
Wolfgang Beer

Mobile App
Analytics

http://oreil.ly/ops-perf

Wolfgang Beer

Mobile App Analytics
Optimize Your Apps with

User Experience Monitoring

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95709-7

Mobile App Analytics
by Wolfgang Beer

Copyright © 2016 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Colleen Cole
Copyeditor: Molly Ives Brower

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2016: First Edition

Revision History for the First Edition
2016-09-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491957097 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Mobile App Ana‐
lytics, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491957097

Table of Contents

Foreword. vii

1. Introduction. 1

2. Measure App Success. 5
Counting Installations 6
Active and New Users 8
Measure User Engagement 8
Business Intelligence 11

3. Real User Experience. 15
Crashes 17
Monitor App Performance 19

4. Topology. 23

5. Visual Session Tracking. 27

6. Instrumentation of a Mobile App. 31
Automated Instrumentation 33
Manual Instrumentation 35
Capture App Crashes 36
Build Tool Support 39

7. Conclusion. 43

Glossary. 45

v

Foreword

Mobile apps have evolved from an experimental to an integral part
of the eCommerce business model. Increasingly, entire businesses
are now being built around mobile application strategies.

This rapid adoption of mobile means that operations professionals
must extend their monitoring strategies to include mobile app per‐
formance, availability, and crashes. This proves to be a challenge as
the management of mobile apps have different requirements than
web-based applications. The combination of the diversity of devices,
the large number of operating system versions, and the lack of con‐
trol over the release and update process create new requirements
towards monitoring and operational analytics.

Users have little patience for non-performing apps or apps with
functional issues. If an app does not meet user expectations, it is
deleted minutes after the download. Having a mobile monitoring
and performance strategy in place is essential. This book provides
clear guidelines on how to achieve this quickly and efficiently.

— Alois Reitbauer
Chief Technical Strategist

and Head of Innovation Lab
at Dynatrace

vii

CHAPTER 1

Introduction

One of the differences between publishing mobile apps and selling
traditional products without a network connection is the possibility
to instantly collect usage statistics and context information in real
time about individual customers worldwide. Collecting real-time
data about all product users is daily business for marketing and sales
experts, as well as for the engineers who develop and improve
mobile apps.

Today’s competitive situation within global app marketplaces makes
it hard for app developers to distinguish their app from thousands
of similar mobile apps. Providing a reliable and highly responsive
mobile app and showing a good level of attention to details helps
you stay on top of your competitors. To know your typical app users
and how they experience your mobile app is the first step toward
good product reviews and a growing user base. Mobile-user experi‐
ence monitoring helps publishers understand how customers are
using an app and what features they prefer. Without this deep visi‐
bility, it is impossible to drive innovation and to improve the usabil‐
ity of your mobile offering.

Often, product innovation arises just by following your customers
through their business process workflows and by tracking and
measuring key performance indicators. User surveys and A/B tests
with a target audience have a long tradition and can answer different
hypotheses about your product and functions within different mar‐
ket segments and user groups.

1

1 9 Mobile App KPIs to Know, Lauren Drell, Sept 05 2013, http://mashable.com/
2013/09/04/mobile-app-metrics

A/B tests are used to measure the difference between two slightly
different variants of the same product with the goal of selecting the
one that performs best according to a given metric. A/B testing is
the typical methodology to decide which variant performs better in
terms of number of conversions.

The result of user studies, on the other hand, directly leads to usabil‐
ity improvements, possible products, upselling opportunities, ideas
to improve advertising campaigns.

For decades, marketing experts have analyzed and studied target
audiences for traditional paper mailings, catalogs, or emails. Digital
marketing experts take target audience analysis to the extreme by
using global real-time information to observe changes in global
usage within minutes; for example, monitoring how users’ naviga‐
tional behavior changed in real time after an email campaign
announced a new feature within your mobile app.

Today, real-time collection and analysis of usage information is not
limited to websites and mobile apps; it has been seamlessly adapted
for smart TVs, watches, or even personal fitness-tracking devices.
Actual usage information helps to better understand how a product
is handled by the customers, which parts of the user interface are
hot spots, and which parts are never used at all.

Modern analytic frameworks offer a vast amount of different met‐
rics and key perfomance indicators (KPIs)1, but the interpretation is
still up to human analysts and involves the definition and testing of
hypotheses. The most profound collection of user information is
worth nothing without a reasonable formulated hypothesis. There
isn’t a generic one-size-fits-all collection of metrics and KPIs;
instead, the selection of a feasible set of metrics depends on the
hypotheses to check. This report will give a short introduction to
important categories of metrics and their application. To dive into
the details of formulating detailed hypotheses and correctly inter‐
preting the results would go beyond its scope.

The application domains and questions to answer by collecting
usage statistics are manifold, and range from marketing to product
management to quality management and testing aspects. While

2 | Chapter 1: Introduction

http://mashable.com/2013/09/04/mobile-app-metrics
http://mashable.com/2013/09/04/mobile-app-metrics

questions around the marketing aspects will most likely focus on ad
targeting, conversion rates, and effectivity, quality management’s
interests are directed toward stability, heterogeneity of target plat‐
forms, and maximizing the quality of products by focusing their
testing budgets into specific parts of the product.

This report gives an overview of the different metrics that are collec‐
ted by instrumenting mobile-native apps. By introducing different
use cases and corresponding metrics, readers get a deeper under‐
standing of how their customers experience the usability and perfor‐
mance of a mobile app. The report also introduces the typical
instrumentation and publishing process of mobile apps and pro‐
vides some detail insights about different instrumentation
approaches. The goal of this report is to help readers to set up real
user monitoring for their own mobile apps and to drive product
improvements by choosing the right metric for specific questions.

This report focuses on general vendor- and tool-
independent techniques for collecting and ana‐
lyzing metrics for your mobile app business. All
of the metrics mentioned within the report can
be collected with any mobile monitoring frame‐
work available today. In order to present real-
world examples, I’ve used screenshots from
popular tools such as Google Analytics, Ruxit,
Fabric, and Flurry Analytics.

Introduction | 3

CHAPTER 2

Measure App Success

Before you start to collect any data about your mobile apps, it’s
important to understand the different categories of metrics and
which key questions they help to address. Every department within
your company, such as development, ops, marketing, or sales, focu‐
ses on providing answers to different product-related aspects. While
the development and ops departments might be more interested in
the overall performance and stability of your mobile apps, the mar‐
keting and sales people want install, engagement, and stickiness
metrics. The spectrum of necessary metrics to measure the overall
performance, to collect crash reports, and to monitor the usage of
your apps is quite broad.

The first part of this chapter focuses on metrics that help to answer
questions such as how many people are using your app and how
many of them were acquired recently. The second part of this chap‐
ter looks at metrics that can inform you of how much time a user
spends with your app. It’s important to engage your app users regu‐
larly so that users get used to working with your product. Target
audience analysis gives you detailed information about your active
users. Marketing and sales experts use this information to better
understand the needs of your target group and to streamline mar‐
keting campaigns accordingly.

