
Cryptography and Security — Final Exam
Solution

Serge Vaudenay

12.1.2011

– duration: 3h
– no documents is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to every exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

1 3-Collisions

This exercise is inspired by “Improved Generic Algorithms for 3-Collisions” by Joux and
Lucks, ASIACRYPT’09, LNCS vol. 5912, pp. 347–363, 2009.

Let f be a random-looking function from a set X to a set Y . Let N denote the cardinality of Y . We
call an r-collision a set {x1, . . . ,xr} of r elements of X such that f (xi) = f (x j) for every i and j.

Q.1 Recall what preimage resistance and collision resistance mean.

Preimage resistance: given an arbitrary y, it is hard to find x such that f (x) = y.
Collision resistance: it is hard to find x and x′ such that x 6= x′ and f (x) = f (x′).

Q.2 Name the ideas behind two collision finding algorithms from the course and give their time and
memory complexity.

We have several algorithms based on the birthday paradox. For instance we can pick a new
x and store (f (x),x) in memory if there is no (y,x) entry with y = f (x), or stop if there is
such entry. This works with time and memory complexity O(

√
N).

We have other algorithms based on cycle finding with much lower memory complexity.
For instance, the Floyd cycling algorithm works with memory complexity O(1) and time
complexity O(

√
N).

Q.3 Let y ∈ Y be a target value. Provide an algorithm A1 such that upon input y it returns x ∈ X such
that f (x) = y with average complexity N in terms of f evaluations.
Make the complexity analysis.

Algorithm A1 picks a new x ∈ X at random until f (x) = y:
input: y

1: repeat
2: pick x at random
3: until f (x) = y

output: x
Let py be the probability that a random x is mapped onto y by f . So, the probability to stop
after i iterations is (1− py)

i−1 py. The average complexity for input y is thus

E(Cy) =
+∞

∑
i=0

i(1− py)
i−1 py =

1
py

Assuming that py ≈ N−1, we have E(C)≈ N.

Q.4 By using A1 as a subroutine, provide an algorithm A2 producing r-collisions with complexity rN
in terms of f evaluations.
Make the complexity analysis.

Algorithm A2 picks a random y∈Y and repeatedly calls A1 until r pairwise different preim-
ages of y are found. If we neglect the case where a preimage x is found several times, the
complexity is rN.
To make it more rigorous, we shall make sure that A1 never picks an x twice through different
calls. That is, we rewrite A1 for A2 so that a new x is picked at each iteration, it is stored if
f (x) = y, and the algorithm stops if the rth preimage was found.
To improve it further, we first pick x and take y = f (x) so that we have one less preimage to
find:

1: pick x at random
2: let y = f (x) and L = (x)
3: repeat
4: pick a new x at random
5: if f (x) = y and x does not appear in L then
6: insert x in L
7: end if
8: until L has size r

output: L

Q.5 We consider an algorithm A3 for making r-collisions, defined by two parameters α and β. The al-
gorithm works in two phases. In the first phase, it picks Nα random x ∈ X and stores (f (x),L f (x))
in a hash table, where L f (x) is a list initialized to the single element x. In the second phase, it
iteratively picks Nβ random x ∈ X . For each of these x’s, it looks whether y = f (x) has an en-
try in the hash table. If it does, and if x is not already in the list Ly, x is inserted into the list
Ly. If Ly has r elements, the algorithm output Ly. We assume that A3 never picks the same x
twice.

1: for i = 1 to Nα do
2: pick a new x at random

3: set y = f (x) and store (y,(x)) at place h(y)
4: end for
5: for i = 1 to Nβ do
6: pick a new x at random
7: if there is an entry (y,Ly) at place h(f (x)) such that y = f (x) then
8: insert x in list Ly

9: if Ly has size r then
10: yield Ly and stop
11: end if
12: end if
13: end for
14: algorithm failed

Q.5a Show that A3 either generates r-collisions or fails.

We show by induction that for every existing y in the hash table, the list Ly contain pairwise
different entries x such that f (x) = y. It is true when the algorithm starts (the hash table
is empty so there is no y). It is true when a new y entry is inserted (the list has a single
element). It is true when a list is expanded. So, it is true throughout the execution of the
algorithm.
The algorithm can only stop when it has found a list of cardinality r. So, this list is an
r-collision.

