
Advanced Cryptography
Lecture Notes

2017 Edition

Serge Vaudenay
EPFL

Lausanne, Switzerland
http://lasec.epfl.ch

http://lasec.epfl.ch

c⃝ Serge Vaudenay 2017

Contents

1 The Cryptographic Zoo 1
1.1 The Menagery . 1
1.2 The Math Toolbox . 3
1.3 The Algorithmic Toolbox . 5
1.4 The Complexity Theory Toolbox . 5

2 Cryptanalysis (Public-Key) 7
2.1 RSA . 7
2.2 Rabin . 12
2.3 Diffie-Hellman . 13
2.4 ElGamal . 15

3 Cryptanalysis (Conventional) 19
3.1 Block Ciphers . 19
3.2 Differential Cryptanalysis . 19
3.3 Linear Cryptanalysis . 21
3.4 Hypothesis Testing in Cryptography . 24
3.5 Decorrelation . 27

4 The Power of Interaction 33
4.1 Interactive Proofs . 33
4.2 Zero-Knowledge . 37
4.3 Zero-Knowledge Construction from Σ Protocol . 39
4.4 Setup Models . 43
4.5 A Building Block for Making Cryptographic Primitives 43

5 Proving Security 45
5.1 The Security of Encryption . 45
5.2 The Random Oracle Model . 49
5.3 The Game Proof Methodology . 56

i

ii

Chapter 1

The Cryptographic Zoo

1.1 The Menagery
Cryptographic primitives. Cryptographic primitives are described by

• components (parameters, participants in protocols, algorithms, domains, etc);

• a functionality (describing what happens if all participants play their role in a honest manner);

• security properties (describing what shall not happen if some participants are malicious, this is typi-
cally not easy to formalize).

Confidentiality is addressed by encryption, may it be symmetric or not. If it is symmetric, the same key
is used to encrypt and to decrypt. So, it must remain secret. If it is asymmetric, a key pair is generated and
the encryption key can be publicly revealed.

Message authentication and integrity are addressed by MAC (message authentication codes) — with a
symmetric key — or by digital signatures — with a key pair, the verifying key becoming public.

Probabilistic algorithms sometimes need to flip a coin to make a decision. For convenience, we write
A(x;r) to say that A runs on input x with a prepared sequence of random coins r. The sequence r must be
large enough for A to complete. In this notation, r is separated from the regular inputs by a semicolon.

To formally define what it means to say that a computation is “easy” or “hard”, we commonly refer to
the notion of a polynomially bounded algorithm. A computation is easy if it can be done by an algorithm
which runs in a time O(sn) for some integer n, depending on a parameter s. Normally, this parameter s
is called the security parameter. As “polynomially bounded” usually refers to a polynomial in terms of
the input length, we provide s written in unary (we write it 1s) to make sure that the length is s (and not
log2 s). So, to be precise, we write A(1s,x;r) but it is more convenient to take 1s implicit and omit it from
the notation.

Participants running the cryptographic primitives are probabilistic polynomially bounded (PPT) algo-
rithms, in terms of the security parameter s. This also includes adversaries. We say we use the computa-
tionally bounded adversarial model. However, we may sometimes assume no complexity bound and use
the information theoretic adversarial model.

Symmetric encryption schemes. The components of symmetric encryption schemes are: a key length
(the security parameter), the plaintext domain (it can be messages of the same specified length, e.g. for
block ciphers, or messages of variable length), the key domain, and a nonce domain if applicable (typi-
cally, for stream ciphers), two participants (a sender and a receiver), and three algorithms: a key generator
(it is quite often implicit: it consists of picking a key in the key domain with uniform distribution), an
encryption algorithm, and a decryption algorithm. The functionality specifies that for every message X ,
Pr[DecK(EncK(X)) = X] = 1 over the distribution of K. The security must formalize the notion of confi-
dentiality.

1

We distinguish several security models, depending on the goal of the adversary (e.g., to do a key
recovery or to decrypt a target ciphertext) and on the capabilities of the adversary. The adversary can
only collect ciphertexts (in a ciphertext only attack), collect plaintext/ciphertext pairs (in a known plaintext
attack), play with an encryption black box and choose the plaintext to be encrypted (in a chosen plaintext
attack), or even play with a decryption black box and choose the ciphertext to be decrypted (in a chosen
ciphertext attack). Playing with the two black boxes can further be done adaptively or nor. Hence, we
describe 6 types of capabilities for 2 possible goals, leading us to 12 security models! To have the highest
security, we should protect against the weakest attacks, e.g. decryption under adaptive chosen plaintext /
ciphertext attacks.

Message authentication codes (MAC). The description of a message authentication code is similar.
Typically, a message X is sent by appending a tag MACK(X). To authenticate X , one sends AuthK(X) =
X∥MACK(X). Upon reception, the same operation is performed and compared with the received tag. To
verify X∥t, one executes CheckK(X , t) which checks that t =MACK(X) and produces X as an output. The
security corresponds to the notions of message authentication and message integrity.

The goal of an adversary could be to recover the key (key recovery), to forge the valid tag of some
random X (universal forgery), or to forge the valid tag of some particular message (existential forgery). Its
capabilities could be to collect authenticated messages or to choose the message to be authenticated. The
stronger security model is the resistance to existential forgeries under chosen message attacks.

Commitment schemes. A commitment scheme can be described by a single probabilistic function Commit(X ;r)
taking the input X and the coins r. The commitment protocol between a sender and a receiver uses only one
input X on the sender side and one output X on the receiver side. It works in two phases: in the commitment
phase, the sender with input X picks r and sends c=Commit(X ;r) to the receiver; in the opening phase, the
sender reveals X and r, the receiver checks that c = Commit(X ;r) and outputs X . Security should capture
the notion of a hiding commitment (i.e., the receiver has no clue about X before the opening phase) and
of a binding commitment (i.e., the sender cannot open the commitment on two different values X). This
should be equivalent to putting a document X in a safe c closed with a key r, then giving the safe to the
receiver, then handing out the key r to open it.

Pseudorandom number generators (PRNG). A PRNG can be defined by an algorithm mapping a state
(seed) to a new state (new seed) and a generated number. There exists several security notions. One of these
is the notion of unpredictability: an adversary receiving a sequence of generated numbers cannot predict
with good probability what will be the next generated number. Another notion is the one of indistinguisha-
bility: an adversary producing a bit given a sequence of number produces X , when the sequence consists
of generated numbers, and Y , when the sequence consists of truly random numbers. The advantage of the
adversary is Pr[X = 1]−Pr[Y = 1]. For indistinguishability, we need that all adversaries have a negligible
advantage.1

Hash functions. A hash function can be used to construct a commitment scheme, a pseudorandom gen-
erator, a key derivation function (KDF), or to expand the domain of a primitive (e.g., a signature scheme).
Since there are so many ways to use hash functions, there are also many different security notions. We
can consider resistance to first preimage attacks (given y, find x such that H(x) = y), to second preimage
attacks (given x, find x′ ̸= x such that H(x) = H(x′)), and to collision attacks (find x and x′ such that x ̸= x′

and H(x) = H(x′)).

Key agreement protocols. A key agreement protocol is an interactive protocol between two participants
called Alice and Bob. The two algorithms use no input and produce one output K. The functionality is that
both outputs are equal. The security implies that no adversary looking at the protocol messages can infer
K.

1The precise meaning of what “negligible” means will be introduced later in the lecture.

2

Public-key cryptosystems. In a public-key cryptosystem, a key generator produces a key pair (Kp,Ks).
An encryption algorithm is probabilistic. A decryption algorithm is deterministic. The functionality says
that DecKs(EncKp(X)) = X with probability 1. Security works like in the symmetric case, except that the
minimal adversarial capabilities are chosen plaintext attacks, since the adversary can do the encryption by
himself by using the public key.

Digital signature schemes. In a digital signature scheme, a key generator produces a key pair (Kp,Ks).
A signing algorithm is probabilistic. A verifying algorithm is deterministic. The functionality says that
VerKp(X ,SigKs(X)) = ok with probability 1. Security formalizes the notion of non-repudiation: a signer
who signed a document cannot later claim that he did not sign. This implies that signatures are unforgeable,
otherwise, the signer can claim that the signature was forged. We have similar security models as for
message authentication codes.

1.2 The Math Toolbox
Finite Abelian groups. We work with finite Abelian groups. I.e., finite sets with an operation such
that the set is closed under the operation, the operation is associative, there exists a neutral element, all
elements are invertible, and the operation is commutative. Examples are Zn, Z∗p, GF(q)∗, and the elliptic
curve Ea,b(K) for a finite field K.

Since there is a single operation, we have groups with additive notations (e.g., the neutral element is
0, and we consider multiplying an integer n with a group element a by n.a = a+ · · ·+a) and groups with
multiplicative notations (e.g., the neutral element is 1, and we consider raising a group element a to the
power of an integer n by an = a×·· ·×a).

Groups can be constructed in many ways. Given a big group, we can consider smaller groups (sub-
groups) generated by some elements. We can make the product of groups, raise a group to some power,
and make the quotient of an Abelian group by one of its subgroups.

The order of a group is its cardinality. The order of an element x is the order of the group it generates.
It is also the smallest n > 0 such that xn = 1 (with multiplicative notations). The group exponent is the
smallest n > 0 such that xn = 1 for every element x. The order of an element divides the exponent of the
group. The Lagrange theorem implies that the exponent of the group divides the order of the group.

Rings. A commutative ring has two operations + and ×. It must be a group for +. The multiplication
must be associative, have a neutral element, be commutative. Furthermore, there must be a distributivity of
multiplication over addition. Examples include Z, Zn, Z[x], Zp[x]. Instead of subrings, we consider ideals.
We can make the product of rings, raise a ring to some power, and make the quotient of a ring by an ideal.

Euclidean rings have a Euclidean division. For instance, Z and K[x] are Euclidean rings. Euclidean
rings are principal rings. I.e., every ideal can be generated by a single element. In principal rings, all ele-
ments have a unique factorization into irreducible elements, up to multiplication by units and permutations.

Given a ring R, we consider the group R∗ of elements which are invertible for the multiplication. This
forms a group for the ring multiplication.

In Z, a number p is prime if p > 1 and

∀a,b ∈ Z p = ab =⇒ |a|= 1 or |b|= 1

In K[x], a polynomial P(x) is irreducible if

∀A(x),B(x) ∈K[x] P(x) = A(x)B(x) =⇒ deg(A) = 0 or deg(B) = 0

Finite fields. A finite field is a finite ring in which every nonzero element is invertible. The Galois
theorem says that finite fields have a cardinality which is the power of a prime number and that finite fields
with same cardinality are isomorphic. Furthermore, given a prime power q = pn, we can construct such
field GF(q) by taking an irreducible monic (i.e., with leading coefficient 1) polynomial P(x) of Zp[x] of
degree n then defining GF(q) = Zp[x]/(P(x)). In practice, we will use either Zp or GF(2n).

3

The Zn ring. In Zn, x is invertible if and only if gcd(x,n) = 1. The cardinality of Z∗n is φ(n) and its
exponent is λ(n). If the pi’s are prime and pairwise different, we have

φ(pα1
1 . . . pαr

r) = (p1−1)pα1−1
1 ×·· ·× (pr−1)pαr−1

r

λ(pα1
1 . . . pαr

r) = lcm
(
(p1−1)pα1−1

1 , · · · ,(pr−1)pαr−1
r

)
We know that for all x ∈ Z∗n, we have xφ(n) mod n = 1 and xλ(n) mod n = 1.

The Zp field. Zp is a field if and only if p is a prime. In that case, we know that Z∗p is a cyclic group.
I.e., there exists elements g (called generators) such that all elements can be written as a power of g in the
group. We have that xp−1 mod p = 1 for all x ∈ Z∗p. When p > 2, p is odd and the set QR(p) of quadratic
residues of Z∗p (i.e., the set of the square of all Z∗p elements) is a group of order p−1

2 . Actually, x ∈ Z∗p is a

quadratic residue if and only if x
p−1

2 mod p = 1.

The Chinese Remainder Theorem. We state the following result:

Theorem 1.1. If m and n are two relatively prime integers (i.e., gcd(m,n) = 1), then the ring Zmn of
residues modulo mn is isomorphic to the product ring Zm×Zn. One isomorphism is the function mapping
x ∈ {0, . . . ,mn−1} to the pair (x mod m,x mod n).

This simple fact has many important consequences:

• For every (a,b) pair, there exists a unique integer x (up to a multiple of mn) such that x mod m = a
and x mod n = b at the same time. We can compute x by inverting f . One way consists of computing

x =
(
an(n−1 mod m)+bm(m−1 mod n)

)
mod (mn)

• The group of units of both rings have the same cardinality. Namely, φ(mn) = φ(m)φ(n).

We stress that this holds for gcd(m,n) = 1.

Random variables. A random variable is a process X transforming some random seeds (e.g., coin flips)
into an element of some set Z. The support of X is the set of all possible Z elements which can be taken by
X . The distribution of X is a function from a set including the support of X to R, mapping a value x to the
probability Pr[X = x] that X takes the value x. In this lecture, we concentrate on discrete random variables.
This assumes that Z is enumerable.

Two random variables X and Y are called independent if for all x and y, we have Pr[X = x,Y = y] =
Pr[X = x]Pr[Y = y].

We now consider random variables with a support in a vector space over the reals. The expected value
of X is

E(X) = ∑
seed

Pr[seed]X(seed) = ∑
x∈support(X)

xPr[X = x]

(we recall that X transforms some seed into a value X(seed) of support(X).) The variance of X is

V (X) =
(
E(X−E(X))2)= E(X2)−E(X)2

The expected value is a linear operator. I.e., for all λ,µ ∈ R, we have E(λX +µY) = λE(X)+µE(Y). The
variance is quadratic. I.e., for all λ, we have V (λX) = λ2V (X). When X and Y are independent, we have
E(XY) = E(X)E(Y).

For a function f and a random variably X , f (X) is a new random variable. We have

E(f (X)) = ∑
x∈support(X)

f (x)Pr[X = x]

When X is Boolean (i.e., its support is included in {0,1}), we have E(X) = p and V (X) = p(1− p)
where p = Pr[X = 1].

4

1.3 The Algorithmic Toolbox
Algorithms over big numbers. Assuming a binary representation, the addition of x and y can be done
with complexity O(ℓ), where ℓ is the bitlength of the numbers. The multiplication can be done with
complexity O(ℓ2), as well as the Euclidean division. This includes the computation of x mod y, for instance.
The extended Euclid algorithm computes from x and y two integers a and b such that ax+by = gcd(x,y).
This is done with complexity O(ℓ2).

Modular arithmetic. We consider Zn where n has a bitlength ℓ and elements are represented as numbers
between 0 and n− 1. The addition in Zn can be done with complexity O(ℓ). The multiplication with
schoolbook algorithm is done in complexity O(ℓ2).

The inversion of an invertible element is done with complexity O(ℓ2), using the extended Euclid algo-
rithm. Actually, x ∈ Zn is invertible if and only if gcd(x,n) = 1, so if and only if the algorithm fed with x
and n returns some a such that (ax) mod n = 1.

The computation of xe mod n is done with complexity O(ℓ2 loge) using the schoolbook multiplication.
If the factorization of n is provided, we can compute square roots of quadratic residues with complexity

O(ℓ3) (with schoolbook multiplication).
We can test the primality of an integer n of bitlength ℓ. If we use up to k iterations in the Miller-

Rabin primality test algorithm, the probability of having an incorrect answer is bounded by 4−k. Every
iteration has a complexity of O(ℓ3) (with schoolbook multiplication). A composite number is rejected with
complexity O(ℓ3) (with schoolbook multiplication). So, using the prime number theorem, we can generate
random primes of length ℓ with complexity O(ℓ4) (with schoolbook multiplication).

Birthday effect. Given a random function over a set of size N, we can find collisions with complexity√
N using the birthday paradox.

Generic attacks. For some encryption function based on a key of size n, we can do a key recovery of
complexity O(2n) using exhaustive search. For a random hash function with range {0,1}n, we can make
a preimage attack with complexity O(2n). As already mentioned, collisions can be found with complexity
O(2

n
2). Finally, for a message authentication code based on a key of size n, we can do a key recovery of

complexity O(2n).

1.4 The Complexity Theory Toolbox
Membership problem. A language is a set of words, i.e., finite sequences of letters taken from a given
alphabet. A membership problem is defined by a language L. An instance of the problem is a word x. The
problem consists of deciding whether x ∈ L or not. Languages in the class N P are of form

L = {x;∃w R(x,w)}

for some predicate R which can be evaluated in polynomial time. A value w such that R(x,w) holds is a
witness for x to be member of L. A problem is N P -hard if solving it in polynomial time implies solving
any problem in the class N P .

Membership problems are problems consisting of computing one bit (i.e., whether the instance is in
the language of not). We can consider problems consisting of computing several bits. For instance, the
factoring problem consists of computing one non-trivial factor of the integer represented by the instance.
The discrete logarithm problem consists, given g and y belonging to a group, in computing an integer x
such that gx = y. None of these problems are known to be N P -hard. Nevertheless, they might by hard to
solve.

The best algorithm to solve the factoring problem is the NFS algorithm. Factoring n takes

e
O

(
(lnn)

1
3 (ln lnn)

2
3

)

5

The best algorithm to solve the discrete logarithm problem in the group Z∗p is index calculus. It works in
complexity

e
O

(
(ln p)

1
2 (ln ln p)

1
2

)

Turing reduction. A problem (language) L1 reduces to a problem (language) L2 if there exists a polynomial-
time oracle machine AO solving L1, given the oracle O assumed to solve L2. That is, there exists an efficient
algorithm to solve L1 using as a subroutine an algorithm solving L2 and with running time set to one unit.
This notion of reduction is very useful to compare the difficulty of problems. Namely, if L1 reduces to
L2, then L1 is at most as hard to solve as L2. That is, if we can solve L2, then we can solve L1 as well.
Conversely, if L1 is hard to solve, then L2 is hard to solve as well.

The notion of reduction could be used to compare the complexity of two problems. Typically, we would
compare the complexity of breaking a cryptosystem to the complexity of some well-known computational
problem such as integer factoring.

6

Chapter 2

Cryptanalysis (Public-Key)

In this chapter, we review some case studies about situations where things can become badly insecure with
public-key cryptography. We also start a systematic study of security analysis, to try to assess the difficulty
of breaking security.

2.1 RSA
The so-called textbook-RSA cryptosystem [49] works as follows (see Fig. 2.1):

• for key generation, we generate two different prime numbers p and q, compute N = pq and φ(N) =
(p− 1)(q− 1). Then, we pick some e such that gcd(e,φ(N)) = 1 and compute d = e−1 mod φ(N)
using the extended Euclid algorithm. The public key is (e,N) and the secret one is (d,N).

• for encrypting a number x ∈ ZN , we compute y = xe mod N.

• for decrypting a number y ∈ ZN , we compute x = yd mod N.

For signature, we sign y by computing x = yd mod N and we check that x is a valid signature of y by
checking y = xe mod N. Interestingly, y can be extracted from x in the RSA case, so we could have a
signature with message recovery (see Fig. 2.2). To assess the security of RSA, we essentially consider two
problems:

• the RSA decryption problem: given an RSA public key (e,N) and a ciphertext y, compute x such
that y = xe mod N.

Generator

6Secret key d,NPublic key e,N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

N = pq
φ(N) = (p−1)(q−1)

1 = gcd(e,φ(N))
d = e−1 mod φ(N)

6
?

x xe mod N y yd mod N

Figure 2.1: Textbook RSA Encryption

7

Generator

6Secret key d,N Public key e,N6AUTHENTICATION
INTEGRITY

-Message
x Sign -Signature

xd mod N
-

y Extract -
ye mod N

�
�

Adversary

N = pq
φ(N) = (p−1)(q−1)

1 = gcd(e,φ(N))
d = e−1 mod φ(N)

6
?

Figure 2.2: Textbook RSA Signature

• the RSA key recovery problem: given an RSA public key (e,N), find a number d such that for all
x ∈ Z∗N we have xed mod N = x.

We will compare them with some problems from number theory:

• the RSA factoring problem: given an RSA modulus N, find the factors p and q.

• the RSA order problem: given an RSA modulus N, compute φ(N), the order of Z∗N .

• the RSA exponent multiple problem: given an RSA modulus N, find an integer k which is a positive
multiple of λ(N).

As for the last problem, we recall that the set of all k’s such that ∀x ∈ Z∗N xk mod N = 1 is an ideal of the
ring Z and that λ(N) is the smallest positive such k. Since Z is a principal ring, this ideal is generated by
λ(N). Consequently, k is a multiple of λ(N) if and only if ∀x ∈ Z∗N xk mod N = 1.

We can show, using Turing reductions, that the three above problems from number theory are equivalent
to the RSA key recovery problem and that the RSA decryption problem reduces to the RSA key recovery
problem. However, these two problems are not known to be equivalent although both are believed to be
hard to solve.

RSA decryption reduces to RSA key recovery. This is essentially trivial: assuming that we have an
oracle solving the RSA key recovery problem, given an instance (e,N,y) of the RSA decryption problem,
we can submit (e,N) to the oracle and get d such that for all y ∈ Z∗N , yed mod N = y. So, by taking
x = yd mod N, we obtain that xe mod N = y. This is just a complicated way to say that if we can recover
the secret key, then we can apply the decryption algorithm to decrypt y!

RSA key recovery reduces to the RSA order problem. Assuming that we have an oracle which can
compute φ(N) from the RSA modulus N, given an RSA public key (e,N), we can first get φ(N) using the
oracle, then compute d = e−1 mod φ(N). Clearly, for all x ∈ Z∗N , we have xed mod N = x. So, this solves
the RSA key recovery problem.

The RSA exponent multiple problem reduces to RSA key recovery. Given an oracle which computes
d from (e,N), the number k = ed− 1 satisfies xk mod N = 1 for all x ∈ Z∗N . So, we can solve the RSA
exponent multiple problem by taking a valid e. I.e., if we take a random e and that by any chance we have
gcd(e,φ(N)) = 1, we solve the problem. It is not guaranteed what happens when e is not valid since we
don’t know that the oracle returns (if it returns anything) in that case. What we could do is to iterate on
random e’s and compute the lcm of all obtained k’s. Since eventually we will have a good e, it will return
a solution k and the lcm will be another solution.

8

xt mod n -̸= 1
SQ -̸= 1

SQ -̸= 1 · · · -̸= 1
SQ -̸= 1

SQ - 1

?6
is it ≡−1?

at most s︷ ︸︸ ︷

Figure 2.3: Factoring N using λ(N)

The RSA order problem reduces to RSA factoring. Given an oracle computing p and q from N, it is
clear that we can compute φ(N) = (p−1)(q−1).

