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Foreword
Monitoring is currently undergoing a significant change. Until two
or three years ago, the main focus of monitoring tools was to pro‐
vide more and better data. Interpretation and visualization has too
often been an afterthought. While industries like e-commerce have
jumped on the data analytics train very early, monitoring systems
still need to catch up.

These days, systems are getting larger and more dynamic. Running
hundreds of thousands of servers with continuous new code pushes
in elastic, self-scaling server environments makes data interpretation
more complex than ever. We as an industry have reached a point
where we need software tooling to augment our human analytical
skills to master this challenge.

At Ruxit, we develop next-generation monitoring solutions based on
artificial intelligence and deep data (large amounts of highly inter‐
linked pieces of information). Building self-learning monitoring sys‐
tems—while still in its early days—helps operations teams to focus
on core tasks rather than trying to interpret a wall of charts. Intelli‐
gent monitoring is also at the core of the DevOps movement, as
well-interpreted information enables sharing across organisations.

Whenever I give a talk about this topic, at least one person raises the
question about where he can buy a book to learn more about the
topic. This was a tough question to answer, as most literature is tar‐
geted toward mathematicians—if you want to learn more on topics
like anomaly detection, you are quickly exposed to very advanced
content. This book, written by practitioners in the space, finds the
perfect balance. I will definitely add it to my reading recommenda‐
tions.

—Alois Reitbauer,
Chief Evangelist, Ruxit





CHAPTER 1

Introduction

Wouldn’t it be amazing to have a system that warned you about new
behaviors and data patterns in time to fix problems before they hap‐
pened, or seize opportunities the moment they arise? Wouldn’t it be
incredible if this system was completely foolproof, warning you
about every important change, but never ringing the alarm bell
when it shouldn’t? That system is the holy grail of anomaly detec‐
tion. It doesn’t exist, and probably never will. However, we shouldn’t
let imperfection make us lose sight of the fact that useful anomaly
detection is possible, and benefits those who apply it appropriately.

Anomaly detection is a set of techniques and systems to find
unusual behaviors and/or states in systems and their observable sig‐
nals. We hope that people who read this book do so because they
believe in the promise of anomaly detection, but are confused by the
furious debates in thought-leadership circles surrounding the topic.
We intend this book to help demystify the topic and clarify some of
the fundamental choices that have to be made in constructing
anomaly detection mechanisms. We want readers to understand
why some approaches to anomaly detection work better than others
in some situations, and why a better solution for some challenges
may be within reach after all.

This book is not intended to be a comprehensive source for all
information on the subject. That book would be 1000 pages long
and would be incomplete at that. It is also not intended to be a step-
by-step guide to building an anomaly detection system that will
work well for all applications—we’re pretty sure that a “general solu‐
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tion” to anomaly detection is impossible. We believe the best
approach for a given situation is dependent on many factors, not
least of which is the cost/benefit analysis of building more complex
systems. We hope this book will help you navigate the labyrinth by
outlining the tradeoffs associated with different approaches to
anomaly detection, which will help you make judgments as you
reach forks in the road.

We decided to write this book after several years of work applying
anomaly detection to our own problems in monitoring and related
use cases. Both of us work at VividCortex, where we work on a
large-scale, specialized form of database monitoring. At VividCor‐
tex, we have flexed our anomaly detection muscles in a number of
ways. We have built, and more importantly discarded, dozens of
anomaly detectors over the last several years. But not only that, we
were working on anomaly detection in monitoring systems even
before VividCortex. We have tried statistical, heuristic, machine
learning, and other techniques.

We have also engaged with our peers in monitoring, DevOps, anom‐
aly detection, and a variety of other disciplines. We have developed a
deep and abiding respect for many people, projects and products,
and companies including Ruxit among others. We have tried to
share our challenges, successes, and failures through blogs, open-
source software, conference talks, and now this book.

Why Anomaly Detection?
Monitoring, the practice of observing systems and determining if
they’re healthy, is hard and getting harder. There are many reasons
for this: we are managing many more systems (servers and applica‐
tions or services) and much more data than ever before, and we are
monitoring them in higher resolution. Companies such as Etsy have
convinced the community that it is not only possible but desirable to
monitor practically everything we can, so we are also monitoring
many more signals from these systems than we used to.

Any of these changes presents a challenge, but collectively they
present a very difficult one indeed. As a result, now we struggle with
making sense out of all of these metrics.

Traditional ways of monitoring all of these metrics can no longer do
the job adequately. There is simply too much data to monitor.
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Many of us are used to monitoring visually by actually watching
charts on the computer or on the wall, or using thresholds with sys‐
tems like Nagios. Thresholds actually represent one of the main rea‐
sons that monitoring is too hard to do effectively. Thresholds, put
simply, don’t work very well. Setting a threshold on a metric requires
a system administrator or DevOps practitioner to make a decision
about the correct value to configure.

The problem is, there is no correct value. A static threshold is just
that: static. It does not change over time, and by default it is applied
uniformly to all servers. But systems are neither similar nor static.
Each system is different from every other, and even individual sys‐
tems change, both over the long term, and hour to hour or minute
to minute.

The result is that thresholds are too much work to set up and main‐
tain, and cause too many false alarms and missed alarms. False
alarms, because normal behavior is flagged as a problem, and missed
alarms, because the threshold is set at a level that fails to catch a
problem.

You may not realize it, but threshold-based monitoring is actually a
crude form of anomaly detection. When the metric crosses the
threshold and triggers an alert, it’s really flagging the value of the
metric as anomalous. The root of the problem is that this form of
anomaly detection cannot adapt to the system’s unique and chang‐
ing behavior. It cannot learn what is normal.

Another way you are already using anomaly detection techniques is
with features such as Nagios’s flapping suppression, which disallows
alarms when a check’s result oscillates between states. This is a crude
form of a low-pass filter, a signal-processing technique to discard
noise. It works, but not all that well because its idea of noise is not
very sophisticated.

A common assumption is that more sophisticated anomaly detec‐
tion can solve all of these problems. We assume that anomaly detec‐
tion can help us reduce false alarms and missed alarms. We assume
that it can help us find problems more accurately with less work. We
assume that it can suppress noisy alerts when systems are in unsta‐
ble states. We assume that it can learn what is normal for a system,
automatically and with zero configuration.

Why Anomaly Detection? | 3



Why do we assume these things? Are they reasonable assumptions?
That is one of the goals of this book: to help you understand your
assumptions, some of which you may not realize you’re making.
With explicit assumptions, we believe you will be prepared to make
better decisions. You will be able to understand the capabilities and
limitations of anomaly detection, and to select the right tool for the
task at hand.

The Many Kinds of Anomaly Detection
Anomaly detection is a complicated subject. You might understand
this already, but nevertheless it is probably still more complicated
than you believe. There are many kinds of anomaly detection tech‐
niques. Each technique has a dizzying number of variations. Each of
these is suitable, or unsuitable, for use in a number of scenarios.
Each of them has a number of edge cases that can cause poor results.
And many of them are based on advanced math, statistics, or other
disciplines that are beyond the reach of most of us.

Still, there are lots of success stories for anomaly detection in gen‐
eral. In fact, as a profession, we are late at applying anomaly detec‐
tion on a large scale to monitoring. It certainly has been done, but if
you look at other professions, various types of anomaly detection
are standard practice. This applies to domains such as credit card
fraud detection, monitoring for terrorist activity, finance, weather,
gambling, and many more too numerous to mention. In contrast to
this, in systems monitoring we generally do not regard anomaly
detection as a standard practice, but rather as something potentially
promising but leading edge.

The authors of this book agree with this assessment, by and large.
We also see a number of obstacles to be overcome before anomaly
detection is regarded as a standard part of the monitoring toolkit:

• It is difficult to get started, because there’s so much to learn
before you can even start to get results.

• Even if you do a lot of work and the results seem promising,
when you deploy something into production you can find poor
results often enough that nothing usable comes of your efforts.

• General-purpose solutions are either impossible or extremely
difficult to achieve in many domains. This is partially because of
the incredible diversity of machine data. There are also appa‐
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rently an almost infinite number of edge cases and potholes that
can trip you up. In many of these cases, things appear to work
well even when they really don’t, or they accidentally work well,
leading you to think that it is by design. In other words, whether
something is actually working or not is a very subtle thing to
determine.

• There seems to be an unlimited supply of poor and incomplete
information to be found on the Internet and in other sources.
Some of it is probably even in this book.

• Anomaly detection is such a trendy topic, and it is currently so
cool and thought-leadery to write or talk about it, that there
seem to be incentives for adding insult to the already injurious
amount of poor information just mentioned.

• Many of the methods are based on statistics and probability,
both of which are incredibly unintuitive, and often have surpris‐
ing outcomes. In the authors’ experience, few things can lead
you astray more quickly than applying intuition to statistics.

As a result, anomaly detection seems to be a topic that is all about
extremes. Some people try it, or observe other people’s efforts and
results, and conclude that it is impossible or difficult. They give up
hope. This is one extreme. At the other extreme, some people find
good results, or believe they have found good results, at least in
some specific scenario. They mistakenly think they have found a
general purpose solution that will work in many more scenarios,
and they evangelize it a little too much. This overenthusiasm can
result in negative press and vilification from other people. Thus, we
seem to veer between holy grails and despondency. Each extreme is
actually an overcorrection that feeds back into the cycle.

Sadly, none of this does much to educate people about the true
nature and benefits of anomaly detection. One outcome is that a lot
of people are missing out on benefits that they could be getting.
Another is that they may not be informed enough to have realistic
opinions about commercially available anomaly detection solutions.
As Zen Master Hakuin said,

Not knowing how near the truth is, we seek it far away.
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Conclusions
If you are like most of our friends in the DevOps and web opera‐
tions communities, you probably picked up this book because
you’ve been hearing a lot about anomaly detection in the last few
years, and you’re intrigued by it. In addition to the previously-
mentioned goal of making assumptions explicit, we hope to be able
to achieve a number of outcomes in this book.

