
ISBN: 978-1-491-92016-9

The Little Book
of HTML/CSS
Frameworks

Jens Oliver Meiert
Foreword by Eric A. Meyer, author of CSS: The Definitive Guide

Additional Resources
3 Easy Ways to Learn More and Stay Current

©2014 O’Reilly Media, Inc.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 14114

Read more news and analysis about
JavaScript, HTML5, CSS3, and other
web platform technologies.
radar.oreilly.com

Get web development-related news and
content delivered weekly to your inbox.
oreilly.com/web-platform/newsletter

Immerse yourself in learning at the
annual O’Reilly Fluent Conference. Join
developers, UX/UI designers, project
teams, and a wide range of other people
who work with web platform technologies
to share experiences and expertise—
and to learn what you need to know
to stay competitive. fluentconf.com

Radar Blog

Web Newsletter

Fluent Conference

http://fluentconf.com/?cmp=pd-web-na-info-lgen_web_pa_free_report_ad

Jens Oliver Meiert

The Little Book of
HTML/CSS Frameworks

978-1-491-92016-9

[LSI]

The Little Book of HTML/CSS Frameworks
by Jens Oliver Meiert

Copyright © 2015 Jens Oliver Meiert. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Kristen Brown
Copyeditor: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2015: First Edition

Revision History for the First Edition
2015-02-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491920169 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Little Book of
HTML/CSS Frameworks, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491920169

Dedicated to the Google Webmaster Team under Dennis Hwang

Table of Contents

Foreword. vii

Introduction. ix

The Little Book of HTML/CSS Frameworks. 1
Key Concepts 1
Understanding Frameworks 2
Attributes of a Good Framework 8
Using Frameworks 14
Developing Frameworks 18
Common Problems 26
Summary 29

v

Foreword
In the beginning, there was markup; and lo, it was good. Then came
style sheets, which let the author make the markup pretty; and lo,
they were also good.

Some of that goodness was rooted in simplicity. HTML was simple,
charmingly so, and CSS started out as a small set of presentational
suggestions that nevertheless allowed for a great deal of creativity.
Even when you account for the fumbling browser implementations
of early CSS, it was quite possible to hold in one’s head every prop‐
erty, value, and common browser behavior. You could even docu‐
ment them all on a single page for easy reference.

That day is, of course, long since past. CSS has massively expanded
in scope, depth, and complexity, and it has penetrated into unexpec‐
ted places. Trying to keep track of everything CSS has to offer is
incredibly difficult, and when you take into account all the varying
support profiles and behaviors of desktop browsers, mobile brows‐
ers, OS adaptations, embedded firmware, and more, it’s practically
impossible to comprehend a single snapshot, let alone keep up with
ongoing changes.

So it’s no wonder there are so many CSS frameworks out there.
Frameworks are a great way of taming complexity. Rather than have
to remember all the fiddly details of vendor prefixes and syntax, and
rather than have to put up with the limitations inherent in the CSS
syntax (still no variables!), you can load up a framework and let ‘er
rip. You can even, depending on the framework, invoke a few simple
classes to get precalculated layouts. Frameworks are popular for very
good reasons.

On the other hand, in many ways we’ve traded one form of com‐
plexity for another. It’s a veritable jungle of frameworks large and
small out there, and figuring out how to navigate that jungle
requires an expert guide to get you off to a good start. You need that
guide not to tell you the specific characteristics of every plant and
animal in the underbrush, but to give you hard-won advice on how
to approach various situations, what to look for and what to avoid,
and thus how to thrive in a constantly shifting environment.

A guide like Jens Meiert.

I’ve known Jens professionally for many years now, and have been
better for it. Jens is someone who always thinks deeply about the
Web and the practice of building it, comes to a well-reasoned con‐
clusion, and defends that position with honesty and candor. He
cares as much as anyone I’ve ever known about best practices in web
development and will yield to nobody in his defense of that princi‐
ple.

I know, because when a CSS reset I created became unexpectedly
popular, Jens was tenacious in his view that nobody, but nobody,
should use a CSS reset. While I didn’t entirely agree with his conclu‐
sions about resets, I always valued his perspective in that debate,
which was (as usual for Jens) an important contribution to the
ongoing discussion about best and worst practices in web develop‐
ment. Many of his predictions about how resets would be abused
came true. He made a strong case, one that was set on clear founda‐
tions and grounded in his passion for web development done right.

Some time later, Jens took that passion to Google and made signifi‐
cant progress in improving the markup Google produced. Anyone
who cares about the Web will instantly understand what a huge con‐
tribution that was. Now he’s applying that same passion to the sub‐
ject of CSS frameworks.

If you’re thinking about using a framework—and there are, as you’ll
soon read, very good reasons both for and against taking that course
—Jens’ high-level yet deeply practical advice will help you make the
best decision you can. In a like manner, the principles he sets forth
here will help you decide if perhaps you should develop your own
framework, which is sometimes a much better idea than trying to
use someone else’s.

To framework or not to framework? Let Jens be your guide. I could
not put you in any better hands.

—Eric A. Meyer

Introduction

Many commercial websites these days are based on frameworks, and
many personal websites use them, too. Yet what are frameworks,
why and when do we need them, and how do we best use or build
them?

This little book explores frameworks that govern HTML and CSS
(and JavaScript) code. It focuses on HTML and CSS because these
are at the heart of every web project. The principles outlined in the
book, however, can also be applied to other forms of frameworks.

The goal of the book is to share solid, higher-level ideas around
frameworks, trading some specificity for long-term usefulness. We
could analyze all the different frameworks that are out right now,
but if you wanted to make up your own mind or write a framework
yourself, how useful would such review be if you picked this book
up again in five years?

While the book attempts to cover all bases, it glosses over some of
them, too. Web development has become a large field. Also, as we’ll
see shortly, framework development pivots around tailoring, and
tailoring depends on circumstances. We don’t know every project’s
circumstances, and so we can’t generalize everything.

Although written in simple language, the book is geared toward
expert web developers, the people who decide about whether and
how to use, or whether or not to develop a framework.

It has likewise been written by a web developer. I, Jens, have during
my career architected frameworks for OpenKnowledge, GMX,
Aperto with their government and business clients, as well as Goo‐
gle. In that time, I’ve not quite managed to outwit the fast pace of

ix

http://www.openknowledge.de/
http://www.gmx.net/
http://www.aperto.de/
https://www.google.com/
https://www.google.com/

our industry, but I’ve found that some principles, methods, and
practices contribute to longer-lasting code. That has benefited the
frameworks I wrote, and I hope it will benefit you through this
book, too.

