
Markus Eisele

Building Scalable Architecture for
Sustainable Enterprise Development

Modern Java EE
Design Patterns

Markus Eisele

Modern Java EE Design
Patterns

Building Scalable Architecture
for Sustainable Enterprise Development

978-1-491-93982-6

[LSI]

Modern Java EE Design Patterns
by Markus Eisele

Copyright © 2016 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster
Production Editor: Shiny Kalapurakkel
Copyeditor: Charles Roumeliotis
Proofreader: Jasmine Kwityn

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2015: First Edition

Revision History for the First Edition
2015-10-05: First Release
2016-01-15: Second Release

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Acknowledgments. v

1. Enterprise Development Today. 1
Enterprise Goals and Objectives 2
Resistant to Change and Economically Efficient 2
Developers Left Alone 3
Technology-Centric Versus Business-Centric 3
Aims and Scope 3

2. History of Java EE. 5
Mistakes We Made 6
Evolution Continues with ESBs 7
Challenges and Lessons Learned 9

3. Designing Software for a Scalable Enterprise. 13
Greenfield Versus Brownfield 15
Domain-Driven Design 16
Service Characteristics 17
Microservices Best Practices 19
Independently Deployable and Fully Contained 26
Crosscutting Concerns 26

4. Java EE and Microservices. 31
Matching the Real World 32
The Missing Pieces 34
Migration Approaches 35

iii

5. Microservices Design Pattern. 39
Common Principles 39
Aggregator Pattern 40
Proxy Pattern 41
Pipeline Pattern 42
Shared Resources 43
Asynchronous Messaging 44

6. Conclusion. 47

A. Additional Technologies and Team Considerations. 49

B. Further Resources. 55

iv | Table of Contents

Acknowledgments

Writing books takes a lot more time than reading them—and it
requires a lot more people to be successful at it. I am thankful to
have had the technical support and creativity of Mark Little, Arun
Gupta, and Daniel Bryant throughout the writing process and
beyond.

I cannot forget my girls here. Thank you! I love you!™

v

CHAPTER 1

Enterprise Development Today

Enterprise is a noun. One of its meanings refers to a project or
undertaking, especially a bold or complex one. But it also refers
more generally to businesses or corporations. Used in the context of
software technology, the term encapsulates a mixture of these mean‐
ings, which is underlined by the inability to adopt new technologies
at a reasonable speed due to a large organization’s inability to move
quickly. Nevertheless, all those attributes and descriptions are very
personal based on specific work environments. And not everything
about this negative introduction is bad. The reasons behind this are
obvious: those complex undertakings or large organizations need a
much higher level of standardization than startups. Changing a
small thing for one out of a hundred projects might lead to unantici‐
pated problems.

One major technology that has become a standard platform across
most enterprises to build complex—and stable—applications is Java
Enterprise Edition (Java EE). And while this technology stack has
come a long way since its inception in 1998, it is still not meant to be
used for innovation and the adoption of more cutting-edge technol‐
ogies and development paradigms.

Nevertheless, innovation and constant improvement are the drivers
behind enterprises and enterprise-grade projects. Without innova‐
tion, there will be outdated and expensive infrastructure compo‐
nents (e.g., host systems) that are kept alive way longer than the
software they are running was designed for. Without constant vali‐
dation of the status quo, there will be implicit or explicit vendor

1

lock-in. Aging middleware runs into extended support and only a
few suppliers will still be able to provide know-how to develop for it.
Platform stacks that stay behind the latest standards attempt to
introduce quick and dirty solutions that ultimately produce techni‐
cal debt.

And typically every 5 to 10 years, the whole software industry, espe‐
cially in the enterprise integration or enterprise application space,
spits out a new methodology or architectural style that promises to
make everything 10 times more productive, agile, flexible, and
responsive. As a result, we’ve seen everything from the creation of
enterprise application integration, web services, and service-
oriented architecture (SOA) to component-based architectures and
enterprise service buses (ESBs).

Enterprise Goals and Objectives
As technology has evolved, the decision makers in enterprise IT
departments have implemented new capabilities and processes
across their organizations. Thus, IT has changed operations and
turnaround for the better. But besides this technical standardization
and forward march of progress in internal operations and cost cut‐
ting, these departments are still accused of not understanding the
needs of the business. Operations and buying decisions are still
focused on generating quick results from investments and long-term
cost savings. These results ignore the need for new business require‐
ments or market developments, such as the still growing mobile
market or the new communication style of a whole generation.

Resistant to Change and Economically
Efficient
Speaking of this mismatch, operations and business have always fol‐
lowed completely distinct goals while working on the greater good.
Operations and sourcing have won out mostly. It’s an easier business
case to calculate how much a corporation-wide standardization for a
Java EE application server can produce in savings than to examine
the individual lines of source code and maintenance that must be
dealt with for each individual project. And it’s not only the differ‐
ence in mindset behind this. It’s also about long-term support and
license agreements. Instead of changing the foundation and every‐

2 | Chapter 1: Enterprise Development Today

thing attached to it a couple of times a year, decisions need to guar‐
antee a decent support level over many years. Following this, the gap
between what latest technology is state-of-the-art and what enterpri‐
ses allow developers to work with grows larger each year.

Developers Left Alone
Even if the preceding analysis barely scratches the surface, it reveals
why developers are feeling left alone in those enterprise settings.
Having to fight the same stack day in and day out might have advan‐
tages for generating knowledge about common pitfalls and short‐
comings, but it also puts a strong block on everything that promises
to solve problems more elegantly, in shorter timeframes, and with a
lot less code. And we haven’t even talked about the other problem
that results from this.

Technology-Centric Versus Business-Centric
Many traditional enterprises have become strongly business-centric
and mostly treat IT and operations as cost centers. The goal of pro‐
viding homogenous IT services was mostly reached by overly focus‐
ing on IT architectures, information formats, and technology selec‐
tion processes to produce a standard platform for application opera‐
tions. This produced a dangerous comfort zone that siphons atten‐
tion away from the real value of business software: the business
domains and relevant processes whose standardization and optimi‐
zation promise a much higher payback than just operational opti‐
mizations.

The good news is that many organizations have started to take
notice and are undertaking changes toward easier and more efficient
architecture management. But change is something that doesn’t nec‐
essarily have to come from above; it is also the responsibility of
every developer and architect. As a result, today’s buzzwords have to
be incorporated in a manageable way by all parties responsible for
creating software.

Aims and Scope
So, there’s a lot to reflect on here. This report focuses on how enter‐
prises work and how the situation can be improved by understand‐
ing how—and when—to adopt the latest technologies in such an

Developers Left Alone | 3

environment. The main emphasis is on understanding Java EE
design patterns, as well as how to work with new development para‐
digms, such as microservices, DevOps, and cloud-based operations.

This report also introduces different angles to the discussion sur‐
rounding the use of microservices with well-known technologies,
and shows how to migrate existing monoliths into more fine-
grained and service-oriented systems by respecting the enterprise
environment. As you’ll come to find out, Java EE is only a very
small—yet crucial—component of today’s enterprise platform
stacks.

4 | Chapter 1: Enterprise Development Today

CHAPTER 2

History of Java EE

“Develop once, run everywhere!” This developer promise was the
key driving force behind much of the success enjoyed by the Java
programming language. And as interest in Java continued to rise
through broad adoption, the need for robust enterprise-grade appli‐
cations soared. The advent of the Internet and the first browser ver‐
sions led to the implementation of the first web server in Java as well
as the introduction of the Servlet and JSP specifications. These two
specifications became the foundation for the Java 2 Enterprise Edi‐
tion (J2EE) platform, and from 1999 to 2003, the number of con‐
tained Java Specification Requests (JSRs) grew from 10 to 18. The
platform was renamed Java EE in 2006 (and now carries its version
number on the tail end). As of the writing of this report, the most
recent version is Java EE 7 (JSR 342), with Java EE 8 (JSR 366) due to
release at the end of 2016.

Enterprises adopted Java EE early—and often—because of the many
advantages it promised, such as centralized infrastructures, a scala‐
ble, transactional, and standardized programming model, high
throughput, and reliable operations. However, every single promise
came with a drawback, and it took a while until the platform as a
specification embraced operational and developer performance.
Given the slow uptake of new versions by both vendors and custom‐
ers, we still see a lot of Java EE 5-based applications out in the wild
(this particular release dates back to mid-2006).

5

Mistakes We Made
Traditionally, Java EE applications followed the core pattern defined
in the book Core J2EE Patterns and were separated into three main
layers: presentation, business, and integration. The presentation
layer was packaged in Web Application Archives (WARs) while
business and integration logic went into separate Java Archives
(JARs). Bundled together as one deployment unit, a so-called Enter‐
prise Archive (EAR) was created.

The technology and best practices around Java EE have always been
sufficient to build a well-designed monolith application. But most
enterprise-grade projects tend to lose a close focus on architecture.
The aspects of early Java EE applications outlined in Figure 2-1 don’t
make assumptions about their technical capabilities, and are derived
from experience in the field.

