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for web operations, whether you’re involved in systems administra‐
tion, configuration management, systems monitoring, performance
optimization, or consider yourself equal parts “Dev” and “Ops.”

The O’Reilly Web Operations Library provides experienced Ops
professionals with the knowledge and guidance you need to build
your skillset and stay current with the latest trends.

This free ebook gets you started. With a collection of chapters from
the library’s published and forthcoming books, you’ll learn about
the scope and challenges that await you in the world of web opera‐
tions, as well as the methods and mindset you need to adopt.
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Available in Early Release, Chapter 1. Challenges and Principles

Building Microservices
Available now, Chapter 6. Deployment

Monitoring with Graphite
Available in Early Release, Chapter 2. Monitoring Conventions

Lean Enterprise
Available now, Chapter 6. Deploy Continuous Improvement

v

http://shop.oreilly.com/product/0636920039297.do
http://shop.oreilly.com/product/0636920033158.do
http://shop.oreilly.com/product/0636920035794.do
http://shop.oreilly.com/product/0636920030355.do


Designing Delivery
Available in Early Release, Chapter 3. IT as Conversational
Medium
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Challenges and Principles

The following content is excerpted from Infrastructure as Code, by
Kief Morris. Available now in Early Release.

Virtualization, cloud infrastructure, and configuration automation
tools have swept into mainstream IT over the past decade. The
promise of these tools is that they will automatically do the routine
work of running an infrastructure, without involving the humans on
the infrastructure team. Systems will all be up to date and consistent
by default. Team members can spend their time and attention on
high level work that makes significant improvements to the services
they support. They can quickly, easily, and confidently adapt their
infrastructure to meet the changing needs of their organization.

However, most IT infrastructure teams don’t manage to get to this
state, no matter which tools they adopt. They may be able to easily
add servers and resources to their infrastructure, but still spend
their time and attention on routine tasks like setting up and updat‐
ing servers. They struggle to keep all of their servers consistently
configured and up to date with system patches. They don’t have
enough time to spend on the more important projects and initiatives
that they know will really make a difference to their organization.

What Is Infrastructure as Code?
Infrastructure as code is an approach to using newer technologies to
build and manage dynamic infrastructure. It treats the infrastruc‐
ture, and the tools and services that manage the infrastructure itself,

1
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1 Some further reading on dynamic infrastructures include: Web Operations, by Allspaw,
Robbins, et. al.; and The Practice of Cloud System Administration, by Limoncelli,
Chalup, and Hogan.

as a software system, adapting software engineering practices to
manage changes to the system in a structured, safe way. This results
in infrastructure with well tested functionality to manage routine
operational tasks, and a team that has clear, reliable processes for
making changes to the system.

Dynamic Infrastructure

The components of a dynamic infrastructure1 change
continuously and automatically. Servers may appear or
disappear so that capacity is matched with load, to
recover from failures, or to enable services. These
changes could be triggered by humans, for example a
tester needing an environment to test a new software
build. Or the system itself may apply changes in
response to events such as a hardware failure. But the
process of creating, configuring, and destroying the
infrastructure elements happens automatically.

The foundation of infrastructure as code is the ability to treat infra‐
structure elements as if they were data. Virtualization and cloud
hosting platforms decouple infrastructure from its underlying hard‐
ware, providing a programmatic interface for managing servers,
storage, and network devices. LOM (Lights Out Management) and
other tooling also make it possible to manage operating systems
installed directly on hardware in a similar way, which makes it pos‐
sible to use infrastructure as code in non-virtualized environments
as well. Automated infrastructure management platforms are dis‐
cussed in more detail in Chapter 2.

Automated configuration management tools like Ansible, Cfengine,
Chef, Puppet, and Salt (among others) allow infrastructure elements
themselves to be configured using specialized programming lan‐
guages. IT operations teams can manage configuration definitions
using using tools and practices which have been proven effective for
software development, including Version Control Systems (VCS),
Continuous Integration (CI), Test Driven Development (TDD), and
Continuous Delivery (CD). Configuration management tools are
discussed in Chapter 3, and software engineering practices are cov‐
ered throughout this book.
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So an automated infrastructure management platform and server
configuration tools are a starting point, but they aren’t enough. The
practices and approaches of the Iron Age of Infrastructure - the days
when infrastructure was bound to the hardware it ran on - don’t
cope well with dynamic infrastructure, as we’ll see in the next sec‐
tion. Infrastructure as code is a new way of approaching dynamic
infrastructure management.

Values
These are some of the values that lead to infrastructure as code:

• IT infrastructure should support and enable change, not be an
obstacle or a constraint.

• IT staff should spend their time on valuable things which
engage their abilities, not on routine, repetitive tasks.

• Users should be able to provision and manage the resources
they need, without needing IT staff to do it for them.

• Teams should know how to recover quickly from failure, rather
than depending on avoiding failure.

• Changes to the system should be routine, without drama or
stress for users or IT staff.

• Improvements should be made continuously, rather than done
through expensive and risky “big bang” projects.

• Solutions to problems should be proven through implementing,
testing, and measuring them, rather than by discussing them in
meetings and documents.

Challenges with Dynamic Infrastructure
In this section, we’ll look at some of the problems teams often see
when they adopt dynamic infrastructure and automated configura‐
tion tools. These are the problems that infrastructure as code
addresses, so understanding them lays the groundwork for the prin‐
ciples and concepts that follow.
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Server Sprawl
As I mentioned in the preface, when my team first adopted virtuali‐
zation our infrastructure exploded from around twenty servers to
well over one hundred in under a year, leading to a “Sorcerer’s
Apprentice” situation where we couldn’t keep them all well man‐
aged.

The ability to create new servers with the snap of a finger is satisfy‐
ing – responding quickly to the needs of users can only be a good
thing. The trap is that the number of servers can grow out of con‐
trol. The more servers you create, the harder it is to keep them
updated, optimized, and running smoothly. Server sprawl leads to
configuration drift.

Configuration Drift
Servers may be consistent when they’re created, but over time differ‐
ences creep in.

Someone makes a fix to one of the Oracle servers to fix a specific
user’s problem, and now it’s different from the other Oracle servers.
A new version of Jira needs a newer version of Java, and now the Jira
server is different from other servers that have Java installed. Three
different people install IIS on three different web servers over a few
months, and each person configures it differently. One JBoss server
gets more traffic than the others and starts struggling, so someone
tunes it, and now it’s configuration is different from the other JBoss
servers.

Being different isn’t bad. The heavily loaded JBoss server probably
should be tuned differently from the ones with low traffic. But varia‐
tions should be captured and managed in a way that makes it easy to
reproduce and to rebuild servers and services.

Unmanaged variation between servers leads to snowflake servers
and automation fear.

Snowflake Servers
Years ago the company I was with built web applications for clients,
most of which were monstrous collections of Perl CGI. (Don’t judge
us, this was the dot-com days, everyone was doing it). We started
out using Perl 5.6, but at some point the best libraries moved to Perl
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2 Sadly, the infrastructures.org site hadn’t been updated since 2007 when I last looked at
it.

5.8, and couldn’t be used on 5.6. Eventually almost all of our newer
applications were built with 5.8 as well, but there was one, particu‐
larly important client application, which simply wouldn’t run on 5.8.

It was actually worse than this. The application worked fine when
we upgraded our shared staging server to 5.8, but not on our staging
environment. Don’t ask why we upgraded production to 5.8 without
discovering the problem with our test environment, but that’s how
we ended up. We had a special server that could run the application
with Perl 5.8, but no other server would.

We ran this way for a shamefully long time, keeping Perl 5.6 on the
staging server and crossing our fingers whenever we deployed to
production. We were terrified to touch anything on the production
server; afraid to disturb whatever magic made it the only server that
could run the client’s application.

This situation led us to discover infrastructures.org2, a site that
introduced me to ideas that were a precursor to infrastructure as
code. We made sure that all of our servers were built in a repeatable
way, using FAI for PXE Boot installations, Cfengine to configure
servers, and everything checked into CVS.

As embarrassing as this story is, most IT Ops teams have similar
stories of special stories that can’t be touched, much less reproduced.
It’s not always a mysterious fragility; sometimes there is an impor‐
tant software package that runs on an entirely different OS than
everything else in the infrastructure. I recall an accounting package
that needed to run on AIX, and a PBX system running on a Win‐
dows NT 3.51 server specially installed by a long forgotten contrac‐
tor.

Once again, being different isn’t bad. The problem is when the team
that owns the server doesn’t understand how and why it’s different,
and wouldn’t be able to rebuild it. An IT Ops team should be able to
confidently and quickly rebuild any server in their infrastructure. If
any server doesn’t meet this requirement, constructing a new, repro‐
ducible process that can build a server to take its place should be a
leading priority for the team.
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3 The Visible Ops Handbook by Gene Kim, George Spafford, and Kevin Behr. The book
was originally written before DevOps, virtualization, and automated configuration
became mainstream, but it’s easy to see how infrastructure as code can be used within
the framework described by the authors.

Jenga Infrastructure
A Jenga infrastructure is easily disrupted and not easily fixed. This is
the snowflake server, scaled up.

The solution is to migrate everything in the infrastructure to a relia‐
ble, reproducible infrastructure, one step at a time. The Visible Ops
Handbook3 outlines an approach for bringing stability and predicta‐
bility to a difficult infrastructure.

There is the possibly apocryphal story of the data center with a
server that nobody had the login details for, and nobody was cer‐
tain what the server did. Someone took the bull by the horns and
unplugged the server from the network. The network failed com‐
pletely, the cable was re-plugged, and nobody touched the server
again.

Automation Fear
At an open spaces session on configuration automation at a
DevOpsDays conference, I asked the group how many of them were
using an automation tools like Puppet or Chef. The majority of
hands went up. I asked how many were running these tools unatten‐
ded, on an automatic schedule. Most of the hands went down.

Many people have the same problem I had in my early days of using
automation tools. I used automation selectively, for example to help
build new servers, or to make a specific configuration change. I
tweaked the configuration each time I ran it, to suit the particular
task I was doing.

I was afraid to turn my back on my automation tools, because I
lacked confidence in what they would do.

I lacked confidence in my automation because my servers were not
consistent.

My servers were not consistent because I wasn’t running automation
frequently and consistently.
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Figure 1-1. The automation fear spiral

This is the automation fear spiral, and infrastructure teams need to
break this spiral to use automation successfully. The most effective
way to break the spiral is to face your fears. Pick a set of servers,
tweak the configuration definitions so that you know they work, and
schedule them to run unattended, at least once an hour. Then pick
another set of servers and repeat the process, and so on until all of
your servers are continuously updated.

Good monitoring, and effective automated testing regimes as
described in Part III of this book will help build confidence that
configuration can be reliably applied and problems caught quickly.

Erosion
In an ideal world we would never need to touch an automated infra‐
structure once we’ve built it, other than to support something new
or fix things that break. Sadly, the forces of entropy mean that even
without a new requirement, our infrastructure will decay over time.
The folks at Heroku call this erosion. Erosion is the idea that prob‐
lems will creep into a running system over time.

The Heroku folks give these examples of forces that can erode a sys‐
tem over time:
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• Operating system upgrades, kernel patches, and infrastructure
software (e.g. Apache, MySQL, ssh, OpenSSL) updates to fix
security vulnerabilities.

• The server’s disk filling up with logfiles.
• One or more of the application’s processes crashing or getting

stuck, requiring someone to log in and restart them.
• Failure of the underlying hardware causing one or more entire

servers to go down, taking the application with it.

Habits that Lead to These Problems
In this section, we’ll look at some of the habits that teams fall into
that can lead to problems like snowflake servers and configuration
drift. These habits tend to reinforce each other, each habit creating
conditions which encourage the others.

Doing Routine Tasks Manually
When people have to spend their time doing routine things like set‐
ting up servers, applying updates, and making configuration
changes across a group of servers, not only does it take their time
and attention away from more important work, it also leads to
things being done inconsistently. This in turn leads to configuration
drift, snowflakes, and the various other evils we’ve discussed.

Running Scripts Manually
Most infrastructure teams write scripts for at least some of their rou‐
tine work, and quite a few have adopted automated configuration
tools to help with this. But many teams run their scripts by hand,
rather than having them run unattended on a schedule, or automati‐
cally triggered by events. A human may need to pass parameters to
the script, or just keep a close eye on it and check things afterwards
to make sure everything has worked correctly. Using a script may
help keep things consistent, but still takes time and attention away
from more useful work.

Needing humans to babysit scripts suggests that there are not
enough controls - tests and monitoring - to make the script properly
safe to run. This topic is touched on throughout this book, but espe‐
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cially in Part III. Team members also need to learn habits for writing
code that is safe to run unattended, such as error detection and han‐
dling.

Applying Changes Directly to Important Systems
Most mature IT organizations would never allow software develop‐
ers to make code changes directly to production systems, without
testing the changes in a development environment first. But this
standard doesn’t always apply to infrastructure. I’ve been to organi‐
zations which put their software releases through half a dozen stages
of testing and staging, and seen IT operations staff routinely make
changes to server configurations directly on production systems.

I’ve even seen teams do this with configuration management tools.
They make changes to Puppet manifests and apply them to business
critical systems without any testing at all. Editing production server
configuration by hand is like playing Russian Roulette with your
business. Running untested configuration scripts against a groups of
servers is like playing Russian Roulette with a machine gun.

Running Automation Infrequently
Many teams who start using an automated configuration tool only
run it when they need to make a specific change. Sometimes they
only run the tool against the specific servers they want to make the
change on.

The problem with this is that the longer you wait to run the configu‐
ration tool, the more difficult and risky it is to run the tool. Some‐
one may have made a change to the server - or some of the servers -
since the last time it was run, and that change may be incompatible
with the definitions you are applying now. Or someone else may
have changed the configuration definitions, but not applied them to
the server you’re changing now, which again means more things that
can go wrong. If your team is in the habit of making changes to
scripts for use with specific servers, there’s an even greater chance of
incompatibilities.

This of course leads to automation fear, configuration drift, and
snowflakes.
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Bypassing Automation
When scripts and configuration tools are run infrequently and
inconsistently, and there is little confidence in the automation tools,
then it’s common to make changes outside of the tools. These are
done as a supposed one-off to deal with an urgent need, with the
hope that you’ll go back and update the automation scripts later on.

Of course, these out-of-band changes will cause later automation
runs to fail, or to revert important fixes. The more this happens, the
more unreliable and unusable our configuration scripts become.

Principles of Infrastructure as Code
This section describes principles that can help teams overcome the
challenges described earlier in this chapter.

Principle: Reproducibility
It should be possible to rebuild any element of an infrastructure
quickly, easily, and effortlessly. Effortlessly means that there is no
need to make any significant decisions about how to rebuild the
thing. Decisions about which software and versions to install on a
server, how to choose a hostname, and so on should be captured in
the scripts and tooling that provision it.

The ability to effortlessly build and rebuild any part of the infra‐
structure enables many powerful capabilities of infrastructure as
code. It cuts down on much of the fear and risk of infrastructure
operations. Servers are trivial to replace, so they can be treated as
disposable. Reproducibility supports continuous operations (as dis‐
cussed in Chapter 14), automated scaling, and creating new environ‐
ments and services on demand.

Approaches for reproducibly provisioning servers and other infra‐
structure elements are discussed in Part II of this book.

Principle: Consistency
Given two infrastructure elements providing a similar service - for
example two application servers in a cluster - the servers should be
nearly identical. Their system software and configuration should be
exactly the same, except for those bits of configuration that differen‐
tiate them from one another, like their IP addresses.
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Letting inconsistencies slip into an infrastructure keeps you from
being able to trust your automation. If one file server has an 80 GB
partition, while another’s 100 GB, and a third has 200 GB, then you
can’t rely on an action to work the same on all of them. This encour‐
ages doing special things for servers that don’t quite match, which
leads to unreliable automation.

Teams that implement the reproducibility principle can easily build
multiple identical infrastructure elements. If one of these elements
needs to be changed, such as finding that one of the file servers
needs a larger disk partition, there are two ways that keep consis‐
tency. One is to change the definition, so that all file servers are built
with a large enough partition to meet the need. The other is to add a
new class, or role, so that there is now an “xl-file-server” with a
larger disk than the standard file server. Either type of server can be
built repeatably and consistently.

Being able to build and rebuild consistent infrastructure helps with
configuration drift. But clearly, changes that happen after servers are
created need to be dealt with. Ensuring consistency for existing
infrastructure is the topic of Chapter 8.

Principle: Repeatability
Building on the reproducibility principle, any action you carry out
on your infrastructure should be repeatable. This is an obvious ben‐
efit of using scripts and configuration management tools rather than
making changes manually, but it can be hard to stick to doing things
this way, especially for experienced system administrators.

For example, if I’m faced with what seems like a one-off task like
partitioning a hard drive, I find it easier to just log in and do it,
rather than to than write and test a script. I can look at the system
disk, consider what the server I’m working on needs, and use my
experience and knowledge to decide how big to make each partition,
what file system to use, and so on.

The problem is that later on, someone else on my team might parti‐
tion a disk on another machine, and make slightly different deci‐
sions. Maybe I made an 80 GB /var partition using ext3 on one file
server, but Priya made /var 100 GB on another file server in the
cluster, and used xfs. We’re failing the consistency principle, which
will eventually undermine our ability to automate things.
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4 The cattle/pets analogy was been attributed to former Microsoft employee Bill Baker,
according to CloudConnect CTO Randy Bias in his presentation Architectures for
open and scalable clouds. I first heard the analogy in Gavin McCance’s presentation
CERN Data Centre Evolution. Both of these presentations are excellent.

Effective infrastructure teams have a strong scripting culture. If a
task can be scripted, script it. If as task is hard to script, drill down
and see if there’s a technique or tool that can help, or whether the
problem the task is addressing can be handled in a different way.

Principle: Disposability
“Treat your servers like cattle, not pets.”4

—Bill Baker

We should assume that any infrastructure element can and will be
destroyed at any time, without notice. It could be destroyed unex‐
pectedly, when hardware fails, or it could be deliberately destroyed
in order to reduce capacity or to replace it. If we design our services
so that infrastructure can disappear without drama, then we can
freely destroy and replace elements whenever we need, to upgrade,
to reconfigure resources, to reduce capacity when demand is low, or
for any other reason.

This idea that we can’t expect a particular server to be around
tomorrow, or even in a few minutes time, is a fundamental shift.
Logging into a server and making changes manually is pointless
except for debugging or testing potential changes. This requires that
any change that matters be made through the automated systems
that create and configure servers.

The Case of the Disappearing File Server
The idea that servers aren’t permanent things can take time to sink
in. On one team, we set up an automated infrastructure using
VMWare and Chef, and got into the habit of casually deleting and
replacing VMs. A developer, needing a web server to host files for
teammates to download, installed a web server onto a server in the
development environment and put the files there. He was surprised
when his web server and its files disappeared a few days later.

After a bit of confusion, the developer added the configuration for
his file repository to the chef configuration, taking advantage of
tooling we had to persist data to a SAN. The team ended up with a
highly-reliable, automatically configured file sharing service.
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To borrow a cliche, the disappearing server is a feature, not a bug.
The old world where people installed ad-hoc tools and tweaks in
random places leads straight to the old world of snowflakes and
untouchable jenga infrastructure. Although it was uncomfortable at
first, the developer learned how to use infrastructure as code to
build services - a file repository in this case - that are reproducible
and reliable.

Principle: Service Continuity
Given a service hosted on our infrastructure, that service must be
continuously available to its users even when individual infrastruc‐
ture elements disappear.

To run a continuously available service on top of disposable infra‐
structure components, we need to identify which things are abso‐
lutely required for the service, and make sure they are decoupled
from the infrastructure. This tends to come down to request han‐
dling and data management.

We need to make sure our service is always able to handle requests,
in spite of what might be happening to the infrastructure. If a server
disappears, we need to have other servers already running, and be
able to quickly start up new ones, so that service is not interrupted.
This is nothing new in IT, although virtualization and automation
can make it easier.

Data management, broadly defined, can be trickier. Service data can
be kept intact in spite of what happens to the servers hosting it
through replication and other approaches that have been around for
decades. When designing a cloud-based system, it’s important to
widen the definition of data that needs to be persisted, usually
including things like application configuration, logfiles, and more.
The data management chapter (Chapter 13) has ideas for this.

State and transactions are an especially tricky consideration.
Although there are technologies and tools to manage distributed
state and transactions, in practice the most reliable approach is to
design software not to depend on this. The twelve-factor application
methodology is a helpful approach. For larger, enterprise-scale sys‐
tems, microservice architecture has proven effective for many
organizations.
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The chapter on continuity (Chapter 14) goes into techniques for
continuous service and disaster recovery.

Principle: Self-Testing Systems
Effective automated testing is one of the most important practices
infrastructure operations teams can adopt from software develop‐
ment. The highest performing software development teams I’ve
worked with make automated testing a core part of their develop‐
ment process. They implement tests along with their code, and run
them continuously, typically dozens of times a day as they make
incremental changes to their codebase.

The main benefit they see from this is fast feedback as to whether
the changes they’re making work correctly and without breaking
other parts of the system. This immediate feedback gives the team
confidence that errors will usually be caught quickly, which then
gives them the confidence to make changes quickly and more often.
This is especially powerful with automated infrastructure, because a
small change can do a lot of damage very quickly (aka DevOops, as
described in “DevOps”). Good testing practices are the key to elimi‐
nating automation fear.

However while most software development teams aspire to use
automated testing, in my experience the majority struggle to do it
rigorously. There are two factors that make it difficult. The first is
that it takes time to build up the skills, habits, and discipline that
make test writing a routine, easy thing to do. Until these are built up,
writing tests tends to make things feel slow, which discourages
teams and drives them to drop test writing in order to get things
done.

The second factor that makes effective automated testing difficult is
that many teams don’t integrate test writing into their daily working
process, but instead write them after much of their code is already
implemented. In fact, tests are often written by a separate QA team
rather than by the developers themselves, which means the testing is
not integrated with the development process, and not integrated
with the software.

Writing tests separately from the code means the development team
doesn’t get that core benefit of testing - they don’t get immediate
feedback when they make a change that breaks something, and so
they don’t get the confidence to code and deliver quickly.

14 | Challenges and Principles

DRAFT VERSION - UNCORRECTED PROOF



Chapter 10 explores practices and techniques for implementing test‐
ing as part of the system, and particularly how this can be done
effectively for infrastructure.

Principle: Self-Documenting Systems
A common pattern with IT teams is the struggle to keep documen‐
tation relevant, useful, and accurate. When a new tool or system is
implemented someone typically takes the time to create a beautiful,
comprehensive document, with color glossy screenshots with circles
and arrows and a paragraph for each step. But it’s difficult to take
the time to update documentation every time a script or tool is
tweaked, or when a better way is discovered to carry out a task. Over
time, the documentation becomes less accurate. It doesn’t seem to
matter what tool or system is used to manage the documentation -
the pattern repeats itself with expensive document management sys‐
tems, sophisticated collaboration tools, and simple, quick to edit
wikis.

And of course, not everyone on the team follows the documented
process the same way. People tend to find their own shortcuts and
improvements, or write their own little scripts to make parts of the
process easier. So although documenting a process is often seen as a
way to enforce consistency, standards and even legal compliance, it’s
generally a fictionalized version of reality.

