

Ben Evans

Java: The Legend
Past, Present, and Future

978-1-491-93467-8

[LSI]

Java: The Legend
by Ben Evans

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com .

Editor: Nan Barber
Production Editor: Nicholas Adams
Proofreader: Nicholas Adams

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Anna Evans

September 2015: First Edition

Revision History for the First Edition
2015-09-22: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java: The Legend,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Preface. ix

1. History and Retrospective. 1
The High-Level Design of Java 1
A Brief History of Java 2
History of Open-Source Java 4
The Age of Oracle 7
Retrospective 9

2. The Java Language. 11
Primary Java Language Design Goals 11
Language and VM Initially Influenced Each Other 15
Libraries 15
Recent Developments 17
Java’s Greatest Hits 19
The Java Hall of Heroic Failure 21
Conclusion 23

3. The Java Virtual Machine and Platform. 25
The Design of the JVM 26
Self-Management 30
Beyond Java 32
Conclusion 34

4. Java Developers and the Ecosystem. 35
Overview of the Java Ecosystem 35
The Java Community Process 36

vii

The Independent Java Ecosystem 37
The Java Community Now 40

5. The Future of Java. 43
Java 9 43
Further Out 48
Conclusion 50

viii | Table of Contents

Preface

My first encounter with Java came as a PhD student in Spring 1998.
I had been earning some extra money by helping a disabled student
who couldn’t physically attend his first year Computer Science
classes. I’d learned Dijkstra’s algorithm and enough graph theory to
stay ahead of the class, and at the end of term, he came to me and
asked if I’d sit in on another class for him—some new programming
language called “Java.”

At first I refused, but I eventually relented, and I clearly remember
many a late night sitting by the Physics department printer, waiting
for a print-out of some tutorials and early javadoc so I could read up
before the class.

Little did I know that this language and environment would have the
impact on my life and career that it has.

Acknowledgements
Thanks to my wife Anna Evans for the illustrations, to Samir Talwar,
Helen Scott, and Gil Tene for technical reviews. To Dalibor Topic for
correcting the timeline of events leading up to the release of
OpenJDK. To the O’Reilly team: Nan Barber, Brian Foster, Heather
Scherer, and Megan Blanchette. Finally to Mike, who was responsi‐
ble for getting me into this industry in the first place (if you’re read‐
ing this, please contact O’Reilly, and they’ll reconnect us).

ix

CHAPTER 1

History and Retrospective

The first public release of Java was May 23, 1995, as an alpha avail‐
able only on Sun Microsystem’s Solaris operating system. Since that
first release, Java has developed into one of the world’s most widely
deployed programming environments. It has gained traction and
market share in essentially every programming environment, espe‐
cially enterprise software, server-side Web development, and mobile
phone programming.

Java is a blue collar language. It’s not PhD thesis material but a lan‐
guage for a job.

—James Gosling

It has been a long journey with many surprises along the way. That
journey started in the early days with James Gosling and his team,
who were sure that developers wanted advanced productivity fea‐
tures (such as object orientation and garbage collection), but felt
that many engineers were scared off by the complexity of the lan‐
guages that implemented them.

The High-Level Design of Java
In language design terms, Java has always been based on a number
of deliberate, opinionated design decisions with specific goals in
mind. The Java platform’s initial primary goals can be summed up
as:

• To provide a container for simple execution of object-oriented
application code

1

• To remove tedious bookkeeping from the hands of developers
and make the platform responsible for accounting for memory

• To remove C/C++ platform security vulnerabilities wherever
possible

• To allow cross-platform execution

Notably, these goals were pursued even at the expense of low-level
developer control and performance cost in the early years.

By almost completely eliminating the cost of porting, Java allowed
developers to focus on solving business problems.

—Georges Saab

The portability goal was enthusiastically referred to as “Write Once,
Run Anywhere” (WORA). It represents the idea that Java class files
could be moved from one execution platform to another and run
unaltered. It relies on the existence and availability of a Java Virtual
Machine (JVM) for the host platform. Porting Java to a new plat‐
form thus becomes a matter of implementing a JVM that will run on
the new platform in accordance with the virtual machine specifica‐
tion (usually called the VMspec).

A Brief History of Java
The world that Java arrived into was very different to the one we live
in today. Microsoft was counting down to their August release of
Windows 95 (which would launch without a Web browser). Net‐
scape was yet to go public (IPO) on the NASDAQ exchange,
although its browser was steadily gaining in popularity. The Inter‐
net, as a whole, was yet to truly enter the public consciousness.

As a harbinger of things to come, Sun’s initial release of the Java lan‐
guage was accompanied by HotJava, a browser intended to compete
with the then-dominant Mosaic browser, and to supercede it via the
introduction of richer, dynamic applications using Java’s applet tech‐
nology. Despite this, few could have predicted the impact that Java’s
seemingly modest release would ultimately have.

Rapidly growing public interest in the Internet, fueled by Netscape’s
IPO and other market events, produced conditions that kicked off a
first wave of enthusiasm (and more than a little hype) for Java. This
would ultimately lead to some surprising consequences, not least of
which was the renaming of an unrelated scripting language to “Java‐

2 | Chapter 1: History and Retrospective

script” in order to cash in on the public profile of the Java ecosys‐
tem.

Since those early, heady days, Java has had a fairly conservative
design philosophy and an often-mocked slow rate of change. These
attributes, however, have an overlooked flip side—a conscious
attempt to protect the investment of businesses that have adopted
Java technology.

After the USENIX session in which James Gosling first talked pub‐
licly about Java, people were already dancing on Java’s grave.

—Mike Loukides

Not only that, but Gosling’s vision has been more than vindicated—
the design decisions of Java’s early days are now considered uncon‐
troversial. This provides a clear example of the old software maxim
that “the most hated programming languages are inevitably the most
widely used.” In Java’s case, that extends to the plagiarism of Java’s
ideas and design principles.

As one example, very few application developers would even try to
defend the opinion that memory should be managed by hand these
days. Even modern systems programming languages, such as Go
and Rust, take it as a given that the runtime must manage memory
on behalf of the programmer.

The Java language has undergone gradual, backwards-compatible
revision but no complete rewrites. This means that some of Java’s
original design choices, made out of expediency due to the restric‐
tions and conventions of late 90s technology, are still constraining
the platform today.

The early years of the 21st century saw the rise of Enterprise Java,
pushed heavily by Sun (and later Oracle) as the future way to
develop applications. Initial versions of the platform (known origi‐
nally as J2EE, and more recently as Java EE) were criticized for per‐
formance and complexity problems. However, despite these issues,
the use of Java in enterpises continuedcto grow at a rapid rate.

Eventually, more lightweight frameworks (e.g., Spring) emerged. As
these challengers added features, they inevitably grew in size and
complexity. At the same time, the Java EE standards progressed,
shedding unecessary layers of configuration, and began to focus on
the core needs of developers inside the enterprise.

A Brief History of Java | 3

Today, the enterprise space remains vibrant, with healthy competi‐
tion between different frameworks and approaches to large-scale
development. In the last 10 years, only Microsoft’s .NET framework
has offered any serious competition to Java for enterprise develop‐
ment.

Meanwhile, the core Java platform (the “Standard Edition,” or Java
SE) was not standing still in the early part of the 2000s. Java 5,
released in 2004, was a significant milestone, and introduced major
changes to the core language. These included generic types, enumer‐
ated types, annotations, and autoboxing.

The standard library and core application programming interfaces
(APIs) were also substantially upgraded—especially in the areas of
concurrent programming and remote management (both for appli‐
cations and for the JVM itself).

These changes were judged to be a huge step change in Java’s evolu‐
tion, and no release until Java 8 would have the same impact on the
Java world. Sun also finally dropped the “Java 1.X” naming scheme,
and started using the major number instead, so that this release was
Java 5.

The waves of change, from language changes in Java 5, to low-level
technical upgrades such as on-demand or Just-In-Time (JIT) compi‐
lation (Java 1.3), through to procedural and standardisation struc‐
tures, such as the Java Community Process, or the Java Language
Specification, have carried Java forward as a language, platform, and
ecosystem.

History of Open-Source Java
This can be seen through the evolution of Sun’s (and later Oracle’s)
attitude to community and open-source. Despite declaring huge
support for open-source, Sun proceeded cautiously where Java’s
intellectual property was concerned.

The Java Community Process (JCP) was set up by Sun in 1998 as a
way to bring other companies and interested parties into the devel‐
opment process for Java standards. Sun wanted to bring potential
rivals “inside the tent,” but didn’t want to lose control of Java in the
process. The result was an industry body that represented a compro‐
mise between competing companies that still had common cause.

4 | Chapter 1: History and Retrospective

Responding to pressure from the market and the wider community,
Jonathon Schwartz (then CEO of Sun) announced the open-
sourcing of Java live on stage at JavaOne 2006. Legend has it that
this announcement was done without the full knowledge of his
management team. This led to the creation of the OpenJDK (Open
Java Development Kit) project in 2007, which is still responsible for
the development of the reference implementation of the Java plat‐
form today.

Sun now had both a somewhat-open standards process, and an
open-source reference implementation for Java. However, the path
to an open Java was not completely smooth. The release train for
Java 6 was already well underway, and it was felt to be too difficult to
try to move Sun’s toolchain and development practice over to an
open process. Instead, a drop of code from the in-development Sun
proprietary JDK 7 was taken, scrubbed, and released as the seed for
OpenJDK 6.

