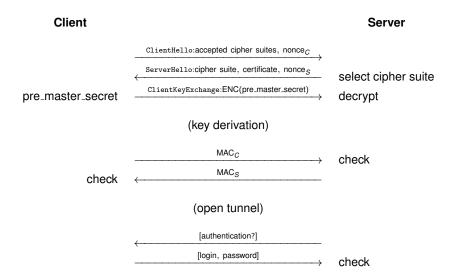
CipherSuite	Key Exchange	Cipher	Hash
TLS_NULL_WITH_NULL_NULL	NULL	NULL	NULL
TLS_RSA_WITH_NULL_MD5	RSA	NULL	MD5
TLS_RSA_WITH_NULL_SHA	RSA	NULL	SHA-1
TLS_RSA_EXPORT_WITH_RC4_40_MD5	RSA	RC4_40	MD5
TLS_RSA_WITH_RC4_128_MD5	RSA	RC4_128	MD5
TLS_RSA_WITH_RC4_128_SHA	RSA	RC4_128	SHA-1
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5	RSA	RC2_40	MD5
TLS_RSA_WITH_IDEA_CBC_SHA	RSA	IDEA	SHA-1
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA	RSA	DES40	SHA-1
TLS_RSA_WITH_DES_CBC_SHA	RSA	DES	SHA-1
TLS_RSA_WITH_3DES_EDE_CBC_SHA	RSA	3DES_EDE	SHA-1
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA	DH_DSS	DES40	SHA-1
TLS_DH_DSS_WITH_DES_CBC_SHA	DH_DSS	DES	SHA-1
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA	DH_DSS	3DES_EDE	SHA-1
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA	DH_RSA	DES40	SHA-1
TLS_DH_RSA_WITH_DES_CBC_SHA	DH_RSA	DES	SHA-1
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA	DH_RSA	3DES_EDE	SHA-1

Original TLS 1.0 Cipher Suites — ii

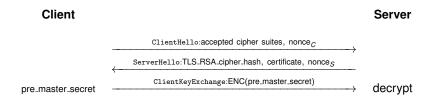
CipherSuite	Key Exchange	Cipher	Hash
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA	DHE_DSS	DES40	SHA-1
TLS_DHE_DSS_WITH_DES_CBC_SHA	DHE_DSS	DES	SHA-1
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA	DHE_DSS	3DES_EDE	SHA-1
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA	DHE_RSA	DES40	SHA-1
TLS_DHE_RSA_WITH_DES_CBC_SHA	DHE_RSA	DES	SHA-1
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA	DHE_RSA	3DES_EDE	SHA-1
TLS_DH_anon_EXPORT_WITH_RC4_40_MD5	DH_anon	RC4_40	MD5
TLS_DH_anon_WITH_RC4_128_MD5	DH₋anon	RC4_128	MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA	DH_anon	DES40	SHA-1
TLS_DH_anon_WITH_DES_CBC_SHA	DH_anon	DES	SHA-1
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA	DH_anon	3DES_EDE	SHA-1

many more in 1.2: cipher: AES_GCM, AES_CCM, CAMELLIA, ARIA hash: SHA2 "key exchange": ECDSA, PSK

A Typical TLS 1.0 Session

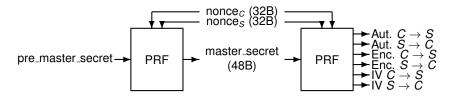


RSA Key Exchange



- RSA encryption is PKCS#1v1.5
- the RSA public key must be authenticated

Key Derivation

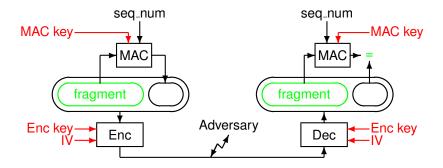


pre_master_secret is 48B for RSA key exchange or the obtained Diffie-Hellman key for DH_RSA, DH_DSS, DHE_RSA, DHE_DSS, and DH_anon

Application Data Record Protocol

- split the application data into fragments of at most 2¹⁴ Bytes and send the fragments separately.
- (optional) compress the fragment
- append a MAC to the fragment The MAC is computed on a sequence number, the compression and TLS version materials, the compressed fragment.
- encrypt all this
- send this after a record header (type, version, length)

Secure Channel in TLS (Using CBC Encryption)



TLS 1.3

cipher suite in the form

TLS_KEA_AUTH_WITH_CIPHER_HASH

- key exchange (KEA) and authentication (AUTH) are separated things
- KEA is (EC)DHE
- AUTH is the way to authenticate peers, it can be with a certificate (RSA or ECDSA) or PSK
- PSK:

just makes pre_master_secret be the result of (EC)DH concatenated with a pre-shared key

