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CHAPTER 1

Here Then Gone: What Is
Immutable Infrastructure?

You’re standing on the beach on a bright day. You look out. There’s a
constant renewal of pointed, flashing light, here then gone, convey‐
ing energy, then ceasing to exist without any consequential decay.
The sun automates an optical phenomenon on water in motion: glit‐
ter patterns that comprise millions of ephemeral glints. In applied
optics, physicists who study the properties of light have long mar‐
veled at the Phoenix-like effect we see. Back on the beach, other
glints are immediately visible, carrying out the same energetic tasks,
then gone. No decay.

It’s an imperfect, but provocative, analogy: machines in a data center
seem like a far cry from points of natural, strobed light—not least
because we relate to them as physical items rather than as organized
energy, as long-lived rather than as ephemeral. We tend to rack
machines in an n-tier framework in our minds to a greater or lesser
degree, instead of thinking in terms of distributed, abstracted
instances or resources capable of spanning multiple availability
zones in cloud computing. But when infrastructure becomes code,
resources are, in fact, more akin to those glints on the sea than to
dedicated boxes.
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Toward Cloud Thinking
For decades, we’ve mulled over basic questions around how we pro‐
vision machine resources—and those questions are under new scru‐
tiny with cloud computing. The techniques we’ve traditionally used
to manage machines struggle in distributed, scaled environments.
Historically, we’ve thought of machine uptime and maintenance as
desirable complements because we associate them with the overall
health of a service or application. But cloud computing lends itself
to a substantially different model of health. You drill into a more
granular kind of abstraction where component replacement makes
more sense than traditional server maintenance. Think about this
contrast:

• In the data center, infrastructure is expensive and we need to
carefully craft and maintain each individual server to preserve
our investments over time.

• In the cloud, infrastructure and services are an API call away. A
new architecture calls on us to give up the data center mindset
in order to create more resilient, simpler, and ultimately more
secure services and applications.

Werner Vogels, CTO of Amazon and an early leading thinker on
cloud systems, captures this sentiment by imploring us to stop hug‐
ging servers—because they don’t hug us back. His famous “server as
a paper cup” analogy, like our analogy with a striking pattern in
optics, is conceptually useful as we dig in and wrap our minds
around the vast potential of the cloud and the new implementations
of infrastructure it enables.

The premise here is that immutable infrastructure—infrastructure
that is replaced rather than maintained—offers a real and attainable
path to stability, efficiency, and fidelity for your applications in the
cloud.

Immutable Infrastructure in Brief
No rigorous or standardized definition of immutable infrastructure
exists yet, but the basic idea is that you create and operate your
infrastructure using the programming concept of immutability. That
is, once you instantiate something, you never change it. Instead, you
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replace it with another instance to introduce changes or ensure
proper behavior. Immutability doesn’t mean that the overall system
never changes. In fact, using immutable infrastructure can make
modifying the system easier, faster, and more reliable at scale
because configuration drift can be substantially reduced. Immutable
infrastructure also doesn’t require a fully stateless application, but it
is best suited for distributed applications that concentrate persistent
state in few locations.

Today, immutable infrastructure can be realized in cloud environ‐
ments that cover compute, storage, networking, access control, and
other objects needed to compose the application. For many large,
complex deployments involving multiperson teams, full automation
of the runtime environment is beneficial, since immutable infra‐
structure treats all aspects of a system as quanta that can be built,
replaced, and destroyed as part of the regular operations of the sys‐
tem. This is facilitated in compute environments that have an API
over all aspects of configuration and monitoring. Partial implemen‐
tation of immutable infrastructure has its benefits, but the big
improvements in efficiency and resiliency are realized with thor‐
ough implementation. Major public cloud infrastructure providers,
including Amazon Web Services (AWS), Google Cloud Platform,
and Microsoft Azure, offer APIs over their services, and more pri‐
vate cloud solutions are starting to offer the necessary automation.

As the industry is full of buzzwords, the definition of immutable
infrastructure outlined in this guide is an attempt to sharpen param‐
eters around the concept and give the term practical meaning. Take
a look at the visual presented in Figure 1-1, which we’ll reference
and drill into as we go through the chapters.
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Figure 1-1. Updating via mutable vs. immutable infrastructures

Notice that the new Instance B, generated from a “golden” machine
image, is provisioned upon the destruction of Instance A in the
immutable pattern. Note too that there is no application downtime
during instance replacement with well-architected immutable pat‐
terns that have multiple instances in service at a given time. By con‐
trast, in the mutable pattern, Instance A isn’t replaced. The same
instance is modified manually or by using a script or tool, with the
application updated from v1.0 to v1.1. The update might include
changes in application code, configuration, underlying libraries,
combinations thereof, etc.

Coining the Term
Chad Fowler published the term “immutable infrastructure” in a
June 2013 blog post entitled “Trash Your Servers and Burn Your
Code: Immutable Infrastructure and Disposable Components.” He
explained it this way:

Many of us in the software industry are starting to take notice of
the benefits of immutability in software architecture. We’ve seen an
increased interest over the past few years in functional program‐
ming techniques with rising popularity of languages such as Erlang,
Scala, Haskell, and Clojure. Functional languages offer immutable

4 | Chapter 1: Here Then Gone: What Is Immutable Infrastructure?

http://bit.ly/1mR4gC7
http://bit.ly/1mR4gC7


data structures and single assignment variables. The claim (which
many of us believe based on informal empirical evidence) is that
immutability leads to programs that are easier to reason about and
harder to screw up.
So why not take this approach (where possible) with infrastructure?
If you absolutely know a system has been created via automation
and never changed since the moment of creation, most of the prob‐
lems [...] disappear. Need to upgrade? No problem. Build a new,
upgraded system and throw the old one away. New app revision?
Same thing. Build a server (or image) with a new revision and
throw away the old ones.

Chad is in good company with others who have thought deeply
about the subject. As Martin Fowler wrote in a July 2012 blog post
titled “PhoenixServer”:

[ ... ], it is a good idea to virtually burn down your servers at regular
intervals. A server should be like a phoenix, regularly rising from
the ashes.
The primary advantage of using phoenix servers is to avoid config‐
uration drift: ad hoc changes to a systems configuration that go
unrecorded. Drift is the name of a street that leads to Snowflake
Servers, and you don’t want to go there without a big plough.