• We want to help orient you to the subject and the landscape in
general. We want you to have a frame of reference for thinking
about anomaly detection, so you can make your own decisions.

• We want to help you understand how to assess not only the
meaning of the answers you get from anomaly detection algo‐
rithms, but how trustworthy the answers might be.

• We want to teach you some things that you can actually apply to
your own systems and your own problems. We don’t want this
to be just a bunch of theory. We want you to put it into practice.

• We want your time spent reading this book to be useful beyond
this book. We want you to be able to apply what you have
learned to topics we don’t cover in this book.

If you already know anything about anomaly detection, statistics, or
any of the other things we cover in this book, you’re going to see
that we omit or gloss over a lot of important information. That is
inevitable. From prior experience, we have learned that it is better to
help people form useful thought processes and mental models than
to tell them what to think.

As a result of this, we hope you will be able to combine the material
in this book with your existing tools and skills to solve problems on
your systems. By and large, we want you to get better at what you
already do, and learn a new trick or two, rather than solving world
hunger. If you ask, “what can I do that’s a little better than Nagios?”
you’re on the right track.

Anomaly detection is not a black and white topic. There is a lot of
gray area, a lot of middle ground. Despite the complexity and rich‐
ness of the subject matter, it is both fun and productive. And despite
the difficulty, there is a lot of promise for applying it in practice.
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Somewhere between static thresholds and magic, there is a happy
medium. In this book, we strive to help you find that balance, while
avoiding some of the sharp edges.
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CHAPTER 2

A Crash Course in Anomaly
Detection

This isn’t a book about the overall breadth and depth of anomaly
detection. It is specifically about applying anomaly detection to
solve common problems that the DevOps community faces when
trying to monitor the types of systems that we manage the most.

One of the implications is that this book is mostly about time series
anomaly detection. It also means that we focus on widely used tools
such as Graphite, JavaScript, R, and Python. There are several rea‐
sons for these choices, based on assumptions we’re making.

• We assume that our audience is largely like ourselves: develop‐
ers, system administrators, database administrators, and
DevOps practitioners using mostly open source tools.

• Neither of us has a doctorate in a field such as statistics or oper‐
ations research, and we assume you don’t either.

• We assume that you are doing time series monitoring, much
like we are.

As a result of these assumptions, this book is quite biased. It is all
about anomaly detection on metrics, and we will not cover anomaly
detection on configuration, comparing machines amongst each
other, log analysis, clustering similar kinds of things together, or
many other types of anomaly detection. We also focus on detecting
anomalies as they happen, because that is usually what we are trying
to do with our monitoring systems.
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1 “Aberrant Behavior Detection in Time Series for Monitoring Business-Critical Metrics”

A Real Example of Anomaly Detection
Around the year 2008, Evan Miller published a paper describing
real-time anomaly detection in operation at IMVU.1 This was
Baron’s first exposure to anomaly detection:

At approximately 5 AM Friday, it first detects a problem [in the
number of IMVU users who invited their Hotmail contacts to open
an account], which persists most of the day. In fact, an external ser‐
vice provider had changed an interface early Friday morning,
affecting some but not all of our users.

The following images from that paper show the metric and its devia‐
tion from the usual behavior.

They detected an unusual change in a really erratic signal. Mind.
Blown. Magic!

The anomaly detection method was Holt-Winters forecasting. It is
relatively crude by some standards, but nevertheless can be applied
with good results to carefully selected metrics that follow predictable
patterns. Miller went on to mention other examples where the same
technique had helped engineers find problems and solve them
quickly.

10 | Chapter 2: A Crash Course in Anomaly Detection
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How can you achieve similar results on your systems? To answer
this, first we need to consider what anomaly detection is and isn’t,
and what it’s good and bad at doing.

What Is Anomaly Detection?
Anomaly detection is a way to help find signal in noisy metrics. The
usual definition of “anomaly” is an unusual or unexpected event or
value. In the context of anomaly detection on monitoring metrics,
we care about unexpected values of those metrics.

Anomalies can have many causes. It is important to recognize that
the anomaly in the metric that we are observing is not the same as
the condition in the system that produced the metric. By assuming
that an anomaly in a metric indicates a problem in the system, we
are making a mental and practical leap that may or may not be justi‐
fied. Anomaly detection doesn’t understand anything about your
systems. It just understands your definition of unusual or abnormal
values.

It is also good to note that most anomaly detection methods substi‐
tute “unusual” and “unexpected” with “statistically improbable.” This
is common practice and often implicit, but you should be aware of
the difference.

A common confusion is thinking that anomalies are the same as
outliers (values that are very distant from typical values). In fact,
outliers are common, and they should be regarded as normal and
expected. Anomalies are outliers, at least in most cases, but not all
outliers are anomalies.

What Is It Good for?
Anomaly detection has a variety of use cases. Even within the scope
of this book, which we previously indicated is rather small, anomaly
detection can do a lot of things:

• It can find unusual values of metrics in order to surface unde‐
tected problems. An example is a server that gets suspiciously
busy or idle, or a smaller than expected number of events in an
interval of time, as in the IMVU example.

• It can find changes in an important metric or process, so that
humans can investigate and figure out why.
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• It can reduce the surface area or search space when trying to
diagnose a problem that has been detected. In a world of mil‐
lions of metrics, being able to find metrics that are behaving
unusually at the moment of a problem is a valuable way to nar‐
row the search.

• It can reduce the need to calibrate or recalibrate thresholds
across a variety of different machines or services.

• It can augment human intuition and judgment, a little bit like
the Iron Man’s suit augments his strength.

Anomaly detection cannot do a lot of things people sometimes think
it can. For example:

• It cannot provide a root cause analysis or diagnosis, although it
can certainly assist in that.

• It cannot provide hard yes or no answers about whether there is
an anomaly, because at best it is limited to the probability of
whether there might be an anomaly or not. (Even humans are
often unable to determine conclusively that a value is anoma‐
lous.)

• It cannot prove that there is an anomaly in the system, only that
there is something unusual about the metric that you are
observing. Remember, the metric isn’t the system itself.

• It cannot detect actual system faults (failures), because a fault is
different from an anomaly. (See the previous point again.)

• It cannot replace human judgment and experience.
• It cannot understand the meaning of metrics.
• And in general, it cannot work generically across all systems, all

metrics, all time ranges, and all frequency scales.

This last item is quite important to understand. There are pathologi‐
cal cases where every known method of anomaly detection, every
statistical technique, every test, every false positive filter, everything,
will break down and fail. And on large data sets, such as those you
get when monitoring lots of metrics from lots of machines at high
resolution in a modern application, you will find these pathological
cases, guaranteed.

In particular, at a high resolution such as one-second metrics resolu‐
tion, most machine-generated metrics are extremely noisy, and will
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cause most anomaly detection techniques to throw off lots and lots
of false positives.

Are Anomalies Rare?
Depending on how you look at it, anomalies are either rare or com‐
mon. The usual definition of an anomaly uses probabilities as a
proxy for unusualness. A rule of thumb that shows up often is three
standard deviations away from the mean. This is a technique that
we will discuss in depth later, but for now it suffices to say that if we
assume the data behaves exactly as expected, 99.73% of observa‐
tions will fall within three sigmas. In other words, slightly less than
three observations per thousand will be considered anomalous.

That sounds pretty rare, but given that there are 1,440 minutes per
day, you’ll still be flagging about 4 observations as anomalous every
single day, even in one minute granularity. If you use one second
granularity, you can multiply that number by 60. Suddenly these
rare events seem incredibly common. One might even call them
noisy, no?

Is this what you want on every metric on every server that you
manage? You make up your own mind how you feel about that. The
point is that many people probably assume that anomaly detection
finds rare events, but in reality that assumption doesn’t always hold.

How Can You Use Anomaly Detection?
To apply anomaly detection in practice, you generally have two
options, at least within the scope of things considered in this book.
Option one is to generate alerts, and option two is to record events
for later analysis but don’t alert on them.

Generating alerts from anomalies in metrics is a bit dangerous. Part
of this is because the assumption that anomalies are rare isn’t as true
as you may think. See the sidebar. A naive approach to alerting on
anomalies is almost certain to cause a lot of noise.

Our suggestion is not to alert on most anomalies. This follows
directly from the fact that anomalies do not imply that a system is in
a bad state. In other words, there is a big difference between an
anomalous observation in a metric, and an actual system fault. If
you can guarantee that an anomaly reliably detects a serious prob‐
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lem in your system, that’s great. Go ahead and alert on it. But other‐
wise, we suggest that you don’t alert on things that may have no
impact or consequence.

Instead, we suggest that you record these anomalous observations,
but don’t alert on them. Now you have essentially created an index
into the most unusual data points in your metrics, for later use in
case it is interesting. For example, during diagnosis of a problem
that you have detected.

One of the assumptions embedded in this recommendation is that
anomaly detection is cheap enough to do online in one pass as data
arrives into your monitoring system, but that ad hoc, after-the-fact
anomaly detection is too costly to do interactively. With the moni‐
toring data sizes that we are seeing in the industry today, and the
attitude that you should “measure everything that moves,” this is
generally the case. Multi-terabyte anomaly detection analysis is usu‐
ally unacceptably slow and requires more resources than you have
available. Again, we are placing this in the context of what most of
us are doing for monitoring, using typical open-source tools and
methodologies.