Figure 2-1. Typical enterprise Java application

Those applications could be scaled with the help of more instances
of the application server and a load balancer. If the responsible
architect thought about reuse here, he most likely considered imple‐
menting a common JAR or library that became part of all the appli‐
cations in the enterprise. Crosscutting concerns, such as single sign-
on (SSO), were taken care of by enterprise access management

6 | Chapter 2: History of Java EE

http://corej2eepatterns.com/index.htm

(EAM) solutions, and there are even more centralized enterprise-
level infrastructures (e.g., logging, monitoring, and databases).

Because everything was too coupled and integrated to make small
changes, applications also had to be tested with great care and from
beginning to end. A new release saw the light of day once or twice a
year. The whole application was a lot more than just programmed
artifacts: it also consisted of uncountable deployment descriptors
and server configuration files, in addition to properties for relevant
third-party environments.

Even the teams were heavily influenced by these monolithic soft‐
ware architectures. The multimonth test cycle might have been the
most visible proof. But besides that, projects with lifespans longer
than five years tended to have huge bugs and feature databases. And
if this wasn’t hard enough, the testing was barely qualified—no
acceptance tests, and hardly any written business requirements or
identifiable domains in design and usability.

Handling these kinds of enterprise projects was a multiple team
effort and required a lot of people to oversee the entire project.
From a software design perspective, the resulting applications had a
very technical layering. Business components or domains were
mostly driven by existing database designs or dated business object
definitions. Our industry had to learn those lessons and we man‐
aged not only to keep these enterprise monoliths under control, but
also invented new paradigms and methodologies to manage them
even better.

Evolution Continues with ESBs
Another technology was created in the advent of business-centered
designs and the broader shift into more service-oriented organiza‐
tions. The enterprise service bus (ESB) promised to deliver reusabil‐
ity and exchangeability by still standing up as a centralized and
managed infrastructure component. Evangelized by many vendors,
this technology was poised to be the number one solution to all of
the monolithic applications in existence.

All of the applications needed to be sliced and rebuilt to support
exchangeable services. Service-oriented architectures (SOA) were
the new paradigm behind this. Unfortunately, the interface technol‐
ogy of choice tended to be web services (WS). Web services trans‐

Evolution Continues with ESBs | 7

port data between systems by encoding it into XML and transport‐
ing it via the Simple Object Access Protocol (SOAP). This intro‐
duced a significant amount of additional code and descriptors into
most projects (see Figure 2-2).

Figure 2-2. ESB-based architectures

What’s more, every ESB came with its own tooling and barely two of
them could be used without it. As a result, codebases grew even fur‐
ther and developers now had to learn to work with overloaded IDEs
to wire all the parts of an application together. Rewiring was now the
new coding for the first projects under development.

Instead of switching protocols or serialization methods for the rele‐
vant endpoints, every route in the ESB ended up being a transfor‐
mation. These new possibilities introduced a significant amount of

8 | Chapter 2: History of Java EE

additional complexity by just offering new methods of transforma‐
tion and routing inside the ESB. What was monolithic and hard to
test until now just became distributed and even harder to test.
Although the distribution aspects were not critical, the complex
dependencies created serious issues. Small changes in the ESB’s
routing and transformation logic had a large impact and for a long
time there’s been no way to even stage those centralized ESB config‐
urations through the different environments—and that’s before we
even think about versioning them.

While the technology evolved and best practices started to mature,
the biggest impact fell on operations. The distributed application
had to be monitored, and most importantly, scaled to fit the avail‐
able resources and required demand. This simple sentence covers a
complete set of individual components, starting with the operating
system and its resources, which host a single application server or
cluster, which itself is hosting any number of web services, all the
way up to the scaling of the ESB.

Only completely integrated platforms and expensive, specialized
monitoring solutions could help control these deployments. The
early days of ESBs were also the days of initial experiments with cor‐
porate data models. With business processes becoming the new
first-level application design approach and spanning many different
attributes, the relevant domain objects needed to be aligned as well.
The customer entity turned out to have many more attributes when
it was used to complete a process, instead of just one application
serving a bunch of related use cases. We learned that data segmenta‐
tion was a critical success factor.

Challenges and Lessons Learned
From what you’ve read so far, it’s pretty clear that enterprise projects
contain challenges on varying levels. And going through the last 5 to
10 years of evolution in this field, it is obvious that the technical
challenges haven’t been the only ones. It took some time, but the
first experts mastered the complexity and refactored the first pattern
and best practices.

Our industry also had to learn to handle project management differ‐
ently, and new project management methodologies became broadly
accepted. Iterative and agile approaches required a more fine-
grained cut of requirements and teams, and this led to even more

Challenges and Lessons Learned | 9

frequent changes, which had to be pushed to test and production.
Automation and reliability in the software delivery process were
soon accepted practices and made it possible to quickly deliver new
features even in the more inflexible setting of an enterprise-grade
project.

DevOps: Highly Effective Teams
Another very important part of successful software delivery was a
tighter coupling between operations and development. With more
frequent changes and a very high automation rate, the number of
deployments to individual environments spiked. This was some‐
thing straight deployment processes could hardly handle. This is
why DevOps was born. At its core, the DevOps movement is about
team culture. It aims at improving communication and collabora‐
tion between developers, operations, and other IT professionals.
Based on automation and tooling, it helps organizations to rapidly
put high-quality software into production. Even more than that, it
manifested itself in a new team communication methodology
embracing frequent changes. Development teams not only wanted
to just produce code, but also were responsible for pushing com‐
plete changes down the DevOps chain into production.

Microservices: Lightweight and Fast
Centralized components no longer fit into this picture, and even
heavyweight application servers were revisited alongside wordy pro‐
tocols and interface technologies. The technical design went back to
more handy artifacts and services with the proven impracticality of
most of the service implementation in SOA- and ESB-based
projects. Instead of intelligent routing and transformations, micro‐
services use simple routes and encapsulate logic in the endpoint
itself. And even if the name implies a defined size, there isn’t one.

Microservices are about having a single business purpose. And even
more vexing for enterprise settings, the most effective runtime for
microservices isn’t necessarily a full-blown application server. It
might just be a servlet engine or that the JVM is already sufficient as
an execution environment. With the growing runtime variations
and the broader variety of programming language choices, this
development turned into yet another operations nightmare. Where
Platform as a Service (PaaS) offerings used to be the number one

10 | Chapter 2: History of Java EE

solution, a new technology found its place in the stack for the next
generation of enterprise applications.

Containers: Fully Contained Applications
If operations can’t provide full support for all of the available lan‐
guages and runtimes out there, there has to be something else filling
the gap. Instead of hiring an army of specialists for a multitude of
runtime environments, containers became an obvious choice. Con‐
tainers are an approach to virtualization in which the virtualization
layer runs as an application within the operating system (OS). The
OS’s kernel runs on the hardware node with several isolated guest
virtual machines (VMs) installed on top of it. The isolated guests are
called containers.

They finally gave application developers the opportunity and tooling
to not only build, test, and stage applications, but also the complete
middleware infrastructure, including the relevant configurations
and dependencies. The good news here was that projects no longer
depended on centralized platform decisions, and operations were
still able to ensure a smooth production.

Public, Private, Hybrid: Scalable Infrastructures
The number of environments needed for those projects spiked. And
none of the changes just discussed effectively saved money in opera‐
tions. Even worse, the additional time spent on making DevOps and
containers functional needed to be compensated. This might be the
most compelling explanation for the still-growing demand for cloud
infrastructures.

Although virtualization has proven to be cost-efficient by running
any number of the same instances, it was never easy to manage and
was tightly coupled to the hardware underneath. As a matter of fact,
it still had to scale alongside the demand of the projects, and there
was a cost assigned to every single instance. It literally had to be
bought and owned by the project in most cases.

Cloud infrastructures changed this quickly—pay for what you use
with rapid provisioning. Just recently, cloud platforms received an
upgrade to their capabilities with the emerging container technolo‐
gies. Instead of spinning up instances of application servers or data‐
bases, today’s most relevant products rely on containers to define the

Challenges and Lessons Learned | 11

software stack to run and provide enough flexibility to projects
while maintaining manageability alongside cost-effective operations.

We can see the result of the earlier-mentioned methodologies and
technologies in Figure 2-3. This image is a pyramid of modern
enterprise application development and reflects the cornerstones of
future development. The following chapters will dive deeper into the
details of each part of the pyramid.

Figure 2-3. The pyramid of modern enterprise application
development

12 | Chapter 2: History of Java EE

CHAPTER 3

Designing Software for a
Scalable Enterprise

Looking back at the lessons learned alongside the latest develop‐
ments in software, the most pressing question becomes: how do
developers and architects design software for enterprises that need
to scale more quickly? With clouds and containers serving as the
new foundation, and more and more applications adopting micro‐
services architecture, everything we knew about software design
seems to be turned on its head.

With that said, the basic concepts of software architecture and
design that were developed to cater to a multitude of stakeholders,
follow separation of concern principles, generate quality, and guar‐
antee the conceptual integrity of our applications remain the pri‐
mary drivers for creating great software. And yet we do need to pay
close attention to some of the principles we already know and
choose the correct approach.

