
Susan J. Fowler

Standard Principles and Requirements

Microservices
in Production

http://www.oreilly.com/programming/newsletter

Susan J. Fowler

Microservices in Production
Standard Principles and Requirements

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97297-7

[LSI]

Microservices in Production
by Susan J. Fowler

Copyright © 2017 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Brian Foster
Production Editor: Colleen Lobner
Copyeditor: Octal Publishing, Inc.

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

October 2016: First Edition

Revision History for the First Edition
2016-09-07: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Microservices in
Production, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

1. Microservices in Production. 1
Introduction 1
The Challenges of Microservice Standardization 1
Availability: The Goal of Standardization 3
Production-Readiness Standards 4
Stability 5
Reliability 6
Scalability 7
Fault Tolerance and Catastrophe Preparedness 8
Performance 10
Monitoring 11
Documentation 13
Implementing Production-Readiness 15

v

CHAPTER 1

Microservices in Production

Introduction
Although the adoption of microservice architecture brings consider‐
able freedom to developers, ensuring availability requires holding
microservices to high architectural, operational, and organizational
standards. This report covers the challenges of microservice stand‐
ardization in production, introduces availability as the goal of stand‐
ardization, presents the eight production-readiness standards, and
includes strategies for implementing production-readiness stand‐
ardization across an engineering organization.

The Challenges of Microservice
Standardization
The architecture of a monolithic application is usually determined at
the beginning of the application’s lifecycle. For many applications,
the architecture is determined at the time a company begins. As the
company grows and the application scales, developers who are
adding new features often find themselves constrained and limited
by the choices made when the application was first designed. They
are constrained by choice of language, by the libraries they are able
to use, by the development tools they can work with, and by the
need for extensive regression testing to ensure that every new fea‐
ture they add does not disturb or compromise the entirety of the
application. Any refactoring that happens to the standalone, mono‐
lithic application is still essentially constrained by initial architec‐

1

tural decisions: initial conditions exclusively determine the future of
the application.

The adoption of microservice architecture brings a considerable
amount of freedom to developers. They are no longer tied to the
architectural decisions of the past; they can design their service
however they wish; and they have free reign regarding decisions of
language, of database, of development tools, and the like. The mes‐
sage accompanying microservice architecture guidance is usually
understood and heard by developers as follows: build an application
that does one thing—one thing only—and does that one thing extra‐
ordinarily well; do whatever you need to do, and build it however
you want. Just make sure it gets the job done.

Even though this romantic idealization of microservice development
is true in principle, not all microservices are created equal—nor
should they be. Each microservice is part of a microservice ecosys‐
tem, and complex dependency chains are necessary. When you have
one hundred, one thousand, or even ten thousand microservices,
each of them are playing a small part in a very large system. The
services must interact seamlessly with one another, and, most
importantly, no service or set of services should compromise the
integrity of the overall system or product of which they are a part. If
the overall system or product is to be any good, it must be held to
certain standards, and, consequently, each of its parts must abide by
these standards as well.

It’s relatively simple to determine standards and give requirements
to a microservice team if we focus on the needs of that specific team
and the role its service is to play. We can say, “your microservice
must do x, y, and z, and to do x, y, and z well, you need to make sure
you meet this set S of requirements.” Of course, you must also give
each team a set of requirements that is relevant to its service, and its
service alone. This simply isn’t scalable and ignores the fact that a
microservice is but a very small piece of an absurdly large puzzle.
We must define standards and requirements for our microservices,
and they must be general enough to apply to every single microser‐
vice yet specific enough to be quantifiable and produce measurable
results. This is where the concept of production-readiness comes in.

2 | Chapter 1: Microservices in Production

Availability: The Goal of Standardization
Within microservice ecosystems, service-level agreements (SLAs)
regarding the availability of a service are the most commonly used
methods of measuring a service’s success: if a service is highly avail‐
able (that is, has very little downtime), we can say with reasonable
confidence (and a few caveats) that the service is doing its job.

