
Todd DeCapua & Shane Evans

Effective
Performance
Engineering

http://oreil.ly/ops-perf

Todd DeCapua and Shane Evans

Effective Performance
Engineering

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95086-9

[LSI]

Effective Performance Engineering
by Todd DeCapua and Shane Evans

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Colleen Lobner
Copyeditor: Colleen Toporek
Proofreader: Rachel Monaghan

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-05-16: First Release
2016-07-11: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491950869 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Effective Perfor‐
mance Engineering, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491950869

Table of Contents

1. Getting Started. 1
What Is Effective Performance Engineering? 2
Why Is Effective Performance Engineering Necessary? 7
Focusing on Business Need 18

2. Overview of Performance Engineering. 21
Performance Engineering Throughout the Lifecycle 21
Stakeholders 50
Building in Performance 52

3. Proven Practices of Performance Engineering. 61
Requirements, Architecture, and Design 61
Proven Practices for DevTest 67
Proven Practices for Operations 74

4. Tying It All Together. 81
Metrics for Success 82
Automation 87
Market Solutions 91
Conclusion 103

v

CHAPTER 1

Getting Started

How do we get started with Effective Performance Engineering?

Let’s start by defining it. When speaking with different individuals
and organizations, we’ve found the definition of “Effective Perfor‐
mance Engineering” or “Performance Engineering” varies greatly, so
we wanted to define it upfront.

Performance Engineering represents a cultural shift in the way
organizations view their essential processes. It embraces practices
and capabilities that build quality and performance throughout an
organization. This enables organizations to increase revenue, cus‐
tomer attraction and retention, brand value, and competitive advan‐
tage—all while focusing on meeting and exceeding the expectations
of their end users.

Let’s go back to see where performance was first introduced in the
modern computer era in technology history: when the Z1 was cre‐
ated by German Konrad Zuse in his parents’ living room between
1936 and 1938. The Z1 is considered to be the first electro-
mechanical binary programmable computer, and the first really
functional modern computer. This marked the start of “Perfor‐
mance Engineering” for hardware and software related to the
modern computer, some nearly 80 years ago.

Prior to the first functional modern computer, there are many
examples of other performance-related topics associated with crops,
livestock, medicine, mechanics, and plenty more. As with anything
the challenge remains similar, but the practices and capabilities

1

http://bit.ly/z1-first

change. Many of these practices were handed down from mentor to
mentee and through apprenticeship or learned through individual
real-world experiences.

We will take a look at the Effective Performance Engineering of
today, and how it relates to future technology and business capabili‐
ties (including computer and associated hardware and software) to
serve the end user, and several other impacting factors and opportu‐
nities as we continue to accelerate.

What Is Effective Performance Engineering?
While Performance Engineering is often defined narrowly as ensur‐
ing that nonfunctional requirements are met (such as response
times, resource utilization, and throughput), the trend has moved
toward a much broader application of the term.

“Performance Engineering” doesn’t refer only to a specific role.
More generally, it refers to the set of skills and practices that are
gradually being understood and adopted across organizations that
focus on achieving higher levels of performance in technology, in
the business, and for end users.

Performance Engineering embraces practices and capabilities that
build in quality and performance throughout an organization,
including functional requirements, security, usability, technology
platform management, devices, third-party services, the cloud,
and more.

Stakeholders of Performance Engineering run the gamut, including
Business, Operations, Development, Testing/Quality Assurance, and
End Users.

We’ll explore several different facets of Performance Engineering in
this book, providing a well-rounded overview of the practices and
capabilities that make up Effective Performance Engineering.

Hardware
The traditional goal of Performance Engineering between the 1970s
and the late 90s was to optimize the application hardware to suit the
needs of the business or, more accurately, the IT organization that
provided the services to the business. This activity was really more
of a capacity planning function, and many teams charged with car‐

2 | Chapter 1: Getting Started

rying the mantle of performance reported to operations or infra‐
structure teams. Some still do (and that’s okay).

As hardware became more commoditized and the adoption of vir‐
tual infrastructure and “the cloud” more prevalent, this function
took a backseat to development in an effort to deliver business
applications and changes faster. It isn’t uncommon now for teams to
have multiple environments to support development, test, produc‐
tion, and failover. While certainly more cost-effective than ever,
virtualization has given us the false sense that these environments
are free.

The cloud allows service providers to charge a premium for com‐
puter power in exchange for the promise of higher uptime, higher
availability, and virtually unlimited capacity. However, the cloud
doesn’t promise an optimal user experience. Applications need to be
optimized for the cloud in order to maximize the potential return
on investment.

Software
Over the last 30 years, software has transformed from monolithic to
highly distributed, and even the concept of model-view-controller
(MVC) has evolved to service-oriented (SOA) and micro-service
architectures, all in an effort to reduce the number of points of
change or failure, and improve the time-to-value when new func‐
tionality is implemented. Isolating components also allows develop‐
ers to test their discrete behavior, which often leaves end-to-end
integrated testing out of scope. The assumption here is that if every
component behaves as it should, the entire system should perform
well. In an isolated environment this may be true, but there are
many factors introduced when you’re building large-scale dis‐
tributed systems that impact performance and the end-user experi‐
ence—factors that may not be directly attributed to software, but
should be considered nonetheless, such as network latency, individ‐
ual component failures, and client-side behavior. It is important to
build and test application components with all of these factors rep‐
resented in order to optimize around them.

Culture
Every organization and group has a mission and vision. While they
strive to attain these goals, performance becomes implied or

What Is Effective Performance Engineering? | 3

implicit. But performance needs to be a part of all decisions around
the steps taken to achieve a goal; it forms the basis of how an organi‐
zation will embody Performance Engineering throughout their cul‐
ture to achieve their mission and vision.

We need to treat performance as a design principle, similar to decid‐
ing whether to build applications using MVC or micro-services
architectures, or asking why a new epic (or the relative size of a
requirement, in Agile terminology) is important to the business, and
how performance with the business/technology/end user will make
a difference for all stakeholders. Performance needs to be an over‐
arching requirement from the beginning, or we have already started
on the wrong foot.

In order to build a culture that respects the performance require‐
ments of the organization and our end users, there needs to be some
incentive to do so. If it doesn’t come from the top down, then we can
take a grassroots approach, but first we need to quantify what per‐
formance means to our business, users, and team. We must under‐
stand the impact and cost of every transaction in the system, and
seek to optimize that for improved business success.

Throughout this book are sidebars in which we look at five compa‐
nies and examine how performance is built in to their culture. These
organizations are from a variety of industries and verticals, showing
the diversity of how a performance culture drives everything a busi‐
ness does, enabling it to deliver amazing results. Here are the five
companies we will look at in more detail:

• Google
• Wegmans
• DreamWorks
• Salesforce
• Apple

The key takeaway here should be that performance is everyone’s
responsibility, not just the developers', the testers', or the operations
team’s. It needs to be part of our collective DNA. “Performance
First” can be a mantra for every stakeholder.

4 | Chapter 1: Getting Started

Google: A Performance Culture Based on 10 Things
Within Google’s “About Google” section is an area titled “What we
believe,” in which the “Ten things we know to be true” live. There
are items written when the company was a few years old, which
they continue to revisit to hold each other accountable.

There is a classic video from Google I/O 2014 where Paul Lewis and
Lara Swanson talk about the performance culture at Google. Part of
the abstract from this video states, “We can be deliberate about per‐
formance and mobile web, make smart use of performance moni‐
toring tools, and cultivate a social atmosphere of collaboratively
improving performance for our mobile users.”

Tim Kadlec shared his notes on the video:

• 34% of U.S. adults use a smartphone as their primary means
of Internet access.

• Mobile networks add a tremendous amount of latency.

• We are not our end users. The new devices and fast net‐
works we use are not necessarily what our users are using.

• 40% of people abandon a site that takes longer than 2–3 sec‐
onds to load.

• Performance cops (developers or designers who enforce
performance) is not sustainable. We need to build a perfor‐
mance culture.

• There is no “I” in performance. Performance culture is a
team sport.

• The first step is to gather data. Look at your traffic stats,
load stats and render stats to better understand the shape of
your site and how visitors are using it.

• Conduct performance experiments on your site to see the
impact of performance on user behavior.

• Test across devices to experience what your users are experi‐
encing. Not testing on multiple devices can cost much more
than the cost of building a device lab.

• Add performance into your build tools to automatically per‐
form optimizations and build a dashboard of performance
metrics over time. Etsy notifies developers whenever one of
the metrics exceeds a performance goal.

• Surfacing your team’s performance data throughout devel‐
opment will improve their work.

What Is Effective Performance Engineering? | 5

http://bit.ly/google-philo
http://bit.ly/google-philo
http://bit.ly/io-perf-culture
http://bit.ly/kadlec-perf-culture

• Celebrating performance wins both internally and exter‐
nally will make your team more eager to consider perfor‐
mance in their work.

Even the New York Times published an article, quoting Ben Waber,
who has a Ph.D. from M.I.T., is the author of People Analytics (FT
Press), and is, at 29, the median age of Google employees. His com‐
pany, Sociometric Solutions in Boston, uses data to assess work‐
place interactions. “Google has really been out front in this field,” he
said. “They’ve looked at the data to see how people are collaborat‐
ing. Physical space is the biggest lever to encourage collaboration.
And the data are clear that the biggest driver of performance in
complex industries like software is serendipitous interaction. For
this to happen, you also need to shape a community. That means if
you’re stressed, there’s someone to help, to take up the slack. If
you’re surrounded by friends, you’re happier, you’re more loyal,
you’re more productive. Google looks at this holistically. It’s the
antithesis of the old factory model, where people were just cogs in
a machine.”

The end-user experience should be at the forefront of thinking when
it comes to performance. The satisfaction of your end users will ulti‐
mately drive business success (or failure), and can be quantified by a
number of metrics in described in “Metrics for Success” on page 82.
The point is that it shouldn’t matter whether your servers can handle
1,000 hits/second or if CPU usage is below 80%. If the experience of
the end user is slow or unreliable, the end result should be consid‐
ered a failure.

Business
What does performance mean to your business? Aberdeen Group
surveyed 160 companies with average annual revenue of over $1 bil‐
lion, finding that a one-second delay in response time caused an
11% decrease in page views, a 7% decrease in “conversions,” and a
16% decrease in customer satisfaction.

Google conducted experiments on two different page designs, one
with 10 results per page and another with 30. The larger design page
took a few hundred milliseconds longer to load, reducing search
usage by 20%. Traffic at Google is correlated to click-through rates,
and click-through rates are correlated with revenue, so the 20%
reduction in traffic would have led to a 20% reduction in revenue.

6 | Chapter 1: Getting Started

Reducing Google Maps’ 100-kilobyte page weight by almost a third
increased traffic by over one-third.

The correlation between response time and revenue is not restricted
to Google. A former employee of Amazon.com discovered that 100
milliseconds of delay reduced revenues by 1%. Whether you are sell‐
ing goods online or providing access to healthcare registration for
citizens, there is a direct correlation between the performance of
your applications and the success of your business.

Why Is Effective Performance Engineering
Necessary?
Over the years, we have all lived with the mantras “Do more with
less,” and “Faster, cheaper, and better.” While some organizations
have survived, many have not. Now we are faced with a different
question: “How do we deliver highest quality, highest value, at the
highest speed?”

In addition, organizations must focus on other key elements, like
revenue, competitive advantage, customers, and brand value. Practi‐
ces like Agile and DevOps have evolved and become more widely
adopted. Regardless of the lifecycle, Effective Performance Engi‐
neering practices are enabling organizations to accomplish the pre‐
ceding focus areas and goals for their end users. We will touch on
each of these focus points next.

Revenue
Effective Performance Engineering enables organizations to increase
revenue in several ways. In a recent survey, 68% of respondents
expected Performance Engineering practices to increase revenues by
“ensuring the system can process transactions within the requisite
time frame.” While all survey participants were generally in agree‐
ment regarding the tasks required, they had different expectations.

In addition to the increase in revenue, another result is reduced cost;
62% of the Performance Engineering–focused respondents felt that
Performance Engineering practices should serve to avoid “unneces‐
sary hardware acquisition costs.”

By building in performance, organizations can start optimizing
applications before the first piece of code is even written, or before

Why Is Effective Performance Engineering Necessary? | 7

http://bit.ly/make-data-useful
http://bit.ly/make-data-useful

that new capability lights up the hardware, thereby improving
the end-user experience and proactively focusing on the business
objectives. Cost reductions can be dramatic. As the result of reduced
performance-related production incidents, organizations can often
handle 30–50 percent more transactions with the same (or less)
infrastructure.

Savings can quickly multiply—fewer machines means reduced capi‐
tal expense as the business scales, including lower operational
expenses related to power and cooling. Fewer resources are then
needed to support the infrastructure. Savings also accumulate
through the reduction in performance-related production incidents
that need to be managed, which reduces the opportunity cost of
putting your most valuable people to work on new features and
functions for the end user and your business.

A catalog company, for example, might focus on total revenue from
a specific product line or service, then track it after making specific
changes to a promotional website to see if revenue increases. In
another scenario, the value of the mobile application might be
judged by the number of registered users and the frequency with
which they access products or services. And, as the backend infra‐
structure (including web servers, middle tiers, and databases) takes
on more roles inside the corporation, the metrics that track the per‐
formance of the larger organizational goals better reflect the quality
of the supporting technology.

The rise in importance of Performance Engineering has been driven
by practical concerns. At least 50% of respondents admitted that
slowdowns and outages were discouraging customers and frustrat‐
ing employees. Many characterized the problems as “repeated,” and
said they were often caused by large spikes in traffic that weren’t
anticipated when the applications were built.

The consequences are serious. The average firm that responded to
the survey said that a major outage could cost between $100,000 and
$500,000 in lost revenue per hour. Some of the larger companies
with more than 10,000 employees said they could lose $5 million an
hour from website or core system outages.

When organizations contemplated the scope and catastrophic range
of these failures, they recognized that the traditional development
process just wasn’t ready to build a system with adequate provisions
for surviving these kinds of issues. Transforming the organization

8 | Chapter 1: Getting Started

http://bit.ly/hp-2020-survey

and focusing individuals and teams on performance means empow‐
ering them with capabilities to anticipate problems and solve them
before they occur. And when problems emerge after deployment, it
means giving the team the ability to control failure and mitigate risk.

This is one of the reasons why a greater understanding of Perfor‐
mance Engineering as a cross-discipline, intra-business mindset is
so essential. Revenue is often the first and foremost measurement
of why something needs to change in any organization, but it is not
always used as a measurement of Effective Performance Engineering
—even though it’s often seen as the key differentiator in gaining a
competitive advantage related to delivering a product or service
faster and better than anyone else in the market.

Salesforce.com: Entrepreneurial, Independent,
and Results-Oriented

Salesforce provides quick insight to their culture on their website
and states the following:

Top talent across the globe comes to salesforce.com for the
“change-the-world” mentality; the opportunity to excel in a fast-
paced atmosphere; and the chance to be surrounded by peers and
leaders that inspire, motivate, and innovate. Salesforce.com offers
a unique career opportunity, regardless of what you do or where
you do it.
Our employees are entrepreneurial, independent, and results-
oriented. If you like working hard in a place where hard work is
rewarded, contributing to projects where contributions count,
and growing in a company where growth knows no boundaries,
salesforce.com is perfect place to do the best work of your career.
The beneficiaries of our hard work extend into our communities
through the Salesforce.com Foundation. Employees are encour‐
aged to give back to the community and get four hours per
month, or six full days per year, off with pay to spend on volun‐
teer activities.

Looking to mainstream media, we quickly find Salesforce appears
often in the “Fortune Top 100 Places to Work.” When you look at
the Employee Ratings, it is easy to see how the right culture can
benefit an organization. Adopting Effective Performance Engineer‐
ing capabilities supports many of these metrics.

Figure 1-1 shows Salesforce employee ratings, demonstrating that
93% of employees say their workplace is “great.”

Why Is Effective Performance Engineering Necessary? | 9

http://bit.ly/salesforce-culture
http://bit.ly/salesforce-ratings
http://bit.ly/salesforce-ratings

Figure 1-1. Salesforce employee ratings

On the Salesforce careers page, the company showcases a hashtag
(#dreamjob) that says a lot for its culture. Going a bit further, they
add, “A #dreamjob starts with passionate people who do work that
matters, win as a team, and celebrate success together. It ends with
knowing that together, we are the force innovating the future of
business for customers. We are living our #dreamjob. Join us!”

Competitive Advantage
There’s an obvious business reason to focus on the needs of end
users. If they’re your customers, they’re consuming your products
and/or services and possibly paying you for results. If you’re a
provider in a technology chain that defines a complex solution of
some sort, you’re still dependent on the satisfaction of users, how‐
ever indirectly.

But it wasn’t so long ago—say, 20 years—that users of computing
systems were expected to live with high latencies, downtimes, and
bug workarounds that were common in business systems. That’s
because users were employees and had to put up with the buggy,
slow, or unpredictable systems their employers provided. Or they
were users of a standalone application, such as WordPerfect for writ‐
ing, or Lotus 1-2-3 for spreadsheets.

That’s right, we’re talking about the pre-Internet age, when very few
users imagined doing actual business transactions online. But once
e-commerce became a buzzword, and soon simply a word, users

10 | Chapter 1: Getting Started

http://bit.ly/salesforce-careers

stopped being just users. They became customers, and it was obvious
the best web-based experiences for customers would lead to repeat
business.

Fast-forward to today’s web-based and mobile business climate,
where:

• User experience (UX) is a red-hot topic.
• Commoditization of virtually everything is a fact of life.
• Social media is the engine that can quickly sink an online

retailer, transportation provider, and so on if the UX is poor—
no matter the reason.

