

http://oreil.ly/Security_reports

Adrian Mouat

Docker Security
Using Containers Safely in Production

978-1-491-93661-0

[LSI]

Docker Security
by Adrian Mouat

Copyright © 2015 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Interior Designer: David Futato
Production Editor: Shiny Kalapurakkel Cover Designer: Karen Montgomery
Copyeditor: Sharon Wilkey Illustrator: Rebecca Demarest
Proofreader: Marta Justak

August 2015: First Edition

Revision History for the First Edition
2015-08-17: First Release
2016-01-29: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491936610 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Docker Security,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491936610

Table of Contents

Foreword. ix

1. Security and Limiting Containers. 1
Things to Worry About 2
Defense in Depth 5
Segregate Containers by Host 6
Applying Updates 8
Image Provenance 12
Security Tips 21
Run a Hardened Kernel 34
Linux Security Modules 35
Auditing 40
Incident Response 41
Conclusion 41

vii

Foreword

Docker’s introduction of the standardized image format has fueled
an explosion of interest in the use of containers in the enterprise.
Containers simplify the distribution of software and allow greater
sharing of resources on a computer system. But as you pack more
applications onto a system, the risk of an individual application hav‐
ing a vulnerability leading to a breakout increases.

Containers, as opposed to virtual machines, currently share the
same host kernel. This kernel is a single point of failure. A flaw in
the host kernel could allow a process within a container to break out
and take over the system. Docker security is about limiting and con‐
trolling the attack surface on the kernel. Docker security takes
advantage of security measures provided by the host operating sys‐
tem. It relies on Defense in Depth, using multiple security measures
to control what the processes within the container are able to do. As
Docker/containers evolve, security measures will continue to be
added.

Administrators of container systems have a lot of responsibility to
continue to use the common sense security measures that they have
learned on Linux and UNIX systems over the years. They should not
just rely on whether the “containers actually contain.”

• Only run container images from trusted parties.
• Container applications should drop privileges or run without

privileges whenever possible.
• Make sure the kernel is always updated with the latest security

fixes; the security kernel is critical.
• Make sure you have support teams watching for security flaws

in the kernel.

• Use a good quality supported host system for running the con‐
tainers, with regular security updates.

• Do not disable security features of the host operating system.
• Examine your container images for security flaws and make

sure the provider fixes them in a timely manner.

—Dan Walsh
Consulting Engineer, Red Hat

1 I strongly recommend Dan Walsh’s series of posts at opensource.com.

CHAPTER 1

Security and Limiting Containers

To use Docker safely, you need to be aware of the potential security
issues and the major tools and techniques for securing container-
based systems. This report considers security mainly from the view‐
point of running Docker in production, but most of the advice is
equally applicable to development. Even with security, it is impor‐
tant to keep the development and production environments similar
in order to avoid the issues around moving code between environ‐
ments that Docker was intended to solve.

Reading online posts and news items1 about Docker can give you
the impression that Docker is inherently insecure and not ready for
production use. While you certainly need to be aware of issues
related to using containers safely, containers, if used properly, can
provide a more secure and efficient system than using virtual
machines (VMs) or bare metal alone.

This report begins by exploring some of the issues surrounding the
security of container-based systems that you should be thinking
about when using containers.

1

https://opensource.com/business/14/7/docker-security-selinux

Disclaimer!

The guidance and advice in this report is based on my
opinion. I am not a security researcher, nor am I
responsible for any major public-facing system. That
being said, I am confident that any system that follows
the guidance in this report will be in a better security
situation than the majority of systems out there. The
advice in this report does not form a complete solution
and should be used only to inform the development of
your own security procedures and policy.

Things to Worry About
So what sorts of security issues should you be thinking about in a
container-based environment? The following list is not comprehen‐
sive, but should give you food for thought:

Kernel exploits
Unlike in a VM, the kernel is shared among all containers and
the host, magnifying the importance of any vulnerabilities
present in the kernel. Should a container cause a kernel panic, it
will take down the whole host. In VMs, the situation is much
better: an attacker would have to route an attack through both
the VM kernel and the hypervisor before being able to touch the
host kernel.

Denial-of-service attacks
All containers share kernel resources. If one container can
monopolize access to certain resources—including memory and
more esoteric resources such as user IDs (UIDs)—it can starve
out other containers on the host, resulting in a denial-of-service
(DoS), whereby legitimate users are unable to access part or all
of the system.

Container breakouts
An attacker who gains access to a container should not be able
to gain access to other containers or the host. By default, users
are not namespaced, so any process that breaks out of the con‐
tainer will have the same privileges on the host as it did in the
container; if you were root in the container, you will be root on

2 | Chapter 1: Security and Limiting Containers

2 It is possible to turn on user namespacing, which will map the root user in a container
to a high-numbered user on the host. We will discuss this feature and its drawbacks
later.

the host.2 This also means that you need to worry about poten‐
tial privilege escalation attacks—whereby a user gains elevated
privileges such as those of the root user, often through a bug in
application code that needs to run with extra privileges. Given
that container technology is still in its infancy, you should orga‐
nize your security around the assumption that container break‐
outs are unlikely, but possible.

Poisoned images
How do you know that the images you are using are safe,
haven’t been tampered with, and come from where they claim to
come from? If an attacker can trick you into running his image,
both the host and your data are at risk. Similarly, you want to be
sure that the images you are running are up-to-date and do not
contain versions of software with known vulnerabilities.

Compromising secrets
When a container accesses a database or service, it will likely
require a secret, such as an API key or username and password.
An attacker who can get access to this secret will also have
access to the service. This problem becomes more acute in a
microservice architecture in which containers are constantly
stopping and starting, as compared to an architecture with
small numbers of long-lived VMs. This report doesn’t cover
how to address this, but see the Deployment chapter of Using
Docker (O’Reilly, 2015) for how to handle secrets in Docker.

Things to Worry About | 3

Containers and Namespacing
In a much-cited article, Dan Walsh of Red Hat wrote, “Containers
Do Not Contain.” By this, he primarily meant that not all resources
that a container has access to are namespaced. Resources that are
namespaced are mapped to a separate value on the host; for exam‐
ple, PID 1 inside a container is not PID 1 on the host or in any
other container. By contrast, resources that are not namespaced are
the same on the host and in containers.

Resources that are not namespaced include the following:

UIDs (by default)
If a user is root inside a container and breaks out of the con‐
tainer, that user will be root on the host. An initial version of
user namespacing is included in Docker 1.10, but is not
enabled by default.

The kernel keyring
If your application or a dependent application uses the kernel
keyring for handling cryptographic keys or something similar,
it’s very important to be aware of this. Keys are separated by
UID, meaning any container running with a user of the same
UID will have access to the same keys.

The kernel itself and any kernel modules
If a container loads a kernel module (which requires extra priv‐
ileges), the module will be available across all containers and
the host. This includes the Linux Security Modules discussed
later.

Devices
Including disk drives, sound-cards, and graphics processing
units (GPUs).

The system time
Changing the time inside a container changes the system time
for the host and all other containers. This is possible only in
containers that have been given the SYS_TIME capability, which
is not granted by default.

The simple fact is that both Docker and the underlying Linux kernel
features it relies on are still young and nowhere near as battle-
hardened as the equivalent VM technology. For the time being at

4 | Chapter 1: Security and Limiting Containers

https://opensource.com/business/14/7/docker-security-selinux
https://opensource.com/business/14/7/docker-security-selinux

3 An interesting argument exists about whether containers will ever be as secure as VMs.
VM proponents argue that the lack of a hypervisor and the need to share kernel resour‐
ces mean that containers will always be less secure. Container proponents argue that
VMs are more vulnerable because of their greater attack surface, pointing to the large
amounts of complicated and privileged code in VMs required for emulating esoteric
hardware (as an example, see the recent VENOM vulnerability that exploited code in
floppy drive emulation).

4 The concept of least privilege was first articulated as “Every program and every privi‐
leged user of the system should operate using the least amount of privilege necessary to
complete the job,” by Jerome Saltzer in “Protection and the Control of Information
Sharing in Multics.” Recently, Diogo Mónica and Nathan McCauley from Docker have
been championing the idea of “least-privilege microservices” based on Saltzer’s
principle., including at a recent DockerCon talk.

least, do not consider containers to offer the same level of security
guarantees as VMs.3

Defense in Depth
So what can you do? Assume vulnerability and build defense in
depth. Consider the analogy of a castle, which has multiple layers of
defense, often tailored to thwart various kinds of attacks. Typically, a
castle has a moat, or exploits local geography, to control access
routes to the castle. The walls are thick stone, designed to repel fire
and cannon blasts. There are battlements for defenders and multiple
levels of keeps inside the castle walls. Should an attacker get past one
set of defenses, there will be another to face.

The defenses for your system should also consist of multiple layers.
For example, your containers will most likely run in VMs so that if a
container breakout occurs, another level of defense can prevent the
attacker from getting to the host or other containers. Monitoring
systems should be in place to alert admins in the case of unusual
behavior. Firewalls should restrict network access to containers, lim‐
iting the external attack surface.