RSA factoring reduces to the RSA order problem. Conversely, given an oracle computing φ(N) from
N, we notice that p+q=N−φ(N)+1 and pq=N. So, the quadratic equation X2−(N−φ(N)+1)X+N =
0 over R has p and q as roots. Since it is easy to solve these equations in R, we solve the RSA factoring
problem.

RSA factoring reduces to the RSA exponent multiple problem. This is the most tricky reduction.
Assuming an oracle giving an exponent multiple k from N, we factor N as follows: first, we write k = 2st
for some integers s and t such that t is odd (i.e., we iteratively divide by 2, s times in total, until the result
t becomes odd). We know that for all x ∈ Z∗N , if we square iteratively s times the residue xt mod N, we
must obtain 1. We pick x ∈ ZN−{0} at random. If gcd(x,N) ̸= 1, we find either p or q by some incredible
chance and can stop. Otherwise, we deduce that x ∈ Z∗N . We compute y = xt mod N. If y = 1, this is bad
luck and we try again. Otherwise, we iteratively square y until y2 mod N = 1. If y≡−1 (mod N), this is
bad luck and we try again. Otherwise, y is a square root or 1 which is neither 1 nor −1. So, (y−1)(y+1)
is a multiple of N = pq such that neither y−1 nor y+1 is a multiple of N. So, gcd(y−1,N) is either p or
q and we solve the factoring problem (see Fig. 2.3).

To prove that this works, we define sp and sq such that p−1
2sp and q−1

2sq are odd, then s′ = max(sp,sq)−1.
Since k is a multiple of λ(N) = lcm(p−1,q−1), it is a multiple of p−1, so a multiple of 2sp as well. So,

sp ≤ s. Similarly, sq ≤ s. Hence, 0 ≤ s′ < s. The mapping x 7→ x2s′ t over Z∗p is a group homomorphism.
Let Hp be the set of images of this function. Clearly, Hp is a subgroup of {1,−1}. If s′ ≥ sp, this is
Hp = {1}. Otherwise, for s′ = sp− 1, we know that a non-quadratic residue x modulo p would map to
−1, so Hp = {1,−1}. We define Hq similarly. Without loss of generality, we assume that sp ≥ sq. So,

Hp = {1,−1}. Then we consider the mapping x 7→ x2s′−1t over Z∗N . This is a group homomorphism onto
a group H which is isomorphic to Hp×Hq due to the Chinese remainder theorem. If sp = sq, we have
Hq = {1,−1}. So, H contains four elements, including 1 and −1, and two “interesting” ones. (I.e., equal
to 1 modulo either p or q but not both, and equal to −1 modulo either p or q but not both.) Otherwise, for
sp > sq, we have Hq = {1}. So, H contains two elements, including 1 and an “interesting” one. In both
cases, half of the element are “interesting”. I.e., they are non-known square roots of 1. Since the mapping
x 7→ x2s′−1t is homomorphic, it is balanced from Z∗N to H. Hence, mapping a random element x gives an
“interesting” element of H with probability 1

2 . So, the above produce works with probability at least 1
2 in

one iteration. By iterating enough, it works, eventually.

To conclude, RSA key recovery is equivalent to RSA factoring and to computing φ(N) or any multiple.
RSA decryption reduces to this but may be simpler. The equivalence is an open research problem.

RSA engineering. The textbook-RSA cryptosystem looks nice in textbooks. But using it in practice is
not a piece of cake. Actually, we first have to realize that messages are not integers in practice, so we
need some formatting rules. Then, there are usage and implementation issues. For instance, broadcasting
a message to several users (each receiving the encryption of that message with his key) is insecure if the

9

encryption exponent e is small. In general, there are many problems related to small e’s or d’s. In addition
to this, implementation may leak some information through side channels.

Side channels can have various forms. For instance, devices provided with external power leak how
much power they use over time. When stressed, devices can make computation errors, and the type of error
may leak some information. The execution time may also leak some information. Finally, formatting rules
added by protocols may also leak. We will see some leakage examples later.

RSA ISO standard. The ISO/IEC 9796 standard is an RSA signature standard providing message recov-
ery, but suffering from some vulnerabilities. To sign a message, we apply an invertible formatting rule to
transform it into a number, then sign that number using textbook RSA signature. When applying the text-
book RSA extraction to the signature, we recover the number and can invert the formatting rule to recover
the message.

The formatting rule looks like a cook recipe. What is important for the cryptanalysis to follow is to
know that given a four-byte message m = m4m3,m2m1 such that m1 = 66 in hexadecimal and the most
significant bit of S(m4) is 1 for some byte permutation S, then formatting the message will lead to the
number

x(m)×Γ

for the constant Γ = 1+264+2128+ · · ·+2k−64 (where k is the modulus bitlength, assumed to be a multiple
of 64) and

x(m) = S(m4)m4S(m3)m3S(m2)m22266

Actually, the ISO standard requires that a single bit of x(m)×Γ is flipped. However, we will ignore it in
what follows.

To break the standard (or, actually, the variant of it with no bit flip), we prepare many messages m of the
above form and factor x(m). (Since x(m) has a bitlength of 64, this is easy.) Then, we only keep messages
m such that x(m) has no prime factor larger than 216. With a pool of a few hundred of such messages, it is
likely that we find four messages mg,mh,mi,m j such that x(mg)× x(mh) = x(mi)× x(m j). Consequently,
if the σ’s denote the signature of these messages, we obtain that σg×σh ≡ σi×σ j (mod N). So, we can
make an existential forgery under chosen message attack: we just query the signatures σg,σh,σi and we
construct the signature σ j.

This attack was presented in [17]. It was later extended to the full ISO signature standard [18].

Attack on broadcast RSA with low exponent. Assuming n users having an RSA public key (e,Ni), i =
1, . . . ,n with same e and e so low that e≤ n, if someone broadcasts the message x (i.e., sends yi = xe mod Ni
to the ith user, i = 1, . . . ,n), then an adversary can easily decrypt x. Indeed, he can compute y = xe mod N
for N = N1 · · ·Nn using the Chinese remainder theorem. Then, since x must be lower than all Ni’s, we have
xe < N. So, y = xe over Z. Now, we can use one’s favorite algorithm to extract eth roots to y over Z to
obtain x. This attack is due to Håstad [34]. It can be extended when the e’s are different but all small.

Attack on related messages. There are extensions of the previous attack when several messages (with a
known algebraic relation between them) are all encrypted with the same RSA public key. For instance, if a
message x is concatenated with a counter (e.g., because the protocol requires messages to be numbered) and
sent several times with a different counter, we can recover x. Typically, we can extract x from y = xe mod N
and y′ = (x+ 1)e mod N when e is small. The idea is essentially the same as the Euclid algorithm: we
consider the ideal polynomials (in z) spanned by ze− y and (z+ 1)e− y′. This is a pair of polynomials
generating the ideal. By linear combination, we can reduce this pair into another equivalent pair where
one polynomial is unchanged and the degree of the other is lowered. Typically, if the polynomial P(z)
with lowest degree starts has leading monomial αzd and the other Q(z) has βzd′ , we replace the latter by
Q(z)− β

α zd′−dP(z) mod N. We iterate this reduction until we obtain a pair with a polynomial of form
αz−β, yielding the solution x = β

α mod N. This attack was proposed by Coppersmith, Franklin, Patarin,
and Reiter [21].

10

-

6

time

power

SQ MUL

1

SQ MUL

1

SQ

0

SQ

0

SQ

Figure 2.4: Simple Power Analysis

Attacks on low exponents. There are other problems related to low e’s. Actually, the Coppersmith
algorithm [19, 20] can be used to solve modulo N a polynomial equation of degree e when a root is known
to be lower than N

1
e . This can be used to decrypt a message when 2

3 of the plaintext bits are already known
and e = 3. For instance, using a standard of form Enc(x) = (pattern∥x)3 mod N with x over ℓ bits and N
larger than 3ℓ bits, we can write the equation y= (2ℓpattern+x)3 mod N and solve it with the Coppersmith
algorithm.

There are other insecurity cases when d is short. For instance, for d of 64 bits, the Wiener algorithm [59]
computes d from e and N.

Power analysis. Using the square-and-multiply algorithm, an RSA-decryption device just scans all the
bits of d. For every bit, it is doing a squaring operation. If the bit is 1, it is doing an extra multiplying
operation. In some implementations, these operations are done by an arithmetic coprocessor which is using
more power than the microprocessor alone. Furthermore, squaring is typically faster than multiplying. So,
when looking at the power consumption over time, we can see the square and multiply operations over
time (see Fig. 2.4). We deduce all bits of d. This power analysis works for some smartcards, since they
use external power sources. The smartcard industry has to address these potential problems by having
countermeasures to smoothen the power consumption, of other decryption algorithms.

There are several possible attacks based on power consumption or on the time variation of computa-
tions. (See Kocher [36, 37].)

Differential fault analysis. When RSA decryption is implemented using the Chinese remainder theorem,
the device computes yd mod p, yd mod q, and reconstruct yd mod N using CRT. If the device is stressed
(by heating, increasing the power voltage, the clock frequency, etc) at some point it starts making errors.
If there is only one computation error, it is likely to be done during either yd mod p or yd mod q. An
adversary who feeds the device with y = xe mod N for some random x will get some x′ which is equal to x
modulo either p or q but not both. Hence, gcd(x− x′,N) is a prime factor of N and we can deduce p and
q. This attack was presented by Boneh, DeMillo, and Lipton [13]. To defeat that, smartcards should have
sensors to disconnect when some external stress is detected.

A protocol side channel in PKCS#1v1.5. The PKCS#1v1.5 standard imposes that plaintext messages
shall start with 0002 in hexadecimal. Hence, for a k-byte long modulus, the plaintext is between 2×256k−2

and 3× 256k−2. An adversary who has got a ciphertext y can try to submit sey mod N to the server for

11

Generator

6Secret key p,qPublic key N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

p,q prime
N = pq

6
?

x x2 mod N y √
y mod N

Figure 2.5: Textbook Rabin Cryptosystem

some chosen s. The server will decrypt and accept it as a valid message only when sx mod N is in this
interval. This can be used as an oracle to query whether sx mod N is in this interval for some chosen s.
Bleichenbacher [12] made this observation and derived an algorithm which, by using such oracle, is able
to fully decrypt y into x. The algorithm was improved by Bardou et al. [3].

2.2 Rabin
The so-called textbook-Rabin cryptosystem [47] works as follows (see Fig. 2.5):

• for key generation, we generate two different prime numbers p and q, compute N = pq and φ(N) =
(p−1)(q−1).

• for encrypting a number x ∈ ZN , we compute y = x2 mod N.

• for decrypting a number y ∈ ZN , we compute x =
√

y mod N.

With this description, it is not really a cryptosystem because the
√

y mod N operation is ambiguous. Actu-
ally, there are four square roots of y and it is not clear which one to take for the decryption. A technique
to address this problem is to impose some redundancy in the plaintext (e.g., that there are 64 special bit
positions all equal to 0). Since it is unlikely that another square root will satisfy this redundancy, we can
decrypt non-ambiguously.

To assess the security of the Rabin cryptosystem, we essentially consider two problems:

• the Rabin decryption problem: given a Rabin public key N and a ciphertext y, compute one x such
that y = x2 mod N (we do not consider the redundancy check here).

• the Rabin key recovery problem: given an Rabin public key N, factor N.

We can show that both are equivalent. Clearly, factoring N allows to compute square roots. So, the Rabin
decryption problem reduces to the Rabin key recovery problem. Conversely, if we have an oracle solving
the Rabin decryption problem, upon input N, we can pick x ∈ Z∗N at random then submit y = x2 mod N to
the oracle who will return x′ such that x2 ≡ (x′)2. Since x is a random square roots of y and that the oracle
has no information on which one it is, we have that x =±x′ mod N with probability 1

2 . In the other cases,
we deduce that gcd(x− x′,N) is a non-trivial factor of N, so we can factor N.

On the one hand, we could favor the Rabin cryptosystem as opposed to RSA because the decryption
problem is known to be equivalent to factoring, whereas RSA decryption may be easier than factoring.
However, the proof of equivalence can also be viewed as a chosen ciphertext attack which breaks the
Rabin cryptosystem. This is a pretty paradoxical situation where knowing that decryption is as hard as key
recovery also leads to a devastating chosen ciphertext attack!

12

When introducing plaintext redundancy to avoid decryption ambiguity, the equivalence no longer holds,
and nor does the attack. This continues the paradoxical situation... So, it seems that in order to have a better
security, decryption should not be as hard as key recovery!

2.3 Diffie-Hellman
The so-called textbook Diffie-Hellman key agreement protocol [24] works as follows. We assume a stan-
dard cyclic group (such as Z∗p, a subgroup of it, an elliptic curve, etc) which is generated by some element
g. Alice has a secret key x∈Z and a public key X = gx. Bob has a secret key y∈Z and a public key Y = gy.
They both exchange X and Y and compute K = gxy: Alice computes K = Y x and Bob computes K = Xy.
The final key shared by Alice and Bob is K.

If an adversary — Eve — can interfere with the communication, she can perform a man-in-the-middle
attack. It consists in running protocols independently with Alice and Bob, then ending up with sharing
a key K1 with Alice and a key K2 with Bob. The protocol is supposed to resist to passive attacks: i.e., a
passive Eve cannot infer K given g, X , and Y .

To assess the security of the protocol, we consider first the two following problems:

• the Diffie-Hellman problem: given (g,X ,Y) in a given group, where X ,Y ∈ ⟨g⟩, compute K = gXy

where Y = gy.

• the discrete logarithm problem: given (g,y) in a given group, where Y ∈ ⟨g⟩, compute y such that
Y = gy.

Clearly, the Diffie-Hellman problem reduces to the discrete logarithm. However, the converse is still an
open problem.

It must be stressed that the discrete logarithm problem is not always hard. Actually, in the group Zn,
which is cyclic, with additive notations, computing the discrete logarithm of Y in basis g means finding y
such that Y = gy mod n. This is clearly easy to solve by using the extended Euclid algorithm.

If n is a smooth number, i.e., if all its prime factors are less than a bound B which is small, then
the discrete logarithm in a group of order n can be solved with O(

√
B logn) group operations by using

the Pohlig-Hellman algorithm. So, the hardness implies a large prime factor in the order of the group.
Consequences to cryptography were explored by van Oorschot and Wiener [42].

The Pohlig-Hellman algorithm [45] works as follows: in a group of order n = pα1
1 × ·· ·× pαr

r where
the pi’s are pairwise different primes and the αi’s are non-negative integers, we compute the logarithm of
y in basis g

1: for i = 1, . . . ,r do
2: g′← gn/p

αi
i

3: g′′← g′p
αi−1
i

4: y′← yn/p
αi
i

5: xi← 0
6: for j = 0 to αi−1 do

7: y′′← y′p
αi− j−1
i

8: compute the discrete logarithm u of y′′ in the subgroup of order pi which is spanned by g′′ (next
algorithm)

9: y′← y′/g′u.p
j
i

10: xi← xi +u.p j
i

11: end for
12: end for
13: reconstruct and yield x such that x≡ xi (mod pαi

i)

Essentially, for each i we do αi discrete logarithms in a group of order pi. The idea is that for each i,
by raising y and g to the power n/pαi

i , we end up in a group of order pαi
i where the new y has the same

logarithm in the new basis, modulo pαi
i . Then, we recover all “basis-pi digits” of the logarithm from the

13

least significant to the most significant. If some digits are known, we divide y by g raised to the known part
power, then raise the remainder to some power of pi so that we end up in a group of order pi, to compute
the next digit. The final reconstruction is done by applying the Chinese Remainder Theorem.

To compute a logarithm in a group of prime order p, we apply the Baby-step Giant-step algorithm by
Shanks [55]:
Precomputation

1: let ℓ= ⌈
√

B⌉ be the size of a “giant step”
2: for i = 0, . . . , ℓ−1 do
3: insert (giℓ, i) into a hash table
4: end for

Computation
5: for j = 0, . . . , ℓ−1 do
6: compute z = yg− j

7: if we have a (z, i) in the hash table then
8: yield x = iℓ+ j and stop {we get yg− j = giℓ}
9: end if

10: end for
Essentially, we store all “giant steps” giℓ in the table and make “baby steps” yg− j from y until we reach
one value of the table. This algorithm has a complexity bounded by O(

√
p) group operations. So, the

Pohlig-Hellman algorithm has a complexity bounded by O((α1 + · · ·+αr)
√

maxi pi). Since the sum of the
αi’s is bounded by log2 n and pi is bounded by B, we obtain O(

√
B logn).

The decisional Diffie-Hellman problem. We consider another problem, relative to a generator selector
Gen depending on some security parameter s:

• the decisional Diffie-Hellman problem: given (g,X ,Y,K) in the group generated by g←Gen(s), give
an algorithm A that outputs a bit. We define

Adv(A) = Pr
exp1

[A(g,X ,Y,K) = 1]− Pr
exp0

[A(g,X ,Y,K) = 1]

where expb is the experiment consisting of
1: take g← Gen(s)
2: generate X ,Y,K uniformly in ⟨g⟩
3: if b = 1, replace K by the solution to the Diffie-Hellman problem with input (g,X ,Y)

Intuitively, the decisional Diffie-Hellman problem consists of deciding whether a value K is the solution to
the Diffie-Hellman problem (g,X ,Y) or something independent. Clearly, this reduces to the Diffie-Hellman
problem.

We say that the decisional Diffie-Hellman problem relative to Gen is hard if for any probabilistic
polynomial-time algorithm A , we have that Adv(A) is negligible in s. This means that for all n, Adv(A) =
O(s−n) as s grows to +∞.

There are some groups for which this new hardness assumption does not hold. Among them, we have
those for which the discrete logarithm problem is easy, but there are others. For instance, when p is an odd
prime, Z∗p does not satisfy this hardness assumption. Indeed, we can define A(g,X ,Y,K) as producing 1 if

and only if the property
(

K
p

)
= −1 holds at the same time as the property

(
X
p

)
=
(

Y
p

)
= −1. That is, K

is not a quadratic residue if and only if both X and Y are not quadratic residues. In exp1, we know that if
either X or Y is a quadratic residue, then its logarithm is even, so the solution to the Diffie-Hellman problem
is always a quadratic residue. So, A always outputs 1 in this experiment. In exp0, K is independent from
(X ,Y) so A output 1 with probability 1

2 . Thus, Adv(A) = 1
2 . This is not negligible!

For the (supposedly) hard cases, we will consider a large subgroup of prime order of Z∗p, or of an elliptic
curve. In the Z∗p case, one way to define Gen is as follows:

1: pick a random prime q of size s
2: pick a random number p of size poly(s) such that q|p−1

14

Alice Bob

pick x ∈ Z∗q, X ← gx X−−−−−−−−−−−−→ if X ̸∈ ⟨g⟩−{1}, abort

if Y ̸∈ ⟨g⟩−{1}, abort Y←−−−−−−−−−−−− pick y ∈ Z∗q, Y ← gy

K← KDF(Y x) K← KDF(Xy)
(K = KDF(gxy))

Figure 2.6: The Diffie-Hellman Key Agreement Protocol

3: start again until p is prime
4: pick a random h of Z∗p
5: set g = h

p−1
q mod p

6: if g = 1, start again with a new h

Other man-in-the-middle attacks. We could refine the man-in-the-middle attack to make sure that K1 =
K2 and that Eve can have it as well. A trivial way consists, for Eve, in sending the public key 1 to both
Alice and Bob. Clearly, we end up with K1 = K2 = 1. An easy way to avoid this attack is to check that the
public keys are not equal to 1.

A more subtle attack works when the order of the group has small factors. For instance, if the order of
the group is 2w, Eve can receive X from Alice and send Xw to Bob, receive Y from Bob and send Y w to
Alice. The final key for Alice and Bob is K = gxyw. We have X ′ and Y ′ living in the subgroup of the square
roots of 1. The group is generated by gw. So, Eve can compute the logarithm of X ′ in basis gw (which is a
bit ξ) and raise Y wξ to obtain K.

More generally, if the order is bw and b is smooth, Eve can proceed the same way. X ′ = Xw will be in
a subgroup of order b, which is smooth, so she will be able to compute its logarithm in basis gw, obtain ξ
(which is now a residue modulo b), and raise K = Y wξ. To avoid these problems, we could mandate that
the group has a prime order.

Making the Diffie-Hellman protocol secure. Another problem could be that K has a weird distribution
depending on how the group is represented. To avoid that, we should consider K as a seed for a key
derivation function KDF.

Finally, we consider the following Diffie-Hellman protocol: a parameter g generates a group of prime
order q. Alice selects her secret key x ∈ Z∗q and takes her public key X = gx. Bob selects his secret key
y ∈ Z∗q and takes his public key Y = gy. Alice and Bob check that the received public keys X and Y are in
the group but not equal to 1. Alice and Bob compute Xy = Y x = gxy then K = KDF(gxy).

One property of this protocol is that if Alice is honest and Y is selected independently of X , then Y x is
uniformly distributed in the group except 1. If Bob is honest, then Xy is uniformly distributed in the group
except 1.

2.4 ElGamal
We assume a cyclic group generated by some g. The ElGamal cryptosystem [26] works as follows: (see
Fig. 2.7):

• for key generation, we pick an integer x as a secret key and compute the public key y = gx.

• for encrypting a group element m, we pick an integer r and compute the ciphertext (u,v) = (gr,myr).

• for decrypting (u,v), we compute m = vu−x.

We note that encryption is probabilistic. Indeed, running it multiple times will produce many different
ciphertexts which all decrypt to the same message.

To assess the security of the ElGamal cryptosystem, we essentially consider two problems:

15

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

y = gx

6
?

domain parameter:
group spanned by g

m (gr ,myr) (u,v) vu−x

Figure 2.7: Textbook ElGamal Cryptosystem

• the ElGamal decryption problem: given an ElGamal public key y and a ciphertext (u,v), compute m
such that v = myr for some r such that u = gr.

• the ElGamal key recovery problem: given an ElGamal public key y, find x such that y = gx.

Clearly, the ElGamal key recovery problem is equivalent to the discrete logarithm problem.
We can also show that the ElGamal decryption problem is equivalent to the Diffie-Hellman problem.

Indeed, given a Diffie-Hellman solving oracle, we decrypt (u,v) for key y as follows: we compute X = u
and Y = y and submit (g,X ,Y) to the oracle to get K = grx. Then, we just divide v by K to obtain m. So,
ElGamal decryption reduces to the Diffie-Hellman problem.

Conversely, given an ElGamal decryption oracle, we solve the Diffie-Hellman problem (g,X ,Y) by
setting u = X , y =Y , picking v at random in ⟨g⟩, sending (g,y,u,v) to the oracle to get m = vu−x. Then, we
set K = v/m and it solves the Diffie-Hellman problem. So, the Diffie-Hellman problem reduces to ElGamal
decryption. Therefore, both problems are equivalent.