And back in August 2011, Greg Orzell pointed out in a Netflix Tech
Blog post called “Building with Legos” that:

In the cloud, we know exactly what we want a server to be, and if
we want to change that we simply terminate it and launch a new
server with a new AMI. This is enabled by a change in how you
think about managing your resources in the cloud or a virtualized
environment. Also it allows us to fail as early in the process as pos‐
sible and by doing so mitigate the inherent risk in making changes.

Kief Morris, James Carr, and Ben Butler-Cole offered compelling
early insights as well, in “Immutable Server Blikis” (kief.com, June
2013), “Immutable Servers with Packer and Puppet” (Rants and
Musings of an Agile Developer, July 2013), and “Rethinking Build‐
ing on the Cloud: Part 4: Immutable Servers” (ThoughtWorks, June
2013), respectively, as did many others. Morris’s 2015 book Infra‐
structure as Code (O’Reilly) is also a significant, thorough contribu‐
tion to the conversation.

Immutability itself is not exactly new in computing, with the ideas
being explored and advocated as far back as the 1950s. Like most
concepts in our business that seem new, immutable infrastructure
has a rich, if esoteric, history. However, the technologies and prod‐
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ucts that make its use practical—particularly, the cloud and the
highly modular services therein—have only recently been adopted
on a broad scale. That’s why the conversation has emerged so
robustly in the past few years.

Identifying Problems and Solutions in
the Cloud
When we find ourselves in a changed context, like widespread cloud
adoption, it’s a function of human personality and ingenuity to
scour the landscape for whatever we can use to adapt. We often start
with what’s familiar and use tools that are immediately at our dis‐
posal to work within the new world. They may be improvisations.
They may be square pegs grappling with round holes. The next step
is to move beyond this kind of forced fit. That is, we move beyond
tools and approaches that we’ve forced to be compatible with cloud
computing and, instead, we engineer ones specifically suited to
our new cloud environment. These next-generation tools and
approaches may integrate ideas from the past and present, but fore‐
most they’re crafted in a way that respects the fundamentals and the
nuances of the new environment. They, not transitional adaptations,
will guide full realization of cloud computing’s power.

Mutable Infrastructure Creates Problems
In our cloud computing context, mutable infrastructure is the tran‐
sitional adaptation. It’s the improvisation. It’s the approach from a
different, but very familiar environment—the data center—that
we’ve forced to fit with the cloud. Mutable infrastructure, composed
of traditional, long-lived components, is insufficient to the task of
operating modern, distributed services in the cloud. The forced fit
has created specific problems that don’t need to exist. Let’s look at
them:

Increasing operational complexity
The rise of distributed service architectures and the use of
dynamic scaling result in vastly more maintenance and moni‐
toring needs, much of this in response to changes in the run‐
time environment. Using mutable maintenance methods for
updates via scripts and configuration management tools, or
patching configurations across fleets of hundreds or thousands
of compute instances, is complex and error-prone.
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Slower deployments, more failures
When infrastructure is comprised of “snowflake” components
resulting from mutable maintenance methods, there’s a lot more
that can go wrong. (Snowflake components, per Martin Fowler,
are symptomatic of “configuration drift: ad hoc changes to a
systems configuration that go unrecorded.”) Traditional deploy‐
ment models require you to first bring up a machine, then apply
patches, and then install the application code, each of which
takes time and can fail to work properly. Deviating from a
straight-from-source-control process means it is impossible to
accurately know the state of your infrastructure. Fidelity is lost
as infrastructure behaves in unpredictable ways. Time is wasted
chasing down configuration drift and debugging the runtime.

Difficulty identifying errors and threats
Long-lived, mutable systems rely on identifying errors and
threats to prevent damage. We now know that this is a Sisy‐
phean undertaking, as the near-daily announcements of high-
profile and damaging enterprise exploits attest—and those are
only the ones reported. Efforts are ongoing to make automated
analytics tools smarter about honing in on anomalous patterns,
but if history is a guide, defenses will continue to trail offenses.

Fire drills
Mutable, long-lived infrastructure allows for shortcuts on auto‐
mation that come back to bite us in unexpected ways, such as
when a cloud provider reboots underlying instances to perform
its own updates or patches. If we build and maintain our infra‐
structure manually and aren’t in the regular routine of immuta‐
ble infrastructure automation, these events become fire drills.
That is, they require teams to be paged, rush to the office, and
work all night or day to resolve what needn’t be a problem.

Immutable Infrastructure Provides Solutions
Now, let’s turn to short-lived immutable infrastructure, which is not
a transitional adaptation to the cloud. Rather, it’s an approach fun‐
damentally aligned with cloud technology. The problems that muta‐
ble infrastructure creates in the cloud are largely resolved by the sol‐
utions that immutable infrastructure provides. Those solutions
include:
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Simplifying operations
With fully automated deployment methods, you can replace old
components with new versions to ensure your systems maintain
their initial “known-good” state. Managing a fleet of instances
becomes much simpler with immutable infrastructure, since
there’s no need to track the changes that would occur with
mutable maintenance methods.

Continuous deployments, fewer failures
With immutable infrastructure, you know what’s running and
how it behaves. Deploying updates can become routine and
continuous, with fewer failures occurring in production. All
changes are tracked by your source control and Continuous
Integration/Continuous Deployment (CI/CD) processes.

Mitigation of errors and threats
Services are built atop a complex stack of hardware and soft‐
ware, and things do go wrong over time. By automating replace‐
ment instead of maintaining instances, we are, in effect, regen‐
erating instances regularly and more often. This reduces config‐
uration drift, vulnerability surface, and the level of effort
required to meet service level agreements. Many of the situa‐
tions that lead to maintenance fire drills in mutable systems are
avoided with immutable infrastructure. Many errors and threats
are mitigated whether they are detected or not. That mitigation
becomes increasingly potent as the rate of resource replacement
speeds from every day to every hour to every minute. It’s also
noteworthy that attacks on a high-refresh-rate immutable infra‐
structure system mean more log entries. This can aid evaluation
by secops and forensics teams.

Easy cloud rebooting
With immutable infrastructure, you know what you have run‐
ning, and with fully automated recovery methods for your serv‐
ices in place, cloud reboots of your underlying instances should
be handled gracefully and with minimal, if any, application
downtime.

Potential for reduced costs
If executed well, immutable patterns can result in reduced costs.
The fundamental economic benefits of the cloud are in avoiding
provisioning for imagined loads on the system. When using
immutable patterns, which are typically fully automated, we
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gain the ability to scale our infrastructure with the loads. There
also can be reductions in personnel costs for deployment and
maintenance, as fixing things in situ is considerably more diffi‐
cult than simply replacing them. Tracking down partial deploy‐
ments and sorting those takes time and costs money.