Least Privilege
Another important principle to adhere to is least privilege: each pro‐
cess and container should run with the minimum set of access rights
and resources it needs to perform its function.4 The main benefit of
this approach is that if one container is compromised, the attacker
should still be severely limited in being able to perform actions that
provide access to or exploit further data or resources.

Defense in Depth | 5

http://venom.crowdstrike.com/
http://dl.acm.org/citation.cfm?id=361067
http://dl.acm.org/citation.cfm?id=361067
https://www.youtube.com/watch?v=8mUm0x1uy7c

In regards to least privilege, you can take many steps to reduce the
capabilities of containers:

• Ensure that processes in containers do not run as root, so that
exploiting a vulnerability present in a process does not give the
attacker root access.

• Run filesystems as read-only so that attackers cannot overwrite
data or save malicious scripts to file.

• Cut down on the kernel calls that a container can make to
reduce the potential attack surface.

• Limit the resources that a container can use to avoid DoS
attacks whereby a compromised container or application con‐
sumes enough resources (such as memory or CPU) to bring the
host to a halt.

Docker Privileges = Root Privileges

This report focuses on the security of running contain‐
ers, but it is important to point out that you also have
to be careful about who you give access to the Docker
daemon. Any user who can start and run Docker con‐
tainers effectively has root access to the host. For
example, consider that you can run the following:
$ docker run -v /:/homeroot -it debian bash
...

And you can now access any file or binary on the host
machine.
If you run remote API access to your Docker daemon,
be careful about how you secure it and who you give
access to. If possible, restrict access to the local net‐
work.

Segregate Containers by Host
If you have a multi-tenancy setup, running containers for multiple
users (whether these are internal users in your organization or
external customers), ensure that each user is placed on a separate
Docker host, as shown in Figure 1-1. This is less efficient than shar‐
ing hosts between users and will result in a higher number of VMs
and/or machines than reusing hosts, but is important for security.

6 | Chapter 1: Security and Limiting Containers

The main reason is to prevent container breakouts resulting in a
user gaining access to another user’s containers or data. If a con‐
tainer breakout occurs, the attacker will still be on a separate VM or
machine and unable to easily access containers belonging to other
users.

Figure 1-1. Segregating containers by host

Similarly, if you have containers that process or store sensitive
information, keep them on a host separate from containers handling
less-sensitive information and, in particular, away from containers
running applications directly exposed to end users. For example,
containers processing credit-card details should be kept separate
from containers running the Node.js frontend.

Segregation and use of VMs can also provide added protection
against DoS attacks; users won’t be able to monopolize all the mem‐
ory on the host and starve out other users if they are contained
within their own VM.

In the short to medium term, the vast majority of container deploy‐
ments will involve VMs. Although this isn’t an ideal situation, it
does mean you can combine the efficiency of containers with the
security of VMs.

Segregate Containers by Host | 7

5 A work-around is to docker save all the required images and load them into a fresh
registry.

Applying Updates
The ability to quickly apply updates to a running system is critical to
maintaining security, especially when vulnerabilities are disclosed in
common utilities and frameworks.

The process of updating a containerized system roughly involves the
following stages:

1. Identify images that require updating. This includes both base
images and any dependent images. See “Getting a List of Run‐
ning Images” on page 9 for how to do this with the Docker
client.

2. Get or create an updated version of each base image. Push this
version to your registry or download site.

3. For each dependent image, run docker build with the --no-
cache argument. Again, push these images.

4. On each Docker host, run docker pull to ensure that it has up-
to-date images.

5. Restart the containers on each Docker host.
6. Once you’ve ascertained that everything is functioning cor‐

rectly, remove the old images from the hosts. If you can, also
remove them from your registry.

Some of these steps sound easier than they are. Identifying images
that need updating may require some grunt work and shell fu.
Restarting the containers assumes that you have in place some sort
of support for rolling updates or are willing to tolerate downtime. At
the time of writing, functionality to completely remove images from
a registry and reclaim the disk space is still being worked on.5

If you use Docker Hub to build your images, note that you can set
up repository links, which will kick off a build of your image when

8 | Chapter 1: Security and Limiting Containers

any linked image changes. By setting a link to the base image, your
image will automatically get rebuilt if the base image changes.

Getting a List of Running Images
The following gets the image IDs for all running images:

 $ docker inspect -f "{{.Image}}" $(docker ps -q)
42a3cf88f3f0cce2b4bfb2ed714eec5ee937525b4c7e0a0f70daff18c...
41b730702607edf9b07c6098f0b704ff59c5d4361245e468c0d551f50...

You can use a little more shell fu to get some more information:

$ docker images --no-trunc | grep \
 $(docker inspect -f "-e {{.Image}}" $(docker ps -q))
nginx latest 42a3cf88f... 2 weeks ago 132.8 MB
debian latest 41b730702... 2 weeks ago 125.1 MB

To get a list of all images and their base or intermediate images (use
--no-trunc for full IDs):

$ docker inspect -f "{{.Image}}" $(docker ps -q) | \
 xargs -L 1 docker history -q
41b730702607
3cb35ae859e7
42a3cf88f3f0
e59ba510498b
50c46b6286b9
ee8776c93fde
439e7909f795
0b5e8be9b692
e7e840eed70b
7ed37354d38d
55516e2f2530
97d05af69c46
41b730702607
3cb35ae859e7

And you can extend this again to get information on the images:

$ docker images | grep \
 $(docker inspect -f "{{.Image}}" $(docker ps -q) | \
 xargs -L 1 docker history -q | sed "s/^/\-e /")
nginx latest 42a3cf88f3f0 2 weeks ago 132.8 MB
debian latest 41b730702607 2 weeks ago 125.1 MB

If you want to get details on the intermediate images as well as
named images, add the -a argument to the docker images com‐
mand. Note that this command includes a significant gotcha: if
your host doesn’t have a tagged version of a base image, it won’t
show up in the list. For example, the official Redis image is based

Applying Updates | 9

6 This is similar to modern ideas of immutable infrastructure, whereby infrastructure—
including bare metal, VMs, and containers—is never modified and is instead replaced
when a change is required.

on debian:wheezy, but the base image will appear as <None> in
docker images -a unless the host has separately and explicitly
pulled the debian:wheezy image (and it is exactly the same version
of that image).

When you need to patch a vulnerability found in a third-party
image, including the official images, you are dependent on that
party providing a timely update. In the past, providers have been
criticized for being slow to respond. In such a situation, you can
either wait or prepare your own image. Assuming that you have
access to the Dockerfile and source for the image, rolling your image
may be a simple and effective temporary solution.

This approach should be contrasted with the typical VM approach
of using configuration management (CM) software such as Puppet,
Chef, or Ansible. In the CM approach, VMs aren’t re-created but are
updated and patched as needed, either through SSH commands or
an agent installed in the VM. This approach works, but means that
separate VMs are often in different states and that significant com‐
plexity exists in tracking and updating the VMs. This is necessary to
avoid the overhead of re-creating VMs and maintaining a master, or
golden, image for the service. The CM approach can be taken with
containers as well, but adds significant complexity for no benefit—
the simpler golden image approach works well with containers
because of the speed at which containers can be started and the ease
of building and maintaining images.6

10 | Chapter 1: Security and Limiting Containers

Label Your Images

Identifying images and what they contain can be made
a lot easier by liberal use of labels when building
images. This feature appeared in 1.6 and allows the
image creator to associate arbitrary key/value pairs
with an image. This can be done in the Dockerfile:
FROM debian
LABEL version 1.0
LABEL description "Test image for labels"

You can take things further and add data such as the
Git hash that the code in the image was compiled
from, but this requires using some form of templating
tool to automatically update the value.
Labels can also be added to a container at runtime:
$ docker run -d --name label-test -l group=a \
 debian sleep 100
1d8d8b622ec86068dfa5cf251cbaca7540b7eaa6766...
$ docker inspect -f '{{json .Config.Labels}}'\
 label-test
{"group":"a"}

This can be useful when you want to handle certain
events at runtime, such as dynamically allocating con‐
tainers to load-balancer groups.

At times, you will need to update the Docker daemon to gain access
to new features, security patches, or bug fixes. This will force you to
either migrate all containers to a new host or temporarily halt them
while the update is applied. It is recommended that you subscribe to
either the docker-user or docker-dev Google groups to receive noti‐
fications of important updates.

Avoid Unsupported Drivers
Despite its youth, Docker has already gone through several stages of
development, and some features have been deprecated or are
unmaintained. Relying on such features is a security risk, because
they will not be receiving the same attention and updates as other
parts of Docker. The same goes for drivers and extensions depended
on by Docker.

Storage drivers are another major area of development and change.
At the time of writing, Docker is moving away from AUFS as the
preferred storage driver. The AUFS driver is being taken out of the

Applying Updates | 11

https://goo.gl/FgtsBO
https://goo.gl/wwUz43

7 A full discussion of public-key cryptography is fascinating but out of scope here. For
more information see Applied Cryptography by Bruce Schneier.

kernel and no longer developed. Users of AUFS are encouraged to
move to Overlay or one of the other drivers in the near future.