Microservices remain an ever-present buzzword and viable design
pattern, yet upon closer inspection the name represents a new term
for a style of architecture that has been around a while: modular
design. Microservices are the right choice if you have a system that
is too complex to be handled as a monolith. And this is exactly what
makes this architectural style a valid choice for enterprise applica‐
tions. As Martin Fowler states in his article about “MicroservicePre‐
mium”:

13

http://martinfowler.com/bliki/MicroservicePremium.html
http://martinfowler.com/bliki/MicroservicePremium.html

The fulcrum of whether or not to use microservices is the complex‐
ity of the system you’re contemplating.

This quote is perfectly explained in the accompanying graphic in the
same article (reproduced here in Figure 3-1). The main point is to
not even consider using a microservices architecture unless you
have a system that’s too large and complex to be built as a classical
monolith. As a result, the majority of modern software systems
should still be built as a single application that is modular and takes
advantage of state-of-the-art software architecture patterns.

Figure 3-1. Microservices: productivity versus base complexity (source:
Martin Fowler; http://martinfowler.com/bliki/MicroservicePre‐
mium.html)

As we have been building complex enterprise systems in Java EE for
years, it may seem unlikely that we will find one suitable for a
microservices architecture. But this is not the complete truth: tech‐
nical or business complexity should not be the only reason for
choosing this kind of architecture.

One of the most important concerns in the current developer envi‐
ronment is team size. With growing developer teams, it seems more
reasonable and effective to have completely decoupled services. But
there aren’t any hard metrics or even estimates about complexity
that make a decision easy. The best way to decide which route to
pursue will be the overall setting. This starts with the decision about
which software system needs to be worked on.

14 | Chapter 3: Designing Software for a Scalable Enterprise

http://martinfowler.com/bliki/MicroservicePremium.html
http://martinfowler.com/bliki/MicroservicePremium.html

Greenfield Versus Brownfield
Most of today’s enterprise software was built years ago and still
undergoes regular maintenance to adopt the latest regulations or
new business requirements. Unless there is a completely new busi‐
ness case or significant internal restructuring, the need to construct
a piece of software from scratch is rarely considered. But let’s
assume we want to assess the need or even advantage of implement‐
ing a new microservices-based architecture. What would be the
most successful way to proceed? Start with a new development from
scratch (i.e., greenfield), or tear apart an existing application into
services (i.e., brownfield)? Both approaches offer some risks and
challenges.

I remain convinced that it is much easier to partition an existing,
“brownfield” system than to do so up front with a new, greenfield
system.

—Sam Newman (Source:
http://bit.ly/1FMXNjs)

As usual, the common ground is small but critical: you need to
know the business domain you’re working on. And I would like to
take this point even further: enterprise projects, especially those
considered long-term, tend to be sparse on documentation, and it is
even more important to have access to developers who are working
in this domain and have firsthand knowledge.

Additionally, I believe any decision will have various shades of com‐
plexity. There are a range of options in brownfield developments
(i.e., migrations), and this allows for a very selective and risk-free
approach that will fit most business requirements (more on this later
in “Migration Approaches” on page 35). No matter which avenue
you pursue, you’ll need to evaluate your own personal toolbox for
success. Therefore, in order to help you make the best decision pos‐
sible, let’s get to know the best methodologies and design patterns
behind modern enterprise application development.

Greenfield Versus Brownfield | 15

Domain-Driven Design
The philosophy of domain-driven design (DDD) is about placing
the attention at the heart of the application, focusing on the com‐
plexity of the core business domain. Alongside the core business
features, you’ll also find supporting subdomains that are often
generic in nature, such as money or time. DDD aims to create mod‐
els of a problem domain. All the implementation details—like per‐
sistence, user interfaces, and messaging—come later. The most cru‐
cial thing to understand is the domain, because this is what a major‐
ity of software design decisions are going to be based on. DDD
defines a set of concepts that are selected to be implemented in soft‐
ware, and then represented in code and any other software artifact
used to construct the final system.

Working with a model always happens within a context. It can vary
between different requirements or just be derived, for example, from
the set of end users of the final system. The chosen context relates to
the concepts of the model in a defined way. In DDD, this is called
the bounded context (BC). Every domain model lives in precisely
one BC, and a BC contains precisely one domain model. A BC helps
to model and define interactions between the BC and the model in
many different ways. The ultimate mapping for the model is the
inside view of the one related BC.

Assuming we already have a layered application approach (e.g., pre‐
sentation, application, domain, infrastructure), DDD acts on the
domain layer. While the application layer mostly acts as a mediator
between presentation, domain, and infrastructure (and holds addi‐
tional crosscutting concerns, such as security and transactions), the
domain layer only contains the business objects. This includes the
value objects themselves and all related artifacts (e.g., property files,
translations) and the module structure, which typically is expressed
in packages (e.g., in Java) or namespaces.

Entities, values, and modules are the core building blocks, but DDD
also has some additional features that will help you to model your
application so that you can build it from domain services. A domain
service corresponds to business logic that does not easily live within
an entity or it can act as a proxy to another BC. While a domain ser‐
vice can both call or be called by a domain entity, an application ser‐
vice sits above the domain layer, so it cannot be called by entities

16 | Chapter 3: Designing Software for a Scalable Enterprise

within the domain layer, only the other way around. Put another
way, the application layer (of a layered architecture) can be thought
of as a set of (stateless) application services (Figure 3-2).

Figure 3-2. Order management BC with layers

What kind of approach should we take if we want to start building a
microservices-based application? A greenfield solution isn’t the only
way to gain the benefits of a microservices-based architecture. Even
in existing systems, it might be valuable to identify the critical parts
that could perform better or scale easier by refactoring them into
separate services. Most mature enterprise solutions actually lack
documentation and aren’t designed according to DDD. In this case,
looking at some very basic characteristics will allow you to make a
first assessment of candidates without redesigning everything and
starting with a refactoring.

Service Characteristics
For a first migration assessment, it is helpful to identify and separate
the services into categories by looking at some key characteristics. It
is recommended to only use them in a first round of qualification
for a potential microservices migration and not as a design or refac‐
toring methodology. Let’s discuss the most important ones in the
following subsections.

Service Characteristics | 17

Core Services
Core services follow the definition of domain services and expose a
specific domain entity, including all relevant base operations,
directly to a consumer. If you don’t have a domain model, you can
watch out for entities named after nouns. Another good starting
point is a use case or user story. You can even find a lot of examples
from common business processes, such as:

• Order
• Shipping
• Catalog
• User
• Customer

Process Services
Process services follow the business services definition and are
responsible for performing a single, complex task. They usually rep‐
resent a business action or process related to and relying on one or
more core services. Finding the right partition without a domain
model is time consuming and needs to be thought through before
implementing. Try to keep the focus on the different business capa‐
bilities of a system. Respect the already-known drawbacks from tra‐
ditional architectures, and keep the network latency and number of
hops in mind. It might be easier to verbalize a process service by
putting its mission statement up front, such as the following:

• This service lists similar courses for a given course.
• This service places an order for a customer.
• This service reroutes a shipment.
• This service logs an order step for a customer.

If the work of a first assessment is done, you also want to see how
much of the existing application already adheres to the basic
requirements for building a microservices architecture.

18 | Chapter 3: Designing Software for a Scalable Enterprise

Microservices Best Practices
The following principles have emerged as best practices for develop‐
ing, and working with, microservices-based architecture. These
principles are helpful during the initial assessment and serve as a
checklist for your greenfield project.

Design for Automation
Continuous delivery (CD) is a software engineering approach where
teams produce usable software in short cycles while ensuring that
they can be reliably released at any time. It is used in software devel‐
opment to automate and improve the process of software delivery.
CD is a complex and comprehensive enough topic to take up vol‐
umes and not just a few paragraphs. However, the idea behind con‐
tinuous delivery provides the mechanism by which the innovation
cycle for microservices-based applications can operate. The princi‐
ple of continuous delivery that is most relevant here is the ability to
deploy rapidly into production, shortening the cycle time between
an idea and feedback on the value of the idea.

Achieving rapid deployment requires many continuous delivery
techniques, including infrastructure automation, build automation,
deployment and rollback automation, data migration automation,
and (of course) test automation. Each of these techniques is neces‐
sary to support the rapid development of new features, rapid testing
of the new system, safe and rapid deployment of the application into
production, and safe and rapid rollback in case the system isn’t
working as expected or if the feature turns out to be a bad idea.

Design for Failure
The premium standard for high availability is five 9s, which stands
for a guaranteed uptime of 99.999%. Over the course of a complete
year, that means just five and a half minutes of downtime. Tradi‐
tional approaches often use the words “reliability” and “preventing
failure” interchangeably. But cloud-based microservices architec‐
tures are completely different.

With applications composed of a large number of individual serv‐
ices, you have to deal with an exponentially growing complexity that
touches all relevant parts of an application in order to measure avail‐
ability and design for failure. And complexity due to more interde‐

Microservices Best Practices | 19

pendencies is just one way to look at it. Most important is the
unknown user behavior that won’t let you classify a demand until
the complete application is live.

The goal for everything you design around failure tolerance is to
minimize human intervention. Implementing automatic failure rou‐
tines has to be part of every service call that is happening. Looking
back at the usability metrics and acceptable response times, it is
incredibly beneficial to always fail sooner than later. But what can be
done with a failed service? And how do you still produce a meaning‐
ful response to the incoming request?

