
Modern
JavaScript
A Curated Collection of Chapters
from the O'Reilly JavaScript Library

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1814

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/webdev

We’ve compiled the best insights from
subject matter experts for you in one place,

so you can dive deep into what’s
happening in web development.

Davey Shafik

Upgrading
to PHP 7

Modern Tools for
Static Website Development

Static Site
Generators

Brian Rinaldi

KYLE SIMPSON

UP &I

 GOING

“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

Jens Oliver Meiert
Foreword by Lindsey Simon

The Little Book
of HTML/CSS
Coding Guidelines

http://oreil.ly/webdev

Modern JavaScript
A Curated Collection of Chapters
from the O’Reilly JavaScript Library

JavaScript has come a long way. It may have seemed like a “toy language”
at first, but it has evolved into the powerful dominant scripting language of
the Web. JavaScript is now found not only in the browser, but on the
server, and it’s even moving into the world of hardware. Staying on top of
the latest methodologies, tools, and techniques is critical for any JavaScript
developer, whether you’re building single-page web apps with front-end
frameworks or building a RESTful API in Node.js.

This free ebook gets you started, bringing together concepts that you need
to understand before tackling your next modern JavaScript app. With a
collection of chapters from the O’Reilly JavaScript library’s published and
forthcoming books, you’ll learn about the scope and challenges that await
you in the world of modern web development.

Web Development with Node & Express
Available here
Chapter 1: Introducing Express
Chapter 2: Getting Started with Node

JavaScript Cookbook, Second Edition
Available here
Chapter 12: Modularizing and Managing JavaScript

Developing Web Components
Available here
Chapter 11: Working with the Shadow DOM

Beautiful JavaScript
Available here
Chapter 14: Functional JavaScript

http://shop.oreilly.com/product/0636920032977.do
http://shop.oreilly.com/product/0636920033455.do
http://shop.oreilly.com/product/0636920032922.do
http://shop.oreilly.com/product/0636920030706.do

Ethan Brown

Web Development with
Node and Express

CHAPTER 1

Introducing Express

The JavaScript Revolution
Before I introduce the main subject of this book, it is important to provide a little back‐
ground and historical context, and that means talking about JavaScript and Node.

The age of JavaScript is truly upon us. From its humble beginnings as a client-side
scripting language, not only has it become completely ubiquitous on the client side, but
its use as a server-side language has finally taken off too, thanks to Node.

The promise of an all-JavaScript technology stack is clear: no more context switching!
No longer do you have to switch mental gears from JavaScript to PHP, C#, Ruby, or
Python (or any other server-side language). Furthermore, it empowers frontend engi‐
neers to make the jump to server-side programming. This is not to say that server-side
programming is strictly about the language: there’s still a lot to learn. With JavaScript,
though, at least the language won’t be a barrier.

This book is for all those who see the promise of the JavaScript technology stack. Perhaps
you are a frontend engineer looking to extend your experience into backend develop‐
ment. Perhaps you’re an experienced backend developer like myself who is looking to
JavaScript as a viable alternative to entrenched server-side languages.

If you’ve been a software engineer for as long as I have, you have seen many languages,
frameworks, and APIs come into vogue. Some have taken off, and some have faded into
obsolescence. You probably take pride in your ability to rapidly learn new languages,
new systems. Every new language you come across feels a little more familiar: you
recognize a bit here from a language you learned in college, a bit there from that job
you had a few years ago. It feels good to have that kind of perspective, certainly, but it’s
also wearying. Sometimes you want to just get something done, without having to learn
a whole new technology or dust off skills you haven’t used in months or years.

1

JavaScript may seem, at first, an unlikely champion. I sympathize, believe me. If you
told me three years ago that I would not only come to think of JavaScript as my language
of choice, but also write a book about it, I would have told you you were crazy. I had all
the usual prejudices against JavaScript: I thought it was a “toy” language. Something for
amateurs and dilettantes to mangle and abuse. To be fair, JavaScript did lower the bar
for amateurs, and there was a lot of questionable JavaScript out there, which did not
help the language’s reputation. To turn a popular saying on its head, “Hate the player,
not the game.”

It is unfortunate that people suffer this prejudice against JavaScript: it has prevented
people from discovering how powerful, flexible, and elegant the language is. Many peo‐
ple are just now starting to take JavaScript seriously, even though the language as we
know it now has been around since 1996 (although many of its more attractive features
were added in 2005).

By picking up this book, you are probably free of that prejudice: either because, like me,
you have gotten past it, or because you never had it in the first place. In either case, you
are fortunate, and I look forward to introducing you to Express, a technology made
possible by a delightful and surprising language.

In 2009, years after people had started to realize the power and expressiveness of
JavaScript as a browser scripting language, Ryan Dahl saw JavaScript’s potential as a
server-side language, and Node was born. This was a fertile time for Internet technology.
Ruby (and Ruby on Rails) took some great ideas from academic computer science,
combined them with some new ideas of its own, and showed the world a quicker way
to build websites and web applications. Microsoft, in a valiant effort to become relevant
in the Internet age, did amazing things with .NET and learned not only from Ruby and
JavaScript, but also from Java’s mistakes, while borrowing heavily from the halls of
academia.

It is an exciting time to be involved in Internet technology. Everywhere, there are amaz‐
ing new ideas (or amazing old ideas revitalized). The spirit of innovation and excitement
is greater now than it has been in many years.

Introducing Express
The Express website describes Express as “a minimal and flexible node.js web applica‐
tion framework, providing a robust set of features for building single and multipage
and hybrid web applications.” What does that really mean, though? Let’s break that
description down:
Minimal

This is one of the most appealing aspects of Express. Many times, framework de‐
velopers forget that usually “less is more.” The Express philosophy is to provide the
minimal layer between your brain and the server. That doesn’t mean that it’s not

2 | Chapter 1: Introducing Express

robust, or that it doesn’t have enough useful features. It means that it gets in your
way less, allowing you full expression of your ideas, while at the same time providing
something useful.

Flexible
Another key aspect of the Express philosophy is that Express is extensible. Express
provides you a very minimal framework, and you can add in different parts of
Express functionality as needed, replacing whatever doesn’t meet your needs. This
is a breath of fresh air. So many frameworks give you everything, leaving you with
a bloated, mysterious, and complex project before you’ve even written a single line
of code. Very often, the first task is to waste time carving off unneeded functionality,
or replacing the functionality that doesn’t meet requirements. Express takes the
opposite approach, allowing you to add what you need when you need it.

Web application framework
Here’s where semantics starts to get tricky. What’s a web application? Does that
mean you can’t build a website or web pages with Express? No, a website is a web
application, and a web page is a web application. But a web application can be more:
it can provide functionality to other web applications (among other things). In
general, “app” is used to signify something that has functionality: it’s not just a static
collection of content (though that is a very simple example of a web app). While
there is currently a distinction between an “app” (something that runs natively on
your device) and a “web page” (something that is served to your device over the
network), that distinction is getting blurrier, thanks to projects like PhoneGap, as
well as Microsoft’s move to allow HTML5 applications on the desktop, as if they
were native applications. It’s easy to imagine that in a few years, there won’t be a
distinction between an app and a website.

Single-page web applications
Single-page web applications are a relatively new idea. Instead of a website requiring
a network request every time the user navigates to a different page, a single-page
web application downloads the entire site (or a good chunk of it) to the client’s
browser. After that initial download, navigation is faster because there is little or no
communication with the server. Single-page application development is facilitated
by the use of popular frameworks such as Angular or Ember, which Express is happy
to serve up.

Multipage and hybrid web applications
Multipage web applications are a more traditional approach to websites. Each page
on a website is provided by a separate request to the server. Just because this ap‐
proach is more traditional does not mean it is not without merit or that single-page
applications are somehow better. There are simply more options now, and you can
decide what parts of your content should be delivered as a single-page app, and

Introducing Express | 3

what parts should be delivered via individual requests. “Hybrid” describes sites that
utilize both of these approaches.

If you’re still feeling confused about what Express actually is, don’t worry: sometimes
it’s much easier to just start using something to understand what it is, and this book will
get you started building web applications with Express.

A Brief History of Express
Express’s creator, TJ Holowaychuk, describes Express as a web framework inspired by
Sinatra, which is a web framework based on Ruby. It is no surprise that Express borrows
from a framework built on Ruby: Ruby spawned a wealth of great approaches to web
development, aimed at making web development faster, more efficient, and more
maintainable.

As much as Express was inspired by Sinatra, it is also deeply intertwined with Connect,
a “plugin” library for Node. Connect coined the term “middleware” to describe pluggable
Node modules that can handle web requests to varying degrees. Up until version 4.0,
Express bundled Connect; in version 4.0, Connect (and all middleware except static)
was removed to allow these middleware to be updated independently.

Express underwent a fairly substantial rewrite between 2.x and 3.0,
then again between 3.x and 4.0. This book will focus on version 4.0.

Upgrading to Express 4.0
If you already have some experience with Express 3.0, you’ll be happy to learn that
upgrading to Express 4.0 is pretty painless. If you’re new to Express, you can skip this
section. Here are the high points for those with Express 3.0 experience:

• Connect has been removed from Express, so with the exception of the static
middleware, you will need to install the appropriate packages (namely, connect).
At the same time, Connect has been moving some of its middleware into their own
packages, so you might have to do some searching on npm to figure out where your
middleware went.

• body-parser is now its own package, which no longer includes the multipart
middleware, closing a major security hole. It’s now safe to use the body-parser
middleware.

• You no longer have to link the Express router into your application. So you should
remove app.use(app.router) from your existing Express 3.0 apps.

4 | Chapter 1: Introducing Express

1. Often called “Just in Time” (JIT) compilation.

• app.configure was removed; simply replace calls to this method by examining
app.get(env) (using either a switch statement or if statements).

For more details, see the official migration guide.

Express is an open source project and continues to be primarily developed and main‐
tained by TJ Holowaychuk.

Node: A New Kind of Web Server
In a way, Node has a lot in common with other popular web servers, like Microsoft’s
Internet Information Services (IIS) or Apache. What is more interesting, though, is how
it differs, so let’s start there.

Much like Express, Node’s approach to webservers is very minimal. Unlike IIS or
Apache, which a person can spend many years mastering, Node is very easy to set up
and configure. That is not to say that tuning Node servers for maximum performance
in a production setting is a trivial matter: it’s just that the configuration options are
simpler and more straightforward.

Another major difference between Node and more traditional web servers is that Node
is single threaded. At first blush, this may seem like a step backward. As it turns out, it
is a stroke of genius. Single threading vastly simplifies the business of writing web apps,
and if you need the performance of a multithreaded app, you can simply spin up more
instances of Node, and you will effectively have the performance benefits of multi‐
threading. The astute reader is probably thinking this sounds like smoke and mirrors.
After all, isn’t multithreading through server parallelism (as opposed to app parallelism)
simply moving the complexity around, not eliminating it? Perhaps, but in my experi‐
ence, it has moved the complexity to exactly where it should be. Furthermore, with the
growing popularity of cloud computing and treating servers as generic commodities,
this approach makes a lot more sense. IIS and Apache are powerful indeed, and they
are designed to squeeze the very last drop of performance out of today’s powerful hard‐
ware. That comes at a cost, though: they require considerable expertise to set up and
tune to achieve that performance.

In terms of the way apps are written, Node apps have more in common with PHP or
Ruby apps than .NET or Java apps. While the JavaScript engine that Node uses (Google’s
V8) does compile JavaScript to native machine code (much like C or C++), it does so
transparently,1 so from the user’s perspective, it behaves like a purely interpreted lan‐
guage. Not having a separate compile step reduces maintenance and deployment hassles:
all you have to do is update a JavaScript file, and your changes will automatically be
available.

Node: A New Kind of Web Server | 5

http://bit.ly/1pkw80L

Another compelling benefit of Node apps is that Node is incredibly platform inde‐
pendent. It’s not the first or only platform-independent server technology, but platform
independence is really more of a spectrum than a binary proposition. For example, you
can run .NET apps on a Linux server thanks to Mono, but it’s a painful endeavor.
Likewise, you can run PHP apps on a Windows server, but it is not generally as easy to
set up as it is on a Linux machine. Node, on the other hand, is a snap to set up on all the
major operating systems (Windows, OS X, and Linux) and enables easy collaboration.
Among website design teams, a mix of PCs and Macs is quite common. Certain plat‐
forms, like .NET, introduce challenges for frontend developers and designers, who often
use Macs, which has a huge impact on collaboration and efficiency. The idea of being
able to spin up a functioning server on any operating system in a matter of minutes (or
even seconds!) is a dream come true.

The Node Ecosystem
Node, of course, lies at the heart of the stack. It’s the software that enables JavaScript to
run on the server, uncoupled from a browser, which in turn allows frameworks written
in JavaScript (like Express) to be used. Another important component is the database,
which will be covered in more depth in Chapter 13. All but the simplest of web apps
will need a database, and there are databases that are more at home in the Node eco‐
system than others.

It is unsurprising that database interfaces are available for all the major relational da‐
tabases (MySQL, MariaDB, PostgreSQL, Oracle, SQL Server): it would be foolish to
neglect those established behemoths. However, the advent of Node development has
revitalized a new approach to database storage: the so-called “NoSQL” databases. It’s not
always helpful to define something as what it’s not, so we’ll add that these NoSQL da‐
tabases might be more properly called “document databases” or “key/value pair data‐
bases.” They provide a conceptually simpler approach to data storage. There are many,
but MongoDB is one of the frontrunners, and the one we will be using in this book.

Because building a functional website depends on multiple pieces of technology, acro‐
nyms have been spawned to describe the “stack” that a website is built on. For example,
the combination of Linux, Apache, MySQL, and PHP is referred to as the LAMP stack.
Valeri Karpov, an engineer at MongoDB, coined the acronym MEAN: Mongo, Express,
Angular, and Node. While it’s certainly catchy, it is limiting: there are so many choices
for databases and application frameworks that “MEAN” doesn’t capture the diversity of
the ecosystem (it also leaves out what I believe is an important component: templating
engines).

Coining an inclusive acronym is an interesting exercise. The indispensable component,
of course, is Node. While there are other server-side JavaScript containers, Node is
emerging as the dominant one. Express, also, is not the only web app framework avail‐
able, though it is close to Node in its dominance. The two other components that are

6 | Chapter 1: Introducing Express

usually essential for web app development are a database server and a templating engine
(a templating engine provides what PHP, JSP, or Razor provides naturally: the ability to
seamlessly combine code and markup output). For these last two components, there
aren’t as many clear frontrunners, and this is where I believe it’s a disservice to be re‐
strictive.

What ties all these technologies together is JavaScript, so in an effort to be inclusive, I
will be referring to the “JavaScript stack.” For the purposes of this book, that means
Node, Express, and MongoDB.

Licensing
When developing Node applications, you may find yourself having to pay more atten‐
tion to licensing than you ever have before (I certainly have). One of the beauties of the
Node ecosystem is the vast array of packages available to you. However, each of those
packages carries its own licensing, and worse, each package may depend on other pack‐
ages, meaning that understanding the licensing of the various parts of the app you’ve
written can be tricky.

However, there is some good news. One of the most popular licenses for Node packages
is the MIT license, which is painlessly permissive, allowing you to do almost anything
you want, including use the package in closed source software. However, you shouldn’t
just assume every package you use is MIT licensed.

There are several packages available in npm that will try to figure out
the licenses of each dependency in your project. Search npm for
license-sniffer or license-spelunker.

While MIT is the most common license you will encounter, you may also see the fol‐
lowing licenses:
GNU General Public License (GPL)

The GPL is a very popular open source license that has been cleverly crafted to keep
software free. That means if you use GPL-licensed code in your project, your project
must also be GPL licensed. Naturally, this means your project can’t be closed source.

Apache 2.0
This license, like MIT, allows you to use a different license for your project, includ‐
ing a closed source license. You must, however, include notice of components that
use the Apache 2.0 license.