The release was further complicated by Sun’s decision to exempt cer‐
tain components from the open-source release, citing problems in
obtaining agreement from the copyright holders.

Due to this approach, OpenJDK 6 never had a release that precisely
corresponded to a Sun JDK release. However, the release train for
JDK 7 fixed this process, by quickly moving to an open process and
by having all normal commits be made directly into the open repo‐
sitories from then on. This process is still followed today.

History of Open-Source Java | 5

Figure 1-1. The OpenJDK branching process

For some participants in the open Java community, Sun did not go
far enough in open-sourcing the platform. For example, the Testing
Compatibility Kit (TCK) was not opened, and remained proprietary
software. This presented a hurdle for non-Sun implementations of
Java, because an implementation must pass 100% of the TCK in
order to be certified as a compatible implementation of Java.

The Apache Foundation started an open-source, cleanroom imple‐
mentation of Java in May 2005, and by the autumn of 2006 it had
become a top-level Apache project called Apache Harmony. When
the project was underway, Apache approached Sun for a TCK.

6 | Chapter 1: History and Retrospective

While not outright saying “No,” Sun dragged its heels over the
request. This was particularly true with respect to the “Field of Use”
restrictions that Sun had added to the Java SE TCK license, which
prevented Java SE from being legally run on a mobile phone.

Finally, on April 10, 2007, the Apache Foundation sent an open let‐
ter to Sun demanding an open-source license for the testing kit that
would be compatible with the Apache license, rather than the GNU
Public License (GPL) that OpenJDK uses. Sun did not produce a
suitable license, and the dispute rumbled on.

Harmony would go on to be used as the basis for Google’s Android
application programming framework for mobile devices. As of 2015,
it is still the primary standard library for Android developers.

After the release of Java 6 in December 2006, Sun embarked on an
ambitious plan for Java 7, which was to grow as time passed, so that
by late 2009 it included a proposal for some much looked-for major
new features.

These included:

• Lambda expressions, and with them a slightly more functional
style of programming

• A completely new system of modularising and packagaing Java
classes to replace the aging Java Archive (JAR) format that was
based upon ZIP files

• A new garbage collector called Garbage First (G1)
• Enhanced support for non-Java dynamic languages running on

the JVM

Many in the community began to question when, if ever, version 7
would actually arrive. However, they were soon to discover that Sun
(and Java with it) potentially had far bigger problems than just an
endlessly slipping release date.

The Age of Oracle
By 2009 it was clear that Sun’s revenue and profits were in serious
trouble, and Sun’s Board began to seek buyers for the business. After
talks with IBM (and allegedly HP) failed, Oracle emerged as a buyer,
and made a substantial offer in the spring of 2009. Upon obtaining

The Age of Oracle | 7

approval from the US and EU governments, the acquisition of Sun
was completed on January 27, 2010.

The first few months following the acquisition contained a few
upsets and high profile departures from Oracle (including James
Gosling, the original inventor of Java). Outside of the Java space,
Oracle fared badly, and was seriously criticized for its handling of
some of the open-source technologies they had acquired from Sun.

In the Java space, trouble was to arrive late in 2010 when negotia‐
tions between Oracle and Google over licensing the Java technology
used in Android broke down, and Oracle sued Google for copyright
and patent infringement.

The ecosystem was to receive another shock, when Apache officially
withdrew its membership of the JCP after Oracle refused to grant
Apache a TCK license for Harmony under acceptable terms, despite
having supported Apache against Sun in the original dispute. The
Harmony project struggled on until November 2011 before finally
choosing to disband, with Android being the only real inheritor of
the technology.

Apache has not, as yet, returned to the JCP, but many of Apache’s
projects are implemented in Java or other JVM languages. The Ora‐
cle/Google lawsuit was to rumble on until May 2012, when the judge
found decisively in favor of Google (although some minor aspects of
the case continue in the appeals courts).

With the effective end of the Oracle/Google lawsuit and the initial
uncertainty regarding Oracle’s stewardship of Java fading, the Java
platform seems to have settled into a period of relative calm.

On the engineering side, this has been seen in several places—most
clearly in that the monolithic plan for Java 7 was cut into more man‐
ageable pieces. First, some relatively simple features and internal
engineering work were shipped as Java 7 in July 2011. Next, the
lambda expressions and functional programming support followed
as part of Java 8 in March 2014. Finally, the long-delayed modularity
support is intended to arrive as part of Java 9, which is expected to
be released in September 2016.

8 | Chapter 1: History and Retrospective

Retrospective
To conclude this chapter, let’s try to put some of this history into
context, remembering of course that hindsight is 20/20. Nowhere is
this more apparent than with Moore’s law, the hypothesis made by
Intel founder Gordon Moore to the effect that: “The number of
transistors on a mass-produced chip roughly doubles every 2 years.”

This phenomenon, representing an exponential increase in com‐
puter capability since 1965, has had transformative effects on com‐
puting (and knock-on effects to human society). Java has been a par‐
ticularly fortunate beneficiary of the availability of an increasing
amount of computer power.

Software is eating the world.
—Marc Andreessen

Long term bets in software have always been notoriously difficult.
For example, the decisions made by many national governments to
standardize on Microsoft in the early 90s proved to be exceptionally
expensive, and provided a very powerful advantage to the vendor in
winning additional work.

Java has benefited from some early design decisions, that could be
seen either as prescient or very lucky. The WORA approach pro‐
vided a platform-neutral approach at a time when few predicted that
the Intel family of chip designs would become dominant across
essentially the entire industry. It also protected Java from being
locked in to a single operating system.

Moore’s law also aided Java by providing a free lunch in terms of
computing capability. The processor intensive aspects of the modern
Java platform, such as Profile Guided Optimization (PGO) and JIT
compilation, are only possible because of the incredible growth in
power of processors.

The Java design principle of backwards compatibility has also
proved to be very helpful to Java. Large companies have felt confi‐
dent about investing in Java as a platform in part because of the visi‐
ble commitment to maintaining older versions and not breaking
working code by platform upgrades.

Java has also been less fortunate in some areas, partially because of
its early success. Many large, slow moving organizations (including

Retrospective | 9

more than a few governments) adopted Java applets as a standard
technology for accessing systems over the Web.

Applets are a technology that are very much of their time, and they
have not aged well. The technology proved to be very difficult to
evolve, and so applets have not been considered to be a modern
development platform for many years now. However, they doggedly
persist due to some large early adopters being very resistant to
change. The resulting effect to the ecosystem is that Java applets are
still present in the platform, and are a major contributor to security
problems.

As we reach Java’s 20th birthday, some observers have begun to talk
of “the second age of Java.” Java’s high performance, stability, and
large numbers of developers are making it an attractive choice for
many software projects. Not only that, but many of the most inter‐
esting new languages (such as Clojure and Scala) are implemented
on top of the JVM.

Will Java be around in a recognisable form for its 30th (or 40th)
birthday? The future is, of course, uncertain, but on the current evi‐
dence, it seems entirely possible.

10 | Chapter 1: History and Retrospective

CHAPTER 2

The Java Language

In this chapter, I’ll discuss the Java language, its evolution, and its
status after 20 years in the field. As you’ll see, the language has with‐
stood the test of time pretty well.

Primary Java Language Design Goals
Java has a number of design goals that have formed part of the plat‐
form since the earliest days.

Backwards Compatibility
The Java platform has always been very concerned with backwards
compatibility. This means that code which was written (or even
compiled) for an earlier version of the platform must continue to
keep working with later releases of the platform.

This principle allows development groups to have a high degree of
confidence that an upgrade of their JDK or JRE will not break cur‐
rently working applications. The platform has been very successful
in achieving this and code written for Java 1.0 will still compile 20
years later on a Java 8 installation without modification (in fact,
compatibility is even stronger than that, as you’ll see in the next
chapter).

Backwards compatibility is a great strength of the Java language and
platform, but in order to achieve it some necessary constraints are
required. You’ll meet a good example of this presently, and see in

11

detail how it impacted the evolution of the most recent version, Java
SE 8.

Easy to Learn and Read
Java’s approach to code is that it should be easy to read, in accord‐
ance with the well-known principle that code is read more often
than it is written.

Java feels very familiar to many different programmers because we
preferred tried-and-tested things.

—James Gosling

By preferring familiar things, the Java language aims to be easy to
learn and to teach. It should be no surprise that the language is one
of the mostly widely used teaching languages in universities.

The Java language also promotes the old adage of “pity the poor
maintanence programmer.” If code is read more often than it is writ‐
ten (and it is), then comprehension is key when reading source
code. This is especially true when reading code due to an outage or a
bug.

Java serves this goal by providing a lot of information, especially
about the type of data or objects, in the source. Some users find this
information to be overly verbose or repetitive, but it can be very
helpful, especially to newcomers, or when debugging.

Modern development environments (IDEs) also alleviate the need
for a lot of boilerplate, by auto-generating code where possible. Still,
critics argue that it should be unnecessary for tools to work around
problems like this. Whether fully justified or not, Java’s wordiness
has become a part of the folklore surrounding the language, to the
extent that developers who come to Java from other languages fre‐
quently express surprise that the verbosity was not as bad as it had
been portrayed.

Simple Type System
Java differentiates between two types of values. These are object ref‐
erences, and the eight primitive types (boolean, byte, short, char, int,
long, float, and double), which are not objects but merely immutable
data items.