Conclusions
Although it’s easy to get excited about success stories in anomaly
detection, most of the time someone else’s techniques will not trans‐
late directly to your systems and your data. That’s why you have to
learn for yourself what works, what’s appropriate to use in some sit‐
uations and not in others, and the like.

Our suggestion, which will frame the discussion in the rest of this
book, is that, generally speaking, you probably should use anomaly
detection “online” as your data arrives. Store the results, but don’t
alert on them in most cases. And keep in mind that the map is not
the territory: the metric isn’t the system, an anomaly isn’t a crisis,
three sigmas isn’t unlikely, and so on.
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CHAPTER 3

Modeling and Predicting

Anomaly detection is based on predictions derived from models. In
simple terms, a model is a way to express your previous knowledge
about a system and how you expect it to work. A model can be as
simple as a single mathematical equation.

Models are convenient because they give us a way to describe a
potentially complicated process or system. In some cases, models
directly describe processes that govern a system’s behavior. For
example, VividCortex’s Adaptive Fault Detection algorithm uses Lit‐
tle’s law1 because we know that the systems we monitor obey this
law. On the other hand, you may have a process whose mechanisms
and governing principles aren’t evident, and as a result doesn’t have
a clearly defined model. In these cases you can try to fit a model to
the observed system behavior as best you can.

Why is modeling so important? With anomaly detection, you’re
interested in finding what is unusual, but first you have to know
what to expect. This means you have to make a prediction. Even if
it’s implicit and unstated, this prediction process requires a model.
Then you can compare the observed behavior to the model’s predic‐
tion.

Almost all online time series anomaly detection works by comparing
the current value to a prediction based on previous values. Online
means you’re doing anomaly detection as you see each new value

15
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appear, and online anomaly detection is a major focus of this book
because it’s the only way to find system problems as they happen.
Online methods are not instantaneous—there may be some delay—
but they are the alternative to gathering a chunk of data and per‐
forming analysis after the fact, which often finds problems too late.

Online anomaly detection methods need two things: past data and a
model. Together, they are the essential components for generating
predictions.

There are lots of canned models available and ready to use. You can
usually find them implemented in an R package. You’ll also find
models implicitly encoded in common methods. Statistical process
control is an example, and because it is so ubiquitous, we’re going to
look at that next.

Statistical Process Control
Statistical process control (SPC) is based on operations research to
implement quality control in engineering systems such as manufac‐
turing. In manufacturing, it’s important to check that the assembly
line achieves a desired level of quality so problems can be corrected
before a lot of time and money is wasted.

One metric might be the size of a hole drilled in a part. The hole will
never be exactly the right size, but should be within a desired toler‐
ance. If the hole is out of tolerance limits, it may be a hint that the
drill bit is dull or the jig is loose. SPC helps find these kinds of prob‐
lems.

SPC describes a framework behind a family of methods, each pro‐
gressing in sophistication. The Engineering Statistics Handbook is an
excellent resource to get more detailed information about process
control techniques in general.2 We’ll explain some common SPC
methods in order of complexity.

Basic Control Chart
The most basic SPC method is a control chart that represents values
as clustered around a mean and control limits. This is also known as
the Shewhart control chart. The fixed mean is a value that we expect
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3 History of the Normal Distribution

(say, the size of the drill bit), and the control lines are fixed some
number of standard deviations away from that mean. If you’ve heard
of the three sigma rule, this is what it’s about. Three sigmas repre‐
sents three standard deviations away from the mean. The two con‐
trol lines surrounding the mean represent an acceptable range of
values.

The Gaussian (Normal) Distribution
A distribution represents how frequently each possible value occurs.
Histograms are often used to visualize distributions. The Gaussian
distribution, also called the normal distribution or “bell curve,” is a
commonly used distribution in statistics that is also ubiquitous in
the natural world. Many natural phenomena such as coin flips,
human characteristics such as height, and astronomical observa‐
tions have been shown to be at least approximately normally dis‐
tributed.3 The Gaussian distribution has many nice mathematical
properties, is well understood, and is the basis for lots of statistical
methods.

Figure 3-1. Histogram of the Gaussian distribution with mean 0 and
standard deviation 1.

One of the assumptions made by the basic, fixed control chart is that
values are stable: the mean and spread of values is constant. As a
formula, this set of assumptions can be expressed as: y = μ + ɛ. The
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letter μ represents a constant mean, and ɛ is a random variable rep‐
resenting noise or error in the system.

In the case of the basic control chart model, ɛ is assumed to be a
Gaussian distributed random variable.

Control charts have the following characteristics:

• They assume a fixed or known mean and spread of values.
• The values are assumed to be Gaussian (normally) distributed

around the mean.
• They can detect one or multiple points that are outside the

desired range.

Figure 3-2. A basic control chart with fixed control limits, which are
represented with dashed lines. Values are considered to be anomalous
if they cross the control limits.

Moving Window Control Chart
The major problem with a basic control chart is the assumption of
stability. In time series analysis, the usual term is stationary, which
means the values have a consistent mean and spread over time.

Many systems change rapidly, so you can’t assume a fixed mean for
the metrics you’re monitoring. Without this key assumption holding
true, you will either get false positives or fail to detect true anoma‐
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lies. To fix this problem, the control chart needs to adapt to a chang‐
ing mean and spread over time. There are two basic ways to do this:

• Slice up your control chart into smaller time ranges or fixed
windows, and treat each window as its own independent fixed
control chart with a different mean and spread. The values
within each window are used to compute the mean and stan‐
dard deviation for that window. Within a small interval, every‐
thing looks like a regular fixed control chart. At a larger scale,
what you have is a control chart that changes across windows.

• Use a moving window, also called a sliding window. Instead of
using predefined time ranges to construct windows, at each
point you generate a moving window that covers the previous N
points. The benefit is that instead of having a fixed mean within
a time range, the mean changes after each value yet still consid‐
ers the same number of points to compute the mean.

Moving windows have major disadvantages. You have to keep track
of recent history because you need to consider all of the values that
fall into a window. Depending on the size of your windows, this can
be computationally expensive, especially when tracking a large num‐
ber of metrics. Windows also have poor characteristics in the pres‐
ence of large spikes. When a spike enters a window, it causes an
abrupt shift in the window until the spike eventually leaves, which
causes another abrupt shift.
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Figure 3-3. A moving window control chart. Unlike the fixed control
chart shown in Figure 3-2, this moving window control chart has an
adaptive control line and control limits. After each anomalous spike,
the control limits widen to form a noticeable box shape. This effect
ends when the anomalous value falls out of the moving window.

Moving window control charts have the following characteristics:

• They require you to keep some amount of historical data to
compute the mean and control limits.

• The values are assumed to be Gaussian (normally) distributed
around the mean.

• They can detect one or multiple points that are outside the
desired range.

• Spikes in the data can cause abrupt changes in parameters when
they are in the distant past (when they exit the window).

Exponentially Weighted Control Chart
An exponentially weighted control chart solves the “spike-exiting
problem,” where distant history influences control lines, by replac‐
ing the fixed-length moving windows with an infinitely large, gradu‐
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ally decaying window. This is made possible using an exponentially
weighted moving average.

Exponentially Weighted Moving Average
An exponentially weighted moving average (EWMA) is an alterna‐
tive to moving windows for computing moving averages. Instead of
using a fixed number of values to compute an average within a win‐
dow, an EWMA considers all previous points but places higher
weights on more recent data. This weighting, as the name suggests,
decays exponentially. The implementation, however, uses only a
single value so it doesn’t have to “remember” a lot of historical data.

EWMAs are used everywhere from UNIX load averages to stock
market predictions and reporting, so you’ve probably had at least
some experience with them already! They have very little to do with
the field of statistics itself or Gaussian distributions, but are very
useful in monitoring because they use hardly any memory or CPU.

One disadvantage of EWMAs is that their values are nondetermin‐
istic because they essentially have infinite history. This can make
them difficult to troubleshoot.

EWMAs are continuously decaying windows. Values never “move
out” of the tail of an EWMA, so there will never be an abrupt shift in
the control chart when a large value gets older. However, because
there is an immediate transition into the head of a EWMA, there
will still be abrupt shifts in a EWMA control chart when a large
value is first observed. This is generally not as bad a problem,
because although the smoothed value changes a lot, it’s changing in
response to current data instead of very old data.

Using an EWMA as the mean in a control chart is simple enough,
but what about the control limit lines? With the fixed-length win‐
dows, you can trivially calculate the standard deviation within a
window. With an EWMA, it is less obvious how to do this. One
method is keeping another EWMA of the squares of values, and
then using the following formula to compute the standard deviation.

StdDev Y = EWMA Y2 − EWMA Y 2
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Figure 3-4. An exponentially weighted moving window control chart.
This is similar to Figure 3-3, except it doesn’t suffer from the sudden
change in control limit width when an anomalous value ages.

Exponentially weighted control charts have the following character‐
istics:

• They are memory- and CPU-efficient.
• The values are assumed to be Gaussian (normally) distributed

around the mean.
• They can detect one or multiple points that are outside the

desired range.
• A spike can temporarily inflate the control lines enough to cause

missed alarms afterwards.
• They can be difficult to debug because the EWMA’s value can be

hard to determine from the data itself, since it is based on
potentially “infinite” history.

Window Functions
Sliding windows and EWMAs are part of a much bigger category of
window functions. They are window functions with two and one
sharp edges, respectively.

There are lots of window functions with many different shapes and
characteristics. Some functions increase smoothly from 0 to 1 and
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back again, meaning that they smooth data using both past and
future data. Smoothing bidirectionally can eliminate the effects of
large spikes.

Figure 3-5. A window function control chart. This time, the window is
formed with values on both sides of the current value. As a result,
anomalous spikes won’t generate abrupt shifts in control limits even
when they first enter the window.