Licensing | 7

Berkeley Software Distribution (BSD)
Similar to Apache, this license allows you to use whatever license you wish for your
project, as long as you include notice of the BSD-licensed components.

Software is sometimes dual licensed (licensed under two different
licenses). A very common reason for doing this is to allow the soft‐
ware to be used in both GPL projects and projects with more per‐
missive licensing. (For a component to be used in GPL software, the
component must be GPL licensed.) This is a licensing scheme I often
employ with my own projects: dual licensing with GPL and MIT.

Lastly, if you find yourself writing your own packages, you should be a good citizen and
pick a license for your package, and document it correctly. There is nothing more frus‐
trating to a developer than using someone’s package and having to dig around in the
source to determine the licensing or, worse, find that it isn’t licensed at all.

8 | Chapter 1: Introducing Express

CHAPTER 2

Getting Started with Node

If you don’t have any experience with Node, this chapter is for you. Understanding
Express and its usefulness requires a basic understanding of Node. If you already have
experience building web apps with Node, feel free to skip this chapter. In this chapter,
we will be building a very minimal web server with Node; in the next chapter, we will
see how to do the same thing with Express.

Getting Node
Getting Node installed on your system couldn’t be easier. The Node team has gone to
great lengths to make sure the installation process is simple and straightforward on all
major platforms.

The installation is so simple, as a matter of fact, that it can be summed up in three simple
steps:

1. Go to the Node home page.
2. Click the big green button that says INSTALL.
3. Follow instructions.

For Windows and OS X, an installer will be downloaded that walks you through the
process. For Linux, you will probably be up and running more quickly if you use a
package manager.

If you’re a Linux user and you do want to use a package manager,
make sure you follow the instructions in the aforementioned web
page. Many Linux distributions will install an extremely old ver‐
sion of Node if you don’t add the appropriate package repository.

9

http://nodejs.org
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

You can also download a standalone installer, which can be helpful if you are distributing
Node to your organization.

If you have trouble building Node, or for some reason you would like to build Node
from scratch, please refer to the official installation instructions.

Using the Terminal
I’m an unrepentant fan of the power and productivity of using a terminal (also called a
“console” or “command prompt”). Throughout this book, all examples will assume
you’re using a terminal. If you’re not friends with your terminal, I highly recommend
you spend some time familiarizing yourself with your terminal of choice. Many of the
utilities in this book have corresponding GUI interfaces, so if you’re dead set against
using a terminal, you have options, but you will have to find your own way.

If you’re on OS X or Linux, you have a wealth of venerable shells (the terminal command
interpreter) to choose from. The most popular by far is bash, though zsh has its adher‐
ents. The main reason I gravitate toward bash (other than long familiarity) is ubiquity.
Sit down in front of any Unix-based computer, and 99% of the time, the default shell
will be bash.

If you’re a Windows user, things aren’t quite so rosy. Microsoft has never been partic‐
ularly interested in providing a pleasant terminal experience, so you’ll have to do a little
more work. Git helpfully includes a “Git bash” shell, which provides a Unix-like terminal
experience (it only has a small subset of the normally available Unix command-line
utilities, but it’s a useful subset). While Git bash provides you with a minimal bash shell,
it’s still using the built-in Windows console application, which leads to an exercise in
frustration (even simple functionality like resizing a console window, selecting text,
cutting, and pasting is unintuitive and awkward). For this reason, I recommend instal‐
ling a more sophisticated terminal such as Console2 or ConEmu. For Windows power
users—especially for .NET developers or for hardcore Windows systems or network
administrators—there is another option: Microsoft’s own PowerShell. PowerShell lives
up to its name: people do remarkable things with it, and a skilled PowerShell user could
give a Unix command-line guru a run for their money. However, if you move between
OS X/Linux and Windows, I still recommend sticking with Git bash for the consistency
it provides.

Another option, if you’re a Windows user, is virtualization. With the power and archi‐
tecture of modern computers, the performance of virtual machines (VMs) is practically
indistinguishable from actual machines. I’ve had great luck with Oracle’s free Virtual‐
Box, and Windows 8 offers VM support built in. With cloud-based file storage, such as
Dropbox, and the easy bridging of VM storage to host storage, virtualizing is looking
more attractive all the time. Instead of using Git bash as a bandage on Windows’s
lackluster console support, consider using a Linux VM for development. If you find the

10 | Chapter 2: Getting Started with Node

http://nodejs.org/download
http://bit.ly/node_installation
http://bit.ly/Console_2
http://bit.ly/Con-Emu

1. These days, vi is essentially synonymous with vim (vi improved). On most systems, vi is aliased to vim, but
I usually type vim to make sure I’m using vim.

UI isn’t as smooth as you would like, you could use a terminal application, such as
PuTTY, which is what I often do.

Finally, no matter what sytem you’re on, there’s the excellent Codio. Codio is a website
that will spin up a new Linux instance for every project you have and provide an IDE
and command line, with Node already installed. It’s extremely easy to use and is a great
way to get started very quickly with Node.

When you specify the -g (global) option when installing npm pack‐
ages, they are installed in a subdirectory of your Windows home
directory. I’ve found that a lot of these packages don’t perform well if
there are spaces in your username (my username used to be “Ethan
Brown,” and now it’s “ethan.brown”). For your sanity, I recommend
choosing a Windows username without a space in it. If you already
have such a username, it’s advisable to create a new user, and then
transfer your files over to the new account: trying to rename your
Windows home directory is possible but fraught with danger.

Once you’ve settled on a shell that makes you happy, I recommend you spend some time
getting to know the basics. There are many wonderful tutorials on the Internet, and
you’ll save yourself a lot of headaches later on by learning a little now. At minimum,
you should know how to navigate directories; copy, move, and delete files; and break
out of a command-line program (usually Ctrl-C). If you want to become a terminal
ninja, I encourage you to learn how to search for text in files, search for files and direc‐
tories, chain commands together (the old “Unix philosophy”), and redirect output.

On many Unix-like systems, Ctrl-S has a special meaning: it will
“freeze” the terminal (this was once used to pause output quickly
scrolling past). Since this is such a common shortcut for Save, it’s
very easy to unthinkingly press, which leads to a very confusing
situation for most people (this happens to me more often than I care
to admit). To unfreeze the terminal, simply hit Ctrl-Q. So if you’re
ever confounded by a terminal that seems to have suddenly frozen,
try pressing Ctrl-Q and see if it releases it.

Editors
Few topics inspire such heated debate among programmers as the choice of editors, and
for good reason: the editor is your primary tool. My editor of choice is vi1 (or an editor
that has a vi mode). vi isn’t for everyone (my coworkers constantly roll their eyes at me

Editors | 11

http://www.putty.org
https://codio.com

when I tell them how easy it would be to do what they’re doing in vi), but finding a
powerful editor and learning to use it will significantly increase your productivity and,
dare I say it, enjoyment. One of the reasons I particularly like vi (though hardly the most
important reason) is that like bash, it is ubiquitous. If you have access to a Unix system
(Cygwin included), vi is there for you. Many popular editors (even Microsoft Visual
Studio!) have a vi mode. Once you get used to it, it’s hard to imagine using anything
else. vi is a hard road at first, but the payoff is worth it.

If, like me, you see the value in being familiar with an editor that’s available anywhere,
your other option is Emacs. Emacs and I have never quite gotten on (and usually you’re
either an Emacs person or a vi person), but I absolutely respect the power and flexibility
that Emacs provides. If vi’s modal editing approach isn’t for you, I would encourage you
to look into Emacs.

While knowing a console editor (like vi or Emacs) can come in incredibly handy, you
may still want a more modern editor. Some of my frontend colleagues swear by Coda,
and I trust their opinion. Unfortunately, Coda is available only on OS X. Sublime Text
is a modern and powerful editor that also has an excellent vi mode, and it’s available on
Windows, Linux, and OS X.

On Windows, there are some fine free options out there. TextPad and Notepad++ both
have their supporters. They’re both capable editors, and you can’t beat the price. If you’re
a Windows user, don’t overlook Visual Studio as a JavaScript editor: it’s remarkably
capable, and has one of the best JavaScript autocomplete engines of any editor. You can
download Visual Studio Express from Microsoft for free.

npm
npm is the ubiquitous package manager for Node packages (and is how we’ll get and
install Express). In the wry tradition of PHP, GNU, WINE, and others, “npm” is not an
acronym (which is why it isn’t capitalized); rather, it is a recursive abbreviation for “npm
is not an acronym.”

Broadly speaking, a package manager’s two primary responsibilities are installing pack‐
ages and managing dependencies. npm is a fast, capable, and painless package manager,
which I feel is in large part responsible for the rapid growth and diversity of the Node
ecosystem.

npm is installed when you install Node, so if you followed the steps listed earlier, you’ve
already got it. So let’s get to work!

12 | Chapter 2: Getting Started with Node

The primary command you’ll be using with npm (unsurprisingly), is install. For ex‐
ample, to install Grunt (a popular JavaScript task runner), you would issue the following
command (on the console):

npm install -g grunt-cli

The -g flag tells npm to install the package globally, meaning it’s available globally on
the system. This distinction will become clearer when we cover the package.json files.
For now, the rule of thumb is that JavaScript utilities (like Grunt) will generally be
installed globally, whereas packages that are specific to your web app or project will not.

Unlike languages like Python—which underwent a major language
change from 2.0 to 3.0, necessitating a way to easily switch between
different environments—the Node platform is new enough that it is
likely that you should always be running the latest version of Node.
However, if you do find yourself needing to support multiple ver‐
sion of Node, there is a project, nvm, that allows you to switch
environments.

A Simple Web Server with Node
If you’ve ever built a static HTML website before, or are coming from a PHP or ASP
background, you’re probably used to the idea of the web server (Apache or IIS, for
example) serving your static files so that a browser can view them over the network. For
example, if you create the file about.html, and put it in the proper directory, you can
then navigate to http://localhost/about.html. Depending on your web server configu‐
ration, you might even be able to omit the .html, but the relationship between URL and
filename is clear: the web server simply knows where the file is on the computer, and
serves it to the browser.

localhost, as the name implies, refers to the computer you’re on. This
is a common alias for the IPv4 loopback address 127.0.0.1, or the IPv6
loopback address ::1. You will often see 127.0.0.1 used instead, but I
will be using localhost in this book. If you’re using a remote computer
(using SSH, for example), keep in mind that browsing to localhost will
not connect to that computer.

Node offers a different paradigm than that of a traditional web server: the app that you
write is the web server. Node simply provides the framework for you to build a web
server.

“But I don’t want to write a web server,” you might be saying! It’s a natural response: you
want to be writing an app, not a web server. However, Node makes the business of writing

A Simple Web Server with Node | 13

https://github.com/creationix/nvm

this web server a simple affair (just a few lines, even) and the control you gain over your
application in return is more than worth it.

So let’s get to it. You’ve installed Node, you’ve made friends with the terminal, and now
you’re ready to go.

Hello World
I’ve always found it unfortunate that the canonical introductory programming example
is the uninspired message “Hello World.” However, it seems almost sacrilegious at this
point to fly in the face of such ponderous tradition, so we’ll start there, and then move
on to something more interesting.

In your favorite editor, create a file called helloWorld.js:
var http = require('http');

http.createServer(function(req,res){
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello world!');
}).listen(3000);

console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

Make sure you are in the same directory as helloWorld.js, and type node hello
World.js. Then open up a browser and navigate to http://localhost:3000, and voilà! Your
first web server. This particular one doesn’t serve HTML; rather, it just transmits the
message “Hello world!” in plaintext to your browser. If you want, you can experiment
with sending HTML instead: just change text/plain to text/html and change 'Hello
world!' to a string containing valid HTML. I didn’t demonstrate that, because I try to
avoid writing HTML inside JavaScript for reasons that will be discussed in more detail
in Chapter 7.

Event-Driven Programming
The core philosophy behind Node is that of event-driven programming. What that means
for you, the programmer, is that you have to understand what events are available to
you and how to respond to them. Many people are introduced to event-driven pro‐
gramming by implementing a user interface: the user clicks on something, and you
handle the “click event.” It’s a good metaphor, because it’s understood that the program‐
mer has no control over when, or if, the user is going to click something, so event-driven
programming is really quite intuitive. It can be a little harder to make the conceptual
leap to responding to events on the server, but the principle is the same.

In the previous code example, the event is implicit: the event that’s being handled is an
HTTP request. The http.createServer method takes a function as an argument; that

14 | Chapter 2: Getting Started with Node

function will be invoked every time an HTTP request is made. Our simple program just
sets the content type to plaintext and sends the string “Hello world!”

Routing
Routing refers to the mechanism for serving the client the content it has asked for. For
web-based client/server applications, the client specifies the desired content in the URL;
specifically, the path and querystring (the parts of a URL will be discussed in more detail
in Chapter 6).

Let’s expand our “Hello world!” example to do something more interesting. Let’s serve
a really minimal website consisting of a home page, an About page, and a Not Found
page. For now, we’ll stick with our previous example and just serve plaintext instead of
HTML:

var http = require('http');

http.createServer(function(req,res){
 // normalize url by removing querystring, optional
 // trailing slash, and making it lowercase
 var path = req.url.replace(/\/?(?:\?.*)?$/, '').toLowerCase();
 switch(path) {
 case '':
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Homepage');
 break;
 case '/about':
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('About');
 break;
 default:
 res.writeHead(404, { 'Content-Type': 'text/plain' });
 res.end('Not Found');
 break;
 }
}).listen(3000);

console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

If you run this, you’ll find you can now browse to the home page (http://localhost:
3000) and the About page (http://localhost:3000/about). Any querystrings will be ig‐
nored (so http://localhost:3000/?foo=bar will serve the home page), and any other URL
(http://localhost:3000/foo) will serve the Not Found page.

Serving Static Resources
Now that we’ve got some simple routing working, let’s serve some real HTML and a
logo image. These are called “static resources” because they don’t change (as opposed
to, for example, a stock ticker: every time you reload the page, the stock prices change).

A Simple Web Server with Node | 15

Serving static resources with Node is suitable for development and
small projects, but for larger projects, you will probably want to use
a proxy server such as Nginx or a CDN to serve static resources. See
Chapter 16 for more information.

If you’ve worked with Apache or IIS, you’re probably used to just creating an HTML
file, navigating to it, and having it delivered to the browser automatically. Node doesn’t
work like that: we’re going to have to do the work of opening the file, reading it, and
then sending its contents along to the browser. So let’s create a directory in our project
called public (why we don’t call it static will become evident in the next chapter). In that
directory, we’ll create home.html, about.html, 404.html, a subdirectory called img, and
an image called img/logo.jpg. I’ll leave that up to you: if you’re reading this book, you
probably know how to write an HTML file and find an image. In your HTML files,
reference the logo thusly: .

Now modify helloWorld.js:
var http = require('http'),
 fs = require('fs');

function serveStaticFile(res, path, contentType, responseCode) {
 if(!responseCode) responseCode = 200;
 fs.readFile(__dirname + path, function(err,data) {
 if(err) {
 res.writeHead(500, { 'Content-Type': 'text/plain' });
 res.end('500 - Internal Error');
 } else {
 res.writeHead(responseCode,
 { 'Content-Type': contentType });
 res.end(data);
 }
 });
}

http.createServer(function(req,res){
 // normalize url by removing querystring, optional
 // trailing slash, and making lowercase
 var path = req.url.replace(/\/?(?:\?.*)?$/, '')
 .toLowerCase();
 switch(path) {
 case '':
 serveStaticFile(res, '/public/home.html', 'text/html');
 break;
 case '/about':
 serveStaticFile(res, '/public/about.html', 'text/html');
 break;
 case '/img/logo.jpg':
 serveStaticFile(res, '/public/img/logo.jpg',

16 | Chapter 2: Getting Started with Node

 'image/jpeg');
 break;
 default:
 serveStaticFile(res, '/public/404.html', 'text/html',
 404);
 break;
 }
}).listen(3000);

console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

In this example, we’re being pretty unimaginative with our routing.
If you navigate to http://localhost:3000/about, the public/about.html
file is served. You could change the route to be anything you want,
and change the file to be anything you want. For example, if you had
a different About page for each day of the week, you could have files
public/about_mon.html, public/about_tue.html, and so on, and pro‐
vide logic in your routing to serve the appropriate page when the user
navigates to http://localhost:3000/about.

