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The Rise of Cloud-Native

Software is eating the world.
—Mark Andreessen

Stable industries that have for years been dominated by entrenched
leaders are rapidly being disrupted, and they’re being disrupted by
businesses with software at their core. Companies like Square, Uber,
Netflix, Airbnb, and Tesla continue to possess rapidly growing pri‐
vate market valuations and turn the heads of executives of their
industries’ historical leaders. What do these innovative companies
have in common?

• Speed of innovation
• Always-available services
• Web scale
• Mobile-centric user experiences

Moving to the cloud is a natural evolution of focusing on software,
and cloud-native application architectures are at the center of how
these companies obtained their disruptive character. By cloud, we
mean any computing environment in which computing, network‐
ing, and storage resources can be provisioned and released elasti‐
cally in an on-demand, self-service manner. This definition includes
both public cloud infrastructure (such as Amazon Web Services,
Google Cloud, or Microsoft Azure) and private cloud infrastructure
(such as VMware vSphere or OpenStack).

In this chapter we’ll explain how cloud-native application architec‐
tures enable these innovative characteristics. Then we’ll examine a
few key aspects of cloud-native application architectures.
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Why Cloud-Native Application Architectures?
First we’ll examine the common motivations behind moving to
cloud-native application architectures.

Speed
It’s become clear that speed wins in the marketplace. Businesses that
are able to innovate, experiment, and deliver software-based solu‐
tions quickly are outcompeting those that follow more traditional
delivery models.

In the enterprise, the time it takes to provision new application envi‐
ronments and deploy new versions of software is typically measured
in days, weeks, or months. This lack of speed severely limits the risk
that can be taken on by any one release, because the cost of making
and fixing a mistake is also measured on that same timescale.

Internet companies are often cited for their practice of deploying
hundreds of times per day. Why are frequent deployments impor‐
tant? If you can deploy hundreds of times per day, you can recover
from mistakes almost instantly. If you can recover from mistakes
almost instantly, you can take on more risk. If you can take on more
risk, you can try wild experiments—the results might turn into your
next competitive advantage.

The elasticity and self-service nature of cloud-based infrastructure
naturally lends itself to this way of working. Provisioning a new
application environment by making a call to a cloud service API is
faster than a form-based manual process by several orders of magni‐
tude. Deploying code to that new environment via another API call
adds more speed. Adding self-service and hooks to teams’ continu‐
ous integration/build server environments adds even more speed.
Eventually we can measure the answer to Lean guru Mary Poppen‐
dick’s question, “How long would it take your organization to
deploy a change that involves just one single line of code?” in
minutes or seconds.

Imagine what your team…what your business…could do if you
were able to move that fast!
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Safety
It’s not enough to go extremely fast. If you get in your car and push
the pedal to the floor, eventually you’re going to have a rather expen‐
sive (or deadly!) accident. Transportation modes such as aircraft and
express bullet trains are built for speed and safety. Cloud-native
application architectures balance the need to move rapidly with the
needs of stability, availability, and durability. It’s possible and essen‐
tial to have both.

As we’ve already mentioned, cloud-native application architectures
enable us to rapidly recover from mistakes. We’re not talking about
mistake prevention, which has been the focus of many expensive
hours of process engineering in the enterprise. Big design up front,
exhaustive documentation, architectural review boards, and lengthy
regression testing cycles all fly in the face of the speed that we’re
seeking. Of course, all of these practices were created with good
intentions. Unfortunately, none of them have provided consistently
measurable improvements in the number of defects that make it into
production.

So how do we go fast and safe?

Visibility
Our architectures must provide us with the tools necessary to
see failure when it happens. We need the ability to measure
everything, establish a profile for “what’s normal,” detect devia‐
tions from the norm (including absolute values and rate of
change), and identify the components contributing to those
deviations. Feature-rich metrics, monitoring, alerting, and data
visualization frameworks and tools are at the heart of all cloud-
native application architectures.

Fault isolation
In order to limit the risk associated with failure, we need to
limit the scope of components or features that could be affected
by a failure. If no one could purchase products from Ama‐
zon.com every time the recommendations engine went down,
that would be disastrous. Monolithic application architectures
often possess this type of failure mode. Cloud-native application
architectures often employ microservices (“Microservices” on
page 10). By composing systems from microservices, we can

Why Cloud-Native Application Architectures? | 3



limit the scope of a failure in any one microservice to just that
microservice, but only if combined with fault tolerance.

Fault tolerance
It’s not enough to decompose a system into independently
deployable components; we must also prevent a failure in one of
those components from causing a cascading failure across its
possibly many transitive dependencies. Mike Nygard described
several fault tolerance patterns in his book Release It! (Pragmatic
Programmers), the most popular being the circuit breaker. A
software circuit breaker works very similarly to an electrical cir‐
cuit breaker: it prevents cascading failure by opening the circuit
between the component it protects and the remainder of the
failing system. It also can provide a graceful fallback behavior,
such as a default set of product recommendations, while the cir‐
cuit is open. We’ll discuss this pattern in detail in “Fault-
Tolerance” on page 42.

Automated recovery
With visibility, fault isolation, and fault tolerance, we have the
tools we need to identify failure, recover from failure, and pro‐
vide a reasonable level of service to our customers while we’re
engaging in the process of identification and recovery. Some
failures are easy to identify: they present the same easily detecta‐
ble pattern every time they occur. Take the example of a service
health check, which usually has a binary answer: healthy or
unhealthy, up or down. Many times we’ll take the same course
of action every time we encounter failures like these. In the case
of the failed health check, we’ll often simply restart or redeploy
the service in question. Cloud-native application architectures
don’t wait for manual intervention in these situations. Instead,
they employ automated detection and recovery. In other words,
they let a computer wear the pager instead of a human.

Scale
As demand increases, we must scale our capacity to service that
demand. In the past we handled more demand by scaling vertically:
we bought larger servers. We eventually accomplished our goals, but
slowly and at great expense. This led to capacity planning based on
peak usage forecasting. We asked “what’s the most computing power
this service will ever need?” and then purchased enough hardware
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to meet that number. Many times we’d get this wrong, and we’d still
blow our available capacity during events like Black Friday. But
more often we’d be saddled with tens or hundreds of servers with
mostly idle CPU’s, which resulted in poor utilization metrics.

Innovative companies dealt with this problem through two pioneer‐
ing moves:

• Rather than continuing to buy larger servers, they horizontally
scaled application instances across large numbers of cheaper
commodity machines. These machines were easier to acquire
(or assemble) and deploy quickly.

• Poor utilization of existing large servers was improved by virtu‐
alizing several smaller servers in the same footprint and deploy‐
ing multiple isolated workloads to them.

As public cloud infrastructure like Amazon Web Services became
available, these two moves converged. The virtualization effort was
delegated to the cloud provider, and the consumer focused on hori‐
zontal scale of its applications across large numbers of cloud server
instances. Recently another shift has happened with the move from
virtual servers to containers as the unit of application deployment.
We’ll discuss containers in “Containerization” on page 26.

This shift to the cloud opened the door for more innovation, as
companies no longer required large amounts of startup capital to
deploy their software. Ongoing maintenance also required a lower
capital investment, and provisioning via API not only improved the
speed of initial deployment, but also maximized the speed with
which we could respond to changes in demand.

Unfortunately all of these benefits come with a cost. Applications
must be architected differently for horizontal rather than vertical
scale. The elasticity of the cloud demands ephemerality. Not only
must we be able to create new application instances quickly; we
must also be able to dispose of them quickly and safely. This need is
a question of state management: how does the disposable interact
with the persistent? Traditional methods such as clustered sessions
and shared filesystems employed in mostly vertical architectures do
not scale very well.

Another hallmark of cloud-native application architectures is the
externalization of state to in-memory data grids, caches, and persis‐
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tent object stores, while keeping the application instance itself essen‐
tially stateless. Stateless applications can be quickly created and
destroyed, as well as attached to and detached from external state
managers, enhancing our ability to respond to changes in demand.
Of course this also requires the external state managers themselves
to be scalable. Most cloud infrastructure providers have recognized
this necessity and provide a healthy menu of such services.

Mobile Applications and Client Diversity
In January 2014, mobile devices accounted for 55% of Internet usage
in the United States. Gone are the days of implementing applications
targeted at users working on computer terminals tethered to desks.
Instead we must assume that our users are walking around with
multicore supercomputers in their pockets. This has serious impli‐
cations for our application architectures, as exponentially more
users can interact with our systems anytime and anywhere.