These days, performance is king, and your online or mobile custom‐
ers can either be adoring subjects or a mob of thousands, with the
social-media equivalent of torches and pitchforks, at your kingdom’s
gate. Or they’ll just go on to the next provider, leaving you alone in
the dark ages.

Thrill your end users (especially customers) by outperforming their
expectations, and you’ll get to keep doing more of whatever made
them come to you in the first place, while making your company
brand champions.

DreamWorks Animation: Inspiring Audiences
to Dream and Laugh Together

Going to the DreamWorks website to learn about the company’s
culture was an experience in and of itself. We were surprised to see
five areas of focus in the “Our Culture” section of the site:

1. Our Culture
2. Education
3. Campus Activities
4. Well-Being
5. Environment

Within the “Our Culture” area of focus it states, “At the heart of
DreamWorks Animation is the desire to tell great stories that
inspire audiences to dream and laugh together, pushing the bound‐
aries of both creativity and technology. To do this effectively,
DreamWorks is dedicated to providing the best work environment

Why Is Effective Performance Engineering Necessary? | 11

http://bit.ly/dreamworks-culture

possible for the company’s artists, engineers and everyone in
between, so that they enjoy creating their work just as much as
audiences enjoy watching it.”

Going to the Indeed website revealed a bit more about the culture
at DreamWorks, as nearly all reviews were 5 stars, nearly unheard
of at other companies in this industry.

Another article from ChicagoCreativeSpace’s Max Chopovsky con‐
cludes by stating, “we have found ways to combine these spaces and
make them all onsite so that collaboration, creativity and efficiency
are maximized.”

Many companies recognize that it’s not enough to call something a
glitch, cross their virtual fingers, and hope it never happens again.
They need to track their computer systems’ online status; guarantee
that they’re responding to customers, partners, and employees; and
measure whether they’re delivering the information promptly so no
one is clicking, tapping, pounding the return key, and wondering
whether they should just go somewhere else.

As corporate leaders realize the importance of their online and
mobile presence and start to measure just how much business
comes in through all of their channels, they’re reshaping organiza‐
tions to keep information flowing quickly and accurately. This
responsibility is gaining traction under the umbrella of Performance
Engineering.

Proponents of this new vision believe that enterprises must build a
performance-focused culture throughout their organizations—one
that measures the experience of end users, both internal and exter‐
nal—and deliver a software and hardware experience that results in
efficient performance for these users. Performance must be priori‐
tized from the beginning of the process and be watched vigilantly
after the code is deployed.

More efficient, faster systems leave employees less frustrated, some‐
thing that almost certainly translates to customer satisfaction as
well. The rest of the answers indicate a general awareness that the
performance and throughput of computer systems are directly

12 | Chapter 1: Getting Started

http://bit.ly/dw-indeed

related to competitive advantage and the organization’s ability to
retain and attract customers.

Is Performance Engineering DevOps?
Putting an end to these academic distinctions, along with the day-
to-day finger-pointing between Development and Operations
teams (not to mention Technology versus Business teams), is part
and parcel what the DevOps movement is all about. It involves an
internal cultural shift toward the end user of the system(s) who
wants an update, a bug fix, and some assurance the system has the
full backing of the organization the customer is depending on.

There is a relationship between Effective Performance Engineering
and DevOps. This relationship is one that DevOps will deliver
higher value at higher quality and higher speed if the capabilities
of Effective Performance Engineering are enabling the DevOps
practices.

The competitive advantage—driven by faster time-to-market, with
higher quality through Effective Performance Engineering—is a
basis for how a business attracts and retains customers.

Customers: Acquisition and Retention
Acquiring and retaining customers should be the driving force in an
organization, no matter the size. As we have mentioned, Perfor‐
mance Engineering plays a considerable role in enabling your orga‐
nization to succeed in the marketplace, and success is defined in
many ways for different organizations, and is not exclusive by
industry or organization or product/service. But in general, success
is defined by a few factors (and many times a combination), includ‐
ing: revenue, competitive advantage, brand value, and customers
(acquisition and retention).

When your customers look across the market to discover where
they can get a specific product or services, what do they see, and
how do they evaluate it? Today, much of this process is accom‐
plished in a number of near real-time and openly accessible formats,
including app store reviews, feedback on websites, and even
product- or service-specific feedback on your sites.

Why Is Effective Performance Engineering Necessary? | 13

A myriad of feedback and comments are available to you regarding
how your customers perceive your products and services, and what
you need to focus on for your next release to deliver the features and
functions they are seeking. The question becomes, “How are you
capturing and what are you doing with this data today?” Using effec‐
tive Performance Engineering practices, you can leverage a continu‐
ous feedback loop from production to market, provide the highest
value to your customer, and increase your acquisition and retention.

Defining and knowing your customers is crucial. A recent info‐
graphic (cropped) posted by Rigor.com titled “Why Performance
Matters to Your Bottom Line” illustrates how impatient online shop‐
pers are, and the impact of a one-second delay (see Figure 1-2).

Figure 1-2. Why performance matters to your bottom line

The key point to highlight from this infographic is that online shop‐
pers are impatient, and the cost of a one-second delay is substantial;
understanding this, and doing something about it for your business,
is why we are focusing on building a Performance Engineering cul‐
ture and adopting practices to improve quickly.

Of course, this leads to another important consideration: metrics.
Thinking about acquisition and retention of customers involves
measuring many key elements, including the feedback in the mar‐
ketplace for your products and/or services. For many companies,

14 | Chapter 1: Getting Started

this becomes a great starting point and one they leverage to engineer
into their practices.

As organizations consider and implement metrics, they’re driven by
the realization that computer system performance and throughput
are directly related to competitive advantage and their ability to
retain and attract customers. This focus on the customer is helpful
both for acquiring new customers and retaining existing ones.

Wegmans Believes in Caring
On the Wegmans website, under “Our Values & Culture” is the fol‐
lowing text:

Because we’re all part of the extended Wegmans family, we share
a common set of values—we call them “Who We Are.” And by
living these values—handed down to Danny, Colleen and Nicole
from Robert Wegman—we really have created something special:
a great place to work where caring about and respecting our peo‐
ple is the priority.
Wegmans believes in:

Caring
We care about the well-being and success of every person.

High Standards
High standards are a way of life. We pursue excellence in every‐
thing we do.

Making A Difference
We make a difference in every community we serve.

Respect
We respect and listen to our people.

Empowerment
We empower our people to make decisions that improve their
work and benefit our customers and our company

In an article from the Harvard Business Review titled “Six Compo‐
nents of Culture,” Wegmans is highlighted in component number
three, stating:

3. Practices: Of course, values are of little importance unless they
are enshrined in a company’s practices. If an organization pro‐
fesses, “people are our greatest asset,” it should also be ready to
invest in people in visible ways. Wegmans, for example, heralds
values like “caring” and “respect,” promising prospects “a job
[they’ll] love.” And it follows through in its company practices,
ranked by Fortune as the fifth-best company to work for. Simi‐

Why Is Effective Performance Engineering Necessary? | 15

http://bit.ly/wegmans-values

larly, if an organization values “flat” hierarchy, it must encourage
more junior team members to dissent in discussions without fear
or negative repercussions. And whatever an organization’s values,
they must be reinforced in review criteria and promotion poli‐
cies, and baked into the operating principles of daily life in
the firm.

Forbes also published an article, “Focus on Your Company Culture,
and Earnings Will Follow,” in which Wegmans was also highlighted
in the “100 best companies to work for in the U.S.” The author
writes, “Many organizations cling to ‘what’s always been done,’
which constantly pushes against innovation; as a result, earnings
and other key performance metrics begin to lag. Those dips can
make managers do some interesting things in an effort to restore
their companies to greatness. As executives become laser-focused
on chasing earnings, they may lose sight of the bigger picture. They
become focused on treating the surface-level symptoms, never diag‐
nosing the deeper cultural dilemma.”

Brand Value
In many cases, businesses continue to invest in both a capability and
a culture as they work to build in the practices of Performance Engi‐
neering. These practices enable them to grow faster and become
more stable. Done well, Performance Engineering avoids the large-
scale catastrophes like the one that hit Best Buy in 2014 (see For‐
tune, CNBC, CNN Money) as well as the soft failures that come
when slow services frustrate employees and turn away customers.
The big failures may get all the media attention, but it’s the gradual
slowdowns that can be even more damaging, as they erode revenue
and brand value. By the way, these are quick to be picked up in the
media and amplified via social media channels, broadening and
accelerating the damage to your brand.

Brand value is often something measured and tied to the stakehold‐
ers within your marketing organization(s). However, as we see the
culture of performance and practices of Effective Performance Engi‐
neering, this is becoming relevant to all stakeholders (and for all the
right reasons).

Keep your end users (especially customers) thrilled by outperform‐
ing their expectations and alternatives, and you’ll get to keep doing
more of whatever made them come to you in the first place, while
making them brand champions.

16 | Chapter 1: Getting Started

http://bit.ly/forbes-culture
http://bit.ly/forbes-culture
http://bit.ly/fortune-bb
http://bit.ly/fortune-bb
http://bit.ly/cnbc-bb
http://bit.ly/cnn-bb

All survey respondents viewed the downside of poor performance in
much the same way. Together, 66% agreed that poor performance
could hurt brand loyalty and brand value. As more users interact
with an organization through online and mobile channels, it only
makes sense that performance would reflect directly on the brand.

In conclusion, invest in Effective Performance Engineering, or risk
costly failures. You’ll be rewarded with smooth rollouts, lower over‐
head, and higher revenue. What if you don’t invest? Expect damaged
brands, lower revenue, and lower employee morale.

Apple Creates Wonder That
Revolutionizes Entire Industries

Apple’s website reads:

The people here at Apple don’t just create products—they create
the kind of wonder that’s revolutionized entire industries. It’s the
diversity of those people and their ideas that inspires the innova‐
tion that runs through everything we do, from amazing technol‐
ogy to industry-leading environmental efforts. Join Apple, and
help us leave the world better than we found it.

Fast Company published an article titled “Tim Cook on Apple’s
Future: Everything Can Change Except Values.” In this article, sev‐
eral key elements of Apple and their culture are investigated, show‐
ing how deeply important values were to Steve Jobs and are now to
Tim Cook.

Tim Cook said of Steve Jobs, “It was his selection of people that hel‐
ped propel the culture. You hear these stories of him walking down
a hallway and going crazy over something he sees, and yeah, those
things happened. But extending that story to imagine that he did
everything at Apple is selling him way short. What he did more
than anything was build a culture and pick a great team, that would
then pick another great team that would then pick another team,
and so on.”

Tim Cook goes on to say, “We’ve turned up the volume on collabo‐
ration because it’s so clear that in order for us to be incredibly suc‐
cessful we have to be the best collaborators in the world. The magic
of Apple, from a product point of view, happens at this intersection
of hardware, software, and services. It’s that intersection. Without
collaboration, you get a Windows product. There’s a company that
pumps out an operating system, another that does some hardware,
and yet another that does something else. That’s what’s now hap‐

Why Is Effective Performance Engineering Necessary? | 17

http://www.apple.com/jobs/us/
http://bit.ly/fastco-cook
http://bit.ly/fastco-cook

pening in Android land. Put it all together and it doesn’t score high
on the user experience.”

All of these elements—values, people, and collaboration—are at the
core of Effective Performance Engineering.

The Harvard Business Review published an article titled “The
Defining Elements of a Winning Culture,” which shows how a com‐
pany’s culture can have a powerful impact on its performance.

HBR found a set of seven “performance attributes” that enable the
best-performing companies. Here is their list:

1. Honest. There is high integrity in all interactions, with
employees, customers, suppliers, and other stakeholders;

2. Performance-focused. Rewards, development, and other
talent-management practices are in sync with the underly‐
ing drivers of performance;

3. Accountable and owner-like. Roles, responsibilities, and
authority all reinforce ownership over work and results;

4. Collaborative. There’s a recognition that the best ideas come
from the exchange and sharing of ideas between individuals
and teams;

5. Agile and adaptive. The organization is able to turn on a
dime when necessary and adapt to changes in the external
environment;

6. Innovative. Employees push the envelope in terms of new
ways of thinking; and

7. Oriented toward winning. There is strong ambition focused
on objective measures of success, either versus the competi‐
tion or against some absolute standard of excellence.

The article mentions Apple and Steve Jobs specifically: “Steve Jobs
builds a challenging culture at Apple —one where ‘reality is sus‐
pended’ and ‘anything is possible’—and the company becomes the
most valuable on the planet.”

Focusing on Business Need
The business needs to ensure that revenue, competitive advantage,
customer acquisition and retention, and brand goals are achieved.
Doing so means expanding products and service offerings and/or
businesses either through organic or acquisition approaches, all of

18 | Chapter 1: Getting Started

http://bit.ly/hbr-culture
http://bit.ly/hbr-culture

which may depend on an existing or new platform(s), so end users
can consume products and services without interruption when,
where, and how they want.

As a result, businesses should always be seeking to adopt Effective
Performance Engineering capabilities. How they choose to do so
must be led by clear and visible objectives, key metrics and measure‐
ments, and communications. If they support and participate, they
will see positive results from the previously defined goals and objec‐
tives—if not, negative results will be sure to follow in one or many of
these areas.

Focusing on Business Need | 19

CHAPTER 2

Overview of Performance
Engineering

Now that we understand where to start with Performance Engineer‐
ing, having defined both the term itself and also why it is important,
let’s dive into more specifics of how it is applied throughout the
lifecycle. As we walk through each commonly defined step within a
lifecycle, we will explore where and how companies leverage these
capabilities to deliver the results we identified in the last chapter.

Performance Engineering Throughout the
Lifecycle
As you start to incorporate Performance Engineering capabilities
into your lifecycle, it is important to understand what some of these
areas are, and put these into context with some typical flow nomen‐
clature. In the following sections we define each of these key ele‐
ments with specifics—what, why, and how—so you have a more
complete understanding of how to add Performance Engineering
throughout the lifecycle.

One of the challenges in building Effective Performance Engineer‐
ing or a performance-first culture is defining who does what, when,
and how. This kind of organizational alignment and agreement is as
important as the daily scrum meeting of an Agile team. If everyone
agrees that performance is important, but not on how to address it,
then nothing is done about it.

21

First, we need to agree that while everyone is responsible for the
performance of our business applications, someone needs to be
accountable. One person, or team in a larger organization, needs to
make sure everyone is playing along in order to meet our objectives.
It could be the Scrum Master, Engineering Team Lead, QA Lead, or
a separate role dedicated to performance.

Some organizations have even created a “Chief Performance Offi‐
cer” role to bring visibility and accountability to the position, along
with information radiators to show performance results as visual and
accountable feedback throughout the process. Once that person or
group is identified, it is important to include them in any standup
meetings or architectural discussions, in order to raise any red flags
early in design and avoid costly rework at later stages.

Culture needs to be built into an organization by design. There are
several solid, cross-industry examples included in a Staples Tech
Article; we’ll examine these more closely and investigate how their
culture is focused on Performance Engineering, and how they have
built in these capabilities.

The following sections cover the what, why, and how of Effective
Performance Engineering capabilities, so that as you look at this cul‐
ture and the role(s) of adoption, you can start to understand more
specifically how it might apply within your own organization.

Requirements
Features and functions, along with capabilities both for new applica‐
tions and maintaining legacy, all fall into this section, where we will
highlight some specific elements for consideration as you are adopt‐
ing Effective Performance Engineering practices. Take a look at
these items and understand the what, why, and how of each, so as
you begin to transform, you can ensure consideration for each spe‐
cific element is being considered and adopted.

Complete Stories
In defining the changes we are going to implement, complete and
understood requirements or stories are a solid starting point. Mike
Cohn, founder of Mountain Goat Software, and founding member
of the Scrum Alliance and Agile Alliance, has created a user story
template, shown in Table 2-1.

22 | Chapter 2: Overview of Performance Engineering

http://bit.ly/5-culture-examples
http://bit.ly/5-culture-examples

Table 2-1. Mike Cohn’s user story template

As a/an I want to... So that...
moderator create a new game by entering a name and an

optional description
I can start inviting estimators

moderator invite estimators by giving them a URL where
they can access the game

we can start the game

estimator join a game by entering my name on the page I
received the URL for

I can participate

moderator start a round by entering an item in a single
multiline text field

we can estimate it

estimator see the item we’re estimating I know what I’m giving an
estimate for

estimator see all items we will try to estimate this session I have a feel for the sizes of the
various items

moderator see all items we try to estimate this session I can answer questions about the
current story such as “does this
include ___?”

moderator select an item to be estimated or re-estimated the team sees that item and can
estimate it

Using a thoughtful approach to stories has many benefits. With an
incomplete definition of requirements and features, an individual or
team is left to define what they believe the end user wants and needs.
If Performance Engineering is not considered as part of a complete
story, a technical component or architecture could vary considera‐
bly, resulting in underperforming or unutilized capabilities.

Organizations continue to evolve the way they create complete sto‐
ries using models like Mike Cohn’s user story template, and also by
adopting prototyping or wireframe capabilities to accelerate the
delivery of high-quality results to the end users.

Breakdown of Epic to Tasks with Acceptance Criteria
It’s important to plan for the size, relationship, and priority of
requirements and features, along with building in performance that
shows the relationship to epic to task, in order to enable teams to
collaborate and consider Performance Engineering needs and capa‐
bilities from the start.

Figure 2-1 shows the relationship and breakdown from epic to tasks,
along with a story card with Story on front and Acceptance Test Cri‐
teria on the back.