Note we’ve created a helper function, serveStaticFile, that’s doing the bulk of the
work. fs.readFile is an asynchronous method for reading files. There is a synchronous
version of that function, fs.readFileSync, but the sooner you start thinking asyn‐
chronously, the better. The function is simple: it calls fs.readFile to read the contents
of the specified file. fs.readFile executes the callback function when the file has been
read; if the file didn’t exist or there were permissions issues reading the file, the err
variable is set, and the function returns an HTTP status code of 500 indicating a server
error. If the file is read successfully, the file is sent to the client with the specified response
code and content type. Response codes will be discussed in more detail in Chapter 6.

__dirname will resolve to the directory the executing script resides in.
So if your script resides in /home/sites/app.js, __dirname will resolve
to /home/sites. It’s a good idea to use this handy global whenever
possible. Failing to do so can cause hard-to-diagnose errors if you run
your app from a different directory.

Onward to Express
So far, Node probably doesn’t seem that impressive to you. We’ve basically replicated
what Apache or IIS do for you automatically, but now you have some insight into how
Node does things and how much control you have. We haven’t done anything particu‐
larly impressive, but you can see how we could use this as a jumping-off point to do
more sophisticated things. If we continued down this road, writing more and more

Onward to Express | 17

sophisticated Node applications, you might very well end up with something that re‐
sembles Express….

Fortunately, we don’t have to: Express already exists, and it saves you from implementing
a lot of time-consuming infrastructure. So now that we’ve gotten a little Node experience
under our belt, we’re ready to jump into learning Express.

18 | Chapter 2: Getting Started with Node

JAVA SCRIPT/ WEB

JavaScript Cookbook

ISBN: 978-1-491-90188-5

US $49.99 CAN $57.99

“�A�comprehensive,�example-
driven�tour�of�the�language�
and�its�platforms.”

—Dr. Axel Rauschmayer
author of Speaking JavaScript

Shelley Powers has been working
with and writing about web tech-
n o l o g i e s—fro m th e f i r s t re l e as e
of JavaScript to the latest graphics
and design tools—for more than 18
years. Her recent O’Reilly books have
covered JavaScript, HTML5 media
objects, Ajax, and web graphics.

Twitter: @oreillymedia
facebook.com/oreilly

Problem solving with JavaScript is a lot trickier now that its use has expanded
considerably in size, scope, and complexity. This cookbook has your back,
with recipes for common tasks across the JavaScript world, whether you’re
working in the browser, the server, or a mobile environment. Each recipe
includes reusable code and practical advice for tackling JavaScript objects,
Node, Ajax, JSON, data persistence, graphical and media applications, complex
frameworks, modular JavaScript, APIs, and many related technologies.

Aimed at people who have some experience with JavaScript, the first part
covers traditional uses of JavaScript, along with new ideas and improved
functionality. The second part dives into the server, mobile development,
and a plethora of leading-edge tools. You’ll save time—and learn more
about JavaScript in the process.

Topics include:

Classic JavaScript:

 ■ Arrays, functions, and the JavaScript Object

 ■ Accessing the user interface

 ■ Testing and accessibility

 ■ Creating and using JavaScript libraries

 ■ Client-server communication with Ajax

 ■ Rich, interactive web effects

JavaScript, All Blown Up:

 ■ New ECMAScript standard objects

 ■ Using Node on the server

 ■ Modularizing and managing JavaScript

 ■ Complex JavaScript frameworks

 ■ Advanced client-server communications

 ■ Visualizations and client-server graphics

 ■ Mobile application development

JavaScript C
ookbook

SECOND EDITION

Pow
ers

Shelley Powers

JavaScript
Cookbook
PROGRAMMING THE WEB

2nd Edition

Shelley Powers

SECOND EDITION

JavaScript Cookbook

CHAPTER 12

Modularizing and Managing JavaScript

One of the great aspects of writing Node.js applications is the built-in modularity the
environment provides. As demonstrated in Chapter 11, it’s simple to download and
install any number of Node modules, and using them is equally simple: just include a
single require() statement naming the module, and you’re off and running.

The ease with which the modules can be incorporated is one of the benefits of JavaScript
modularization. Modularizing ensures that external functionality is created in such a
way that it isn’t dependent on other external functionality, a concept known as loose
coupling. This means I can use a Foo module, without having to include a Bar module,
because Foo is tightly dependent on having Bar included.

JavaScript modularization is both a discipline and a contract. The discipline comes in
by having to follow certain mandated criteria in order for external code to participate
in the module system. The contract is between you, me, and other JavaScript developers:
we’re following an agreed on path when we produce (or consume) external functionality
in a module system, and we all have expectations based on the module system.

ECMAScript 6 provides native support for modules, but the specifi‐
cation is still undergoing change and there is no implementation
support yet. There is some support for it in Traceur, as well as a
polyfill, which can at least provide an idea of how they’ll be imple‐
mented in the future.

Chances are you have used modularized JavaScript. If you have used jQuery with Re‐
quireJS or Dojo, you’ve used modularized JavaScript. If you’ve used Node, you’ve used
a modular system. They don’t look the same, but they work the same: ensuring that
functionality developed by disparate parties works together seamlessly. The modular
system that RequireJS and Dojo support is the Asynchronous Module Definition

311

http://bit.ly/14RI7K6
https://github.com/ModuleLoader/es6-module-loader

(AMD), while Node’s system is based on CommonJS. One major difference between
the two is that AMD is asynchronous, while CommonJS is synchronous.

Even if you don’t use a formal modular system, you can still improve the performance
of script loading with script loaders and using new HTML5 async functionality. You
can also improve the management of your entire application process using tools such
as Grunt, or ensuring your own code is packaged for ease of use and innovation.

One major dependency on virtually all aspects of application and
library management and publication is the use of Git, a source con‐
trol system, and GitHub, an extremely popular Git endpoint. How Git
works and using Git with GitHub are beyond the scope of this book.
I recommend The Git Pocket Guide (O’Reilly) to get more familiar
with Git, and GitHub’s own documentation for more on using this
service.

12.1. Loading Scripts with a Script Loader
Problem
You need to use several different JavaScript libraries in your web pages, and they’re
starting to slow the page loads.

Solution
One solution is to use a script loader to load your JavaScript files asynchronously and
concurrently. Examples of use are documented in the discussion.

Discussion
There are several techniques you can use to load JavaScript files. One is the traditional
method of using a script element for each file, and just loading each in turn. The issue
that people have had with this approach is the inefficiency of having to access each file
individually, the problems that can occur if scripts are loaded out of order (with one
script being dependent on another already loaded), and the fact that the entire page is
blocked while the scripts load.

Some solutions are to compile all the individual JavaScript files into a single file, which
is what the content management system (CMS) Drupal does. This eliminates the mul‐
tiple file access and even the issues with ordering, but it still leaves us with the fact that
the page is blocked from loading until the scripts are loaded.

Script loaders were created to provide a way of loading JavaScript files asynchronously,
which means the rest of the page can continue loading while the script is loading. They

312 | Chapter 12: Modularizing and Managing JavaScript

http://shop.oreilly.com/product/0636920024972.do
https://github.com/

use script injection: creating a script element in a script block that loads the JavaScript
file, and then appending that block to the page. The inline JavaScript is executed asyn‐
chronously and does not block the page from loading like the use of the traditional
script element does.

The code to do so can be similar to the script block shown in the following minimal
HTML5 page:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>title</title>
</head>
<body>
 <script>
 var scrpt = document.querySelector("script");
 var t = document.createElement("script");
 t.src = "test1.js";
 scrpt.parentNode.insertBefore(t,scrpt);
 </script>
</body>
</html>

To prevent the variables from cluttering up the global namespace, they can be included
in an Immediately-Invoked Function Expression (IIFE):

<script>
 (function() {
 var scrpt = document.querySelector("script");
 var t = document.createElement("script");
 t.src = "test1.js";
 scrpt.parentNode.insertBefore(t,scrpt);
 }());
</script>

If you need to use a pathname for the script, you can use a protocol-relative URL
(sometimes referred to as a protocol-less URL) so that the code adapts whether the page
is accessed with http or https:

t.src = "//somecompany.com/scriptfolder/test1.js";

With this, the client application uses the same protocol (http or https) used to access the
parent page.

Multiple scripts can be loaded into the page using this approach. It can also be used to
load CSS files, as well as larger images or other media files. However, we don’t have to
do the work ourselves: we can use a script loading library, such as HeadJS.

According to the HeadJS documentation, the best approach to including support for
the library is to include a link to the library in the head element:

12.1. Loading Scripts with a Script Loader | 313

<html>
 <head>
 <script src="head.min.js"></script>
 <script>
 head.load("file1.js", "file2.js");
 </script>
 </head>
 <body>
 <!-- my content-->

 <script>
 head.ready(function () {
 // some callback stuff
 });
 </script>
 </body>
</html>

Note the head.load() function call. All of the script files to be loaded are listed in the
function call. In addition, any ready state functionality can be provided in the
head.ready() function call.

If you do have JavaScript, you want to load right away; rather than using another script
element, you can use a data- attribute on the script element loading HeadJS:

<script src="head.min.js" data-headjs-load="init.js"></script>

Any immediately invoked functionality is then listed in init.js.

HeadJS has other functionality, including assistance for responsive
design and browser version support. Read more about setting it up
in the set up documentation.

Another script loader with an interesting twist is Basket.js. It also loads JavaScript files
asynchronously, but it goes a step further: it caches the script using localStorage, which
means if the JavaScript has already been accessed once, a second access loads the Java‐
Script from cache rather than loading the file again.

Once you include the Basket.js JavaScript file, you can then define the JavaScript files
to be loaded:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>title</title>
 </head>
<body>
 <script src="basket.full.min.js"></script>

314 | Chapter 12: Modularizing and Managing JavaScript

http://bit.ly/1yI09Lc

 <script>
 basket.require({ url: 'test1.js'},
 { url: 'test2.js'});
 </script>
</body>
</html>

If you monitor the page using your browser’s debugger/development tools, and reload
the page, you’ll note that the files aren’t accessed again after the first load.

To handle source dependencies, Basket.js returns a promise from require(), and the
then() callback is executed. You can then list the second JavaScript file in the callback:

<script>
 basket.require({ url: 'test2.js'}).then(function() {
 basket.require({ url: 'test1.js'});
 });
</script>

Access Basket.js and read how to use it in the library’s home page.

12.2. Loading Scripts Asynchronously the HTML5 Way
Problem
You’re interested in processing scripts asynchronously—not blocking the page from
loading while the scripts load—but you have discovered that the script injection tech‐
nique has one problem: the CSS Object Model (CSSOM) blocks inline scripts because
these scripts typically operate on the CSSOM. Since the CSSOM doesn’t know what the
script is going to do, it blocks the script until all of the CSS is loaded. This, then, delays
the network access of the script until all CSS files have been loaded.

Solution
Use the new HTML5 async script element attribute instead of script injection:

<script src="//cdnjs.cloudflare.com/ajax/libs/mathjs/0.26.0/math.min.js" async>
</script>
<script
src="//cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2/backbone-min.js" async>
</script>

12.2. Loading Scripts Asynchronously the HTML5 Way | 315

http://addyosmani.github.io/basket.js/

Discussion
There are two script element attributes: defer, which defers script loading until the rest
of the page is loaded, and the newest async. The latter tells the browser to load the script
asynchronously, as the page is being parsed. It only works with external scripts; the page
still blocks with inline scripts.

The async attribute prevents many of the problems we’ve had with blocked scripts and
having to use tricks such as script injection. The only reason script injection is still being
used is there are older versions of browsers, such as IE9 and older, that don’t support it.

12.3. Converting Your JavaScript to AMD and RequireJS
Problem
You’re interested in taking advantage of modularization and controlled dependencies
by converting your libraries to the Asynchronous Module Definition (AMD) format,
implemented with RequireJS, but you’re not sure where to start and what to do.

Solution
RequireJS is integrated into the following three small JavaScript libraries:

one.js
define(function() {
 return {
 hi: function() {
 console.log('hello from one');
 }
 }
});

two.js
define(function() {
 return {
 hi: function(val) {
 console.log('hello ' + val + ' from two');
 }
 }
});

mylib.js
require(["./one","./two"],function(one,two) {
 one.hi();
 two.hi('world');
 console.log("And that's all");
});

316 | Chapter 12: Modularizing and Managing JavaScript

And the web page, index.html:
<!DOCTYPE html>
<html>
 <head>
 <title>Hello Modularization</title>
 <script data-main="scripts/mylib" src="scripts/require.js"></script>
 </head>
 <body>
 <h1>Stuff</h1>
 </body>
</html>

Discussion
Consider the following three very basic JavaScript libraries:

one.js
function oneHi() {
 console.log('hello from one');
}

two.js
function twoHi(val) {
 console.log('hello ' + val + ' from two');
}

mylib.js
function allThat() {
 oneHi();
 twoHi('world');
 console.log("And that's all");
}

They could be included in a simple web page as demonstrated in the following code,
assuming all the JavaScript libraries are in a subdirectory named scripts/:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello Modularization</title>
 <script src="scripts/one.js" type="text/javascript"></script>
 <script src="scripts/two.js" type="text/javascript"></script>
 <script src="scripts/mylib.js" type="text/javascript"></script>
 <script type="text/javascript">
 allThat();
 </script>
 </head>
 <body>
 <h1>Stuff</h1>

12.3. Converting Your JavaScript to AMD and RequireJS | 317

 </body>
</html>

And you might expect the application to work, with the messages printed out in the
right order. However, if you make a modest change, such as use the async attribute with
all of the scripts:

<script src="scripts/one.js" async type="text/javascript"></script>
<script src="scripts/two.js" async type="text/javascript"></script>
<script src="scripts/mylib.js" async type="text/javascript"></script>

You’ll be hosed, because the browser no longer blocks program execution, waiting for
each script to load, in turn, before going to the next. Other challenges that can occur
are that you’re using other people’s libraries and you don’t know the correct order to list
the source scripts, or you forget one or more of them. The problem with this common
approach from the past is that nothing enforces both order and dependencies. That’s
where RequireJS comes in.

In the solution, you’ll notice two key words: define and require. The define keyword
is used to define a module, while require is used to list dependencies with a callback
function that’s called when all dependencies are loaded.

In the solution, two of the libraries are defined as modules, each return a function. The
third library, mylib.js, declares the two modules as dependencies and in the callback
function, invokes the returned module functions. All of this is pulled into the HTML
page with the following line:

<script data-main="scripts/mylib" src="scripts/require.js"></script>

The actual source is the RequireJS library. The custom attribute data-main specifies the
JavaScript source to load after RequireJS is loaded.

The modules can return more than one function, or can return data objects, functions,
or a combination of both:

define(function() {
 return {
 value1: 'one',
 value2: 'two',
 doSomething: function() {
 // do something
 }
 }
})

Modules can also have dependencies. The following code version of two.js creates a
dependency on one.js in two.js and removes it as a dependency in mylib.js:

318 | Chapter 12: Modularizing and Managing JavaScript

http://requirejs.org/

two.js
define(['one'], function(one) {
 return {
 hi: function(val) {
 one.hi();
 console.log('hello ' + val + ' from two');
 }
 }
});

mylib.js
require(["./two"],function(two) {
 two.hi('world');
 console.log("And that's all");
});

Typically after you create your JavaScript files, you’ll want to opti‐
mize them. RequireJS provides the tools and documentation for op‐
timizing your source at http://requirejs.org/docs/optimization.html.

