

Andy Oram

Getting Started with
InnerSource

978-1-491-93758-7

[LSI]

Getting Started with InnerSource
by Andy Oram

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Nan Barber
Copyeditor: Holly Bauer

Interior Designer: David Futato
Cover Designer: Randy Comer

July 2015: First Edition

Revision History for the First Edition
2015-07-22: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Getting Started
with InnerSource and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

A Robust Approach to Team Collaboration. 7
Where Open Source Principles Work 9
How PayPal Adopted InnerSource 13

v

A Robust Approach to Team
Collaboration

Inspired by the spread of open source software throughout the areas
of operating systems, cloud computing, JavaScript frameworks, and
elsewhere, a number of companies are mimicking the practices of
the powerful open source movement to create an internal company
collaboration under the rubric InnerSource. In these pages, you’ll
read about the experience of the leading Internet commerce facilita‐
tor PayPal and see how InnerSource can benefit engineers, manage‐
ment, and marketing/PR departments.

To understand the appeal of InnerSource project management, con‐
sider what has made open source software development so success‐
ful:

• Programmers share their work with a wide audience, instead of
just with a manager or team. In most open source projects, any‐
one in the world is free to view the code, comment on it, learn
new skills by examining it, and submit changes that they think
will improve it or customize it to their needs.

• New code repositories (branches) based on the project can be
made freely, so that sites with unanticipated uses for the code
can adapt it. There are usually rules and technical support for
remerging different branches into the original master branch.

• People at large geographical distances, at separate times, can
work on the same code or contribute different files of code to
the same project.

• Communication tends to be written and posted to public sites
instead of shared informally by word of mouth, which provides

7

a history of the project as well as learning opportunities for new
project members.

• Writing unit tests becomes a key programming task. A “unit
test” is a small test that checks for a particular, isolated behavior
such as rejecting incorrect input or taking the proper branch
under certain conditions. In open source and InnerSource, test‐
ing is done constantly as changes are checked in, to protect
against failures during production runs.

InnerSource differs from classic open source by remaining within
the view and control of a single organization. The “openness” of the
project extends across many teams within the organization. This
allows the organization to embed differentiating trade secrets into
the code without fear that they will be revealed to outsiders, while
benefitting from the creativity and diverse perspectives contributed
by people throughout the organization.

Often, the organization chooses to share parts of an InnerSource
project with the public, effectively turning them into open source.
When the technologies and management practices of open source
are used internally, moving the project into a public arena becomes
much easier.

Advantages of adopting an InnerSource strategy include:

• Code reuse across the organization grows immensely. Program‐
mers from each team can understand the code and architecture
of modules developed by other teams, and contribute code.

• This cross-team collaboration becomes relatively frictionless.
Contributed code rarely has to be rewritten by the team receiv‐
ing it, and no discussions are required at a high management
level.

• Development becomes faster as programmers learn to use unit
tests, code coverage, and continuous integration to remove bugs
at an early stage of development. The written comments
exchanged among team members, although taking up some
time, more than pay for themselves by helping new program‐
mers learn the system faster.

• Programmers learn to document their code better, both for‐
mally (as in-code comments and documentation) and infor‐
mally (on discussion lists). The documentation provides a his‐

8 | A Robust Approach to Team Collaboration

tory of the project, and helps outsiders understand it so that
more can contribute to it.

Where Open Source Principles Work
Before thinking about what InnerSource could accomplish for your
organization, it’s important to consider where the source of these
practices—the free and open source software movement—has been
found to work well, and where it has historically been less success‐
ful.

Cross-Organizational Collaboration
Open source software development crosses the boundaries of teams,
companies, and nations, letting individuals around the world collab‐
orate on such major computing advances as Linux and Apache. The
stereotype of scruffy hackers creating code in a basement some‐
where is outdated (if it was ever relevant): the major contributors to
central open source projects such as Linux now work for major cor‐
porations.

A lot of important open source projects start out as the brainchil‐
dren of independent programmers, but they are frequently adopted
by large companies. In other cases, open source projects emerge
from within such companies, including PayPal. What remains cru‐
cial to their open source success is that people inside any single
organization allow outsiders to play a major role in developing, test‐
ing, documenting, and promoting the software, creating as level a
playing field for all contributors as possible.