ElGamal signature. The ElGamal digital signature scheme [26] works in the cyclic group Z∗p generated
by some g. It works as follows (see Fig. 2.8):

• for key generation, we pick an integer x as a secret key and compute the public key y = gx.

• to sign a message M, we pick k ∈ Z∗p−1 at random and the signature is (r,s) with r = gk mod p and

s = H(M)−xr
k mod (p−1), where H is a hash function.

• to verify that (r,s) is a valid signature for M, we check that 0≤ r < p and that yrrs≡ gH(M) (mod p).

Clearly, the key recovery problem is equivalent to the discrete logarithm problem in the same group. There
exists a security result further saying that making existential forgeries under chosen message attack is hard,
on average over the random choice of the parameters (p,g), and in the random oracle model, provided
that the discrete logarithm problem is hard [46]. We will explain the random oracle model in an upcoming
chapter. Unfortunately, security is only guaranteed for the average case: we will see that there are indeed
some unfortunate choices of p and g which could make the signature scheme weak.

First, we have to stress that the condition 0≤ r < p in the signature verification is important. If we miss
it, we can easily make universal forgeries. For that, we first pick rp−1,s ∈ Z∗p−1 at random. Then, we set

rp = g
H(M)

s y−
rp−1

s mod p. By using the Chinese remainder theorem, we can find r such that r mod (p−1)=
rp−1 and r mod p = rp at the same time. So, we easily see that (r,s) is a valid signature for M, except that
r is of order p2 instead of p. So, we really have to check that 0≤ r < p.

Next, we see an unfortunate choice for p and g which was found by Bleichenbacher [11]. We have
to assume that p− 1 = bw with b smooth (e.g., we could take b = 2 since p is odd), and that we know

16

Generator

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

p prime
g generator of Z∗p

y = gx mod p

M

k ∈ Z∗p−1
r = gk mod p
s = H(M)−xr

k mod p−1

M,r,s M,r,s

0≤ r < p
yrrs ≡ gH(M) (mod p)

M

Figure 2.8: Textbook ElGamal Signature

some relation g1/t mod p = cw for some integers t and c. As an example, whenever b generates Z∗p and
p mod 4 = 1, we can take g = b, t = p−3

2 , and c = 1. Indeed,

(cw)t ≡
(

p−1
g

) p−1
2 −1

≡−g
(−1)

p−1
2

g
p−1

2

≡ g (mod p)

Once we have these two assumptions p− 1 = bw and g1/t mod p = cw, we make a universal forgery for
M by setting r = cw, finding the discrete logarithm z of ycw in basis gcw, i.e., ycw = gcwz, and taking
s = t(H(M)− cwz) mod (p−1). We clearly have 0≤ r < p and

yrrs ≡ ycw(cw)t(H(M)−cwz) ≡ ycwgH(M)−cwz ≡ gH(M) (mod p)

So, (r,s) is a valid signature for M!

17

18

Chapter 3

Cryptanalysis (Conventional)

In this chapter we review some notions of cryptanalysis for block ciphers. More precisely, we describe
differential and linear cryptanalysis. We apply it to DES reduced to 8 rounds. Then, we present some
theory on the analysis with the notion of distinguisher. We discuss about the optimal one and see how to
analyze the security of block ciphers with the notion of decorrelation.

3.1 Block Ciphers
One technique for symmetric encryption is based on block ciphers. This treats messages by blocks of fixed
length, e.g., ℓ bits. Formally, a block cipher is a deterministic algorithm taking as input a plaintext block
x∈ {0,1}ℓ and a secret key K and returning y=CK(x), a ciphertext block y∈ {0,1}ℓ. It comes with another
deterministic algorithm denoted by C−1 such that C−1

K (CK(x)) = x for all x and K. So, for each K, CK is a
permutation of the set {0,1}ℓ.

The perfect cipher has 2ℓ! possible keys and is such that every possible permutation over {0,1}ℓ has a
key defining it. In terms of security, this is the best block cipher that we can dream of. Unfortunately, it
is by far impractical as the key would be way too long to be representable. Indeed, we know the Stirling
formula

n!∼
√

2πnnne−n

which implies that log2(n!) can be approximated by n log2 n when n is large. So, the most efficient binary
representation of the keys requires log2(2

ℓ!) bits for a key, which is approximately ℓ2ℓ. For ℓ= 64, which
is nowadays considered as a too short block length, we obtain that we need more than one million of
Petabytes to store a single key.

Instead of using the perfect cipher, we can still try to make ciphers look like the perfect one for the
given usage. For instance, if the cipher is meant to be used only once, it is fair enough to require that for
any x, the random variable CK(x), defined over the random choice of the key K, is uniformly distributed.

If the cipher is meant to be used only twice, we can simply require that for any x1,x2 with x1 ̸= x2,
(CK(x1),CK(x2)) is uniformly distributed among all pairs (y1,y2) satisfying y1 ̸= y2. This is the notion of
pairwise independent permutation.

This generalizes to n-wise independent permutations: for all x1, . . . ,xn which are pairwise different, the
tuple (CK(x1), . . . ,CK(xn)) is uniformly distributed among all (y1, . . . ,yn) of pairwise different ciphertext
blocks. If a cipher satisfies this criterion and if an adversary gets to learn no more than n pairs (xi,yi), then
what he sees has the same distribution as what he would see if C was the perfect cipher. So, the cipher
would ideally look like the perfect one, up to n samples.

3.2 Differential Cryptanalysis
Differential cryptanalysis was invented by Eli Biham and Adi Shamir. In 1990 [8], it was used to break
some ciphers looking like DES. In 1992 [9], an attack was proposed (with a complexity too high for the

19

X

?

core

?
Z

post-enc

?
Y

�K2

� K1

� K

Figure 3.1: Splitting a Block Cipher for Differential Cryptanalysis

technology of that time) against DES. In 1993 [10], it was observed that any slight variant of DES would
be subject to a more efficient and actually practical attack. Then, in 1994, Don Coppersmith (one of the
designers of DES), released a technical report [16] showing that DES was built to resist to this type of
attack. Indeed, this report showed that the technique of differential cryptanalysis was already taken into
account by the DES designers in the 70’s, even though it was not publicly known.

Differential cryptanalysis is a key recovery attack with chosen plaintexts. First, it requires to split
the block cipher into three elements: a key schedule transforms K into K1 and K2; X is processed by
the core encryption using K1; then the result Z is processed by the post-encryption using K2. This yields
Y = CK(X) (see Fig. 3.1). Second, we must find a deviant property of the core encryption of the form
Pr[Z′−Z = b|X ′−X = a] is large, when X and X ′ are random, Z resp. Z′ is the core encryption of X resp.
X ′, and a and b are constants. Here, we use the XOR ⊕ as a notion of difference. I.e., Z′−Z = Z′⊕Z
and X ′−X = X ′⊕X . To find this deviant property, we will use heuristics (see below). Third, we isolate
some verifiable information based on Y and Y ′ and a piece of information κ of K2. This is a predicate
R(κ,π(Y,Y ′)) which is true whenever Z′⊕Z = b and κ is correct, and which is exceptionally true otherwise.
The function π is used to compress Y and Y ′ to the required information needed in order to evaluate R.
Finally, we run the attack based on statistics.
Precomputation:

1: initialize SubCandidateu to empty set for all u
2: for all u and all κ such that R(κ,u), insert κ in SubCandidateu

Collection phase:
3: collect n pairs ((x,y),(x′,y′)) of plaintext-ciphertext pairs, with x′ = x⊕a

Analysis phase:
4: initialize counters mκ to 0
5: for each pair ((x,y),(x′,y′)) do
6: compute u = π(y,y′)
7: for all κ ∈ SubCandidateu increment mκ
8: end for
9: sort all possible κ in decreasing order of mκ

Search phase:
10: for each sorted κ, exhaustively look for K
In the precomputation phase, we prepare some tables SubCandidateu to quickly yield all possible κ such
that R(κ,u) holds. In the collection phase, we collect pairs of pairs (x,y) and (x′,y′) such that y = CK(x),
y′ = CK(x′), and x′⊕ x = a. This is done by chosen plaintext attack. Then, during the analysis phase, we
compute u = π(y,y′) and increment the counter of each key in SubCandidateu. Then, we can look at the
score of all candidates and sort them by decreasing score. Finally, the search phase will treat each κ in

20

the sorted list as the potential value corresponding to K. The idea is that with enough samples, the highest
score will be made by the correct value.

Given a function f mapping p bits to q bits, we define a function DP f by

DP f (a,b) = Pr
X
[f (X⊕a) = f (X)⊕b]

for a ∈ {0,1}p, b ∈ {0,1}q, and X uniformly distributed in {0,1}p. This is the differential probability.
Clearly, we have the following properties:

• DP f (0,b) = 1 if and only if b = 0;

• ∑bDP
f (a,b) = 1 for all a;

• 2p×DP f (a,b) is an even integer.

The last property comes from the fact that the number of x such that f (x⊕a) = f (x)⊕b must be even: if x
satisfies the relation, then x⊕a as well, so all these x’s come in pairs. Clearly, the deviant property which
is used in differential cryptanalysis can be expressed by DP

C′K1 (a,b) being high.
To find the deviant property, we write the block cipher as a computation circuit, we look at the propaga-

tion of differences of plaintexts X and X ′ in this circuit, and we follow some heuristics. Clearly, if we have
a linear gate M mapping an input X to an output Y , if two inputs are within a difference of ∆X , the resulting
outputs will be within a difference of ∆Y = M×∆X . This can be applied to a duplicate gate mapping X to
M×X = (X ,X), so M = (1 1)t ,1 or to a XOR gate, mapping (X ,Y) to M× (X ,Y) = X ⊕Y , so M = (1 1).
When crossing a non-linear gate, we look at a plausible difference transform (by studying the differential
properties of that gate) and we do the heuristic approximation that the difference propagation through all
non-linear gates will be independent. So, we approximate DPCK (a,b) by the product of the probabilities
that these propagations hold.

For the differential cryptanalysis for DES reduced to 8 rounds (instead of 16), we find a deviant property
with a probability close to 2−13.4. We can further show that κ has 30 bits and that each key pair increases
the score of 210 counters mκ. We assume that the selection of these counters look like random. So, each
counter (for a wrong value) is incremented with probability p2 ≈ 210

230 = 2−20 by each pair, and that the
counter for the correct value κ is incremented with probability p1 = 2−13.4. The final score of this value
will be np1 on average, where n is the number of pairs. Typically, the distance to the expected value will
be of order

√
np1. This comes from the total score being the sum of n independent, identically distributed,

random boolean variables with expected value p1. So, the expected value of the sum is np1 and the standard
deviation of the sum is

√
np1(1− p1) ≈

√
np1. Similarly, the expected value of mκ for a bad κ will be

within a distance of
√

np2 to np2. Clearly, p1 ≫ p2. So, np1− np2 ≈ np1 and
√

np1 ≫
√

np2. Hence,
whenever

√
np1≪ np1, we can separate the good counter from the bad ones and deduce κ (see Fig. 3.2).

The condition for this to be the case is thus that n≫ 1/p1.

3.3 Linear Cryptanalysis
In 1990 [28, 57], Henri Gilbert and his colleagues invented a way to break FEAL, a block cipher looking
like DES. This inspired Mitsuru Matsui to develop linear cryptanalysis in 1993 [39], then to successfully
apply it to DES in 1994 [40]. His attack is a key recovery known plaintext attack requiring 243 known
plaintexts.

Like for differential cryptanalysis, it first requires to split the block cipher into three elements: a key
schedule transforms K into K1 and K2; X is processed by the core encryption using K1; then the result Z is
processed by the post-encryption using K2 (see Fig. 3.3). This yields Y =CK(X). Second, we must find a
deviant property of the core encryption of the form “

∣∣Pr[a ·X = b ·Z]− 1
2

∣∣ is large”, when X is random, Z
is the core encryption of X , a and b are constants, and x ·y is the modulo 2 dot product between the vectors
x and y. Third, we isolate some way to compute a ·X⊕b ·Z from X , Z, and a piece of information κ of K2.
This is a function P(κ,π(X ,Y)) which is equal to a ·X⊕b ·Z whenever κ is correct, and which is uniformly
distributed otherwise. Finally, we run the attack based on statistics.

1where (1 1)t denotes the transposed matrix of (1 1)

21

0

0.5

1

1.5

2

np2 np1−
√

np1 np1

n = 3/p1

good κ
bad κ

Figure 3.2: Probability Density of a Good and a Bad Counter in Differential Cryptanalysis

X

?

core

?
Z

post-enc

?
Y

�K2

� K1

� K

Figure 3.3: Splitting a Block Cipher for Linear Cryptanalysis

22

Collection phase:
1: for all possible u = π(x,y) do
2: initialize a counter nu to zero
3: end for
4: collect n plaintext-ciphertext pairs (x,y)
5: for each (x,y) do
6: compute u = π(x,y)
7: increment nu
8: end for

Analysis phase:
9: for all possible κ do

10: compute mκ = ∑u s.t. P(κ,u)=0 nu
11: end for
12: sort all κ in decreasing order of |mκ− n

2 |
Search phase:
13: for each sorted κ exhaustively look for K
In the collection phase, we just count how many pairs (x,y) give π(x,y) = u, for each u. Then, for each
κ we compute mκ which is how many times P(κ,π(x,y)) is equal to 0. Then, we can look at the score
of all candidates and sort them by decreasing distance to n

2 . Finally, the search phase will treat each κ in
the sorted list at the potential value corresponding to K. The idea is that with enough samples, the highest
score will be made by the correct value.

Given a function f mapping p bits to q bits, we define a function LP f by

LP f (a,b) =
(

2Pr
X
[a ·X = b · f (X)]−1

)2

for a ∈ {0,1}p, b ∈ {0,1}q, and X uniformly distributed in {0,1}p. This is the linear probability. Clearly,
the deviant property which is used in linear cryptanalysis can be expressed by LP

C′K1 (a,b) being high.
To find the deviant property Pr[a ·X = b ·Z] far from 1

2 , we proceed in a way which is the dual of what
we did for differential cryptanalysis: we write the block cipher as a computation circuit, set the output
mask b, and follow the computation backward to see what input mask to set. If we have a linear gate M
mapping X to Y = MX , we know that

b ·Y = b · (MX) = (Mtb) ·X = a ·X

when a = Mtb. So, an output mask b to M corresponds to an input mask Mtb. When crossing a non-linear
gate S with output mask b, we look at the possible masks a making Pr[a ·X = b · S(X)] far from 1

2 . We
obtain b ·S(X) = (a ·X)⊕B for a biased bit B. When piling up all equations, the final relation around the
core encryption looks like

(a ·X)⊕ (b ·Z) = bit(K)⊕
n⊕

i=1

Bi

for some Boolean function bit(K) of the key K and some biases bits Bi corresponding to the non-linear
gates. To measure the bias of a random bit B, we define

LP(B) = (2Pr[B = 0]−1)2

Then, we make the heuristic assumption that all Bi’s are independent2 and apply the following result:

Lemma 3.1 (Piling-up Lemma). Given some independent random bits B1, . . . ,Bn, we have

LP(B1⊕·· ·⊕Bn) = LP(B1)×·· ·×LP(Bn)

2This is of course not true, but in cryptanalysis, we often make some approximations to be able to make estimate, and we only
care if the final implementation works: if we do recover the secret key, we do not care whether our mathematics analysis was formally
correct or not!

23

Proof. To prove this, we observe that LP(B) =
(
E
(
(−1)B

))2 and apply the properties of independent
variables. ⊓⊔

It is interesting to see how differential and linear cryptanalysis are dual of each other. On one case, we
were doing the computation forward on differences, applying the linear transforms M, computing DP’s.
On the other case, we were doing the computation backward on masks, applying the transposed linear
transforms Mt , computing LP’s. Unsurprisingly, there is a nice link between DP’s and LP’s. Actually, one
is the discrete Fourier transform of the other, which is expressed by the following result.

Theorem 3.2. If f is a function mapping p bit to q bits, we have

DP f (a,b) = 2−q ∑
α,β

(−1)a·α⊕b·βLP f (α,β)

and
LP f (α,β) = 2−p ∑

a,b
(−1)a·α⊕b·βDP f (a,b)

Proof. We first observe that

LP f (α,β) =
(

E
(
(−1)(α·X)⊕(β· f (X))

))2
= E

(
(−1)(α·(X⊕Y))⊕(β·(f (X)⊕ f (Y)))

)
where X and Y are independent and uniformly distributed in {0,1}p. Then, we compute

∑
α,β

(−1)a·α⊕b·βLP f (α,β) = E

(
∑
α,β

(−1)(α·(a⊕X⊕Y))⊕(β·(b⊕ f (X)⊕ f (Y)))

)

Given X and Y , the inner sum over α and β is always zero, except if X ⊕Y = a and f (X)⊕ f (Y) = b, in
which case the sum is 2p+q. So,

∑
α,β

(−1)a·α⊕b·βLP f (α,β) = 2p+qE
(
1X⊕Y=a, f (X)⊕ f (Y)=b

)
= 2qDP f (a,b)

which gives the first equation. To obtain the second, we compute the right-hand side of the equation and
replace DF f by the expression we have just got:

∑
a,b
(−1)a·α⊕b·βDP f (a,b) = 2−q ∑

a,b
(−1)a·α⊕b·β ∑

α′,β′
(−1)a·α′⊕b·β′LP f (α′,β′)

= 2−q ∑
α′,β′

LP f (α′,β′)∑
a,b
(−1)a·(α⊕α′)⊕b·(β⊕β′)

The inner sum is zero except for α = α′ and β = β′, for which it is 2p+q. So, this expression is equal to
2p.LP f (α,β). ⊓⊔

We could do a complexity analysis of the linear attack method. What we would obtain is that the re-
quired number of samples to find the correct κ with good probability has of order of magnitude 1/LPC′K1 (a,b).
Again, this is a result similar to the one of differential cryptanalysis where it was the inverse of DPC′K1 (a,b).

3.4 Hypothesis Testing in Cryptography
In cryptography, we are often concerned about distinguishing if some random samples follow a given
distribution P0 or a given distribution P1. Concretely, we have a random source generating independent
samples x1, . . . ,xq following the same distribution P. Then, an algorithm A called a distinguisher analyzes

24

x1, . . . ,xq and tries to guess whether P = P0 or P = P1. I.e., A(x1, . . . ,xq) is a bit. The ability to distinguish
P0 from P1 is measured by the notion of advantage: we define

AdvA(P0,P1) = Pr[A(x1, . . . ,xq) = 1|P = P1]−Pr[A(x1, . . . ,xq) = 1|P = P0]

We say that P0 and P1 are (q,ε)-indistinguishable if for any A limited to q samples, we have |AdvA(P0,P1)| ≤
ε.

In the theory of hypothesis testing, A is testing the null hypothesis

H0 : P = P0

against the alternate hypothesis
H1 : P = P1

The frequentist approach studies two types of errors:

• the type I error: α = Pr[A(x1, . . . ,xq) = 1|P = P0], the error made by A thinking that the distribution
is P1 when it is actually P0;

• the type II error: β = Pr[A(x1, . . . ,xq) = 0|P = P1] the error made by A thinking that the distribution
is P0 when it is actually P1.

The Bayesian approach rather considers that both hypotheses have a probability π0 resp. π1 and studies the
probability of error

Pe = απ0 +βπ1

In the typical case that we will use in this course, we have π0 = π1 =
1
2 , so

AdvA(P0,P1) = 1−2Pe = 1− (α+β)

When limited to q = 1 sample a natural way to distinguish P0 from P1 is to take a decision based on
whether P0(x)≤ P1(x): if this inequality holds, then it is more likely that P = P1 so we can output 1. This
strategy is actually optimal as we can show. First, we can assume without loss of generality that A is
deterministic. So, A is characterized by the set A−1(1) of values of x producing the output 1. We have

AdvA(P0,P1) = ∑
x∈A−1(1)

(P1(x)−P0(x))

≤ ∑
x:P0(x)≤P1(x)

(P1(x)−P0(x))

=
1
2 ∑

x
|P1(x)−P0(x)|

with equality when A−1(1) = {x : P0(x)≤ P1(x)}, which corresponds to the above natural strategy. Given
some real functions f0 and f1, we define the statistical distance (or L1 distance) between f0 and f1 by

d(f0, f1) =
1
2 ∑

x
| f1(x)− f0(x)|

We obtain the following result:

Theorem 3.3. For any A limited to q = 1 sample, we have AdvA(P0,P1) ≤ d(P0,P1). The equality is
reached for the algorithm producing 1 if and only if P0(x)≤ P1(x).

Proof. We have already proven the inequality. To study the equality case, we have to see what it implies in
the proof for inequality. Clearly, equality implies that

∑
x∈A−1(1)

(P1(x)−P0(x)) = ∑
x:P0(x)≤P1(x)

(P1(x)−P0(x))

which means that A−1(1) contains all x such that P0(x)< P1(x) and maybe some extra x such that P0(x) =
P1(x). ⊓⊔

25

Given a distribution P on values x and an integer q, we define P⊗q a distribution on q-tuples of values
(x1, . . . ,xq) by

P⊗q(x1, . . . ,xq) = P(x1) · · ·P(xq)

We can see the general case as a particular case of the q = 1 one: q samples can be considered as one
sample of a q-tuple! So, we obtain the following result [2]:

Theorem 3.4. For any A limited to q independent samples, we have AdvA(P0,P1) ≤ d(P⊗q
0 ,P⊗q

1). The
equality is reached for the algorithm producing 1 if and only if P0(x1) · · ·P0(xq)≤ P1(x1) · · ·P1(xq).

One remaining question is the following: how large must be q so that d(P⊗q
0 ,P⊗q

1) is significant for
cryptanalysis? We can easily show by induction that d(P⊗q

0 ,P⊗q
1) ≤ qd(P0,P1). So, we need at least

q > 1/d(P0,P1), but it is not guaranteed that this would be enough. In what follows, we want to have a
more precise estimate, based on some notions from the theory of large deviations.

Given a sample vector x = (x1, . . . ,xq), we define the observed distribution (which is sometimes called
a type) Px by Px(y) = 1

q #{i : xi = y}. Given two distributions P0 and P1, we define the Kullback-Leibler
divergence

D(P0∥P1) = ∑
x∈Supp(P0)

P0(x) log
P0(x)
P1(x)

where the log is in basis 2. Although this is not symmetric, this is very similar to a notion of distance: it is
non-negative and equal to 0 if and only if P0 = P1. We define

Π = {P : D(P∥P1)≤ D(P∥P0)}

the set of distributions which are “closer” to P1 than to P0. We can easily see that the strategy from the
above theorem outputs 1 if and only if the observed distribution of x = (x1, . . . ,xq) is in Π. Indeed,

D(Px∥P1)−D(Px∥P0) = ∑
y∈Supp(Px)

Px(y) log
P0(x)
P1(x)

=
1
q

q

∑
i=1

log
P0(xi)

P1(xi)
=

1
q

log
P0(x1) · · ·P0(xq)

P1(x1) · · ·P1(xq)

We can then use a result by Sanov [51] to prove the following result.