Maintaining hardware is difficult work, especially when that hard‐
ware is physical boxes in a rack that require manual configuration,
not to mention maintenance of the building where they are housed.
But with logically isolated compute instances that can be instanti‐
ated with an API call in an effectively infinite cloud, “maintaining
boxes” is an intellectual ball and chain, tying us to caring about and
working on the wrong things.

“Trashing your servers,” as Chad Fowler would say, enables you to
focus on what matters to the success of your application, rather than
being constantly pulled down by high maintenance costs and the
difficulty of adopting new patterns.

Is Immutable Infrastructure the Right Fit?
Most non-cloud, mutable environments are actually not-yet-cloud,
not-yet-immutable environments. That is, time moves fast in com‐
puting, and hybrid solutions will continue transitioning to cloud-
based, fault-tolerant, API-driven ones. But right now, immutable
infrastructure’s core benefits of predictability, reliability, and scalabil‐
ity are more imperative to some businesses and organizations than
others.

For example, a typical independent school won’t have a dramatic rise
or fall in its number of users. Even with sophisticated project and
communication apps distributed in that environment and even with
a school’s need for security around grades and finances, an urgency
for infrastructure upgrades is atypical and the tech shop on campus
is likely small. The app businesses themselves, on the other hand,
which serve that school and hundreds or thousands of others, have
needs much more aligned with cloud computing and the ease of
scaling that immutability provides (think of major spikes in home‐
work app usage occurring after 5 p.m., with dramatically decreased
usage in the early part of the day). Very large public school districts
may have those needs as well.
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Massive legacy systems, too, cause CIOs to balance competing prior‐
ities. A CIO with a system that doesn’t run on industry-standard
Intel hardware or that has unusual network requirements or uses
lots of recently purchased hardware may find it’s not the right time
to migrate. Many enterprises have made the decision to leave legacy
alone for the time being and, instead, build their new features on the
cloud with fault-tolerant methods. It’s worth noting that highly
regulated, compliance-oriented industries, perhaps with classified
data centers and access controls required to meet specifications, may
or may not be candidates for cloud computing and immutable infra‐
structure.

So, what about you? Where do you fit?

If you are running a traditional n-tier application and have never felt
the need for more than one or two servers, immutable infrastructure
may sound like a solution looking for a problem. But if you have
scaling needs, even modest ones, once you begin using some cloud-
native architectural patterns, such as automating instance replace‐
ment or autoscaling up and down, you’ll realize that immutable
infrastructure is central to operating effectively at scale. Those pat‐
terns and others are explored later in this guide.

If you are running a distributed system in the cloud, you may have
already adopted some or many of these patterns, but it’s uncommon
to find examples of full implementations.

If you can say “yes” to the majority of these statements, you may bene‐
fit from immutable infrastructure:

• You are creating a cloud-native application, as defined in Cloud
Architecture Patterns (O’Reilly) by Bill Wilder.

• Your application architecture enables you to revise and deploy
software changes on an ongoing basis.

• Your servers can boot in a “lights-out” or “headless” environ‐
ment and be ready to do their task without human intervention.

• You plan to scale your application horizontally using a service
such as Auto Scaling Groups (ASGs) on AWS, managed
instance groups on Google Cloud Platform, or Scale Sets on
Azure.

• You have a mechanism to do automatic updates or to roll out
machine images.
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• You want to make deployments simple and infinitely repeatable.
• You want to enable one-step deployment of entire infrastruc‐

tures, including network configurations, application servers,
and other resources.

• You hope to achieve continuous deployment; the more compli‐
cated your deployment workflow is, the more important it is to
isolate state.

• You want to ensure that no on-the-fly changes are made to any‐
thing.

• You want to focus on your core business rather than operations.
• Your want your application to gracefully respond to node fail‐

ures—immutable components can be easily regenerated.

In the next chapter, we’ll move beyond definitions, benefits, and fit
to pragmatics. Specifically, we’ll sample the landscape and consider
how immutable infrastructure can be implemented now, as part of
complex toolchains. Then, we’ll step into a best practices mindset,
laying out key ways to think about and work with cloud resources.
In doing so, we’ll look at an infrastructure approach that realizes
those practices, automating robust immutable patterns while signifi‐
cantly limiting complexity.

Is Immutable Infrastructure the Right Fit? | 11





CHAPTER 2

Immutable Infrastructure
in Action

Using immutable infrastructure for the first time has a learning
curve. It’s a paradigm shift. But you don’t have to go all in to reap the
benefits. You can make parts of your infrastructure immutable. In
this chapter, we’ll:

• Discuss some tools and technologies that exist in the market‐
place and provide example implementations using those. At
present, the most popular cloud is Amazon Web Services
(AWS), so we’ll walk through an example in that context and
also one that is non-AWS specific but illustrates a common use
case. (See “Immutable Infrastructure in the Toolchain” on page
14.)

• Against that backdrop, we’ll do a bit of “best practices” analysis,
walking through good immutable infrastructure candidates in
your existing and greenfield applications across compute, stor‐
age, network, and management services commonly available on
clouds. (See “Best Practices: How to Make Your Application
Immutable” on page 23.)

• As we consider normative patterns and modes of working with
cloud resources, we’ll illustrate a unified approach emerging in
the immutable infrastructure landscape that relies on cloud OS
modeling rather than customized toolchains. (See “Immutable
Infrastructure in a Unified System” on page 29.)
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For big, complex deployments involving multiple team members,
integrating immutable patterns into your workflow involves signifi‐
cant automation and testing, but it pays off. The system will be effi‐
cient with its use of resources and resilient to infrastructure quality
issues and human error.

Immutable Infrastructure in the Toolchain
First, let’s take a closer look at how toolchains can currently be cus‐
tomized to implement immutable patterns and what’s accomplished
with those customizations. Many teams are exploring how to do
immutable infrastructure well. It’s possible to put together a solution
with a combination of tools like Ansible, CloudFormation, Docker,
and Kubernetes, to name a very few, but you’ll need to write a lot of
glue code and custom scripts. You might develop an automated
workflow that integrates instances with cluster management, sched‐
ulers, and other open source or commercial products. Dozens of
paths to implementation are possible.

To stay within the scope of this guide, we’ll address a couple of use
cases featuring tool types that have garnered attention. We’ll also
look briefly at the hard-won, ever-evolving Netflix success story and
at types of components beyond instances and containers that might
come into play as immutable patterns become more prevalent.

