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– no documents allowed, except one 2-sided sheet of handwritten notes
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– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Attack on DL-Based Signature Schemes

In what follows, we consider a cyclic group of order q generated by some element g. We let ⟨g⟩
denote this group and we take multiplicative notations. We let 1 denote the neutral element.
We assume that comparing and multiplying two group elements is easy and that inverting
an element is easy. We assume that the discrete logarithm problem is hard in this group.
In particular, we assume that q > 2160. We further assume that we have a hash function G
mapping an arbitrary group element to a Zq element and a hash function H mapping an
arbitrary bitstring to a Zq element.

Q.1 We consider a digital signature scheme (inspired by DSA) in which the key generation
and the signature algorithm work as follows:

Key generation:
1: pick x ∈ Zq with uniform distribution
2: compute y = gx

3: set the secret key to x and the public key to y

Sign m using key x:
1: pick k ∈ {1, 2, . . . , 2128} with uniform distribution
2: compute r = G(gk)

3: compute s = H(m)+xr
k mod q

4: set the signature to (r, s)

Verify signature (r, s) for m using key y:

1: check that G
(
g

H(m)
s

mod qy
r
s
mod q

)
= r

Prove that under a honest execution, a signature is always correct.

The difference with DSA is that r is hashed using G instead of being reduced modulo
q and that k is small.
We have

g
H(m)

s
mod qy

r
s
mod q = gk

As G(gk) = r, the verification succeeds.



Q.2 Assume that an adversary collects many signed messages (mi, ri, si) for i = 1, 2, . . . , n. If
ri = rj for i < j, show that the adversary can easily make a key recovery attack. How
large must n be for this to happen?

HINT: first prove by an informal probability estimate that ri = rj is most likely due to
ki = kj .

As G hashes on a domain of size q and k is selected on a domain of size 2128, and
q ≫ 2128, collisions on k are more probable than collisions on G. So, we assume that
ri = rj is due to ki = kj.
Note that we could be a bit more precise using the Bayes formula:

Pr[ki = kj |ri = rj ] =
Pr[ki = kj ]

Pr[ri = rj ]
=

Pr[ki = kj ]

Pr[ki = kj ] + Pr[ri = rj |ki ̸= kj ] Pr[ki ̸= kj ]

As Pr[ki = kj ] ≈ 2−128 and Pr[ri = rj |ki ̸= kj ] ≈ 1
q , we obtain

Pr[ki = kj |ri = rj ] ≈
1

1 + 1
q (2

128 − 1)
≈ 1

If ki = kj happens, then si/sj =
H(mi)+xri
H(mj)+xrj

mod q so

si(H(mj) + xrj) ≡ sj(H(mi) + xri) (mod q)

in which mi,mj , ri, rj , si, sj are known. So, we can easily solve this equation in x:

x =
sjH(mi)− siH(mj)

sirj − sjri
mod q

Collisions on k happen after n ≈
√
2128 = 264 due to the birthday paradox.

Q.3 To defeat the previous attack, our usual crypto apprentice designs the following signature
scheme:

Key generation:
1: pick x1 ∈ Zq with uniform distribution
2: pick x2 ∈ Zq with uniform distribution
3: compute y1 = gx1 and y2 = gx2

4: set the secret key to (x1, x2) and the public key to (y1, y2)

Sign m using key (x1, x2):
1: pick k ∈ {1, 2, . . . , 2128} with uniform distribution
2: compute r1 = G1(g

k) and r2 = G2(g
k)

3: compute s = H(m)+x1r1+x2r2
k mod q

4: set the signature to (r1, r2, s)

where we now use two independent hash functions G1 and G2 to hash group elements
onto Zq.

Propose a verification algorithm and prove that it works.
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We have

g
H(m)

s
mod qy

r1
s

mod q

1 y
r2
s

mod q

2 = gk

so we can propose to verify

Gi

(
g

H(m)
s

mod qy
r1
s

mod q

1 y
r2
s

mod q

2

)
= ri

for i = 1 and i = 2.

Q.4 The idea of the crypto apprentice is that to adapt the attack of Q.2 to this new scheme, one
needs to find i, j, ℓ such that i < j < ℓ and ki = kj = kℓ. With appropriate approximations,
prove that we need n ≈ 286 to have good chances of such i, j, ℓ to exist and conclude that
this attack has a too high complexity.
HINT: approximate log Pr[no 3-collision].