Image Provenance
To safely use images, you need to have guarantees about their prove‐
nance: where they came from and who created them. You need to be
sure that you are getting exactly the same image that the original
developer tested and that no one has tampered with it, either during
storage or transit. If you can’t verify this, the image may have
become corrupted or, much worse, replaced with something mali‐
cious. Given the previously discussed security issues with Docker,
this is a major concern; you should assume that a malicious image
has full access to the host.

Provenance is far from a new problem in computing. The primary
tool in establishing the provenance of software or data is the secure
hash. A secure hash is something like a fingerprint for data—it is a
(comparatively) small string that is unique to the given data. Any
changes to the data will result in the hash changing. Several algo‐
rithms are available for calculating secure hashes, with varying
degrees of complexity and guarantees of the uniqueness of the hash.
The most common algorithms are SHA (which has several variants)
and MD5 (which has fundamental problems and should be avoi‐
ded). If you have a secure hash for some data and the data itself, you
can recalculate the hash for the data and compare it. If the hashes
match, you can be certain the data has not been corrupted or tam‐
pered with. However, one issue remains—why should you trust the
hash? What’s to stop an attacker from modifying both the data and
the hash? The best answer to this is cryptographic signing and public/
private key pairs.

Through cryptographic signing, you can verify the identify of the
publisher of an artifact. If a publisher signs an artifact with their pri‐
vate key,7 any recipient of that artifact can verify it came from the
publisher by checking the signature using the publisher’s public key.
Assuming the client has already obtained a copy of the publisher’s
key, and that publisher’s key has not been compromised, you can be

12 | Chapter 1: Security and Limiting Containers

8 A similar construct is used in protocols such as Bittorrent and Bitcoin and is known as
a hash list.

9 In the context of this report, anyone who pushes an image is a publisher; it is not
restricted to large companies or organizations.

sure the content came from the publisher and has not been tam‐
pered with.

Docker Digests
Secure hashes are known as digests in Docker parlance. A digest is a
SHA256 hash of a filesystem layer or manifest, where a manifest is
metadata file describing the constituent parts of a Docker image. As
the manifest contains a list of all the image’s layers identified by
digest,8 if you can verify that the manifest hasn’t been tampered
with, you can safely download and trust all the layers, even over
untrustworthy channels (e.g., HTTP).

Docker Content Trust
Docker introduced content trust in 1.8. This is Docker’s mechanism
for allowing publishers9 to sign their content, completing the trusted
distribution mechanism. When a user pulls an image from a reposi‐
tory, she receives a certificate that includes the publisher’s public
key, allowing her to verify that the image came from the publisher.

When content trust is enabled, the Docker engine will only operate
on images that have been signed and will refuse to run any images
whose signatures or digests do not match.

You can see content trust in action by enabling it and trying to pull
signed and unsigned images:

$ export DOCKER_CONTENT_TRUST=1
$ docker pull debian:wheezy
Pull (1 of 1): debian:wheezy@sha256:6ec0cac04bb4934af0e9bf...
sha256:6ec0cac04bb4934af0e9bf959ae6ccb55fb70d6a47a8aed9b30...
Digest: sha256:6ec0cac04bb4934af0e9bf959ae6ccb55fb70d6a47a...
Status: Downloaded newer image for debian@sha256:6ec0cac04...
Tagging debian@sha256:6ec0cac04bb4934af0e9bf959ae6ccb55fb7...
$ docker pull amouat/identidock:unsigned
No trust data for unsigned

Image Provenance | 13

In Docker 1.8, content trust must be enabled by setting the envi‐
ronment variable DOCKER_CONTENT_TRUST=1. In later versions of
Docker, this will become the default.

The official, signed, Debian image was pulled successfully. In con‐
trast, Docker refused to pull the unsigned image amouat/identi
dock:unsigned.

So what about pushing signed images? It’s surprisingly easy:

$ docker push amouat/identidock:newest
The push refers to a repository [docker.io/amouat/identido...
...
843e2bded498: Image already exists
newest: digest: sha256:1a0c4d72c5d52094fd246ec03d...
Signing and pushing trust metadata
You are about to create a new root signing key passphrase.
This passphrase will be used to protect the most sensitive
key in your signing system. Please choose a long, complex
passphrase and be careful to keep the password and the key
file itself secure and backed up. It is highly recommended
that you use a password manager to generate the passphrase
and keep it safe.
There will be no way to recover this key. You can find the
key in your config directory.
Enter passphrase for new offline key with id 70878f1:
Repeat passphrase for new offline key with id 70878f1:
Enter passphrase for new tagging key with id docker.io/amo...
Repeat passphrase for new tagging key with id docker.io/am...
Finished initializing "docker.io/amouat/identidock"

Since this was the first push to the repository with content trust
enabled, Docker has created a new root signing key and a tagging key.
The tagging key will be discussed later. Note the importance of keep‐
ing the root key safe and secure. Life becomes very difficult if you
lose this; all users of your repositories will be unable to pull new
images or update existing images without manually removing the
old certificate.

Now the image can be downloaded using content trust:

$ docker rmi amouat/identidock:newest
Untagged: amouat/identidock:newest
$ docker pull amouat/identidock:newest
Pull (1 of 1): amouat/identidock:newest@sha256:1a0c4d72c5d...
sha256:1a0c4d72c5d52094fd246ec03d6b6ac43836440796da1043b6e...
Digest: sha256:1a0c4d72c5d52094fd246ec03d6b6ac43836440796d...
Status: Image is up to date for amouat/identidock@sha256:1...
Tagging amouat/identidock@sha256:1a0c4d72c5d52094fd246ec03...

14 | Chapter 1: Security and Limiting Containers

If you haven’t downloaded an image from a given repository before,
Docker will first retrieve the certificate for the publisher of that
repository. This is done over HTTPS and is low risk, but can likened
to connecting to a host via SSH for the first time; you have to trust
that you are being given the correct credentials. Future pulls from
that repository can be verified using the existing certificate.

Back Up Your Signing Keys!

Docker will encrypt all keys at rest and takes care to
ensure private material is never written to disk. Due to
the importance of the keys, it is recommended that
they are backed up on two encrypted USB sticks kept
in a secure location. To create a TAR file with the keys,
run:
$ umask 077
$ tar -zcvf private_keys_backup.tar.gz \
 ~/.docker/trust/private
$ umask 022

The umask commands ensure file permissions are set
to read-only.
Note that as the root key is only needed when creating
or revoking keys, it can—and should—be stored off‐
line when not in use.

Back to the tagging key. A tagging key is generated for each reposi‐
tory owned by a publisher. The tagging key is signed by the root key,
which allows it to be verified by any user with the publisher’s certifi‐
cate. The tagging key can be shared within an organization and used
to sign any images for that repository. After generating the tagging
key, the root key can and should be taken offline and stored securely.

Should a tagging key become compromised, it is still possible to
recover. By rotating the tagging key, the compromised key can be
removed from the system. This process happens invisibly to the user
and can be done proactively to protect against undetected key com‐
promises.

Content trust also provides freshness guarantees to guard against
replay attacks. A replay attack occurs when an artifact is replaced
with a previously valid artifact. For example, an attacker may replace
a binary with an older, known vulnerable version that was previ‐
ously signed by the publisher. As the binary is correctly signed, the

Image Provenance | 15

user can be tricked into running the vulnerable version of the
binary. To avoid this, content trust makes use of timestamp keys
associated with each repository. These keys are used to sign meta‐
data associated with the repository. The metadata has a short expira‐
tion date that requires it to be frequently resigned by the timestamp
key. By verifying that the metadata has not expired before down‐
loading the image, the Docker client can be sure it is receiving an
up-to-date (or fresh) image. The timestamp keys are managed by
the Docker Hub and do not require any interaction from the pub‐
lisher.

A repository can contain both signed and unsigned images. If you
have content trust enabled and want to download an unsigned
image, use the --disable-content-trust flag:

$ docker pull amouat/identidock:unsigned
No trust data for unsigned
$ docker pull --disable-content-trust \
amouat/identidock:unsigned
unsigned: \
Pulling from amouat/identidock
...
7e7d073d42e9: Already exists
Digest: sha256:ea9143ea9952ca27bfd618ce718501d97180dbf1b58...
Status: Downloaded newer image for amouat/identidock:unsigned

If you want to learn more about content trust, see the offical Docker
documentation, as well as The Update Framework, which is the
underlying specification used by content trust.

While this is a reasonably complex infrastructure with multiple sets
of keys, Docker has worked hard to ensure it is still simple for end
users. With content trust, Docker has developed a user-friendly,
modern security framework providing provenance, freshness, and
integrity guarantees.

Content trust is currently enabled and working on the Docker Hub.
To set up content trust for a local registry, you will also need to con‐
figure and deploy a Notary server.

Notary
The Docker Notary project is a generic server-client framework for
publishing and accessing content in a trustworthy and secure man‐
ner. Notary is based on The Update Framework specification,

16 | Chapter 1: Security and Limiting Containers

https://docs.docker.com/security/trust/content_trust/
http://theupdateframework.com/
https://github.com/docker/notary
https://github.com/docker/notary

which provides a secure design for distributing and updating con‐
tent.

