
7. Functions of more than one variable

Most functions in nature depend on more than one variable. Pressure
of a fixed amount of gas depends on the temperature and the volume;
increase the temperature and pressure goes up; increase the volume
and the pressure goes down.

To understand a function of one variable, f(x), look at its graph,
y = f(x). This is a curve in the plane.
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Figure 1. Graph of a function of one variable

To understand a function of two variables, f(x, y), look at its graph
z = f(x, y). This is a surface in R3.

Figure 2. Graph of a function of two variables

Let’s do a couple of examples. f(x, y) = −x. The graph is z = −x.
What does this surface look like in R3? Well, x+ z = 0 is the equation
of a plane. Normal vector ~n = 〈1, 0, 1〉 and it passes through the origin.

One way to get a picture is to slice by coordinate planes. If we slice
by y = 0, we get z = −x, a line of slope −1 in the xz-plane. In fact if
we slice by any coordinate plane y = a, a a constant, we get the same
line z = −x. If we slice by x = 0, we get z = 0, a horizontal line in the
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yz-plane. If we slice by x = 1, we get z = −1, a different horizontal
line.

How about f(x, y) = 1 − x2 − y2? If we slice by y = 0, we get
z = 1 − x2, an upside down parabola. If we slice by y = 1, we get
z = −x2, another upside down parabola. Similarly if we slice by y = a,
we get the parabola, z = −x2 − a2. By symmetry in x and y, we get
the same picture if we slice by x = a.

How about if we fix z? Then x2 + y2 = 1− z. So we only get a non-
empty slice, if we take z ≤ 1. If z = 0, we get the circle x2 + y2 = 1. If
we increase z, we get circles of smaller radii. If we decrease z they get
bigger.

In fact the graph is a paraboloid.

Figure 3. Paraboloid

One way to get a picture of the graph is to look at the contour lines.
These are lines in the xy-plane of constant height. Formally, they are
the solutions to the equation

f(x, y) = c,

where c is fixed. The contour lines of f(x, y) = 1−x2−y2 are concentric
circles centred at the origin:

What does

z =
√

x2 + y2,

look like? Well the contour lines are circles, so it looks like a paraboloid.
But if we cut by coordinate planes, we get a different picture. If we
take the plane y = 0, we get z =

√
x2, or what comes to the same thing

z = |x|. The graph of this look like a V. In fact z =
√

x2 + y2 is the
graph of a cone.

It is not hard to see that z = x2 + y2 is another paraboloid. It is
the same story as z = 1 − x2 − y2. The contour lines are the circles
x2 + y2 = c. Cutting by coordinate hyperplanes, we get parabolas,
but this time the right way up, so that the graph of z = x2 + y2 is a
paraboloid the other way up to z = 1− x2 − y2.

2



0.4

0.3

0.2

0.1

Figure 4. Contour lines of paraboloid

What does

z = y2 − x2,

look like? Well the contour lines are hyperbolae:
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Figure 5. Contour lines for y2 − x2

How about if we take cross sections? Fix x = a, we get parabolas
z = y2 − a2. Fix y = a, we get upside down parabolas z = a2 − x2.

The graph of this function is called a saddle point:
One way to understand a function of one variable is to differentiate.

The derivative is the slope of the tangent line.
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Figure 6. Saddle point

If we have a function of two variables, there are two obvious deriva-
tives. We could fix y and vary x, to get a partial derivative

fx(x0, y0) =
∂f

∂x

∣∣∣∣
x=x0,y=y0

= lim
∆x→0

f(x0 + ∆x, y0)− f(x0, y0)

∆x
.

Similarly, we can fix x and vary y.

fy(x0, y0) =
∂f

∂y

∣∣∣∣
x=x0,y=y0

= lim
∆y→0

f(x0, y0 + ∆y)− f(x0, y0)

∆y
.

fx is the slope of the tangent line if you cut by the plane y = y0; fy
is the slope of the tangent line to if you cut by the plane x = x0.

It is straightforward to calculate partial derivatives. Let f(x, y) =
x2y − sin(x + y2).

fx = 2xy − cos(x + y2) and fy = x2 − 2y cos(x + y2).

∂(ln(x cos y))

∂x
= cos y

1

x cos y
=

1

x
,

and
∂(ln(x cos y))

∂y
= −x sin y

1

x cos y
= − tan y.

We can use partial derivatives to estimate the change in f , if we
change x and y by a small amount.

∆f ≈ fx∆x + fy∆y.

In fact, we can calculate the tangent plane at a point (x0, y0, z0),
where z0 = f(x0, y0). One way to calculate the tangent plane is to use
the approximation formula,

(†) z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

In fact the approximation formula works by approximating ∆f by using
linear approximation. The tangent plane is the best linear approxima-
tion to the function f .
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The tangent plane is the plane which should contain the tangent
line to any curve in the graph. You can get two curves easily, either
by fixing y and varying x or by fixing x and varying y. These are
the curves you get by cutting by either the plane y = y0 or the plane
x = x0. The tangent line to the first curve is

z − z0 = fx(x0, y0)(x− x0),

and the tangent line to the second curve is

z − z0 = fy(x0, y0)(y − y0).

Visibly (†) contains both tangent lines.
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