Acknowledgments
I’d like to thank the following people for their help with this book:
Tony Ruscoe for reviewing and advising to the first draft. Asim Jan‐
jua, my good friend, for sharing some of his thoughts. Eric Meyer
for the generous foreword; if it wasn’t for Eric’s work, a huge part of
the web development world would look grim today, technically
speaking. Simon St.Laurent and Meg Foley for guiding the book
down the right track at O’Reilly. The O’Reilly staff, particularly Kris‐
ten Brown, and the many other friendly, supportive people involved
in making this information accessible and enjoyable. Julia Tang for
her always loving support. The W3C and WHATWG groups, the
Google Webmaster Team, and the people I’ve worked with over time
who made me a better web developer. Thank you.

x | Introduction

The Little Book of
HTML/CSS Frameworks

Key Concepts
Before we dive into frameworks, let’s first go over a few general
ideas. We don’t have to agree on everything; all we want is to prevent
misunderstandings over the course of this book.

First, there are a handful of terms that may be used differently in
other contexts:

External (also known as public or open)
Anything that comes from outside ourselves or our organiza‐
tion and is out of our control. In web development, social site
widgets or frameworks are often external.

Internal (or in-house)
Anything that originates from within our organization and is
within our control. In web development, site designs, or site
style sheets, are often internal.

Pattern
A classical design pattern. In web development, the individual
elements of a document or app are patterns, but so are docu‐
ment types like a three-column article page.

Cost
A measure of any negative consequence. Typically expenditures
of work, time, or money, but possibly negative changes in, for
example, perception, satisfaction, or reputation. In web devel‐

1

http://bit.ly/wiki-design-pattern

opment, for instance, any element added to a page has a cost in
terms of reduced page performance.

Tailoring
The producing and adjusting to precise dimensions and needs.
In web development, tailored code is all code that’s needed—or
going to be needed—by a project, but not more.

Second, some assumptions:

• Code has a cost. For example, there is the cost of development,
performance, maintenance, documentation, process, quality,
and conversion (though not all of them always apply, and not all
of them affect the same groups). Unnecessary code has an
unnecessary cost.

• Site owners and developers want to save cost. In particular, they
want to save unnecessary cost.

• Tailoring code means removing or, better, not even writing or
embedding unnecessary code.

• Good code is code that is of measurably or arguably high qual‐
ity, where arguably means conforming to common best practi‐
ces.

High-quality code can be said to be tailored, but it doesn’t follow
that high-quality code saves cost, at least not as a general rule. Tail‐
ored code itself, however, always saves cost. With this first insight,
let’s begin.

Understanding Frameworks
What Is a Framework?
“Framework” is a broad term, often misunderstood. Conceptually, a
framework in the web development sense can be likened to a
library: a library not of books but of design patterns, complete with
all needed functionality.

For example, the Pure framework knows, with overlap, the following
button types:

• Default
• Primary

2 | The Little Book of HTML/CSS Frameworks

http://purecss.io/

• Icon
• Active
• Disabled
• Customized

Functionality usually means presentation (styling via CSS) and
sometimes also behavior (scripting via JavaScript). The advantage of
using a library is that we don’t have to code this functionality our‐
selves, or do so repeatedly. We instead follow the library’s instruc‐
tions for the structural side (markup via HTML).

For example, YAML requires the following HTML code for a hori‐
zontal navigation menu:

<nav class="ym-hlist">

 <li class="active">Active
 Link
 Link

</nav>

The only missing piece or, literally, link, is connecting the library so
to have it apply the functionality to the chosen patterns, on basis of
the mandated markup.

For example, to use Bootstrap, we must reference something like:

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/
3.3.1/css/bootstrap.min.css">

Now that we compared frameworks to fully functional pattern libra‐
ries, here’s another view. Frameworks can also be seen as just the
style sheets and scripts they are, and external frameworks as shared
style sheets and scripts that get lifted to a higher status. We could
indeed pick any style sheet or script or both and declare it a frame‐
work!

The implications of this second insight are far-reaching. Although
rather trivial, it’s one of the keys to understanding frameworks. We’ll
keep the term “framework” to use common industry language but
will at times look at the idea of elevated style sheets and scripts for
guidance.

Understanding Frameworks | 3

http://www.yaml.de/
http://getbootstrap.com/

Why Frameworks?
Frameworks promise to save both development and design time.
The thinking goes that many of the things site owners and develop‐
ers want have been done a thousand times, and thus there is no need
to reinvent the wheel. Internal frameworks commonly enjoy a more
sober regard, so this particularly applies to external frameworks.

If frameworks come with this promise, the question arises whether
or not they live up to it. The answer boils down to a cost calculation
that is, unfortunately, different for every framework and project.
How much development cost was saved? How much was, in turn,
spent on training, customization, and upgrades?

Apart from suggesting that we do the math and think through every
project, the following pages cover frameworks in the necessary
detail to empower everyone to form their own theory about the rai‐
sons d'être of frameworks.

Types and Uses of Frameworks
While all frameworks provide patterns, we must note general dis‐
tinctions. For one, there is a difference between internal and exter‐
nal frameworks—the external ones are those that typically get
referred to as frameworks. Then, there is a difference between using
and developing a framework (note that developers can be users,
which makes for some blurriness). And finally, there is a difference
between experts and amateurs.

Let’s chart this up.

 Expert Beginner

 Use Develop Use Develop

Internal framework ? ? ? ?

External framework ? ? ? ?

What do you think? Should either type of framework be managed
either way, by either group?

4 | The Little Book of HTML/CSS Frameworks

Here’s what I think. Let’s compare.

 Expert Beginner

 Use Develop Use Develop

Internal framework Yes Yes Yes Yes

External framework No Yes Yes No

Please note that developing an internal framework and making it
public, as we could even apply to blog themes, is here not consid‐
ered developing an external framework. The decisive factor is the
goal during the initial development process. A thorough revision
and overhaul of an framework to make it external or internal-only,
however, constitutes a development phase, and would be acceptable.

Reflected in the table is the idea that frameworks can be used and
developed liberally, with two exceptions. One exception is that
experts shouldn’t use external frameworks; the other is that beginners
shouldn’t develop external frameworks.

The two exceptions stem from a violation of quality standards: while
the external framework violates the ideals of the expert (which I will
later describe), it is the beginner who would not even know the nec‐
essary ideals to create a quality framework.