A great benefit of the infrastructure as code approach is that the
steps to carry out a process are captured in the scripts and tooling
that actually carry out that process. Documentation outside the
scripts can be minimal, indicating the entry points to the tools, how
to set them up (although this should ideally be a scripted process
itself), and where to find the source code to learn how it works in
detail.

Some people in an organization, especially those who aren’t directly
involved with the automation systems, may feel more comfortable
having extensive documentation outside the tools themselves. A
useful exercise is to consider the use cases for documentation, and
then agree on how each use case will be addressed. For example, a
common use case is a new technical team member joins and needs
to learn the system. This can be addressed by fairly lightweight doc‐
umentation and whiteboarding sessions to give an overview, and
learning by reading and working with the automated scripts.
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One use case that tends to need a bit more documentation is non-
technical end users of a system, who won’t read configuration scripts
to learn how to use it. Ideally, the tooling for these users should have
a clear, straightforward user experience, with the information
needed to make decisions included in the interface. A rule of thumb
for any documentation should be, if it becomes out of date, and
work goes on without anyone noticing, then that document is prob‐
ably unnecessary.

Principle: Small Changes
When I first got involved in developing IT systems, my instinct was
to complete the whole chunk of work I was doing before putting it
live. It made sense to wait until it was “done” before spending the
time and effort on testing it, cleaning it up, and generally making it
“production ready”. The work involved in finishing it up tended to
take a lot of time and effort, so why do the work before it’s really
needed?

However, over time I’ve learned to the value of small changes. Even
for a big piece of work, it’s useful to find incremental changes that
can be made, tested, and pushed into use, one by one. There are a lot
of good reasons to prefer small, incremental changes over big
batches:

• It’s easier, and less work, to test a small change and make sure
it’s solid

• If something goes wrong with a small change, it’s easier to find
the cause than if something goes wrong with a big batch of
changes

• It’s faster to fix or reverse a small change
• When something goes wrong with a big batch of changes, you

often need to delay everything, including useful changes, while
you fix the small broken thing

• Getting fixes and improvements out the door is motivating.
Having large batches of unfinished work piling up, going stale,
is demotivating.

As with many good working practices, once you get the habit it’s
hard to not do the right thing. You get much better at releasing
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changes. These days, I get uncomfortable if I’ve spent more than an
hour working on something without pushing it out.

Principle: Version All the Things
Versioning of infrastructure configuration is the cornerstone of
infrastructure of code. It makes it possible to automate processes
around making changes, including tests and auditing. It makes
changes traceable, reproducible, and reversible.

Approaches to using source control are discussed in the chapter on
software practices, and are referred to with many, if not most, of the
topics in this book.

Selecting Tools
Too many organizations start with tools. It’s appealing for managers
to select a vendor that promises to make everything work well, and
it’s appealing to technical folks to find a shiny new tool to learn. But
this leads to failed projects, often expensive ones.

I recommend going through this book and other resources, and
deciding what infrastructure management strategy makes sense for
you. Then choose the simplest, least expensive tools you can use to
explore how to implement the strategy. As things progress and your
team learns more, they will inevitably find that many of the tools
they’ve chosen aren’t the right fit, and new tools will emerge that
may be better.

The best decision you can make on tools is for everyone to agree
that tools will change over time.

This suggests that paying a large fee for an expensive tool, or set of
tools, is unwise unless you’ve been using it successfully for a while.
I’ve seen organizations which are struggling to keep up with
technically-savvy competition sign ten-year, seven-figure licensing
agreements with vendors. This makes as much sense as pouring
concrete over your Formula One car at the start of a race.

Select each tool with the assumption that you will need to throw it
out within a year. Hopefully this won’t be true of every tool in your
stack, but avoid having certain tools which are locked in, because
you can guarantee those will be the tools that hold you back.
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When the Infrastructure Is Finished
Reading through the principles outlined above may give the impres‐
sion that automation should (and can) be used to create a perfect,
factory-like machine. You’ll build it, and then sit back, occasionally
intervening to oil the gears and replace parts that break. Manage‐
ment can probably cut staffing down to a minimal number of peo‐
ple, maybe less technically skilled ones since all they need to do is
watch some gauges and follow a checklist to fix routine problems.

Sadly, this is a fantasy. IT infrastructure automation isn’t a standar‐
dized commodity yet, but is still at the stage of hand-crafting sys‐
tems customized for each organization. Once in operation, the
infrastructure will need to be continuously improved and adapted.
Most organizations will find an ongoing need to support new serv‐
ices and change existing ones, which will need changes to the infra‐
structure underlying them. Even without changing service require‐
ments, erosion (as described above in “Erosion” on page 7) creates a
continuous stream of maintenance work.

When planning to build of an automated infrastructure, make sure
the people who will run and maintain it are involved in its design
and implementation. Running the infrastructure is really just a con‐
tinuation of building it, so the team needs to know how it was built,
and really needs to have made the decisions about how to build it, so
they will be in the best position for continued ownership.

Please don’t buy into the idea that an off the shelf,
expensive product from even the most reputable ven‐
dor will get you around this. Any automation tool
requires extensive knowledge to implement, and oper‐
ating it requires intimate knowledge of its implementa‐
tion.

Antifragility—Beyond “Robust”
We typically aim to build robust infrastructure, meaning systems
will hold up well to shocks - failures, load spikes, attacks, etc. How‐
ever, Infrastructure as Code lends itself to taking infrastructure
beyond robust, becoming antifragile.

Nicholas Taleb coined the term “antifragile” with his book of the
same title, to describe systems that actually grow stronger when
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stressed. Taleb’s book is not IT-specific - his main focus is on finan‐
cial systems - but his ideas apply to IT architecture.

The key to an antifragile infrastructure is making sure that the
default response to incidents is improvement. When something
goes wrong, the priority is not simply to fix it, but to prevent it
from happening again.

A team typically handles an incident by first making a quick fix, so
service can resume, then working out the changes needed to fix the
underlying cause, to prevent the issue from happening again.
Tweaking monitoring to alert when the issue happens again is often
an afterthought, something nice to have but easily neglected.

A team striving for antifragility will make monitoring, and even
automated testing, the second step, after the quick fix and before
implementing the long term fix.

This may be counter-intuitive. Some systems administrators have
told me it’s a waste of time to implement automated checks for an
issue that has already been fixed, since by definition it won’t happen
again. But in reality, fixes don’t always work, may not resolve related
issues, and can even be reversed by well-meaning team members
who weren’t involved in the previous incident.

Add a monitoring check to alert the team if the issue happens
again. Implement automated tests that run when someone changes
configuration related to the parts of the system that broke.

Implement these checks and tests before you implement the fix to
the underlying problem, then reproduce the problem and prove
that your checks really do catch it. Then implement the fix, re-run
the tests and checks, and you will prove that your fix works. This is
Test Driven Development (TDD) for infrastructure!

The Software Practices chapter and the Pipeline chapter go into
more details on how to do this sort of thing routinely.

The secret ingredient of anti-fragile IT systems

It’s people! People are the element that can cope with unexpected
situations and adapt the other elements of the system to handle
similar situations better the next time around. This means the peo‐
ple running the system need to understand it quite well, and be able
to continuously modify it.

This doesn’t fit the idea of automation as a way to run things
without humans. Someday we might be able to buy a standard cor‐
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porate IT infrastructure off the shelf and run it as a black box,
without needing to look inside, but this isn’t possible today. IT tech‐
nology and approaches are constantly evolving, and even in non-
technology businesses, the most successful companies are the ones
continuously changing and improving their IT.

The key to continuously improving an IT system is the people who
build and run it. So the secret to designing a system that can adapt
as needs change is to design it around the people.

Brian L. Troutwin gave a talk at DevOpsDays Ghent in 2014 on
Automation with humans in mind. He gave an example from
NASA of how humans were able to modify the systems on the
Apollo 13 spaceflight to cope with disaster. He also gave many
details of how the humans at the Chernobyl nuclear power plant
were prevented from interfering with the automated systems there,
which kept them from taking steps to stop or contain disaster.

What Good Looks Like
The hallmark of an infrastructure team’s effectiveness is how well it
handles changing requirements. Highly effective teams can handle
changes and new requirements easily, breaking down requirements
into small pieces and piping them through in a rapid stream of low-
risk, low-impact changes.

Some signals that a team is doing well:

• Every element of the infrastructure can be rebuilt quickly, with
little effort.

• All systems are kept patched, consistent, and up to date.
• Standard service requests, including provisioning standard

servers and environments, can be fulfilled within minutes, with
no involvement from infrastructure team members. SLAs are
unnecessary.

• Maintenance windows are rarely, if ever, needed. Changes take
place during working hours, including software deployments
and other high risk activities.

• The team tracks MTTR (Mean Time to Recover) and focuses on
ways to improve this. Although MTBF (Mean Time Between
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5 See John Allspaw’s seminal blog post, MTTR is more important than MTBF (for most
types of F).

Failure) may also be tracked, the team does not rely on avoiding
failures.5

• Team members feel their work is adding measurable value to
the organization.

The next two chapters discuss the core toolchains for building infra‐
structure as code; the infrastructure management platform, and
server configuration tools. Part II describes how to use these tools in
a way that follows infrastructure as code approaches.
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Deployment

The following content is excerpted from Building Microservices, by
Sam Newman. Available now.

Deploying a monolithic application is a fairly straightforward pro‐
cess. Microservices, with their interdependence, are a different kettle
of fish altogether. If you don’t approach deployment right, it’s one of
those areas where the complexity can make your life a misery. In
this chapter, we’re going to look at some techniques and technology
that can help us when deploying microservices into fine-grained
architectures.

We’re going to start off, though, by taking a look at continuous inte‐
gration and continuous delivery. These related but different con‐
cepts will help shape the other decisions we’ll make when thinking
about what to build, how to build it, and how to deploy it.

A Brief Introduction to Continuous Integration
Continuous integration (CI) has been around for a number of years
at this point. It’s worth spending a bit of time going over the basics,
however, as especially when we think about the mapping between
microservices, builds, and version control repositories, there are
some different options to consider.

With CI, the core goal is to keep everyone in sync with each other,
which we achieve by making sure that newly checked-in code prop‐
erly integrates with existing code. To do this, a CI server detects that
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the code has been committed, checks it out, and carries out some
verification like making sure the code compiles and that tests pass.

As part of this process, we often create artifact(s) that are used for
further validation, such as deploying a running service to run tests
against it. Ideally, we want to build these artifacts once and once
only, and use them for all deployments of that version of the code.
This is in order to avoid doing the same thing over and over again,
and so that we can confirm that the artifact we deployed is the one
we tested. To enable these artifacts to be reused, we place them in a
repository of some sort, either provided by the CI tool itself or on a
separate system.

We’ll be looking at what sorts of artifacts we can use for microservi‐
ces shortly, and we’ll look in depth at testing in Chapter 7.

CI has a number of benefits. We get some level of fast feedback as to
the quality of our code. It allows us to automate the creation of our
binary artifacts. All the code required to build the artifact is itself
version controlled, so we can re-create the artifact if needed. We also
get some level of traceability from a deployed artifact back to the
code, and depending on the capabilities of the CI tool itself, can see
what tests were run on the code and artifact too. It’s for these rea‐
sons that CI has been so successful.

Are You Really Doing It?
I suspect you are probably using continuous integration in your own
organization. If not, you should start. It is a key practice that allows
us to make changes quickly and easily, and without which the jour‐
ney into microservices will be painful. That said, I have worked with
many teams who, despite saying that they do CI, aren’t actually
doing it at all. They confuse the use of a CI tool with adopting the
practice of CI. The tool is just something that enables the approach.

I really like Jez Humble’s three questions he asks people to test if
they really understand what CI is about:

Do you check in to mainline once per day?
You need to make sure your code integrates. If you don’t check
your code together with everyone else’s changes frequently, you
end up making future integration harder. Even if you are using
short-lived branches to manage changes, integrate as frequently
as you can into a single mainline branch.
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Do you have a suite of tests to validate your changes?
Without tests, we just know that syntactically our integration
has worked, but we don’t know if we have broken the behavior
of the system. CI without some verification that our code
behaves as expected isn’t CI.

When the build is broken, is it the #1 priority of the team to fix it?
A passing green build means our changes have safely been inte‐
grated. A red build means the last change possibly did not inte‐
grate. You need to stop all further check-ins that aren’t involved
in fixing the builds to get it passing again. If you let more
changes pile up, the time it takes to fix the build will increase
drastically. I’ve worked with teams where the build has been
broken for days, resulting in substantial efforts to eventually get
a passing build.

Mapping Continuous Integration to
Microservices
When thinking about microservices and continuous integration, we
need to think about how our CI builds map to individual microser‐
vices. As I have said many times, we want to ensure that we can
make a change to a single service and deploy it independently of the
rest. With this in mind, how should we map individual microservi‐
ces to CI builds and source code?

If we start with the simplest option, we could lump everything in
together. We have a single, giant repository storing all our code, and
have one single build, as we see in Figure 2-1. Any check-in to this
source code repository will cause our build to trigger, where we will
run all the verification steps associated with all our microservices,
and produce multiple artifacts, all tied back to the same build.
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Figure 2-1. Using a single source code repository and CI build for all
microservices

This seems much simpler on the surface than other approaches:
fewer repositories to worry about, and a conceptually simpler build.
From a developer point of view, things are pretty straightforward
too. I just check code in. If I have to work on multiple services at
once, I just have to worry about one commit.

This model can work perfectly well if you buy into the idea of lock-
step releases, where you don’t mind deploying multiple services at
once. In general, this is absolutely a pattern to avoid, but very early
on in a project, especially if only one team is working on everything,
this might make sense for short periods of time.

However, there are some significant downsides. If I make a one-line
change to a single service—for example, changing the behavior in
the user service in Figure 2-1—all the other services get verified and
built. This could take more time than needed—I’m waiting for
things that probably don’t need to be tested. This impacts our cycle
time, the speed at which we can move a single change from develop‐
ment to live. More troubling, though, is knowing what artifacts
should or shouldn’t be deployed. Do I now need to deploy all the
build services to push my small change into production? It can be
hard to tell; trying to guess which services really changed just by
reading the commit messages is difficult. Organizations using this
approach often fall back to just deploying everything together,
which we really want to avoid.

Furthermore, if my one-line change to the user service breaks the
build, no other changes can be made to the other services until that
break is fixed. And think about a scenario where you have multiple
teams all sharing this giant build. Who is in charge?
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A variation of this approach is to have one single source tree with all
of the code in it, with multiple CI builds mapping to parts of this
source tree, as we see in Figure 2-2. With well-defined structure, you
can easily map the builds to certain parts of the source tree. In gen‐
eral, I am not a fan of this approach, as this model can be a mixed
blessing. On the one hand, my check-in/check-out process can be
simpler as I have only one repository to worry about. On the other
hand, it becomes very easy to get into the habit of checking in
source code for multiple services at once, which can make it equally
easy to slip into making changes that couple services together. I
would greatly prefer this approach, however, over having a single
build for multiple services.

Figure 2-2. A single source repo with subdirectories mapped to inde‐
pendent builds

So is there another alternative? The approach I prefer is to have a
single CI build per microservice, to allow us to quickly make and
validate a change prior to deployment into production, as shown in
Figure 2-3. Here each microservice has its own source code reposi‐
tory, mapped to its own CI build. When making a change, I run only
the build and tests I need to. I get a single artifact to deploy. Align‐
ment to team ownership is more clear too. If you own the service,
you own the repository and the build. Making changes across repo‐
sitories can be more difficult in this world, but I’d maintain this is
easier to resolve (e.g., by using command-line scripts) than the
downside of the monolithic source control and build process.

Mapping Continuous Integration to Microservices | 27

DRAFT VERSION - UNCORRECTED PROOF



Figure 2-3. Using one source code repository and CI build per micro‐
service

The tests for a given microservice should live in source control with
the microservice’s source code too, to ensure we always know what
tests should be run against a given service.

So, each microservice will live in its own source code repository, and
its own CI build process. We’ll use the CI build process to create our
deployable artifacts too in a fully automated fashion. Now lets look
beyond CI to see how continuous delivery fits in.

Build Pipelines and Continuous Delivery
Very early on in using continuous integration, we realized the value
in sometimes having multiple stages inside a build. Tests are a very
common case where this comes into play. I may have a lot of fast,
small-scoped tests, and a small number of large-scoped, slow tests. If
we run all the tests together, we may not be able to get fast feedback
when our fast tests fail if we’re waiting for our long-scoped slow tests
to finally finish. And if the fast tests fail, there probably isn’t much
sense in running the slower tests anyway! A solution to this problem
is to have different stages in our build, creating what is known as a
build pipeline. One stage for the faster tests, one for the slower tests.

This build pipeline concept gives us a nice way of tracking the pro‐
gress of our software as it clears each stage, helping give us insight
into the quality of our software. We build our artifact, and that arti‐
fact is used throughout the pipeline. As our artifact moves through
these stages, we feel more and more confident that the software will
work in production.
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Continuous delivery (CD) builds on this concept, and then some. As
outlined in Jez Humble and Dave Farley’s book of the same name,
continuous delivery is the approach whereby we get constant feed‐
back on the production readiness of each and every check-in, and
furthermore treat each and every check-in as a release candidate.

To fully embrace this concept, we need to model all the processes
involved in getting our software from check-in to production, and
know where any given version of the software is in terms of being
cleared for release. In CD, we do this by extending the idea of the
multistage build pipeline to model each and every stage our software
has to go through, both manual and automated. In Figure 2-4, we
see a sample pipeline that may be familiar.

Figure 2-4. A standard release process modeled as a build pipeline

Here we really want a tool that embraces CD as a first-class concept.
I have seen many people try to hack and extend CI tools to make
them do CD, often resulting in complex systems that are nowhere as
easy to use as tools that build in CD from the beginning. Tools that
fully support CD allow you to define and visualize these pipelines,
modeling the entire path to production for your software. As a ver‐
sion of our code moves through the pipeline, if it passes one of these
automated verification steps it moves to the next stage. Other stages
may be manual. For example, if we have a manual user acceptance
testing (UAT) process I should be able to use a CD tool to model it. I
can see the next available build ready to be deployed into our UAT
environment, deploy it, and if it passes our manual checks, mark
that stage as being successful so it can move to the next.

By modeling the entire path to production for our software, we
greatly improve visibility of the quality of our software, and can also
greatly reduce the time taken between releases, as we have one place
to observe our build and release process, and an obvious focal point
for introducing improvements.

In a microservices world, where we want to ensure we can release
our services independently of each other, it follows that as with CI,
we’ll want one pipeline per service. In our pipelines, it is an artifact
that we want to create and move through our path to production. As
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always, it turns out our artifacts can come in lots of sizes and shapes.
We’ll look at some of the most common options available to us in a
moment.

And the Inevitable Exceptions
As with all good rules, there are exceptions we need to consider too.
The “one microservice per build” approach is absolutely something
you should aim for, but are there times when something else makes
sense? When a team is starting out with a new project, especially a
greenfield one where they are working with a blank sheet of paper, it
is quite likely that there will be a large amount of churn in terms of
working out where the service boundaries lie. This is a good reason,
in fact, for keeping your initial services on the larger side until your
understanding of the domain stabilizes.

During this time of churn, changes across service boundaries are
more likely, and what is in or not in a given service is likely to
change frequently. During this period, having all services in a single
build to reduce the cost of cross-service changes may make sense.

It does follow, though, that in this case you need to buy into releas‐
ing all the services as a bundle. It also absolutely needs to be a tran‐
sitionary step. As service APIs stabilize, start moving them out into
their own builds. If after a few weeks (or a very small number of
months) you are unable to get stability in service boundaries in
order to properly separate them, merge them back into a more mon‐
olithic service (albeit retaining modular separation within the
boundary) and give yourself time to get to grips with the domain.
This reflects the experiences of our own SnapCI team, as we dis‐
cussed in Chapter 3.

Platform-Specific Artifacts
Most technology stacks have some sort of first-class artifact, along
with tools to support creating and installing them. Ruby has gems,
Java has JAR files and WAR files, and Python has eggs. Developers
with experience in one of these stacks will be well versed in working
with (and hopefully creating) these artifacts.

From the point of view of a microservice, though, depending on
your technology stack, this artifact may not be enough by itself.
While a Java JAR file can be made to be executable and run an
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embedded HTTP process, for things like Ruby and Python applica‐
tions, you’ll expect to use a process manager running inside Apache
or Nginx. So we may need some way of installing and configuring
other software that we need in order to deploy and launch our arti‐
facts. This is where automated configuration management tools like
Puppet and Chef can help.

Another downfall here is that these artifacts are specific to a certain
technology stack, which may make deployment more difficult when
we have a mix of technologies in play. Think of it from the point of
view of someone trying to deploy multiple services together. They
could be a developer or tester wanting to test some functionality, or
it could be someone managing a production deployment. Now
imagine that those services use three completely different deploy‐
ment mechanisms. Perhaps we have a Ruby Gem, a JAR file, and a
nodeJS NPM package. Would they thank you?

Automation can go a long way toward hiding the differences in the
deployment mechanisms of the underlying artifacts. Chef, Puppet,
and Ansible all support multiple different common technology-
specific build artifacts too. But there are different types of artifacts
that might be even easier to work with.

Operating System Artifacts
One way to avoid the problems associated with technology-specific
artifacts is to create artifacts that are native to the underlying operat‐
ing system. For example, for a RedHat– or CentOS-based system, I
might build RPMs; for Ubuntu, I might build a deb package; or for
Windows, an MSI.

The advantage of using OS-specific artifacts is that from a deploy‐
ment point of view we don’t care what the underlying technology is.
We just use the tools native to the OS to install the package. The OS
tools can also help us uninstall and get information about the pack‐
ages too, and may even provide package repositories that our CI
tools can push to. Much of the work done by the OS package man‐
ager can also offset work that you might otherwise do in a tool like
Puppet or Chef. On all Linux platforms I have used, for example,
you can define dependencies from your packages to other packages
you rely on, and the OS tools will automatically install them for you
too.
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The downside can be the difficulty in creating the packages in the
first place. For Linux, the FPM package manager tool gives a nicer
abstraction for creating Linux OS packages, and converting from a
tarball-based deployment to an OS-based deployment can be fairly
straightforward. The Windows space is somewhat trickier. The
native packaging system in the form of MSI installers and the like
leave a lot to be desired when compared to the capabilities in the
Linux space. The NuGet package system has started to help address
this, at least in terms of helping manage development libraries. More
recently, Chocolatey NuGet has extended these ideas, providing a
package manager for Windows designed for deploying tools and
services, which is much more like the package managers in the
Linux space. This is certainly a step in the right direction, although
the fact that the idiomatic style in Windows is still deploy something
in IIS means that this approach may be unappealing for some Win‐
dows teams.

Another downside, of course, could be if you are deploying onto
multiple different operating systems. The overhead of managing
artifacts for different OSes could be pretty steep. If you’re creating
software for other people to install, you may not have a choice. If
you are installing software onto machines you control, however, I
would suggest you look at unifying or at least reducing the number
of different operating systems you use. It can greatly reduce varia‐
tions in behavior from one machine to the next, and simplify
deployment and maintenance tasks.