Docker’s content trust framework is essentially an integration of
Notary with the Docker API. By running both a registry and a
Notary server, organizations can provide trusted images to users.
However, Notary is designed to be standalone and usable in a wide
range of scenarios.

A major use case for Notary is to improve the security and trust‐
worthiness of the common curl | sh approach, which is typified
by the current Docker installation instructions:

$ curl -sSL https://get.docker.com/ | sh

If such a download is compromised either on the server or in
transit, the attacker will be able to run arbitrary commands on the
victim’s computer. The use of HTTPS will stop the attacker from
being able to modify data in transit, but they may still be able to
prematurely end the download, thereby truncating the code in a
potentially dangerous way. The equivalent example of using Notary
looks something like this:

$ curl http://get.docker.com/ | \
 notary verify docker.com/scripts v1 | sh

The call to notary compares a checksum for the script with the
checksum in Notary’s trusted collection for docker.com. If it passes,
you have verified that the script does indeed come from docker.com
and has not been tampered with. If it fails, Notary will bail out, and
no data will be passed to sh. What’s also notable is that the script
itself can be transferred over insecure channels—in this case, HTTP
—without worry; if the script is altered in transit, the checksum will
change and Notary will throw an error.

If you are using unsigned images, it is still possible to verify images
by pulling by digest, instead of by name and tag. For example:

$ docker pull debian@sha256:f43366bc755696485050c\
e14e1429c481b6f0ca04505c4a3093dfdb4fafb899e

This will pull the debian:jessie image as of the time of writing.
Unlike the debian:jessie tag, it is guaranteed to always pull exactly
the same image (or none at all). If the digest can be securely trans‐
ferred and authenticated in some manner (e.g., sent via a PGP
signed e-mail from a trusted party), you can guarantee the authen‐

Image Provenance | 17

ticity of the image. Even with content trust enabled, it is still possible
to pull by digest.

If you don’t trust either a private registry or the Docker Hub to dis‐
tribute your images, you can always use the docker load and
docker save commands to export and import images. The images
can be distributed by an internal download site or simply by copying
files. Of course, if you go down this route, you are likely to find
yourself recreating many of the features of the Docker registry and
content-trust components.

Reproducible and Trustworthy Dockerfiles
Ideally, Dockerfiles should produce exactly the same image each
time. In practice, this is hard to achieve. The same Dockerfile is
likely to produce different images over time. This is clearly a prob‐
lematic situation, as again, it becomes hard to be sure what is in
your images. It is possible to at least come close to entirely reprodu‐
cible builds, by adhering to the following rules when writing Dock‐
erfiles:

• Always specify a tag in FROM instructions. FROM redis is bad,
because it pulls the latest tag, which changes over time and
can be expected to move with major version changes. FROM
redis:3.0 is better, but can still be expected to change with
minor updates and bug fixes (which may be exactly what you
want). If you want to be sure you are pulling exactly the same
image each time, the only choice is to use a digest as described
previously; for example:

FROM
redis@sha256:3479bbcab384fa343b52743b933661335448f816...

Using a digest will also protect against accidental corruption or
tampering.

• Provide version numbers when installing software from pack‐
age managers. apt-get install cowsay is OK, as cowsay is
unlikely to change, but apt-get install

cowsay=3.03+dfsg1-6 is better. The same goes for other pack‐
age installers such as pip—provide a version number if you can.
The build will fail if an old package is removed, but at least this
gives you warning. Also note that a problem still remains: pack‐
ages are likely to pull in dependencies, and these dependencies

18 | Chapter 1: Security and Limiting Containers

are often specified in >= terms and can hence change over time.
To completely lock down the version of things, have a look at
tools like aptly, which allow you to take snapshots of reposito‐
ries.

• Verify any software or data downloaded from the Internet. This
means using checksums or cryptographic signatures. Of all the
steps listed here, this is the most important. If you don’t verify
downloads, you are vulnerable to accidental corruption as well
as attackers tampering with downloads. This is particularly
important when software is transferred with HTTP, which
offers no guarantees against man-in-the-middle attacks. The
following section offers specific advice on how to do this.

Most Dockerfiles for the official images provide good examples of
using tagged versions and verifying downloads. They also typically
use a specific tag of a base image, but do not use version numbers
when installing software from package managers.

Securely Downloading Software in Dockerfiles
In the majority of cases, vendors will make signed checksums avail‐
able for verifying downloads. For example, the Dockerfile for the
official Node.js image includes the following:

RUN gpg --keyserver pool.sks-keyservers.net \
 --recv-keys 7937DFD2AB06298B2293C3187D33FF9D0246406D \
 114F43EE0176B71C7BC219DD50A3051F888C628D

ENV NODE_VERSION 0.10.38
ENV NPM_VERSION 2.10.0
RUN curl -SLO "http://nodejs.org/dist/v$NODE_VERSION/node-v\
$NODE_VERSION-linux-x64.tar.gz" \
 && curl -SLO "http://nodejs.org/dist/v$NODE_VERSION/\
SHASUMS256.txt.asc" \
 && gpg --verify SHASUMS256.txt.asc \
 && grep " node-v$NODE_VERSION-linux-x64.tar.gz\$" \
 SHASUMS256.txt.asc | sha256sum -c -

Gets the GNU Privacy Guard (GPG) keys used to sign the
Node.js download. Here, you do have to trust that these are the
correct keys.

Downloads the Node.js tarball.

Downloads the checksum for the tarball.

Image Provenance | 19

http://www.aptly.info/

Uses GPG to verify that the checksum was signed by whoever
owns the previously obtained keys.

Checks that the checksum matches the tarball by using the
sha256sum tool.

If either the GPG test or the checksum test fails, the build will abort.

In some cases, packages are available in third-party repositories,
which means they can be installed securely by adding the given
repository and its signing key. For example, the Dockerfile for the
official Nginx image includes the following:

RUN apt-key adv --keyserver hkp://pgp.mit.edu:80 \
 --recv-keys 573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62
RUN echo "deb http://nginx.org/packages/mainline/debian/\
 jessie nginx" >> /etc/apt/sources.list

The first command obtains the signing key for Nginx (which is
added to the keystore), and the second command adds the Nginx
package repository to the list of repositories to check for software.
After this, Nginx can be simply and securely installed with apt-get
install -y nginx (preferably with a version number).

Assuming no signed package or checksum is available, creating your
own is easy. For example, to create a checksum for a Redis release:

$ curl -s -o redis.tar.gz \
 http://download.redis.io/releases/redis-3.0.1.tar.gz
$ sha1sum -b redis.tar.gz
fe1d06599042bfe6a0e738542f302ce9533dde88 *redis.tar.gz

Here, we’re creating a 160-bit SHA-1 checksum. The -b flag tells
the sha1sum utility that it is dealing with binary data, not text.

Once you’ve tested and verified the software, you can add something
like the following to your Dockerfile:

RUN curl -sSL -o redis.tar.gz \
 http://download.redis.io/releases/redis-3.0.1.tar.gz \
 && echo "fe1d06599042bfe6a0e738542f302ce9533dde88\
 *redis.tar.gz" | sha1sum -c -

This downloads the file as redis.tar.gz and asks sha1sum to verify the
checksum. If the check fails, the command will fail and the build will
abort.

20 | Chapter 1: Security and Limiting Containers

Changing all these details for each release is a lot of work if you
release often, so automating the process is worthwhile. In many of
the official image repositories, you can find update.sh scripts for
this purpose (for example, https://github.com/docker-library/word‐
press/blob/master/update.sh).

Security Tips
This section contains actionable tips on securing container deploy‐
ments. Not all the advice is applicable to all deployments, but you
should become familiar with the basic tools you can use.

Many of the tips describe various ways in which containers can be
limited so that containers are unable to adversely affect other con‐
tainers or the host. The main issue to bear in mind is that the host
kernel’s resources—CPU, memory, network, UIDs, and so forth—
are shared among containers. If a container monopolizes any of
these, it will starve out other containers. Worse, if a container can
exploit a bug in kernel code, it may be able to bring down the host
or gain access to the host and other containers. This could be caused
either accidentally, through some buggy programming, or mali‐
ciously, by an attacker seeking to disrupt or compromise the host.

Set a USER
Never run production applications as root inside the container.
That’s worth saying again: never run production applications as root
inside the container. An attacker who breaks the application will
have full access to the container, including its data and programs.
Worse, an attacker who manages to break out of the container will
have root access on the host. You wouldn’t run an application as
root in a VM or on bare metal, so don’t do it in a container.

To avoid running as root, your Dockerfiles should always create a
non-privileged user and switch to it with a USER statement or from
an entrypoint script. For example:

RUN groupadd -r user_grp && useradd -r -g user_grp user
USER user

This creates a group called user_grp and a new user called user
who belongs to that group. The USER statement will take effect for all
following instructions and when a container is started from the
image. You may need to delay the USER instruction until later in the

Security Tips | 21

https://github.com/docker-library/wordpress/blob/master/update.sh)
https://github.com/docker-library/wordpress/blob/master/update.sh)

Dockerfile if you need to first perform actions that need root privi‐
leges such as installing software.

