
Hands-On Ethical Hacking
and Network Defense  

2nd edition

Chapter 7
Programming for Security Professionals

Last modified 9-29-16

2

Objectives
■ Explain basic programming concepts
■ Write a simple C program
■ Explain how Web pages are created with

HTML
■ Describe and create basic Perl programs
■ Explain basic object-oriented programming

concepts

3

Introduction to Computer
Programming

■ Computer programmers must understand
the rules of programming languages
■ Programmers deal with syntax errors

■ One minor mistake and the program will
not run
■ Or worse, it will produce unpredictable results

■ Being a good programmer takes time and
patience

4

Computer Programming
Fundamentals

■ Fundamental concepts
■ Branching, Looping, and Testing (BLT)
■ Documentation

■ Function
■ Mini program within a main program that

carries out a task

5

Branching, Looping, and Testing
(BLT)

■ Branching
■ Takes you from one area of the program to

another area
■ Looping

■ Act of performing a task over and over
■ Testing

■ Verifies some condition and returns true or
false

6

A C Program

■ Filename ends in .c
■ It's hard to read at first
■ A single missing semicolon can ruin a

program

7

Comments

■ Comments make code easier to read

8

Branching and Testing

main()

scanf()printf()

Diagram of branches
See links Ch 7b, 7c

9

Looping

10

Branching, Looping, and Testing
(BLT)

■ Algorithm
■ Defines steps for performing a task
■ Keep it as simple as possible

■ Bug
■ An error that causes unpredictable results

■ Pseudocode
■ English-like language used to create the

structure of a program

11

Pseudocode For Shopping

■ PurchaseIngredients Function
■ Call GetCar Function
■ Call DriveToStore Function
■ Purchase Bacon, Bread, Tomatoes,

Lettuce, and Mayonnaise
■ End PurchaseIngredients Function

12

Documentation
■ Documenting your work is essential

■ Add comments to your programs
■ Comments should explain what you are doing

■ Many programmers find it time consuming
and tedious

■ Helps others understand your work

13

Bugs
■ Industry standard

■ 20 to 30 bugs for every 1000 lines of code  
(link Ch 7f)
■ Textbook claims a much smaller number without a source

■ Windows 2000 contains almost 50 million lines
■ And fewer than 60,000 bugs (about 1 per 1000 lines)
■ See link Ch 7e for comments in the leaked Win 2000

source code
■ Linux has 0.17 bugs per 1000 lines of code

■ (Link Ch 7f)

14

Learning the C Language
■ Developed by Dennis Ritchie at Bell

Laboratories in 1972
■ Powerful and concise language
■ UNIX was first written in assembly

language and later rewritten in C
■ C++ is an enhancement of the C language
■ C is powerful but dangerous

■ Bugs can crash computers, and it's easy to
leave security holes in the code

15

Assembly Language
■ The binary language hard-wired into the

processor is machine language
■ Assembly Language uses a combination of

hexadecimal numbers and expressions
■ Very powerful but hard to use (Link Ch 7g)

16

Compiling C in Ubuntu Linux

■ Compiler
■ Converts a text-based program (source code)

into executable or binary code
■ To prepare Ubuntu Linux for C

programming, use this command:
sudo apt-get install build-essential

■ Then you compile a file named "program.c"
with this command:

gcc program.c –o program

17

Anatomy of a C Program

■ The first computer program a C student
learns "Hello, World!"

18

Comments

■ Use /* and */ to comment large portions of
text

■ Use // for one-line comments

19

Include

■ #include statement
■ Loads libraries that hold the commands and

functions used in your program

20

Functions

■ A Function Name is always followed by
parentheses ()

■ Curly Braces { } shows where a function
begins and ends

■ main() function
■ Every C program requires a main() function
■ main() is where processing starts

21

Functions

■ Functions can call other functions
■ Parameters or arguments are optional

■ \n represents a line feed

22

Declaring Variables

■ A variable represents a numeric or string
value

■ You must declare a variable before using it

23

Variable Types in C

24

Mathematical Operators

■ The i++ in the example below adds one to
the variable i

25

Mathematical Operators

26

Logical Operators

■ The i<11 in the example below compares
the variable i to 11

27

Logical Operators

28

Demonstration: Buffer Overflow

Buffer Overflow Defenses

30

CANARY

Detecting stack smashing with a canary value

40

Understanding HTML Basics

■ HTML is a language used to create Web
pages

■ HTML files are text files
■ Security professionals often need to

examine Web pages
■ Be able to recognize when something looks

suspicious

41

Creating a Web Page Using HTML
■ Create HTML Web page in Notepad
■ View HTML Web page in a Web browser
■ HTML does not use branching, looping, or

testing
■ HTML is a static formatting language

■ Rather than a programming language
■ < and > symbols denote HTML tags

■ Each tag has a matching closing tag
■ <HTML> and </HTML>

42

43

44

45

Understanding Practical Extraction
and Report Language (Perl)

■ PERL
■ Powerful scripting language
■ Used to write scripts and programs for security

professionals

46

Background on Perl

■ Developed by Larry Wall in 1987
■ Can run on almost any platform

■ *NIX-base OSs already have Perl installed
■ Perl syntax is similar to C
■ Hackers use Perl to write malware
■ Security professionals use Perl to perform

repetitive tasks and conduct security
monitoring

47

48

Understanding the Basics of Perl

■ perl –h command
■ Gives you a list of parameters used with perl

49

50

Understanding the BLT of Perl

■ Some syntax rules
■ Keyword “sub” is used in front of function

names
■ Variables begin with the $ character
■ Comment lines begin with the # character
■ The & character is used when calling a

function

51

Branching in Perl

&speak;
■ Calls the subroutine
sub speak
■ Defines the subroutine

52

For Loop in Perl

■ For loop

53

Testing Conditions in Perl

54

Understanding Object-Oriented
Programming Concepts

■ New programming paradigm
■ There are several languages that support

object-oriented programming
■ C++
■ C#
■ Java
■ Perl 6.0
■ Object Cobol

55

Components of Object-Oriented
Programming

■ Classes
■ Structures that hold pieces of data and

functions
■ The :: symbol

■ Used to separate the name of a class from a
member function

■ Example:
■ Employee::GetEmp()

56

Example of a Class in C++
class Employee
{
public:

char firstname[25];
char lastname[25];
char PlaceOfBirth[30];
[code continues]

};
void GetEmp()
{

// Perform tasks to get employee info
[program code goes here]

}

Ruby Example

■ Metasploit is written in Ruby
■ See link Ch 7u

57

56

LOLCODE

Links Ch 7x, Ch 7y

53

56

Brainfuck

Link Ch 7z

56

"Hello, World!" in Brainfuck

