
Jens Oliver Meiert
Foreword by Lindsey Simon

The Little Book
of HTML/CSS
Coding Guidelines

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1814

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/webdev

We’ve compiled the best insights from
subject matter experts for you in one place,

so you can dive deep into what’s
happening in web development.

Davey Shafik

Upgrading
to PHP 7

Modern Tools for
Static Website Development

Static Site
Generators

Brian Rinaldi

KYLE SIMPSON

UP &I

 GOING

“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

Jens Oliver Meiert
Foreword by Lindsey Simon

The Little Book
of HTML/CSS
Coding Guidelines

http://oreil.ly/webdev

Jens Oliver Meiert

The Little Book of
HTML/CSS Coding

Guidelines

978-1-491-94257-4

[LSI]

The Little Book of HTML/CSS Coding Guidelines
by Jens Oliver Meiert

Copyright © 2016 Jens Oliver Meiert. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Nicole Shelby
Copyeditor: Jasmine Kwityn

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

December 2015: First Edition

Revision History for the First Edition
2015-11-19: First Release

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

For Michael Sage—

“Organization is not everything, but without organization, everything
is nothing.”

Table of Contents

Foreword. ix

The Little Book of HTML/CSS Coding Guidelines. 1
Introduction 1
Acknowledgments 2
The Purpose of Coding Guidelines 3
Anatomy of a Coding Guideline 6
Approaches to Coding Guidelines 10
Coding Guidelines in Practice 12
Proven HTML/CSS Coding Guidelines 14

vii

Foreword
Style guides and coding conventions might sound like something
creativity-encoraching—like painting inside the lines—but as a solo
developer, and especially when working in larger teams, style guide‐
lines tend to remove the least creative decisions and allow people to
focus on what matters—solving problems in code to make users’
lives better.

I met Jens at Google, and was an avid observer and sometimes col‐
laborator with his work on the webmaster team there—we were
both excited about trying to help codify and teach best practices for
web development. Jens and I both worked on and shared a desire to
build tools to help automate the decisions that we labored over and
it was fantastic to see how appreciative the teams were for insights
into the craft and for the ability of the tools Jens worked on to both
point out mistakes automatically or even correct them where possi‐
ble. As we both worked to decrease cognitive load, ditch double
break tags, and educate people about usability and accessibility,
more teams came to adopt coding guidelines to help speed up their
development, and stylistic nitpicking and confusion gradually rece‐
ded in the code review process.

Readability of code should be the goal of anyone in our field, much
as the AP Stylebook is a resource for some of the best news organiza‐
tions in the world. The rules can always be changed, but having a
sound and solid framework on which to build your next great idea
will make it that much easier to repurpose and share your efforts for
the betterment of users, and possibly other developers you may get
to work with. I’ve heard Dan Cederholm and Peter Paul Koch wax
poetic about the craft of web development—style guides and
improved readability are evidence of care for the craft.

—Lindsey Simon (former tech
lead at Google)

1 Throughout the book, I keep with the term coding guidelines, and use it liberally. I also
apply it holistically—that is, I use this term to denote serious sets of guidelines that try
to comprehensively define the formatting of all respective code, and not just represent a
weak recommendation to “please indent.” Normally, coding guidelines will apply to
non-minified, non-compressed working code. Live code (i.e., production code) consti‐
tutes an exception to most formatting guidelines.

The Little Book of HTML/CSS
Coding Guidelines

Introduction
“It turns out that style matters in programming for the same reason that

it matters in writing. It makes for better reading.”
—Douglas Crockford

Coding guidelines govern how we write code.1

Sometimes called standards, sometimes conventions, they can gov‐
ern many code-related things. Wikipedia, for example, tells us that

Coding conventions are a set of guidelines for a specific
programming language that recommend programming style, prac‐
tices, and methods for each aspect of a piece program written in
this language. These conventions usually cover file organization,
indentation, comments, declarations, statements, whitespace, nam‐
ing conventions, programming practices, programming principles,
programming rules of thumb, architectural best practices, etc.

Most of the time, we find coding guidelines in big organizations and
large projects. As individual developers, perhaps even hobbyist
developers, we don’t need and perhaps appreciate them that much.
But in those big organizations and large projects, coding guidelines

1

are critical. Software and web development leave a lot of room for
preference, and preference makes for a lot of inconsistency and con‐
fusion, if not kept at bay.

As Wikipedia suggests, coding guidelines go beyond formatting;
they can also cover development principles, and with that direct
development with an even firmer grip.