Many of the official images create an unprivileged user in the same
way, but do not contain a USER instruction. Instead, they switch
users in an entrypoint script, using the gosu utility. For example, the
entry-point script for the official Redis image looks like this:

#!/bin/bash
set -e
if ["$1" = 'redis-server']; then
 chown -R redis .
 exec gosu redis "$@"
fi

exec "$@"

This script includes the line chown -R redis ., which sets the own‐
ership of all files under the images data directory to the redis user.
If the Dockerfile had declared a USER, this line wouldn’t work. The
next line, exec gosu redis "$@", executes the given redis com‐
mand as the redis user. The use of exec means the current shell is
replaced with redis, which becomes PID 1 and has any signals for‐
warded appropriately.

22 | Chapter 1: Security and Limiting Containers

10 I’m using Ubuntu instead of Debian here, as the Ubuntu image includes sudo by
default.

Use gosu, not sudo

The traditional tool for executing commands as
another user is sudo. While sudo is a powerful and
venerable tool, it has some side effects that make it less
than ideal for use in entry-point scripts. For example,
you can see what happens if you run sudo ps aux
inside an Ubuntu10 container:
$ docker run --rm ubuntu:trusty sudo ps aux
USER PID ... COMMAND
root 1 sudo ps aux
root 5 ps aux

You have two processes, one for sudo and one for the
command you ran.
By contrast, say you install gosu into an Ubuntu image:
$ docker run --rm amouat/ubuntu-with-gosu gosu
root ps aux
USER PID ... COMMAND
root 1 ps aux

You have only one process running—gosu has exe‐
cuted the command and gotten out of the way com‐
pletely. Importantly, the command is running as PID 1,
meaning that it will correctly receive any signals sent to
the container, unlike the sudo example.

User Namespaces
As of Docker 1.10, you can enable user namespacing by starting the
kernel with the --userns-remap flag. This will map UIDs (including
root) inside the container to high-numbered UIDs on the host.
There is a single, system-wide mapping, meaning that root inside a
container is the same UID across containers. This is great step for‐
ward for security, but as of the time of writing it has some issues that
limit its usability:

• It can’t be used in conjunction with a read-only container file‐
system.

• Sharing of network, IPC and PID namespaces with the host or
other containers is restricted in many cases.

Security Tips | 23

11 We’re using the OpenBSD version here.

• The remapped root user inside a container has some extra
restrictions, such as not being able to call mknod.

• Using Docker volumes becomes more complex as the changed
UIDs affect access privileges.

Finally, if you have an application that insists on running as root
(and you can’t fix it or use user namespaces), consider using tools
such as sudo, SELinux (see “SELinux” on page 35), and fakeroot to
constrain the process.

Limit Container Networking
A container should open only the ports it needs to use in produc‐
tion, and these ports should be accessible only to the other contain‐
ers that need them. This is a little trickier than it sounds, as by
default, containers can talk to each other whether or not ports have
been explicitly published or exposed. You can see this by having a
quick play with the netcat tool:11

$ docker run --name nc-test -d \
 amouat/network-utils nc -l 5001
f57269e2805cf3305e41303eafefaba9bf8d996d87353b10d0ca577acc7...
$ docker run \
 -e IP=$(docker inspect -f \
 {{.NetworkSettings.IPAddress}} nc-test) \
 amouat/network-utils \
 sh -c 'echo -n "hello" | nc -v $IP 5001'
Connection to 172.17.0.3 5001 port [tcp/*] succeeded!
$ docker logs nc-test
hello

Tells the netcat utility to listen to port 5001 and echo any input.

Sends “hello” to the first container using netcat.

The second container is able to connect to nc-test despite there
being no ports published or exposed. You can change this by run‐
ning the Docker daemon with the --icc=false flag. This turns off
inter-container communication, which can prevent compromised
containers from being able to attack other containers. Any explicitly
linked containers will still be able to communicate.

24 | Chapter 1: Security and Limiting Containers

Docker controls inter-container communication by setting IPtables
rules (which requires that the --iptables flag is set on the daemon,
as it should be by default).

The following example demonstrates the effect of setting --

icc=false on the daemon:

$ cat /etc/default/docker | grep DOCKER_OPTS=
DOCKER_OPTS="--iptables=true --icc=false"
$ docker run --name nc-test -d --expose 5001 \
 amouat/network-utils nc -l 5001
d7c267672c158e77563da31c1ee5948f138985b1f451cd2222cf24800...
$ docker run \
 -e IP=$(docker inspect -f \
 {{.NetworkSettings.IPAddress}} nc-test)
 amouat/network-utils sh -c 'echo -n "hello" \
 | nc -w 2 -v $IP 5001'
nc: connect to 172.17.0.10 port 5001 (tcp) timed out: Ope...
$ docker run \
 --link nc-test:nc-test \
 amouat/network-utils sh -c 'echo -n "hello" \
 | nc -w 2 -v nc-test 5001'
Connection to nc-test 5001 port [tcp/*] succeeded!
$ docker logs nc-test
hello

On Ubuntu, the Docker daemon is configured by setting
DOCKER_OPTS in /etc/default/docker.

The -w 2 flag tells Netcat to time out after two seconds.

The first connection fails, as inter-container communication is off
and no link is present. The second command succeeds, due to the
added link. If you want to understand how this works under the
hood, try running sudo iptables -L -n on the host with and
without linked containers.

When publishing ports to the host, Docker publishes to all inter‐
faces (0.0.0.0) by default. You can instead specify the interface you
want to bind to explicitly:

$ docker run -p 87.245.78.43:8080:8080 -d myimage

This reduces the attack surface by only allowing traffic from the
given interface.

Security Tips | 25

12 setuid and setgid binaries run with the privileges of the owner rather than the user.
These are normally used to allow users to temporarily run with escalated privileges
required to execute a given task, such as setting a password.

Remove setuid/setgid Binaries
Chances are that your application doesn’t need any setuid or
setgid binaries.12 If you can disable or remove such binaries, you
stop any chance of them being used for privilege escalation attacks.

To get a list of such binaries in an image, try running find / -perm
+6000 -type f -exec ls -ld {} \;—for example:

$ docker run debian find / -perm +6000 -type f -exec \
 ls -ld {} \; 2> /dev/null
-rwsr-xr-x 1 root root 10248 Apr 15 00:02 /usr/lib/pt_chown
-rwxr-sr-x 1 root shadow 62272 Nov 20 2014 /usr/bin/chage
-rwsr-xr-x 1 root root 75376 Nov 20 2014 /usr/bin/gpasswd
-rwsr-xr-x 1 root root 53616 Nov 20 2014 /usr/bin/chfn
-rwsr-xr-x 1 root root 54192 Nov 20 2014 /usr/bin/passwd
-rwsr-xr-x 1 root root 44464 Nov 20 2014 /usr/bin/chsh
-rwsr-xr-x 1 root root 39912 Nov 20 2014 /usr/bin/newgrp
-rwxr-sr-x 1 root tty 27232 Mar 29 22:34 /usr/bin/wall
-rwxr-sr-x 1 root shadow 22744 Nov 20 2014 /usr/bin/expiry
-rwxr-sr-x 1 root shadow 35408 Aug 9 2014 /sbin/unix_chkpwd
-rwsr-xr-x 1 root root 40000 Mar 29 22:34 /bin/mount
-rwsr-xr-x 1 root root 40168 Nov 20 2014 /bin/su
-rwsr-xr-x 1 root root 70576 Oct 28 2014 /bin/ping
-rwsr-xr-x 1 root root 27416 Mar 29 22:34 /bin/umount
-rwsr-xr-x 1 root root 61392 Oct 28 2014 /bin/ping6

You can then “defang” the binaries with chmod a-s to remove the
suid bit. For example, you can create a defanged Debian image with
the following Dockerfile:

FROM debian:wheezy

RUN find / -perm +6000 -type f -exec chmod a-s {} \; || true

The || true allows you to ignore any errors from find.

26 | Chapter 1: Security and Limiting Containers

Build and run it:

$ docker build -t defanged-debian .
...
Successfully built 526744cf1bc1
docker run --rm defanged-debian \
 find / -perm +6000 -type f -exec ls -ld {} \; 2> /dev/null \
 | wc -l
0
$

It’s more likely that your Dockerfile will rely on a setuid/setgid
binary than your application. Therefore, you can always perform
this step near the end, after any such calls and before changing the
user (removing setuid binaries is pointless if the application runs
with root privileges).

Limit Memory
Limiting memory protects against both DoS attacks and applica‐
tions with memory leaks that slowly consume all the memory on the
host (such applications can be restarted automatically to maintain a
level of service).