The Difference Between Geographically Dispersed
Development and Agile Programming
The cross-boundary activity of open source contrasts strongly with
popular corporate development approaches, such as Agile and
Scrum. The latter development methods were explicitly designed for
teams working in a single office, communicating face-to-face. Not
only must the developers in such projects work together, but they
must meet with the software users and other stakeholders regularly.
All this informal information sharing reduces the need for docu‐
mentation and formal requirements. But such development meth‐

Where Open Source Principles Work | 9

1 Stol, KJ, P. Avgeriou et al. “Key Factors for Adopting Inner Source.” ACM Transactions
on Software Engineering Methodology (TOSEM) (2014): Vol 23, No 2.

ods don’t work as well in environments larger than a single work
site.

If Agile and Scrum pay a price in scalability, open source develop‐
ment pays a price in speed. Open source projects just can’t move as
quickly as dedicated teams working in a single office. This price
obviously makes a big difference for start-up ventures with tight
deadlines (sometimes insanely tight deadlines). The difference also
has a subtle effect on the types of software that are well-suited to
each development model, as you’ll see in “Value for Software Infra‐
structure” on page 12.

Despite the limitations on speed of progress, many open source
projects keep strict deadlines and have predictable releases. How‐
ever, they often sacrifice features for predictability. Some enhance‐
ments that are planned for a particular release may have to be post‐
poned in order to avoid slipping the deadline.

Agile programming does not have to be the enemy of open source
development—in fact, the literature reports teams who combine the
two.1 But understanding their different requirements and assump‐
tions can give you a better understanding of open source.

Continuous Testing and Development
In general, open source projects maintain quality and trust among
collaborators by setting up a rigorous system of objectively testing
each contribution. Many open source projects have adopted such
commonly recommended practices as unit testing and continuous
integration and have developed formal organizational models to
ensure their use. Open source developers have turned quality con‐
trol into a science.

Although test-driven development is not required for open source,
unit testing is taken very seriously. Whether or not an open source
project maintains a quality assurance team, each programmer is
expected to write unit tests to assure the quality of her own code.
Tools and protocols for committing changes require the tests to be
run and produce a clean result before the code can be accepted into

10 | A Robust Approach to Team Collaboration

http://www.brian-fitzgerald.com/wp-content/uploads/2014/05/TOSEM-2014-stol.pdf

the repository. The process offers assurance not only that the code
works the way it was promised to work, but that it doesn’t react
badly with some other piece of code elsewhere in the project.

Modern techniques such as code coverage tools and static analysis
are used less often in open source communities, and they’ve been
adopted with dedication at PayPal.

Overall, testing and continuous integration play two important
roles. Foremost, of course, they keep the product from breaking. But
they also help to identify good coders who can be given greater
responsibility for the project. For instance, getting a large number of
commits accepted into the repository is usually a prerequisite to
gaining the coveted status of a trusted committer. The trusted com‐
mitters review and approve other programmers’ work, and can
make changes without needing such approval themselves. They also
provide mentorship to promising contributors whose code doesn’t
yet meet quality standards.

The Importance of Documentation
Another tenet of open source development, stemming from the dis‐
persion of its practitioners over geography and time, is full docu‐
mentation. Open source projects tend to be weak on user documen‐
tation (a failing they share with most proprietary projects), but the
developers obsessively write for each other about their assumptions,
decisions, and implementations.

This practice represents another contrast with Agile programming,
which calls for some documentation but generally favors “working
software over documentation” (an oft-quoted clause from the Agile
Manifesto). It should be noted that working source code is also the
platinum standard in the open source community (as well as stand‐
ards bodies dominated by developers), but these communities still
consider it important to document what has been done.

Every facet of communication in open source software is written.
Comments on GitHub are a key driver of many projects. Open
source projects depend on mailing lists for discussions leading to all
decisions, and you often hear, “If it’s not on the mailing list, it didn’t
happen.”

One value of documenting decisions and implementation details is
that a history of the project is created for anyone new who wants to

Where Open Source Principles Work | 11

http://agilemanifesto.org/
http://agilemanifesto.org/

join. Anyone who can take the time to peruse the discussion
archives can pick up the project’s culture and best practices.

Every collaboration assumes that participants share a common lan‐
guage. Given the geographic diversity of open source projects, of
course, English has become the lingua franca practiced by all pro‐
grammers (although there are significant open source projects in
other languages as well). Making decisions through written commu‐
nication plays a democratizing role here, because more people can
learn to read and write a foreign language than learn to speak it flu‐
ently. These people could participate more in open source projects
than in tightly knit teams using a language they don’t know well.