Calculating and measuring availability is easy. You need to calculate
only three measurable quantities: uptime (the length of time that the
microservice worked correctly), downtime (the length of time that
the microservice was not working correctly), and the total time a
service was operational (the sum of uptime and downtime). Availa‐
bility is then the uptime divided by the total time a service was
operational (uptime + downtime).

As useful as it is, availability is not in and of itself a principle of
microservice standardization, it is the goal. It can’t be a principle of
standardization because it gives no guidance as to how to build the
microservice; telling a developer to make her microservice more
available without telling her how to do so is useless. Availability
alone comes with no concrete, applicable steps, but, as we will see in
the following sections, there are concrete, applicable steps we can
take toward reaching the goal of building an available microservice.

Calculating Availability
Availability is measured in so-called “nines” notation, which corre‐
sponds to the%age of time that a service is available. For example, a
service that is available 99% of the time is said to have “2-nines
availability.”

This notation is useful because it gives us a specific amount of
downtime that a service is allowed to have. If your service is
required to have 4-nines availability, it is allowed 52.56 minutes of
downtime per year, which is 4.38 minutes of downtime per month,
1.01 minutes of downtime per week, and 8.66 seconds of downtime
per day.

Here are the availability and downtime calculations for 99% availa‐
bility to 99.999% availability:

99% availability: (2-nines):

• 3.65 days/year (of allowed downtime)

Availability: The Goal of Standardization | 3

• 7.20 hours/month
• 1.68 hours/week
• 14.4 minutes/day

99.9% availability (3-nines):

• 8.76 hours/year
• 43.8 minutes/month
• 10.1 minutes/week
• 1.44 minutes/day

99.99% availability (4-nines):

• 52.56 minutes/year
• 4.38 minutes/month
• 1.01 minutes/week
• 8.66 seconds/day

99.999% availability (5-nines):

• 5.26 minutes/year
• 25.9 seconds/month
• 6.05 seconds/week
• 864.3 milliseconds/day

Production-Readiness Standards
The basic idea behind production-readiness is this: a production-
ready application or service is one that can be trusted to serve pro‐
duction traffic. When we refer to an application or microservice as
“production-ready,” we confer a great deal of trust upon it: we trust
it to behave reasonably; we trust it to perform reliably; and we trust
it to get the job done and to do the job well. Production-readiness is
the key to microservice standardization.

However, the idea of production-readiness as just stated isn’t useful
enough to serve as the exhaustive definition we need, and without
further explication the concept is completely useless. We need to
know exactly what requirements every service must meet in order to

4 | Chapter 1: Microservices in Production

be deemed production-ready and be trusted to serve production
traffic in a reliable, appropriate way. The requirements must them‐
selves be principles that are true for every microservice, for every
application, and for every distributed system. Standardization
without principle is meaningless.

It turns out that there is a set of eight principles that fits this criteria.
Each of them is quantifiable, gives rise to a set of actionable require‐
ments, and produces measurable results. They are: stability, reliabil‐
ity, scalability, fault-tolerance, catastrophe-preparedness, performance,
monitoring, and documentation. The driving force behind each of
these principles is that, together, they contribute to and drive the
availability of a microservice.

Availability is, in some ways, an emergent property of a production-
ready microservice. It emerges from building a scalable, reliable,
fault-tolerant, performant, monitored, documented, and
catastrophe-prepared microservice. Any one of these principles
individually is not enough to ensure availability, but together they
are. Building a microservice with these principles as the driving
architectural and operational requirements guarantees a highly
available system that can be trusted with production traffic.

Stability
With the introduction of microservice architecture, developers are
given the freedom to develop and deploy at a very high velocity.
They can add and deploy new features each day, they can quickly fix
bugs and swap-out old technologies the newest ones, and they can
rewrite outdated microservices and deprecate and decommission
the old versions. With this increased velocity comes increased insta‐
bility, and we can trace the majority of outages in microservice eco‐
systems to bad deployments containing buggy code. To ensure
availability, we need to carefully guard against this instability that
stems from increased developer velocity.