The internal framework is safe to use or develop in every case
because that’s the preferred way of developing web documents and
apps. Internal beats external every time because external cannot, by
definition, know all the needs of the organization and fails many
quality standards. Second, internal solutions are the better route for
both experts and beginners to stay sharp and to learn, since their
mistakes have a smaller impact.

The development of an external framework is safest only with an
experienced web developer, who can, following the principles out‐
lined in this book, skillfully build and document it so that it has a
better chance to be useful, at a low cost-benefit ratio. For the less
experienced developer or the one in a hurry, use of an external
framework is thought to be more viable simply because things mat‐

Understanding Frameworks | 5

ter a lot less for him; he may discern few impacts in quality, and he
may not yet have a long-term vision for his project.

Compilation Frameworks
Compilation frameworks are frameworks that include third-party
style sheets and scripts. These may be public reset style sheets, but
can extend to elaborate UI elements. Skeleton, for example, used to
build on Normalize.css, while Blueprint is thought to incorporate
Eric Meyer’s CSS reset. WrapBootstrap and Flat UI Pro are arguably
compilation frameworks because they extend Bootstrap, but we
typically find the compilation framework species internally, when
institutions build their own frameworks based on existing public
ones.

We don’t cover compilation frameworks in more detail because they
expand on the external frameworks we do cover. But to err on the
safe side: composite frameworks mean composite problems, and
there’s extra work involved in testing and maintaining. Special
attention is in order.

Popular Frameworks
There are many dozens of HTML/CSS frameworks that developers
have found useful. Here is a representative selection, to give you an
impression of what the world of external frameworks feels like:

• 960 Grid System
• 1140 CSS Grid
• Base
• Bijou
• Bootstrap
• Blueprint
• Cascade Framework
• Columnal
• Compass
• CSS Smart Grid
• Fluid Baseline Grid

6 | The Little Book of HTML/CSS Frameworks

http://bit.ly/skeleton-frame
http://bit.ly/skeleton-frame
http://bit.ly/emeyer-reset
https://wrapbootstrap.com/
http://designmodo.com/flat/
http://960.gs/
http://cssgrid.net/
https://matthewhartman.github.io/base/
https://andhart.github.io/bijou/
http://getbootstrap.com/
http://www.blueprintcss.org/
http://www.cascade-framework.com/
http://www.columnal.com/
http://compass-style.org/
https://dryan.github.io/css-smart-grid/
http://fluidbaselinegrid.com/

• Foundation
• Gantry
• Golden Grid System
• Goldilocks
• Gridiculo.us
• Gridless
• Gridlock
• Gumby
• Groundwork
• HTML KickStart
• HTML5 Boilerplate
• IceCream
• Ingrid
• InuitCSS
• IVORY Framework
• KNACSS
• kouto swiss
• Kube
• Layers CSS
• Less Framework
• Metro UI CSS
• Mueller Grid System
• Profound Grid
• Pure
• Responsee
• ResponsiveAeon
• Responsive Grid System
• Salsa
• Semantic Grid System
• Simple Grid
• Skeleton

Understanding Frameworks | 7

http://foundation.zurb.com/
http://www.gantry-framework.org/
http://goldengridsystem.com/
http://goldilocksapproach.com/
http://gridiculo.us/
https://thatcoolguy.github.io/gridless-boilerplate/
http://www.benplum.com/projects/gridlock/
http://gumbyframework.com/
http://groundwork.sidereel.com/
http://www.99lime.com/elements/
http://html5boilerplate.com/
http://html5-ninja.com/icecream/
http://piira.se/projects/ingrid/
http://inuitcss.com/
http://weice.in/ivory/
http://www.knacss.com/
http://kouto-swiss.io/
http://imperavi.com/kube/
http://eiskis.net/layers/
http://lessframework.com/
http://metroui.org.ua/
http://www.muellergridsystem.com/
http://www.profoundgrid.com/
http://purecss.io/
http://www.myresponsee.com/
http://www.newaeonweb.com.br/responsiveaeon/
http://responsive.gs/
https://tsi.github.io/Salsa/
http://semantic.gs/
https://thisisdallas.github.io/Simple-Grid/
http://www.getskeleton.com/

• Susy
• Titan
• Toast
• Tuktuk
• YAML

(Some readers will remember Choke, too, although that humor may
have been rather crude.)

These frameworks all vary in functionality and scope. Some focus
on base layouts, while others go all the way into comprehensive
print and mobile themes.

Such a list of frameworks is the type of information that goes stale
quickly. While some frameworks, most notably YAML (not to be
confused with YAML Ain’t Markup Language), have been around
for many years, other frameworks come and go. It’s more useful to
obtain said impression from this list, regard it as a snapshot, and,
perhaps, make it a starting point to experiment.

Attributes of a Good Framework
Now, what is a “good” framework? What does a framework have that
we want to use? What constitutes the framework we may want to
build? I’ve thought about and worked with and discussed this ques‐
tion many times.

In a professional or expert context, “good” usually refers to quality.
We can establish this for frameworks as well. A framework should,
especially when it’s an external one, meet the highest applicable
quality standards.

Frameworks tend to be only used after a project reaches a certain
size and complexity (a one-pager doesn’t need Bootstrap or YAML).
They’re also done by third parties. As size and complexity makes
issues weigh heavier (and since third parties, as we have seen, can‐
not know a project’s full needs), we’re in need of some guarantees
and safeties.

We can get one such safety if we can curb the bloat that external
frameworks in particular bring. We know what helps: tailoring. So a
good framework should expressly be tailored.

8 | The Little Book of HTML/CSS Frameworks

http://susy.oddbird.net/
http://titanthemes.com/titan-framework-a-css-framework-for-responsive-web-designs
https://daneden.me/toast/
http://tuktuk.tapquo.com/
http://www.yaml.de/
http://bit.ly/meiert-choke

If we assume a complex project, we’re likely not alone working with
or on the framework; and if it’s an external one, we have no idea
whether the developers of that framework speak our language (liter‐
ally and metaphorically). What helps here is usability. A good
framework should be usable.

And then, requirements change just as the times: how do we work
with the framework going forward? What if we need to add some‐
thing, perhaps in a pinch? What helps with that is extensibility. And
thus a framework should also be extensible. At least we or the
framework should be clear how to extend it.

We’re just being professional and reasonable when we demand qual‐
ity. We gain extra confidence, then, by wanting frameworks that are
also tailored, usable, and extensible. Let’s look at these three special
attributes a little closer and point out the options developers have to
get frameworks to that state.

