
29. The divergence theorem

Theorem 29.1 (Divergence Theorem; Gauss, Ostrogradsky). Let S

be a closed surface bounding a solid D, oriented outwards. Let ~F be a
vector field with continuous partial derivatives. Then∫∫

S

~F · d~S =

∫∫∫
D

∇ · ~F dV.

Why is

∇ · ~F = div ~F = Px +Qy +Rz

a measure of the amount of material created (or destroyed) at (x, y, z)?
Well imagine a small box with one vertex at (x, y, z) and edges ∆x, ∆y
and ∆z. The flux through this box is the sum of the flux through the
six sides. We can pair off opposite sides. Consider the sides parallel to
the xy-plane, that is, orthogonal to the vector k̂. Crossing the bottom
side is approximately

R(x, y, z)∆x∆y,

Crossing the top side is approximately

R(x, y, z + ∆z)∆x∆y.

By linear approximation,

R(x, y, z + ∆z) ≈ R(x, y, z) +Rz∆z,

and so the difference is approximately

Rz∆x∆y∆z.

By symmetry the contribution from the other two sides is approxi-
mately

Px∆x∆y∆z and Qy∆x∆y∆z.

Adding this together, we get

(Px +Qy +Rz)∆x∆y∆z,

which is approximately the amount of water being created or destroyed
in the small box. Dividing through by

∆x∆y∆z

and taking the limit, we get the divergence.

Proof of (29.1). We argue as in the proof of Green’s theorem. Firstly,
we can prove three separate identities, one for each of P , Q and R. So
we just need to prove∫∫

S

〈0, 0, R〉 · d~S =

∫∫∫
D

Rz dV.
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Now divide the region into small pieces, each of which is vertically
simple, so that

a ≤ x ≤ b c ≤ y ≤ d and f(x, y) ≤ z ≤ g(x, y),

is the region lying over a rectangle in the xy-plane lying between the
graph of two functions f and g.

It is enough, because of cancelling, to prove the result for such a
region. We calculate both sides explicitly in this case. S has six sides;
the four vertical sides and the top and bottom sides. The flux across
the four vertical sides is zero, since ~F is moving up and down. The flux
across the top side is∫∫

Stop

〈0, 0, R〉 · d~S =

∫∫
Stop

〈0, 0, R〉 · 〈−gx,−gy, 1〉 dx dy

=

∫ d

c

∫ b

a

R(x, y, g(x, y)) dx dy.

The flux across the bottom side is similar, but it comes with the oppo-
site sign, so the total flux is∫ d

c

∫ b

a

R(x, y, g(x, y))−R(x, y, f(x, y)) dx dy.

For the RHS, we have a triple integral,∫∫∫
D

Rz dV =

∫ d

c

∫ b

a

∫ g(x,y)

f(x,y)

Rz(x, y, z) dz dx dy.

The inner integral is∫ g(x,y)

f(x,y)

Rz(x, y, z) dz =

[
R(x, y, z)

]g(x,y)
f(x,y)

= R(x, y, g(x, y))−R(x, y, f(x, y)),

so that both sides are indeed the same. �

What can we say about a radially symmetric vector field ~F , such that
there is a single unit source at the origin and otherwise the divergence
is zero? By radial symmetry, we have

~F =
〈x, y, z〉

c
,

for some c, to be determined. Consider the flux across a sphere S of
radius a. The flux across S is∫∫

S

~F · d~S.
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If we orient S so that the unit normal points outwards, we have

n̂ =
1

a
〈x, y, z〉 and ~F · n̂ =

a

c
.

So the flux is
4πa3

c
.

Since the only source of water is at the origin and we are pumping in
water at a rate of one unit there, we must have

4πa3

c
= 1 so that c = 4πa3.

That is

~F =
1

4π

〈x, y, z〉
ρ3

.

Typical examples of such force fields are gravity and electric charge.
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