In this Little Book, I share my experience with HTML and CSS cod‐
ing guidelines. Why me and why guidelines for HTML and CSS? A
web developer by trade, and one who’s closely following the devel‐
opment of web standards, I’m most familiar with HTML and CSS.
And I’m similarly familiar with coding guidelines. Ten years ago, I
introduced HTML/CSS rules at GMX, the largest email provider in
Germany. When I joined top agency Aperto, I did the same thing
and created, together with Timo Wirth, guidelines that ruled all
frontend code, including Aperto’s large commercial and governmen‐
tal customers. And later, I took the opportunity at Google to found a
team and with that team revise Google’s CSS guidelines and create
all new HTML guidelines.

The two most fundamental lessons I learned were that coding guide‐
lines absolutely are a cornerstone of professional web development,
and second (and in contrast to this), that it’s easier to set them up
than to get them followed. And this brings us into a good position to
start.

Acknowledgments
I’d like to thank Tony Ruscoe for his always friendly and professional
help checking and improving my technical writing. I thank the
O’Reilly team, notably Simon St. Laurent and Meg Foley, for their
advice and help on getting another Little Book out (following The
Little Book of HTML/CSS Frameworks). And, regarding the matter at
hand, I like to thank all the many people I’ve worked with who
showed and taught me how (not to) work with coding standards.

Thanks, too, go to Harry Roberts, Dan Hay, as well as Google’s and
WordPress’s developers for all their work on coding standards (and
permission to quote within this book).

2 | The Little Book of HTML/CSS Coding Guidelines

http://bit.ly/xhtml-css-gmx
http://www.gmx.net/
http://www.aperto.de/
http://www.vorsprungdurchwebstandards.de/
http://bit.ly/html-aperto
http://bit.ly/html-aperto
http://bit.ly/google-html-css
http://bit.ly/google-html-css
http://ruscoe.net/
http://www.oreilly.com/web-platform/free/book-of-html-css-frameworks.csp
http://www.oreilly.com/web-platform/free/book-of-html-css-frameworks.csp
http://csswizardry.com/
http://www.onepointed.com/dan/
https://www.google.com/
https://wordpress.org/

The Purpose of Coding Guidelines
Let’s imagine a world without coding guidelines. Or a company
without coding guidelines. Or, perhaps, ourselves without coding
guidelines.

For example, consider the following heap of HTML code:

<table cellpadding="0" cellspacing="0" border="0" summary="">
<tr valign="middle">
<td width="1" height="21" class="nav-border"><img src="/img/
pool/transparent.gif" width="1" height="1" alt="" bor
der="0" /></td>
<td class="nav-3"> </td>
<td class="nav-3">Home</td>
<td class="nav-3"> </td>
<td width="1" class="nav-border"><img src="/img/pool/transpar
ent.gif" width="1" height="1" alt="" border="0" /></td>
<td class="nav-1"> </td>
<td class="nav-1">Arti-
kel</td>
<td class="nav-1"> </td>
<td width="1" class="nav-border"><img src="/img/pool/transpar
ent.gif" width="1" height="1" alt="" border="0" /></td>
<td class="nav-1"> </td>
<td class="nav-1">Empfeh-
lungen</td>
<td class="nav-1"> </td>
<td width="1" class="nav-border"><img src="/img/pool/transpar
ent.gif" width="1" height="1" alt="" border="0" /></td>
<td class="nav-1"> </td>
<td class="nav-1">Down-
loads</td>
<td class="nav-1"> </td>
<td width="1" class="nav-border"><img src="/img/pool/transpar
ent.gif" width="1" height="1" alt="" border="0" /></td>
<td class="nav-1"> </td>
<td class="nav-1"><a href="/de/about/"
class="nav">Über ...</td>
<td class="nav-1"> </td>
<td width="1" class="nav-border"><img src="/img/pool/transpar
ent.gif" width="1" height="1" alt="" border="0" /></td>
</tr>
<tr>
<td height="1" class="nav-border-hrz" colspan="21"><img
src="/img/pool/transparent.gif" width="1" height="1" alt="" bor
der="0" /></td>
</tr>
</table>

Then compare it to this:

The Purpose of Coding Guidelines | 3

<ul class="nav">
 Startseite
 Publikationen
 Biographie
 Kontakt

Or compare this CSS code:

table { background-color: #FFC; border-bottom: 1px solid
#CCCC9D; border-top: 1px solid #CCCC9D; empty-cells: show;
font-size: 1em; margin: 1em 0 0; width: 100%; }
caption, form div label { display: none; }
th, td { vertical-align: baseline; }
th { font-weight: 700; padding: .5em .7em; text-align: left;
white-space: nowrap; }
td { border-top: 1px solid #E6E6B1; padding: .2em .7em; }
td a { line-height: 150%; }

to the code shown here:

.nav {
 border-bottom: 2px solid;
 line-height: 1.5;
 padding: 71px 8.75em 2px 6.75em;
}

.nav li,

.nav li a {
 padding: 0 4px;
}

.nav li {
 margin: 0 2px;
}

.nav li a {
 margin: 0 -4px;
}

That is code from the same person: the author in 2002, and the
author in 2005.