The downside to window functions is that they require a larger time
delay, which is a result of not knowing the smoothed value until
enough future values have been observed. This is because when you
center a bidirectional windowing function on “now,” it extends into
the future. In practice, EWMAs are a good enough compromise for
situations where you can’t measure or wait for future values.

Control charts based on bidirectional smoothing have the following
characteristics:

• They will introduce time lag into calculations. If you smooth
symmetrically over 60 second-windows, you won’t know the
smoothed value of “now” until 30 seconds—half the window—
has passed.

• Like sliding windows, they require more memory and CPU to
compute.
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• Like all the SPC control charts we’ve discussed thus far, they
assume Gaussian distribution of data.

More Advanced Time Series Modeling
There are entire families of time series models and methods that are
more advanced than what we’ve covered so far. In particular, the
ARIMA family of time series models and the surrounding method‐
ology known as the Box-Jenkins approach is taught in undergradu‐
ate statistics programs as an introduction to statistical time series.
These models express more complicated characteristics, such as
time series whose current values depend on a given number of val‐
ues from some distance in the past. ARIMA models are widely stud‐
ied and very flexible, and form a solid foundation for advanced time
series analysis. The Engineering Statistics Handbook has several sec‐
tions4 covering ARIMA models, among others. Forecasting: princi‐
ples and practice is another introductory resource.5

You can apply many extensions and enchancements to these models,
but the methodology generally stays the same. The idea is to fit or
train a model to sample data. Fitting means that parameters (coeffi‐
cients) are adjusted to minimize the deviations between the sample
data and the model’s prediction. Then you can use the parameters to
make predictions or draw useful conclusions. Because these models
and techniques are so popular, there are plenty of packages and code
resources available in R and other platforms.

The ARIMA family of models has a number of “on/off toggles” that
include or exclude particular portions of the models, each of which
can be adjusted if it’s enabled. As a result, they are extremely modu‐
lar and flexible, and can vary from simple to quite complex.

In general, there are lots of models, and with a little bit of work you
can often find one that fits your data extremely well (and thus has
high predictive power). But the real value in studying and under‐
standing the Box-Jenkins approach is the method itself, which
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remains consistent across all of the models and provides a logical
way to reason about time series analysis.

Parametric and Non-Parametric Statistics and Methods
Perhaps you have heard of parametric methods. These are statistical
methods or tools that have coefficients that must be specified or
chosen via fitting. Most of the things we’ve mentioned thus far have
parameters. For example, EWMAs have a decay parameter you can
adjust to bias the value towards more recent or more historical
data. The value of a mean is also a parameter. ARIMA models are
full of parameters. Common statistical tools, such as the Gaussian
distribution, have parameters (mean and spread).

Non-parametric methods work independently of these parameters.
You might think of them as operating on dimensionless quantities.
This makes them more robust in some ways, but also can reduce
their descriptive power.

Predicting Time Series Data
Although we haven’t talked yet about prediction, all of the tools
we’ve discussed thus far are designed for predictions. Prediction is
one of the foundations of anomaly detection. Evaluating any metric’s
value has to be done by comparing it to “what it should be,” which is
a prediction.

For anomaly detection, we’re usually interested in predicting one
step ahead, then comparing this prediction to the next value we see.
Just as with SPC and control charts, there’s a spectrum of prediction
methods, increasing in complexity:

1. The simplest one-step-ahead prediction is to predict that it’ll be
the same as the last value. This is similar to a weather forecast.
The simplest weather forecast is tomorrow will be just like today.
Surprisingly enough, to make predictions that are subjectively a
lot better than that is a hard problem! Alas, this simple method,
“the next value will be the same as the current one,” doesn’t
work well if systems aren’t stable (stationary) over time.

2. The next level of sophistication is to predict that the next value
will be the same as the recent central tendency instead. The term
central tendency refers to summary statistics: single values that
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for example, the median is more robust than the mean.

attempt to be as descriptive as possible about a collection of
data. With summary statistics, your prediction formula then
becomes something like “the next value will be the same as the
current average of recent values.” Now you’re predicting that
values will most likely be close to what they’ve typically been
like recently. You can replace “average” with median, EWMA, or
other descriptive summary statistics.

3. One step beyond this is predicting a likely range of values cen‐
tered around a summary statistic. This usually boils down to a
simple mean for the central value and standard deviation for the
spread, or an EWMA with EWMA control limits (analogous to
mean and standard deviation, but exponentially smoothed).

4. All of these methods use parameters (e.g., the mean and stan‐
dard deviation). Non-parametric methods, such as histograms
of historical values, can also be used. We’ll discuss these in more
detail later in this book.

We can take prediction to an even higher level of sophistication
using more complicated models, such as those from the ARIMA
family. Furthermore, you can also attempt to build your own models
based on a combination of metrics, and use the corresponding out‐
put to feed into a control chart. We’ll also discuss that later in this
book.

Prediction is a difficult problem in general, but it’s especially diffi‐
cult when dealing with machine data. Machine data comes in many
shapes and sizes, and it’s unreasonable to expect a single method or
approach to work for all cases.

In our experience, most anomaly detection success stories work
because the specific data they’re using doesn’t hit a pathology. Lots
of machine data has simple pathologies that break many models
quickly. That makes accurate, robust6 predictions harder than you
might think.
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Evaluating Predictions
One of the most important and subtle parts of anomaly detection
happens at the intersection between predicting how a metric should
behave, and comparing observed values to those expectations.

In anomaly detection, you’re usually using many standard deviations
from the mean as a replacement for very unlikely, and when you get
far from the mean, you’re in the tails of the distribution. The fit
tends to be much worse here than you’d expect, so even small devia‐
tions from Gaussian can result in many more outliers than you the‐
oretically should get.

Similarly, a lot of statistical tests such as hypothesis tests are deemed
to be “significant” or “good” based on what turns out to be statisti‐
cian rules of thumb. Just because some p-value looks really good
doesn’t mean there’s truly a lot of certainty. “Significant” might not
signify much. Hey, it’s statistics, after all!

As a result, there’s a good chance your anomaly detection techniques
will sometimes give you more false positives than you think they
will. These problems will always happen; this is just par for the
course. We’ll discuss some ways to mitigate this in later chapters.

Common Myths About Statistical Anomaly
Detection
We commonly hear claims that some technique, such as SPC, won’t
work because system metrics are not Gaussian. The assertion is that
the only workable approaches are complicated non-parametric
methods. This is an oversimplification that comes from confusion
about statistics.

Here’s an example. Suppose you capture a few observations of a
“mystery time series.” We’ve plotted this in Figure 3-6.
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Figure 3-6. A mysterious time series about which we’ll pretend we
know nothing.

Is your time series Gaussian distributed? You decide to check, so you
start up your R environment and plot a histogram of your time ser‐
ies data. For comparison, you also overlay a normal distribution
curve with the same mean and standard deviation as your sample
data. The result is displayed in Figure 3-7.

Figure 3-7. Histogram of the mystery time series, overlaid with the
normal distribution’s “bell curve.”

Uh-oh! It doesn’t look like a great fit. Should you give up hope?
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No. You’ve stumbled into statistical quicksand:

• It’s not important that the data is Gaussian. What matters is
whether the residuals are Gaussian.

• The histogram is of the sample of data, but the population, not
the sample, is what’s important.

Let’s explore each of these topics.

The Data Doesn’t Need to Be Gaussian
The residuals, not the data, need to be Gaussian (normal) to use
three-sigma rules and the like.

What are residuals? Residuals are the errors in prediction. They’re
the difference between the predictions your model makes, and the
values you actually observe.

If you measure a system whose behavior is log-normal, and base
your predictions on a model whose predictions are log-normal, and
the errors in prediction are normally distributed, a standard SPC
control chart of the results using three-sigma confidence intervals
can actually work very well.

Likewise, if you have multi-modal data (whose distribution looks
like a camel’s humps, perhaps) and your model’s predictions result
in normally distributed residuals, you’re doing fine.

In fact, your data can look any kind of crazy. It doesn’t matter; what
matters is whether the residuals are Gaussian. This is super-
important to understand. Every type of control chart we discussed
previously actually works like this:

• It models the metric’s behavior somehow. For example, the
EWMA control chart’s implied model is “the next value is likely
to be close to the current value of the EWMA.”

• It subtracts the prediction from the observed value.
• It effectively puts control lines on the residual. The idea is that

the residual is now a stable value, centered around zero.

Any control chart can be implemented either way:

• Predict, take the residual, find control limits, evaluate whether
the residual is out of bounds
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values, though; it can help you avoid floating-point math errors.

• Predict, extend the control lines around the predicted value,
evaluate whether the value is within bounds

It’s the same thing. It’s just a matter of doing the math in different
orders, and the operations are commutative so you get the same
answers.7

The whole idea of using control charts is to find a model that pre‐
dicts your data well enough that the residuals are Gaussian, so you
can use three-sigma or similar techniques. This is a useful frame‐
work, and if you can make it work, a lot of your work is already
done for you.

Sometimes people assume that any old model automatically guaran‐
tees Gaussian residuals. It doesn’t; you need to find the right model,
and check the results to be sure. But even if the residuals aren’t
Gaussian, in fact, a lot of models can be made to predict the data
well enough that the residuals are very small, so you can still get
excellent results.

Sample Distribution Versus Population Distribution
The second mistake we illustrated is not understanding the differ‐
ence between sample and population statistics. When you work with
statistics you need to know whether you’re evaluating characteristics
of the sample of data you have, or trying to use the sample to infer
something about the larger population of data (which you don’t
have). It’s usually the latter, by the way.

