
A Curated Collection of Chapters
from the O’Reilly SVG Library

Modern SVG

Amelia Bellamy-Royds
& Kurt Cagle

http://oreil.ly/webdev

Amelia Bellamy-Royds and Kurt Cagle

Modern SVG

978-1-491-95550-5

[LSI]

Modern SVG
by Amelia Bellamy-Royds and Kurt Cagle

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Kristen Brown
Proofreader: O’Reilly Production Serv‐
ices

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2016: First Edition

Revision History for the First Edition
2016-02-25: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern SVG, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com

Table of Contents

1. Using SVG in Web Pages. 1
SVG as an Image 1
SVG as an Application 5
SVG Markup in a Mixed Document 7

2. Tools of the Trade. 15
Software and Sources to Make SVG Easier 15
Ready-to-Use SVG 16
Click, Drag, Draw 21
SVG Snapshots 25
Bringing SVG Alive 28
Markup Management 33
Ready-to-Use Code 37
Processing and Packaging 39
Summary: Software and Sources to Make SVG Easier 40

3. Beyond Straight Lines. 43
Creating Curved Text 43
Positioning on a Path 47
Integrating Other Text Effects 51

4. Serving Paint. 59
Paint and Wallpaper 59
Identifying Your Assets 60
The Solid Gradient 64

vii

Modern SVG
A Curated Collection of Chapters from

the O’Reilly SVG Library

SVG has come a long way. It may have seemed like a niche topic a
few years ago, but it has evolved into a powerful tool for Web devel‐
opers.

Scalable Vector Graphics (SVG) is an XML-based vector image for‐
mat for two-dimensional graphics with support for interactivity and
animation. SVG images and their behaviors are defined in XML text
files, which means that they can be searched, indexed, scripted, and
compressed. SVG images can be created and edited with any text
editor, but are more often created with drawing software.

This free ebook gets you started, bringing together concepts that
you need to understand before tackling your next modern SVG
project. With a collection of chapters from the O’Reilly SVG library’s
published and forthcoming books, you’ll learn about the scope and
challenges that await you in the world of modern web development.

ix

CHAPTER 1

Using SVG in Web Pages
From SVG Essentials

John Donne said that no man is an island, and likewise SVG does
not exist in isolation. Of course, you can view SVG images on their
own, as an independent file in your web browser or SVG viewer.
Many of the examples in this book work that way. But in other cases,
you will want your graphic to be integrated in a larger document,
which contains paragraphs of text, forms, or other content that can‐
not easily be displayed using SVG alone. This chapter describes vari‐
ous ways of integrating SVG within HTML and other document
types.

Figure 1-1 shows the cat drawing from another chapter of SVG
Essentials, inserted into an HTML page in four different ways. The
results look almost identical, but each method has benefits and limi‐
tations.

SVG as an Image
SVG is an image format, and as such it can be included in HTML
pages in the same ways as other image types. There are two
approaches: you can include the image within the HTML markup in
an element (recommended when the image is a fundamental
part of the page’s content); or you can insert the image as a CSS style
property of another element (recommended when the image is pri‐
marily decorative).

1

http://shop.oreilly.com/product/0636920032335.do

Figure 1-1. Screenshot of a web page with SVG inserted four ways

Regardless of which method you use, including SVG as an image
imposes certain limitations. The image will be rendered (“drawn” in
the sense that the SVG code is converted to a raster image for dis‐
play) separately from the main web page, and there is no way to
communicate between the two. Styles defined on the main web page
will have no effect on the SVG. You may need to define a default font
size within your SVG code if your graphic includes text or defines
lengths relative to the font size. Furthermore, scripts running on the
main web page will not be able to discover or modify any of the
SVG’s document structure.

Most web browsers will not load files referenced from an SVG used
as an image; this includes other image files, external scripts, and

2 | Chapter 1: Using SVG in Web Pages

even webfont files. Depending on the browser and the user’s security
settings, scripts defined within the SVG file may not run, and URL
fragments (the part of the URL after #, which indicates which part of
the file you’re interested in) may be ignored. Animation, as defined
in Chapter 12 in SVG Essentials, is supported within images (in
browsers that support it in SVG in general).

Including SVG in an Element
The HTML element defines a space into which the browser
should draw an external image file. The image file to use is specified
with the src (source) attribute. Including an SVG image within an
 element is as simple as setting the source to point to the loca‐
tion of your SVG file on the web server. Of course, you should also
give a description with an alt and/or a title attribute so that users
who cannot see the image can still understand what it represents.
For example:

 <img src="cat.svg" title="Cat Image"
 alt="Stick Figure of a Cat" />

Although most web browsers now support SVG as
images, some older browsers will not know how to
render the file and will display a broken-file icon (or
nothing at all). For other browsers, you may need to
confirm that your web server is configured to declare
the correct media type header (image/svg+xml) for
files ending in .svg.

The height and width of the image can be set using attributes or CSS
properties (which take precedence). Other CSS properties control
the placement of the image within the web page. If you do not spec‐
ify dimensions for the element, the intrinsic dimensions of
the image file are used. If you specify only one of height or width,
the other dimension is scaled proportionally so that the aspect ratio
(the ratio of width to height) matches the intrinsic dimensions.

For raster images, the intrinsic dimension is the image size in pixels.
For SVG, it’s more complicated. If the root <svg> element in the file
has explicit height and width attributes, those are used as the intrin‐
sic dimensions of the file. If one of height or width is specified, but
not both, and the <svg> has a viewBox attribute, then the viewBox
will be used to calculate the aspect ratio and the image will be scaled

SVG as an Image | 3

to match the specified dimension. Otherwise, if the <svg> has a
viewBox attribute but no dimensions, then the height and width
parts of the viewBox are treated as lengths in pixels. If that all sounds
incomprehensible, rest assured: we’ll introduce the viewBox

attribute properly in Chapter 3 in SVG Essentials.

If neither the element nor the root <svg> element has any
information about the size of the image, the browser should apply
the default HTML size for embedded content, 150 pixels tall and 300
pixels wide, but it is best not to rely on this.

Including SVG in CSS
Various CSS style properties accept a URL to an image file as a
value. The most commonly used is the background-image property,
which draws the image (or multiple layered images) behind the text
content of the element being styled.

By default, a background image is drawn at its intrinsic dimensions
and repeated in both the horizontal and vertical direction to fill up
the dimensions of the element. The intrinsic dimensions of an SVG
file are determined in the same manner as described in “Including
SVG in an Element” on page 3. If there are no intrinsic
dimensions, the SVG will be scaled to 100% of the height and width
of the element. The size can be set explicitly using the background-
size property, and repeat patterns and image position can be set
using background-repeat and background-position:

div.background-cat {
 background-image: url("cat.svg");
 background-size: 100% 100%;
}

In addition to background images, SVG files can be used in CSS as a
list-image (used to create decorative bulleted lists) or border-
image (used to create fanciful borders).

4 | Chapter 1: Using SVG in Web Pages

When using raster images for multiple small icons and
logos, it is common to arrange all the images in a grid
within a single image file, and then use background-
size and background-position to display the correct
image for each element. That way, the web browser
only has to download one image file, resulting in much
faster display of the web page. The compound image
file is called a CSS sprite, named after a mythical help‐
ful elf that magically makes things easier. SVG files can
be designed as sprites, and browsers are getting better
at rendering them efficiently, but you should probably
avoid making the sprite file too big.
The SVG specifications define other ways to create
multiple icons within a single image file; you then use
URL fragments to indicate which icon to display. Ide‐
ally, these would replace sprites based on the
background-position property. However, as men‐
tioned previously, some browsers ignore URL frag‐
ments when rendering SVG as an image, so these fea‐
tures are not currently of much practical use in CSS.

SVG as an Application
To integrate an external SVG file into an HTML page without the
limitations of treating the SVG as an image, you can use an embed‐
ded object.

The <object> element is the general-purpose way of embedding
external files in HTML (version 4 and up) and XHTML documents.
It can be used to embed images, similar to , or to embed sepa‐
rate HTML/XML documents, similar to an <iframe>. More impor‐
tantly, it can also be used to embed files of any arbitrary type, so
long as the browser has an application (a browser plug-in or exten‐
sion) to interpret that file type. Using an object to embed your SVG
can make your graphic available to users of older browsers that can‐
not display SVG directly, so long as they have an SVG plug-in.

The type attribute of the <object> element indicates the type of file
you’re embedding. The attribute should be a valid Internet media
type (commonly known as a MIME type). For SVG, use
type="image/svg+xml".

The browser uses the file type to determine how (or if) it can display
the file, without having to download it first. The location of the file

SVG as an Application | 5

1 In addition to fallback content, an <object> may also contain <param> elements defin‐
ing parameters for the plug-in. However, these aren’t used for rendering SVG data.

itself is specified by the data attribute. The alt and title attributes
work the same as for images.

The object element must have both a start and end tag. Any content
in between the two will be rendered only if the object data itself can‐
not be displayed. This can be used to specify a fallback image or
some warning text to display if the browser doesn’t have any way of
displaying SVG.1 The following code displays both a text explana‐
tion and a raster image in browsers that don’t support SVG:

 <object data="cat.svg" type="image/svg+xml"
 title="Cat Object" alt="Stick Figure of a Cat" >
 <!-- As a fallback, include text or a raster image file -->
 <p>No SVG support! Here's a substitute:</p>
 <img src="cat.png" title="Cat Fallback"
 alt="A raster rendering of a Stick Figure of a Cat" />
 </object>

<object> versus <embed>
Prior to the introduction of the <object> element, some browsers used the
non-standard <embed> element for the same purpose. It has now been adop-
ted into the standards, so you can use <embed> instead of an <object> ele-
ment if you’re worried about supporting older browsers. For even wider sup-
port, use <embed> as the fallback content inside the <object> tags.

There are two important differences between <embed> and <object>: first,
the source data file is specified using a src attribute, not data; second, the
<embed> element cannot have any child content, so there is no fallback option
if the embed fails.

Although not adopted into the specifications, most browsers also support the
optional pluginspage attribute on <embed> elements, which gives the URL of
a page where users can download a plug-in for rendering the file type if they
don’t have one installed.

When you include an SVG file as an embedded object (whether with
<object> or <embed>), the external file is rendered in much the

6 | Chapter 1: Using SVG in Web Pages

same way as if it was included in an element: it is scaled to fit
the width and height of the embedding element, and it does not
inherit any styles declared in the parent document.

Unlike with images, however, the embedded SVG can include exter‐
nal files, and scripts can communicate between the object and the
parent page, as described in Chapter 13 in SVG Essentials.

SVG Markup in a Mixed Document
The image and application approaches to integrating SVG in a web
page are both methods to display a complete, separate, SVG file.
However, it is also possible to mix SVG code with HTML or XML
markup in a single file.

Combining your markup into one file can speed up your web page
load times, because the browser does not have to download a sepa‐
rate file for the graphic. However, if the same graphic is used on
many pages on your website, it can increase the total download size
and time by repeating the SVG markup within each page.

More importantly, all the elements within a mixed document will be
treated as a single document object when applying CSS styles and
working with scripts.

Foreign Objects in SVG
One way of mixing content is to insert sections of HTML (or other)
content within your SVG. The SVG specifications define a way of
embedding such “foreign” content within a specified region of the
graphic.

The <foreignObject> element defines a rectangular area into which
the web browser (or other SVG viewer) should draw the child XML
content. The browser is responsible for determining how to draw
that content. The child content is often XHTML (XML-compliant
HTML) code, but it could be any form of XML that the SVG viewer
is capable of displaying. The type of content is defined by declaring
the XML namespace on the child content using the xmlns attribute.

The rectangular drawing area is defined by the x, y, width, and
height attributes of the <foreignObject> element, in a manner
similar to the <use> or <image> elements, which we’ll get to in
Chapter 5 in SVG Essentials.

SVG Markup in a Mixed Document | 7

The rectangle is evaluated in the local SVG coordinate system, and
so is subject to coordinate system transformations (which we’ll talk
about in Chapter 6 in SVG Essentials) or other SVG effects. The
child XML document is rendered normally into a rectangular frame,
and then the result is manipulated like any other SVG graphic. An
SVG foreign object containing an XHTML paragraph is shown in
Figure 1-2.