See Also
Your library can still exist as a standard JavaScript library and an AMD-compliant
module, as discussed in Recipe 12.9.

12.4. Using RequireJS with jQuery or Another Library
Problem
Your applications uses jQuery (or Underscore.js or Backbone). How can the library fit
into the use of RequireJS to manage dependencies?

Solution
If the library can work with AMD (as jQuery can), and you save the jQuery file as
jquery.js and load it in the same directory as your application JavaScript, you can use
the jQuery functionality easily, as shown in the following small code snippet:

require(["./jquery"],function($) {
 $('h1').css('color','red');
});

However, if the jQuery file is named something else, or you’re accessing the library from
a CDN, then you’ll need to use a RequireJS shim:

12.4. Using RequireJS with jQuery or Another Library | 319

http://requirejs.org/docs/optimization.html

requirejs.config({
 baseUrl: 'scripts/lib',
 paths: {
 jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'
 },
});

Discussion
As the solution demonstrates, if your application code already incorporates jQuery’s
dollar sign ($) and the jQuery file is local to the script, you can incorporate its use in
your application in the same manner used for any other module. The jQuery library
can recognize that it’s within a RequireJS environment, and respond accordingly. Where
things get a little more complicated is if the library is not accessed locally, is accessed
from a CDN, or the library doesn’t support AMD.

To demonstrate, I modified the source files discussed in Recipe 12.3. The source files
are now organized in the following directory structure:

www
 app
 main.js
 index.html
 scripts
 app.js
 lib
 one.js
 require.js
 two.js

In addition, I removed the define() in the source library two.js, making it into an
anonymous closure—an IIFE object that is added to the Window object as two:

(function (){
 window.two = this;
 this.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }
}());

The one.js file still contains the AMD define() statement, meaning it requires no special
handling to use:

define(function() {
 return {
 hi: function() {
 console.log('hello from one');
 }
 }
});

320 | Chapter 12: Modularizing and Managing JavaScript

The app.js file contains a RequireJS config block that, among other things, sets a base
Url for all loaded modules, defines a CDN path for both jQuery and the app subdirec‐
tory, and creates a shim for the non-AMD compliant two. It also loads the app/main
module:

requirejs.config({
 baseUrl: 'scripts/lib',
 paths: {
 app: '../../app',
 jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'
 },
 shim: {
 two: {
 exports: 'two'
 }
 }
});

requirejs(["app/main"]);

The shim for two defines an exported object (an object defined on Window in the
browser), since the library doesn’t use define() to identify the object.

Lastly, the main.js module lays out the dependency on jQuery, one, and two, and runs
the application:

define(["jquery","one","two"],function($,one, two) {
 one.hi();
 two.hi('world');
 console.log("And that's all");
 $('h1').css('color','red');
});

If two had been dependent on one of the modules or other libraries, such as one, the
dependency would have been noted in the shim:

requirejs.config({
 baseUrl: 'scripts/lib',
 paths: {
 app: '../../app',
 jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'
 },
 shim: {
 two: {
 deps: ['one'],
 exports: 'two'
 }
 }
});

If you’d like to make your JavaScript library into an AMD-compliant module, but still
allow it to be used in other contexts, you can add a small amount of code to ensure both:

12.4. Using RequireJS with jQuery or Another Library | 321

(function (){
 window.two = this;
 this.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }

}());

The tiny library is now redesigned into an IIFE. Any private data and methods would
be fully enclosed in the closure, and the only public method is exposed by adding it as
a property to the object. The object itself is given global access via assignment to the
Window property.

A variation on this would be the following, where the exposed methods and data are
returned as an object to the assigned variable:

var two = (function (){
 return {
 hi: function (val) {
 console.log('hello ' + val + ' from two');
 }
 }

}());

The code now meets the module pattern, ensuring both public and private data and
functions are encapsulated using the closure, and globally accessible methods and data
are returned in the object. Another variation of the module pattern is the following:

var two = (function() {
 var my = {};
 my.hi = function(val) {
 console.log('hello ' + val + ' from two');
 };
 return my;
}());

I modified the original form of the object to make it AMD compliant:

(function (){
 window.two = this;
 this.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }

 if (typeof define === "function" && define.amd) {
 define("two", [], function() {
 return two;
 });
 }
}());

322 | Chapter 12: Modularizing and Managing JavaScript

The code tests to see if the define() function exists. If so, then it’s invoked, passing in
the name of the exported library object and in the callback, returning the exported
library object. This is how a library such as jQuery can work in AMD, but still work in
other traditional JavaScript environments.

A variation, using the more established module pattern, is the following:

var two = (function (){
 var two = {};

 two.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }

 if (typeof define === "function" && define.amd) {
 define("two", [], function() {
 return two;
 });
 }

 return two;
}());

jQuery also supports the CommonJS modular system.

12.5. Loading and Using Dojo Modules
Problem
You’re interested in using some of the Dojo functionality, but you’re not sure how to
load the associated modules.

Solution
Dojo has implemented the AMD architecture for its functionality. When you add the
main Dojo script to your page, what you’re loading is the module loader, rather than all
of its various functions:

<script src="http://ajax.googleapis.com/ajax/libs/dojo/1.10.0/dojo/dojo.js"
 data-dojo-config="async: true"></script>

The library can be accessed at a CDN, as the code snippet demonstrates. The custom
data attribute data-dojo-config specifies that the Dojo asynchronous AMD loader
should be used.

12.5. Loading and Using Dojo Modules | 323

To use the Dojo functionality, specify the dependencies in the require() method:

 <script>
 require([
 'dojo/dom',
 'dojo/dom-construct'
], function (dom, domConstruct) {
 var ph = dom.byId("placeholder");
 ph.innerHTML = "Using Dojo";
 domConstruct.create("h1", {innerHTML: "<i>Howdy!</i>"},ph,"before");
 });
 </script>

Discussion
Dojo is a sophisticated library system providing functionality similar to that provided
in the jQuery environment. It does require a little time to become familiar with its
implementation of AMD, though, before jumping in.

In the solution, the Dojo asynchronous loader is sourced from a CDN. The solution
then imports two Dojo modules: dojo/dom and dojo/dom-construct. Both provide
much of the basic DOM functionality, such as the ability to access an existing element
by an identifier (dom.byId()), and create and place a new element (domConstruct.cre
ate()). To give you a better idea how it all holds together, a complete page example is
given in Example 12-1.

Example 12-1. A complete Dojo example accessing one page element and adding
another
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dojo</title>
 <script src="http://ajax.googleapis.com/ajax/libs/dojo/1.10.0/dojo/dojo.js"
 data-dojo-config="async: true"></script>
</head>
<body>
 <div id="placeholder"></div>
 <script>
 require([
 'dojo/dom',
 'dojo/dom-construct'
], function (dom, domConstruct) {
 var ph = dom.byId("placeholder");
 ph.innerHTML = "Using Dojo";
 domConstruct.create("h1", {innerHTML: "<i>Howdy!</i>"},ph,"before");
 });
 </script>
</body>
</html>

324 | Chapter 12: Modularizing and Managing JavaScript

Though Dojo is generally AMD-compatible, there’s still some funk‐
iness with the implementation that makes it incompatible with a
module loader like RequireJS. The concepts of a module loader, the
require() and define() functions, and creating a configuration
object are the same, but implementation compatibility fails.
Dojo does provide a decent set of tutorials to help you understand
more fully how the framework operates.

12.6. Installing and Maintaining Node Modules with npm
Problem
You’re new to Node. You’ve installed it, and played around with the core Node modules
installed with Node. But now, you need something more.

Solution
The glue that holds the Node universe together is npm, the Node package manager. To
install a specific module, use the following on the command line:

npm install packagename

If you want to install the package globally, so it’s accessible from all locations in the
computer, use the following:

npm install -g packagename

When to install locally or globally is dependent on whether you’re going to re
quire() the module, or if you need to run it from the command line. Typically you
install require() modules locally, and executables are installed globally, though you
don’t have to follow this typical usage. If you do install a module globally, you might
need administrative privileges:

sudo npm install -g packagename

Discussion
The solution demonstrated the most common use of npm: installing a registered npm
module locally or globally on your system. However, you can install modules that are
located in GitHub, downloaded as a tar file, or located in a folder. If you type:

npm install --help

you’ll get a list of allowable approaches for installing a module:

npm install
npm install <pkg>
npm install <pkg>@<tag>

12.6. Installing and Maintaining Node Modules with npm | 325

http://dojotoolkit.org/documentation/

npm install <pkg>@<version>
npm install <pkg>@<version range>
npm install <folder>
npm install <tarball file>
npm install <tarball url>
npm install <git:// url>
npm install <github username>/<github project>

If your current directory contains a npm-shrinkwrap.json or package.json file, the de‐
pendencies in the files are installed by typing npm install.

Recipe 12.10 covers the structure and purpose of the package.json file.

To remove an installed Node module, use:

npm rm packagename

The package and any dependencies are removed. To update existing packages, use:

npm update [g] [packagename [packagename ...]]

You can update locally or globally installed modules. When updating, you can list all
modules to be updated, or just type the command to update all locally-installed modules
relative to your current location.

12.7. Searching for a Specific Node Module via npm
Problem
You’re creating a Node application and want to reuse existing modules, but you don’t
know how to discover them.

Solution
In most cases, you’ll discover modules via recommendations from your friends and co-
developers, but sometimes you need something new.

You can search for new modules directly at the npm website. The front page also lists
the most popular modules, which are worth an exploratory look.

You can also use npm directly to search for a module. For instance, if you’re interested
in modules that do something with PDFs, run the following search at the command
line:

npm search pdf

326 | Chapter 12: Modularizing and Managing JavaScript

https://www.npmjs.org/

Discussion
The npm website provides more than just good documentation for using npm; it also
provides a listing of newly updated modules, as well as those modules most depended
on. Regardless of what you’re looking for, you definitely should spend time exploring
these essential modules. In addition, if you access each module’s page at npm, you can
see how popular the module is, what other modules are dependent on it, the license,
and other relevant information.

However, you can also search for modules, directly, using npm.

The first time you perform a search with npm, you’ll get the following feedback:

npm WARN Building the local index for the first time, please be patient

The process can take a fair amount of time, too. Luckily, the index build only needs to
be performed the first time you do a search. And when it finishes, you’re likely to get a
huge number of modules in return, especially with a broader topic such as modules that
work with PDFs.

You can refine the results by listing multiple terms:

npm search PDF generation

This query returns a much smaller list of modules, specific to PDF generation. You can
also use a regular expression to search:

npm search \/Firefox\\sOS

Now I’m getting all modules that reference Firefox OS. However, as the example dem‐
onstrates, you have to incorporate escape characters specific to your environment, as I
did with the beginning of the regular expression, and the use of \s for white space.

Once you do find a module that sounds interesting, you can get detailed information
about it with:

npm view node-firefoxos-cli

You’ll get the package.json file for the module, which can tell you what it’s dependent
on, who wrote it, and when it was created. I still recommend checking out the module’s
GitHub page directly. There you’ll be able to determine if the module is being actively
maintained or not. If you access the npm website page for the module, you’ll also get
an idea of how popular the module is.

12.8. Converting Your Library into a Node Module
Problem
You want to use one of your libraries in Node.

12.8. Converting Your Library into a Node Module | 327

https://www.npmjs.org/

Solution
Convert the library into a Node module. For example, if the library is designed as the
following IIFE:

(function () {
 var val = 'world';
 console.log('Hello ' + val + ' from two');
}());

You can convert it to work with Node by the simple addition of an exports keyword:

module.exports = (function () {
 return {
 hi: function(val) {
 console.log('Hello ' + val + ' from two');
 }
 };
 }());

You can then use the module in your application:

var two = require('./two.js');

two.hi('world');

Discussion
Node’s module system is based on CommonJS, the second modular system covered in
this chapter. CommonJS uses three constructs: exports to define what’s exported from
the library, require() to include the module in the application, and module, which
includes information about the module but also can be used to export a function,
directly.

Though the solution maintains the IIFE, it’s not really required in the CommonJS en‐
vironment, because every module operates in its own module space. The following is
also acceptable:

module.exports.hi = function (val) {
 console.log('hello ' + val + ' from two');
}

If your library returns an object with several functions and data objects, you can assign
each to the comparably named property on module.exports, or you could return an
object from a function:

module.exports = function () {
 return {
 somedata: 'some data',
 hi: function(val) {
 console.log('Hello ' + val + ' from two');
 }

328 | Chapter 12: Modularizing and Managing JavaScript

 };
 };

And then invoke the object in the application:

var twoObj = require('./two.js');

var two = twoObj();
two.hi(two.somedata);

Or you can access the object property directly:

var hi = require('./twob.js').hi;

hi('world');

Because the module isn’t installed using npm, and just resides in the directory where
the application resides, it’s accessed by the location and name, not just the name.

See Also
In Recipe 12.9, I cover how to make sure your library code works in all of the environ‐
ments: CommonJS, Node, AMD, and as a traditional JavaScript library.

12.9. Taking Your Code Across All Module Environments
Problem
You’ve written a library that you’d like to share with others, but folks are using a variety
of module systems to incorporate external JavaScript. How can you ensure your library
works in all of the various environments?

Solution
The following library with two functions:

function concatArray(str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
}

function splitArray(str,array) {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
}

12.9. Taking Your Code Across All Module Environments | 329

Will work with RequireJS, Node, as a plain script, and CommonJS in the browser when
converted to:

(function(global) {
 'use strict';

 var bbArray = {};

 bbArray.concatArray = function (str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 };

 bbArray.splitArray = function (str,array) {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 };

 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbArray;
 } else if (typeof define === "function" && define.amd) {
 define("bbArray", [], function() {
 return bbArray;
 });
 } else {
 global.bbArray = bbArray;
 }

}(this));

Discussion
To ensure your library works in a traditional scripting environment, you should en‐
capsulate your functionality in an IIFE, to minimize leak between private and public
functionality and data. You’ll also want to limit pollution of the global space:

(function(global) {
 'use strict';

 var bbArray = {};

 bbArray.concatArray = function (str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 };

 bbArray.splitArray = function (str,array) {
 return array.map(function(element) {

330 | Chapter 12: Modularizing and Managing JavaScript

 var len = str.length + 1;
 return element.substring(len);
 });
 };

 global.bbArray = bbArray;

}(this));

The object is being used in an environment that may not have access to a window object,
so the global object (global in Node, window in the browser) is passed as an argument
to the object as this, and then defined as global in the library.

At this point, the library can work as a traditional library in a browser application:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Array test</title>
 <script src="bbarray.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 var a = ['one', 'two', 'three'];
 var b = bbArray.concatArray('number is ',a);
 console.log(b);
 var c = bbArray.splitArray('number is ', b);
 console.log(c);
 </script>
</head>
<body>
</body>
</html>

The result is two print outs to the console:

['number is one', 'number is two', 'number is three']
['one', 'two', 'three']

Next, we’ll add the Node support. We add this using the following lines of code:

if (typeof module != 'undefined' && module.exports) {
 module.exports = bbArray;
}

This code checks whether the module object is defined and if it is, whether the mod
ule.exports object exists. If the tests succeed, then the object is assigned to module.ex
ports, no different than defining exported functionality (covered earlier in
Recipe 12.8). It can now be accessed in a Node application like the following:

var bbArray = require('./bbarray.js');

var a = ['one', 'two', 'three'];

12.9. Taking Your Code Across All Module Environments | 331

var b = bbArray.concatArray('number is ',a);
console.log(b);
var c = bbArray.splitArray('number is ', b);
console.log(c);

Now we add support for CommonJS, specifically RequireJS. From Recipe 12.4, we know
to check if define exists, and if so, to add support for RequireJS. After adding this
modification, the library module now looks like this:

(function(global) {
 'use strict';

 var bbArray = {};

 bbArray.concatArray = function (str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 };

 bbArray.splitArray = function (str,array) {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 };

 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbArray;
 } else if (typeof define === "function" && define.amd) {
 define("bbArray", [], function() {
 return bbArray;
 });
 } else {
 global.bbArray = bbAarray;
 }

}(this));

The module can now be used in a web application that incorporates RequireJS for
module support. Following RequireJS’s suggestion that all inline scripts be pulled into
a separate file, the JavaScript application to test the library is created in a file named
main.js:

require(["./bbarray"], function(bbArray) {
 var a = ['one', 'two', 'three'];
 var b = bbArray.concatArray('number is ',a);
 console.log(b);
 var c = bbArray.splitArray('number is ', b);
 console.log(c);
});

332 | Chapter 12: Modularizing and Managing JavaScript

And the web page incorporates the RequireJS script, loaded via CDN:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Array test</title>
 <script src="//cdnjs.cloudflare.com/ajax/libs/require.js/2.1.14/require.min.js"
 data-main="main">
 </script>
</head>
<body>

</body>
</html>

Modify the URL for Require.js to match what’s available at the CDN when you run the
test.