In general, those teams I’ve seen that have moved to OS-based pack‐
age management have simplified their deployment approach, and
tend to avoid the trap of big, complex deployment scripts. Especially
if you’re on Linux, this can be a good way to simplify deployment of
microservices using disparate technology stacks.

Custom Images
One of the challenges with automated configuration management
systems like Puppet, Chef, and Ansible can be the time taken to run
the scripts on a machine. Let’s take a simple example of a server
being provisioned and configured to allow for the deployment of a
Java application. Let’s assume I’m using AWS to provision the server,
using the standard Ubuntu image. The first thing I need to do is
install the Oracle JVM to run my Java application. I’ve seen this sim‐
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ple process take around five minutes, with a couple of minutes taken
up by the machine being provisioned, and a few more to install the
JVM. Then we can think about actually putting our software on it.

This is actually a fairly trivial example. We will often want to install
other common bits of software. For example, we might want to use
collectd for gathering OS stats, use logstash for log aggregation, and
perhaps install the appropriate bits of nagios for monitoring (we’ll
talk more about this software in Chapter 8). Over time, more things
might get added, leading to longer and longer amounts of time
needed for provisioning of these dependencies.

Puppet, Chef, Ansible, and their ilk can be smart and will avoid
installing software that is already present. This does not mean that
running the scripts on existing machines will always be fast,
unfortunately, as running all the checks takes time. We also want to
avoid keeping our machines around for too long, as we don’t want to
allow for too much configuration drift (which we’ll explore in more
depth shortly). And if we’re using an on-demand compute platform
we might be constantly shutting down and spinning up new instan‐
ces on a daily basis (if not more frequently), so the declarative
nature of these configuration management tools may be of limited
use.

Over time, watching the same tools get installed over and over again
can become a real drag. If you are trying to do this multiple times
per day—perhaps as part of development or CI—this becomes a real
problem in terms of providing fast feedback. It can also lead to
increased downtime when deploying in production if your systems
don’t allow for zero-downtime deployment, as you’re waiting to
install all the pre-requisites on your machines even before you get to
installing your software. Models like blue/green deployment (which
we’ll discuss in Chapter 7) can help mitigate this, as they allow us to
deploy a new version of our service without taking the old one off‐
line.

One approach to reducing this spin-up time is to create a virtual
machine image that bakes in some of the common dependencies we
use, as shown in Figure 2-5. All virtualization platforms I’ve used
allow you to build your own images, and the tools to do so are much
more advanced than they were even a few years ago. This shifts
things somewhat. Now we could bake the common tools into our
own image. When we want to deploy our software, we spin up an
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instance of this custom image, and all we have to do is install the lat‐
est version of our service.

Figure 2-5. Creating a custom VM image

Of course, because you build the image only once, when you subse‐
quently launch copies of this image you don’t need to spend time
installing your dependencies, as they are already there. This can
result in a significant time savings. If your core dependencies don’t
change, new versions of your service can continue to use the same
base image.

There are some drawbacks with this approach, though. Building
images can take a long time. This means that for developers you
may want to support other ways of deploying services to ensure they
don’t have to wait half an hour just to create a binary deployment.
Second, some of the resulting images can be large. This could be a
real problem if you’re creating your own VMWare images, for exam‐
ple, as moving a 20GB image around a network isn’t always a simple
activity. We’ll be looking at container technology shortly, and specif‐
ically Docker, which can avoid some of these drawbacks.

Historically, one of the challenges is that the tool chain required to
build such an image varied from platform to platform. Building a
VMWare image is different from building an AWS AMI, a Vagrant
image, or a Rackspace image. This may not have been a problem if
you had the same platform everywhere, but not all organizations
were this lucky. And even if they were, the tools in this space were
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often difficult to work with, and they didn’t play nicely with other
tools you might be using for machine configuration.

Packer is a tool designed to make creation of images much easier.
Using configuration scripts of your choice (Chef, Ansible, Puppet,
and more are supported), it allows us to create images for different
platforms from the same configuration. At the time of writing, it has
support for VMWare, AWS, Rackspace Cloud, Digital Ocean, and
Vagrant, and I’ve seen teams use it successfully for building Linux
and Windows images. This means you could create an image for
deployment on your production AWS environment and a matching
Vagrant image for local development and test, all from the same
configuration.

Images as Artifacts
So we can create virtual machine images that bake in dependencies
to speed up feedback, but why stop there? We could go further, bake
our service into the image itself, and adopt the model of our service
artifact being an image. Now, when we launch our image, our ser‐
vice is there ready to go. This really fast spin-up time is the reason
that Netflix has adopted the model of baking its own services as
AWS AMIs.

Just as with OS-specific packages, these VM images become a nice
way of abstracting out the differences in the technology stacks used
to create the services. Do we care if the service running on the image
is written in Ruby or Java, and uses a gem or JAR file? All we care
about is that it works. We can focus our efforts, then, on automating
the creation and deployment of these images. This also becomes a
really neat way to implement another deployment concept, the
immutable server.

Immutable Servers
By storing all our configuration in source control, we are trying to
ensure that we can automatically reproduce services and hopefully
entire environments at will. But once we run our deployment pro‐
cess, what happens if someone comes along, logs into the box, and
changes things independently of what is in source control? This
problem is often called configuration drift—the code in source con‐
trol no longer reflects the configuration of the running host.
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To avoid this, we can ensure that no changes are ever made to a run‐
ning server. Instead, any change, no matter how small, has to go
through a build pipeline in order to create a new machine. You can
implement this pattern without using image-based deployments, but
it is also a logical extension of using images as artifacts. During our
image creation, for example, we could actually disable SSH, ensuring
that no one could even log onto the box to make a change!

The same caveats we discussed earlier about cycle time still apply, of
course. And we also need to ensure that any data we care about that
is stored on the box is stored elsewhere. These complexities aside,
I’ve seen adopting this pattern lead to much more straightforward
deployments, and easier-to-reason-about environments. And as I’ve
already said, anything we can do to simplify things should be pur‐
sued!

Environments
As our software moves through our CD pipeline stages, it will also
be deployed into different types of environments. If we think of the
example build pipeline in Figure 2-4, we probably have to consider
at least four distinct environments: one environment where we run
our slow tests, another for UAT, another for performance, and a
final one for production. Our microservice should be the same
throughout, but the environment will be different. At the very least,
they’ll be separate, distinct collections of configuration and hosts.
But often they can vary much more than that. For example, our pro‐
duction environment for our service might consist of multiple load-
balanced hosts spread across two data centers, whereas our test envi‐
ronment might just have everything running on a single host. These
differences in environments can introduce a few problems.

I was bitten by this personally many years ago. We were deploying a
Java web service into a clustered WebLogic application container in
production. This WebLogic cluster replicated session state between
multiple nodes, giving us some level of resilience if a single node
failed. However, the WebLogic licenses were expensive, as were the
machines our software was deployed onto. This meant that in our
test environment, our software was deployed on a single machine, in
a nonclustered configuration.

This hurt us badly during one release. For WebLogic to be able to
copy session state between nodes, the session data needs to be prop‐
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erly serializable. Unfortunately, one of our commits broke this, so
when we deployed into production our session replication failed.
We ended up resolving this by pushing hard to replicate a clustered
setup in our test environment.

The service we want to deploy is the same in all these different envi‐
ronments, but each of the environments serves a different purpose.
On my developer laptop I want to quickly deploy the service, poten‐
tially against stubbed collaborators, to run tests or carry out some
manual validation of behavior, whereas when I deploy into a pro‐
duction environment I may want to deploy multiple copies of my
service in a load-balanced fashion, perhaps split across one or more
data centers for durability reasons.

As you move from your laptop to build server to UAT environment
all the way to production, you’ll want to ensure that your environ‐
ments are more and more production-like to catch any problems
associated with these environmental differences sooner. This will be
a constant balance. Sometimes the time and cost to reproduce
production-like environments can be prohibitive, so you have to
make compromises. Additionally, sometimes using a production-
like environment can slow down feedback loops; waiting for 25
machines to install your software in AWS might be much slower
than simply deploying your service into a local Vagrant instance, for
example.

This balance, between production-like environments and fast feed‐
back, won’t be static. Keep an eye on the bugs you find further
downstream and your feedback times, and adjust this balance as
required.

Managing environments for single-artfact monolithic systems can
be challenging, especially if you don’t have access to systems that are
easily automatable. When you think about multiple environments
per microservice, this can be even more daunting. We’ll look shortly
at some different deployment platforms that can make this much
easier for us.

Service Configuration
Our services need some configuration. Ideally, this should be a small
amount, and limited to those features that change from one envi‐
ronment to another, such as what username and password should I
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use to connect to my database? Configuration that changes from one
environment to another should be kept to an absolute minimum.
The more your configuration changes fundamental service behavior,
and the more that configuration varies from one environment to
another, the more you will find problems only in certain environ‐
ments, which is painful in the extreme.

So if we have some configuration for our service that does change
from one environment to another, how should we handle this as
part of our deployment process? One option is to build one artifact
per environment, with configuration inside the artifact itself. Ini‐
tially this seems sensible. The configuration is built right in; just
deploy it and everything should work fine, right? This is problem‐
atic. Remember the concept of continuous delivery. We want to cre‐
ate an artifact that represents our release candidate, and move it
through our pipeline, confirming that it is good enough to go into
production. Let’s imagine I build a Customer-Service-Test and
Customer-Service-Prod artifacts. If my Customer-Service-Test arti‐
fact passes the tests, but it’s the Customer-Service-Prod artifact that I
actually deploy, can I be sure that I have verified the software that
actually ends up in production?

There are other challenges as well. First, there is the additional time
taken to build these artifacts. Next, the fact that you need to know at
build time what environments exist. And how do you handle sensi‐
tive configuration data? I don’t want information about production
passwords checked in with my source code, but if it is needed at
build time to create all those artifacts, this is often difficult to avoid.

A better approach is to create one single artifact, and manage con‐
figuration separately. This could be a properties file that exists for
each environment, or different parameters passed in to an install
process. Another popular option, especially when dealing with a
larger number of microservices, is to use a dedicated system for pro‐
viding configuration, which we’ll explore more in Chapter 11.

Service-to-Host Mapping
One of the questions that comes up quite early on in the discussion
around microservices is “How many services per machine?” Before
we go on, we should pick a better term than machine, or even the
more generic box that I used earlier. In this era of virtualization, the
mapping between a single host running an operating system and the
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underlying physical infrastructure can vary to a great extent. Thus, I
tend to talk about hosts, using them as a generic unit of isolation—
namely, an operating system onto which I can install and run my
services. If you are deploying directly on to physical machines, then
one physical server maps to one host (which is perhaps not com‐
pletely correct terminology in this context, but in the absence of bet‐
ter terms may have to suffice). If you’re using virtualization, a single
physical machine can map to multiple independent hosts, each of
which could hold one or more services.

So when thinking of different deployment models, we’ll talk about
hosts. So, then, how many services per host should we have?

I have a definite view as to which model is preferable, but there are a
number of factors to consider when working out which model will
be right for you. It’s also important to understand that some choices
we make in this regard will limit some of the deployment options
available to us.

Multiple Services Per Host
Having multiple services per host, as shown in Figure 2-6, is attrac‐
tive for a number of reasons. First, purely from a host management
point of view, it is simpler. In a world where one team manages the
infrastructure and another team manages the software, the infra‐
structure team’s workload is often a function of the number of hosts
it has to manage. If more services are packed on to a single host, the
host management workload doesn’t increase as the number of serv‐
ices increases. Second is cost. Even if you have access to a virtualiza‐
tion platform that allows you to provision and resize virtual hosts,
the virtualization can add an overhead that reduces the underlying
resources available to your services. In my opinion, both these prob‐
lems can be addressed with new working practices and technology,
and we’ll explore that shortly.

This model is also familiar to those who deploy into some form of
an application container. In some ways, the use of an application
container is a special case of the multiple-services-per-host model,
so we’ll look into that separately. This model can also simplify the
life of the developer. Deploying multiple services to a single host in
production is synonymous with deploying multiple services to a
local dev workstation or laptop. If we want to look at an alternative
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model, we want to find a way to keep this conceptually simple for
developers.

Figure 2-6. Multiple microservices per host

There are some challenges with this model, though. First, it can
make monitoring more difficult. For example, when tracking CPU,
do I need to track the CPU of one service independent of the others?
Or do I care about the CPU of the box as a whole? Side effects can
also be hard to avoid. If one service is under significant load, it can
end up reducing the resources available to other parts of the system.
Gilt, when scaling out the number of services it ran, hit this prob‐
lem. Initially it coexisted many services on a single box, but uneven
load on one of the services would have an adverse impact on every‐
thing else running on that host. This makes impact analysis of host
failures more complex as well—taking a single host out of commis‐
sion can have a large ripple effect.

Deployment of services can be somewhat more complex too, as
ensuring one deployment doesn’t affect another leads to additional
headaches. For example, if I use Puppet to prepare a host, but each
service has different (and potentially contradictory) dependencies,
how can I make that work? In the worst-case scenario, I have seen
people tie multiple service deployments together, deploying multiple
different services to a single host in one step, to try to simplify the
deployment of multiple services to one host. In my opinion, the
small upside in improving simplicity is more than outweighed by
the fact that we have given up one of the key benefits of microservi‐
ces: striving for independent release of our software. If you do adopt
the multiple-services-per-host model, make sure you keep hold of
the idea that each service should be deployed independently.

This model can also inhibit autonomy of teams. If services for dif‐
ferent teams are installed on the same host, who gets to configure
the host for their services? In all likelihood, this ends up getting
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handled by a centralized team, meaning it takes more coordination
to get services deployed.

Another issue is that this option can limit our deployment artifact
options. Image-based deployments are out, as are immutable servers
unless you tie multiple different services together in a single artifact,
which we really want to avoid.

The fact that we have multiple services on a single host means that
efforts to target scaling to the service most in need of it can be com‐
plicated. Likewise, if one microservice handles data and operations
that are especially sensitive, we might want to set up the underlying
host differently, or perhaps even place the host itself in a separate
network segment. Having everything on one host means we might
end up having to treat all services the same way even if their needs
are different.

As my colleague Neal Ford puts it, many of our working practices
around deployment and host management are an attempt to opti‐
mize for scarcity of resources. In the past, the only option if we
wanted another host was to buy or rent another physical machine.
This often had a large lead time to it and resulted in a long-term
financial commitment. It wasn’t uncommon for clients I have
worked with to provision new servers only every two to three years,
and trying to get additional machines outside of these timelines was
difficult. But on-demand computing platforms have drastically
reduced the costs of computing resources, and improvements in vir‐
tualization technology mean even for in-house hosted infrastructure
there is more flexibility.

Application Containers
If you’re familiar with deploying .NET applications behind IIS or
Java applications into a servlet container, you will be well acquainted
with the model where multiple distinct services or applications sit
inside a single application container, which in turn sits on a single
host, as we see in Figure 2-7. The idea is that the application con‐
tainer your services live in gives you benefits in terms of improved
manageability, such as clustering support to handle grouping multi‐
ple instances together, monitoring tools, and the like.
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Figure 2-7. Multiple microservices per host

This setup can also yield benefits in terms of reducing overhead of
language runtimes. Consider running five Java services in a single
Java servlet container. I only have the overhead of one single JVM.
Compare this with running five independent JVMs on the same host
when using embedded containers. That said, I still feel that these
application containers have enough downsides that you should chal‐
lenge yourself to see if they are really required.

First among the downsides is that they inevitably constrain technol‐
ogy choice. You have to buy into a technology stack. This can limit
not only the technology choices for the implementation of the ser‐
vice itself, but also the options you have in terms of automation and
management of your systems. As we’ll discuss shortly, one of the
ways we can address the overhead of managing multiple hosts is
around automation, and so constraining our options for resolving
this may well be doubly damaging.

I would also question some of the value of the container features.
Many of them tout the ability to manage clusters to support shared
in-memory session state, something we absolutely want to avoid in
any case due to the challenges this creates when scaling our services.
And the monitoring capabilities they provide won’t be sufficient
when we consider the sorts of joined-up monitoring we want to do
in a microservices world, as we’ll see in Chapter 8. Many of them
also have quite slow spin-up times, impacting developer feedback
cycles.

There are other sets of problems too. Attempting to do proper life‐
cycle management of applications on top of platforms like the JVM
can be problematic, and more complex than simply restarting a
JVM. Analyzing resource use and threads is also much more com‐

42 | Deployment

DRAFT VERSION - UNCORRECTED PROOF



plex, as you have multiple applications sharing the same process.
And remember, even if you do get value from a technology-specific
container, they aren’t free. Aside from the fact that many of them are
commercial and so have a cost implication, they add a resource
overhead in and of themselves.

Ultimately, this approach is again an attempt to optimize for scarcity
of resources that simply may not hold up anymore. Whether you
decide to have multiple services per host as a deployment model, I
would strongly suggest looking at self-contained deployable micro‐
services as artifacts. For .NET, this is possible with things like Nancy,
and Java has supported this model for years. For example, the vener‐
able Jetty embedded container makes for a very lightweight self-
contained HTTP server, which is the core of the Dropwizard stack.
Google has been known to quite happily use embedded Jetty con‐
tainers for serving static content directly, so we know these things
can operate at scale.

Single Service Per Host
With a single-service-per-host model shown in Figure 2-8, we avoid
side effects of multiple hosts living on a single host, making moni‐
toring and remediation much simpler. We have potentially reduced
our single points of failure. An outage to one host should impact
only a single service, although that isn’t always clear when you’re
using a virtualized platform. We’ll cover designing for scale and fail‐
ure more in Chapter 11. We also can more easily scale one service
independent from others, and deal with security concerns more
easily by focusing our attention only on the service and host that
requires it.

Figure 2-8. A single microservice per host
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Just as important is that we have opened up the potential to use
alternative deployment techniques such as image-based deploy‐
ments or the immutable server pattern, which we discussed earlier.

We’ve added a lot of complexity in adopting a microservice architec‐
ture. The last thing we want to do is go looking for more sources of
complexity. In my opinion, if you don’t have a viable PaaS available,
then this model does a very good job of reducing a system’s overall
complexity. Having a single-service-per-host model is significantly
easier to reason about and can help reduce complexity. If you can’t
embrace this model yet, I won’t say microservices aren’t for you. But
I would suggest that you look to move toward this model over time
as a way of reducing the complexity that a microservice architecture
can bring.

Having an increased number of hosts has potential downsides,
though. We have more servers to manage, and there might also be a
cost implication of running more distinct hosts. Despite these prob‐
lems, this is still the model I prefer for microservice architectures.
And we’ll talk about a few things we can do to reduce the overhead
of handling large numbers of hosts shortly.

Platform as a Service
When using a platform as a service (PaaS), you are working at a
higher-level abstraction than at a single host. Most of these plat‐
forms rely on taking a technology-specific artifact, such as a Java
WAR file or Ruby gem, and automatically provisioning and running
it for you. Some of these platforms will transparently attempt to
handle scaling the system up and down for you, although a more
common (and in my experience less error-prone) way will allow you
some control over how many nodes your service might run on, but
it handles the rest.

At the time of writing, most of the best, most polished PaaS solu‐
tions are hosted. Heroku comes to mind as being probably the gold
class of PaaS. It doesn’t just handle running your service, it also sup‐
ports services like databases in a very simple fashion. Self-hosted
solutions do exist in this space, although they are more immature
than the hosted solutions.

When PaaS solutions work well, they work very well indeed. How‐
ever, when they don’t quite work for you, you often don’t have much
control in terms of getting under the hood to fix things. This is part
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of the trade-off you make. I would say that in my experience the
smarter the PaaS solutions try to be, the more they go wrong. I’ve
used more than one PaaS that attempts to autoscale based on appli‐
cation use, but does it badly. Invariably the heuristics that drive
these smarts tend to be tailored for the average application rather
than your specific use case. The more nonstandard your application,
the more likely it is that it might not play nicely with a PaaS.

As the good PaaS solutions handle so much for you, they can be an
excellent way of handling the increased overhead we get with having
many more moving parts. That said, I’m still not sure that we have
all the models right in this space yet, and the limited self-hosted
options mean that this approach might not work for you. In the
coming decade though I expect we’ll be targeting PaaS for deploy‐
ment more than having to self-manage hosts and deployments of
individual services.

Automation
The answer to so many problems we have raised so far comes down
to automation. With a small number of machines, it is possible to
manage everything manually. I used to do this. I remember running
a small set of production machines, and I would collect logs, deploy
software, and check processes by manually logging in to the box. My
productivity seemed to be constrained by the number of terminal
windows I could have open at once—a second monitor was a huge
step up. This breaks down really fast, though.

One of the pushbacks against the single-service-per-host setup is the
perception that the amount of overhead to manage these hosts will
increase. This is certainly true if you are doing everything manually.
Double the servers, double the work! But if we automate control of
our hosts, and deployment of the services, then there is no reason
why adding more hosts should increase our workload in a linear
fashion.

But even if we keep the number of hosts small, we still are going to
have lots of services. That means multiple deployments to handle,
services to monitor, logs to collect. Automation is essential.

Automation is also how we can make sure that our developers still
remain productive. Giving them the ability to self-service-provision
individual services or groups of services is key to making develop‐
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ers’ lives easier. Ideally, developers should have access to exactly the
same tool chain as is used for deployment of our production serv‐
ices so as to ensure that we can spot problems early on. We’ll be
looking at a lot of technology in this chapter that embraces this view.

Picking technology that enables automation is highly important.
This starts with the tools used to manage hosts. Can you write a line
of code to launch a virtual machine, or shut one down? Can you
deploy the software you have written automatically? Can you deploy
database changes without manual intervention? Embracing a culture
of automation is key if you want to keep the complexities of micro‐
service architectures in check.

Two Case Studies on the Power of Automation
It is probably helpful to give you a couple of concrete examples that
explain the power of good automation. One of our clients in Aus‐
tralia is RealEstate.com.au (REA). Among other things, the com‐
pany provides real estate listings for retail and commercial custom‐
ers in Australia and elsewhere in the Asia-Pacific region. Over a
number of years, it has been moving its platform toward a dis‐
tributed, microservices design. When it started on this journey it
had to spend a lot of time getting the tooling around the services
just right—making it easy for developers to provision machines, to
deploy their code, or monitor them. This caused a front-loading of
work to get things started.

In the first three months of this exercise, REA was able to move just
two new microservices into production, with the development team
taking full responsibility for the entire build, deployment, and sup‐
port of the services. In the next three months, between 10–15 serv‐
ices went live in a similar manner. By the end of the 18-month
period, REA had over 60–70 services.

This sort of pattern is also borne out by the experiences of Gilt, an
online fashion retailer that started in 2007. Gilt’s monolithic Rails
application was starting to become difficult to scale, and the com‐
pany decided in 2009 to start decomposing the system into micro‐
services. Again automation, especially tooling to help developers,
was given as a key reason to drive Gilt’s explosion in the use of
microservices. A year later, Gilt had around 10 microservices live; by
2012, over 100; and in 2014, over 450 microservices by Gilt’s own
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count—in other words, around three services for every developer in
Gilt.

From Physical to Virtual
One of the key tools available to us in managing a large number of
hosts is finding ways of chunking up existing physical machines into
smaller parts. Traditional virtualization like VMWare or that used
by AWS has yielded huge benefits in reducing the overhead of host
management. However, there have been some new advances in this
space that are well worth exploring, as they can open up even more
interesting possibilities for dealing with our microservice architec‐
ture.