Service load balancing and automatic scaling
A first line of defense is load balancing based on service-level agree‐
ments (SLAs). Every microservice needs a defined set of metadata
that allows you to find out more information about utilization and
average response times. Depending on thresholds, services should
be scaled automatically, either horizontally (add more physical
machines) or vertically (add more running software instances to one
machine).

At the time of writing, this is a commodity feature of most known
cloud platforms with respect to applications. Scaling based on indi‐
vidual SLAs and metrics for microservices will be implemented soon
enough with orchestration layers like Kubernetes. Until then, you
will have to build your own set of metainformation and scaling
automations.

The easiest part in all of this is to fail fast and detect those failures
early. To mark services as failing, you need to keep track of invoca‐
tion numbers and invent a way to retry a reasonable number of
times until you decide to completely dismiss a service instance for
future calls. There are four patterns that will help you to implement
the desired behavior of services:

Retry on failure
This pattern enables the application to handle anticipated, tem‐
porary failures when it attempts to connect to a service by
transparently retrying an operation that has previously failed in
the expectation that the cause of the failure is transient. You may
implement the retry pattern with or without a dynamic and
configurable number of retries or just stick to a fixed number
based on service metadata. The retries can be implemented as

20 | Chapter 3: Designing Software for a Scalable Enterprise

synchronous, blocking, or asynchronous nonblocking, and
there are a couple of libraries available to help you with the
implementation.

Working with messages and a messaging system makes retry on
failure a little easier. The relevant metadata for services can be
interpreted by the queues or the event bus and reacted upon
accordingly. In the case of a persistent failure, the messages will
end up in a compensating service or a dead-letter endpoint.
Either way, the messaging or event bus-driven solution will be
easier to integrate and handle in most enterprise environments
because of the available experience in messaging.

Circuit breaker
The circuit breaker handles faults that may take a variable time
to connect to a remote service. It acts as a proxy for operations
that are at risk to fail. The proxy monitors the number of recent
failures, and then uses this information to decide whether to
allow the operation to proceed or simply return an exception
immediately. It was first popularized by Michal Nygard in his
2007 book Release It! and you get an excellent overview by Mar‐
tin Fowler in his “CircuitBreaker” post.

Bulkheads
As bulkheads prevent a ship from going down in real life, the
name stands for partitioning your system and making it failure-
proof. If this is done correctly, you can confine errors to one
area as opposed to taking the entire system down. Partitions can
be completly different things, ranging from hardware redun‐
dancy, to processes bound to certain CPUs, to segmentation of
dedicated functionality to different server clusters.

Timeouts
Unlike endlessly waiting for a resource to serve a request, a
dedicated timeout leads to signaling a failure early. This is a very
simplistic form of the retry or circuit breaker and may be used
in situations when talking to more low-level services.

Design for Data Separation
Consider a traditional monolithic application that stores data in a
single relational database. Every part of the application accesses the
same domain objects, and you don’t usually experience problems

Microservices Best Practices | 21

http://martinfowler.com/bliki/CircuitBreaker.html

around transactions or data separation. Data seperation is different
with microservices. If two or more services operate on the same data
store, you will run into consistency issues. There are potential ways
around this (e.g., transactions), but it is generally considered an
antipattern.

So, the first approach is to make all of the systems independent. This
is a common approach with microservices because it enables decou‐
pled services. But you will have to implement the code that makes
the underlying data consistent. This includes handling of race con‐
ditions, failures, and consistency guarantees of the various data
stores for each service. This will be easier while you’re looking at
domain services, and becomes harder and more complex with grow‐
ing dependencies to other services. You will need to explicitly design
for integrity.

Design for Integrity
While data for each service is kept fully separate, services can be
kept in a consistent state with compensating transactions. The rule
of thumb should be that one service is exactly related to one transac‐
tion. This is only a viable solution while all services which persist
data are up and running and available. If this isn’t the case, you can
still completely fail the calling service cascade and rollback earlier
calls with compensation transactions, but the end result is eventual
consistency without any guarantees. This might not be enough for
enterprise systems. The following subsections discuss several differ‐
ent approaches you can use to solve this issue.

Use transactions
It is a common misunderstanding that microservices-based archi‐
tectures can’t have or use transactions at all. There are plenty of ways
to use atomic or extended transactions with different technologies
that consider themselves part of the modern software stack. Exam‐
ples of technologies range from server-supported transaction man‐
agers, to OMG’s Additional Structuring Mechanisms for the OTS
and WS-Transactions from OASIS, to even vendor-specific solutions
like REST-AT. Implementing equivalent capabilities in your infra‐
structure or the services themselves (e.g., consistency in the pres‐
ence of arbitrary failures, opaque recovery for services, modular
structuring mechanisms, and spanning different communication
patterns) is something you should consider very carefully.

22 | Chapter 3: Designing Software for a Scalable Enterprise

Separate reads from writes
If you don’t want to look into transactions first thing, you might
want to reduce the complexity by just separating read-only services
from write-only services. Given that a significant portion of services
will only read the underlying domain objects instead of modifying
them, it will be easier to separate services by this attribute to reduce
the number of compensation actions you might have to take.

Event-driven design
Another approach to transactions is the event-driven design of serv‐
ices. This requires some logic to record all writes of all services as a
sequence of events. By registering and consuming this event series,
multiple services can react to the ordered stream of events and do
something useful with it. The consuming services must be responsi‐
ble and able to read the events at their own speed and availability.
This includes a tracking of the events to be able to restart consump‐
tion after a particular service goes down. With the complete write
history as an events database, it would also be possible to add new
services at a later stage and let them work through all the recorded
events to add their own useful business logic.

Use transaction IDs
Another variant is to correlate combined service calls with transac‐
tion IDs. By adding a transaction ID into the payload, the subse‐
quent service calls are able to identify long-running transactional
requests. Until all services successfully pass all contained transac‐
tions, the data modification is only flagged and a second (asynchro‐
nous) service call is needed to let all contributing services know
about the successful outcome. As this significantly raises the num‐
ber of requests in a system, it is only a solution for very rare and
complex cases that need full consistency while the majority of serv‐
ices can run without it.

Note: All of the preceding solutions lead to different levels of consis‐
tency and there might be even more ways of working around two-
phase-commit/XA (eXtended Architecture) transactions (e.g., cor‐
relation IDs or a reactive system design), but all of them influence
the most critical part of the system, which is overall performance.

Microservices Best Practices | 23

Design for Performance
Performance is the most critical part of all enterprise applications.
Even if it is the most underspecified, nonfunctional requirement of
all, it is still the most complained about.

Microservices-based architectures can significantly impact perfor‐
mance in both directions. First of all, the more coarse-grained serv‐
ices lead to a lot more service calls. Depending on the business logic
and service size, this effect is known to fan out a single service call to
up to 6 to 10 individual backend-service calls, which only adds the
same amount of additional network latency in the case of a synchro‐
nous service. The strategies to control this issue are plenty and vary
depending on many factors.

Load-test early, load-test often
Performance testing is an essential part of distributed applications.
This is even more important with new architectures. You need to
make sure that the performance of the complete system is actively
tested and individual services perform as they’ve been tested in
development already.

This is equally important as actual runtime monitoring. But the big‐
gest difference is that load testing is a proactive way to verify the ini‐
tial metainformation of an individual service or group of services. It
is also a way to identify and define the initial SLAs. Whereas most
articles and books on microservices don’t stress this part explicitly,
load testing is especially important in enterprises to help with the
mind shift needed for this new kind of application architecture and
operational model.

Use the right technologies for the job
The usual approach is to base all your endpoints on RESTful calls.
As a matter of fact, this might not be the only feasible solution for
your requirements. The often-preached, one-to-one relationship
between HTTP-based RESTful services and microservices architec‐
tures isn’t cast in stone. Everything about endpoint technologies,
interface architecture, and protocols can be put to the test in enter‐
prise environments.

Some services will be better off communicating via synchronous or
asynchronous messaging, but others will be ideally implemented
using RESTful endpoints communicating over HTTP. There may

24 | Chapter 3: Designing Software for a Scalable Enterprise

even be some rare instances that require the use of even more low-
level service interfaces based on older remoting technologies. The
performance of the whole shouldn’t be sacrificed just to be buzz‐
word compatible. Further on, it might be valid to test different sce‐
narios and interface technology stacks for optimal performance.

Use API gateways and load balancers
Another important aspect is API versioning and management. As
we don’t have to control a complete monolithic deployment any‐
more, it is even more attractive to use explicit versioning on the ser‐
vice APIs and endpoints. There are different API management solu‐
tions out there, and these come with all kinds of complexity ranging
from simple frameworks and best practices to complete products,
which have to be deployed as part of the product.

When you are going to use RESTful services, you have to use an API
gateway at minimum. It will help you to keep track of various
aspects of your interfaces. Most importantly, they allow you to dis‐
patch based on service versions, and most of them offer load-
balancing features.

Besides monitoring, versioning, and load balancing, it is also impor‐
tant to keep track of the individual number of calls per service and
version. This is the first step to actually acquiring a complete SLA
overview and also tracking down issues with service usage and
bottlenecks. Outside performance-relevant topics, API gateways and
management solutions offer a broad range of additional features,
including increased governance and security.