Given i, j, ℓ fixed, the probability that ki = kj = kℓ is 1/N2 with N = 2128. We have(
n
3

)
= n(n−1)(n−2)

6 such triplets. So, by taking n = (2N)
2
3 = 286, we should obtain a

3-collision with good probability. More precisely, the probability should be

p ≈ 1−
(
1− 1

N2

)n(n−1)(n−2)
6

≈ 1− e−
n3

6N2 = 1− e−
2
3 ≈ 49%

Such n is indeed too large to be realistic.

Q.5 Ignore the idea with 3-collisions and prove that two regular 2-collisions would suffice to
break the new scheme. Say how large n should be for this better attack to work.
NOTE: we do not require a formula to give x1 and x2.

Given one collision ki = kj, the values of r1 and r2 are the same for the two
signatures. We deduce the common value x1r1 + x2r2 mod q with known r1 and
r2 coming from this collision. Given a second collision, we obtain another value
x1r

′
1 + x2r

′
2 mod q with know r′1 and r′2. Hence, we can solve these two linear equa-

tions in x1 and x2.
We need two collisions. For that, we only need to take n a bit larger than

√
N .

Indeed, the probability to have 2 collisions or more is

p ≈ 1−
(
1− 1

N

)n(n−1)
2

− n(n− 1)

2

1

N

(
1− 1

N

)n(n−1)
2

−1

≈ 1−
(
1 +

n2

2N

)
e−

n2

2N

So, with n = 2
√
N , we obtain p ≈ 59%. Hence n = 265 suffices to break the scheme.

Q.6 Upset, the crypto apprentice decides to avoid collisions by using a counter in the following
scheme:

Key generation:
1: pick x ∈ Zq with uniform distribution
2: compute y = gx

3: set the secret key to x and the public key to y
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4: set the counter k to a random number
5: set the e register to gk

Sign m using key x:
1: increment the counter k
2: set e to eg
3: compute r = G(e)

4: compute s = H(m)+xr
k mod q

5: set the signature to (r, s)

Design a key-recovery attack for this scheme using two signatures.

In the new scheme, the signer has no exponential to compute. The value of the
register e is always e = gk.
Two consecutive signatures (r, s) and (r′, s′) on messages m and m′ are computed

by r = G(gk), r′ = G(gk+1), s = H(m)+xr
k mod q, and s′ = H(m′)+xr′

k+1 mod q. Hence,
we have (

r −s
r′ −s′

)
×

(
x
k

)
=

(
−H(m)

−H(m′) + s′

)
(mod q)

and we deduce

x =
ss′ − sH(m′) + s′H(m)

sr′ − s′r
mod q

Q.7 What if we now use the following scheme?

Key generation:
1: pick x ∈ Zq with uniform distribution
2: compute y = gx

3: set the secret key to x and the public key to y
4: set the counter k to a random number
5: pick inc ∈ Z∗

q with uniform distribution

6: set the e register to gk

7: set the e′ register to ginc

Sign m using key x:
1: set k to k + inc
2: set e to ee′

3: compute r = G(e)

4: compute s = H(m)+xr
k mod q

5: set the signature to (r, s)
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Again, we always have e = gk, and the values of k and e are updated consistently by
minimizing the cost for the signer. We have k = k0 + i× inc, where k0 is the initial
value of k.
With 3 consecutive signatures (mi, ri, si) for i = 1, 2, 3, we have equations of form

s1k1 = H(m1) + xr1

s2(k1 + inc) = H(m2) + xr2

s3(k1 + 2inc) = H(m3) + xr3

modulo q, where the unknowns are k1, inc, and x. So, this is a linear system which
can be easily solved.

2 RSA in an Extension Ring

Q.1 Let p be a prime number such that p mod 4 = 3. We consider the polynomial x2 + 1 in
the ring Zp[x] of polynomials in the indeterminate x, with coefficients in Zp. Prove that
x2 + 1 is irreducible.

Since p mod 4 = 3, we have (−1)
p−1
2 = (−1) so −1 is not a quadratic residue in Zp.

Hence, x2+1 has no root in Zp. As it is of degree 2, this implies that it is irreducible
in Zp[x]. (Otherwise, we would reduce it into some x2 +1 = (ax+ b)(cx+ d) with a
and c nonzero and we would obtain the roots −b/a and −d/c.)

Q.2 Let p be a prime number such that p mod 4 = 3. We consider the set K = Zp[x]/(x
2 +

1) of all polynomials over Zp taken modulo x2 + 1. This defines the addition and the
multiplication over K. (This is just the regular addition and multiplication of polynomials
reduced modulo x2 + 1 and modulo p.) Give the cardinality of K and say what type of
algebraic structure it has. Justify your answer.