Q.5b Show that the memory complexity is M = O(Nαr logN) and that the time complexity in terms
of f evaluations is T = Nα +Nβ.

Due the the structure of the algorithm, we have Nα entries in the hash table. Each entry has
size up to r log2 N in bits, so the memory complexity is O(Nαr log2 N). By neglecting r log2 N
we obtain M ≈ Nα.
We need Nα evaluations to prepare the hash table and Nβ evaluations to run Phase 2, so
the time complexity is Nα +Nβ. By using the approximation log(a+b)≈ max(loga, logb)
we obtain T ≈ max(Nα,Nβ).

In what follows we will approximate T ≈ max(Nα,Nβ) and M ≈ Nα.
Q.5c For r = 2, which inequality shall α and β satisfy to reach a constant probability of success?

For r = 3, show that this inequality becomes α+2β ≥ 2.
Hint: apply the birthday paradox in Phase 2.

Each x in the second phase will hit one entry with probability Nα−1. So, we have Nα+β−1

hits on average for r = 2. We thus need α+β ≥ 1.
For r = 3, we have Nα+β−1 hits in a set of Nα. When the number of hits exceed N

1
2 α, we

obtain colliding hits with constant probability, thanks to the birthday paradox. So, α+β−
1 ≥ 1

2 α guarantees a constant probability of success. This is equivalent to α+2β ≥ 2.

Q.5d Show that for parameters for r = 3 reaching a constant probability of success, logT is a func-
tion in terms of logM.
Plot its curve.

We have logM = α logN, logT = max(α,β) logN, and α+2β ≥ 2. The minimal value for
logT is reached for β = 1− 1

2 α, so logT = max(α,1− 1
2 α) logN which can be computed in

terms of logM. The curve looks like what follows.

0

2
3 logN

logN

0 2
3 logN logN

Q.6 We consider another algorithm A4 for making 3-collisions, defined by parameters α and β. Now,
A4 runs Nα times a collision-finding algorithm and stores the Nα obtained collisions in the same
form (y,Ly) with Ly = (x1,x2) as before. In a second phase, A4 picks Nβ random x and check if
f (x) hits one of the y in the hash table. If it is the case, a 3-collision is found. (We assume that no
x is picked several times.)

1: for i = 1 to Nα do
2: run a collision-finding algorithm and get x1 and x2
3: set y = f (x1) and store (y,(x1,x2)) at place h(y)
4: end for
5: for i = 1 to Nβ do
6: pick a new x at random
7: if there is an entry (y,Ly) at place h(f (x)) such that y = f (x) then
8: insert x in list Ly

9: yield Ly and stop
10: end if
11: end for
12: algorithm failed

Q.6a Show that the memory complexity is M ≈ Nα and that the time complexity in terms of f
evaluations is T ≈ max(Nα+ 1

2 ,Nβ).

When using a collision finding algorithm with constant memory complexity in Phase 1, the
memory complexity is again O(Nα logN) which is approximated by Nα.
When using a collision finding algorithm based on the birthday paradox, Phase 1 uses
O(Nα +

√
N) memory so the final memory complexity is approximated by Nmax(α, 1

2). This
is not a very good choice since we get results which are not better than with the previous
method.
The time complexity of a collision search is O(N

1
2). So, the time complexity of A5 is

O(Nα+ 1
2 +Nβ) which is approximately T ≈ max(Nα+ 1

2 ,Nβ).

Q.6b Show that for α+β ≥ 1 we obtain a constant probability of success.
Plot the curve of minimal logT in terms of logM to reach a constant probability of success.
Compare with A3.
When is it better?

Again, the logarithmic memory complexity is α. The logarithmic time complexity is now
roughly max(α+ 1

2 ,1−α) logN. The curve looks like what follows.

0

2`/3
3`/4
5`/6

`= logN

0 1
4`

1
3`

2
3` `= logN

previous complexity
new complexity

As we can see, for α < 1
3 , A4 has a better complexity.