Acquiring new users is the first step within any funnel that ulti‐
mately should lead to fulfilling an app’s business objectives. Depend‐
ing on the business model, these objectives could be retaining users

5

as long as possible, selling some features, or getting users engaged
with a service outside the app.

As mobile devices and user logins can be uniquely identified by a
running app, it is possible to count the overall number of users who
are engaged with an application. The mapping of smartphones to
their owners is mostly a one-to-one relationship, while there often is
a one-to-many relationship on tablets, which are often used by a
whole family.

User acquisition metrics focus on counting and classifying new app
users who were attracted by different acquisition channels, such as
an ad campaign or a reference in a blog article.

Counting Installations
One of the first and simplest acquisition metrics is the category of
installation metrics, which are measured by the app marketplaces.
One of the first of these to be introduced in the mobile app business
was simple installation counts. The launch of Apple’s global App
Store in July 2008 completely changed the way third-party applica‐
tions were published and distributed on a global scale. Installation
metrics were the first numbers delivered by the marketplace itself to
the publishers. Installation metrics grew beyond simple download
counters as more and more marketplaces started to deliver detailed
information about the installing customer’s real-world locations and
their devices.

Figure 2-1 shows the daily app installation numbers over three
months. This daily installation metric gives the app publisher a
pretty good impression of how many users were willing to take the
first step in the user acquisition process and install the app. Note
that dates where new app versions were published are specifically
tagged within the chart.

Figure 2-1. Google Play marketplace daily app installation metric

6 | Chapter 2: Measure App Success

Figure 2-2 adds a detailed chart of real-world geographic location
installations over the same period of time. It also shows the specific
distribution of all installers across countries for June 5, 2015. The
pie chart shows pretty well that for that specific day the United
States leads the install statistics with 12.80%, ahead of Mexico with
10.06%.

Figure 2-2. Google Play marketplace daily installs by country

Google quite helpfully shows you the baseline
(All Apps In Business) of all apps installation
distribution within the same app category (Busi‐
ness), and the top installation targets within the
Business app category.

Most marketplaces are counting the daily install statistics; they are
also collecting the number of users updating or uninstalling your
app. The ratio of users installing your app to users uninstalling your
app is a good indicator of how well your user-acquisition process
performs at the moment and how good your app’s visibility on the
market is.

A spike in daily uninstalls is often related to a
severe problem with an app’s usability and sta‐
bility. This is discussed in detail in Chapter 3.

Counting Installations | 7

Reviewing daily installation statistics is just the starting point to give
you an impression of the business performance trend of your
mobile application. All installation metrics are collected at the server
side within the marketplace. In order to collect installation numbers,
it is not necessary for the app publisher to instrument a mobile app:
these metrics can be collected automatically without changing the
app, but do not give the app publisher any detailed information
about how the user is working with the app on his device over time.

Active and New Users
So what’s the difference between the installation metrics and the
acquisition metrics that are measured at runtime? Well, anyone can
download and install an app, but how many of those downloaded
apps are really running per day?

The active user and new user metrics collect these measures at run‐
time directly through all running app instances worldwide. A typical
metric here is monthly active users (MAU) or daily active users
(DAU). Active users are defined as users who at least start your
application once in a given time period. An active user is only coun‐
ted once, even if that user starts several sessions within the given
time period.

The number of daily active users is quite important, as these users
start your app on a regular basis and have the potential to become
loyal, revenue-generating customers.

Measure User Engagement
User engagement measures how often your users are active within
your mobile app and how much time they spend working with your
app’s features. In order to evaluate the success of individual parts
within your app, it’s important to understand how much time users
are spending in each of your app’s screens—and where they bounce
off the app.

The family of metrics that measure users’ engagement within your
app are also called stickiness metrics, as they measure the users’
addiction to your app.

8 | Chapter 2: Measure App Success

User Sessions
One of the first engagement metrics to review is related to user ses‐
sions. A user session is defined as one use of your app by an individ‐
ual user that begins when the user starts the app and ends when the
app is suspended to the background. While it’s quite easy to define
the session start, it’s up to your tracking tool to define exactly when
a session ends. Most app-monitoring frameworks stop a session
when the app is suspended to the background for a specific amount
of time (e.g., 30 seconds in Google Mobile Analytics).

The important aspect to note here is that in order to analyze your
users’ session engagement, you have to determine exactly how your
selected monitoring framework is defining a session.

Mind that the session length and number of ses‐
sions per user very much depend on the type of
app you are monitoring, as different kinds of
app will show different session behavior charac‐
teristics. A music streaming app such as Spotify
will be started once in an hour and may stay in
the background for a long time, streaming
music and audio ads to the user. A short messag‐
ing app is characterized by many very short ses‐
sions and a high number of user sessions per
day. You have to keep in mind that the type of
app is very much influencing the advertising
and revenue-generation process.

The number of user sessions per day shows how often users are
opening your app, while the median session length measures the
length of sessions over time: half of your measured sessions are
longer than the media session length. The median session length is
less vulnerable to session-length outliers compared to the average
session length.

Retention and Churn
The retention rate calculates the chances that a user who installs
your app on Day 0 is still around on 0+N days (e.g., after three
months).

Measure User Engagement | 9

1 https://get.fabric.io

There are different ways to calculate the retention rate, but the most
common are fixed retention for Day 1, Day 7, and Day 30 or rolling
retention.

It is critical to review an app’s retention rate, as
three-quarters of your acquired active users do
not return after three months.

The rolling retention rate is the proportion of users returning to your
app on a day + N, or any day after that, divided by the number of
users who installed your app on Day 0. Typical values for N are one
day, three days, a week, a month, and three months.

So the formula for calculating the retention for Day N is as follows:

Day N Retention = Users retained on Day N / Active Users on
Day 0

Figure 2-3 shows a chart of the retention rates for Day 1, Day 7, and
Day 30. The chart shows that on Friday, June 5, the retention for the
first day was 12.9%; for a week it was down to 1.0%; and only 0.3%
of zero-day users stayed longer than a month.

Figure 2-3. Fixed retention for days 1, 7, and 30 (Image courtesy of
Fabric1)

10 | Chapter 2: Measure App Success

https://get.fabric.io

Another very popular visualization for rolling retention rates is a
heat map that shows the retention over several weeks. A heat map is
a matrix of values in which each value has a specific color encoding
that represents the values impact. Speaking of retention rate, each
heat map value shows a percentage of users who opened your app
after a given starting date. An example for a retention heat map is
shown in Figure 2-4.

Figure 2-4. Retention shown as heat map visualization

Other ways of calculating retention rates are:

• Full Retention: Full retention is quite restrictive, as it only meas‐
ures users who come back every single day until Day N.

• Classic Retention: Classic, or fixed, retention measures all users
who come back exactly on Day N.

Churn represents the opposite of retention rate. It’s the measure of
users who stop to use your app in a defined period of time. Churn
rate is expressed as a percentage of the overall count of users who
could have left (which is also the size of the initial cohort).