What do we notice? The first thing we see is that the code is written
completely differently. It’s inconsistent. Would we want to work on
it? Probably not. Would we be able to work on it? Maybe.

What would change this? Focusing on high quality and an intelligi‐
ble, consistent formatting of all this code.

That is the job of coding guidelines.

4 | The Little Book of HTML/CSS Coding Guidelines

Coding guidelines should yield quality, produce consistency, and
through that, indirectly, assist usability, collaboration, and maintain‐
ability. They may not need to do all of this—which we’ll cover under
“Approaches to Coding Guidelines” on page 10—and they may not
succeed, but that’s their purpose.

Let’s look at all of these points in detail.

Consistency
The major, direct benefit of coding guidelines is improved consis‐
tency. Why? Because with comprehensive coding guidelines all code
gets formatted the same way. Rules are always indented the same
way. Declarations appear in the same order. Element names are
always lowercase.

Consider this example:

#intro {
 background: #fff;
 color: #000;
}

.note {
 color: gray;
 background: white
}

Suppose you need to edit this style sheet. How do you specify and
order the colors for a new author section? Meet inconsistency.

While one might argue that keeping the guidelines in mind makes
the process of writing code itself a little slower, locating and refac‐
toring code becomes much easier and faster.

Usability
An indirect benefit that follows consistency is improved usability.
Improved developer usability, that is. Improved “ease of use and
learnability of code,” then, as I described in The Little Book of
HTML/CSS Frameworks. Why? Because through coding guidelines,
developers are able to set and trust expectations, which again helps
locating and refactoring code.

The Purpose of Coding Guidelines | 5

http://meiert.com/en/blog/20150304/the-book-of-frameworks/
http://meiert.com/en/blog/20150304/the-book-of-frameworks/

Collaboration
More importantly, yet also consequentially, coding guidelines facili‐
tate collaboration. They make it easier for you to understand your
colleagues’ code (and vice versa), and to hand over code to someone
you haven’t work with previously. They don’t require as much time
adjusting to someone else’s coding style, especially not when one fol‐
lows the otherwise laudable habit of sticking to the code style a
given project is using.

Maintainability
Lastly, coding guidelines and the consistency they bring to our code
help maintainability. They do so because guidelines constitute a
form of organization, a lower degree of entropy, which makes it eas‐
ier to order, or keep things in order. Although often forgotten,
maintainability important, as there’s no code in existence that will
only be touched once. Even if it’s not going to be edited or updated
again, eventually it must be decommissioned. And that falls under
maintenance, too.

Anatomy of a Coding Guideline
What exactly is in a coding guideline? Isn’t that just a command like,
“do x”? In its simplest form, yes. But coding guidelines can and
should entail more detail, and then it’s on the purpose and impor‐
tance of the rule to prove value.

Structure
At this point, we should work with a few examples. Let’s look at a
few random coding guidelines, without judgment nor endorsement:

6 | The Little Book of HTML/CSS Coding Guidelines

Harry Roberts’ CSS Guidelines recommend hyphens:
Hyphen Delimited
All strings in classes are delimited with a hyphen (-), like so:

.page-head {}

.sub-content {}

Camel case and underscores are not used for regular classes; the
following are incorrect:

.pageHead {}

.sub_content {}

Dan Hay’s coding standards say the following about “verbose”
HTML code:

Don’t use tags that STADN (sit there and do nothing)
STADN tags do just that—they don’t actually contribute much to
the content or layout of a page. An example of a STADN tag would
be:

The bold and font tags do not contribute to the layout or appear‐
ance of the non-breaking space. We could add as many surround‐
ing tags to the non-breaking space and it still wouldn’t affect the
appearance of the page.
Most HTML editors liberally insert STADN tags. This behavior is
yet another reason why HTML editors must not be used.

(A comment, “tag” should rather say “element” here.)

And for WordPress, vendor-specific extensions are worth special
attention:

We use grunt-autoprefixer as a pre-commit tool to easily manage
necessary browser prefixes, thus making the majority of this section
moot. For those interested in following that output without using
Grunt, vendor prefixes should go longest (-webkit-) to shortest
(unprefixed). All other spacing remains as per the rest of standards.

.sample-output {
 -webkit-box-shadow: inset 0 0 1px 1px #eee;
 -moz-box-shadow: inset 0 0 1px 1px #eee;
 box-shadow: inset 0 0 1px 1px #eee;
}

(Legal note: This coding guideline has been quoted from the CSS
Coding Standards by WordPress, used under GPLv2.)