See Also
The example covered in this recipe works in all of our environments but it has one
limitation: it’s not using any other libraries. So what happens when you need to include
libraries?

This is where things can get ugly. We know that CommonJS/Node import dependencies
with require:

var library = require('somelib');

While AMD incorporates dependencies in require or define:

define(['./somelib'], function(library) {

// rest of the code
});

Not compatible. At all. The workaround for this problem has been either to use Brows‐
erify (covered in Recipe 12.12) or to incorporate a Universal Module Definition (UMD).
You can see examples of a UMD online, and it’s covered in detail in Addy Osmani’s
“Writing Modular JavaScript with AMD, CommonJS, and ES Harmony”.

12.10. Creating an Installable Node Module
Problem
You’ve either created a Node module from scratch, or converted an existing library to
one that will work in the browser or in Node. Now, you want to know how to modify it
into a module that can be installed using npm.

12.10. Creating an Installable Node Module | 333

http://addyosmani.com/writing-modular-js/

Solution
Once you’ve created your Node module and any supporting functionality (including
module tests), you can package the entire directory. The key to packaging and publishing
the Node module is creating a package.json file that describes the module, any depen‐
dencies, the directory structure, what to ignore, and so on.

The following is a relatively basic package.json file:

{
 "name": "bbArray",
 "version": "0.1.0",
 "description": "A description of what my module is about",
 "main": "./lib/bbArray",
 "author": {
 "name": "Shelley Powers"
 },
 "keywords": [
 "array",
 "utility"
],
 "repository": {
 "type": "git",
 "url": "https://github.com/accountname/bbarray.git"
 },
 "engines" : {
 "node" : ">=0.10.3 <0.12"
 },
 "bugs": {
 "url": "https://github.com/accountname/bbarray/issues"
 },
 "licenses": [
 {
 "type": "MIT",
 "url": "https://github.com/accountname/bbarray/raw/master/LICENSE"
 }
],
 "dependencies": {
 "some-module": "~0.1.0"
 },
 "directories":{
 "doc":"./doc",
 "man":"./man",
 "lib":"./lib",
 "bin":"./bin"
 },
 "scripts": {
 "test": "nodeunit test/test-bbarray.js"
 }
 }

334 | Chapter 12: Modularizing and Managing JavaScript

Once you’ve created package.json, package all the source directories and the pack‐
age.json file as a gzipped tarball. Then install the package locally, or install it in npm for
public access.

Discussion
The package.json file is key to packaging a Node module up for local installation or
uploading to npm for management. At a minimum, it requires a name and a version.
The other fields given in the solution are:

• description: A description of what the module is and does
• main: Entry module for application
• author: Author(s) of the module
• keywords: List of keywords appropriate for module
• repository: Place where code lives, typically GitHub
• engines: Node version you know your module works with
• bugs: Where to file bugs
• licenses: License for your module
• dependencies: Any module dependencies
• directories: A hash describing directory structure for your module
• scripts: A hash of object commands that are run during module lifecycle

There are a host of other options, which are described at the npm website. You can also
use a tool to help you fill in many of these fields. Typing the following at the command
line runs the tool that asks questions and then generates a basic package.json file:

npm init

Once you have your source set up and your package.json file, you can test whether
everything works by running the following command in the top-level directory of your
module:

npm install . -g

If you have no errors, then you can package the file as a gzipped tarball. At this point,
if you want to publish the module, you’ll first need to add yourself as a user in the npm
registry:

npm add-user

To publish the Node module to the npm registry, use the following in the root directory
of the module, specifying a URL to the tarball, a filename for the tarball, or a path:

npm publish ./

12.10. Creating an Installable Node Module | 335

https://www.npmjs.org/doc/files/package.json.html

If you have development dependencies for your module, such as using a testing frame‐
work like Mocha, one excellent shortcut to ensure these are added to your pack‐
age.json file is to use the following, in the same directory as the package.json file, when
you’re installing the dependent module:

npm install -g mocha --save-dev

Not only does this install Mocha (discussed later, in Recipe 12.13), this command also
updates your package.json file with the following:

 "devDependencies": {
 "grunt": "^0.4.5",
 "grunt-contrib-jshint": "^0.10.0",
 "mocha": "^1.21.4"
 }

You can also use this same type of option to add a module to dependencies in pack‐
age.json. The following:

npm install d3 --save

adds the following to the package.json file:

"dependencies": {
 "d3": "^3.4.11"
 }

If the module is no longer needed and shouldn’t be listed in package.json, remove it from
the devDependencies with:

npm remove mocha --save-dev

And remove a module from dependencies with:

npm remove d3 --save

If the module is the last in either dependencies or devDependencies, the property isn’t
removed. It’s just set to an empty value:

"dependencies": {}

npm provides a decent developer guide for creating and installing a
Node module. You should consider the use of an .npmignore file for
keeping stuff out of your module. And though this is beyond the scope
of the book, you should also become familiar with Git and GitHub,
and make use of it for your applications/modules.

Extra: The README File and Markdown Syntax
When you package your module or library for reuse and upload it to a source repository
such as GitHub, you’ll need to provide how-to information about installing the module/
library and basic information about how to use it. For this, you need a README file.

336 | Chapter 12: Modularizing and Managing JavaScript

http://bit.ly/1yI0ihz
http://bit.ly/1yI0ihz

You’ve seen files named README.md or readme.md with applications and Node mod‐
ules. They’re text-based with some odd, unobtrusive markup that you’re not sure is
useful, until you see it in a site like GitHub, where the README file provides all of the
project page installation and usage information. The markup translates into HTML,
making for readable Web-based help.

The content for the README is marked up with annotation known as Markdown. The
popular website Daring Fireball calls Markdown easy to read and write, but “Readability,
however, is emphasized above all else.” Unlike with HTML, the Markdown markup
doesn’t get in the way of reading the text.

Daring Fireball also provides an overview of generic Markdown, but
if you’re working with GitHub files, you might also want to check out
GitHub’s Flavored Markdown.

In Recipe 18.5 in Chapter 18, I created a simple Firefox OS mobile app named “Where
Am I?” Part of its installation is a README.md file that provides information about
using the app. The following is a brief excerpt from the file:

Where Am I?

This is a simple demonstration Firefox OS app that uses the Geolocation API
to get the user's current location, and then loads a static map into the page.

Obtaining

The Where Am I? app is hosted on the web, in a [Burningbird work directory]
(http://burningbird.net/work/whereami)

Usage

Import it into the Mozilla WebIDE using the hosted app option, and then run
the app in one or more simulators.

When I use a CLI tool like Pandoc, I can covert the README.md file into readable
HTML:

pandoc README.md -o readme.html

Figure 12-1 displays the generated content. It’s not fancy, but it is imminently readable.

12.10. Creating an Installable Node Module | 337

http://bit.ly/df-markdown
http://bit.ly/1yI0iOz
http://johnmacfarlane.net/pandoc/

Figure 12-1. Generated HTML from README.md text and Markdown annotation

When you install your source in a site such as GitHub (discussed in Recipe 7.12 in
Chapter 7), GitHub uses the README.md file to generate the cover page for the
repository.

12.11. Packaging and Managing Your Client-Side
Dependencies with Bower
Problem
You really like how npm manages dependencies and wish there was something com‐
parable for the client.

Solution
Bower can help you manage client dependencies. To use it you must have Node, npm,
and support for Git installed on your client or server.

Once your environment is set up, install Bower using npm:

npm install -g bower

Now, to add packages to the bower-components subdirectory, install them with bower:

338 | Chapter 12: Modularizing and Managing JavaScript

bower install jquery

Then you can create a bower.json file by typing the following in the root directory of
your library or application:

bower init

The application asks a set of questions and generates a bower.json file, which can be
used to install the dependencies with another simple command:

bower install

Discussion
Bower is a way of keeping your script and other dependencies collected and up to date.
Unlike npm, it can work with a variety of file extensions, including CSS, images, as well
as script. You can use it to install dependencies in bower-components, and then access
the dependencies directly in your web applications:

<script src="path/to/bower_components/d3/d3.min.js"></script>

You can package all of your application’s dependencies in a bower.json file, and reinstall
them in a fresh directory with a simple command (in the same directory as the bow‐
er.json file):

bower install

To ensure you’re using the latest and greatest version of the module and library, update
your dependencies:

bower update

If your application is publicly available on GitHub, you can register its dependencies in
Bower by, first, ensuring the bower.json file for the application is accurate, you’re using
semantic versioning with your Git tags, your application is publicly available as a Git
end point (such as GitHub), and the package name adheres to the bower.json specifi‐
cation. Once these dependencies are met, register the application:

bower register <package-name> <git-endpoint>

If you’re wondering why you can’t use something like require directly with Bower,
remember that it’s a dependency management tool, just like npm. It’s the libraries and
infrastructure in place, such as RequireJS, that allows you to use modular AMD or
CommonJS techniques.

You can read more about using Bower at the application’s website.
Bower can be used with other tools, such as Grunt, demonstrated later
in Recipe 12.14.

12.11. Packaging and Managing Your Client-Side Dependencies with Bower | 339

http://semver.org/
http://bower.io/

12.12. Compiling Node.js Modules for Use in the Browser
with Browserify
Problem
Node has a lot of really great modules that you’d really like to use in your browser.

Solution
You can use Browserify to compile the Node module into browser accessible code. If it’s
one of the Node core modules, many are already compiled into shims that can be used
in your browser application.

For instance, if you’re interested in using the Node querystring module functionality,
you create a client JavaScript bundle using the following Browserify command:

browserify -r querystring > bundle.js

Then use the module in your browser app:

 <script src="bundle.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 var qs = require('querystring');

 var str = qs.stringify({ first: 'apple', second: 'pear', third: 'pineapple'})
;
 console.log(str); //first=apple&second=pear&third=pineapple
 </script

Discussion
Browserify is a tool that basically moves Node functionality to the browser, as long as
doing so makes sense. Of course, some functionality won’t work (think input/output)
but a surprising amount of functionality, including that in Node core, can work in the
browser.

Browserify is installed via npm:

npm install -g browserify

It runs at the command line, as shown in the solution. In the solution, the -r flag triggers
Browserify into creating a require() function to wrap the module’s functionality, so
we can use it in a similar manner in the browser app. The querystring module is one
of the many Node core modules already compiled as a shim. The others are:

• assert

• buffer

340 | Chapter 12: Modularizing and Managing JavaScript

• console

• constants

• crypto

• domain

• events

• http

• https

• os

• path

• punycode

• querystring

• stream

• string_decoder

• timers

• tty

• url

• util

• vm

• zlib

You can also compile other Node modules into browser code, including your own. As
an example, let’s say I have the following three Node files:

one.js
module.exports = function() {
 console.log('hi from one');
};

two.js
var one = require ('./one');

module.exports = function(val) {
 one();
 console.log('hi ' + val + ' from two');
};

index.js

12.12. Compiling Node.js Modules for Use in the Browser with Browserify | 341

var two = require ('./two');

module.exports = function() {
 two('world');
 console.log("And that's all");
}

I compiled it into an appl.js file using the following:

browserify ./index.js -o ./appl.js

Including the library in a web page results in the same three console log() function
calls as you would see if you ran the original index.js file with Node, as soon as the
generated script file is loaded.

12.13. Unit Testing Your Node Modules
Problem
You want to know the best way to ensure your module is ready for others to try.

Solution
Add unit tests as part of your production process.

Given the following module, named bbarray, and created in a file named index.js in the
module directory:

var util = require('util');

(function(global) {
 'use strict';

 var bbarray = {};

 bbarray.concatArray = function (str, array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {
 return -1;
 } else {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 }
 };
 bbarray.splitArray = function (str,array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {
 return -1;

342 | Chapter 12: Modularizing and Managing JavaScript

 } else {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 }
 };
 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbarray;
 } else if (typeof define === "function" && define.amd) {
 define("bbarray", [], function() {
 return bbarray;
 });
 } else {
 global.bbarray = bbaarray;
 }

}(this));

Using Mocha, a JavaScript testing framework, and Node’s built-in assert module, the
following unit test (created as index.js and located in the project’s test subdirectory)
should result in the successful pass of six tests:

var assert = require('assert');
var bbarray = require('../index.js');

describe('bbarray',function() {
 describe('#concatArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.concatArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.concatArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['is test','is three'],
 bbarray.concatArray('is',['test','three']));
 });
 });
 describe('#splitArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.splitArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.splitArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['test','three'],
 bbarray.splitArray('is',['is test','is three']));
 });
 });
});

12.13. Unit Testing Your Node Modules | 343

The result of the test is shown in Figure 12-2, run using npm test.

Figure 12-2. Running unit tests based on Node Assert and Mocha

Discussion
Unit testing is one of those development tasks that may seem like a pain when you first
start, but can soon become second nature. I don’t necessarily agree with the folks that
believe we should write the unit tests (test-driven development) first, before writing the
code. But developing both test and code in parallel to each other should be a goal.

A unit test is a way that developers test their code to ensure it meets the specifications.
It involves testing functional behavior, and seeing what happens when you send bad
arguments—or no arguments at all. It’s called unit testing because it’s used with indi‐
vidual units of code, such as testing one module in a Node application, as compared to
testing the entire Node application. It becomes one part of integration testing, where all
the pieces are plugged together, before going to user acceptance testing: testing to ensure
that the application does what users expect it to do (and that they generally don’t hate
it when they use it).

In the solution, I use two different functionalities for testing: Node’s built-in assert
module, and Mocha, a sophisticated testing framework. My module is simple, so I’m
not using some of the more complex Mocha testing mechanisms. However, I think you’ll
get a feel for what’s happening.

To install Mocha, use the following:

npm install mocha --save-dep

344 | Chapter 12: Modularizing and Managing JavaScript

I’m using the --save-dep flag, because I’m installing Mocha into the module’s Node
dependencies. In addition, I modify the module’s package.json file to add the following
section:

 "scripts": {
 "test": "node_modules/mocha/bin/mocha test"
 },

The test script is saved as index.js in the test subdirectory under the project. The fol‐
lowing command runs the test:

npm test

The Mocha unit test makes use of assertion tests from Node’s assert module.

12.14. Running Tasks with Grunt
Problem
Pulling your Node module together is getting more complex—too complex to manually
manage all of the elements.

Solution
Use a task runner like Grunt to manage all the bits for you.