Theorem 3.5 ([2]). Let BestAdvq(P0,P1) be the largest advantage of a distinguisher between P0 and P1
limited to q queries. We have

1−BestAdvq(P0,P1)
•
= 2−qC(P0,P1)

where
C(P0,P1) =− inf

0<λ<1
log ∑

x∈Supp(P0)∩Supp(P1)

P0(x)1−λP1(x)λ

is the Chernoff information between P0 and P1 and f (q) •= g(q) means that f (q) = g(q)eo(q) when q→+∞.

This results generalizes to distinguishers with more elaborate hypotheses.

Theorem 3.6. Consider the two following hypotheses:

H0: x1, . . . ,xq are i.i.d. and follow the distribution P0

H1: x1, . . . ,xq are i.i.d. and follow the same distribution taken in {P1, . . . ,Pd}

Let BestAdvq(H0,H1) be the largest advantage of a distinguisher between H0 and H1 limited to q queries.
We have

1−BestAdvq(H0,H1)
•
= 2−qmin1≤i≤d C(P0,Pi)

The following distinguisher has advantage BestAdvq(H0,H1):
input: x1, . . . ,xq

1: compute P, the type of x1, . . . ,xq
2: let i be argmin0≤i≤d D(P∥Pi)
3: if i > 0, output 1, otherwise, output 0

26

Note that checking argmin0≤i≤d D(P∥Pi)> 0 is equivalent to checking

min
1,≤i≤d

q

∑
j=1

log
P0(x j)

Pi(x j)
≤ 0

Finally, we note that when a distribution P1 tends towards a distribution P0 with the same support, then
we have

C(P0,P1)∼
1

8ln2 ∑
x

(P1(x)−P0(x))2

P0(x)

This can be used to compute the Chernoff information. When P0 is the uniform distribution, we observe
that it is proportional to the (squared) Euclidean distance between P0 and P1.

To see the link with differential and linear cryptanalysis, let us specify these two attack methods in a
very schematic way. We use a random permutation C (which used to be the core encryption) and use a
deviant property based on p =DPC(a,b) = Pr[C(x⊕a) =C(x)⊕b]. When this is really a deviant property,
we can distinguish C from an ideal cipher C∗ (for which DPC∗(a,b)≪ p). So, let us focus at the following
problem: the adversary collects some samples of Z = C(x⊕ a)⊕C(x). He wants to distinguish if Z is
uniformly distributed (null hypothesis) or if it follows the distribution Pr[Z = b] = p and Pr[Z = c] = 1−p

n−1 for
all c ̸= b (alternate hypothesis). We denote β = 1−p

n−1 . By computing the Chernoff information between the
two distributions, we obtain that it is equivalent to p

ln2 , asymptotically. So, the required number of samples
to reach a good advantage is of order 1/p = 1/DPC(a,b). We can further describe the best distinguisher
which is based on the number of occurrences #b of Z = b. We (easily) see that the likelihood ratio R≤ 1 is
equivalent to #b ≥ q ln(nβ)

ln(β/p) . With q of order 1
p , this is equivalent to #b > 0. So, the best distinguisher just

observes if any sample Z is equal to b.
For linear cryptanalysis, we take the same approach and define Z = (a ·x)⊕ (b ·C(x)). The approxima-

tion says that Z has a probability to be able to deduce some key bit with probability 1
2 (1+ε). Since this key

bit is uniformly distributed, we have that Z follows a distribution Pβ defined by Pβ(0) = 1
2 (1+(−1)βε),

for β ∈ {0,1}. Note that LPC(a,b) = ε2, no matter β. Now, we want to distinguish whether Z follows
the uniform distribution (null hypothesis) from that it follows some distribution Pβ (alternate hypothesis).
By computing the Chernoff information between the uniform distribution and Pβ, we obtain approximately
ε2/(8ln2). So, the required number of samples to reach a good advantage is of order 1/ε2 = 1/LPC(a,b).
We can further describe the best distinguisher which is based on the number of occurrences #0 of Z = 0.
We easily see that the likelihood ratio Rβ ≤ 1 is equivalent to

(−1)β q
#0
≤ (−1)β log(1− (−1)βε)

log 1−(−1)βε
1+(−1)βε

Given that ε = o(1), the distinguisher based on the composite hypothesis yields 1 if and only if |#0− q
2 | ≥ε

4 q. So, the best distinguisher just observes if any sample Z is equal to 0 and checks that the number of
such samples is far from q

2 . The analysis also makes the threshold precise, as for what is considered to be
“far”.

3.5 Decorrelation
We assume that a distinguisher is given access to an oracle implementing some random function from a
set A to a set B. We know that either it has the distribution of a random function F or a distribution of an
ideal random function F∗. For instance, F is a random cipher C (set up with a random key) on the set A
(and B = A) and F∗ is the perfect cipher C∗ over A. As another example, F is a function defined by a MAC
with a random key and F∗ is a uniformly distributed random function. We assume that the distinguisher is
limited with the number of queries q that he can make. The distinguisher is not limited in complexity.

Given a random function F from A to B and an integer q, we define a (huge) real matrix [F]q in
which rows have an index corresponding to a tuple x = (x1, . . . ,xq) of q inputs and columns have an index

27

corresponding to a tuple x= (y1, . . . ,yq) of q outputs. The element [F]
q
x,y at position (x,y) is the real number

Pr[F(x1) = y1, . . . ,F(xq) = yq]. Decorrelation to the order q is the distance between [F]q and [F∗]q.
It is convenient to define the distance in terms of a matrix norm. Matrix norms are norms (i.e., ∥M∥ is

always positive, equal to 0 if and only if M = 0, ∥λM∥= |λ|×∥M∥, and ∥M+M′∥≤ ∥M∥+∥M′∥) with the
additional property that ∥MM′∥≤ ∥M∥×∥M′∥. For instance, the ∞-norm over the vectors ∥v∥∞ =maxy |vy|
induces a companion matrix-norm

|||M|||∞ = max
∥v∥∞≤1

∥Mv∥∞ = max
x ∑

y
|Mx,y|

This norm bridges the theory of decorrelation with the theory of best non-adaptive distinguishers as the
following result shows. A distinguisher is non-adaptive if it prepares all its queries at once. Namely, it does
not adapt a query xi based on the response from previous queries.

Theorem 3.7 ([58]). For any random functions F and G, the best advantage of a non-adaptive distin-
guisher between F and G, limited to q queries, is equal to 1

2 |||[F]q− [G]q|||∞.

Proof. A non-adaptive distinguisher can be assumed to prepare the q queries x1, . . . ,xq before making any
query. Then, he obtains a vector (Y1, . . . ,Yq) of random variables defined by Yi = F(xi) in the F case
and Yi = G(xi) in the G case. So, this reduce to distinguish the distributions of (F(x1), . . . ,F(xq)) and
(G(x1), . . . ,G(xq)). We know from Th. 3.3 that the best advantage is half of the statistical distance between
the two distributions, hence

Adv =
1
2 ∑

y1,...,yq

∣∣Pr[F(x1) = y1, . . . ,F(xq) = yq]−Pr[G(x1) = y1, . . . ,G(xq) = yq]
∣∣

The best advantage over the choice of x1, . . . ,xq is

Adv =
1
2

max
x1,...,xq

∑
y1,...,yq

∣∣Pr[F(x1) = y1, . . . ,F(xq) = yq]−Pr[G(x1) = y1, . . . ,G(xq) = yq]
∣∣

which is 1
2 |||[F]q− [G]q|||∞. ⊓⊔

To compute the advantage of a distinguisher which can be adaptive, we use the norm

∥M∥a = max
x1

∑
y1

· · ·max
xq

∑
yq

|M((x1,...,xq),(y1,...,yq))|

This is indeed a matrix norm [58]. Just like the previous theorem, we can prove the following result.

Theorem 3.8 ([58]). For any random functions F and G, the best advantage of a distinguisher between F
and G, limited to q queries, is equal to 1

2∥[F]q− [G]q∥a.

Decorrelation enjoys the following property.

Theorem 3.9 ([58]). If C1 and C2 are independent random permutations, to be compared with a uniformly
distributed random permutation C∗, for any matrix norm, we have that

∥[C2 ◦C1]
q− [C∗]q∥ ≤ ∥[C1]

q− [C∗]q∥×∥[C2]
q− [C∗]q∥

Proof. We first observe that [C2 ◦C1]
q = [C1]

q× [C2]
q.

Then, we notice that [C∗]q has an absorbing property. Indeed, [C1]
q× [C∗]q is equal to [C∗ ◦C1]

q. Since
C∗ and C1 are independent, in the group of permutations, and that C∗ is uniformly distributed, C∗ ◦C1 and
C∗ have the same distribution. So, [C∗ ◦C1]

q = [C∗]q from which we deduce [C1]
q× [C∗]q = [C∗]q. We

similarly show that [C∗]q× [C2]
q = [C∗]q.

Now, we have
([C1]

q− [C∗]q)× ([C2]
q− [C∗]q) = [C2 ◦C1]

q− [C∗]q

by expanding the product, thanks to the absorbing property of [C∗]q. Due to the matrix norm multiplicative
property, we have

∥[C2 ◦C1]
q− [C∗]q∥ ≤ ∥[C1]

q− [C∗]q∥×∥[C2]
q− [C∗]q∥

⊓⊔

28

⊕? ��

⊕? ��

⊕
?

? ��

?

z0
i z1

i

z4
i z3

i

z2
i

F∗1

F∗2

F∗3

Figure 3.4: Proof of the Luby-Rackoff Theorem

We can apply this result on the Luby-Rackoff Theorem.

Theorem 3.10 (Luby-Rackoff 1986 [38]). Let F∗1 ,F
∗
2 ,F

∗
3 be three independent round functions with uni-

form distributions from the set of ℓ
2 -bit strings to itself. We consider the 3-round Feistel scheme C =

Ψ(F∗1 ,F
∗
2 ,F

∗
3) to be compared with the ideal cipher C∗. For all distinguisher limited to q queries, the

advantage to distinguish C from C∗ is bounded by q2.2−
ℓ
2 .

Proof. We split an input xi into xi = (z0
i ,z

1
i). Similarly, we split and output yi = (z4

i ,z
3
i). We further define

z2
i = z0

i ⊕F∗1 (z
1
i). Clearly, xi maps to yi if and only if z3

i = z1
i ⊕F∗2 (z

2
i) and z4

i = z2
i ⊕F∗3 (z

3
i) (see Fig. 3.4).

Let E be the event that for i = 1, . . . ,q, we have z3
i = z1

i ⊕F∗2 (z
2
i) and z4

i = z2
i ⊕F∗3 (z

3
i). We obtain that

[C]
q
x,y = Pr[E].
Let Y be the set of all y = (y1, . . . ,yq) such that for all i ̸= j, yi and y j define some z3

i and z3
j such that

z3
i ̸= z3

j . If we take a uniformly distributed random y, the probability that it is not in Y is Pr[∃i < j z3
i = z3

j].

This is bounded by q(q−1)
2 times Pr[z3

i = z3
j] = 2−

ℓ
2 . So, we have

Pr[y ∈ Y]≥ 1− ε

with ε = q(q−1)
2 2−

ℓ
2 .

Let x be arbitrary and let y ∈ Y be arbitrary but in Y . We define the event E2 that all z2
i are pairwise

different. Just like above, we have Pr[E2]≥ 1− ε. Then, we have

[C]qx,y = Pr[E]≥ Pr[E,E2] = Pr[E|E2]Pr[E2]

If the z2
i are pairwise different, the F∗2 (z

2
i) are uniform and independent. Since we also know that the z3

i are
pairwise different, the F∗3 (z

3
i) are also uniform and independent. Hence Pr[E|E2] = 2−ℓq. We deduce

[C]qx,y ≥ (1− ε)2−ℓq = (1− ε)[F∗]qx,y

Therefore, we have found a set Y such that Pr[y ∈ Y]≥ 1− ε and [C]
q
x,y ≥ (1− ε)[F∗]qx,y for all y ∈ Y .

By applying Lemma 3.11 below, we deduce that the best advantage to distinguish C (denoted by F in
Lemma 3.11) from F∗ limited to q queries is bounded by 2ε = q(q−1)2−

ℓ
2 .

In Lemma 3.12, we show that the best advantage to distinguish C∗ from F∗ is bounded by q(q−1)2−ℓ.
For q ≤ 2

ℓ
2 , the sum is bounded by q2−

ℓ
2 . So, the best advantage to distinguish C from C∗ limited to q

queries is bounded by q22−
ℓ
2 . For q larger, this bound is larger than 1 so the advantage is also bounded by

this. ⊓⊔

The lemma below is inspired by Patarin’s “H coefficient technique” [43].

Lemma 3.11. Let F be a random function from a set M1 to a set M2. We let X be the subset of M q
1 of all

(x1, . . . ,xq) with pairwise different entries. We let F∗ be a uniformly distributed random function from M1
to M2. We assume there exists a subset Y ⊆M q

2 and two positive numbers ε1 and ε2 such that

29

• Pr[y ∈ Y]≥ 1− ε1 for y ∈M q
2 random

• ∀x ∈ X ∀y ∈ Y [F]
q
x,y ≥ (1− ε2)[F∗]

q
x,y.

Then the best advantage to distinguish F from F∗ limited to q queries is bounded by ε1 + ε2.

Proof. We know that for all x ∈ X and y ∈M q
2 we have [F∗]qx,y = p0 for the constant p0 = (#M2)

−q.
Without loss of generality, the best distinguisher is deterministic. Let xi be its ith query and yi the

response from the oracle. (Note that xi can depend on y1, . . . ,yi−1.) Let A be the set of all y1, . . . ,yq
making the distinguisher output 1. We assume without loss of generality that x ∈ X (if a query repeats,
we can replace it by an arbitrary new one and substitute the answer to the previously known answer of the
repeating query). The advantage is

Adv = ∑
y∈A

(
[F∗]qx,y− [F]qx,y

)
For y ∈ Y , we have [F∗]qx,y− [F]

q
x,y ≤ ε2[F∗]

q
x,y. Otherwise, we use [F∗]qx,y− [F]

q
x,y ≤ [F∗]qx,y. So,

Adv ≤ ε2 ∑
y∈A,y∈Y

[F∗]qx,y + ∑
y∈A,y̸∈Y

[F∗]qx,y ≤ ε2 ∑
y∈Y

[F∗]qx,y + ∑
y ̸∈Y

[F∗]qx,y ≤ ε2 +Pr[y ̸∈ Y]≤ ε1 + ε2

⊓⊔

It is interesting to look at the structure of the [C∗]x,y matrix. We note by Part(x) the partition of
{1, . . . ,q} such that i and j are in the same class if and only if xi = x j. When Part(x) ̸= Part(y), we have
[C∗]x,y = 0. When Part(x) = Part(y) and there are exactly m classes, then [C∗]x,y = 1

2ℓ(2ℓ−1)···(2ℓ−m+1) .

Contrarily, if each class in Part(x) is a subset of a class of Part(y), we have [F∗]x,y = 2−mℓ. Otherwise,
[F∗]x,y = 0. Below, we bound the distance between [C∗]x,y and [F∗]x,y.

Lemma 3.12. Let F∗ be a uniformly distributed function from a set M to itself. Let C∗ be a uniformly
distributed permutation on M . The best advantage to distinguish C∗ from F∗ limited to q queries is
bounded by q(q−1)

|M | .

Proof. We let Y be the set of all y = (y1, . . . ,yq)∈M q with pairwise different entries. Clearly, Pr[y∈ Y]≥
1− q(q−1)

2|M | . For x ∈M q with pairwise different entries and y ∈ Y , we have

[C∗]qx,y
[F∗]qx,y

=
q

∏
i=1

(
1− i−1
|M |

)
= Pr[y ∈ Y]≥ 1− q(q−1)

2|M |

So, by applying the previous lemma, we obtain that the best advantage is bounded by q(q−1)
|M | . ⊓⊔

The Luby-Rackoff Theorem is not so usable in this form since we don’t have uniformly distributed
functions F∗i . If we have some independent functions F1,F2,F3 such that 1

2∥[Fi]
n− [F∗i]

n∥a ≤ ε, we obtain

1
2
∥[Ψ(F1,F2,F3)]

n− [C∗]n∥a ≤ 1
2
∥[Ψ(F1,F2,F3)]

n− [Ψ(F∗1 ,F2,F3)]
n∥a +

1
2
∥[Ψ(F∗1 ,F2,F3)]

n− [Ψ(F∗1 ,F
∗
2 ,F3)]

n∥a +

1
2
∥[Ψ(F∗1 ,F

∗
2 ,F3)]

n− [Ψ(F∗1 ,F
∗
2 ,F

∗
3)]

n∥a +

1
2
∥[Ψ(F∗1 ,F

∗
2 ,F

∗
3)]

n− [C∗]n∥a

Each of the first three terms in the sum can be considered as the advantage of a distinguisher between Fi
and F∗i , respectively, so they can be bounded by ε. We thus obtain

1
2
∥[Ψ(F1,F2,F3)]

n− [C∗]n∥a ≤ 3ε+n2.2−
ℓ
2

Now, we can use the amplification result and obtain the following theorem.

30

Theorem 3.13 ([58]). Let F1, . . . ,F3r be 3r independent round functions such that 1
2∥[Fi]

n− [F∗i]n∥a≤ ε. We
consider the 3r-round Feistel scheme C = Ψ(F1, . . . ,F3r) to be compared with the ideal cipher C∗. For all

distinguisher limited to q queries, the advantage to distinguish C from C∗ is bounded by 1
2

(
6ε+2q2.2−

ℓ
2

)r
.

Proof. We note that C is the product of r independent 3-round Feistel ciphers for which we have just
proven that the decorrelation of order q was bounded by 6ε+ 2q2.2−

ℓ
2 . We apply Th. 3.9 to deduce that

the decorrelation of C is bounded by
(

6ε+2q2.2−
ℓ
2

)r
. We conclude by the equivalence between best

advantage and decorrelation (Th. 3.8). ⊓⊔
If we wanted to apply this to DES, we would have ℓ = 64. Even in some ideal case with n ≤ 215 and

ε = 0, we obtain a distinguisher with advantage bounded by 2−7 for 18 rounds. This is not a good security
result.

However, we could apply the theorem with q = 2 and obtain interesting results. Namely, every dis-
tinguisher limited to two queries has an advantage bounded by 1

2

(
6ε+8.2−

ℓ
2

)r
. Applying this to linear

and differential distinguishers with a single iteration, we deduce that for every a and b, E(DPC(a,b)) and
E(LPC(a,b)) are low. Namely, we have the following result.

Theorem 3.14 ([58]). For a ̸= 0 and b ̸= 0, we have

E(DPC(a,b)) ≤ 1
2ℓ−1

+
1
2
|||[C]2− [C∗]2|||∞

E(LPC(a,b)) ≤ 1
2ℓ−1

+2|||[C]2− [C∗]2|||∞

So, decorrelation theory can already be used to show that there is no good E(DPC(a,b)) and E(LPC(a,b))
for differential or linear cryptanalysis.

Proof. We write
E(DPC(a,b)) = 2−ℓ ∑

x1,x2,y1,y2

1x2⊕x1=a,y2⊕y1=b[C]2x,y

So, we (easily) deduce that E(DPC∗(a,b)) = 1
2ℓ−1 .

We consider the non-adaptive distinguisher picking x1 and x2 of difference a then querying x1 and x2 to
obtain y1 and y2 and producing 1 if and only if y2⊕y1 = b. Clearly, the advantage is E(DPC(a,b))− 1

2ℓ−1 .
Due to the equivalence between advantage and decorrelation, we have

E(DPC(a,b))− 1
2ℓ−1

≤ 1
2
|||[C]2− [C∗]2|||∞

For the LP, we use the Fourier transform:

E(LPC∗(α,β)) = 2−ℓ∑
a,b
(−1)a·α⊕b·βE(DPC∗(a,b))

= 2−ℓ+2−ℓ ∑
a,b̸=0

(−1)a·α⊕b·β 1
2ℓ−1

=
1

2ℓ−1
then

E
(
LPC(a,b)

)
= E

((
(−1)a·x⊕b·C(x)

)2
)

= E
(
(−1)a·x1⊕b·C(x1)(−1)a·x2⊕b·C(x2)

)
= E

(
(−1)a·(x1⊕x2)⊕b·(C(x1)⊕C(x2))

)
= E

(
2×1a·(x1⊕x2)=b·(C(x1)⊕C(x2))−1

)
= 2

(
2−2ℓ ∑

x1,x1,y1,y2

1a·(x1⊕x2)=b·(y1⊕y2)[C]2x,y

)
−1

31

so

E
(
LPC(a,b)

)
− 1

2ℓ−1
= E

(
LPC(a,b)

)
−E

(
LPC∗(a,b)

)
= 2×2−2ℓ ∑

x1,x1,y1,y2

1a·(x1⊕x2)=b·(y1⊕y2)

(
[C]2x,y− [C∗]2x,y

)
≤ 2max

x1,x2
∑

y1,y2

∣∣[C]2x,y− [C∗]2x,y
∣∣

= 2|||[C]2− [C∗]2|||∞

⊓⊔

32

Chapter 4

The Power of Interaction

An essential cryptographic protocol is the notion of interactive proof. Typically, a client would prove his
credentials to a server. Here, the client plays the role of a prover and the server is a verifier. Ideally, his
credential should not leak from the protocol, even to the verifier who could be malicious. This is the notion
of zero-knowledge protocol. In this chapter, we formalize the notions of interaction, proof, zero-knowledge,
and provide building blocks.

4.1 Interactive Proofs
We consider

• an alphabet Z, i.e., a set of letters;

• the set Z∗ of finite strings made of elements in Z, i.e. the set of all words;

• the subsets of Z∗ are called languages, i.e. sets of words.

Given a language L and a word x, we consider the problem of deciding whether or not x belongs to L. This
is the membership problem.

Languages for which the membership problem can be decided by a deterministic algorithm within a
time bounded by a polynomial in terms of |x|, the length of the string x, are called P languages.