Take the example of viewing a checking account balance. This task
used to be accomplished by calling the bank’s call center, taking a
trip to an ATM location, or asking a teller at one of the bank’s
branch locations. These customer interaction models placed signifi‐
cant limits on the demand that could be placed on the bank’s under‐
lying software systems at any one time.

The move to online banking services caused an uptick in demand,
but still didn’t fundamentally change the interaction model. You still
had to physically be at a computer terminal to interact with the sys‐
tem, which still limited the demand significantly. Only when we all
began, as my colleague Andrew Clay Shafer often says, “walking
around with supercomputers in our pockets,” did we start to inflict
pain on these systems. Now thousands of customers can interact
with the bank’s systems anytime and anywhere. One bank executive
has said that on payday, customers will check their balances several
times every few minutes. Legacy banking systems simply weren’t
architected to meet this kind of demand, while cloud-native applica‐
tion architectures are.

The huge diversity in mobile platforms has also placed demands on
application architectures. At any time customers may want to inter‐
act with our systems from devices produced by multiple different
vendors, running multiple different operating platforms, running
multiple versions of the same operating platform, and from devices
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of different form factors (e.g., phones vs. tablets). Not only does this
place various constraints on the mobile application developers, but
also on the developers of backend services.

Mobile applications often have to interact with multiple legacy sys‐
tems as well as multiple microservices in a cloud-native application
architecture. These services cannot be designed to support the
unique needs of each of the diverse mobile platforms used by our
customers. Forcing the burden of integration of these diverse serv‐
ices on the mobile developer increases latency and network trips,
leading to slow response times and high battery usage, ultimately
leading to users deleting your app. Cloud-native application architec‐
tures also support the notion of mobile-first development through
design patterns such as the API Gateway, which transfers the burden
of service aggregation back to the server-side. We’ll discuss the API
Gateway pattern in “API Gateways/Edge Services” on page 47.

Defining Cloud-Native Architectures
Now we’ll explore several key characteristics of cloud-native applica‐
tion architectures. We’ll also look at how these characteristics
address motivations we’ve already discussed.

Twelve-Factor Applications
The twelve-factor app is a collection of patterns for cloud-native
application architectures, originally developed by engineers at Her‐
oku. The patterns describe an application archetype that optimizes
for the “why” of cloud-native application architectures. They focus
on speed, safety, and scale by emphasizing declarative configuration,
stateless/shared-nothing processes that horizontally scale, and an
overall loose coupling to the deployment environment. Cloud appli‐
cation platforms like Cloud Foundry, Heroku, and Amazon Elastic
Beanstalk are optimized for deploying twelve-factor apps.

In the context of twelve-factor, application (or app) refers to a single
deployable unit. Organizations will often refer to multiple collabo‐
rating deployables as an application. In this context, however, we will
refer to these multiple collaborating deployables as a distributed sys‐
tem.

A twelve-factor app can be described in the following ways:
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Codebase
Each deployable app is tracked as one codebase tracked in revi‐
sion control. It may have many deployed instances across multi‐
ple environments.

Dependencies
An app explicitly declares and isolates dependencies via appro‐
priate tooling (e.g., Maven, Bundler, NPM) rather than depend‐
ing on implicitly realized dependencies in its deployment
environment.

Config
Configuration, or anything that is likely to differ between
deployment environments (e.g., development, staging, produc‐
tion) is injected via operating system-level environment vari‐
ables.

Backing services
Backing services, such as databases or message brokers, are
treated as attached resources and consumed identically across
all environments.

Build, release, run
The stages of building a deployable app artifact, combining that
artifact with configuration, and starting one or more processes
from that artifact/configuration combination, are strictly sepa‐
rated.

Processes
The app executes as one or more stateless processes (e.g., mas‐
ter/workers) that share nothing. Any necessary state is external‐
ized to backing services (cache, object store, etc.).

Port binding
The app is self-contained and exports any/all services via port
binding (including HTTP).

Concurrency
Concurrency is usually accomplished by scaling out app pro‐
cesses horizontally (though processes may also multiplex work
via internally managed threads if desired).
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Disposability
Robustness is maximized via processes that start up quickly and
shut down gracefully. These aspects allow for rapid elastic scal‐
ing, deployment of changes, and recovery from crashes.

Dev/prod parity
Continuous delivery and deployment are enabled by keeping
development, staging, and production environments as similar
as possible.

Logs
Rather than managing logfiles, treat logs as event streams,
allowing the execution environment to collect, aggregate, index,
and analyze the events via centralized services.

Admin processes
Administrative or managements tasks, such as database migra‐
tions, are executed as one-off processes in environments identi‐
cal to the app’s long-running processes.

These characteristics lend themselves well to deploying applications
quickly, as they make few to no assumptions about the environ‐
ments to which they’ll be deployed. This lack of assumptions allows
the underlying cloud platform to use a simple and consistent mech‐
anism, easily automated, to provision new environments quickly
and to deploy these apps to them. In this way, the twelve-factor
application patterns enable us to optimize for speed.

These characteristics also lend themselves well to the idea of ephem‐
erality, or applications that we can “throw away” with very little cost.
The application environment itself is 100% disposable, as any appli‐
cation state, be it in-memory or persistent, is extracted to some
backing service. This allows the application to be scaled up and
down in a very simple and elastic manner that is easily automated.
In most cases, the underlying platform simply copies the existing
environment the desired number of times and starts the processes.
Scaling down is accomplished by halting the running processes and
deleting the environments, with no effort expended backing up or
otherwise preserving the state of those environments. In this way,
the twelve-factor application patterns enable us to optimize for
scale.

Finally, the disposability of the applications enables the underlying
platform to automatically recover from failure events very quickly.
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Furthermore, the treatment of logs as event streams greatly enables
visibility into the underlying behavior of the applications at runtime.
The enforced parity between environments and the consistency of
configuration mechanisms and backing service management enable
cloud platforms to provide rich visibility into all aspects of the appli‐
cation’s runtime fabric. In this way, the twelve-factor application pat‐
terns enable us to optimize for safety.

Microservices
Microservices represent the decomposition of monolithic business
systems into independently deployable services that do “one thing
well.” That one thing usually represents a business capability, or the
smallest, “atomic” unit of service that delivers business value.

Microservice architectures enable speed, safety, and scale in several
ways:

• As we decouple the business domain into independently
deployable bounded contexts of capabilities, we also decouple
the associated change cycles. As long as the changes are restric‐
ted to a single bounded context, and the service continues to
fulfill its existing contracts, those changes can be made and
deployed independent of any coordination with the rest of the
business. The result is enablement of more frequent and rapid
deployments, allowing for a continuous flow of value.

• Development can be accelerated by scaling the development
organization itself. It’s very difficult to build software faster by
adding more people due to the overhead of communication and
coordination. Fred Brooks taught us years ago that adding more
people to a late software project makes it later. However, rather
than placing all of the developers in a single sandbox, we can
create parallel work streams by building more sandboxes
through bounded contexts.

• The new developers that we add to each sandbox can ramp up
and become productive more rapidly due to the reduced cogni‐
tive load of learning the business domain and the existing code,
and building relationships within a smaller team.

• Adoption of new technology can be accelerated. Large mono‐
lithic application architectures are typically associated with
long-term commitments to technical stacks. These commit‐
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ments exist to mitigate the risk of adopting new technology by
simply not doing it. Technology adoption mistakes are more
expensive in a monolithic architecture, as those mistakes can
pollute the entire enterprise architecture. If we adopt new tech‐
nology within the scope of a single monolith, we isolate and
minimze the risk in much the same way that we isolate and
minimize the risk of runtime failure.

• Microservices offer independent, efficient scaling of services.
Monolithic architectures can scale, but require us to scale all
components, not simply those that are under heavy load. Micro‐
services can be scaled if and only if their associated load
requires it.

Self-Service Agile Infrastructure
Teams developing cloud-native application architectures are typi‐
cally responsible for their deployment and ongoing operations. Suc‐
cessful adopters of cloud-native applications have empowered teams
with self-service platforms.

Just as we create business capability teams to build microservices for
each bounded context, we also create a capability team responsible
for providing a platform on which to deploy and operate these
microservices (“The Platform Operations Team” on page 22).