On Quality
It’s easy to just say “quality,” and, “Yes, I’ll have that, too.” But what
exactly is quality? Or, for our purposes, what is quality code? When
we think about it—consider lifting our eyes from these pages, and
think code quality—we won’t struggle to find more than just the
ideals of tailored, usable, and extensible. There’s also:

• Fast
• Accessible
• Semantic
• Robust
• Scalable
• Documented
• Maintainable
• Valid
• Self-explaining
• Consistent
• “Automagical”
• State of the art
• Simple

Attributes of a Good Framework | 9

• Compact
• Flexible
• Tested
• Fault-tolerant
• Self-correcting
• And more!

This doesn’t even include anything emotional we may want to
attach to quality, like “pleasant” or “fun.” But what we see is that
quality has many different faces.

1. A Framework Should Be Tailored
We defined tailoring as “producing and adjusting to precise dimen‐
sions and needs.” Producing refers to developing a framework—
whether internal or external—while adjusting commonly means fit‐
ting an external framework. The key here is “precise dimensions and
needs.” We need to know our needs—otherwise we can neither pro‐
duce nor adjust something to fit.

One view of tailored code, by the way, is to compare needed code
with overall code. That can be hard to measure, because the number
of characters or lines in our code doesn’t do the trick. But conceptu‐
ally, tailoring means using as little and yet as effective code as possi‐
ble, and not more.

What can we do to tailor? The approach depends on the origin of
the framework, and that origin makes for a big difference.

An internal framework is relatively simple to tailor: We develop to
the needs of our project from the beginning. These needs may be
defined by comps (comprehensive layouts) and mocks (mock-ups)
or, better, a style guide. Once all needed page types and elements
have been specified, they’re coded up. If they’re all used by the later
site or app, the code cannot be anything but tailored (although it can
possibly still be optimized and compressed).

An external framework, however, is much more difficult to tailor
(by the receiving side, because it’s impossible for the originator). In a
basic sense, we need to deduct all needed functionality from all
offered functionality, and then remove the code that remains. That
leads us to the key issues with external frameworks: removing code

10 | The Little Book of HTML/CSS Frameworks

may not even be possible, and tailoring then depends on the quality
of the framework code and its documentation (e.g., tailoring will
require testing, might break the framework, and could make the
same work necessary for later updates, if not outright thwarting the
ability to move to newer frameworks).

These are big issues that make for good reasons why few people
actually go to the length of customizing or tailoring external frame‐
works (or any external code, for that matter). Yet the outcome—
non-tailored and lower-quality code—is not very expert-like, and
inferior. And so we see with more clarity why in a professional con‐
text, external frameworks shouldn’t be preferred. They promise to
save cost, only to come with a stiff hidden tax or else bring down the
quality of our work.

Now, some frameworks like Bootstrap or Gumby have begun to
address these problems by offering sophisticated customization wiz‐
ards. This is smart, because it significantly alleviates the issues of
non-tailored solutions. Framework developers should offer and
users use such functionality.

By the way, there’s another problem we need to consider: while we’re
benefiting from either our decision to save cost or to improve qual‐
ity, our end users benefit mostly from quality. Technically speaking,
they are rarely on the list of beneficiaries if we decide to deploy a
framework that’s bloated but easy to churn out.

To tailor internal frameworks:

• Be clear about needs.
• Build the framework to these needs.

To tailor external frameworks:

• Be clear about needs.
• Customize or modify the framework to these needs (or abstain

from the framework).

2. A Framework Should Be Usable
A good framework is not only tailored but also usable. But what is
usability for frameworks? It starts with applying the common defini‐

Attributes of a Good Framework | 11

http://bit.ly/wiki-usability

tion of usability: ease of use and learnability. And with a universal
rule: keep it simple. Simplicity helps everything.

But that’s not quite a complete answer, and so we need to differenti‐
ate again. The distinction that serves us here is not one between
frameworks, but between roles: framework users and framework
developers.

For the framework user (who may be a developer himself but is now
concerned with working with the framework), a usable framework is
also easy to understand. That ease of understanding is primarily
achieved through clear framework documentation and, where appli‐
cable, concise code.

For the framework developer, there’s much more emphasis on usable
code. Luckily, there are two things we can firmly link with helping
code usability: maintainability practices and code conventions (cod‐
ing guidelines). Adherence to maintainability practices and consis‐
tent style are the backbone for usable code.

With slightly smaller boundaries than developer experience, I gener‐
ally believe there is a subfield of usability: developer usability. It
could be defined as “the ease of use and learnability of code.” Per‐
haps this field doesn’t get much attention because usable code goes
under different names, as we just found, but perhaps it would bene‐
fit from being treated separately.

To make frameworks more usable for users:

• Keep it simple.
• Follow usability conventions.
• Perform usability tests.
• Provide documentation for framework users.

To make frameworks more usable for developers:

• Keep it simple.
• Aim for self-explanatory code.
• Format code legibly and consistently.
• Follow maintainability best practices.
• Provide documentation for framework developers.

12 | The Little Book of HTML/CSS Frameworks

http://bit.ly/wiki-usability
http://bit.ly/meiert-maintGuide
http://developerexperience.org/

3. A Framework Should Be Extensible
The final attribute to underscore is extensibility. Extensibility for a
framework means that it’s not just possible, but well-defined and
easy to extend it.

Extensibility is necessary for two reasons. First, external frameworks
in particular won’t offer everything we need, so there needs to be a
way to add functionality. Second, especially in large projects, there’s
a tendency for new patterns to pop up. The problem with these is
their uncertainty and uniqueness: they may only be used once or
twice and don’t warrant a place in the framework core or even near
more common extensions. Both their location and handling have to
be thought of.

To make up for lacking functionality in a framework, users typically
help themselves by pretending they don’t use a framework in the
first place. That is, they have a style sheet or script that handles
everything the framework doesn’t cover. That’s actually quite OK;
the point here is to be clear about how such “non-framework func‐
tionality” or extensions are handled (and we notice how extensibil‐
ity is also a user responsibility). If nothing else, extensibility stresses
the need for the most basic of all code safeties: a namespace (a
framework-specific ID and class name prefix, and the same name‐
space in JavaScript).