Sometimes, we will consider x as a statement and L be the language of statements which are true. True
statement may be proven by a proof w which will be called a witness. Given a predicate R(x,w) checking
whether w is a correct proof for x, the language L is defined by

L = {x ∈ Z∗;∃w ∈ Z∗ R(x,w)}

(For convenience, proofs are encoded into a word so that we can also assume that the witness is a word.)
Languages such as the above, where R can be evaluated in a time bounded by some polynomial in terms

of |x|, and where the witness must have a length also bounded by a polynomial, are called N P languages.
The complement of an N P language is called a co-N P language. It is known that

P ⊆N P ∩ co-N P

i.e., any P language is both an N P language and a co-N P language. This is illustrated on Fig. 4.1. A
big open question in complexity is to wonder if P = N P or not. There is an inclusion, but it is not known
if all N P language can be recognized in polynomial time or if some of these languages do not have any
polynomial-time algorithm to decide membership. Another open question is to wonder if N P = co-N P
or not. I.e., for languages for which membership can be checked with a witness in polynomial time, can
we always check non-membership with a witness as well? Note that if P = N P then P = N P = co-N P .

33

We already used the notion of Turing reduction but there is another notion due to Karp. We say that a
language L1 reduces to a language L2 if there exists a function f computable by a deterministic polynomial-
time algorithm such that for all words x, x ∈ L1 is equivalent to f (x) ∈ L2. Compared to the Turing
reduction, this means that the oracle for L2-membership can be invoked only once.

There exist languages L which are N P -hard. This means that for each L′ ∈ N P , L′ reduces (in the
sense of Karp) to L. There even exist N P -hard languages in the class N P itself. These languages are
called N P -complete. For example, assuming a way to encode Boolean terms on Boolean variables in the
form of a word, the language SAT of encoded terms that can evaluate to “true” by at least one assignment
of the variables is N P -complete [22]. Consequently, P = N P is equivalent to SAT ∈ P .

Next, we define an interactive machine as follows.

Definition 4.1. An interactive machine is an algorithm A taking as input some x, a list of incoming mes-
sages m1, . . . ,mn of variable length, and a (long enough) sequence of random coins r and computing an
outgoing message A(x,m1, . . . ,mn;r). The tuple (x,m1, . . . ,mn;r) is called the partial view of A .

We assume a special symbol in the alphabet. Messages ending with this symbol are called terminal
messages. We assume that if mn is a terminal message, then A(x,m1, . . . ,mn;r) is a terminal message as
well.

If A(x,m1, . . . ,mn;r) is a terminal message, (x,m1, . . . ,mn;r) is called the final view of A .

A pair of interactive machines (A ,B) (with A called the initiator) is called an interactive system. An
experiment exp =

(
A(rA)

x←→ B(rB)
)

is characterized by an input x and the coins rA and rB for each
participant. It consists of iteratively defining

ai = A(x,b1, . . . ,bi−1;rA)

b j = B(x,a1, . . . ,a j;rB)

for i = 1, . . . ,nA, where nA is the smallest i such that ai is a terminal message, and j = 1, . . . ,nB, where nB is
the smallest j such that b j is a terminal message. Namely, A initiates the interaction with the message a1 =
A(x;rA) to B . Then, B sends the message b1 = A(x,a1;rB) to A . Then A carries on with a2 = A(x,b1;rA)
and so on. We define the outputs of both participants OutA(exp) = anA and OutB(exp) = bnB , and the final
views ViewA(exp) = (x,b1, . . . ,bnA−1;rA) and ViewB(exp) = (x,a1, . . . ,anB ;rB).

We are now ready to define an interactive proof.

Definition 4.2. Given a language L over an alphabet Z, an interactive proof system is an interactive system
(P ,V), where P is called a prover and V is called a verifier, such that there exists a polynomial P and
some real numbers α and β such that 0≤ β < α≤ 1 and

• (termination) for any x and every coins, the experiment P
x↔ V makes V terminates within a com-

plexity bounded by P(|x|);

• (α-completeness) for any x ∈ L, the experiment P
x↔ V makes V output “accept” with probability

at least α (the probability is taken over the random coins);

• (β-soundness) for any x ̸∈ L and any interactive machine P ∗, the experiment P ∗
x↔ V makes V

output “accept” with probability at most β (the probability is taken over the random coins).

This means that a prover P can convince a verifier V that x ∈ L, with probability at least α, and that no
malicious prover P ∗ can convince the verifier when this is not true, with probability larger than β. We note
that we assume no complexity bound on P or P ∗. We often consider α = 1 in which case we say we have
perfect completeness.

It is trivial to see that languages in P and N P have an interactive proof system: for a language in P ,
we just consider a prover doing nothing and a verifier running the verifying predicate defining the language
by himself. For a language in N P , we just consider a prover finding the witness w then sending it to the
verifier and the verifier checking that this is a correct witness. The protocol is as follows:

34

Prover Verifier
x

find w
w (terminal)−−−−−−−−−−−−−−→

accept (terminal)←−−−−−−−−−−−−−− if R(x,w) = 1

It can be much more complicated to see if languages in co-N P have an interactive proof system. One
non-trivial example is the Goldwasser-Micali-Rackoff proof GMR85 [31] for non-quadratic residuosity.
Here, we consider words encoding a pair (n,v) of integers and the language

L = {(n,v) integers;v ∈ Z∗n,v ̸∈ QR(n)}

We recall that

QR(n) = {y ∈ Z∗n;∃x y = x2 mod n}

To construct a proof system we consider the following verifier:
1: pick r ∈U Z∗n, e ∈U {0,1}, compute y = ver2 mod n and send y
2: receive f . If gcd(v,n) = 1 and e = f , output the terminal message “accept”, otherwise, output the

terminal message “reject”

The prover is defined by
1: receive y, solve the equation y = x2 mod n, if it is solvable, output the terminal message f = 1, other-

wise, output the terminal message f = 0

The protocol runs as follows:

Prover Verifier
(n,v)

pick r, e = 0 or 1
solve y = x2 mod n

y←−−−−−−−−−−−−−− y = ver2 mod n

f =
{

0 if solvable
1 otherwise

f (terminal)−−−−−−−−−−−−−−→
accept (terminal)←−−−−−−−−−−−−−− if e = f and gcd(v,n) = 1

Termination and perfect completeness are trivial. To prove 1
2 -soundness, we consider an arbitrary prover

P ∗ receiving y and sending f as a function of n,v,y. We assume that (n,v) ̸∈ L. If v ̸∈ Z∗n, it is clear that
the verifier always rejects. If now v ∈ Z∗n, since (n,v) ̸∈ L, we can write v = w2 mod n for some w. So, the
distribution of y = (wer)2 mod n is uniform in QR(n), no matter the value of e. Hence, f is independent
from e. Thus, Pr[e = f] = 1

2 .

Soundness amplification. For simplicity, we consider perfect completeness. I.e., α = 1. In the case of
the GMR85 protocol, it may be unsatisfactory to have a proof in which a prover could cheat with probability
1
2 . To solve that, we can amplify the soundness by sequential composition. Namely, we could construct
a new interactive proof in which we sequentially run the previous proof n times and accept only if all
executions accepted. We could show that the new soundness probability would become βn.

Amplification works very well for sequential composition but there are tricky things if we consider
parallel composition, i.e., if we run the n executions in parallel. As for interactive proofs as we defined
them, it works, but for slightly different notions of interactive proofs (e.g., variants in which the prover is
computationally bounded), it does not. So, we must be careful when considering parallel composition of
interactive systems.

As an example, we define the DD game of Bellare, Impagliazzo, and Naor [5]. A verifier commits to a
random bit e, then a prover commits to a random bit e′, then both open their commitment and the verifier
accepts the “proof” if e ̸= e′:

35

PN P co-N P

I P

Figure 4.1: Complexity Classes of Languages

Prover Verifier
pick r, e = 0 or 1

pick r′, e′ = 0 or 1
y←−−−−−−−−−−−−−− y = commit(e;r)

y′ = commit(e′;r′)
y′−−−−−−−−−−−−−−→
r,e←−−−−−−−−−−−−−−

r′,e′−−−−−−−−−−−−−−→ check y′ = commit(e′;r′)
accept (terminal)←−−−−−−−−−−−−−− if e ̸= e′

If the prover is computationally bounded and the commitment is hiding and binding, there is no way to
prove with probability significantly larger than 1

2 . So, we could think that for two parallel composition
of this protocol, there is no way to prove with probability larger than 1

4 . However, this is not the case as
the following strategy shows. The prover just repeats the two parallel commitments of the verifier in the
opposite order and win with probability 1

2 :

Prover Verifier
pick r1,r2, e1,e2 = 0 or 1

y1,y2←−−−−−−−−−−−−−− yi = commit(ei;ri)

set y′1 = y2, y′2 = y1
y′1,y

′
2−−−−−−−−−−−−−−→

r1,e1,r2,e2←−−−−−−−−−−−−−−
r2,e2,r1,e1−−−−−−−−−−−−−−→ check

So, soundness amplification is not so trivial for parallel composition.

The class of languages with an interactive proof. We define I P , the class of languages for which there
exists an interactive proof. There is a famous theorem from 1992, due to Shamir [54], saying that I P
corresponds to the class P SPACE of languages for which there is a deterministic algorithm deciding on
membership or not which run with bounded space complexity, i.e. a polynomially bounded number of
memory cells. Intuitively, this class includes the exhaustive search algorithm and others.

Theorem 4.3. I P = P SPACE .

So, the class I P is much larger than N P and co-N P . This is depicted on Fig. 4.1.
When considering N P languages with an interactive proof, we said that the proof is trivial: the prover

finds a witness (e.g., by exhaustive search), gives it to the verifier, and the verifier can check that it is a
valid witness. For cryptographic application, this interactive proof is not satisfactory. Ideally, we would
like the prover to prove the existence of the witness without revealing it, and without revealing anything
that the verifier could not find by himself. This it the next notion to study: zero-knowledge.

36

4.2 Zero-Knowledge
We define a notion corresponding to interactive proofs where the verifier learns no information except the
membership status of the input x.

Definition 4.4. An interactive proof system (P ,V) is ∗-zero-knowledge if for any p.p.t. interactive ma-
chine V ∗ there exists a p.p.t. algorithm S (called a simulator) such that for any x ∈ L

ViewV ∗

(
P (rP)

x↔ V ∗(rV)
)

and S(x;r) produce ∗-identical distributions.

There are three notions of zero-knowledge, depending on the notion of identical distributions (the ∗ in the
definition):

• ∗=perfect: ∗-identical really means identical!

• ∗=statistical: ∗-identical means that the statistical distance is negligible in terms of |x|, i.e., any
adversary has a negligible advantage.1

• ∗=computational: ∗-identical means any p.p.t. distinguisher has a negligible advantage.

As an example, we consider the following proof by Goldwasser-Micali-Rackoff (GMR89) [32] for the
language of quadratic residues:

L = {(n,v) integers;v ∈ QR(n)}

1. the prover finds s such that v = s2 mod n, picks r ∈ Z∗n, and sends x = r2 mod n to the verifier;

2. the verifier picks a random e ∈ {0,1} and sends it to the prover;

3. the prover sends y = ser mod n;

4. the verifier accepts if gcd(n,v) = 1 and y2 ≡ vex (mod n).

Prover Verifier
(n,v)

find s st v = s2 mod n
pick r, x = r2 mod n x−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−− e = 0 or 1
y = ser mod n

y−−−−−−−−−−−−−−→ check gcd(n,v) = 1, y2 ≡ vex (mod n)

Termination and completeness are straightforward to check for this protocol. For soundness, we show that
if a malicious prover P∗ makes the verifier V accept with probability strictly greater than 1

2 , then it must
be the case that (n,v) ∈ L. Clearly, we have that n and v are coprime. Now, the probability is an average
over the random coins of P∗, so there must be some fixed coins making V accept with probability strictly
greater than 1

2 . This actually means that there must be a P∗ which is deterministic. By running the proof
twice with P∗, with different e’s, we thus obtain the same x, but some answer y0 to e = 0 and some answer
y1 to e = 1 which satisfy y2

0 ≡ x (mod n) and y2
1 ≡ vx (mod n). So, y1/y0 mod n is a square root of v, so

(n,v) ∈ L.
To prove zero-knowledge, we construct a simulator S based on a malicious verifier V ∗ as follows: S

first picks a guess e0 ∈ {0,1} for e and a random y ∈ Z∗n, then simulate the prover giving x = y2v−e0 mod n
to V ∗. If V ∗ gives e ̸= e0, this is bad luck and S restarts. Otherwise, e = e0 and S can continue by giving y
to V ∗ and obtain the final view of V ∗. We have to prove that the bad luck happens with probability 1

2 and
that the obtained distribution is identical to the one obtained by running P and V ∗.

1Statistical distance was defined on p. 25.

37

We note here that the simulator S is a black-box simulator. I.e., it is constructed by using V ∗ as a
subroutine and does not depend on V ∗. All the zero-knowledge protocols that we will see use a black-box
simulator.

It was shown in 1986 by Goldreich, Micali, and Wigderson [33], that all N P languages have a compu-
tational zero-knowledge proof.

Theorem 4.5. For every language L in N P , there exists a computational zero-knowledge interactive proof
system.

They show it by the following GMW86 protocol for an N P -complete language: the language of 3-
colorable graphs. A graph (V,E) is specified by a vertex set V and an edge set E ⊆ V 2. A 3-coloring
is a mapping φ : V → {1,2,3} such that for every edge (u,v) ∈ E, we have φ(u) ̸= φ(v). The GMW86
protocol runs as follows:

1. the prover finds a 3-coloring φ of (V,E);

2. P and V run #E times the following protocol;

(a) the prover picks a random permutation π of {1,2,3}, some coins ru for each u ∈ V , computes
Ru = commit(π(φ(u)),ru), and sends all Ru to the verifier;

(b) the verifier picks a random (u,v) ∈ E and sends it to the prover;
(c) the prover sends ru, rv, cu = π(φ(u)), and cv = π(φ(v));
(d) the verifier checks that Ru = commit(cu,ru), Rv = commit(cv,rv), and cu ̸= cv;

3. if all iteration succeeded, the verifier accepts.

Prover Verifier
(V,E)

find φ
repeat #E times

pick π ∈ S3
ru for each u ∈V

cu = π(φ(u))
Ru = commit(cu,ru)

R−−−−−−−−−−−−−−→
u,v←−−−−−−−−−−−−−− pick (u,v) ∈ E

if (u,v) ∈ E
cu,cv,ru,rv−−−−−−−−−−−−−−→ check Ru,Rv

check cu ̸= cv

The protocol is based on a commitment scheme which is computationally hiding and perfectly binding.
Finally, instead of proving membership, we would like that a prover proves his knowledge of a witness.

Definition 4.6. Given a language L ∈N P over an alphabet Z defined by a relation R, an interactive proof
of knowledge for L is a pair (P ,V) of interactive machines such that there exists a polynomial P, α, β
such that 0≤ β < α≤ 1 and

• termination: this is like for interactive proof systems

• α-completeness: this is like for interactive proof systems

• β-soundness: there exists an oracle algorithm E called extractor verifying what follows. For any P ∗

we let
ε(x) = Pr

rP,rV

[
OutV

(
P ∗(rP)

x↔ V (rV)
)
= accept

]
If ε(x)> β then EP ∗(x) outputs w such that R(x,w) holds with complexity at most P(|x|)/(ε(x)−β).

Our typical prover starts with finding w then runs a polynomial-time algorithm. So, an equivalent notion
could be to say that P has a private input with w and that P is a polynomially bounded algorithm. Indeed,
if we want to prove knowledge of w, we must give w to P! We give examples of proof of knowledge in the
next section.

38

4.3 Zero-Knowledge Construction from Σ Protocol

We consider simple protocols running in three phases: the prover sends some message a, the verifier sends
some random challenge e selected from a set E, the prover sends back an answer z, and the verifier decides
to accept or not. With additional properties, this defines Σ-protocols.

Definition 4.7. Given a language L ∈N P over an alphabet Z defined by a relation R, a Σ-protocol for L
is a pair (P,V) of interactive machines such that

• V is polynomially bounded

• 3-move: P starts with a message a, V answers with a challenge e∈U E, P terminates with a response
z, V accepts (always for x ∈ L) or reject only depending on (x,a,e,z)

• special soundness: there exists a polynomially bounded algorithm E called extractor such that for
any x, if (x,a,z;r) and (x,a,z′;r′) are two accepting views for V such that e ̸= e′ where e =V (x,a;r)
and e′ =V (x,a;r′) then E(x,a,e,z,e′,z′) yields w such that R(x,w)

• special honest-verifier zero-knowledge (HVZK): there exists a polynomially bounded algorithm S

called simulator such that for any x∈ L and e, the transcript (a,e,z) of the interaction P(rP)
x↔V (rV)

conditioned to e has same distribution as S(x,e;r).

To fully define a Σ-protocol we thus need

• a relation R defining the language;

• a function for a = P(x,w;rP);

• a samplable domain E for e;

• a function for z = P(x,w,e;rP);

• a verification relation V (x,a,e,z);

• a function E(x,a,e,z,e′,z′);

• a function S(x,e;r).

The properties to satisfy are:

1. R, P, V , E , S and sampling are polynomially computable in |x|;

2. ∀(x,w) ∈ R ∀rP ∀e ∈ E V (x,a,e,z),

with a and z defined by a = P(x,w;rP) and z = P(x,w,e;rP);

3. ∀x ∀e,e′ ∈ E ∀a,z,z′ (e ̸= e′,V (x,a,e,z),V (x,a,e′,z′)) =⇒ R(x,E(x,a,e,z,e′,z′));

4. ∀(x,w) ∈ R ∀e ∈ E distribrP(a,e,z) = distribr(S(x,e;r)),

with a and z defined by a = P(x,w;rP) and z = P(x,w,e;rP).

What is nice with Σ-protocols is that they are already proofs of knowledge, honest-verifier zero-
knowledge, and composable in parallel. This is stated in the results below.

Theorem 4.8. A Σ-protocol (P,V) for an N P language L defined by a relation R is an interactive proof
of knowledge for L. The soundness probability is β = 1

#E , where E is the set of possible challenges in the
Σ-protocol.

39

Proof. Termination and 1-completeness are straightforward. It is less easy to show the soundness of the
proof of knowledge. For that, we define the knowledge extractor EP∗ as follows. We denote by ε(x) the
probability that P∗ makes V accept on the instance x and we assume that ε(x)> β. To define the extractor,
we first pick some random rP,rV ,r′V and make the oracle P∗ run twice with the same random coins rP and
interact with a simulation of V , first with V (rV), then with V (r′V). By construction, the a set by P∗(rP) is
the same in both executions since rP is the same and no message from V is used to compute a. We let e
resp.e′ be the challenge set by V (rV) resp. V (r′V), and z resp. z′ be the response of P∗(rP). We let b resp. b′

be the acceptance bit from the verification. Clearly, if e ̸= e′ and b = b′ = 1, we can execute the Σ-extractor
E(x,a,e,z,e′,z′) and obtain a witness w for x which is given as output of the knowledge extractor. Clearly,
all this is polynomially bounded. Below, we prove that Pr[e ̸= e′,b = b′ = 1] ≥ ε(x)(ε(x)− β). Since
ε(x) > β and β is a constant, we need O

(
1

ε(x)−β

)
attempts of the above process to succeed to extract a

witness. This shows the result.
Now, we analyze Pr[e ̸= e′,b = b′ = 1]. When P∗(rP) interacts with V (rV), we have Pr[b = 1] = ε(x).

We denote ε(x,rP) = Pr[b = 1|rP]. Hence, E(ε(x,rP)) = ε(x) over a random rP.
Since rV and r′V are independent, we have Pr[b = b′ = 1|rP] = ε(x,rP)

2. So,

Pr[b = b′ = 1,e ̸= e′|rP] = ε(x,rP)
2−Pr[b = b′ = 1,e = e′|rP]

We note that if e = e′, then P∗ will give z = z′ so b = b′. Hence,

Pr[b = b′ = 1,e = e′|rP] = Pr[b = 1,e = e′|rP]

Let A be the set of all e for which P∗ produce a z leading to b = 1. We have

Pr[b = 1,e = e′|rP] = ∑
e∈A

(Pr[pick e])2 = ∑
e∈A

Pr[pick e]β = ε(x,rP)β

since the challenge is uniformly distributed so Pr[pick e] = β for all e. So, we have

Pr[b = b′ = 1,e ̸= e′|rP] = ε(x,rP)(ε(x,rP)−β)

We consider the random variable Z = ε(x,rP) defined by a random rP. We have Pr[b = b′ = 1,e ̸= e′|rP] =
f (Z) for f (z) = z(z−β). Since f ′′(z) > 0, f is a convex function, we can apply the Jensen inequality to
obtain E(f (Z)≥ f (E(Z)). This gives Pr[b = b′ = 1,e ̸= e′]≥ ε(x)(ε(x)−β). ⊓⊔

Definition 4.9. An interactive proof system (P,V) is ∗-honest verifier zero-knowledge if there exists a ppt
algorithm S such that

ViewV

(
P(rP)

x↔V (rV)
)

and S(x,r) produce ∗-identical distributions.

This is just the regular zero-knowledge property, but only guaranteed when the verifier is following the
honest protocol.

Theorem 4.10. A Σ-protocol (P,V) for an N P language L defined by a relation R is honest verifier zero-
knowledge.

Proof. Since the honest V does not depend on a to select e, we can just run V with some dummy a0 and
random coins rV to get e with the good distribution, then sun the Σ simulator S(x,e;r) on some random r
to obtain a transcript (a,e,z) with the correct distribution. We can then produce (x,a,z;rV), the simulated
view of V . Clearly, it has the good distribution. ⊓⊔

Theorem 4.11. Given an integer t and a Σ-protocol with set of challenges E, we consider the Σt -protocol
consisting in executing t times in parallel the Σ-protocol and having the verifier accept if and only if all
executions accept. This define a new Σ-protocol in which the set of challenges is Et .

So, the soundness probability is seriously amplified.

40

Goldreich-Micali-Wigderson for graph isomorphism. One example of Σ-protocol is the Goldreich-
Micali-Wigderson protocol GMW86 for graph isomorphism from 1986 [33]. It is for the language of pairs
of isomorphic graphs (G0,G1). Clearly, a witness can just be the isomorphism φ from G0 to G1. The
obtained protocol could hold for any notion of isomorphism, not only for graphs. We just require that φ is
a bijection, that φ(G0) = G1, and that it must be hard to find φ given G0 and G1 (which is believed to be
the case for graphs).

In the GMW86 protocol, the set of challenges is E = {0,1}. The prover starts by selecting a random
permutation π and sending H = π(G0). After receiving e, he answers by σ = π if e = 0 and σ = π◦φ−1 if
e = 1. So, σ = π◦φ−e. Then, the verifier accepts if and only if H = σ(Ge).