The <foreignObject> element has great potential for creating
mixed SVG/XHTML documents, but is currently not well sup‐
ported. Internet Explorer (at least up to version 11) does not sup‐
port it at all, and there are bugs and inconsistencies in the other
browsers’ implementations.

If you want to define fallback content in case the SVG viewer cannot
display foreign content, you can use the <switch> element in combi‐
nation with the requiredFeatures attribute, as shown in
Example 1-1. In browsers that support XHTML and foreign objects,
that code creates Figure 1-2; in other browsers, it displays SVG text.

The <switch> element instructs the SVG viewer to draw only the
first direct child element (and all of its children) for which the
requiredFeatures, requiredExtensions, and systemLanguage test
attributes either evaluate to true or are absent. We’ll discuss the use
of the systemLanguage attribute to switch between different texts in
Chapter 9 in SVG Essentials. When testing for required features, you
use one of the URL strings given in the specifications;
<foreignObject> support is part of the Extensibility feature.

Unfortunately, there is no consistent, cross-browser
way to specify which type of foreign object is required.
Maybe you want to use the MathML language to dis‐
play a formula for your chart, with a plain-text version
as a fallback for browsers that don’t understand
MathML. The requiredExtensions attribute is sup‐
posed to indicate what type of added capability is
needed, but the SVG 1.1 specifications did not clearly
describe how the extensions should be identified—
except to say that it should be with a URL. Firefox uses
the XML namespace URL, but other browsers do not.

8 | Chapter 1: Using SVG in Web Pages

http://www.w3.org/TR/SVG11/feature

Figure 1-2. Screenshot of an SVG file containing XHTML text

Example 1-1. The <foreignObject> element, with a <switch>

<g transform="skewX(20)">
<switch>
 <!-- select one child element -->
 <foreignObject x="1em" y="25%" width="10em" height="50%"
 requiredFeatures=
 "http://www.w3.org/TR/SVG11/feature#Extensibility">
 <body xmlns="http://www.w3.org/1999/xhtml">
 <p>This is an XHTML paragraph embedded within an SVG!
 So this text will wrap nicely around multiple lines,
 but it will still be skewed from the SVG transform.
 </p>
 </body>
 </foreignObject>
 <text x="1em" y="25%" dy="1em">
 This SVG text won't wrap, so it will get cut off...
 </text>

SVG Markup in a Mixed Document | 9

</switch>
</g>

Inline SVG in XHTML or HTML5
The other way to mix SVG with XHTML is to include your SVG
markup in an XHTML document; it also works with non-XML-
compliant HTML documents using the HTML5 syntax. This way of
including SVG in a web page is called Inline SVG to distinguish it
from SVG embedded as an image or object, although it really should
be called Infile SVG, because there’s no requirement that your SVG
code has to all appear on a single line!

Inline SVG is supported in all major desktop web browsers for ver‐
sions released in 2012 and later, and most of the latest mobile
browsers. For XHTML, you indicate that you’re switching to SVG by
defining all your SVG elements within the SVG namespace. The
easiest way to do this is to set xmlns="http://www.w3.org/2000/
svg" on the top-level <svg> element, which changes the default
namespace for that element and all its children. For an HTML5
document (a file with <!DOCTYPE html>), you can skip the name‐
space declaration in your markup. The HTML parser will automati‐
cally recognize that <svg> elements and all their children—except
for children of <foreignObject> elements—are within the SVG
namespace.

Inserting SVG markup into an (X)HTML document is easier than
the reverse: you don’t need a separate <foreignObject>-like element
to define where to render the SVG. Instead, you apply positioning
styles to the <svg> element itself, making it the frame for your
graphic.

By default, the SVG will be positioned with the inline display mode
(meaning that it is inserted within the same line as the text before
and after it), and will be sized based on the height and width
attributes of the <svg> element. With CSS, you can change the size
by setting the height and width CSS properties, and change the

10 | Chapter 1: Using SVG in Web Pages

2 CSS positioning properties apply to top-level <svg> elements, ones which are direct
children of HTML elements. An <svg> that is a child of another SVG element will be
positioned based on the rules for nested SVGs, as described in Chapter 5 in SVG Essen‐
tials.

3 As explained in Chapter 3 in SVG Essentials, the preserveAspectRatio attribute will
scale an SVG while maintaining its aspect ratio. For inline SVG, this will scale the
graphic to fit within the box (height and width) you define for it; it doesn’t change the
size of the box within the web page.

position with the display, margin, padding, and many other CSS
positioning properties.2

Example 1-2 gives the code for a very simple SVG drawing in a very
simple HTML5 document. The result is Figure 1-3. The xmlns
attribute on the <svg> element is optional for HTML5. For an
XHTML document, you would change the DOCTYPE declaration at
the top of the file, and you would wrap the CSS code in the <style>
element with a <![CDATA[...]]> block.

If you do not set the height and width of the SVG with either CSS or
attributes, web browsers should apply the default 150-pixel-by-300-
pixel size, but be warned! Many versions of browsers apply different
defaults. Unfortunately, unlike when using an SVG file in an
element, you cannot just set one of the height or width and have the
SVG scale based on the aspect ratio defined by its viewBox attribute.3

SVG Markup in a Mixed Document | 11

Figure 1-3. The web page from Example 1-2

Example 1-2. Inline SVG within an HTML file

<!DOCTYPE html>
<html>
<head>
 <title>SVG in HTML</title>
 <style>

svg {
 display:block;
 width:500px;
 height:500px;
 margin: auto;
 border: thick double navy;
 background-color: lightblue;

12 | Chapter 1: Using SVG in Web Pages

}
body {
 font-family: cursive;
}
circle {
 fill: lavender;
 stroke: navy;
 stroke-width: 5;
}

 </style>
</head>
<body>
 <h1>Inline SVG in HTML Demo Page</h1>
 <svg viewBox="0 0 250 250"
 xmlns="http://www.w3.org/2000/svg">
 <title>An SVG circle</title>
 <circle cx="125" cy="125" r="100"/>
 <text x="125" y="125" dy="0.5em" text-anchor="middle">
 Look Ma, Same Font!</text>
 </svg>
 <p>And here is regular HTML again...</p>
</body>
</html>

The first style rules define how the SVG should be positioned
and sized within the HTML document.

You can also style the box in which the SVG will be drawn using
other CSS properties.

Styles you define for the main document will be inherited by the
SVG.

You can also define styles for your SVG elements within your
main stylesheet.

SVG Markup in a Mixed Document | 13

CHAPTER 2

Tools of the Trade
From Using SVG with CSS3 and HTML5

Software and Sources to Make SVG Easier
The SVG examples in this book were for the most part created “from
scratch”, by typing markup or standard JavaScript to build and
manipulate the graphics. However, that’s certainly not the only way
to work with SVG, nor the most common one.

Most SVG art starts life inside graphical software, created by an
artist working with shapes and colors instead of XML tags and
attributes. Most SVG data visualizations are built using JavaScript
libraries full of shorthand convenience functions. Most SVG icons
are reused from one web application to another, and countless icon
sets are available to license for your website.

By showing you the internal components of an SVG, stripped down
to their skeletal form, we hope to give you a complete toolset to
work with SVG: the skills to modify and extend any SVG you work
with, no matter how it was created. With this programmatic
approach to SVG, you will be better able to manipulate graphics cre‐
ated by others or by software, in order to match your web design or
to enable user interaction. However, the mental toolset you’ll gain by
understanding SVG shouldn’t detract from the software tools that
other developers have created.

Software tools make it easier to create graphics, and easier to process
your files so they are ready to deploy on your web server. Tools dis‐
cussed in this chapter include graphical editors that emphasize vis‐
ual components instead of code, code editors that provide hints and
immediate feedback, code libraries that streamline the creation of
dynamic graphics with JavaScript, and the many rendering pro‐
grams that display the SVG or convert it to other image formats. In
addition, we introduce the vast supply of free and licensable SVG

15

http://shop.oreilly.com/product/0636920037972.do

content that can help you quickly enhance your web designs, even if
your most artistic drawings are of the stick-figure variety.

This chapter specifically mentions some of the most popular soft‐
ware and services. These are not the only options, and we don’t
guarantee they are the best. They are given as examples of what is
out there, and of how different options differ from each other.
When choosing tools for your own projects, think about the features
you need, and the budget you can afford. Whatever you choose,
remember that any standards-compliant SVG can be opened and
modified with other SVG tools, so you’re not locked into any one
product’s workflow.

Ready-to-Use SVG
The easiest way to get started with SVG—especially if you’re more of
a programmer than a graphic designer—is to start with someone
else’s art. SVG may not be as ubiquitous on the Web as other image
formats, but it’s getting there. A simple web search for the word will
retrieve numerous vendors and free collections of SVG, particularly
for icons.

Prior to using clip art from a vendor or website, you should ascer‐
tain what kind of licenses are available for the graphic. Early in the
history of SVG, most graphics were released under some kind of
Creative Commons license, but increasingly, high-quality artwork is
produced by professional artists working within traditional copy‐
right domains. Although there are plenty of free-to-use graphics
available (some with noncommercial restrictions or attribution
requirements), others are offered under paid license systems similar
to those used for stock photos or web fonts.

One benefit of SVG’s dual nature as both an image for‐
mat and an XML format is that it is possible to embed
copyright license information directly in the file using
a <metadata> block. We’ll discuss how you can do this
for your own graphics in Chapter 16 of Using SVG with
CSS3 and HTML5.

For accessing graphics created by others, remember that creative
works are by default “all rights reserved”; the absence of copyright
information doesn’t mean it is public domain. Don’t use someone

16 | Chapter 2: Tools of the Trade

else’s work unless you are sure that the original creator has offered a
license compatible with your intended use.

SVG will never replace JPEG for stock photographs (which can’t be
efficiently represented in vectors), but it is now a standard option
for vector graphic clip art and icons, including from commercial
suppliers.

There are a number of tools and libraries that can convert simple
SVG art into other vector formats and back again. This can increase
the flexibility of the vector graphics: for example, the encapsulated
PostScript (EPS) format, long a staple in the realm of clip art, is still
dominant in print. For simpler graphics, icon fonts—which allow
sets of single-color icons to be distributed as a web font file—are
popular because they allow icon size and color to be controlled with
familiar CSS properties. Nonetheless, companies that produce clip
art, maps, and related graphics for the Web are increasingly shifting
to SVG for their vector graphic format.

Using the vector graphic source files, the stock art companies can
also generate raster images (PNG, JPEG, and GIF) of any size. For a
web designer interested in purchasing raster graphics, however, it
often makes more sense to license a single SVG and convert it into
the associated raster format at various resolutions yourself, instead
of purchasing raster graphics at different scales.

The following list of websites should help start you on your search
for SVG:

Open Clip Art Project
The Open Clip Art Library (OCAL) Project is definitely the old‐
est, and perhaps the largest, repository of SVG content, all of it
available either through Creative Commons or public domain
licenses for unrestricted commercial use. Established in 2004 by
Jon Phillips and Bryce Harrington, the OCAL project was cre‐
ated to provide a public commons for clip art, using SVG for
encoding primarily because SVG itself doesn’t have the same
type of vendor encumbrances or royalty restrictions as other
vector formats. Moreover, because the source code for the
graphics can be read with a text editor, it’s also possible to
decompose clip art images into separate pieces, making SVG
useful as a way of packaging collections of icons or images in a
single file. Figure 2-1 displays some of the diversity of artistic
styles available. The project is also integrated with the Flaming

Ready-to-Use SVG | 17

http://www.openclipart.org
http://www.flamingtext.com/imagebot/editor

Text ImageBot graphics editor, which allows you to tweak some
SVG style properties online.

Figure 2-1. Samples from the Open Clip Art Library: on the left, Sim‐
ple Farm Animals 2 by user Viscious Speed; on the right, line drawings
from Sir Robert Baden-Powell’s 1922 book An Old Wolf ’s Favourites,
converted to SVG by user Johnny Automatic

Pixabay
Another stock art library, Pixabay includes photos, illustrations,
and vector graphics. However, be aware that many vector graph‐
ics are stored in Adobe Illustrator format, and you would need
software able to convert them to SVG for use on the Web. All
images are released under the Creative Commons’ public
domain license; you are encouraged to “buy a coffee” for the
artists by donating funds when you download.