Use caches at the right layer
Caching is the most important and performance-relevant part of
microservices architectures. There are basically two different kinds
of data in applications: the type that can be heavily cached, and the
type that should never be cached. The latter is represented by con‐
stantly refreshing data streams (e.g., stock information) or by secure,
personalized, or critical information (e.g., credit card or medical
data). Everything else can be heavily cached on different levels.

The UI aspects of a microservice can actually take advantage of the
high-performance web technologies already available, such as edge
caches, content delivery networks (CDN), or simpler HTTP proxies.
All of these solutions rely on the cache expiry settings negotiated

Microservices Best Practices | 25

between the server and the client. A different layer of caching tech‐
nology comes in at the backend. The easiest case is to use a second-
level cache with a JPA provider or a dedicated in-memory datastore
as a caching layer for your domain entities. The biggest issue is
maintaining consistency between cache replicas and between the
cache and the backend data source. The best approach here is to use
an existing implementation such as JBoss Infinispan.

Independently Deployable and Fully
Contained
A microservices architecture will make it easier to scale develop‐
ment. With this technology, there is no large team of developers
responsible for a large set of features or individual layers of the
monolith. However, with constantly shifting team setups and
responsibilities for developers comes another requirement: services
need to be independently deployable.

Teams are fully responsible for everything from implementation to
commissioning and this requires that they are in full control of the
individual services they are touching. Another advantage is that this
design pattern supports fault isolation. If every service ideally comes
with its own runtime, there is no chance a memory leak in one ser‐
vice can affect other services.

Crosscutting Concerns
Crosscutting concerns typically represent key areas of your software
design that do not relate to a specific layer in your application. In a
domain-driven design approach, this shouldn’t happen. But you
really want crosscutting concerns to be reusable non-domain-
related concerns that aren’t scattered around the whole project. This
is where design concepts like dependency injection (DI) and aspect-
oriented programming (AOP) can be used to complement object-
oriented design principles to minimize tight coupling, enhance
modularity, and better manage the crosscutting concerns.

Security
Security in microservices applications breaks down into three differ‐
ent levels (Figure 3-3).

26 | Chapter 3: Designing Software for a Scalable Enterprise

http://www.martinfowler.com/articles/injection.html
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/

Figure 3-3. Security layers for microservices

First, is application-level security. Think about an authorized user
who belongs to a role and has to access the entry point of the sys‐
tem. The application will present a login service that a user has to
access. Based on the outcome of this service, if it is a username/pass‐
word, a client-cert, a two-factor authentication, or a social media
login, a “credential” has to be issued, which will be used further
downstream and passed to all of the involved components in this
user session.

The described mechanism is well known and works perfectly fine in
monolithic applications. Keeping a credential accessible application-
wide makes it easy to resolve application-level security authoriza‐
tions when needed. This is completely different in a heavily dis‐
tributed application that is composed of individual services, eventu‐
ally running on different containers and implemented in different
programming languages.

Although there is still a lack of suitable security standards to over‐
come this problem, there are different options to implement. Possi‐
ble solutions range from custom tokens that get passed on with
every request to developing industry standards like OAuth2 to
infrastructure-based enterprise access management (EAM) solu‐
tions. A distributed identity needs to be made available to all serv‐
ices.

Crosscutting Concerns | 27

The next level is the user-level security. It maps the credential or
token in a downstream service to a user (and/or his personal infor‐
mation) and gathers the relevant service-specific roles. There are
basically two different approaches here: pack the needed down‐
stream information into the credential/token, or gather it when
needed.

Both methods have pros and cons. For example, packing the infor‐
mation into the request may lead to additional payload and/or mar‐
shalling/unmarshalling times. On the other hand, gathering the
required information with every service invocation will add addi‐
tional loading times to every service because security information
can’t be cached. Finding the correct approach is highly specific to
the business requirement of the individual services and depends on
a number of factors. These include the time needed to retrieve the
user information, the additional payload size, the complete number
of downstream (chained) service requests, and potentially more.

Last but not least, there is network-level security. Network-level secu‐
rity is typically the most important layer in enterprise scenarios.
With penetration tests and other related security scans of applica‐
tions, you have to implement a solution that doesn’t allow malicious
requests to even reach your service endpoints without prior accredi‐
tation. Additionally, it might be feasible to also train an application
security manager (ASM) solution with the allowed and wanted
requests for your externally available services.

Logging
Although logging in typical enterprise environments only has to ful‐
fill a few basic needs (such as developer support, debugging in pro‐
duction, and business transaction logging), the nature of a dis‐
tributed system requires a lot more.

Because one service request can be split out to many different subse‐
quent requests and produce an error somewhere downstream, log‐
ging should be able to follow the complete request path down to the
error. This might be done with unique service request IDs or even
with the help of an HttpSession or SSL session ID (captured at the
entry service). And all the distributed logging sources need to be
collected in a single application-wide log.

Depending on the existing environment, this can be done with log‐
ging frameworks that support syslog or other existing centralized

28 | Chapter 3: Designing Software for a Scalable Enterprise

logging solutions but also built using the ELK (Elasticsearch, Log‐
stash, and Kibana) stack.

Health Checks
Health checks are an important part of DevOps. Every part needs to
be controlled and monitored from the very beginning. Besides just
having a simple “is-alive” servlet, the need for more sophisticated
health checks on a service level arises when using a microservices
architecture.

However, there are different ways of approaching this requirement.
A simple approach is to select an API management solution that not
only deals with governance and load balancing but also handles the
SLA and implicit health monitoring of every service. Although this
is strongly recommended, there are plenty of other solutions start‐
ing from custom implementations up to more complex monitoring
approaches.

Integration Testing
While integration testing for Java EE applications has always been
important but complex, it is even harder for microservices-based,
distributed systems. As usual, testing begins with the so-called mod‐
ule or developer tests. Typically running on a single developer
machine, integration tests for distributed systems require the pres‐
ence of all downstream services. With everything completely auto‐
mated, this also includes controlling the relevant containers with the
dependent services. Although mocking and tests based on intelligent
assumptions were best practices a couple of years back, today’s sys‐
tems have to be tested with all the involved services at the correct
version.

First and foremost, this requires a decent infrastructure, including
complete test and integration systems for the various teams. If you’re
coming from a traditional enterprise development environment, it
might feel odd to exceed the existing five different test stages and
corresponding physical machines. But working with microservices
and being successful in enterprise settings will require having a PaaS
offering, which can spin up needed instances easily and still be cost-
effective.

Depending on the delivery model that has been chosen, this might
involve building container images and spinning up new instances as

Crosscutting Concerns | 29

needed. There are very few integration testing frameworks available
today that can handle these kind of requirements. The most com‐
plete one is Arquillian together with the Cube extension. It can run
a complete integration test including image build and spinning up
containers as needed as developer local instances or even using
remote PaaS offerings. The traditional test concepts and plans as
executed by enterprise-grade developments have to step back a bit at
this point in favor of more agile and DevOps-related approaches.

30 | Chapter 3: Designing Software for a Scalable Enterprise

http://www.arquillian.org

CHAPTER 4

Java EE and Microservices

Java EE began with less than 10 individual specifications, but it has
grown over time through subsequent updates and releases to
encompass 34. Compared to microservices-based architectures, Java
EE and its included specifications were originally designed for a dif‐
ferent development and deployment model. Only one monolithic
server runtime or cluster hosted many different applications pack‐
aged according to standards. Such a model runs opposite to the goal
of microservices.

Most Java EE APIs are synchronous, and scaling these resources is
done through thread pools. Of course, this has its limits and is not
meant to be adjusted for quickly changing requirements or excessive
load situations. Given these requirements, it appears as if Java EE
isn’t the best choice for developing microservices-based architec‐
tures.

But the latest versions of Java EE added a ton of developer produc‐
tivity to the platform alongside a streamlined package. With the
sloping modularity of Java and the JVM, an established platform,
and skilled developers alongside individual implementations, Java
EE is considered to be a reasonable solution for microservices devel‐
opment.

31

Matching the Real World
The latest available Java EE specification as of the writing of this
report is Java EE 7. It contains 34 individual specifications, as shown
in Figure 4-1.

Figure 4-1. Java EE 7 at a glance

There are a lot of technologies that barely offer any advantages to
microservices-based architectures, such as the Java Connector
Architecture or the Batch Processing API. If you are starting to
build microservices architectures on top of Java EE, make sure to
look at the asynchronous features and try to use the best available
parts. One important item to keep in mind: Java EE was never built
to work with distributed applications or microservices. So every
decision and line of code should be carefully inspected and validated
to maximize asynchronicity.

JAX-RS 2.0
To execute asynchronous requests in JAX-RS, inject a reference to a
javax.ws.rs.container.AsyncResponse interface in the JAX-RS
resource method as a parameter. The resume method on the
AsyncResponse object needs to be called from within a separate
thread after the business logic execution is complete, as illustrated
here:

32 | Chapter 4: Java EE and Microservices

http://blog.eisele.net/2013/06/javaee7-is-final.html

 @Inject
 private Executor executor;

 @GET
 public void asyncGet(@Suspended final AsyncResponse
 asyncResponse) {
 executor.execute(() -> {
 String result = service.timeConsumingOperation();
 asyncResponse.resume(result);
 });
 }

WebSocket 1.0
To send asynchronous messages with the WebSocket API, use the
getAsyncRemote method on the javax.websocket.Session inter‐
face. This is an instance of the nested interface of the javax.web
socket.RemoteEndpoint:

public void sendAsync(String message, Session session){
 Future<Void> future = session.getAsyncRemote()
 .sendText(message);
}

Concurrency utilities 1.0
The concurrency utilities for Java EE provide a framework of high-
performance threading utilities and thus offer a standard way of
accessing low-level asynchronous processing.