If your app has 100 users and at the end of the month you realize
that 40 stopped using your app, this means you have a churn rate of
40%. The basic idea is to keep churn rate low and retention rate
high; in other words, to improve the stickiness of your app. You can
also keep the churn rate low by offering value to users—for example,
by building unique product features, and keeping them happy by
implementing high usability standards and low crash rates.

Business Intelligence
Business intelligence (BI) is the process of analyzing large amounts of
unstructured business-related data. BI tries to provide better statisti‐
cal evidence for making business decisions and for defining strategic

Business Intelligence | 11

goals in general. By taking large amounts of unstructured data
related to a business’s operation, decision-makers try to identify new
sales opportunities or find interesting target groups for advertising
products and services.

Within BI tools, the historic view of data is as important as the pre‐
dictive views that should forecast how selected metrics are expected
to develop in the future. Today, business intelligence is highly con‐
nected with multidimensional data warehouses and online analytical
processing tools (OLAP). The goal of any business tool is to analyze
and visualize actionable information for a company to act on.

Cohort analysis is a subcategory within business analytics that focu‐
ses on extracting the average behavior of your typical users. Cohort
analysis tries to build groups of customers by analyzing multiple
dimensions of given data, such as a customer’s location, age, gender,
purchase history, search keywords used, number of sessions per
timeframe, language and culture, education, or friends. The hypoth‐
esis is that the behavior of a group of customers with similar inter‐
ests is easier to predict than the behavior of single users.

A recent approach to defining prototypical users to stand for a spe‐
cific group of people with similar interests is to classify them
according to personas.

Personas
Over the last few years, the classification of audience by using per‐
sona profiles instead of the traditional keyword-driven approach
represented a significant change in digital marketing. The basic idea
behind it is to create representative focus groups within your audi‐
ence by mapping specific metric characteristics, such as purchase
history, geographic locations, countries, age and gender informa‐
tion, and interests. The creation and classification of your visitors
into digital personas will give you a deeper understanding about the
demands and interests of your audience.

An example of a persona-related evaluation of app visitors for a spe‐
cific kids’ painting app is shown in Figure 2-5. Despite a quite low
number of overall active users, the persona classification already
shows two major types of users: moms who are downloading the
painting app for their kids, and users who are interested in parent‐
ing and education. In this example, the classification according to
the personas scheme is working perfectly well.

12 | Chapter 2: Measure App Success

2 http://www.flurry.com

Figure 2-5. Persona-based classification of a kids coloring app (Image
courtesy of Flurry2)

Lifetime Value (LTV)
The lifetime value (LTV) is the driving metric for evaluating how
much your users are worth in terms of financial revenue, loyalty,
and evangelism (users who are actively sharing and recommending
your app) while they are engaged with your app. It therefore often
represents the exact financial value of your individual customers,
and it is a perfect starting point to analyze which cohort of users is
the most valuable type of customer. The identification of these “val‐
uable” types of customers is the primary way to optimize your mar‐

Business Intelligence | 13

http://www.flurry.com

keting campaigns and to spend your marketing budget exactly on
the type of users that generate the most LTV. An example of a valua‐
ble customer who downloaded a sports and workout app could be
one who is older than 25, has a high income, makes regular high-
priced purchases, and actively shares sporting experiences in social
networks.

Today most mobile and web analytics frameworks are able to track
the individual revenue your customers generate by collecting all
types of engagements, such as purchases across multiple apps, valua‐
ble referrals, or number of advertisements that were clicked on.

The lifetime value metric often is split into average LTV per month
or per customer in order to get some trends or to review the overall
financial revenue generated by a marketing campaign.

14 | Chapter 2: Measure App Success

CHAPTER 3

Real User Experience

This chapter focuses on metrics that help you to understand the usa‐
bility and stability of your app. Measuring the performance and
response time of your mobile app helps to pinpoint slowly reacting
user actions. Collecting and reviewing fatal program crashes is one
of the fundamental activities for improving upcoming app versions.
Reducing the overall number of app crashes also means decreasing
the churn rate of your customers and improving the reliability of
your native mobile apps.

One of the most important requirements for mobile apps is to guar‐
antee a high degree of usability by fulfilling essential functionality
for your users. Your mobile app has to offer enough stickiness so
that the users continue to use it over a longer period of time. Each
user evaluates many different apps in a very short time, but may
only keep a few.

That said, it is obvious that your app’s usability and reliability play a
major role, not only for increasing its Lifetime Value (LTV), but also
for acquiring new users, as negative user reviews within the global
marketplaces have an immediate effect.

Most of the mobile analytics solutions are able to visualize the nega‐
tive effect of increased app crashes on user acquisition numbers.
Figure 3-1 shows that for that specific app there was a slight
decrease of crash-free users around July 8th, which could be the rea‐
son for a slight decrease of daily new user acquisitions two days
later, around July 10th. You can easily test this hypothesis by check‐
ing which user reviews were published between July 8th and 10th.

15

1 https://get.fabric.io

Analytics tools have shown us that there is a strong correlation
between negative reviews, published by crashed and frustrated users,
and the number of newly acquired users.

Figure 3-1. Correlation of crash-free users and acquisition of new users
(Image courtesy of Fabric1)

User reviews and comments are merciless and
have an immediate negative impact on your
acquisition and stickiness metrics. So the overall
effort should always be to avoid launching
buggy apps to improve your app’s performance,
and to quickly fix new bugs that arise.

16 | Chapter 3: Real User Experience

https://get.fabric.io

Although app crashes are an important factor in a mobile app’s usa‐
bility, there are additional aspects to consider for a positive real-user
experience. A mobile app’s responsiveness and user-action perfor‐
mance plays an important role in a user’s experience; another aspect
is how well the navigation and the user-action flow is structured.
Users should be able to easily and intuitively navigate between dif‐
ferent functions.

Crashes
Usability and reliability within mobile app development mostly
depend on effective crash reporting and analytics. Every serious app
publisher largely depends on a good crash-reporting framework that
collects all crashes directly on the different user devices, symboli‐
cates the crash stack traces, and aggregates similar crash types in real
time. Your development team depends on these crash reports to find
out which cohorts of devices are impacted by a crash type and how
to fix the issue within the next release version of your app. The
severity of a crash type is often measured by the number of unique
users affected by a crash and the absolute number of crashes that
appeared within a specified period of time. Especially after the
release of a new app version, your dev team will monitor the crash
metrics with great interest to see if the new release introduced some
new fatal bugs, or on the more positive side, fix a lot of already-
known issues in older versions.

Figure 3-2 shows the collected list of crashes that were recorded
within the lifetime of a specific app. The list shows seven major
crash types and where within the code they occurred. This nearly
empty crash list shows a one-to-one relationship between crashes
that appeared and the number of unique users who were affected by
a crash type, which is not a typical situation in real-world scenarios
where the number of crashes is significantly higher than the number
of impacted unique users. The reason for a higher crash count lies in
the fact that typically a user tries and crashes several times until she
stops testing out the app or this specific failing functionality.