The best of these platforms raise the primary abstraction layer for
their consumers. With infrastructure as a service (IAAS) we asked
the API to create virtual server instances, networks, and storage, and
then applied various forms of configuration management and auto‐
mation to enable our applications and supporting services to run.
Platforms are now emerging that allow us to think in terms of appli‐
cations and backing services.

Application code is simply “pushed” in the form of pre-built arti‐
facts (perhaps those produced as part of a continuous delivery pipe‐
line) or raw source code to a Git remote. The platform then builds
the application artifact, constructs an application environment,
deploys the application, and starts the necessary processes. Teams
do not have to think about where their code is running or how it got
there, as the platform takes care of these types of concerns transpar‐
ently.
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The same model is supported for backing services. Need a database?
How about a message queue or a mail server? Simply ask the plat‐
form to provision one that fits your needs. Platforms now support a
wide range of SQL/NoSQL data stores, message queues, search
engines, caches, and other important backing services. These service
instances can then be “bound” to your application, with necessary
credentials automatically injected into your application’s environ‐
ment for it to consume. A great deal of messy and error-prone
bespoke automation is thereby eliminated.

These platforms also often provide a wide array of additional opera‐
tional capabilities:

• Automated and on-demand scaling of application instances
• Application health management
• Dynamic routing and load balancing of requests to and across

application instances
• Aggregation of logs and metrics

This combination of tools ensures that capability teams are able to
develop and operate services according to agile principles, again
enabling speed, safety, and scale.

API-Based Collaboration
The sole mode of interaction between services in a cloud-native
application architecture is via published and versioned APIs. These
APIs are typically HTTP REST-style with JSON serialization, but
can use other protocols and serialization formats.

Teams are able to deploy new functionality whenever there is a need,
without synchronizing with other teams, provided that they do not
break any existing API contracts. The primary interaction model for
the self-service infrastructure platform is also an API, just as it is
with the business services. Rather than submitting tickets to provi‐
sion, scale, and maintain application infrastructure, those same
requests are submitted to an API that automatically services the
requests.

Contract compliance can be verified on both sides of a service-to-
service interaction via consumer-driven contracts. Service consum‐
ers are not allowed to gain access to private implementation details
of their dependencies or directly access their dependencies’ data
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stores. In fact, only one service is ever allowed to gain direct access
to any data store. This forced decoupling directly supports the
cloud-native goal of speed.

Antifragility
The concept of antifragility was introduced in Nassim Taleb’s book
Antifragile (Random House). If fragility is the quality of a system
that gets weaker or breaks when subjected to stressors, then what is
the opposite of that? Many would respond with the idea of robust‐
ness or resilience—things that don’t break or get weaker when sub‐
jected to stressors. However, Taleb introduces the opposite of fragil‐
ity as antifragility, or the quality of a system that gets stronger when
subjected to stressors. What systems work that way? Consider the
human immune system, which gets stronger when exposed to
pathogens and weaker when quarantined. Can we build architec‐
tures that way? Adopters of cloud-native architectures have sought
to build them. One example is the Netflix Simian Army project, with
the famous submodule “Chaos Monkey,” which injects random fail‐
ures into production components with the goal of identifying and
eliminating weaknesses in the architecture. By explicitly seeking out
weaknesses in the application architecture, injecting failures, and
forcing their remediation, the architecture naturally converges on a
greater degree of safety over time.

Summary
In this chapter we’ve examined the common motivations for moving
to cloud-native application architectures in terms of abilities that we
want to provide to our business via software:

Speed
The ability to innovate, experiment, and deliver value more
quickly than our competitors.

Safety
The ability to move rapidly but also maintain stability, availabil‐
ity, and durability.

Scale
The ability to elastically respond to changes in demand.
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Mobility
The ability for our customers to interact with us seamlessly
from any location, on any device, and at any time.

We’ve also examined the unique characteristics of cloud-native
application architectures and how they can help us provide these
abilities:

Twelve-factor applications
A set of patterns that optimize application design for speed,
safety, and scale.

Microservices
An architecture pattern that helps us align our units of deploy‐
ment with business capabilities, allowing each capability to
move independently and autonomously, and in turn faster and
safer.

Self-service agile infrastructure
Cloud platforms that enable development teams to operate at an
application and service abstraction level, providing
infrastructure-level speed, safety, and scale.

API-based collaboration
An architecture pattern that defines service-to-service interac‐
tion as automatically verifiable contracts, enabling speed and
safety through simplified integration work.

Antifragility
As we increase stress on the system via speed and scale, the sys‐
tem improves its ability to respond, increasing safety.

In the next chapter we’ll examine a few of the changes that most
enterprises will need to make in order to adopt cloud-native applica‐
tion architectures.
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Changes Needed

All we are doing is looking at the timeline from the moment a cus‐
tomer gives us an order to the point when we collect the cash. And we
are reducing that timeline by removing the nonvalue-added wastes.

—Taichi Ohno

Taichi Ohno is widely recognized as the Father of Lean Manufactur‐
ing. Although the practices of lean manufacturing often don’t trans‐
late perfectly into the world of software development, the principles
normally do. These principles can guide us well in seeking out the
changes necessary for a typical enterprise IT organization to adopt
cloud-native application architectures, and to embrace the cultural
and organizational transformations that are part of this shift.

Cultural Change
A great deal of the changes necessary for enterprise IT shops to
adopt cloud-native architectures will not be technical at all. They
will be cultural and organizational changes that revolve around
eliminating structures, processes, and activities that create waste. In
this section we’ll examine the necessary cultural shifts.

From Silos to DevOps
Enterprise IT has typically been organized into many of the follow‐
ing silos:

• Software development
• Quality assurance
• Database administration
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• System administration
• IT operations
• Release management
• Project management

These silos were created in order to allow those that understand a
given specialty to manage and direct those that perform the work of
that specialty. These silos often have different management hierar‐
chies, toolsets, communication styles, vocabularies, and incentive
structures. These differences inspire very different paradigms of the
purpose of enterprise IT and how that purpose should be accom‐
plished.

An often cited example of these conflicting paradigms is the view of
change possessed by the development and operations organizations.
Development’s mission is usually viewed as delivering additional
value to the organization through the development of software fea‐
tures. These features, by their very nature, introduce change into the
IT ecosystem. So development’s mission can be described as “deliv‐
ering change,” and is very often incentivized around how much
change it delivers.

Conversely, IT operations’ mission can be described as that of “pre‐
venting change.” How? IT operations is usually tasked with main‐
taining the desired levels of availability, resiliency, performance, and
durability of IT systems. Therefore they are very often incentivized
to maintain key perfomance indicators (KPIs) such as mean time
between failures (MTBF) and mean time to recovery (MTTR). One
of the primary risk factors associated with any of these measures is
the introduction of any type of change into the system. So, rather
than find ways to safely introduce development’s desired changes
into the IT ecosystem, the knee-jerk reaction is often to put pro‐
cesses in place that make change painful, and thereby reduce the
rate of change.

These differing paradigms obviously lead to many additional
suboptimal collaborations. Collaboration, communication, and sim‐
ple handoff of work product becomes tedious and painful at best,
and absolutely chaotic (even dangerous) at worst. Enterprise IT
often tries to “fix” the situation by creating heavyweight processes
driven by ticket-based systems and committee meetings. And the
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enterprise IT value stream slows to a crawl under the weight of all of
the nonvalue-adding waste.

Environments like these are diametrically opposed to the cloud-
native idea of speed. Specialized silos and process are often motiva‐
ted by the desire to create a safe environment. However they usually
offer very little additional safety, and in some cases, make things
worse!

At its heart, DevOps represents the idea of tearing down these silos
and building shared toolsets, vocabularies, and communication
structures in service of a culture focused on a single goal: delivering
value rapidly and safely. Incentive structures are then created that
reinforce and award behaviors that lead the organization in the
direction of that goal. Bureaucracy and process are replaced by trust
and accountability.

In this new world, development and IT operations report to the
same immediate leadership and collaborate to find practices that
support both the continuous delivery of value and the desired levels
of availability, resiliency, performance, and durability. Today these
context-sensitive practices increasingly include the adoption of
cloud-native application architectures that provide the technological
support needed to accomplish the organization’s new shared goals.

From Punctuated Equilibrium to Continuous Delivery
Enterprises have often adopted agile processes such as Scrum, but
only as local optimizations within development teams.