12 | Chapter 2: The Java Language

This split is relatively simple, with the type system for objects
being single-rooted (everything ultimately inherits from
java.lang.Object) and single-inherited (every class has only one
parent class).

The split between references and primitives in Java’s type system
represents something of a compromise and an accident of history.

The distinction between objects and primitives made a certain
amount of sense in the late 1990s when Java was developed, as per‐
formance of basic numerical operations was an important design
goal. However, as the industry developed in the early 21st century,
languages like Ruby and Scala proved the value of “everything is an
object.” Compiler technology developed to allow specialization of
objects to primitives where possible, providing the convenience of
object-oriented programming with the performance of primitives.

Unfortunately, this was largely too late for Java, as backwards com‐
patibility of the language and type system, and the sheer volume of
existing Java code made moving to “everything is an object” simply
impractical. Java instead implemented a partial solution—the auto‐
matic “boxing and unboxing” of primitive values to objects belong‐
ing to a specific partner class of each primitive type. This was rea‐
sonably successful, but came at the cost of additional complexity
and also exposed previously rather obscure debates about object
identity, and forced many more programmers to think about them.

In Java’s reference type system, the approach to object-oriented pro‐
gramming started out reasonably simple. All classes have but a
single parent class, and all classes ultimately inherit from
java.lang.Object. As this form of inheritance is rather inflexible,
Java 1.0 also introduced a separate concept, the interface, which pro‐
vides a specification for functionality that a class may advertise that
it offers.

If a class wants to declare that it offers functionality compatible with
an interface, it does so via the class Foo implements

Functionality construct. In Java 1.0 until Java 7, the class was then
required to provide implementation code for every method declared
in the interface. Interface files were not allowed to provide any
method bodies—merely signatures and names of methods that
formed part of the collection of functionality that must be imple‐
mented to conform to the interface.

Primary Java Language Design Goals | 13

This model of types was significantly extended in several different
directions in Java 5. Firstly, the notion of the typesafe constant, or
enumeration was introduced via the enum keyword. This enabled
developers to indicate that a particular type only had a finite and
known number of possible, and constant, values. This replaced the
C/C++ convention of using integer constants via the typedef mech‐
anism.

Java’s enum constants are stronger than predecessors because they
are true types that inherit from Object. This facility relies upon
additional language machinery to ensure that only the specified
instances can ever exist.

Enums were a very useful addition to the Java type system, and rep‐
resented a significant upgrade to previous approaches. However, it is
important to note that compared to Scala and other languages with
more advanced type systems, Java only allows the representation of
disjoint alternatives as instances, rather than as types.

The second addition to the type system introduced in Java 5 was a
metadata facility. Java developers had previously used “out of band”
information, such as naming conventions (JUnit) or additional
“marker” interfaces (that contained no methods). Java 5 introduced
annotations, as a way of exhibiting additional metadata which, while
relevant, was essentially independent of the functionality of the type.
This is sometimes referred to as “orthogonal” type information.

Annotations proved to be a fundamentally different
and new part of Java’s type system.

Annotations are fundamentally more flexible than interfaces
(although the mechanism makes use of them). Instead, classes,
methods, and even packages can be annotated with additional infor‐
mation. For example, if a method is intended to be the end point for
a web services (REST) call, then appropriate information and sup‐
port can be provided automatically by the web container hosting the
service.

14 | Chapter 2: The Java Language

Language and VM Initially Influenced Each
Other
In the earliest days of the platform, the designs of the Java language
and the JVM each exerted a certain degree of influence on the other.
This can be seen, for example, by the typing of Java bytecodes.

The Java language has separate primitive and reference types (which
point at objects contained in Java’s heap). This means that a pro‐
grammer’s code should always know the type of any expression.
This manifests itself in the JVM—specifically in the principle that
the interpretation of any given bit pattern differs, depending on
whether the pattern has the type of an int, a float, or a heap
address.

Accordingly, JVM bytecode is typed and the types are essentially
those of the Java language. The result is that most JVM bytecodes
fall into “families” that have several individual opcodes that deal
with the specific circumstances that are encountered in normal cod‐
ing.

For example, the return family of bytecodes contains ireturn for a
method that returns an int, dreturn for a method that returns a
double, and areturn for a method that returns a reference (think:
“address”).

In recent years, the Java language has moved from being deeply con‐
nected with the workings of the JVM, to being “first among equals”
—merely the first high-level language that ran on the JVM.

The most obvious sign of Java resigning its privileged place in the
firmament of JVM languages came with Java 7, when the
invokedynamic bytecode was added to the standard. At that time,
the reference implementation Java language compiler, Oracle’s
javac, would not under any circumstances emit an invokedynamic
opcode. Here was an opcode that had been added purely for the
benefit of non-Java languages, with no reference to Java whatsoever.

Libraries
Not everything in language design is the language core. Many fea‐
tures can be implemented in a variety of ways, and language change
is expensive in terms of resources. Therefore, wherever possible,

Language and VM Initially Influenced Each Other | 15

Java has a principle that new features should be implemented as
libraries.

Java itself, as a language, is pretty simple, as are most languages.
The real action is in the libraries, and we tried hard to have a fairly
large class library straight out of the box.

—James Gosling

One place in which this principle manifested itself was in the area of
arrays and collections. All programming languages need to manipu‐
late data en masse, and all languages provide an assortment of fun‐
damental data structures for the programmer to use as part of the
basic installation. Java is no exception.

Arrays and Collections
Java 1.0 had two different types of data structures that shipped with
the platform—arrays, which were provided within the syntax of the
language, and some classes (such as Hashtable and Vector) that
resided within the java.util package of the Java standard library.

This represented a compromise. Programmers expected a familiar
C-like syntax for handling arrays, especially arrays of primitive
types. On the other hand, as heap-managed data, arrays were defi‐
nitely objects in the Java worldview. This resulted in a halfway
house, where the object nature of arrays was somewhat sidelined,
and set up a rather obvious disconnect between seemingly simple
arrays and the object-oriented view contained in the classes of
java.util.

With the arrival of Java 1.2 (or Java 2 as the marketing went), Java
received a major upgrade in the form of the Java Collections libra‐
ries. This was a full set of data structures covering the most common
cases, such as lists, sets, and maps. However, with the increased
emphasis on the object-oriented approach, the split between arrays
and object-based data structures became even more obvious.

One of the biggest changes to the language was Java Generics, which
appeared as a part of Java 5. Generics enable the programmer to rep‐
resent a composite type, usually thought of as comprising a “con‐
tainer” and “payload” type. Before Java 5, the programmer could
only discuss a type as Box without any reference to what the box
contained. Using Java Generics, however, the type could be further
qualified to Box<Egg> or Box<Wine> or Box<Shoe>. This provides for

16 | Chapter 2: The Java Language

improved safety when programming, as the source compiler can
now detect mistaken attempts to put wine into objects that are really
shoeboxes or eggboxes.

Recent Developments
The last few releases of Java have seen some steps in the direction of
making Java require less boilerplate code.

Reducing Verbosity—Java 7
First, in Java 7, the notion of type inference was introduced. Previ‐
ously, javac would require the poor programmer to write out type
information in excruciating detail:

Map<String, String> enToFrDict = new HashMap<String, String>();

The arrival of Java 7 allowed programmers to make some modest
savings of keystrokes:

Map<String, String> enToFrDict = new HashMap<>();

with the type information of the generics being ommitted on the
right-hand side.

Another place where the type information was used to condense
code was in the feature called multicatch. Java contains a concept of
an exception, which is used to indicate that an unexpected condition
has been encountered. Operations such as file handling may result
in a number of different possible error conditions (file not found,
permission denied, etc.) occuring. Java therefore allows multiple
recovery strategies (called “catch blocks”) to be specified, with the
strategy executed chosen based on the type of problem experienced.

In Java 6 and earlier, each catch block must be specified separately,
possibly leading to a lot of repeated code:

try {

 // Try to read a class file from disc, classload it to
 // get a class object and then access a method reflexively.
 //
 // This process can fail in a number of different ways...

} catch (IOException iox) {

 // ...

Recent Developments | 17

} catch (InstantiationException instx) {

 // ...

} catch (IllegalAccessException ilax) {

 // ...

} catch (NoSuchMethodException nsmx) {

 // ...

} catch (SecurityException secx) {

 // ...

} catch (IllegalArgumentException ilargx) {

 // ...

} catch (InvocationTargetException invtx) {

 // ...

}

In Java 7 however, the language syntax was extended to allow a catch
block to handle several different exceptions, like this:

try {

 // Same loading process

} catch (IOException | InstantiationException
| IllegalAccessException | NoSuchMethodException
| SecurityException | IllegalArgumentException
| InvocationTargetException ex) {

 // But now we can handle all failures with a
 // single recovery block

}

Towards the Future—Java 8
One of the most eagerly awaited features of Java 8 was the addition
of language support for lambda expressions (aka function literals or
closures). Previously, Java developers had been forced to use anony‐
mous classes as a verbose substitute. However, simply adding the
language syntax was not the whole of the story.

18 | Chapter 2: The Java Language

The overall aim was not for lambda expressions per se, but rather to
evolve Java’s collections to allow support for “more functional” oper‐
ations, such as map and filter. This was problematic, due to Java’s
requirement for backwards compatibility.