Once your product manager or team lead has reviewed the crash list
and derived a priority list for fixing major issues within the next app
version, it is necessary to receive additional crash details in order to
find and fix the root cause of a problem within the code. Figure 3-3

Crashes | 17

2 http://www.dynatrace.com/en/ruxit

shows all the details of a crash that was observed within a source file
called FragmentManager.java.

Figure 3-2. Collected list of crash types (Image courtesy of Dynatrace
Ruxit2)

Figure 3-3. Detailed crash type information along with the stack trace

18 | Chapter 3: Real User Experience

http://www.dynatrace.com/en/ruxit

Monitor App Performance
Slow application response is annoying for users. Mobile app design
relies heavily on asynchronous tasks that should not directly block
the interaction between users and an app. Good and efficient app
design means reducing users’ waiting times to a bare minimum—or
where waiting is inevitable, distracting the user while necessary
pieces of information are loaded in the background. In a reactive
mobile app, user actions should return a visual result with a mini‐
mum of waiting time; web-request actions that fetch data should be
fast; and the amount of data pulled over the network should be as
small as possible.

It is generally considered that the network infra‐
structure, especially in emerging markets such
as India or China, develops at a much slower
pace than mobile hardware. This means that
web-request performance and payload size play
a major role in the architecture of highly reac‐
tive mobile apps.

In most cases, detailed monitoring of an existing mobile app already
shows where performance bottlenecks are hidden and which user
actions should be reconsidered to speed up reaction times for users.

Mobile apps as well as Web applications rely on third-party network
resources such as social logins, social sharing, images or messages,
real-time notifications, and many more. During the design and
operation of your mobile apps, keep in mind that your own first-
party services and resources can slow down your app as much as the
loading times of your third-party network resources can.

Providing your first-party network resources as
well as third-party resources in an error-free and
fast way is the first step toward highly respon‐
sive mobile apps.

In order to get an overview of how your mobile app performs while
loading network resources, you must monitor every outgoing net‐
work request, its error rate, as well as its payload sizes and resulting
response times.

Monitor App Performance | 19

3 http://www.dynatrace.com/en/ruxit

Figure 3-4 shows a chart visualizing the aggregated number of
HTTP requests that a mobile app was calling within a given time‐
frame. The chart also shows the related error rate that was moni‐
tored for all these HTTP requests. Mind that this aggregated
number of HTTP requests and error rate represents the overall
number of all called HTTP requests of all app installations world‐
wide. For high-traffic mobile apps these numbers can reach millions
of HTTP calls per day, while the error rate should be as low as possi‐
ble. A high HTTP error rate often perfectly correlates with an
increased crash rate, as many mobile apps do not handle failing web
requests in a reliable way. There are various reasons why the HTTP
error rate can increase during the operation of a published mobile
app. An obvious reason could be a resource contention or even a
process crash within a backend service that negatively influences the
app.

Figure 3-4. Compare the number of HTTP requests with the overall
error rate (Image courtesy of Dynatrace Ruxit3)

If several mobile app release versions are access‐
ing different backend services, it could also
mean that your infrastructure shut down a ser‐
vice that was still in use by one of your older app
versions. In that case, splitting the metrics
according to the different app versions could be
of interest.

20 | Chapter 3: Real User Experience

http://www.dynatrace.com/en/ruxit

Another reason for failing HTTP requests after a new app version
was published is often related to a problematic implementation. The
hours after a new app version was released are always the most
interesting ones, as they show how the app will work out in a global
context. As modern apps are shipped worldwide on thousands of
different devices, even with high integration and real-device testing
effort it is hard to predict if an app will provide the demanded qual‐
ity and stability in a real-world scenario.

Today, app designers try to minimize the amount of data transferred
to mobile apps and to intelligently split large pieces of data into mul‐
tiple chunks that are loaded on demand only. Loading too much
data at once could mean that the app is not providing the level of
reactivity for the user demands. It is always a good idea to check the
request sizes between different app versions in order to avoid any
large data consumers that might have been accidentally introduced
in a newer version. Figure 3-5 shows a typical comparison of HTTP
request sizes with their request times.

Figure 3-5. Comparison of the HTTP request size with the request
times

Monitor App Performance | 21

CHAPTER 4

Topology

For DevOps controlling and monitoring mobile apps along a multi‐
tude of backend services and infrastructure, it is of tremendous
interest to oversee the service and infrastructure dependencies of all
published app versions in real time.

Modern monitoring solutions often just show one aspect of the
entire picture, such as single metrics for server-side service perfor‐
mance or mobile app usage and install statistics. What these isolated
monitoring technologies miss is a complete picture of mobile apps
and how they are embedded within a global backend infrastructure.
As today’s infrastructure is widely distributed across many different
datacenters worldwide, it is necessary to span this big picture from
datacenters and hosts up to processes and service levels.

Within highly dynamic and virtualized infra‐
structure like the Docker environment, it is even
more important to keep track of ongoing
changes in the backend services at real time, as
slight changes within the configuration could
have fatal effects on your app’s crash rate.

In order to provide this big picture, it is necessary to monitor every
single part within a complex environment, along with detailed
mobile app monitoring, and to fill a common model with this infor‐
mation at real time, as shown in Figure 4-1.

23

1 http://www.dynatrace.com/en/ruxit

Figure 4-1. Kids Touch Paint mobile app depending on Node.js back‐
end services (Image courtesy of Dynatrace Ruxit1)

Figure 4-1 shows a simple native app that depends on a Node.js
backend service that is running on a Windows host. This perfectly
shows the dependency from the datacenter level up to the applica‐
tion layer, where the mobile app is providing its functionality to real
users. By detecting and visualizing this topology information for
DevOps in real time, the monitoring solution becomes one of the

24 | Chapter 4: Topology

http://www.dynatrace.com/en/ruxit

2 http://www.dynatrace.com/en/ruxit/capabilities/why-ruxit/smartscape-visualization

most important tools for overseeing your business operation on a
technical level. The real-time topology information, such as the
smartscape2 view shown in Figure 4-1, helps you react immediately
if problems are detected and some of your apps show a negative
impact on your real user’s experience.

Topology | 25

http://www.dynatrace.com/en/ruxit/capabilities/why-ruxit/smartscape-visualization

CHAPTER 5

Visual Session Tracking

Visual session tracking introduces a completely new way of follow‐
ing your users’ individual actions while they are navigating through
your mobile app. In terms of high-traffic mobile apps, this means
somehow aggregating and visualizing this collected information for
the app publisher.

Many monitoring frameworks visualize the aggregated interaction
information for a single app view by using heat maps, which show
where most users are touching the screen. Even the seemingly sim‐
ple task of visualizing a heat map as a screen overlay hides a quite
complex task for any analytics framework. As most analytics frame‐
works do not possess a rendered screen image of the selected app
screen for a specific platform, the rendered heat map represents a
rough approximation for a specific screen resolution only. The com‐
bination of all available screen resolutions, screen rotations and den‐
sities with platform versions, and screen languages for one platform
(such as Android) results in an exponentially large number of ren‐
dering possibilities. Even more important, the analytics framework
does not know which content an individual user already created and
how the app screen looks when this individual data is applied.