Traditional Virtualization
Why is having lots of hosts expensive? Well, if you need a physical
server per host, the answer is fairly obvious. If this is the world you
are operating in, then the multiple-service-per-host model is proba‐
bly right for you, although don’t be surprised if this becomes an ever
more challenging constraint. I suspect, however, that most of you
are using virtualization of some sort. Virtualization allows us to slice
up a physical server into separate hosts, each of which can run dif‐
ferent things. So if we want one service per host, can’t we just slice
up our physical infrastructure into smaller and smaller pieces?

Well, for some people, you can. However, slicing up the machine
into ever increasing VMs isn’t free. Think of our physical machine as
a sock drawer. If we put lots of wooden dividers into our drawer, can
we store more socks or fewer? The answer is fewer: the dividers
themselves take up room too! Our drawer might be easier to deal
with and organize, and perhaps we could decide to put T-shirts in
one of the spaces now rather than just socks, but more dividers
means less overall space.

In the world of virtualization, we have a similar overhead as our
sock drawer dividers. To understand where this overhead comes
from, let’s look at how most virtualization is done. Figure 2-9 shows
a comparison of two types of virtualization. On the left, we see the
various layers involved in what is called type 2 virtualization, which
is the sort implemented by AWS, VMWare, VSphere, Xen, and
KVM. (Type 1 virtualization refers to technology where the VMs
run directly on hardware, not on top of another operating system.)
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On our physical infrastructure we have a host operating system. On
this OS we run something called a hypervisor, which has two key
jobs. First, it maps resources like CPU and memory from the virtual
host to the physical host. Second, it acts as a control layer, allowing
us to manipulate the virtual machines themselves.

Figure 2-9. A comparison of standard Type 2 virtualization, and light‐
weight containers

Inside the VMs, we get what looks like completely different hosts.
They can run their own operating systems, with their own kernels.
They can be considered almost hermetically sealed machines, kept
isolated from the underlying physical host and the other virtual
machines by the hypervisor.

The problem is that the hypervisor here needs to set aside resources
to do its job. This takes away CPU, I/O, and memory that could be
used elsewhere. The more hosts the hypervisor manages, the more
resources it needs. At a certain point, this overhead becomes a con‐
straint in slicing up your physical infrastructure any further. In prac‐
tice, this means that there are often diminishing returns in slicing up
a physical box into smaller and smaller parts, as proportionally
more and more resources go into the overhead of the hypervisor.

Vagrant
Vagrant is a very useful deployment platform, which is normally
used for dev and test rather than production. Vagrant provides you
with a virtual cloud on your laptop. Underneath, it uses a standard
virtualization system (typically VirtualBox, although it can use other

48 | Deployment

DRAFT VERSION - UNCORRECTED PROOF



platforms). It allows you to define a set of VMs in a text file, along
with how the VMs are networked together and which images the
VMs should be based on. This text file can be checked in and shared
between team members.

This makes it easier for you to create production-like environments
on your local machine. You can spin up multiple VMs at a time, shut
individual ones to test failure modes, and have the VMs mapped
through to local directories so you can make changes and see them
reflected immediately. Even for teams using on-demand cloud plat‐
forms like AWS, the faster turnaround of using Vagrant can be a
huge boon for development teams.

One of the downsides, though, is that running lots of VMs can tax
the average development machine. If we have one service to one
VM, you may not be able to bring up your entire system on your
local machine. This can result in the need to stub out some depen‐
dencies to make things manageable, which is one more thing you’ll
have to handle to ensure that the development and test experience is
a good one.

Linux Containers
For Linux users, there is an alternative to virtualization. Rather than
having a hypervisor to segment and control separate virtual hosts,
Linux containers instead create a separate process space in which
other processes live.

On Linux, process are run by a given user, and have certain capabili‐
ties based on how the permissions are set. Processes can spawn
other processes. For example, if I launch a process in a terminal, that
child process is generally considered a child of the terminal process.
The Linux kernel’s job is maintaining this tree of processes.

Linux containers extend this idea. Each container is effectively a
subtree of the overall system process tree. These containers can have
physical resources allocated to them, something the kernel handles
for us. This general approach has been around in many forms, such
as Solaris Zones and OpenVZ, but it is LXC that has become most
popular. LXC is now available out of the box in any modern Linux
kernel.

If we look at a stack diagram for a host running LXC in Figure 2-9,
we see a few differences. First, we don’t need a hypervisor. Second,
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although each container can run its own operating system distribu‐
tion, it has to share the same kernel (because the kernel is where the
process tree lives). This means that our host operating system could
run Ubuntu, and our containers CentOS, as long as they could both
share the same kernel.

We don’t just benefit from the resources saved by not needing a
hypervisor. We also gain in terms of feedback. Linux containers are
much faster to provision than full-fat virtual machines. It isn’t
uncommon for a VM to take many minutes to start—but with Linux
containers, startup can take a few seconds. You also have finer-
grained control over the containers themselves in terms of assigning
resources to them, which makes it much easier to tweak the settings
to get the most out of the underlying hardware.

Due to the lighter-weight nature of containers, we can have many
more of them running on the same hardware than would be possi‐
ble with VMs. By deploying one service per container, as in
Figure 2-10, we get a degree of isolation from other containers
(although this isn’t perfect), and can do so much more cost effec‐
tively than would be possible if we wanted to run each service in its
own VM.

Figure 2-10. Running services in separate containers

Containers can be used well with full-fat virtualization too. I’ve seen
more than one project provision a large AWS EC2 instance and run
LXC containers on it to get the best of both worlds: an on-demand
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ephemeral compute platform in the form of EC2, coupled with
highly flexible and fast containers running on top of it.

Linux containers aren’t without some problems, however. Imagine I
have lots of microservices running in their own containers on a
host. How does the outside world see them? You need some way to
route the outside world through to the underlying containers, some‐
thing many of the hypervisors do for you with normal virtualization.
I’ve seen many a person sink inordinate amounts of time into con‐
figuring port forwarding using IPTables to expose containers
directly. Another point to bear in mind is that these containers can‐
not be considered completely sealed from each other. There are
many documented and known ways in which a process from one
container can bust out and interact with other containers or the
underlying host. Some of these problems are by design and some are
bugs that are being addressed, but either way if you don’t trust the
code you are running, don’t expect that you can run it in a container
and be safe. If you need that sort of isolation, you’ll need to consider
using virtual machines instead.

Docker
Docker is a platform built on top of lightweight containers. It han‐
dles much of the work around handling containers for you. In
Docker, you create and deploy apps, which are synonymous with
images in the VM world, albeit for a container-based platform.
Docker manages the container provisioning, handles some of the
networking problems for you, and even provides its own registry
concept that allows you to store and version Docker applications.

The Docker app abstraction is a useful one for us, because just as
with VM images the underlying technology used to implement the
service is hidden from us. We have our builds for our services create
Docker applications, and store them in the Docker registry, and
away we go.

Docker can also alleviate some of the downsides of running lots of
services locally for dev and test purposes. Rather than using Vagrant
to host multiple independent VMs, each one containing its own ser‐
vice, we can host a single VM in Vagrant that runs a Docker
instance. We then use Vagrant to set up and tear down the Docker
platform itself, and use Docker for fast provisioning of individual
services.
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A number of different technologies are being developed to take
advantage of Docker. CoreOS is a very interesting operating system
designed with Docker in mind. It is a stripped-down Linux OS that
provides only the essential services to allow Docker to run. This
means it consumes fewer resources than other operating systems,
making it possible to dedicate even more resources of the underly‐
ing machine to our containers. Rather than using a package man‐
ager like debs or RPMs, all software is installed as independent
Docker apps, each running in its own container.

Docker itself doesn’t solve all problems for us. Think of it as a simple
PaaS that works on a single machine. If you want tools to help you
manage services across multiple Docker instances across multiple
machines, you’ll need to look at other software that adds these capa‐
bilities. There is a key need for a scheduling layer that lets you
request a container and then finds a Docker container that can run
it for you. In this space, Google’s recently open sourced Kubernetes
and CoreOS’s cluster technology can help, and it seems every month
there is a new entrant in this space. Deis is another interesting tool
based on Docker, which is attempting to provide a Heroku-like PaaS
on top of Docker.

I talked earlier about PaaS solutions. My struggle with them has
always been that they often get the abstraction level wrong, and that
self-hosted solutions lag significantly behind hosted solutions like
Heroku. Docker gets much more of this right, and the explosion of
interest in this space means I suspect it will become a much more
viable platform for all sorts of deployments over the next few years
for all sorts of different use cases. In many ways, Docker with an
appropriate scheduling layer sits between IaaS and PaaS solutions—
the term containers as a service (CaaS) is already being used to
describe it.

Docker is being used in production by multiple companies. It pro‐
vides many of the benefits of lightweight containers in terms of effi‐
ciency and speed of provisioning, together with the tools to avoid
many of the downsides. If you are interested in looking at alternative
deployment platforms, I’d strongly suggest you give Docker a look.

A Deployment Interface
Whatever underlying platform or artifacts you use, having a uni‐
form interface to deploy a given service is vital. We’ll want to trigger
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deployment of a microservice on demand in a variety of different
situations, from deployments locally for dev and test to production
deployments. We’ll also want to keep our deployment mechanisms
as similar as possible from dev to production, as the last thing we
want is to find ourselves hitting problems in production because
deployment uses a completely different process!

After many years of working in this space, I am convinced that the
most sensible way to trigger any deployment is via a single, parame‐
terizable command-line call. This can be triggered by scripts,
launched by your CI tool, or typed in by hand. I’ve built wrapper
scripts in a variety of technology stacks to make this work, from
Windows batch, to bash, to Python Fabric scripts, and more, but all
of the command lines share the same basic format.

We need to know what we are deploying, so we need to provide the
name of a known entity, or in our case a microservice. We also need
to know what version of the entity we want. The answer to what ver‐
sion tends to be one of three possibilities. When you’re working
locally, it’ll be whatever version is on your local machine. When test‐
ing, you’ll want the latest green build, which could just be the most
recent blessed artifact in our artifact repository. Or when testing/
diagnosing issues, we may want to deploy an exact build.

The third and final thing we’ll need to know is what environment we
want the microservice deployed into. As we discussed earlier, our
microservice’s topology may differ from one environment to the
next, but that should be hidden from us here.

So, imagine we create a simple deploy script that takes these three
parameters. Say we’re developing locally and want to deploy our cat‐
alog service into our local environment. I might type:

$ deploy artifact=catalog environment=local version=local

Once I’ve checked in, our CI build service picks up the change and
creates a new build artifact, giving it the build number b456. As is
standard in most CI tools, this value gets passed along the pipeline.
When our test stage gets triggered, the CI stage will run:

$ deploy artifact=catalog environment=ci version=b456

Meanwhile, our QA wants to pull the latest version of the catalog
service into an integrated test environment to do some exploratory
testing, and to help with a showcase. That team runs:
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$ deploy artifact=catalog environment=integrated_qa ver-
sion=latest

The tool I’ve used the most for this is Fabric, a Python library
designed to map command-line calls to functions, along with good
support for handling tasks like SSH into remote machines. Pair it
with an AWS client library like Boto, and you have everything you
need to fully automate very large AWS environments. For Ruby,
Capistrano is similar in some ways to Fabric, and on Windows you
could go a long way using PowerShell.

Environment Definition
Clearly, for this to work, we need to have some way of defining what
our environments look like, and what our service looks like in a
given environment. You can think of an environment definition as a
mapping from a microservice to compute, network, and storage
resources. I’ve done this with YAML files before, and used my
scripts to pull this data in. Example 2-1 is a simplified version of
some work I did a couple of years ago for a project that used AWS.
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Example 2-1. An example environment definition

development:
  nodes:
  - ami_id: ami-e1e1234
    size:   t1.micro 
    credentials_name: eu-west-ssh 
    services: [catalog-service]
    region: eu-west-1

production:
  nodes:
  - ami_id: ami-e1e1234
    size:   m3.xlarge 
    credentials_name: prod-credentials 
    services: [catalog-service]
    number: 5  

We varied the size of the instances we used to be more cost
effective. You don’t need a 16-core box with 64GB of RAM for
exploratory testing!

Being able to specify different credentials for different environ‐
ments is key. Credentials for sensitive environments were stored
in different source code repos that only select people would
have access to.

We decided that by default if a service had more than one node
configured, we would automatically create a load balancer for it.

I have removed some detail for the sake of brevity.

The catalog-service information was stored elsewhere. It didn’t
differ from one environment to the next, as you can see in
Example 2-2.

Example 2-2. An example environment definition

catalog-service:
  puppet_manifest : catalog.pp 
  connectivity:
    - protocol: tcp
      ports: [ 8080, 8081 ]
      allowed: [ WORLD ]
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This was the name of the Puppet file to run—we happened to
use Puppet solo in this situation, but theoretically could have
supported alternative configuration systems.

Obviously, a lot of the behavior here was convention based. For
example, we decided to normalize which ports services used wher‐
ever they ran, and automatically configured load balancers if a ser‐
vice had more than one instance (something that AWS’s ELBs make
fairly easy).

Building a system like this required a significant amount of work.
The effort is often front-loaded, but can be essential to manage the
deployment complexity you have. I hope in the future you won’t
have to do this yourself. Terraform is a very new tool from Hashi‐
corp, which works in this space. I’d generally shy away from men‐
tioning such a new tool in a book that is more about ideas than tech‐
nology, but it is attempting to create an open source tool along these
lines. It’s early days yet, but already its capabilities seem really inter‐
esting. With the ability to target deployments on a number of differ‐
ent platforms, in the future it could be just the tool for the job.

Summary
We’ve covered a lot of ground here, so a recap is in order. First, focus
on maintaining the ability to release one service independently from
another, and make sure that whatever technology you select sup‐
ports this. I greatly prefer having a single repository per microser‐
vice, but am firmer still that you need one CI build per microservice
if you want to deploy them separately.

Next, if possible, move to a single-service per host/container. Look
at alternative technologies like LXC or Docker to make managing
the moving parts cheaper and easier, but understand that whatever
technology you adopt, a culture of automation is key to managing
everything. Automate everything, and if the technology you have
doesn’t allow this, get some new technology! Being able to use a
platform like AWS will give you huge benefits when it comes to
automation.

Make sure you understand the impact your deployment choices
have on developers, and make sure they feel the love too. Creating
tools that let you self-service-deploy any given service into a number

56 | Deployment

DRAFT VERSION - UNCORRECTED PROOF



of different environments is really important, and will help develop‐
ers, testers, and operations people alike.

Finally, if you want to go deeper into this topic, I thoroughly recom‐
mend you read Jez Humble and David Farley’s Continuous Delivery
(Addison-Wesley), which goes into much more detail on subjects
like pipeline design and artifact management.

In the next chapter, we’ll be going deeper into a topic we touched on
briefly here. Namely, how do we test our microservices to make sure
they actually work?
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Monitoring Conventions

The following content is excerpted from Monitoring with Graphite,
by Jason Dixon. Available now in Early Release.

Everyone seems to have a different definition for what Monitoring
means to them. Many folks know it as a convential polling system
like Nagios. For others it might mean walking their networks with
SNMP and Cacti, or perhaps even a bespoke collection of Perl
scripts and artisinal cron jobs. Some companies don’t run internal
monitoring systems at all, perferring to outsource all or part of their
monitoring to hosted monitoring services. No matter which tools
you cobble together or how you orchestrate them, most of these sys‐
tems cover a common set of operational responsibilities.

From my experiences, it’s important that we, the maintainers and
users of these Monitoring Architectures, share a common vocabulary
and understanding of the logical areas of functionality that make up
these systems. Describing to your peers how you "instrument your
application telemetry and aggregate the results (because they report
irregularly) before firing them off to your trending system for corre‐
lation and fault detection" is almost certainly going to explain more
about your setup than “we monitor stuff ”.

Don’t get me wrong, I’m all for brevity, but words really do matter.
And for better or worse, we’ve got enough of them to choke a horse.
Although those two expressions may in theory be saying roughly the
same thing, the former tells us a lot more about what you do and
how it adds value to your organization. Above all else, being able to
speak lucidly about your monitoring systems can go a long way
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towards building trust with your customers, your engineering and
operations teams, and your business leadership.

Three Tenets of Monitoring
Monitoring is a generic way to describe the collection of software
and processes we use to ensure the availability and health of our IT
systems and services. In an abstract sense, monitoring can be bro‐
ken up into three main categories: Fault Detection, Alerting, and
Capacity Planning. Each of these can be dissected even further into
specific functional tasks, but we’ll get to that later. For now let’s take
a brief look at these broader concepts since they form the basis for
most of the legacy approaches among monitoring vendors and
Open Source projects.

Fault Detection
The primary goal of any monitoring system should be to identify
when a resource (or collection of resources) becomes unavailable or
starts to perform poorly. We use Fault Detection techniques to com‐
pare the current state of an asset against a known good (or simply
operational) state. Traditionally we employ thresholds to recognize
the delta in a system’s behavior.

For example, we might want to know when our webserver’s “time to
first byte” (i.e. the amount of time it takes for a client to download
the first byte of content from a web site or application) exceeds 300
milliseconds. Our monitoring software should be able to review the
metric - either by polling the service directly or reviewing the data
provided from a dedicated collection agent, detect when the web‐
server becomes sluggish (typically by polling the service directly),
classify it as a fault, and escalate the Alert to the responsible parties
(usually a very tired on-call person at 3am).

With the emergence of Big Data and other data science pursuits,
we’re starting to see new and exciting anomaly detection techniques
and algorithms applied to the area of IT monitoring. Basic thresh‐
olds are very much a practice in trial and error. Conversely, these
new approaches attempt to leverage the advances in Machine Learn‐
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ing to automate fault detection software to be more intelligent and
proactive, and ideally, result in fewer false alarms.

False Alarms
You’re bound to hear monitoring folks refer to false positives or
negatives when talking about fault detection and alerting behavior.
A false positive is an alert triggered by our monitoring threshold,
either by accident or misconfiguration. Not only are these annoy‐
ing, but they can quickly lead to pager fatigue and a general distrust
of the monitoring system.

On the other hand, false negatives are alerts that our monitoring
system fails to detect. These are usually caused by improper thresh‐
olds, but can also be triggered by improper check intervals (run‐
ning at the wrong times or too infrequently), or simply a lack of
proper checks. Unfortunately, false negatives are usually identified
too late, as a consequence of a host or service outage.

Alerting
If my answers frighten you then you should cease asking scary
questions.

—Jules Winnfield

If you’ve been in IT for a while, there’s a good chance you’ve had to
carry a pager after business hours. Even worse, it’s probably woken
you (and your significant other) in the middle of a lovely dream, or
interrupted a fun night out with your friends. I don’t know anyone
that enjoys Alerting, but I think we can all acknowledge that it’s a
necessary part of monitoring.

For all practial purposes, alerting constitutes the moment that your
monitoring system identifies a fault that demands some further
action. In most cases the system is designed to send an email or page
to a member of your engineering or operations teams. But getting
your alert to its destination is not always as simple as it sounds.
Sometimes the recipient may be out of range of cellular service or
simply have their ringer turned off (accidentally, I’m sure). This is
why we should also include on-call scheduling, notification routing,
and escalations in any discussion of alerting.
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When your team grows large enough to “pass the pager around”, it’s
a good time to start looking at various on-call scheduling
approaches. It’s common to see team members trade on-call respon‐
sibilities every week, every few days, or even every day, depending
on the severity and “pain levels” of your rotation. Ideally, you want
the handoff to occur during normal business hours when both indi‐
viduals are awake, alert (excuse the pun), and the person coming off
their rotation can pass along valuable information from their shift.

The good news is that as the size of your team increases, the amount
of time each person has to cover on-call decreases proportionately.
The bad news is that on-call scheduling software has traditionally
been pretty awful. Until the last few years, most companies had to
resort to manually updating their alerting configuration with the
new recipient and any escalation paths. If you were lucky, someone
wrote a script to manage this automatically, but these were suscepti‐
ble to bugs and typos (like all software), often resulting in false neg‐
atives.

These days, it’s much more common to see companies route their
alerts through an external alert service like PagerDuty. A cottage
industry of alert management companies have emerged over the last
few years, offering notification routing, escalation, and on-call
scheduling services. As someone whose lived through the lean years
before outsourced alert management, I strongly recommend invest‐
ing in any of these services or even their Open Source counterparts.

Capacity Planning
Anyone whose ever been asked to predict the growth of their appli‐
cation, customer base, or the budget for next year’s IT purchases has
been faced with the need for Capacity Planning. Heck, even the act
of being alerted when your server’s disk hits 90% capacity is a simple
version of capacity planning (albeit a very poor one). This might not
be something you’re asked to do very often (or at all), but if you’re
tracking your server and application metrics in Graphite, there’s a
good chance you’ll be prepared when the opportunity presents itself.

The act of capacity planning is really just the ability to studying
trends in your data and use that knowledge to make informed deci‐
sions for adding capacity now, or in the near future. Time-series
data plays a powerful role in executing your capacity planning strat‐
egy successfully. If you intend to use Graphite for this (and why
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wouldn’t you), at some point you’ll face the tradeoff between storing
your metrics for as long as possible and the increased disk space
requirements needed for supporting a lengthy retention policy.

Obviously, nobody wants to keep their data around for a few years
because they think it’s going to be useful for current troubleshooting
efforts; they use these older metrics to observe annual trends in our
systems and business. Although this typically means downsampling
your metrics to save on disk space, having this data available (even
at lower precision) is invaluable for studying long-term trends. In
fact, it’s not uncommon to see users with ten-year retention policies!

We’re not going to cover capacity planning at depth in this book, but
it’s important to acknowledge its purpose and understand its rela‐
tionship with the sort of time-series data you’ll collect with Graph‐
ite. For a proper treatment on the topic, I highly recommend John
Allspaw’s The Art of Capacity Planning, and Guerrilla Capacity Plan‐
ning by Dr. Neil J. Gunther.

In most circumstances you’ll hear me refer to Trending since we’re
more interested in the broad application of storing, retrieving and
analyzing time-series data, but rest assured Capacity Planning is
always hiding in the shadows, ready to pounce at a moment’s notice.

Rethinking the Poll/Pull Model
Having a shared vocabulary of logical monitoring systems is impor‐
tant, but one of the biggest advancements in recent history has been
the deconstruction of the monolithic monitoring system into dis‐
crete functional components. As a result, we understand our func‐
tional competencies and responsibilities better than ever before. But
perhaps one of the biggest developments is the explosion of new
tools and frameworks in the monitoring space.

For years, businesses were resigned to the fact that Nagios was effec‐
tively the only choice in Open Source tools for host and service
monitoring. Because it was “good enough” for most use cases, there
was never enough “operational angst” to drive innovation in the
space.

If we look back over the last five years we can see parallels between
the development of Service Oriented Architectures (more recently re-
coined as Microservices) and the advancement of Open Source mon‐
itoring tools. Users and developers began to recognize that you
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didn’t have to reinvent the entire wheel; it was enough to build and
publish small, sharp tools that emulated the legacy interfaces and
covered specific functional areas: alerting, notifications, graphs, etc.
These days you’ll be hard pressed to find many businesses that don’t
use a variety components to form their monitoring architecture.

