
31. Stokes Theorem

Stokes’ theorem is to Green’s theorem, for the work done, as the
divergence theorem is to Green’s theorem, for the flux. Both are 3D
generalisations of 2D theorems.

Theorem 31.1 (Stokes’ Theorem). Let C be any closed curve and let

S be any surface bounding C. Let ~F be a vector field on S.∮
C

~F · d~r =

∫∫
S

(∇× ~F ) · n̂ dS.

Note that S is an oriented surface. How do we orient S? We use the
orientation on C.

If we drive along C, in the positive direction, with S on the left, then
n̂ should point upwards (with respect to the driver; that is to say, if
you ask the driver to point to the roof of the car, this is the direction
we should orient n̂).

Put differently, we can use the right hand rule. If our index finger
points along C, the middle finger points into S then the thumb points
in the direction of n̂.

Here are some examples:

(1) If C is the unit circle in the xy-plane, oriented counterclockwise
and S is the upper hemisphere of the unit sphere, then n̂ points
outwards.

(2) If S is the half circular unit cylinder x2 + y2 = 1, y ≥ 0, 0 ≤
z ≤ 1, and C is the boundary curve, starting at (1, 0, 0), going
around to (−1, 0, 0), up to (−1, 0, 1), going around to (1, 0, 1)
and down to (1, 0, 0), then n̂ points outwards.

(3) If S is the cone with vertex at (0, 0, 1) and base x2+y2 = 1 in the
xy-plane and we are orient the unit circle C counterclockwise,
then n̂ points outwards.

Suppose that C is a curve in the xy-plane, oriented counterclockwise.
C bounds a region S in the xy-plane. If

~F = Mı̂+N̂,

then Green’s theorem says∮
C

M dx+N dy =

∮
C

~F · d~r =

∫
S

curl ~F dA =

∫
S

(Nx −My) dA.

On the other hand, n̂ = k̂, so that Stokes’s theorem says∮
C

~F · d~r =

∫
S

(∇× ~F ) · n̂ dA =

∫
S

(Nx −My) dA.
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So the two theorems are equivalent in this case.
Note one very interesting aspect of Stokes’ theorem is that there are

very many different surfaces S which bound the same curve C. For
example, for the unit circle, the upper hemisphere bounds C, the lower
hemisphere bounds C, the cone bounds C, and so on.

Proof of (31.1). We have already seen that if C and S lie in the xy-
plane then Stokes’ theorem reduces to Green’s theorem.

If S and C live in an arbitrary plane, then imagine first translating
the plane so that it contains the origin and then rotating it so that it
is flat, that is, so it is the xy-plane.

The work done is invariant under both translation and rotation, so
that the LHS of Stokes’ theorem does not depend on the plane. The
same is true for the RHS (this takes a little more justification). So
(31.1) holds if S and C lie in any plane.

In the general case, we can subdivide S into small pieces (like a
quilted blanket). As usual it is enough to prove (31.1) for each small
quilt. If the piece is small enough, S and C live approximately in a
plane and we can appeal to Green’s theorem. �

Example 31.2. Let’s check that (31.1) holds in a special case. Let

~F = zı̂+ x̂+ yk̂,

let C be the unit circle in the xy-plane and S be the paraboloid z =
1− x2 − y2, z > 0.

We compute the LHS. We parametrise C by

x(t) = cos t, y(t) = sin t, z = 0 where 0 ≤ t ≤ 2π.

In this case

d~r = 〈− sin t, cos t, 0〉 dt and ~F = 〈0, cos t, sin t〉.

So ∮
C

~F · d~r =

∫ 2π

0

cos2 t dt =

[
1

2
(1 +

1

2
sin 2t)

]2π
0

= π.

Now let’s compute the RHS.

curl ~F = ∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

z x y

∣∣∣∣∣∣ = ı̂+ ̂+ k̂.

The paraboloid

z = 1− x2 − y2 = f(x, y)
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is the graph of a function. So,

d~S = 〈−fx,−fy, 1〉 dx dy = 〈2x, 2y, 1〉 dx dy.

Note that this is the outwards orientation and that C is oriented coun-
terclockwise, so C and S are compatibly oriented. Let R be the unit
disk. ∫∫

S

(∇× ~F ) · n̂ dS =

∫∫
R

(1 + 2x+ 2y) dA = π.

Here we used the fact that x is anti-symmetric about the y-axis, so
that ∫∫

R

2x dA = 0.

Similarly ∫∫
R

2y dA = 0,

as y is anti-symmetric about the x-axis. Finally the area of R is π.
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