
24. Simply connected regions; triple integrals

24.1. Simply connected regions. Recall the example of the vector
field

~F =
−yı̂+ x̂

x2 + y2
.

Its curl is zero but this vector field is not conservative. If one looks
at the unit circle C centred at the origin, then the line integral of ~F
around C is 2π. The point is that Green’s theorem does not apply, as
~F is not defined on the whole of the region R enclosed by C; ~F is not
defined at the origin.

Definition 24.1. A region R is simply connected if the interior of
every closed curve C is entirely contained in R.

Informally speaking, the region R does not contain any holes.

Question 24.2. Which of the following regions are simply connected?

(1) the whole plane R2.
(2) the plane minus the origin.
(3) the unit disk.
(4) the plane minus a line.
(5) a comb.

Theorem 24.3. Suppose the region R is simply connected and ~F is a
vector field on R which is differentiable.

Then ~F is a gradient vector field if and only if My = Nx.

The proof is the same as when R is the whole of R2; the same proof
works by the very definition of simply connected.

Let’s go back to the example above. Let’s try to understand what
is going on when the region is not simply connected. Start with an
annulus, whose boundary is a circle of small radius plus a circle of
arbitrary radius. Manufacture a closed curve by going around the big
circle counterclockwise, going across a line segment to the small circle,
going around the small circle, in the opposite direction and finally going
back to the big circle, along the same line segment. Call the whole curve
C. This encloses a region R on which ~F is defined everywhere. With
this choice of orientation of C, R is always on the left.

The curl is zero, so∮
C

~F d~r =

∫∫
R

curlF dA = 0.

But ∮
C

~F d~r =

∫
Cb

~F d~r +

∫
L

~F d~r −
∮
Cs

~F d~r −
∫
L

~F d~r,
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Figure 1. The region R with boundary C

where Cb is the big circle, Cs is the small circle, and L is the line
segment.

Putting all of this together, we get∫
Cb

~F d~r =

∮
Cs

~F d~r.

So the line integral is independent of the size of the circle; in fact any
simple closed curve around the origin has integral 2π.

24.2. Triple integrals. Suppose we have a function f(x, y, z) of three
variables defined on a region R in space R3. We can dice up R into
small regions Ri and form the Riemann sum∑

i

f(xi, yi, zi)∆Vi,

where ∆Vi is the volume of Ri and (xi, yi, zi) is a random point belong-
ing to Ri. Letting ∆Vi go to zero we get the triple integral∫∫∫

R

f dV.

Example 24.4. What is the volume of the region R between the two
paraboloids z = x2 + y2 and z = 4− x2 − y2?

We want to calculate

vol(R) =

∫∫∫
R

1 dV.
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As usual imagine choosing Vi equal to boxes. First summing over z,
then y and then x, the integral reduces to a triple integral∫∫∫

R

1 dV =

∫ x1

x0

∫ y1

y0

∫ z1

z0

1 dz dy dx,

where we need to determine the limits. The inner limit is the easiest.
Given x and y, z ranges between x2 + y2 and 4− x2 − y2. To find the
limits for x and y, consider the shadow of R in the xy-plane, the points
in the xy-plane which are in the shade, if light comes vertically down.

We want to find those points (x, y) for which the point on the surface
z = 4 − x2 − y2 is above the point on the surface x2 + y2, that is, we
want those points (x, y) such that

x2 + y2 < 4− x2 − y2.
Simplifying, we want

x2 + y2 < 2,

which is a disk of radius
√

2 centred at the origin. So we have∫∫∫
R

1 dV =

∫ √2
−
√
2

∫ √2−x2
−
√
2−x2

∫ 4−x2−y2

x2+y2
1 dz dy dx,

We could have found the limits quicker by setting x2 +y2 = 4−x2−y2;
however this won’t always work. Now notice that this would come out
much better if we used polar coordinates in the xy-plane.∫∫∫

R

1 dV =

∫ 2π

0

∫ √2
0

∫ 4−r2

r2
r dz dr dθ,

Cylindrical coordinates (r, θ, z) are precisely the coordinates one gets
this way. z is the usual height from the xy-plane, and r and θ are the
usual polar coordinates of the projection of the point P down to the
xy-plane. So r is the distance of P to the z-axis and θ is the angle
the shortest line from P to the z-axis makes with the plane y = 0, the
xz-plane. Of course

x = r cos θ

y = r sin θ

z = z,

gets one from cylindrical coordinates to the usual Cartesian coordi-
nates. Note that the volume element

dV = dx dy dz = rdr dθ dz.