Prover Verifier
φ st φ(G0) = G1 (G0,G1)
pick π invertible pick e ∈ {0,1}

H = π(G0)
H−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−−

σ = π◦φ−e σ−−−−−−−−−−−−−−→ σ(Ge)
?
= H

The extractor works based on σ0, the answer to e = 0 for some H, and on σ1, the answer to e = 1 for
the same H. Since H = σ0(G0) and H = σ1(G1), we have that σ−1

1 ◦σ0 is a valid witness for (G0,G1) since
σ−1

1 ◦σ0(G0) = G1.
The simulator works based on G0, G1, and e. It picks σ uniformly and sets H = σ(Ge).

Fiat-Shamir for modular square root. Another famous example is the FS86 protocol by Fiat and
Shamir [27] for the language of pairs of integers (n,v) such that v ∈ Z∗n and there exists s (the witness)
such that s2v mod n = 1. Again the set of challenges is E = {0,1}. The prover starts by selecting a random
r ∈Z∗n and sending x = r2 mod n. After receiving e, he answers by y = r if e = 0 and y = rs mod n if e = 1,
i.e., y = rse mod n. The verifier accepts if y2ve mod n = x, and v,y ∈ Z∗n.

Prover Verifier
s st s2v mod n = 1 (n,v)

pick r ∈ Z∗n pick e ∈ {0,1}
x = r2 mod n x−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−
y = rse mod n

y−−−−−−−−−−−−−−→ y2ve mod n ?
= x, v,y

?
∈ Z∗n

The extractor is based on the answer ye to e = 0,1 with the same x. It computes y1/y0 mod n which is
such that (

y1

y0

)2

v mod n = 1

so, a valid witness. The simulator picks y ∈ Z∗n and computes x = y2ve mod n from e.

Schnorr for discrete logarithm. Finally, another famous protocol is the Schnorr protocol from 1989 [52,
53] for the language of (G,q,g,y) tuples with the following properties:

• G is a group in which it is easy to do operations (product and inverse) and comparisons;

• g is an element of G of prime order q;

• it is easy to check if a value belongs to ⟨g⟩;

• y ∈ ⟨g⟩.

The relation R is defined by R((G,q,g,y),x) if and only if y = gx. I.e., x is the discrete logarithm of y.
The Schnorr protocol has a parameter t which must be such that q > 2t . The set of challenges is

E = {1, . . . ,2t}. The prover starts by selecting a random k ∈ Zq and sending r = gk. After receiving e, he
answers by s = ex+ k mod q. The verifier accepts if rye = gs and y ∈ ⟨g⟩.

41

Prover Verifier
x st gx = y (G,q,g,y)

pick k ∈ Zq pick e ∈ {1, . . . ,2t}
r = gk r−−−−−−−−−−−−−−→ q prime > 2t

e←−−−−−−−−−−−−−− g of order q?, yq ?
= 1

s = ex+ k mod q s−−−−−−−−−−−−−−→ rye ?
= gs

The extractor is based on the answers s and s′ to e and e′, for e ̸= e′, and with the same r. Since q is

prime and 1≤ e,e′ ≤ 2t < q, e− e′ is invertible modulo q and we can show that g
s−s′
e−e′ = y. So, s−s′

e−e′ mod q
is the extracted witness. The simulator picks s ∈ Zq and computes r = gsy−e.

Strengthening Σ-protocols. A malicious verifier could select his challenge e based on the first message
sent by the prover. If the set of challenges is very small, this is not a problem and we can actually show that
honest-verifier zero-knowledge and zero-knowledge are equivalent. When the set of challenges is large,
this is no longer equivalent. In the Schnorr protocol, a malicious verifier could select e = f (y,r) and his
view may become unforgeable by a simulator. As we will see later, this could indeed be used to construct a
signature scheme with unforgeable signatures. However if we do want to obtain a zero-knowledge protocol,
we must enrich the Σ-protocol with a commitment.

One solution could be that the verifier first commits to his challenge (without revealing it). Then, after
receiving the first message from the prover, he would open his commitment and let the protocol continue
as before. If the commitment is binding (i.e., a malicious verifier could not change his mind), this protocol
becomes fully zero-knowledge. However, we now have troubles to prove soundness as we need to extract
two answer with the same message from a malicious prover who would have received a commitment of the
challenge. One solution to get around this is that we use a trapdoor commitment: a commitment in which
there exists a trapdoor to break the binding property. The construction runs as follows:

1. P generates a commitment trapdoor τ and its associated key h and sends h to V ;

2. V selects his challenge e and commit to it with key h; the commit value is sent to P;

3. P starts the Σ-protocol and sends the message a;

4. V opens his commitment to e;

5. P answers to the challenge by z and also discloses τ.

Prover Verifier
w st R(x,w) x

pick rP pick e ∈ E
pick τ

h = gτ mod p h−−−−−−−−−−−−−−→
Commith(e;r)←−−−−−−−−−−−−−− pick r

a = P (x,w;rP)
a−−−−−−−−−−−−−−→

verify Commit(e;r)
e,r←−−−−−−−−−−−−−−

z = P (x,w,e;rP)
z,τ−−−−−−−−−−−−−−→ V (x,a,e,z)?, h ?

= gτ mod p

This protocol becomes computationally zero-knowledge and remains a proof-of-knowledge. One example
for a trapdoor commitment is the following one.

Pedersen commitment 1991 [44]. We set up the commitment with some parameters (p,q,g), where
p and q are prime, q divides p− 1, and g is an element of Z∗p of order q. The trapdoor is an element
τ ∈ Zq. The key is h = gτ mod p. To commit on X with coins r ∈ Zq, we compute c = gX hr mod p.
This is unconditionally hiding, and computationally binding (breaking the binding property is equivalent to

42

computing τ, i.e., solving the discrete logarithm problem for h). With τ, we can equivocate a commitment
to X0 with coins r0 to any X . We just set r = r0 +

X0−X
τ mod q and we have

c = gX0hr0 mod p = gX hr mod p

4.4 Setup Models
In the previous strengthened model, the use of an ephemeral trapdoor in the commitment looks artificial,
since we never need the equivocation property of the commitment in practice. Furthermore, it is dangerous
for security. We could adopt a more practical approach by having the commitment key to be set up once
and for all participants, with the trapdoor held by nobody. This is in line with what we call the common
reference string (CRS) model. In that case, there is a CRS (e.g., the commitment public key) which is set
up for all participants.

To show soundness/zero-knowledge, we may need to assume that the extractor/simulator can use the
trapdoor. This is fine, except that one property of zero-knowledge may be a bit trickier: deniability. This
assumes that having run the protocol can be denied as the verifier can extract no evidence of having run
it in the protocol. Normally, zero-knowledge protocols are inherently deniable since whatever the verifier
extracts can be simulated. However, when the simulator needs the trapdoor, since no participant has the
trapdoor in practice, what the practical verifier extracts may become non-simulatable. Clearly, this does
not expose the secret of the prover but could still leak evidence of having run the protocol.

Besides the CRS, another setup model is the Random Oracle Model (ROM). In this model, we have
an oracle H who answers at random to any query, but consistently. I.e., making the same query several
times will produce the same response. This oracle can be accessed by all participants. In the notion of
zero-knowledge proof of knowledge, the extractor/simulator may further simulate the behavior of H. I.e.,
they answer at the place of H to all queries, but they must do it in a way which is indistinguishable from
querying a real random oracle. Again, we may loose deniability. But otherwise, we can have more efficient
protocols. In the strengthening, we commit to e by disclosing H(e∥r) and open by revealing e and r.

There are other setup models. For instance, we can assume that all participants are initialized with
a public/private key pair. We can assume the existence of a public directory, to which we could register
public keys. We can assume the existence of secure hardware tokens. Etc.

4.5 A Building Block for Making Cryptographic Primitives
In 1986, Fiat and Shamir [27] proposed to transform (what is now called) a Σ-protocol into a proof which
is non-interactive. This is the notion of a Non-Interactive Zero-Knowledge proof (NIZK).

The idea is that the verifier is now simulated by a hash function. That is, the challenge e used in the Σ-
protocol is computed by e = H(x∥a). Namely, to prove x, the prover computes a as usual, then e = H(x∥a),
then the answer z. The (a,z) pair is the proof. It is verified as usual, by re-computing e.

Note that here, the verifier is choosing e adaptively based on a, which is normally not allowed. Con-
sequently, we may loose the simulatability. Even worse: we do need to loose this property. Otherwise, a
malicious prover could forge a proof by running this simulation!

The Fiat-Shamir construction is also used to create a signature scheme. Essentially, we take e =
H(message∥x∥a) and do the same. I.e., the signature is the (a,z) pair. We will prove (Th. 5.8 in the
next chapter), in the random oracle model, that this construction is secure against existential forgeries un-
der chosen message attacks (EF-CMA), when the relation of the Σ-protocol is such that finding a witness
w for x is a hard problem.

Σ-protocols can also be used to construct other cryptographic primitives. As an example, we construct
a trapdoor commitment. Assuming that finding a witness for R is hard and that we have a Σ protocol for R,
we take as a common reference string and instance x and as a trapdoor a witness w for this instance. So,
R(x,w) holds. We can commit on elements of the set of challenges E. To commit on e ∈ E, we pick some
random coins r and compute (a,e,z) = S(x,e;r). The commit value is a and the opening value is (e,z).
For opening, we just check that V (x,a,e,z) holds. We can check that the commitment is perfectly hiding as

43

the distribution of a is like in the correct interactive proof, so independent from e. We can also check that
the commitment is computationally binding. Indeed, being able to open a commitment a on two values of
e would lead (thanks to the Σ extractor) to a witness for x, which is assumed to be hard to find. Finally,
using w we can equivocate the commitment by just running the correct interactive protocol: P produces a,
the commit value. Then, if we want to open to e, we just compute the correct z by using w.

44

Chapter 5

Proving Security

Foundations of cryptography, as presented in the previous chapter about interaction, show that proving
techniques heavily rely on the notion of modeling, simulation, interactive Turing machine rewinding, com-
plexity reduction, etc. In a former chapter, we intuitively introduced some notions of security for encryp-
tion and signature. In the present chapter, we present more formally the modern notions of security and
techniques to prove security.

5.1 The Security of Encryption
Previously, we considered the security of encryption in terms of key recovery and decryption problems.
These security notions may be insufficient. For instance, a cryptosystem doing nothing (i.e., with a cipher-
text y equal to the plaintext x no matter x or the secret key) makes key recovery hard but is clearly insecure.
A cryptosystem only encrypting one part of the message may make the full decryption hard but would leak
sensitive information and be considered as insecure. Recovering one particular bit of the plaintext may be
sensitive, and still be feasible without decrypting completely.

In RSA, we can prove that recovering the least significant bit of the plaintext is equivalent to decrypting
completely. So, if the decryption problem is hard, the least significant bit is called a hard-core bit.

More precisely, we define lsb(x) to be the least significant bit of x and lsbdec(y) to be the lsb of the
decryption of y. We show below that the RSA decryption problem reduces to computing lsbdec. For that,
we assume that we have a subroutine to compute lsbdec and we show that we can decrypt y given the public
key (e,N).

Let us now assume that we know that the decryption x of y is in some interval a≤ x < b with a = k
2i N

and b = k+1
2i N for some integers k and i. Note that we can start with k = 0 and i = 0. We can see now

how to update k and increment i. Indeed, we could write 2k+β
2i+1 N ≤ x < 2k+β+1

2i+1 N with β = 0 or β = 1.
So, we can update k to 2k + β, meaning updating either a or b to a+b

2 , if we could compute the bit β.
Since the inequality implies β N

2 ≤ 2ix− kN < (β + 1)N
2 . So, β is such that β N

2 ≤ 2ix mod N < (β +

1)N
2 . We deduce β = lsb(2i+1x mod N). Finally, β = lsbdec(2(i+1)ey mod N). We deduce the following

algorithm:
1: a← 0, b← N
2: for i = 0 to ⌊log2 N⌋ do
3: if lsbdec(2(i+1)ey mod N) = 1 then
4: a← (a+b)/2
5: else
6: b← (a+b)/2
7: end if
8: end for
9: yield ⌊a⌋

Chor and Goldreich have shown that computing lsbdec with errors also enables the full decryption [15]. It

45

Generator

6Secret key pPublic key x,N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

N = pq(
x
p

)
= −1(

x
q

)
= −1

6
?

bit b

y = r2xb mod N

y y

solve (−1)b =
(

y
p

)

b

Figure 5.1: Goldwasser-Micali Cryptosystem

was even shown that each bit of the plaintext has the same property [1]. This shows that every bit of the
plaintext is a hard core bit in RSA. However, this only applies to each bit of the binary expansion of x, but
not every bit of information about x is a hard-core bit. Indeed, we can define a Boolean function on x which
is easy to compute from xe mod N: we can just consider the Jacobi symbol. Indeed, if we define

jac(x) =
(x

N

)
, jacdec(y) =

(
yd mod N

N

)
then we have jacdec(y) = jac(y)d = jac(y) since d must be odd to be invertible modulo φ(N). So, it is easy
to compute jacdec(y). So jac(x) is not a hard-core bit.

The semantic security aims at saying that every bit of information is hard to compute. This is formalized
by a game. A key pair is generated and the public key is given to the adversary. Then, the adversary selects
two messages x0 and x1. A bit b is flipped and xb is encrypted into y. Then, y is given to the adversary who
must give a bit b′. The adversary wins if b = b′. Since there is a trivial strategy to win with probability
1
2 (just select b′ at random), we say that the encryption is secure if Pr[b = b′]− 1

2 is negligible for every
adversary.

This security notion is only feasible when the encryption is non-deterministic (otherwise, the adversary
can compare y with the encryption of x0 and x1 and deduce b). It was proposed with the Goldwasser-Micali
cryptosystem [29, 30], which only encrypts a bit.

In the Goldwasser-Micali cryptosystem [29, 30], the public key consists of a pair (x,N) where N = pq,
the product of two large primes, and x ∈ Z∗N which is neither a quadratic residue modulo p nor modulo q
(see Fig. 5.1). To encrypt b, we select r ∈ Z∗N and give y = r2xb mod N. To decrypt, we just find b such
that (−1)b = (y/p). This is semantically secure. (Actually, since we encrypt a bit, semantic security is
equivalent to the hardness of the decryption problem.)

The semantic security definition is a bit complicated but it was shown to be equivalent to the following
one.

Definition 5.1. A cryptosystem (Gen,Enc,Dec) is IND-CPA-secure (indistinguishable under chosen plain-
text attacks) if for every polynomially bounded adversary A , if we let (Kp,Ks) = Gen(1λ;rg), (x0,x1) =
A(Kp;ρ), b∈{0,1}, y=Enc(xb;r), b′=A(Kp,y;ρ), where rg,ρ,b,r are independent uniformly distributed
sequences of bits, then Pr[b = b′]− 1

2 is a negligible function of λ. It is required that x0 and x1 have the
same length.

This experiment is usually called a game between a challenger who runs Gen and Enc and selects b,
and an adversary A who creates two plaintexts x0 and x1 for which he would be able to distinguish their
encryptions. We say the adversary wins if b= b′. Intuitively, there is a Boolean function that he is supposed
to be able to compute on the plaintext and he just selects two plaintexts having different outputs through
this Boolean function. The IND-CPA game is illustrated on Fig. 5.2.

46

Adversary Challenger
public key←−−−−−−−−−−−−−−−−−−−−−−−− generate keys

select x0,x1
use x0,x1−−−−−−−−−−−−−−−−−−−−−−−−→ flip b

y←−−−−−−−−−−−−−−−−−−−−−−−− y = Enc(xb)

select b′ b′−−−−−−−−−−−−−−−−−−−−−−−−→ wins if b = b′

Figure 5.2: IND-CPA Game

Adversary Challenger
public key←−−−−−−−−−−−−−−−−−−−−−−−− generate keys

select x0
use x0−−−−−−−−−−−−−−−−−−−−−−−−→ x1 = random

y←−−−−−−−−−−−−−−−−−−−−−−−− flip b, y = Enc(xb)

select b′ b′−−−−−−−−−−−−−−−−−−−−−−−−→ wins if b = b′

Figure 5.3: IND$-CPA Game

For cryptosystems encrypting plaintexts of variable length, it is required that the length of x0 and x1 is
the same, since it is impossible to perfectly hide the length of a plaintext on infinite message spaces.

In the case of the Goldwasser-Micali cryptosystem, the message space has only two elements: the
message 0 and the message 1. So, the only relevant case reduces to x0 = 0 and x1 = 1. Therefore, IND-
CPA security is equivalent in having Pr[b = A(Kp,Enc(b;r);ρ)]− 1

2 negligible. For the Goldwasser-Micali
cryptosystem, this means Pr[b = A(x,N,r2xb mod N;ρ)] = 1

2 +negl(λ).
There is an equivalent definition proposed with a slightly different game [50] in which the adversary

only proposes one plaintext x0, and either this one is selected, or a random x1 one (see Fig 5.3).

Definition 5.2. A cryptosystem (Gen,Enc,Dec) is IND$-CPA-secure if for every polynomially bounded
adversary A , if we let (Kp,Ks) = Gen(1λ;rg), x0 = A(Kp;ρ), x1 random with same length as x0, b ∈ {0,1},
y = Enc(xb;r), b′ = A(Kp,y;ρ), where rg,ρ,x1,b,r are independent uniformly distributed sequences of
bits, then Pr[b = b′]− 1

2 is a negligible function of λ.

This game is often called the real-or-random encryption game while the previous IND-CPA game is called
the left-or-right encryption game.

Theorem 5.3. IND-CPA security and IND$-CPA security are equivalent.

Proof. To show this, we first show that IND-CPA security implies IND$-CPA security. We consider an
adversary A in the real-or-random game. Let us transform it into an adversary A ′ in the left-or-right game
(see Fig. 5.4). To define A ′(Kp;ρ′), we first run x0 = A(Kp;ρ) and select x1 of same length of x0. To define
ρ from ρ′, we just run A(Kp;ρ′) by watching at which coins in ρ′ are used by A . The next unused coins are
taken to select x1. Finally, ρ is just ρ′ without the coins used for x1 (that is, the left over coins are let in ρ
for the next part). Then, we set (x0,x1) = A ′(Kp;ρ′) and we define A ′(Kp,y;ρ′) = A(Kp,y;ρ). Clearly, A ′

simulates well the selection of x1. So, A and A ′ win with exactly the same probabilities in their respective
game. Due to IND-CPA security, A ′ wins with probability 1

2 +negl. So, A wins with probability 1
2 +negl.

Since this applies to any A , we obtain IND$-CPA security.
Then, we show that IND$-CPA security implies IND-CPA security. For that, we consider an adversary

A in the left-or-right game. We define an adversary A ′ in the real-or-random game as follows. We let
A ′(Kp;ρ′) = xb′′ where A(Kp;ρ) = (x0,x1) and b′′ is one coin from ρ′ which is just removed to define ρ.
I.e., ρ′ = b′′∥ρ. Then, A ′(Kp,y;ρ′) = A(Kp,y;ρ)⊕ b′′. We let b be the bit selected by the challenger to
define y = Enc(xb′′) if b = 0 or y = Enc(random) otherwise. (See Fig. 5.5.) Let p be the probability for
A to win in the IND-CPA game. In our construction, when b = 0, we have Pr[b = A ′(Kp,y;ρ′)|b = 0] = p
since this case perfectly simulates the IND-CPA game. When b = 1, y gives no information about b′′, so
Pr[b = A ′(Kp,y;ρ′)|b = 1] = 1

2 . So, Pr[b = A ′(Kp,y;ρ′)]− 1
2 = 1

2 (p− 1
2). Due to IND$-CPA security, A ′

47

A ′

A IND-CPA challenger
Kp←−−−−

Kp←−−−− select Kp
x0−−−−→ x1 = random

x0,x1−−−−→ flip b
y←−−−− y←−−−− y = Enc(xb)
b′−−−−→ b′−−−−→ win if b = b′

Figure 5.4: IND-CPA security implies IND$-
CPA security

A ′

A IND$-CPA challenger
Kp←−−−−

Kp←−−−− select Kp
x0,x1−−−−→ flip b′′

x′0=xb′′−−−−→ flip b
x′1 = random

y←−−−− y←−−−− y = Enc(x′b)
b′−−−−→ b′⊕b′′−−−−→ win if b = b′⊕b′′

Figure 5.5: IND$-CPA security implies IND-
CPA security

wins with probability 1
2 +negl. So, A wins with probability p = 1

2 +negl. Since this applies to any A , we
obtain IND-CPA security. ⊓⊔

The ElGamal cryptosystem, in a group ⟨g⟩, is also semantically secure if we assume that the Decisional
Diffie-Hellman problem is hard in ⟨g⟩ and if we only encrypt messages which are elements of ⟨g⟩.

Theorem 5.4. If the DDH problem is hard in the group generated by the ElGamal cryptosystem, and if the
plaintext space is included in the group, then the cryptosystem is IND-CPA secure.

We remind that the DDH problem is not always hard. For instance, the DDH problem in Z∗p is easy.
We also observe that that the assumption that we only encrypt messages which are elements of ⟨g⟩

may be a problem because we may have to map bitstrings (arbitrary messages) into group elements in a
reversible way. One possible instance is that we take a strong prime p. I.e., a large prime number p such
that q = p−1

2 is also prime. Then, we consider the subgroup of Z∗p of order q. Clearly, −1 is not in this
subgroup since (−1)q ̸= 1 (because q must be odd). So, for every m, either m or−m is in the subgroup. We
can define map(m) = ±m in the subgroup for 1 ≤ m ≤ q. This mapping is invertible. So, we can encrypt
integers between 1 and q by encrypting the subgroup element map(m), assuming that the DDH problem is
hard in this subgroup.

Proof. We show IND$-CPA security. Let A be an adversary for the real-or-random game. We construct a
distinguisher A ′ for the DDH problem as follows. In the DDH problem, A ′ receives an order q and a group
generator g, some y = gx for x ∈U Zq, and a pair (u,v′) in which u = gr for r ∈U Zq and either v′ = yr or
v′ is random in the group generated by g. Clearly, (q,g,y) simulates the generation of an ElGamal public
key. Let x0 = A(q,g,y). Given (u,v′), we define v = x0v′. Clearly, (u,v) simulates the ElGamal ciphertext
obtained by submitting x0 in the real-or-random game: either it is (gr,x0yr) or it is (gr, random× yr) for
random in the subgroup generated by g. Let b be the guess from A . Clearly, b is a guess for the DDH
problem which is correct if and only if A wins. So, the distinguisher has the same advantage of A . Since
the DDH problem is hard, the wining probability of A is 1

2 +negl. ⊓⊔

There exist stronger security notions. For instance, we may consider the non-malleability security [25].
Intuitively, it means that an adversary cannot replace a ciphertext y (with unknown Dec(y) to him) into
another ciphertext y ̸= y′ such that Dec(y) and Dec(y′) are “related”. This actually looks like an integrity
protection for the plaintext.