Value for Software Infrastructure
Open source software has traditionally worked well for lower layers
of the software stack: operating systems and hypervisors, tools used
by programmers such as compilers and editors, security software
(which benefits from open code reviews to detect weaknesses), and
other things tucked away where the end user doesn’t see it.

In contrast, the user interface (UI) has proven stubbornly resistant
to open source development. It’s hard to point to an open source
end-user tool that has achieved mass adoption. Mozilla Firefox is a
rare example.

Looking back at the contrast between open source and Agile devel‐
opment (“The Difference Between Geographically Dispersed Devel‐
opment and Agile Programming” on page 9) gives you a clue to the
reason for this lack of success. The Agile model has been widely
adopted because it keeps programmers in close contact with users.
Developers get user feedback and can start working with it in a mat‐
ter of days. Most open source projects involve end users in relatively
old-fashioned ways, such as through alpha and beta releases.

The emphasis on unit testing (“Continuous Testing and Develop‐
ment” on page 10) also marks open source as appropriate for infra‐
structure. About five years ago, Agile expert Mike Cohn described a
test pyramid that puts various layers of infrastructure underneath a
small user interface layer. He mandated unit tests for as many layers
of the software as possible, reducing dependence on functional test‐
ing.

12 | A Robust Approach to Team Collaboration

The UI layer, by contrast, is very hard to check through unit testing,
and these tests show decreasing reliability and value at that layer.
Here’s where functional testing enters to check the overall operation
of a system and ensure that each action taken by the end user pro‐
duces the desired result.

Thus, the testing process that undergirds quality and trust in open
source is weak at the user interface level, which may be another rea‐
son that open source tools are less popular at that level.

Finding the Right Level for Open Source
Open source and free software has traditionally been contrasted
with proprietary software (especially Microsoft Windows and the
Oracle database). A more common approach to proprietary devel‐
opment nowadays is software as a service (SaaS). With this software
delivery model, you can use the guidelines in this section to deter‐
mine what should be developed in an InnerSource or open source
manner, and what to do in a more closed manner using Agile or
some other team-oriented methodology.

Lots of companies mix these models. Such companies could be
called "closed core,” because they keep the software critical to their
business behind SaaS, but freely share infrastructure software. This
arrangement benefits the wider programming community, makes it
easier to recruit and train employees, and brings them the benefits
of outside contributions.

How PayPal Adopted InnerSource
PayPal’s path to InnerSource involved a series of historic, large-scale
corporate decisions. It adopted the model as one of several shifts
consciously made in tools and corporate culture, as is often the case.

In PayPal’s case, the shifts that preceded the adoption of Inner‐
Source included:

• A search for technologies that would promote faster develop‐
ment (replacing Java with JavaScript and Node.js on many
projects, for example)

• A consequent interest in a better understanding of the open
source communities and development models tied up in the
newly adopted technologies

How PayPal Adopted InnerSource | 13

http://radar.oreilly.com/2011/12/could-closed-core-prove-a-more.html

• Use of GitHub for collaboration both internally and externally
• A heightened concern for quality

PayPal, therefore, adopted some open source technologies and even
open sourced some of its own code before experimenting with the
InnerSource model. Other companies may take the reverse route:
they may try out the tools and practices of open source within their
own walls before producing any open source code, although that
route is generally thought to be more challenging. In either case, a
familiarity with open source tools, along with sites such as GitHub
that facilitate collaboration in an open source manner, is crucial.

Although the various changes at PayPal took place together and
clearly had impacts on one another, the next few sections will
describe each change individually, focusing on each one’s particular
activities.

Starting at the Edge
InnerSource at PayPal started with Regional Sales Engineers, work‐
ing outside the United States, who modified user-facing code to sup‐
port local usage preferences and sometimes to support regional pro‐
motions. These programmers could not get their changes accepted
by the core teams in the timely manner required. Often, these
changes required the intervention of a VP somewhere to demand
that they be merged in, after which an embattled core engineer
would rewrite the submitted changes before merging them.

At the same time, inadequate documentation was being filled in
through email exchanges carried out on an urgent basis between
developers on different teams. Although these messages contained
valuable information, they were unseen by most developers. Many
regional organizations independently started efforts to cut and paste
these messages into wikis.