Servlet 3.1
The servlet specification also allows the use of asynchronous request
processing. The parts that need to be implemented are thread pools
(using the ExecutorService), AsyncContext, the runnable instance
of work, and a Filter to mark the complete processing chain as
asynchronous.

Enterprise JavaBeans (EJB) 3.2
Java EE 6 already introduced the javax.ejb.Asynchronous annota‐
tion. This is placed on a Stateless, Stateful, or Singleton EJB to make
all the contained methods asynchronous or placed at the method
level itself. A method with the @Asynchronous annotation can either
return void (fire and forget) or an instance of
java.util.concurrent.Future if the asynchronous method result

Matching the Real World | 33

needs to be tracked. This is done by calling the Future.get()
method.

The Missing Pieces
To build a complete and reliable microservices application, you need
something more than what typical Java EE servers provide today.
Those missing pieces are relevant, and you only have the chance to
build them individually or put an infrastructure in place to deliver
them. Those pieces are also called “NoOps” or the outer architec‐
ture; see Figure 4-2.

Figure 4-2. Outer architecture for microservices

API Gateway/Management Solution
See “Microservices Best Practices” on page 19 in Chapter 3 for fur‐
ther information about this solution. API gateway/management is
an integral part of any microservices infrastructure.

Service Registry
Multiple microservices are composed to create an application, and
each microservice can scale independently. The endpoint of the ser‐
vice may not be known until it’s deployed, especially if it’s deployed
in a PaaS. Service registration allows each microservice to register
itself with a registry using a logical name. This name is bound to a
physical URI and additional metainformation.

By using the logical name, a consumer can locate and invoke the
microservice after a simple registry query. If the microservice goes

34 | Chapter 4: Java EE and Microservices

http://blogs.gartner.com/gary-olliffe/2015/01/30/microservices-guts-on-the-outside/
http://blogs.gartner.com/gary-olliffe/2015/01/30/microservices-guts-on-the-outside/

down, then the consumers are notified accordingly or alternative
services get returned. The registry should work closely together with
the API gateway. There are multiple tools used for service registry
and discovery, such as Apache ZooKeper, Consult, etcd, or JBoss
APIMan.

Security
In a traditional multitiered server architecture, a server-side web tier
deals with authenticating the user by calling out to a relational data‐
base or a Lightweight Directory Access Protocol (LDAP) server. An
HTTP session is then created containing the required authentication
and user details. The security context is propagated between the
tiers within the application server so there’s no need to reauthenti‐
cate the user.

This is different with microservices because you don’t want to let
this expensive operation occur in every single microservices request
over and over again. Having a central component that authenticates
a user and propagates a token containing the relevant information
downstream is unavoidable. Enterprise access management (EAM)
systems mostly provide the needed features in an enterprise envi‐
ronment. In addition, some API management solutions also contain
security features on top of their government engine. And last but
not least, there are dedicated products, like JBoss Keycloak.

Migration Approaches
Putting the discussion in Chapter 3 about greenfield versus brown‐
field development into practice, there are three different approaches
to migrating existing applications to microservices.

Selective Improvements
The most risk-free approach is using selective improvements
(Figure 4-3). After the initial assessment, you know exactly which
parts of the existing application can take advantage of a microservi‐
ces architecture. By scraping out those parts into one or more serv‐
ices and adding the necessary glue to the original application, you’re
able to scale out the microservices in multiple steps:

• First, as a separate deployment in the same application server
cluster or instance

Migration Approaches | 35

• Second, on a separately scaled instance
• And finally, using a new deployment and scaling approach by

switching to a “fat JAR” container

There are many advantages to this approach. While doing archaeol‐
ogy on the existing system, you’ll receive a very good overview
about the parts that would make for ideal candidates. And while
moving out individual services one at a time, the team has a fair
chance to adapt to the new development methodology and make its
first experience with the technology stack a positive one.

Figure 4-3. Selective improvements

The Strangler Pattern
Comparable but not equal is the second approach where you run
two different systems in parallel (Figure 4-4). First coined by Martin
Fowler as the StranglerApplication, the refactor/extraction candi‐
dates move into a complete new technology stack, and the existing
parts of the applications remain untouched. A load balancer or
proxy decides which requests need to reach the original application
and which go to the new parts. There are some synchronization
issues between the two stacks. Most importantly, the existing appli‐
cation can’t be allowed to change the microservices’ databases.

36 | Chapter 4: Java EE and Microservices

http://www.martinfowler.com/bliki/StranglerApplication.html

Figure 4-4. Parallel operations: strangler pattern

Big Bang: Refactor an Existing System
In very rare cases, complete refactoring of the original application
might be the right way to go. It’s rare because enterprise applications
will need ongoing maintenance during the complete refactoring.
What’s more, there won’t be enough time to make a complete stop
for a couple of weeks—or even months, depending on the size of the
application—to rebuild it on a new stack. This is the least recom‐
mended approach because it carries a comparably high risk of fail‐
ure.

Migration Approaches | 37

CHAPTER 5

Microservices Design Pattern

Functional decomposition of an application with the help of DDD is
a prerequisite for building a microservices architecture. Only this
approach allows you to effectively design for loose coupling and
high cohesion. Even if you go with the much simpler service charac‐
teristics, you’ll still be able to decompose already existing applica‐
tions. However, unlike with applications, which are tied together by
the frontend, microservices can interact with each other and span a
network of service calls. To keep the variety of interactions compre‐
hensible and maintainable, a first set of patterns have emerged that
will help you to model the service interaction. These patterns were
first published by Arun Gupta, but have been revised for this report.

Common Principles
Every microservice has some common basic principles that need to
be taken into account. They are derived from a quick recap of “Ser‐
vice Characteristics” on page 17 and “Microservices Best Practices”
on page 19.

39

http://blog.arungupta.me/microservice-design-patterns/

To Avoid Trunk Conflict, Each Microservice Is
Its Own Build
Conduct a separate build for each microservice. One reason for this
is that teams can be fully responsible for putting new versions into
production. It also enables the team to use the needed downstream
services at the correct revision by querying the repository. Compare
“Independently Deployable and Fully Contained” on page 26.

The Business Logic Is Stateless
Treat the logic in your services as stateless. Needing to replicate state
across various services is a strong indicator of a bad design. Services
are fully contained and independent and should be able to work
without any prepopulated state. Compare Chapter 3.

The Data Access Layer Is Cached
In order to keep service response times to a minimum, you should
consider data caching in every service you build. And keep in mind
“Design for Performance” on page 24.

Create a Separate Data Store for Each Microservice
Compare “Design for Integrity” on page 22 and “Design for Data
Separation” on page 21.

Aggregator Pattern
The most simplistic pattern used with microservices is the aggrega‐
tor pattern (Figure 5-1). It is already well known from the Enterprise
Integration pattern catalog and has proven to be useful outside
microservices architecture. The primary goal of this pattern is to act
as a special filter that receives a stream of responses from service
calls and identifies or recognizes the responses that are correlated.
Once all the responses have been been collected, the aggregator cor‐
relates them and publishes a single response to the client for further
processing.

In its most basic form, aggregator is a simple, single-page applica‐
tion (e.g., JavaScript, AngularJS) that invokes multiple services to
achieve the functionality required by a certain use case. Assuming

40 | Chapter 5: Microservices Design Pattern

all three services in this example are exposing a REST interface, the
application simply consumes the data and exposes it to the user. The
services in this example should be application services (compare
above) and do not require any additional business logic in the fron‐
tend. If they represent domain services, they should be called by an
application service first and brought into a representable state.

Figure 5-1. Aggregator pattern

The endpoints don’t necessarily have to be REST based. It is totally
valid to use different protocols. Because the aggregator is another
business service heavily accessing asynchronous domain services, it
uses a message-driven approach with the relevant protocols on top
(e.g., JMS).

Proxy Pattern
The proxy pattern allows you to provide additional interfaces to
services by creating a wrapper service as the proxy (Figure 5-2). The
wrapper service can add additional functionality to the service of
interest without changing its code.

Proxy Pattern | 41

Figure 5-2. Proxy pattern

The proxy may be a simple pass-through proxy, in which case it just
delegates the request to one of the proxied services. It is usually
called a smart proxy when additional logic is happening inside the
proxy service. The applicable logic varies in complexity and can
range from simple logging to adding a transaction. If used as a
router, it can also proxy requests to different services by parameter
or client request.

Pipeline Pattern
In more complex scenarios, a single request triggers a complete ser‐
ies of steps to be executed. In this case, the number of services that
have to be called for a single response is larger than one. Using a
pipeline of services allows the execution of different operations on
the incoming request (Figure 5-3). A pipeline can be triggered syn‐
chronously or asynchronously, although the processing steps are
most likely synchronous and rely on each other. But if the services
are using synchronous requests, the client will have to wait for the
last step in the pipeline to be finished.