The exemplified rendering of app screens is just a rough estimation
of how the screen would look on devices with the same resolution,
but does not give any hint of how your app really looks on a specific
hardware device, filled with a lot of user data.

Figure 5-1 shows an example of a heat map that visualizes user inter‐
action with a mobile app screen. The red parts of the heat map

27

should highlight specific regions of the underlying app screen that
are heavily touched by your app’s users.

Figure 5-1. Heatmap visualization of aggregated user touches within a
single app view.

Another important step on the way to understanding how users
interact with a specific app is to follow the users’ navigational path
and discover what they experience on each app page. By following

28 | Chapter 5: Visual Session Tracking

the users’ path we can also discover where they experience crashes
or where most of them drop off.

The navigation path is valuable information for app publishers if all
the app’s features are reached by their customers. App publishers
review aggregated navigation paths to discover potential improve‐
ments in the interaction of their apps. The aggregated information
about the users’ navigation paths is visualized as a classic flow dia‐
gram that starts at the entry page of the app. Each step of the flow
diagram shows the next page the users visited, along with the per‐
centage of users who ended their session after visiting that page.

Figure 5-2 shows an example of a navigation flow diagram visualiz‐
ing the users’ paths from landing pages to individual app pages.

Figure 5-2. Interaction flow visualizes the users’ navigation between a
set of application pages

All the examples above work with aggregated information about
users’ behavior instead of focusing on one individual user session.
Aggregated information has many advantages compared to individ‐

Visual Session Tracking | 29

ual session information, as it shows the behavior of an entire group
of people (also called a cohort of users). In terms of high-traffic apps,
the individual session information is too focused to draw any large-
scale conclusions from it. Compared to the analysis of aggregated
metrics and session information, there are view-use cases where a
specific session recording is necessary. One such use case is the
identification and analysis of a problem after a customer calls in and
complains about a crash.

The so called “customer complained resolution” story demands on
the one hand that all sessions are stored so that all customers’ ses‐
sions can be found, and on the other hand needs detailed informa‐
tion about this identified single session. Within analytics
frameworks that use data sampling to reduce the amount of incom‐
ing data, it is possible that the demanded user session was dropped.

In recent years, mobile device capabilities (and to some extent, net‐
work bandwidth) increased a lot. Today it seems possible to record
even a visual session of an individual user navigating through a
mobile app. Considering the huge amount of storage and bandwidth
that would be necessary to visually capture, transmit, and store all
user sessions, it is still only possible to grab a subset of session sam‐
ples. An interesting use case could be to record only the first session
of a device or resolution in order to get a visual impression how an
app is rendered on this new hardware. Another use case could be to
specifically select a customer in order to record his session during a
customer complained resolution process.

A critical concern for the visual recording of app
usage is the fact that it is nearly impossible to
blur out critical user information that is shown
on users’ app screens. Without knowing which
part of the app screens can show privacy-critical
information, it is not possible to hide such infor‐
mation during the session recording. That said,
it is very unlikely that large app publishers in
categories such as health, banking, or insurance
will integrate visual session tracking frameworks
within their public apps soon.

30 | Chapter 5: Visual Session Tracking

CHAPTER 6

Instrumentation of a Mobile App

To collect the metrics that were discussed in previous chapters, it is
necessary to instrument your mobile apps before they are published.
The purpose of this chapter is to give some details about the steps
that are necessary to instrument your own mobile app on the tech‐
nical side, and to distinguish between automated and manual instru‐
mentation. Global marketplaces deliver native mobile apps to
customers’ mobile devices, and the client-side operating systems
execute them in a sandbox to prevent any potential harm to the cus‐
tomers’ smartphones. While server-side program instrumentation is
often achieved by using profiling interfaces of standard virtual
machines (VMs) and by hooking into the underlying operating sys‐
tems, the monitoring of native mobile apps has to work in a differ‐
ent way to collect the demanded metrics without violating the
client-side sandbox. Without the possibility of applying a profiling
agent on millions of client smartphones and tablets, app publishers
package and ship their native mobile apps together with the moni‐
toring agent, as shown in Figure 6-1.

In order to monitor the usage of native mobile apps directly on cus‐
tomers’ smartphones and tablets, an app publisher has to select a
monitoring agent, instrument the app, and package it along with the
agent library. The publisher has to sign the entire app package that
also contains the monitoring agent in order to upload it to one of
the global marketplaces. Shipping the agent library along with the
regular native app also means that the publisher has to minimize the
agent’s footprint in terms of performance overhead, bandwidth
usage, and additional app size. The monitoring agent modifies the

31

original app program to collect specific information, either about
the mobile app or about the surrounding client system context.
Figure 6-1 shows that the instrumented app distributes on a global
scale and that each app runs on each user’s smartphone.

Figure 6-1. App publishing with packaged agent library

Therefore, any downloaded app has to run within a secure sandbox,
to prevent to damaging a client smartphone. This sandbox is also
responsible for granting specific rights, such as network or storage
access. The client-side OS sandbox also restricts the access of system
and device information for a monitoring agent. One precondition
for monitoring a mobile app from inside a sandbox is, of course,
that the monitored app has network permissions; otherwise, the
agent is not able to deliver its findings back to the collecting SaaS
cluster. Android and iOS sandboxes allow the agent to collect typical
device information. Some examples for device context information:

• Firmware version, e.g., Android 4.0.3 or iOS 8.3.
• Device model, e.g., Motorola XT1032 or Asus Google Nexus 7.
• CPU type, e.g., ARMv7 rev 3 (v7l).
• Memory, the total and free amount of system memory.
• Display resolution and orientation information, e.g., 1280x720

running in landscape mode.
• Battery level, e.g., a device is running at 80% battery level.
• Language, e.g., a device uses the de_DE culture and language.
• Network type, a device’s network type and carrier information,

e.g., 3G Deutsche Telekom or WiFi.

32 | Chapter 6: Instrumentation of a Mobile App

In general, we distinguish among several different ways of instru‐
menting the original app program. One of the most critical aspects
during the instrumentation process is that the modifications do not
break the original mobile app functionality, or in the worst case,
crash the app on the customer side. Especially in scenarios where
the app publishers are instrumenting their apps with more than one
monitoring agent, the probability of unexpected side effects grows
significantly.

Today, many app publishers are shipping their apps with more than
one monitoring agent in order to collect all the necessary metrics.

Automated Instrumentation
Automated program code instrumentation frees the programmer as
well as the app publishers of most of the cumbersome manual
instrumentation tasks. Automated instrumentation traverses your
program (byte) code and identifies interesting locations. Interesting
locations are parts of the code where the app triggers user actions,
such as page or view changes, or performs network requests that
could take some time to return delivering the requested payloads.

Once the instrumentation algorithm identifies such places within
your program, it automatically inserts monitoring instrumentation
code. A monitoring routine that comes with an agent library then
collects all the user actions along a user session at runtime. Once a
user session is finished or a specified caching period is exceeded, the
monitoring routine sends its collected information to a central clus‐
ter for further analysis.

