
21. Potential Functions

Suppose that ~F = Mı̂ + N̂ = ∇f is a gradient vector field. Then

My = fxy = fyx = Nx.

So, if ~F is a gradient vector field then My = Nx.

Theorem 21.1. Let ~F = Mı̂ + N̂ be a vector field which is defined
and differentiable on the whole of R2.

Then ~F is a gradient vector field if and only if My = Nx.

Example 21.2. Let ~F = −yı̂ + x̂. Then M = −y and N = x. So

My = −1 and Nx = 1,

which are not equal. So ~F is not a gradient vector field.

Question 21.3. For which values of a is ~F = (4x2+axy)̂ı+(3y2+4x2)̂
a gradient field?

We have

M = 4x2 + axy and N = 3y2 + 4x2.

So

My = ax and Nx = 8x.

It follows that My = Nx if and only if a = 8.

Given that (21.1) is true, it follows that if My = Nx then ~F = ∇f ,
for some scalar function f(x, y). We give two methods to calculate f ,
when

~F = (4x2 + 8xy)̂ı + (3y2 + 4x2)̂.

Method 1: We could use the fundamental theorem of calculus for
line integrals. Suppose we want to determine the value of f(x, y) at a
point (x1, y1). Pick a curve C starting at (0, 0) and ending at (x1, y1).
We have

f(x1, y1)− f(0, 0) =

∫
C

~F · d~r.

Note f(0, 0) is an integration constant. If f is a potential function then
so is f + c.

Note that we get to choose C. A sensible choice in this example is
to decompose C as the straight line C1 from (0, 0) to (x1, 0) and the
vertical line from (x1, 0) to (x1, y1), C = C1 + C2.

We have ∫
C

~F · d~r =

∫
C1

~F · d~r +

∫
C2

~F · d~r.
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Figure 1. The curve C

Let x(t) = t, y(y) = 0, a parametrisation of C1. Then

~F = 4t2ı̂ + 4t2̂ and d~r = 〈1, 0〉 dt.

So∫
C1

~F · d~r =

∫ x1

0

〈4t2, 4t2〉 · 〈1, 0〉 dt =

∫ x1

0

4t2 dt =

[
4t3/3

]x1

0

= 4x3
1/3.

Let x(t) = x1, y(y) = t, a parametrisation of C2. Then

~F = (4x2
1 + 8x1t)̂ı + (3t2 + 4x2

1)̂ and d~r = 〈0, 1〉 dt.

So∫
C2

~F ·d~r =

∫ y1

0

〈4x2
1+8x1t, 3t

2+4x2
1〉·〈0, 1〉 dt =

∫ y1

0

3t2+4x2
1 dt =

[
t3+4x2

1t

]y1
0

= y31+4x2
1y1.

So

f(x, y) = 4x3/3 + y3 + 4x2y + c,

where c is a constant. Check

∇f = 〈4x2 + 8xy, 3y2 + 4x2〉 = ~F ,

as expected.
Method 2: We want to solve two PDE’s

fx = 4x2 + 8xy and fy = 3y2 + 4x2.

Now if we integrate the first equation with respect to x we get

f(x, y) =

∫
fx(x, y) dx = 4x3/3 + 4x2y + g(y),

where g(y) is a function of y. The point here is that for every value
of y, we get an integration constant. As we vary y this integration
constant can vary. Put differently, if we differentiate g(y) with respect
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to x then we get zero. So f(x, y) is determined up to g(y). Now plug
this value for f(x, y) into the second PDE.

4x2 +
dg

dy
= 3y2 + 4x2.

Comparing we have
dg

dy
= 3y2.

Integrating with respect to y, we get

g(y) = y3 + c,

where c is an integration constant. So

f(x, y) = 4x3/3 + 4x2y + y3 + c.

This is the same solution we got using the other method.
Let’s introduce a quantity which measures how far the vector field

~F is from being conservative, the curl of ~F ,

curl ~F = Nx −My.

We have curl ~F = 0 if and only if ~F is a gradient field, if and only if ~F
is conservative.

The curl of a vector field is a strange beast. If ~F is a velocity vector
field, the curl is double the angular velocity of the rotation component
of the motion.

Example 21.4. If ~F = 〈a, b〉 is a constant vector field, then curl ~F is
zero,

~F = 〈x, y〉 represents expanding motion, which has zero curl.
~F = 〈−y, x〉 represents rotation around the origin, the curl is 2.

If ~F is a force field then curl ~F is the torque exerted on a test mass.
This measures how much ~F imparts angular momentum. For trans-
lation motion, the force divided by the mass is the acceleration, the
derivative of the velocity. For rotation, the torque divided by the mo-
ment of inertia is the angular acceleration, the derivative of the angular
velocity.
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