42 | Chapter 5: Microservices Design Pattern

Figure 5-3. Pipeline pattern

Chains shouldn’t exceed a certain amount of time if called synchro‐
nously. As a general rule of thumb, according to usability studies,
one-tenth of a second is about the limit for having the user feel that
the system is reacting instantaneously. One second is about the limit
for the user’s flow of thought to stay uninterrupted, even though the
user will notice the delay. Normally, no special feedback is necessary
during delays of more than 0.1 but less than 1.0 second, but the user
does lose the feeling of operating directly on the data. Ten seconds is
about the limit for keeping the user’s attention focused on the dia‐
logue.

Shared Resources
One of the critical design principles of microservices is autonomy.
Especially in migration scenarios (see “Migration Approaches” on
page 43), it might be hard to correct design mistakes made a couple
of years ago. And instead of reaching for the big bang, there might
be a more reasonable way to handle those special cases.

Running into a situation where microservices have to share a com‐
mon data source isn’t ideal. However, it can be worked around with
the “shared resources” pattern (Figure 5-4). The key here is to keep
the business domain closely related and not to treat this exception as
a rule; it may be considered an antipattern but business needs might

Shared Resources | 43

http://www.nngroup.com/articles/response-times-3-important-limits/

require it. With that said, it is certainly an antipattern for greenfield
applications.

Figure 5-4. Shared resources pattern

Asynchronous Messaging
Typical RESTful design patterns are common in the microservices
world. Most likely, they are implemented in a synchronous and
therefore blocking manner. Even if this can be changed in Java EE,
and the implementations support asynchronous calls, it might still
be considered a second-class citizen in the enterprise systems you
are trying to build. Message-oriented middleware (MOM) is a more
reasonable solution to integration and messaging problems in this
field, especially when it comes to microservices that are exposed by
host systems and connected via MOMs. A combination of REST
request/response and pub/sub messaging may be used to accom‐
plish the business need (Figure 5-5).

44 | Chapter 5: Microservices Design Pattern

Figure 5-5. Asynchronous messaging

Asynchronous Messaging | 45

CHAPTER 6

Conclusion

The world of IT as we know it is changing dramatically. Just over
five years ago, developers would spend months or even years devel‐
oping infrastructures and working on the integration of various
applications. Huge projects with multiple participants were required
to implement the desired specific features.

With the advent of DevOps and various Platform as a Service (PaaS)
environments, many complex requirements must now be met within
a much shorter timeframe. The Internet of Things (IoT) is also
anticipated to change established applications and infrastructures.
As a result of these converging trends, the way in which developers
work is set to undergo a fundamental shift in the coming years.

As these trends unfold, the industry is already mapping the way for‐
ward, anticipating how all the components—from technologies to
processes—will come together in this new development paradigm.
And all of this will find its way into today’s enterprises. While the
adoption speed will vary and the pure doctrine of the early adopters
will have to be tweaked, there are strong signs that the recent uptake
in microservices architectures will not fade. Knowing this, we need
to be aware of the challenges to come and figure out how to adapt to
these paradigms in practice.

It is a core responsibility for enterprise developers to help further
shape this future and keep on learning how to best adopt the new
technologies in the field. Appendix B contains a long list of refer‐
ences and recommended readings for getting started with this
future. Another excellent publication for learning more about

47

changing market conditions, customer needs, and emerging tech‐
nologies as well as how to successfully build software products is the
book Lean Enterprise (O’Reilly).

48 | Chapter 6: Conclusion

http://shop.oreilly.com/product/0636920030355.do

APPENDIX A

Additional Technologies and Team
Considerations

As already mentioned, software architecture does not adhere to a
strict process for creation. However, what it does involve is a lot of
teamwork, creativity, and flexibility in adopting changing require‐
ments. This not only covers the design of the system or individual
services, but also reaches out to the technologies used and various
team dynamics. Unlike with traditional Java EE applications, where
the infrastructure is well defined by the application server in use, the
solution space for microservices-based systems is open ended and
requires a different perspective on teams.

This appendix is designed to point you to alternative microservices
solutions outside of the traditional Java EE ecosystem. It also pro‐
vides greater insight into aligning teams to work with highly scalable
architectures.

Architecture != Implementation
Approaches to architectural design do not contain an implicit
method for implementation. This is also true for microservices,
although the service contracts in a microservices-based architecture
allow for a flexible decision about the underlying implementation. It
doesn’t even have to be on one platform or language.

If you are grounded in Java EE, you’ve already seen some recom‐
mendations and platform-specific thoughts for working with micro‐

49

services. The basic metric used to compile this short list was that
Java is the most commonly used programming language in today’s
enterprises. To keep this a little more to the point, the following
products and technologies will give you an overview of Java run‐
times that aren’t Java EE application server-based for your microser‐
vices stack.

Vert.x
Vert.x is an asynchronous, nonblocking framework for development
of applications of all kinds. Although it has been mainly discussed in
the context of web applications, it has far broader appeal than purely
the Web.

Unlike traditional stacks, it’s been designed from day one to be scal‐
able and compatible with microservices architectures, so it’s almost
completely nonblocking when it comes to OS threads. This is the
most critical component for microservices-based applications,
which naturally have to handle a lot of concurrent processing of
messages or events while holding up a lot of connections. Vert.x also
supports the usage of a variety of different languages (e.g., Java‐
Script, Ruby, and Groovy).

This type of functionality can be achieved without being a container
or an invasive framework. You can use Vert.x inside your applica‐
tions and integrate with already existing frameworks such as Spring.
The nonblocking nature and reactive programing model speeds
along the adoption of basic microservices design principles and rec‐
ommendations, making this framework easier to use than other
platforms. It’s also minimally invasive and can be integrated with
existing applications, in turn offering an interesting migration path
for brownfield developments.

WildFly Swarm
WildFly Swarm is a sidecar project of WildFly 9.x to enable decon‐
structing the WildFly Java EE application server to your needs.
WildFly Swarm allows developers to package just enough of its
modules back together with their application to create a self-
contained executable JAR.

The typical application development model for a Java EE application
is to create an EAR or WAR archive and deploy it to an application
server. All the required Java EE dependencies are already available to

50 | Appendix A: Additional Technologies and Team Considerations

http://vertx.io/
https://github.com/wildfly-swarm/wildfly-swarm
http://www.wildfly.org/

the application with the application server base installation, and
containers provide additional features like transactions and security.
Multimodule applications typically are deployed together on the
same instance or cluster and share the same server base libraries.

With Swarm, you are able to freely decide which parts of the appli‐
cation server base libraries your application needs. And only those
relevant parts get packaged together with your application into a “fat
JAR,” which is nothing more than an executable JAR file. After the
packaging process, the application can be run using the java -jar
command.

By designing applications constructed out of many “fat JAR” instan‐
ces, you can independently upgrade, replace, or scale the individual
service instances. This reduces the available amount of specifica‐
tions and containers for the application to the needed minimum. It
also improves the footprint, rollout, and scaling in the final infra‐
structure while still utilizing the Java EE programing model.

On top of that, it supports the NetflixOSS suite of Ribbon and Hys‐
trix. They make it easy to hide a service behind an interface, find
instances of services, and load-balance between them. In the default
case, Ribbon uses the Netflix Eureka server to register and discover
individual services. With WildFly Swarm, the standard clustering
subsystem can be used to locate these services and maintain the lists
of endpoints.

Spring Boot with Spring Cloud
Spring Boot is part of the larger Spring ecosystem. It has evolved as
a framework especially designed for microservices. It is built on top
of the Spring framework and uses the maturity of it while adding
additional features to aid the development of microservices-based
applications.

Developer productivity is a “first class” citizen, and the framework
adds some basic assumptions about how microservices applications
should be built. This includes the assumption that all services have
RESTful endpoints and are embedded into a standalone web appli‐
cation runtime. The overall Spring methodology to adopt the rele‐
vant features and leave out the others is also practiced here. This
leads to a very lean approach that can produce small units of
deployments that can be used as runnable Java archives.

Additional Technologies and Team Considerations | 51

https://netflix.github.io/
http://projects.spring.io/spring-boot/

On top of Spring Boot is Spring Cloud, which provides NetflixOSS
integrations for Boot apps through auto-configuration, binding to
the Spring Environment, and other Spring programming model idi‐
oms. You can enable and configure the common patterns inside
your application via Java annotations and build distributed systems
while transparently using a set of Netflix OSS components. The pat‐
terns provided include Service Discovery (Eureka), Circuit Breaker
(Hystrix), Intelligent Routing (Zuul), and Client-Side Load Balanc‐
ing (Ribbon).

Dropwizard
Dropwizard is a Java framework for developing ops-friendly, high-
performance, RESTful web services. It pulls together well-known,
stable, mature libraries from the Java ecosystem (e.g., Jetty, Jersey,
and Jackson) into a “fat JAR.” Dropwizard has out-of-the-box sup‐
port for configuration, application metrics, logging, operational
tools, and more. The individual technologies are wired together
with the help of various interfaces and annotations that can be
viewed as the glue in between. This leaves the user with having to
know the individual technologies first, plus the wiring in between
them. So, there is a learning curve involved, but not a steep one.