One way to instrument mobile applications is to add an additional
task during the build process of an application that traverses the
entire program structure and adds additional calls into the monitor‐
ing library at interesting program locations. In order to check if the
users are entering a specific application activity within an Android
app, we add one additional call that signals the entering and one call
for the exiting of the activity. The following example shows how to
insert monitoring instrumentation at the beginning and at the end

Automated Instrumentation | 33

1 smali/baksmali, assembler/disassembler for the dex format used by dalvik, Android’s
Java VM implementation, https://github.com/JesusFreke/smali

of an Android activity. The example shows a smali1 disassembled
dalvik bytecode sequence of instrumented program code:

virtual methods
.method public onClick(Landroid/view/View;)V
 .registers 4
 .param p1, "view" # Landroid/view/View;
 .prologue
 invoke-static {p1},
 Lcom/ruxit/apm/Callback;
 ->onClick_ENTER(Landroid/view/View;)V
 .line 59

 # any application code here …

 .line 61
 invoke-static {p1},
 Lcom/ruxit/apm/Callback;
 ->onClick_EXIT(Landroid/view/View;)V
 return-void
.end method

The next example shows how to automatically track the execution of
HTTP requests and measure their timings. There is no standard way
of executing HTTP requests within the Android SDK, so the auto‐
mated instrumentation process has to cope with several different
third-party libraries, where the Apache HTTP client library is the
most frequently used one. The following example shows a typical
Apache HTTP GET request that fetches the content of http://
www.google.com. The automated instrumentation adds additional
callbacks at two locations. After the HttpRequest object creation,
the first callback reads basic information about the HTTP request
and adds some tracking information. The second monitoring call‐
back measures the execution time at the client side, while the server
correlation uses the previously attached session beacon to measure
the server-side request performance.

const-string v7, "http://www.google.com"
invoke-direct {v3, v7},
 Lorg/apache/http/client/methods/HttpGet;
 -><init>(Ljava/lang/String;)V
invoke-static {v3},
 Lcom/ruxit/apm/Callback;
 ->newInstance(Lorg/apache/…/HttpRequestBase;)V

34 | Chapter 6: Instrumentation of a Mobile App

https://github.com/JesusFreke/smali
http://www.google.com
http://www.google.com

.line 29

.local v3, "httpRequest":Lorg/apache/…/HttpGet;
invoke-static {v2, v3},
 Lcom/ruxit/apm/Callback;->execute(Lorg/apache/ /HttpClient;
 Lorg/apache/…/HttpUriRequest;)Lorg/apache/http/HttpResponse;
move-result-object v6

Automated instrumentation has many advantages over manual
source code instrumentation, including:

• Massive reduction of effort for development, as the original
source code does not need to be modified.

• Development does not have to keep track of parts within the
source code that are new and need additional monitoring
instructions.

• Ease of switching between different monitoring frameworks, as
there is no monitoring-framework-dependent instrumentation
code to change.

Beside the numerous advantages of an automated instrumentation,
there are some drawbacks, including:

• Automated instrumentation has to identify and support many
different third-party UIs as well as communication framework,
in order to work as expected.

• Automated instrumentation is less flexible than manual instru‐
mentation, where each developer decides where and when to
put monitoring into the source code.

Manual Instrumentation
Manual program code instrumentation completely relies on pro‐
grammers to add monitoring probes to their own code. Instead of
automatically adding monitoring instrumentation, the programmers
have to insert specific instructions. Examples here are to measure
the entry and exit of important methods or UI views as well as to
measure execution times. Most analytics frameworks also offer cus‐
tom events to send notifications about important events such as
purchases, logins, or shopping cart checkouts. Within business
intelligence, these custom events often mark the reach of a specific
funnel step.

Manual Instrumentation | 35

The following example shows how to add a manual source code
instruction to track a custom event. This specific event tracks a pur‐
chase triggered by a customer.

.logPurchase(new PurchaseEvent()
 .putItemPrice(BigDecimal.valueOf(13.50))
 .putCurrency(Currency.getInstance("USD"))
 .putItemName("Answers Shirt")
 .putItemType("Apparel")
 .putItemId("sku-350")
 .putSuccess(true));

Most modern analytic frameworks offer both—the manual and the
automatic approach of instrumenting mobile applications. The auto‐
mated instrumentation is used to get a basic set of metrics, such as
usage statistics, crash reports, and HTTP performance measure‐
ments.

Capture App Crashes
Stable and reliable mobile apps should handle unexpected situa‐
tions, such as connection timeouts, missing data, or malicious user
input, gracefully. In cases where the mobile app error and exception
handling is not correctly implemented, a mobile app crashes and
users are annoyed. The underlying operating system of your smart‐
phone catches all app crashes that are not correctly handled by the
app program code and creates a crash report.

A crash report contains all necessary information for the developers
to find and fix a given issue. A typical crash report summarizes and
stores information about the crash context, the device state, and the
app program state at the time the crash happened. The crash context
represents an individual device state, such as number of running
apps, free memory, or the device’s battery level. The app program
state on the other side gives some feedback about the running
threads and thread states at the time of the crash as well as the com‐
plete stack trace of the crashed thread.

Crash reports on different platforms, such as on iOS or Android,
look fundamentally different. The following example below shows a
symbolicated crash report that was stored on an Android device. It
shows the Java stack trace of a NullPointerException that was not
handled gracefully by the app’s exception and error-handling rou‐
tines. The crash report also shows that the exception occurred
within a class called StartActivity in the source code at line 26.

36 | Chapter 6: Instrumentation of a Mobile App

FATAL EXCEPTION: main
Process: easytravel.ruxit.com.easytravelapp, PID: 10853
java.lang.NullPointerException
 at easytravel.ruxit.com.easytravelapp.
 StartActivity$1.onClick(StartActivity.java:26)
 at android.view.View.performClick(View.java:4811)
 at android.view.View.performClick.run(View.java:20136)
 at android.os.Handler.handleCallback(Handler.java:815)
 at android.os.Handler.dispatchMessage(Handler.java:104)
 at android.os.Looper.loop(Looper.java:194)
 at android.app.ActivityThread.main(ActivityThread.java:5549)
 <2 internal calls>
 at com.android.internal.os.ZygoteInit$MethodAndArgsCaller
 .run(ZygoteInit.java:964)
 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:759)

If the publisher decided to obfuscate the application package, in
order to prevent simple decompilation, the same crash report would
look like following example. In obfuscated crash reports all the sym‐
bols, such as class names and source file names as well as source
code locations, are removed.