As an industry we’ve actually become fairly successful in transition‐
ing individual development teams to a more agile way of working.
We can begin projects with an inception, write user stories, and
carry out all the routines of agile development such as iteration
planning meetings, daily standups, retrospectives, and customer
showcase demos. The adventurous among us might even venture
into engineering practices like pair programming and test-driven
development. Continuous integration, which used to be a fairly radi‐
cal concept, has now become a standard part of the enterprise soft‐
ware lexicon. In fact, I’ve been a part of several enterprise software
teams that have established highly optimized “story to demo” cycles,
with the result of each development iteration being enthusiastically
accepted during a customer demo.
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But then these teams would receive that dreaded question:
When can we see these features in our production environment?

This question is the most difficult for us to answer, as it forces us to
consider forces that are beyond our control:

• How long will it take for us to navigate the independent quality
assurance process?

• When will we be able to join a production release train?
• Can we get IT operations to provision a production environ‐

ment for us in time?

It’s at this point that we realize we’re embedded in what Dave West
has called the waterscrumfall. Our team has moved on to embrace
agile principles, but our organization has not. So, rather than each
iteration resulting in a production deployment (this was the original
intent behind the Agile Manifesto value of working software), the
code is actually batched up to participate in a more traditional
downstream release cycle.

This operating style has direct consequences. Rather than each itera‐
tion resulting in value delivered to the customer and valuable feed‐
back pouring back into the development team, we continue a “punc‐
tuated equilibrium” style of delivery. Punctuated equilibrium
actually short-circuits two of the key benefits of agile delivery:

• Customers will likely go several weeks without seeing new value
in the software. They perceive that this new agile way of work‐
ing is just “business as usual,” and do not develop the promised
increased trust relationship with the development team.
Because they don’t see a reliable delivery cadence, they revert to
their old practices of piling as many requirements as possible
into releases. Why? Because they have little confidence that any
software delivery will happen soon, they want as much value as
possible to be included when it finally does occur.

• Teams may go several weeks without real feedback. Demos are
great, but any seasoned developer knows that the best feedback
comes only after real users engage with production software.
That feedback provides valuable course corrections that enable
teams to “build the right thing.” By delaying this feedback, the
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likelihood that the wrong thing gets built only increases, along
with the associated costly rework.

Gaining the benefits of cloud-native application architectures
requires a shift to continuous delivery. Rather than punctuated equi‐
librium driven by a waterscrumfall organization, we embrace the
principles of value from end to end. A useful model for envisioning
such a lifecycle is the idea of “Concept to Cash” described by Mary
and Tom Poppendieck in their book Implementing Lean Software
Development (Addison-Wesley). This approach considers all of the
activities necessary to carry a business idea from its conception to
the point where it generates profit, and constructs a value stream
aligning people and process toward the optimal achievement of that
goal.

We technically support this way of working with the engineering
practices of continuous delivery, where every iteration (in fact, every
source code commit!) is proven to be deployable in an automated
fashion. We construct deployment pipelines which automate every
test which would prevent a production deployment should that test
fail. The only remaining decision to make is a business decision:
does it make good business sense to deploy the available new fea‐
tures now? We already know they work as advertised, so do we want
to give them to our customers? And because the deployment pipe‐
line is fully automated, the business is able to act on that decision
with the click of a button.

Centralized Governance to Decentralized Autonomy
One portion of the waterscrumfall culture merits a special mention,
as I have seen it become a real sticking point in cloud-native adop‐
tion.

Enterprises normally adopt centralized governance structures
around application architecture and data management, with com‐
mittees responsible for maintaining guidelines and standards, as
well as approving individual designs and changes. Centralized gov‐
ernance is intended to help with a few issues:
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• It can prevent widespread inconsistencies in technology stacks,
decreasing the overall maintenance burden for the organization.

• It can prevent widespread inconsistencies in architectural
choices, allowing for a common view of application develop‐
ment across the organization.

• Cross-cutting concerns like regulatory compliance can be han‐
dled in a consistent way for the entire organization.

• Ownership of data can be determined by those who have a
broad view of all organizational concerns.

These structures are created with the belief that they will result in
higher quality, lower costs, or both. However, these structures rarely
result in the quality improvements or cost savings desired, and fur‐
ther prevent the speed of delivery sought from cloud-native applica‐
tion architectures. Just as monolithic application architectures can
create bottlenecks which limit the speed of technical innovation,
monolithic governance structures can do the same. Architectural
committees often only assemble periodically, and long waiting
queues of work often ensue. Even small data model changes—
changes that could be implemented in minutes or hours, and that
would be readily approved by the committee—lay wasting in an
ever-growing stack of to-do items.

Adoption of cloud-native application architectures is almost always
coupled with a move to decentralized governance. The teams build‐
ing cloud-native applications (“Business Capability Teams” on page
21) own all facets of the capability they’re charged with delivering.
They own and govern the data, the technology stack, the application
architecture, the design of individual components, and the API con‐
tract delivered to the remainder of the organization. If a decision
needs to be made, it’s made and executed upon autonomously by the
team.

The decentralization and autonomy of individual teams is balanced
by minimal, lightweight structures that are imposed on the integra‐
tion patterns used between independently developed and deployed
services (e.g., they prefer HTTP REST JSON APIs rather than many
different styles of RPC). These structures often emerge through
grassroots adoption of solutions to cross-cutting problems like fault
tolerance. Teams are encouraged to devise solutions to these prob‐
lems locally, and then self-organize with other teams to establish
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common patterns and frameworks. As a preferred solution for the
entire organization emerges, ownership of that solution is very often
transfered to a cloud frameworks/tools team, which may or may not
be embedded in the platform operations team (“The Platform Oper‐
ations Team” on page 22). This cloud frameworks/tools team will
often pioneer solutions as well while the organization is reforming
around a shared understanding of the architecture.

Organizational Change
In this section we’ll examine the necessary changes to how organiza‐
tions create teams when adopting cloud-native application architec‐
tures. The theory behind this reorganization is the famous observa‐
tion known as Conway’s Law. Our solution is to create a team com‐
bining staff with many disciplines around each long-term product,
instead of segregating staff that have a single discipline in each own
team, such as testing.

Business Capability Teams
Any organization that designs a system (defined broadly) will pro‐
duce a design whose structure is a copy of the organization’s commu‐
nication structure.

—Melvyn Conway

We’ve already discussed in “From Silos to DevOps” on page 15 the
practice of organizing IT into specialized silos. Quite naturally, hav‐
ing created these silos, we have also placed individuals into teams
aligned with these silos. But what happens when we need to build a
new piece of software?

A very common practice is to commission a project team. The team
is assigned a project manager, and the project manager then collabo‐
rates with various silos to obtain “resources” for each specialty
needed to staff the project. Part of what we learn from Conway’s
Law, quoted above, is that these teams will then very naturally pro‐
duce in their system design the very silos from which they hail. And
so we end up with siloed architectures having modules aligned with
the silos themselves:

• Data access tier
• Services tier
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• Web MVC tier
• Messaging tier
• Etc.

Each of these tiers spans multiple identifiable business capabilities,
making it very difficult to innovate and deploy features related to
one business capability independently from the others.

Companies seeking to move to cloud-native architectures like
microservices segregated by business capability have often employed
what Thoughtworks has called the Inverse Conway Maneuver.
Rather than building an architecture that matches their org chart,
they determine the architecture they want and restructure their
organization to match that architecture. If you do that, according to
Conway, the architecture that you desire will eventually emerge.

So, as part of the shift to a DevOps culture, teams are organized as
cross-functional, business capability teams that develop products
rather than projects. Products are long-lived efforts that continue
until they no longer provide value to the business. (You’re done
when your code is no longer in production!) All of the roles neces‐
sary to build, test, deliver, and operate the service delivering a busi‐
ness capability are present on a team, which doesn’t hand off code to
other parts of the organization. These teams are often organized as
“two-pizza teams”, meaning that the team is too big if it cannot be
fed with two pizzas.

What remains then is to determine what teams to create. If we fol‐
low the Inverse Conway Maneuver, we’ll start with the domain
model for the organization, and seek to identify business capabilities
that can be encapsulated within bounded contexts (which we’ll cover
in “Decomposing Data” on page 24). Once we identify these capabil‐
ities, we create business capability teams to own them throughout
their useful lifecycle. Business capability teams own the entire
development-to-operations lifecycle for their applications.

