
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

25.1.2012

– duration: 3h00

– no documents are allowed

– a pocket calculator is allowed

– communication devices are not allowed

– exam invigilators will not answer any technical question during the exam

– answers to every exercise must be provided on separate sheets

– readability and style of writing will be part of the grade

– do not forget to put your name on every sheet!

1 Security Issue in ECDSA

In Sony PS3, the bootup code can be changed when it comes from a valid signature from the
manufacturer. The signature scheme is ECDSA. We briefly recall the scheme here.

The public key consists of a prime number n, a finite field GF(q), an elliptic curve over this
field, a generator G of order n, and another point Q. The secret key is an integer d ∈ Z∗

n such
that Q = dG. To sign a messageM , the signer picks k ∈ Z∗

n, computes the point (x1, y1) = kG,

then r = x̄1 mod n given a function x 7→ x̄ from GF(q) to Z, and finally s = H(M)+dr
k mod n

given a hash function H. If r = 0 or s = 0, the signer restarts the computation until r 6= 0
and s 6= 0. The signature is the pair (r, s). To verify a signature (r, s) for a message M , the
verifier checks that Q 6= O, that Q lies on the curve, that nQ = O, and that r ∈ Z∗

n. Then,

he computes u1 = H(M)
s mod n, u2 = r

s mod n, and (x1, y1) = u1G+ u2Q, and finally checks
that r = x̄1 mod n.

Q.1 ECDSA manipulates values of different types such as points, field elements, integers, etc.
What are the types of k, r, s, y1, H(M)? What is O?

k, r, s, H(M) are integers (taken modulo n). (Strictly speaking, H(M) is a bitstring
which shall be converted into an integer.) y1 is a field element. O is the point at
infinity, the neutral element of the elliptic curve.

Q.2 What kind of finite fields can we use in practice? Cite at least two and briefly explain how
to perform computations in these structures.

There are two types of finite fields which are popular for ECDSA: the field Zq when
q is a prime number and the field GF(q) when q is a power of 2. In the former
case, we manipulate integers and reduce them modulo q. In the latter case, we ma-
nipulate polynomials with coefficients modulo 2 and reduce them modulo a reference
irreducible polynomial.



Q.3 If a key is valid and a signature is produced by the signing algorithm, show that the
verification algorithm will accept the signature.

If the key is valid, we have Q = dG and G is on the curve. So, Q lies on the curve.
Then, nQ = n(dG) = d(nG). Since G has order n, we have nG = O. Furthermore,
dO = O. So, nQ = O. Then, since d ∈ Z∗

n, dG 6= O. So, Q 6= O. Q passes all
verifications.
Since r is the result of a modulo n computation, we have r ∈ Zn. Since r = 0 is
excluded from the signature generation and n is prime, we have r ∈ Z∗

n.
Finally, we have

u1G+ u2Q =

(
H(M)

s
G+

r

s
d

)
G = kG

Due to the signature generation, we know that (x1, y1) = kG is such that r = x̄1 mod
n, so the signature is valid.

Q.4 Why is it hard to recover the secret key given the public key?

Because ECDSA uses elliptic curves on which it is hard to compute the discrete
logarithm. Computing d given Q and the group material is exactly the problem of
computing the discrete logarithm of Q.

Q.5 For some reasons, the manufacturer produced signatures for different codes using the same
random k. Given two codes M and M ′ and their signatures (r, s) and (r′, s′), respectively,
show that an adversary can recover d.

Let (x1, y1) = kG. We have r = x̄1 mod n = r′ and

s =
H(M) + dr

k
mod n s′ =

H(M ′) + dr

k
mod n

So,
H(M)

s
+ d

r

s
≡ H(M ′)

s′
+ d

r

s′
(mod n)

thus

d =
sH(M ′)− s′H(M)

(s′ − s)r
mod n

which can be computed.

2 Hard Disk Encryption

A hard disk is made of sectors of various length (e.g., 4 096 bytes). We want to encrypt data
on the disk using the following constraints:

– we want security (no information leakage);

– we want to use symmetric encryption with a single secret key K for the entire hard disk;

– we prefer to use a block cipher;

2



– we want to be able to access or update a random piece of information without having to
process an entire sector; and

– encryption should be “in-place”, i.e., ciphertexts must not be larger than plaintexts.