Implementing with Containers
Containers allow developers and DevOps to produce full OS images
containing the application code, supporting libraries, operating sys‐
tem kernels, and patch levels as one highly convenient, downloada‐
ble package. CI/CD systems can stamp, version, and track these OS
images destined for containers throughout their lifecycles. This
allows for a high level of consistency across images in large deploy‐
ments with a strong level of confidence of correctness.
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Because Docker allows for environment variable injection (not
unlike user-data scripts for EC2 in AWS) into container images at
boot, applications can grab the data they need from the orchestra‐
tion system instead of configuration files. And because the configu‐
ration files no longer need to set application state, images within
containers do not require configuration management tools like
Chef, Puppet, and Ansible. This eliminates the need for “moving
parts” within an image—container images are read-only and don’t
need to change.

With the combined benefits of image stamping, image versioning,
environment variable injection, removing configuration files, and
containers’ fast boot times, CD systems can stand thousands (or
even tens of thousands) of identical images at once via containers,
knowing they are all identical. When a new patch or version comes
out, the orchestration system floods out another versioned, stam‐
ped, and tracked image for the system to run. When a change must
be made, rather than currently existing read-only data being modi‐
fied, new data is supplied and the old data is discarded. Should a
piece of infrastructure change, the orchestration system copies the
small changing portion of the system, injects something new, and
reattaches links or ports to the infrastructure staying behind.

Figure 2-1 details an example implementation for executing immut‐
ability with containers. Tools change and improve over time. This is
just one feasible implementation—of hundreds possible—in this
moment of history.
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Figure 2-1. Use case—immutable patterns with containers
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Notice here that web app containers are replaced via scheduled roll‐
ing restarts of the application group using Marathon and Chronos.
Marathon is used for scheduling container placement and scaling
within the cluster. Chronos is used for scheduling recurring actions,
such as maintenance, or one-time actions, such as scheduling a roll‐
ing restart when an application container is updated. Chronos also
can facilitate immutability by triggering a rolling restart periodically.
ZooKeeper is responsible for runtime configuration and potentially
service discovery. Cassandra is used for dynamic web content, and
HDFS is used for large object storage and retrieval. In a production
cluster, care should be taken to ensure node separation for individ‐
ual Cassandra and HDFS nodes. Static web content is served using
an external cache service/content delivery network (CDN). An ELK
stack (Elasticsearch, Logstash, and Kibana) is used to manage appli‐
cation and Mesos cluster logs. An HA Proxy cluster is used to proxy
and load balance incoming requests to the responsible web applica‐
tion containers. HA Proxy can run within Mesosphere, but we are
minimizing potential DNS updates by running it externally to
Mesosphere.

As noted, this is but one possible implementation of very many; it’s
included here in order to give explanation beyond lists and high-
level discussion, which are often characteristic of this topic in
media, and to provide clarity and detail with respect to how immut‐
able infrastructure can get done. Much more can be said about con‐
tainers, and indeed, much more is in the vibrant publications and
conferences in our field. This is not an exhaustive discussion!

It is important to recognize that containers bring immutability to the
application layer—you might orchestrate containers with Terraform
and Consul to achieve immutability at that layer instead of some of
the tools used in our implementation, or instead of dozens of other
methods. But, regardless of implementation, containers don’t gener‐
ally address the underlying hosts and networks. Immutable infra‐
structure became popular as companies built and moved systems to
the cloud, long before containers were the trend. Auto Scaling
Groups (ASGs) and Amazon Machine Images (AMIs) used in con‐
cert are the most common manifestation of immutable patterns in
the industry today. ASGs have been around and in use since 2008.
While it’s true that you can now get some of the cloud features that
made immutable patterns popular by using containers in a tradi‐
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tional data center, this is not the most common use case, nor is it the
primary driver for adoption of the patterns.

Implementing with Machine Images
Machine images are the master blueprints for the compute instances
you run in a virtual environment, whether locally or in the cloud.
They are of particular importance in the cloud and with immutable
patterns, as you’ll be automatically building many instances with
them and won’t be logging in and making changes, as is common in
mutable environments. Building machine images can be done in
many ways, but you’ll want to integrate the image build into your
deployment toolchain.

Take a look at the example implementation illustrated in Figure 2-2.
Here, we build machine images (e.g., AMIs in AWS) and deploy
them on instances with ASGs to achieve immutability.
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Figure 2-2. Use case—immutable patterns with machine images on
instances

In this implementation of immutable infrastructure, web app instan‐
ces are regenerated by terminating instances with the old application
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version manually and allowing the ASG to start instances with the
new version. AWS doesn’t provide a specific facility for runtime con‐
figuration or service discovery, but a combination of existing AWS
services could be used (specifically, EC2 instance data). DynamoDB
is used for dynamic web content. S3 is used for large object storage/
retrieval and in conjunction with CloudFront. Static web content is
served using CloudFront. Elastic load balancing (ELB) is used to
load balance incoming requests to the responsible web application
instances. DNS services are provided by Route 53. CloudWatch is
used to aggregate logs.

The AWS CloudFormation service allows users to control most
aspects of an AWS deployment. Once a CloudFormation template is
created and submitted to the CloudFormation service, CloudForma‐
tion proceeds to instantiate parts of the template, stopping only on
completion or exception. In the case of the latter, the user is respon‐
sible for determining the proper remediation steps.

We said that the web app instances are terminated manually in this
implementation, while an ASG is used to start instances carrying the
new app version. “Manually” means using an external script in the
build, so here, a cron job script is run to terminate old instances,
which the ASG should automatically replace. A script like this has to
update launch configuration and associate it with the new ASG.
Scripts have to deal with timeouts, API details, failed instance
launches, registering instances with the ELB, and health checks,
among other things. None of that is trivial. If instances are turned
off at the wrong time, with large numbers, that’s costly. Keep in
mind too that we’ve either baked database configuration into the
AMI or can inject it at launch time via user data and a service dis‐
covery tool like ZooKeeper or etcd. Service discovery is an impor‐
tant topic. Let’s spend a moment delving into it.

In a highly automated environment, different infrastructure compo‐
nents may be coming up and going down constantly. These compo‐
nents frequently have some amount of runtime configuration that’s
dependent on the state of their environment. For example, a web
server may need to know the hostname or IP address of a database
server. Since the environment is changing constantly, these configu‐
ration items cannot be static or hardcoded. One way to solve this
problem is with a service registry. This is a highly available datastore
where components can register configuration for other components
to consume. For example, a cache server may come up and register
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its IP address and available capacity with a service registry so that
application servers can make use of it. Depending on the capabilities
of the service registry, it may also provide other services, such as act‐
ing as a lock server.