A number of regional engineers were flown to the San Jose head‐
quarters to spend a month learning directly from the core teams, but
that method of bootstrapping trusted committers did not spread
knowledge widely enough and was not worth the investment. No
written documentation developed from it. After the engineers went
back to their home countries, they were forced by distance to seek
core mentorship through written queries.

14 | A Robust Approach to Team Collaboration

Eventually, it was suggested that InnerSource might be a better way
to go. Teams found that InnerSource really streamlined their
projects, and the trusted committers on the core side found the pro‐
cess much better. Remote engineers could pull code samples from
GitHub.

In addition to learning how to work with regional collaborators bet‐
ter, the core teams started to get clues (through their mentorship of
regional contributors) about where to refactor core code to increase
modularity and understandability. They were also able to notice pat‐
terns between work done in different regions that allowed them to
promote experienced regional engineers as mentors to their peers in
other regions.

A Speedier Development Process
PayPal started life with a relatively monolithic C++ platform.
Although some legacy elements are still in C++, new development
for a time was done in a more modular fashion using Java Spring.
Even after this shift, as developer Jeff Harrell put it, a lot of “tribal
knowledge” was embedded in each product. It took several weeks to
roll out even a small change, and each new hire required a six-week
training period.

Three years ago, PayPal made a major shift by adopting Node.js.
According to Poornima Venkatakrishnan, a Node.js developer at
PayPal, the platform was used there first for prototyping. Happy
with the results, developers wanted to deploy it in production. First
they tried an experiment where teams developed the same function‐
ality side-by-side on the Java Spring platform and on Node.js. The
company compared the platforms on the basis of development time,
number of lines of code, and number of engineers required for
development. Node.js was an obvious winner.

The announcement that PayPal was adopting Node.js worried many
programmers, especially those who remembered the change from
C++ to Java as long and grueling. However, PayPal demonstrated
that the change to Node.js was completely different. It scheduled just
two days for the transition training. According to Harrell, partici‐
pants quickly realized they were entering a new, vibrant, and excit‐
ing world. PayPal was also lucky to have on staff a leader in the field
of JavaScript, Douglas Crockford, to do the training. (Crockford is

How PayPal Adopted InnerSource | 15

the author of a highly popular book, JavaScript: The Good Parts, and
creator of an O’Reilly JavaScript Master Class video.)

Much new PayPal feature development still uses Java, but those
teams have adopted the InnerSource practices that were pioneered
by the Node.js teams.

Engaging with Open Source
Training for the move to Node.js was quick and painless, because so
much instructional material was available online and because adop‐
tion of the software required less customization than the previous
move to Java. Essentially, two days of training was enough to pre‐
pare staff to continue their own learning processes.

According to Harrell, it took some time to convey to PayPal pro‐
grammers that they could simply search for basic information on
sites such as StackOverflow (or just use a search engine) instead of
asking senior programmers on an internal PayPal mailing list. But
eventually the queries for information broadened into a whole-
hearted engagement with open source communities.

Most companies find that adopting open source technologies—
which may originally be attractive simply because they’re high qual‐
ity and free of charge—leads to a sustained entry into the communi‐
ties that produce the technologies.

This happened to PayPal when they adopted Node.js. By now it is a
pretty mature technology. Some commentators even suggest that
Node.js has passed its peak and that JavaScript programmers are
looking at alternatives. (The pace of change in open source technol‐
ogies, as you will see later in this section, alters decision-making
about which ones to adopt.) But PayPal came in at an early stage,
where there was plenty of room to develop useful tools for the
Node.js community. PayPal also became a very active member of the
Node.js foundation and the ECMAScript Technical Committee 39.

To promote the twin goals of programmer self-education and imme‐
diate productivity among new hires, PayPal enthusiastically brought
other popular open source tools along during the move to JavaScript
and Node.js. For instance, Selenium is widely used for testing, Jen‐
kins for continuous integration, and such tools as TestNG, JUnit,
and Mockito for Java testing. Along the way, PayPal developed and
open sourced a number of tools compatible with the open source

16 | A Robust Approach to Team Collaboration

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596809614.do

components, such as Nemo (originally written by Matt Edelman),
SeLion, and Illuminator.

Since PayPal adopted Node.js when it was early in development and
lacked certain tools, the company developed Kraken, a framework
for controlling Node.js architectures. Harrell says the team decided
to develop the framework as open source to make sure it was of gen‐
eral value, free from the “tribal” knowledge that Harrell had seen in
other PayPal code. Kraken became what is probably their most suc‐
cessful open source project.