Anatomy of a Coding Guideline | 7

http://cssguidelin.es/#hyphen-delimited
http://bit.ly/html-stadn
http://bit.ly/html-stadn
http://bit.ly/vendor-prefixes
http://bit.ly/wp-standards
http://bit.ly/wp-standards
https://wordpress.org/
https://wordpress.org/about/gpl/

These guidelines, and guidelines in general, are very differently writ‐
ten, but we find similarities:

• What (not) to do
• Scope
• Examples
• Explanation

These are the main ingredients of a coding guideline.

Let’s have a closer look at this structure:

What (not) to do
We’ve seen with our suspicion whether “do x” already suffices,
the key part of a guideline. We cannot do without it.

Scope
Knowing what the guideline applies to is sometimes evident
(“sort all CSS declarations alphabetically” already clarifies the
scope), sometimes not (“indent by two spaces”—indent what,
when, where?). For that uncertainty the scope is generally
important, too.

Examples
Here things get more blurry in that a well-written rule may not
need examples; however, in practice we observe that examples
do help. Glancing at a rule and an example clarifies and helps
colleagues with less experience to get a solid enough idea to
know when to apply a rule “when they see it.” Examples may
need counter-examples—that is, we should show what is
expected and correct according to the rule, and then what
would be incorrect.

Implementation help
Ideally, a coding guideline comes with a tip on how to use it, to
make following it easier. For example, “use configuration file x
for your editor to enforce indentation,” “include script y to have
your code validated,” or “covered by linter.” Although this is a
very useful component of a well-written coding guideline, it is
often overlooked (even in this booklet).

8 | The Little Book of HTML/CSS Coding Guidelines

Explanation
Although this is not always required, an explanation allows us
to help our colleagues understand what the context and purpose
is, and facilitate improving or vetoing the rule in question. In a
very authoritative setting, explanations may not be as welcome,
but in a cooperative one, they are. As domain experts, we
should be able to explain why we do what we do, as with impos‐
ing guidelines.

What else
Finally, a complete coding guideline should include an appro‐
priate level of detail. I’d like to keep with the idea of the ideal ID
or class name—as long as necessary and as short as possible.
Bearing this in mind, when working on a coding standard, it’s
better to err on the side of adding enough detail so that the team
can understand the guideline and its rationale.

With that, we should have an idea of the minima and maxima of a
coding guideline:

Minima

• What (not) to do
• Scope
• Example
• Detail: brief

Maxima

• What (not) to do
• Scope
• Examples
• Implementation help
• Explanation
• Detail: verbose

Anatomy of a Coding Guideline | 9

http://meiert.com/en/blog/20080812/best-practice-ids-and-classes/
http://meiert.com/en/blog/20080812/best-practice-ids-and-classes/

Priority
But is the structure all that makes a coding guideline? Let’s consider
the ever-popular order to indent by x as well as the ever-beloved
idea to use “semantic markup.” What makes them different?

I believe we will soon discern a difference in terms of preference
versus quality.

The indentation rule is first and foremost preference, especially
when noting that tab characters can be configured to be displayed
with n spaces, meaning that every team member could produce code
that’s indented the same way while still enjoying their own individ‐
ual preferences.

The semantic markup rule, however, has a qualitative bearing, for if
we understand the use of markup according to its meaning para‐
mount to it being parsed correctly and accessibly, then this rule
results in a difference in quality of code, depending on whether and
how it’s followed.

For coding guidelines, then, this difference results in a sense of pri‐
ority. Though preference-based rules are still relevant because they
lead to consistency, which in turn gives us all the benefits we dis‐
cussed earlier (usability, collaboration, maintainability), the quality
rules, when sound, make code more consistent and better.

The suspicion grows that preference rules are easier to define and
spot than quality rules, but the jury’s still out on that.

Approaches to Coding Guidelines
How do we then set up and promote coding guidelines?

That approach is best based on the difference between reality and
goals. How does our code currently look? How should it look going
forward?

We can learn from the approach taken by linguists: they call gram‐
mars prescribing how people ought to speak or write prescriptive
grammars, and those describing what people actually use descriptive
grammars.

Let’s see how this can be applied to coding guidelines, and what else
is involved.

10 | The Little Book of HTML/CSS Coding Guidelines

Descriptive
The descriptive approach works if the difference between code real‐
ity and our goals is minor. Then we can simply outline how things
are done now, let the whole mélange sit for a few minutes, and reap
the reward when we onboard new team members.