Chaos Engineering with Netflix
Netflix made the decision to go all in with cloud computing and
crafted one of the most resilient, demanding systems with global
reach—using immutable infrastructure—in operation today. Over
the last decade, its teams have developed and fine-tuned a complex
but highly effective microservices architecture, the design of which
Director of Operations Engineering Josh Evans likens to a living
organism. The system’s resilience has been bolstered by dedicated
implementation of chaos engineering, which Evans defines as “the
discipline of experimenting on a distributed system in order to
build confidence in the system’s capability to withstand turbulent
conditions in production.”

Not only does Netflix regularly destroy production instances across
availability zones (AZs) and regions and use red/black canary relea‐
ses for new features, but it also now uses fault-injection testing
(FIT) to simulate failures of whole services. In order to operate in
this way, each component of the infrastructure must be immutable,
as they are automatically generated, destroyed, and regenerated to
handle instance and service degradation and outages. This is proba‐
bly the most extensive public implementation of immutable infra‐
structure in the market.

Netflix engineers use machine images and a mixture of their own
autoscaling and AWS’s, among other tools. They spin up many
services that talk to each other point-to-point and synchronously,
as opposed to using something like Amazon’s Simple Queue Service
(SQS). They’ve found that their approach scales better for them.
This means that to use their patterns, or other container or image-
based patterns for that matter, you’ll need some way to store the
data that the instances need to find each other—i.e., a service regis‐
try, as discussed in the previous section.

Netflix engineers have written much on their Tech Blog, and Nicho‐
las Whittier continues to report on Netflix’s usage patterns and its
open source tools for executing immutable infrastructure, with
more forthcoming. Indeed, Netflix has released some great open
source tools for doing immutable infrastructure on AWS. It’s a bit
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of a heavy lift to set up and use, but if your business has enough in
common with Netflix’s from an operations perspective, its model
can be beneficial.

Implementing with Unikernels and Lightweight VMs?
Unikernels and library OSs are cutting-edge technologies that
potentially can provide a complete deployment solution since they
address fundamental problems, rather than trying to paper over
them. Those problems include large image sizes that yield slow
deployments, unnecessary code and features that take up memory
and expose attack surfaces, and inconsistent environments. There
are subtle differences between the unikernels and library OSs, but
for our purposes, we’ll reference unikernels to limit repetition.

Anil Madhavapeddy, Richard Mortier, et al., who created the Mirage
prototype compiling OCaml code into unikernels that run on com‐
modity clouds, described them this way:

Unikernels are single-purpose appliances that are compile-time
specialised into standalone kernels, and sealed against modification
when deployed to a cloud platform. In return they offer significant
reduction in image sizes, improved efficiency and security, and
should reduce operational costs.

Thus, a unikernel is the parts of the OS that are needed to run a ser‐
vice, along with the service itself, and that’s all. It’s constructed in a
compilation/build process that makes a simple virtual appliance for
the service you’d like to run. A unikernel is radically smaller and
lighter than a traditional OS and application, and it limits the attack
surface to the application if used well. Unikernels are a natural fit for
immutable patterns, but there’s a catch that likely will push adoption
out a few years: the unikernel OS needs to directly support the lan‐
guage and features with which you are programming. So, at present,
they don’t provide the kind of coverage for existing applications that
traditional OSs on virtual machines or containers do. They can boot
incredibly quickly, though, and they’re generally much lighter than
even containers. It’s a good idea to watch this space develop. Madha‐
vapeddy spoke about research and work concerning immutable dis‐
tributed infrastructure with unikernels in the summer of 2015. Rus‐
sell Pavlicek of the Xen Project sees unikernels as part of “the next-
generation cloud,” and Lars Kurth has discussed early adopters
working with R&D partners.
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Another intriguing technology to keep an eye on is the very light‐
weight VM image possible with OSv and Capstan, which can be
used in lieu of containers. The documentation indicates that the
build yields “a VM image that can run on any hypervisor with OSv
support and is only 12–20MB larger than an application itself, with
about three seconds added to the build time.” Designed for “private
or public cloud using administration tools of choice,” its potential to
be integrated within an immutable infrastructure pattern is signifi‐
cant.

What the industry is trying to achieve is a lightweight, and therefore
fast, deployment package. The multiuser OSs we’ve grown accus‐
tomed to aren’t intended for what we are doing with them—they
carry baggage from serving as interactive computers that are long-
lived. Unikernels and lightweight VM images (like the one men‐
tioned here) provide opportunities for deployment experimentation,
testing, and eventually production.

Best Practices: How to Make Your Application
Immutable
In the example implementations we’ve covered so far, developers
ideally would set up systems that consider fundamental patterns for
immutable infrastructure and that follow best practice design con‐
siderations. In this section, we’ll look at those patterns and consider‐
ations. Since most cloud computing is done with compute instance
type services, such as AWS EC2 or Azure virtual machine instances,
to allow choices about performance characteristics we will focus on
those.

Fundamental Patterns
Immutable infrastructure on cloud compute resources has some
fundamental patterns that should be followed:

• Don’t modify instances in place. This is the core pattern in
immutable infrastructure. Modifying server instances is difficult
to successfully automate and track, and allowing it will result in
manual modifications. While in theory it is possible to have pol‐
icies and tools in place to keep things consistent, in practice,
both fail with some regularity. There is no concise and trustwor‐
thy way to know if and where you have configuration drift.
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• Replace instances to update them. If nothing is changed in situ,
to introduce change we must be able to deploy new instances
without affecting the customer experience. While this can be
done manually, it rarely works well as humans are bad at follow‐
ing rote procedures consistently. Plan to automate instance
replacement.

• Plan for instance and zone failures at all times. Instance failure
should be a normal part of doing business, whether unintended
due to bugs or other issues, or intentional in order to perform
component replacements on them. Zone failures on AWS and
Google Cloud Platform should also be relatively painless if you
architect well. On Azure, you’ll want to use Availability Sets.

• Don’t let instances get stale. Not unlike a computer, the longer an
instance has been in use, the greater the chance is that it will
have drifted from the optimal configuration. Don’t run server
instances for a long time.

• Scale in and out automatically. One of the great benefits of cloud
computing is that you don’t have to pre-provision resources.
You should scale them based on the amount of utilization you
have. If you’re doing immutable infrastructure, you gain this
ability at the application layer. So, why not use it?