Wikimedia Commons
The media repository arm of Wikipedia, Wikimedia Commons
compiles images, audio, and video in a wide variety of formats.
All files are available under some sort of “copyleft” license; some
require attribution or are restricted to noncommercial use or to
use within similarly-licensed work. Detailed license information
is available on each file’s catalog page.

18 | Chapter 2: Tools of the Trade

http://www.flamingtext.com/imagebot/editor
http://pixabay.com/
http://commons.wikimedia.org/wiki/Main_Page

Wikimedia is actively pushing their contributors to use the SVG
format for diagrams, clip art, icons, and other vector drawings
because of its flexibility and ease of editing; their servers then
automatically generate raster versions in various sizes. Although
the tagging and cataloguing of files is often inconsistent, making
searching a little difficult, there is plenty of great SVG content if
you take the time to look around. Figure 2-2 displays selections
from the SVG Botanical Illustrations category, including a label‐
led diagram; because SVG text is easily editable, the file is avail‐
able with labels in many languages.

Figure 2-2. SVG from Wikimedia Commons: on the left, a hollyhock
flower by user Ozgurel; on the right, a labelled diagram of a peach by
Mariana Ruiz Villarreal (aka LadyofHats)

Iconic
Iconic is a commercial SVG icon library, but they offer a set of
more than 200 icons completely free to use (MIT license; just
ensure that license information is available with the code). This
Open Iconic set includes most common user interface buttons
in single-element icons that you style to any color you chose.
For their paid offerings, Iconic distinguishes themselves by tak‐
ing full advantage of all the possibilities of SVG, supporting
multicolor styling and using scripts to substitute in more
detailed versions of the icons at larger sizes. They even brag
about their easy-to-read (and modify) XML markup.

The Noun Project
Another icon-focused library, the Noun Project’s goal is to cre‐
ate a visual language for clear international communication.
Access to their entire library is by monthly subscription, but

Ready-to-Use SVG | 19

https://useiconic.com/open

their database includes many public domain and Creative
Commons-licensed icons, searchable by concept using tags in
dozens of languages.

There are, of course, numerous other sources for both free and for-
sale SVG graphics; this is just a tiny sample. Adding the word “SVG”
to your query in any search engine can help target your results;
Google’s Advanced image search also allows you to explicitly filter
for SVG files. The difficulty is then to find the original source of the
graphic to determine licensing rights.

The vast majority of ready-to-use SVG files are static content—
images created by Inkscape, Adobe Illustrator, and other similar
tools that contain neither scripts nor animation. A few clip art and
icon libraries are starting to include animated SVG, while special‐
ized applications such as mapping may include interactive features
or links between files.

Typically, SVG in the wild is stored as text-based XML
files. However, the SVG standards allow for gzip-
compressed SVG—typically having an .svgz filename
extension—to reduce the file size. This is common for
high-quality, photorealistic SVG files, which can occa‐
sionally get to be bigger than their PNG counterparts;
and for maps and other complex charts that embed a
lot of metadata within the graphics themselves. It
should also be used by a performance-minded web
developer (that’s you!) to compress a file for transmis‐
sion from web server to browser.

Ready-to-use graphics can solve many web design problems. For
common interface icons, creating your own graphics would seem
like reinventing the wheel.

For other projects and other graphic types, stock art just won’t do.
You need to create a custom image that perfectly represents a new
and unique concept. It takes a little more artistic skill, but there are
plenty of tools for creating your own SVG art. After all, that’s how
most of the graphics in the above libraries were created in the first
place.

20 | Chapter 2: Tools of the Trade

Click, Drag, Draw
Once upon a time, one of the biggest issues facing adoption of the
Scalable Vector Graphics standard was the lack of decent tools for
creating SVG graphics or applications. Most SVG needed to be cre‐
ated by hand, or if that was too daunting, to be converted from other
proprietary graphical standards. This reliance on converted graphics
meant that the full features of SVG weren’t always used.

On the other side, many vector graphics editors include features that
are not part of standard SVG. To ensure that this extra information
or features are retained when you save and reload the SVG (a pro‐
cess called “round-tripping”), these programs either have separate,
proprietary image formats (as for Adobe Illustrator) or add extra
markup to the SVG file (Inkscape). In order to create graphics that
will display consistently with other software, these programs also
include commands that will “flatten” the extra features into standard
SVG 1.1. If your intent is to make content available for the Web,
always ensure that you save a version of your graphic in standard
SVG. Be aware that sometimes the multiple representations of the
image may add significantly to the file size.

There are now numerous graphical software programs that can
export to SVG. They all include visual, what-you-see-is-what-you-
get (WYSIWYG) editors where you can position shapes with your
mouse (or other pointing device) and select colors from visual
palettes. They differ in how much of SVG’s features they support,
and in how easy they are to use.

Some vector graphics programs you could consider include:

Adobe Illustrator
Adobe Illustrator is the granddaddy of vector graphics pro‐
grams, and debuted in 1991 as part of a seminal period in Ado‐
be’s history. It not only set the expectations of what a vector
graphics program should look like, but has consistently been at
the cutting edge of vector graphics support for the past two dec‐
ades. Many aspects of SVG were inspired by the capabilities of
Illustrator, and Illustrator has long supported export of its
graphics to SVG format. However, it’s definitely worth remem‐
bering that SVG is not a native format for the application
(the .ai format is). What that means is that Adobe has to per‐
form a translation from their internal vector graphics format

Click, Drag, Draw | 21

(built primarily around Postscript) to SVG. For comparatively
simple graphics, this is a straightforward proposition, but it is
possible to create Illustrator images that have poor fidelity and
large file sizes when rendered to SVG, with complex effects
replaced by bitmap images.

The basic save-as-SVG option in Illustrator creates a complex
file from which the native graphic can be reconstructed. How‐
ever, in 2015 Adobe introduced a much more streamlined
export-as-SVG option that creates a graphic optimized for the
Web. You can also copy individual graphics components from
the Illustrator interface and paste them into a text editor; the
corresponding SVG code will be pasted. This is useful if you’re
building a complex application or animation with SVG, but
want to use the visual editor to draw shapes.

Inkscape and Sodipodi
Sodipodi was one of the earliest SVG editors, initially developed
for Linux systems. It drew its inspiration from Adobe Illustrator,
but used SVG natively to store and retrieve content. Inkscape
started as a branch of Sodipodi, and is now the more actively
developed program.

Inkscape has matured into a remarkably sophisticated, feature-
rich vector graphics application, while never losing sight of its
SVG roots. Its interface (Figure 2-3) is somewhat crowded with
features, but with a little effort to learn all the options, it allows
for considerable control over the graphic. In addition to sup‐
porting most static SVG features, it includes numerous filters
and extensions to create graphical effects. There are also con‐
trols that allow you to edit nongraphical aspects of the SVG,
such as element IDs, alternative text, and even simple JavaScript
event handling. You can also inspect the XML file and edit
nodes and attributes directly.

Inkscape implemented some features of SVG 1.2, particularly
multiline text boxes, which were never widely supported by
browsers; be sure to convert your text boxes to fixed-position
SVG text when exporting for the Web. Other Inkscape-specific
markup is removed by saving as a “Plain SVG” format. Export
options (set under the “SVG Output” tab in software preferen‐
ces) can help optimize the final file, stripping unused style and
attributes or simplifying the data used to encode complex paths.

22 | Chapter 2: Tools of the Trade

http://www.inkscape.org

Figure 2-3. The open source Inkscape graphics editor

Microsoft Visio
Although not a general-purpose graphics editor, Microsoft’s
Visio software is used for designing charts and diagrams. SVG is
remarkably well-suited for charts, and Visio provided the set‐
ting for Microsoft’s first foray into SVG (as an alternative export
format). It turned out to be one of the more favorably received
of features for this product, as it allowed diagrams to be used
outside of the normal Microsoft family of products, including
on the Web.

LibreOffice and Apache Open Office
These two open-source office software suites—which share a
common history but are now developed separately—both
include support for vector graphics, either embedded in text
documents or as stand-alone drawings. They use a conversion
program (based on Batik, which is discussed later) to translate
between SVG and the internal vector graphics format. The con‐
version is not perfect, and won’t support advanced SVG fea‐
tures. However, these drawing programs can be user-friendly
introductions to drawing basic vector graphics.

Click, Drag, Draw | 23

Google Docs
Google’s web application alternative to desktop office software,
Google Docs, uses SVG natively to encode and display draw‐
ings. Furthermore, because the SVG is being displayed live in
your web browser, you are seeing it exactly as it will be dis‐
played in a website, and you can open the file in multiple brows‐
ers to confirm consistent rendering. The interface is easy to use,
but it only supports a basic set of SVG features, in order to sup‐
port conversion to the drawing formats used by other office
software.

SVG-edit
Another online SVG graphics application originally sponsored
by Google, SVG-edit runs in your web browser either from a
downloaded file or directly from the web server. In addition to
most of the standard visual vector graphics options, you can
easily set element id and class attributes from the editor, add
hyperlinks, and can define dimensions and a title for the docu‐
ment. Unfortunately, at the time of writing the program is not
well documented and is somewhat prone to errors when editing
complex content. Development and issues can be monitored via
the GitHub repository.

Draw SVG
A more complete (and more completely documented) online
SVG graphics editor is Draw SVG by Joseph Liard. It imple‐
ments nearly all the commonly supported SVG drawing and
styling features (no filters or animation). The dialog forms that
control style properties use standard SVG terminology for
attributes and style properties, which is helpful if you will be
alternating between using a graphics editor and writing the code
yourself. The application also offers tools to create rasterized
versions of the SVG, or to encode raster images as data that you
can embed in the SVG itself.

The performance of the web application itself can be slow com‐
pared to desktop applications like Inkscape, and drawing com‐
plex shapes is difficult. The tool would likely be most useful for
customizing the styles on icons and clip art from other sources,
especially if you aren’t yet comfortable writing the markup and
stylesheets yourself. Figure 2-4 shows the interface.

24 | Chapter 2: Tools of the Trade

https://docs.google.com/drawings/
https://github.com/SVG-Edit/svgedit
http://www.drawsvg.org/

Figure 2-4. The Draw SVG free online SVG graphics editor

Nearly all of these SVG editors have some ability to convert SVG
graphics to raster images or other vector formats. This can be useful
to create fallbacks for old browsers or to create consistent rendering
in print publications. However, manually saving files in multiple for‐
mats from a graphics editor can be tedious. On many web server set-
ups, the process can be automated using dedicated rasterization and
conversion tools.

SVG Snapshots
An SVG rasterizer is a program that converts the vector graphics
elements into a visual bitmap format. Broadly speaking, any pro‐
gram that can display an SVG on a screen is a rasterizer. However,
the programs described here are single-purpose rasterizers, used
when incorporating SVG into print or when generating fallback
alternatives for older browsers. They are command-line programs
or software libraries suitable for inclusion in automated routines.

Batik
The Apache Batik project is a complete implementation of SVG
1.1 in Java. The project’s rasterizer utility has traditionally been

SVG Snapshots | 25

http://xmlgraphics.apache.org/batik

used to render SVG in publishing pipelines, most typically to
convert XSL Formatting Objects (XSL-FO) documents into
printed output. In general, the quality of the Batik rendering is
quite high, and is particularly appropriate for generating images
in raster formats such as PNG or JPEG from SVG graphics.
Batik supports nearly all features of SVG 1.1, but has not (at the
time of writing) implemented CSS3 features that you might
wish to use in SVG for modern web browsers.

Once downloaded, Batik can be run as a Java archive file. The
static renderer is specifically batik-rasterizer.jar, part of the Batik
distribution. There are a number of options for controlling out‐
put file format, width and height, area, quality, output directory,
and so forth. Invoking the rasterizer without arguments should
give you the list of options.

LibRSVG
The LibRSVG library is part of the Linux Gnome project, and
provides support within Gnome for static SVG images as well as
a library that lets developers generate SVG in their programs. It
can also be run as a standalone program called rsvg to generate
PNG or JPEG images from SVG files. It supports core vector
graphics, but not advanced effects. The LibRSVG rendering
engine is used in numerous other open source SVG tools.

ImageMagick
ImageMagick is best described as a Swiss army knife for com‐
mand line manipulation of graphics, and is available on Win‐
dows, Macintosh, and Linux platforms. It is useful from a com‐
mand line and also can be invoked from libraries in most
modern processing languages, from C++ to Python, PHP, Ruby,
and Node.js. Given this, it’s not surprising that it supports ras‐
terization of SVG.