2 Attack on some Implementations of PKCS#1v1.5 Signature with e = 3

This exercise is inspired by an attack originally presented by Bleichenbacher at CRYPTO’06
(unpublished), then improved by Kühn, Pyshkin, Tews, and Weinmann (in a technical avail-
able online). These attacks were later extended by Oiwa, Kobara, and Watanabe: “A New
Variant for an Attack against RSA Signature Verification using Parameter Field”, Eu-
roPKI’07, LNCS vol. 4582, pp. 143–153, 2007.

In this exercise we represent bitstrings in hexadecimal by grouping bits into packets of 4, each packet
(nibble) being denoted in hexadecimal with a figure between 0 and F. For instance, 2B represents the
bitstring 00101011. Given a bitstring x, we denote by x the integer such that x is a binary expansion
of x. For instance, 00FF= 255.

We call a cube an integer whose cubic root is an integer.
Given a message m and an integer `N , we define the bitstring of length `N

format`N (m) = 0001FF · · ·FF00‖D(m)

where D(m) represents the identifier of the hash function H together with H(m) following the ASN.1
syntax. As an example, in the SHA-1 case, we have

D(m) = 3021300906052B0E03021A05000414‖SHA-1(m)

We denote by `D the bitlength of D(m).
We recall that the PKCS#1v1.5 signature for a message m and a public key (e,N) is an integer s

such that 0 ≤ s < N and se mod N can be parsed following the format format`N (m), where `N is the
minimal bitlength of N. It is required that the padding field consisting of FF bytes is at least of 8 bytes.

Throughout this exercise we assume that e = 3.

Q.1 What is a signature scheme? Describe its components, its functionality, and give an intuition on
its security.

A signature scheme is defined by three algorithm: a key generator, a signature algorithm,
and a verification algorithm. The key generator is a pseudorandom generator making a key
pair of required length, one of the two keys is called the public key and the other is the secret
key. The signature algorithm is a probabilistic algorithm taking a secret key and a message
and producing a signature. The verification algorithm is a deterministic algorithm taking a
public key, a message, and a putative signature, and telling whether the signature is valid.
The signature scheme has the functionality such that when generating a key pair and making
a signature on an arbitrary message m with the secret key, then the obtained signature
passes the verification algorithm with m and the public key.
Security requires that it shall be impossible to create a valid signature without using the
secret key.

Q.2 What is a valid signature for a message m in PKCS#1v1.5? Detail the verification algorithm.

A valid signature for m is a string which passes the verification algorithm. The algorithm
first converts the string into an integer s. Then, it checks that s < N. Then, it computes the
binary expansion of s3 mod N. It parses this string into

0001FF · · ·FF00‖D

and checks that D a valid ASN.1 string representing a digest using some valid hash function
H. Finally, it checks that the digest equals H(m).

Q.3 Let u = format`N (m).
Q.3a If u is a cube, show that we can easily forge a signature for m without any secret information.

If it is a cube, we can compute the cubic root s and s3 has a valid format. Since, s3 mod N =
s3 = u, it is a valid signature.

Q.3b We assume that u looks like a random number less than a = 2`N−15. How many cubes are less
than a?
What is the probability for u to be a cube?

We have

u = 0001FF · · ·FF003021300906052B0E03021A05000414‖H(m)

which is less than 2`N−15. The number of cubes less than a is exactly b 3
√

ac. So, we roughly
have 2

1
3 `N−5 cubes. Therefore, u is a cube with probability roughly 2−

2
3 `N+10.

Of course, u does not really look like random. We can do some thinner analysis and get that
the probability for u to be a cube is 1

3 2−
2
3 `N+10. Indeed, u is between a and a+b for b < 2160

and a ≈ 2`N−15. The number of cubes between a and a+b is roughly

(a+b)
1
3 −a

1
3 = a

1
3

((
1+

b
a

) 1
3

−1

)
≈ a

1
3

b
3a

so the probability to be a cube is about 1
3 a−

2
3 .

Q.3c Deduce an algorithm to forge a signature for m which works with a success probability
2−

2
3 `N+10.