While it’s true that most CIOs would prefer the simplicity of a single
vendor that offers the traditional monolithic “Enterprise Monitoring
Suite”, the reality is that all businesses are different and there is no
such thing as “one size fits all” when it comes to monitoring systems.
If you take away nothing else from this book, please remember that
axiom. I promise it will save you (and those you care about) plenty
of tears and heartache.

Before we dive into the features of a modern monitoring stack, I
want you to forget everything you think you know about monitor‐
ing systems. Whether you’re the CTO of a San Francisco-based
startup or a battle-tested Systems Administrator working on govern‐
ment contracts, you probably have a lot of preconceptions about
what a monitoring system should look like. Try to forget, at least for
a bit, that you ever heard of Nagios and NRPE; I’m about to free
your mind.

Pull Model
Then you’ll see, that it is not the spoon that bends, it is only your‐
self.

—Spoon Boy

The traditional approach to IT monitoring centers around a polling
agent that spends a great deal of time and resources connecting to
remote servers or appliances in an effort to determine their current
status: are they reachable on the network with ping; what does their
SNMP output tell me about their CPU usage; can I execute a remote
command on that host and interpret the results?

This is what we generally refer to as a pull model in that we’re pulling
(or polling) the target systems at regular intervals. Historically, we’ve
asked very simple questions of our systems (“is it alive”) and organ‐
ized our operations staff and monitoring software around the goal
of minimizing downtime. Sadly, this characterization reinforced the
legacy perception of the IT department as a cost center.
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Figure 3-1. Legacy Pull Model

A number of factors have caused IT departments and Operations
teams to start being viewed in a much more positive (and lucrative)
light. Thanks to the popularity of elastic computing resources (“The
Cloud”), improved automation through configuration management,
and our increased reliance on Software as a Service (SaaS), busi‐
nesses have begun leveraging their IT investment into cost efficien‐
cies in other departments. In many ways, the modern Operations
team can be as much of a profit center as the traditional sales chan‐
nel (ok, maybe not quite as much, but you get the idea).

Of course, this means that we need to measure our IT performance
with vigor and real qualitative numbers. It’s not that we aren’t
already doing this, but in many cases we treat Monitoring and Trend‐
ing as two completely distinct stacks of information. Businesses
deploy “Enterprise Software X” to monitor uptime and general sys‐
tem health, and then deploy a separate instance of “Enterprise Soft‐
ware Y” to gather SNMP data and render graphs. There’s still a mas‐
sive amount of duplication of effort; not to mention all the Nagios
performance data that’s frequently discarded (the default behavior
for Nagios).

Push Model
Fortunately, many companies are beginning to recognize the folly in
this model. The performance data previously lost is now collected
and stored at high precision and used to power questions relating to
availability and quality of service. Metrics are pushed from their
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sources to a unified storage repository, arming us with a consolida‐
ted set of data that we can use to drive both our IT responses and
our business decisions. We can use the exact same metrics to meas‐
ure the health and availability of our systems.

There’s a great deal of flexibility that comes with instrumenting our
systems to send telemetry data, rather than pulling it manually. Col‐
lection tasks are decentralized, so we no longer need to scale our
collection systems vertically as our architecture scales horizontally
(i.e. to many nodes). Systems report in as they’re available; no need
to deal with timeouts, disconnects or retry attempts. Each system
can use the transport mechanism best suited to their design or envi‐
ronment; servers can be tooled to leverage TCP sockets, message
queues, or plain old log streams.

But one of my favorite aspects of this push model is that we can
begin isolating the functional responsibilities of our monitoring sys‐
tems. We’re no longer forced to deal with a monolithic “black box”
to manage our IT assets. In fact, as we begin to understand these
discrete functional units, we can begin looking to other industries
(e.g. airlines, medicine, etc) and apply their best practices to our
own.

Where Does Graphite Fit into the Picture?
Glad you asked. Truth be told, Graphite often comes into play at
almost every step of the monitoring lifecycle. Does this mean
Graphite is one of those terrible monolithic applications I men‐
tioned earlier? Not at all. But if you’re in a position to use Graphite
as your “source of truth”, it is capable of fulfilling different roles at
various points of the monitoring architecture, thanks to it’s flexible
design, well-defined service interfaces and API coverage.

Having a centralized, canonical system of record for all metrics and
state is a key part of any responsible and trustworthy monitoring
architecture. In legacy systems it was common to store network
accounting data in one system, host and service monitoring state in
another system, and capacity planning telemetry in yet another. This
lack of a unified source of truth often resulted in conflicting infor‐
mation, or worse, the inability (or great difficulty) to correlate dispa‐
rate data sources.
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Now there are inevitably times when it makes sense to have some
overlap (or even duplication) of measurement data, particularly
when the types of questions asked of the data vary significantly. Be
careful not to fall into the trap where you feel you must choose one
tool for all of your data. For example, it often makes sense to keep
rich analytical data in a Hadoop cluster or business-related data in
an Excel spreadsheet. From my experience, the questions you need
to ask of your data should influence the tools you use to store them,
and not the other way around.

Regardless, there will eventually come a time when you need to cor‐
relate your IT and business metrics. Having a unified source of truth
in a service like Graphite will make quick work of those questions
that would often be difficult and time-intensive to answer otherwise.
Powering your alert responses and decision-making with time-series
data gives you a level of intelligence and perspective that simply isn’t
possible with “ping” checks.

But please keep in mind that the discussion of pull-vs-push models
is completely orthogonal to the need for proper time-series collec‐
tion and storage. No matter what your monitoring systems resem‐
ble, you should absolutely have a data visualization service like
Graphite at your disposal, for all the reasons I’ve laid out previously.
I feel strongly about designing your monitoring systems properly,
and that’s why I’ve dedicated almost half of this chapter to a discus‐
sion about the topic. Tough love.

In the next section we’ll describe a modern monitoring architecture
based on the push model. I’m going to explain each functional area
and try to give practical examples for each. But more importantly,
we’ll discuss how Graphite relates to each in order to give you a bet‐
ter understanding of its versatility and how vital a proper time-series
engine is to each layer of the monitoring stack.

Composable Monitoring Systems
If you’ve been in the IT industry for long, there’s a very good chance
that you’ve had to procure or evaluate a commercial vendor’s soft‐
ware product. Their glossy brochure or website almost certainly
checked off all the requirements on your specification and promised
a one-stop comphrehensive “solution”. The overly-attached sales rep
hounded you incessantly, and you finally relented.
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Inevitably, your productivity took a hit because one or more features
wasn’t quite the right fit, didn’t work as described, or worse yet,
didn’t exist at all (despite claims to the contrary). If you’re lucky, you
got a direct response from your rep (who’s no longer nearly as
needy, for some reason) who reached out to their engineering team
and got a roadmap estimate for sometime in the next 6-12 months.
If you weren’t lucky, you got stuck in a confusing loop of Knowledge
Base articles and community forums.

Weeks turned into months, months grinding into years, and before
long you realize that you’re fortunate because someone else took
over your old role while you transitioned into a nice dark cubicle
with a red stapler and a job managing the nightly tape backups.

Now, consider the alternative - an ecosystem of utilities and services
that work as building blocks, allowing you to assemble a monitoring
architecture that’s custom-tailored to the specific needs of your
organization. Components can more easily be upgraded, replaced,
or enhanced without the lock-in usually associated with single-
source vendors or monolithic software products. In many cases, you
can run competing “blocks” in parallel for evaluation with the help
of load-balancing software and related bridge services.

In short, a Composable Monitoring System offers you a level of flex‐
ibility that simply can’t be matched by any other approach.

Even if you have no desire to deploy and manage a multi-faceted
composable monitoring system, it helps to understand the func‐
tional areas involved. Most existing monitoring software products
are built on these discrete components, even if the user interface
completely abstracts the underlying gook from the user.

The components I’m about to introduce are based on well-
established patterns common to both Open Source projects and
commercial services. Having a solid grasp of these concepts will help
you to better understand how all of these different products work
and makes you a more educated “consumer”.
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Figure 3-2. Composable Monitoring System

The diagram in Figure 3-2 demonstrates a typical workflow for data
and interactions within a modular monitoring system. Metrics gen‐
erally flow in a unidirectional pattern, from collection of sensor or
emitter data (i.e. telemetry) to aggregation, into a state engine for
tracking state and thresholds, and eventually to a storage engine for
long-term archival and retrieval. Along the way we may fire off noti‐
fications, and users are almost certainly going to use visualization for
troubleshooting and correlation activities.

Your environment may dictate a different topology or information
flow, and that’s fine. Your monitoring system is much more likely to
be influenced by your existing IT systems design (as it should be)
than my incoherent ramblings. Although the monitoring principles
I espouse here are heavily influenced by real-life production archi‐
tectures at scale, it’s entirely possible that your environment and cir‐
cumstances are sufficiently different as to render my suggestions
moot. In this case I urge you to listen to your own experiences but
study the functional separation of these systems, because the logical
components I’ve described here are universal.

Telemetry
Look, do you wanna play blind man? Go walk with the shepherd.
But me, my eyes are wide fucking open.

—Jules Winnfield
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Collection Agents and Sensors
For operating systems, network services, and even hardware devices,
it’s still common to see many companies using SNMP to collect and
expose (or even extend, using custom shell scripts) their host-level
telemetry. Because they’re able to be emitted or polled at regular
intervals, it’s possible to send them directly to the storage system,
bypassing any sort of aggregation or normalization. Unfortunately,
SNMP has a negative connotation for many users due to it’s archaic
configuration, confusing usage, and questionable security record.

SNMP is not going anywhere soon, at least with
regards to network devices. Manufacturers are starting
to offer the ability to export metrics, typically using
packet sampling protocols like NetFlow or sFlow.
Projects like Evenflow (https://github.com/obfuscurity/
evenflow) provide a bridge service for accepting data
from these types of exports into your metrics stream.

Personally, I’m a big fan of the collectd project (http://collectd.org/).
It’s a highly extensible collection agent that works well on all Linux
distributions and BSD systems. Installation and configuration is
easy and the default setup provides a great out-of-the-box experi‐
ence. Written in C, it performs significantly better and more reliably
than competing collectors. Best of all, it has a huge collection of sup‐
ported input and output plugins, including support for sending
metrics directly to Graphite’s Carbon listener.

Diamond (https://github.com/BrightcoveOS/Diamond) is another
popular collection agent among the Graphite user community.
Because it’s written in Python, many Graphite (another Python app)
developers and users find it a better fit for writing new plugins from
scratch. Regardless of the host-level collection agent you select, it’s
important that you use one that has a solid breadth of coverage for
your particular environment.

Application Instrumentation
Developers, QA engineers and even Operations teams rely on soft‐
ware instrumentation to report telemetry data for tracking perfor‐
mance and identifying bugs in the code they release to production.
Without these measurements, there’s no simple method for accu‐
rately tracing a problem back to its source, or correlating causal rela‐
tionships between systems or services. Proper instrumentation can
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quickly isolate regressions between software versions or deploy‐
ments.

StatsD (https://github.com/etsy/statsd/) is a very popular aggregation
daemon created by engineers at Etsy to aggregate and normalize
metrics before forwarding them to a time-series backend like
Graphite. We’ll touch more about it’s service-side benefits in the
Aggregation section, but it’s an important technology to acknowl‐
edge in terms of application instrumentation. StatsD libraries are
plentiful, offering language bindings for virtually every modern
high-level programming language in use on the Web today.

Using a StatsD client library, developers can fire off new measure‐
ments with a single line of code. It supports timers, counters, and
gauges natively, making it trivial to track durations, cumulative
sums, or rates over time. And perhaps best of all, StatsD is designed
to use the non-blocking and stateless UDP protocol by default. This
means that clients will never have to wait on a StatsD request to
complete; it doesn’t block progress of your code because of e.g. a
remote connection timeout or processing request. This is a signifi‐
cant consideration for developers wanting to collect performance
data on their applications at “Web Scale”.

Example 3-1.

StatsD::increment("widgets.sold");

Logging
It’s worth mentioning that logging is a completely valid alternative to
dedicated instrumentation libraries. Many companies already have a
robust logging pipeline available; this diminishes the need for a
dedicated aggregation service like StatsD or retooling your applica‐
tions with the libraries needed to speak to it.

In fact, the entire Heroku platform emits telemetry data using a
standard log format, leveraging their high-performance distributed
log routing service. Although the logs inevitably get stored in a
high-volume log archival service further down the line, they “drain”
metrics from this “log stream”, applying aggregation rules and for‐
warding it on to their time-series storage system.

If you can print your metrics to STDOUT in a predictable and struc‐
tured format, there are a variety of logging tools that will happily
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parse your entries and convert them into Graphite-compatible met‐
rics. As we’ll see later in the Event Stream and Aggregation sections, a
number of companies use this approach to leverage their existing
logging infrastructure.

Example 3-2.

measure#cache.get=4ms measure.db.get=50ms measure#cache.put=4ms

Business Telemetry
I frequently get asked by colleagues which metrics they should track
in Graphite or related systems. Among the usual suspects of host-
level and application-level metrics, I strongly encourage everyone to
track their Key Performance Indictators (KPI). Unfortunately, there
really is no universal KPI that I can blindly recommend; they’re
going to be unique to your business or organization.

If you’re an online retailer, it’s a no-brainer to track metrics related
to sales and shipments. These reflect the current health of an online
business, but they’re not a useful predictor of future trends. Instead,
think about the relationships and experiences that may cause your
business to falter. Are your customers happy? How can you tell? If
you’re using an online ticketing service, they almost certainly offer
an API where you can track your customer support levels and con‐
vert them into time-series data for Graphite. This sort of KPI may
one day help you explain a downturn in customer retention levels or
even new signups.

Business telemetry is not only useful for predicting trends. Often,
we want to be able to measure the effects of a service outage in real
dollars. Without metrics that describe the health of your sales pipe‐
line or revenue numbers, there’s no quick method for correlating
these events. The engineer that manages to capture this sort of data
and present it on an executive dashboard is going to be viewed in a
very positive light.

Metrics Router
Depending on the size of your company or the complexity of your
production architecture (or lack thereof), you may never find your‐
self needing anything resembling a metrics “Event Stream”. This par‐
ticular pattern is more common in large distributed systems with a
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tremendous volume of telemetry data and the need to support a
variety of emitter and consumer interface formats.

It helps to think of this component as something akin to a metrics
transport or router. In many cases, the need to publish a measure‐
ment and have multiple consumers pull copies of the same data is a
primary driver for these services. Apache’s Kafka (http://
kafka.apache.org/), a “high-throughput distributed messaging sys‐
tem”, is hugely popular for producing centralized feeds of telemetry
data. Projects like Heroku’s Logplex log router (https://github.com/
heroku/logplex) and Mozilla’s Heka stream processing service (http://
hekad.readthedocs.org/) have different approaches but arguably
address the same problem set.

Aggregation
There will be times when it’s necessary to perform aggregation on
your metrics stream. For example, application telemetry tends to be
irregular, firing whenever an event or action occurs. This doesn’t jibe
well with the sequential and predictable nature of time-series data. If
our Whisper policy is designed for 10-second resolution, attempting
to write a few increments in one interval and no metrics at all in the
next interval is going to result in a loss of data in the former and
gaps in the latter. Using aggregation, we can normalize our metrics:
all of the data in the first interval should be summed up before
transmitting, while the second interval should be reported as a zero
(rather than nothing at all, resulting in a null value).

And although Graphite’s render API provides all of the transforma‐
tive functions you’ll probably ever require, asking it to perform a lot
of recalculations on the fly for numerous clients can result in signifi‐
cant CPU overhead in the Graphite web application. Many users
prefer to apply statistical transforms in the aggregation layer (e.g.
summing two metrics to create a new unique metric) before passing
it on to the storage layer. Graphite’s carbon-aggregator is an exam‐
ple of this type of service, and we’ll cover it at greater length in the
next chapter.

We’ve already touched on StatsD in terms of the library support it
offers developers for easy instrumentation of their applications. But
one of my favorite features is its ability to export “value-added” sta‐
tistics for timer measurements. Not only will it tell you the average
(mean) for all timers in an interval, it will also give you: the upper
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and lower boundaries, the total count of timers reported, the
timer_ps of timers per second, the sum and sum_squares, and the
median and std standard deviation. It’s a veritable smorgasbord of
statstical delights.

Last but not least, anyone with a reliance on logging data will want
to look at aggregators like Logstash (http://logstash.net/) to parse the
source logs and convert them into time-series data. Logstash even
has support for StatsD output, or you can configure it to fire your
metrics directly to Graphite’s carbon-cache.

State Engine
In many ways, the state engine acts as the brains of a monitoring
system. It may perform additional services, but it should at least:
track the state of metrics according to their current and recent
measurements in relation to defined thresholds (e.g. upper and
lower boundaries), open alert incidents when a threshold condition
is exceeded, close or resolve alert incidents when a threshold has
recovered, and trigger alert or recovery notifications.

Despite all its warts, Nagios is an effective state engine. I have my
own personal biases against the way it handles acknowledgements
and flapping, but at its core it does a solid job adhering to the basic
requirements for this component. Riemann (http://riemann.io/) and
Sensu (http://sensuapp.org/) are both compelling alternatives to
Nagios here, designed with automation in mind and the goal of
streaming all check results (read: metrics) to a time-series storage
engine like Graphite.

There are other Open Source alternatives that are more strictly
aligned with the Composable Monitoring System design. Heroku’s
Umpire (https://github.com/heroku/umpire) is one of the more
unique designs, specifically built to accept Graphite query defini‐
tions and thresholds. It then analyzes the Graphite response, deter‐
mines whether the response falls within the acceptable threshold
boundaries, and finally returns an HTTP status code 200 (success),
500 (out of range), or 404 (no data). This is a particularly ingenious
design; with the combination of Umpire and any website monitor‐
ing service (e.g. Pingdom), it allows developers to build their own
monitoring checks without needing to commit configuration
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changes to the monitoring system or burdening other IT teams with
routine requests.

Self Service Monitoring
Umpire adheres to the notion of Self Service Monitoring. This is an
approach to monitoring that aims to remove the traditional hurdles
of deploying monitoring system configuration changes. There are
certainly parallels to be made to concepts introduced by the DevOps
movement, but the notion of Self Service Monitoring focuses
squarely on the design of our tools in order to remove telemetry
deployment friction for engineering teams.

Notification Routers
We’ve already discussed Alerting earlier in this chapter, so you
should already be familiar with the basic concepts here. Notification
engines are typically responsible for routing alerts to their desired
destination, which means they should be capable of supporting a
variety of output transports and protocols: Email, SMS, Webhooks
or even other third-party “incident management” services.

Scheduling and escalation management is generally a difficult nut to
crack, so there are unfortunately very few Open Source projects that
address this problem directly. Companies like PagerDuty, OpsGenie
and VictorOps do a very good job solving this concern, and in my
opinion, are well worth the investment.

Storage Engine
Storage engines are responsible for long-term storage and retrieval
of metrics. Due to the nature of time-series data, they need to sup‐
port a heavy write load, but be suited for near-realtime retrieval.
They should include transformative functions (standard arithmetic
and statistical primitives) and support a variety of output formats:
JSON, CSV, SVG and some manner of raw data should be consid‐
ered standard fare these days.

Above all, they should be capable of persisting data to disk for long-
term trending. It’s not sufficient to store metrics in memory for
faster response and then discard or allow them to “fall off ” after a
predetermined interval (that’s cheating!); we should be able to trust
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our storage engine to actually write our data to archive storage in a
reliable manner.

If you’ve been paying attention so far (good on ya, mate), you’ll
probably find it as no great surprise that I recommend using Graph‐
ite as your storage engine. Thanks to its powerful API and
scalability-conscious design, it’s a natural fit as the source of truth for
any monitoring architecture. Newer versions of Graphite include
support for pluggable storage backends (such as Whisper), allowing
users to choose the storage tradeoffs that matter for their particular
use case.

Visualization
For many Graphite users, it might seem unusual to categorize
Graphite as a “Storage Engine” but not necessarily as a visualization
tool. It’s always included support for PNG image output, so why
not?

The world of data visualization has moved steadily away from
server-side static images, adopting modern frameworks like D3.js
(http://d3js.org/), built on standard technologies that incorporate
Javascript, HTML and CSS. These frameworks support a much bet‐
ter interactive experience and offer a huge variety of dynamic new
chart types that even systems like Graphite can’t match. This separa‐
tion of responsibility means that we now have an entire community
of web designers and developers participating in the monitoring and
visualization communities. If you’ve ever seen a Systems Adminis‐
trator design a website, you understand this means a huge advance
in usability (wink).
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Figure 3-3. Sankey Chart

Dashboards in particular have benefitted from these changes. An
enormous ecosystem of dashboard projects and commercial dash‐
board services now exist, able to consume storage engine APIs and
generate useful interfaces for a variety of workflows and organiza‐
tions. We’ll cover some of these dashboards, as well as the client-side
development approach, in Chapter 7.

As an aside, there are server-side benefits to decoupling image gen‐
eration and the storage engine. Data requests from the client
browser to the backend storage engine can take advantage of text
formats like JSON, allowing for increased compression in transit,
resulting in faster data connections and lower bandwidth require‐
ments. Coincidentally, I’m proud to have been ahead of the curve
here. I submitted the original patch for adding JSON format support
to Graphite back in 2011. Fortunately for us all, the JSON format‐
ting code that exists now bears no resemblence to my original patch.

Conclusion
As you can see, there are a ton of functional responsibilities for a
modern monitoring system. Assembling yours (or even just buying
one) will require a lot of considerations and almost certainly some
compromises. I encourage you to take some time to analyze your
current strengths and weaknesses, and to determine which gaps are
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important for you to address right now. For most companies I talk
with, time-series collection and visualization is a vital operational
need for them, which is also probably why you’re reading this book.

Now that you have a solid foundation of monitoring-related vocabu‐
lary and conventions, I feel confident that we can dive head-first
into learning Graphite without too many distractions. The next
chapter is rich with tips and tidbits that will help you get the most
out of Graphite as it grows with your organization. There’s a lot to
absorb, but this knowledge should prepare you for many of the little
surprises that trip up most new users (and even some experienced
ones).
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Deploy Continuous Improvement

The following content is excerpted from Lean Enterprise, by Jez
Humble, Joanne Molesky, and Barry O’Reilly. Availble now.

The paradox is that when managers focus on productivity,
long-term improvements are rarely made. On the other hand,
when managers focus on quality, productivity improves con‐
tinuously.

—John Seddon

In most enterprises, there is a distinction between the people who
build and run software systems (often referred to as “IT”) and those
who decide what the software should do and make the investment
decisions (often called “the business”). These names are relics of a
bygone age in which IT was considered a cost necessary to improve
efficiencies of the business, not a creator of value for external cus‐
tomers by building products and services. These names and the
functional separation have stuck in many organizations (as has the
relationship between them, and the mindset that often goes with the
relationship). Ultimately, we aim to remove this distinction. In high-
performance organizations today, people who design, build, and run
software-based products are an integral part of business; they are
given—and accept—responsibility for customer outcomes. But get‐
ting to this state is hard, and it’s all too easy to slip back into the old
ways of doing things.