Performance Engineering Throughout the Lifecycle | 23

Figure 2-1. Breakdown of Epic to Story, and example

In many cases, we observe a trend of more myopic or task-level
views into stories. This practice limits the view and consideration
across tasks, and limits the ability to build higher performing plat‐
forms, especially in the much-distributed and shared complex appli‐
cations and systems we operate within today.

In Figure 2-1, you can see how the story is on the front of the card
(typically only used portion) and on the back are the acceptance
criteria, which is where you include Performance Engineering con‐
siderations. An example from a recent story about a login page is,
“Perform with 180,000 people logging in per hour with 50% on
varying mobile network conditions from 5 major US and 2 major
International locations with the remaining from good WiFi and
LAN connections with a maximum transaction response time of <5
seconds.”

Doneness Criteria
A proven practice among organizations is defining a shared under‐
standing and standard for what “done” means. Creating a “Feature
Doneness” definition for all teams is critical, and Performance Engi‐
neering considerations need to be built in.

The standard for speed and quality must be a known and shared
value across individuals, teams, business units, and organizations.
Perhaps there are only 5–10 core criteria defined and agreed upon at
a complete organization level, but this is the delivered standard.

24 | Chapter 2: Overview of Performance Engineering

This will enable a level of doneness in order to meet shared expecta‐
tions and deliver within the agreed-upon time and quality.

A recent example of how a Dev/Test organization put together their
doneness criteria is outlined below. Here, the organization had only
eight criteria, of which the italicized one builds performance into
their process:

• The code is included in the proper branch in the source code
control system.

• The code compiles from a clean checkout without errors using
production branch [proposed: and is part of the AHP Build Life
which is finally tested in QA].

• The code is appropriately covered with unit tests and all tests
are passing using the production branch.

• The code has been peer reviewed by another developer.
• Database changes have been reviewed and approved by a DBA.
• The code has passed integration, regression, stress, and load test‐

ing.
• Application Support is aware of the backlog item and the system

impacts.
• Deployment and rollback instructions are defined, tested, and

documented.

Until these are all true, the feature is simply unfinished inventory.

Functional
Within the functional tests you run today, think about how to lever‐
age these (typically single-user) tests to get performance results and
share them with all stakeholders. This can take place at any stage
throughout your lifecycle from unit to production, and the value of
these results benefits the team throughout the lifecycle. A specific
example could be the way performance is built in to your automated
functional unit tests, as demonstrated in Figure 2-2, which illustrates
how long a specific set of automated functional unit tests took to
run and set a pass/fail threshold within Jenkins.

Performance Engineering Throughout the Lifecycle | 25

The reasons why this is important are numerous. One of the com‐
mon areas we focus on is speed with quality. As you are increasing
the number of builds per hour/day/week/month, these Performance
Engineering practices enable early and frequent feedback on quality.
The incremental value delivered with every build enables quick
feedback loops and opportunities for DevTest teams to deliver
higher quality faster by building in performance within their auto‐
mated functional tests.

Figure 2-2. Functional automated test results shown in Jenkins

The practice of gaining performance results from functional tests
during the Performance Engineering adoption should be carried out
throughout an organization. Just focusing on the automated func‐
tional tests immediately post-build, we can see this information ena‐
bles a build-over-build continuous comparison, allowing the
business to see trends over time. Adding response time along with
percentage of errors variables is another way to quickly get a lot more
value from functional tests you are already running with little to no
effort, effectively driving performance results with immediate feed‐
back.

Figure 2-3 shows performance trend results from JMeter that illus‐
trate the history of performance from build to build.

26 | Chapter 2: Overview of Performance Engineering

Figure 2-3. Performance trend results

Security
Security is at the forefront of many organizations’ priorities, and is
addressed by a dedicated CISO (chief information security officer)
and their team of professionals, often in an isolated group across the
technology stack. Building performance into the security practices,
and vice versa, becomes quite critical, enabling organizations not
only to get actual results they may not have previously been able to
achieve, but also to provide those results to a broader group of
stakeholders earlier and more often in order to quickly mitigate
vulnerabilities.

Fixing security vulnerabilities earlier in the lifecycle by adoptiong
Performance Engineering practices reduces risk for the business and
the end users. Providing the DevTest team with immediate, automa‐
ted insight enables the organization to deliver more, faster, with
higher quality. This advantage accrues when performance scenarios
are run and security results come in from the tests, as well as when
security has the opportunity to run their tests under more accurate,
repeatable conditions.

Performance Engineering Throughout the Lifecycle | 27

There are two immediate ways that we can think about security and
Performance Engineering practices. First is the ability to provide
security results within the performance results throughout the life‐
cycle. Second is enabling performance conditions, for example, in
network conditions (latency, bandwidth, packet loss, jitter), so when
security tests are executed the results delivered are actual. This detail
is often overlooked in security tests in two specific vulnerability
areas: cross-site scripting and SQL injection. These have become
popular due to mobile network conditions (needing to hold connec‐
tions open longer due to higher latency conditions, and dynamic
sessions not working).

You can capture security risks and vulnerabilities by providing
automated and prioritized results, captured in a flat file and stored
with the automated build results, so they can be remediated and
results shown as a trend over time for the given code base/release
candidate. Figure 2-4 shows how to get security results while you are
running your automated tests using Watcher within Fiddler2.

Figure 2-4. Security test results using Watcher in Fiddler2

28 | Chapter 2: Overview of Performance Engineering

Performance
Too often we observe organizations treating performance as a
checkbox. If this is the area where you need to adopt Performance
Engineering practices, there are several ways to start. With Perfor‐
mance Engineering practices the performance team(s) no longer has
to accept running the same scenario and watching the same results
and reporting pass/fail, but instead can dive a lot deeper into what is
going on along with how it is working in production, so they can
provide more relevant and actual results to help optimize system
performance.

Here are four key starting points in adopting Performance Engi‐
neering practices within performance, which we will identify now
and define a bit more later:

Production incidents
Enable you to see what is and is not working, along with creat‐
ing some business value on the impact when something is not
working; allow teams to see trends on where the trouble areas
are, and show the value added as improvements are reflected in
a reduced number of incidents.

Instrumenting
Enables additional and broader insight into what is happening
within an application and across a system, in order to visualize
and simplify finding the “needle in the haystack”; helps with
finding not just the first issue, but also a path of areas needing
attention.

Virtualization
Enables the re-creation of virtual users, services, networks, and
data. Using virtualization technologies, you can very quickly re-
create—with a high level of accuracy and low cost—the produc‐
tion environments anywhere in the world at any time for any
period of time.

Monitoring
Gives a visual performance dashboard of actual results in pro‐
duction, and when also used to observe the pre-production
environments, provides teams assurance that they are building
solutions that will scale and be resilient, especially as they are
deployed to the end users.

Performance Engineering Throughout the Lifecycle | 29

Figure 2-5 shows how monitoring can be leveraged throughout
all environments to build in performance and provide results to
all stakeholders.

Figure 2-5. Using monitoring to increase performance

We could dive into any of these topics and quickly observe the value
of adopting Performance Engineering practices in performance.
Looking a little closer at monitoring, we start to see a number of dif‐
ferent areas where these capabilities used both in production and
pre-production environments can greatly enable the adoption of
Performance Engineering practices within the performance team(s)
and beyond:

• Synthetic monitoring provides the ability to simulate applica‐
tion performance many ways, ensuring you can deliver consis‐
tent and predictable performance to your end users.

• Real user monitoring enables real-time application performance
of all users all the time, allowing you to automatically discover
underlying infrastructure and classify user actions.

• Mobile app monitoring provides insight into the performance,
stability, and resource usage of mobile apps. It gives you insight
into what the user does, where they exited your app, and why.

• Deep-dive diagnostics allows you to drill into your backend
performance to quickly isolate and diagnose bottlenecks to
resolve issues.

30 | Chapter 2: Overview of Performance Engineering

• Transaction monitoring provides visualized process flows over
the entire application and infrastructure environment so you
can assess key business metrics.

• Transaction management enables you to track and confirm the
path, step-by-step timing, and content or payload of each trans‐
action, so you can understand the impact of critical transactions
on business outcomes.

Figure 2-6 illustrates how Hewlett-Packard Enterprise Business Ser‐
vice Management (HPE BSM) can be used throughout your build
life along with Service-Level Agreements (SLAs) to quickly show
status across a variety of areas, leveraging these capabilities in both
pre-production and production environments, and enabling the
performance team(s) to adopt Performance Engineering practices.

Figure 2-6. Using HPE BSM to monitor status

Usability
Usability for the purpose of this discussion is defined as the ease of
use and learnability of a human-made object. Looking at the corre‐
lation of performance and facets of usability is a way to begin adopt‐
ing Performance Engineering in this increasingly important and
vested area.

It is important to assess your position in the market relative to your
competition, and to measure usability as a trend across releases over
time. Net Promoter Score (NPS) and User Sentiment Score (USS)
are common elements used to measure usability. As we look at usa‐

Performance Engineering Throughout the Lifecycle | 31

bility and Performance Engineering, it is important to note this
practice should be applied throughout the lifecycle, not just at a sin‐
gle point late on the way to production deployment.

The NPS and USS Scoring Systems
The Net Promoter Score (NPS) system was developed by Fred
Reichheld, Bain & Company, and Satmetrix. The NPS is a way of
measuring user satisfaction. The methodology relies on the so-
called “ultimate question,” which measures overall satisfaction and,
even more importantly, loyalty to the service or provider. A second
question establishes the root causes for the given score.

The User Sentiment Score (USS), developed by HPE, is created by a
sentiment analysis service that scans end-user comments on your
applications, categorizes them, and provides a weighted score. You
can go to http://apppulse.io/#/ and type in “Target” to see example
results.

Correlation between performance and user satisfaction with usabil‐
ity is high. So, if you can make your interface and design easier to
use, people will like it more—this seems obvious, but not everyone
takes the time to implement this capability. There are several reasons
interest in usability and performance has increased, including
increases in competitive advantage and customer acquisition and
retention. In addition, with the brand damage that can be inflicted
through app store reviews and social media, getting usability right is
now a mainstream challenge.

There are a variety of ways organizations can implement Perfor‐
mance Engineering within usability. A few key metrics to consider
in this area include:

• The time it takes for an end user to complete a task. So, if an
end user is seeking to make a purchase, what was the amount of
time it took for that task end to end, and how long did each step
take, and why?

• Workflow simplicity reflects the experience of the end user in
being able to easily learn and navigate the interface to perform
the task they need to complete.

• Success rate is a measurement of what percentage of end users
were able to complete the task they set out to achieve.

32 | Chapter 2: Overview of Performance Engineering

http://www.netpromotersystem.com
http://bit.ly/wiki-reichheld
http://bit.ly/wiki-reichheld
http://bit.ly/wiki-bain
http://bit.ly/wiki-satmetrix
http://apppulse.io/#/

• Subjective feedback tends to be a narrative of how users felt
about the overall experience.

• Error rate is the percentage of time an end user received an
error or failure while using the interface to perform a task.

• Heat map and eye tracking are another way to capture seem‐
ingly subjective feedback in an objective way, knowing where
your end users are spending their time looking and clicking or
tapping on the interface to perform a task.

Figure 2-7 is an example of a usability dashboard in Google Analyt‐
ics, showing how to capture some of these key metrics both in pre-
production and production in order to adopt Performance
Engineering practices in usability.

Figure 2-7. Usability dashboard in Google Analytics

Design
As we look at the complexity of our systems and applications today,
much of which we no longer control or house within our data cen‐
ters, the need for Effective Performance Engineering increases con‐
siderably. Being able to adopt these capabilities throughout your
lifecycle enables you to consider prototype options and build SLAs
and performance budgets into each component you are designing,
regardless of the stage of life of the component or system.

Performance Engineering Throughout the Lifecycle | 33

System design
A critical step in Performance Engineering is defining the many
dependent pieces of a system, including data, user interfaces, inter‐
nal and external dependencies, modules, components, architecture,
and much more.

Without a design map and plan, teams are often left to what they
know, and the results can be discarded or need significant rework.
With an Effective Performance Engineering approach, performance
considerations are built in, and collaboration across teams enables a
more complete design from the start.

Often, an Enterprise Architecture team performs this step. However,
as we can see, this is a critical element for which infrastructure
architecture and application architecture must be designed, so
involvement from the broader team, with knowledge of challenges
and opportunities, is imperative.

Infrastructure architecture
Related to and often integrated with following system design is the
need to define the required infrastructure in order to support the
needs of the applications and forecasted business levels, and thus be
able to deliver the required resources, often left to a few infrastruc‐
ture people to create and verify.

A continuation of the overall system design is the infrastructure
architecture. An Effective Performance Engineering approach pro‐
vides for understanding and prototyping the various components
and dependencies, along with configuration and sizing needs for the
overall systems.

This is often delegated to R&D, product management, and product
development to execute and deliver; however, to bring Performance
Engineering practices into the picture, the team needs to be broader
earlier and often include prototyping to find initial optimization.

Application architecture
The goal here is to design a composite architecture that will be scala‐
ble, available, manageable, and reliable. This involves many consid‐
erations and technological risks, along with software requirements
and configurations, that must be integrated with those of the overall
system design and infrastructure architecture.

34 | Chapter 2: Overview of Performance Engineering

Another extension of the overall system design is the application
architecture. An Effective Performance Engineering approach pro‐
vides for understanding and prototyping the various components
and dependencies, along with configuration and sizing needs for the
overall systems.

There may be some limitations around existing or defined stand‐
ards, especially given the complexity and integrated nature of com‐
posite applications. Using the approach of prototyping enables quick
build and running of a few quick performance scenarios to get
results showing how these prototypes perform. Seeing how they per‐
form is the first step. Knowing the underlying infrastructure and
network components can also play a major role in being able best to
architect a high performing solution. A collaboration between these
functions must be taken to optimize architectures and overall sys‐
tem design for performance.

Deployment models
Deployment, or moving code and artifacts through environments to
production, can range from manual to fully automated, and can be
limited to only certain environments or all of them, and anything
in between.

This step enables you to achieve fast feedback and increase stability
across your environments, thereby eliminating many of the variables
usually associated with deployment.

There are a number of open source and commercial capabilities
available to help automate this process from check-in to build to
deploy, and to enable the tracking of build quality through the life of
the release.

Resiliency
When thinking about design and resiliency as they relate to Perfor‐
mance Engineering, we specifically are looking at the steps you take
as you design your solution, so that when your product or service
experiences a disruption it can continue to deliver value to your
end user.

End users today expect to be able to access your products or services
at any time, anywhere in the world. In order to enable this capabil‐
ity, we must consider how we design our technology to meet these
expectations.

Performance Engineering Throughout the Lifecycle | 35

Asking “if this component is down or not available, how will it con‐
tinue to deliver value to our end user?” is a great place to start the
design process. Defining the top five revenue-generating workflows
for your business, then designing how you can ensure they are resil‐
ient, is a good strategy.

Scalability
Scalability involves the considerations for how a system or applica‐
tion will be designed to handle a growing amount of work. Over the
years, we have heard claims about how certain cloud environments
enable exponential and linear growth; how your applications and
systems are designed will enable you to see and understand the level
of truth in such statements.

Increased demand for products and services by the end user of your
business is a good thing, and if your technology can support and
meet or exceed this demand, even better. However, too many times
we’ve seen organizations make great assumptions that systems will
scale as needed in a linear model. They provide more and more
infrastructure capabilities to such a system, only to have it fail signif‐
icantly because it was simply not designed to scale.

Starting with the share services and synchronous capabilities helps
us to identify the two most common areas for scalability. Still, the
complexities within your composite application architecture will
likely also see middle-tier services and database constraints. Consid‐
ering this during the design phase enables you to be ready to proto‐
type early in the process.

Development
Practices of Effective Performance Engineering vary across teams
and divisions as much as they can across industries and organiza‐
tions. Following some basic principles and practices enables you to
create and maintain sustainable, scalable, and high-performing
applications on resilient infrastructure. With these guidelines, we
will see how to do this, and deliver it quickly with quality.

Code, frameworks, and service reuse
When developing new applications and systems, it’s important to
leverage ways to accelerate delivery of capabilities. Some of these
ways manifest themselves in code repositories, frameworks, plat‐

36 | Chapter 2: Overview of Performance Engineering

forms, libraries, and service components reuse. You can help
DevTest teams maximize the focus on new and modified elements,
and drive higher quality in a faster timeline, within the defined,
shared standards.

As you move from a sole developer to development teams, then
from many development teams to business units of development
teams, and finally to many business units, challenges arise around
standards and technology approaches and architectures. Many com‐
panies do not consider performance from an early perspective (if
ever) and build it in.

Imagine having a code repository within a framework and service
host that have already been built and optimized within the organiza‐
tional standards, which you can leverage in building the new capa‐
bilities in front of you. Utilizing this approach saves you from
spending time building and optimizing core capabilities and shared
services.

Metadata repository
Determining how to quickly and easily leverage needed DevTest
data continues to plague many teams and organizations. Attaining
frontend data, data in motion, and backend data can be a significant
challenge, and often one not easily solved. You must consider many
facets in order to create and deliver to end users accurate, working
applications and systems to consume that data.

Data continues to be one of the bigger challenges facing many today.
Without accurate and reflective data, your confidence in application
and system success is limited. In addition, to achieve speed and
quality of automated lifecycle processes, it’s critical to have quickly
refreshing environments, especially those including data. Having a
repository of maintained and ready data increases the quality and
speed with which you can deliver optimized systems.