Stability allows us to reach availability by giving us ways to responsi‐
bly handle changes to microservices. A stable microservice is one
for which development, deployment, the addition of new technolo‐
gies, and the decommissioning and deprecation of services doesn’t
cause instability in the larger microservice ecosystem. We can deter‐
mine stability requirements for each microservice to mitigate the
negative side effects that might accompany each change.

Stability | 5

To mitigate any problems that might arise from the development
cycle, we can put stable development procedures into place. To
counteract any instability introduced by deployment, we can ensure
our microservices are deployed carefully with proper staging, can‐
ary, and production rollouts. To prevent the introduction of new
technologies and the deprecation and decommissioning of old
microservices from compromising the availability of other services,
we can enforce stable introduction and deprecation procedures.

Stability Requirements
Following are the requirements of building a stable microservice:

• A stable development cycle
• A stable deployment process
• Stable introduction and deprecation procedures

Reliability
Stability alone isn’t enough to ensure a microservice’s availability—
the service must also be reliable. A reliable microservice is one that
can be trusted by its clients, by its dependencies, and by the ecosys‐
tem as a whole.

Although stability is related to mitigating the negative side effects
accompanying change, and reliability is related to trust, the two are
inextricably linked. Each stability requirement also carries a reliabil‐
ity requirement alongside it. For example, developers should not
only seek to have stable deployment processes, they should ensure
that each deployment is reliable from the point of view of one of
their clients or dependencies.

The trust that reliability secures can be broken into several require‐
ments, the same way we determined requirements for stability ear‐
lier. For example, we can make our deployment processes reliable by
ensuring that our integration tests are comprehensive and our stag‐
ing and canary deployment phases are successful.

By building reliability into our microservices, we can protect their
availability. We can cache data so that it will be readily available to
client services, helping them protect their SLAs by making our own

6 | Chapter 1: Microservices in Production

services highly available. To protect our own SLA from any prob‐
lems with the availability of our depencies, we can implement defen‐
sive caching.

The last reliability requirement is related to routing and discovery.
Availability requires that the communication and routing between
different services be reliable: health checks should be accurate,
requests and responses should reach their destinations, and errors
should be handled carefully and appropriately.

Reliability Requirements
Following are the requirements of building a reliable microservice:

• A reliable deployment process
• Planning, mitigating, and protecting against the failures of

dependencies
• Reliable routing and discovery

Scalability
Microservice traffic is rarely static or constant, and the hallmark of a
successful microservice (and of a successful microservice ecosys‐
tem) is a steady increase in traffic. We need to build microservices in
preparation for this growth—they need to accommodate it easily,
and they need to actively scale with it. A microservice that can’t scale
with growth experiences increased latency, poor availability, and, in
extreme cases, a drastic increase in incidents and outages. Scalability
is essential for availability, making it our third production-readiness
standard.

A scalable microservice is one that can handle a large number of
tasks or requests at the same time. To ensure a microservice is scala‐
ble, we need to know both its qualitative growth scale (e.g., whether
it scales with page views or customer orders) and its quantitative
growth scale (i.e., how many requests per second it can handle). As
soon as we know the growth scale, we can plan for future capacity
needs and identify resource bottlenecks and requirements.

The way a microservice handles traffic should also be scalable. It
should be prepared for bursts of traffic, handle them carefully, and

Scalability | 7

prevent them from taking down the service entirely. Of course, this
is easier said than done, but without scalable traffic handling, devel‐
opers can (and will) find themselves looking at a broken microser‐
vice ecosystem.

Additional complexity is introduced by the rest of the microservice
ecosystem. We need to prepare for the inevitable additional traffic
and growth from a service’s clients. Likewise, any dependencies of
the service should be alerted when increases in traffic are expected.
Cross-team communication and collaboration are essential for scal‐
ability: regularly communicating with clients and dependencies
about a service’s scalability requirements, status, and any bottlenecks
ensures that any services relying on one another are prepared for
growth and for potential pitfalls.

Last but not least, the way a microservice stores and handles data
needs to be scalable. Building a scalable storage solution goes a long
way toward ensuring the availability of a microservice, and is one of
the most essential components of a truly production-ready system.