Achieving high performance in organizations that treat software as a
strategic advantage relies on alignment between the IT function and
the rest of the organization, along with the ability of IT to execute. It
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1 Schpilberg, D., Berez, S., Puryear, R., and Shah, S. (2007). “Avoiding the Alignment
Trap in Information Technology.” MIT Sloan Management Review Fall 2007.

pays off. In a report for the MIT Sloan Management Review, “Avoid‐
ing the Alignment Trap in Information Technology,” the authors
surveyed 452 companies and discovered that high performers (7%
of the total) spent a little less than average on IT while achieving
substantially higher rates of revenue growth.1

However, how you move from low performance to high perfor‐
mance matters. Companies with poor alignment and ineffective IT
have a choice. Should they pursue alignment first, or try to improve
their ability to execute? The data shows that companies whose IT
capabilities were poor achieve worse results when they pursue align‐
ment with business priorities before execution, even when they put
significant additional investment into aligned work. In contrast,
companies whose engineering teams do a good job of delivering
their work on schedule and simplifying their systems achieve better
business results with much lower cost bases, even if their IT invest‐
ments aren’t aligned with business priorities.

The researchers concluded that to achieve high performance, com‐
panies that rely on software should focus first and foremost on their
ability to execute, build reliable systems, and work to continually
reduce complexity. Only then will pursuing alignment with business
priorities pay off.

However, in every team we are always balancing the work we do to
improve our capability against delivery work that provides value to
customers. In order to do this effectively, it’s essential to manage
both kinds of work at the program and value stream levels. In this
chapter we describe how to achieve this by putting in place a frame‐
work called Improvement Kata. This is the first step we must take to
drive continuous improvement in our execution of large scale pro‐
grams. Once we have achieved this, we can use the tools in the fol‐
lowing chapters to identify and remove no-value-add activity in our
product development process.
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2 This case study is taken from Gruver, G. (2012). A Practical Approach to Large-Scale
Agile Development: How HP Transformed LaserJet FutureSmart Firmware. Addison-
Wesley., supplemented by numerous discussions with Gary Gruver.

The HP LaserJet Firmware Case Study
We will begin with a case study from the HP LaserJet Firmware
team, which faced a problem with both alignment and execution.2

As the name suggests, this was a team working on embedded soft‐
ware, whose customers have no desire to receive software updates
frequently. However, it provides an excellent example of how the
principles described in the rest of Part III work at scale in a dis‐
tributed team, as well as of the economic benefits of adopting them.

HP’s LaserJet Firmware division builds the firmware that runs all
their scanners, printers, and multifunction devices. The team con‐
sists of 400 people distributed across the USA, Brazil, and India. In
2008, the division had a problem: they were moving too slowly.
They had been on the critical path for all new product releases for
years, and were unable to deliver new features: “Marketing would
come to us with a million ideas that would dazzle the customer, and
we’d just tell them, ‘Out of your list, pick the two things you’d like to
get in the next 6–12 months.’” They had tried spending, hiring, and
outsourcing their way out of the problem, but nothing had worked.
They needed a fresh approach.

Their first step was to understand their problem in greater depth.
They approached this by using activity accounting—allocating costs
to the activities the team is performing. Table 4-1 shows what they
discovered.

Table 4-1. Activities of the HP LaserJet Firmware
team in 2008

% of costs Activity

10% Code integration

20% Detailed planning

25% Porting code between version control branches

25% Product support
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3 The distinction between failure demand and value demand comes from John Seddon,
who noticed that when banks outsourced their customer service to call centers, the vol‐
ume of calls rose enormously. He showed that up to 80% of the calls were “failure
demand” of people calling back because their problems were not solved correctly the
first time (Seddon, J. (1992). I Want You to Cheat!: The Unreasonable Guide to Service
and Quality in Organisations. Vanguard Consulting.).

% of costs Activity

15% Manual testing

~5% Innovation

This revealed a great deal of no-value-add activity in their work,
such as porting code between branches and detailed upfront plan‐
ning. The large amount spent on current product support also indi‐
cated a problem with the quality of the software being produced.
Money spent on support is generally serving failure demand, as dis‐
tinct from value demand, which was only driving 5% of the team’s
costs.3

The team had a goal of increasing the proportion of spending on
innovation by a factor of 10. In order to achieve that goal, they took
the bold but risky decision to build a new firmware platform from
scratch. There were two main architectural goals for the new “Futur‐
eSmart” platform. The first goal was to increase quality while reduc‐
ing the amount of manual testing required for new firmware relea‐
ses (a full manual testing cycle required six weeks). The team hoped
that this goal could be achieved through:

• The practice of continuous integration (which we describe in
Chapter 8)

• Significant investment in test automation
• Creating a hardware simulator so that tests could be run on a

virtual platform
• Reproduction of test failures on developer workstations

Three years into the development of the new firmware, thousands of
automated tests had been created.

Second, they wanted to remove the need for the team to spend time
porting code between branches (25% of total costs on the existing
system). This was caused by the need to create a branch—effectively
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a copy of the entire codebase—for every new line of devices under
development. If a feature or bug-fix added to one line of devices was
required for any others, these changes would need to be merged
(copied back) into the relevant code branches for the target devices,
as shown in Figure 4-1. Moving away from branch-based develop‐
ment to trunk-based development was also necessary to implement
continuous integration. Thus the team decided to create a single,
modular platform that could run on any device, removing the need
to use version control branches to handle the differences between
devices.

The final goal of the team was to reduce the amount of time its
members spent on detailed planning activities. The divisions
responsible for marketing the various product lines had insisted on
detailed planning because they simply could not trust the firmware
team to deliver. Much of this time was spent performing detailed re-
plans after failing to meet the original plans.

Furthermore, the team did not know how to implement the new
architecture, and had not used trunk-based development or contin‐
uous integration at scale before. They also understood that test auto‐
mation would require a great deal of investment. How would they
move forward?

Figure 4-1. Branching versus trunk-based development
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4 Rother, M. (2010). Toyota Kata: Managing People for Improvement, Adaptiveness, and
Superior Results. McGraw-Hill.

5 Rother, M. (2014).

It’s all too easy to turn a sequence of events into a story in an attempt
to explain the outcome—a cognitive bias that Nassim Taleb terms
the narrative fallacy. This is, arguably, how methodologies are born.
What struck us when studying the FutureSmart case were the simi‐
larities between the program management method of FutureSmart’s
engineering management team and the approach Toyota uses to
manage innovation as described in Mike Rother’s Toyota Kata: Man‐
aging People for Improvement, Adaptiveness, and Superior Results.4

Drive Down Costs Through Continuous Process
Innovation Using the Improvement Kata
The Improvement Kata, as described by Mike Rother, is a general-
purpose framework and a set of practice routines for reaching goals
where the path to the goal is uncertain. It requires us to proceed by
iterative, incremental steps, using very rapid cycles of experimenta‐
tion. Following the Improvement Kata also increases the capabilities
and skills of the people doing the work, because it requires them to
solve their own problems through a process of continuous experi‐
mentation, thus forming an integral part of any learning organiza‐
tion. Finally, it drives down costs through identifying and eliminat‐
ing waste in our processes.

The Improvement Kata needs to be first adopted by the organiza‐
tion’s management, because it is a management philosophy that
focuses on developing the capabilities of those they manage, as well
as on enabling the organization to move towards its goals under
conditions of uncertainty. Eventually, everybody in the organization
should be practicing the Improvement Kata habitually to achieve
goals and meet challenges. This is what creates a culture of continu‐
ous improvement, experimentation, and innovation.

To understand how this works, let’s examine the concept of kata
first. A kata is “a routine you practice deliberately, so its pattern
becomes a habit.”5 Think of practicing scales to develop muscle
memory and digital dexterity when learning the piano, or practicing
the basic patterns of movement when learning a martial art (from
which the term derives), or a sport. We want to make continuous
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improvement a habit, so that when faced with an environment in
which the path to our goal is uncertain, we have an instinctive,
unconscious routine to guide our behavior.

In Toyota, one of the main tasks of managers is to teach the
Improvement Kata pattern to their teams and to facilitate running it
(including coaching learners) as part of everyday work. This equips
teams with a method to solve their own problems. The beauty of this
approach is that if the goal or our organization’s environment
changes, we don’t need to change the way we work—if everybody is
practicing the Improvement Kata, the organization will automati‐
cally adapt to the new conditions.

The Improvement Kata has four stages that we repeat in a cycle, as
shown in Figure 4-2.

Figure 4-2. The Improvement Kata, courtesy of Mike Rother

Understand the Direction
We begin with understanding the direction. Direction is derived
from the vision set by the organization’s leadership. A good vision is
one that is inspiring—and, potentially, unattainable in practice. For
example, the long-term vision for Toyota’s production operations is
“One-piece flow at lowest possible cost.” In Leading Lean Software
Development, Mary and Tom Poppendieck describe Paul O’Neill set‐
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6 Poppendieck, M. and Poppendieck, T. (2009). Leading Lean Software Development:
Results Are Not the Point. Addison-Wesley., Frame 13, “Visualize Perfection.”

ting the objective for Alcoa to be “Perfect safety for all people who
have anything to do with Alcoa” when he became CEO in 1987.6

People need to understand that they must always be working
towards the vision and that they will never be done with improve‐
ment. We will encounter problems as we move towards the vision.
The trick is to treat them as obstacles to be removed through experi‐
mentation, rather than objections to experimentation and change.

Based on our vision and following the Principle of Mission, we must
understand the direction we are working in, at the level of the whole
organization and at the value stream level. This challenge could be
represented in the form of a future-state value stream map (see
Chapter 7 for more on value stream mapping). It should result in a
measurable outcome for our customers, and we should plan to ach‐
ieve it in six months to three years.

Planning: Grasp the Current Condition and Establish a
Target Condition
After we have understood the direction at the organizational and
value stream levels, we incrementally and iteratively move towards it
at the process level. Rother recommends setting target conditions
with a horizon between one week and three months out, with a pref‐
erence for shorter horizons for beginners. For teams that are using
iterative, incremental methods to perform product development, it
makes sense to use the same iteration (or sprint) boundaries for
both product development and Improvement Kata iterations. Teams
that use flow-based methods such as the Kanban Method (for which
see Chapter 7) and continuous delivery (described in Chapter 8) can
create Improvement Kata iterations at the program level.

As with all iterative product development methods, Improvement
Kata iterations involve a planning part and an execution part. Here,
planning involves grasping the current condition at the process level
and setting a target condition that we aim to achieve by the end of
the next iteration.

Analyzing the current condition “is done to obtain the facts and data
you need in order to then describe an appropriate next target condi‐
tion. What you’re doing is trying to find the current pattern of oper‐
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7 Rother, M. (2014). Improvement Kata Handbook. Available from http://bit.ly/11iBzlY.

8 Rother, M. (2014). Improvement Kata Handbook. Available from http://bit.ly/11iBzlY.

ation, so you can establish a desired pattern of operation (a target
condition).” The target condition “describes in measurable detail
how you want a process to function…[It is] a description and speci‐
fication of the operating pattern you want a process or system to
have on a future date.”7

The team grasps the current condition and establishes a target con‐
dition together. However, in the planning phase the team does not
plan how to move to the target condition. In the Improvement Kata,
people doing the work strive to achieve the target condition by per‐
forming a series of experiments, not by following a plan.

A target condition identifies the process being addressed, sets the
date by which we aim to achieve the specified condition, and speci‐
fies measurable details of the process as we want it to exist. Exam‐
ples of target conditions include WIP (work in progress) limits, the
implementation of Kanban or a continuous integration process, the
number of good builds we expect to get per day, and so forth.

Getting to the Target Condition
Since we are engaging in process innovation in conditions of uncer‐
tainty, we cannot know in advance how we will achieve the target
condition. It’s up to the people doing the work to run a series of
experiments using the Deming cycle (plan, do, check, act), as
described in Chapter 3. The main mistakes people make when fol‐
lowing the Deming cycle are performing it too infrequently and tak‐
ing too long to complete a cycle. With Improvement Kata, every‐
body should be running experiments on a daily basis.

Each day, people in the team go through answering the following
five questions:8

1. What is the target condition?
2. What is the actual condition now?
3. What obstacles do you think are preventing you from reaching

the target condition? Which one are you addressing now?
4. What is your next step? (Start of PDCA cycle.) What do you

expect?

Drive Down Costs Through Continuous Process Innovation Using the Improvement Kata | 87

DRAFT VERSION - UNCORRECTED PROOF

http://bit.ly/11iBzlY
http://bit.ly/11iBzlY


5. When can we go and see what we learned from taking that step?

As we continuously repeat the cycle, we reflect on the last step taken
to introduce improvement. What did we expect? What actually hap‐
pened? What did we learn? We might work on the same obstacle for
several days.

This experimental approach is already central to how engineers and
designers work. Designers who create and test prototypes to reduce
the time taken by a user to complete a task are engaged in exactly
this process. For software developers using test-driven development,
every line of production code they write is essentially part of an
experiment to try and make a unit test pass. This, in turn, is a step
on the way to improving the value provided by a program—which
can be specified in the form of a target condition, as we describe in
Chapter 9.

The Improvement Kata is simply a generalization of this approach
to improvement, combined with applying it at multiple levels of the
organization, as we discuss when presenting strategy deployment in
Chapter 15.

How the Improvement Kata Differs from Other
Methodologies
You can think of the Improvement Kata as a meta-methodology since
it does not apply to any particular domain, nor does it tell you what
to do. It is not a playbook; rather, as with the Kanban Method, it
teaches teams how to evolve their existing playbook. In this sense, it
differs from other agile frameworks and methodologies. With the
Improvement Kata, there is no need to make existing processes con‐
form to those specified in the framework; process and practices you
use are expected to evolve over time. This is the essence of agile:
teams do not become agile by adopting a methodology. Rather, true
agility means that teams are constantly working to evolve their pro‐
cesses to deal with the particular obstacles they are facing at any
given time.
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9 Argyris, C. and Schön, D. (1978). Organizational Learning: A Theory of Action Perspec‐
tive. Addison Wesley., pp. 2–3.

Single-Loop Learning and Double-Loop Learning

Changing the way we think and behave in reaction to a
failure is crucial to effective learning. This is what dis‐
tinguishes single-loop learning from double-loop learn‐
ing (see Figure 4-3). These terms were coined by man‐
agement theorist Chris Argyris, who summarizes them
as follows: “When the error detected and corrected
permits the organization to carry on its present poli‐
cies or achieve its present objectives, then that error-
and-correction process is single-loop learning. Single-
loop learning is like a thermostat that learns when it is
too hot or too cold and turns the heat on or off. The
thermostat can perform this task because it can receive
information (the temperature of the room) and take
corrective action. Double-loop learning occurs when
error is detected and corrected in ways that involve the
modification of an organization’s underlying norms,
policies and objectives.”9 Argyris argues that the main
barrier to double-loop learning is defensiveness when
confronted with evidence that we need to change our
thinking, which can operate at both individual and
organizational levels. We discuss how to overcome this
anxiety and defensiveness in Chapter 11.

Figure 4-3. Single-loop and double-loop learning
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10 Gruver, G. (2012). A Practical Approach to Large-Scale Agile Development: How HP
Transformed LaserJet FutureSmart Firmware. Addison-Wesley., p. 144.

When you practice the Improvement Kata, process improvement
becomes planned work, similar to building product increments. The
key is that we don’t plan how we will achieve the target condition,
nor do we create epics, features, stories, or tasks. Rather, the team
works this out through experimentation over the course of an itera‐
tion.

Deploying the Improvement Kata
Rother’s work on the Improvement Kata was a direct result of his
enquiry into how people become managers at Toyota. There is no
formal training program, nor is there any explicit instruction. How‐
ever, to become a manager at Toyota, one must have first worked on
the shop floor and therefore participated in the Improvement Kata.
Through this process, managers receive implicit training in how to
manage at Toyota.

This presents a problem for people who want to learn to manage in
this way or adopt the Improvement Kata pattern. It is also a prob‐
lem for Toyota—which is aiming to scale faster than is possible
through what is effectively an apprenticeship model for managers.

Consequently, Rother presents the Coaching Kata in addition to the
Improvement Kata. It is part of deploying the Improvement Kata,
but it is also as a way to grow people capable of working with the
Improvement Kata, including managers.

Rother has made a guide to deploying the Improvement Kata, The
Improvement Kata Handbook, available for free on his website at
http://bit.ly/11iBzlY.

How the HP LaserJet Team Implemented the
Improvement Kata
The direction set by the HP LaserJet leadership was to improve
developer productivity by a factor of 10, so as to get firmware off the
critical path for product development and reduce costs.10 They had
three high-level goals:

1. Create a single platform to support all devices
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11 Gruver, G. (2012). A Practical Approach to Large-Scale Agile Development: How HP
Transformed LaserJet FutureSmart Firmware. Addison-Wesley., p. 40.

12 Ibid.

2. Increase quality and reduce the amount of stabilization required
prior to release

3. Reduce the amount of time spent on planning

They did not know the details of the path to these goals and didn’t
try to define it. The key decision was to work in iterations, and set
target conditions for the end of each four-week iteration. The target
conditions for Iteration 30 (about 2.5 years into the development of
the FutureSmart platform) are shown in Figure 4-4.

The first thing to observe is that the target conditions (or “exit crite‐
ria” as they are known in FutureSmart) are all measurable condi‐
tions. Indeed, they fulfill all the elements of SMART objectives: they
are specific, measurable, achievable, relevant, and time bound (the
latter by virtue of the iterative process). Furthermore, many of the
target conditions were not focused on features to be delivered but
on attributes of the system, such as quality, and on activities
designed to validate these attributes, such as automated tests. Finally,
the objectives for the entire 400-person distributed program for a
single month was captured in a concise form that fit on a single
piece of paper—similar to the standard A3 method used in the
Toyota Production System.

How are the target conditions chosen? They are “aggressive goals
the team feels are possible and important to achieve in 4 weeks…We
typically drive hard for these stretch goals but usually end up hitting
around 80% of what we thought we could at the beginning of the
month.”11 Often, target conditions would be changed or even drop‐
ped if the team found that the attempt to achieve them results in
unintended consequences: “It’s surprising what you learn in a month
and have to adjust based on discovery in development.”12
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2013. Reprinted by permission of Pearson Education, Inc. Upper Saddle River, NJ.

Figure 4-4. Target conditions for iteration 3013
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14 Gilb, T. (1988). Principles of Software Engineering Management. Addison-Wesley., p. 91.

What Happens When We Do Not Achieve Our Target
Conditions?

In bureaucratic or pathological organizational cultures,
not achieving 100% of the specified target conditions is
typically considered a failure. In a generative culture,
however, we expect to not be able to achieve all our tar‐
get conditions. The purpose of setting aggressive target
conditions is to reveal obstacles so we can overcome
them through further improvement work. Every itera‐
tion should end with a retrospective (described in
Chapter 11) in which we investigate how we can get
better. The results form part of the input for the next
iteration’s target conditions. For example, if we fail to
achieve a target condition for the number of good
builds of the system per day, we may find that the
problem is that it takes too long to provision test envi‐
ronments. We may then set a target condition to
reduce this in the next iteration.
This approach is a common thread running through
all of Lean Thinking. The subtitle of Mary and Tom
Poppendieck’s book Leading Lean Software Develop‐
ment reads: “Results are not the point.” This is a provo‐
cative statement that gets to the heart of the lean mind‐
set. If we achieve the results by ignoring the process,
we do not learn how to improve the process. If we do
not improve the process, we cannot repeatably achieve
better results. Organizations that put in place unmodi‐
fiable processes that everybody is required to follow,
but which get bypassed in a crisis situation, fail on
both counts.

This adaptive, iterative approach is not new. Indeed it has a great
deal in common with what Tom Gilb proposed in his 1988 work
Principles of Software Engineering Management:14

We must set measurable objectives for each next small delivery
step. Even these are subject to constant modification as we
learn about reality. It is simply not possible to set an ambitious
set of multiple quality, resource, and functional objectives, and
be sure of meeting them all as planned. We must be prepared
for compromise and trade-off. We must then design (engineer)
the immediate technical solution, build it, test it, deliver it—
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and get feedback. This feedback must be used to modify the
immediate design (if necessary), modify the major architec‐
tural ideas (if necessary), and modify both the short-term and
the long-term objectives (if necessary).
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16 Gruver, G. (2012). A Practical Approach to Large-Scale Agile Development: How HP
Transformed LaserJet FutureSmart Firmware. Addison-Wesley., p. 89.

Designing for Iterative Development
In large programs, demonstrating improvement within an iteration
requires ingenuity and discipline. It’s common to feel we can’t pos‐
sibly show significant progress within 2–4 weeks. Always try to find
something small to bite off to achieve a little bit of improvement,
instead of trying to do something you think will have more impact
but will take longer.

This is not a new idea, of course. Great teams have been working
this way for decades. One high-profile example is the Apple Macin‐
tosh project where a team of about 100 people—co-located in a sin‐
gle building—designed the hardware, operating system, and appli‐
cations for what was to become Apple’s breakthrough product.

The teams would frequently integrate hardware, operating system,
and software to show progress. The hardware designer, Burrell
Smith, employed programmable logic chips (PALs) so he could
prototype different approaches to hardware design rapidly in the
process of developing the system, delaying the point at which it
became fixed—a great example of the use of optionality to delay
making final decisions.15

After two years of development, the new firmware platform, Futur‐
eSmart, was launched. As a result, HP had evolved a set of processes
and tools that substantially reduced the cost of no-value-add activi‐
ties in the delivery process while significantly increasing productiv‐
ity. The team was able to achieve “predictable, on-time, regular
releases so new products could be launched on time.”16 Firmware
moved off the critical path for new product releases for the first time
in twenty years. This, in turn, enabled them to build up trust with
the product marketing department.

As a result of the new relationship between product marketing and
the firmware division, the FutureSmart team was able to considera‐
bly reduce the time spent on planning. Instead of “committing to a
final feature list 12 months in advance that we could never deliver
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17 Gruver (2012), p. 67.

18 Gruver, Gary, Young, Mike, Fulghum, Pat. A Practical Approach to Large-Scale Agile
Development: How HP Transformed LaserJet FutureSmart Firmware, 1st Edition, (c)
2013. Reprinted by permission of Pearson Education, Inc. Upper Saddle River, NJ.

due to all the plan changes over the time,”17 they looked at each plan‐
ned initiative once every 6 months and did a 10-minute estimate of
the number of months of engineering effort required for a given ini‐
tiative, broken down by team. More detailed analysis would be per‐
formed once work was scheduled into an iteration or mini-
milestone. An example of the output from one of these exercises is
shown in Figure 4-5.

Figure 4-5. Ballpark estimation of upcoming initiatives18

This is significantly different from how work is planned and estima‐
ted in large projects that often create detailed functional and archi‐
tectural epics which must be broken down into smaller and smaller
pieces, analyzed in detail, estimated, and placed into a prioritized
backlog before they are accepted into development.
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Ultimately the most important test of the planning process is
whether we are able to keep the commitments we make to our stake‐
holders, including end users. As we saw, a more lightweight plan‐
ning process resulted in firmware development moving off the criti‐
cal path, while at the same time reducing both development costs
and failure demand. Since we would expect failure demand to
increase as we increase throughput, this is doubly impressive.

Three years after their initial measurements, a second activity-
accounting exercise offered a snapshot of the results the FutureS‐
mart team had achieved with their approach, shown in Table 4-2.