Next, new and rarely used patterns are a challenge that runs in the
best families. There tends to always be a need for something new,
and there are always document types or elements that are used infre‐
quently. They’re one of the biggest contributing factors to code
bloat. They are hard to control if they don’t get watched and reigned
in vigorously. Though I could give a longer dissertation about the
matter, an effective counter-practice is to either designate style sheet
and script sections for new and experimental code, as well as rare
elements—or to even put aside a separate style sheet and script for
such purposes. The framework developers should anticipate this and
make recommendations, but users should come up with their own
guidelines if this piece has not been covered. A documented stan‐
dard for new code allows better monitoring and better decisions on
whether to keep (and relocate) the code, or to remove it.

We’ve very successfully applied this principle with Google’s
HTML/CSS framework Go—not to be confused with the program‐
ming language, which was conceived two years later. Go came with a

Attributes of a Good Framework | 13

“backpack” library, Go X, which included elements that we used
only occasionally. This kept the core very small—4,250 bytes includ‐
ing the Google logo—but offered the use of additional, common-
enough elements. Project-specific code made for a third layer that
had to be carried by each project style sheet itself.

To make frameworks more extensible:

• Use a framework namespace.
• Define handling of non-framework code.
• Specify where new and rarely used code should be located (also

a framework-user responsibility).
• Regularly review new and rarely used code, to either make part

of framework or remove (also a framework-user responsibility).

Please note that despite all my experience and convic‐
tions, I’ve phrased these rules as strong suggestions. I
was tempted to say “must,” “must,” “must.” Whenever
we like more dogma in our web development life, we
use this verb.
Another thing before we move on: note that no matter
the quality of the framework, the goal for its use is
always on the owners and developers. Frameworks can
be likened to cars: a good car should be, say, safe, easy
to handle, and economical. And so a good framework
should be tailored and usable and extensible. But just
as we look at the driver to know the destination for her
car, we look at the developer to know the goals for the
framework she’s using. We can drive a framework
against the wall just as we can a car, which is the reason
we differentiate between experts and novices. Just to
get this out there: a framework doesn’t drive itself.

Using Frameworks
Two ways we’ve been exposed to frameworks are by using and devel‐
oping them (with some inherent overlap). Our initial definition
gives this an interesting spin, as we have seen that we can regard any
style sheet or script as a “framework.” So anyone who has worked
with style sheets and scripts already has a basic idea of how to use
frameworks.

14 | The Little Book of HTML/CSS Frameworks

https://www.google.com/css/go.css

After all that we’ve learned, using can’t be as complicated as develop‐
ing, and must mostly depend on the framework. It requires a choice
of framework, and then demands two ground rules.

Choosing a Framework
The “pro-quality” choice has been explained as using or developing
an internal framework, and choosing a framework generally applies
to external ones. The choice of an external framework depends on
two factors:

1. Which one meets our needs the best?
2. Which one is of the best quality (that is, which one is as tail‐

ored/customizable, usable, and extensible as possible)?

These questions underline the importance of knowing our precise
needs. It is even important in order to pick a framework, as knowing
our needs helps determine which framework fits better (tailoring)
and comes closer to our extensibility needs (though simple needs
don’t require extensibility as frequently as comprehensive needs).

The Two Ground Rules of Using a Framework
And of any framework at that. These two rules are golden:

1. Follow the documentation
Whether internal or external framework, whether expert or begin‐
ner, read and follow the documentation.

This rule is paramount because the second source of quality issues
with frameworks and the works created with them (after framework
bloat) is user and developer error. Or user and developer miscon‐
duct! Some scenarios that illustrate this might be when a pattern is
hacked to work, when something has been developed that’s actually
already part of the framework, when things get overwritten without
regard for framework updates, or when something has just been
“made working.”

When using frameworks, always follow the documentation.

2. Don’t overwrite framework code
For reasons that will become clearer in the next section, never over‐
write framework code.

Using Frameworks | 15

Contributing to the expert’s dilemma with external frameworks,
overwriting framework code can have unforeseen consequences and
break things with future updates. Here’s an example:

Framework:

header {
 /* No layout declarations */
}

Overwrite:

header {
 position: relative;
 top: 1em;
}

Framework update:

header {
 left: 0;
 position: absolute;
 top: 0;
}

The example, simplified as it is, shows how a seemingly innocent
change can have acute consequences. Here, a header is moved by
one em. (Note that the example constitutes an overwrite because the
framework header is inherently “positioned” and also rests on the
initial values for position and top.) The next framework update,
however, switches to absolute positioning. As the overwriting rules
come later in the cascade, they prevent the update from working
(with the exception of left: 0;). In cases like this, overwrites are
unpredictable. Overwrites should hence be avoided where possible.

The remedy: For internal frameworks, update the framework, or
leave things as they are (as in, no overwriting). For external frame‐
works, leave things as they are, or create a separate pattern that does
the job (like an alternative header, with different markup). Stay away
from forking or “patch improvements”; solve issues at the core, or
not at all.

16 | The Little Book of HTML/CSS Frameworks

The more complex the project and the bigger the orga‐
nization, the harder it can be to display the necessary
discipline. Everyone working with a framework needs
to follow these two rules, however, to achieve the high‐
est levels of quality and consistency possible.

Overwriting Versus Extending
There is a fine line between overwriting and extending code, espe‐
cially since overwriting doesn’t necessarily mean changing code.
Here are conceptual examples for both (with a CSS twist but appli‐
cable to other languages):

Overwriting:

• A → B: code A changed to, or replaced by, B.
• A1 → A2: code A, like a rule or function, doing 1 changed to

doing 2.
• [A1 + B1]: code A doing 1 extended by code B doing 1, too or

differently, in the same file (this is overwriting because the
effect of the original code changed).

• [A1] + [B1]: code A doing 1 extended by code B doing 1, too or
differently, in a different file (this is also overwriting because
the effect of the original code changed).

• (A1 + B2: not a case of overwriting nor extending, because it’s
exemplifying different code doing different things.)

Extending:

• [A + B]: code A extended by code B, in the same file.
• [A] + [B]: code A extended by code B, in a different file.

There are more cases, especially if we consider additional code
snippets (not just “B,” but also “C,” “D,” “E,” etc.) affecting code
written elsewhere (“A”). And sometimes, overwriting can be inten‐
tional or even elegant, so we don’t want to rule it out entirely!

The point is, especially for CSS, overwriting can not only have side
effects and introduce inconsistencies, but it can make our work
extremely complicated. When we look at the case [A1] + [B1], for
example, we notice that we can face two challenges on debugging:
first, what happens exactly (why is A not in effect anymore?), and

Using Frameworks | 17

second, where does it happen? Extending in the same file, or in
another well-defined manner, causes fewer issues.