Scalability Requirements
Here are the requirements of building a scalable microservice:

• Well-defined quantitative and qualitative growth scales
• Identification of resource bottlenecks and requirements
• Careful, accurate capacity planning
• Scalable handling of traffic
• The scaling of dependencies
• Scalable data storage

Fault Tolerance and Catastrophe
Preparedness
Even the simplest of microservices is a fairly complex system. As we
know quite well, complex systems fail, they fail often, and any
potential failure scenario can and will happen at some point in the
microservice’s lifetime. Microservices don’t live in isolation, but
within dependency chains as part of a larger, incredibly complex

8 | Chapter 1: Microservices in Production

microservice ecosystem. The complexity scales linearly with the
number of microservice in the overall ecosystem, and ensuring the
availability of not only an individual microservice, but the ecosys‐
tem as a whole, requires that we impose yet another production-
readiness standard onto each microservice. Every microservice
within the ecosystem must be fault-tolerant and prepared for any cat‐
astrophe.

A fault-tolerant, catastophe-prepared microservice is one that can
withstand both internal and external failures. Internal failures are
those that the microservice brings on itself: for example, code bugs
that aren’t caught by proper testing lead to bad deploys, causing out‐
ages that affect the entire ecosystem. External catastrophes such as
datacenter outages and or poor configuration management across
the ecosystem lead to outages that affect the availability of every
microservice and the entire organization.

We can quite adequately (though not exhaustively) prepare for fail‐
ure scenarios and potential catastrophes. Identifying failure and cat‐
astrophe scenarios is the first requirement of building a fault-
tolerant, production-ready microservice. After these scenarios have
been identified, the hard work of strategizing and planning for when
they will occur begins. This must happen at every level of the micro‐
service ecosystem, and any shared strategies should be communica‐
ted across the organization so that mitigation is standardized and
predictable.

Standardization of failure mitigation and resolution at the organiza‐
tional level means that incidents and outages of individual microser‐
vices, infrastructure components, or the ecosystem as a whole need
to be wrapped into carefully executed, easily understandable proce‐
dures. Incident response procedures need to be handled in a coordi‐
nated, planned, and thoroughly communicated manner. If incidents
and outages are handled in this way, and the structure of incident
response is well defined, organizations can avoid lengthy downtimes
and protect the availability of the microservices. If every developer
knows exactly what they are supposed to do during an outage,
knows how to mitigate and resolve problems quickly and appropri‐
ately, and knows how to escalate if an issue is beyond their capabili‐
ties or control, the time to mitigation and time to resolution drop
drastically.

Fault Tolerance and Catastrophe Preparedness | 9

Making failures and catastrophes predictable means going one step
further after identifying failure and catastrophe scenarios and plan‐
ning for them. It means forcing the microservices, the infrastruc‐
ture, and the ecosystem to fail in any and all known ways to test the
availability of the entire system. We can accomplish this through
various types of resiliency testing. Code testing (including unit tests,
regression tests, and integration tests) is the first step in testing for
resiliency. The second step is load testing—this is when we test
microservices and infrastructure components for their ability to
handle drastic changes in traffic. The last, most intense, and most
relevant type of resiliency testing is chaos testing, in which failure
scenarios are run (both scheduled and at randomly) on production
services to ensure that microservices and infrastructure components
are prepared for all known failure scenarios.

Fault-Tolerance and Catastrophe-Preparedness
Requirements

Here are the requirements for building a fault-tolerant microservice
that is prepared for any catastrophe:

• Potential catastrophes and failure scenarios are identified and
planned for

• Single points of failure are identified and resolved
• Failure detection and remediation strategies are in place
• The microservice is tested for resiliency through code testing,

load testing, and chaos testing
• Traffic is managed carefully in preparation for failure
• Incident and outages are handled appropriately and

productively

Performance
In the context of the microservice ecosystem, scalability (which we
covered in brief detail earlier), is related to how many requests a
microservice can handle. Our next production-readiness principle,
performance, refers to how well the microservice handles those
requests. A performant microservice is one that handles requests

10 | Chapter 1: Microservices in Production

quickly, processes tasks efficiently, and properly utilizes resources
(such as hardware and other infrastructure components).