Working with Compute Resources
Now, let’s look specifically at considerations to keep in mind when
starting, operating, updating, scaling, and monitoring compute
resources in an immutable infrastructure implementation.

Starting compute resources
The first order of business is getting the bootstrapping fully automa‐
ted. This means having no hands on the instance other than the run
instance command or equivalent. Usually, this involves both some
data passed into cloud-init and some discovery of the environment.
For the former, each cloud service provider has a mechanism to
configure at boot, such as AWS’s User Data feature. For the latter,
you may need to use a service discovery tool such as etcd or Zoo‐
Keeper. Running a service discovery cluster can be complex to set
up, so you might want to avoid it for a sandbox project by using
DNS.
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You’ll want your service to use the scale-out pattern for high availa‐
bility, since removing and adding instances automatically is impor‐
tant to immutable infrastructure. The easiest way to start is by
putting the instances behind a load balancer, which in some cases
can also remove the need for service discovery. It’s best if you auto‐
mate adding and removing instances to and from the load balancer,
which you could do with a script or with AWS Cloud Formation or
OpsWorks. As we’ve suggested, scripts can add complexity, and the
tools noted have their critics too. A unified approach, covered in the
last section of this chapter, gives you an alternative.

Operating compute resources
Once you can bootstrap instances successfully, you’ll need a mecha‐
nism to replace instances due to configuration change or staleness.
This turns out to be a rather difficult thing to do well, but it can be
accomplished by hand-rolling scripts and using AWS’s ASGs.

As described in Chapter 1, there are key advantages to routinely
regenerating compute instances whether planned changes have
occurred or not—like reducing configuration drift, mitigating
errors, and, when done well, removing certain resident exploits.

To get immutable infrastructure right, you need a solid and reliable
way to measure instance health. Your orchestration layer needs to
know whether a particular instance is doing its job correctly. It’s
worth putting some real effort into good health checks, as false posi‐
tives or negatives here can really hurt you by keeping non-
performing or broken instances in the user’s path or by failing to
bring healthy instances to bear. A health check should minimally
test that the instance can perform its main function. This usually
involves testing a connection through the instance to other services
it needs to operate, such as a database connection.

Updating compute resources
You’ll want to introduce changes to your service. With immutable
infrastructure, this is done by replacing compute instances. There
are two broad approaches for updating your service:

1. You can build the new component version alongside the exist‐
ing one, then change pointers, such as DNS records, to the new
one.
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2. You can use blue/green deployment, in which you build two
nearly identical production environments. While the “blue”
environment is live, you update and test the “green” environ‐
ment. When “green” is ready, you switch the router to the
“green” environment. Having the ability to roll back bad
changes is a must, and using blue/green deployment provides a
way to do this.

Scaling compute resources
Immutable infrastructure implicitly allows for automatic scaling of
your compute instances. This lets you match your spending on
infrastructure to the actual demand on your service. To autoscale
well, you need a good measure of your service’s requirements that
accurately reflects the demands and constraints of the service as it
relates to scale. CPU works for some services, latency for others,
memory for others, and so on.

You must understand your service’s performance-limiting factors to
scale effectively. For example, some services are I/O-bound, and the
limiting factor is disk or network I/O. For other services, it may be
CPU or memory, or a combination of some or all of these factors.
Often, it’s best to measure service latency as this is a natural aggre‐
gate and reflects user experience. One danger in scaling metrics in
general is that outside conditions can sometimes cause a mass scal‐
ing event, such as introduction of a new feature that causes memory
to be over-consumed or latencies to climb due to an error. Always
set reasonable upper bounds on your autoscaling.

Monitoring compute resources
With immutable infrastructure, it’s even more important than usual
to monitor the condition of your infrastructure to make sure it con‐
forms to the intended configuration and health. AWS offers Cloud‐
Watch metrics as an extensible mechanism to monitor your infra‐
structure; Google offers Cloud Monitoring Beta at the time of this
writing and Azure offers verbose monitoring. There are many ven‐
dors offering more detailed tools, such as New Relic. It’s important
to ensure your monitoring is automated and integrated with your
mechanisms for scaling, operations, and deployment.
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Beyond Compute Resources
Many conversations about immutable infrastructure stop with com‐
pute services, but to get the most out of the architecture you will
want to employ it for network, storage, and management services to
ensure their proper configuration and trustworthiness.

Unlike compute services, where ephemerality and immutability are
intrinsically tied together, in other infrastructure services, such as
networking, the logical services are long-lived. Immutability in this
context involves self-healing and automated changes, rather than
replacement.

Network services
Long-lived components need to conform to a declaration for them
to be immutable. Some parts of the infrastructure, such as the net‐
work, cannot have the short life spans of a compute instance. How‐
ever, they can have their configurations declared in a specification.
The runtime environment should be continuously checked against
that declaration to ensure conformance. You can do this in a unified
system, as discussed in the last section of this chapter.

A common example of where the mutability of Software Defined
Networking (SDN) services often causes pain is the reuse of security
groups on AWS across different applications or parts of an applica‐
tion. One user might depend on a certain port being open, while
another user decides it’s not necessary. If the second user modifies
the definition of the security group, it can break the first user’s appli‐
cation.

A good immutable infrastructure networking solution constantly
monitors the network configuration against the declaration and
either alters or, preferably, self-heals the network to conform to the
declaration.

Data services
Data services are used for many things, but we can consider three
categories for our purposes:

• Data that should be read-only, such as the bits of the operating
system or application. This is an easy type of data for immutable
infrastructure, as we can have a master copy that is never used,
from which we generate and regenerate the working copies. The
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AWS Amazon Machine Image (AMI) and Elastic Block Store
(EBS) snapshots are examples of this kind of data service.

• Service registry and shared variables. When you are architecting
using immutable infrastructure patterns, you often need data to
be present in the runtime environment that you can’t predict
when authoring. This can include data such as the IP addresses
of machines that are in a cluster or keys used to access services.
It’s important for this data to have the correct access and per‐
missions. These should be declarable in the same place you
define the rest of the infrastructure.

• Data that is read/write, such as the logs of a system or the data‐
base behind an application. While it isn’t possible to regenerate
this sort of data easily and the benefits of trying to do so are
questionable, it is possible to make sure the location and config‐
uration of the data service don’t mutate.

The simple way to get immutable infrastructure benefits in your
data services is to use data services that provide external service level
agreements and are managed by others. Amazon DynamoDB is one
such service; another is Azure DocumentDB. The goal is to reduce
maintenance costs and have a data persistence service with the right
features, performance, and pricing. Using such a service is often
preferable to rolling your own and maintaining it, as the service
provider does the heavy lifting.