The -m and --memory-swap flags to docker run limit the amount of
memory and swap memory a container can use. Somewhat confus‐
ingly, the --memory-swap argument sets the total amount of memory
(memory plus swap memory rather than just swap memory). By
default, no limits are applied. If the -m flag is used but not
--memory-swap, then --memory-swap is set to double the argument
to -m. This is best explained with an example. Here, you’ll use the
amouat/stress image, which includes the Unix stress utility that is
used to test what happens when resources are hogged by a process.
In this case, you will tell it to grab a certain amount of memory:

$ docker run -m 128m --memory-swap 128m amouat/stress \
 stress --vm 1 --vm-bytes 127m -t 5s
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
stress: info: [1] successful run completed in 5s
$ docker run -m 128m --memory-swap 128m amouat/stress \
 stress --vm 1 --vm-bytes 130m -t 5s
stress: FAIL: [1] (416) <-- worker 6 got signal 9
stress: WARN: [1] (418) now reaping child worker processes
stress: FAIL: [1] (422) kill error: No such process
stress: FAIL: [1] (452) failed run completed in 0s
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
$ docker run -m 128m amouat/stress \

Security Tips | 27

http://people.seas.harvard.edu/~apw/stress/

 stress --vm 1 --vm-bytes 255m -t 5s
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
stress: info: [1] successful run completed in 5s

These arguments tell the stress utility to run one process that
will grab 127 MB of memory and time out after 5 seconds.

This time you try to grab 130 MB, which fails because you are
allowed only 128 MB.

This time you try to grab 255 MB, and because --memory-swap
has defaulted to 256 MB, the command succeeds.

Limit CPU
If an attacker can get one container, or one group of containers, to
start using all the CPU on the host, the attacker will be able to starve
out any other containers on the host, resulting in a DoS attack.

In Docker, CPU share is determined by a relative weighting with a
default value of 1024, meaning that by default all containers will
receive an equal share of CPU.

The way it works is best explained with an example. Here, you’ll
start four containers with the amouat/stress image you saw earlier,
except this time they will all attempt to grab as much CPU as they
like, rather than memory.

$ docker run -d --name load1 -c 2048 amouat/stress
912a37982de1d8d3c4d38ed495b3c24a7910f9613a55a42667d6d28e1d...
$ docker run -d --name load2 amouat/stress
df69312a0c959041948857fca27b56539566fb5c7cda33139326f16485...
$ docker run -d --name load3 -c 512 amouat/stress
c2675318fefafa3e9bfc891fa303a16e72caf221ec23a4c222c2b889ea...
$ docker run -d --name load4 -c 512 amouat/stress
5c6e199423b59ae481d41268c867c705f25a5375d627ab7b59c5fbfbcf...
$ docker stats $(docker inspect -f {{.Name}} $(docker ps -q))
CONTAINER CPU % ...
/load1 392.13%
/load2 200.56%
/load3 97.75%
/load4 99.36%

In this example, the container load1 has a weighting of 2048, load2
has the default weighting of 1024, and the other two containers have
weightings of 512. On my machine with eight cores and hence a
total of 800% CPU to allocate, this results in load1 getting approxi‐

28 | Chapter 1: Security and Limiting Containers

mately half the CPU, load2 getting a quarter, and load3 and load4
getting an eighth each. If only one container is running, it will be
able to grab as many resources as it wants.

The relative weighting means that it shouldn’t be possible for any
container to starve the others with the default settings. However,
you may have “groups” of containers that dominate CPU over other
containers, in which case, you can assign containers in that group a
lower default value to ensure fairness. If you do assign CPU shares,
make sure that you bear the default value in mind so that any con‐
tainers that run without an explicit setting still receive a fair share
without dominating other containers.

Limit Restarts
If a container is constantly dying and restarting, it will waste a large
amount of system time and resources, possibly to the extent of caus‐
ing a DoS. This can be easily prevented by using the on-failure
restart policy instead of the always policy, for example:

$ docker run -d --restart=on-failure:10 my-flaky-image
...

This causes Docker to restart the container up to a maximum of 10
times. The current restart count can be found as .RestartCount in
docker inspect:

$ docker inspect -f "{{ .RestartCount }}" $(docker ps -lq)
0

Docker employs an exponential back-off when restarting containers.
(It will wait for 100 ms, then 200 ms, then 400 ms, and so forth on
subsequent restarts.) By itself, this should be effective in preventing
DoS attacks that try to exploit the restart functionality.

Limit Filesystems
Stopping attackers from being able to write to files prevents several
attacks and generally makes life harder for hackers. They can’t write
a script and trick your application into running it, or overwrite sen‐
sitive data or configuration files.

Starting with Docker 1.5, you can pass the --read-only flag to
docker run, which makes the container’s filesystem entirely read-
only:

Security Tips | 29

13 These are CHOWN, DAC_OVERRIDE, FSETID, FOWNER, MKNOD, NET_RAW, SETGID, SETUID, SETF
CAP, SETPCAP, NET_BIND_SERVICE, SYS_CHROOT, KILL, and AUDIT_WRITE. Dropped capa‐
bilities notably include (but are not limited to) SYS_TIME, NET_ADMIN, SYS_MODULE,
SYS_NICE, and SYS_ADMIN. For full information on capabilities, see man capabilities.

$ docker run --read-only debian touch x
touch: cannot touch 'x': Read-only file system

You can do something similar with volumes by adding :ro to the
end of the volume argument:

$ docker run -v $(pwd):/pwd:ro debian touch /pwd/x
touch: cannot touch '/pwd/x': Read-only file system

The majority of applications need to write out files and won’t oper‐
ate in a completely read-only environment. In such cases, you can
find the folders and files that the application needs write access to
and use volumes to mount only those files that are writable.

Adopting such an approach has huge benefits for auditing. If you
can be sure your container’s filesystem is exactly the same as the
image it was created from, you can perform a single offline audit on
the image rather than auditing each separate container.

Limit Capabilities
The Linux kernel defines sets of privileges—called capabilities—that
can be assigned to processes to provide them with greater access to
the system. The capabilities cover a wide range of functions, from
changing the system time to opening network sockets. Previously, a
process either had full root privileges or was just a user, with no in-
between. This was particularly troubling with applications such as
ping, which required root privileges only for opening a raw network
socket. This meant that a small bug in the ping utility could allow
attackers to gain full root privileges on the system. With the advent
of capabilities, it is possible to create a version of ping that has only
the privileges it needs for creating a raw network socket rather than
full root privileges, meaning would-be attackers gain much less from
exploiting utilities like ping.

By default, Docker containers run with a subset of capabilities,13 so,
for example, a container will not normally be able to use devices
such as the GPU and sound card or insert kernel modules. To give
extended privileges to a container, start it with the --privileged
argument to docker run.

30 | Chapter 1: Security and Limiting Containers

14 If you run this example, you’ll have a broken system until you set the time correctly.
Try running sudo ntpdate or sudo ntpdate-debian to change back to the correct
time.

In terms of security, what you really want to do is limit the capabili‐
ties of containers as much as you can. You can control the
capabilities available to a container by using the --cap-add and
--cap-drop arguments. For example, if you want to change the sys‐
tem time (don’t try this unless you want to break things!):

$ docker run debian \
 date -s "10 FEB 1981 10:00:00"
Tue Feb 10 10:00:00 UTC 1981
date: cannot set date: Operation not permitted
$ docker run --cap-add SYS_TIME debian \
 date -s "10 FEB 1981 10:00:00"
Tue Feb 10 10:00:00 UTC 1981
$ date
Tue Feb 10 10:00:03 GMT 1981

In this example, you can’t modify the date until you add the
SYS_TIME privilege to the container. As the system time is a non-
namespaced kernel feature, setting the time inside a container sets it
for the host and all other containers as well.14

A more restrictive approach is to drop all privileges and add back
just the ones you need:

$ docker run --cap-drop all debian chown 100 /tmp
chown: changing ownership of '/tmp': Operation not permitted
$ docker run --cap-drop all --cap-add CHOWN debian \
 chown 100 /tmp

This represents a major increase in security; an attacker who breaks
into a kernel will still be hugely restricted in which kernel calls she is
able to make. However, some problems exist:

• How do you know which privileges you can drop safely? Trial
and error seems to be the simplest approach, but what if you
accidentally drop a privilege that your application needs only
rarely? Identifying required privileges is easier if you have a full
test suite you can run against the container and are following a
microservices approach that has less code and moving parts in
each container to consider.

• The capabilities are not as neatly grouped and fine-grained as
you may wish. In particular, the SYS_ADMIN capability has a lot

Security Tips | 31

of functionality; kernel developers seemed to have used it as a
default when they couldn’t find (or perhaps couldn’t be bothered
to look for) a better alternative. In effect, it threatens to re-
create the simple binary split of admin user versus normal user
that capabilities were designed to remediate.

Apply Resource Limits (ulimits)
The Linux kernel defines resource limits that can be applied to pro‐
cesses, such as limiting the number of child processes that can be
forked and the number of open file descriptors allowed. These can
also be applied to Docker containers, either by passing the --ulimit
flag to docker run or setting container-wide defaults by passing
--default-ulimit when starting the Docker daemon. The argu‐
ment takes two values, a soft limit and a hard limit separated by a
colon, the effects of which are dependent on the given limit. If only
one value is provided, it is used for both the soft and hard limit.

The full set of possible values and meanings are described in full in
man setrlimit. (Note that the as limit can’t be used with contain‐
ers, however.) Of particular interest are the following values:

cpu
Limits the amount of CPU time to the given number of seconds.
Takes a soft limit (after which the container is sent a SIGXCPU
signal) followed by a SIGKILL when the hard limit is reached.
For example, again using the stress utility from “Limit Memory”
on page 27 and “Limit CPU” on page 28 to maximize CPU
usage:

32 | Chapter 1: Security and Limiting Containers

15 A file descriptor is a pointer into a table recording information on the open files on the
system. An entry is created whenever a file is accessed, recording the mode (read, write,
etc.) the file is accessed with and pointers to the underlying files.