A microservice that makes a large number of expensive network
calls, for example, is not performant. Neither is a microservice that
processes and handles tasks synchronously in cases for which
asynchronous (non-blocking) task processing would increase the
performance and availability of the service. Identifying and archi‐
tecting away these performance problems is a strict production-
readiness requirement.

Similarly, dedicating a large number of resources (like CPU) to a
microservice that doesn’t utilize them is inefficient. Inefficiency
reduces performance—if it’s not clear at the microservice level in
every case, it’s painful and costly at the ecosystem level. Underutil‐
ized hardware resources affect the bottom line, and hardware is not
cheap. There’s a fine line between underutilization and proper
capacity planning, and so the two must be planned and understood
together to avoid compromising the availability of any microservice
and to keep the costs associated with underutilization reasonable.

Performance Requirements
Here are the requirements of building a performant microservice:

• Appropriate service-level agreements (SLAs) for availability
• Proper task handling and processing
• Efficient utilization of resources

Monitoring
Another principle necessary for guaranteeing microservice availabil‐
ity is proper microservice monitoring. Good monitoring has three
components: (1) proper logging of all important and relevant infor‐
mation, (2) useful graphical displays (dashboards) that are easily
understood by any developer in the company and that accurately
reflect the health of the services, and (3) alerting on key metrics that
is effective and actionable.

Logging belongs and begins in the codebase of each microservice.
Determining precisely what information needs to be logged will dif‐

Monitoring | 11

fer for each service, but the goal of logging is quite simple: when
faced with a bug—even one from many deployments in the past—
you want and need your logging to be such that you can determine
from the logs exactly what went wrong and where things fell apart.
Versioning microservices (and their endpoints) is discouraged in
microservice architecture, so you won’t have a precise version to
refer to in which to find any bugs or problems. Code is revised fre‐
quently, deployments happen multiple times per week, features are
added constantly, and dependencies are constantly changing, but
logs will remain the same, preserving the information needed to
pinpoint any problems. Just ensure that your logs contain the infor‐
mation necessary to determine possible problems.

All key metrics (such as hardware utilization, database connections,
responses and average response times, and the status of API end‐
points) should be graphically displayed in real time on an easily
accessible dashboard. Dashboards are an important component of
building a well-monitored, production-ready microservice; they
make it easy to determine the health of a microservice with one
glance, and enable developers to detect strange patterns and anoma‐
lies that might not be extreme enough to trigger alerting thresholds.
When used wisely, dashboards allow developers to determine
whether a microservice is working correctly simply by looking at the
dashboard, but developers should not need to watch the dashboard
in order to detect incidents and outages.

The actual detection of failures is accomplished through alerting. All
key metrics can be alerted on, including (at the very least) CPU and
RAM utilization, number of file descriptors, number of database
connections, the SLA of the service, requests and responses, the sta‐
tus of API endpoints, errors and exceptions, the health of the serv‐
ice’s dependencies, information about any database(s), and the
number of tasks being processed (if applicable).

Normal, warning, and critical thresholds can be set for each of these
key metrics, and any deviation from the norm (i.e., hitting the warn‐
ing or critical thresholds) should trigger an alert to the developers
who are on-call for the service. The best thresholds are signal-
providing: high enough to avoid noise, but low enough to catch any
and all real problems.

Alerts need to be useful and actionable. A non-actionable alert is not
a useful alert, and a waste of engineering hours. Every actionable

12 | Chapter 1: Microservices in Production

alert should be accompanied by a runbook. For example, if an alert
is triggered on a high number of exceptions of a certain type, there
needs to be a runbook containing mitigation strategies that any on-
call developer can refer to while attempting to resolve the problem.