Developing Frameworks
Developing frameworks is an art form that comes with a lot of
responsibility. For external frameworks, it comes with the aura of a
daredevil (though naiveté rears a head, too). As we’ve seen through‐
out this book, it’s by necessity most difficult to build an external
framework because we cannot know the needs of other projects.
And hence, we can hardly avoid shipping something that is incom‐
plete—or that may mutate into bloat.

The following pages describe the basics of writing a framework. The
ideas describe the situation of an experienced web developer leading
a framework effort in a large organization.

Principles
We’ve already done our assignment and fleshed out the principles
for framework development. A framework should aim for the high‐
est quality standards, and then:

1. A framework should be tailored.
2. A framework should be usable.
3. A framework should be extensible.

These shall serve as every framework’s core values (for which we can
use the avenues outlined earlier).

Customization, as identified under “1. A Framework Should Be Tail‐
ored” on page 10, plays a special role here, for it is the secret weapon
—and last line of defense—of the external framework developer.
Offering framework customization options is the only way to get
closer to tailoring for outside users, users whose projects we will
never know.

I decided against including a section about customization because
it’s not a magic pill for external frameworks, and can stack the whole
deck against the framework developer instead of the framework
user. This is because the more customization options there are, the
more complex the framework gets. Yet that’s still only talking frame‐

18 | The Little Book of HTML/CSS Frameworks

work development. The framework and all its customized subver‐
sions, as we’ll see shortly, still need to be tested, quality-managed,
maintained, and so on.

Prototype
The single most important thing we need to build a successful
framework is a prototype. Here we benefit from our recognition that
we’re really only talking about plain-vanilla style sheets and scripts.
Large projects—projects like those for which we now talk frame‐
works—have always benefited from prototypes.

What do we mean by prototype? In its simplest form, it is a static
(internal) website or demo site. It should contain all document types
and elements we need in production: the prototype is where we code
all the structure (HTML), presentation (CSS), and behavior (Java‐
Script). And the prototype should include realistic (occasionally
intermingled with extreme) sample contents: that’s how we test that
everything works.

A prototype is an irreplaceable testing ground that we need to
obtain the end result we want.

Prototypes follow their own principles, however. They must be, as I
attempted to summarize in earlier years (slightly reworded):

• Complete
• Current
• Realistic
• Focused
• Accessible/available
• Managed with discipline
• Maintained
• Communicated/promoted
• Documented

Each of these points is important, but the first three are critical. The
prototype has to include everything (all document types and ele‐
ments), it must be current (any functionality changes must be reflec‐
ted immediately), and it needs to be realistic (the sample data must

Developing Frameworks | 19

http://bit.ly/meiert-toc-requirements

be an as-good-as-possible approximation of how the framework is
going to be used outside of the prototype).

Quality Management
In order to be sure that we deliver the quality we’re committing to as
professionals, we need to verify it. This is done through quality
assurance (which aims to prevent issues by focusing on the process),
and quality control (which aims to find and fix issues in the end
product).

Web development, as a still rather young discipline, knows more
quality control than quality assurance. Good examples are valida‐
tion, accessibility, and performance checks, of which there are
plenty. On the quality assurance end, the most prominent example is
the enactment of coding guidelines, but some organizations and
individuals go so far as to use elaborate infrastructure to continu‐
ously test and improve their code. (This is all related to web rather
than software development, since in software development, there is
a longer history and strong tradition of working with tests.)

For quality assurance, it’s useful to:

• Establish coding guidelines
• Define output quality criteria
• Run regular tests (over prototype and live implementations)

For quality control, test:

• Accessibility
• Links (if applicable)
• Performance
• Responsiveness
• Maintainability
• Validation
• Linting
• Formatting

20 | The Little Book of HTML/CSS Frameworks

http://bit.ly/uitest-validation
http://bit.ly/uitest-validation
http://bit.ly/uitest-access
http://bit.ly/uitest-perf

(Incidentally, I run a website hub dedicated to web development
testing tools. Check uitest.com/en/analysis/ for a large selection of
them.)

To take a page out of Google’s book, it’s best to automate such
checks. Reviewing tool documentation can give valuable pointers, as
a number of tools can be installed locally or come with an API. In
addition, there are instruments like Selenium and ChromeDriver
that facilitate automated browser testing. As with many of the more
complex topics, this book will resort to just showing directions.

Maintenance
We’ve so far noted how principles, a prototype, and quality manage‐
ment are important in framework development. The last key item to
stress is maintenance. Maintenance here primarily means (similar to
prototypes) a strong commitment to move forward with a frame‐
work. This is important for two reasons.

For one, in the case of external frameworks, maintenance is crucial
because publishing a framework is a promise to the user base. That
promise is precisely that it’s going to be maintained. It’s also a
promise in how it’s going to be maintained, in that we do everything
in our power not to change any structure, but only the framework
style sheets and scripts.

For another, in any framework, a commitment to maintenance acts
like another form of safety. The general idea in web development is
that the HTML is most important to get right, because it’s more
expensive—think our cost definition—to change than style sheets
and scripts. An explicit commitment to maintenance will keep us
from discarding a framework to just “build another,” and thus lives
up to the vision of CSS-only design iterations and refactorings. (Of
course, true structural changes will still always require HTML
changes, and with that, eventually, CSS and JavaScript edits.)

A framework, solving widespread and complex development and
design issues, comes with an express obligation to maintenance.

Developing Frameworks | 21

http://uitest.com/en/analysis/
http://docs.seleniumhq.org/
http://bit.ly/chrome_driver
http://bit.ly/meiert-html-right

Maintaining and Breaking
A word of caution: while we, as framework developers, need to
show responsibility and exercise thorough care not to break any‐
thing with framework updates, we must also not worry too much
about breaking something. On the question what the most impor‐
tant thing was when creating and maintaining frameworks, I
responded a few years ago:

“The more used and hence successful a framework is, the more
likely it is that things will break over regular maintenance. […]
maintenance is key, yet avoiding things to break is impossible,
and the attempt alone unbelievably expensive. And then, while
things go wrong, things never go wrong badly. And that leads
back to setting expectations: […] people should embrace, not
fear, updates to them.”

I believe that this advice is still sound. Code can’t afford anxiety. If
we developers do our homework, occasional breaks can even be a
good thing (and maybe the only thing) to educate framework users
about ground rules and proper framework usage, and to expose
other coding-related issues. As developers we sometimes have to
make tough choices.

