
8. Review

Two ways to multiply vectors ~v and ~w.
The dot product ~v · ~w takes two vectors and spits out a scalar, a

number. Most important identity:

~v · ~w = |~v||~w| cos θ,

where θ is the angle between ~v and ~w. Use this to compute θ.
Most important property:
~v and ~w are orthogonal if and only if ~v · ~w = 0.

Question 8.1. What is the cosine of the angle between the vectors

~v = 〈−1, 2, 2〉 and ~w = 〈1,−4, 8〉?

cos θ =
〈−1, 2, 2〉 · 〈1,−4, 8〉
|〈−1, 2, 2〉||〈1,−4, 8〉|

=
−1− 8 + 16√

1 + 4 + 4
√

1 + 16 + 64
=

7

27
.

The cross product ~v× ~w takes two vectors in R3 and spits out another
vector in R3. Algebraically defined by determinants:

~v × ~w =

∣∣∣∣∣∣
ı̂ ̂ k̂
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ .
Geometrically determined by:
magnitude of ~v × ~w is the area of the parallelogram given by ~v and

~w, that is, |~v||~w| sin θ.
direction is determined by the following two properties:
(i) orthogonal to both ~v and ~w,
(ii) the vectors ~v, ~w and ~v × ~w form a right handed set.
Two important properties

~v × ~w = −~w × ~v so that ~v × ~v = ~0.

One can see the first property one of two ways. If you swap two rows of
a determinant, the sign changes (the determinant is the signed volume
of a parallelepiped). On the other hand as ~v, ~w and ~v × w are a right
handed set, ~w, ~v and −~v × ~w are a right handed set.

Question 8.2. What is the area of the triangle with sides

~v = 〈−1,−2, 2〉 and 〈1,−2, 3〉?
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We want half the magnitude of the cross product. The cross product
is∣∣∣∣∣∣

ı̂ ̂ k̂
−1 −2 2
1 −2 3

∣∣∣∣∣∣ = ı̂

∣∣∣∣−2 2
−2 3

∣∣∣∣− ̂ ∣∣∣∣−1 2
1 3

∣∣∣∣ + k̂

∣∣∣∣−1 −2
1 −2

∣∣∣∣ = −2ı̂+ 5̂+ 4k̂.

Half the magnitude is

1

2
(4 + 25 + 16)1/2 =

1

2

√
45 =

3

2

√
5.

Planes in R3 are given by a single linear equation:

ax+ by + cz = d.

Geometrically a plane is a determined by a point P0 on the plane and
a normal direction, ~n. The point P = (x, y, z) lies in the plane if and

only if the vector
−−→
P0P is parallel to the plane, that is, if and only if

−−→
P0P · ~n = 0.

One can rewrite this equation as

~P · ~n = ~P0 · ~n.
If ~n = 〈6,−2,−3〉, and P0 = (4,−1, 3) then

〈x− 4, y + 1, z − 3〉 · 〈6,−2,−3〉 = 0,

that is
6(x− 4)− 2(y + 1)− 3(z − 3) = 0,

that is
6x− 2y − 3z = 31.

Note that one can read off a vector orthogonal to the plane from the
equation immediately. The plane ax + by + cz = d is orthogonal to
~n = 〈a, b, c〉. d is a measure of how far the plane is from the origin; if
d = 0 the plane passes through the origin. If d is not zero the plane has
been translated in the direction of ~n (for example, consider horizontal
planes, given by z = 0, z = 1, z = 2, z = −1, etc. They are planes
translated up and down, that is, in the direction of k̂.

How can one represent a line? One possibility is as the intersection
of two planes. Each plane is determined by a single equation, so a
line may be given to you as the set of solutions to two equations. For
example, the solutions of the two equations

2x− y + z = 3

3x+ y + z = 1,

represents a line.
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Can one manipulate these two equations to get a single equation?
NO!
This is important (because if you try to eliminate one equation, it is

guaranteed you made a mistake and that you were wasting your time).
There are lots of ways to see that this is not possible.