That is actually the standard construction of the finite field GF(p2) since x2 + 1 is
monic, irreducible, and of degree 2.
By reducing an arbitrary polynomial modulo x2 + 1, we always obtain a polynomial
of degree bounded by 1. It can be written a+ bx for two coefficients a and b. Now, no
two distinct such elements can be equal modulo x2 + 1: if a + bx ≡ a′ + b′x modulo
x2 + 1, it means that (b− b′)x+ (a− a′) is a multiple of x2 + 1, which implies that
b− b′ = 0 and a− a′ = 0, hence a = a′ and b = b′. So, we have exactly p2 elements
in K.
By construction, we obtain a ring. We further check that every nonzero element a+bx
is invertible. Indeed, the function (c + dx) 7→ (a + bx)(c + dx) mod (x2 + 1) mod p
is linear and has no nonzero preimage of 0. (Indeed, if (a+ bx)(c+ dx) = 0 modulo
x2 + 1, then (a + bx)(c + dx) is a multiple of x2 + 1. If both a+ bx and c + dx are
nonzero, due to their degree being bounded by 1 with a product of degree exactly 2 they
must be of degree exactly 1, so they must be divisors of x2 + 1, which is impossible.
So, either a + bx or c + dx must be zero.) So, this linear function is a bijection of
K and it has a preimage of 1 which is the inverse of a+ bx. Therefore, K is a field
of p2 elements.
(We could have a shorter proof with more background in algebra.)
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Q.3 Let p and q be two different prime numbers such that p mod 4 = q mod 4 = 3. Let n = pq.
Let R = Zn[x]/(x

2 + 1) be the set of all polynomials over Zn taken modulo x2 + 1. We
want to construct an RSA-like cryptosystem over R.

Prove that there are exactly ϕ = (p2 − 1)(q2 − 1) invertible elements in R.

HINT: either count or think Chinese.

One way is to count the number of non-invertible elements. First, we can use the
property that an element a+ bx is non-invertible is equivalent to the property that a
and b are either both divisible by p or both divisible by q. The ⇐ implication is trivial
as a product with any candidate for the inverse would stay divisible by p or q and 1
is not. For the ⇒ implication, we show that if among a and b there is at least one
which is not divisible by p and one which is not divisible by q then a+bx is invertible.
For that, we first observe that a2 + b2 is nonzero modulo p (otherwise, a/b or b/a
would be a square root of −1 modulo p, which is impossible), and similarly nonzero
modulo q, so it is invertible modulo n. Then, we realize that (a−bx)/(a2+b2) mod n
is the inverse of a+ bx.
If Np (resp. Nq, Nn) is the number of elements which are divisible by p (resp. q,
n), by the principle of inclusion/exclusion, we have a number of invertible elements
equal to n2−Np−Nq+Nn. As Np = q2, Nq = p2, and Nn = 1, we have n2−p2−q2+1
invertible elements, which is (p2 − 1)(q2 − 1).
We now show the same using the Chinese remainder theorem.
As (a+ bx) + (c+ dx) = (a+ c) + (b+ d)x and

(a+ bx)× (c+ dx) ≡ (ac− bd) + (ad+ bc)x (mod x2 + 1)

R is isomorphic to Z2
n where we define

(a, b) + (c, d) = (a+ c, b+ d)

and
(a, b)× (c, d) = (ac− bd, ad+ bc)

where all numbers are taken modulo n. These operations are polynomial modulo n.
So, due to the Chinese Remainder Theorem, all operations over Zn are equivalent
to operations over Zp × Zq (note that p and q are different primes, so they are
coprime). So, R is isomorphic to Z2

p × Z2
q where the operations over Z2

p and Z2
q are

defined as above, like in Z2
n. These structures are isomorphic to Zp[x]/(x

2 + 1) and
Zq[x]/(x

2+1). So, we obtain that R is isomorphic to Zp[x]/(x
2+1)×Zq[x]/(x

2+1)
which is a ring obtained by the product of two finite fields GF(p2) and GF(q2).
In a product of two fields, an element is invertible if and only if both components
are nonzero. So, we have ϕ = (p2 − 1)(q2 − 1) invertible elements.