Making data a priority is a great way to start. Bringing in and assign‐
ing accountability to the business analysts and user acceptance test‐
ing teams to define and create data and data models is a parallel
approach. Obfuscation of production data to be included, along
with data dependencies, and storage must also be planned in order
to ensure compliance with all regulatory and other required practi‐
ces. In addition, providing your end users with early access and cap‐

Performance Engineering Throughout the Lifecycle | 37

turing the data and flows they use is another key way you can start
to meet this challenge.

Automated tests
Testing throughout the lifecycle is an important step; however,
determining specifically how to do it within DevTest is key, espe‐
cially as continuous testing will be pushing more builds than before,
and speed to verify and validate accurately is critical.

You must proceed with automated tests early, often, and throughout
the lifecycle, especially given the need for repetitive and consistent
results and measurements, in order to be able to see trends and opti‐
mization opportunities. If tests are not done in an automated way,
you cannot meet goals of speed and quality, along with quality gates
and build quality, automating more of the lifecycle.

Many open source and commercial capabilities are available to
enable automated tests. In addition, using automation test frame‐
works will allow you to build tests that can be merged and versioned
with code through the build and test process.

Lifecycle virtualization
Creating production-like environments within your pre-production
environments is often expensive and labor-intensive. However, hav‐
ing a controlled and stable environment is important, and the ability
to make it quickly available and refreshed in a timely manner is even
more important. Virtualizing the users, services, network, and data
gives you these capabilities, so you can deliver a better quality prod‐
uct faster.

Reducing costs, increasing speed, and improving quality are three
reasons why utilizing lifecycle virtualization is key. Having
production-like environments enables you to more accurately pre‐
dict how things will perform once deployed. Given the complexity
of our systems and applications today, this continues to be one of
the bigger challenges, and lifecycle virtualization is a way to close
the gap significantly.

Many open source and commercial products are available to provide
you with these capabilities. Virtual users, for instance, are commonly
found in functional and performance testing tools and enable you to
create synthetic end users, performing transactions across a variety

38 | Chapter 2: Overview of Performance Engineering

of workflows as they would in production, across all of your envi‐
ronments.

Then you can move to service virtualization, which enables you to
capture and re-create services from production across all of your
environments. Virtual networks enable you to capture network con‐
ditions in production (and all other locations) and re-create these in
any environment so you can optimize your app or application to
perform well, even over poorly performing network conditions. Last
is data virtualization, which leverages some metadata repository
capabilities to make it quick and easy to refresh data across your
pre-production environments.

Quality gates
Quality gates are specific quality thresholds for each stage or envi‐
ronment. These thresholds are then used to automate the build/
deploy/test steps and proceed to the next stage or environment. This
allows for little to no manual intervention, and delivering high-
quality assets in an automated and timely way. These thresholds
enable you to set criteria on the build quality (Figure 2-8 shows a
variety of “% Tests Pass” criteria) before proceeding on the path to
production.

As you increase builds and automated tests and deployments, you
will see things start to speed up. However, quality is a metric you
also need to define, and measure at specific milestones throughout
the lifecycle. Tracking quality enables you to observe a build as it
moves through the lifecycle, and only intervene when it meets a cer‐
tain quality threshold and you need someone to execute manual
tests against the product.

There are several approaches for adding quality gates, many of
which use open source or commercial products to deliver a frame‐
work that enables you to build in the performance, quality, and
speed considerations. Some work will be needed to build and sup‐
port this application lifestyle automation solution for your specific
environment. Figure 2-8 shows how you can implement automated
quality gates with virtualized and physical environments throughout
the CI/CD process and where performance results are built in.

Performance Engineering Throughout the Lifecycle | 39

Fi
gu

re
 2

-8
. Q

ua
lit

y g
at

es

40 | Chapter 2: Overview of Performance Engineering

Test
Minimizing the risk to the business and your end users in produc‐
tion is paramount. Adopting Effective Performance Engineering
practices ensures that you are most efficiently doing this early and
throughout your lifecycle, and that you’ll have many opportunities
to verify, validate, provide feedback, optimize, and then continu‐
ously execute. The following sections cover specific, proven practi‐
ces you can adopt to enable Performance Engineering capabilities.

Build results
After the commit/build/deploy/test process, the results are what
matter, and how we capture these results and make them available to
stakeholders is crucial, along with the summary performance met‐
rics continue and live with the build life.

Building in this automated feedback throughout the lifecycle, start‐
ing immediately after a successful build, enables teams to respond
early and often, which in turn accelerates delivery speed and increa‐
ses quality.

There are a number of different ways to implement this capability.
As a starting point, a basic automated delivery framework needs to
be in place. Then, you can use automated unit, functional, or perfor‐
mance scripts to compare execution times at a minimum. Now you
will be able to track detailed results from build to build, identifying
any outliers, and potentially flag them from your trunk and/or main
branch until they can be remediated for performance optimization.

Regression
As the continuous build/deploy/test cycle evolves into more mature
builds and potential release candidates, capabilities and features
grow, and you must run quick but complete automated scenarios to
ensure no core functionality has been broken or degregated as a
result of the new capabilities.

Speed and quality increase as more performance engineering capa‐
bilities are built into your automated processes. With the adoption
of these capabilities comes the need to progress through a variety of
environments on the release path. Building automated performance
regression suites enables higher confidence and meets automated

Performance Engineering Throughout the Lifecycle | 41

quality gates to enable the potential release candidates to move
through the release cycle efficiently.

When you’re starting down the path of implementing these capabili‐
ties, you must have an understanding of the key systems, applica‐
tions, and transactions—those critical from both a regulatory and
end-user perspective—so that you can implement these first within
your automated performance regression suite. In the “lower level”
environments (also known as BVT or build validation test), the
results should be an automated performance regression suite that
takes less than 15 minutes to execute, and provides results to ensure
your most critical functions work as designed.

Automated service oriented
As the complexity of the composite application and system architec‐
ture grows, so will the dependencies on internal and external serv‐
ices. Automating the verification and validation of these services
throughout the lifecycle, and especially testing, is key. You must also
consider how to get initial results and flags for performance-related
metrics, along with how to re-create these in a valuable and cost-
efficient manner.

The explosive increase in composite application and system archi‐
tectures has resulted in organizations with an exponential number
of services. These services change only occasionally, compared to
the frequently changing user interface, enabling a more stable and
core technology to test with less maintenance.

You should start with a basic test harness that identifies the service
and protocol mapping, then run through a barrage of positive and
negative scenarios, delivering results for those that pass and fail. The
objective of the team should be continuing to develop until all
results pass.

Capability mapping and standardization
Organizations looking to scale Performance Engineering practices
need to standardize core capabilities in order to enable a growing
number of teams and individuals to leverage a shared model (map‐
ping). Doing this integrates the new capabilities across IDEs, CI/CD
systems, configuration, environments, and release management, just
to mention a few key elements.

42 | Chapter 2: Overview of Performance Engineering

Having disparate and nonintegrated tools to do specific and individ‐
ualized tasks is a mess at a small scale, and once this goes beyond a
few teams, it becomes a challenge to manage from many different
angles. Finding the capabilities that matter to your organization and
standardizing them enables you to scale more efficiently. These
standards also simplify the education of new team members and
increase the stability of your integrated tools, so you can focus on
delivering value to your end users.

Figure 2-9 shows how tool integration can be mapped to support
processes to implement Effective Performance Engineering practi‐
ces. As you continue down this path, it may be necessary to create
an abstraction layer across the top, so all capabilities can be visual‐
ized and used as an information radiator for several stakeholders
across your portfolio.

Figure 2-9. Mapping simple tool integration to support processes

Deployment
Releasing code and builds throughout a lifecycle is an art, and it’s a
key component to enabling Effective Performance Engineering. In
this sectio we will highlight many of the critical ways this can be
done, the required controls, and how to get continuous automated
feedback throughout. The end objective is for deploying to produc‐
tion not to be an event, but simply another deployment in a series
that have already been executed and delivered throughout the lifecy‐
cle in a rigorous yet fully automated process.

Performance Engineering Throughout the Lifecycle | 43

Automation throughout the lifecycle
Moving through the lifecycle with everything we’ve described previ‐
ously is a huge success, but ensuring all that effort isn’t for nothing is
also important; we have seen several examples in which deployment
to production is still is a manual process, which has its own draw‐
backs and risks.

Reducing the manual effort required increases accuracy and repeat‐
ability, and ensures deployment has been tested before the product
deploys to production. You can automate deployments of builds and
release candidates with commercial or open source products, but
implementations vary a bit depending on your environment. The
biggest challenge, however, is that of organizational and individual
behaviors limiting the continued utilization of automated deploy‐
ments to production.

Showing these organizations and individuals how deployment auto‐
mation has been achieved and tested through pre-production envi‐
ronments, and how IP addresses and credentials can be secured,
will go a long way toward utilizing automated deployments to pro‐
duction.

Live/live or blue/green
Live/live or blue/green is a deployment approach in which you have
two production environments, enabling you to potentially take one
offline, deploy to that environment, and introduce a small popula‐
tion of users to ensure it performs as expected, then either shutting
that instance off or leave it on and deploy to the second environ‐
ment so you are running two production environments again.

There are many reasons why you would want to leverage a live/live
or blue/green approach. It provides resiliency and scalability, and
increases performance. It also allows you to easily perform canary
tests in a contained environment. All of these are key Effective Per‐
formance Engineering practices.

How this approach is implemented varies, depending on the organi‐
zation. Figure 2-10 shows one way we have done it and opens a dis‐
cussion of which specific Effective Performance Engineering
practices are performed where. You will also see a stand-in mode
added into this model, available in case the production environ‐
ments (n and n+1) have issues (a stand-in providee end users with
access to the products and services without interruption).

44 | Chapter 2: Overview of Performance Engineering

Figure 2-10. Live/live or blue/green deployment

Canary
In the canary deployment approach, you roll out a new capability to
a very focused group of your population, then observe that group’s
performance and feedback, and finally decide whether to continue,
stop, or pull back that deployment or release to a more general pop‐
ulation.

Getting fast feedback and market-testing new capabilities is impor‐
tant to many organizations so they can test their theories and best
guesses as to what the end user needs next. The canary test may also
be a first time on a new infrastructure or application architecture,
so they can benefit teams greatly to see how the architecture per‐
forms at a smaller scale in production. They can then apply their
new knowledge to the next release, and deploy an incremental qual‐
ity increase for the next round of canary testing, feedback, and
measurements.

This kind of test is often limited to a single environment (perhaps a
single cluster) and often utilizes a live/live or blue/green production
environment, in order to further isolate the underlying technology
and limit access to specific end users.

Fail over, fail back, and fail forward
The fail over, fail back, and fail forward approaches involve answer‐
ing the question, “When we have problems, how do we plan to man‐
age them?” The beauty of this process is it allows you to test your

Performance Engineering Throughout the Lifecycle | 45

desired approach in your later-stage environments (pre-production
or disaster recovery, perhaps). The fail over/fail back approach
means you have a secondary production environment to fail over
and back. The fail forward approach means your intent is to simply
push a next release over the prior to resolve the issue.

In a production disaster recovery scenario, these processes are often
defined in the run book and tested on how to fail over, but not
always how to fail back. When you are failing back there are many
challenges, along with many dependencies on databases and exter‐
nal services, that you need to consider. Not doing so, and as we have
observed in several cases, can result in data loss and other more seri‐
ous incidents, making for upset customers and regulatory issues.

To build these approaches into your tests, you must take the time to
plan for them, and they will aid you greatly in ensuring you have a
cross-functional team with shared responsibilities and goals. Find‐
ing ways to build in fail over, fail back, and fail forward into your
overall deployment approach is a great way to start. Perhaps asking
this question today will help you understand how you do or do not
plan for problems, and imagining what might happen if the worst
occurs, will get you to adopt this Effective Performance Engineering
practice.

Monitoring
In many organizations, monitoring is a practice adopted only within
production, and is often referred to as application performance mon‐
itoring (APM). However, reactive performance monitoring happens
too late to have an impact on revenue, brand, competitive advan‐
tage, and customers. All those factors have already been determined
once they’re identified in production. In Effective Performance
Engineering, we leverage several monitoring capabilities, explored
in more detail in the following sections.

Continuous monitoring and feedback
Monitoring environments and components within your architecture
and perhaps outside, both within production and pre-production
systems, helps you learn about and improve capacity, resiliency, per‐
formance, and scale. In addition, continuous monitoring and feed‐
back provides you with ways to observe and capture conditions in
which production incidents occur, so you can re-create them in pre-

46 | Chapter 2: Overview of Performance Engineering

production and validate a fix prior to pushing it back into produc‐
tion.

Without feedback throughout the lifecycle, you only have a best
guess and a hope that a solution will work after it is deployed. We
often see this in practice, and yet with Effective Performance Engi‐
neering practices, it does not need to be this way.

How this process is done varies by the organization and its maturity,
but it starts with monitoring both in production and pre-production
environments, then moving to measure the key performance indica‐
tors (KPIs) both from a technical and business perspective. Once
these have been achieved, you can start by showing these results for
the release candidate and then move to build-level results.

End-user feedback and analysis
End-user feedback can be measured in both objective and subjective
results: objective from transactions completed, conversion rates, and
response times, and subjective through reviews and interview and
survey feedback.

Your end user is the person that matters the most; getting their feed‐
back and analyzing the observations is a key piece of monitoring.

There is a vast array of ways to gather both objective and subjective
feedback from your end users. These range from formal studies in
which you invite participants to join you in a lab-like setting to view
some new capabilities and features, asking them for feedback, to
simply pushing a few new capabilities in production to your canary
group, and observing the KPI metrics based on how they use the
system. In some cases you might capture and measure heart rate, eye
movement, screen tapping, and other behavioral and cognizant
responses. This data will all be analyzed so it can be fed back to the
teams, and who will use it to create the next iteration of the capabil‐
ity, before eventually deploying it to production.

Predictive: pre-production and production
You can use the data you’ve gathered and analyzed from production
and pre-production environments to predict under what conditions
degradation or system failure will occur, so you can operate proac‐
tively. This predictive data enables you to mitigate these issues
throughout the lifecycle, so you can better deliver new feature func‐
tion to your end users uninterrupted.

Performance Engineering Throughout the Lifecycle | 47

Getting your product wrong is a huge expense in many ways.
So, having insight that provides predictive recommendations on
what will go wrong and when is a huge advantage to your organiza‐
tion. This is used throughout pre-production and production envi‐
ronments.

When leveraged with correlation and big data analytics, predictive
data provides us with insight into what could go wrong based on
what has gone wrong historically. Results such as Fundex and User
Sentiment indicate how your end users will and are responding to
new capabilities.

Support
Effective Performance Engineering does not end at production; it is
a continuous, iterative practice of integrating feedback, improving
the entire lifecycle with every new piece of information, and auto‐
mating this cycle. Advancements in big data and predictive analyt‐
ics, combined with these practices, enable a more stable, high-
performance experience for end users.

Threshold analysis and automated mitigation implementation
Threshold analysis starts with defining specific thresholds within
your systems and applications for your application performance
monitoring capabilities to alert and alarm, then building in rules-
based automated mitigation implementation, which allows the prod‐
uct or service your end user is accessing to continue with minimal
interruption. Utilizing this approach increases the resiliency of your
architecture.

Many companies today have set up threshold analysis in the form of
a network operations center (NOC), staffed by a few individuals
around the clock, with dozens of monitors projecting thousands of
alerts per day and sometimes hourly. Having this automated with
built-in and tested mitigation implementation simplifies and
ensures the business is protected, enabling the technology to grow
and automatically scale with the company’s needs.

While this area is still maturing from a solutions perspective, it can
be done and delivered successfully when implemented by a team
that considers it a collaborative goal.

48 | Chapter 2: Overview of Performance Engineering

Incident management, root-cause analysis, and reporting
Incident management is the practice of actively managing produc‐
tion (and in some cases pre-production) incidents. Its chief purpose
is capturing the “current state” and enabling the re-creation of the
incident in pre-production, while finding and fixing the root cause.
This root-cause analysis, along with tracking and reporting trends,
will support the technical debt and investment needed to ensure
your architecture is performing well.

History does repeat itself. This is especially true for a technology-
enabled business that follows a defined set of instructions the same
way every time. Thus, we must build in learning cycles in order to
understand why something happened and prevent it from recurring.

Many solutions exist off the shelf today. However, first you must
assign accountability and responsibility for this activity. We have
often seen an incident management team that owns the process of
the production incident, but who owns the learning and feedback to
prevent that incident from happening again is not always clear.
In Effective Performance Engineering, each task must first have a
defined process and owners, and only then be enabled with technol‐
ogy.

Re-create production incidents pre-production
All too often we see pre-production teams working on and attempt‐
ing to fix production incidents. When production incident fixes are
applied in production, what gets released are non-integrated updates
that are not in any way validated or tested. Not only is this a risky
approach for production, but now you have changes that are not
being implemented into the existing pre-production assets for future
deployments. This means these incidents will happen again. It is also
helpful to ask, “Did these hotfixes really fix the problem, or just
push them off to another day?”

Leveraging Effective Performance Engineering practices enables you
to quickly capture a snapshot of what happened in production, then
spin up the environments that pre-production deployed and re-
create the incident, so you can follow your normal process to make
quality fixes to your production release.

Performance Engineering Throughout the Lifecycle | 49

Stakeholders
With Effective Performance Engineering, the stakeholders are from
all walks of life. Whereas with traditional Performance Testing, the
sole responsibility for performance fell on a select group of individ‐
uals, in Performance Engineering, it is the entire team’s responsibil‐
ity to work in a broad and collaborative manner encapsulated by the
organizational culture.