- CIPHER: AES-GCM, AES-CCM, CHACHA20-POLY1305
- hash: SHA2

TLS 1.3 Cipher Suites

TLS DHE RSA WITH AES 128 GCM SHA256 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (mandatory) TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (recommended) TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (mandatory) TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (recommended) TLS DHE RSA WITH AES 128 CCM TLS DHE BSA WITH AES 256 CCM TLS DHE RSA WITH AES 128 CCM 8 TLS_DHE_RSA_WITH_AES_256_CCM_8 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (recommended) TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (recommended) TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 TLS DHE PSK WITH AES 128 GCM SHA256 TLS DHE PSK WITH AES 256 GCM SHA384 TLS_DHE_PSK_WITH_AES_128_CCM TLS DHE PSK WITH AES 256 CCM TLS_PSK_DHE_WITH_AES_128_CCM TLS PSK DHE WITH AES 256 CCM TLS ECDHE PSK WITH AES 128 GCM SHA256 TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384 TLS ECDHE PSK WITH AES 128 CCM 8 SHA256 TLS ECDHE PSK WITH AES 128 CCM SHA256 TLS_ECDHE_PSK_WITH_AES_256_CCM_SHA384 TLS ECDHE PSK WITH CHACHA20 POLY1305 SHA256 TLS DHE PSK WITH CHACHA20 POLY1305 SHA256

mandatory curve: secp256r1 (NIST P-256) recommended curve: X25519 [RFC7748]

SV 2016-17

Case Studies II

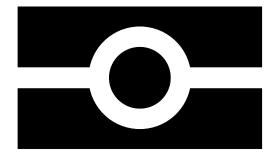
(MRTD=Machine Readable Travel Document)

more secure identification of visitors at border control

- \rightarrow biometrics
- $\rightarrow \,$ contactless IC chip
- \rightarrow digital signature + PKI

maintained by UN/ICAO (International Civil Aviation Organization)

How to Distinguish a Compliant MRTD



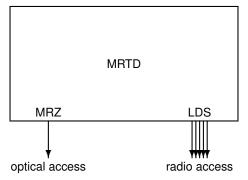
MRTD History

- 1968: ICAO starts working on MRTD
- 1980: first standard (OCR-B Machine Readable Zone (MRZ))
- 1997: ICAO-NTWG (New Tech. WG) starts working on biometrics
- 2001 9/11: US want to speed up the process
- 2002 resolution: ICAO adopts **facial recognition** (+ optional fingerprint and iris recognition)
- 2003 resolution: ICAO adopts MRTD with contactless IC media (instead of e.g. 2D barcode)
- 2004: version 1.1 of standard with ICC
- 2005: deployment of epassports in several countries
- 2006: extended access control under development in the EU
- 2007: deployment of extended access control (+ more biometrics)
- now part of Doc9303

MRZ Example

- o document type
- issuing country
- holder name
- o doc. number + CRC
- nationality
- date of birth + CRC
- gender
- date of expiry + CRC
- options + CRC

MRTD in a Nutshell



- data authentication by digital signature + PKI aka passive authentication
- access control + key agreement based on MRZ_info aka basic access control (BAC)
- chip authentication by public-key cryptography aka active authentication (AA)

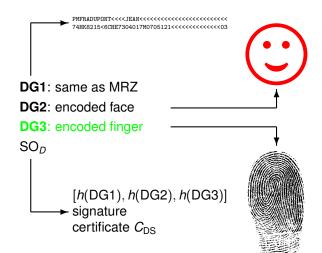
SV 2016-17

Case Studies II

Access Control Options

- none: anyone can query the ICC, communication in clear
- **basic**: uses secure channel with authenticated key establishment from MRZ
- **extended**: up to bilateral agreements (no ICAO standard) EU common criteria: now being implemented

LDS Example



LDS Structure

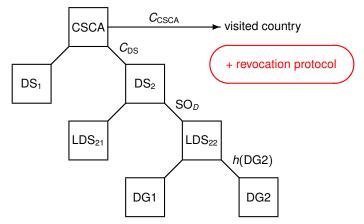
- K_{ENC}, K_{MAC}, KPr_{AA}
- COM: present data groups
- DG1: same as MRZ
- DG2: encoded face
- DG3: encoded finger(s)
- DG4: encoded eye(s)
- DG5: displayed portrait
- DG6: (reserved)
- DG7: displayed signature
- DG8: data feature(s)