(1) We already decided that one equation represents a plane.
(2) Let’s look at a concrete example. Suppose we start with the

x-axis. Parametrically this is given as ~r(t) = t̂ı = 〈t, 0, 0〉. How does
one describe this by equations? Well y = 0 and z = 0 are two obvious
equations. Clearly one cannot do better than this; no single linear
equation will force both the component of ̂ and k̂ to be zero.

(3) R3 is three dimensional. There are three degrees of freedom. Up-
down, left-right, front-back. A plane has two degrees of freedom and a
line one.

One equation imposes one condition, we lose one degree of freedom.
So there are two degrees of freedom left. For example, the equation
y = 0 means we can no longer go left-right, one constraint. We can
still go up-down and front-back, so we still have two degrees of freedom.
y = 0 represents a plane.

If we have two equations, each equation imposes one condition, so
a pair of equations imposes two conditions. This leaves one degree of
freedom. For example, y = 0 and z = 0 impose two conditions; you
cannot move left-right and you cannot go up-down. This leaves one
degree of freedom, front-back. The pair of equations y = 0 and z = 0
represents a line.

Question 8.3. What is the equation of the plane containing the point
P0 = (3,−4, 1) and the line given as the intersection of the two planes

2x− y + z = 3

3x+ y + z = 1?

We need to find the normal direction ~n of the plane. For this we
need two vectors ~v and ~w parallel to the plane. For this we need two
points P1 and P2 in the plane.

Obviously we want to choose two points P1 and P2 belonging to the
line. Intersect the line with a plane to get a point. Take x = 0. Put
this into the two equations we get

−y + z = 3

y + z = 1.

z = 2 and y = −1. So P1 = (0,−1, 2) is a point on the line.
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Or we could take x = 2.

−y + z = −1

y + z = −5.

In this case 2z = −6, z = −3 and so y = −2. So P2 = (2,−2,−3) is
a point on the plane.

The vectors

~v =
−−→
P0P1 = 〈−3, 3, 1〉 and ~w =

−−→
P0P2 = 〈−1, 2,−4〉

are parallel to the plane. The cross-product is orthogonal to the plane:∣∣∣∣∣∣
ı̂ ̂ k̂
−3 3 1
−1 2 −4

∣∣∣∣∣∣ = ı̂

∣∣∣∣3 1
2 −4

∣∣∣∣− ̂ ∣∣∣∣−3 1
−1 −4

∣∣∣∣ + k̂

∣∣∣∣−3 3
−1 2

∣∣∣∣ = −14ı̂− 13̂− 3k̂.

So the equation of the plane is

〈x− 3, y + 4, z − 1〉 · 〈−14,−13,−3〉 = 0,

so that

−14(x− 3)− 13(y + 4)− 3(z − 1) = 0.

Rearranging, we get

14x+ 13y + 3z = −7.

There is another way to represent lines, we can parametrise a line.
If Q0 and Q1 are two points in R3, then

~r(t) = ~Q0 + t
−−−→
Q0Q1.

When t = 0, ~r(0) = Q0 and when t = 1, ~r(1) = Q1. Given a value for

t, we get a point of the line. If we put
−−−→
Q0Q1 = ~v, then we rewrite this

parametrisation as

~r(t) = ~Q0 + t
−−−→
Q0Q1 = ~Q0 + t~v.

Here ~v =
−−−→
Q0Q1 is the velocity vector of the particle (at time t = 0, it

is at Q0 and time t = 1 at Q1, or one could just differentiate).
If Q0 = (1, 2, 3) and Q1 = (2,−5, 2), then a parametrisation of the

line through Q0 and Q1 is

~r(t) = 〈1, 2, 3〉+ t〈1,−7,−1〉 = 〈1 + t, 2− 7t, 3− t〉.

Question 8.4. What is the shortest distance between the two lines

~r1(t) = 〈6+2t,−1+t, 8+2t〉 and ~r2(t) = 〈5−2t,−3+2t, 1+t〉?
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We first check that these two lines are not parallel. The lines are
parallel to

~v = 〈2, 1, 2〉 and ~w = 〈−2, 2, 1〉.
~v and ~w are not parallel (~w is not a multiple of ~v) so the lines are not
parallel.