Once you drive incremental value and success within a group or
team, this culture accelerates. Both as you start adopting these capa‐
bilities and as you continue to integrate them, it is critical that you
understand your stakeholders, keep their best interests in mind, and
communicate with them frequently. We will dissect what each stake‐
holder group looks like in the following subsections.

Development
Performance Engineering is often not a top priority for a typical
development team, especially given all the unique and expanding
challenges related to the complexity of composite architectures, dis‐
tributed organizations, and end users. The reason for development’s
growing importance is to ensure they deliver the highest quality and
performing product, and provide continuous feedback and optimi‐
zation recommendations, so other teams can deliver quickly and in
fully automated ways.

Testing and Quality Assurance
The responsibility of a testing and quality assurance team independ‐
ent or integrated into teams is to ensure the delivery of a quality
product. How this happens and where the focus is depends on who
you are speaking with, and how they are aligned. For example, some
organizations align by specialty (security, performance, functional,
usability, and so on) and others have an integrated team. With effec‐
tive Performance Engineering practices, a group of individuals is
accountable for the delivery of a high-performing solution through‐
out the development process, and delivers that with clear measure‐
ments and communications throughout the lifecycle.

50 | Chapter 2: Overview of Performance Engineering

Operations
Operations teams are focused on ensuring the product is running
and service is available. “Less is more” is this stakeholder’s perspec‐
tive. In other words, the less impact a change has on the production
environment, the better. This is why defining and validating what is
moving into production is so important; the operations stakeholders
will want to see how and why a capability is ready for the production
environment. The practices of Effective Performance Engineering
involve these individuals throughout, allowing them to contribute
and be a part of the team steering a high-quality product through
the environments and into production.

Business
The focus of this stakeholder is on ensuring that revenue, competi‐
tive advantage, customer, and brand goals are achieved. This
includes expanding offerings and/or businesses either through
organic or acquisition approaches, all of which may depend on
existing or new platforms, so end users can consume products and
services without interruption when, where, and how they want to.

End Users
End users ensure feedback is delivered, and value from product
and/or service is realized. Users simply do not want security, perfor‐
mance, functional, or usability issues while interacting with your
products or services. Making them a champion for your brand
should be your goal; you do so by continuously meeting or exceed‐
ing their expectations, and asking them to share their positive expe‐
riences with others frequently.

Of course, you will encounter other stakeholders, but start by identi‐
fying which of these five existing roles fit into your organization.
Begin thinking about how you can apply some of the Effective Per‐
formance Engineering practices in your organization today, aligning
them with the interests of these stakeholders. Include your stake‐
holders in these conversations, ask them for feedback on what they
get and what they need, and show them your desire to make them
your biggest supporter and champion.

Stakeholders | 51

Building in Performance
Performance cannot be an afterthought; it needs to be at the fore‐
front of your team’s thinking from the very beginning and through‐
out. This often comes into conflict with the “release faster” mentality
that drives many businesses today, but it doesn’t have to. The speed/
accuracy tradeoff that is often cited in Lean startup principles
doesn’t necessarily apply to the performance of the applications we
build, but rather to the speed with which we deliver and the accu‐
racy of our delivery compared to what the market needs. When it
comes to Lean startups, it isn’t necessary to hit the mark 100% right
away. Fast feedback allows us to adjust our course and reiterate very
quickly. But what happens if the products we deliver to the market
perform poorly? There won’t be a second chance to get things right
if the customers’ first impression is of a slow or unresponsive app.

It is our responsibility to bring these capabilities and practices to our
business owners and CxOs so they can understand why they’re
important and how others are delivering compelling results to their
end users, and will enable your business to do the same or more.

The List: 102 Questions to Ask
Performance Engineering is a complex discipline encompassing
applications, infrastructure, security, and more. To truly optimize
your performance, your organization needs to address a broad range
of issues. To make informed decisions, individuals and organiza‐
tions need to start asking some or all of the following 102 questions.

This list is intended to be inclusive but not exclusive, and apply
across all DevTestOps approaches. No matter what your role, per‐
sona, and interest, this list should help you understand how your
solution is engineered for performance, stability, and scalability.

Our goal is to help you, your team, and your stakeholders gain a
common nomenclature for Performance Engineering so you can
define your path and direction together. We intend the following as
a checklist of actionable items, so you can ask informed questions as
you start collaborating and adopting Effective Performance Engi‐
neering practices throughout your lifecycle.

52 | Chapter 2: Overview of Performance Engineering

Server sizing

• How many application servers are needed to support the cus‐
tomer base?

• What is the optimal ratio of users to web servers?
• What is the optimal web server–to–application server ratio?
• What is the maximum number of users per server?
• What is the maximum number of transactions per server?

Server tuning and optimization

• Which specific hardware configurations provide the best
performance?

• How can vendor default configurations be tuned to suit this
specific infrastructure and application?

• What system resources need tuning to give optimal
performance?

Capacity planning

• What is the current production server capability?
• Is there room for growth?
• What hardware or software can be added to achieve the next

level of performance or capacity?
• Is there excess capacity? Can a server be removed without com‐

promising performance?

Third-party validation

• What is the current ISP and network capacity?
• Can the ISP deliver on the service-level agreement that was

signed?

Security exposure

• Can system vulnerabilities be identified and minimized?

Building in Performance | 53

• What is the failover for firewalls?
• Are there new vulnerabilities when excess user load is added to

the application?
• How susceptible is the system to DoS attacks?
• If a DoS attack occurs, how will the system respond?
• If the system goes down due to a hacker attack, how effective

are the recovery procedures?

Infrastructure
The following are some questions you should ask regarding the
infrastructure.

Browser/user profile issues
This subsystem is known as the user community profile and consists
of business process definitions.

• What do the users do? (These are business-process definitions.)
• How fast do the users do it? What are the transaction rates of

each business process?
• When do they do it? What time of day are most users using it?
• What major geographic locations are they doing it from?
• Is the application browser- or interface-dependent?
• Is modem, WAN, or LAN emulation necessary?
• Are there asynchronous communications between the browser/

client and the backend servers?
• Are there any non-HTTP(s) communications between the

browser/client and backend servers?

Internet issues

• What are the peering issues associated with the client’s hosting/
bandwidth provider?

• What is the hosting strategy?

54 | Chapter 2: Overview of Performance Engineering

Site web pipe issues

• How much bandwidth does the site have?
• Who is the client’s bandwidth provider? (Peering issues)
• Are there multiple web pipes?

Border router issues

• What kind of load-balancing are the multiple pipes configured
for?

• Does it use the same inbound pipe as outbound pipe?
• Is there equal distribution for outbound regardless of inbound

pipe?
• Is there the same outbound pipe regardless of the inbound pipe?
• Are there multiple border routers?
• What is the failover configuration for multiple border routers?

Load-balance issues

• What type of load-balancing scheme is used? (Round robin,
sticky IP, least connections, subnet based?)

• What is the timeout of LB table?
• Does it do any connection pooling?
• Is it doing any content filtering?
• Is it checking for HTTP response status?
• Are there application dependencies associated with the LB time‐

out settings?
• What failover strategies are employed?
• What is the connection persistence timeout?
• Are there application dependencies associated with the LB time‐

out settings?
• What are the timeouts for critical functions?

Building in Performance | 55

Peripheral systems issues

• Is the LAN/WAN system dedicated or shared with other appli‐
cations?

• Are there any shared production resources?
• Are there any web pipes, ERP systems, mail servers, filesystems,

DNS servers, and so on?
• Does it share databases with other applications?
• Does it share hardware with other applications?

External systems issues

• Are there any outside vendors that provide content distribution
systems (CDS) for the architecture?

Distributed hosting issues

• Are these multiple mirrored sites?
• Is any site configured for failover operation?
• How is the traffic load-balanced across the sites?
• Are there architecture components on shared WAN

connections?
• What is the failover and recovery behavior?

Firewall issues

• What is the throughput capacity?
• What is the connection capacity and rate?
• What is the DMZ operation?
• What are the throughput policies from a single IP?
• What are the connection policies from a single IP?

IDS: Intrusion detection systems

• Is there statistical content sampling?

56 | Chapter 2: Overview of Performance Engineering

• Is there an inverse relationship between throughput and
security?

• How is content filtering achieved?

Application
Here are some of the questions you should be prepared to ask
regarding the application.

Web server issues

• How many connections can the server handle?
• How many open file descriptors or handles is the server config‐

ured to handle?
• How many processes or threads is the server configured to

handle?
• Does it release and renew threads and connections correctly?
• How large is the server’s listen queue?
• What is the server’s “page push” capacity?
• What type of caching is done?
• Is there any page construction done here?
• Is there dynamic browsing?
• What type of server-side scripting is done? (ASP, JSP, Perl, Java‐

Script, PHP, and so on)
• Are there any SSL acceleration devices in front of the web

server?
• Are there any content caching devices in front of the web

server?
• Can server extensions and their functions be validated? (ASP,

JSP, PHP, Perl, CGI, servlets, ISAPI filter/app, and so on)
• Monitoring (Pools: threads, processes, connections, and so on;

queues: ASP, sessions, and so on; general: CPU, memory, I/O,
context switch rate, paging, and so on)

Building in Performance | 57

Application server issues

• Is there any page construction done here?
• How is session management done and what is the capacity?
• Are there any clustered configurations?
• Is there any load-balancing done?
• If there is software load-balancing, which one is the load-

balancer?
• What is the page construction capacity?
• Do components have a specific interface to peripheral and

external systems?

Database server issues

• Have both small and large data sets been tested?
• What is the connection pooling configuration?
• What are its upper limits?

Security
Here are some of the questions to ask when addressing security
issues.

Firewalls and multiple DMZs

• Does the firewall do content filtering?
• Is it sensitive to inbound and/or outbound traffic?
• What is its upper connection limit?
• Are there policies associated with maximum connection or

throughput per IP address?
• Are there multiple firewalls in the architecture (multiple

DMZs)?
• If it has multiple DMZs, is it sensitive to data content?

58 | Chapter 2: Overview of Performance Engineering

IDS: Intrusion detection system

• Is there any content filtering?
• Is the system sensitive to inbound and/or outbound traffic?
• What are the alert thresholds?
• What are the acceptable security thresholds?

Naturally, these questions are only a starting point—you also need
to come up with answers—and they don’t cover every possible issue
in Performance Engineering. How will you use these questions?
What would you add to the list?

Building in Performance | 59

CHAPTER 3

Proven Practices of
Performance Engineering

To explore the proven practices of Performance Engineering, we will
start with the requirements, architecture, and design; hit some of the
highlights of implementation; and walk you through a real-life sce‐
nario. The objective of this chapter is to present a complete case
study for each practice so you can begin to understand what it
means for you, and to provide you with a story you can use and
share with your team or organization.

Requirements, Architecture, and Design
Here is a list of proven practices for requirements, architecture, and
design:

• Identify components
• Set performance budgets
• Establish acceptance criteria
• Plan for outliers
• Build in performance culture
• Prototype (and test)

61

Introduction
One of the questions many people ask themselves while adopting
Effective Performance Engineering practices is, “How do I engineer
configuration and applications before starting development?”

The building in Figure 3-1 represents the requirements of software
and architecture architecture and design.

Figure 3-1. The requirements of architecture and design represented as
a building

Today, teams architect and design within their own pillars, typically
within a development or architecture team, and sometimes seen
within a “Sprint 0” or other phase if the project or system is new.

The increasing complexity of composite applications, and the multi‐
tude of end users and ways of consuming products and services, has
compounded the root-cause issues described in Chapter 2. Effective
Performance Engineering provides a new way of thinking about
software and hardware systems and how to architect and design
them so your end user has a great experience, and you have a high-
performing and resilient capability supporting your products and
services.

In many cases these are complex and dependent systems—some‐
times new, but often existing and integrated throughout both the
frontend and backend. Knowing this, you may be focused initially
on “big risk/big impact” systems like web and core systems.

62 | Chapter 3: Proven Practices of Performance Engineering

Although the risk and reach is high, so is the value you can deliver
to the business and your end users.

Scenario
Company ABC is a large financial services institution that has
grown over the years to 9 million+ customers and continues to grow
at a high rate both organically and through acquisition. They have
been transforming to integrated and self-managed Agile teams for
nearly a year. A new epic has been prioritized for a new capability
that will be rolled out to all customers across all channels, and
although it is a vendor commercial-off-the-shelf (COTS) product, it
has not been previously deployed at this scale by the vendor or any
other known enterprise organizations.

Challenges
As you might imagine, this task is not without its challenges—some
known and some not. To help you spot these potential challenges,
here are some additional details.

This is the largest Internet-based bank in the United States. The new
epic has to do with a login security capability, in which end users
will no longer be using their PIN but an image + phrase + login +
password to gain access to their accounts. This is a very good brand,
having earned the business of 9 million+ Americans and seeing low
double-digit growth rates of new customers. 180,000 logins per hour
across 7 total major geographic locations worldwide (5 of which are
in the US). Of the 9 million+ customers, 40%+ most often access
their accounts via mobile with a range of mobile conditions across
2.5G, 3G, and 4G connection types. When rolled out, 100% of all
customers upon login will be requested to set up and complete the
new login procedure prior to getting access to their accounts. This is
planned as a software-only install, with no new hardware or other
infrastructure upgrades needed, per the vendor.

You can imagine some of the complexities that might exist or
quickly begin to surface with this scenario.

Option 1
Roll out the new login to all customers simultaneously, and provide
additional infrastructure to support the initial spike in activity.

Requirements, Architecture, and Design | 63

The pros of Option 1 include:

• Increased marketability of the new feature (enhanced security
capability for end users)

• Shortest perceived time to first implementation
• Shows urgency in response to partnering technology with busi‐

ness

The cons of Option 1 include:

• Increased risk of failure
• Potentially high infrastructure cost
• Introduced elasticity requirement, forcing potential re-

architecture of the application
• Dependency on potential unknown cloud service provider to

scale

Option 2
Roll out the new login to a reduced segment of the population, using
a staggered approach.

The pros of Option 2 are as follows:

• Perceived reduced risk of failure
• Ability to monitor the affected install base and make quick deci‐

sions to fix if needed
• Measurable incremental scaling of capacity monitored and

observed with ramp-up

And the cons of Option 2 include:

• Duplicate infrastructure during the rollout to support dual
authentication mechanisms

• Potential database and parallel user login profiles during transi‐
tion and possibly higher risk remediation

• May take longer to roll out to large-scale customer base

64 | Chapter 3: Proven Practices of Performance Engineering

Option 3
Allow customers to opt in to the new login method over a period of
several days or weeks.

Here are the pros of Option 3:

• Lowest potential risk of impact from high adoption rates of new
login credentials

And here are the cons of Option 3:

• No incentive for customers to switch
• High likelihood that customers will not switch, leading to

longer time to support both login types
• Sample size of data through conversions potentially too small

for any meaningful indication of future impact
• Probably will need to push a force to transition in the future,

which could lead to massive customer demand
• Perceived risk in the market to customers and/or regulatory

impact

Recommendation
Given these three options, we recommend Option 2. It provides a
balanced approach by deploying the capability in a timely manner,
while mitigating both the risk of overcapacity from demand as well
as the business risk from brand and regulatory impact.

Summary
This scenario was based on a real-world situation in which the
resulting impact was nearly catastrophic to the organization. At the
time, there was no indication that a well-established commercial
product would have such a detrimental impact.

Here we have the benefit of hindsight to tell us there were better
ways to roll this change out, capture relevant usage and impact data
from a subset of the production users, and make the necessary
adjustments. It is important to ask, “What will be the impact if this
fails?” and somehow mitigate that without adding weeks or months
to the project. Architects rarely get to see their vision brought to life.

Requirements, Architecture, and Design | 65

In the real-world scenario, what happened was a staggered approach
to deployment. However, what was not known or predicted was the
users’ behavior: specifically, that nearly every user would scroll
through all 100+ images to see which related most to them, and that
each image was 700KB in size with 5 images per page displayed. As a
result, even with only 1% of the population (90,000 customers) set‐
ting up their new login credentials, each pulled a huge amount of
data (3.5MB per page, at 20+ pages per customer) through the data
center network lines. The result was a massive production incident
that taxed nearly all systems due to overcapacity issues. This was
compounded by the fact that ~40% of users were on mobile connec‐
tions, causing the sessions to remain open and ultimately run out of
connections throughout all components.

How-To
In this scenario, you can see why the proven practices of Perfor‐
mance Engineering for requirements, architecture, and design
should play a significant role within your organization. The first step
is identifying the components, you should consider within the infra‐
structure and application architecture, knowing some will be inter‐
nal and others external, and some private while others are shared.
The next consideration is setting performance budgets, or allocating
milliseconds per component to target, in order to deliver the desired
end-user experience. Defining the acceptance criteria for each com‐
ponent, specifying the conditions and use case (e.g., network condi‐
tions and image sizes), is critical. You can see how planning for
outliers might have led the bank to make a bit more capacity avail‐
able, and a more conservative deployment approach. Building in per‐
formance culture would have helped a lot here, especially in
considering vendors for commercial off-the-shelf (COTS) products
and capabilities, and establishing performance criteria as part of the
interrogation criteria prior to acquisition through the procurement
process—let alone production deployment. This is where also proto‐
typing and testing would have provided significant insight and infor‐
mation proactively, which the bank could have then applied and
used as feedback in determining the best technology approach with
the business for the end user.

66 | Chapter 3: Proven Practices of Performance Engineering

Key Implementation Considerations
• Organizational

— Where do people sit (different teams versus integrated)?
— Who is accountable for performance?