We made a mistake when we plotted the histogram of the sample
and said that it doesn’t look Gaussian. That sample is going to have
randomness and will not look exactly the same as the full population
from which it was drawn. “Is the sample Gaussian” is not the right
question to ask. The right question is, loosely stated, “how likely is it
that this sample came from a Gaussian population?” This is a stan‐
dard statistical question, so we won’t show how to find the answer
here. The main thing is to be aware of the difference.

Nearly every statistical tool has techniques to try to infer the charac‐
teristics of the population, based on a sample.
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As an aside, there’s a rumor going around that the Central Limit
Theorem guarantees that samples from any population will be nor‐
mally distributed, no matter what the population’s distribution is.
This is a misreading of the theorem, and we assure you that machine
data is not automatically Gaussian just because it’s obtained by sam‐
pling!

Conclusions
All anomaly detection relies on predicting an expected value or
range of values for a metric, and then comparing observations to the
predictions. The predictions rely on models, which can be based on
theory or on empirical evidence. Models usually use historical data
as inputs to derive the parameters that are used to predict the future.

We discussed SPC techniques not only because they’re ubiquitous
and very useful when paired with a good model (a theme we’ll
revisit), but because they embody a thought process that is tremen‐
dously helpful in working through all kinds of anomaly detection
problems. This thought process can be applied to lots of different
kinds of models, including ARIMA models.

When you model and predict some data in order to try to detect
anomalies in it, you need to evaluate the quality of the results. This
really means you need to measure the prediction errors—the residu‐
als—and assess how good your model is at predicting the system’s
data. If you’ll be using SPC to determine which observations are
anomalous, you generally need to ensure that the residuals are nor‐
mally distributed (Gaussian). When you do this, be sure that you
don’t confuse the sample distribution with the population distribu‐
tion!
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CHAPTER 4

Dealing with Trends and
Seasonality

Trends and seasonality are two characteristics of time series metrics
that break many models. In fact, they’re one of two major reasons
why static thresholds break (the other is because systems are all dif‐
ferent from each other). Trends are continuous increases or decrea‐
ses in a metric’s value. Seasonality, on the other hand, reflects peri‐
odic (cyclical) patterns that occur in a system, usually rising above a
baseline and then decreasing again. Common seasonal periods are
hourly, daily, and weekly, but your systems may have a seasonal
period that’s much longer or even some combination of different
periods.

Another way to think about the effects of seasonality and trend is
that they make it important to consider whether an anomaly is local
or global. A local anomaly, for example, could be a spike during an
idle period. It would not register as anomalously high overall,
because it is still much lower than unusually high values during busy
times. A global anomaly, in contrast, would be anomalously high (or
low) no matter when it occurs. The goal is to be able to detect both
kinds of anomalies. Clearly, static thresholds can only detect global
anomalies when there’s seasonality or trend. Detecting local anoma‐
lies requires coping with these effects.

Many time series models, like the ARIMA family of models, have
properties that handle trend. These models can also accomodate
seasonality, with slight extensions.
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Dealing with Trend
Trends break models because the value of a time series with a trend
isn’t stable, or stationary, over time. Using a basic, fixed control
chart on a time series with an increasing trend is a bad idea because
it is guaranteed to eventually exceed the upper control limit.

A trend violates a lot of simple assumptions. What’s the mean of a
metric that has a trend? There is no single value for the mean.
Instead, the mean is actually a function with time as a parameter.

What about the distribution of values? You can visualize it using a
histogram, but this is misleading. Because the values increase or
decrease over time due to trend, the histogram will get wider and
wider over time.

What about a simple moving average or a EWMA? A moving aver‐
age should change along with the trend itself, and indeed it does.
Unfortunately, this doesn’t work very well, because a moving average
lags in the presence of a trend and will be consistently above or
below the typical values.

Figure 4-1. A time series with a linear trend and two exponentially
weighted moving averages with different decay factors, demonstrating
that they lag the data when it has a trend.

How do you deal with trend? First, it’s important to understand that
metrics with trends can be considered as compositions of other met‐
rics. One of the components is the trend, and so the solution to deal‐
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ing with trend is simple: find a model that describes the trend, and
subtract the trend from the metric’s values! After the trend is
removed, you can use the models that we’ve previously mentioned
on the remainder.

There can be many different kinds of trend, but linear is pretty com‐
mon. This means a time series increases or decreases at a constant
rate. To remove a linear trend, you can simply use a first difference.
This means you consider the differences between consecutive values
of a time series rather than the raw values of the time series itself. If
you remember your calculus, this is related to a derivative, and in
time series it’s pretty common to hear people talk about first differ‐
ences as derivatives (or deltas).

Dealing with Seasonality
Seasonal time series data has cycles. These are usually obvious on
observation, as shown in Figure 4-2.

Figure 4-2. A server’s load average, showing repeated cycles over time.

Seasonality has very similar effects as trend. In fact, if you “zoom
into” a time series with seasonality, it really looks like trend. That’s
because seasonality is variable trend. Instead of increasing or
decreasing at a fixed rate, a metric with seasonality increases or
decreases with rates that vary with time. As you can imagine, things
like EWMAs have the same issues as with linear trend. They lag
behind, and in some cases it can get so bad that the EWMA is com‐
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pletely out of phase with the seasonal pattern. This is easy to see in
Figure 4-3.

Figure 4-3. A sine wave and a EWMA of the sine wave, showing how a
EWMA’s lag causes it to predict the wrong thing most of the time.

Coping with seasonality is exactly the same as with trend: you need
to decompose and subtract. This time, however, it’s harder to do
because the model of the seasonal component is much more compli‐
cated. Furthermore, there can be multiple seasonal components in a
metric! For example, you can have a seasonal trend with a daily
period as well as a weekly period.

Multiple Exponential Smoothing
Multiple exponential smoothing was introduced to resolve problems
with using a EWMA on metrics with trend and/or seasonality. It
offers an alternative approach: instead of modifying a metric to fit a
model by decomposing it, it updates the model to fit the metric’s
local behavior. Holt-Winters (also known as the Holt-Winters triple
exponential smoothing method) is the best known implementation
of this, and it’s what we’re going to focus on.

A multiple exponential smoothing model typically has up to three
components: an EWMA, a trend component, and a seasonal compo‐
nent. The trend and seasonal components are EWMAs too. For
example, the trend component is simply an EWMA of the differ‐
ences between consecutive points. This is the same approach we
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talked about when discussing methods to deal with trend, but this
time we’re doing it to the model instead of the original metric. With
a single EWMA, there is a single smoothing factor: α (alpha).
Because there are two more EWMAs for trend and seasonality, they
also have their own smoothing factors. Typically they’re denoted as
β (beta) for trend and γ (gamma) for seasonality.

Predicting the current value of a metric is similar to the previous
models we’ve discussed, but with a slight modification. You start
with the same “next = current” formula, but now you also have to
add in the trend and seasonal terms. Multiple exponential smooth‐
ing usually produces much better results than naive models, in the
presence of trend and seasonality.

Multiple exponential smoothing can get a little complicated to
express in terms of mathematical formulas, but intuitively it isn’t so
bad. We recommend the “Holt-Winters seasonal method” section1

of the Forecasting: principles and practice for a detailed derivation. It
definitely makes things harder, though:

• You have to know the period of the seasonality beforehand. The
method can’t figure that out itself. If you don’t get this right,
your model won’t be accurate and neither will your results.

• There are three EWMA smoothing parameters to pick. It
becomes a delicate process to pick the right values for the
parameters. Small changes in the parameters can create large
changes in the predicted values. Many implementations use
optimization techniques to figure out the parameters that work
best on given sample data.

With that in mind, you can use multiple exponential smoothing to
build SPC control charts just as we discussed in the previous chap‐
ter. The advantages and disadvantages are largely the same as we’ve
seen before.

Potential Problems with Predicting Trend and
Seasonality
In addition to being more complicated, advanced models that can
handle trend and seasonality can still be problematic in some com‐
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mon situations. You can probably guess, for example, that outlying
data can throw off future predictions, and that’s true, depending on
the parameters you use:

• An outage can throw off a model by making it predict an outage
again in the next cycle, which results in a false alarm.

• Holidays often aren’t in-sync with seasonality.
• There might be unusual events like Michael Jackson’s death.

This actually might be something you want to be alerted on, but
it’s clearly not a system fault or failure.

• There are annoying problems such as daylight saving time
changes, especially across timezones and hemispheres.

In general, the Achilles heel of predictive models is the same thing
that gives them their power: they can observe predictable behavior
and predict it, but as a result they can be fooled into predicting the
wrong thing. This depends on the parameters you use. Too sensitive
and you get false positives; too robust and you miss them.

Another issue is that their predictive power operates at large time
scales. In most systems you’re likely to work with, the seasonality is
hourly, daily, and/or weekly. If you’re trying to predict things at
higher resolutions, such as second by second, there’s so much mis‐
match between the time scales that they’re not very useful. Last
week’s Monday morning spike of traffic may predict this morning’s
spike pretty well in the abstract, but not down to the level of the sec‐
ond.

Fourier Transforms
It’s sometimes difficult to determine the seasonality of a metric. This
is especially true with metrics that are compositions of multiple sea‐
sonal components. Fortunately, there’s a whole area of time series
analysis that focuses on this topic: spectral analysis, which is the
study of frequencies and their relative intensities. Within this field,
there’s a very important function called the Fourier transform, which
decomposes any signal (like a time series) into separate frequencies.
This makes use of the very interesting fact that any signal can be
broken up into individual sine waves.

The Fourier transform is used in many domains such as sound pro‐
cessing, to decompose, manipulate, and recombine frequencies that
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make up a signal. You’ll often hear people mention an FFT (Fast
Fourier Transform). Perfectionists will point out that they probably
mean a DFT (Discrete Fourier Transform).