For example, if everyone on the team is validating their HTML code,
as it should be done (there’s no need and no excuse for not using
HTML correctly), we say:

Release only valid HTML code

Prescriptive
If the reality/goal difference is bigger, we want to take a prescriptive
(i.e., normative) approach, meaning to tell what to do:

Release only valid HTML code

But isn’t that the same rule?

It is the same rule on the surface, yet a different one when looking at
the context. Whether we describe or prescribe coding standards
doesn’t depend on the rule, but on the situation. In both cases, we
want to anchor, in writing, what code we expect.

The prescriptive approach, then, depends on enforcement: when
everything’s good already and we only describe, there’s little need to
enforce.

Once there’s something to prescribe, there’s also something to
enforce. We’ll look at this “Coding Guidelines in Practice” on page
12.

Mixed
Yet then, in everyday coding life, we face coding practices we want
to document (describe), and others we want to achieve (prescribe).
This means that most coding guidelines and standards include rules
that are mixed, using both approaches.

Decision Process
How do we decide when to use which coding guidelines? The flow‐
chart in Figure 1 can help us:

Approaches to Coding Guidelines | 11

Figure 1. A flowchart for choosing an approach to coding guidelines

What we can see is that for a team of one, we don’t strictly need
coding guidelines. It is recommended, however, to look into using
coding guidelines even in this case—perhaps making use of public
ones, such as the Google HTML/CSS Style Guide with the exception
of two-space indentation (even after leaving Google, I still follow
these guidelines for my personal projects).

Whenever two or more people work together, however, coding
guidelines become useful, and really important. And there the ques‐
tion is one of goals, and existing quality, to say whether we need a
descriptive or prescriptive approach, considered for each guideline.

Coding Guidelines in Practice
This section briefly outlines special aspects of coding guidelines that
we must consider when setting them up.

12 | The Little Book of HTML/CSS Coding Guidelines

https://google.github.io/styleguide/htmlcssguide.xml

Communication
The larger the organization we’re working in, the more important is
the point of communicating our guidelines: Everyone writing code
should know about them.

Fortunately, in most modern companies, teams have mailing lists to
communicate guidelines to. It makes sense to share updates the
same way, or to add all relevant people to a special mailing list
related to coding style.

Compliance
The next important aspect is achieving compliance—that is, enforc‐
ing the guidelines. This is normally a two-fold process.

First, we need to measure whether coding guidelines are followed or
not. For that, we need to set up the necessary infrastructure and
tools, though manually probing for compliance, as with code
reviews, does work, too. In practice, this piece is neglected rather
frequently, and organizations don’t know much about their actual
compliance rates. Automation, which we will look at momentarily, is
crucial here. How to automate the whole compliance part is not sub‐
ject of this booklet, however.

Second, we need to enforce the code style we want to see. Here,
too, automation is desirable, but we also need a way to track and
score offenders. Tying coding style compliance to performance met‐
rics that got communicated in advance is an effective approach. For
example, a team member who repeatedly violates coding standards
could get a lower performance rating than one who does keep
with it.

Reviews
Our coding guidelines should not be considered a one-off effort.
Just as we must maintain our code, so too should our guidelines be
reviewed from time to time—it’s important to update the documen‐
tation to reflect changes to guidelines as they arise.

It is something that gets maintained (as much as the affected code—
we should not forget to update it when guidelines change). It is
therefore recommended to not only assign a primary contact (or
perhaps a small team of experienced volunteers) to be guideline

Coding Guidelines in Practice | 13

owners, but to also schedule at least quarterly reviews that check
whether updates are needed.

Automation
Lastly, a particularly useful habit—and a key for future handling of
coding guidelines—is automation. The assessment of code quality
should be automated as much as possible and we should also auto‐
mate improving and fixing code.

At the moment, there is no single out-of-the-box solution for this
(only small scripts abound), but our vision overall should be that
our development environment shows us local coding preferences,
highlights violations and fixes them for us; that then, when we stage
our code, additional checks are run that likewise report issues and
fix them, and that at the end, optimized, minified, compressed, our
code goes live in the shape we had envisioned it.

Proven HTML/CSS Coding Guidelines
After this short run through coding guidelines, I want to make rec‐
ommendations for what I consider solid, useful, proven coding
guidelines. Much of what follows can also be found in the Google
HTML/CSS Style Guide, but that shouldn’t be surprising given Goo‐
gle’s care in most matters engineering.

Many of these guidelines are quality rather than preference guide‐
lines. We’ll keep with a bit more than just the minima: with what
(not) to do in what scope, examples that illustrate each point, a
rationale, and that with just the detail we need.

(Legal note: The following guidelines are a derivative of the
HTML/CSS Style Guide by Google, used under CC BY 3.0 by Jens
Oliver Meiert.)