Venkatakrishnan lists the following open source practices that
entered PayPal at this time:

• Setting high quality standards. Before code is committed, code
coverage tests must run on at least 90% of it. When someone
sends a commit, it triggers an automatic rebuild to make sure
it’s of sufficient quality to be merged.

• Requiring documentation for all code in the repositories them‐
selves.

• Conducting all discussions on GitHub to enable collaboration
and to facilitate input from people outside the team. There’s a
private GitHub repository for in-house projects as well as public
GitHub repositories for open source code.

• Making everyone feel they can innovate.
• Teaching engineers that not all expertise needs to come from

one team. With open source software, help can come from any‐
where in the world. Also, contributing to public open source
projects adds more visibility to the company and shows its com‐
mitment to the community.

• Cultivating pride in the work done in teams, encouraging them
to speak about it at conferences and write about it in PayPal’s
engineering blog.

Harrell points out that the higher one goes in a software stack, the
more volatile the technologies are. Change in software development
is ongoing, especially with open source technologies. So PayPal
encourages a team to constantly evaluate their technologies. Contin‐
uous learning is expected of each developer.

Inevitably, the evaluation of alternative tools leads to a diversity of
tools from one team to another. Developer Matt Edelman points out
that this phenomenon is particularly common in open source,

How PayPal Adopted InnerSource | 17

https://github.com/paypal/nemo
http://selion.io
https://github.com/paypal/Illuminator
http://krakenjs.com/

because developers like to develop tools along the lines suggested by
Unix patriarch Ken Thompson: many small programs working
together.

Thus, teams use a variety of cutting-edge technologies such as React
and Angular. Programmers are expected to do a toy project to try
out a tool before recommending it, and to compare alternatives
carefully before making a choice.

Open source architectures often feature plug-ins to permit alternate
implementations of technologies that extend their functionality.
Edelman says that PayPal develops some Kraken plug-ins internally
(through the InnerSource model) and others as open source.

GitHub Collaboration
One company holds a uniquely important place in modern code
development: GitHub. Originally a SaaS platform to make life easier
for developers using the Git version control software, GitHub
evolved into a sophisticated collaboration platform with tools that
developers find indispensable. Two resources on this topic include
the book Git for Teams and the Collaborating with Git video.

In addition to putting code for open source projects such as Kraken
on GitHub, PayPal has set up an internal GitHub Enterprise reposi‐
tory so that programmers within the company can collaborate
exactly as public GitHub users do. Code reviews, commits, and tests
take place in an open source manner, but on the internal repository.
Most crucially, each team gets accustomed to accepting new code
from PayPal programmers outside the team.

Before the move to GitHub and InnerSource, according to Edelman,
PayPal programmers felt competent to contribute only minor bug
fixes to another team’s work. If they contributed larger chunks, the
team accepting the code would scrutinize it and often do so much
rewriting that there was little advantage over doing the code from
scratch. High-level managers would often have to get involved to
negotiate the acceptance of code between teams.

These days, substantial new functionality can be checked in with no
rewriting. One reason is the new focus on documentation. Edelman
stresses that InnerSource projects must rest on a broader program‐
ming base than a few privileged programmers who deeply under‐

18 | A Robust Approach to Team Collaboration

http://shop.oreilly.com/product/0636920034520.do
http://shop.oreilly.com/product/0636920034872.do

stand the system. Anyone can study a project and suggest major
changes.

Also thanks to documentation (both in the code and the GitHub
comments), developers come to recognize the need for architecture
changes. If you have to explain four times to various people why
something is complicated and counterintuitive, you start to think
about changing it.

Empowering programmers across the country also promotes greater
intellectual growth and job satisfaction. Programmers think more
comprehensively about the design of the code, while learning new
skills in doing code reviews, testing, and writing documentation.
Edelman says InnerSource “raises everybody’s game.”

Edelman mentions one security-related bug that turned up in the
core infrastructure module. One function wasn’t following the speci‐
fication (RFC) precisely. At first a lot of email was exchanged, with
people outside the infrastructure team pressuring them to do a fix.
But then one outsider—for whom security was not a specialty—took
a look at the RFC and realized he could handle the fix himself. He
turned in a fix that worked, and it was quickly merged by the core
infrastructure team. This anecdote illustrates two principles: the
importance of programmers taking initiative, and the value of fol‐
lowing well-documented standards.