• Cultural
— Place value on performance
— Hold people accountable for performance
— Tie compensation to performance

• Technical
— Build performance into the story
— Build performance into the architecture

Proven Practices for DevTest
Continuing our journey into the proven practices of Performance
Engineering, next we describe a DevTest scenario and explore some
of the highlights. In this section, we once again start with a list of
proven practices, then walk through an introduction, followed by a
scenario, summary, how-to, and key considerations.

Here are the proven practices of Performance Engineering for
DevTest:

• Build performance into your UNIT tests
• Build performance into your build validation tests (BVT), get‐

ting results after every build
• Track the trend of results for systems and components
• Automate quality gates in the build in order to avoid perpetuat‐

ing poorly performing components
• Consider a branching strategy that enables you to “keep out”

pieces that will break the code and/or make it perform poorly

Proven Practices for DevTest | 67

Introduction
Performance Engineering during application development consists
of testing the application in as realistic an environment as is avail‐
able, without impacting the velocity of the team, and getting rele‐
vant performance feedback into development in an automated way.
Assuming we have the necessary goals defined from requirements,
architecture, and design, this feedback should provide KPIs to sup‐
port those goals. For example:

• The application needs to support 10,000 active users with sub-
second responses for key transactions such as Login, Search, or
Confirm Order.

• The application must support a peak volume of 1,000 transac‐
tions per second with processing time of no more than 500ms.

These KPIs should reflect the goals of the business, and provide
a target for success and improvement such that every build and
release of the application is measured consistently against these
goals.

Moreover, the process by which these KPIs are measured should
reflect the goals and delivery method best suited to support the busi‐
ness. This means an application that follows an Agile or hybrid
approach to development and testing should not be held up by the
activities of the team or individuals responsible for performance.
This is critical, and should define the level of automation and meas‐
urement that can be achieved in order to provide the greatest level
of feedback with the least amount of impact to the application deliv‐
ery chain.

To support this statement, we will use an example scenario in which
an application team is tasked with reaching certain business goals
for performance, but is forced to make tradeoffs in order to main‐
tain their release velocity.

Scenario
Company XYZ is about to launch a new version of their online ship‐
ping application, which currently services 2,000 businesses and
95,000 individuals via mobile and web clients in North America.

68 | Chapter 3: Proven Practices of Performance Engineering

The new version is required to support their European launch,
adding an estimated 150,000 new customers as well as 15 new
regional shipping services and 5 new payment vendors across 28
countries.

The service-level objectives (SLO) of the business are to process all
orders within 2 seconds, although key stakeholders do not have a
good sense of peak user volumes. Estimates from business analysts
in the Marketing team estimate an additional 45,000–65,000 indi‐
vidual users.

Challenges
For the Performance Engineering team to validate the SLO, they
need an estimated three weeks to build a production-like environ‐
ment, and another four weeks to complete testing and analysis. Even
if a reasonable amount of overlap is achieved, this release delay is
unacceptable to the business. The developers don’t believe this work
is needed, as they are confident in their architecture decisions and in
the quality of their code. They also believe that any issues found in
production can be fixed quickly enough to minimize the impact. In
this example organization, all teams are independent and dis‐
tributed groups, and Development carries enough influence that this
line of thinking is gaining popularity.

Conversely, the media has run stories about the company’s expan‐
sion into Europe, primarily led by competitor messaging that the
company is likely to fail to meet the demands of such a broad and
diverse region. Many in the company are aware of the risk of failure
to launch, and support the need to validate performance. You can
present one of three options in hopes of avoiding a major failure
during this important launch.

Option 1
Test the end-to-end application in a completely integrated and
scaled environment at the end of development.

The pros of Option 1 include:

• Complete picture of application performance before go-live
date

• Ability to identify bottlenecks within and beyond the company’s
infrastructure

Proven Practices for DevTest | 69

The cons of Option 1 are as follows:

• Massive delays to the project
• Difficult to resolve issues late in development
• Little room for additional delays or retesting

Option 2
Test the end-to-end application in a scaled-down and virtualized
environment using service levels provided by third-party services to
represent external dependencies.

Here are the pros of Option 2:

• Reasonable facsimile of production performance
• Ability to virtualize external dependencies reliably and capture

“what if ” scenarios
• Fewer delays to the project timeline, more time for re-testing

And here are the cons of Option 2:

• Assumption-based approach to capturing third-party depend‐
ency performance

• Still difficult to resolve issues late in development

Option 3
Test individual application components throughout development,
with virtualized internal and external dependencies. The end-to-end
performance will be tested at the end of each sprint/cycle.

The pros of Option 3 are:

• Fast feedback to the development team
• Little to no delays to the project
• Reasonable facsimile of production performance

70 | Chapter 3: Proven Practices of Performance Engineering

The cons of Option 3 are:

• Assumption-based approach to capturing third-party depend‐
ency performance

Recommendation
The recommendation is Option 3. Application changes tend to focus
on a few components that can be scaled close to production, while
the surrounding dependencies are outside of our control. These may
belong to other teams or organizations, or are cost-prohibitive to
build to scale in a DevTest environment. Leveraging virtualization
for these dependencies is key to isolating and identifying the impact
to the components under our control.

Summary
In reality, the best-fit solution for testing any application involves
some tradeoffs between the completeness of our picture of perfor‐
mance and the time in which we deliver. There is no one answer that
fits every application, environment, and organization, but in most
situations we should strive to deliver as much information as possi‐
ble, as quickly as possible. In general, there are three factors you
should consider when deciding how to test: cost, quality, and time.
We can choose which of these is most important, but the closer we
get to one, the more we sacrifice of the other two.

Figure 3-2 shows the triangle of three key factors that everyone
wants; however, it is often said you can choose only two.

Figure 3-2. The three key factors

Proven Practices for DevTest | 71

How-To
One approach to delivering critical performance information to the
Development team without slowing or halting their progress is to
automate the execution of performance testing during each and
every build. The goal is to understand the performance delta
between builds, with a focus on KPI trends rather than the accuracy
of individual metrics.

In order to achieve rapid feedback in a continuous integration envi‐
ronment, you must reuse assets and virtualize dependencies cap‐
tured during previous iterations. Automated execution and analysis
are critical. Wherever possible, automation should extend to the
analysis of tests as well. Most testing tools, such as Jenkins and Bam‐
boo, extend continuous integration platforms to provide perfor‐
mance trending and feedback after each build is created. Figure 3-3
shows a typical lifecycle representation along with call-out boxes of
how performance can be built in at specific stages, demonstrating a
possible flow through development that provides quick time-to-
value and will not significantly impede development velocity.

Figure 3-3. Typical lifecycle representation

The most significant feedback comes from performance testing,
which should happen in three stages:

1. Execute the baseline test after each and every build.

72 | Chapter 3: Proven Practices of Performance Engineering

2. Add/change incremental functionality to the test library as it
becomes available.

3. Add new/changed features to the baseline at the end of each
release.

In this context, the baseline test refers to the previously accepted
release criteria, or some level of test that represents the most com‐
mon usage and behavior of the application. BVT for performance
may be contentious for some organizations that have not bought
into the value of performance to the company. In these cases, it is
important to understand:

• Who is responsible for the performance and stability of the
build?

• What information can we deliver that will add value for that
person or group?

Every team, technology stack, and application will be different, but
we can strive to provide relevant, repeatable, and realistic data in a
reasonable timeframe, to avoid blocking the development process.

Parallel to automated test execution and analysis, Performance Engi‐
neering teams should execute a series of focused tests to validate the
scalability and resilience of the application. These are often run
against a pre-production or dedicated performance environment
(for the very fortunate), and account for the overarching perfor‐
mance requirements that are not easily captured in a single set of
release requirements.

In addition to testing, there needs to be some sort of continuous
feedback from production. In the following sections, we will discuss
some of the ways that monitoring can be used to provide critical
information to development and testing, and impact the design
phase as well.

Key Implementation Considerations
• Organizational

— Who is responsible for your builds?
— Are they considering performance?
— What does “pass” mean?

Proven Practices for DevTest | 73

• Cultural
— What happens when you break a build?
— How is progress/status socialized?

• Technical
— How are you enabling automation across tools, teams, and

roles?

Proven Practices for Operations
Lastly, in our exploration of proven practices of Performance Engi‐
neering, we will elaborate on Operations, highlighting, and illustrat‐
ing important points through a real-life scenario. Again we start
with a list of proven practices, walk through an introduction, and
follow with a scenario, summary, how-to, and key considerations.

Here are the proven practices of Performance Engineering for Oper‐
ations:

• Make sure disaster recovery, capacity planning, and resiliency
are all known, tested, and observed.

• Provide continuous deployment and operations from pre-
production environments through to production.

• Set up a production environment with: canary, live/live, or blue/
green deployment approaches.

• Establish predictive, scaled growth, feature and configuration
tracking, and continuous feedback.

• Maintain an inclusive monitoring strategy with complete and
continuous feedback across all environments.

• Identify the most commonly used features and functionality,
updated and used across the stack and lifecycle.

• Identify the “hot” areas: software, hardware, configurations, and
so on.

• Establish a production incident review process focused on
learning and long-term stability.

74 | Chapter 3: Proven Practices of Performance Engineering

Introduction
Operations is often considered the most important part of the
business, as this group is responsible for ensuring the Production
team is able to provide the products and services that end users
want and for maintaining very high uptime and an extremely low
incident rate.

Several organizations (possible even a majority) have sought to
reduce overall operational expenses by outsourcing operations tasks
to a partner in a long-term contract (often 10+ years), in exchange
for a guaranteed savings rate per year.

There is nothing wrong with this strategy. That said, many organiza‐
tions have limited time and resources allotted for transitioning
operations to the partner, and often that partner has not yet adopted
Effective Performance Engineering practices.

That’s a recipe for less-than-desirable results, and often becomes a
point of contention wherein both parties spend much energy and
effort negotiating the contract rather than focusing on the end user.

Let’s take a look at such a scenario, and how you can mitigate these
challenges with Effective Performance Engineering practices.

Scenario
Company 123 is a large international business with 9 reportable seg‐
ments (Agriculture and Nutrition, Nylon Enterprise, Performance
Coatings and Polymers, Pharmaceuticals, Pigments and Chemicals,
Pioneer, Polyester Enterprise, Specialty Fibers, and Specialty Poly‐
mers) spanning more than 70 countries worldwide. They make 49%
of consolidated sales to customers outside the US, employ a total of
93,000 people, and have a $68 billion market cap. In addition, they
operate the largest Electronic Data Interchange (EDI) operations
and are the largest SAP customer in the world.

They are seeking to optimize their growing operations and support
systems, as well as reduce the associated costs, while still maintain‐
ing the service level for their end users. Their intent is to partner
and outsource the global information systems and technology infra‐
structures in order to provide selected applications, software serv‐
ices, and information systems solutions designed to enhance
manufacturing, marketing, distribution, and customer service.

Proven Practices for Operations | 75

The company is seeking to reach a 10-year agreement with a partner
to transition all operations and support with a guaranteed savings of
10% per year for the 10 years of the initial contract term. Transition
is scheduled to take place over a 3-month period and at least 70% of
the existing company resources will transition to the new partner
organization as part of this operations outsourcing agreement.

Challenges
If you have ever been a part of something like this, then you know:
the sheer size of this maneuver is scary. Now add the fact you are
outsourcing your “global information systems and technology” busi‐
ness for 10 years to a partner (where your talent is going), and it gets
exponentially more interesting.

Needless to say, this transition was not without several challenges,
and we will see how this organization became a cautionary tale for
the importance of implementing Effective Performance Engineering
capabilities that benefit all parties. Of course, let’s not forget Com‐
pany 123 is nearly 100 years old, comprises 9 segments in 70+ coun‐
tries, serves 93,000 people, and has a $93 billion market cap.

Option 1
Single partner.

The pros of Option 1 are as follows:

• Single neck to wring if needed
• Little ambiguity or dependency on partner’s ability to deliver on

the contract to company
• Talent goes to a single-partner organization

The cons of Option 1 are as follows:

• Limited diversification, consolidated risk

Option 2
Two partners.

The pros of Option 2 are:

• Competitive environment

76 | Chapter 3: Proven Practices of Performance Engineering

• Diversity of service, redundancy

The cons of Option 2 are:

• Multiple players
• Increased possibility for finger-pointing
• Talent dispersed over two partner organizations

Option 3
Hybrid (split: Company 123 resources and one or more partners).

Here are the pros of Option 3:

• Company can control speed of transition
• Competitive environment
• Iterative learning and feedback

And here are the cons of Option 3:

• May take longer to transition
• Reduction of operational expense delayed
• More company effort required

Recommendation
The recommendation is Option 3. Option 3 enables Company 123
to begin to realize the benefits and value of transitioning operations
to a partner, and adapt and change their business practices over
time, while observing the positive and negative effects on end users.

Summary
In reality, Company 123 moved forward with Option 2. As a result,
Partner 1 contracted to operate a majority of Company 123’s global
information systems and technology infrastructure, and provide
selected application and software services; and Partner 2 contracted
to provide information systems solutions designed to enhance Com‐
pany 123’s manufacturing, marketing, distribution, and customer
service.

Proven Practices for Operations | 77

The company reached a 10-year agreement with both partners to
transition nearly all operations and support with a guaranteed sav‐
ings of 10% per year for the 10 years of the initial contract term.
Transition was scheduled to take place over a 3-month period with
at least 80% of the existing company resources transitioning to the
new partner organization as part of this operations outsourcing
agreement.

Due to many of the identified “cons” of Option 2, this approach was
riddled with challenges throughout the term of the contract, with
the transition working out for one partner and not the other, and
Company 123 ended up taking back much of the outsourced sup‐
port and operations. The end users suffered the most, followed by
Company 123’s businesses; today, some 15 years later, the company
has a $46 billion market cap—approximately 50% smaller than it
had before the partnership.

How-To
In this scenario, you can see why the proven practices of Perfor‐
mance Engineering for operations should play a significant role
within an organization. These practices start with disaster recovery,
capacity planning, and resiliency, which should all be known, tested,
and observed for critical capabilities and functions. Continuous
deployment and operations spanning from the earliest pre-
production environments through to production enables you to test
the deployments, control and protect the deployment procedures,
and measure the quality of the release candidate. A production envi‐
ronment enabling canary,live/live, or blue/green-type deployment
approaches can mitigate the risks associated with traditional, single-
data-center, big-bang deployments. Predictive models allow you the
chance to gain insight into how a capability will scale under growth,
track features and configuration, and get continuous feedback from
pre-production through production and back, supported by an
inclusive monitoring strategy with complete and continuous feedback
across all environments. Other practices include identifying the
most commonly used features and functionality, in order to show
when updates happen and how they’re used across and beyond the
stack and lifecycle, and identifying where the “hot” areas are related
to software, hardware, and configurations. Lastly, establish a solid
cross-team production incident review process rooted in and focused
on learning and the long-term stability of the team and all environ‐

78 | Chapter 3: Proven Practices of Performance Engineering

ments, in order to make products and services continuously avail‐
able to the business and end users.

Figure 3-4 shows the intersection of workflow, toolchain, and arti‐
facts, along with the automated flow from left to right of a common
automated build/test/deploy cycle. It highlights the (often automa‐
ted) check and release-to-production steps, as well as the integration
of performance considerations and feedback throughout the cycle.

Key Implementation Considerations
• Organizational

— Who does delivery through DevTest versus ProdOps?
— When a delivery goes wrong, who is responsible?

• How are you measuring the quality of a release?
— Stakeholders (business/technical/customer)
— Are all parts considered?
— Visualized and communicated

• Cultural
— What happens when you have a failed delivery?
— Is rollback tested every time prior to your release?
— What are your performance metrics?
— Ops = Chaos
— Frequency of alarms, acceptable
— Performance Engineering teams > time in production

• Technical
— How are you mitigating quality and performance with fre‐

quency of release?
— Are you using canary deployment approaches to minimize

impact to production?
— How are your blue/green releases?
— Backup and recovery
— Load-balance and CDN
— End-to-end (client, server, network, and app layer)

Proven Practices for Operations | 79

Fi
gu

re
 3

-4
. I

nt
er

se
ct

io
n

of
 w

or
kfl

ow
, t

oo
lch

ai
n,

 a
nd

 a
rt

ifa
ct

s i
n

a
bu

ild
/te

st/
de

pl
oy

 cy
cle

80 | Chapter 3: Proven Practices of Performance Engineering

CHAPTER 4

Tying It All Together

As more businesses experience devastating production incidents,
they are recognizing that they need to change, and are working to
implement Effective Performance Engineering practices. They’re
restructuring their teams and redefining jobs such that some team
members are focused on ensuring that the essential computer infra‐
structure and applications deliver good, stable performance at all
times. They’re embracing practices in Performance Engineering and
treating them as critical, adopting an organizational culture sup‐
porting this transformation, and rewarding individuals for their
contributions.

Keep in mind that Performance Engineering doesn’t refer only to a
specific job, such as a “performance engineer.” More generally, it
refers to the set of skills and practices that are gradually being
understood across organizations that focus on achieving higher lev‐
els of performance in technology, in the business, and for end users.

Many naive observers often take the same attitude toward Perfor‐
mance Engineering: it’s simply a matter of making sure the systems
run fast. If possible, make them run really fast. When in doubt, just
make them run really, really fast. And if that doesn’t work right
away, throw money at the problem by buying more hardware to
make the systems go really fast.

But just as there’s more to winning a track meet than being fast,
there’s more to building a constellation of quick, efficient web
servers and databases than being fast. Just as athletes can’t win
without a sophisticated mixture of strategy, form, attitude, tactics,

81

and speed, Performance Engineering requires a good collection of
metrics and tools to deliver the desired business results. When
they’re combined correctly, the results are systems that satisfy both
customers and employees, enabling everyone on the team to win.