One of Java’s language constraints that arises from compatibility is
that Java interfaces may not have new methods added to them in a
new release of the interface. This is because if methods were to be
added, existing implementations of the interface would not have
those methods. That would mean older implementations would not
be seen as a valid implementation of the new version of the inter‐
face, and so binary backwards compatibility would be broken.

This could not be allowed to happen, and so a different path was
chosen—allowing an interface to specify a default implementation
for new methods. With this change, new methods can be added to
interfaces—provided that they are default methods. Older imple‐
mentations of interfaces, which do not have an implementation of
the new method, simply use the default provided by the interface
definition.

This change had the side effect of changing Java’s model of object-
oriented programming. Before Java 8, the model was strictly single-
inherited (for implementation) with interfaces providing an addi‐
tional way for types to express their compatibility with a capability.
This was sometimes criticized for forcing types to repeat implemen‐
tation code unecessarily.

With Java 8, however, Java’s model of objects changes, to allow mul‐
tiple inheritance, but only of implementation. This is not the full
multiple inheritance of state as implemented by C++ or Scala.
Instead, it can be thought of as essentially being a form of “stateless
trait” or a way to implement the mixin pattern.

Java as a language has evolved fairly gradually, but the experiences of
adding lambdas (sometimes called Project Lambda after the work‐
ing group that produced it) have shown us that it is entirely possible
for major changes to be implemented without giving up backwards
compatibility or the “feel” of Java.

Java’s Greatest Hits
Like most languages, Java has good parts and bad parts. Some of
Java’s successes are particularly notable and have been responsible

Java’s Greatest Hits | 19

for making Java one of the pre-eminent programming languages of
the world.

Threading
Java was the first mainstream language to support threading from
day one. This opened the door to concurrent programming becom‐
ing a part of the mainstream of developers working lives.

The launch of Java coincided well with the growth of multicore sys‐
tems. Threaded programs can scale out to multiple cores in a way
impossible for single-threaded code.

Threading proved to be an essential tool when developing larger and
more sophisticated systems, from desktop to server environments.
Java’s ground-up support for it contrasts favorably with languages in
which threading was an afterthought. For example, Perl’s support for
threading never really became stable, and in the Ruby world, most
groups who want to use threading prefer the version of Ruby that
runs on top of the JVM and uses the Java threading support (JRuby).

Language Stability
The core Java language has evolved only modestly since the first ver‐
sion. There are only a few keywords that have been added since the
earliest versions, and the language has remained quite recognizable
over time, with only the additions of generics (Java 5) and lambdas
(Java 8) really changing the feel of the language.

This has been one of the features that has made Java so popular with
enterprises and larger shops. The stability has made it possible to
build engineering teams with a clear roadmap of the technology, and
further speaks to the aspiration of Java to be a technology in which
ordinary developers can produce business functionality.

Java’s Type System
Java’s type system can be characterized as:

• Nominal—The name of a Java type is of paramount importance.
Java does not permit structural types in the way some other lan‐
guages do.

• Static—All Java variables have types which are known at com‐
pile time.

20 | Chapter 2: The Java Language

• Object/Imperative—Java code is object-oriented, and all code
must live inside methods, which must live inside classes. How‐
ever, Java’s primitive types prevent adoption of the “everything is
an object” worldview.

• Slightly functional—Java provides support for some of the more
common functional idioms, but more as a convenience to pro‐
grammers than anything else.

• Modestly type-inferred—Java is optimized for readability (even
by novice progammers) and prefers to be explicit, even at the
cost of repetition of information.

• Strongly backwards compatible—Java is primarily a business-
focused language, and backwards compatibility and protection
of existing codebases is a very high priority.

• Type erased—Java permits parameterized types, but this infor‐
mation is not available at runtime.

Java’s type system has evolved (albeit slowly and cautiously) over the
years and, with the addition of lambda expressions, is now on a par
with the type systems of other mainstream programming languages.
Lambdas, along with default methods, represent the greatest trans‐
formation since the advent of Java 5, and the introduction of gener‐
ics, annotations, and related innovations.

The Java Hall of Heroic Failure
Java has been has been a major part of the computing landscape for
most of the last 20 years. In that time, along with major successes,
there have been a number of experiments in language design that
have not gone as well as had been hoped. Long-lived languages
inevitably have warts and annoyances upon them. For example, in
Java’s case:

Java Beans
This is the idea that every field on every Java object should obey a
public getter and setter convention, in order to promote interopera‐
bility and a nebulous and poorly-conveyed idea of standardization.
They were originally felt to be the right convention for handling
most Java objects.

The Java Hall of Heroic Failure | 21

The term “Java Beans” predates Enterprise Java, and
they should not be confused with Enterprise Java
Beans (EJBs).

In practice, however, the idea that all properties should be mutable
turned out to be toxic. Instead, it became clear that concurrect pro‐
gramming contained a can of worms that made the Java Beans
approach unsound for most usages.

Finalization
Probably the worst feature in Java. The original intention was to
provide a method for automatically closing resources when they
were no longer needed (in a similar spirit to the C++ RAII pattern).
However, the mechanism relies upon Java’s garbage collection,
which is non-deterministic. Thus, using finalization to reclaim
resources is fundamentally unsafe (as the developer does not know
how long it will be until a resource is freed). Therefore it is impossi‐
ble to use finalization as a way of avoiding resource exhaustion, and
the feature cannot be fixed. In other words, never use finalization.

Instead, Java 7 introduced “try-with-resources” as a way of automat‐
ically controlling and closing resources that actually satisfies the
needs of Java programmers.

Java EE Over-Configuration
Early versions of the Java EE standards required the programmer to
write an almost overwhelming amount of configuration, mostly in
XML. This almost completely obscured the goal of the platform,
which was to provide a simple, business-focused environment in
which infrastructure concerns could be provided by the container.

Over time, successive versions of Java EE (as it is now known)
reduced the configuration burden, to the extent that Java EE7 is a
completely modern and pleasant environment for serverside web
development. However, the mention of earlier versions of Java’s
Enterprise Java Beans still provokes horror from many older devel‐
opers.

22 | Chapter 2: The Java Language

Threading
Java was the first mainstream language to support threading from
day one. As a result, it was the proving ground where many of the
practical problems involved in writing safe, robust concurrent code
were discovered.

Thread is a very low-level abstraction, and programmers were
expected to manually manage concurrency in the earliest versions of
Java. This improved with the arrival of java.util.concurrent in
Java 5, and its subsequent development. However, by that time,
many programmers had felt firsthand the complexities and frustra‐
tions of programming with Java’s threads.

Other languages have learned from the pain felt by the early pio‐
neers of concurrent programming in Java. For example, Scala and
Clojure have both built more sophisticated and safer constructs on
top of the underpinnings provided by Java and the JVM. Elsewhere,
the actor model and Go’s goroutines have provided an alternative
view of concurrent programming.

Conclusion
Software engineering is a profession that is still, despite 50 years of
practice, a very immature discipline. Each new language that wants
to be successful should strive to push the envelope of what is known
about software and the process of its creation. Some pushes will suc‐
ceed and lead to valuable new insights into how programmers
should think about the complex domains that exist within software.

Don’t underestimate the value of failed experiments, though. Any
adventurous language with a significant userbase over an extended
period should have plenty of warts and battle scars to its name, and
Java is no exception.

Conclusion | 23

CHAPTER 3

The Java Virtual Machine and
Platform

The Java language drew upon many years of experience with earlier
programming environments, notably C and C++. This was quite
deliberate, as James Gosling wanted a familiar environment for pro‐
grammers to work within. It isn’t too much of an exaggeration to
describe the Java language as “C++ simplified for ordinary develop‐
ers.”

However, Java code cannot execute without a Java Virtual Machine
(JVM). This scheme provides a suitable runtime environment in
which Java programs can execute. Put another way, Java programs
are unable to run unless there is a JVM available on the appropriate
hardware and OS we want to execute on.

This may seem like a chicken-and-egg problem at first sight, but the
JVM has been ported to run on a wide variety of environments.
Anything from a TV set-top box to a huge mainframe probably has
a JVM available for it.

In environments like Unix and Windows, Java programs are typi‐
cally started by from the command line, e.g.:

java <arguments> <program name>

This command starts up the JVM as an operating system process. In
turn, this process provides the Java runtime environment, and then
finally executes our Java program inside the freshly started (and
empty) virtual machine.

25

The Design of the JVM
The design of the JVM also drew on the experiences of its designers
with languages such as C and C++ (but also more dynamic lan‐
guages such as Lisp and Smalltalk). In addition, it took some bold
steps to advance the state of the computing industry. These steps
included the use of stack-based virtual machine technology to assist
porting and to enable a strong security “pinch point.”

When the JVM executes a program, it is not supplied as language
source code. Instead, the source must have been converted (or com‐
piled) into a form known as Java bytecode. The JVM expects all pro‐
grams to be supplied in a format called class files (which always have
a .class extension). It is these class files, rather than the original
source that are executed when a Java program runs.

The JVM Interpreter and Bytecode
The JVM specification describes how an interpreter for the bytecode
must operate. Put simply, it steps through a program one bytecode
instruction at a time. However, as Java and other JVM languages
natively support threading, both the JVM and the user program are
capable of spawning additional threads of execution. As a result, a
user program may have many different functions running at once.

The Java language and JVM bytecode have developed somewhat
separately, and there is no requirement for the two to exactly repli‐
cate each other. One obvious example of this is what happens to
Java’s loop keywords (for, while, etc.). They are compiled away by
javac, and are replaced with bytecode branch instructions. In fact,
in JVM bytecode, the flow control instructions consist of if state‐
ments, jumps, and method invocation.