For the following bbarray module:

var util = require('util');

(function(global) {
 'use strict';

 var bbarray = {};

 bbarray.concatArray = function (str, array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {
 return -1;
 } else {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 }
 };

 bbarray.splitArray = function (str,array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {

12.14. Running Tasks with Grunt | 345

 return -1;
 } else {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 }
 };

 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbarray;
 } else if (typeof define === 'function' && define.amd) {
 define('bbarray', [], function() {
 return bbarray;
 });
 } else {
 global.bbarray = bbaarray;
 }

}(this));

Saved as bbarray.js in the root directory, with a Mocha test file:

var assert = require('assert');
var bbarray = require('../bbarray.js');

describe('bbarray',function() {
 describe('#concatArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.concatArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.concatArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['is test','is three'],
 bbarray.concatArray('is',['test','three']));
 });
 });
 describe('#splitArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.splitArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.splitArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['test','three'],
 bbarray.splitArray('is',['is test','is three']));
 });
 });
});

346 | Chapter 12: Modularizing and Managing JavaScript

Saved as index.js in a test subdirectory, the Grunt file is:

module.exports = function(grunt) {
 var banner = '/*\n<%= pkg.name %> <%= pkg.version %>';
 banner += '- <%= pkg.description %>\n<%= pkg.repository.url %>\n';
 banner += 'Built on <%= grunt.template.today("yyyy-mm-dd") %>\n*/\n';

 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 jshint: {
 files: ['gruntfile.js', 'src/*.js'],
 options: {
 maxlen: 80,
 quotmark: 'single'
 }
 },
 uglify: {
 options: {
 banner: banner,
 },
 build: {
 files: {
 'build/<%= pkg.name %>.min.js':
 ['build/<%= pkg.name %>.js'],
 }
 }
 },
 simplemocha: {
 options: {
 globals: ['assert'],
 timeout: 3000,
 ignoreLeaks: false,
 ui: 'bdd',
 reporter: 'tap'
 },
 all: { src: ['test/*.js'] }
 }
 });

 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-simple-mocha');

 grunt.registerTask('default',
 ['jshint', 'simplemocha', 'uglify']);
};

When the file is saved as gruntfile.js, Grunt runs all the tasks defined in the file:

grunt

12.14. Running Tasks with Grunt | 347

Discussion
Grunt is a task runner. Its only purpose is to consistently run a series of tasks. It’s similar
to the old Makefile, but without the decades of musty history.

To use Grunt, install it first:

npm install -g grunt-cli

Grunt needs to run in the same directory as your application/module’s package.json file,
as it works with the file. You can create either a JavaScript or Coffee-based Grunt file,
but I’m focusing on the JS version.

Create the file by using the grunt-init CLI, with a given template, or you can use the
example file given in the Getting Started Guide.

A module needs to run within a certain framework to work with Grunt. Luckily, plugins
have been created for many of the commonly used modules, such as the plugins used
in the example for JSHint, Uglify, and Mocha. To ensure they’re listed in the pack‐
age.json file, they need to be installed using --save-dev:

npm install grunt-contrib-jshint --save-dev
npm install grunt-simple-mocha --save-dev
npm install grunt-contrib-uglify --save-dev

Each plugin also provides instructions about how to modify the Gruntfile to use the
plugin and process your files.

Once you have both the package.json and gruntfile.js files running, the following will
install any of the dependencies in the file, and run the Grunt tasks:

npm install
grunt

The result of running Grunt with the file in the solution is:

Running "jshint:files" (jshint) task
>> 1 file lint free.

Running "simplemocha:all" (simplemocha) task
1..6
ok 1 bbarray concatArray() should return -1 when not using array
ok 2 bbarray concatArray() should return -1 when not using string
ok 3 bbarray concatArray() should return an array with proper args
ok 4 bbarray splitArray() should return -1 when not using array
ok 5 bbarray splitArray() should return -1 when not using string
ok 6 bbarray splitArray() should return an array with proper args
tests 6
pass 6
fail 0

Running "uglify:build" (uglify) task
>> Destination build/bbarray.min.js not written because src files were empty.

348 | Chapter 12: Modularizing and Managing JavaScript

http://gruntjs.com/getting-started

Done, without errors.

There are no files in the src directory, but I left the instructions in the Grunt file, for
future expansion of the module.

See Also
Read all about Grunt, and check out the available plugins, at the application’s website.

Another popular build system is Gulp.

12.14. Running Tasks with Grunt | 349

http://gruntjs.com/
http://gulpjs.com/

Jarrod Overson &
Jason Strimpel

Developing
Web
Components
UI FROM JQUERY TO POLYMER

WEB PROGR AMMING

Developing Web Components

ISBN: 978-1-491-94902-3

US $29.99 CAN $34.99

“ With this book, Jarrod
and Jason make web
components accessible
to a large number of
developers. The sections
on custom elements
and shadow DOM
will help solidify your
understanding of new
web platform features
for composition and
encapsulation, helping
you build more robust
components and apps.”

—Addy Osmani
engineer focusing on Chrome

and Polymer at Google

“ I'm really excited that
Jarrod and Jason have put
together this book to help
guide new developers and
get them started down the
path of componentizing
the Web!”

—Rob Dodson
Developer Advocate at Google

Twitter: @oreillymedia
facebook.com/oreilly

Although web components are stil l on the bleeding edge—barely
supported in modern browsers—the technology is also moving extremely
fast. This practical guide gets you up to speed on the concepts underlying
W3C’s emerging standard and shows you how to build custom, reusable
HTML5 Web Components.

Regardless of your experience with libraries such as jQuery and Polymer,
this book teaches JavaScript developers the DOM manipulations these
libraries perform. You’ll learn how to build a basic widget with vanilla
JavaScript and then convert it into a web component that’s semantic,
declarative, encapsulated, consumable, and maintainable. With custom
components, the Web can finally fulfill its potential as a natively extensible
application platform. This book gets you in at the right time.

 ■ Understand core concepts (such as normal flow and
positioning, and z-index) for properly positioning, dragging,
and resizing elements

 ■ Explore UI concepts and patterns typically abstracted away by
Dojo, jQuery UI, Kendo UI, and other libraries

 ■ Dive into the W3C standard and convert your working widget
example into a fully functioning web component

 ■ Learn how to encapsulate, package, and deploy your web
components with Google’s Polymer framework

Jarrod Overson has been developing on the Web for over 15 years for startups
and global companies alike. Currently at Shape Security, Jarrod is an active pro-
ponent and contributor to open source and JavaScript language tooling; he’s cre-
ated Plato and many other tools and libraries.

Jason Strimpel is a software engineer with over 15 years experience developing
web applications. He’s currently employed at WalmartLabs where he writes soft-
ware to support UI application development. Jason is also an active member of
the open source community managing projects such as LazoJS.

D
eveloping W

eb C
om

ponents
O

verson
&

 Strim
pel

Jarrod Overson and Jason Strimpel

Developing Web Components

CHAPTER 11

Working with the Shadow DOM

Jason Strimpel

The shadow DOM is not the dark side of the DOM, but if it were I would definitely
give in to my hatred of the lack of encapsulation the DOM normally affords and
cross over.

One of the aspects of the DOM that makes development of widgets/components diffi‐
cult is this lack of encapsulation. For instance, one major problem has always been
CSS rules bleeding into or out of a component’s branch of the DOM tree: it forces one
to write overly specific selectors or abuse !important so that styles do not conflict,
and even then conflicts still happen in large applications. Another issue caused by
lack of encapsulation is that code external to a component can still traverse into the
component’s branch of the DOM tree. These problems and others can be prevented
by using the shadow DOM.

What Is the Shadow DOM?
So what exactly is this mysterious-sounding shadow DOM? According to the W3C:

Shadow DOM is an adjunct tree of DOM nodes. These shadow DOM subtrees can be
associated with an element, but do not appear as child nodes of the element. Instead
the subtrees form their own scope. For example, a shadow DOM subtree can contain
IDs and styles that overlap with IDs and styles in the document, but because the
shadow DOM subtree (unlike the child node list) is separate from the document, the
IDs and styles in the shadow DOM subtree do not clash with those in the document.

109

http://www.w3.org/TR/components-intro/

I am an admirer of the W3C, but oftentimes their specifications,
albeit accurate, need to be translated into something that the rest of
us—myself included—can more easily comprehend. The shadow
DOM is essentially a way to define a new DOM tree whose root
container, or host, is visible in the document, while the shadow
root and its children are not. Think of it as a way to create isolated
DOM trees to prevent collisions such as duplicate identifiers, or
accidental modifications by broad query selectors. That is a simpli‐
fication, but it should help to illustrate the purpose.

So what benefits does the shadow DOM provide to developers? It essentially provides
encapsulation for a subtree from the parent page. This subtree can contain markup,
CSS, JavaScript, or any asset that can be included in a web page. This allows you to
create widgets without being concerned that of any of the assets will impact the par‐
ent page, or vice versa. Previously this level of encapsulation was only achievable by
using an <iframe>.

Shadow DOM Basics
The shadow DOM is a simple concept, but it has some intricacies that make it
appear more complex than it really is. This section will focus on the basics. The intri‐
cacies that afford the developer even more control and power will be covered later in
this chapter.

Shadow Host
A shadow host is a DOM node that contains a shadow root. It is a regular element
node within the parent page that hosts the scoped shadow subtree. Any child nodes
that reside under the shadow host are still selectable, with the exception of the
shadow root.

Shadow Root
A shadow root is an element that gets added to a shadow host. The shadow root is the
root node for the shadow DOM branch. Shadow root child nodes are not returned by
DOM queries even if a child node matches the given query selector. Creating a
shadow root on a node in the parent page makes the node upon which it was created
a shadow host.

Creating a shadow root
Creating a shadow root is a straightforward process. First a shadow host node is
selected, and then a shadow root is created in the shadow host.

110 | Chapter 11: Working with the Shadow DOM

To inspect shadow DOM branches using the Chrome debugger,
check the “Show Shadow DOM” box under the “Elements” section
in the “General” settings panel of the debugger.

The code to create a shadow root looks like this:

<div id="host"></div>

var host = document.querySelector('#host');
var root = host.createShadowRoot();

If you do not prefix createShadowRoot with “webkit” in Chrome
34 and below you are going to have a bad time. All calls to create
ShadowRoot should look like host.webkitCreateShadowRoot().

It is possible to attach multiple shadow roots to a single shadow host. However, only
the last shadow root attached is rendered. A shadow host follows the LIFO pattern
(last in, first out) when attaching shadow roots. At this point you might be asking
yourself, “So what is the point of hosting multiple shadow roots if only the last one
attached is rendered?” Excellent question, but you are getting ahead of the game! This
will be covered later in this chapter (see “Shadow Insertion Points” on page 120).

Using a Template with the Shadow DOM
Using a template to populate a shadow root involves almost the same process as using
a template to add content to a DOM node in the parent page. The only difference is
that the template.content is added to the shadow root.

The first step is to create a template node. This example leverages the template from
the previous chapter, with the addition of an element that will be the shadow host:

<head>
 <template id="atcq">
 <p class="response"></p>
 <script type="text/javascript">
 (function () {
 var p = confirm('You on point Tip?');
 var responeEl = document.querySelector('#atcq-root')
 .shadowRoot
 .querySelector('.response');

 if (p) {
 responeEl.innerHTML = 'All the time Phife';
 } else {
 responeEl.innerHTML = 'Check the rhyme y\'all';

Using a Template with the Shadow DOM | 111

http://caniuse.com/shadowdom

 }
 })();
 </script>
 </template>
</head>
<body>
 <div id="atcq-root"></div>
</body>

Next, we create a shadow root using the shadow host element, get a reference to the
template node, and finally append the template content to the shadow root:

// create a shadow root
var root = document.querySelector('#atcq-root').createShadowRoot();
// get a reference to the template node
var template = document.querySelector('#atcq');
// append the cloned content to the shadow root
root.appendChild(template.content);

Shadow DOM Styling
I cannot count the number of times I have encountered CSS scoping issues through‐
out my career. Some of them were due to broad selectors such as div, the overusage
of !important, or improperly namespaced CSS. Other times it has been difficult to
override widget CSS or widget CSS has bled out, impacting application-level CSS. As
an application grows in size, especially if multiple developers are working on the code
base, it becomes even more difficult to prevent these problems. Good standards can
help to mitigate these issues, but most applications leverage open source libraries
such as jQuery UI, Kendo UI, Bootstrap, and others, which makes good standards
alone inadequate. Addressing these problems and providing a standard way of apply‐
ing styles to scoped elements are two of the benefits of using a shadow DOM.

Style Encapsulation
Any styles defined in the shadow DOM are scoped to the shadow root. They are not
applied to any elements outside of this scope, even if their selector matches an ele‐
ment in the parent page. Styles defined outside of a shadow DOM are not applied to
elements in the shadow root either.

In the example that follows, the text within the <p> that resides outside of the shadow
root will be blue because that style is external to the shadow DOM that is created. The
text within the <p> that is a child node of the shadow root will initially be the default
color. This is because the styles defined outside of the shadow root are not applied to
elements within the shadow root. After two seconds, the text within the <p> inside
the shadow root will turn green, because the callback for the setTimeout function
injects a <style> tag into the shadow root. The text within the <p> that resides out‐
side of the shadow root will remain blue because the style injected into the shadow

112 | Chapter 11: Working with the Shadow DOM

root is scoped to elements that are children of the shadow root. Here’s the code that
achieves this styling:

<head>
 <style>
 p {
 color: blue;
 }
 </style>
 <template><p>I am the default color, then green.</p></template>
</head>
<body>
 <div id="host"></div>
 <p>I am blue.</p>
 <script type="text/javascript">
 var template = document.querySelector('template');
 var root = document.querySelector('#host').createShadowRoot();

 root.appendChild(template.content);
 setTimeout(function () {
 root.innerHTML += '<style>p { color: green; }</style>';
 }, 2000)
 </script>
</body>

Styling the Host Element
In some cases you will want to style the host element itself. This is easily accom‐
plished by creating a style anywhere within the parent page, because the host element
is not part of the shadow root. This works fine, but what if you have a shadow host
that needs different styling depending on the contents of the shadow root? And what
if you have multiple shadow hosts that need to be styled based on their contents? As
you can imagine, this would get very difficult to maintain. Fortunately, there is a new
selector, :host, that provides access to the shadow host from within the shadow root.
This allows you to encapsulate your host styling to the shadow root:

<head>
 <template id="template">
 <style>
 :host {
 border: 1px solid red;
 padding: 10px;
 }
 </style>
 My host element will have a red border!
 </template>
</head>
<body>
 <div id="host"></div>
 <script type="text/javascript">
 var template = document.querySelector('#template')

Shadow DOM Styling | 113

 var root = document.querySelector('#host').createShadowRoot();
 root.appendChild(template.content);
 </script>
</body>

The parent page selector has a higher specificity than the :host selector, so it will
trump any shadow host styles defined within the shadow root:

<head>
 <style>
 #host {
 border: 1px solid green;
 }
 </style>
 <template id="template">
 <style>
 :host {
 border: 1px solid red;
 padding: 10px;
 }
 </style>
 My host element will have a green border!
 </template>
</head>
<body>
 <div id="host"></div>
 <script type="text/javascript">
 var template = document.querySelector('#template')
 var root = document.querySelector('#host').createShadowRoot();
 root.appendChild(template.content);
 </script>
</body>

If you want to override styles set in the parent page, this must be done inline on the
host element:

<head>
 <template id="template">
 <style>
 :host {
 border: 1px solid red;
 padding: 10px;
 }
 </style>
 My host element will have a blue border!
 </template>
</head>
<body>
 <div id="host" style="border: 1px solid blue;"></div>
 <script type="text/javascript">
 var template = document.querySelector('#template')
 var root = document.querySelector('#host').createShadowRoot();
 root.appendChild(template.content);

114 | Chapter 11: Working with the Shadow DOM

 </script>
</body>

The :host selector also has a functional form that accepts a selector, :hostselector,
allowing you to set styles for specific hosts. This functionality is useful for theming
and managing states on the host element.

Styling Shadow Root Elements from the Parent Page
Encapsulation is all well and good, but what if you want to target specific shadow root
elements with a styling update? What if you want to reuse templates and shadow host
elements in a completely different application? What if you do not have control over
the shadow root’s content? For instance, you could be pulling the code from a reposi‐
tory that is maintained by another department internal to your organization, or a
shared repository that is maintained by an external entity. In either case you might
not have control over the shadow root’s contents, or the update process might take a
significant amount of time, which would block your development. Additionally, you
might not want control over the content. Sometimes it is best to let domain experts
maintain certain modules and to simply override the default module styling to suit
your needs. Fortunately, the drafters of the W3C specification thought of these cases
(and probably many more), so they created a selector that allows you to apply styling
to shadow root elements from the parent page.