There are at least three different ways to solve this problem. All of
them rely on the following basic observation. Suppose that P1 and P2

are the two closest points on either line. Then
−−→
P0P1 is orthogonal to

both ~v and ~w.
Now we describe the three methods. First the basic principle.

(1) Pick two random points R1 and R2 on the lines. The length of
−−→
P1P2 is nothing more than the (absolute value of the) compo-

nent of
−−−→
R1R2 in the direction of

−−→
P1P2.

(2) There are two parallel planes, containing either line. To find
the distance between two parallel planes is relatively easy.

(3)
−−→
P1P2 is orthogonal to both ~v and ~w. This gives two equations
for the position of P1 and P2 and using this we can find P1 and
P2.

Now to the execution.
Method #1: If we set t = 0 then we get two random points,

R1 = (6,−1, 8) and R2 = (5,−3, 1).

As the vector
−−→
P1P2 is orthogonal to ~v and ~w, it is parallel to the cross

product:∣∣∣∣∣∣
ı̂ ̂ k̂
2 1 2
−2 2 1

∣∣∣∣∣∣ = ı̂

∣∣∣∣1 2
2 1

∣∣∣∣− ̂ ∣∣∣∣ 2 2
−2 1

∣∣∣∣ + k̂

∣∣∣∣ 2 1
−2 2

∣∣∣∣ = −3ı̂− 6̂+ 6k̂.

So 〈1, 2,−2〉 is othogonal to both ~v and ~w. Dividing by the length,
we get a unit vector orthogonal to both ~v and ~w,

û =
1

3
〈1, 2,−2〉.

The component of
−−−→
R1R2 = 〈−1,−2,−7〉,

in the direction of û, is

|
−−−→
R1R2| cos θ.

But −−−→
R1R2 · û = |

−−−→
R1R2||û| cos θ = |

−−−→
R1R2| cos θ.
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So we just need to take the dot product:

〈−1,−2,−7〉 · 1

3
〈1, 2,−2〉 =

1

3
(−1− 4 + 14) = 3.

This distance is 3.
Method #2: If P1 contains the first line and is parallel to the

second line, it must be parallel to ~v and ~w. So it must be orthogonal
to ~n = 〈1, 2,−2〉, the cross product. The first plane has normal vector
~n and passes through R1 = (6,−1, 8). Hence

0 = 〈x− 6, y + 1, z − 8〉 · 〈1, 2,−2〉 = (x− 6) + 2(y + 6)− 2(z − 8).

Rearranging, we get

x+ 2y − 2z = −12.

Similarly the second plane contains R2 = (5,−3, 1) and has normal
vector ~n,

0 = 〈x− 5, y − 3, z − 1〉 · 〈1, 2,−2〉 = (x− 5) + 2(y − 3)− 2(z − 1).

Rearranging, we get

x+ 2y − 2z = −3.

Pick any point on the first plane. P = (0, 0, 6) lies on the first plane.
The line through this point parallel to ~n meets the second plane at a
point Q whose distance from P is the distance between the two planes
(whence the two lines).

The line through P parallel to ~n is given by

~r(t) = 〈0, 0, 6〉+ t〈1, 2,−2〉 = 〈t, 2t, 6− 2t〉.
This is on the second plane when

t+ 4t− 12 + 4t = −3 so that t = 1.

The point Q = (1, 2, 4).
−→
PQ = 〈1, 2,−2〉, which has length 3.

Method #3: We first parametrise the first line with a different
parameter s.

−−→
P1P2 = ~r2(t)− ~r1(s) = 〈−1,−2,−7〉 − s〈2, 1, 2〉+ t〈−2, 2, 1〉.

−−→
P1P2 is orthogonal to ~v and ~w if and only if

−−→
P1P2 · ~v = 0 and

−−→
P1P2 · ~w = 0.

This gives us two equations for s and t,

−9s = 18

9t = 9
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Hence s = −2, t = 1. The vector
−−→
P1P2 = 〈−1,−2,−7〉+ 2〈2, 1, 2〉+ 〈−2, 2, 1〉 = 〈1, 2,−2〉.

This has length 3.

7


	8. Review