From the bytecode perspective this is also a safety feature, as it parti‐
tions transfer of control into local operations (essentially just if and
jmp), which can be range-checked, and non-local operations, which
are forced to go through the method dispatch mechanism. Nowhere
in JVM bytecode is C’s unsafe “transfer control to arbitrary memory
address” construct supported.

Bytecode also allows a number of perfectly legal constructions that
no Java source compiler would ever emit. However, if we write byte‐

26 | Chapter 3: The Java Virtual Machine and Platform

code directly we can access these capabilities and create classes with
some unusual properties.

For example, the Java language spec requires that every class has at
least one constructor, and javac will insert a simple constructor if it
has been omitted. However, in raw bytecode it is completely possible
to write classes that have no constructor. Such classes will be com‐
pletely usable from Java, provided only static access to fields and
methods is used.

The separation was not required by either language or the JVM, but
the co-evolution of both aspects means that there are areas where
the nature of the JVM “leaks through” into the Java language, and
vice versa.

Influence of Language and VM on Each Other
For example, consider the insistence of the Java language that void
is not a type, but merely represents the absence of a return type.
This outlook can seem strange to the Java beginner, but it really
stems from the design of the JVM.

The Java Virtual Machine is a stack machine, in the sense that each
method has an evaluation stack in which intermediate results are
worked out before a final result is handed back to caller. To see this
in action, consider this bit of Java code:

class GetSet {
 private int one;

 public int getOne() {
 return one;
 }

 public void setOne(int one) {
 this.one = one;
 }
}

This Java code, when compiled with javac, produces this bytecode
for the getOne() method:

 public int getOne();
 Code:
 0: aload_0
 1: getfield #2 // Field one:I
 4: ireturn

The Design of the JVM | 27

When executed, the aload_0 bytecode places this on the top of the
execution stack. Next, the getfield opcode consumes the value of
the top of the stack and replaces it with the object field that corre‐
sponds to position 2 in the table of constants (the class’s Constant
Pool) of this class.

Figure 3-1. The JVM stack for getOne()

Finally, the method explicitly returns to caller, indicating (by the ini‐
tial letter of ireturn) that there is an int at the top of the stack that
should be collected as the return value. This explicitness of return
type allows for more static checking of JVM bytecode during class‐
loading, and helps to improve the Java security model.

Now consider the corresponding setter method. This compiles to
bytecode as shown:

 public void setOne(int);
 Code:

28 | Chapter 3: The Java Virtual Machine and Platform

 0: aload_0
 1: iload_1
 2: putfield #2 // Field one:I
 5: return

Here, of course, there is nothing to return, as the putfield opcode
consumes not only this but also the value that had been pushed
onto the stack above it (the value that the object field was to be set
to). Accordingly, the return opcode has no prefix—as the evaluation
stack of setOne() is entirely empty.

Figure 3-2. The JVM stack for setOne()

The Design of the JVM | 29

So, the Java keyword void indicates that the “method returns no
value,” and it’s not a type, because it corresponds to the JVM condi‐
tion of “method returns with the evaluation stack in an empty state.”

The low-level JVM design decision here mirrors the condition of the
method execution stack in the signature of the high-level language.
Java makes this decision in preference to alternatives, such as creat‐
ing a specific type for the purpose of indicating this condition (as
Scala does with its Unit type). This design decision has some far-
reaching consequences, especially when more advanced Java lan‐
guage constructs (such as reflection and generics) are introduced;
that’s why language design is a complex undertaking. To define a
language feature in any given release is to open the door to uninten‐
ded consequences in the future, when additional language features
are seen as desirable.

Due to Java’s stringent backwards compatibility requirements, these
unknown interactions between language features (present and
future) are a force that has driven the language to be very conserva‐
tive. If the language has to maintain perfect consistency when
adopting new features, then today’s must-have new feature may be
the exact same thing that constrains the language on the next
release.

For example, Java 7 introduced the invokedynamic bytecode. This
was a big step in advancing the JVM and making it friendlier to
non-Java JVM languages. It was introduced into the platform very
cautiously. The version of javac that ships with Java 7 will not,
under any circumstances, emit an invokedynamic instruction. For
Java 8, the feature is used to implement features related to lambda
expressions (such as default methods), but there is still no direct lan‐
guage support for manipulating dynamic call sites.

Self-Management
There is another major aspect of the JVM’s design that’s not always
recognized by beginners: the use of runtime information to enable
the JVM to self-manage, sometimes called profile guided optimiza‐
tion (PGO).

Software research had revealed that the runtime behavior of pro‐
grams has a large number of potentially useful patterns that can’t be

30 | Chapter 3: The Java Virtual Machine and Platform

predicted ahead of time. The JVM was the first mainstream plat‐
form to try to utilize this research.

Time and again when developers chose Java, they reaped the bene‐
fits of the implementation continuing to improve with the hard‐
ware and OS, making their existing programs better without their
having to lift a finger.

—Georges Saab

The JVM collects runtime information to make better decisions
about how to execute code. Through this monitoring, the JVM can
optimize a program and achieve better performance. In fact,
modern JVMs can frequently provide performance beyond the
capability of platforms that don’t have PGO.

Just-In-Time Compilation
One example of PGO is based on the observation that some parts of
a Java program will be called far more often than others (and some
methods will be very rarely, if ever called). The Java platform takes
advantage of this fact with a technology called just-in-time (JIT)
compilation.

In the HotSpot JVM, a profiling subsystem identifies which methods
of the program are called most frequently. These methods are eligi‐
ble for compilation into machine code, which allows the important
parts of the code to achieve far higher performance than was possi‐
ble from interpreted code. In Java’s 20 year history, the optimizations
used by the JVM have advanced to the point where they often sur‐
passes the performance of compiled C and C++ code.

In order to assist the JIT compiler, the javac source code compiler
performs only very limited optimizations, and instead produces
“dumb bytecode.” This provides an easy-to-understand representa‐
tion of the program.

For example, javac does not recognize and eliminate tail recursion.
So this code:

 public static void main(String[] args) {
 int i = inc(0, 1_000_000_000);
 System.out.println(i);
 }

 private static int inc(int i, int iter) {
 if (iter > 0)
 return inc(i+1, iter-1);

Self-Management | 31

 else
 return i;
 }

will cause a stack overflow if run. The equivalent Scala code, how‐
ever, would run fine, because scalac does a great deal of optimiza‐
tion at compile time, and will optimize away the tail recursion.

The general philosophy is that the JIT compiler is the part of the sys‐
tem best able to cope with optimizing code. So javac allows the JIT
compiler free reign to apply complex optimizations (although this
does not include tail recursion elimination).

Garbage Collection
The JVM allows for automatic management of memory, via garbage
collection (GC). This typically runs as a separate, out-of-band task
within the JVM, which user code neither knows nor cares about.

Java’s approach to GC, at least in the Hotspot JVM, is unique. Hot‐
spot regards collectors as pluggable systems, and out of the box the
JVM has several different algorithms available. Each of these is
highly configurable, and each has the ability to adapt operation to
the allocation behavior and other runtime conditions of the running
Java process.

The self-management features of the JVM have contributed to the
emergence of highly performant execution as a defining feature of
the overall Java environment. Gone are the days when Java was the
punchline of jokes about poor performance. However, the JVM
proved to have a reach and a utility outside of just Java code.

Beyond Java
The JVM turns out to be quite a good general purpose virtual
machine. The mixture of performant primitive operations and
object orientation is a good fit for a wide range of languages.

There are versions of languages such as Ruby, Python, Lisp, and
Javascript that run on top of the JVM. It’s relatively easy to imple‐
ment a two-level interpreter, with the language interpreter written in
Java. Not only that, but far more sophisticated options are possible.
For example, JRuby starts off using an interpreted mode for Ruby,
but then will use JIT compilation to convert important methods to

32 | Chapter 3: The Java Virtual Machine and Platform

JVM bytecode. Eventually, the JVM’s JIT compiler will kick in, and
the Ruby method will be compiled to native code.

One of the main advantages of using the JVM as a language runtime
is that it’s easy to interoperate with Java bytecode. This means that
each individual language need not reimplement full library support,
but can start off with a language-specific wrapper over an existing
library. This allows new JVM languages to piggy-back from the
established Java ecosystem.

Languages that fundamentally aim to be “a better Java,” such as Scala
and Kotlin, require good interoperability with Java if they are to gain
traction and credibility. However, what is perhaps more surprising is
how good the interoperability story is for languages that are not
very close to Java in linguistic terms.

For example, Java 8 shipped the Nashorn implementation of Java‐
script. This was the first implementation of Javascript to hit 100%
conformance on the ECMA standard testing kit. Despite the histori‐
cal accident that led to the similarity in names, Java and Javascript
are radically different languages. The fact that Javascript can be
implemented on top of the JVM is a huge win. This is further helped
by the tight integration that is available between Javascript and Java.

In Nashorn, every Java type is exposed via an extremely simple and
natural mechanism. This means that there is seamless access to all of
Java from the scripting environment. Not only that, but every Java‐
script function value can be used as a Java lambda expression, and
vice versa.