At its simplest, the ImageMagick convert command is trivial:

convert image.svg image.png

This converts the file indicated by the first argument from an
SVG image to a corresponding PNG image. When it is available,
ImageMagick will use Inkscape’s command-line interface to
render SVG; in that case, it will support most SVG 1.1 features.
As a second effort, ImageMagick will try to use LibRSVG. If that
is not available, ImageMagick has its own rendering tools; these

26 | Chapter 2: Tools of the Trade

http://librsvg.sourceforge.net
http://www.imagemagick.org

have less support for advanced features such as filters and style‐
sheets. It is generally advisable to experiment with sample SVG
images to see whether ImageMagick will meet your needs.

CairoSVG
Cairo is a complete vector graphics languages as a programming
library for use by other software; it has implementations in
many common programming languages such as C++ and
Python. Cairo graphics can be converted to vector files as Post‐
Script, PDF, and SVG; can be output on various screen display
modes on Linux and Macintosh systems; or can be used to gen‐
erate raster images. The CairoSVG library, from the web design
company Kozea, parses SVG files and converts them to Cairo
graphics—the result can be used to generate PDF, PostScript, or
PNG versions of the SVG files. Most basic vector graphics fea‐
tures from SVG 1.1 are supported.

As you may have gathered, a limitation of all these rasterization
tools is that they do not keep up to date with the latest developments
in other web platform specifications—if they even support the full
SVG standard to begin with.

A final option for creating rasterized versions of SVG files is to use
an actual web browser rendering engine. To do this from a server
routine or other command-line interface, you can use the Phan‐
tomJS implementation of the WebKit browser engines. The sample
rasterize.js script can be used to convert any web page or SVG file to
PNG or PDF. PhantomJS can also run your own JavaScript code,
such as a script to build an SVG visualization from a data file, and
then save the resulting SVG document.

With all these options for converting SVG to raster image formats,
you may wonder about the reverse conversion. Can you create an
SVG from a PNG or JPEG? That gets much more complicated.
Although SVG code contains information about how the shapes
should look, raster images don’t contain information about the
shapes they were constructed from.

Tracing or vectorizing tools use algorithms to try to calculate those
shapes from the pixel data in a raster image, looking for high-
contrast edges, then connecting them into smooth lines and curves.
The more comprehensive graphics programs, such as Illustrator and
Inkscape, include auto-tracing tools. There are also specialized trac‐
ing tools such as Vector Magic. These can be particularly useful if

SVG Snapshots | 27

http://cairosvg.org/
http://phantomjs.org/
http://phantomjs.org/
http://vectormagic.com/

you want to draw graphics by hand, then scan them into your com‐
puter and convert to SVG.

Bringing SVG Alive
Rendering SVG to other static file formats is useful, but the reason
you’re using SVG in the first place is because it is so much more
than a rasterized image. To see and use the full power of SVG, you
need a dynamic SVG viewer that can update the graphic according
to user interaction or timed animations.

When discussing web browser support for SVG, it helps to group
the browsers according to the rendering engine they use. Many of
the engines are open-source, and there are numerous other tools
that use the same code, and therefore display web pages and SVG in
the same way (although these tools may not always be up-to-date
with the latest features). Knowing the rendering engine also helps
you know which prefix to use when testing experimental CSS fea‐
tures, although CSS prefixes are going out of fashion in favor of
experimental browser modes controlled by the user.

The main rendering engines are as follows:

Gecko for Firefox
The first web browser implementation of SVG was built within
the Gecko rendering engine in 2003. Gecko, originally built for
Netscape 6, is the basis of the Mozilla Firefox browser as well as
numerous niche browsers and tools.

The original SVG implementation was basic, focusing on simple
vector shapes. However, it has expanded steadily and continues
to improve. Until recently, dynamic SVG could be slow and
jerky in Firefox; however, over the course of 2014 significant
performance improvements were made and some animations
are now smoother in Firefox than in other browsers.

There are still some areas where Firefox/Gecko does not con‐
form to the SVG specifications in the finer details, particularly
around the way <use> elements are handled. They also did not
implement many of the style properties that offer nuanced con‐
trol of the layout of SVG text; some of these features are now
(early 2016) being implemented in coordination with enhance‐
ments to CSS-styled HTML text. SVG rendering may also differ
slightly between operating systems, as Firefox uses low-level

28 | Chapter 2: Tools of the Trade

graphical rendering tools from the operating system to improve
the performance of some actions.

Experimental CSS features for Gecko used the -moz- (for
Mozilla) prefix; however, the development team has phased out
the use of prefixed experimental CSS for new features.

WebKit for Safari and iOS devices
Apple’s Safari browser was built upon open-source rendering
and JavaScript engines originally created for the KDE operating
system (for Linux/Unix computers). Apple’s branch of the code
—known as WebKit—is used in all Apple devices and was also
originally the basis for the Google Chrome browser, among
many other tools. As previously mentioned, WebKit is also used
in the PhantomJS browser simulator.

WebKit implemented most SVG 1.1 features between 2008 and
2010; many edge cases or areas of poor performance remain,
but for most purposes it is a complete implementation. Many
CSS3 features require a -webkit- prefix on Safari and related
software.

Blink for newer versions of Chrome, Opera, and Android devices
In 2013, Google’s Chromium project announced that they
would no longer synchronize further development with the
WebKit project. The Google Chrome browser at that point used
WebKit code to render web pages (and SVG) but had separate
code for other functions including JavaScript processing.

The branch of the rendering engine, developed as part of the
Chromium project, is now known as Blink. In addition to being
used by Chrome, Blink is used in the Opera browser (since ver‐
sion 13) and some native applications on newer Android devi‐
ces.

Blink browsers still support -webkit- CSS properties, but they
have been transitioning to using standard (unprefixed) syntax.
Users can opt in to experimental features through advanced
browser settings.

The development of the Google Chrome browser (and now
Blink in general) has been heavily focused on performance;
their SVG implementation is one of the best, and animations are
generally fast and smooth (although Firefox has recently caught
up). Some edge-case features are not supported, particularly in

Bringing SVG Alive | 29

1 Data from http://caniuse.com/usage_table.php.

areas where the SVG specifications work differently from CSS
and HTML. Blink has removed support for SVG Fonts from
most platforms and the development team has indicated that
they consider SVG animation elements (SMIL animation) to be
deprecated. At the time of writing (early 2016), animation ele‐
ments still work, but a warning is displayed in the developer’s
console.

Presto for older Opera versions and Opera Mini
The Opera browser previously used its own proprietary render‐
ing engine, known as Presto. It is still used for server-side ren‐
dering for the Opera Mini browser, converting web pages to
much simpler compressed files for transmission to mobile devi‐
ces with low computing power or expensive and slow Internet
connections. In Opera Mini, SVG is supported as static images,
but not as interactive applications.

Presto supports nearly all of the SVG 1.1 specifications and
some CSS3 properties. However, it has not been (and will not
likely be) updated since 2013. Presto versions of Opera used an
-o- prefix for experimental CSS features.

Trident for Internet Explorer and other Windows programs
Internet Explorer was the last major browser to add support for
SVG. Prior to the development of the SVG standard, Microsoft
had introduced its own XML vector graphics language (the Vec‐
tor Markup Language, VML), used in Microsoft Office software
and supported in Internet Explorer since version 5.

Basic SVG support was introduced (and VML phased out) with
Internet Explorer version 9 in 2009. Support for additional SVG
features, such as filters, was added in subsequent versions.
Nonetheless, older Internet Explorer versions that do not sup‐
port SVG (particularly Internet Explorer 8) continue to be used
because newer versions of the software are not supported on
older Windows operating systems. As of the end of 2015,
slightly more than 1% of global web traffic used Internet
Explorer 8, a two-third drop from a year previous but still a
meaningful share for large commercial websites.1

30 | Chapter 2: Tools of the Trade

http://caniuse.com/usage_table.php

As of Internet Explorer 11 (the final browser to use the Trident
engine), there were a number of small quirks and bugs in SVG
support, and some features that were not supported at all. The
main area where Internet Explorer does not match the other
web browsers is animation: there is no support for either SVG
animation elements or CSS animation applied to SVG graphics.
Another key missing feature is the <foreignObject> element,
which allows XHTML content to be embedded in an SVG
graphic.

The Trident rendering engine used for Internet Explorer is also
used in other Microsoft programs and by some third-party soft‐
ware built for Windows devices. It uses the -ms- CSS prefix.

EdgeHTML for Microsoft Edge and Windows 10+ programs
The Microsoft Edge browser developed for Windows 10 uses a
new rendering engine, built from a clean codebase to emphasize
performance and cross-browser interoperability. The
EdgeHTML engine is also used by other software in Windows
10.

Edge supports all the web standards supported in Internet
Explorer, and many new ones. Collaboration from Adobe devel‐
opers helped advance support for a number of graphics and vis‐
ual effects features. Support for SVG <foreignObject> and CSS
animations of SVG content have already been introduced, and
the development team has indicated that they intend to imple‐
ment many other SVG 2/CSS3 features. However, plans to even‐
tually support SVG animation elements were shelved after the
Chromium project announced their deprecation plans. Edge
supports -ms- prefixed properties that were supported in Inter‐
net Explorer, and has also introduced support for some
-webkit- prefixes that are commonly used in existing websites.

The browser SVG implementations (with the exception of Presto
and Trident) are the subject of active development. Feature support
may have changed by the time you read this. Consult the version
release notes or the issue-tracking databases for the various brows‐
ers to determine if a specific feature is now supported.

Bringing SVG Alive | 31

Future Focus
Hardware Acceleration

When discussing SVG support, it is easy to focus on the specific elements,
attributes, or style properties that software does or does not recognize. When
discussing dynamic SVG, however, the efficiency of the implementation is
equally important. Slow rendering speeds can cause the image to flicker and
jerk when it is animated by scripts or declarative animation commands.

An ongoing area of development and improvement in dynamic SVG is hard-
ware acceleration, using the computer display’s video card to improve render-
ing speed. The video cards on most modern computers can combine different
partially transparent image layers directly in their GPU (graphical processing
unit, a specialized processor chip or chips). If the browser can divide the web
page into independent layers, then changes in the opacity or relative position
of the layers can be processed quickly and smoothly at the GPU level.

This level of basic acceleration operates on web content that has already been
converted to rasterized forms. However, the accelertion of vector graphic cal-
culations is an important area of new development. The Khronos Group, an
industry consortium, has established a set of standards for hardware accelera-
tion of graphics in 2D and 3D. Among their projects is the OpenVG standard,
which provides a number of core libraries and hardware-standard calls for
accelerating vector graphics language processing in chips.

This support has in turn made its way into graphics chips and low-level libra-
ries produced by such vendors as nVidia, Apple, Adobe, Creative, Google, HTC,
Intel, ARM, Ericsson, Nokia, Qualcomm, Samsung, Sony, and many others. Such
chips usually include a vector graphic processor in addition to the 3D process-
ors more commonly associated with graphics chips, and it is the presence of
these libraries that has resulted in a significant improvement of vector graph-
ics in general in the last few years.

This doesn’t necessarily translate into full SVG support—the libraries are too
low-level for that—but it does effectively mean that hardware acceleration for
animation and interactivity is now available to a far wider variety of devices
than held true five years ago, including many of the mobile, smartphone, and
smart pad devices that are emerging today as the front-runners of the next
wave of computer innovation.

32 | Chapter 2: Tools of the Trade

http://www.khronos.org/
http://www.khronos.org/openvg/

In addition to the web browsers, there are a two other dynamic SVG
rendering engines that have been important in the development of
SVG:

Adobe SVG Viewer
As mentioned in Chapter 2 of Using SVG with CSS3 and
HTML5, the Adobe SVG Viewer—a plug-in for Internet
Explorer—was one of the first and most complete SVG environ‐
ments. Although it has not been developed for years, it can still
be downloaded to enable SVG support on older Internet
Explorer browsers. In order to trigger the plug-in, the SVG
must be included in the page using either an <object> or an
<embed> tag.