Updates
The handling of framework updates is delicate enough to deserve a
separate section. Updates are generally easier to manage for internal
frameworks than for external ones, though updates in a large orga‐
nization with many developers spread out over many places can be
challenging, too.

Here are a few tricks to make framework updates easier:

• Try to avoid HTML changes because of their comparatively
high cost. An update should only consist of styling or scripting
changes and impart no actual work for users (which, to counter
the aforementioned definition blurriness, also means developers
who work with the framework). The update of framework refer‐
ences can be OK.

• Announce updates in advance.

22 | The Little Book of HTML/CSS Frameworks

http://bit.ly/meiert-maint-framework

• Provide a way to test whether the update would have any ill
effects. This can happen through something simple like book‐
marklets (see “Test Bookmarklets” on page 23), or something
more sophisticated like proxying (using a proxy to intercept and
change requests to framework files in order to feed updated files
for testing).

• Inform users about possible side effects (and use this as an
opportunity to educate them about, for example, the problems
of overwrites, as explained in “2. Don’t overwrite framework
code” on page 15).

• Communicate the status of ongoing updates.

What we’re assuming here is that we’re not just “versioning” frame‐
works. That’s the practice of shipping a framework—let’s say, foo—
and when the first changes come, not updating foo, but shipping
foo-2. And then foo-3. And so on. This practice may be an option for
us, but not a rule. The rule should be to update the framework itself,
per the ideas listed here. The reason is that versioning defeats the
purpose and advantage of CSS (similarly for JavaScript), which are
immediate changes, supported by separation of concerns (HTML
for structure, CSS for presentation, and JavaScript for behavior).
We’ll touch on the vision behind this shortly, but we should strive to
do all updates through what we already have. And only for major
changes do we look into our toolbox and, always carefully, recon‐
sider versioning.

Test Bookmarklets
CSS bookmarklets are a great low-tech way of allowing users to test
framework changes. A short example:

Framework:

article {
 margin: auto;
 width: 50%;
}

Framework after update:

article {
 width: 90%;
}

Developing Frameworks | 23

http://bit.ly/meiert-adv-css

To prepare a test for the update and make sure everything keeps
working as intended, take all the changed declarations and all the
removed declarations, set the removed declarations’ properties to
their defaults, and on that basis, generate the testing rules:

Test style sheet:

article {
 margin: 0;
 width: 90%;
}

We’re simplifying here by assuming that <article> doesn’t pick up
other margin values from anywhere else. margin has to be set
because while it’s been removed from the new framework, it would
still be applied through the old framework, which is in effect on the
pages where we want to test the new code. So the test style sheet
needs to neutralize all old code—something we could in really
tricky cases, as a last resort, also attempt through the all property.

Jesse Ruderman’s bookmarklet generator is minimal but a fine tool
to turn test code into a bookmarklet (by pasting the test CSS and
copying bookmarklet code). That bookmarklet can then be pro‐
vided to any framework user, along with a way to report problems.

Documentation
Though not technically a part of the development process, docu‐
mentation must be discussed. Anchoring documentation where the
development happens has many advantages, from increasing the
chances that it’s actually done, to being more comprehensive and
accurate because it’s fresh on the mind.

There are several ways to document, but one of the more effective
ones is using a prototype for this purpose too. Sample contents can
be turned into documentation describing the page types and ele‐
ments they’re forming, but it’s also possible to use hover-style info
boxes that share background information and explain the code. (A
properly maintained prototype enriched this way may even do most
of the lifting of any framework site!)

Documentation begins in the code, however, and there, too, we need
to exercise discipline. Our coding guidelines should underline this;
documentation standards like CSSDOC and JSDOC, as well as tools

24 | The Little Book of HTML/CSS Frameworks

http://bit.ly/w3_all-property
http://bit.ly/squarefree-bklet
http://bit.ly/archive_cssdoc
http://usejsdoc.org/

that automatically pull such documentation from our code, can be
of great help.

The idea behind documentation is to make life easier for ourselves,
our colleagues, framework users, and any people interested in the
work. Thus, making it part of the development process goes a long
way.

Logistics
Our journey, now that we diligently worked through everything rel‐
evant to frameworks, is soon over. A bonus aspect concerns logis‐
tics. We have covered a few pieces that can be considered logistics:

• Coding guidelines
• Quality-control tools
• Documentation

What we haven’t touched are:

• Framework development plans or roadmaps
• Version control systems (like Git, Mercurial, or Subversion)
• Request and bug management systems (like Bugzilla)
• Framework sites (public for external frameworks) with news

feeds
• Mailing lists for

— Developers (framework development team)
— Users (open to everyone interested)
— Announcements (low-volume essentials which should go to

the developers and users lists, too)
• Trackers for live implementations

A framework site and an announcements list are particularly note‐
worthy, as they can pay good dividends to framework owners and
developers. The site serves as a hub for information and documenta‐
tion. An announcements list is indispensable to inform customers
about new releases and guide framework users.

Support also falls into the logistics category. It does not get more
attention here because, for one, we “embed” support at several land‐

Developing Frameworks | 25

http://git-scm.com/
http://mercurial.selenic.com/
https://subversion.apache.org/
http://www.bugzilla.org/

marks along the way—in quality goals and principles, in documen‐
tation and logistics—and for another, support is more of a tangential
topic that depends on the complexity and circumstances of the
framework and the problems it tries to solve.

To repeat, for expert framework development, we need
to pay special attention to:

• Principles
• A prototype
• Quality management
• Maintenance
• Documentation
• Logistics

As these are ordered in descending order of impor‐
tance, our frameworks can probably survive with poor
support and gaping docs, but sacrifices in vision, test‐
ing, and commitment will break their necks.

Common Problems
Since frameworks are most useful in larger projects, problems
involving frameworks tend to be bigger, too. Here are a few of the
most common and gravest issues, along with ideas on how to
address them.

Lack of Discipline
One of the most severe issues is lack of discipline. For the user, this
most commonly means not using frameworks as intended and vio‐
lating the two ground rules (following documentation and not over‐
writing framework code). For the developer, this usually means
becoming sloppy with quality standards, the prototype, or docu‐
mentation. The result is the same: sabotage, just from opposite sides
of the table.

The solution is not easy to come by. Users of external frameworks
are free to do what they want anyway; they may not even notice that
an external framework is very difficult to ride in the first place. It’s a
bit easier internally, where rules can be established, communicated,
and enforced. Personally, while I have observed many issues in prac‐

26 | The Little Book of HTML/CSS Frameworks

tice, I haven’t found a cure for this one yet. People are just very crea‐
tive, and watching how frameworks end up being used is like look‐
ing right into the face of human nature (and Murphy’s Law).