A very similar picture also emerges in the Clojure language. Clojure
is a JVM language in the Lisp family. Language pedants may argue
about whether Clojure is an actual Lisp, a Lisp dialect, or merely a
language in the same overall diaspora. However, the Lisp nature of
Clojure is apparent at first sight. It’s not necessarily a language that
would seem easy to integrate with Java at first sight, since the type
systems and the feel of the languages are totally different.

In both the Nashorn and the Clojure case, the language implemen‐
tors have taken time and expended effort to ensure that Java libra‐
ries are easily accessible, and that they feel idiomatic in the language
that they are being transplanted into.

Since the JVM is a first-class target even for languages as different
from Java as Lisp and Javascript are, it stands to reason that the JVM

Beyond Java | 33

would be a good general home for programming languages. There is
also a historical trend—with the release of Java 7, the specifications
explicitly broke the references to the Java language in the JVM spec.
Instead, Java is now “first among equals” in terms of languages run‐
ning on the JVM—a privileged position, but not the only game in
town.

We can see this in the way that invokedynamic was handled. It was
introduced in Java 7 in order to help non-Java languages (notably
JRuby, although it would have been almost impossible to build Nas‐
horn without something like invokedynamic). At the time of writ‐
ing, there are no plans to give the Java language a way to directly
access invokedynamic call sites. Instead, it’s seen more as a feature
for library builders and non-Java languages.

Conclusion
The JVM has been an enormous success. Some of the design lessons
learned during its evolution have been widely adopted by other lan‐
guages. Features that were once novel are now just part of the furni‐
ture and the standard toolkit for building virtual machines. It cer‐
tainly isn’t perfect, but it represents centuries of engineering effort,
and the end result is a general purpose virtual machine that is argua‐
bly the best available target for all sorts of programming languages.

34 | Chapter 3: The Java Virtual Machine and Platform

CHAPTER 4

Java Developers and the
Ecosystem

Don’t listen to Hollywood. That’s good advice under most circum‐
stances, but when thinking about technology it’s particularly true.
The movies would have you believing that tech is all about individ‐
ual intellectual endeavor.

In fact, the practice of technology has always been a social activity.
Even before mass adoption of free and open-source software, the
sharing of code and ideas was already a central feature of technology
culture.

So it comes as no surprise that any sufficiently advanced technology
tends to develop an ecosystem and community alongside it. Once
again, Java is both unexceptional, in that a developer ecosystem
grew up around it, and exceptional, because that ecosystem evolved
into something quite unlike any other language and platform com‐
munity.

Overview of the Java Ecosystem
Java’s reach encompasses, by most estimates, at least 10 million pro‐
grammers. This gives it one of the largest and most important devel‐
oper communities of all. Only the Web/Javascript communities (and
arguably C/C++) come near to the size of the Java community.

For serious, safe application development, Java is pretty close to
being the only game in town. It’s a robust and stable platform, but

35

despite its size and reputation for solidity, Java does, at times, suffer
from an image problem. Being a competent, practical language does
not necessarily endear the language to people who are used to work‐
ing with it all day, every day.

Another issue is that Sun’s early marketing material tended to be
overly optimistic in promising benefits for the developer in some
areas. The Java developers who’ve been around since the early days
are sometimes a little cynical about the platform, and may have bat‐
tle scars from working with early versions of the platform.

It’s also worth remembering that Java is unashamedly pitched at
business and enterprise development. This isn’t necessarily the same
cohort of freestyling open-source enthusiasts that are sometimes
found in other languages. At the risk of some stereotyping, Java
developers are more likely to be the people who code during the day
and go home to their families, rather than those who rush off to a
hackday in the evening.

This can mean that commentators overlook the open-source parts
of the Java ecosystem. On the other hand, even if Java developers are
less likely to get involved in after-hours development, the sheer size
of the Java community means that there are still a large number of
developers engaged in open-source work in Java.

The Java Community Process
Developer uptake was good in the early years after Java’s release, but
Sun had bigger ambitions. They wanted Java to become a wide‐
spread standard set of technologies, but didn’t have the resources to
develop and support all of the integrations and components that
would be required by such a broad push. As a result, Sun needed
adoption of Java by larger corporations (such as IBM, Fujitsu, and
HP).

Many of these companies were concerned by the rise of Microsoft,
and Java technology potentially offered an opportunity to hedge that
risk. Sun didn’t want to cede control of Java, as it saw huge potential
in the technology, and so created an industry body that resembled a
standards body. The idea was that standardization would prevent
the migration (followed by lock-in) of Sun’s customers to Java tech‐
nology stacks produced by other vendors.

36 | Chapter 4: Java Developers and the Ecosystem

Founded in 1998, the JCP is a way of formalising and standardising
Java technologies. The JCP uses Java Specification Requests (JSRs),
which are official working groups, led by a Specification Lead, that
produce a specification document, testing kit, and a reference imple‐
mentation.

The JCP is fairly unique in that it includes a patent and intellectual
property regime that protects end users and participants. To partici‐
pate in the JCP, corporations are required to provide a license of
their patents if they are to form part of the standards.

A JSR has a defined lifecycle, whereby the technology standard is
worked upon and guided through stages of maturity until it has
reached the point where it is ready for widespread developer use.
This should ensure that only technologies that are widely adopted
enough, and have achieved a degree of acceptance and stability are
targeted for standardization.

This has resulted in a process where several different classes of JSR
exist. For example, each new version of Java SE, EE, and ME has an
“umbrella” JSR that covers the content of the platform release. The
most recent release of Java SE was version 8, and the corresponding
umbrella JSR was JSR 337. However, these umbrellas usually just
bring together JSRs under which major new language features have
been developed. JSR 337 therefore included JSR 308 (type annota‐
tions), JSR 310 (new date and time libraries), and JSR 335 (lambda
expressions).

In addition to the umbrella JSRs, and the JSRs dealing with major
new features, there are also JSRs corresponding to major libraries,
such as XML parsing (JSR 5) and servlets (various, latest JSR 369).
There are also more niche JSRs, that cater to a particular style of
programming, such as the real-time specification for Java (JSR 1).
Finally, the processes of the JCP itself are specified as JSRs, so occa‐
sionally JSRs are filed to modify or update the JSR workflow or
practices of the JCP.

The Independent Java Ecosystem
Java has always had an ecosystem of enthusiasts outside of Sun (and
later Oracle). In the early years, developers wanted to tinker and
explore the limitations of the platform, as is so often the case with
open-source hackers. By bumping up the edge of the possible, devel‐

The Independent Java Ecosystem | 37

opers exposed missing features that could be added into future
releases, making Java even stronger.

In time, a number of independent projects evolved, and even after
the open-sourcing of the platform, many developers chose to con‐
tinue working outside of the official projects, such as OpenJDK.

Eclipse
IBM had been working to produce an IDE for Java, based on their
VisualAge product. This led to the creation of a Java-based IDE for
Java, which became known as Eclipse. In late 2001, IBM released
this as open-source code, and brought together a consortium of
companies to steward the technology. This led to the creation of an
independent foundation, the Eclipse Foundation, in 2004.

Although the IDE product remains the principal project for which
Eclipse is known, the Foundation actually hosts over 200 other soft‐
ware projects, covering such areas as rich client development and
business intelligence and reporting.

In recent years the Eclipse Foundation has continued to grow and
diversify, including to technologies unrelated to Java. It also now
hosts a major project related to the emerging software technology
known as the Internet of Things (IoT).

Apache
The Apache Foundation predates Java. In fact, its initial focus was
the Apache web server, httpd. Over the years, Apache expanded
outwards from the runaway success of the web server, and became a
broad, language-agnostic foundation. The projects hosted under the
banner of the Apache Foundation cover almost every aspect of tech‐
nology where open-source code could play a role.

Not only that, but the open-source license written by the Apache
Foundation was enthusiastically adopted by a large number of
projects that were not part of, or governed by the Apache Founda‐
tion. It’s therefore important to distinguish between “an Apache
project,” one that has been officially onboarded as part of the
Apache Foundation, and simply “an Apache-licensed project,” which
just uses the Apache license.

As Java expanded into many areas of enterprise development and
beyond, it was inevitable that some Apache projects would end up

38 | Chapter 4: Java Developers and the Ecosystem

being written in Java. However, at least at first, this led to the strange
situation of numerous open-source libraries being written for a non-
open-source platform. Even after OpenJDK became a reality, the
Apache license and the GPL license used by OpenJDK remained
irreconcilably incompatible.

The response of the Apache Foundation to these licensing concerns
was to begin a complete compatible rewrite of the Java class libraries
—Harmony. Despite being a qualified technical success, Harmony
was plagued with legal problems, as discussed in Chapter 1.

This culminated in Oracle’s refusal to grant a TCK licence for Har‐
mony. Apache resigned from the JCP Executive Committee in pro‐
test in December 2010, and mothballed Harmony a few months
later.

Today, the relationship between Apache and Oracle is at a near
standstill. Java library projects still thrive and proliferate, both as
Apache-licensed and Apache Foundation projects. However, there
has been no direct rapprochement between the two sides, and the
scars from the Harmony dispute are still painfully visible.

Spring
Sun had invested heavily in a bet on the rise of Java as an enterprise
language and platform. The scope of the vision was quite ambitious,
aiming to largely or completely free the ordinary developer of busi‐
ness applications of low-level concerns.

The first few versions of the Enterprise Java vision were plagued by
problems. The most fundamental of these was that the problem
space was simply not understood well enough at first. Separating
business logic concerns from infrastructure, and separating both
from configuration and deployment is a worthy goal. However, the
correct positioning of the dividing lines between these concerns is
somewhat more subtle than it seems at first glance.