The Platform Operations Team
The business capability teams need to rely on the self-service agile
infrastructure described earlier in “Self-Service Agile Infrastructure”
on page 11. In fact, we can express a special business capability
defined as “the ability to develop, deploy, and operate business capa‐
bilities.” This capability is owned by the platform operations team.
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The platform operations team operates the self-service agile infra‐
structure platform leveraged by the business capability teams. This
team typically includes the traditional system, network, and storage
administrator roles. If the company is operating the cloud platform
on premises, this team also either owns or collaborates closely with
teams managing the data centers themselves, and understands the
hardware capabilities necessary to provide an infrastructure plat‐
form.

IT operations has traditionally interacted with its customers via a
variety of ticket-based systems. Because the platform operations
team operates a self-service platform, it must interact differently.
Just as the business capability teams collaborate with one another
around defined API contracts, the platform operations team
presents an API contract for the platform. Rather than queuing up
requests for application environments and data services to be provi‐
sioned, business capability teams are able to take the leaner
approach of building automated release pipelines that provision
environments and services on-demand.

Technical Change
Now we can turn to some implementation issues in moving to a
DevOps platform in the cloud.

Decomposing Monoliths
Traditional n-tier, monolithic enterprise applications rarely operate
well when deployed to cloud infrastructure, as they often make
unsupportable assumptions about their deployment environment
that cloud infrastructures simply cannot provide. A few examples
include:

• Access to mounted, shared filesystems
• Peer-to-peer application server clustering
• Shared libraries
• Configuration files sitting in well-known locations

Most of these assumptions are coupled with the fact that monoliths
are typically deployed to long-lived infrastructure. Unfortunately,
they are not very compatible with the idea of elastic and ephemeral
infrastructure.
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But let’s assume that we could build a monolith that does not make
any of these assumptions. We still have trouble:

• Monoliths couple change cycles together such that independent
business capabilities cannot be deployed as required, preventing
speed of innovation.

• Services embedded in monoliths cannot be scaled independ‐
ently of other services, so load is far more difficult to account
for efficiently.

• Developers new to the organization must acclimate to a new
team, often learn a new business domain, and become familiar
with an extremely large codebase all at once. This only adds to
the typical 3–6 month ramp up time before achieving real pro‐
ductivity.

• Attempting to scale the development organization by adding
more people further crowds the sandbox, adding expensive
coordination and communication overhead.

• Technical stacks are committed to for the long term. Introduc‐
ing new technology is considered too risky, as it can adversely
affect the entire monolith.

The observant reader will notice that this list is the inverse of the list
from “Microservices” on page 10. The decomposition of the organi‐
zation into business capability teams also requires that we decom‐
pose applications into microservices. Only then can we harness the
maximum benefit from our move to cloud infrastructure.

Decomposing Data
It’s not enough to decompose monolithic applications into microser‐
vices. Data models must also be decoupled. If business capability
teams are supposedly autonomous but are forced to collaborate via a
single data store, the monolithic barrier to innovation is simply relo‐
cated.

In fact, it’s arguable that product architecture must start with the
data. The principles found in Domain-Driven Design (DDD), by Eric
Evans (Addison-Wesley), argue that our success is largely governed
by the quality of our domain model (and the ubiquitous language
that underpins it). For a domain model to be effective, it must also
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be internally consistent—we should not find terms or concepts with
inconsistent definitions within the same model.

It is incredibly difficult and costly (and arguably impossible) to cre‐
ate a federated domain model that does not suffer from such incon‐
sistencies. Evans refers to internally consistent subsets of the overall
domain model of the business as bounded contexts.

When working with an airline customer recently, we were discus‐
sing the concepts most central to their business. Naturally the topic
of “airline reservation” came up. The group could count seventeen
different logical definitions of reservation within its business, with
little to no hope of reconciling them into one. Instead, all of the
nuance of each definition was carefully baked into a single concept,
which became a huge bottleneck for the organization.

Bounded contexts allow you to keep inconsistent definitions of a
single concept across the organization, as long as they are defined
consistently within the contexts themselves.

So we begin by identifying the segments of the domain model that
can be made internally consistent. We draw fixed boundaries
around these segments, which become our bounded contexts. We’re
then able to align business capability teams with these contexts, and
those teams build microservices providing those capabilities.

This definition of microservice provides a useful rubric for defining
what your twelve-factor apps ought to be. Twelve-factor is primarily
a technical specification, whereas microservices are primarily a busi‐
ness specification. We define our bounded contexts, assign them a
set of business capabilities, commission capability teams to own
those business capabilities, and have them build twelve-factor appli‐
cations. The fact that these applications are independently deploya‐
ble provides business capability teams with a useful set of technical
tools for operation.

We couple bounded contexts with the database per service pattern,
where each microservice encapsulates, governs, and protects its own
domain model and persistent store. In the database per service pat‐
tern, only one application service is allowed to gain access to a logi‐
cal data store, which could exist as a single schema within a multi‐
tenant cluster or a dedicated physical database. Any external access
to the concepts is made through a well-defined business contract
implemented as an API (often REST but potentially any protocol).
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This decomposition allows for the application of polyglot persis‐
tence, or choosing different data stores based on data shape and
read/write access patterns. However, data must often be recomposed
via event-driven techniques in order to ask cross-context questions.
Techniques such as command query responsibility segregation
(CQRS) and event sourcing, beyond the scope of this report, are
often helpful when synchronizing similar concepts across contexts.

Containerization
Container images, such as those prepared via the LXC, Docker, or
Rocket projects, are rapidly becoming the unit of deployment for
cloud-native application architectures. Such container images are
then instantiated by various scheduling solutions such as Kuber‐
netes, Marathon, or Lattice. Public cloud providers such as Amazon
and Google also provide first-class solutions for container schedul‐
ing and deployment. Containers leverage modern Linux kernel
primitives such as control groups (cgroups) and namespaces to pro‐
vide similar resource allocation and isolation features as those pro‐
vided by virtual machines with much less overhead and much
greater portability. Application developers will need to become com‐
fortable packaging applications as container images to take full
advantage of the features of modern cloud infrastructure.

From Orchestration to Choreography
Not only must service delivery, data modeling, and governance be
decentralized, but also service integration. Enterprise integration of
services has traditionally been accomplished via the enterprise ser‐
vice bus (ESB). The ESB becomes the owner of all routing, transfor‐
mation, policy, security, and other decisions governing the interac‐
tion between services. We call this orchestration, analogous to the
conductor who determines the course of the music performed by an
orchestra during its performance. ESBs and orchestration make for
very simple and pleasing architecture diagrams, but their simplicity
is deceiving. Often hiding within the ESB is a tangled web of com‐
plexity. Managing this complexity becomes a full-time occupation,
and working with it becomes a continual bottleneck for the applica‐
tion development team. Just as we saw with a federated data model,
a federated integration solution like the ESB becomes a monolithic
hazard to speed.
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Cloud-native architectures, such as microservices, tend to prefer
choreography, akin to dancers in a ballet. Rather than placing the
smarts in the integration mechanism, they are placed in the end‐
points, akin to the dumb pipes and smart filters of the Unix archi‐
tecture. When circumstances on stage differ from the original plan,
there’s no conductor present to tell the dancers what to do. Instead,
they simply adapt. In the same way, services adapt to changing cir‐
cumstances in their environment via patterns such as client-side
load balancing (“Routing and Load Balancing” on page 39) and cir‐
cuit breakers (“Fault-Tolerance” on page 42).

While the architecture diagrams tend to look like a tangled web,
their complexity is no greater than a traditional SOA. Choreography
simply acknowledges and exposes the essential complexity of the
system. Once again this shift is in support of the autonomy required
to enable the speed sought from cloud-native architectures. Teams
are able to adapt to their changing circumstances without the diffi‐
cult overhead of coordinating with other teams, and avoid the over‐
head of coordinating changes with a centrally-managed ESB.

Summary
In this chapter we’ve examined a few of the changes that most enter‐
prises will need to make in order to adopt cloud-native application
architectures. Culturally the overall theme is one of decentralization
and autonomy:

DevOps
Decentralization of skill sets into cross-functional teams.

Continuous delivery
Decentralization of the release schedule and process.

Autonomy
Decentralization of decision making.