Using a Fourier transform, it’s possible to take a very complicated
time series with potentially many seasonal components, break them
down into individual frequency peaks, and then subtract them from
the original time series, keeping only the signal you want. Sounds
great, pun intended! However, most machine data (unlike audio
waves) is not really composed of strong frequencies. At least, it isn’t
unless you look at it over long time ranges like weeks or months.
Even then, only some metrics tend to have that kind of behavior.

One example of the Fourier transform in action is Netflix’s Scryer,2

which is used to predict (or forecast) demand based on decomposed
frequencies along with other methods. That said, we haven’t seen
Fourier transforms used practically in anomaly detection per se.
Scryer predicts, it doesn’t detect anomalies.

In our opinion, the useful things that can be done with a DFT, such
as implementing low- or high-pass filters, can be done using much
simpler methods. A low-pass filter can be implemented with a mov‐
ing average, and a high-pass filter can be done with differencing.

Conclusions
Trend and seasonality throw monkey wrenches into lots of models,
but they can often be handled fairly well by treating metrics as sums
of several signals. Predicting a metric’s behavior then becomes a
matter of decomposing the signals into their component parts, fit‐
ting models to the components, and subtracting the predictable
components from the original.

Once you’ve done that, you have essentially gotten rid of the non-
stationary parts of the signal, and, in theory, you should be able to
apply standard techniques to the stationary signal that remains.
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CHAPTER 5

Practical Anomaly Detection for
Monitoring

Recall that one of our goals for this book is to help you actually get
anomaly detection running in production and solving monitoring
problems you have with your current systems.

Typical goals for adding anomaly detection probably include:

• To avoid setting or changing thresholds per server, because
machines differ from each other

• To avoid modifying thresholds when servers, features, and
workloads change over time

• To avoid static thresholds that throw false alerts at some times
of the day or week, and miss problems at other times

In general you can probably describe these goals as “just make
Nagios a little better for some checks.”

Another goal might be to find all metrics that are abnormal without
generating alerts, for use in diagnosing problems. We consider this
to be a pretty hard problem because it is very general. You probably
understand why at this point in the book. We won’t focus on this
goal in this chapter, although you can easily apply the discussion in
this chapter to that approach on a case by case basis.

The best place to begin is often where you experience the most pain‐
ful monitoring problem right now. Take a look at your alert history
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or outages. What’s the source of the most noise or the place where
problems happen the most without an alert to notify you?

Is Anomaly Detection the Right Approach?
Not all of the alerting problems you’ll find are solvable with anom‐
aly detection. Some come from alerting on the wrong thing, period.
Disks running out of space is a classic noisy alert in a lot of environ‐
ments, for example. Disks reach the typical 95% threshold and then
drop back below it by themselves multiple times every day, or they
stay at 98% forever and that’s okay, or they go from 5% to 100% in a
matter of minutes. But these problems are not because you’re setting
the threshold to the wrong value or you need adaptive self-learning
behavior. The problem is that you need to alert on predicted time to
running out of space instead of alerting on fullness. This isn’t about
anomalies.

Another common source of monitoring noise is a non-actionable
alert. If the alert signals a problem that might not even be a real
issue, or has no solution or remedy, and doesn’t imply the need for
someone to actually do something, the solution is to delete the alert.
Or at least rethink it completely. Replication delay in databases is an
example we’ve seen a lot. If you have no good answer to someone
who asks you why they should care about the metric’s value (a “so
what?” question) at 2 a.m., you might not have a good alert.

This implies three important things:

• You need a clear and unambiguous definition of the problem
you’re trying to detect. It is also best if there are direct ways to
measure it happening.

• The best indicators of problems are usually directly related to
one or more business goals or desired outcomes. KPIs (key per‐
formance indicators) that relate to actual impact, in other
words.

• To detect a more complicated problem, you might need to relate
the system behavior to a known model, such as physical laws or
queueing theory or the like. If you have no model that describes
how the system should behave, how do you know that your def‐
inition of a problem is correct?
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If you can get close to that, you might have a pretty good shot at
using anomaly detection to solve your alerting problem.

Choosing a Metric
It’s important to be sure that the problem you’re trying to detect has
a reliable signal. It’s not a good idea to use anomaly detection to alert
on metrics that looked weird during that one outage that one time.
One of the things we’ve learned by doing this ourselves is that met‐
rics are weird constantly during normal system operation. You need
to find metrics (or combinations of metrics) that are always normal
during healthy system behavior, and always abnormal when systems
are in trouble. Here “normal” and “abnormal” are in comparison
with the local behavior of the metric, because if there were a reliable
global good/bad you could just use a threshold.

It’s usually best to look at a single, specific API endpoint, web page
or other operation. You could detect anomalies globally—for exam‐
ple, over all API endpoints—but this causes two problems. First, a
single small problem can be lost in the average. Second, you’ll get
multi-modal distributions and other complex signals. It’s better to
check each different kind of thing individually. If this is too much,
then just pick one to begin with, such as the “add to cart” action for
example.

Example metrics you could check include:

• Error rate
• Throughput
• Latency (response time), although this is tricky because latency

almost always has a complex multi-modal distribution
• Concurrency, service demand, backlog, queue length, utiliza‐

tion, and similar metrics of load or saturation of capacity; all
also usually have characteristics that are difficult to analyze with
standard statistical tools unless you find an appropriate model

The Sweet Spot
Now that you’ve chosen a metric you want to check for anomalies,
you need to analyze its behavior and see if you can do that with rela‐
tively simple tools in your toolbox. You’re free to do something
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1 Simple control charts also work well, but again if you can use them you can use static
thresholds instead.

2 We tried to see if queuing theory predicts this, but were unable to determine whether
the underlying model of any type of queue would result in a particular distribution of
concurrency. In cases such as this, it’s great to be able to prove that a metric should
behave in a specific way, but absent a proof, as we’ve said, it’s okay to use a result that
holds even if you don’t know why it does.

more sophisticated if you want, but our suggestions in this chapter
are geared toward getting useful results with low effort, not invent‐
ing something patentable.

The easiest tools to apply are, in order, exponentially weighted mov‐
ing control charts1 and Holt-Winters prediction “out of the box.”
You can get a lot done with these methods if you either choose the
right metrics or apply them to the output of a simple model.

Both rely on the residuals being Gaussian distributed, so you need
to begin by checking for that. Run an appropriate amount of the
metric’s history, such as a week or so, through the tool of choice to
create a new series, then subtract this new series from the original to
get the residuals and check the distribution of the result.

In some cases you will almost certainly not get usable results. Con‐
currency, for example, tends to look log-normal in our experience2

This leads to an easy transformation: just take the log of concur‐
rency, and try again.

Another simple technique is to look at the first difference (deriva‐
tive) of the metric. Subtract each observation from the next and try
again. Recall that this essentially asserts that the metric’s behavior
can be predicted with the equation: next=current+noise. One down‐
side of this technique, however, is that it transforms the shape of
sudden changes in the metric’s value. Consider a metric that’s always
500, then drops to 200 for one observation and back to 500 again.
That’s a single sharp downward spike. If you difference this metric,
the result will be a metric that stays at 0, spikes down to -200, flips
up to +200, and then back again. Differencing causes spikes to turn
into zigzags, which might be more complicated to analyze.

You can also try finer or coarser time resolution, such as five minute
intervals instead of second by second or minute by minute. This is a
low-pass filter that removes noise, at the cost of discarding poten‐
tially useful information too.
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We previously discussed how frequent anomalies are when detected
with standard three sigma math. Because of this, it is pretty com‐
mon for people to suppress anomalies unless they occur at a given
frequency within an interval. Say, five or more anomalies at one
minute resolution in a 30 minute period.

Finally, you can look at simple models such as linear relationships
between multiple metrics. For example, if a database’s query
throughput is closely correlated to the server’s CPU utilization, you
can try to divide utilization by throughput and look for anomalies in
the result. This is a simple way to check whether CPU utilization is
abnormal relative to the work the server is being asked to do.

Servers and their metrics are as different as fingerprints. One of
these suggestions might work for you and completely fail for your
friend.

All of these techniques are trial and error ways of checking whether
there is some context or predictability that can describe normal
behavior for the metric. We’re trying to relate current observations
to nearby ones, past behavior at a seasonal interval, other metrics, or
combinations of these.

Provided that you can find a usable combination of metrics and
methods or models, you can just sprinkle three sigmas on it and
you’re done. To repeat, the key is to be sure that:

• The metric reliably indicates a condition that matters
• The model produces Gaussian distributed residuals, so the three

sigma method actually works
• Out of bounds values pass the “so what?” test, i.e., abnormal is

bad

A final note to add to the last point. Do you care about abnormal
values in general, or only abnormally large or small values? Abnor‐
mally small error rates probably aren’t a problem. Make sure you
don’t blindly use three sigma tests if you only care about half of the
results.
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A Worked Example
In this section, we’ll go through a practical example demonstrating
some of the techniques we’ve covered so far. We’re going to use a
database’s throughput (queries per second) as our metric.

To summarize our thought process, we’ve created the following
flowchart that you can use as a decision tree. This is an extreme sim‐
plification, and a little bit biased towards our own experiences, but it
should be enough to get you started and orient yourself in the space
of anomaly detection techniques.

We’ll use this decision tree to pick a suitable anomaly detection
technique for the example. On that note, let’s take a look at the data
we’re going to be dealing with. The following plot shows the
throughput for a period of approximately 46 hours.
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First, observe how odd this metric is on this server. On a database
server like this, throughput is the best metric to represent the work
being done. You can see that it would be difficult to describe what
normal throughput would look like on this server because its work‐
load is dynamic. Sometimes it’s doing nothing, and sometimes it’s
doing a lot. Is the giant spike near the right an anomaly? Probably. Is
it “bad?” Well… it’s doing the work it’s been asked to do, isn’t it? So
is it an anomaly or not?