As a result, while Java’s footprint in the enterprise continued to
grow, teams were looking for ways to simplify complexity and still
provide more powerful techniques to define, configure, and deploy
their applications.

Against this backdrop, alternatives to the official enterprise Java
stacks began to emerge. One of the best known and most powerful,

The Independent Java Ecosystem | 39

was the Spring framework. This was originally created by Rod John‐
son and first released as open-source software in 2003.

The initial idea behind the Spring framework was to provide a much
more lightweight way of configuring and executing applications
than was possible within the orthodoxy of “pure” enterprise Java. By
separating out the core concern of configuration, Spring frees the
container from this responsibility. The design of Spring allows the
application developer to chose a container that fits the needs of the
application (including not requiring a container at all).

Like any successful technology, as users became familiar with it, they
started to discover use cases that were not catered for, and missing
features. Over time, Spring became a larger collection of semi-
related interoperable technologies that provide a full-featured
framework of comparable capability to Java EE. Of course, catering
to a larger set of features and concerns has its price. Spring is now
no longer any smaller or less complex than the technology stack that
it was originally started in response to.

The Spring community has flourished as the technology has
matured, and there are now numerous Spring developers that usu‐
ally, or exclusively, take the Spring stack as their baseline for any
new Java development. Outside of this, Spring has permeated
throughout the Java ecosystem, and most working Java program‐
mers will have encountered some Spring technologies at some point
during their career.

The Java Community Now
Today’s Java community is the result of widespread developer adop‐
tion, corporate politics, global economic forces, and more than a
measure of blind luck. Software development is increasingly global‐
ized, but the simplicity and relatively small cognitive footprint of
Java have meant that the platform has travelled well and prospered
as the industry has expanded.

In this section, we’ll look at some of the more prominent features of
the global Java community.

JUGs
Java User Groups (JUGs) are informal groups of Java programmers
who have chosen to organize into a loose association in order to

40 | Chapter 4: Java Developers and the Ecosystem

share experience and knowledge, network, and enhance each other’s
professional development.

Oracle does not enforce any particular rules on JUGs. Instead, Ora‐
cle simply asks that when a new JUG forms, they register with Ora‐
cle’s community staff. The company maintains a list of groups, and
offers support and promotion to them.

JUGs are a great way to meet new people, hear about new technol‐
ogy, expand your skills, get involved in open-source, and even find
new career opportunities. Some of the largest and most influential
groups include SouJava (Brazil) and the London Java Community
(UK), but there are JUGs of all sizes all over the world.

One of the original maxims of free and open-source software is that
all it takes is for a single developer to sit down and decide to scratch
their own technical itch, and decide to share their work freely.

Developers who come from a more corporate background may not
have been exposed to this philosophy as much. So they may be sur‐
prised by the small amount of work that’s required to set up a JUG,
collect a few Java developers together, and start making a difference.

One of the ways in which JUGs have started trying to improve the
ecosystem is through the Adopt programs. These are JUG-led global
programs founded by the London Java Community, and are
designed to provide ways for ordinary Java developers to contribute
to the development of new Java standards (JSRs) and to the refer‐
ence implementation (OpenJDK). Even a single, isolated developer
is welcome to participate, and can make a useful contribution
(https://java.net/projects/adoptopenjdk).

Java Champions
The Java Champions program was started by Sun to recognize and
encourage Java professionals working outside of Sun. While there’s
no precise definition, the core values are that a Champion should be
a leader, technology luminary (both in technical stature and involve‐
ment with exciting tech), and be influential, independent, and credi‐
ble to other developers.

The Java Champions are an exclusive group of passionate Java tech‐
nology and community leaders who are community-nominated
and selected under a project sponsored by Oracle.

—Oracle

The Java Community Now | 41

https://java.net/projects/adoptopenjdk

The program contains only a few hundred expert developers world‐
wide, and they are a diverse group, both geographically and in every
other regard. They form an informal leadership group (along with
the JUG leaders) for Java as it is practised in industry.

The landscape of Java developers is complex, but remains healthy.
The vast majority of Java programmers leave their work behind
when they finish for the day, of course. Fortunately, the overall pool
of developers is so big, that the enthusiast, or person who wants to
enhance their career should find plenty of ways to engage.

42 | Chapter 4: Java Developers and the Ecosystem

CHAPTER 5

The Future of Java

Finally, let’s turn to the future of the language, platform, and devel‐
oper ecosystem. Increasingly, these have become interwoven, so it
makes sense to treat them as a whole as we look into our crystal ball.

Java 9
The next major release of the platform is Java 9, scheduled for Sep‐
tember 2016. As releases go, it’s expected to be a fairly major one, as
it contains a number of large features (although how their impact
will compare to the arrival of lambdas in Java 8 remains to be seen).

Modules
If lambda expressions were the “headline” feature for Java 8, in Java
9 it is anticipated to be modules. Up until now, the largest grouping
construct for Java code was a package, but the release of Java 9 will
see a new concept—the module. Modules are collections of code
that are larger than packages, and are no longer delivered as JAR
files (which are really just .zip files). Instead, modules have a new file
format that has been designed to be more efficient.

Modules also add a major new feature to the language, which is the
ability to enforce access control across modules. That is, modules
are able to fully specify their public API, and prevent access to pack‐
ages that are only for internal use.

The ability for modules to allow internals access only to trusted cli‐
ent code will have major repercussions for Java applications. This is

43

most apparent in the removal of access to a class called
sun.misc.Unsafe. This class is an internal class (as can be seen by
the fact that it lives in a sun package, rather than a java or javax
package) and should not be used directly by applications or libraries.

Unsafe contains functionality that enables low-level access to plat‐
form features that are normally inaccessible to ordinary Java code. It
also contains code to directly access processor features, compare-
and-swap hardware for example. These capabilities are not part of
the Java standard, yet are extremely useful. The JDK class libraries
make heavy use of Unsafe, especially in places such as the concur‐
rency classes.

However, as the name itself suggests, there are some very powerful
and potentially damaging methods contained within Unsafe, and it
has never been standardized. So, from Java 9 onwards, this class will
no longer be available to classes that do not form part of the JDK.

Unfortunately, these features are very widely used by many popular
Java frameworks, for performance or flexibility reasons. So even if
your Java application doesn’t directly call code from Unsafe, the
chances are that somewhere in your stack, you use a library that
does rely on Unsafe.

The platform needs to evolve, and the removal of access to internals
is a huge step forward for writing maintainable and composable
code. However, it’s no exaggeration to say that the removal of
Unsafe has the potential to break every non-trivial Java application
currently running.

To most developers, this seems like a backwards incompatible
change. From Oracle’s point of view, however, the sun packages are
internal code, and are not guaranteed to remain unchanged. In this
view, libraries and frameworks that rely on implementation details
rather than public APIs do so at their own risk. This leads to a ten‐
sion between the needs of the core platform, and the libraries that
users rely on.

To resolve this conflict, and given the scope and impact of these
changes, the transition must be handled with care and clear commu‐
nication. Oracle is consulting the wider community and at time of
writing a reasonable consensus on how to proceed seems to be
emerging.

44 | Chapter 5: The Future of Java

Change Default Garbage Collector
The current default garbage collector is the parallel collector. The
parallel collector is extremely efficient, designed for high-
throughput operation and uses very small amounts of CPU time to
collect memory. However, the collector must pause the JVM to run a
garbage collection cycle (sometimes called a “Stop The World”
(STW) operation). These pauses typically last for up to a few hun‐
dred milliseconds on heaps of 8 GB or less.

In Java 9, Oracle proposes to change the default collector to the new
Garbage First (G1) collector. This uses a more modern GC algo‐
rithm that can do some of its work without pausing fully. The aim is
to let users set “pause goals” that the JVM will try to adhere to. How‐
ever, G1 has some drawbacks: it uses much more CPU time overall
to collect memory, and still has the possibility of a significant pause.
By default, G1 will try to pause for no more than 200ms, unless nec‐
essary, which isn’t necessarily a huge improvement over parallel.

G1 is also lacking in real-world testing. Despite being available since
Java 7, relatively few Java shops have adopted it, so the true impact
of changing the default collector is unknown. Applications that run
without an explicit choice of collector will be affected by a change of
default. Limited research has been done into the percentage of appli‐
cations that would potentially be affected, but indications are that it
could over 50%.

HTTP/2
The HTTP/2 standard is a new version of the Web’s primary proto‐
col, HTTP. The previous version, HTTP/1.1, dates from 1999 and
has encountered significant problems (such as head-of-line block‐
ing) as the Web has grown. The new standard was created by the
Internet Engineering Task Force (IETF) HTTP Working Group,
which comprised engineers from major Web companies and
browser manufacturers.

The basic semantics (including methods) of HTTP
have not fundamentally changed in the new standard,
but the transport mechanisms are new.

Java 9 | 45

The group summarized some of the key properties of HTTP/2 as
follows:

• Same HTTP APIs
• Cheaper requests
• Network- and server-friendliness
• Cache pushing
• Being able to change your mind
• More encryption

The new standard is pragmatic about the way the Web has come to
be used; as a general purpose application protocol rather than purely
for document retrieval and hypertext transfer. So, for example, in
HTTP/2 responses can be interleaved, connections are not closed
unless a browser actively navigates away, and HTTP headers are
now represented in binary to avoid penalizing small requests and
responses (which is the majority of traffic).