Management services
Services such as key management and access management also can
be automated to function well with immutable infrastructure pat‐
terns. A complete expression of immutable infrastructure patterns
should be a single place that configures, deploys, and manages your
application, so automation of management services is a worthy goal.
You can execute that with a system like Fugue, described in the next
section.
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Immutable Infrastructure in a Unified System
In this chapter, we’ve examined what exists now (i.e., immutability
in example implementations with commonly used and emergent
tools) and what considerations lead us to build optimally (i.e., fun‐
damental patterns and practices for immutability with cloud resour‐
ces). Let’s now synthesize by turning to another approach to immut‐
able infrastructure that we called for in our introduction. It’s an
approach that considers existing problems and desired outcomes.

A robust, unified system that provides immutable infrastructure
must be able to automatically handle the generation, replacement,
and regeneration of compute instances (and containers if they are in
use). It’s a system designed with first principles of cloud computing
foremost in mind. Unified doesn’t mean monolithic; it means a sys‐
tem that’s been designed in an intentional and coordinated manner,
with microservices and API utilization given due consideration.
And first principles refer to scale-out, automation, lower costs, not
having to provision for bursts, and elimination of undifferentiated
heavy lifting. The system must know the current state of the infra‐
structure as a whole and be able to provide immutability of compo‐
nents, such as network configurations, that are presented as mutable
objects by cloud service providers.

Consider the implementation in Figure 2-3 and both the similarities
and differences with regard to what we saw earlier, in Figures 2-1
and 2-2:
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Figure 2-3. Use case—immutable patterns with Fugue

Fugue, shown here, is an example of a unified system that allows
users to declare how the components of an application should
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1 Disclaimer: Josha Stella is the CEO of Fugue.

deploy, scale, and interact.1 Notice that users compose cloud infra‐
structure with concise declarations in a strongly typed and compiled
language (Ludwig) that provides pre-launch error and policy checks.
Users have the option to declare an automated rate of replacement
for instances and containers and to declare enforcement patterns for
other cloud resources and components.

No scripts, configuration management tools, or layers of orchestra‐
tion that the user has to touch are required. Distributed variables
and service registries are included. A unified system builds, continu‐
ously optimizes, and enforces infrastructure based on the declara‐
tions. It automatically accounts for timeouts, API details, failed
instance launches, registering instances with the ELB, and health
checks. Every fundamental pattern and best practice we’ve covered
in this chapter, and the decisions embedded in those, should be built
into a unified system. The point is to significantly reduce the com‐
plexity of hand-rolled and multitool solutions or those that require
fine-grained, nuts-and-bolts mastery of a cloud provider’s services.

Implicit in immutable infrastructure is that we need to have a place
to declare what should exist in our infrastructure, in what configura‐
tion. If we can’t define what we want, it’s impossible to know if we
have it. In programming, we have code to instruct the computer
what should happen and the compiler to enforce immutability at
runtime. In infrastructure, we have no program to declare our
intentions, but instead a generally manual, ad hoc, and distributed
body of knowledge. Sometimes this is recorded in documentation,
but often not completely. A unified system, like Fugue, has the
potential to change that. It requires some form of expression that
supports immutable patterns (e.g., Fugue’s Ludwig domain-specific
language) and a runtime environment that enforces them (e.g.,
Fugue’s Conductor).

In order to do cloud and immutable infrastructure well, you need a
single source of truth—the state of the system—and a single source
of trust—the knowledge that your decisions are being honored—just
like a single computer needs an operating system. As we’ve noted,
you can build a system from scratch, but it’s a complex technical
issue to take on, aimed at a moving target. Whatever tools or sys‐
tems you choose, it’s advantageous to have a single interface to the
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configuration of the infrastructure. Running a dynamic system at
scale in the cloud is hard. Using immutable infrastructure patterns
increases the dynamism of the system.

Two core characteristics shaped our thinking in architecting Fugue
and are likely central to any unified approach:

All aspects of infrastructure are defined and testable.
To have immutable infrastructure, every aspect of the infra‐
structure must have specific and testable definitions. Without
the ability to test definitions, it will be impossible to know if the
component or relationship conforms to the definition at any
given time.

A control process is used to instantiate and enforce the definitions.
A user needs to have a method to operate against the infrastruc‐
ture in real time and constantly in order to monitor and main‐
tain that the infrastructure is as intended.
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CHAPTER 3

Pressing Questions

In this last part of the guide, we attempt to answer some tough ques‐
tions. It’s our hope that contemplation here spurs many more ques‐
tions and observations about immutable infrastructure. The point is
to spark minds to go further—to encourage individuals and shops
with deep reservoirs of talent and creativity to sharpen solutions,
explore the cloud’s intrinsic nature, and tap into its fullest capacities.

What Are the Central Challenges with
Immutable Infrastructure?
The challenges surrounding immutable infrastructure involve not
the pattern itself nor the implementation in the runtime, but rather
the process, human organization, and tooling that needs to be in
place.

Process Challenges
To do immutable infrastructure means to fully confront everything
about distributed and stateless systems head on. If you end up build‐
ing big, monolithic programs, you’ll find that those don’t work effi‐
ciently in this environment, nor do they work with immutable pat‐
terns because immutable patterns require the ability to replace com‐
ponents automatically and often. Large, monolithic programs gener‐
ally contain many services that need to be patched and maintained
in situ. If you go too small, that can gum a system as well, as you will
have more components to keep track of than are necessary. Going
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too small also can cause underutilization of resources. Knowing how
to measure services and determining what to do at what scale is
tough for even seasoned architects.

A mature DevOps process is also a prerequisite. Developers need to
intimately understand the operating environment due to the auto‐
mation that immutable infrastructure requires. With demand and
services scaling up and down all the time, there’s a huge impact on
application development itself—the application changes the infra‐
structure. They become a deeply connected concern.

Organizational Challenges
Crafting good processes around immutable infrastructure assumes
you have architects and developers with relatively rare skill sets.
Expensive skill sets. You also need those individuals to be agile, curi‐
ous, and willing—spreading that ethic across the team. Because the
approach is new and because the use of distribution can be tough
architecturally, those people tend to be hard to find. But once you
have a resilient architecture using immutable patterns, it’s actually
easier for programmers to write code.

Leveraging multiple tools and/or complex tools usually also necessi‐
tates the formation of multiple teams in your organization. Figuring
out who’s on first can be really tough because the human challenge
of coordinating the information exists. No single person probably
has expertise across all of the tools.