One example where this notion of security is not satisfied is the traditional family of stream ciphers,
where y = x⊕ k. Indeed, replacing y by y′ = y⊕δ leads to Dec(y) and Dec(y′) to be within a difference of
δ. We can call this a relation and then have the malleability property.

Let us take the Goldwasser-Micali cryptosystem as another example. Given y = r2xb mod N, we can
compute s2xcy mod N for a random s and a random bit c. This would be a valid encryption of b⊕ c with a
correct distribution. If we can decrypt this new ciphertext, then XOR the result to c, we obtain b.

The RSA and ElGamal cases are also malleable, as it will be later discussed.
There is a theorem saying that non-malleability is equivalent [4] to the IND-CCA security [48], where

IND-CCA security is defined as follows (see Fig. 5.6).

48

Adversary Challenger
public key←−−−−−−−−−−−−−−−−−−−−−−−− generate keys

select y∗
please decrypt y∗−−−−−−−−−−−−−−−−−−−−−−−−→

x∗←−−−−−−−−−−−−−−−−−−−−−−−− x∗ = Dec(y∗)
select x0,x1

use x0,x1−−−−−−−−−−−−−−−−−−−−−−−−→ flip b
y←−−−−−−−−−−−−−−−−−−−−−−−− y = Enc(xb)

select y∗ ̸= y
please decrypt y∗−−−−−−−−−−−−−−−−−−−−−−−−→

x∗←−−−−−−−−−−−−−−−−−−−−−−−− x∗ = Dec(y∗)

select b′ b′−−−−−−−−−−−−−−−−−−−−−−−−→ wins if b = b′

Figure 5.6: IND-CCA Game

Definition 5.5. A cryptosystem (Gen,Enc,Dec) is IND-CCA-secure (indistinguishable under chosen ci-
phertext attacks) if for every polynomially bounded adversary A playing the following game, the probabil-
ity to win is 1

2 +negl(λ).

1. one key pair is generated and the public one Kp is given to A;

2. A can make some decryption queries: he submits y∗ and gets x∗ = Dec(y∗) in return;

3. A selects two plaintexts x0 and x1;

4. one bit b is flipped and y = Enc(xb) is computed, and given to A;

5. A can continue to make some decryption queries: he submits y∗ and gets x∗ = Dec(y∗) in return; he
is not allowed to query y∗ = y;

6. A produces a bit b′ and wins if b = b′.

IND-CCA security historically followed another notion called IND-CCA1 security or lunchtime attack [41],
where the adversary was not allowed to make decryption queries after having received the challenge y.

In general, “textbook cryptosystems” are not IND-CCA-secure because they are malleable, with some
kind of homomorphic property. For instance, the ElGamal cryptosystem has the property that if x is the
decryption of (u,v), then xw is the decryption of (u,vw). So, the adversary can take the challenge y= (u,v),
compute y∗ = (u,vw), make a decryption query with y∗, divide the result by w and compare with x0 and x1
to deduce b.

The RSA cryptosystem (which is deterministic and homomorphic, so with no chance to be IND-CCA
secure or even IND-CPA secure) can be transformed into another one called RSA-OAEP [6] which is proven
to be IND-CCA secure based on some random oracle.

5.2 The Random Oracle Model

In the random oracle model (ROM), all participants in the game can query an oracle H, but do not see
the queries of others. The oracle is responding randomly (so the name), but consistently. That is, the
answer to a fresh query will be random, but forthcoming identical queries will produce the same response.
So, a random oracle models a deterministic function which is selected at random before the game starts.
Formally, the response is a “long enough” bitstring. In most of applications, we assume it is a string of
pre-determined length. The trick in the random oracle model is that reductions can simulate the random
oracle (so that it looks like a real random oracle) but with some hidden but useful information.

49

Generator

?
6

N = pq
φ(N) = (p−1)(q−1)

1 = gcd(e,φ(N))
d = e−1 mod φ(N)

6Secret key d,N Public key e,N6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

m

x = H(m)d mod N

m,σ m,σ

H(m)
?
= σe mod N

m

Figure 5.7: Full Domain Hash (FDH) Signature

Signatures with Full-Domain Hash (FDH). The FDH signature scheme [7] is based on RSA (see
Fig. 5.7): we consider that the random oracle H returns random Z∗N elements, given the RSA modulus
N. The signature of a message m is the RSA signature of H(m). The verification algorithm then follows.

Theorem 5.6. If the RSA decryption problem is hard, then FDH is EF-CMA-secure. I.e., it resists to
existential forgeries under chosen message attacks.

Proof. We give here the proof by Coron [23]. We consider an adversary A playing the EF-CMA game.
I.e., he is given oracle access to H and the challenger also makes hash queries. He receives some public
key (e,N). He can make signing oracle queries: he chooses one message m and gets its signature σ by
an oracle call. Then, he produces one pair (m,σ) and wins if σ is a valid signature for m and m was not
queried to the signing oracle.

By changing A a bit, we reduce without loss of generality to cases where either the attack aborts or the
final output is always valid, m was not queried to the signing oracle, and m was queried to the hash oracle.

Then, we construct an algorithm B to solve the RSA decryption problem: B receives a public key
(e,N) and a ciphertext y and must decrypt it. For that, B simulates A receiving (e,N) as a public key, then
playing with a simulation for the hashing oracle and the signing oracle.

B simulates H as follows: he answers consistently to repeating queries. For a fresh query m, B picks
r ∈U Z∗N and flips a biased coin b such that Pr[b = 1] = p for some magic parameter p to be later explained.
Then, B answers as if H(m) = ybre mod N. It is clear that H(m) is perfectly distributed, even if b is
fixed. So, this is a valid simulation of H. More importantly, B keeps a record of y and b such that
H(m) = ybre mod N as they will play a role.

B simulates the signing oracle as follows: to sign a message m, he queries m to H and takes y and e
such that H(m) = ybre mod N. Then, if b = 1, B aborts. Otherwise, we have H(m) = re mod N, and the
signature of m is clearly r. We can thus simulate without the signing key, unless we abort. Clearly, this
simulation is also perfect, except when aborting.

Since the simulations are perfect, A behaves with the same probability as in the EF-CMA game and
either aborts or produces a forgery (m,σ).

Finally, when the simulation of A terminates on (m,σ), B takes y and e such that H(m) = ybre mod N.
Then, if b = 0, B aborts. Otherwise, we have H(m) = yre mod N. Since σ is a valid signature, we also
have H(m) = σe mod N. So, y = (σ/r)e mod N. Hence, the decryption of y is σ/r mod N.

The probability that B succeeds is the probability that all hashing queries by the challenger used b = 0,
that the hashing query related to the forged signature used b = 1, and that A succeeds. By assumption, the
message in the forgery was not queried to the signing oracle. So, this happens p(1− p)qS times the success
probability of A , where qS is the number of signing queries. By taking p = 1

qS+1 , we have

p(1− p)qS ≥ e−1

qS +1

50

Generator

6Secret key d,NPublic key e,N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

N = pq
φ(N) = (p−1)(q−1)

1 = gcd(e,φ(N))
d = e−1 mod φ(N)

6
?

r random
s = re mod N
c = m⊕H(r) x = c⊕H(sd mod N)

m s,c s,c x

Figure 5.8: Hybrid RSA Encryption in the Random Oracle Model (ROM)

Since the RSA decryption problem is hard, we deduce that Pr[A succeeds]/(qS + 1) is negligible. Since
qS is polynomially bounded, this means that Pr[A succeeds] is negligible as well. So, A cannot win in the
EF-CMA game except with negligible probability. ⊓⊔

Hybrid RSA encryption in ROM. We consider a cryptosystem based on RSA, in which the encryption
of m is a pair (s,c) such that s is the RSA encryption of some random r, and c = m⊕H(r) (where messages
have a fixed length and H(r) is assumed to be as long as the message). (See Fig. 5.8.)

Theorem 5.7. If the RSA decryption problem is hard, then the above cryptosystem is IND-CPA secure.

Proof. Let A be an adversary playing the IND-CPA game and wining with probability 1
2 + ε. We want to

show that ε is negligible. Following the rules of the game, A receives a public key (e,N), makes some hash
queries to H, selects m0 and m1, gets a ciphertext (s,c) which encrypts mb, and makes a guess for b.

We let E be the event that A makes a query r to H that is such that re mod N = s. Note that by running
A , we can always check if E occurs once A terminates. Clearly, if E occurs, the decryption of (s,c) must
be c⊕H(r). So, we can construct another adversary who always answer by b′ such that mb′ = c⊕H(r)
when E occurs. Without loss of generality, we assume that this is what A does.

We note that if E holds, A always win. If E does not occur, we have that r = sd mod N is not queried
to H by A and c = mb⊕H(r) with H(r) random. Note that H(r) is uniformly distributed and only used to
compute c. So, c is statistically independent from b. Therefore, the view of A is independent from b and
the probability that A guesses b is exactly 1

2 . We deduce that

1
2
+ ε = Pr[A wins|E]Pr[E]+Pr[A wins|¬E](1−Pr[E]) =

1
2
+

1
2

Pr[E]

So, ε = 1
2 Pr[E].

We construct an algorithm B to solve the RSA decryption problem. This algorithm receives an instance
(e,N,y). Then, he picks r0 ∈ Z∗N and runs A playing with a simulation of H and the challenger.

To simulate H receiving a query r, if (r/r0)
e mod N = y, the simulation stops and B answers r/r0 mod

N. Otherwise, the simulation of H is natural.
To simulate the challenger receiving m0 and m1 by A , B picks c of same length and answers by (s,c)

where s = yre
0 mod N.

Clearly, this perfectly simulates A playing the IND-CPA game in the case that E does not occur. When
E occurs, B wins. Now, since the RSA decryption problem is hard, Pr[E] must be negligible. So, ε is
negligible as well. ⊓⊔

51

Generator

?
6

6Secret key w Public key x6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

m

a = P(x,w;r)
e = H(m,a)
z = P(x,w,e;r)

m,a,z m,a,z

e = H(m,a)
V (x,a,e,z)?

m

R(x,w)
a = P(x,w;r) a−−−−−−−−−→

e←−−−−−−−−− e ∈U E
z = P(x,w,e;r) z−−−−−−−−−→ V (x,a,e,z)?

Figure 5.9: Fiat-Shamir Signature from a Σ Protocol

Generator

?
6

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

m

r = gk

e = H(m,r)
s = ex+ k mod q

m,e,s m,e,s

r = gsy−e

e ?
= H(m,r)

m

y = gx
r = gk r−−−−−−−−−→

e←−−−−−−−−− e ∈U {1, . . . ,2t }
s = ex+ k mod q s−−−−−−−−−→ rye ?

= gs

Figure 5.10: Schnorr Signature

Fiat-Shamir signatures [27]. A Σ-protocol (R,P,V,E ,S) in which the set of challenges E is large enough
can be transformed into a signature scheme in the random oracle model. Concretely, we are given a pair
(x,w) such that R(x,w) holds, x is a public key and w is the secret key. To sign a message m, we simulate
the prover P who sends a = P(x,w), receives e = H(m,a), and sends z (see Fig. 5.9. The signature is (a,z).
To verify the signature, we check that V (x,a,H(m,a),z) holds.

Theorem 5.8. If the problem of finding a witness for x is hard and if 1/#E is negligible, then the above
signature scheme is EF-CMA-secure.

This construction can be applied to some parallel repetitions of the Fiat-Shamir Σ-protocol. (Indeed, the
Fiat-Shamir Σ-protocol has only 2 possible challenges, so we need some parallel repetitions to make 1/#E
negligible.) This is based on the problem of finding square roots in Z∗n. It can also be applied to the Schnorr
Σ-protocol to obtain the Schnorr signature scheme (see Fig. 5.10). The only change to make to obtain the
Schnorr protocol is to use (e,s) as a signature for m instead of (r,s). This is valid since we can compute
(m,e,s) from (m,r,s) and vice versa. It is more interesting to use (m,e,s) because the hash e is typically
much shorter than the group element r. It is based on the discrete logarithm problem.

The idea of the proof of this last theorem is that we transform an EF-CMA adversary into a witness
finding algorithm as follows:

• First, we transform it into an EF adversary making no chosen message queries. To do this, we
simulate the original adversary. We also keep track of the history of queries to H and their responses.

52

A Challenger

H

q

�

H(q)

�

(m,a)

K

e

U
m -

�
(a,z)

w

Figure 5.11: EF-CMA Game with a Random Oracle

Whenever it makes a signing query m, the simulator can select a random e ∈ E and run S(x,e) =
(a,e,z), then insert ((m,a),e) in the table collecting the queries to H, as if we had queried H(m,a)
and obtained e. The simulator can then answer (a,z) to the signing query. Additionally, any query
H(m,a) should be intercepted and the answer replaced by e.

Technically, we must check that there is no prior (m,a) query to H which would conflict with this
simulation.

• Then, we run the adversary making no chosen message query and simulate the random oracle H.
We show that the message m from the final forgery (a,z) must be queried together with a to H(m,a)
(otherwise, there is a negligible probability that the forgery is correct). Then, we run again with the
same coins and same simulation for H, until this query (m,a) is responded differently. The magic in
this trick, called the forking lemma [46], is that we are likely to obtain two simulations producing the
same m and a with two different H(m,a). Then, we can call the extractor E to create a witness w.

For this, we will first show two lemmas.

Lemma 5.9. Given a relation R s.t. it is hard to find witnesses and a Σ-protocol for its language s.t.
1/#E = negl, we consider the signature scheme obtained by the Fiat-Shamir construction using a random
oracle.

There is a compiler which can transform an adversary A playing the EF-CMA game into another
adversary A ′ making no chosen message queries such that the complexity of A ′ is the one by A multiplied
by some polynomial and

Pr[A ′ wins] = Pr[A wins]−negl

Proof. The EF-CMA game is depicted by the interaction between the adversary A , a challenger, and a
random oracle H (see Fig. 5.11). The challenger selects x and w and sends x to A , then answers to any
signature query m by computing some signature with the help of the random oracle: the challenger picks
r, computes a = P(x,w;r), queries m∥a to H, gets e, computes z = P(x,w,e;r), and answers (a,e,z) to A .

We denote by (m,a,z) be the final forgery produced by A . We first define an equivalent adversary A1
as follows:

• A1 simulates A until A yields its final forgery.

• If m was queried to the challenger (A1 can see it), A1 aborts. So, there is no oracle query from
challenger of form (m,a′).

• If (m,a) was not queried to H by A , query it to get e = H(m,a).

• If V (x,a,e,z) returns false, abort.

• Yield the forgery (m,a,z).

53

We obtain: a new EF-CMA adversary A1 with similar complexity and same success probability, who either
aborts or yields a valid forgery (m,a,z), and who always queries (m∥a) to H.

We let ε = Pr[A wins] = Pr[A1 wins].
We now define another adversary A2 as follows:

• A2 simulates A1 and makes a list of all queries to the random oracle. The queries (m,a) from the
challenger can be deduced from m and (a,z).

• If the challenger does a query which was done before (let ε′ be the probability this happens), A2
aborts.

We obtain a new EF-CMA adversary A2 with similar complexity and success probability ε− ε′ such that
the challenger makes queries which are fresh.

Since the total number of queries to H must be polynomially bounded, we have ε′ ≤ poly×maxa pa
where pa = Pr[P (x,w;r) = a]. If we prove that pa is negligible for all a, we deduce that ε′ is also negligible.

Let us now prove that for all a, pa is negligible. The algorithm running S(x,e;r) and S(x,e′;r′) with
random e,e′,r,r′ yields a twice with probability p2

a. When it is the case, it can then run E to extract w.
This works with probability p2

a(1−1/#E). Since we assumed that finding a witness was hard, this must be
negligible. So, pa is negligible.

We finally define A ′ as follows:

• A ′ simulates A2 until a query m to the challenger is made.

• Upon the query m, A ′ picks r, e, computes (a,e,z) = S(x,e;r), and returns (a,z). Since a has the
correct distribution, (m,a) must look like a fresh query to H. Since e was selected at random, it looks
like a correct response from H. So, A ′ just takes note that (m,a) is supposed to hash onto e.

• If A2 makes a (m,a) query to H, A ′ intercepts it and answer e. Since this cannot be the query
corresponding to the final forgery, this does not affect the correctness of the final forgery.

Clearly, this simulation of the challenger queries to H are made with the correct distribution. So, it does
not affect the probability of success. We thus obtain an EF-CMA adversary A ′ making no chosen message
query, with similar complexity and success probability ε− ε′. Since ε′ is negligible, we obtain the result.

⊓⊔

The Forking Lemma was first proposed by Pointcheval and Stern in 1996 [46]. We give here a general-
ized version of it.

Lemma 5.10 (Forking Lemma). We consider a finite tree and a mapping dist which maps any leaf λ of
the tree to one of its ancestors dist(λ). We call it a distinguished ancestor. We assume we are given a
distribution which defines a random leaf X. We let visit(ν) be the event that the descent from the root
to X goes through ν, i.e. that ν is an ancestor of X. We let succ(λ) be true if and only if dist(λ) ̸=
λ. When it occurs we say that λ is successful. We let p = Pr[succ(X)], d̄ = E(depth(X)), and f (ν) =
Pr[succ(X) and dist(X) = ν|visit(ν)].

For any real number θ > 0, we have

Pr
[

f (dist(X))> (1−θ)
p
d̄

∣∣∣succ(X)
]
≥ θ.

So, if a random descent going to X is successful, another random descent starting from the distinguished
ancestor of X is likely to be successful (with probability at least (1−θ) p

d̄) with the very same distinguished
ancestor. We can even estimate the probability that the two consecutive descents are successful with the
same distinguished ancestor:

E(f (dist(X))) =
∫ 1

0
Pr[f (dist(X))≥ t,succ(X)] dt

= p
∫ 1

0
Pr[f (dist(X))≥ t|succ(X)] dt

54

A Challenger

H

q

�

H(q)

�
x�

Figure 5.12: EF-CMA Game with a Random Oracle and no Chosen Message

≥ p
∫ 1

0
max

(
0,1− t

d̄
p

)
dt

=
p2

2d̄

So, if p is not negligible and d̄ is polynomial, then E(f (dist(X))) is not negligible. This will be used later
to prove the theorem.

Proof. We have Pr[dist(X) = ν|succ(X)] = f (ν)Pr[visit(ν)]
p . We let Bad be the set of ν’s such that f (ν) ≤

(1−θ) p
d̄ . We have

Pr[dist(X) ∈ Bad|succ(X)] = ∑
ν∈Bad

f (ν)
Pr[visit(ν)]

p

≤ (1−θ)∑ν Pr[visit(ν)]
d̄

≤ 1−θ

so, Pr[dist(X) ̸∈ Bad|succ(X)]≥ θ. ⊓⊔

We can now fully prove the Fiat-Shamir signature security.

Proof (of Th. 5.8). By first applying Lemma 5.9, we reduce to the case where the adversary makes no
chosen message queries. So, we are in the situation of Fig. 5.12.

We define an algorithm B(x) as follows (see Fig. 5.13):

• B simulates A with initial x and simulates H to A .

• If A does not output any (m,a,z), B aborts. Otherwise, B runs A again with same random coins.
The answers from H use the same random answers until (m,a) is queried to H. Then, they use fresh
coins.

• If A does not output any (m,a,z′), B aborts. Otherwise, B gets two forgeries (a,z) and (a,z′) with
same a so he can get the corresponding e and e’ then extract w = E(x,a,e,z,e′,z′).

We build the tree of the A executions depending on the random answers from H (each node ν corre-
sponds to a query by A , each leaf λ corresponds to a termination).

A random descent in the tree corresponds to a complete execution of A interacting with H. This descent
ends up to a random leaf X . This defines a distribution on leaves. We say that X is successful and write
succ(X) is the leaf corresponds to an execution yielding a valid forgery (m,a,z). By construction, (m,a)
must have been queried. The query to (m,a) corresponds to a distinguished ancestor dist(X) of X . If
X is not successful, we just define dist(X) = X . So, the second execution of A corresponds to a second
descent starting from dist(X). Let Y be the leaf obtained in this second descent. If Y is successful and

55

A - m,a,e,zλ
succ(λ)

6

?

H
6

?

H
6

?

H

(m,a) e or e′
6

?

H

dist(λ)

j m,a,e′,z′

?

6

H

Figure 5.13: The Witness Extractor

dist(X) = dist(Y), then we have two forgeries (m,a,z) and (m,a,z′) with the same (m,a), corresponding
to some e and e′. If e ̸= e′, the extractor finds a witness and B succeeds.

Since Pr[e = e′] = negl, the success probability of B is greater than E(f (dist(X)))− negl. Since ex-
tracting a witness is assumed to be hard, E(f (dist(X))) must be negligible. Thanks to the Forking Lemma,
we deduce that Succ(X) is negligible as well. So, A has a negligible probability of success. ⊓⊔

Controversy about the random oracle model. This model has been controversial, because random
oracles are never used in practice. They are replaced by a practical hash function. However, we can
construct schemes which are secure in the random oracle model but insecure whenever the random oracle
is replaced by any hash function. We give as an example a construction proposed by Canetti, Goldreich,
and Halevi in 1998 [14].

We use a construction similar as FDH. To sign a message m, we first interpret m as the code of an
algorithm implementing a function hm (we must define a programming language and add safeguards so
that the execution of these algorithms always terminate in due time). Then, we pick some r, query H(r),
and compute hm(r). If H(r) = hm(r), the signature is set to the RSA secret exponent d. Otherwise, the
signature is H(m)d mod N. Clearly, in the random oracle model, there is nearly no chance that H(r)
becomes accidentally equal to hm(r), so the security proof works like for FDH. When we replace H by a
concrete hash function h, we could consider the code m implementing it (i.e., m such that hm = h), and we
suddenly obtain h(r) = hm(r) whatever the selection of r. So, any signing query will obtain the RSA secret
exponent which is enough to make forgeries. So, this is EF-CMA insecure.

5.3 The Game Proof Methodology
There is a common technique to prove security based on game reduction. It was formalized by Shoup in
2004 [56]. Indeed, most of the security results can be formalized in terms of an adversary running a game
(defined by rules), with a final winning condition. We assume that the game and the winning condition can
be efficiently computed by a simulator. The proof technique consists of building up a sequence of games
and their associated adversaries in such a way that the initial game is the one to be proven, the final one
is trivial to analyze, and we can show that every step makes the winning probabilities similar, except with
some negligible gap. There are several tools for making these different steps.