FATAL EXCEPTION: main
Process: easytravel.ruxit.com.easytravelapp, PID: 10853
java.lang.NullPointerException
 at easytravel.ruxit.com.easytravelapp.a.onClick(Unknown Source)
 at android.view.View.performClick(View.java:4811)
 at android.view.View.performClick.run(View.java:20136)
 at android.os.Handler.handleCallback(Handler.java:815)
 at android.os.Handler.dispatchMessage(Handler.java:104)
 at android.os.Looper.loop(Looper.java:194)
 at android.app.ActivityThread.main(ActivityThread.java:5549)
 <2 internal calls>
 at com.android.internal.os.ZygoteInit$MethodAndArgsCaller
 .run(ZygoteInit.java:964)
 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:759)

The following example shows how a typical crash report on iOS
devices will look. The iOS crash report starts with a general header
containing information about the crashed process, the hardware
device, and crash time, followed by a detailed list of stack traces of
the crashed process. App-specific parts of the stack trace are high‐
lighted.

Incident Identifier: 049B202B-50F9-4389-9CE8-E7D25576D9DA
CrashReporter Key: 4d06e5a5fdacc81578fbeabcaff821bd06d721a7
Hardware Model: iPad5,3
Process: easyTravel [1101]
Path: /private/var/mobile/Containers/Bundle/
 Application/FE6FD75C-536F-49F6-A875-

Capture App Crashes | 37

 B199AA934F98/easyTravel.app/easyTravel
Identifier: com.dynatrace.demoapps.easyTravel
Version: 6.3.16.0211 (6.3)
Code Type: ARM-64 (Native)
Parent Process: launchd [1]

Date/Time: 2016-02-25 14:20:39.39 +0100

Launch Time: 2016-02-25 14:20:34.34 +0100
OS Version: iOS 9.2.1 (13D15)
Report Version: 105

Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000
Exception Note: EXC_CORPSE_NOTIFY
Triggered by Thread: 0

Filtered syslog:
None found

Last Exception Backtrace:
0 CoreFoundation 0x180d41900 __exceptionPreprocess + 124
1 libobjc.A.dylib 0x1803aff80 objc_exception_throw + 56
2 CoreFoundation 0x180cbd478
 -[__NSArray0 objectAtIndex:] + 112
3 easyTravel 0x1000a8d60
 -[DTLoginViewController loginButton
 TouchDown:]
 (DTLoginViewController.m:114)
4 easyTravel 0x1000cc078
 -[CPWRInternalActionManager
 processAction:sender:forEvent:]
 (CPWRInternalActionManager.m:1425)
5 easyTravel 0x1000ca49c
 -[CPWRInternalActionManager
 processActionTouchDown:forEvent:]
 (CPWRInternalActionManager.m:1107)
6 UIKit 0x185a6be50
 -[UIApplication sendAction:to:from:
 forEvent:] + 100
7 UIKit 0x185a6bdcc
 -[UIControl sendAction:to:forEvent:] + 80
8 UIKit 0x185a53a88
 -[UIControl _sendActionsForEvents:
 withEvent:] + 416
9 UIKit 0x185a745c8
 -[UIControl touchesBegan:withEvent:] + 400
10 UIKit 0x185a6b168
 -[UIWindow _sendTouchesForEvent:] + 376
11 UIKit 0x185a63e30 -[UIWindow sendEvent:] + 784
12 UIKit 0x185a344cc

38 | Chapter 6: Instrumentation of a Mobile App

2 ProGuard, free Java class file shrinker, optimizer, obfuscator, and preverifier, http://
proguard.sourceforge.net

 -[UIApplication sendEvent:] + 248
13 UIKit 0x185a32794
 _UIApplicationHandleEventQueue + 5528
14 CoreFoundation 0x180cf8efc
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__ + 24
15 CoreFoundation 0x180cf8990 __CFRunLoopDoSources0 + 540
16 CoreFoundation 0x180cf6690 __CFRunLoopRun + 724
17 CoreFoundation 0x180c25680 CFRunLoopRunSpecific + 384
18 GraphicsServices 0x182134088 GSEventRunModal + 180
19 UIKit 0x185a9cd90 UIApplicationMain + 204
20 easyTravel 0x1000a6848 main (main.m:16)
21 libdyld.dylib 0x1807c68b8 start + 4

Obfuscation and symbolication
App developers obfuscate their binary application package to strip
out any human readable information, such as class, variable and
source code file names, as well as line numbers. The goal of obfus‐
cation is to hide implementation details and to make the decompi‐
lation of an application as hard as possible. Tools like ProGuard2 are
used to obfuscate application packages; in addition to all the other
benefits of obfuscation, it also makes sire that crash reports are
obfuscated.

Symbolication, on the other hand, is used to translate the obfuscated
symbols within a given crash report back into a human-readable
form. A mapping file is used to map each cryptic symbol back to its
real name.

Build Tool Support
Nowadays, agile software development is much driven by continu‐
ous integration that introduced a high degree of build automation,
tool support, and quick release cycles. App releases are published in
weekly iterations, and user-experience monitoring had to follow that
continuous integration approach. Modern mobile monitoring
frameworks offer a seamless integration into build tool chains such

Build Tool Support | 39

http://proguard.sourceforge.net
http://proguard.sourceforge.net

3 Gradle, open source build automation system, http://gradle.org
4 CocoaPods, application level dependency manager for the Objective-C programming

language, https://cocoapods.org

as Gradle3 on the Android side or CocoaPods4 for Objective-C pro‐
gramming language apps.

In most cases it is only necessary to add a few lines of configuration
within a Gradle config file or within a CocoaPods specification file
in order to enable automatic user-experience monitoring of your
own app. The configuration is responsible for executing the follow‐
ing tasks within your own build process:

1. Load the latest version of an instrumentation plug-in from a
central repository.

2. Automatically download and link your app project with the lat‐
est monitoring libraries.

3. Automatically instrument your application code during the
build process.

4. Upload the symbolication mapping file after each release in
order to automatically translate your crash reports back to
human-readable form.

The following example shows how to enable user-experience moni‐
toring by adding some configuration lines within a typical Gradle
file. All monitoring related configuration parts are shown in bold
text:

buildscript {
 repositories {
 jcenter()
 }

 dependencies {
 classpath 'com.android.tools.build:gradle:1.5.0'
 classpath 'com.dynatrace.ruxit.tools:android:+'
 }
}
apply plugin: 'com.android.application'
apply plugin: 'com.dynatrace.ruxit.tools.android'
ruxitConfig {
 defaults {
 applicationId '2a68662d-3c5b-4f9d-a15c-c40431035e54'
 environmentId 'fdi96078'

40 | Chapter 6: Instrumentation of a Mobile App

http://gradle.org
https://cocoapods.org

 cluster 'https://live.ruxit.com'
 }
}
android {
 compileSdkVersion 21
 buildToolsVersion "21.1.2"

 defaultConfig {
 applicationId "com.ruxit.easytravel"
 minSdkVersion 9
 targetSdkVersion 21
 versionCode 109
 versionName "109"
 }
 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard.txt'),
 'proguard-rules.pro'
 }
 }
}

dependencies {
 compile fileTree(include: ['*.jar'], dir: 'libs')
 compile files('libs/commons-lang3-3.1.jar')
}

Build Tool Support | 41

CHAPTER 7

Conclusion

Monitoring of native mobile apps and how they perform alongside
backend service infrastructure plays an important role with digital
businesses today. Many disruptive business models, such as Uber or
Airbnb, heavily rely on personalized mobile apps to increase user
engagement. As the Uber app counts around 100 million downloa‐
ded apps within the Google Play marketplace alone, the real-time
monitoring of such a vast quantity of apps on individual smart‐
phones poses a big challenge for modern monitoring and analytic
frameworks as well as for the app publishers.