Q.1 Let ` be the block length in bits for the block cipher. We assume that each sector has a
length L which is a multiple of `. If i is the index of a sector and j is the index of a block
in the sector, we let xi,j denote the plaintext block we would have had at position (i, j)
with an unencrypted hard disk. Further, we let yi,j denote the ciphertext block we have
in the encrypted hard disk.
What is the value of ` in the case of AES? Which mode of operation could we propose to
meet all the requirements?

` = 128 bits.
We can propose a CTR mode of AES where

yi,j = xi,j ⊕ EncK(i, j)

This uses a block cipher, we can access to data randomly, and the length is preserved.
We could not use the CBC, OFB, or CFB modes which require processing more blocks
to access to a random one. We could not use the ECB mode for security reasons.
(We can see when two plaintext blocks are equal by comparing the ciphertext blocks,
which leaks information.)

Q.2 We still assume that each sector has a length L which is a multiple of `. We define the
XTS mode by having a key K composed of two subkeys K = (K1,K2) and by having

yi,j = EncK1(xi,j ⊕ ti,j)⊕ ti,j with ti,j = αj × EncK2(i),

where α is a constant and αj ×u is defined by GF(2`) operations. Explain how to decrypt
and show that it meets all requirements. What is the problem if L is not a multiple of `?

Decryption is using a similar formula:

xi,j = DecK1(yi,j ⊕ ti,j)⊕ ti,j where ti,j = αj × EncK2(i)

Indeed,

DecK1(yi,j ⊕ ti,j)⊕ ti,j = DecK1(EncK1(xi,j ⊕ ti,j)⊕ ti,j = xi,j

The problem if L is not multiple of ` is that there remains an incomplete block and
it is not clear how to encrypt it.
It is (hopefully) secure, using symmetric encryption with a single key K = (K1,K2),
using a block cipher, we can have random access to a block, and it is length-
preserving. So it meets all requirements.

Q.3 We assume that there is at most one incomplete block per sector and that the size of the
sector is L ≥ `. We assume that there are ni blocks in sector i, that j ∈ {1, . . . , ni}, and
that the incomplete block (if any) is the one of index ni. We use the XTS mode from the
previous question with the ciphertext stealing technique for the special blocks of index
ni − 1 and ni. Ciphertext stealing consists of using a special rule to compute yi,ni−1 and
yi,ni from xi,ni−1 and xi,ni :

3



– if the size of xi,ni is `, proceed as in the previous question;
– otherwise, split EncK1(xi,ni−1⊕ti,ni−1)⊕ti,ni−1 into yi,ni‖u, where yi,ni is an incomplete

block, having the same length as xi,ni , and u is the leftover information in the block.
Then, yi,ni−1 = EncK1((xi,ni‖u)⊕ti,ni)⊕ti,ni . (The ‖ symbol denotes the concatenation
operation.)

Explain how to decrypt and show that it meets all requirements.

This system meets all requirements since it uses a block cipher, keeps the data size,
and can access data randomly. In the worst case, two blocks will be processed to
recover one.
To decrypt yi,j for j < ni − 1 or yi,ni of length `, we proceed as before. To decrypt
yi,ni−1 and yi,ni when yi,ni has length smaller than `, we proceed as follows: split
DecK1(yi,ni−1 ⊕ ti,ni−1)⊕ ti,ni−1 into xi,ni‖u where xi,ni has the same length as yi,ni

and u is the leftover information in the block, then xi,ni−1 = DecK1((yi,ni‖u)⊕ti,ni)⊕
ti,ni.

3 Attack on 2K-3DES

This exercise is based on “On the security of multiple encryption” by Merkle and
Hellman, Communications of the ACM, Vol. 24(7), July 1981.

Q.1 What are the block length and the key length in DES? What is the complexity of key
recovery exhaustive search in terms of data, known plaintexts versus chosen ciphertexts,
memory, and time?

Blocks have 64 bits. The key has 56 effective bits.
With a single plaintext-ciphertext pair (x, y) with a known plaintext, it is enough
to characterize the correct key as no wrong key shall be consistent with probability(
1− 2−64

)256 ≈ e−2−8
which is very close to 1. The average complexity is of 255

trials with a small memory (just enough to store the data and a counter).

Q.2 Double DES is defined by
y = DESK1 (DESK2(x)) .