First of all, we can consider an indistinguishability step. We start with a game Γ with an adversary A ,
in which there is somewhere the selection of some random variable X based on some fresh coins which
are not used any longer. We build a new game Γ′ with the same adversary A , but the selection of X is
replaced by the selection of some Y such that X and Y have indistinguishable distributions. Assuming that
X or Y come from outside the game, the simulation of the entire game with an outcome set to the winning
condition becomes a distinguisher between X and Y . So, the winning probability must be very close for

56

both games.
Second, we can consider bridging steps where a game Γ and an arbitrary adversary A are replaced by a

game Γ′ and an adversary C(A) such that the simulation of Γ(A) and Γ′(C(A)) are exactly the same. For
instance, we can put in C(A) a simulator for the random oracle.

Finally, we can use the difference Lemma. In a game Γ, we consider a “failure event F”, for some event
F which can be efficiently checked and such that the game becomes somehow simpler when F does not
occur. We define a new game Γ′ in which ¬F is an extra condition for winning. If ¬F occurs, the game
Γ′ works exactly like in Γ. The gap between the winning probability is bounded by Pr[F]. Indeed, the
probability to win in Γ is

Pr
Γ
[win] = Pr

Γ
[win,F]+Pr

Γ
[win,¬F]

The first probability is bounded by Pr[F]. The second one is equal to PrΓ′ [win], the winning probability in
Γ′.

We can now consider a variant of the ElGamal cryptosystem which encrypts strings of m bits (and
not group elements). To encrypt M, one has to pick some random r and random n and compute (gr,M⊕
hn(yr),n) where h is a family of universal hash functions (see Fig. 5.14).1 The idea is that yr when written
as a bitstring, which has a terrible distribution but some decent min-entropy H∞(yr), can be replaced by
some hn(yr) with n random to have a better distribution.2 This is called the leftover hash Lemma.

Lemma 5.11 (Leftover Hash Lemma, Impagliazzo-Levin-Luby 1989 [35]). Given a random variable
X, if m≤H∞(X)−2log 1

ε (where H∞ denotes the min-entropy), if h is a family of functions from the support
of X to {0,1}m such that Pr[hN(x) = hN(x′)] = 2−m for all x ̸= x′, where N is uniformly distributed, then
(hN(X),N) and (U,N) are ε-indistinguishable, where U is uniformly distributed in {0,1}m.

Proof. We let P0 be the distribution of (hN(X),N) and P1 be the distribution of (U,N). We denote by N
the support of N. We compute the Euclidean distance between P0 and P1:

∥P1−P0∥2
2 = ∑

k,n

(
Pr

X ,N
[hn(X) = k,N = n]− 1

2m#N

)2

= ∑
k,n

(
Pr

X ,N
[hn(X) = k,N = n]2−2

PrX ,N [hn(X) = k,N = n]
2m#N

+
1

22m(#N)2

)
= ∑

k,n
Pr

X ,N
[hn(X) = k,N = n]2− 1

2m#N

= ∑
k,n

Pr
X ,N

[hn(X) = hn(X ′) = k,N = N′ = n]− 1
2m#N

=
1

(#N)2 ∑
k,n

Pr
X ,X ′

[hn(X) = hn(X ′) = k]− 1
2m#N

=
1

#N ∑
x,x′

Pr[X = x,X ′ = x′,hN(x) = hN(x′)]−
1

2m#N

=
1−2−m

#N ∑
x

Pr[X = x]2

which we obtain by splitting x = x′ and x ̸= x′. So,

∥P1−P0∥2
2 ≤

1−2−m

#N
max

x
Pr[x]≤ 1−2−m

#N
2−H∞(X) ≤ 1

2m#N
ε2

We then use d(distr(X),uniform)≤ ∥distr(X)−uniform∥2
√

#domain to obtain d(P0,P1)≤ ε. ⊓⊔

By using this lemma and some bridging steps, we can prove that this variant of the ElGamal cryptosys-
tem is IND-CPA secure if the DDH problem is hard.

1Recall that this means Pr[hN(x) = hN(x′)] = 2−m for all x ̸= x′, where N is uniformly distributed in the key space and 2m is the
range size of h.

2The min-entropy of a random variable X is defined by H∞(X) =− log2 maxx Pr[X = x].

57

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

y = gx

6
?

domain parameter:
group spanned by g

M (u,v,n) (u,v,n) v⊕hn(ux)

r,n random
u = gr

v = M⊕hn(yr)

Figure 5.14: ElGamal Cryptosystem Variant

Theorem 5.12. Assuming that the DDH assumption in the group spanned by g is hard and that hn is
a family of functions from this group to {0,1}m such that for all x ̸= x′ and a uniformly distributed N,
Pr[hN(x) = hN(x′)] = 2−m. The ElGamal Cryptosystem Variant of Fig. 5.14 is IND-CPA secure.

Proof. We let Γb
0 denote the IND-CPA game using bit b. We want to show that Γ0

0 and Γ1
0 return 0 with

probabilities with negligible difference. We define a small variant Γb
1 of Γb

0. The games Γb
0 and Γb

1 are
defined like this:
game Γb

0/Γb
1:

1: run key generation and get y
2: pick random coins ρ and set view = (y;ρ)
3: run A(view) = (m0,m1)
4: pick r ∈U Zq, n ∈N N , u = gr, and

(Γ0) (Γ1)
v = mb⊕hn(yr) s ∈U Zq, and v = mb⊕hn(ys)

5: set view = (y,u,v,n;ρ)
6: run A(view) = b′

7: return b′

We want to show that for any b, the probabilities that Γb
0(A)= 0 and Γb

1(A)= 0 have a negligible difference.
For that, we bridge Γb

β to some Γ′bβ game defined as follows:

game Γ′b0/Γ′b1:
1: run key generation and get y
2: pick random coins ρ and set view = (y;ρ)
3: run A(view) = (m0,m1)
4: pick r ∈U Zq, n ∈N N , u = gr, and

(Γ′0) (Γ′1)
s = r s ∈U Zq

and v = mb⊕hn(ys)
5: set view = (y,u,v,n;ρ)
6: run A(view) = b′

7: return b′

Clearly, Γb
0 and Γ′b0 are doing the same thing, written in a different way, as well as Γb

1 and Γ′b1. So,
Pr[Γb

β(A) = 0] = Pr[Γ′bβ(A) = 0]. Next, we bridge Γ′bβ to Γ′′bβ by changing the adversary. Given A , we
define B as follows:
B(g,y,u,v0,b;ρ):

58

1: run A(y;ρ) = (m0,m1)
2: pick n ∈U N , v = mb⊕hn(v0)
3: run A(y,u,v,n;ρ) = b′

4: return b′′ = b′

The games are as follows:

game Γ′′b0/Γ′′b1:
1: run key generation and get y
2: pick r ∈U Zq, u = gr

3: pick
(Γ′0) (Γ′1)
s = r s ∈U Zq

and v0 = ys

4: pick random coins ρ
5: run B(y,u,v0,b;ρ) = b′′

6: return b′′

Clearly, Γ′bβ(A) and Γ′′bβ(B) are doing the same thing. It is just a matter of moving some game operations
in the adversary. So, Pr[Γ′bβ(A) = 0] = Pr[Γ′′bβ(B) = 0]. Next, we realize that B trying to distinguish Γ′′b0
from Γ′′b1 is a distinguisher playing the DDH game. So, Pr[Γ′′b0(B) = 0]−Pr[Γ′′b1(B) = 0] is negligible.
Hence, we deduce that Pr[Γb

0(A) = 0]−Pr[Γb
1(A) = 0] is negligible.

Next, we change Γb
1 into

game Γb
1/Γb

2:
1: run key generation and get y
2: pick random coins ρ and set view = (y;ρ)
3: run A(view) = (M0,M1)
4: pick r ∈U Zq, u = gr, and

(Γ1) (Γ2)
s ∈U Zq, X = ys, n ∈U N , U ∈U {0,1}m, n ∈U N ,

pair = (hn(X),n) pair = (U,n)
5: v = Mb⊕pair1,
6: set view = (y,u,v,pair2;ρ)
7: run A(view) = b′

8: return b′

Thanks to the leftover hash lemma, we have

Pr[Γb
1(A) = 0]−Pr[Γb

2(A) = 0]≤ ε

Finally, we bridge Γb
2 to Γb

3:
game Γb

2/Γb
3:

1: run key generation and get y
2: pick random coins ρ and set view = (y;ρ)
3: run A(view) = (M0,M1)
4: pick r ∈U Zq, u = gr, n, and

(Γ2) (Γ3)
U ∈U {0,1}m, v = Mb⊕U v ∈U {0,1}m

5: set view = (y,u,v,n;ρ)
6: run A(view) = b′

7: return b′

which produce v with exactly the same distribution. We can now notice that b is never used. So,

Pr[Γ0
3(A) = 0] = Pr[Γ1

3(A) = 0]

Piling everything together, we have that Pr[Γ0
0(A) = 0]−Pr[Γ1

0(A) = 0] is negligible. Hence, we have
IND-CPA security. ⊓⊔

59

60

Bibliography

[1] W. Alexi, B. Chor, O. Goldreich, C. Schnorr. RSA and Rabin Functions: Certain Parts are as Hard as
the Whole. SIAM Journal on Computing, vol. 17, pp. 194–209, 1988. 5.1

[2] T. Baignères, S. Vaudenay. The Complexity of Distinguishing Distributions (Invited Talk). In Infor-
mation Theoretic Security (ICITS’08), Calgary, Canada, Lecture Notes in Computer Science 5155,
pp. 210–222, Springer-Verlag, 2008. 3.4, 3.5

[3] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, J.-K. Tsay. Efficient Padding Oracle
Attacks on Cryptographic Hardware. In Advances in Cryptology CRYPTO’12, Santa Barbara, Cali-
fornia, U.S.A., Lecture Notes in Computer Science 7417, pp. 608–625, Springer-Verlag, 2012. 2.1

[4] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway. Relations among Notions of Security for Public-
Key Encryption Schemes. In Advances in Cryptology CRYPTO’98, Santa Barbara, California,
U.S.A., Lecture Notes in Computer Science 1462, pp. 26–45, Springer-Verlag, 1998. 5.1

[5] M. Bellare, R. Impagliazzo, M. Naor. Does Parallel Repetition Lower the Error in Computationally
Sound Protocols? In Proceedings of the 38th IEEE Symposium on Foundations of Computer Science,
Miami Beach, Florida, U.S.A., pp. 374–383, IEEE, 1997. 4.1

[6] M. Bellare, P. Rogaway. How to Encrypt with RSA. In Advances in Cryptology EUROCRYPT’94,
Perugia, Italy, Lecture Notes in Computer Science 950, pp. 92–111, Springer-Verlag, 1995. 5.1

[7] M. Bellare, P. Rogaway. The Exact Security of Digital Signatures: How to Sign with RSA and Rabin.
In Advances in Cryptology EUROCRYPT’96, Zaragoza, Spain, Lecture Notes in Computer Science
1070, pp. 399–416, Springer-Verlag, 1996. 5.2

[8] E. Biham, A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology,
vol. 4, pp. 3–72, 1991. 3.2

[9] E. Biham, A. Shamir. Differential Cryptanalysis of the Full 16-Round DES. In Advances in Cryp-
tology CRYPTO’92, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 740, pp.
487–496, Springer-Verlag, 1993. 3.2

[10] E. Biham, A. Shamir. Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag,
1993. 3.2

[11] D. Bleichenbacher. Generating ElGamal Signatures Without Knowing the Secret Key. In Advances in
Cryptology EUROCRYPT’96, Zaragoza, Spain, Lecture Notes in Computer Science 1070, pp. 10–18,
Springer-Verlag, 1996. 2.4

[12] D. Bleichenbacher. Chosen Ciphertext Attacks against Protocols Based on RSA Encryption Standard
PKCS #1. In Advances in Cryptology CRYPTO’98, Santa Barbara, California, U.S.A., Lecture Notes
in Computer Science 1462, pp. 1–12, Springer-Verlag, 1998. 2.1

[13] D. Boneh, R. A. DeMillo, R. J. Lipton. On the Importance of Checking Cryptographic Protocols for
Faults. In Advances in Cryptology EUROCRYPT’97, Konstanz, Germany, Lecture Notes in Computer
Science 1233, pp. 37–51, Springer-Verlag, 1997. 2.1

61

[14] R. Canetti, O. Goldreich, S. Halevi. The Random Oracle Methodology, Revisited. In Proceedings of
the 30th ACM Symposium on Theory of Computing, Dallas, Texas, U.S.A., pp. 209–218, ACM Press,
1998. 5.2

[15] B. Chor, O. Goldreich. RSA/Rabin Least Significant Bits are 1
2 +

1
poly(logn) Secure. In Advances in

Cryptology CRYPTO’84, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 196,
pp. 303–313, Springer-Verlag, 1985. 5.1

[16] D. Coppersmith. The Data Encryption Standard (DES) and its Strength against Attacks. IBM Journal
of Research and Development, vol. 38, pp. 243–250, 1994. 3.2

[17] J.-S. Coron, D. Naccache, J. Stern. On the Security of RSA Padding. In Advances in Cryptology
CRYPTO’99, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 1666, pp. 1–18,
Springer-Verlag, 1999. 2.1

[18] J.-S. Coron, D. Naccache, M. Tibouchi, R.-P. Winmann. Practical Cryptanalysis of ISO/IEC 9796-2
and EMV Signatures. In Advances in Cryptology CRYPTO’09, Santa Barbara, California, U.S.A.,
Lecture Notes in Computer Science 5677, pp. 428–444, Springer-Verlag, 2009. 2.1

[19] D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. In Advances in Cryptology
EUROCRYPT’96, Zaragoza, Spain, Lecture Notes in Computer Science 1070, pp. 155–165, Springer-
Verlag, 1996. 2.1

[20] D. Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits
Known. In Advances in Cryptology EUROCRYPT’96, Zaragoza, Spain, Lecture Notes in Computer
Science 1070, pp. 178–189, Springer-Verlag, 1996. 2.1

[21] D. Coppersmith, M. K. Franklin, J. Patarin, M. K. Reiter. Low-Exponent RSA with Related Messages.
In Advances in Cryptology EUROCRYPT’96, Zaragoza, Spain, Lecture Notes in Computer Science
1070, pp. 1–9, Springer-Verlag, 1996. 2.1

[22] S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the 3rd ACM Sym-
posium on Theory of Computing, Atlanta, Georgia, U.S.A., pp. 151–158, ACM Press, 1971. 4.1

[23] J.S. Coron. On the Exact Security of Full Domain Hash. In Advances in Cryptology CRYPTO’00,
Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 1880, pp. 229–235, Springer-
Verlag, 2000. 5.2

[24] W. Diffie, M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Information The-
ory, vol. IT-22, pp. 644–654, 1976. 2.3

[25] D. Dolev, C. Dwork, M. Naor. Non-Malleable Cryptography. In Proceedings of the 23rd ACM Sym-
posium on Theory of Computing, New Orleans, Louisiana, U.S.A., pp. 542–552, ACM Press, 1991.
5.1

[26] T. ElGamal. A Public-key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE
Transactions on Information Theory, vol. IT-31, pp. 469–472, 1985. 2.4, 2.4

[27] A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Prob-
lems. In Advances in Cryptology CRYPTO’86, Santa Barbara, California, U.S.A., Lecture Notes in
Computer Science 263, pp. 186–194, Springer-Verlag, 1987. 4.3, 4.5, 5.2

[28] H. Gilbert, G. Chassé. A Statistical Attack of the FEAL-8 Cryptosystem. In Advances in Cryptology
CRYPTO’90, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 537, pp. 22–33,
Springer-Verlag, 1991. 3.3

[29] S. Goldwasser, S. Micali. Probabilistic Encryption and How to Play Mental Poker Keeping Secret
All Partial Information. In Proceedings of the 14th ACM Symposium on Theory of Computing, San
Fransisco, California, U.S.A., pp. 365–377, ACM Press, 1982. 5.1

62

[30] S. Goldwasser, S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences, vol.
28, pp. 270–299, 1984. 5.1

[31] S. Goldwasser, S. Micali, C. Rackoff. The Knowledge Complexity of Interactive Proof-Systems. In
Proceedings of the 17th ACM Symposium on Theory of Computing, Providence, Rhode Island, U.S.A.,
pp. 291–304, ACM Press, 1985. 4.1

[32] S. Goldwasser, S. Micali, C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM
Journal on Computing, vol. 18, pp. 186–208, 1989. 4.2

[33] S. Goldwasser, S. Micali, A. Wigderson. Proofs that Yield Nothing but their Validity and a Methodol-
ogy of Cryptographic Protocol Design. In Proceedings of the 27th IEEE Symposium on Foundations
of Computer Science, Toronto, Canada, pp. 174–187, IEEE, 1986. 4.2, 4.3

[34] J. Håstad. Solving Simultaneous Modular Equations of low Degree. SIAM Journal on Computing,
vol. 17, pp. 376–404, 1988. 2.1

[35] R. Impagliazzo, L.A. Levin, M. Luby. Pseudo-Random Generation from One-Way Functions. In Pro-
ceedings of the 21st ACM Symposium on Theory of Computing, Seattle, Washington, U.S.A., pp.
12–24, ACM Press, 1989. 5.11

[36] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In
Advances in Cryptology CRYPTO’96, Santa Barbara, California, U.S.A., Lecture Notes in Computer
Science 1109, pp. 104–113, Springer-Verlag, 1996. 2.1

[37] P. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. In Advances in Cryptology CRYPTO’99,
Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 1666, pp. 388–397, Springer-
Verlag, 1999. 2.1

[38] M. Luby, C. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Functions.
SIAM Journal on Computing, vol. 17, pp. 373–386, 1988. 3.10

[39] M. Matsui. Linear Cryptanalysis Methods for DES Cipher. In Advances in Cryptology EURO-
CRYPT’93, Lofthus, Norway, Lecture Notes in Computer Science 765, pp. 386–397, Springer-Verlag,
1994. 3.3

[40] M. Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard. In Advances in
Cryptology CRYPTO’94, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 839,
pp. 1–11, Springer-Verlag, 1994. 3.3

[41] M. Naor, M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ciphertext Attacks.
In Proceedings of the 22nd ACM Symposium on Theory of Computing, Baltimore, Maryland, U.S.A.,
pp. 427–437, ACM Press, 1990. 5.1

[42] P. C. van Oorschot, M. J. Wiener. On Diffie-Hellman Key Agreement with Short Exponents. In Ad-
vances in Cryptology EUROCRYPT’96, Zaragoza, Spain, Lecture Notes in Computer Science 1070,
pp. 332–343, Springer-Verlag, 1996. 2.3

[43] J. Patarin. The “Coefficients H” Technique. In Selected Areas in Cryptography’08, Sackville, New
Brunswick, Canada, Lecture Notes in Computer Science 5381, pp. 328–345, Springer-Verlag, 2008.
3.5

[44] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In Ad-
vances in Cryptology CRYPTO’91, Santa Barbara, California, U.S.A., Lecture Notes in Computer
Science 576, pp. 129–140, Springer-Verlag, 1992. 4.3

[45] S. Pohlig, M. Hellman. An Improved Algorithm for Computing Logarithms over GF(q) and its Cryp-
tographic Significance. IEEE Transactions on Information Theory, vol. IT-24, pp. 106–110, 1978.
2.3

63

[46] D. Pointcheval, J. Stern. Security Proofs for Signature Schemes. In Advances in Cryptology EU-
ROCRYPT’96, Zaragoza, Spain, Lecture Notes in Computer Science 1070, pp. 387–398, Springer-
Verlag, 1996. 2.4, 5.2, 5.2

[47] M.O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factorization. Tech-
nical report MIT, Laboratory for Computer Science, TR-212, 1979. 2.2

[48] C. Rackoff, D.R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Cipher-
text Attack. In Advances in Cryptology CRYPTO’91, Santa Barbara, California, U.S.A., Lecture
Notes in Computer Science 576, pp. 433–444, Springer-Verlag, 1992. 5.1

[49] R.L. Rivest, A. Shamir and L.M. Adleman. A Method for Obtaining Digital Signatures and Public-key
Cryptosystem. Communications of the ACM, vol. 21, pp. 120–126, 1978. 2.1

[50] P. Rogaway. Nonce-Based Symmetric Encryption. In Fast Software Encryption’04, Delhi, India, Lec-
ture Notes in Computer Science 3017, pp. 348–359, Springer-Verlag, 2004. 5.1

[51] I.N. Sanov. On the Probability of Large Deviations of Random Variables. Matematicheskii Sbornik,
vol. 42, pp. 11–44, 1957. 3.4

[52] C. P. Schnorr. Efficient Identification and Signature for Smart Cards. In Advances in Cryptology
CRYPTO’89, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 435, pp. 235–
251, Springer-Verlag, 1990. 4.3

[53] C. P. Schnorr. Efficient Identification and Signature for Smart Cards. Journal of Cryptology, vol. 4,
pp. 161–174, 1991. 4.3

[54] A. Shamir. IP=PSPACE. In Proceedings of the 22nd ACM Symposium on Theory of Computing, Bal-
timore, Maryland, U.S.A., pp. 11–15, ACM Press, 1990. 4.1

[55] D. Shanks. Class Number, a Theory of Factorization and Genera. In Symposium in Pure Mathematics,
Providence, R.I., pp. 415-440, AMS, 1971. 2.3

[56] V. Shoup. Sequences of Games: a Tool for Taming Complexity in Security Proofs. Eprint 2004/332.
IACR 2004.
http://eprint.iacr.org/2004/332 5.3

[57] A. Tardy-Corfdir, H. Gilbert. A Known Plaintext Attack of FEAL-4 and FEAL-6. In Advances in
Cryptology CRYPTO’91, Santa Barbara, California, U.S.A., Lecture Notes in Computer Science 576,
pp. 172–181, Springer-Verlag, 1992. 3.3

[58] S. Vaudenay. Decorrelation: a Theory for Block Cipher Security. Journal of Cryptology, vol. 16, pp.
249–286, 2003. 3.7, 3.5, 3.8, 3.9, 3.13, 3.14

[59] M. J. Wiener. Cryptanalysis of Short RSA Secret Exponents. In Advances in Cryptology EURO-
CRYPT’89, Houthalen, Belgium, Lecture Notes in Computer Science 434, pp. 372, Springer-Verlag,
1990. 2.1

64

http://eprint.iacr.org/2004/332

	The Cryptographic Zoo
	The Menagery
	The Math Toolbox
	The Algorithmic Toolbox
	The Complexity Theory Toolbox

	Cryptanalysis (Public-Key)
	RSA
	Rabin
	Diffie-Hellman
	ElGamal

	Cryptanalysis (Conventional)
	Block Ciphers
	Differential Cryptanalysis
	Linear Cryptanalysis
	Hypothesis Testing in Cryptography
	Decorrelation

	The Power of Interaction
	Interactive Proofs
	Zero-Knowledge
	Zero-Knowledge Construction from Protocol
	Setup Models
	A Building Block for Making Cryptographic Primitives

	Proving Security
	The Security of Encryption
	The Random Oracle Model
	The Game Proof Methodology