It this practical?

The algorithm first computes u. If u is not a cube, the algorithm fails. Otherwise, it extracts
the cubic root and produce a valid signature. Since it is easy to compute cubic roots over
the integers, the algorithm is very fast. Its probability of success is 2−

2
3 `N+10 which is much

too low to be practical. E.g. for `N = 1024, the probability is 2−673.

Q.4 Bleichenbacher observed that some parsers just scan the bytes from the formatting rule but do
not check that the string terminates after the digest. That is, these implementations accept the
following format

0001FF · · ·FF00‖D(m)‖g

where g is any garbage string, provided that the padding field has at least 8 bytes and that the total
length (including the garbage) is `N .
In this question we assume `N = 3`. We further assume that `N ≥ 84+6`D.

Q.4a Let P = FF · · ·FF be a string of FF bytes with bitlength `P. Show that the `N-bit string u =
0001‖P‖00‖D(m)‖00 · · ·00 is such that u = 23α−x2γ for some integer x, where α = `−5 and
γ = `N −24− `D − `P.

Let x = 28+`D −D(m). We easily see that 23α − x2γ writes

0001‖P‖00‖D(m)‖00 · · ·00

in hexadecimal.

Q.4b By using the assumption `N ≥ 84+ 6`D, show that we can select `P such that γ ≥ 2α and
x ≤ 2

1
2 (3α−γ).

Since γ−2α = `−14− `D − `P, by selecting `p ≤ `−14− `D, we have γ ≥ 2α.
Since x ≤ 28+`D and 3α− γ = 9+ `D + `P, by selecting `P ≥ `D +7, we have x ≤ 2

1
2 (3α−γ).

When `N ≥ 84+ 6`D, we have `− 28 ≥ 2`D, so `D + 7 ≤ (`− 14− `D)− 7. Therefore, we
can select `P such that `P mod 8 = 0 and `D +7 ≤ `P ≤ `−14− `D.

Q.4c We assume that x mod 3 = 0. Let y = 1
3 x2γ−2α and s = 2α − y. Show that u ≤ s3 < u+2γ.

Note that since x mod 3 = 0 and γ ≥ 2α, y is an integer.
We use (A−B)3 = A3 −3A2B+3AB2 −B3 with A = 2α and B = y. Clearly, A3 −3A2B = u.
Since s = A−B, we have s3 = u+3AB2 −B3. Thus, we only have to show that 0 ≤ 3AB2 −
B3 < 2γ.
Since 23α − x2γ ≥ 0, we have A ≥ 3B, so 3AB2 −B3 ≥ 0.
Since x ≤ 2

1
2 (3α−γ), we have 3AB2 < 2γ.

Q.4d Deduce an algorithm to forge signatures on a random message m with success probability 1
3

based on Bleichenbacher’s observation when 3 divides `N and `N ≥ 84+6`D.
We take m hash it to compute D(m), then x. If x mod 3 6= 0, the attack fails (that is, with
probability 2

3). Then, we construct s as above. Due to the above inequalities, s3 parses

0001FF · · ·FF00‖D(m)‖g

where g is some “garbage” string. So, it is accepted as a valid signature.

Q.4e Finally, apply the attack to `N = 3072 with SHA-1. Show that the attack applies and that

s = 21019 − 1
3
(2288 −D(m))234

is a valid signature with probability 1
3 over the random selection of the message.

For `N = 3072, we have `N mod 3 = 0. The `N ≥ 84+6`D constraint is equivalent to 498 ≥
`D. For SHA-1, the digest length is 160. We can see that there is an overhead of 120 bits in
the ASN.1 syntax of D(m). So, we have `D = 280 and the constraint is satisfied. We have
s = 21019 − 1

3 x2730−`P . By replacing x with its value, we obtain

s = 21019 − 1
3
(2288 −D(m))2730−`P

We must select `P such that `P ≤ 730, `P ≥ 287, and `P mod 8 = 0. By selecting `P = 696 =
8×87 we obtain the expression in the question. Whenever its content of the parentheses is
divisible by 3, s is a valid signature of the message. That is, with a probability 1

3 .