General
Use UTF-8 (No Byte Order Mark)
Make sure your editor uses UTF-8 as character encoding, without a
byte order mark.

14 | The Little Book of HTML/CSS Coding Guidelines

http://bit.ly/nyman-css-js
https://google.github.io/styleguide/htmlcssguide.xml
https://google.github.io/styleguide/htmlcssguide.xml
https://google.github.io/styleguide/htmlcssguide.xml
https://www.google.com/
https://creativecommons.org/licenses/by/3.0/

Specify the encoding in HTML templates and documents via <meta
charset="utf-8">. Do not specify the encoding of stylesheets, for
these assume UTF-8 by default.

Omit the Protocol from Embedded Resources
Omit the protocol portion (http:, https:) from URLs unless the
respective files are not available over both protocols.

Omitting the protocol—which makes the URL relative—prevents
mixed content issues and results in (albeit tiny) extra file size sav‐
ings.

Correct:

<script src="//www.google.com/js/gweb/analytics/
autotrack.js"></script>

Indent by One Tab
Only use tab characters for indentation. [Except for in this book ;)]

Correct:

 HTML
 CSS

Use Only Lowercase
Where possible, code should be lowercase: this includes HTML ele‐
ment names, attributes, attribute values (unless text/CDATA), CSS
selectors, properties, and property values (with the exception of
strings, because case can be relevant here).

Correct:

color: #cc0078;

Incorrect:

Home

Remove Trailing Whitespace
Trailing whitespace is unnecessary, as it can complicate diffs.

Incorrect:

<p>What?_

Proven HTML/CSS Coding Guidelines | 15

http://www.w3.org/TR/CSS21/syndata.html#strings

(...where “_” signifies a space character.)

Mark TODOs and Action Items with TODO
Highlight TODOs by using the keyword TODO only.

Append a contact (username or mailing list) in parentheses as in
TODO(contact).

Correct:

<!-- TODO(john.doe): revisit centering -->
<center>Test</center>

HTML
Use HTML 5
Use HTML 5 (HTML syntax) for all HTML documents: <!DOCTYPE
html>.(this spelling is for historical reasons).

Although technically correct, do not close void elements—write

, not
.

Use HTML According to Purpose
Use elements for what they have been designed for. For example, use
heading elements for headings, p elements for paragraphs, a ele‐
ments for anchors, and so on.

Using HTML according to its purpose is important for accessibility,
reuse, and code efficiency reasons.

Use Valid HTML
Dto.: Use valid HTML.

Use tools such as the W3C HTML validator to test.

Using valid HTML is a baseline quality attribute that ensures proper
HTML use and contributes to learning about technical constraints.

Correct:

<!DOCTYPE html>
<meta charset="utf-8">
<title>Test</title>
<article>This is only a test.</article>

16 | The Little Book of HTML/CSS Coding Guidelines

http://validator.w3.org/

Provide Alternative Contents for Multimedia
For multimedia, such as images, videos and animated objects via
canvas, make sure to offer alternative access. For images, that means
use of meaningful alternative text (alt); video and audio transcripts
or captions should also be provided, if available.

Providing alternative contents is important for accessibility reasons,
for not all multimedia contents are equally accessible to users.

Correct:

<img src="muscles.jpg" alt="Medical illustration of the mus
cles in the leg.">

Separate Structure from Presentation from Behavior
Strictly keep structure (markup), presentation (styling), and behav‐
ior (scripting) apart, and keep the interaction between the three to
an absolute minimum.

That is, make sure documents and templates contain only HTML
and HTML that is solely serving structural purposes. Move every‐
thing presentational into style sheets, and everything behavioral into
scripts. Link as few style sheets and scripts as possible from docu‐
ments and templates.

Separating structure from presentation from behavior is important
for maintenance reasons. It is always more expensive to change
HTML documents and templates than it is to update style sheets and
scripts.

Do Not Use Entity References
There is no need to use entity references like —, ”, or
☺, assuming the same encoding (UTF-8) is used for files and
editors as well as among teams.

The only exceptions apply to characters with special meaning in
HTML (like < and &) as well as control or “invisible” characters (like
no-break spaces).

Correct:

<p>The currency symbol for the Euro is "€".

Proven HTML/CSS Coding Guidelines | 17

Omit Optional Tags
For file size optimization and scannability purposes, omit optional
tags. (Refer to the HTML 5 specification for what tags can be omit‐
ted.)

Correct:

<!DOCTYPE html>
<title>Saving Space</title>
<p>Qed.

Omit type Attributes for Style Sheets and Scripts
Do not use type attributes for style sheets (unless not using CSS)
and scripts (unless not using JavaScript).