Q.4 Under the same hypothesis as in Q.3, we want to encrypt an element m ∈ R by computing
me and to decrypt by raising to the power d. How to set e and d for the decryption to
work correctly? Justify your answer.
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For m ∈ R, we want to have med = m. So, med−1 = 1 for all m ∈ R∗. Hence,
ed − 1 must be a multiple of all element orders. One way to achieve this is to take
ed mod ϕ = 1. So, we can take e such that gcd(e, ϕ) = 1 and take d as the inverse
of e modulo ϕ.
To be more precise, we can see from the previous question that R∗ includes a subgroup
isomorphic to GF(p2)∗, which is cyclic. (If we write R ∼ GF(p2) × GF(q2), this is
the subgroup of all (t, 1) for t ∈ GF(p2)∗.) So, ed − 1 must be a multiple of p2 − 1.
This is the same for q2− 1. So, ed− 1 must be a multiple of λ = lcm(p2− 1, q2− 1),
which is the exponent of R∗. So, we can take e such that gcd(e, λ) = 1 and take d as
the inverse of e modulo λ.
Once we have seen that med = m for all m ∈ R∗, we can verify it for all m ∈ R
by using the Chinese Remainder Theorem: for any polynomial m, if m ≡ 0 modulo
x2 + 1 and modulo p, then if med ≡ m as well. Otherwise, m has order multiple of
ed− 1 modulo x2 + 1 and modulo p, so med ≡ m anyway. Hence, med ≡ m modulo
x2 + 1 and modulo p. It is the same modulo q. So, med ≡ m modulo x2 + 1 and
modulo n.

Q.5 In the context of Q.4, can we take e = 3? Justify your answer.

We must take ed mod ϕ = 1 so gcd(e, ϕ) = 1.
We cannot take p = 3, otherwise it is trivial to factor n. So, p is coprime with 3.
Hence, either p + 1 or p − 1 is a multiple of 3. We deduce that p2 − 1 is always
a multiple of 3. So, e = 3 is not invertible modulo ϕ (and not modulo λ either).
Therefore, e = 3 is not possible.

Q.6 By selecting the last decimal digit of p to be equal to 7 and the last decimal digit of q to
be equal to 3, prove that we can always use e = 5 in the previous construction.

If p mod 10 = 7 then p mod 5 = 2 so p2 − 1 mod 5 = 3. If q mod 10 = 3 then
q mod 5 = 3 so q2 − 1 mod 5 = 3. So, ϕ mod 5 = 4 so 5 does not divide ϕ. Since 5
is prime, we deduce that 5 is invertible modulo ϕ. So, we can take e = 5.

Q.7 Is there any advantage of this cryptosystem compared to RSA? Explain why.
HINT: compare the security with respect to modulus size, key and message lengths, and
complexities.

So far, the best way to break RSA is to factor n. So, we have to take n long enough to
make it hard to factor. If we can factor n, we can also break the new cryptosystem.
So, in practice, the length requirements on n are the same for RSA and the new
cryptosystem.
Clearly, the e exponent may have the same size but the d exponent is twice larger.
The messages are twice larger as well (so we can encrypt more).
With the same modulus length, the complexity of the new scheme is larger than for
RSA (say four times larger if we implement multiplication in a straightforward way).
So, there seems to be no advantage in using this new cryptosystem.
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3 On Securing Biometric Passports

A biometric passport is an identity document with a contactless chip. Reading the digital
identity works like this:

1: The reader first reads the low-entropy password w which is printed inside the passport.
2: The reader sends a standard RFID broadcast signal and the chip responds.
3: The chip requests to go through a password-based key agreement. The password w is the

input of the protocol on the reader side. On the chip side, there is a long-term public/secret
key pair pk/sk and w. (sk is stored in the chip but is not accessible to the reader.) At the
end of the protocol, the output on both sides is a symmetric key K.

4: The reader and the chip communicate securely by using this key K.
5: Through this secure communication, the reader can retrieve some files containing the

identity information ID, a biometric reference template bio, the public key pk again, and
a signature σ from the issuing country that (ID, bio, pk) is correct.

6: The reader extracts from ID the field country indicating the issuing country. It is assumed
that the reader has previously got in a secure way the root certificate Ccountry from the
issuing country so that he can verify σ.