Quality Improvement
At the same time that PayPal was moving large parts of its platform
to Node.js and adopting open source practices, it made a commit‐
ment to better quality. According to Quality Assurance leader Doug
Simmons, steps toward this goal at PayPal included:

• More unit testing
• Continuous integration
• Code reviews
• More code coverage reports
• Static analysis

Not all conversations have to take place in public, but the comment
process on GitHub has improved quality in several ways. Trusted
committers effectively act as mentors for newer programmers hop‐
ing to get their code accepted into the repository. The back-and-
forth comments between submitters and trusted committers are

How PayPal Adopted InnerSource | 19

2 Ibid.

3 Stol, KJ, AB Muhammad, et al. “A comparative study of challenges in integrating Open
Source Software and Inner Source Software.” Information and Software Technology 53
(2011): 1319–1336.

educational for both the submitters and other programmers who
can watch these dialogs and learn from them.

Culture Change
A corporate move as significant as adopting InnerSource calls for
sensitivity in handling employee fears and expectations. PayPal
hired outside experts in open source development to aid the transi‐
tion.

Observers from many companies seem to agree that the most
important cultural change is to give employees the confidence to
contribute code to other teams. Full documentation and good men‐
toring can achieve this—but as Edelman points out, staff have to
change their habits from complaining about bugs to going in and
making fixes.

Harrell remembers persuading team members to let other PayPal
programmers outside the team make contributions. The team mem‐
bers commonly objected that they’d end up spending all their time
vetting outside code and not writing their own. In a study of
another company, programmers worried about the burden that new
contributions would add to future maintenance.2, 3

As you know by now, these drawbacks proved less fearsome than
expected, because the rigorous testing and build process ensured the
quality of contributions. In any case, Harrell told them, vetting con‐
tributions required sophisticated skills of its own. And the contribu‐
tions multiplied the value of the code created by the team.

Edelman writes, “Module authors are expected to curate their soft‐
ware by being open to feedback and changes from the community,
while enforcing quality and consistency standards.” He says develop‐
ers have evolved from complaining about the task for writing tests
or doing code reviews to insisting on them.

In the quality arena, when programmers submit InnerSource bug
reports, they go initially to the person who is responsible for the

20 | A Robust Approach to Team Collaboration

http://www.cs.rug.nl/paris/papers/IST11.pdf
http://www.cs.rug.nl/paris/papers/IST11.pdf

module. This programmer may then pass them on to the original
contributors of the affected code.

Modular architectures and well-defined APIs have also been identi‐
fied by many programming teams as crucial to encouraging contri‐
butions from outside the team.

Because InnerSource development practices are essentially the most
popular open source practices, open sourcing a project that was
developed inside the company is fairly easy. Technically, all the team
has to do is move the code to a public repository and start dealing
with external bug reports and code contributions the way they have
been dealing with such input from other members of their company.

However, a few legal barriers may stand in the way. If programmers
incorporated outside code into the project, the legal department
must examine all licenses to ensure they have the right to open the
code and that their license is compatible with the licenses on the
code they incorporated. Some branding review may also be
involved. At PayPal, the legal team consulted with open source
experts and developed a web-based process for going through the
necessary steps.

Modern programmers learn to thrive on change. Aside from new
technologies and tools, a change of culture can help them stay nim‐
ble and keep skills up to date. InnerSource is a step toward all these
achievements.

How PayPal Adopted InnerSource | 21

About the Author
Andy Oram is an editor at O’Reilly Media. An employee of the
company since 1992, Andy currently specializes in open source
technologies and software engineering. His work for O’Reilly
includes the first books ever released by a US publisher on Linux,
the 2001 title Peer-to-Peer, and the 2007 bestseller Beautiful Code.

	Cover
	Copyright
	Table of Contents
	Chapter 1. A Robust Approach to Team Collaboration
	Where Open Source Principles Work
	Cross-Organizational Collaboration
	The Difference Between Geographically Dispersed Development and Agile Programming
	Continuous Testing and Development
	The Importance of Documentation
	Value for Software Infrastructure
	Finding the Right Level for Open Source

	How PayPal Adopted InnerSource
	Starting at the Edge
	A Speedier Development Process
	Engaging with Open Source
	GitHub Collaboration
	Quality Improvement
	Culture Change