We codify this decentralization into two primary team structures:

Business capability teams
Cross-functional teams that make their own decisions about
design, process, and release schedule.
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Platform operations teams
Teams that provide the cross-functional teams with the plat‐
form they need to operate.

And technically, we also decentralize control:

Monoliths to microservices
Control of individual business capabilities is distributed to indi‐
vidual autonomous services.

Bounded contexts
Control of internally consistent subsets of the business domain
model is distributed to microservices.

Containerization
Control of application packaging is distributed to business capa‐
bility teams.

Choreography
Control of service integration is distributed to the service end‐
points.

All of these changes create autonomous units that are able to safely
move at the desired rate of innovation.

In the final chapter, we’ll delve into technical specifics of migrating
to cloud-native application architectures through a set of cookbook-
style recipes.
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Migration Cookbook

Now that we’ve defined cloud-native application architectures and
given a brief high-level overview of the changes enterprises must
consider when adopting them, it’s time to delve into technical
specifics. Each of these topics minimally merits its own chapter, and
that’s beyond the scope of this report. Instead, this chapter provides
a set of short, cookbook-style recipes to help with specific tasks and
patterns needed to adopt a cloud-native application architecture,
along with links to helpful further reading.

Decomposition Recipes
After discussing the decomposition of data, services, and teams with
customers, I’m often asked, “Great! How do we get there from
here?” Good question. How do we tear apart existing monoliths and
move them to the cloud?

As it turns out, I’ve seen companies succeed with a fairly repeatable
pattern of incremental migration which I now recommend to all of
my customers. Publicly referenceable examples of this pattern can
be found at SoundCloud and Karma.

In this section we’ll walk step-by-step through a series of recipes that
provide a process for decomposing monolithic services and moving
them to the cloud.
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New Features as Microservices
Surprisingly, the first step is not to start chipping away at the mono‐
lith itself. We’ll begin with the assumption that you still have a back‐
log of features to be built within the monolith. In fact, if you don’t
have any net new functionality to build, it’s arguable that you
shouldn’t even be considering this decomposition. (Given that our
primary motivation is speed, how do you leave something
unchanged really fast?)

...the team decided that the best approach to deal with the architec‐
ture changes would not be to split the Mothership immediately, but
rather to not add anything new to it. All of our new features were
built as microservices...

—Phil Calcado, SoundCloud

So it’s time to stop adding new code to the monolith. All new fea‐
tures will be built as microservices. Get good at this first, as building
new services from scratch is far easier than surgically extracting
them from a big ball of mud.

Inevitably, however, these new microservices will need to talk back
to the monolith in order to get anything done. How do we attack
that problem?

The Anti-Corruption Layer
Because so much of our logic was still in the Rails monolith, pretty
much all of our microservices had to talk to it somehow.

—Phil Calcado, SoundCloud

Domain-Driven Design (DDD), by Eric Evans (Addison-Wesley),
discusses the idea of an anti-corruption layer. Its purpose is to allow
the integration of two systems without allowing the domain model
of one system to corrupt the domain model of the other. As you
build new functionality into microservices, you don’t want these
new services to become tightly coupled with the monolith by giving
them deep knowledge of the monolith’s internals. The anti-
corruption layer is a way of creating API contracts that make the
monolith look like other microservices.

Evans divides the implementation of anti-corruption layers into
three submodules, the first two representing classic design patterns
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(from Gamma et al., Design Patterns: Elements of Reusable Object-
Oriented Software [Addison Wesley]):

Facade
The purpose of the facade module here is to simplify the pro‐
cess of integrating with the monolith’s interface. It’s very likely
that the monolith was not designed with this type of integration
in mind, so the facade’s purpose is to solve this problem. Impor‐
tantly, it does not change the monolith’s model, being careful
not to couple translation and integration concerns.

Adapter
The adapter is where we define “services” that provide things
our new features need. It knows how to take a request from our
system, using a protocol that it understands, and make that
request to the monolith’s facade(s).

Translator
The translator’s responsibility is to convert requests and respon‐
ses between the domain model of the monolith and the domain
model of the new microservice.

These three loosely coupled components solve three problems:

1. System integration
2. Protocol translation
3. Model translation

What remains is the location of the communication link. In DDD,
Evans discusses two alternatives. The first, facade to system, is pri‐
marily useful when you can’t access or alter the legacy system. Our
focus here is on monoliths we do control, so we’ll lean toward Evans’
second suggestion, adapter to facade. Using this alternative, we build
the facade into the monolith, allowing communications to occur
between the adapter and the facade, as presumably it’s easier to cre‐
ate this link between two things written explicitly for this purpose.

Finally, it’s important to note that anti-corruption layers can facili‐
tate two-way communication. Just as our new microservices may
need to communicate with the monolith to accomplish work, the
inverse may be true as well, particularly as we move on to our next
phase.
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Strangling the Monolith
After the architecture changes were made, our teams were free to
build their new features and enhancements in a much more flexible
environment. An important question remained, though: how do we
extract the features from the monolithic Rails application called
Mothership?

—Phil Calcado, SoundCloud

I borrow the idea of “strangling the monolith” from Martin Fowler’s
article entitled “StranglerApplication”. In this article, Fowler
explains the idea of gradually creating “a new system around the
edges of the old, letting it grow slowly over several years until the
old system is strangled.” We’re effectively going to do the same thing
here. Through a combination of extracted microservices and addi‐
tional anti-corruption layers, we’ll build a new cloud-native system
around the edges of the existing monolith.

Two criteria help us choose which components to extract:

1. SoundCloud nails the first criterion: identify bounded contexts
within the monolith. If you’ll recall our earlier discussions of
bounded contexts, they require a domain model that is inter‐
nally consistent. It’s extremely likely that our monolith’s domain
model is not internally consistent. Now it’s time to start identi‐
fying submodels that can be. These are our candidates for
extraction.

2. Our second criterion deals with priority: which of our candi‐
dates do we extract first? We can answer this by reviewing our
first reason for moving to cloud-native architecture: speed of
innovation. What candidate microservices will benefit most
from speed of innovation? We obviously want to choose those
that are changing the most given our current business needs.
Look at the monolith’s backlog. Identify the areas of the mono‐
lith’s code that will need to change in order to deliver the
changed requirements, and then extract the appropriate boun‐
ded contexts before making the desired changes.
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Potential End States
How do we know when we are finished? There are basically two end
states:

1. The monolith has been completely strangled to death. All boun‐
ded contexts have been extracted into microservices. The final
step is to identify opportunities to eliminate anti-corruption
layers that are no longer necessary.

2. The monolith has been strangled to a point where the cost of
additional service extraction exceeds the return on the neces‐
sary development efforts. Some portions of the monolith may
be fairly stable—we haven’t changed them in years and they’re
doing their jobs. There may not be much value in moving these
portions around, and the cost of maintaining the necessary anti-
corruption layers to integrate with them may be low enough
that we can take it on long-term.

Distributed Systems Recipes
As we start to build distributed systems composed from microservi‐
ces, we’ll also encounter nonfunctional requirements that we don’t
normally encounter when developing a monolith. Sometimes the
laws of physics get in the way of solving these problems, such as
consistency, latency, and network partitions. However, the problems
of brittleness and manageability can normally be addressed through
the proper application of fairly generic, boilerplate patterns. In this
section we’ll examine recipes that help us with these concerns.

These recipes are drawn from a combination of the Spring Cloud
project and the Netflix OSS family of projects.

Versioned and Distributed Configuration
We discussed the importance of proper configuration management
for applications in “Twelve-Factor Applications” on page 7, which
specifies the injection of configuration via operating system-level
environment variables. This method is very suitable for simple sys‐
tems, but as we scale up to larger systems, sometimes we want addi‐
tional configuration capabilities:
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• Changing logging levels of a running application in order to
debug a production issue

• Change the number of threads receiving messages from a mes‐
sage broker

• Report all configuration changes made to a production system
to support regulatory audits

• Toggle features on/off in a running application
• Protect secrets (such as passwords) embedded in configuration

In order to support these capabilities, we need a configuration man‐
agement approach with the following features:

• Versioning
• Auditability
• Encryption
• Refresh without restart

The Spring Cloud project contains a Config Server that provides
these features. This Config Server presents application and applica‐
tion profile (e.g., sets of configuration that can be toggled on/off as a
set, such as a “development” or “staging” profile) configuration as a
REST API backed by a Git repository (Figure 3-1).
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Figure 3-1. The Spring Cloud Config Server

As an example, here’s the default application profile configuration
for a sample Config Server (Example 3-1).