This book introduced some key metrics that are necessary to gain a
deeper understanding how real users are experiencing a mobile app.
App publishers are closely reviewing engagement metrics, user
behavior, and crash reports in real time to guarantee that the mobile
app experience is not lacking. Common experience shows that one
error-prone app release can trigger a large number of negative mar‐
ketplace reviews. Negative marketplace reviews immediately damage
the public image of a business and are directly responsible for
reducing the financial revenues, in terms of conversion to paying
users. Even the number of newly acquired users directly correlates
with the number of negative reviews within the app marketplaces.

The development and successful operation of native mobile apps on
a global scale represents a constant uphill struggle. Keeping a close
eye on your key metrics helps evaluate and improve your customers’
mobile app experience.

43

Glossary

Active user
A user who had at least one
action or session within a given
period of time.

New user
A user who installed an app for
the first time. Every user is
counted as new user just once at
app installation time.

Recurring users
Measures all the active users
who were already using the app
some time before. To measure
the recurring users metric, sub‐
tract all the new users from the
overall number of active users.

Unique users
Measures the number of distinct
users within a given period of
time. The metric of unique
users estimates how many real
people were active within a
period of time, or were affected
by a slowdown or an app crash;
this metric does not count the
same user twice.

Concurrent users
Often used to measure the num‐
ber of unique users who are
active during the same period of
time. This metric represents the

number of users that were oper‐
ating an app during the same
timeframe, such as one minute.
As the definition of active is
dependent on the definition of
the session length and timeouts,
this metric can vary a lot
between different monitoring
systems.

Daily active users (DAU)
The number of active users for a
given daily period.

Monthly active users (MAU)
The number of active users
within a given month.

Session
Defines one use of an app by a
user. A session starts when the
user launches the app, continues
as long as the user takes any
actions within the app, and ends
either by the user suspending
the app or, alternatively, by a
defined timeout. The definition
of a session depends on the ana‐
lytics framework you are using,
as the session timeout could be
from a minute to up to half an
hour. Many analytics frame‐
works even store user’s session
offline when no Internet con‐

45

nection could be acquired and
send it after a connection has
been reestablished.

Session length
The session length measures the
time between the start and end
of a single user session. Session
length provides a good metric
for measuring how much time
users spend within your app. As
the different analytics frame‐
works define a user session dif‐
ferently and session timeouts
vary, this measure has to be
used with care.

User acquisition
Acquisition of new users is
measured by monitoring differ‐
ent acquisition channels. As
modern monitoring frame‐
works grow into traditional
business intelligence domains,
many of the existing analytic
frameworks offer acquisition
channel tracking for measuring
the number of acquired users
per active acquisition channel.

User path
The action path a given user
performs during an app session.
A user path specifies the tempo‐
ral order of a session of moni‐
tored user actions. User paths
are often shown in conjunction
with crash reports to get some
insights about possible root
causes.

Crash
A crash unexpectedly ends a
user’s running session. The
crash action therefore repre‐
sents the final and fatal last user
action in a given user path. A
crash could have many different
root causes and is not necessar‐

ily related to the previous user
path.

Crash dump
Detailed information that the
operating system platform
delivers after an app was unex‐
pectedly crashing. The detailed
crash dump is operating system
and language dependent and
contains detailed information
about the location of the crash
within the apps code.

Symbolication
Symbolication means to trans‐
late an obfuscated crash dump
into symbolic information so
that the exact location of a crash
can be found by a programmer.
Without symbolication the
crash dump only shows obfus‐
cated addresses to hide the
internal structure of an app
from curious looks.

Crash rate
The percentage of users who
experienced a crash during their
app usage. The crash rate repre‐
sents a good measure for rating
the reliability and overall quality
of apps. The crash rate could be
calculated by either measuring
the rate of crashed users or the
rate of sessions ending with a
crash.

Crash-free users
A popular measurement for the
rate of users who were able to
use an app without any crash
experience. In an optimal situa‐
tion this crash-free user rate
should be near 100%.

User retention
User retention measures how
many of your users are return‐
ing and working with your app

46 | Glossary

after a specified period of time.
There are many different ways
of calculating the user retention
depending on different periods
of time and on different defini‐
tions of what returning actually
means.

Rolling retention
Rolling retention represents a
special case of calculating the
retention rate of your app.
Instead of measuring a hard cut
on Day N, rolling retention
measures the rate of all return‐
ing users on Day N and any day
after.

Version adoption
Version adoption measures or
visualizes how fast the user base
of a given app adopts a new ver‐
sion. A high and fast adoption
rate is often an indicator of a
very active user base and a
sticky app, while a low adoption
rate could indicate a high possi‐
bility for churning users.

Personas
A subcategory within behavioral
analytics that tries to classify
groups of users according to
their common interests. A per‐
sona summarizes the typical
behavior of a user in the group
as well as common interests
among users in the group into a

prototypical user representing
that group. Personas are used to
define requirements in software
engineering as well as to define
focused marketing strategies.

Funnel
A funnel is a pipe of predefined
subgoals along a user’s action
path that lead to the ultimate
conversion goal of transforming
a trial user in to a paid cus‐
tomer. A funnel definition is
one of the most important tools
for marketing analysts and
growth hackers to measure their
success in acquiring valuable
prospects who turn into paying
customers with a high lifetime
value (LTV).

Conversion
Measures the reach of a speci‐
fied goal, typically at the end of
a funnel definition. Originally a
conversion measured the suc‐
cessful transformation of a free
user account to a paid customer
account.

Lifetime value (LTV)
Measures the monetary value of
the time a user spent in an app
during her lifetime. The lifetime
typically is measured between
the user acquisition and user
churn.

Glossary | 47

About the Author
Wolfgang Beer works as a technical product manager at Dynatrace
Ruxit. In his current role he is responsible for designing and deliver‐
ing mobile app monitoring solutions within Ruxit. He has been
working as a research team lead for more than 10 years and co-
authored several books and scientific articles on software develop‐
ment, analysis, and engineering. In his spare time Wolfgang
develops and publishes mobile apps and embedded software, but
most importantly spends time with his two wonderful kids.

	Cover
	Free ebooks and reports
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Introduction
	Chapter 2. Measure App Success
	Counting Installations
	Active and New Users
	Measure User Engagement
	User Sessions
	Retention and Churn

	Business Intelligence
	Personas
	Lifetime Value (LTV)

	Chapter 3. Real User Experience
	Crashes
	Monitor App Performance

	Chapter 4. Topology
	Chapter 5. Visual Session Tracking
	Chapter 6. Instrumentation of a Mobile App
	Automated Instrumentation
	Manual Instrumentation
	Capture App Crashes
	Build Tool Support

	Chapter 7. Conclusion
	Glossary
	About the Author