- DG9: structure feature(s)
- DG10: substance feature(s)
- DG11: add. personal detail(s)
- DG12: add. document detail(s)
- DG13: optional detail(s)
- DG14: security options
- DG15: KPu_{AA}
- DG16: person(s) to notify
- SO_D

SO_D Structure

- list of hash for data groups DG1–DG15
- formatted signature by DS (include: information about DS)
- (optional) C_{DS}

(Country-wise) PKI



- one CSCA (Country Signing Certificate Authority)
- several DS (Document Signer) per country
- SO_D: signature of LDS
- fingerprint of a DG

SV 2016-17

Passive Authentication

goal authenticate LDS

- after getting SO_D, check the included certificate C_{DS} and the signature
- when loading a data group from LDS, check its hash with what is in SO_D
- \rightarrow stamp by DS on LDS

Passport: From Paper to Bits

paper passport

- invisible if not shown
- hard to copy
- photocopies are non-binding
- needs human check
- access control by the holder

MRTD

- detectable, recognizable
- easy to copy with no AA
- SOD is a digital evidence
- readable automatically
- needs specific access control

Basic Access Control

goal prevent from unauthorized access by the holder (privacy)

- read MRZ (OCR-B)
- extract MRZ_info
- run an authenticated key exchange based on MRZ_info
- open secure messaging based on the exchanged symmetric key
- $\rightarrow\,$ proves that reader knows MRZ_info

MRZ_info

- o document type
- issuing country
- holder name
- o doc. number + CRC
- nationality
- date of birth + CRC
- gender
- date of expiry + CRC
- options + CRC

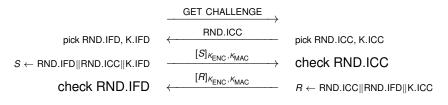
Basic Access Control

Authenticated Key Exchange Based on MRZ_info

IFD

ICC

(derive K_{ENC} and K_{MAC} from MRZ_info)



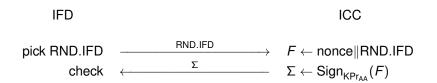
(derive KS_{ENC} and KS_{MAC} from $K_{seed} = K.ICC \oplus K.IFD$)

Active Authentication

goal authenticate the chip

- proves that ICC knows some secret key KPr_{AA} linked to a public key KPu_{AA} by a challenge-response protocol (KPu_{AA} in LDS authenticated by passive authentication)
- \rightarrow harder to clone a chip

Active Authentication Protocol



With vs Without Active Authentication

No Active Authentication

- ICC can be cloned
- simple computations to perform

Active Authentication

- protection against clones
- requires public-key cryptography in ICC

RFID Private Collision Avoidance Protocol (ISO 14443)

- for each new singulation protocol ICC introduces himself with a pseudo (32-bit number)
- singulation to establish a communication link between reader and ICC of given pseudo
- pseudo is either a constant or a random number starting with 08

Implementation Discrepencies (2007 Survey)

	shield	singulation	BAC	AA
Switzerland	none	random 08xxxxxx	used	not implemented
United Kingdom	none	random 08xxxxxx	used	not implemented
France	none	random 08xxxxxx	?	?
Australia	none	random xxxxxxxx	used	?
New Zealand	none	constant	used	?
USA	yes	random xxxxxxxx	used	?
Italy	?	constant	?	?
Belgium	none	cste then 08	used	implemented
Czech Republic	none	random 08xxxxxx	used	implemented
Japan	none	?	not used	not implemented

With vs Without Faraday Cages

Regular Document

 can access to ICC without the holder approval

Metalic Cover

- document must be opened to access to ICC
- more expensive
- not fully effective

Algorithms (2007 Survey)

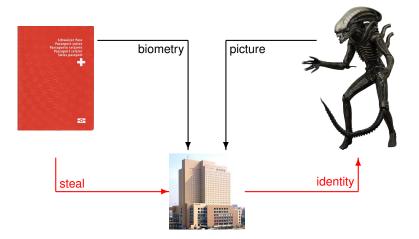
	certificate	SOD	AA
Switzerland	ecdsa_with_sha1 824b	ecdsa 512b	n/a
United Kingdom	sha256withRSA 4096b	RSA 2048b	n/a
Czech Republic	rsaPSS (sha256) 3072b	RSA 2048b	RSA 1024b
Belgium	sha1withRSA 4096b	RSA 2048b	RSA 1024b
Germany	ecdsa_with_sha1 560b	ecdsa 464b	n/a
Italy	sha1withRSA 4096b	RSA 2048b	?
New-Zealand	sha256withRSA 4096b	RSA 2048b	?
USA	sha256withRSA 4096b	RSA 2048b	?
Japan	sha256withRSA 4096b	RSA 2048b	n/a
Ireland	sha256withRSA 4096b	RSA 2048b	?
Netherland	sha256withRSA 3072b	RSA 2048b	?
South Korea	rsaPSS (sha256) 3072b	RSA 2048b	?
Sweden	rsaPSS (sha256) 2048b	RSA 2048b	?