Explain how the meet-in-the-middle attack works. What is its complexity in terms of data,
known plaintexts versus chosen ciphertexts, memory, and time?

We now need two pairs (xi, yi), i = 1, 2 to characterize the correct key uniquely.
With 2 known plaintexts, we prepare a dictionary of 256 records (DES−1

b (y1), b) for
all b. Records are sorted by their first two values. The dictionary takes 8× 256 bytes.
There would be tricks to shrink it a bit but the order of magnitude should stay 256.
Then, for all a we compute (DESa(x1)) and check if this is in the dictionary. When it
is, b is given by the dictionary and we check if y2 = DESb (DESa(x2)). If it matches,
then K1 = a and K2 = b is the correct key. The time complexity consists of 4× 256

DES encryptions. Again, there would be tricks to reduce it a bit but the order of
magnitude should stay 256.

4



Q.3 Two-key triple DES is defined by

y = DESK1

(
DES−1

K2
(DESK1(x))

)
.

By preparing a dictionary of all (DES−1
k (0), k) pairs, show that we can break this using

many chosen plaintexts and within a time/memory complexity similar to in the previous
question.
Hint: Make an exhaustive search on K1, i.e., guess K1, do something, then use the dictio-
nary to recover K2.

For each a we compute x = DES−1
a (0) and use x as a chosen plaintext. We obtain y.

Then, we check if DES−1
a (y) is in the dictionary. If it is, it means that DES−1

a (y) =
DES−1

b (0) for some b and it gives b. Clearly, x encrypts to y with key (a, b). With a
previous plaintext-ciphertext pair we can check if this key is correct. Clearly, when
a becomes equal to K1 (which would happen after an average number of trials equal
to 255), this attack recovers K2. So, it works with a number of DES operations equal
to 3× 255, 255 chosen plaintexts, and a dictionary of 256 entries.

4 Collisions with a Subset

In a classroom, we have x female students and y male students. We assume that their birthday
is uniformly distributed in a calendar of N possible dates, e.g., N = 365.

Q.1 Let pxx denote the exact probability, that there are two different female students with the
same birthday. Express pxx in terms of N and x.

The probability that we have no collision is

1 ·
(
1− 1

N

)
·
(
1− 2

N

)
· · ·

(
1− x− 1

N

)
=

N !

Nx(N − x)!

So, the probability to have a female-female collision is

pxx = 1− N !

Nx(N − x)!

Q.2 Let pxy|¬xx denote the exact probability, that there is at least one female-male pair of
students who share the same birthday conditioned to that female students have pairwise
different birthdays. Express pxy|¬xx in terms of N , x, and y.

The probability of no female-male collision under the condition that there are exactly
x female birthdays is

(
1− x

N

)y
. So, the probability to have a male-female collision is

pxy|¬xx = 1−
(
1− x

N

)y

5



Q.3 Show that pxy|¬xx ≈ 1− e−
xy
N .

We have
pxy|¬xx = 1− ey log(1−

x
N )

Since log(1− ε) ≈ −ε, we obtain the result.

Q.4 Based on the previous computations, what is the exact probability px? that at least one
female student shares the same birthday with another student (either female or male)?

It is

px? = pxx + (1− pxx)pxy|¬xx = 1− N !

Nx(N − x)!
+

N !

Nx(N − x)!

(
1−

(
1− x

N

)y)

Q.5 Show that px? ≈ 1− e−
x(x+2y)

2N .

Hint: pxx ≈ 1− e−
x2

2N .

We have

px? = pxx + (1− pxx)pxy|¬xx ≈ 1− e−
x2

2N + e−
x2

2N

(
1− e−

xy
N

)
= 1− e−

x(x+2y)
2N

Q.6 In a community of nu users each having a password, we assume that there is a public
directory for the hash of the passwords. We consider an attacker who tries to find password
matches with the existing database of nu password hashes. He is allowed to try nt many
random passwords and hash them. We say that he succeeds if he gets any match. That is
to say, he succeeds if either he finds at least one password with a hash in the directory, or
if he finds two users having the same password hash in the directory. What is his success
probability?

We take x = nu and y = nt. The attacker succeeds if either there is a collision
between the list x and the list y, or there is a collision inside the list x. If the range
of the hash function is N , this probability is thus px?.