Example 3-1. Default application profile configuration for a sample
Config Server

{
    "label": "",
    "name": "default",
    "propertySources": [
      {
        "name": "https://github.com/mstine/config-repo.git/applica
tion.yml", 
        "source": {
          "greeting": "ohai" 
      }
    }
  ]
}

This configuration is backed by the file application.yml in the
specified backing Git repository.
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The greeting is currently set to ohai.

The configuration in Example 3-1 was not manually coded, but gen‐
erated automatically. We can see that the value for greeting is being
distributed to the Spring application by examining its /env endpoint
(Example 3-2).

Example 3-2. Environment for a Config Server client

"configService:https://github.com/mstine/config-repo.git/applica
tion.yml": {
  "greeting": "ohai" 
},

This application is receiving its greeting value of ohai from the
Config Server.

All that remains is for us to be able to update the value of greeting
without restarting the client application. This capability is provided
by another Spring Cloud project module called Spring Cloud Bus.
This project links nodes of a distributed system with a lightweight
message broker, which can then be used to broadcast state changes
such as our desired configuration change (Figure 3-2).

Simply by performing an HTTP POST to the /bus/refresh end‐
point of any application participating in the bus (which should obvi‐
ously be guarded with appropriate security), we can instruct all
applications on the bus to refresh their configuration with the latest
available values from the Config Server.
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Figure 3-2. The Spring Cloud Bus

Service Registration/Discovery
As we create distributed systems, our code’s dependencies cease to
be a method call away. Instead, we must make network calls in order
to consume them. How do we perform the necessary wiring to allow
all of the microservices within a composed system to communicate
with one another?

A common architecture pattern in the cloud (Figure 3-3) is to have
frontend (application) and backend (business) services. Backend
services are often not accessible directly from the Internet but are
rather accessed via the frontend services. The service registry pro‐
vides a listing of all services and makes them available to frontend
services through a client library (“Routing and Load Balancing” on
page 39) which performs load balancing and routing to backend
services.
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Figure 3-3. Service registration and discovery

We’ve solved this problem before using various incarnations of the
Service Locator and Dependency Injection patterns, and service-
oriented architectures have long employed various forms of service
registries. We’ll employ a similar solution here by leveraging Eureka,
which is a Netflix OSS project that can be used for locating services
for the purpose of load balancing and failover of middle-tier serv‐
ices. Consumption of Eureka is further simplified for Spring appli‐
cations via the Spring Cloud Netflix project, which provides a pri‐
marily annotation-based configuration model for consuming Netflix
OSS services.

An application leveraging Spring Boot can participate in service reg‐
istration and discovery simply by adding the @EnableDiscovery
Client annotation (Example 3-3).

Example 3-3. A Spring Boot application with service registration/
discovery enabled

@SpringBootApplication
@EnableDiscoveryClient 
public class Application {

  public static void main(String[] args) {
    SpringApplication.run(Application.class, args);
  }

}

The @EnableDiscoveryClient enables service registration/
discovery for this application.
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The application is then able to communicate with its dependencies
by leveraging the DiscoveryClient. In Example 3-4, the application
looks up an instance of a service registered with the name PRODUCER,
obtains its URL, and then leverages Spring’s RestTemplate to com‐
municate with it.

Example 3-4. Using the DiscoveryClient to locate a producer service

@Autowired
DiscoveryClient discoveryClient; 

@RequestMapping("/")
public String consume() {
  InstanceInfo instance = discoveryClient.getNextServerFromEur
eka("PRODUCER", false); 

  RestTemplate restTemplate = new RestTemplate();
  ProducerResponse response = restTemplate.getForOb
ject(instance.getHomePageUrl(), ProducerResponse.class);

  return "{\"value\": \"" + response.getValue() + "\"}";
}

The enabled DiscoveryClient is injected by Spring.

The getNextServerFromEureka method provides the location
of a service instance using a round-robin algorithm.

Routing and Load Balancing
Basic round-robin load balancing is effective for many scenarios,
but distributed systems in cloud environments often demand a
more advanced set of routing and load balancing behaviors. These
are commonly provided by various external, centralized load bal‐
ancing solutions. However, it’s often true that such solutions do not
possess enough information or context to make the best choices for
a given application as it attempts to communicate with its depen‐
dencies. Also, should such external solutions fail, these failures can
cascade across the entire architecture.

Cloud-native solutions often often shift the responsibility for mak‐
ing routing and load balancing solutions to the client. One such
client-side solution is the Ribbon Netflix OSS project (Figure 3-4).

Distributed Systems Recipes | 39

http://bit.ly/ribbon-netflix


Figure 3-4. Ribbon client-side load balancer

Ribbon provides a rich set of features including:

• Multiple built-in load balancing rules:
— Round-robin
— Average response-time weighted
— Random
— Availability filtered (avoid tripped circuits or high concur‐

rent connection counts)
• Custom load balancing rule plugin system
• Pluggable integration with service discovery solutions (includ‐

ing Eureka)
• Cloud-native intelligence such as zone affinity and unhealthy

zone avoidance
• Built-in failure resiliency

As with Eureka, the Spring Cloud Netflix project greatly simplifies a
Spring application developer’s consumption of Ribbon. Rather than
injecting an instance of DiscoveryClient (for direct consumption
of Eureka), developers can inject an instance of LoadBalancer
Client, and then use that to resolve an instance of the application’s
dependencies (Example 3-5).

Example 3-5. Using the LoadBalancerClient to locate a producer
service

@Autowired
LoadBalancerClient loadBalancer; 
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@RequestMapping("/")
public String consume() {
  ServiceInstance instance = loadBalancer.choose("producer"); 
  URI producerUri = URI.create("http://${instance.host}:$
{instance.port}");

  RestTemplate restTemplate = new RestTemplate();
  ProducerResponse response = restTemplate.getForObject(producer
Uri, ProducerResponse.class);

  return "{\"value\": \"" + response.getValue() + "\"}";
}

The enabled LoadBalancerClient is injected by Spring.

The choose method provides the location of a service instance
using the currently enabled load balancing algorithm.

Spring Cloud Netflix further simplifies the consumption of Ribbon
by creating a Ribbon-enabled RestTemplate bean which can be
injected into beans. This instance of RestTemplate is configured to
automatically resolve instances of logical service names to instance
URIs using Ribbon (Example 3-6).

Example 3-6. Using the Ribbon-enabled RestTemplate

@Autowired
RestTemplate restTemplate; 

@RequestMapping("/")
public String consume() {
  ProducerResponse response = restTemplate.getForObject("http://
producer", ProducerResponse.class); 
  return "{\"value\": \"" + response.getValue() + "\"}";
}

RestTemplate is injected rather than a LoadBalancerClient.

The injected RestTemplate automatically resolves http://

producer to an actual service instance URI.
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Fault-Tolerance
Distributed systems have more potential failure modes than mono‐
liths. As each incoming request must now potentially touch tens (or
even hundreds) of different microservices, some failure in one or
more of those dependencies is virtually guaranteed.

Without taking steps to ensure fault tolerance, 30 dependencies
each with 99.99% uptime would result in 2+ hours downtime/
month (99.99%^30^ = 99.7% uptime = 2+ hours in a month).

—Ben Christensen, 
Netflix Engineer

How do we prevent such failures from resulting in the type of cas‐
cading failures that would give us such negative availability num‐
bers? Mike Nygard documented several patterns that can help in his
book Release It! (Pragmatic Programmers), including:

Circuit breakers
Circuit breakers insulate a service from its dependencies by pre‐
venting remote calls when a dependency is determined to be
unhealthy, just as electrical circuit breakers protect homes from
burning down due to excessive use of power. Circuit breakers
are implemented as state machines (Figure 3-5). When in their
closed state, calls are simply passed through to the dependency.
If any of these calls fails, the failure is counted. When the failure
count reaches a specified threshold within a specified time
period, the circuit trips into the open state. In the open state,
calls always fail immediately. After a predetermined period of
time, the circuit transitions into a “half-open” state. In this state,
calls are again attempted to the remote dependency. Successful
calls transition the circuit breaker back into the closed state,
while failed calls return the circuit breaker to the open state.
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Figure 3-5. A circuit breaker state machine

Bulkheads
Bulkheads partition a service in order to confine errors and pre‐
vent the entire service from failing due to failure in one area.
They are named for partitions that can be sealed to segment a
ship into multiple watertight compartments. This can prevent
damage (e.g., caused by a torpedo hit) from causing the entire
ship to sink. Software systems can utilize bulkheads in many
ways. Simply partitioning into microservices is our first line of
defense. The partitioning of application processes into Linux
containers (“Containerization” on page 26) so that one process
cannot takeover an entire machine is another. Yet another
example is the division of parallelized work into different thread
pools.