Security and Privacy Issues

- collision avoidance discrepancies
 → deviating from standard induce leakages
- MRZ_info entropy
 - \rightarrow online attack or offline decryption from skimming
- underestimated wireless range limits
 - \rightarrow claimed to be possible at a distance of 25m
- identity theft (by stealing/cloning MRTD)
 - \rightarrow facial recognition is weak
- remote passport detection
 → nice to find passports to steal
- relay attacks
- denial of services

…

Identity Theft



a few 100 customers are enough

Extended Access Control (EAC)

- PACE > BAC
- Chip Authentication > AA
- Terminal Authentication to access non-mandatory data
- more biometrics (finger) for more secure identification
- using state-of-the-art cryptography (public-key crypto, PAKE, elliptic curves)
- secure access control but requires a heavy PKI for readers
- in-process standard: protocols with different versions, variants, described in different documents, with different notations...

Sequence of Steps for Basic Inspection

- (optional) run PACE (or BAC), start secure messaging, provide access to less-sensitive data
- passive authentication of SO_D
- optional) run AA
- read and verify less-sensitive data

Sequence of Steps for Advanced Inspection

- (optional) run PACE (or BAC), start secure messaging, provide access to less-sensitive data
- (if not done in PACE) run Chip Authentication, restart secure messaging
- passive authentication of SO_D
- optional) run AA
- run Terminal Authentication v1, provide access to more data
- read and verify data

PACE (GM v2)

• better protocol (than BAC) based on $\pi = MRZinfo$

• can include Chip Authentication

PCD password: π	$(g\in D_{ICC})$	IC password: π secret key: SK _{IC} pub key: PK _{IC} = g ^{SK_{IC}} , D _{IC}	
pick <i>s</i> at random	← PK _{IC} ,D _{IC}		
$z=ENC_{K_\pi}(s)$		$s=DEC_{\kappa_\pi}(z)$	
pick SK_{MAP,PCD}, PK_{MAP,PCD} = g^{SK_{MAP,PCD}}	$\xrightarrow{PK_{MAP,PCD}}$	pick SK _{MAP,IC} , PK _{MAP,IC} = $g^{SK_{MAP,IC}}$	
$\hat{g} = g^{ extsf{skmap,pcd}}$ K $_{ extsf{map,icd}}^{ extsf{skmap,pcd}}$		$\hat{g} = g^s PK^{SK_{MAP},IC}_{MAP,PCD}$	
pick SK_{DH,PCD}, PK_{DH,PCD} = \hat{g}^{SK_{DH,PCD}}	$\xrightarrow{PK_{DH,PCD}}$	pick SK_{DH,IC}, PK_{DH,IC} = \hat{g}^{SK_{DH,IC}}	
$\mathcal{K} = PK^{SK_{DH,PCD}}_{DH,IC}$	PK _{DH,IC}	$K = PK_{DH,PCD}^{SK_{DH,IC}}$	
derive KS_{ENC}, KS_{MAC} from K	_	derive KS_{ENC}, KS_{MAC} from K	
$T_{ t PCD} = extsf{MAC}_{ extsf{KS}_{ extsf{MAC}}}(extsf{PK}_{ extsf{DH}, extsf{PCD}})$	$\xrightarrow{T_{PCD}}$	check T _{PCD}	
check T _{IC}	← ^T IC	$\textit{T}_{\text{IC}} = \text{MAC}_{\text{KS}_{\text{MAC}}}(\text{PK}_{\text{DH},\text{IC}})$	
$CA_{IC} = DEC_{KS_{ENC}}(\textit{A}_{IC}), check \; CA_{IC}$	← <i>A</i> IC	$CA_{IC} = \tfrac{SK_{MAP,IC}}{SK_{IC}}, \textit{A}_{IC} = ENC_{KS_{ENC}}(CA_{IC})$	
$\textbf{output:} \ KS_{ENC}, KS_{MAC}, \textbf{\textit{X}} = \textbf{PK}_{DH, PCD}$		output : $KS_{ENC}, KS_{MAC}, \mathbf{X} = \mathbf{PK}_{DH, PCD}$	