5 Secure Communication Across the Röstigraben

Warning: this exercise asks you to propose a real solution for a real problem. You are requested
to precisely describe your proposed solution so that we could assess on correctness, feasibility,
efficiency, and security. Take this exercise as if it was for a hiring interview for an engineer
position.

You want to communicate securely with your friend in Zurich, but you forgot to prepare
for it the last time you met. Fortunately, you are making MSc studies with courses in cryp-
tography, so you are familiar with communication systems and computers, and so is your
friend.

6



Q.1 How would you generate a private/public key pair on your computer?

You could use a software such as GPG to set up your own key.
You could also try to develop your own RSA at your own risks. For instance, you
could generate two prime numbers p and q large enough, compute n = p×q and pick a
random e until it is coprime with (p−1)×(q−1). The public key would be KL

p = (n, e)

while the private one would be KL
s = (n, d) with d = e−1 mod ((p− 1)(q − 1)).

Q.2 How would you and your friend securely exchange your public keys?

You could exchange your public keys over the Internet (e.g., by email), then authen-
ticate them using a second channel.
To authenticate your public key KL

p to your counterpart, you can pick a random

string rL, compute SHA1(KL
p ‖rL), take the 80 leftmost bits σL, send rL by email.

You friend would do the same computation to obtain σ′
L. Then, you call each other

over the telephone and recognize each other by your voice. Them, you would spell
σL to your friend who will compare it with σ′

L. If they match, then your key is
authenticated. The authentication of his public key KZ

p would be similar: you receive

rZ by email, compute SHA1(KZ
p ‖rZ), take the 80 leftmost bits σ′

Z . When you call
each other over the phone, he would spell σZ and you would have to check σZ = σ′

Z .
There are better interactive protocols using shorter strings than 80 bits and which are
called SAS-based authentication protocols. One advantage of the above one is that
it is essentially non-interactive. It can work even with a very slow channel instead
of a telephone. For instance, you could exchange σ’s by regular mail with enough
handwriting so that you could authenticate the message. Concrete implementations
heavily depends on the properties on this second channel.
If voice recognition is not enough, you could also transmit the 80-bit σZ by several
channels (telephone, email, sms, regular mail) and assume that no adversary will be
able to attack all channels.

Q.3 How would you use public keys to set up a symmetric key with your friend?

7



You could use the public keys to exchange symmetric keys.
To exchange symmetric keys, you would exchange some secret random numbers by
encrypting them with each other’s public key, then XOR them, and use the result as
a seed to generate symmetric keys. For instance, you pick xL using a pseudorandom
generator with a seed set to some secret stuff with large enough entropy and send
yL = EncKZ

p
(xL) to your friend. You receive yZ and compute xZ = DecKL

s
(yZ).

Then, s = xL ⊕ xZ can be used as a seed for a pseudorandom generator to generate
a symmetric key K. As for pseudorandom generator, you can use

SHA1(1‖stuff)‖SHA1(2‖stuff)‖ · · ·

With GPG you would just send encrypted emails with public key KZ
p You can decrypt

the email from your counterpart using KL
s .

With your hand-made RSA you would take a random number w which is twice larger
than your friend’s modulus (to avoid biases in distributions), and reduce it modulo
that number to get xL. You would compute yL = xeZL mod NZ and send it by email.
As your hand-made implementation of RSA would essentially be the plain RSA cryp-
tosystem, it would be wise to throw away your RSA keys after the protocol completes
in order to avoid all the problems of plain RSA.

Q.4 How would you implement a secure communication channel based on this key?

A key K would have two parts K = (K1,K2). Let c− 1 be the number of exchanged
messages. To send the cth message x, your can send EncK1(MacK2(c‖x)‖x). It is
assumed that you would send even numbered messages and that you would receive
odd numbered messages.
The synchronized counter protects message sequentiality. For instance it defeats re-
play attacks. Encryption and MAC protect message confidentiality, authentication,
and integrity.

Q.5 Under which assumptions would your system be secure?

The described solution requires
– that σ’s are well authenticated (e.g., by voice recognition);
– that the public-key solution is secure (e.g., GPG is secure or your home-made

RSA is secure);
– that your random numbers are really random, based on a large enough entropy;
– that the block cipher and the MAC are secure.

8