As usual, we get this by considering what happens for a small change
in the coordinates.
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It is interesting to look at simple equations in cylindrical coordinates.
For example, we already know

z = c,

c a constant, corresponds to a horizontal plane.

r = a,

a a constant, corresponds to a cylinder of radius a, centred along the
z-axis. The equation

θ = b,

b a constant, corresponds to a half plane, starting at the z-axis. Even
simple equations look quite strange,

r = θ,

corresponds to a scroll (infinite at both ends, parallel to the z-axis); if
we take a cross-section, we get a spiral. The equation

z = ar,

represents a cone, vertex at the origin, central axis the z-axis.
Triple integrals have the same sort of applications as double integrals.

If R is composed of material, with density δ, the mass of R is the
integral, ∫∫∫

R

δ dV.

If f(x, y, z) is a function on R, the average value f̄ of f(x, y, z) is

f̄ =
1

V

∫∫∫
R

f dV.

Here V is the volume of R. In particular, the centre of mass, with
coordinates (x̄, ȳ, z̄) is given by

x̄ =
1

V

∫∫∫
R

x dV ȳ =
1

V

∫∫∫
R

y dV and z̄ =
1

V

∫∫∫
R

z dV.

Note that in the example above, x̄ = ȳ = 0 by symmetry.
We can also calculate the moment of inertia about an axis;∫∫∫

R

d2δ dV,

where δ is the mass density and d2 is the square of the distance to the
axis. For the z-axis, we get

Iz =

∫∫∫
R

(x2 + y2)δ dV =

∫∫∫
R

r2δ dV,
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which is consistent with the story in the plane. For the x-axis and the
y-axis, we get

Ix =

∫∫∫
R

(y2 + z2)δ dV and Iy =

∫∫∫
R

(x2 + z2)δ dV.

Note that is consistent with the story in the plane, setting z = 0.

Example 24.5. What is the moment of inertia of the solid cone be-
tween z = ar and z = b about the z-axis?

We have

Iz =

∫∫∫
R

r2 dV =

∫ b

0

∫ 2π

0

∫ z/a

0

r3 dr dθ dz.

The limits for θ are easy, using the symmetry about the z-axis. We
want to express r as a function of z. To find the upper and lower limits
for r, note that we can squish the cone down to a plane (using the
symmetry in θ), say the xz-plane.

In this case, the distance r to the z-axis simplifies to x, that is, r = x,
when y = 0. We get a triangle in the xz-plane. We only take the half of
the triangle x ≥ 0, since take 0 ≤ θ ≤ 2π. Equivalently, the solid cone
is a solid of revolution. Revolve the triangle in the xz-plane around
the z-axis.

x = z/a

z = b

Figure 2. Half of squished cone

So 0 ≤ r = x ≤ z/a.

Example 24.6. What is the volume of the region where z > 1− y and
x2 + y2 + z2 < 1?

The bottom surface is the plane z = 1 − y and the top surface
is the upper hemisphere z =

√
1− x2 − y2 of the unit sphere. The

intersection is a circle. The shadow of R is formed by the image of this
circle, which will be an ellipse.

5



The volume is therefore∫∫∫
R

1 dV =

∫ 1

0

∫ √2y(1−y)

−
√

2y(1−y)

∫ √1−x2−y2

1−y
1 dz dx dy.

The shadow is the region

1− y <
√

1− x2 − y2.
Squaring both sides, we want

1− 2y + y2 < 1− x2 − y2.
That is

x2 < 2y(1− y),

so that
−
√

2y(1− y) < x <
√

2y(1− y).

Since x2 ≥ 0, we must have 2y(1− y) > 0. So 0 < y < 1.
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