Monitoring Requirements
Following are the requirements of building a properly-monitored
microservice:

• Proper logging and tracing throughout the stack
• Well-designed dashboards that are easy to understand and

accurately reflect the health of the service
• Effective, actionable alerting accompanied by runbooks
• Implementing and maintaining an on-call rotation

Documentation
Microservice architecture carries the potential for increased techni‐
cal debt—it’s one of the key tradeoffs that come with adopting
microservices. As a rule, technical debt tends to increase with devel‐
oper velocity: the more quickly a service can be iterated on,
changed, and deployed, the more frequently shortcuts and patches
will be put into place. Organizational clarity and structure around
the documentation and understanding of a microservice cut through
this technical debt and shave off a lot of the confusion, lack of
awareness, and lack of architectural comprehension that tend to
accompany it.

Reducing technical debt isn’t the only reason to make good docu‐
mentation a production-readiness principle—doing so would make
it somewhat of an afterthought (an important afterthought, but an
afterthought nonetheless). No, just like each of the other
production-readiness standards, documentation and its counterpart
(understanding) directly and measurably influence the availability
of a microservice.

To see why this is true, we can think about how teams of developers
work together and share their knowledge of a microservice. You can
do this yourself by getting one of your development teams together
in a room, standing in front of a whiteboard, and asking them to

Documentation | 13

illustrate the architecture and all important details of the service. I
promise you’ll be surprised by the result of this exercise, and you’ll
most likely find that knowledge and understanding of the service is
not cohesive or coherent across the group. One developer will know
one thing about the application that nobody else does, whereas a
second developer will have such a different understanding of the
microservice that you will wonder if he is even contributing to the
same codebase. When it’s time for code changes to be reviewed,
technologies to be swapped, or features to be added, the lack of
alignment of knowledge and understanding will lead to the design
and/or evolution of microservices that are not production-ready,
containing serious flaws that undermine the service’s ability to relia‐
bly serve production traffic.

This confusion and the problems that it creates can be successfully
and rather easily avoided by requiring that every microservice fol‐
low a very strictly standardized set of documentation requirements.
The best documentation contains all the essential knowledge (facts)
about a microservice, including an architecture diagram, an
onboarding and development guide, details about the request flow
and any API endpoints, and an on-call runbook for each of the serv‐
ice’s alerts.

You can accomplish understanding of a microservice in several
ways. The first is by performing the aforementioned exercise: stick
the development team in a conference room, and ask them to white‐
board the architecture of the service. Thanks to increased developer
velocity, microservices change radically at different times through‐
out their lifecycle. By making these architecture reviews part of each
team’s process and scheduling them regularly, you can guarantee
that knowledge and understanding about any changes in the micro‐
service will be disseminated to the entire team.

To cover the second aspect of microservice understanding, we need
to jump up by one level of abstraction and consider the production-
readiness standards themselves. A great deal of microservice under‐
standing is captured by determining whether a microservice is
production-ready and where it stands with regard to the
production-readiness standards and their individual requirements.
You can achieve this in a myriad of ways, one of which is running
audits of whether a microservice meets the requirements, and then
creating a roadmap for the service detailing how to bring it to a
production-ready state. Checking the requirements can also be

14 | Chapter 1: Microservices in Production

automated across the organization. We’ll dive into other aspects of
this in more detail in the next section on the implementation of
production-readiness standards in an organization that has adopted
microservice architecture.

Documentation Requirements
Here are the requirements of building a well-documented microser‐
vice:

• Thorough, updated, and centralized documentation containing
all of the relevant and essential information about the micro‐
service

• Organizational understanding at the developer, team, and eco‐
system levels

Implementing Production-Readiness
We now have a set of standards that apply to every microservice in
any microservice ecosystem, each with its own set of specific
requirements. Any microservice that satisfies these requirements
can be trusted to serve production traffic and preserve a high level
of availability.

Now that we have the production-readiness standards, the question
that remains is how we can implement them in a specialized, real-
world microservice ecosystem. Going from principle to practice,
and applying theory to real-world applications always presents some
significant level of difficulty. However, the power of these
production-readiness standards and the requirements they impose
lies in their remarkable applicability and strict granularity: they are
both general enough to apply to any ecosystem yet specific enough
to provide concrete strategies for implementation.

