
32. Topology and beyond

Definition 32.1. We say that a region R is simply connected if every
closed curve C bounds a surface S.

(1) R3 is simply connected.
(2) R3 minus a line is not simply connected.
(3) R3 minus a point is simply connected.
(4) R3 minus a circle is not simply connected.
(5) R3 minus a line segment is simply connected.

This is related to topology, which deals with the classification of
geometric objects up to deforming them like pieces of rubber (so you
can stretch but not tear). The surface of a sphere is topologically
different from the surface of a torus. The sphere is simply connected
but the torus is not.

Theorem 32.2. If R is simply connected region in R3 then then ~F is
conservative if and only if curl ~F = ~0

Proof. Suppose that ~F is conservative. Then ~F = ∇f . We have already
seen that curl ~F is then zero but it does not hurt to write down the
proof again.

~F = ∇f = 〈fx, fy, fz〉.
Therefore

curl ~F =
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∣∣∣∣∣∣ = (fzy − fyz )̂ı− (fzx − fxz)̂ + (fyx − fxy)k̂ = ~0.

Now suppose curl ~F = ~0. Let C be a closed loop. Pick an orientable
surface S which bounds C and orient S compatibly with C.

Then Stokes’ theorem says∮
C

~F · d~r =

∫∫
S

(curl ~F ) · n̂dS = 0. �

Note that we have to be careful to say that S is orientable. The
Möbius strip bounds a closed curve, but it is not orientable.

Suppose that S1 and S2 are two surfaces which bound the same curve
C. Then Stokes’ Theorem says∫∫

S1

curl ~F · n̂ dS =

∮
C

~F · dr =

∫∫
S2

curl ~F · n̂ dS.

So the integral of the curl of ~F is the same for both surfaces S1 and S2.
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In fact we can prove this in another way. Imagine constructing a
new surface S by joining S1 and S2 along their common boundary C.
Then S is a closed surface.

Note that one can reverse this process. If you start with a closed
surface S and pick a closed curve C in S then you can always cut S
along C to obtain two surfaces S1 and S2 with a common boundary
C. Perhaps the easiest example of all of this is to take a sphere S
and the equator C, in which case S1 and S2 are the upper and lower
hemispheres.

Note that S1 and S2 must have opposite orientations to join them
together; algebraically S = S1 − S2. Possibly switching S1 and S2 so
that the orientation is outwards we can apply the divergence theorem
to the closed surface S and the region it bounds D.∫∫

S

curl ~F · n̂ dS =

∫∫∫
D

div(curl ~F ) dV.

Now
div(curl ~F ) = ∇ · (∇× ~F ).

This suggests that the divergence of a curl is always zero. We check
this by direct computation:

∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ = (Ry −Qz )̂ı + (Pz −Rx)̂ + (Qx − Py)k̂.

The divergence of this is

Ryx −Qzx + Pzy −Rxy + Qxz − Pyz = 0.

So ∫∫
S1−S2

curl ~F · n̂ dS = 0.

But then ∫∫
S1

curl ~F · n̂ dS =

∫∫
S2

curl ~F · n̂ dS.

Note that the identity

div(curl ~F ) = 0,

is very useful on its own.
Note that one can compose in the opposite direction. If f is a scalar

function then ∇f is a vector field, and we can take the curl of this.

curl(∇f) = ∇× (∇f) = ~0.

We have already seen that this is the zero vector. This has an inter-
esting physical interpretation. Recall that curl ~F measures the rotation
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component of a vector field. So the fact that curl(∇f) = 0 says that
every force field given by a potential imparts no rotation component.
For example gravity imparts no rotation.

3


	32. Topology and beyond