$ time docker run --ulimit cpu=12:14 amouat/stress \
 stress --cpu 1
stress: FAIL: [1] (416) <-- worker 5 got signal 24
stress: WARN: [1] (418) now reaping child worker processes
stress: FAIL: [1] (422) kill error: No such process
stress: FAIL: [1] (452) failed run completed in 12s
stress: info: [1] dispatching hogs: 1 cpu, 0 io, 0 vm, 0 hdd

real 0m12.765s
user 0m0.247s
sys 0m0.014s

The ulimit argument killed the container after it used 12 seconds of
CPU.

This is potentially useful for limiting the amount of CPU that can be
used by containers kicked off by another process—for example, run‐
ning computations on behalf of users. Limiting CPU in such a way
may be an effective mitigation against DoS attacks in such circum‐
stances.

nofile
The maximum number of file descriptors15 that can be concur‐
rently open in the container. Again, this can be used to defend
against DoS attacks and ensure that an attacker isn’t able to read
or write to the container or volumes. (Note that you need to set
nofile to one more than the maximum number you want.) For
example:

$ docker run --ulimit nofile=5 debian cat /etc/hostname
b874469fe42b
$ docker run --ulimit nofile=4 debian cat /etc/hostname
Timestamp: 2015-05-29 17:02:46.956279781 +0000 UTC
Code: System error

Message: Failed to open /dev/null - open /mnt/sda1/var/...

Here, the OS requires several file descriptors to be open, although
cat requires only a single file descriptor. It’s hard to be sure of how
many file descriptors your application will need, but setting it to a
number with plenty of room for growth offers some protection
against DoS attacks, compared to the default of 1048576.

Security Tips | 33

nproc
The maximum number of processes that can be created by the
user of the container. On the face of it, this sounds useful,
because it can prevent fork bombs and other types of attack.
Unfortunately, the nproc limits are not set per container but
rather for the user of the container across all processes. This
means, for example:

$ docker run --user 500 --ulimit nproc=2 -d debian sleep 100
92b162b1bb91af8413104792607b47507071c52a2e3128f0c6c7659bfb...
$ docker run --user 500 --ulimit nproc=2 -d debian sleep 100
158f98af66c8eb53702e985c8c6e95bf9925401c3901c082a11889182b...
$ docker run --user 500 --ulimit nproc=2 -d debian sleep 100
6444e3b5f97803c02b62eae601fbb1dd5f1349031e0251613b9ff80871555664
FATA[0000] Error response from daemon: Cannot start contai...
[8] System error: resource temporarily unavailable
$ docker run --user 500 -d debian sleep 100
f740ab7e0516f931f09b634c64e95b97d64dae5c883b0a349358c59958...

The third container couldn’t be started, because two processes
already belong to UID 500. By dropping the --ulimit argument,
you can continue to add processes as the user. Although this is a
major drawback, nproc limits may still be useful in situations where
you use the same user across a limited number of containers.

Also note that you can’t set nproc limits for the root user.

Run a Hardened Kernel
Beyond simply keeping your host operating system up-to-date and
patched, you may want to consider running a hardened kernel,
using patches such as those provided by grsecurity and PaX. PaX
provides extra protection against attackers manipulating program
execution by modifying memory (such as buffer overflow attacks). It
does this by marking program code in memory as nonwritable and
data as nonexecutable. In addition, memory is randomly arranged
to mitigate against attacks that attempt to reroute code to existing
procedures (such as system calls in common libraries). grsecurity is
designed to work alongside PaX, and it adds patches related to role-
based access control (RBAC), auditing, and other miscellaneous fea‐
tures.

To enable PaX and/or grsec, you will probably need to patch and
compile the kernel yourself. This isn’t as daunting as it sounds, and
plenty of resources are available online to help.

34 | Chapter 1: Security and Limiting Containers

https://grsecurity.net/
https://pax.grsecurity.net/
https://en.wikibooks.org/wiki/Grsecurity/Configuring_and_Installing_grsecurity
http://www.insanitybit.com/2012/05/31/compile-and-patch-your-own-secure-linux-kernel-with-pax-and-grsecurity/

These security enhancements may cause some applications to break.
PaX, in particular, will conflict with any programs that generate
code at runtime. A small overhead also is associated with the extra
security checks and measures. Finally, if you use a precompiled ker‐
nel, you will need to ensure that it is recent enough to support the
version of Docker you want to run.

Linux Security Modules
The Linux kernel defines the Linux Security Module (LSM) inter‐
face, which is implemented by various modules that want to enforce
a particular security policy. At the time of writing, several imple‐
mentations exist, including AppArmor, SELinux, Smack, and
TOMOYO Linux. These security modules can be used to provide
another level of security checks on the access rights of processes and
users, beyond that provided by the standard file-level access control.

The modules normally used with Docker are SELinux (typically
with Red Hat-based distributions) and AppArmor (typically with
Ubuntu and Debian distributions). We’ll take a look at both of these
modules now.

SELinux
The SELinux, or Security Enhanced Linux, module was developed by
the United States National Security Agency (NSA) as an implemen‐
tation of what they call mandatory access control (MAC), as con‐
trasted to the standard Unix model of discretionary access control
(DAC). In somewhat plainer language, there are two major differ‐
ences between the access control enforced by SELinux and the stan‐
dard Linux access controls:

• SELinux controls are enforced based on types, which are essen‐
tially labels applied to processes and objects (files, sockets, and
so forth). If the SELinux policy forbids a process of type A to
access an object of type B, that access will be disallowed, regard‐
less of the file permissions on the object or the access privileges
of the user. SELinux tests occur after the normal file permission
checks.

• It is possible to apply multiple levels of security, similar to the
governmental model of confidential, secret, and top-secret
access. Processes that belong to a lower level cannot read files

Linux Security Modules | 35

written by processes of a higher level, regardless of where in the
filesystem the file resides or what the permissions on the file are.
So a top-secret process could write a file to /tmp with chmod 777
privileges, but a confidential process would still be unable to
access the file. This is known as multilevel security (MLS) in
SELinux, which also has the closely related concept of multicate‐
gory security (MCS). MCS allows categories to be applied to
processes and objects and denies access to a resource if it does
not belong to the correct category. Unlike MLS, categories do
not overlap and are not hierarchical. MCS can be used to
restrict access to resources to subsets of a type (for example, by
using a unique category, a resource can be restricted to use by
only a single process).

SELinux comes installed by default on Red Hat distributions and
should be simple to install on most other distributions. You can
check whether SELinux is running by executing sestatus. If that
command exists, it will tell you whether SELinux is enabled or dis‐
abled and whether it is in permissive or enforcing mode. When in
permissive mode, SELinux will log access-control infringements but
will not enforce them.

The default SELinux policy for Docker is designed to protect the
host from containers, as well as containers from other containers.
Containers are assigned the default process type svirt_lxc_net_t,
and files accessible to a container are assigned svirt_sand

box_file_t. The policy enforces that containers are able to read and
execute files only from /usr on the host and cannot write to any file
on the host. It also assigns a unique MCS category number to each
container, intended to prevent containers from being able to access
files or resources written by other containers in the event of a break‐
out.

36 | Chapter 1: Security and Limiting Containers

Enabling SELinux

If you’re running a Red Hat-based distribution,
SELinux should be installed already. You can check
whether it’s enabled and is enforcing rules by running
sestatus on the command line. To enable SELinux
and set it to enforcing mode, edit /etc/selinux/config so
that it contains the line SELINUX=enforcing.
You will also need to ensure that SELinux support is
enabled on the Docker daemon. The daemon should
be running with the flag --selinux-enabled. If not, it
should be added to the file /etc/sysconfig/docker.
You must be using the devicemapper storage driver to
use SELinux. At the time of writing, getting SELinux to
work with Overlay and BTRFS is an ongoing effort,
but they are not currently compatible.
For installation of other distributions, refer to the rele‐
vant documentation. Note that SELinux needs to label
all files in your filesystem, which takes some time. Do
not install SELinux on a whim!

Enabling SELinux has an immediate and drastic effect on using con‐
tainers with volumes. If you have SELinux installed, you will no
longer be able to read or write to volumes by default:

$ sestatus | grep mode
Current mode: enforcing
$ mkdir data
$ echo "hello" > data/file
$ docker run -v $(pwd)/data:/data debian cat /data/file
cat: /data/file: Permission denied

You can see the reason by inspecting the folder’s security context:

$ ls --scontext data
unconfined_u:object_r:user_home_t:s0 file

The label for the data doesn’t match the label for containers. The fix
is to apply the container label to the data by using the chcon tool,
effectively notifying the system that you expect these files to be con‐
sumed by containers:

$ chcon -Rt svirt_sandbox_file_t data
$ docker run -v $(pwd)/data:/data debian cat /data/file
hello
$ docker run -v $(pwd)/data:/data debian \
 sh -c 'echo "bye" >> /data/file'

Linux Security Modules | 37

$ cat data/file
hello
bye
$ ls --scontext data
unconfined_u:object_r:svirt_sandbox_file_t:s0 file

Note that if you run chcon only on the file and not the parent folder,
you will be able to read the file but not write to it.