Batik Squiggle Viewer
We mentioned the Apache Batik project in the context of SVG
rasterizers; however, the rasterizer is only one part. Batik can be
used to generate and display SVG in other Java-based software.
It also comes with its own dynamic SVG viewer called Squiggle
for viewing SVG files from your computer or the Web.

Squiggle can display SVG animation and can process JavaScript
and respond to user events, including following hyperlinks to
new files. Batik supports nearly all of the SVG 1.1 specification,
but has not been updated for more recent CSS, DOM, and Java‐
Script methods. It can also be more strict, compared to browser
implementations, about requiring common values to be explic‐
itly specified in markup and in scripts.

These dynamic SVG viewers do not merely display an image of the
SVG, they present changing, interactive SVG documents. In order to
create such a document, you’ll need to use more than the graphical
editing programs presented in “Click, Drag, Draw” on page 21.
You’ll need to look inside the SVG, and work with the underlying
code.

Markup Management
It is possible to write SVG code in any editor that can save in a plain
text format. You can open up Notepad or something similar, type in
your markup, scripts, and styles, save it with a .svg extension, then
open the same file in a web browser.

Markup Management | 33

http://xmlgraphics.apache.org/batik/

If you typed carefully, and didn’t forget any required attributes or
misspell any values, your SVG will appear on screen, ready to be
used just as you intended. However, if you’re human, chances are—
at least some of the time—you’ll end up with XML validation errors
displayed on screen, with JavaScript errors printed to the developer’s
console, or simply with a graphic that doesn’t look quite like you
intended.

Text editors designed for writing code can help considerably. They
can color-code the syntax so it’s easy to detect a missing quotation
mark or close bracket. They can also test for major syntax errors
before you save. Many can autocomplete terms as you type. The
options for code editors are too numerous to list here; many are
available only for specific operating systems. Whatever you choose,
be sure to confirm that the editor has—at a minimum—syntax rules
for XML, or more preferably specific rules and hints for SVG.

Nonetheless, even the best syntax highlighting and code hints can‐
not help you draw with code. When working with complex shapes
and graphical effects, it really helps to be able to see the graphical
effect of your code as you write it.

Oxygen XML SVG Editor
A commercial XML management program, Oxygen allows you
to handle many types of XML-based data and formatting tools.
The SVG editor uses Batik to render graphics, and can render
both SVG markup and SVG created via scripts. It is intended
primarily for creating SVG as the result of an XSLT (eXtensible
Stylesheet Language Transformation) template applied to an
XML data file, but can also be used for plain SVG.

Brackets plus SVG Preview
A code editor developed by Adobe primarily for web develop‐
ers, Brackets includes a feature whereby you can open the web
page you’re working on in a browser and have it update as you
type in the main editor. At the time of writing (Brackets version
1.1), this only works with HTML and CSS; SVG inline in those
pages is displayed, but not updated live. For standalone SVG
files, the SVG Preview extension will display a live version of the
SVG in the editor as you type; however, this should currently
only be used for static SVG images, as script errors in your code
can crash the editor.

34 | Chapter 2: Tools of the Trade

http://www.oxygenxml.com/
http://brackets.io/
https://github.com/peterflynn/svg-preview

The SVG Preview feature—and the entire Brackets editor—uses
the Blink rendering engine. The preview image is currently dis‐
played as inline SVG code within the HTML 5 application code;
this means that minor syntax errors and missing namespaces in
a half-finished file do not break the preview. However, it also
means that inline scripts can wreak havoc, and external files and
stylesheets are not supported. Figure 2-5 shows the editor with a
live preview of SVG icons.

Both the core Brackets code and extensions are being rapidly
developed; however, as of early 2016 progress on SVG-focused
features appear to have stalled. Adobe is also developing soft‐
ware (Adobe Extract) to allow users of their commercial design
software (e.g., Photoshop) to easily generate matching web code
in Brackets; however, at the time of writing this tool primarily
focuses on CSS and does not include any SVG- or Adobe
Illustrator-related features.

Figure 2-5. The Brackets code editor with SVG Preview enabled

Online live code sites
In recent years, numerous web applications have become avail‐
able that allow you to write web code and see its output in sepa‐
rate frames of the same web page. Because the result is displayed
right in your web page, you can use all the latest features sup‐

Markup Management | 35

ported by your web browser. Most make it easy to import com‐
mon JavaScript code libraries. However, since you don’t control
the web server, other external files can often be limited by
browser security restrictions.

All these sites currently work with HTML 5 documents, includ‐
ing inline SVG elements. As with the Brackets SVG preview, this
means that they are more forgiving of syntax errors than SVG in
XML files. Some live code sites worth mentioning include:

• JSFiddle was one of the first sites to offer live execution of
web code that you can save to a publically accessible web
link and send to collaborators or reference from help
forums. The stripped-down interface is best for small test
cases and examples.

• CodePen is a more full-featured live code site that also
serves as a social media network for web designers; you can
explore other coders’ work, leave comments, or publish a
blog with multiple embedded working examples in each
post. A paid membership opens up additional collaboration
tools and the ability to upload separate image files, scripts,
or other resources.

• Tributary is specifically designed for data visualizations and
other scripted SVG. By default, it provides you with a blank
HTML page containing a single inline <svg> element that
you can manipulate with JavaScript. You can also create
separate data files accessible from the main script. The
interface offers convenient tools such as visual color pickers
and GIF snapshots (including animation) of your work.

When you’re working on these sites, keep in mind that saving
your work usually also means publishing to the Web. Some
sites, such as CodePen, automatically apply a very-few-rights-
reserved license to work published in this way (you can save
work privately and control copyright with a paid CodePen
membership).

Once you have tools that allow you to rapidly write and test your
code, it becomes easier to think about SVG programmatically.
Working with the code forces you to consider the graphic from the
perspective of the document object model rather than simply from
the perspective of its final appearance.

36 | Chapter 2: Tools of the Trade

http://jsfiddle.net/
http://codepen.io/
http://tributary.io/

This approach is particularly useful when dealing with dynamic and
interactive SVG and when creating data visualizations. If those areas
interest you, the next set of tools you’ll want to investigate are those
that make manipulating the DOM easier.

Ready-to-Use Code
There are two ways to create an SVG by writing code: writing out
the XML markup and attributes, or writing JavaScript to create the
corresponding DOM elements dynamically. Scripting is preferred
when you have a lot of similar elements or when the geometric
attributes should be calculated based on a data file. This book uses
both approaches in the examples.

There’s actually a third way to code SVG (which we
mentioned briefly when discussing the Oxygen XML
editor): using an XSLT stylesheet applied to an XML
data file.
The XSLT stylesheet is an XML file. It consists of SVG
markup templates interspersed with formatting
instruction elements that indicate how the data should
be processed and inserted into the SVG file. XSLT is
therefore another way to create SVG that should corre‐
spond with underlying data. However, unlike with
scripting, the XSL transformation can only be applied
once, when the file is processed; it cannot update with
new data or respond to user interactions. With stand‐
ardized JavaScript being well supported and efficiently
implemented in browsers, the use of XSLT to generate
SVG is falling out of favor.

The popularity of using JavaScript for the creation and manipula‐
tion of SVG has much to do with the availability of open-source
tools to make this easier. These libraries of JavaScript code provide
shorthand methods to perform common tasks, allowing your script
to focus on the graphics instead of on the underlying DOM function
calls. The following JavaScript libraries are particularly important
when working with SVG:

Raphaël and Snap.svg
The Raphaël library by Dmitry Baranovskiy was important in
getting dynamic SVG into production web pages. It provides a

Ready-to-Use Code | 37

http://raphaeljs.com/

single interface that can be used to create either SVG graphics or
Microsoft VML graphics, depending on which one the browser
supports. The library is therefore essential if you want to pro‐
vide dynamic vector graphics to users of Internet Explorer 8.
The number of features Raphaël supports, however, is limited to
the shared features of the two vector graphics languages.

The terminology used by Raphaël includes a number of conve‐
nient shorthands that do not always directly correspond to the
standard SVG element and attribute names. The same terminol‐
ogy is used in the newer Snap.svg library, produced by Baranov‐
skiy through his new employer, Adobe. Unlike Raphaël,
Snap.svg does not include support for VML graphics. This
allows the library code files to be smaller, and allows support for
features such as clipping, masking, filters, and even groups,
which aren’t supported in VML. Snap can also load in existing
SVG code, in order to manipulate complex graphics created in
WYSIWYG editors. Both Snap and Raphaël have convenient
functions to create smooth JavaScript animations, allowing you
to animate graphics in any version of Internet Explorer.

D3.js
The D3.js library, originally developed by Mike Bostock, has
become the standard tool for creating dynamic SVG data visual‐
izations. D3 is short for Data-Driven Documents, and it reflects
how the library works by associating JavaScript data objects
with elements in the document object model (DOM).

The core D3 library is open-ended, allowing you to manipulate
groups of DOM elements (SVG or HTML) simultaneously by
defining how their attributes and styles should be calculated
from the corresponding data objects. Changes in values can be
set to smoothly transition over time to create animated effects.

D3 includes a number of convenient functions for calculating
the geometric properties of common data visualization layouts,
such as the angles in a pie graph. It also includes SVG-specific
convenience functions for converting data and geometrical val‐
ues into the actual instructions you’ll use in the attributes of an
SVG <path> element. However, D3 does not draw the charts
directly; many extensions and add-ons have been developed to
make it easier to draw common chart types.

38 | Chapter 2: Tools of the Trade

http://snapsvg.io/
http://d3js.org/

GSAP
An animation-focused commercial library, the GreenSock Ani‐
mation Platform focuses on making animated HTML and SVG
content fast, smooth, and cross-browser compatible. The GSAP
library can be freely used on many commercial projects (and
most noncommercial ones); a paid license is required if the
website’s end users pay subscription or other fees, or to access
various extra plug-in scripts. A number of those plug-ins are
specifically focused on working with SVG paths, or circumvent‐
ing browser support issues at the intersection of SVG and CSS3.

Learning to use these JavaScript libraries is worth a book of its own
(and many great books are available). However, they don’t replace an
understanding of the underlying SVG graphics. It’s difficult to effec‐
tively manipulate SVG with scripts unless you already know what
SVG is (and isn’t) capable of.

Processing and Packaging
You have your SVG ready to go, whether it came from a clip art
library, was drawn in a graphics editor, or was carefully written as
code. There are still a few tools that you may want to use while
uploading SVG to your web server. A sample routine, which could
be automated, would be to:

1. Run your SVG code through an optimizing tool such as SVGO
or Scour to eliminate extra markup from graphics tools and to
otherwise condense the file (being sure not to use any settings
that will remove IDs or classes that you’ll use in scripts or style‐
sheets).

2. Generate raster fallback images for Internet Explorer 8 and
Android 2.3 users (using any of the rasterization tools men‐
tioned in “SVG Snapshots” on page 25).

3. Compile a folder full of all individual SVG icons into a single
file that can be sent to the user all at once (the SVGStore Grunt
plugin does this on a Node/Grunt server configuration).

4. Use gzip compression to further reduce file size (being sure that
your server is set to correctly indicate the compression scheme
in the HTTP headers sent with the file).

Processing and Packaging | 39

https://greensock.com/
https://greensock.com/
https://github.com/svg/svgo
http://www.codedread.com/scour/
https://github.com/FWeinb/grunt-svgstore
https://github.com/FWeinb/grunt-svgstore

There are almost certainly many more tools and techniques that can
be used, depending on how your website and server are set up, and
on how you intend to use the SVG. These examples should get you
started.

Summary: Software and Sources to Make SVG
Easier
The purpose of this chapter hasn’t been to tell you what software or
which websites to use, although hopefully it has given you some
suggestions if you did not know where to start.

More importantly, the review should have helped you understand
the diversity of ways you can create and use SVG. Furthermore, it
should have helped remind you of the compatibility issues that must
always be kept in mind when working on the web. And finally, it
should have helped you get some SVG files onto your computer—
whether downloaded from a clip art library or created yourself in an
editor—that you can experiment with as you work through the rest
of the book.

This chapter has been revised many times since it was first started in
2011, in part due to the dramatic changes in the SVG software land‐
scape. It will surely be the first chapter in the book to become obso‐
lete. In the past few years, SVG has in many ways become a de facto
standard for maps and information graphics on the Web, is becom‐
ing a commercially viable alternative for clip art, is making its way
into graphics usage for component diagrams of everything from
houses to aircraft to cars, and is factoring into web interfaces (and
even operating system interfaces) in subtle but increasingly ubiqui‐
tous ways.