Roll Your Own
Another very common alternative is to roll your own Java EE-like
platform on the base of Apache Tomcat. By packaging the relevant
and needed modules together, it can be a feasible alternative even if
it will require a lot more effort in building the initial stack of frame‐
works and libraries.

Thoughts About Teams and Cultures
While you can read a lot about how early adopters like Netflix struc‐
tured their teams for speed instead of efficiency, there is another
more reasonable approach for enterprise software development
teams. Most basically, it is important to keep them focused. Teams
should be aligned around business capabilities and responsibilities.
This ensures that the business focus is present and can be reused
with every new service that falls into one of the business domains.
On the other hand, it is also very important to still have a business
consultant as part of a team.

52 | Appendix A: Additional Technologies and Team Considerations

http://projects.spring.io/spring-cloud/
http://www.dropwizard.io/
http://tomcat.apache.org/

As much as we wish for completely responsible teams, it is highly
unlikely that only developers will ever work on the complete appli‐
cations from the requirement gathering stage through to implemen‐
tation in an enterprise setting. There will always be a business con‐
sultant involved to spend time and energy on asking the right ques‐
tions to the business owners. The structure of those teams shouldn’t
be a lot different from what the early adopters invented: the so-
called “two-pizza team” definition.

At maximum, this definition suggests four people should be respon‐
sible for a business capability. You can scale and coordinate those
“two-pizza teams” according to the needs of an enterprise project.
The bigger pill to swallow is that the basic assumption of the indi‐
vidual teams has to be “freedom and responsibility.” However, most
enterprises often rely on controlling and reporting project success
and progress. This doesn’t align very well with the collaborative
team culture that supports microservices-based architectures the
best. The only practical way to solve this is to find a good balance
between the enterprise’s needs for controlling and project manage‐
ment and the independence of the individual teams.

There’s a good chance that both can be achieved with a little good
will from all involved. Scrum and agile project management practi‐
ces are well known and mostly applicable. Running the “two-pizza
team” approach in an agile fashion shouldn’t be new at all. The big‐
ger challenge is extracting the right reporting metrics and mapping
them to an overall project plan. But using an iterative approach with
only broad planning topics should allow for enough flexibility to
make it work (see Figure A-1).

Additional Technologies and Team Considerations | 53

Figure A-1. Mixing agile and iterative

If the teams are in place and management is OK with the reporting
structures, you still need to think about all the other silos and
departments in a typical enterprise. All those overengineered pro‐
cesses and outdated technologies have to be taken into account
when starting to build teams that can work—and act—like the early
adopters envisioned. Everyone on the team doesn’t have to be a full-
stack developer to work with the latest technology. But they do all
have to work better with one another, including across teams and
within the boundaries of the technologies they use.

54 | Appendix A: Additional Technologies and Team Considerations

APPENDIX B

Further Resources

Each of the following resources will provide additional insight and
help you to develop your own perspective on microservices-based
architecture:

• Martin Fowler on “Microservices”. A gentle introduction and a
first approach at a definition.

• Martin Fowler on “MicroservicePremium”. Some further
explanation on what microservices and enterprises mean.

• “The microservice resource guide” by Martin Fowler. Collecting
various articles and discussions along this topic.

• Netflix Open Source Software Center. Contains links and fur‐
ther information on the frameworks and libraries referenced
throughout the book.

• Microservices at Netflix: Best Practices and Tools. One of many
presentations from the Netflix team that gives a good overview
of the company’s work.

• “Microservices Design Patterns” by Arun Gupta. The first col‐
lection of patterns for the newly emerging architecture style.
Arun is also featuring more microservices-related posts on his
blog.

• Mark Little, “What is so Special about Microservices?” Deals
with how microservices reflect an evolution in our understand‐
ing of how to build services.

55

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/bliki/MicroservicePremium.html
http://martinfowler.com/microservices/
http://netflix.github.io/
http://www.slideshare.net/stonse/microservices-at-netflix
http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/tag/microservices/
http://www.infoq.com/news/2015/02/special-microservices-mark-litle

• Christian Posta, “The Real Success Story of Microservices
Architectures”.

• Patterns and Best Practices for Enterprise Integration is the
bible for system integration and has a complete implementation
in Apache Camel. While not primarily focused on microservi‐
ces, it contains a well-crafted set of patterns to use for integra‐
tion.

• Microservices in Fabric8. A brief introduction about how to
work with microservices in Fabric8.

• Michael Nyguard’s Release It!.
• Sam Newman’s Building Microservices: Designing Fine-Grained

Systems.
• Mark Little on “Distributed systems theory for the distributed

systems engineer”. A gentle yet complete introduction to the
distributed systems theory for systems engineers.

• Daniel Bryant interviews Randy Shoup on microservices, the
reality of Conway’s Law, and evolutionary architecture.

• Mark Little, “Transactions and Microservices”, plus an updated
blog post with additional information.

• Simon Brown asks the question, “If you can’t build a monolith,
what makes you think microservices are the answer?”.

• “Java EE, WildFly and Microservices on Docker”. This is a blog
post to get you started with Java EE, WildFly, and microservices
on Docker.

• Christian Posta, “The Cold Hard Truth About Microservices—
vjBug”. You’ve tried all the past hyped technologies and archi‐
tectures, but those promises have been underdelivering. Can
microservices help here?

56 | Appendix B: Further Resources

http://blog.christianposta.com/microservices/the-real-success-story-of-microservices-architectures/
http://blog.christianposta.com/microservices/the-real-success-story-of-microservices-architectures/
http://www.enterpriseintegrationpatterns.com/
http://camel.apache.org
http://fabric8.io/gitbook/microServices.html
https://pragprog.com/book/mnee/release-it
http://shop.oreilly.com/product/0636920033158.do
http://shop.oreilly.com/product/0636920033158.do
http://the-paper-trail.org/blog/distributed-systems-theory-for-the-distributed-systems-engineer/
http://the-paper-trail.org/blog/distributed-systems-theory-for-the-distributed-systems-engineer/
http://www.infoq.com/interviews/randy-shoup-microservices
http://jbossts.blogspot.co.uk/2014/05/transactions-and-microservices.html
http://jbossts.blogspot.co.uk/2015/04/microservices-and-transactions-update.html
http://jbossts.blogspot.co.uk/2015/04/microservices-and-transactions-update.html
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
http://blog.eisele.net/2015/01/java-ee-docker-wildfly-and-microservices-on-docker.html
http://blog.christianposta.com/vjbug-cold-hard-truth/
http://blog.christianposta.com/vjbug-cold-hard-truth/

About the Author
Markus Eisele is a Developer Advocate at Red Hat, and focuses on
JBoss Middleware. He has been working with Java EE servers from
different vendors for more than 14 years and talks about his favorite
topics relating to Java EE at conferences all over the world. He has
been a principal consultant and worked with different customers on
all kinds of Java EE-related applications and solutions. Outside of
this, he is a prolific blogger, writer, and tech editor for Java EE-
related books and publications. He is a board member of the Ger‐
man DOAG e.V. and serves as its representative on the iJUG e.V. As
a Java Champion and former ACE Director, he is well known in the
community. More frequent updates are available on his Twitter feed
and blog.

https://twitter.com/myfear
http://blog.eisele.net

	Cover
	Copyright
	Table of Contents
	Acknowledgments
	Chapter 1. Enterprise Development Today
	Enterprise Goals and Objectives
	Resistant to Change and Economically Efficient
	Developers Left Alone
	Technology-Centric Versus Business-Centric
	Aims and Scope

	Chapter 2. History of Java EE
	Mistakes We Made
	Evolution Continues with ESBs
	Challenges and Lessons Learned
	DevOps: Highly Effective Teams
	Microservices: Lightweight and Fast
	Containers: Fully Contained Applications
	Public, Private, Hybrid: Scalable Infrastructures

	Chapter 3. Designing Software for a Scalable Enterprise
	Greenfield Versus Brownfield
	Domain-Driven Design
	Service Characteristics
	Core Services
	Process Services

	Microservices Best Practices
	Design for Automation
	Design for Failure
	Design for Data Separation
	Design for Integrity
	Design for Performance

	Independently Deployable and Fully Contained
	Crosscutting Concerns
	Security
	Logging
	Health Checks
	Integration Testing

	Chapter 4. Java EE and Microservices
	Matching the Real World
	The Missing Pieces
	API Gateway/Management Solution
	Service Registry
	Security

	Migration Approaches
	Selective Improvements
	The Strangler Pattern
	Big Bang: Refactor an Existing System

	Chapter 5. Microservices Design Pattern
	Common Principles
	To Avoid Trunk Conflict, Each Microservice Is Its Own Build
	The Business Logic Is Stateless
	The Data Access Layer Is Cached
	Create a Separate Data Store for Each Microservice

	Aggregator Pattern
	Proxy Pattern
	Pipeline Pattern
	Shared Resources
	Asynchronous Messaging

	Chapter 6. Conclusion
	Appendix A. Additional Technologies and Team Considerations
	Architecture != Implementation
	Vert.x
	WildFly Swarm
	Spring Boot with Spring Cloud
	Dropwizard
	Roll Your Own

	Thoughts About Teams and Cultures

	Appendix B. Further Resources