Chip Authentication

- chip has a static Diffie-Hellman key in DG14 (SOD-authenticated)
- semi-static ECDH with domain parameters D_{ICC}
- replace the secure messaging keys
- ightarrow resists passive attacks

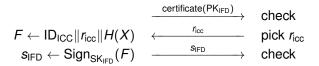
 $\begin{array}{ccc} \text{IFD} & & \text{ICC} \\ & \text{secret key: } SK_{\text{ICC}} \\ & \text{pub key: } PK_{\text{ICC}} = g^{SK_{\text{ICC}}}, D_{\text{ICC}} \\ & \text{pub key: } PK_{\text{ICC}} = g^{SK_{\text{ICC}}}, D_{\text{ICC}} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Terminal Authentication

- terminal sends a certificate to chip (ECDSA)
- terminal signs a challenge + ephemeral key *X* from Chip Authentication
- ID_{ICC} set to serial number (for BAC) or to ephemeral key of ICC (for PACE)
- \rightarrow strong access control

IFD

ICC



Terminal Authentication Issues

Terminal revocation issue:

- MRTDs are not online!
- MRTDs have no reliable clock

$\longrightarrow \mathsf{MRTD}$ must trust readers to revoke themselves

Information Leakage

- SO_D leaks the digest of protected DGs before passing EAC
- could be used to recover missing parts from exhaustively search
- could be used to get a proof if DG is known

Conclusion on MRTD

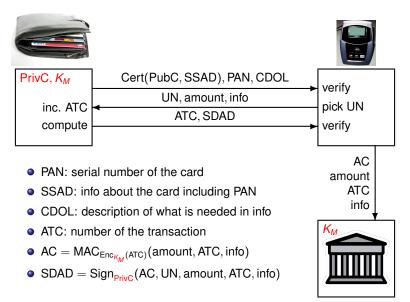
- LDS: contains too much private information
- passive authentication: leaks evidence for LDS
- BAC: does a poor job
- secure messaging: OK
- AA: leaks digital evidences, subject to MITM
- EAC: much better, but still leaks + revocation issue
- RFID: leaks
- biometrics: leaks template

"Les passeports ne servent jamais qu'à gêner les honnêtes gens et à favoriser la fuite des coquins."

> Jules Verne, 1872 Le tour du monde en 80 jours

- TLS: Transport Layer Security
- The Biometric Passport
- NFC Creditcard Payment

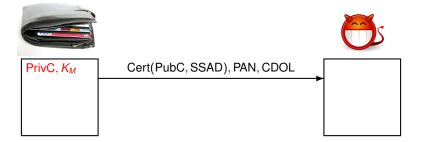
(Simplified) EMV PayPass Protocol



From Paper to Bits...

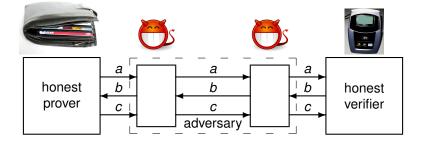
- holder is not aware a payment is happening
- holder is not aware of the payment amount
- no access control of the payment terminal (no PIN)
- payee is not authenticated (info could be anyone)
- privacy issue (SSAD leaks)

Skimming



get name on card, credit card number, expiration date, etc

Relay Attacks

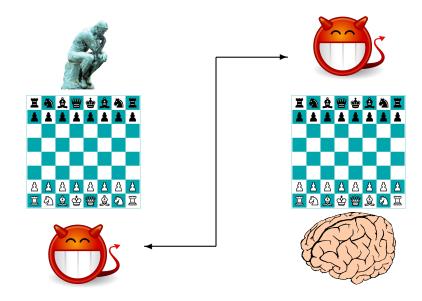


Relay Attacks in Real

- opening cars and ignition (key with no button)
- RFID access to buildings or hotel room
- toll payment system
- NFC credit card (for payment with no PIN)
- access to public transport

o ...

Playing against two Chess Grandmasters



Conclusion

- TLS: standard for e-commerce, suffer from PKI weaknesses
- MRTD: secure data authentication, poor privacy
- EMV PayPass: secure for payee, not payer, poor privacy
- they all put together all cryptographic ingredients quite nicely
- they are permanently improved to fix mistakes and use the state-of-the-art cryptography

References

- Juels-Molnar-Wagner. Security and Privacy Issues in E-Passports. In *SecureComm 2005*, IEEE.
- Chaabouni-Vaudenay. The Extended Access Control for Machine Readable Travel Documents. In *Biosig 2009*, LNI 155.

Train Yourself

• biometric passport: final exam 2015-16 ex3