Metrics for Success
One critical element of integrating a Performance Engineering cul‐
ture within an organization is to determine what performance met‐
rics you need to track and assess whether you can measure them
with confidence.

How often do we hear development and testing organizations and
even managers refer to lines of code written, scripts passed and exe‐
cuted, defects discovered, and test use cases as a measure of their
commitment to software quality?

At the end of the day, these measurements are useless when it comes
to delivering results that matter to your end users, that keep them
coming back for more of your products and services. Think about it.
Who cares how many defects you’ve found in pre-production? What
does that measure?

We want to make a fairly bold statement: these old, standalone test
metrics don’t matter anymore.

When it comes to quality in development, testing, and overall oper‐
ations, these are the questions you should be asking yourself:

• How many stories have we committed to?
• How many of these were delivered with high quality to the end

user?
• How much time did it take to deliver from business or customer

concept to production?

Finally, ask yourself this: “Are our end users consuming the capabili‐
ties they asked for?”

Activities Versus Results
The difference between this sort of focus and a purely technical
focus is the difference between activities and results. If our team
commits to 80 story points at the beginning of a 4-week sprint but

82 | Chapter 4: Tying It All Together

we deliver only 60, then we’re not meeting our commitment to our‐
selves, the business, or the customer. It also means our team is pre‐
venting another team from delivering on their commitments. The
release will instead be put on hold and pushed to our next release.
Ultimately, the business results are going to be less than what
we promised.

Over the last several years, improvements in development and test‐
ing have provided an opportunity for organizations to apply new
metrics that can lead to genuine transformation. The most common
of these proven concepts is Agile development practices. When
executed well, Agile methods can enable a team to quickly deliver
high-quality software with a focus on the highest priority for the
business and end user. As teams transform, having a few key meas‐
urements and producing results helps the organization evolve in an
informed manner, with continuous feedback from the investments
they’re making.

Without these types of metrics, organizations will simply attempt
their transformation blindly, with limited capacity to show results,
including the business outcomes demanded of today’s technology
organizations.

Top Five Software Quality Metrics
Here are the top five quality metrics that really matter:

Committed stories versus delivered results meeting doneness criteria
Remember the last time someone committed to do something
for you and either failed to deliver or didn’t meet your stand‐
ards? It caused delays and extra work, along with a lot of frus‐
tration. In software development, stories are the pieces of work
that are committed to and, ideally, delivered on time and to a
certain spec.

As you may know, stories represent the simple, high-level
descriptions that form a use case, such as a user inserting a
credit card into an airline kiosk. Each story needs to be deliv‐
ered at a specific level of quality or “doneness” criteria. As teams
continuously plan, elaborate, plan again, commit, and deliver,
the ultimate goal should be to deliver these results in alignment
with the broader team’s doneness criteria. When that can be
measured, the team can showcase its abilities to meet its com‐
mitments on schedule and with the highest standards.

Metrics for Success | 83

Quality across the lifecycle
The demand for software delivery speed continues to increase
along with the demand for reduced costs. But how can you ach‐
ieve these goals when you don’t have the time and resources to
manually test every build? When you can’t afford to wait and
find those defects in your late-stage releases? The answer is to
follow the build lifecycle from story to code on a developer
desktop. Next, you should check, build, and unit test. Continue
by using automation through the rest of the process, including
automated functional, performance, security, and other modes
of testing. This enables teams to show the quality of a build
throughout the lifecycle with quality metrics and automated
pass/fail gates.

Given the frequency of these builds and automated tests, build-
life results can be created and measured in seconds, minutes,
and hours. Now, your most frequent tests are fully automated,
and you’re only doing manual tests on the highest quality relea‐
ses that make it through the automated lifecycle. This results in
automated build-life quality metrics that cover the full lifecycle,
enabling your team to deliver with speed and quality, while
reducing costs through higher efficiency.

Production incidents over time and recurrence
Just as it’s important to show the quality of the release over time,
it’s also important to minimize production incidents and their
recurrence over subsequent releases. Table 4-1 illustrates a tech‐
nique we’ve used to compare team performance over time.
Imagine you are working with five teams over three completed
releases; this shows how an information radiator can be used
with simple and minimal key data to visually represent impor‐
tant results, such as “% Commit Done” and “# Prod Incidents,”
delivered across teams.

The target for this typical (though imaginary) organization is
95% of committed stories delivered and zero production inci‐
dents. Teams that didn’t meet these goals are highlighted in bold
red. Often, production incident numbers are found within an
incident management process. Defining the root cause and
implementing corrective measures enables continuous improve‐
ment and prevents recurrence of the same issue in subsequent
releases. With these quality metrics in place, you can learn

84 | Chapter 4: Tying It All Together

which teams meet specific goals. Finally, you can look across
teams and discover why proven concepts work.

Table 4-1. Using an information radiator to visualize results

Teams Releases

 Team Averages 2016-Jan 2016-Feb 2016-Mar 2016-Apr
% Commit Done Alpha 97% 96% 98% 97%
Prod Incidents 2 1 0 1
% Commit Done Beta 94.33% 92% 95% 96%
Prod Incidents 6 3 2 1
% Commit Done Gamma 100% 100% 100% 100%
Prod Incidents 1 0 0 1
% Commit Done Delta 93.33% 100% 100% 80%
Prod Incidents 2 0 0 2
% Commit Done Epsilon 92.33% 85% 95% 97%
Prod Incidents 1 0 0 1
% Commit Done Totals 95.398% 94.6% 97.6% 94%
Prod Incidents 12 4 2 6

User sentiment
Get to know your end users by measuring how they feel when
interacting with an application or system. By capturing and dis‐
secting the feedback they provide regarding new or improved
capabilities, you can incorporate their needs into an upcoming
sprint. At the very least, you can develop a plan to deliver some‐
thing in response to those needs.

On a larger scale, your analysis and incorporation of user senti‐
ment can expand to a more general market sentiment, which
can broaden your impact and market presence. Several compo‐
nents of quality can be covered via this metric, including sim‐
plicity, stability, usability, and brand value.

Continuous improvement
Following retrospectives, allow time and effort to implement
prioritized, continuous improvement stories. This enables the
team to self-organize and be accountable for improving the
quality of their process. When you allocate this time and make
it visible to all, the team and stakeholders can show their imme‐
diate impact. They can demonstrate how one team, compared to
others, has delivered results at increased speed, with higher
quality and value to the end user. This allows team leads to ask

Metrics for Success | 85

and possibly answer these questions: are there certain practices
that need to be shared? How do teams perform over time with
certain changes injected? The continuous improvement metric
can also justify recent or proposed investments in the team.

What Really Matters
It’s amazing to see how many teams are still working the old-
fashioned way. In fact, the empathy and sympathy poured out from
others in the field is overwhelming. We hear and share the same sto‐
ries we shared 20+ years ago. For example, have you heard this
lately, “I have 3,896 test cases, and I’m 30% complete on test execu‐
tion”? We should all ask, “So, what does that mean for time, quality,
and cost, along with on-time delivery to the end user?” It’s genuinely
shocking when we hear from a VP about their mobile-testing pro‐
cess, only to learn that the company’s mobile strategy is a “mobile
guy” who does manual testing by putting the application on his
phone and playing with it—maybe even wrapping it in aluminum
foil and walking up and down some hills or taking the elevator to
simulate real-world users and weak network conditions.

Let’s start focusing on metrics that really matter. We need results
that center on the value and quality we deliver to our end users. In
the process, let’s not forget how to deliver. We need teams to con‐
tribute creatively and improve the practices they have, while meas‐
uring quality via metrics they can use to evaluate, modify, and
improve processes over time.

What happens when we insist on the old style of quality metrics?

Well, for one thing, it helps explain why so many CIOs hold their
positions for less than two years or why a third of them lose their
jobs after a failed project. We’ve seen this before: a new CIO or
senior leader comes in, fires a few mid-level managers, reorganizes a
couple of things, and brings in a new partner, and suddenly they’re
trying to measure results. Unfortunately, they don’t have the right
metrics in place to show how the team is delivering. Command and
control fails again. Sadly, this fails the business, shareholders, pas‐
sionate individuals, and ultimately the end user: the customer.

You do not want to fail your customer.

86 | Chapter 4: Tying It All Together

Other Performance Engineering Metrics
The top five quality metrics are a foundational and important start‐
ing point for Effective Performance Engineering. In addition, there
are a variety of other Performance Engineering metrics that come
into play:

• Release quality
• Throughput
• Workflow and transaction response time
• Automated performance regression success rate
• Forecasted release confidence and quality level
• Breaking point versus current production as a multiplier
• Defect density

This drive to explore new metrics and find better ways of under‐
standing how software is succeeding (and failing) is going to con‐
tinue and grow even more intense. Software engineers understand
that it’s not enough to simply focus on the narrow job of going fast.
The challenge is capturing just how the software is helping the com‐
pany, its employees, and its customers. If they succeed, then the soft‐
ware is a success.

There are big differences in the ways companies are approaching the
challenge. They’re mixing enterprise, commercial, and open source
tools, and using a wide range of metrics to understand their results.
We’ve seen key metrics that are accepted by all groups of stakehold‐
ers—metrics that all businesses can start using today. However,
there’s nothing like enabling the team to also measure what matters
to them, because what matters to your team may matter deeply to
your success.

Automation
Automation can mean different things to different people. In this
section, we explore why performance testing is not enough, investi‐
gate the four key areas to focus on as a performance engineer, and
discuss how to apply these practices in the real world. You will see
how automation plays a critically important role in Performance
Engineering.

Automation | 87

Performance Testing Isn’t Enough
Software, hardware, and the needs of application users have all
changed radically in recent years, so why are the best practices many
developers use to ensure software quality seemingly frozen in time?
The world has evolved toward Performance Engineering, but too
many developers still rely on performance testing alone. This can
lead to disaster.

The initial failures of the Healthcare.gov website revealed how frag‐
ile underlying systems and integrated dependencies can be. Simple
performance testing isn’t enough. If you don’t develop and test using
a Performance Engineering approach, the results can be both costly
and ineffective.

What went wrong with Healthcare.gov? A report in Forbes cited
these eight reasons for the site’s massive failure:

• Unrealistic requirements
• Technical complexity
• Integration responsibility
• Fragmented authority
• Loose metrics
• Inadequate testing
• Aggressive schedules
• Administrative blindness

President Obama, the CEO in this scenario, received widespread
criticism over the troubled launch, which should have been a high
point for his presidency. Instead, the site’s poor performance tainted
the public’s perception of the program. When you embarrass your
boss, you don’t always get a second chance. In the case of Health‐
care.gov, the Obama administration had to bring in new blood.

So, how do failures like this happen?

When developers and testers were working in a mainframe or
client-server environment, the traditional performance testing prac‐
tices were good enough. As the evolution of technology accelerated,
however, teams have had to work with a mix of on-premises, third-
party, and other cloud-based services, and components over which

88 | Chapter 4: Tying It All Together

http://bit.ly/forbes-hcgov

they often have little or no control. Meanwhile, users increasingly
expect quick access anywhere, anytime, and on any device.

Four Key Areas of Focus
Performance Engineering practices help developers and testers solve
these problems and mitigate risks by focusing on high performance
and delivering valuable capabilities to the business.

The key is to start by focusing on four key areas:

• Building in continuous business feedback and improvement.
You accomplish this by integrating a continuous feedback and
improvement loop into the process right from the beginning.

• Developing a simple and lightweight process that enables auto‐
mated, built-in performance. In this way, the application, sys‐
tem, and infrastructure are optimized throughout the process.

• Optimizing applications for business needs.
• Focusing on quality.

Applying the four key areas
Your team can head off unrealistic requirements by asking for and
using feedback and improvement recommendations. To avoid
technical complexity, your team must share a common goal to
quickly define, overcome, and verify that all systems are engineered
with resiliency and optimized for business and customer needs.
Integration responsibility must be built into all environments, along
with end-to-end automated performance validation. This should
even include simulations for services and components that are not
yet available.

The issue of fragmented authority won’t come up if you create a col‐
laborative and interactive team, and you can avoid the problem of
loose metrics by using metrics that provide stakeholders the infor‐
mation they need to make informed business decisions. Inadequate
testing will never be an issue if you build in automated testing,
including functional testing for:

• Performance
• Security

Automation | 89

• Usability
• Disaster recovery
• Capacity planning

Overly aggressive schedules are unlikely to occur if you provide
automated quality results reports that highlight risks and offer opti‐
mization recommendations to support informed decision making.
Finally, to prevent administrative blindness, focus on business out‐
comes, communicate with all stakeholders throughout the process,
and build in accountability and responsibility for delivery.

It’s your responsibility to ensure that your organization is moving
from antiquated methodologies based on performance testing only
to more comprehensive Performance Engineering practices. After
all, no one wants to be the next Healthcare.gov.

Big Data for Performance
Performance Engineering has long been a practice adopted in the
world of high-performance automotive. One of the results we often
see in our “Performance Engineering” Google Alert is Lingenfelter
Performance Engineering. When you go to the “About us” section of
their website, it states:

Lingenfelter Performance Engineering was founded over 43 years
ago and is a globally recognized brand in the performance engi‐
neering industry. The company offers engine building, engine and
chassis tuning components and installation for vehicle owners;
component product development; services to manufacturers, after‐
market and original equipment suppliers; prototype and prepara‐
tion of product development vehicles; late product life-cycle
performance improvements; durability testing; and show and
media event vehicles.

Looking at high-performance automotive organizations like Lingen‐
felter (and many others), it is easy to see a direct correlation between
all of the components and engineered elements that make a high-
performance automobile and these of our business systems (and
between their drivers and our end users). The parallel that we want
you to recognize is the now available “Big Data for Performance,”
which the high-performance automotive industry has been leverag‐
ing for many years, yet we as Performance Engineers are only start‐
ing to utilize. This big data and the accompanying predictive
analytics, both of which leverage the capabilities of Performance

90 | Chapter 4: Tying It All Together

http://www.lingenfelter.com
http://www.lingenfelter.com

Engineering, will enable us to best support our businesses and end
users through technology.

To finish out this analogy, do organizations like Lingenfelter only
wait until final deployment to see how the automobile they are
optimizing will perform? No, they have adopted practices for look‐
ing as a team at each component along the way, making decisions,
and optimizing the components based on data to ensure they are
high quality.

Performance as a Team Sport
Over the last few years, organizations have started to define and
embrace the capabilities of Performance Engineering, recognizing
that their systems are growing so complex that it’s not enough to
simply tell the computers or the individuals behind them to “run
fast.” This capability must be built into the organization’s culture and
behavior, and it must include activities for developers, database
administrators, designers, and all stakeholders—each coordinating
to orchestrate a system that works well, starting early in the lifecycle
and building it in throughout. Each of the parts may be good
enough on its own, but without the attention of good engineering
practices, they won’t work well enough together.

Market Solutions
As you look across the market, you will see there are a number of
analysts, partners, and software tool vendors actively marketing
their Performance Engineering capabilities.

To simplify the decision-making and implementation process for
you, we’ve provided some Performance Engineering topics with
links to key information at http://www.effectiveperformanceengineer
ing.com.

In addition, we’ve included the results of a Performance Engineering
survey that gives a lot more detail about what is going on in the
market now.

Market Solutions | 91

http://www.effectiveperformanceengineering.com
http://www.effectiveperformanceengineering.com

Performance Engineering Survey Results
Hewlett Packard Enterprise has been working to support Perfor‐
mance Engineering in all organizations. In 2015, it contracted You‐
Gov, an independent research organization, to survey 400 engineers
and managers to understand how organizations are using tools and
metrics to measure and evolve their Performance Engineering prac‐
tices. The survey was conducted blind so that no one knew that
Hewlett Packard Enterprise commissioned it.

The sample consisted of 50% performance engineers and perfor‐
mance testers, 25% application development managers, and 25% IT
operations managers. All came from companies with at least 500
employees in the US. The results reveal a wide range of techniques
and broad approaches to Performance Engineering and some of the
practices through which organizations are using tools and metrics.

The survey asked, “When you look to the future of Performance
Engineering, what types of tools do you and your stakeholders plan
to acquire?” In response, 52% of large companies (those with
10,000+ employees) indicated “more enterprise and proven” tools;
37% of the larger companies said they expected “more open source
and home-grown”; and the remaining 11% said they were planning
“more hybrid of open source and enterprise.” The responses from
companies of different sizes followed a similar pattern, but with a bit
more balance (see Figure 4-1).

When the results were analyzed based on roles, the majority of
respondents planned to acquire “more enterprise and proven” tools,
with those identifying as “performance engineer/performance
tester” (41%), application development manager (44%), and IT
operations manager (51%), as shown in Figure 4-2.

When it comes to testing, an increasing number of companies are
concentrating on burst testing to push their software closer to the
breaking point. They’re spinning up a large number of virtual users
and then pointing them at the systems under test in a large burst
over a period of time. This simulates heavy traffic generated from
sales, promotions, big events, or retail days like Black Friday or
Cyber Monday, when a heavy load can wreak havoc on a system
(Figure 4-3).

92 | Chapter 4: Tying It All Together

Fi
gu

re
 4

-1
. F

ut
ur

e t
oo

l a
cq

ui
sit

io
n

by
 o

rg
an

iz
at

io
n

siz
e

Market Solutions | 93

Fi
gu

re
 4

-2
. F

ut
ur

e t
oo

l a
cq

ui
sit

io
n

by
 jo

b
ro

le

94 | Chapter 4: Tying It All Together

Fi
gu

re
 4

-3
. B

ur
st

te
sti

ng
 b

y o
rg

an
iz

at
io

n
siz

e

Market Solutions | 95

One of the most important options among tools like the ones just
cited is the ability to deploy an army of machines to poke and prod
at an organization’s systems. The cloud is often the best source for
these machines, because many modern cloud companies rent virtual
machines by the minute. Those working on performance tests can
start up a test for a short amount of time and pay only for the
minutes they use.