Netflix has produced a very powerful library for fault tolerance in
Hystrix that employs these patterns and more. Hystrix allows code
to be wrapped in HystrixCommand objects in order to wrap that code
in a circuit breaker.
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Example 3-7. Using a HystrixCommand object

public class CommandHelloWorld extends HystrixCommand<String> {

    private final String name;

    public CommandHelloWorld(String name) {
        super(HystrixCommandGroupKey.Factory.asKey("Exam
pleGroup"));
        this.name = name;
    }

    @Override
    protected String run() { 
        return "Hello " + name + "!";
    }
}

The code in the run method is wrapped with a circuit breaker

Spring Cloud Netflix adds an @EnableCircuitBreaker annotation
to enable the Hystrix runtime components in a Spring Boot applica‐
tion. It then leverages a set of contributed annotations to make pro‐
gramming with Spring and Hystrix as easy as the earlier integrations
we’ve described (Example 3-8).

Example 3-8. Using @HystrixCommand

@Autowired
RestTemplate restTemplate;

@HystrixCommand(fallbackMethod = "getProducerFallback") 
public ProducerResponse getProducerResponse() {
  return restTemplate.getForObject("http://producer", ProducerRes
ponse.class);
}

public ProducerResponse getProducerFallback() { 
  return new ProducerResponse(42);
}

The method annotated with @HystrixCommand is wrapped with
a circuit breaker.
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The method getProducerFallback is referenced within the
annotation and provides a graceful fallback behavior while the
circuit is in the open or half-open state.

Hystrix is unique from many other circuit breaker implementations
in that it also employs bulkheads by operating each circuit breaker
within its own thread pool. It also collects many useful metrics
about the circuit breaker’s state, including:

• Traffic volume
• Request rate
• Error percentage
• Hosts reporting
• Latency percentiles
• Successes, failures, and rejections

These metrics are emitted as an event stream which can be aggrega‐
ted by another Netflix OSS project called Turbine. Individual or
aggregated metric streams can then be visualized using a powerful
Hystrix Dashboard (Figure 3-6), providing excellent visibility into
the overall health of the distributed system.
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Figure 3-6. Hystrix Dashboard showing three sets of circuit breaker
metrics
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API Gateways/Edge Services
In “Mobile Applications and Client Diversity” on page 6 we dis‐
cussed the idea of server-side aggregation and transformation of an
ecosystem of microservices. Why is this necessary?

Latency
Mobile devices typically operate on lower speed networks than
our in-home devices. The need to connect to tens (or hun‐
dreds?) of microservices in order to satisfy the needs of a single
application screen would reduce latency to unacceptable levels
even on our in-home or business networks. The need for con‐
current access to these services quickly becomes clear. It is less
expensive and error-prone to capture and implement these con‐
current patterns once on the server-side than it is to do the
same on each device platform.

A further source of latency is response size. Web service devel‐
opment has trended toward the “return everything you might
possibly need” approach in recent years, resulting in much
larger response payloads than is necessary to satisfy the needs of
a single mobile device screen. Mobile device developers would
prefer to reduce that latency by retrieving only the necessary
information and ignoring the remainder.

Round trips
Even if network speed was not an issue, communicating with a
large number of microservices would still cause problems for
mobile developers. Network usage is one of the primary con‐
sumers of battery life on such devices. Mobile developers try to
economize on network usage by making the fewest server-side
calls possible to deliver the desired user experience.

Device diversity
The diversity within the mobile device ecosystem is enormous.
Businesses must cope with a growing list of differences across
their customer bases, including different:

• Manufacturers
• Device types
• Form factors
• Device sizes
• Programming languages
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• Operating systems
• Runtime environments
• Concurrency models
• Supported network protocols

This diversity expands beyond even the mobile device ecosys‐
tem, as developers are now targeting a growing ecosystem of in-
home consumer devices including smart televisions and set-top
boxes.

The API Gateway pattern (Figure 3-7) is targeted at shifting the bur‐
den of these requirements from the device developer to the server-
side. API gateways are simply a special class of microservices that
meet the needs of a single client application (such as a specific
iPhone app), and provide it with a single entry point to the backend.
They access tens (or hundreds) of microservices concurrently with
each request, aggregating the responses and transforming them to
meet the client application’s needs. They also perform protocol
translation (e.g., HTTP to AMQP) when necessary.

Figure 3-7. The API Gateway pattern

API gateways can be implemented using any language, runtime, or
framework that well supports web programming, concurrency pat‐
terns, and the protocols necesssary to communicate with the target
microservices. Popular choices include Node.js (due to its reactive
programming model) and the Go programming language (due to its
simple concurrency model).
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In this discussion we’ll stick with Java and give an example from
RxJava, a JVM implementation of Reactive Extensions born at Net‐
flix. Composing multiple work or data streams concurrently can be
a challenge using only the primitives offered by the Java language,
and RxJava is among a family of technologies (also including Reac‐
tor) targeted at relieving this complexity.

In this example we’re building a Netflix-like site that presents users
with a catalog of movies and the ability to create ratings and reviews
for those movies. Further, when viewing a specific title, it provides
recommendations to the viewer of movies they might like to watch
if they like the title currently being viewed. In order to provide these
capabilities, three microservices were developed:

• A catalog service
• A reviews service
• A recommendations service

The mobile application for this service expects a response like that
found in Example 3-9.

Example 3-9. The movie details response

{
    "mlId": "1",
    "recommendations": [
        {
            "mlId": "2",
            "title": "GoldenEye (1995)"
        }
    ],
    "reviews": [
        {
            "mlId": "1",
            "rating": 5,
            "review": "Great movie!",
            "title": "Toy Story (1995)",
            "userName": "mstine"
        }
    ],
    "title": "Toy Story (1995)"
}

The code found in Example 3-10 utilizes RxJava’s Observable.zip
method to concurrently access each of the services. After receiving
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the three responses, the code passes them to the Java 8 Lambda that
uses them to create an instance of MovieDetails. This instance of
MovieDetails can then be serialized to produce the response found
in Example 3-9.

Example 3-10. Concurrently accessing three services and aggregating
their responses

Observable<MovieDetails> details = Observable.zip(

  catalogIntegrationService.getMovie(mlId),
  reviewsIntegrationService.reviewsFor(mlId),
  recommendationsIntegrationService.getRecommendations(mlId),

  (movie, reviews, recommendations) -> {
    MovieDetails movieDetails = new MovieDetails();
    movieDetails.setMlId(movie.getMlId());
    movieDetails.setTitle(movie.getTitle());
    movieDetails.setReviews(reviews);
    movieDetails.setRecommendations(recommendations);
    return movieDetails;
  }
);

This example barely scratches the surface of the available functional‐
ity in RxJava, and the reader is invited to explore the library further
at RxJava’s wiki.

Summary
In this chapter we walked through two sets of recipes that can help
us move toward a cloud-native application architecture:

Decomposition
We break down monolithic applications by:

1. Building all new features as microservices.
2. Integrating new microservices with the monolith via anti-

corruption layers.
3. Strangling the monolith by identifying bounded contexts

and extracting services.
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Distributed systems
We compose distributed systems by:

1. Versioning, distributing, and refreshing configuration via a
configuration server and management bus.

2. Dynamically discovering remote dependencies.
3. Decentralizing load balancing decisions.
4. Preventing cascading failures through circuit breakers and

bulkheads.
5. Integrating on the behalf of specific clients via API Gate‐

ways.

Many additional helpful patterns exist, including those for automa‐
ted testing and the construction of continuous delivery pipelines.
For more information, the reader is invited to read “Testing Strate‐
gies in a Microservice Architecture” by Toby Clemson and Continu‐
ous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation by Jez Humble and David Farley (Addison-
Wesley).
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