In the Java world, HTTP/2 is an opportunity to revisit Java’s ancient
HTTP API. This dates to Java 1.0 and is designed around a relatively
protocol-agnostic framework based on the URL class. This predates
the massive dominance of the Web over all other Internet protocols.
This API has not kept up with the reality of how the Web is used
today.

The new Java API for HTTP/2 is a completely clean sheet, and aban‐
dons any pretense of protocol independence. Instead, it’s an API
purely for HTTP, but is independent of HTTP version. It will pro‐
vide support for the new framing and connection handling parts of
HTTP/2, as well as HTTP/1.1 support for the transitional period.

In the current version of the new API (which may, of course, change
before the release of Java 9), a simple HTTP request looks like this:

 HttpResponse resp = HttpRequest
 .create(new URI("http://www.oreilly.com"))
 .body(noBody())
 .GET().send();
 int responseCode = resp.responseCode();
 String body = resp.body(asString());

 System.out.println(body);

46 | Chapter 5: The Future of Java

This style for the API feels much more modern than the existing
legacy HTTP API, and reflects the trend in API design towards flu‐
ent (or builder) patterns.

JShell
In many other languages, an interactive environment for explora‐
tory development is provided via a Read-Evaluate-Print-Loop
(REPL) tool. In some cases (notably Clojure and other Lisps), the
REPL is where developers spend most of their coding time. This is
also seen in languages such as Scala or JRuby.

Java previously had the Beanshell scripting language, but it never
achieved full standardization, and the project has essentially been
abandoned. Java 8 introduced the Nashorn implementation of Java‐
script on top of the JVM, and included the jjs REPL. Due to
Nashorn’s tight integration with Java, this could be a useful environ‐
ment for playing with Java in an interactive manner. However, it still
wasn’t Java.

As part of the development of Java 9, Project Kulla was started, to
look at producing a Java REPL that would provide as close an expe‐
rience to “full Java” as possible. The project had some strict goals,
such as not to introduce new non-Java syntax. Instead, it disables
some features of the language that are not useful for interactive
development in order to provide a less awkward working environ‐
ment.

In JShell, statements and expressions are evaluated immediately in
the context of an execution state. This means that they do not have
to be packaged into classes, and methods can also be free-standing.
JShell uses “snippets” of code to provide this top-level execution
environment.

In the environment, expressions can be freely entered and JShell will
automatically create temporary variables to hold the resulting values
and keep them in scope for later use:

-> 3 * (4 + 7)
| Expression value is: 33
| assigned to temporary variable $1 of type int

-> System.out.println($1);
33

Java 9 | 47

New classes can easily be defined:

-> class Pet {}
| Added class Pet

-> class Dog extends Pet {}
| Added class Dog

JShell also has commands, which all start with / to access REPL fea‐
tures. For example:

-> /help
Type a Java language expression, statement, or declaration.
Or type one of the following commands:

/l or /list [all] -- list the source you have typed

[additional output]

/? or /help -- this help message
 /! -- re-run last snippet
 /<n> -- re-run n-th snippet
 /-<n> -- re-run n-th previous snippet

Supported shortcuts include:
<tab> -- show possible completions for the current text

Just like REPL environments in other languages, JShell lets you use
the REPL to demonstrate Java language features very simply and
quickly. In turn, this makes JShell a great learning tool, similar in
experience to Scala’s REPL.

Further Out
Oracle does not release firm plans more than one release ahead,
relying instead on a roadmap of features for future releases. As a
result, the features and possible developments discussed in this sec‐
tion cannot be definitively tied to any specific release.

Project Panama
Oracle has already announced Project Panama, a new effort to
define a Foreign Function Interface (FFI) for the JVM. The name
evokes the Panama canal, an infrastructure project designed to link
the Pacific to the Atlantic. Similarly, Project Panama is about bridg‐
ing between the managed world of Java and the unmanaged world
of C and other runtimes.

48 | Chapter 5: The Future of Java

If non-Java programmers find some library useful and easy to
access, it should be similarly accessible to Java programmers.

—John Rose

The ultimate goal is to be able to directly bind native functions (such
as the contents of shared libraries or operating-system calls) to Java
methods. This has always been possible using Java’s Java Native
Interface (JNI), but the interface is inconvenient and rather limited.
This has led to a significant barrier to entry for mixing native code
into a Java project.

Project Panama has a difficult task ahead of it, not least because
Java’s culture has always been about safe programming, as a depar‐
ture from the pitfalls found in languages such as C and C++. To
evolve Java’s access to native code without sacrificing that safety is a
major undertaking, but would be of huge benefit to millions of Java
developers worldwide.

Project Valhalla
Another area of major work beyond Java 9 is Project Valhalla. This
is an experimental project focused on new features for the Java lan‐
guage. Currently, the features that are under discussion are
enhanced generics and value types.

Enhanced generics are a proposed feature that would let Java devel‐
opers write code that uses primitive types as type parameters for col‐
lections, such as List<int>. This is problematic in the current lan‐
guage and JVM because there is no type in Java that is a supertype of
both Object and int. That is, Java’s type system does not have a single
root.

Currently, the prototyping uses an approach called “any” type vari‐
ables, to mean that the type variable can range over both reference
types and primitives. However, this design contains some subtleties
that have to be approached carefully. For example, List<int> and
List<String> could not have a supertype more specific than Object
in Java’s existing type system.

One possibility is that List<Integer> and List<String> could con‐
tinue to be represented at runtime by List.class, but with
List<int> being represented by a different runtime type and class
file.

Further Out | 49

The Internet of Things
Software is not a static field, and new areas of interest continue to
emerge. One of the most eagerly anticipated and hyped is the so-
called Internet of Things (IoT). This is the idea that devices with
very limited compute capability compared to a laptop or phone will
nevertheless become Internet-enabled and able to provide useful
and valuable data streams to their owners.

Java has inspired a lot of hatred, but it’s been incredibly influential
in building modern enterprise software, along with the tools we use
to develop, maintain, and deploy that software.

—Mike Loukides

Over the years, a lot of the criticism (both justified and not) that has
been flung in Java’s direction has abated, replaced by something
closer to grudging, involuntary respect.

It is therefore not surprising that, given Java’s influence in the enter‐
prise, application teams working towards IoT have developed stacks
that leverage Java’s strengths and robustness for use with a world of
devices possessed of limited capability.

It’s still unclear whether the much-discussed revolution of IoT will
actually take place. While the raw technology is now in place, major
issues such as security, bandwidth, and data handling remain. For
that matter, the industry has yet to decide whether a device’s “owner”
and beneficiary of the device’s data value is the purchaser or the sup‐
plier.

In any event, if the IoT does become mainstream, then Java is
extremely well-placed to become a major part of the architecture of
the systems that will be needed to deliver it.

Conclusion
The road from Java’s first public alpha of 1.0 to today has been long
and full of technical advances and interesting adventures. Along the
way, Java has flourished, and has become one of the world’s most
important and widely-used programming environments.

How long will Java continue to be as ubiquitous as it is today? No-
one knows, but the ecosystem today is flourishing and the immedi‐
ate course that has been set seems fair. Which means, of course, that
it’s time to raise a toast and wish Java a very Happy Birthday.

50 | Chapter 5: The Future of Java

About the Author
Ben Evans is the Cofounder and Technology Fellow of jClarity, a
startup that delivers performance tools for development and ops
teams. He helps to organize the London Java Community and repre‐
sents them on the Java Community Process Executive Committee,
where he works to define new standards for the Java ecosystem. He
is a Java Champion; JavaOne Rockstar; coauthor of The Well-
Grounded Java Developer and Java in a Nutshell 6E. He lives in Lon‐
don, but is usually found traveling the world consulting, speaking,
and educating on the Java platform, performance analysis, system
architecture, and related topics.

	Cover
	Additional Resources
	Copyright
	Table of Contents
	Preface
	Acknowledgements

	Chapter 1. History and Retrospective
	The High-Level Design of Java
	A Brief History of Java
	History of Open-Source Java
	The Age of Oracle
	Retrospective

	Chapter 2. The Java Language
	Primary Java Language Design Goals
	Backwards Compatibility
	Easy to Learn and Read
	Simple Type System

	Language and VM Initially Influenced Each Other
	Libraries
	Arrays and Collections

	Recent Developments
	Reducing Verbosity—Java 7
	Towards the Future—Java 8

	Java’s Greatest Hits
	Threading
	Language Stability
	Java’s Type System

	The Java Hall of Heroic Failure
	Java Beans
	Finalization
	Java EE Over-Configuration
	Threading

	Conclusion

	Chapter 3. The Java Virtual Machine and Platform
	The Design of the JVM
	The JVM Interpreter and Bytecode
	Influence of Language and VM on Each Other

	Self-Management
	Just-In-Time Compilation
	Garbage Collection

	Beyond Java
	Conclusion

	Chapter 4. Java Developers and the Ecosystem
	Overview of the Java Ecosystem
	The Java Community Process
	The Independent Java Ecosystem
	Eclipse
	Apache
	Spring

	The Java Community Now
	JUGs
	Java Champions

	Chapter 5. The Future of Java
	Java 9
	Modules
	Change Default Garbage Collector
	HTTP/2
	JShell

	Further Out
	Project Panama
	Project Valhalla
	The Internet of Things

	Conclusion