Standardization requires buy-in from all levels of the organization,
and needs to be adopted and driven both from the top-down and
from the bottom-up. At the executive and leadership (managerial
and technical) levels, these principles need to be driven and sup‐
ported as architectural requirements for the engineering organiza‐
tion. On the ground floor, within individual development teams,
standardization needs to be embraced and implemented. Impor‐

Implementing Production-Readiness | 15

tantly, standardization needs to be seen and communicated not as a
hindrance or gate to development and deployment, but as a guide
for production-ready development and deployment.

Many developers might resist standardization. After all, they might
argue, isn’t the point of adopting microservice architecture to pro‐
vide greater developer velocity, freedom, and productivity? The
answer to these sorts of objections is not to deny that the adoption
of microservice architecture brings freedom and velocity to develop‐
ment teams, but to agree and point out that that is exactly why
production-readiness standards need to be in place. Developer
velocity and productivity grind to a halt whenever an outage brings
a service down, whenever a bad deploy compromises the availability
of a microservice’s clients and dependencies, whenever a failure that
could have been avoided with proper resiliency testing brings the
entire microservice ecosystem down. If we’ve learned anything in
the past 50 years of software development, it’s that standardization
brings freedom and reduces entropy. As Brooks says in The Mythical
Man-Month, perhaps the greatest collection of essays on the practice
of software engineering, “form is liberating.”

After the engineering organization has adopted and agreed to follow
production-readiness standards, the next step is to evaluate and
elaborate on each standard’s requirements. The requirements pre‐
sented here are very general and need the addition of context,
organization-specific details, and implementation strategies. What
remains to be done is to work through each production-readiness
standard and its requirements, and then figure out how each
requirement can be implemented across the engineering organiza‐
tion. For example, if the organization’s microservice ecosystem has a
self-service deployment tool, implementing a stable and reliable
deployment process needs to be communicated in terms of the
internal deployment tool and how it works. Rebuilding internal
tools and/or adding features to them can also come out of this exer‐
cise.

The actual implementation of the requirements and determining
whether a given microservice meets them can be done by the devel‐
opers themselves, by team leads, by management, or by DevOps
engineers, or by site reliability engineers. At both Uber and the sev‐
eral other companies I know that have adopted production-
readiness standardization, the implementation and enforcement of
the production-readiness standards is driven by the site reliability

16 | Chapter 1: Microservices in Production

engineering (SRE) organizations. SREs are, typically, responsible for
the availability of the services, and so driving these standards across
the microservice ecosystem fits in quite well with existing responsi‐
bilities. That isn’t to say that the developers or development teams
have no responsibility for ensuring their services are production
ready, rather, SREs inform, drive, and enforce production-readiness
within the microservice ecosystem, and the responsibility of imple‐
mentation falls on both the SREs embedded within development
teams and on the developers themselves.

Building and maintaining a production-ready microservice ecosys‐
tem is not an easy challenge to undertake, but the rewards are great
and the impact is reflected in the increased availability of each
microservice. Implementing production-readiness standards and
their requirements provides measurable results and allows develop‐
ment teams work knowing that the services they depend on are
trustworthy, stable, reliable, fault-tolerant, performant, monitored,
documented, and prepared for any catastrophe.

Implementing Production-Readiness | 17

About the Author
Susan J. Fowler is a site reliability engineer at Uber, where she runs
a production-readiness initiative across all Uber microservices and
embeds within business-critical teams to bring their services to a
production-ready state. She worked on application platforms and
infrastructure at several small startups before joining Uber, and
before that, studied particle physics at Penn, where she searched for
supersymmetry and designed hardware for the ATLAS and CMS
detectors.

	Cover
	Programming Newsletter
	Copyright
	Table of Contents
	Chapter 1. Microservices in Production
	Introduction
	The Challenges of Microservice Standardization
	Availability: The Goal of Standardization
	Production-Readiness Standards
	Stability
	Reliability
	Scalability
	Fault Tolerance and Catastrophe Preparedness
	Performance
	Monitoring
	Documentation
	Implementing Production-Readiness

	About the Author