You can’t just ask “where are the anomalies?” on this data set. That’s
not a well-posed question, not even for a human. We need more
context to form a better question.

One more specific question that we could answer about this dataset
with anomaly detection is “when does throughput drop significantly
low for short periods of time?” This simple behavior on a metric can
have many causes, such as resource contention or locking. We can
answer this question by finding local anomalies in the metric. This is
more doable.

We’ll zoom in to a more interesting section of the data set that shows
the types of anomalies that we’re interested in detecting. This
smaller section is over an 8-hour interval.
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In this plot, you’ll notice that throughput increases with an approxi‐
mately linear trend, with a slight drop around the two-thirds mark.
In the middle of the plot, you can see large drops in throughput.
These drops, which happen on a short timescale, are the anomalies
that we’ve decided to try detecting.

Now that we know the scope of our anomaly detection problem, let’s
try to use the decision tree to determine what kinds of methods
might be useful. For “Detection Time,” we know we’re interested in a
short timescale method so we’ll follow the path on the right. With a
linear trend, we don’t have a fixed mean, so we’ll follow the “no”
path for “Known mean.” Now we’re down to “Variability.” The met‐
ric is highly variable, and exponential smoothing tends to generate
better results in situations like this.

If our data set didn’t have trend, we may have ended up with a fixed
control chart method, which is simpler than using exponential
smoothing. Previously, we mentioned that trend is something that
can be removed with a first difference or derivative. Let’s try that
out.
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After differencing, it looks like we eliminated the trend. Great! Now
we have a known, fixed mean at 0 and we can use an ordinary con‐
trol chart. Because the spread changes over time and isn’t something
we know a priori, we’ll use an EWMA control chart, which uses a
EWMA to draw the limits based mostly on recent data values.
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Here’s what the histogram of residuals with a Gaussian distribution
curve looks like.

Figure 5-1. Histogram of residuals from the control chart on differ‐
enced data.

Where would we signal anomalies? It’s not so easy to tell when the
metric has short, significant drops. When throughput drops abnor‐
mally low and then returns to its original value, the differenced met‐
ric has zigzags, which are complicated to inspect. So although differ‐
encing takes care of the linear trend, it makes prediction a bit
harder.
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Perhaps, instead of differencing, we should try an alternative: multi‐
ple exponential smoothing on the original metric. This should cope
well with the trend and avoid transforming the metric as differenc‐
ing does.

Figure 5-2. Histogram of residuals from the exponential smoothing
control chart on the raw data.

Now it’s easy to see throughput drops when the metric falls below
the lower control line. It’s much easier to interpret, visually at least.

Multiple exponential smoothing is a little more complicated, but
produces much better results in this example. It has a trend compo‐
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nent built into its model, so you don’t have to do anything special to
handle metrics with trend; it trains itself, so to speak, on the actual
data it sees.

This is a tradeoff. You can either transform your data to use a better
model, which may hurt interpretability, or try to develop a more
complicated model.

It’s worth noting that based on Figure 5-1 and Figure 5-2, neither
method seems to produce perfectly Gaussian residuals. This is not a
major issue. At least with the exponential smoothing control chart,
we’re still able to reasonably predict and detect the anomalies we’re
interested in.

Keep in mind that this is a narrowly focused example that only dem‐
onstrates one path in our decision tree. We started with a very spe‐
cific set of requirements (short timescale with significant spikes)
that made our final solution work, but it won’t work for everything.
If we wanted to look at a larger time scale, like the full data set, we’d
have to look at other techniques.

Conclusions
This chapter demonstrates relatively simple techniques that you can
probably apply to your own problems with the tools you have at
hand already, such as RRDTool, simple scripts, and Graphite. Maybe
a Redis instance or something if you really want to get fancy.

The idea here is to get as much done with as little fuss as possible.
We’re not trying to be data scientists, we’re just trying to improve on
a Nagios threshold check.

What makes this work? It’s mostly about choosing the right battle, to
tell the truth. Throughput is about as simple a KPI as you can
choose for a database server. Then we visualized our results and
picked the simplest thing that could possibly work.

Your mileage, needless to say, will vary.
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CHAPTER 6

The Broader Landscape

As we’ve mentioned before, there is an extremely broad set of topics
and techniques that fall into anomaly detection. In this chapter, we’ll
discuss a few, as well as some popular tools that might be useful.
Keep in mind that nothing works perfectly out-of-the-box for all sit‐
uations. Treat the topics in this chapter as hints for further research
to do on your own.

When considering the methods in this chapter, we suggest that you
try to ask, “what assumptions does this make?” and “how can I
assess the meaning and trustworthiness of the results?”

Shape Catalogs
In the book A New Look at Anomaly Detection by Dunning and
Friedman, the authors write about a technique that uses shape cata‐
logs. The gist of this technique is as follows. First, you have to start
with a sample data set that represents the time series of a metric
without any anomalies. You break this data set up into smaller win‐
dows, using a window function to mask out all but a specific region,
and catalog the resulting shapes. The assumption being made is that
any non-anomalous observation of this time series can be recon‐
structed by rearranging elements from this shape catalog. Anything
that doesn’t match up to a reasonable extent is then considered to be
an anomaly.

This is nice, but most machine data doesn’t really behave like an
EKG chart in our experience. At least, not on a small time scale.
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1 Mean-shift analysis is not a single technique, but rather a family. There’s a Wikipedia
page on the topic, where you can learn more: http://bit.ly/mean_shift

Most machine data is much noisier than this on the second-to-
second basis.

Mean Shift Analysis
For most of the book, we’ve discussed anomaly detection methods
that try to detect large, sudden spikes or dips in a metric. Anomalies
have many shapes and sizes, and they’re definitely not limited to
these short-term aberrations. Some anomalies manifest themselves
as slow, yet significant, departures from some usual average. These
are called mean shifts, and they represent fundamental changes to
the model’s parameters.1 From this we can infer that the system’s
state has changed dramatically.

One popular technique is known as CUSUM, which stands for
cumulative sum control chart. The CUSUM technique is a modifica‐
tion to the familiar control chart that focuses on small, gradual
changes in a metric rather than large deviations from a mean.

The CUSUM technique assumes that individual values of a metric
are evenly scattered across the mean. Too many on one side or the
other is a hint that perhaps the mean has changed, or shifted, by
some significant amount.

The following plot shows throughput on a database with a mean
shift.
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We could apply a EWMA control chart to this data set like in the
worked example. Here’s what it looks like.

This control chart definitely could detect the mean shift since the
metric falls underneath the lower control line, but that happens
often with this highly variable data set with lots of spikes! An
EWMA control chart is great for detecting spikes, but not mean
shifts. Let’s try out CUSUM. In this image we’ll show only the first
portion of the data for clarity:

Much better! You can see that the CUSUM chart detected the mean
shift where the points drop below the lower threshold.
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2 “Tracking down the Villains: Outlier Detection at Netflix”

Clustering
Not all anomaly detection is based on time series of metrics. Clus‐
tering, or cluster analysis is one way of grouping elements together
to try to find the odd ones out. Netflix has written about their
anomaly detection methods based on cluster analysis.2 They apply
cluster analysis techniques on server clusters to identify anomalous,
misbehaving, or underperforming servers.

K-Means clustering is a common algorithm that’s fairly simple to
implement. Here’s an example:

Non-Parametric Analysis
Not all anomaly detection techniques need models to draw useful
conclusions about metrics. Some avoid models altogether! These are
called non-parametric anomaly detection methods, and use theory
from a larger field called non-parametric statistics.

The Kolmogorov-Smirnov test is one non-parametric method that
has gained popularity in the monitoring community. It tests for
changes in the distributions of two samples. An example of a type of
question that it can answer is, “is the distribution of CPU usage this
week significantly different from last week?” Your time intervals
don’t necessarily have to be as long as a week, of course.

We once learned an interesting lesson while trying to solve a sticky
problem with a non-Gaussian distribution of values. We wanted to
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figure out how unlikely it was for us to see a particular value. We
decided to keep a histogram of all the values we’d seen and compute
the percentiles of each value as we saw it. If a value fell above the
99.9th percentile, we reasoned, then we could consider it to be a
one-in-a-thousand occurrence.

Not so! For several reasons, primarily that we were computing our
percentiles from the sample, and trying to infer the probability of
that value existing in the population. You can see the fallacy
instantly, as we did, if you just postulate the observation of a value
much higher than we’d previously seen. How unlikely is it that we
saw that value? Aside from the brain-hurting existential questions,
there’s the obvious implication that we’d need to know the distribu‐
tion of the population in order to answer that.

In general, these non-parametric methods that work by comparing
the distribution (usually via histograms) across sets of values can’t
be used online as each value arrives. That’s because it’s difficult to
compare single values (the current observation) to a distribution of
a set of values.

Grubbs’ Test and ESD
The Grubbs’ Test is used to test whether or not a set of data contains
an outlier. This set is assumed to follow an approximately Gaussian
distribution. Here’s the general procedure for the test, assuming you
have an appropriate data set D.

1. Calculate the sample mean. Let’s call this μ.
2. Calculate the sample standard deviation. Let’s call this s.
3. For each element i in D
4. Calculate abs( i - μ ) / s. This is the number of standard devia‐

tions away i is from the sample mean.
5. Now you have the distance from the mean for each element in

D. Take the maximum.
6. Now you have the maximum distance (in standard deviations)

any single element is away from the mean. This is the test statis‐
tic.