Then, the reader has obtained (ID, bio) which can then be used to identify the person.
We further describe BAC, the original password-based key agreement protocol which is

in the standard. In this exercise, some questions are specific to BAC.
BAC makes no use of any pk/sk pair. It works as follows: the reader and the chip derive

Kinit = KDF(w) using a key derivation function, select some random nonces Nr (for the
reader) and Nc (for the chip) and some keys Kr (for the reader) and Kc (for the chip); the
chip sends Nc in clear to the reader; the reader sends (Nr, Nc,Kr) securely (using Kinit) to the
chip; the chip checks that Nc is correct and sends (Nc, Nr,Kc) securely (using Kinit) to the
reader; the reader checks that Nr is correct; the reader and the chip derive K = KDF(Kr,Kc).

Reader Chip
input: w input: w

Kinit ← KDF(w) Kinit ← KDF(w)
pick Nr,Kr pick Nc,Kc

Nc←−−−−−−−−−−−−−−
EncKinit

(Nr,Nc,Kr)
−−−−−−−−−−−−−−→

decrypt, check Nc
EncKinit

(Nc,Nr,Kc)
←−−−−−−−−−−−−−−

decrypt, check Nr

K ← KDF(Kr,Kc) K ← KDF(Kr,Kc)

output: K output: K

Q.1 If the password-based key agreement protocol makes no use of any pk/sk pair like in BAC,
prove that when the holder shows his biometric passport to someone (for instance, at the
hotel check in counter), this person can easily copy the passport. How could this be fixed?
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What the chip needs is just w, ID, bio, and σ.
Someone who has seen the passport knows w. So, he can access to the chip and read
all other information. This information could be then stored in a blank biometric
passport.
Then, the reader sees no difference between the original passport and the copied one
as they contain the same information.
This was fixed in the original standard by having an additional “Active Authentica-
tion” protocol using the pk/sk pair using public-key cryptography. As the value of sk
cannot be copied (it is not accessible), we cannot make a copy which simulates the
protocol knowing sk.
But we could also replace BAC with a better password-based key agreement protocol
instead of adding another protocol.

Q.2 If an adversary has obtained w (by whatever means), what is the threat for the holder of
the passport? Describe a possible scenario.

With w compromised, it is then easy to trace the movements of the passport as we
can easy recognize it by running the protocol again. We can also start communication
with the chip and read the private data (ID, bio, σ). In both cases, this is a privacy
concern.
If, like in the case of Q.1, the protocol makes no use of sk, the additional threat
related to having read (ID, bio, σ) is that one could make a digital copy the passport.
But this is not really the question here. The main threat remains the loss of privacy,
regardless of the use of sk.
A possible scenario is that we obtain w from a legitimate physical access to the
document (for instance, at a hotel check in desk), then, implement sensors to trace
the holder carrying his passport. We can recognize it when he enters again in the
hotel, or in a shop, etc.

Q.3 If we use BAC as a password-based key agreement protocol, prove that the password w
and all transmitted data can be recovered in clear with a passive offline exhaustive search.
How could we replace BAC to avoid this attack?

A passive adversary can get Nc (which is sent in clear) and c = EncKinit
(Nr, Nc,Kr).

Then, he can do an exhaustive search on w (which has a low entropy) until
DecKDF(guess)(c) is of form (., Nc, .).
This way, the adversary recovers w.
Even worse: the adversary can then decrypt the messages and deduce K, then decrypt
further communication which transmits the private data.
The only way to fix it is to use public-key cryptography and a correct PAKE protocol
which is secure against offline exhaustive search instead of BAC.

Q.4 One difference between a regular identity document (with ID and a picture bio printed)
with an official stamp σ and a digital document (ID, bio, pk) with a digital signature σ is
that we cannot use a photocopy of the stamped document as a proof, whereas we can use
an electronic copy of the digital signed document like the original one.
What is the potential threat related to this difference? Explain the related cryptographic
notion and a possible scenario. How could this problem be fixed?
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The digital signature σ is transferable because it can be perfectly copied: copies of a
digital signature are undeniable. The important cryptographic property is that (copies
of) the signature are transferable and undeniable because they are unforgeable.
The original stamped document is assumed to be unforgeable. Although it can be
copied, it cannot be perfectly copied as copies could be forged. So, photocopies are
deniable.
So, the original document is a proof while its copies are not.
The threat is for people who want to hide some sensitive part of their identity (such
as the exact age, official name, citizenship, etc) as any copy with σ which is disclosed
would leak evidence of the private data.
To fix this, the passport should not give the transferable σ but rather go through an
interactive proof of knowledge for a valid signature. This interactive proof should be
deniable (e.g. zero-knowledge).
Note: again, this question is not really about copying passports. If we use sk, we
can tell genuine passports and their copies apart. The question is about copying the
signature for publication.
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