The ::shadow pseudoelement selects the shadow root, allowing you to target child
elements within the selected shadow root:

<head>
 <style>
 #host::shadow p {
 color: blue;
 }
 </style>
 <template><p>I am blue.</p></template>
</head>
<body>
 <div id="host"></div>
 <script type="text/javascript">
 var template = document.querySelector('template');
 var root = document.querySelector('#host').createShadowRoot();

 root.appendChild(template.content);
 </script>
</body>

The ::shadow pseudoelement selector can be used to style nested shadow roots:

<head>
 <style>
 #parent-host::shadow #child-host::shadow p {
 color: blue;

Shadow DOM Styling | 115

 }
 </style>
 <template id="child-template"><p>I am blue.</p></template>
 <template id="parent-template">
 <p>I am the default color.</p>
 <div id="child-host"></div>
 </template>
</head>
<body>
 <div id="parent-host"></div>
 <script type="text/javascript">
 var parentTemplate = document.querySelector('#parent-template');
 var childTemplate = document.querySelector('#child-template');
 var parentRoot = document.querySelector('#parent-host')
 .createShadowRoot();
 var childRoot;

 parentRoot.appendChild(parentTemplate.content);
 childRoot = parentRoot.querySelector('#child-host').createShadowRoot();
 childRoot.appendChild(childTemplate.content);
 </script>
</body>

Sometimes targeting individual shadow roots using the ::shadow pseudoelement is
very inefficient, especially if you are applying a theme to an entire application of
shadow roots. Again, the drafters of the W3C specification had the foresight to antici‐
pate this use case and specified the /deep/ combinator. The /deep/ combinator
allows you cross through all shadow roots with a single selector:

<style>
 /* colors all <p> text within all shadow roots blue */
 body /deep/ p {
 color: blue;
 }

 /* colors all <p> text within the child shadow root blue */
 #parent-host /deep/ #child-host # p {
 color: blue;
 }

 /* targets a library theme/skin */
 body /deep/ p.skin {
 color: blue;
 }
</style>

116 | Chapter 11: Working with the Shadow DOM

At this point you might be asking yourself, “Doesn’t this defeat the
purpose of encapsulation?” But encapsulation does not mean
putting up an impenetrable force field that makes crossing bound‐
aries for appropriate use cases, such as theming UI components,
impossible. The problem with the Web is that it has never had a
formalized method of encapsulation or a defined API for breaking
through an encapsulated component, like in other development
platforms. The formalization of encapsulation and associated
methods makes it clear in the code what the developer’s intent is
when encapsulation is breached. It also helps to prevent the bugs
that plague a web platform that lacks formalized encapsulation.

Content Projection
One of the main tenets of web development best practices is the separation of content
from presentation, the rationale being that it makes application maintenance easier
and more accessible.

In the past separation of content from presentation has simply meant not placing
styling details in markup. The shadow DOM takes this principle one step further.

In the examples we have seen thus far the content has been contained within a tem‐
plate and injected into the shadow root. In these examples no significant changes
were made to the presentation, other than the text color. Most cases are not
this simple.

In some cases it is necessary to place the content inside of the shadow host element
for maintenance and accessibility purposes. However, that content needs to be projec‐
ted into the shadow root in order to be presented. Luckily, the building blocks for
projecting the content from the shadow host into the shadow root exist.

Projection via a Content Tag
One way to project content from the shadow host into the shadow root is by using a
<content> element inside of a <template>. Any content inside the shadow host will
be automatically projected into the <content> of the <template> used to compose
the shadow root:

<head>
 <meta charset="utf-8">
 <title>Test Code</title>
 <template>
 <p>I am NOT projected content.</p>
 <content></content>
 </template>
</head>
<body>

Content Projection | 117

 <div id="host">
 <p>I am projected content.</p>
 </div>
 <script type="text/javascript">
 var template = document.querySelector('template');
 var root = document.querySelector('#host').createShadowRoot();

 root.appendChild(template.content);
 </script>
</body>

Projection via Content Selectors
In some cases you may not want to project all of the content from the shadow host.
You might want to select specific content for injection in different <content> ele‐
ments in the shadow root. A common case is that some markup in the shadow
host has semantic meaning and helps with accessibility, but doesn’t add anything to
the presentation of the shadow root. The mechanism for extracting content from the
shadow host is the select attribute. This attribute can be added to a <content>
element with a query selector value that will match an element in the shadow host.
The matched element’s content is then injected into the <content> tag.

Only the first element matched by a <content> element’s select
attribute is injected into the element—keep this in mind when
using selectors that are likely to match a number of elements, such
as tag selectors (e.g., div).

The following example is a product listing with a review widget. The shadow host
contains semantic markup that is accessible, and the template contains the presenta‐
tion details. The template presentation does not lend itself well to accessibility and
contains extraneous markup that is used for presentation purposes only—e.g., the
column containers are there for positioning purposes only and the review items
do not contain text (the interface would be purely graphical). In this example, select
attributes are used in the <template> <content> elements to extract content from the
shadow root:

<!--
 Only the relevant markup is shown. All other details,
 such as template CSS and JavaScript, have been omitted,
 so that the focus is on the selector projection use case.
-->
<template>
 <div class="product">
 <div class="column main">
 <content select="h2"></content>
 <content select=".description"></content>
 </div>

118 | Chapter 11: Working with the Shadow DOM

 <div class="column sidebar">
 <content select="h3"></content>
 <ul class="ratings">
 <li class="1-star">
 <li class="2-star">
 <li class="3-star">
 <li class="4-star">

 </div>
 </div>
</template>
<div id="host" class="product">
 <h2>ShamWow</h2>
 <p class="description">
 ShamWow washes, dries, and polishes any surface. It's like a towel,
 chamois, and sponge all in one!
 </p>
 <h3>Ratings</h3>
 <ul class="ratings">
 1 star
 2 stars
 3 stars
 4 stars

</div>

Only nodes that are children of the shadow host can be projected,
so you cannot select content from any lower descendant in the
shadow host.

Getting Distributed Nodes and Insertion Points
Nodes that are projected from a host are referred to as distributed nodes. These nodes
do not actually move locations in the DOM, which makes sense because the same
host child node can be projected to different insertion points across shadow roots. As
you can imagine, things can get complicated rather quickly, and at times you may
need to do some inspecting and take action on distributed nodes in your application.
There are two different methods that support this, Element.getDistributedNodes
and Element.getDestinationInsertionPoints.

Content Projection | 119

You cannot traverse into a <content> tree, because a <content>
node does not have any descendant nodes. It is helpful to think of a
<content> node as a television that is displaying a program. The
television’s only role in producing the program is to display it. The
program itself was filmed and edited elsewhere for consumption by
an unlimited number of televisions.

We use these methods as follows:

// Element.getDistributedNodes
var root = document.querySelector('#some-host').createShadowRoot();

// iterate over all the content nodes in the root
[].forEach.call(root.querySelectorAll('content'), function (contentNode) {
 // get the distributed nodes for each content node
 // and iterate over the distributed nodes
 [].forEach.call(contentNode.getDistributedNodes(),
 function (distributedNode) {
 // do something cool with the contentNode
 });
});

// Element.getDestinationInsertionPoints
var hostChildNode = document.querySelector('#some-host .some-child-node');

// get child node insertion points and iterate over them
[].forEach.call(hostChildNode.getDestinationInsertionPoints(),
 function (contentNode) {
 // do something cool with the contentNode
});

Shadow Insertion Points
In the previous section we examined how shadow host content can be projected into
insertion points, <content>. Just as content can be projected into insertion points, so
can shadow roots. Shadow root insertion points are defined using <shadow> tags. Like
any other tags, these can be created directly in markup or added to the DOM pro‐
grammatically.

Shadow roots are stacked in the order they are added, with the
youngest shadow root tree appearing last and rendering. Trees
appearing earlier in the stack are referred to as older trees, while
trees appearing after a given shadow root are referred to as younger
trees.

120 | Chapter 11: Working with the Shadow DOM

At the beginning of this chapter it was stated that a shadow host could contain multi‐
ple shadow roots, but that only the last shadow root defined would be rendered. This
is true in the absence of <shadow> elements. The <shadow> tag provides a point for
projecting an older shadow root using a younger shadow root tree. If a shadow root
tree contains more than one <shadow> element, the first one is used and the rest are
ignored. Essentially, <shadow> allows you to render an older shadow root in a stack by
providing an insertion point for it to be projected into.

Projecting nodes to an insertion point does not affect the tree
structure. The projected nodes remain in their original locations
within the tree. They are simply displayed in the assigned insertion
point.

Here’s an example:

<template id="t-1">I am t1. </template>
<template id="t-2"><shadow></shadow>I am t2. </template>
<template id="t-3"><shadow></shadow>I am t3. </template>
<div id="root"></div>
<script type="text/javascript">
 (function () {
 var t1 = document.querySelector('#t-1');
 var t2 = document.querySelector('#t-2');
 var t3 = document.querySelector('#t-3');
 var host = document.querySelector('#root')
 var r1 = host.createShadowRoot();
 var r2 = host.createShadowRoot();
 var r3 = host.createShadowRoot();

 r1.appendChild(t1.content);
 r2.appendChild(t2.content);
 r3.appendChild(t3.content);
 })();
</script>
<!-- renders: "I am t1. I am t2. I am t3." -->

The previous code block renders from the bottom (youngest tree) up, projecting the
next-oldest shadow root tree into the <shadow> insertion point. This was a very sim‐
ple example. In a real application, the code will be more complicated and dynamic.
Because of this it is helpful to have a way to inspect a <shadow> programmatically or
to determine a shadow host’s root:

// using the previous code block as an example
// determine older shadow root
r1.olderShadowRoot === null; // true; first in the stack
r2.olderShadowRoot === r1; // true
r3.olderShadowRoot === r2; // true

Shadow Insertion Points | 121

// determine a host's shadow root
host.shadowRoot === r1; // false; there can only be one (LIFO)
host.shadowRoot === r2; // false; ditto
host.shadowRoot === r3; // true

// determine a shadow root's host
r1.host === host; // true
r2.host === host; // true
r3.host === host; // true

Events and the Shadow DOM
At this point you might be thinking that projecting nodes instead of cloning them is a
great optimization that will help to keep changes synchronized—but what about
events bound to these projected nodes? How exactly does this work if they are not
copied? In order to normalize these events, they are sometimes retargeted to appear
as if they were triggered by the host element rather than the projected element in the
shadow root. In these cases you can still determine the shadow root of the projected
node by examining the path property of the event object. Some events are never
retargeted, though, which makes sense if you think about it. For instance, how would
a scroll event be retargeted? If a user scrolls one projected node, should the others
scroll? The events that are not retargeted are:

• abort

• error

• select

• change

• load

• reset

• resize

• scroll

• selectstart

Updating the Dialog Template to Use the Shadow DOM
You might have noticed generic id values such as title and content were used in the
dialog component, and you probably thought, “This idiot is going to have duplicate
id values, which are supposed to be unique in the DOM, colliding left and right…”
This was intentional, though, and has been leading up to this moment!

122 | Chapter 11: Working with the Shadow DOM

http://bit.ly/dwc-shadow-dom

One of the benefits of the shadow DOM is the encapsulation of markup, which
means the encapsulation of id values and a decrease in the likelihood of id value col‐
lisions in your application.

This code will leverage the previous chapter’s code that demonstrated using a tem
plate to make the dialog component markup and JavaScript inert until it was
appended to the DOM.

Dialog Markup
The dialog component will utilize a template, like the previous example, but this tem‐
plate will be appended to a shadow root that is hosted by <div id="dialog-host">.
The interesting part about this example is that it is practically the reverse of our
review widget example in terms of accessibility and readability. The aria attributes
are contained within the shadow DOM, and the markup a developer writes is not
exactly semantic. However, if you think about it, the aria attributes are primarily
used for accessibility implementation details, so it makes sense that these details are
obfuscated from the developer. The part that does not make sense is that the host
markup is not very semantic, but please reserve judgment on that until the next chap‐
ter!

Here’s the code for our updated dialog template:

<head>
 <script type="text/javascript" src="/vendor/jquery.js"></script>
 <template id="dialog">
 <style>
 // styling src
 </style>
 <script type="text/javascript">
 // dialog component source
 </script>
 <div role="dialog" aria-labelledby="title" aria-describedby="content">
 <h2 id="title"></h2>
 <p id="content"></p>
 </div>
 </template>
</head>
<!-- example host node -->
<div id="dialog-host">
 <h2>I am a title</h2>
 <p>Look at me! I am content.</p>
</div>

Updating the Dialog Template to Use the Shadow DOM | 123

http://bit.ly/dwc-aria

Dialog API
If you want to encapsulate the creation of the shadow root, the cloning and append‐
ing of the template, and the dialog component instantiation, then it is best to create a
wrapper constructor function that encapsulates all of these implementation details:

function DialogShadow(options) {
 this.options = options;
 // get the host node using the hostQrySelector option
 this.host = document.querySelector(options.hostQrySelector);
 // grab the template
 this.template = document.querySelector('#dialog');
 this.root = this.host.createShadowRoot();
 // append the template content to the root
 this.root.appendChild(this.template.content);
 // get a reference to the dialog container element in the root
 this.el = this.root.querySelector('[role="dialog"]');

 this.options.$el = this.el;
 // align element to body since it is a fragment
 this.options.alignToEl = document.body;
 this.options.align = 'M';
 // do not clone node
 this.options.clone = false;

 // get the content from the host node; projecting would retain host
 // node styles and not allow for encapsulation of template styles
 this.el.querySelector('#title').innerHTML = this.host.querySelector('h2')
 .innerHTML;
 this.el.querySelector('#content').innerHTML = this.host.querySelector('p')
 .innerHTML;

 // create a dialog component instance
 this.api = new Dialog(this.options);

 return this;
}

Updating the Dialog show Method
Since the shadow root and its children are a subtree that is not part of the parent
document, we have to ensure that the host element’s z-index value is modified so that
it appears on the top of its stacking context, the <body>:

// see GitHub repo for full example
(function (window, $, Voltron, Duvet, Shamen, ApacheChief, jenga) {

 'use strict';

 // makes dialog visible in the UI
 Dialog.prototype.show = function () {

124 | Chapter 11: Working with the Shadow DOM

 // this will adjust the z-index, set the display property,
 // and position the dialog
 this.overlay.position();
 // bring the host element to the top of the stack
 jenga.bringToFront(this.$el[0].parentNode.host);
 };

})(window, jQuery, Voltron, Duvet, Shamen, ApacheChief, jenga);

Instantiating a Dialog Component Instance
The dialog component can now be instantiated just as before, but it will now be
scoped to the shadow root:

var dialog = new DialogShadow({
 draggable: true,
 resizable: true,
 hostQrySelector: '#dialog-host'
});

dialog.api.show();

Summary
In this chapter we introduced the shadow DOM and discussed the primary benefit it
affords developers: encapsulation. Before the shadow DOM, the only way to achieve
this level of encapsulation was to use an <iframe>. We then discussed, in great detail,
the encapsulation of styling, including the new supporting CSS selectors and the
rationale for these new selectors. We then covered the projection of nodes to inser‐
tion points, using <content> and <shadow> elements. This included the usage of the
new select attribute for selecting specific content from a host node. Next, we exam‐
ined the properties and methods for inspecting distributed, host, and root nodes.
After that, we highlighted how events work in host and root nodes. Finally, we upda‐
ted the dialog component example to use a shadow DOM.