Specifying type attributes in these contexts is not necessary as
HTML5 implies text/css and text/javascript as defaults. This
can be safely done even for older browsers.

Correct:

<link rel="stylesheet" href="//example.com/default.css">

Use a New Line for Every Block, List, or Table Element, and Indent Every
Such Child Element
Independent of the styling of an element (as CSS allows elements to
assume a different role per display property), put every block, list, or
table element on a new line.

Also, indent them if they are child elements of a block, list, or table
element.

(If you run into issues around whitespace between list items, it’s
acceptable to put all li elements in one line. A linter is encouraged
to throw a warning instead of an error.)

Correct:

<table>
 <thead>
 <tr>
 <th scope="col">Income
 <th scope="col">Taxes
 <tbody>
 <tr>
 <td>$ 5.00
 <td>$ 4.50
</table>

18 | The Little Book of HTML/CSS Coding Guidelines

http://bit.ly/tag-omission

When Quoting Attribute Values, Use Double Quotation Marks
Use double (""), not single quotation marks (''), around attribute
values.

Correct:

Sign in

CSS
Use Valid CSS Where Possible
Unless dealing with CSS validator bugs or requiring proprietary syn‐
tax, use valid CSS code.

Use tools such as the W3C CSS validator to test.

Using valid CSS is a baseline quality attribute that allows us to spot
CSS code that may not have any effect and can be removed, and
ensures proper CSS usage.

Avoid User Agent Detection and CSS “Hacks”
It’s tempting to address styling differences over user agent detection
or special CSS filters, workarounds, and hacks. Both approaches
should be considered as a last resort in order to achieve and main‐
tain an efficient and manageable code base. Put another way, giving
detection and hacks a free pass will hurt projects in the long run as
projects tend to take the way of least resistance. That is, allowing
and making it easy to use detection and hacks means using detec‐
tion and hacks more frequently—and more frequently is too fre‐
quently.

Use Functional or Generic ID and Class Names
Instead of presentational or cryptic names, always use ID and class
names that reflect the purpose of the element in question, or that are
otherwise generic.

Names that are specific and reflect the purpose of the element
should be preferred, as these are most understandable and the least
likely to change.

Generic names are simply a fallback for elements that have no par‐
ticular or no meaning different from their siblings. They are typi‐
cally needed as “helpers.”

Proven HTML/CSS Coding Guidelines | 19

http://jigsaw.w3.org/css-validator/

Using functional or generic names reduces the probability of unnec‐
essary document or template changes.

Incorrect:

/* Meaningless */
#yee-1901 {}

/* Presentational */
.button-green {}
.clear {}

Correct:

/* Specific */
#login {}
.video {}

/* Generic */
.aux {}
.alt {}

Use ID and Class Names that Are as Short as Possible but as Long as
Necessary
Try to convey what an ID or class is about while being as brief as
possible.

Using ID and class names this way contributes to acceptable levels of
understandability and code efficiency.

Incorrect:

#navigation {}
.atr {}

Correct:

#nav {}
.author {}

Prefix Selectors with an Application-Specific Prefix Where Safer
In large projects and for all code that gets embedded in other
projects or on external sites, use prefixes (as namespaces) for ID and
class names. Use short, unique identifiers followed by a dash.

Using namespaces helps prevent naming conflicts and can make
maintenance easier (e.g., in search-and-replace operations).

Correct:

20 | The Little Book of HTML/CSS Coding Guidelines

.foo-help {}
#bar-note {}

Use Shorthand Properties Where Possible
CSS offers a variety of shorthand properties (like font) that should
be used whenever possible, even in cases where only one value is
explicitly set.

Using shorthand properties is useful for code efficiency and under‐
standability.

Incorrect:

border-top-style: none;
font-family: palatino, georgia, serif;
font-size: 100%;
line-height: 1.6;
padding-bottom: 2em;
padding-left: 1em;
padding-right: 1em;
padding-top: 0;

Correct:

border-top: 0;
font: 100%/1.6 palatino, georgia, serif;
padding: 0 1em 2em;

Omit Units After 0 Values
Do not use units after 0 values unless they are required.

Correct:

margin: 0;
padding: 0;

Omit Leading 0s in Values
Do not use put 0s in front of values or lengths between –1 and 1.

Correct:

font-size: .8em;

Use Three-Character Hexadecimal Notation Where Possible
For hexadecimal color values, three-character hexadecimal notation
is shorter and more succinct.

Correct:

color: #ebc;

Proven HTML/CSS Coding Guidelines | 21

Separate Words in ID and Class Names by a Hyphen
Do not concatenate words and abbreviations in selectors by any
characters (including none at all) other than hyphens, in order to
improve understanding and scannability.