While the example sites and applications given here are a good start,
other places to find out more about SVG include Infographics and
Data Visualization Meetups, code libraries such as Google Code
Projects, or online forums on LinkedIn or Google+ (both of which
have a number of active SVG and data visualization groups).

As you’re following along with the rest of the book, feel free to use
downloaded clip art or SVG you created in a graphics program to
experiment with styles and effects. It’s what you’ll often do in prac‐
tice. Opening the files in a code editor that highlights the syntax
(and particularly one that can “tidy up” or “pretty print” the XML)

40 | Chapter 2: Tools of the Trade

can help you identify the core structure of group and shape elements
in the code. From there, you can add new attributes or CSS classes.

Summary: Software and Sources to Make SVG Easier | 41

CHAPTER 3

Beyond Straight Lines
From SVG Text Layout

Baselines ensure that glyphs are positioned to create a pleasing line
of text. However, we’ve already said that, in graphical layout, you
don’t always want text to display in perfectly straight lines. Some‐
times it’s fun to make text move out of those boring lines and into
more complex curves—circles, spirals, around the edges of various
objects, and so forth.

This chapter introduces the <textPath> element, which allows you
to use SVG path geometry to describe complex text layouts.

Creating Curved Text
We’ve shown (in Chapter 5 in SVG Text Layout) how you can posi‐
tion and rotate individual characters. For some simple designs, that’s
enough. Example 3-1 spaces the letters of the word “Sunrise” in a
semicircle, each letter positioned every 30° and rotated to match, as
shown in Figure 3-1.

Example 3-1. Arranging letters around a shape with character position
attributes

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xml:lang="en"
 width="4in" height="2.3in" viewBox="0 0 400 230">
 <title>Text Positioned in a Curve</title>
 <style type="text/css">
 text {
 font: bold italic 48px "Times New Roman", Times, serif;
 fill: gold;
 stroke: orangeRed;
 }
 </style>
 <rect fill="#CEE" width="100%" height="100%" />

43

http://shop.oreilly.com/product/0636920043072.do

Figure 3-1. Curved text positioned with x, y, and rotate

 <g transform="translate(200,180)">
 <text x="-150 -130 -75 0 75 130 150"
 y="0 -75 -130 -150 -130 -75 0"
 rotate="-90 -60 -30 0 30 60 90"
 >Sunrise</text>
 </g>
</svg>

To make the trigonometry slightly easier, the coordinate system
origin is translated to the center of the semicircle.

There are seven letters in “Sunrise,” so there are seven values in
each of the positioning attribute lists.

The exact positions of each letter required a little bit of trigonome‐
try to calculate. Even then, it doesn’t look quite right: because the
letters start at the specified anchor point, the final “e” sticks out
below the starting “S” even though their anchors are on the same
horizontal line. Using text-anchor: middle doesn’t help; it centers
each letter over the anchor point before rotating them, so they end
up shifted to the side, not shifted around the circle.

44 | Chapter 3: Beyond Straight Lines

If we had more letters, we’d need more trigonometry, and longer
lists of x, y, and rotate attributes. And if we had enough letters that
we wanted the word to look like a continuous string of text, we’d
have to deal with the fact that each letter should be spaced differ‐
ently according to its own unique dimensions. This clearly isn’t a
practical solution for pleasing text layout.

For cursive scripts such as Arabic, there’s another problem with
absolutely positioning letters: no matter how close each letter is to
the next, they are rendered as isolated letters, not parts of a continu‐
ous word.

This is where text on a path comes in handy. Text on a path is
exactly what it says—each letter is placed such that its baseline is on
the tangent of a curve, spaced out along that curve according to the
normal spacing of that text sequence.

Although text on a path should be perfect for creating
decorative layouts with cursive text, actual browser
implementations are another matter, particularly for
right-to-left scripts such as Arabic.

SVG text on a path is created with the <textPath> element.
The content of the <textPath> is aligned along the outline of a sepa‐
rate <path> element. Which path to use is specified with an
xlink:href attribute.

Just like a <tspan>, a <textPath> must be within a
<text> element; it does not draw anything on its own.

Example 3-2 arranges the longer string “from Sunrise to Sunset”
around a semicircular path (actually a cubic Bézier curve). The
result is shown in Figure 3-2.

Creating Curved Text | 45

Figure 3-2. Curved text positioned along a path

Example 3-2. Arranging a text string around a shape with textPath

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xml:lang="en"
 width="4in" height="2.3in" viewBox="0 0 400 230">
 <title>Text on a Curved Path</title>
 <style type="text/css">
 text {
 font: bold italic 48px "Times New Roman", Times, serif;
 fill: gold;
 stroke: orangeRed;
 }
 </style>
 <rect fill="#CEE" width="100%" height="100%" />
 <path id="path" d="M50,200 C50,0 350,0 350,200"
 fill="none" stroke="darkOrange" />
 <text>
 <textPath xlink:href="#path">from Sunrise
 to Sunset</textPath>
 </text>
</svg>

The letters in Figure 3-2 are spaced much more smoothly than you
could expect to achieve by placing each character yourself.

46 | Chapter 3: Beyond Straight Lines

Blink/WebKit browsers currently render each letter
within text on a path as if it was its own text chunk.
This doesn’t affect the spacing, but it has other conse‐
quences. For right-to-left scripts within a left-to-right
layout, this means that the letters are not rearranged
into the correct reading order. In cursive scripts, it also
means that the isolated glyph forms for each letter are
used instead of the word forms.

The path itself is stroked in Example 3-2, but it does not have to be;
you can define the path within a <defs> section without drawing it
at all. Here, we draw it to emphasize that the baseline of the text is
aligned with the path. If you used a different baseline, the characters
would move in or out relative to the curve.

Regardless of whether the path itself was drawn to the screen or not,
the text will be positioned as if the path was drawn in the same coor‐
dinate system as the <text> element itself.

Positioning on a Path
The text string in Example 3-2 doesn’t quite fit the full length of the
path, making it appear slightly off-balance. A text-anchor: middle
setting could center the text, but only if we can correctly position
the anchor point. By default, it’s at the start of the path. If we cen‐
tered the text around that point, half of it would disappear off the
start of the path.

Any text that extends beyond the length of the path—
at the beginning or end—will not be drawn at all.

The startOffset attribute of a <textPath> element defines the
position along the path at which the text should be anchored. It can
be given as a length—measured from the normal start of the path—
or as a percentage of the path’s length. To center text within the path
length, you can therefore use text-anchor: middle with a
startOffset of 50%, as follows:

<text text-anchor="middle">
 <textPath xlink:href="#path" startOffset="50%"
 >from Sunrise to Sunset</textPath>
</text>

Positioning on a Path | 47

1 Thanks to Israel Eisenberg for the doubled-path solution for text on a closed shape.

Figure 3-3 shows the much more balanced result of this change.

Figure 3-3. Curved text centered on a path

The startOffset attribute is particularly useful when arranging text
around an existing shape, which might not have been drawn with
the start of the text in mind. When animated, a changing
startOffset can create a marquee effect, sliding text the length of
the path.

Blink/WebKit browsers currently treat negative
startOffset values as 0, and do not draw any text
with a startOffset greater than 100% of the path
length, even when using an end value for text-anchor.
This rather limits the potential for scrolling marquees
of appearing and disappearing text.

On closed shapes (such as a complete circle), be aware that text will
not continue from the end of the path back to the beginning. To
position text across this seam in the path definition, create a version
of the path with the entire path string duplicated. Then reduce any
percentage values for startOffset by half, to account for the fact
that the path is now twice as long.1

48 | Chapter 3: Beyond Straight Lines

The SVG 1.1 specifications did not define how startOffset—or
text paths in general—would work for right-to-left text direction.
Firefox is currently the only browser that provides legible results
with correct bidirectional ordering.

Internet Explorer and Blink/WebKit browsers do not
correctly process right-to-left and bidirectional text on
a path. For cursive scripts (such as Arabic) Blink/
WebKit also use the isolated glyph versions of each
character.

Even for Firefox (version 40) the startOffset value is used as an
end-offset position when text-anchor is start and the reverse for a
text-anchor of end. This ensures that text is still visible with the
default offset value of 0, but it is otherwise unintuitive and inconsis‐
tent with the rest of SVG text layout.

Figure 3-4 shows how Arabic text on a path could look (screenshot
from Firefox 40). The code is given in Example 3-3.

Figure 3-4. Arabic text on a path, with drop-shadow filter

Example 3-3. Displaying right-to-left cursive text within textPath

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2.3in" viewBox="0 0 400 230">
 <title xml:lang="en">Arabic Text on a Curved Path</title>

Positioning on a Path | 49

 <style type="text/css">
 text {
 font: bold italic 48px "Times New Roman", Times, serif;
 fill: gold;
 stroke: orangeRed;
 }
 @supports (filter: drop-shadow(0 0 0)){
 text {
 stroke: none;
 filter: drop-shadow(orangeRed 0.5px 1px 1px);
 }
 }
 </style>
 <rect fill="#CEE" width="100%" height="100%" />
 <path id="path" d="M50,200 C50,0 350,0 350,200"
 fill="none" stroke="darkOrange" />
 <text text-anchor="middle" dir="rtl" xml:lang="ar">
 <textPath xlink:href="#path" startOffset="50%"
 > منحنى على النسخية الخط جميل </textPath>
 </text>
</svg>

Although mostly similar to the centered version of Example 3-2,
Example 3-3 uses a drop-shadow filter instead of a stroke to avoid
interrupting the cursive connections. When letters are stroked, Fire‐
fox currently does not apply ligatures; even if it did, the strokes
would include the edges between each glyph. A text shadow is not
an improvement; it is also painted one glyph at a time, and so also
overlaps the cursive connections. In contrast, the drop-shadow filter
(introduced in the CSS Filters module, although it could also be cre‐
ated with SVG filter elements) is applied to the final shaped text,
after combining all the glyphs into a single layer.

By comparison, Figure 3-5 shows the result with stroked text (also
in Firefox 40). Although the connections between letters are much
more awkward, this is still much closer to proper Arabic typography
than any of the other web browsers are able to render at the time
of writing.

The SVG 2 specifications will include new rules for how text on a
path should behave. At the time of writing, they have not been final‐
ized. One option would be to replace the default startOffset with
an auto value that adapts according to the text direction.

50 | Chapter 3: Beyond Straight Lines

Figure 3-5. Arabic text on a path, with stroked letters

Integrating Other Text Effects
Most of the other text features we have discussed so far can be used
with text on a path, some with more success than others.

The text within a <textPath> element can have <tspan> sections
that change the styling. Example 3-4 adds stroke and fill changes for
the keywords in the string, as displayed in Figure 3-6.

Example 3-4. Styling text spans within textPath

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xml:lang="en"
 width="4in" height="2.3in" viewBox="0 0 400 230">
 <title>Styled Text on a Curved Path</title>
 <style type="text/css">
 text {
 font: bold italic 48px "Times New Roman", Times, serif;
 fill: orangeRed;
 }
 .bright {
 fill: gold;
 stroke: orangeRed;
 }
 </style>
 <rect fill="#CEE" width="100%" height="100%" />
 <path id="path" d="M50,200 C50,0 350,0 350,200"

Integrating Other Text Effects | 51

Figure 3-6. Curved text on a path, with styled spans

 fill="none" stroke="darkOrange" />
 <text text-anchor="middle">
 <textPath xlink:href="#path" startOffset="50%"
 >from
 <tspan class="bright">Sunrise</tspan>
 to
 <tspan class="bright">Sunset</tspan
 ></textPath>
 </text>
</svg>

The styles on the <tspan> elements are applied with the bright
class, to override the styles set on the <text> as a whole.

Avoid setting styles using a CSS selector for the
textPath tag name. Older Blink and WebKit browsers
do not correctly match mixed-case tag names for SVG
elements (case sensitive) that are inline in HTML 5
documents (case insensitive). The latest versions of
both platforms have workarounds for this problem.

If you can use <tspan> within <textPath>, can you use the normal
text path positioning attributes? You can, but they don’t have the
normal effect. Instead of moving text horizontally or vertically, they
move them along the path or perpendicular to the path.