Table 4-2. Activity of the HP LaserJet Firmware Team in
2011

% of costs Activity Previously

2% Continuous integration 10%

5% Agile planning 20%

15% One main branch 25%

10% Product support 25%

5% Manual testing 15%

23% Creating and maintaining automated test suites 0%

~40% Innovation ~5%

Overall, the HP LaserJet Firmware division changed the economics
of the software delivery process by adopting continuous delivery,
comprehensive test automation, an iterative and adaptive approach
to program management, and a more agile planning process.

Economic Benefits of HP FutureSmart’s Agile
Transformation

• Overall development costs were reduced by ~40%.
• Programs under development increased by ~140%.
• Development costs per program went down 78%.
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• Resources driving innovation increased eightfold.

The most important point to remember from this case study is that
the enormous cost savings and improvements in productivity were
only possible on the basis of a large and ongoing investment made by
the team in test automation and continuous integration. Even today,
many people think that Lean is a management-led activity and that
it’s about simply cutting costs. In reality, it requires investing to
remove waste and reduce failure demand—it is a worker-led activity
that, ultimately, can continuously drive down costs and improve
quality and productivity.

Managing Demand
Up to now, we’ve been discussing how to improve the throughput
and quality of the delivery process. However, it is very common for
this kind of improvement work to get crowded out by business
demands, such as developing new features. This is ironic, given that
the whole purpose of improvement work is to increase the rate at
which we can deliver as well as the quality of what gets delivered. It’s
often hard to make the outcome of improvement work tangible—
which is why it’s important to make it visible by activity accounting,
including measuring the cycle time and the time spent serving fail‐
ure demand such as rework.

The solution is to use the same mechanism to manage both demand
and improvement work. One of the benefits of using the Improve‐
ment Kata approach is that it creates alignment to the outcomes we
wish to achieve over the next iteration across the whole program. In
the original Improvement Kata, the target conditions are concerned
with process improvement, but we can use them to manage demand
as well.

There are two ways to do this. In organizations with a generative
culture (see Chapter 1), we can simply specify the desired business
goals as target conditions, let the teams come up with ideas for fea‐
tures, and run experiments to measure whether they will have the
desired impact. We describe how to use impact mapping and
hypothesis-driven development to achieve this in Chapter 9. How‐
ever, more traditional enterprises will typically have a backlog of
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work prioritized at the program level by its lines of business or by
product owners.

We can take a few different approaches to integrating a program-
level backlog with the Improvement Kata. One possibility is for
teams working within the program to deploy the Kanban Method,
as described in Chapter 7. This includes the specification of work in
process (WIP) limits which are owned and managed by these teams.
New work will only be accepted when existing work is completed
(where “completed” means it is at least integrated, fully tested with
all test automation completed, and shown to be deployable).

Managing Cross-Cutting Work

Implementing some features within a program will
involve multiple teams working together. To achieve
this, the HP FutureSmart division would set up a
small, temporary “virtual” feature team whose job is to
coordinate work across the relevant teams. 

The HP FutureSmart program, some of whose teams were using
Scrum, took the approach of specifying a target velocity at the pro‐
gram level. Work adding up to the target velocity was accepted for
each iteration, approximating a WIP limit. In order to implement
this approach, all work was analyzed and estimated at a high level
before being accepted. Analysis and estimation was kept to the bare
minimum required to be able to consistently meet the overall
program-level target conditions, as shown in Figure 4-5.
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Do Not Use Team Velocity Outside Teams

It is important to note that specifying a target velocity
at the program level does not require that we attempt
to measure or manage velocity at the team level, or that
teams must use Scrum. Program-level velocity specifies
the expected work capacity of all teams based on high-
level estimates, as shown in Figure 4-5. If a team using
Scrum accepts work based on these high-level feature
specifications, they then create lower-level stories with
which to work.
Scrum’s team-level velocity measure is not all that
meaningful outside of the context of a particular team.
Managers should never attempt to compare velocities
of different teams or aggregate estimates across teams.
Unfortunately, we have seen team velocity used as a
measure to compare productivity between teams, a
task for which it is neither designed nor suited. Such
an approach may lead teams to “game” the metric, and
even to stop collaborating effectively with each other.
In any case, it doesn’t matter how many stories we
complete if we don’t achieve the business outcomes we
set out to achieve in the form of program-level target
conditions.
In this and the next chapter, we describe a much more
effective way to measure progress and manage produc‐
tivity—one that does not require all teams to use
Scrum or “standardize” estimates or velocity. We use
activity accounting and value stream mapping
(described in Chapter 7) to measure productivity, and
we use value stream mapping combined with the
Improvement Kata to increase it—crucially, at the
value stream level rather than at the level of individual
teams. We measure and manage progress through the
use of target conditions at the program level, and if we
need to increase visibility, we reduce the duration of
iterations.

Creating an Agile Enterprise
Many organizations look to try and adopt agile methods to improve
the productivity of their teams. However, agile methods were origi‐
nally designed around small, cross-functional teams, and many
organizations have struggled to use these methods at scale. Some
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19 Gruver (2012), Chapter 15.

20 Gruver (2012), p. 38.

21 Perhaps it’s better characterized as “Management by Wandering Around and Asking
Questions.” In the Toyota Production System, this is known as a gemba walk.

frameworks for scaling agile focus on creating such small teams and
then adding structures to coordinate their work at the program and
portfolio level.

Gary Gruver, Director of Engineering for FutureSmart, contrasts
this approach of “trying to enable the efficiencies of small agile
teams in an enterprise” with the FutureSmart team’s approach of
“trying to make an enterprise agile using the basic agile principles.”19

In the FutureSmart approach, while the teams ran within tight guide
rails in terms of engineering practices (which we discuss in more
detail in Chapter 8), there was relatively little attention paid to
whether they had, for example, implemented Scrum at the team
level. Instead, teams have relative autonomy to choose and evolve
their own processes, provided they are able to meet the program-
level target conditions for each iteration.

This required that engineering management had the freedom to set
their own program-level objectives. That is, they didn’t have to get
budget approval to pay for process improvement work such as test
automation or building out the toolchain for continuous integration.
Indeed, the business wasn’t even consulted on this work. All busi‐
ness demand was also managed at the program level. Notably, prod‐
uct marketing requests always went through the program-level pro‐
cess, without feeding work directly to teams.

Another important consideration is the way enterprises treat met‐
rics. In a control culture, metrics and targets are often set centrally
and never updated in response to the changes in behavior they pro‐
duce. Generative organizations don’t manage by metrics and targets.
Instead, the FutureSmart management “use[s] the metrics to under‐
stand where to have conversations about what is not getting done.”20

This is part of the strategy of “Management by Wandering Around”
pioneered by HP founders Bill Hewlett and Dave Packard.21 Once
we discover a problem, we ask the team or person having a hard
time what we can do to help. We have discovered an opportunity to
improve. If people are punished for failing to meet targets or met‐
rics, one of the fallouts is that they start manipulating work and
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information to look like they are meeting the targets. As FutureS‐
mart’s experience shows, having good real-time metrics is a better
approach than relying on scrums, or scrums of scrums, or Project
Management Office reporting meetings to discover what is going
on. 

Conclusion
The Improvement Kata provides a way to align teams and, more
generally, organizations by taking goals and breaking them down
into small, incremental outcomes (target conditions) that get us
closer to our goal. The Improvement Kata is not just a meta-
methodology for continuous improvement at the enterprise and
program level; it is a way to push ownership for achieving those
outcomes to the edges of the organization, following the Principle of
Mission. As we show in Chapter 9, it can also be used to run large
programs of work.

The key characteristics of the Improvement Kata are its iterativeness
and the ability to drive an experimental approach to achieve the
desired target conditions, which makes it suitable for working in
conditions of uncertainty. The Improvement Kata is also an effective
way to develop the capabilities of people throughout the enterprise
so they can self-organize in response to changing conditions.

The FutureSmart case study shows how a large, distributed team
applied the Improvement Kata meta-method to increase productiv‐
ity eightfold, improving quality and substantially reducing costs.
The processes and tools the team used to achieve this transforma‐
tion changed and evolved substantially over the course of the
project. This is characteristic of a truly agile organization.

Implementing an enterprise-level continuous improvement process
is a prerequisite for any ongoing large-scale transformation effort
(such as adopting an agile approach to software delivery) at scale.
True continuous improvement never ends because, as our organiza‐
tion and environment evolve, we find that what works for us today
will not be effective when conditions change. High-performance
organizations are constantly evolving to adapt to their environment,
and they do so in an organic way, not through command and con‐
trol.

Questions for readers:
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• Do you know how much time your engineering organization is
spending on no-value-add activities and servicing failure
demand versus serving value demand, and what the major sour‐
ces of waste are?

• Must engineering teams get permission to invest in work that
reduces waste and no-value-add activity across the value stream
as a whole, such as build, test, and deployment automation and
refactoring? Are such requests denied for reasons such as “there
is no budget” or “we don’t have time”?

• Does everyone within the organization know the short- and
long-term outcomes they are trying to achieve? Who decides
these outcomes? How are they set, communicated, reviewed,
and updated?

• Do teams in your organization regularly reflect on the processes
they use and find ways to experiment to improve them? What
feedback loops are in place to find out which ideas worked and
which didn’t? How long does it take to get this feedback?
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IT as Conversational Medium

The following content is excerpted from Designing Delivery, by Jeff
Sussna. Available now in Early Release.

Serving as a medium for digital conversation is IT’s new mandate.
Responding to this mandate means radically transforming IT’s
understanding of its purpose, as well as its approach to fulfilling that
purpose. It means replacing information systems management with
empathic conversation as both the driving force and the ultimate
goal by which post-industrial IT measures itself.

IT has traditionally taken an industrial approach to building and
operating systems. It has concentrated on implementing large-scale
solutions with high up-front costs and equally large presumed
return-on-investment. Development has proceeded in linear phases,
from initial conception, through design, development, and testing,
to completion. Project management has used sophisticated tools and
processes which have required specialized expertise.

IT took this approach under the impression that it could, and must,
predict needs and capabilities in advance. Business requirements
were seen to be highly complicated, and thus to need highly compli‐
cated solutions and solution implementations. IT organizations
invested millions of dollars in software solutions such as Enterprise
Resource Planning (ERP) systems that were intended to model the
entire business.

All-encompassing enterprise projects took years to deploy, and often
cost as much to implement as they did to buy. Sadly, more projects
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failed than succeeded. IT developed a reputation for an inability to
reliably deliver on its claims. Large-scale IT projects generally failed
for three reasons:

• The project plan failed to accurately predict or account for the
challenges that inevitably accompany complicated system
implementations

• The requirements failed to accurately model users’ real needs
• Over the course of a lengthy implementation project, users’

needs changed

From a cybernetic perspective, the reasons for failure are obvious.
Traditional IT project planning and management had no mecha‐
nism for incorporating feedback. It had no way to self-correct, other
than by throwing away months or years of work and starting over.

IT’s inability to reliably or efficiently deploy useful solutions is just
the beginning of its troubles. It also struggles to operate those sys‐
tems. Once an IT organization has managed to deploy a compli‐
cated, expensive software system, it needs to keep that system run‐
ning. Change introduces uncertainty and risk; IT therefore prefers
to minimize change.

IT traditionally minimizes risk and manages uncertainty through
formal processes. Methodologies such as ITIL give IT a handle on
change; unfortunately, it does so by introducing bureaucracy and
friction. In addition to its reputation for outright failure, IT has thus
gained an unfortunate reputation for slowness and lack of respon‐
siveness. As a result, industrial IT lacks important characteristics
that define a conversational medium. It has neither the ability to
move quickly, nor to change direction quickly. It lacks a mechanism
for incorporating feedback from the rest of the company, and more
importantly, for helping the company do the same with its custom‐
ers.

Some IT organizations, though, have begun adopting an interrelated
set of new practices. Together, these practices have the potential to
compose the digital medium post-industrial businesses need in
order to self-steer through empathic conversations. Chief among
them are:

• Agile
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• DevOps
• Cloud Computing
• Design Thinking

These practices all share a cybernetic model of control. This chapter
examines them in turn, exploring the specific ways each one helps
digital businesses improve service through feedback-based adapta‐
tion. It then describes how they come together to create a unified,
empathic, conversational medium.

Agile
In February of 2001, seventeen early adopters of so-called “light”
software development methodologies gathered at the Snowbird ski
resort in Utah. They came together to seek common ground
between their various approaches. The result is generally considered
to be the formal birth of the Agile Software movement. It took the
form of a manifesto that expressed four main values:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Since then, the Agile movement has manifested through a variety of
specific practices. Some, such as Extreme Programming and Scrum,
were represented at Snowbird, and have continued through to today.
Others have evolved in the intervening years. They all, though, share
key characteristics that make Agile the grandfather of cybernetic
approaches to delivering software.

The word “agile” means “quick and light in movement”. Agile arose
out of frustration with traditional, heavyweight, “waterfall” software
development methodologies. The software industry had become
infamous for projects that ran over budget and schedule, while fail‐
ing to deliver what customers really needed. Software project man‐
agement generally followed an approach one might describe as anti-
cybernetic. It was considered important to “get the requirements
right up front”. Development shouldn’t start until you understood,
and expressed, the project’s requirements in full detail. Testing
shouldn’t start until development was believed to be complete.
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The waterfall model suffered from key conceptual shortcomings.
Requirements are very difficult to “get right” without feedback. First,
it’s difficult for users to understand and articulate their own needs.
Second, it’s hard for designers to accurately understand what users
are trying to say. The design industry’s use of prototyping reflects
their recognition of these realities. Finally, even if a user under‐
stands what they need, and can communicate it to a designer, that
need is likely to change to some degree by the time it’s been fully
implemented.

Waterfall projects are thus almost inevitably doomed to build things
that don’t properly match users’ needs. Even in the case where an
up-front design succeeds, the sequential approach to development
and testing generates waste, adds complexity, and compounds
errors. Testing can’t actually happen “after” development. Bugs must
be fixed and then retested. Fixing bugs is part of development. Test‐
ing is by definition an iterative and circular process.

Not starting testing until late in the process bunches up large num‐
bers of bugs. Those bugs apply to months worth of code changes.
Debugging and fixing them is complex and time-consuming. Some
of this complexity comes from trying to analyze code written a long
time ago, while some comes from trying to determine which of
many code changes introduced the bug.

Agile methodologies combat the shortcomings of waterfall by break‐
ing development into shorter iterations. Each iteration contains a
design/development/testing cycle. It ends with presentation of
working software to users. The benefits of this approach all have to
do with speeding up the feedback loop. Testing happens more
quickly after code has been written. Bug-fixing addresses smaller,
more manageable change sets. Users see the results of development
sooner and more often. They have the chance to say “that’s not quite
what I meant” with less painful impact. Development teams are thus
less shy about getting feedback and making changes. The result is a
process that lets a software organization steer its way to genuine cus‐
tomer value.

Continuous Integration
Some Agile teams go even further in integrating testing deeply into
the development process. Unit testing makes test-writing part of the
developer’s job. With unit tests, tests get run every time the software
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gets built, rather than either at the end of the development cycle or
the end of an iteration. Continuous Integration (CI) drives this
approach to its ultimate conclusion by ensuring the software gets
built, and tested, every time any developer commits a change. CI
shrinks the distance between change and feedback to the smallest
possible increment. It makes identifying, diagnosing, and repairing
bugs as simple as possible by drastically constraining the amount of
change being tested at one time.

Agile understands the importance of testing as a feedback mecha‐
nism. Without continuous, specific information about the gap
between expected and actual in the past, steering into the future
can’t happen. Scrum uses the practice of retrospectives to take team-
level self-steering even further. A retrospective is a regularly-
scheduled pause in the iterative development cadence to gather
feedback about how well the team’s process is working. Retrospec‐
tives give every team member the chance to reflect on, and discuss
what went well, what didn’t go well, and what could or should be
adjusted in future iterations.

Self-Organization
In order to maximize user feedback, Agile emphasizes integrated
teams that foster communication and collaboration across disci‐
plines. Testers and product owners, both of whom represent cus‐
tomers’ needs and priorities, participate as team members rather
than third parties. Some technical teams even integrate design and
marketing representatives. Incorporating diverse perspectives lets
agile teams understand and resolve gaps between desired and actual
results more quickly, thus enabling them to accomplish better work
more efficiently.

Agile also emphasizes the power of self-organizing teams. Breaking
from the Taylorist industrial tradition, self-organizing teams rely on
their members to cooperatively define as well as execute work.
Teamwork happens through conversation rather than via an exter‐
nally managed assembly line. Just as with any cybernetic process,
intra-team feedback improves agile teams’ ability to cooperate in the
face of change. It lets them self-steer by reconfiguring themselves as
needed, without losing coherency or effectiveness.
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Being vs. Doing Agile
The core of Agile is agility. Done right, it lets teams leverage the
power of cybernetics to continuously deliver value in an environ‐
ment of uncertainty and change. Techniques such as sprint demos
and CI maximize feedback. Iterations and backlogs maximize the
ability to change direction in response to feedback. Cross-functional
collaboration maximizes the ability to listen accurately.

At their best, agile teams function as foundational elements of self-
steering organizations. Their cybernetic practices let them flex with
minimal friction. Their cross-functional structure lets them con‐
verse with the rest of the corporation. It also helps them have the
internal empathic conversations they need to participate in the cor‐
poration’s unity of purpose.

Unfortunately, IT organizations used to industrial thinking often
unconsciously fall prey to the temptation to coopt Agile’s post-
industrial operating model. Daily standups, instead of being a tech‐
nique for quick feedback and problem-solving, become a rote
reporting tool. Burndown charts become a micromanagement ham‐
mer, shifting the focus away from delivering useful value and
towards finishing assigned tasks on time. Sprint demos become an
opportunity to tell users what the team has done, rather than a
chance to listen to feedback in order to validate the accuracy and
continued usefulness of the team’s work.

Retrospectives have the potential to be a wonderful, 2nd-order
cybernetic mechanism. When used properly, they can help teams
avoid getting locked into habitual methods. They keep everyone’s
focus on the question of whether the team is accomplishing its
underlying goal: continuously responding to changing customer
needs.

Unfortunately, more often than not, retrospectives fall victim to the
“not enough muffins” syndrome. Instead of soliciting feedback
about the efficiency with which the team is pursuing its goals, and
exploring ways to self-correct, participants content themselves with
complaining about random obstacles. For a team with a tradition of
bringing in food for team breakfasts every Monday morning, not
having enough muffins may be a valid complaint. It doesn’t, how‐
ever, address questions about the team’s deeper purpose.
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In order for Agile to successfully support self-steering, its practition‐
ers must adopt a post-industrial worldview. Agile’s challenges are are
instructive for all of the would-be components of the digital
medium. IT needs to keep its focus on the goal, which is self-
steering through conversation. It must continually evaluate and
improve its ability to support that goal. It must put the ends before
the needs. It must learn to view all techniques as provisional and
subject to adaptation through their own cybernetic process. “Are we
being agile” must always remain primary over “are we doing Agile?”

DevOps
Agile emphasizes delivering value to customers above all else. By
itself, though, it doesn’t fully address the problem of getting the
potential value generated by development into customers’ hands.
This gap reflects the pre-service era, when software was primarily
delivered as a product. A software company would build and ship an
application, with the expectation that the customer was responsible
for operating it. The software was ‘done’ when it had been designed,
developed, tested,and burned onto a CD. Installing the software
from that CD onto a server, or adding memory or upgrading operat‐
ing systems in order to be able to run it, or figuring out what had
gone wrong when it failed, were all things left to the customer.

Post-industrialism has impacted software just as dramatically as any
other area of the economy. Software-as-a-Service (SaaS) means that
the same company that builds an application also operates it on their
customers’ behalf. Functionality and operability become inseparable
in customers’ minds. They judge a software service as much on the
basis of performance, availability, and security as they do on
whether it helps them accomplish their desired tasks.

DevOps seeks to complete the equation started by Agile, and to
address the challenges SaaS poses. The name is a portmanteau of
“development” and “operations”. It reflects an understanding of the
need to unify functional and operational concerns.

The industrial approach to IT worked by creating silos between spe‐
cialties, and using rigid mechanisms to govern communication
between them. Not only did development and operations live differ‐
ent lives; operations sub-specialties such as networking, database
management, and security did as well. Delivering functionality and
operability required navigating multiple layers of separation. Each
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layer added time, effort, and misunderstanding. Each sub-
organization viewed the others with suspicion: “they don’t under‐
stand the importance of …”; “they expect us to figure out …’; and so
on.

Deeply siloed IT creates waste by requiring bureaucratic communi‐
cations processes that don’t add value. Forcing development to navi‐
gate multi-layered approval processes in order to deploy code slows
that code’s availability to customers. Silos within operations exacer‐
bate the problem. Since each sub-specialty is measured based on the
same metric - stability - they are incented to resist change, not just
coming from development, but also from each other. The result is
friction built upon friction.

DevOps recognizes that change-averse IT operations is incompatible
with post-industrial business. It seeks to dissolve the dichotomy
between quality and speed, and to overcome the impedance mis‐
match between development and operations. Unlike operations,
development is incented to generate change, not avoid it. Compa‐
nies pay developers to write code. When you write code, you are
either adding, updating, or removing something. Every line of code
you write changes something.

SaaS drives a similar focus on speed into operations. New applica‐
tions require new infrastructure. User traffic that spikes by the day,
hour, or minute requires elastic infrastructure. Customer-visible
operational problems require fast resolution. SaaS replaces the need
not to break things with the need to make things happen in response
to environmental change.

The Three Ways
In their book “The Phoenix Project” 1, Gene Kim, Kevin Behr, and
George Spafford describe DevOps as consisting of “Three Ways”.
Tim Hunter concisely expresses the Three Ways of DevOps as
“Flow”, “Feedback”, and “Continual Experimentation and Learning” 
2. This triad clearly expresses DevOps as an extension of Agile’s
cybernetic model to the end-to-end software value stream.
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Flow
Flow comprises techniques to remove waste from the process of
delivering concrete value to customers. It redefines “done” in the
language of service rather than products. Many organizations that
call themselves agile define “done” as “sprint tasks completed”, or
“unit tests passing”, or “signed off by testing and product owner”.
DevOps redefines “done” as “available to customers and operating
satisfactorily”.

Flow includes three key practices:

• Cross-silo collaboration
• Automation
• Continuous delivery

Cross-silo collaboration uses human communication to improve
quality and reduce waste. When developers, system and database
administrators, and security engineers all talk to each other, they can
see problems and find solutions in the spaces between their
domains. The result is improved quality, achieved more efficiently.
On a more subtle level, cross-silo collaboration also improves flow
by generating empathy and dissolving suspicion. People are natu‐
rally more prone to remove roadblocks and help each other when
they have mutual trust and understanding.

Automation seeks to reduce manual tasks that unnecessarily con‐
sume time and cause errors. There’s no good reason to manually
configure five hundred servers in the exact same manner. There’s
even less reason to spend hours or days debugging a production
problem that was caused by one server having been configured
slightly differently from the other 499.

Automation leverages lessons from agile development. It uses high-
level configuration languages that bring the benefits of encapsula‐
tion, abstraction, and reuse to system administration. It treats
“infrastructure as code”, turning computing environments into
abstract configurations that can be version-controlled, unit tested,
and continually integrated. As a result, they can be created, changed,
and replicated quickly and safely, with guaranteed consistency.