Incorrect:

.demoimage {}

Correct:

.ad-sample {}

Alphabetize Declarations
Put declarations in alphabetical order in order to achieve consistent
code in a way that is easy to remember and maintain.

Ignore vendor-specific prefixes for sorting purposes. However, mul‐
tiple vendor-specific prefixes for a certain CSS property should be
kept sorted as well (e.g., -moz prefix comes before -webkit).

(Exceptions prove the rule, so in the event of the cascade pushing
order on us, that’s fine.)

Correct:

background: fuchsia;
border: 1px solid;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;
border-radius: 4px;
color: black;
text-align: center;
text-indent: 2em;

Indent All Block Content
Indent all block content—that is, rules within rules as well as decla‐
rations, so to reflect hierarchy and improve understanding.

Correct:

@media screen, projection {

 html {
 background: #fff;
 color: #444;
 }

}

22 | The Little Book of HTML/CSS Coding Guidelines

http://www.w3.org/TR/CSS21/syndata.html#block

Use a Semicolon After Every Declaration
End every declaration with a semicolon for consistency and extensi‐
bility reasons.

Incorrect:

.test {
 display: block;
 height: 100px
}

Correct:

.test {
 display: block;
 height: 100px;
}

Use a Space After a Property Name’s Colon
Always use a single space between property and value (but no space
between property and colon) for consistency reasons.

Incorrect:

h3 {
 font-weight:bold;
}

Correct:

h3 {
 font-weight: bold;
}

Use a Space Between the Last Selector and the Declaration Block
Always use a single space between the last selector and the opening
brace that begins the declaration block. The opening brace should
be on the same line as the last selector in a given rule.

Incorrect:

#video{
 margin-top: 1em;
}

#video
{
 margin-top: 1em;
}

Proven HTML/CSS Coding Guidelines | 23

Correct:

#video {
 margin-top: 1em;
}

Separate Selectors and Declarations by New Lines
Always start a new line for each selector and declaration.

Correct:

h1,
h2,
h3 {
 font-weight: normal;
 line-height: 1.2;
}

Separate Rules by New Lines
Always put a blank line (two line breaks) between rules.

Correct:

html {
 background: #fff;
}

body {
 margin: auto;
 width: 50%;
}

Use Single Quotation Marks for Attribute Selectors and Property Values
Use single ('') rather than double ("") quotation marks for attribute
selectors or property values. Do not use quotation marks in URI val‐
ues (url()).

Exception: If you do need to use the @charset rule, use double quo‐
tation marks, as single quotation marks are not permitted.

Correct:

@import url(//example.com/default.css);

html {
 font-family: 'helvetica neue', helvetica, sans-serif;
}

24 | The Little Book of HTML/CSS Coding Guidelines

http://www.w3.org/TR/CSS21/syndata.html#charset

Summary
This has been a little, rather tiny, treatise on coding guidelines.
Although short, it covered several key ideas:

Coding guidelines govern how we write code.

Coding guidelines directly help consistency, and through that, indi‐
rectly, impact usability, collaboration, and maintainability.

Coding guidelines are important.

The main ingredients of a coding guideline are: what (not) to do
within a particular scope, examples, and an explanation.

Coding guidelines can deal with preference or with quality.

Coding guidelines can be descriptive, prescriptive, or both.

Coding guidelines must be communicated, enforced and reviewed.

And, there are some solid coding guidelines out there.

At Google we used to say, “the point of having style guidelines is to
have a common vocabulary so people can concentrate on what
you’re saying rather than on how you’re saying it.” I hope that
despite the brevity of this pamphlet, you, too, can now help your
team concentrate on what you’re saying, a little better.

Proven HTML/CSS Coding Guidelines | 25

About the Author
Jens Oliver Meiert is a German author, philosopher, adventurer,
artist, and developer. He has written a few books and a few more
articles, all of which appear on his website, meiert.com

Colophon
The cover image is by 掬茶 (Own work) [CC BY-SA 3.0 (http://crea‐
tivecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons.

http://meiert.com/en/

	Cover
	Ad
	Copyright
	Table of Contents
	Chapter 1. The Little Book of HTML/CSS Coding Guidelines
	Introduction
	Acknowledgments
	The Purpose of Coding Guidelines
	Consistency
	Usability
	Collaboration
	Maintainability

	Anatomy of a Coding Guideline
	Structure
	Priority

	Approaches to Coding Guidelines
	Descriptive
	Prescriptive
	Mixed
	Decision Process

	Coding Guidelines in Practice
	Communication
	Compliance
	Reviews
	Automation

	Proven HTML/CSS Coding Guidelines
	General
	HTML
	CSS
	Summary