52 | Chapter 3: Beyond Straight Lines

Although the x, y, dx, dy, and rotate positioning
attributes on <text> and <tspan> affect the characters
within a <textPath>, SVG 1.1 does not allow you to
use these attributes directly on the <textPath> ele‐
ment.

For horizontal writing mode, therefore, a positive dx attribute moves
characters futher along the path. A positive dy value shifts the text
toward the inside of the path, while a negative dy value shifts it
outward.

Internet Explorer does not render any of the text if you
use dx or dy in combination with text-anchor:
middle; it renders these offsets correctly for text-
anchor: start.
The other browsers have no problem with relative
position attributes, but every browser tested was
inconsistent and buggy when absolute positioning (x
and y attributes) was used.

For vertical writing-mode, y-offsets move the text along the path
and x-offsets move it perpendicularly. For right-to-left character
sequences—whether or not they are embedded in a left-to-right lay‐
out—you would need to use negative dx values to add space between
characters, the same as for normal SVG text.

Browsers are currently very inconsistent about how
<textPath> contents are laid out when the layout
direction (i.e., direction property) is right to left.
Unfortunately, the SVG 1.1 specifications did not dis‐
cuss this situation carefully.

Example 3-5 uses dx and dy on both the <text> element that con‐
tains the <textPath> and the <tspan> elements within it. The
resulting layout is shown in Figure 3-7.

Example 3-5. Using relative positioning attributes within textPath

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="2.3in" viewBox="0 0 400 230">
 <title>Text Offset from a Curved Path</title>

Integrating Other Text Effects | 53

 <style type="text/css">
 /* omitted to save space */
 </style>
 <rect fill="#CEE" width="100%" height="100%" />
 <path id="path" d="M50,200 C50,0 350,0 350,200"
 fill="none" stroke="darkOrange" />
 <text dy="0.5ex" text-anchor="middle">
 <textPath xlink:href="#path" startOffset="50%"
 >from
 <tspan class="bright" dy="-1ex" dx="10px"
 >Sunrise</tspan>
 <tspan dy="+1ex">to</tspan>
 <tspan class="bright" dy="+1ex" dx="10px"
 >Sunset</tspan></textPath>
 </text>
</svg>

The styles would be the same as for Example 3-4.

A dy attribute on the <text> element applies to the first charac‐
ter on the path. It shifts the first chunk of text on the path down
by 0.5ex, so the lowercase letters half-overlap the path. Using a
middle baseline would have had much the same effect, if it
could be relied upon for consistent browser support.

The “Sunrise” span starts with some extra spacing (dx), and is
shifted outward (dy) by the full ex-height, so it ends up 0.5ex
beyond the path.

A span around the word “to” is used to cancel out the dy value
and reset the baseline; if baseline-shift had better browser
support, it could have been used on “Sunrise” instead, and this
extra span would not be required.

The “Sunset” span also starts with a dx offset, but its dy value
shifts it down, into the interior of the path.

In Figure 3-7, you’ll notice that the letters in “Sunrise” are spaced
farther apart than usual, while the letters in “Sunset” look rather
cramped. This is because each letter is shifted perpendicular to its
particular point on the path. On a curved path, those different
perpendicular lines spread out on one side and come together on
the other.

54 | Chapter 3: Beyond Straight Lines

Figure 3-7. Curved text on a path, with spans offset both along and
perpendicular to the path

For tightly curved paths, the cramped or stretched
effect can be visible even without a perpendicular shift.
Convex curves, like this, will space out letters above
the baseline and compress them below the baseline.
Concave curves will do the opposite. As you can guess,
the choice of baseline will also affect whether or not
the letters end up uncomfortably spaced.

The SVG specifications include two other attributes to control text
path layout, neither of which currently have an effect in browsers:

spacing

How the glyphs should be positioned along the path. The
default value supported in browsers is exact: each glyph takes
up the same space on the path as it would in a straight line of
text. The alternative value, auto, would allow the SVG render‐
ing agent to adjust the spacing “in order to achieve visually
appealing results,” although what that means is not defined.

method

How the text string should be bent to fit along the path. The
default value supported in browsers is align (each glyph is
aligned with the path without distorting it); the alternative,

Integrating Other Text Effects | 55

unsupported value is stretch (the tops and bottoms of each
glyph are stretched or condensed to fill the available space).

The lack of support for the stretch method is particularly problem‐
atic with cursive scripts and fonts, whose glyphs may no longer
overlap each other correctly when each character has a different
rotation. In the Arabic text from Example 3-3, this is visible as
cracks between adjacent glyphs, as shown in Figure 3-8 (a zoomed-
in view of Figure 3-4). Nonetheless, the lack of support is perhaps
not surprising, considering that there is no support anywhere else in
SVG for a stretch-type distortion effect (technically called a non-
affine transformation).

Figure 3-8. Discontinuities visible in cursive text on a path without
stretch support

As mentioned briefly earlier, you can also use the x and y attributes
to set absolute positioning within text on a path. These are only sup‐
posed to have an effect in the direction of the text, creating a new
start offset; absolute positions perpendicular to the path would be
ignored. In other words, for horizontal text on a path, the x attribute
could be used to reposition the offset along the path. In combination
with a dy attribute, this could (theoretically) be used to create multi‐
line text above and below a path.

The specifications were short on details of how this would work,
and browser implementations are correspondingly inconsistent. If

56 | Chapter 3: Beyond Straight Lines

you want to create multiline text on a path, use two <textPath> ele‐
ments referencing the same <path> shape, with different dy offsets
for each. Example 3-6 uses this approach to create the multiline text
shown in Figure 3-9.

Figure 3-9. Multiline text arranged around a single path

Example 3-6. Using multiple textPath elements to create multiline text
on a path

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xml:lang="en"
 width="4in" height="2.3in" viewBox="0 0 400 230">
 <title>Multiline Text on a Curved Path</title>
 <style type="text/css">
 text {
 font: bold italic 48px "Times New Roman", Times, serif;
 fill: gold;
 stroke: orangeRed;
 }
 </style>
 <rect fill="#CEE" width="100%" height="100%" />
 <path id="path" d="M50,200 C50,0 350,0 350,200"
 fill="none" stroke="darkOrange" />
 <text text-anchor="middle">
 <textPath xlink:href="#path" startOffset="50%"
 letter-spacing="-2.5px"><tspan dy="-0.2em"
 >Text above a path</tspan></textPath>
 <textPath xlink:href="#path" startOffset="50%"
 letter-spacing="5px"><tspan dy="0.8em"

Integrating Other Text Effects | 57

 >and below it, too!</tspan></textPath>
 </text>
</svg>

The <textPath> elements in Example 3-6 use letter-spacing to
adjust for the expansion and compression caused by the vertical off‐
sets from the curved path. As mentioned previously, letter-
spacing is not currently supported for SVG text in Firefox; the
screenshot is from Chrome version 44.

Future Focus
Changes to Text on a Path

It’s likely that SVG 2 will include a number of improvements and clarifications
related to <textPath>, as well as a few new features.

Some changes that have already been decided:

• <textPath> will include a d attribute. It would allow you to specify the
path directly, instead of having to define a separate <path> element.

• Alternatively, a <textPath> element could reference any shape element
(circle, rectangle, polygon, etc.) instead of a <path>. Each shape has a
canonical path representation that defines where a 0% start offset would
be positioned.

• For closed shapes, text would continue smoothly from the end to the
beginning.

• A new side attribute will allow you to define which side of the path the
text should appear on, effectively reversing the path definition.

It will probably also be possible to specify positioning attributes directly on the
<textPath> element, eliminating the need to have extra <tspan> elements.

The new specifications should also provide clearer definitions for details of text
on a path layout that are currently inconsistently implemented (or not imple-
mented at all), particularly with respect to right-to-left text layout.

58 | Chapter 3: Beyond Straight Lines

CHAPTER 4

Serving Paint
From SVG Colors, Patterns, & Gradients

When the fill or stroke is more complicated than a single color
(transparent or otherwise), SVG uses a concept called a paint server
to describe how the graphic is rendered.

The paint servers are defined using their own SVG elements. Those
elements—gradients and patterns—do not directly create any visible
graphics. They are only used through the fill and stroke proper‐
ties of shapes and text. However, by using XML markup to define
the paint server, it can be infinitely variable: any SVG graphics can
be used to generate an SVG pattern, including other patterns!

In contrast, when using CSS to style HTML content, all the informa‐
tion about how to paint an element must be contained within the
CSS style rules. In CSS 2.1, the only way to create patterns was to
reference external image files. Since then, CSS has introduced many
graphical effects that were previously only possible with SVG, such
as gradients and improved image positioning. Although the end
result may look similar, the all-CSS syntax for these properties is
quite different from their SVG equivalent. Throughout the rest of
the book, the two approaches will be compared in “CSS Versus SVG”
sidebars.

This chapter introduces the basic paint server model, and then dem‐
onstrates how it can be used in the simplest case, to serve up a single
color of paint.

Paint and Wallpaper
A key feature of all SVG paint servers is that they generate a rectan‐
gular region of graphical content. This can be limiting at times, but
it allows for underlying performance optimizations.

59

http://shop.oreilly.com/product/0636920043065.do

An SVG paint server doesn’t need to know anything about the shape
it is told to fill—it just slops on paint indiscriminately all over the
wall. The shape itself acts as a mask or stencil that blocks off which
parts of the paint actually reach the drawing, in the same way that a
wall painter covers (masks) floorboards, ceilings, light fixtures, etc.,
so that only the wall gets painted.

Another way of thinking about paint servers—particularly when
talking about gradients and patterns—is to picture the paint content
as a large sheet of wallpaper. The shape is cut out from that sheet, as
imagined in Figure 4-1.

Figure 4-1. A filled shape can be thought of as a shape cut out of a rec‐
tangular sheet of patterned paper

The computer doesn’t use paper and scissors, of course; instead, as it
rasterizes (scans across) the shape, for every point that is “inside” the
filled region, the computer looks up the corresponding (x,y) point
from the paint server. A paint server can therefore be any object that
can assign a specific color value to each (x,y) value.

In theory, the “paint” could be anything: a single color, one or more
gradients, repeating patterns, bitmap graphics, text, even other SVG
files. In practice, SVG 1.1 has two types of paint servers, gradients
and repeating patterns. However, those core elements can be used
to create all of the options just mentioned, as the rest of the book
will demonstrate.

Identifying Your Assets
The name “server” suggests an external source for multiple resour‐
ces. Theoretically, you can create a separate asset file containing
all your paint servers and reference it from the fill or stroke prop‐
erty, but this currently has poor browser support. More generally,
the name paint server refers to the fact that each gradient or pattern

60 | Chapter 4: Serving Paint

object can serve paint (rendering instructions) to multiple SVG
shapes.

At the time of writing, external paint servers are only
supported in Firefox and in pre-Blink versions of
Opera that use the Presto rendering engine.

In order to use a paint server, you reference the paint server element
using URL syntax, wrapped in the CSS url() functional notation.
Because of the browser support limitation, this URL is nearly always
an internal reference like url(#myReference). The hash mark (#)
indicates that what follows is a target toward a specific element; the
fact that there is nothing before the hash mark indicates that the
browser should look for that element in the current document.
Specifically, it should look for an element with an id attribute that
matches the target fragment (i.e., <pattern id="myReference">).

Thus, referencing a paint server with an ID of "customBlue" as a fill
could look something like:

<rect fill="url(#customBlue)" width="100" height="100"/>

Because fill is a presentation attribute, you could also use a
<style> block elsewhere in the document to set the value:

rect {
 fill: url(#customBlue);
}

The preceding rule would set all rectangles in the document to use
that paint server, provided that the style wasn’t overridden by more
specific CSS rules.

Relative URLs in external stylesheets are always relative to the CSS
file location, not the location of the document using those styles.
This includes local URL fragments like #customBlue, which will
never match anything if specified in an external CSS file. In combi‐
nation with the lack of support for external paint servers, this
unfortunately means that you cannot effectively use external style‐
sheets to set paint server references.

Relative URLs are also affected by the xml:base

attribute or the HTML <base> element; using either
can cause your paint server references to fail.