So, a CIO charged with looking at where and when to use immuta‐
ble patterns has a lot to weigh. From a business perspective, there’s
high risk up front in determining whether a shop can pull it off
without significant time, costs, and production errors. Some will feel
pressure to be more conservative about making the choice until
there are dominant, well-tested designs and systems that function
with excellence. On the other hand, once your shop is cloud native,
you can do things that your peers can’t, such as having much greater
agility in deploying and managing services, having greater deter‐
minism in your environment, reducing maintenance overhead, and
ultimately spending more of your time and money on growing your
business, rather than on maintaining your infrastructure.
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Tooling Challenges
We looked at toolchains in Chapter 2. While vigorous work is being
done, the field is not one with well-established prior art. People are
still figuring things out. Hand-rolled solutions are common. You
have to piece together big piles of complex tools and engineering
conduits yourself, while troubleshooting with few comprehensive
roadmaps. There’s an immature market for tooling since we’re not
decades in with time-tested systems, like those used with traditional
architectures.

Where Do You Put the Data?
In Chapter 2, recall that we considered how data services align with
immutable infrastructure, with the observation that application or
log data that is read/write won’t be replaced like compute instances.
But those data services can benefit from the “self-healing” that the
pattern offers. Let’s dig deeper into questions of data, as this is a
pressing concern for early adopters.

Where is application data stored—data that must be mutable for a
given system to have functionality? Relational databases are often
the answer for enterprises like banks. They need atomic, not eventu‐
ally consistent, data transactions for some of their key business
functions. Although relational databases like MySQL or PostgreSQL
aren’t designed for immutable patterns, they do deeply depend on
configuration enforcement for viability.

Consider a scenario where someone inside an organization inadver‐
tently changes an ingress rule to access a bastion host via a previ‐
ously unknown IP address in order to run queries against the data‐
base. In the unified system approach, where the state of infrastruc‐
ture is declared and read-only, the control process used to enforce
the declarations has been automatically and continuously monitor‐
ing whether runtime state matches declared state. When the control
process notices that an unexpected infrastructure change has occur‐
red, it automatically corrects back to the declared state, sending a
notification to the team and logging the incident. That’s self-healing
via immutable thinking. The bogus or mistaken change to infra‐
structure configuration is destroyed and replaced with the original
state.
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When you’ve built atop a cloud service provider’s persistence serv‐
ices, like Microsoft’s SQL Database service or AWS’s RDS for Aurora
or its DynamoDB service, you’ve also gained the cloud’s native
advantages in your ecosystem: low latency, high scalability, failure
detection, data automatically replicated across multiple AZs, easy
APIs with loose coupling, etc.

Keep in mind that it’s crucial to concentrate data persistence in as
few places as possible when designing a complete cloud system that’s
using immutable infrastructure for compute services and enforce‐
ment for data services. Every service that must persist data adds sig‐
nificant complexity to the application and its automation. Striving to
make interfaces idempotent wherever possible will make the archi‐
tecture simpler to modify over time and will make it easier to deal
with distributed state issues.

How Does Immutability in Programming
Inform Infrastructure?
With this question, we’re moving from our discussion about data‐
base services in the last section to examination of immutable data
itself—quite a different ball game. Here, we’re probing the intellec‐
tual inspiration for immutable infrastructure by drilling down into
ideas and patterns found in programming and in OS principles. So,
it’s important to understand that context.

Data can be mutable or immutable: immutability in programming
happens at the object level, meaning any code-level object such as
data or a function. Programming with immutable languages means
that instead of modifying an object, a new object is returned with
the requested changes. Instead of changing a variable, you replace it.
This principle is illustrated in Figure 3-1. Note the change in the
value of a variable versus the mandatory creation of new data.
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Figure 3-1. Immutability in programming

The compiler, runtime, or interpreter in an immutable language
guarantees that objects will not be modified once created, enforcing
immutability. It prevents users from breaking the rules and returns
an error before the program is run. This guarantee is extremely use‐
ful when reasoning about program predictability, correctness, and
reliability.

In this way, immutable infrastructure is similar to immutable data.
Rather than patching or modifying your compute instances, as with
your “data” in immutable languages, you replace them with new
ones that incorporate the changes. Programming languages that use
immutable data, such as Erlang, are safer choices for distributed
programs than languages that use mutable data. Similarly, immuta‐
ble infrastructure provides better reliability and a simpler set of
problems for distributed applications, particularly in the cloud.

The analogy of traditional programming and infrastructure has its
limits, as the scale is different in the cloud and we have more varia‐
bility in the kinds of objects we work with and in the interfaces to
them. When writing a program, the compiler can check to be sure
that you aren’t mutating data in situ, but an administrator with the
right permissions can change the configuration of a network or a
compute instance unless constrained by the logical equivalent of the
compiler. That’s part of the control mechanism we described at the
end of Chapter 2, which enforces infrastructure declarations and
automatically responds to attempted modifications. In its other

How Does Immutability in Programming Inform Infrastructure? | 37



functions and processes, it behaves loosely like an operating system
for cloud-as-computer.

It’s worth considering that cloud providers have designed their serv‐
ices to cater to traditional, mutable infrastructure models. This
means that, given root level access, every component in a cloud is
mutable, typically through numerous interfaces. This is also true of
memory in a computer—but automating processes with a strict set
of parameters that deny root can keep both environments safer.

What’s Next?
With cloud computing, we’re increasingly composing systems of
elastic collections of services running on many compute instances.
We now commonly employ application statelessness in order to
exploit cloud system elasticity and to achieve the performance
required of web-scale systems. We’re discovering the advantages of
automating the creation and destruction of components of a system,
incorporating changes only on replacement. But we’re also finding
that our existing methods to do so are complex and undergoing the
rapid and uneven development typical of new technologies. It’s our
contention that automated immutable infrastructure in a unified
system, via declaration and enforcement, fortifies applications. It
provides consistent resilience to cloud quality issues. As a pattern
native to the cloud’s resource abstraction, interfacing, and distribu‐
tion, immutable infrastructure is likely here to stay.

New questions will continue to emerge as we consider how legacy
and hybrid systems ultimately will undergo migration. How will the
rise of services like Lambda on AWS and similar direct compute
services play into cloud systems architecture? What abstractions will
be useful five years from now? Ten? What patterns and principles
are sound enough to not just withstand but feed evolving technolo‐
gies? Whether it’s manipulated by DevOps-style users or eventually
maintained within the guts of cloud providers’ internal systems, our
money is on immutability.
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