Lack of a Prototype
Not having a prototype is an equally critical problem, for all the
benefits outlined in “Prototype” on page 19. Apart from the fact that
framework development is so much harder without a contained
environment, maintenance complexity increases by the minute if
there is no prototype. A framework without a prototype is essen‐
tially freewheeling, out of control. As suggested earlier, a mere col‐
lection of static pages—as long as it’s complete, current, and realistic
—does help.

Lack of Maintenance
If we do not maintain (or stop to maintain), outside of major struc‐
tural changes or prolonged resource shortages, we miss great oppor‐
tunities. In the case of external frameworks, it can damage the repu‐
tation of those providing the framework. In the case of internal
frameworks, it can mean giving up control over the framework-
managed docs and apps, and thus slowly being forced into a costly,
full-blown relaunch.

Maintenance doesn’t mean we should continuously change a frame‐
work—that may even be hurtful, especially for external frameworks
because of the nuisance it creates. Rather, we should regularly moni‐
tor, test, and tweak the framework to keep it current. Such care pays
off in many ways, be it because it reduces the need for more drastic
changes (relaunches, which are pricey) or because everyone’s staying
in touch and familiar with the framework.

Common Problems | 27

A Vision of Web Development
There is one thing every web developer should aspire to: writing
the most minimal, semantically appropriate, valid HTML, and then
never changing it. “Never” not in a sense of denial and refusal, since
structural changes can always require modifications, but in the
sense of a guiding light. The idea of minimal, semantically appro‐
priate, valid markup brings the most out of us as web developers. It
leads us not only to supreme markup quality, but pushes us to
acquire and exhibit bigger powers in our style sheets and scripts.

The vision is one of highest efficiency, to handle presentational
changes only through CSS updates and behavioral ones only
through JavaScript updates. Writing HTML, design-agnostic as it
should be, has always been underestimated; it’s the hardest to write
well.

Lack of Accuracy
An assumption we’ve made thus far is that what our frameworks do
is accurate—that is, that they match the underlying needs and
designs. That latter part can be a potential source of error if the
frameworks we coded or found ourselves using don’t match the
specs our designer friends sent us (if we’re not the designers our‐
selves). This can lead to all kinds of issues: from not being able to
accommodate the original plan (no use for our external framework)
to needing structural changes (ouch) to asking the designer folks to
rationalize and Photoshop the differences away instead of fixing the
framework. We need to watch out for design and style guide diver‐
gence.

Lack of Guts
The last big issue is to not have what it takes—even if that’s manager
support—to pull the plug. Clinging on to something that’s not rele‐
vant anymore. Something that’s not used anymore. That’s used
wrong. That’s a construction ruin. That can’t be maintained or
extended. Something like that.

Sticking with a broken framework, a failed one, or perhaps a glori‐
ous one that has just reached the end of its lifetime can be a chal‐
lenge. When that happens to us, we need to get over it. As professio‐

28 | The Little Book of HTML/CSS Frameworks

nals, we have big goals and we want our code to last—but sometimes
we fail, and then we need to…suck it up.

Fortunately, there’s always more code to write. The next framework
—or style sheet, or script—is already waiting for us.

Summary
Frameworks are deceptive. They seem easy. They look like a pretty
isolated special topic. And now we’ve seen how common and com‐
plicated they are, like a not-entirely-small meteoroid that passes
every single planetary object in our web development solar system.
Frameworks are not trivial. If I may distract from the speed with
which I typed this down, with brevity as an excuse goal, then any
question still open is due to that very fact that they’re not.

But I want to recap. Professional web development is about quality.
Quality is not easy to define, but one part of it is tailored code.
External frameworks without customization options are impossible
for users to tailor, and a pain for developers. Internal frameworks
are much easier to handle and generally the way to go. Good frame‐
works aim for the highest quality—to be tailored, usable, and exten‐
sible. Framework users should follow the documentation and not
overwrite framework code. Framework developers should have
principles, a prototype, quality management tools, a maintenance
plan, and healthy interest in documentation. And still, things can go
wrong.

If they don’t, we may be on to the one framework. The one frame‐
work for us. Well done.

Summary | 29

About the Author
Jens Oliver Meiert believes that people have many talents.

Jens is an established expert web developer who has contributed to
technical standards of the Web (W3C), and laid the foundations for
large-scale international websites that reach millions of users every
day (GMX, Google). He has written a German book about designing
with CSS (Webdesign mit CSS: Designer-Techniken für kreative und
moderne Webseiten, O’Reilly, 2005/2007), developed frameworks
and quality management systems for Google (2008–2013), and
somehow got nominated “Web Developer of the Year” by .net maga‐
zine (2011).

Jens is an everyday adventurer, described in another book (100
Things I Learned as an Everyday Adventurer), who has traveled to 6
continents, 70 countries, and more than 400 cities. He has made it
his priority to try whatever is new to him, whatever activity or les‐
son he has the chance to, and completed almost 200 of these in the
last 3 years alone. In 2013, Jens quit his job and left his city to go
backpack the world, which he’s still doing now, 18 months later.

Jens is a social philosopher who has over the last few years studied
more than 300 works around the topics of philosophy, psychology,
social sciences, public policy, economics, and more. He’s an active
supporter of and contributor to initiatives that place emphasis on
freedom, trust, and rights, and he’s focusing his own efforts on
breaking through the probably-not-so-accidental apathy we observe
in our world today.

Follow Jens’s work on his website, meiert.com.

http://meiert.com/en/

	Table of Contents
	Introduction
	Acknowledgments

	Chapter 1. The Little Book of HTML/CSS Frameworks
	Key Concepts
	Understanding Frameworks
	What Is a Framework?
	Why Frameworks?
	Types and Uses of Frameworks
	Popular Frameworks

	Attributes of a Good Framework
	1. A Framework Should Be Tailored
	2. A Framework Should Be Usable
	3. A Framework Should Be Extensible

	Using Frameworks
	Choosing a Framework
	The Two Ground Rules of Using a Framework

	Developing Frameworks
	Principles
	Prototype
	Quality Management
	Maintenance
	Documentation
	Logistics

	Common Problems
	Lack of Discipline
	Lack of a Prototype
	Lack of Maintenance
	Lack of Accuracy
	Lack of Guts

	Summary