Identifying Your Assets | 61

In theory (or if you only need to support Firefox), if you had a set of
colors that are predefined in a file called brand.svg, you could pro‐
vide the relative path to that resource, then use the target fragment
to point to the specific element:

<rect fill="url(brand.svg#customBlue)"
 width="100" height="100"/>

Or you could even provide the absolute URI to that same resource—
assuming the external file could be securely accessed from your web
domain:

<rect fill="url(//example.com/assets/brand.svg#customBlue)"
 width="100" height="100"/>

The lack of support for this option is unfortunate, because the server
concept can be thought of as being just another form of asset library,
a way of storing commonly used colors, gradients, patterns, masks,
and other resources in a single file. For now, if you have paint
servers that are used by multiple SVGs, you need to incorporate
them directly in each document, either by using some pre-
processing on your server or by using AJAX techniques to import
them with client-side JavaScript.

Because numerous things might interfere with the ability to load an
external resource—even separate from browser support—the SVG
fill and stroke properties allow you to specify a fallback color
value. The color is given after the url() reference, separated by
whitespace, like the following:

rect {
 fill: url(brandColors.svg#customBlue) mediumBlue;
}

Or, using presentation attributes and hex color syntax:

<rect fill="url(brandColors.svg#customBlue) #0000CD"
 width="100" height="100"/>

If the referenced paint server cannot be loaded, the rectangles will
be painted with the specified solid blue color.

62 | Chapter 4: Serving Paint

Future Focus
Layered Fill Paint and Fallbacks

SVG 2 introduces layered fills or layered strokes, similar to how CSS box layout
supports layered background images.

As with multiple background images, the multiple paint options will be speci-
fied using a comma-separated list of layers from top to bottom. A fallback
color will still be allowed, at the end of the list, separated by whitespace.

Unlike with the CSS background shorthand—which sets both the list of
background-image values and the single background-color value—that
final color would not normally be drawn underneath the other layers.

A sample declaration would look something like the following:

.typeA {
 fill: url(#pattern1), url(#gradient) mediumBlue;
}
.typeB {
 fill: url(#pattern2), url(#gradient) darkSeaGreen;
}

If the paint servers are loaded correctly, the typeA and typeB graphics would
be distinguished by different patterns layered overtop of the same gradient. If
the paint servers could not be found (perhaps your AJAX script did not run
successfully), then the two classes would be drawn with different solid colors.

If you did want a solid color to be drawn underneath a pattern or gradient, you
would separate the color into its own layer using a comma:

.typeA {
 fill: url(#pattern), mediumBlue;
}
.typeB {
 fill: url(#pattern), darkSeaGreen;
}

In this case, both classes of graphics use the same pattern (which maybe adds
a textured effect), but layered over different solid colors.

Identifying Your Assets | 63

The Solid Gradient
Oftentimes, especially when working with commercial uses of color,
a designer will give that color a specific name. The same color may
show up in many graphics related to the brand: different versions of
the company logo, heading text, product labels, and so on. Rather
than having to keep a list of RGB values for each color, it is much
easier to define them once, give them a name, and then use that
name in the content. This also makes it much easier if you decide to
change one of the colors later on in the design process!

An SVG paint server is ideally suited for this task. It can be refer‐
enced by ID in the fill or stroke properties of multiple graphics,
but the actual color value is only specified once and can be easily
updated (or animated, as we’ll show in Chapter 14 in SVG Colors,
Patterns, and Gradients).

The original SVG specifications did not explicitly include a solid
color paint server, but all browsers allow you to use a gradient with a
single, un-changing color to this effect. Example 4-1 demonstrates
this strategy; it uses <linearGradient> elements to define four
named colors that are used in the branding strategy for the fictional
company ACME. The colors are then used to draw a company logo,
which is shown in Figure 4-2.

Figure 4-2. ACME Logo using named colors

64 | Chapter 4: Serving Paint

Example 4-1. Defining named colors for consistent branding using
single-color gradients

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xml:lang="en"
 width="100mm" height="50mm">
 <title>ACME Logo</title>
 <defs>
 <linearGradient id="AcmeRed">
 <stop stop-color="#FF4022" />
 </linearGradient>
 <linearGradient id="AcmeMaroon">
 <stop stop-color="#80201C" />
 </linearGradient>
 <linearGradient id="AcmeGold">
 <stop stop-color="#FFFC32" />
 </linearGradient>
 <linearGradient id="AcmeWhiteGold">
 <stop stop-color="#FFFCE0" />
 </linearGradient>
 <symbol id="AcmeLogo" viewBox="0,-40 160,80" >
 <path d="M0,0 L40,-40 L40,-20 L160,-20
 L160,20 L40,20 L40,40z"
 fill="url(#AcmeRed)"/>
 <path d="M16,-10 L35,-29 L35,-15 L155,-15 L155,-10 z"
 fill="url(#AcmeGold)"/>
 <path d="M13,-7 L16,-10 L155,-10 L155,-7 z"
 fill="url(#AcmeMaroon)"/>
 <text x="40" y="15"
 style="font-family:Arial; font-weight:bold;
 font-size:20pt;"
 fill="url(#AcmeWhiteGold)">ACME</text>
 </symbol>
 </defs>
 <use xlink:href="#AcmeLogo" />
</svg>

The SVG does not have a viewBox; scaling is controlled by the
<symbol> element that contains the logo. However, default
width and height values ensure that the image has the correct
intrinsic aspect ratio and a reasonable default size when embed‐
ded in other web pages.

The company has four brand colors, AcmeRed, AcmeMaroon,
AcmeGold, and AcmeWhiteGold. Each color is defined as a
paint-server using a <linearGradient> with a single <stop>
element.

The Solid Gradient | 65

The logo itself is defined inside a <symbol> element for easy re-
use in other graphics. The viewBox creates a coordinate system
that is centered on the vertical axis.

Each shape within the symbol uses one of the predefined paint
servers to set the fill color.

The logo is drawn within the SVG with a <use> element. The
<use> element does not have any positioning or sizing
attributes, so the reused <symbol> will scale to fill the entire
SVG area.

Examining the gradients more closely, each consists of two elements,
<linearGradient> and <stop>:

<linearGradient id="AcmeRed">
 <stop stop-color="#FF4022" />
</linearGradient>

The <linearGradient> defines the paint server, and gives it the id
value that will be used to reference it. This gradient element is also a
container for the <stop> element that defines the color. For a nor‐
mal gradient, there would be multiple stops defining the initial,
final, and intermediary colors.

The color is specified using the stop-color presentation attribute.
There is also a stop-opacity presentation attribute, similar to fill-
opacity or stroke-opacity; by default, colors are fully opaque.

Although Example 4-1 works as intended in every web
browser tested, it fails in Apache Batik, which is more
strict on syntax. To make it work, the <stop> elements
also require an offset attribute, which we’ll discuss in
Chapter 6 of SVG Colors, Patterns, and Gradients.

Because the colors are defined in a single location, they can be
changed easily and consistently, or animated uniformly. Because
stop-color is a presentation attribute, you don’t even need to edit
the XML to change the color; you can override it with CSS rules.

66 | Chapter 4: Serving Paint

As a result, you can use conditional CSS rules to change the color. A
stylesheet with media queries can be used to assign print colors for
high-quality printers, or for grayscale printing. Because the color is
used by reference in the rest of the graphic, the stylesheet does not
need to identify all the elements that use each color, nor does it need
to distinguish between fill and stroke values.

Although stop-color is a presentation attribute, it is
not inherited by default. It must be explicitly set on the
<stop> element, either directly or by using the inherit
keyword.

Example 4-2 gives a sample set of print styles. For color printing, it
redefines the colors using HSL notation, which can then be mapped
to the full color gamut used on the print device. For monochrome
printing, it assigns each color to a shade of gray that will create
stronger contrast than if the colors were converted to gray automati‐
cally. The grayscale version is shown in Figure 4-3.

Figure 4-3. ACME Logo using named colors, converted to mono‐
chrome

The Solid Gradient | 67

Example 4-2. Redefining named colors for print graphics

@media print AND (color) {
 #AcmeRed stop { stop-color: hsl(10, 100%, 60%); }
 #AcmeMaroon stop { stop-color: hsl(0, 65%, 30%); }
 #AcmeGold stop { stop-color: hsl(60, 100%, 60%); }
 #AcmeWhiteGold stop { stop-color: hsl(55, 100%, 90%); }
}
@media print AND (monochrome) {
 #AcmeRed stop { stop-color: #555; }
 #AcmeMaroon stop { stop-color: #222; }
 #AcmeGold stop { stop-color: #DDD; }
 #AcmeWhiteGold stop { stop-color: #FFF; }
}

Although most browsers correctly apply CSS print
styles when printing a web page, they do not always
apply monochrome styles when the user chooses to
print in black and white on a color printer.

Using paint servers to name nonstandard colors in this way has the
additional advantage that it makes your code easier for others to
read. By using meaningful id values, the color and purpose of each
element becomes apparent to any programmer who has to adapt
your work in the future.

68 | Chapter 4: Serving Paint

Future Focus
The <solidcolor> Paint Server

Named color paint servers have many benefits. However, using a single-color
gradient to create a named color is a bit of a hack; it certainly was not the orig-
inal purpose of these elements.

SVG 2 therefore uses the <solidcolor> element to create a single-color paint
server with no hackery. It uses the solid-color and solid-opacity presen-
tation attributes to set the color value.

Using <solidcolor> elements, the four brand colors from Example 4-1 could
be defined as follows:

<solidcolor id="AcmeRed" solid-color="#FF4022" />
<solidcolor id="AcmeMaroon" solid-color="#80201C" />
<solidcolor id="AcmeGold" solid-color="#FFFC32" />
<solidcolor id="AcmeWhiteGold" solid-color="#FFFCE0" />

This not only reduces the amount of markup, it also makes the purpose of your
code more readily apparent.

The <solidColor> element (note the capital C!) was included in the SVG Tiny
1.2 specification, so it is supported in some graphics programs; you would
need to explicitly set the version="1.2" attribute on the root <svg> element.
(In contrast, web browsers ignore version and use the latest spec for all SVG
content.) The latest draft SVG 2 specification changes the capitalization to
make the element more HTML-friendly, which unfortunately breaks compati-
bility in case-sensitive XML viewers.

At the time of writing, neither <solidColor> nor <solidcolor> are sup-
ported in the stable version of any major web browser. However, an imple-
mentation is under development in Firefox.

The Solid Gradient | 69

About the Authors
Amelia Bellamy-Royds is a freelance writer specializing in scientific
and technical communication. She helps promote web standards
and design through participation in online communities such as
Web Platform Docs, Stack Exchange and Codepen. Her interest in
SVG stems from work in data visualization, and builds upon the
programming fundamentals she learned while earning a B.Sc. in
bioinformatics. A policy research job for the Canadian Library of
Parliament convinced her that she was more interested in discussing
the big-picture applications of scientific research than doing the lab‐
oratory work herself, leading to graduate studies in journalism. She
currently lives in Edmonton, Alberta. If she isn’t at a computer, she’s
probably digging in her vegetable garden or out enjoying live music.

Kurt Cagle worked as a member of the SVG Working Group, and
wrote one of the first SVG books on the market in 2004. After con‐
sulting to a number of Fortune 500 media, transportation and pub‐
lishing companies as well as having worked as an architect with the
US National Archives and the Affordable Care Act, Kurt founded
Semantical, LLC in 2015 to develop applications for data visualiza‐
tion, virtualization and enrichment.

	Cover
	Web Platform
	Copyright
	Table of Contents
	Modern SVG
	Chapter 1. Using SVG in Web Pages
	SVG as an Image
	Including SVG in an Element
	Including SVG in CSS

	SVG as an Application
	SVG Markup in a Mixed Document
	Foreign Objects in SVG
	Inline SVG in XHTML or HTML5

	Chapter 2. Tools of the Trade
	Software and Sources to Make SVG Easier
	Ready-to-Use SVG
	Click, Drag, Draw
	SVG Snapshots
	Bringing SVG Alive
	Markup Management
	Ready-to-Use Code
	Processing and Packaging
	Summary: Software and Sources to Make SVG Easier

	Chapter 3. Beyond Straight Lines
	Creating Curved Text
	Positioning on a Path
	Integrating Other Text Effects

	Chapter 4. Serving Paint
	Paint and Wallpaper
	Identifying Your Assets
	The Solid Gradient

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