7. Compare this to the critical value. The critical value, which is
just a threshold, is calculated from some significance level, i.e.
some coverage proportion that you want. In other words, if you
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3 https://github.com/twitter/BreakoutDetection
4 http://bit.ly/grubbstest

want to set the threshold for outliers to be 95% of the values
from the population, you can calculate that threshold using a
formula. The critical value in this case ends up being in units of
standard deviations. If the value you calculated in step 5 is
larger than the threshold, then you have statistically significant
evidence that you have an outlier.

The Grubbs’ test can tell you whether or not you have a single out‐
lier in a data set. It should be straightforward to figure out which
element is the outlier.

The ESD test is a generalization that can test whether or not you
have up to r outliers. It can answer the question, “How many outli‐
ers does the data set contain?” The principle is the same—it’s look‐
ing at the standard deviations of individual elements. The process is
more delicate than that, because if you have two outliers, they’ll
interfere with the sample mean and standard deviation, so you have
to remove them after each iteration.

Now, how is this useful with time series? You need to have an
approximately Gaussian (normal) distributed data set to begin with.
Recall that most time series models can be decomposed into sepa‐
rate components, and usually there’s only one random variable. If
you can fit a model and subtract it away, you’ll end up with that ran‐
dom variable. This is exactly what Twitter’s BreakoutDetection3 R
package does. Most of their work consists of the very difficult prob‐
lem of automatically fitting a model that can be subtracted out of a
time series. After that, it’s just an ESD test.

This is something we would consider to fall into the “long term”
anomaly detection category, because it’s not something you can do
online as new values are observed.

For more details, refer to the “Grubbs’ Test for Outliers” page in the
Engineering Statistics Handbook.4

Machine Learning
Machine learning is a meta-technique that you can layer on top of
other techniques. It primarily involves the ability for computers to
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predict or find structure in data without having explicit instructions
to do so. “Machine learning” has more or less become a blanket
term these days in conversational use, but it’s based on well-
researched theory and techniques. Although some of the techniques
have been around for decades, they’ve gained significant popularity
in recent times due to an increase in overall data volume and com‐
putational power, which makes some algorithms more feasible to
run. Machine learning itself is split into two distinct categories:
unsupervised and supervised.

Supervised machine learning involves building a training set of
observed data with labeled output that indicates the right answers.
Thes answers are used to train a model or algorithm, and then the
trained behavior can predict the unknown output of a new set of
data. The term supervised refers to the use of the known, correct
output of the training data to optimize the model such that it ach‐
ieves the lowest error rate possible.

Unsupervised machine learning, unlike its supervised counterpart,
does not try to figure out how to get the right answers. Instead, the
primary goal of unsupervised machine learning algorithms is to find
patterns in a data set. Cluster analysis is a primary component of
unsupervised machine, and one method used is K-means clustering.

Ensembles and Consensus
There’s never a one-size-fits-all solution to anomaly detection.
Instead, some choose to combine multiple techniques into a group,
or ensemble. Each element of the ensemble casts a vote for the data it
sees, which indicates whether or not an anomaly was detected.
These votes are then used to form a consensus, or overall decision of
whether or not an anomaly is detected. The general idea behind this
approach is that while individual models or methods may not always
be right, combining multiple approaches may offer better results on
average.

Filters to Control False Positives
Anomaly detection methods and models don’t have enough context
themselves to know if a system is actually anomalous or not. It’s
your task to utilize them for that purpose. On the flip side, you also
need to know when to not rely on your anomaly detection frame‐
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work. When a system or process is highly unstable, it becomes
extremely difficult for models to work well. We highly recommend
implementing filters to reduce the number of false positives. Some
of the filters we’ve used include:

• Instead of sending an alert when an anomaly is detected, send
an alert when N anomalies are detected within an interval of
time.

• Suppress anomalies when systems appear to be too unstable to
determine any kind of normal behavior. For example, the
variance-to-mean ratio (index of dispersion), or another dimen‐
sionless metric, can be used to indicate whether a system’s
behavior is stable.

• If a system violates a threshold and you trigger an anomaly or
send an alert, don’t allow another one to be sent unless the sys‐
tem resets back to normal first. This can be implemented by
having a reset threshold, below which the metrics of interest
must dip before they can trigger above the upper threshold
again.

Filters don’t have to be complicated. Sometimes it’s much simpler
and more efficient to just simply ignore metrics that are likely to
cause alerting nuisances. Ruxit recently published a blog post titled
“Parameterized anomaly detection settings”5 in which they describe
their anomaly detection settings. Although they don’t call it a “filter,”
one of their settings disables anomaly detection for low traffic appli‐
cations and services to avoid unnecessary alerts.

Tools
You generally don’t have to implement an entire anomaly detection
framework yourself. As a significant component of monitoring,
anomaly detection has been the focus of many monitoring projects
and companies which have implemented many of the things we’ve
discussed in this book.
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Graphite and RRDTool
Graphite and RRDTool are popular time series storage and plotting
libraries that have been around for many years. Both include Holt-
Winters forecasting, which can be used to detect anomalous obser‐
vations in incoming time series metrics. Some monitoring platforms
such as Ganglia, which is built on RRDTool, also have this function‐
ality. RRDTool itself has a generic anomaly detection algorithm built
in, although we’re not aware of anyone using it (unsurprisingly).

Etsy’s Kale Stack
Etsy’s Skyline project, which is part of the Kale stack, includes a vari‐
ety of different algorithms used for anomaly detection. For example,
it has implementations of the following, among others:

• Control charts
• Histograms
• Kolmogorov-Smirnov test

It uses an ensemble technique to detect anomalies. It’s important to
keep in mind that not all algorithms are appropriate for every data
set.

R Packages
There are plenty of R packages available for many anomaly detec‐
tion methods such as forecasting and machine learning. The down‐
side is that many are quite simple. They’re often little more than ref‐
erence implementations that were not intended for monitoring sys‐
tems, so it may be difficult to implement them into your own stack.

Twitter’s anomaly detection R package,6 on the other hand, actually
runs in their production monitoring system. Their package uses
time series decomposition techniques to detect point anomalies in a
data set.

Commercial and Cloud Tools
Instead of implementing or incorporating anomaly detection meth‐
ods and tools into your own monitoring infrastructure, you may be
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more interested in using a cloud-based anomaly detection service.
For example, companies like Ruxit, VividCortex, AppDynamics, and
other companies in the Application Performance Management
(APM) space offer anomaly detection services of some kind, often
under the rubric of “baselining” or something similar.

The benefits of using a cloud service are that it’s often much easier
to use and configure, and providers usually have rich integration
into notification and alerting systems. Anomaly detection services
might also offer better diagnostic tools than those you’ll build your‐
self, especially if they can provide contextual information. On the
other hand, one downside of cloud-based services is that because it’s
difficult to build a solution that works for everything, it may not
work as well as something you could build yourself.
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APPENDIX A

Appendix

Code
Control Chart Windows

Moving Window

function fixedWindow(size) {
  this.name = 'window';
  this.ready = false;
  this.points = [];
  this.total = 0;
  this.sos = 0;

  this.push = function(newValue) {
    if (this.points.length == size) {
      var removed = this.points.shift();
      this.total -= removed;
      this.sos -= removed*removed;
    }
    this.total += newValue;
    this.sos += newValue*newValue;
    this.points.push(newValue);
    this.ready = (this.points.length == size);
  }

  this.mean = function() {
    if (this.points.length == 0) {
      return 0;
    }
    return this.total / this.points.length;
  }

63



  this.stddev = function() {
    var mean = this.mean();
    return Math.sqrt(this.sos/this.points.length - mean*mean);
  }
}

var window = new fixedWindow(5);
window.push(1);
window.push(5);
window.push(9);
console.log(window);
console.log(window.mean());
console.log(window.stddev()*3);

EWMA Window

function movingAverage(alpha) {
  this.name = 'ewma';
  this.ready = true;

  function ma() {
    this.value = NaN;
    this.push = function(newValue) {
      if (isNaN(this.value)) {
        this.value = newValue;
        ready = true;
        return;
      }
      this.value = alpha*newValue + (1 - alpha)*this.value;
    };
  }

  this.MA = new ma(alpha);
  this.sosMA = new ma(alpha);

  this.push = function(newValue) {
    this.MA.push(newValue);
    this.sosMA.push(newValue*newValue);
  };

  this.mean = function() {
    return this.MA.value;
  };

  this.stddev = function() {
    return Math.sqrt(this.sosMA.value - 
this.mean()*this.mean());
  };
}
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var ma = new movingAverage(0.5);
ma.push(1);
ma.push(5);
ma.push(9);
console.log(ma);
console.log(ma.mean());
console.log(ma.stddev()*3);

Window Function

function kernelSmoothing(weights) {
  this.name = 'kernel';
  this.ready = false;
  this.points = [];
  this.lag = (weights.length-1)/2;

  this.push = function(newValue) {
    if (this.points.length == weights.length) {
      var removed = this.points.shift();
    }
    this.points.push(newValue);
    this.ready = (this.points.length == weights.length);
  }

  this.mean = function() {
    var total = 0;
    for (var i = 0; i < weights.length; i++) {
      total += weights[i]*this.points[i];
    }
    return total;
  };

  this.stddev = function() {
    var mean = this.mean();
    var sos = 0;
    for (var i = 0; i < weights.length; i++) {
      sos += weights[i]*this.points[i]*this.points[i];
    }
    return Math.sqrt(sos - mean*mean);
  };
}

var ksmooth = new kernelSmoothing([0.3333, 0.3333, 0.3333]);
ksmooth.push(1);
ksmooth.push(5);
ksmooth.push(9);
console.log(ksmooth);
console.log(ksmooth.mean());
console.log(ksmooth.stddev()*3);
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