From version 1.7 and on, Docker automatically relabels volumes for
use with containers if the :Z or :z suffix is provided when mounting
the volume. The :z labels the volume as usable by all containers
(this is required for data containers that share volumes with multiple
containers), and the :Z labels the volume as usable by only that con‐
tainer. For example:

$ mkdir new_data
$ echo "hello" > new_data/file
$ docker run -v $(pwd)/new_data:/new_data debian \
 cat /new_data/file
cat: /new_data/file: Permission denied
$ docker run -v $(pwd)/new_data:/new_data:Z debian \
 cat /new_data/file
hello

You can also use the --security-opt flag to change the label for a
container or to disable the labeling for a container:

$ touch newfile
$ docker run -v $(pwd)/newfile:/file \
 --security-opt label:disable \
 debian sh -c 'echo "hello" > /file'
$ cat newfile
hello

An interesting use of SELinux labels is to apply a specific label to a
container in order to enforce a particular security policy. For exam‐
ple, you could create a policy for an Nginx container that allows it to
communicate on only ports 80 and 443.

Be aware that you will be unable to run SELinux commands from
inside containers. Inside the container, SELinux appears to be
turned off, which prevents applications and users from trying to run
commands such as setting SELinux policies that will get blocked by
SELinux on the host.

A lot of tools and articles are available for helping to develop
SELinux policies. In particular, be aware of audit2allow, which can
turn log messages from running in permissive mode into policies

38 | Chapter 1: Security and Limiting Containers

that allow you to run in enforcing mode without breaking applica‐
tions.

The future for SELinux looks promising; as more flags and default
implementations are added to Docker, running SELinux secured
deployments should become simpler. The MCS functionality should
allow for the creation of secret or top-secret containers for process‐
ing sensitive data with a simple flag. Unfortunately, the current user
experience with SELinux is not great; newcomers to SELinux tend to
watch everything break with “Permission Denied” and have no idea
what’s wrong or how to fix it. Developers refuse to run with SELinux
enabled, leading back to the problem of having different environ‐
ments between development and production—the very problem
Docker was meant to solve. If you want or need the extra protection
that SELinux provides, you will have to grin and bear the current sit‐
uation until things improve.

AppArmor
The advantage and disadvantage of AppArmor is that it is much
simpler than SELinux. It should just work and stay out of your way,
but cannot provide the same granularity of protection as SELinux.
AppArmor works by applying profiles to processes, restricting
which privileges they have at the level of Linux capabilities and file
access.

If you’re using an Ubuntu host, chances are that it is running right
now. You can check this by running sudo apparmor_status. Docker
will automatically apply an AppArmor profile to each launched con‐
tainer. The default profile provides a level of protection against
rogue containers attempting to access various system resources, and
it can normally be found at /etc/apparmor.d/docker. At the time of
writing, the default profile cannot be changed, as the Docker dae‐
mon will overwrite it when it reboots.

If AppArmor interferes with the running of a container, it can be
turned off for that container by passing --security-opt="appa
rmor:unconfined" to docker run. You can pass a different profile
for a container by passing --security-opt="apparmor:PROFILE" to
docker run, where the PROFILE is the name of a security profile pre‐
viously loaded by AppArmor.

Linux Security Modules | 39

Auditing
Running regular audits or reviews on your containers and images is
a good way to ensure that your system is kept clean and up-to-date
and to double-check that no security breaches have occurred. An
audit in a container-based system should check that all running con‐
tainers are using up-to-date images and that those images are using
up-to-date and secure software. Any divergence in a container from
the image it was created from should be identified and checked. In
addition, audits should cover other areas nonspecific to container-
based systems, such as checking access logs, file permissions, and
data integrity. If audits can be largely automated, they can run regu‐
larly to detect any issues as quickly as possible.

Rather than having to log into each container and examine each
individually, you can instead audit the image used to build the con‐
tainer and use docker diff to check for any drift from the image.
This works even better if you use a read-only filesystem (see “Limit
Filesystems” on page 29) and can be sure that nothing has changed
in the container.

At a minimum, you should check that the versions of software used
are up-to-date with the latest security patches. This should be
checked on each image and any files identified as having changed by
docker diff. If you are using volumes, you will also need to audit
each of those directories.

The amount of work involved in auditing can be seriously reduced
by running minimal images that contain only the files and libraries
essential to the application.

The host system also needs to be audited as you would a regular host
machine or VM. Making sure that the kernel is correctly patched
becomes even more critical in a container-based system where the
kernel is shared among containers.

Several tools are already available for auditing container-based sys‐
tems, and you can expect to see more in the coming months. Nota‐
bly, Docker released the Docker Bench for Security tool, which
checks for compliance with many of the suggestions from the
Docker Benchmark document from the Center for Internet Security
(CIS). Also, the open source Lynis auditing tool contains several
checks related to running Docker.

40 | Chapter 1: Security and Limiting Containers

https://dockerbench.com
https://benchmarks.cisecurity.org/
https://cisofy.com/lynis/

Incident Response
Should something bad occur, you can take advantage of several
Docker features to respond quickly to the situation and investigate
the cause of the problem. In particular, docker commit can be used
to take a snapshot of the compromised system, and docker diff
and docker logs can reveal changes made by the attacker.

A major question that needs to be answered when dealing with a
compromised container is “Could a container breakout have occur‐
red?” Could the attacker have gained access to the host machine? If
you believe that this is possible or likely, the host machine will need
to be wiped and all containers re-created from images (without
some form of attack mitigation in place). If you are sure the attack
was isolated to the container, you can simply stop that container and
replace it. (Never put the compromised container back into service,
even if it holds data or changes not in the base image; you simply
can’t trust the container anymore.)

Effective mitigation against the attack may be to limit the container
in some way, such as dropping capabilities or running with a read-
only filesystem.

Once the immediate situation has been dealt with and some form of
attack mitigation put in place, the compromised image that you
committed can be analyzed to determine the exact causes and extent
of the attack.

For information on how to develop an effective security policy cov‐
ering incident response, read CERT’s Steps for Recovering from a
UNIX or NT System Compromise and the advice given on the Serv‐
erFault website.

Conclusion
As you’ve seen in this report, there are many aspects to consider
when securing a system. The primary advice is to follow the princi‐
ples of defense-in-depth and least privilege. This ensures that even if
an attacker manages to compromise a component of the system, that
attacker won’t gain full access to the system and will have to pene‐
trate further defenses before being able to cause significant harm or
access sensitive data.

Incident Response | 41

https://www.cert.org/historical/tech_tips/win-UNIX-system_compromise.cfm
https://www.cert.org/historical/tech_tips/win-UNIX-system_compromise.cfm
https://serverfault.com/questions/218005/how-do-i-deal-with-a-compromised-server
https://serverfault.com/questions/218005/how-do-i-deal-with-a-compromised-server

Groups of containers belonging to different users or operating on
sensitive data should run in VMs separate from containers belong‐
ing to other users or running publicly accessible interfaces. The
ports exposed by containers should be locked down, particularly
when exposed to the outside world, but also internally to limit the
access of any compromised containers. The resources and function‐
ality available to containers should be limited to only that required
by their purpose, by setting limits on their memory usage, filesystem
access, and kernel capabilities. Further security can be provided at
the kernel level by running hardened kernels and using security
modules such as AppArmor or SELinux.

In addition, attacks can be detected early through the use of moni‐
toring and auditing. Auditing, in particular, is interesting in a
container-based system, as containers can be easily compared to the
images they were created from in order to detect suspicious changes.
In turn, images can be vetted offline to make sure they are running
up-to-date and secure versions of software. Compromised contain‐
ers with no state can be replaced quickly with newer versions.

Containers are a positive force in terms of security because of the
extra level of isolation and control they provide. A system using
containers properly will be more secure than the equivalent system
without containers.

42 | Chapter 1: Security and Limiting Containers

About the Author
Adrian Mouat is Chief Scientist at Container Solutions. In the past
he has worked on a wide range of software projects, from small web
apps to large-scale data-analysis software. He has also authored the
Docker book: Using Docker (O’Reilly, 2015).

	Cover
	Security
	Copyright
	Table of Contents
	Chapter 1. Security and Limiting Containers
	Things to Worry About
	Defense in Depth
	Least Privilege

	Segregate Containers by Host
	Applying Updates
	Avoid Unsupported Drivers

	Image Provenance
	Docker Digests
	Docker Content Trust
	Reproducible and Trustworthy Dockerfiles

	Security Tips
	Set a USER
	Limit Container Networking
	Remove setuid/setgid Binaries
	Limit Memory
	Limit CPU
	Limit Restarts
	Limit Filesystems
	Limit Capabilities
	Apply Resource Limits (ulimits)

	Run a Hardened Kernel
	Linux Security Modules
	SELinux
	AppArmor

	Auditing
	Incident Response
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