Summary | 125

/ theory / in / prac t ice

Beautiful
JavaScript
Leading Programmers Explain
How They Think

Anton Kovalyov

Edited by Anton Kovalyov

Beautiful JavaScript

C H A P T E R F O U R T E E N

Functional JavaScript
Anton Kovalyov

Is JavaScript a functional programming language? This question has long been a topic

of great debate within our community. Given that JavaScript’s author was recruited to

do “Scheme in the browser,” one could argue that JavaScript was designed to be used

as a functional language. On the other hand, JavaScript’s syntax closely resembles

Java-like object-oriented programming, so perhaps it should be utilized in a similar

manner. Then there might be some other arguments and counterarguments, and the

next thing you know the day is over and you didn’t do anything useful.

This chapter is not about functional programming for its own sake, nor is it about

altering JavaScript to make it resemble a pure functional language. Instead, this chap-

ter is about taking a pragmatic approach to functional programming in JavaScript, a

method by which programmers use elements of functional programming to simplify

their code and make it more robust.

Functional Programming
Programming languages come in several varieties. Languages like Go and C are called

procedural: their main programming unit is the procedure. Languages like Java and

SmallTalk are object oriented: their main programming unit is the object. Both these

approaches are imperative, which means they rely on commands that act upon the

machine state. An imperative program executes a sequence of commands that change

the program’s internal state over and over again.

Functional programming languages, on the other hand, are oriented around expres-

sions. Expressions—or rather, pure expressions—don’t have a state, as they merely

compute a value. They don’t change the state of something outside their scope, and

they don’t rely on data that can change outside their scope. As a result, you should be

119

able to substitute a pure expression with its value without changing the behavior of a

program. Consider an example:

function add(a, b) {
 return a + b
}

add(add(2, 3), add(4, 1)) // 10

To illustrate the process of substituting expressions, let’s evaluate this example. We

start with an expression that calls our add function three times:

add(add(2, 3), add(4, 1))

Since add doesn’t depend on anything outside its scope, we can replace all calls to it

with its contents. Let’s replace the first argument that is not a primitive value—

add(2, 3):

add(2 + 3 , add(4, 1))

Then we replace the second argument:

add(2 + 3, 4 + 1)

Finally, we replace the last remaining call to our function and calculate the result:

(2 + 3) + (4 + 1) // 10

This property that allows you to substitute expressions with their values is called refer-

ential transparency. It is one of the essential elements of functional programming.

Another important element of functional programming is functions as first-class citizens.

Michael Fogus gave a great explanation of functions as first-class citizens in his book,

Functional JavaScript. His definition is one of the best I’ve seen:

The term “first-class” means that something is just a value. A first-class func-

tion is one that can go anywhere that any other value can go—there are few

to no restrictions. A number in JavaScript is surely a first-class thing, and

therefore a first-class function has a similar nature:

• A number can be stored in a variable and so can a function:

var fortytwo = function() { return 42 };

• A number can be stored in an array slot and so can a function:

var fortytwos = [42, function() { return 42 }];

• A number can be stored in an object field and so can a function:

var fortytwos = {number: 42, fun: function() { return 42 }};

• A number can be created as needed and so can a function:

42 + (function() { return 42 })(); // => 84

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT120

http://shop.oreilly.com/product/0636920028857.do

• A number can be passed to a function and so can a function:

function weirdAdd(n, f) { return n + f() }

weirdAdd(42, function() { return 42 }); // => 84

• A number can be returned from a function and so can a function:

return 42;

return function() { return 42 };

Having functions as first-class citizens enables another important element of functional

programming: higher-order functions. A higher-order function is a function that operates

on other functions. In other words, higher-order functions can take other functions as

their arguments, return new functions, or do both. One of the most basic examples is a

higher-order map function:

map([1, 2, 3], function (n) { return n + 1 }) // [2, 3, 4]

This function takes two arguments: a collection of values and another function. Its

result is a new list with the provided function applied to each element from the list.

Note how this map function uses all three elements of functional programming

described previously. It doesn’t change anything outside of its scope, nor does it use

anything from the outside besides the values of its arguments. It also treats functions

as first-class citizens by accepting a function as its second argument. And since it uses

that argument to compute the value, one can definitely call it a higher-order function.

Other elements of functional programming include recursion, pattern matching, and

infinite data structures, although I will not elaborate on these elements in this chapter.

Functional JavaScript
So, is JavaScript a truly functional programming language? The short answer is no.

Without support for tail-call optimization, pattern matching, immutable data struc-

tures, and other fundamental elements of functional programming, JavaScript is not

what is traditionally considered a truly functional language. One can certainly try to

treat JavaScript as such, but in my opinion, such efforts are not only futile but also

dangerous. To paraphrase Larry Paulson, author of the Standard ML for the Working Pro-

grammer, a programmer whose style is “almost” functional had better not be lulled into

a false sense of referential transparency. This is especially important in a language like

JavaScript, where one can modify and overwrite almost everything under the sun.

Consider JSON.stringify, a built-in function that takes an object as a parameter and

returns its JSON representation:

JSON.stringify({ foo: "bar" }) // -> "{"foo":"bar"}"

FUNCTIONAL JAVASCRIPT 121

One might think that this function is pure, that no matter how many times we call it

or in what context we call it, it always returns the same result for the same arguments.

But what if somewhere else, most probably in code you don’t control, someone over-

writes the Object.prototype.toJSON method?

JSON.stringify({ foo: "bar" })
// -> "{"foo":"bar"}"

Object.prototype.toJSON = function () {
 return "reality ain't always the truth"
}

JSON.stringify({ foo: "bar" })
// -> ""reality ain't always the truth""

As you can see, by slightly modifying a built-in Object, we managed to change the

behavior of a function that looks pretty pure and functional from the outside. Func-

tions that read mutable references and properties aren’t pure, and in JavaScript, most

nontrivial functions do exactly that.

My point is that functional programming, especially when used with JavaScript, is

about reducing the complexity of your programs and not about adhering to one partic-

ular ideology. Functional JavaScript is not about eliminating all the mutations; it’s

about reducing occurrences of such mutations and making them very explicit. Con-

sider the following function, merge, which merges together two arrays by pairing their

corresponding members:

function merge(a, b) {
 b.forEach(function (v, i) { a[i] = [a[i], b[i]] })
}

This particular implementation does the job just fine, but it also requires intimate

knowledge of the function’s behavior: does it modify the first argument, or the

second?

var a = [1, 2, 3]
var b = ["one", "two", "three"]

merge(a, b)
a // -> [[1, "one"], [2, "two"],..]

Imagine that you’re unfamiliar with this function. You skim the code to review a

patch, or maybe just to familiarize yourself with a new codebase. Without reading the

function’s source, you have no information regarding whether it merges the first argu-

ment into the second, or vice versa. It’s also possible that the function is not destruc-

tive and someone simply forgot to use its value.

Alternatively, you can rewrite the same function in a nondestructive way. This makes

the state change explicit to everyone who is going to use that function:

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT122

function merge(a, b) {
 return a.map(function (v, i) { return [v, b[i]] })
}

Since this new implementation doesn’t modify any of its arguments, all mutations will

have to be explicit:

var a = [1, 2, 3]
var b = ["one", "two", "three"]

merge(a, b) // -> [[1, "one"], [2, "two"],..]

// a and b still have their original values.
// Any change to the value of a will have to
// be explicit through an assignment:
a = merge(a, b)

To further illustrate the difference between the two approaches, let’s run that function

three times without assigning its value:

var a = [1, 2]
var b = ["one", "two"]

merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same
merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same
merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same

As you can see, the return value never changes. It doesn’t matter how many times you

run this function; the same input will always lead to the same output. Now let’s go

back to our original implementation and perform the same test:

var a = [1, 2]
var b = ["one", "two"]

merge(a, b)
// -> undefined; a is now [[1, "one"], [2, "two"]]
merge(a, b)
// -> undefined; a is now [[[1,"one"], "one"], [[2, "two"],"two"]]
merge(a, b)
// -> undefined; a is even worse now; the universe imploded

Even better is that this version of merge allows us to use it as a value itself. We can

return the result of its computation or pass it around without creating temporary vari-

ables, just like we would do with any other variable holding a primitive value:

function prettyTable(table) {
 return table.map(function (row) {
 return row.join(" ")
 }).join("\n")
}

FUNCTIONAL JAVASCRIPT 123

console.log(prettyTable(merge([1, 2, 3], ["one", "two", "three"])))
// prints:
// 1 "one"
// 2 "two"
// 3 "three"

This type of function, known as a zip function, is quite popular in the functional pro-

gramming world. It becomes useful when you have multiple data sources that are

coordinated through matching array indexes. JavaScript libraries such as Underscore

and LoDash provide implementations of zip and other useful helper functions so you

don’t have to reinvent the wheel within your projects.

Let’s look at another example where explicit code reads better than implicit. JavaScript

—at least, its newer revisions—allows you to create constants in addition to variables.

Constants can be created with a const keyword. While everyone else (including yours

truly) primarily uses this keyword to declare module-level constants, my friend Nick

Fitzgerald uses consts virtually everywhere to make clear which variables are expected

to be mutated and which are not:

function invertSourceMaps(code, mappings) {
 const generator = new SourceMapGenerator(...)

 return DevToolsUtils.yieldingEach(mappings, function (m) {
 // ...
 })
}

With this approach, you can be sure that a generator is always an instance of SourceMap

Generator, regardless of where it is being used. It doesn’t give us immutable data struc-

tures, but it does make it impossible to point this variable to a new object. This means

there’s one less thing to keep track of while reading the code.

Here’s a bigger example of a functional approach to programming: a few weeks ago, I

wrote a static site generator in JavaScript for the JSHint website and my personal blog.

The main module that actually reads all the templates, generates a new site, and writes

it back to disk consists of only three small functions. The first function, read, takes a

path as an argument and returns an object that contains the whole directory tree plus

the contents of the source files. The second function, build, does all the heavy work: it

compiles all the templates and Markdown files into HTML, compresses static files, and

so on. The third function, write, takes the site structure and saves it to disk.

There’s absolutely no shared state between those three functions. Each has a set of

arguments it accepts and some data it returns. An executable script I use from my

command line does precisely the following:

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT124

http://jshint.com/

#!/usr/bin/env node

var oddweb = require("./index.js")
var args = process.argv.slice(2)

oddweb.write(oddweb.build(oddweb.read(args[1]))

I also get plug-ins for free. If I need a plug-in that deletes all files with names ending

with .draft, all I do is write a function that gets a site tree as an argument and returns a

new site tree. I then plug in that function somewhere between read and write, and I’m

golden.

Another benefit of using a functional programming style is simpler unit tests. A pure

function takes in some data, computes it, and returns the result. This means that all

that’s needed in order to test that function is input data and an expected return value.

As a simple example, here’s a unit test for our function merge:

function testMerge() {
 var data = [
 { // Both lists have the same size
 a: [1, 2, 3],
 b: ["a", "b", "c"],
 ret: [[1, "a"], [2, "b"], [3, "c"]]
 },

 { // Second list is larger
 a: [1, 2],
 b: ["a", "b", "c"],
 ret: [[1, "a"], [2, "b"]]
 },

 { // Etc.
 ...
 }
]

 data.forEach(function (test) {
 isEqual(merge(test.a, test.b), test.ret)
 })
}

This test is almost fully declarative. You can clearly see what input data is used and

what is expected to be returned by the merge function. In addition, writing code in a

functional way means you have less testing to do. Our original implementation of

merge was modifying its arguments, so that a proper test would have had to cover cases

where one of the arguments was frozen using Object.freeze.

All functions involved in the preceding example—forEach, isEqual, and merge—were

designed to work with only simple, built-in data types. This approach, where you build

your programs around composable functions that work with simple data types, is

FUNCTIONAL JAVASCRIPT 125

called data-driven programming. It allows you to write programs that are clear and ele-

gant and have a lot of flexibility for expansion.

Objects
Does this mean you shouldn’t use objects, constructors, and prototype inheritance? Of

course not! If something makes your code easier to understand and maintain, it’d be

silly not to use it. However, JavaScript developers often start making overcomplicated

object hierarchies without even considering whether there are simpler ways to solve

the problem.

Consider the following object that represents a robot. This robot can walk and talk, but

otherwise it’s pretty useless:

function Robot(name) {
 this.name = name
}

Robot.prototype = {
 talk: function (what) { /* ... */ },
 walk: function (where) { /* ... */ }
}

What would you do if you wanted two more robots: a guard robot to shoot things and

a housekeeping robot to clean things? Most people would immediately create child

objects GuardRobot and HousekeeperRobot that inherit methods and properties from the

parent Robot object and add their own methods. But what if you then decided you

wanted a robot that can both clean and shoot things? This is where hierarchy gets

complicated and software fragile.

Consider the alternative approach, where you extend instances with functions that

define their behavior and not their type. You don’t have a GuardRobot and a Housekee

perRobot anymore; instead, you have an instance of a Robot that can clean things,

shoot things, or do both. The implementation will probably look something like this:

function extend(robot, skills) {
 skills.forEach(function (skill) {
 robot[skill.name] = skill.fn.bind(null, rb)
 })

 return robot
}

To use it, all you have to do is to implement the behavior you need and attach it to the

instance in question:

function shoot(robot) { /* ... */ }
function clean(robot) { /* ... */ }

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT126

var rdo = new Robot("R. Daniel Olivaw")
extend(rdo, { shoot: shoot, clean: clean })

rdo.talk("Hi!") // OK
rdo.walk("Mozilla SF") // OK
rdo.shoot() // OK
rdo.clean() // OK

NOTE
My friend Irakli Gozalishvili, after reading this chapter, left a comment saying that
his approach would be different. What if objects were used only to store data?

function talk(robot) { /* ... */ }
function shoot(robot) { /* ... */ }
function clean(robot) { /* ... */ }

var rdo = { name: "R. Daniel Olivaw" }

talk(rdo, "Hi!") // OK
walk(rdo, "Mozilla SF") // OK
shoot(rdo) // OK
clean(rdo) // OK

With his approach you don’t even need to extend anything: all you need to do is
pass the correct object.

At the beginning of this chapter, I warned JavaScript programmers against being lulled

into the false sense of referential transparency that can result from using a pure func-

tional programming language. In the example we just looked at, the function extend

takes an object as its first argument, modifies it, and returns the modified object. The

problem here is that JavaScript has a very limited set of immutable types. Strings are

immutable. So are numbers. But objects—such as an instance of Robot—are mutable.

This means that extend is not a pure function, since it mutates the object that was

passed into it. You can call extend without assigning its return value to anything, and

rdo will still be modified.

Now What?
The major evolution that is still going on for me is towards a more functional

programming style, which involves unlearning a lot of old habits, and backing

away from some OOP directions.

—John Carmack

JavaScript is a multiparadigm language supporting object-oriented, imperative, and

functional programming styles. It provides a framework in which you can mix and

match different styles and, as a result, write elegant programs. Some programmers,

however, forget about all the different paradigms and stick only with their favorite

NOW WHAT? 127

one. Sometimes this rigidity is due to fear of leaving a comfort zone; sometimes it’s

caused by relying too heavily on the wisdom of elders. Whatever the reason, these

people often limit their options by confining themselves to a small space where it’s

their way or the highway.

Finding the right balance between different programming styles is hard. It requires

many hours of experimentation and a healthy number of mistakes. But the struggle is

worth it. Your code will be easier to reason about. It will be more flexible. You’ll ulti-

mately find yourself spending less time debugging, and more time creating something

new and exciting.

So don’t be afraid to experiment with different language features and paradigms.

They’re here for you to use, and they aren’t going anywhere. Just remember: there’s

no single true paradigm, and it’s never too late to throw out your old habits and learn

something new.

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT128

	FrontCover
	Introduction
	Contents
	Web Development with Node & Express
	Chapter 1. Introducing Express
	Chapter 2. Getting Started with Node

	JavaScript Cookbook
	Chapter 12. Modularizing and Managing JavaScript

	Developing Web Components
	Chapter 11. Working with the Shadow DOM

	Beautiful JavaScript
	Chapter 14. Functional JavaScript