IT normally delivers changes to customers in batches called “relea‐
ses”. So-called “big-bang” releases delay value delivery by weeks,
months, or even years. Just as with any other large-granularity activ‐
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ity, batched releases increase the complexity, difficulty, and risk of
deploying changes to production environments. Risk-averse IT
organizations respond counterproductively by trying to reduce the
number of releases, thus locking themselves into a vicious cycle by
making them even more risky.

Continuous Delivery (CD) does for deployment what CI does for
integration testing. It uses comprehensive automation and rigorous
testing to enable immediate production deployment of any change
deemed acceptable, regardless of how small. A release might be a
small as a one-line bug fix.

By reducing batch size, release latency, and errors due to manual
processes, and by guaranteeing comprehensive testing, CD reduces
risk and increases confidence. It leads to fearless releases. With the
confidence to release any change, any time, the organization gains
the flow needed to let it respond immediately to its customers. That
flow lets companies have the most intimate conversations at the
most valuable times.

Many companies with seasonal business cycles implement produc‐
tion freezes: times during the year when only emergency changes
can be deployed to business-critical systems. The rationale for this
approach is understandable: if you’re an online retailer, the day after
Thanksgiving is the day you least want to break your website.
Unfortunately, it also minimizes your ability to respond to your cus‐
tomers when it’s most important. Fixing a bug or releasing a desired
new feature on January 10th instead of November 28th doesn’t bene‐
fit anyone.

When they first hear about CD, marketing and business operations
often respond with alarm. They envision their customers being
inundated with uncontrolled, unchaperoned change. Decoupling
technical deployment from customer visibility is a key component
of CD. Through mechanisms such as feature flags and segmented
releases, CD frees the business to truly control its conversation with
customers.

Feature flags make it possible to precisely control which features are
visible and when. If marketing wants to reveal a new feature at 12:01
AM on Christmas morning, they don’t need IT to deploy that code
at 12:01. They can simply flip a virtual switch. Segmented releases
turn what used to be known as “final” or “golden” into controlled
experimentation. Marketing can expose a feature to specific demo‐

114 | IT as Conversational Medium

DRAFT VERSION - UNCORRECTED PROOF



graphics, or use A-B testing to release multiple versions of a feature
simultaneously.

Feedback
Flow lets IT organizations efficiently deliver functionality and oper‐
ability to customers. Cybernetic conversations require equally effi‐
cient feedback. In the context of DevOps, feedback seeks to provide
information back to development and operations as continuously as
possible. Its goal is to generate a frictionless loop that lets IT hear its
customers quickly and accurately across silos.

Monitoring provides the visibility necessary to process feedback. IT
should treat it as an integral part of application and system design,
implementation, and operations. It must be possible to ask questions
on multiple levels. What is the state of the infrastructure? What is
the state of the application? What is the state of the users’ behavior?

From a DevOps perspective, teams across silos need the ability to
listen to each others’ signals. Multi-level monitoring lets them see
things from each others’ perspectives. For example:

• Users are abandoning our site because it’s too slow
• It’s too slow because we don’t have sufficient infrastructure
• We don’t have sufficient infrastructure because adding more is

expensive and time-consuming
• An on-demand cloud might make infrastructure cheaper, easier,

and faster to provision
• …

The delivery lifecycle itself is a cybernetic process. As such, it also
requires the ability to process feedback. Information radiators offer
global visibility into flow:

• What is the state of the current build?
• Why did a given build fail?
• Where in the pipeline is a given feature?
• Which customer segments have access to a given feature?
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Continuous Experimentation and Learning
The combination of flow and feedback creates an efficient cyber‐
netic process that lets IT shift its focus from maintaining the status
quo out of fear, to fearlessly enabling continuous change and experi‐
mentation. DevOps lets IT unfreeze digital systems, transforming
them into a continually flowing fluid. It lets IT unleash software as a
dynamic business tool that digitally infused companies can use to
deliver service and respond to disruption.

DevOps frees post-industrial businesses to fully integrate software
into their self-steering conversations. Marketing and business opera‐
tions can use CD to turn features on and off with minimal latency,
and multi-level monitoring to understand the relationship between
their changes and their customers’ responses. They can thus treat
software, not as something to which they must commit, but rather
as something they can continually reshape through experimentation
and learning.

Cloud Computing
Part of IT’s challenge stems from the fact that provisioning comput‐
ing resources is expensive and slow. As with any physical object,
servers, storage arrays, and network devices have long lead times.
They must be specified, ordered, built, shipped, and installed.
Deploying a new application, or scaling infrastructure to support
increased usage, requires high-latency physical intervention. The
high cost of modifying infrastructure contributes to IT’s resistance
to change.

Cloud computing makes it possible to treat computing resources as
an on-demand utility. It works by virtualizing physical resources,
and providing web and API-based provisioning interfaces. By
abstracting the underlying physical reality, cloud lets users dynami‐
cally provision and de-provision resources for themselves. They can
even integrate cloud provisioning API’s into their automation pipe‐
lines to create an elastic computing substrate that responds to
change in real-time.

Cloud lets organizations consume IT based on need, pay for it based
on consumption, and delegate its management to the provider. In
the process, it transforms IT from a relatively static capital expendi‐
ture to a highly dynamic operational expenditure. In both technical
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and financial terms, cloud more closely aligns IT with the ebb and
flow of the business.

Cloud computing addresses multiple layers of IT. Infrastructure-as-
a-Service (IaaS) turns physical infrastructure into a utility. Platform-
as-a-Service (PaaS) turns application execution environments into a
utility. SaaS turns applications themselves into a utility.

All three layers share the “as-a-Service” moniker. This common
name reflects the impact of service, infusion, and disruption on IT
itself. While cloud makes IT more agile by increasing provisioning
speed and reducing sunk costs and management complexity, it also
has a more subtle and profound effect. When IT resources are acces‐
sible through the same digital interfaces as any other application, it
becomes feasible for non-operations groups to manage their own
resources. IaaS and PaaS let development teams provision their own
application substrates. SaaS lets non-technical organizations provi‐
sion their own applications.

Cloud’s ultimate effect is to remove IT as a bottleneck to self-
steering. On one level, it lets IT flex in response to feedback at the
same rate as the organizations using those resources. On a deeper
level, it begins to dissolve the separation between IT and its users.
As part of self-steering, organizations need access to the digital
medium in order to converse with each other and with customers.
The more flexible and direct that access is, the more efficient those
conversations can be.

Microservices
By providing low-friction access to the digital medium, cloud com‐
puting allows systems and applications to proliferate. Microservices
are the ultimate expression of this effect. Microservices decompose
large applications into small, loosely coupled grains of functionality.

By holding units of functionality at arms length from each other,
microservices enable more continuous, lower-risk change. Agile and
continuous delivery use smaller batch sizes to increase speed and
quality simultaneously. Microservices provide a similar effect at the
level of application architecture and organizational structure.

Microservices work by reducing the scope of concern. Developers
have to worry about fewer lines of code, fewer features, and fewer
interfaces. They can deliver functional value more quickly and often,
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with less fear of breaking things, and rely on higher-order emergent
processes to incorporate their work into a coherent global system.

In order for microservices to work, though, operations needs a simi‐
lar conceptual framework. Trying to manage an entire universe of
microservices from the outside increases the scope of concern
instead of reducing it. The solution is to take the word “service” seri‐
ously. Each microservice is just that: a software service. The team
that builds and operates it need only worry about it and its immedi‐
ate dependencies. Dependent services are customers; services upon
which a given microservice depends are vendors.

Microservices thus represent a new IT organizational model as
much as a new architectural model. Seen this way, they leverage the
power of Conway’s Law, named after Melvin Conway. Conway was a
computer programmer who observed that “organizations which
design systems … are constrained to produce designs which are
copies of the communication structures of these organizations” 3.

Conway’s Law tells us that software architectures and the organiza‐
tions that make them mirror each other. IT can leverage this effect
to everyone’s benefit. Microservices map well to so-called “two
pizza-sized”, interdisciplinary teams. These teams take responsibility
for the entire service delivery lifecycle for their particular microser‐
vice.

Microservice-oriented organizations shift IT architectures, pro‐
cesses, and inter-relationships from a complicated-systems model to
a complex-systems model. Making that transition lets IT better
respond to post-industrial business challenges. It lets different parts
of the organization, as represented by different microservices, flu‐
idly adapt to each other and to external change. By taking the “ser‐
vice” in “microservice” seriously, it also weaves an empathic, conver‐
sational mentality deeply into the fabric of IT.

Digital infusion makes the relationship between IT and the business
it supports all the more important. One could extend Conway’s Law
to state that digital businesses are constrained to deliver service in
ways which reflect the structure and activity of their IT organiza‐
tions. Using microservices to give itself a more organic structure
increases IT’s ability to self-steer through flexible, scalable, internal
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conversations. That ability in turn drives improved self-steering
capabilities for the organization as a whole.

Design Thinking
Digital infusion is having a profound affect on the role of design in
IT and software services. As the digital realm becomes ever more
central to our lives, the design of its interfaces becomes ever more
important to people’s quality of life. Design brings its own cyber‐
netic sensibility to delivering products and services. The design
community has encoded this sensibility into a set of practices and
principles known as Design Thinking.

Design Thinking is built upon four foundational practices:

• Empathy
• Ethnography
• Abductive thinking
• Iterative user testing

Empathy makes the customer’s perspective on a problem the start‐
ing point for all design activity. It reflects the philosophy of user-
centeredness. No matter how beautiful a design solution, it doesn’t
actually solve anything if it doesn’t work from the user’s point of
view. An elegant chair that no one can sit in is a user-centered
design failure.

Ethnography is a disciplined process of non-judgmentally observing
users within their own realms. Without ethnography, designers risk
unconsciously imposing their own biases instead of truly seeing the
problem from the customer’s perspective. Many design teams have
described their experience of starting a project believing they were
trying to solve a certain problem. After conducting ethnographic
research, they realized the real problem was completely different.
Having engaged in that research saved them from wasting every‐
one’s time building the wrong solution.

Abductive thinking is the process of finding creative solutions where
there are no correct or best ones. Abductive thinking succeeds in sit‐
uations where analytical engineering fails. It strives for designs that
are practical as well as beautiful and inspiring.
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Iterative user testing forces designers to repeatedly test and revise
their beliefs about a solution. Design thinking views the develop‐
ment of a solution to a problem as the starting point, not the conclu‐
sion. User testing exposes proposed designs to the harsh reality of
usage in the form of prototypes. It treats users’ experience of those
prototype as feedback.

Repeated revision and retesting leads to successively better designs.
Ethnography, user testing, and iterative solution discovery incorpo‐
rate feedback into the essential process of design. As design thinking
evangelist Elina Zheleva puts it, design follows a circular
“understand-act” process 4.

Service Design
Design thinking expresses designers’ sensibilities in a form that can
be applied to problems beyond traditional disciplines such as
graphic and product design. In particular, design thinking has tre‐
mendous insights to offer to the creation of services. By engaging in
empathy, ethnography, abductive thinking, and iterative user testing,
designers can create services that genuinely help customers accom‐
plish their goals.

Service Design applies the principles of design thinking to the
design of services. It centers its practice around the customer jour‐
ney, which represents customer’s unfolding experiences over time
across all of a service’s touchpoints. Applying design thinking to the
customer journey helps create experiences that are satisfying and
coherent rather than challenging and disjoint.

Service design also addresses service fulfillment. It uses a technique
called service blueprinting to chart the relationship between so-
called “front-stage” and “back-stage” activities. However well-
designed a kiosk interface is, it can’t provide a satisfying experience
if it doesn’t properly integrate needed back-office information. All of
the component human and computer processes needed to generate
that information must mesh with each other.

Customer journey maps and service blueprints help service organi‐
zations understand themselves and their customer interactions
across silos and layers, across physical and virtual interfaces, and
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across human and computerized processes. Digital infusion necessi‐
tates seamless integration across of these dimensions.

A self-steering organization needs to think in terms of relationships
and systems. It needs a way to visualize its internal conversations
and how they enable or distort its customer conversations. Through
customer journey maps and service blueprints, service design has
the potential to provide such a mirror.

Unifying Design and Operations
Post-industrial business involves operating a continuous “listening
loop” through which companies can respond efficiently and accu‐
rately to customer needs. In order to maintain their viability
through self-steering, organizations need to map that external lis‐
tening loop to a similar set of internal conversations. Digital infu‐
sion means that internal and external conversations all happen
through software-enabled service. 21st-century business thus relies
on IT to enable the continuous design and operation of responsive
digital services. These services provide the medium through which
cybernetic conversations flow, both between companies and their
customers, and among employees and groups within a company.

The purpose of the digital conversational medium is not merely to
deliver software, but rather to enable continuous, adaptive value co-
creation. Whether it involves a company operating a website on
behalf of its customers, or the finance department operating a
microservice on behalf of the project management department, “ser‐
vice” is the key word in all cases. In the post-industrial era, service
unfolds through the unification of design and operations.

In order to fulfill its purpose, a software service must work on mul‐
tiple levels. It must provide suitable functionality. That functionality
must be usable, whether through an interactive interface or through
an API. It must be operable, so that its customers can access it when
they need it, and rely on it for stability, security, and so forth. It must
meets customers’ needs throughout their journey. Finally, it must
adapt to meet changing needs. If, for example, the project manage‐
ment department needs finer-grained project cost information, the
finance department has to be able to update their service to provide
that new information.
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These requirements apply to all services, whether internally or exter‐
nally facing. To fulfill its role as a conversational medium, IT there‐
fore must address all aspects of fitness for purpose. It needs to incor‐
porate the capabilities provided by methods such as Service Design,
Agile, DevOps, and cloud computing into a coherent practice. This
practice uses a unified set of principles to guide itself in finding
comprehensive answers to the full suite of questions that define dig‐
ital service needs.

The fundamental principles that guide IT as a digital conversational
medium include:

• Design for service, not just software
• Minimize latency, maximize feedback
• Use operations as input to design
• Seek empathy

Designing for service means designing both for the whole customer
and the whole organization. Designing for the whole customer starts
by understanding their goals. It identifies the entire journey through
which they interact with the service in order to accomplish those
goals. It also identifies the larger context that surrounds their inter‐
action with a given service. Finally, understanding the whole cus‐
tomer requires considering their needs beyond the obvious, utilitar‐
ian level. Productivity arises, not just from efficiency, but also from
satisfaction and happiness. Making people’s lives better through ser‐
vice thus contributes to meeting practical goals.

The co-creative nature of service means that the service organiza‐
tion also must be a design target. Those designing a service need to
ask the same questions about internal, operational users as they do
about customers. Most importantly, they must address the inter-
relationships between internal and external goals and journeys.

Conversational quality depends on efficient information exchange.
Communicating by letter across continents, for example, is harder
and slower than speaking in person. The digital conversational
medium needs to minimize latency in the exchange between service
providers and customers. Together, Agile, DevOps, and cloud com‐
puting serve this purpose. Agile minimizes the latency between dis‐
covering a need and implementing it. DevOps minimizes latency in
the end-to-end delivery, understanding, and discovery process.
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Cloud computing minimizes computing-resource deployment
latency.

Continuously delivering functionality is only half of the conversa‐
tional process. Talking without listening doesn’t contribute to
responsive service. When done properly, with a truly cybernetic sen‐
sibility, Design Thinking, Agile and DevOps complete the conversa‐
tional equation. They continuously expose the service organization
to accurate, thorough feedback, and provide mechanisms such as
user testing, sprint demos, and information radiators that maximize
the organization’s ability to internalize and process that feedback.

Businesses normally treat operations as an output of design. The job
of IT operations is to run the code produced by design and develop‐
ment. In order to empathize, though, one must be able to hear. In
order to hear, one needs information from operations. Operations
thus becomes an input to design.

Operational feedback comes from multiple sources on multiple lev‐
els, including:

• Infrastructure and application monitoring
• User behavior monitoring
• A/B, canary, and demographically targeted testing
• Analytics
• Customer support
• Social media

An effective conversational medium incorporates them all. A user
interface change could annoy users, either because it degrades per‐
formance by increasing server load, or because it makes the applica‐
tion harder to use. Problems can become apparent through moni‐
toring dashboards, or through users complaining on Twitter. Corre‐
lating feedback across business and technical layers is key to accu‐
rately diagnosing and fixing problems, whether they be caused by
infrastructure problems or undiscovered customer needs.

Empathy is a cybernetic process of understanding through conversa‐
tion. It needs to be both the foundation and the goal of the conver‐
sational medium. On the one hand, empathy should inform the pur‐
suit of each of the other foundational principles. On the other hand,
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those principles should all be approached as opportunities to
develop further empathy.

Continuous Design
IT’s new purpose is to help companies and their components parts
design and operate software services. No longer can it content itself
with running systems and responding to technical requests. Where
IT used to be in the business of running things, and maintaining sta‐
bility, it now must enter the business of enabling change. Ultimately,
post-industrial IT’s new mandate consists of delivering the capabil‐
ity for continuous design.

Design typically concerns itself with what comes next. It focuses on
conceiving new solutions to current problems. Operations, on the
other hand, concerns itself with what’s happening now. Its purpose
is to run and maintain whatever solution was created to a previously
understood problem.

The cybernetic model of control breaks down the divisions these
two modes of work. It unifies them through feedback. Feedback
continually exposes gaps between the actual and the desired. In the
process, it creates never-ending opportunities to co-create value by
helping people solve problems.

Empathy drives digital businesses to use conversation as a basis for
action. It gives them the ability to hear the feedback that operations
provides, and exhorts them to respond to what they hear through
re-design. Far from being something soft or weak, empathy drives
economic sustainability by creating the impetus to design - or in
other words, responsively operate - truly useful service capabilities.

The industrial product model uses design to generate solutions.
Marketing then convinces customers of the usefulness of those solu‐
tions. Operations produces artifacts to meet the demand marketing
has generated. A post-industrial approach to design, by contrast,
uses it to generate conversations rather than complete them.

As design consultant and researcher Thomas Wendt explains in his
book ‘Designing for Dasein’, the meaning of a digital service
depends, not just on the intentions of its creators, but also on how
people use it. Facebook was designed as a way for college students to
connect with their friends. It has evolved into, among other things, a
platform for catalyzing political action. At the same time, designed
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solutions change the very problems they were created to solve. Face‐
book has deeply influenced the way people see themselves as indi‐
viduals and as social beings. It has transcended its role as a medium
for sharing experiences, to become a medium for having them.

Complexity further compromises the ability to create finished solu‐
tions. We can never fully know how our designs will work until real
customers use them in real operating environments. Facebook has
to grapple with social and political issues that Mark Zuckerberg
never could have conceived of while writing the initial version in his
college dorm room 5.

Post-industrialism transforms design into a circular process of con‐
tinual learning and repair. Repeatedly responding to the next gap
between actual and expected becomes the essence of what it means
to be in business. Operations becomes design, and design becomes
operations.

Design as a continuous, circular process is actually inherent in its
very definition. Nobel Laureate and pioneering cognitive scientist
Herbert Simon, in his seminal book ‘The Sciences of the Artificial’,
defined design as “changing current situations into preferred ones”.
This definition has several important implications:

1. Design is not restricted to visual disciplines
2. Design fundamentally involves change
3. Design operates in the gap between actual (“current”) and

expected (“preferred”)
4. Design does not strive for right, or even good solutions, but

only relatively better ones from the user’s perspective
5. Design’s lack of objective finality maintains the openness that

allows and encourages further change (what was preferred is
now current)

Self-Steering as Continuous Design
Digital businesses design and operate service capabilities to help
customers accomplish their goals. In order to co-create value, they
must align their internal structure and activity with that of their cus‐
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tomers. Value co-creation arises from structural coupling between
the service provider and its environment. If customers need help
using an application, for example, the service organization must
structure and manage itself to be able to provide help when and how
it’s needed.

This structural coupling must, of course, continually adapt to envi‐
ronmental change. Change comes from ever-evolving customer
needs and market realities. Companies also contribute to environ‐
mental change through their own design process. Customers, mar‐
kets, and companies continuously perturb each other.

In order to maintain their viability by adapting to environmental
perturbation through self-steering, digital businesses must design
and operate themselves just as they design and operate the services
through which they interact with their customers. Continuous
design is an autopoietic process. As part of designing/operating a
service, a digital business must design/operate itself. To understand
how to design/operate itself, a business must understand the design/
operations of the service through which it maintains its viability.

In order to deliver a digitally infused taxi service, for example, Uber
must do more than just design and operate a mobile app. It also
must design and operate itself as an organization with capabilities
such as calculating driver tips and conducting background checks.
In the process of operating its service, Uber learns how well the ser‐
vice and its internal systems work.

Feedback from internal and external operations leads to further
internal and external design. Drivers may complain about being
under-tipped. Customers may complain about not feeling safe due
to inadequate background checks, or about having to wait because
of inaccurate arrival estimates. In order to address these complaints,
Uber may need to redesign its service, its mobile applications, and
its internal operational procedures.

Cybernetics challenges the solidity of the boundaries between inner
and outer, production and consumption, and acting and respond‐
ing. Autopoiesis defines business viability as continuous organiza‐
tional adaptation to markets and customers. Continuous design
reflects the cybernetic model on two levels. First, it treats design and
operations as an inseparable, mutually influencing pair. Second, it
treats the design of internal and external service relationships as a
similar process of mutual influence and reflection.
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From Design Thinking to DevOps and Back
Again
Simon’s definition of design as “changing current situations into pre‐
ferred ones” reveals it as something that goes beyond traditional vis‐
ual disciplines such as graphic, industrial, or web design. His defini‐
tion gives us a lever we can use to reimagine IT itself as a form of
design. Cybernetic methods such as Agile, DevOps, and cloud com‐
puting free IT from the need to map dynamic business needs to
static technical systems and processes. As a result, IT can transform
its view of itself from a source of friction into an agent of responsive
change.

The capability to deliver continuous, empathic change is the defin‐
ing characteristic of a digital conversational medium. The word
“medium” means “an intervening substance, as air, through which a
force acts or an effect is produced” 6. Post-industrial IT’s purpose is
to make digital conversations between companies and their custom‐
ers natural and effortless, the way water makes it possible for fish to
swim. As an autopoietic medium, fulfilling its purpose also means
simultaneously enabling equally effortless internal conversations.

IT as conversational medium transcends specific techniques. It rep‐
resents more than just designing and operating services for custom‐
ers or employees. It is not defined by the specific tools and practices
that make it up. Its deepest value comes from infusing entire organi‐
zations with design thinking.

When the capacity for responsive change becomes frictionless and
universally available, everyone can approach their work as continu‐
ous service design. Service characterizes all the relationships that
define digital business. Post-industrial companies co-create value
with customers through service. That co-creation relies on mutual
internal service. Designing and operating service for others’ benefit
becomes the common driver for all activity at all levels of the orga‐
nization.

IT’s ultimate goal is, like water for the fish, to disappear. In a highly
effective digital business, employees focus on continuously trans‐
forming empathic listening into acting. They conduct their daily
work in order to change current situations into preferred ones. They
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take it for granted that identifying the gap between current and pre‐
ferred, and closing that gap, both happen via digital means. They no
longer need to step out of the continuous design mindset in order to
translate between service design thinking as a process and IT as the
means for accomplishing that process.
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