The value of the cloud is obvious in the answers to the questions
about the average size and duration of a load test. Only 3% of
respondents reported testing with fewer than 100 simulated users.
At least 80% of the respondents used 500 or more users, and 14%
wanted to test their software with at least 10,000 users. They feel that
this is the only way to be prepared for the number of real users com‐
ing their way when the software is deployed (Figure 4-4).

Growth in load testing points to the cloud.

This demand will almost certainly increase. When asked how big
they expect their load tests to be in just two years, 27% of respond‐
ents said that they expect they’ll need at least 10,000 simulated users.
They mentioned much larger numbers, too; 8% predicted they’ll be
running tests with more than 100,000 simulated users, and 2% could
foresee tests with 500,000 users or more.

While the number of simulated users is growing, duration isn’t long
enough to make a dedicated test facility economical. The tests are
usually not very long; only 8% reported running tests that routinely
lasted more than 24 hours. Most of the survey respondents (54%)
said that their tests ran between 4 and 12 hours (Figure 4-5).

The largest companies are also the ones that are most likely to be
using the cloud. Only 9% said that they don’t use the cloud for test‐
ing, typically because their security policies didn’t permit them to
expose their data to the cloud (Figure 4-6).

96 | Chapter 4: Tying It All Together

Fi
gu

re
 4

-4
. M

ax
im

um
 lo

ad
 te

st
siz

e b
y o

rg
an

iz
at

io
n

siz
e

Market Solutions | 97

Fi
gu

re
 4

-5
. M

ax
im

um
 d

ur
at

io
n

by
 o

rg
an

iz
at

io
n

siz
e

98 | Chapter 4: Tying It All Together

Fi
gu

re
 4

-6
. U

se
 o

f c
lo

ud
 se

rv
ice

 p
ro

vi
de

rs
 b

y o
rg

an
iz

at
io

n
sit

e

Market Solutions | 99

How to Choose a Solution
Now comes the time for you to start defining what a solution looks
like for you. As you begin, we suggest you take a three-step
approach: define your goals and objectives, define a timeline, and
identify partners. In the following sections, we go through this pro‐
cess in a bit more detail, so you can get started on your path to
choosing your Performance Engineering solution.

Define your goals and objectives
Transforming is a complex exercise and one that should have some
thought behind it. When thinking about goals and objectives, begin
with five key aspects of your teams and organization:

• Culture
• Technology
• Speed
• Quality
• Cost

Each of these considerations factors into the overall goals and objec‐
tives for Effective Performance Engineering, and decisions must be
made now.

It is a journey and will take some time, and the path will not always
be straight; however, getting started in a focused area with some
support, adopting a few key practices, and sharing the results is the
right approach.

Celebrate the success, examine the results, and then continue along
the journey, never losing sight of the end user. With this collabora‐
tion and continued guidance and direction, you’ll attain success and
make forward progress, as you transform into an Effective Perfor‐
mance Engineering organization.

Define your timeline
Timelines are relative. By contrast, value to your end users and
stakeholders is more objective and within your control, so you
should focus on defining what is important there before setting your
timelines.

100 | Chapter 4: Tying It All Together

From a purely leadership and budget/time perspective, it is impor‐
tant to define a timeline with clear goals and objectives within the
given budgetary cycle. Doing so enables you to share and communi‐
cate results delivered in the prior period, activities being performed
in the current period with their forecasted results, and commit‐
ments for the future period with their forecasted results.

A timeline should visually represent key milestones along with
incremental measures indicating what should be achieved within
these milestones. It should also map each task or activity to the value
it will deliver to the end user and business.

Figure 4-7 illustrates what this could look like at a high level for you
and your organization on your journey to Effective Performance
Engineering.

Identify your partners
Partners and thought leaders are often a great resource to provide
additional insight, experience, and practical advice from the market,
in order to get you aligned with current trends and able to accelerate
as desired.

Next we take a deeper look at some thought leaders, consulting part‐
ners, and analyst partners, with specific details and links to existing
capabilities and assets, so you can quickly get a better and broader
idea of some of the Effective Performance Engineering resources
available to you.
Top thought leaders of today
Microsoft, Google, IBM, Apple, and Hewlett Packard Enterprise
comprise the set of top five thought leaders and influencers around
Performance Engineering and testing today.

This set of five is consistent by audience (performance engineers/
testers, application development managers, and IT operations man‐
agers), as well as by organization size (Figure 4-8).

Market Solutions | 101

Fi
gu

re
 4

-7
. E

vo
lu

tio
n

of
 P

er
fo

rm
an

ce
 E

ng
in

ee
rin

g

102 | Chapter 4: Tying It All Together

Figure 4-8. Top thought leaders

Preferred partners for Performance Engineering
Accenture, Infosys, Deloitte, HCL, and Tech Mahindra are the top
five service providers most often chosen as Performance Engineer‐
ing partners by the organizations surveyed.

Note that “None of the Above” only represented 7% of all other
responses (Figure 4-9).

Figure 4-9. Preferred partners

Conclusion
Performance Engineering practices define a culture that enables
teams to deliver fast, efficient, and responsive systems architected
for large-scale populations of customers, employees, regulators,
managers, and more. The careful application of these principles
makes it possible for corporations to please customers, support
employees, and boost revenues, all at the same time.

Conclusion | 103

There is more to Performance Engineering than just testing. Done
right, Performance Engineering means understanding how all the
parts of the system fit together, and building in performance from
the first design.

Making the journey from performance testing to Performance Engi‐
neering isn’t easy. But the proven practices established over years of
observation can help you on your way.

The Path to Performance Engineering
One of the first tasks that budding programmers are given is to
write a program that produces the text “Hello world.”

Next you start to play with the program and try to do more, to see
how quickly it delivers data or answers queries, and try to optimize
for the highest performance with the least amount of code. The
requests come in, the responses go out, and you see results on a
screen. Take this and add a long-time run script for performance
testing, a script you run every time you push out your latest release.
It’s pretty easy when you’re the author and the user.

Performance Engineering, though, is a broad set of processes, and
it’s also a culture. Performance Engineering is an art based on years
of observation that have led to proven practices.

But moving from performance testing to Performance Engineering
isn’t an easy process. The team must be ready to move from simply
running a checkbox performance test script and focusing on parts to
studying the way that all parts of the system work together. These
pieces encompass hardware, software, configuration, performance,
security, usability, business value, and the customer. The process is
about collaborating and iterating on the highest-value items, and
delivering them quickly, at high quality, so you can exceed the
expectations of your end user.

Here’s a roadmap for making the trip from performance testing to
Performance Engineering. Essentially, these are the steps to become
a hero and change agent—and how you can enable your organiza‐
tion to deliver with proven Performance Engineering practices and
the accompanying culture.

104 | Chapter 4: Tying It All Together

Define a culture
The success of a team depends heavily on the way leaders are nur‐
turing the professional environment and enabling individuals to col‐
laborate. Building this type of environment will inspire the
formation of cross-functional teams and logical thinking.

Build a team
A Performance Engineering team means that technology, business,
and user representatives work together. They focus on the perfor‐
mance nature of everything they’re working on and figure out
together how they can build in these capabilities. They need to know
what specific area to focus on first, as well as how to measure along
the way. They need to agree on the desired outcome. They must
constantly remind themselves that the end goal of adopting Perfor‐
mance Engineering is to benefit the organization and end user.

Choose metrics
We often encourage teams to start with a manual metrics process,
perhaps a whiteboard (we know, not really high tech for a technolo‐
gist) and a few key metrics, then measure them over time and see
why they matter (or don’t). You’ll quickly get a core set of metrics
that matter for you and your organization, which have grown out of
your cross-functional teams. Your people have the passion and
understanding behind these, so trust them. They offer a good way to
judge results against the desired outcome.

Once you have figured out enough of this manually, and individuals
are starting to adopt and believe in them, take a look at your existing
technology capabilities and see how you can get to automated
reporting of these results fairly simply. These metrics will be key
to your way of measuring what you do and the results you’re able to
deliver. Make sure you have a solid baseline, and take regular
measurements.

Add technology
Performance Engineering requires a new way of thinking, related to
your existing software and infrastructure, including the existing
tools and capabilities. This is how you shape and form quick, auto‐
mated results.

Conclusion | 105

Define what your scope of effort is going to be and quickly learn
what technology capabilities you already have available to you and
your team. This will be an interesting experience, because you’ll
learn about the capabilities that other siloed teams have available
to them. Now, with a shared vision of how you want to deliver Per‐
formance Engineering throughout the organization, you can lever‐
age the technology to launch a single approach that aggregates these
capabilities.

Perhaps there are a few technology areas you want to start thinking
about from the lifecycle virtualization space, such as user virtualiza‐
tion, service virtualization, network virtualization, and data virtuali‐
zation. These are the core capabilities that will enable your team to
accelerate the transformation to Performance Engineering.

Build in telemetry
Now that you’ve started with culture, team, and technology, it’s time
to start integrating the telemetry and its data.

For example, how are you capturing the APM (application perfor‐
mance monitoring) data from production, and how about pre-
production? Can you begin to examine these results and understand
more about the behavior patterns of your users, systems, and trans‐
actions? From a cross-functional perspective, this will also pique the
interest of the IT operations manager; so you’ll continue to broaden
your network, and you’ll enable them to reduce the number of pro‐
duction incidents. This is just one example.

Think about other quick wins or simple integrations for your exist‐
ing technology that will enable you to build more bridges. Correlate
these types of results across your team so you can promote the cul‐
ture and desired outcomes of Performance Engineering by building
in telemetry.

Look for indirect metrics
There are hundreds of metrics available that you can use to estimate
the success of a new capability or feature being released. As systems
take on more roles inside a company, metrics that track perfor‐
mance become more readily available, and these enable you to begin
partnering with your business peers to find out what metrics they
watch and how they get these results.

106 | Chapter 4: Tying It All Together

Start looking at and asking about indirect metrics within the busi‐
ness that would show results related to revenue, customers (attrac‐
tion and retention), competitive advantage, and brand value. These
are important to measure as you make the transition to Performance
Engineering.

Focus on stakeholders
Get to know your stakeholders. Who on your team has the most
interest in delivering the highest-value items to the end user most
quickly and with great results? Find these people and get to know
them well. Remember, you’re looking for your executive-level spon‐
sors and peer champions, so you can transform the practices and
culture of an organization to become a Performance Engineering
delivery machine.

Start gathering information and sharing initial prototypes for the
type of results, reports, and dashboards you want to show to your
stakeholders on a regular basis. Typically, this would be a monthly
show-and-tell exercise; however, as it matures it may become a set of
automated results delivered with every build, consistently available
if stakeholders want to review it. Also, you should consider regular,
quarterly presentations to the executive board in which you share
last quarter’s results, talk about the current quarter, and seek fund‐
ing for the next one.

Stay focused. Remember your objective. Find your champions.
Deliver results.

Create stable environments
One of the earliest challenges will involve enabling teams with the
capabilities they require. Some of this will come as you build these
teams and the cross-functional tools, capabilities, and associated
skills come together. But in the beginning, having a “like produc‐
tion” environment for Performance Engineering is key.

By leveraging the aforementioned lifecycle virtualization—including
user virtualization, service virtualization, network virtualization,
and data virtualization—you can quickly re-create production envi‐
ronments at a significant fraction of the cost, and you can duplicate
them as many times as required. There are several other stable envi‐
ronment proven practices that have emerged along the way, which
you can also learn and share through others.

Conclusion | 107

Celebrate wins
Remember the old forming, storming, norming, and performing
program developed by Bruce Tuckman? He believed these were the
four phases necessary to building teams. If you’re a leader or a team
member, you’ll see this in action.

It’s important to remember why you’re doing this, and know it’s all
part of the transformation. Stay focused on the business and end-
user objectives, so you can measure your progress and keep your eye
on the prize.

Just imagine what it will be like once you have delivered these capa‐
bilities to your end user. Conduct proper retrospectives, track your
progress with your metrics, and celebrate the wins!

Add gamification
As you mature the capabilities just listed, think about how you
can add gamification into the results. In other words, how do you
make the results you’re delivering fun and visual, and how do you
make a positive impact on your end users and the organization in
the process?

Rajat Paharia created the gamification industry in 2007. In his book
Loyalty 3.0 (McGraw-Hill) Rajat explains, “how to revolutionize
customer and employee engagement with Big Data and gamifica‐
tion” and defines these “10 key mechanics of gamification”:

1. Fast feedback
2. Transparency
3. Goals
4. Badges
5. Leveling up
6. Onboarding
7. Competition
8. Collaboration
9. Community

10. Points

108 | Chapter 4: Tying It All Together

Of course, you also want to ensure that you highlight the opportuni‐
ties for improvement and show the wins and losses. You can also
gamify Performance Engineering itself at a team level to encourage a
little healthy competition within your group, and well beyond, then
broadly share the results. This also enables you to leverage these
results as information radiators for all stakeholders, showing how
teams, systems, and applications are performing against defined
baselines and goals.

Start small
When you first begin to incorporate Performance Engineering, you
may be tackling a long-neglected maintenance list, or a new, up-
and-coming hot project. Either can benefit from the focus of a Per‐
formance Engineering culture. Don’t try to take on too much at first.

As you begin to elaborate on your requirements, stories, and fea‐
tures, it’s important to remember that your whole team is working to
define the what, why, and how of each item. As you continue down
the Performance Engineering path, you will learn from each other’s
domain expertise,” keeping in mind these learnings and results are
from small experiments to show quick incremental value.

Start early
Performance Engineering works best when the team starts thinking
about it from the beginning. The earlier the team begins addressing
performance in the product lifecycle, the likelier it is that the final
system will run quickly, smoothly, and efficiently. But if it can’t be
done from the very beginning, it’s still possible to add the process to
the redesign and reengineering work done to develop the next itera‐
tion or generation of a product.

Conclusion | 109

About the Authors
Todd DeCapua is the Chief Technology Evangelist with Hewlett
Packard Enterprise and cofounder of TechBeacon.com thought
leadership site for IT Heros.

DeCapua is a seasoned software professional with 20+ years of expe‐
rience in IT applications development, IT operations, technology
integrations, channels operations, and business development in sev‐
eral domains, including Mobile, Agile, Cloud, and Performance.

Over the years Todd has transformed three organizations to Agile/
DevOps, consulted with 100+ organizations worldwide, and
amassed a variety of perspectives and practical experiences. He has
earned an MBA in Finance and a BS; has been recognized with sev‐
eral industry certifications and awards; and is an industry-renowned
leader, speaker, and author.

Shane Evans is an experienced IT Manager with over 12 years in the
industry. His primary focus has been Performance Engineering and
Performance Management, and he spent 7 years managing these for
a major financial institution in Canada before joining Hewlett-
Packard in 2009 as a Presales Solution Architect. After three years in
the field helping ensure the success of customers across the country,
he is now part of the Product Management team. Shane is an active
member of the Performance Engineering community, and regularly
contributes to the discussions on the HP Forums as well as Google
Groups, Yahoo!, and LinkedIn.

Acknowledgments
We recognize Performance Engineering as both an art and a science.
Thank you to those with whom we have been able to practice our
art, and to those who continue to define the science with us.

This book is dedicated to our families, friends, and colleagues.

Notes

Page Number Comment/Key Learning/Action

For more information, join us online:

• http://www.EffectivePerformanceEngineering.com
• @EffPerfEng on Twitter

111

http://www.EffectivePerformanceEngineering.com
http://www.twitter.com/EffPerfEng

	Cover
	Web Ops
	Copyright
	Table of Contents
	Chapter 1. Getting Started
	What Is Effective Performance Engineering?
	Hardware
	Software
	Culture
	Business

	Why Is Effective Performance Engineering Necessary?
	Revenue
	Competitive Advantage
	Customers: Acquisition and Retention
	Brand Value

	Focusing on Business Need

	Chapter 2. Overview of Performance Engineering
	Performance Engineering Throughout the Lifecycle
	Requirements
	Complete Stories
	Breakdown of Epic to Tasks with Acceptance Criteria
	Doneness Criteria
	Functional
	Security
	Performance
	Usability
	Design
	Development
	Test
	Deployment
	Monitoring
	Support

	Stakeholders
	Development
	Testing and Quality Assurance
	Operations
	Business
	End Users

	Building in Performance
	The List: 102 Questions to Ask
	Infrastructure
	Application
	Security

	Chapter 3. Proven Practices of Performance Engineering
	Requirements, Architecture, and Design
	Introduction
	Scenario
	Recommendation
	Summary
	How-To
	Key Implementation Considerations

	Proven Practices for DevTest
	Introduction
	Scenario
	Recommendation
	Summary
	How-To
	Key Implementation Considerations

	Proven Practices for Operations
	Introduction
	Scenario
	Recommendation
	Summary
	How-To
	Key Implementation Considerations

	Chapter 4. Tying It All Together
	Metrics for Success
	Activities Versus Results
	Top Five Software Quality Metrics
	What Really Matters
	Other Performance Engineering Metrics

	Automation
	Performance Testing Isn’t Enough
	Four Key Areas of Focus
	Big Data for Performance
	Performance as a Team Sport

	Market Solutions
	Performance Engineering Survey Results
	How to Choose a Solution

	Conclusion
	The Path to Performance Engineering

	About the Authors
	Acknowledgments
	Notes

