

http://oreil.ly/ops-perf

Rob Ewaschuk

Monitoring Distributed
Systems

Case Studies from Google’s SRE Teams

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96524-5

[LSI]

Monitoring Distributed Systems
by Rob Ewaschuk

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and
Virginia Wilson
Production Editor: Kristen Brown
Copyeditor: Kim Cofer

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2016: First Edition

Revision History for the First Edition
2016-08-03: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Monitoring Dis‐
tributed Systems, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Monitoring Distributed Systems. 1
Definitions 1
Why Monitor? 3
Setting Reasonable Expectations for Monitoring 4
Symptoms Versus Causes 5
Black-Box Versus White-Box 6
The Four Golden Signals 6
Worrying About Your Tail (or, Instrumentation and

Performance) 8
Choosing an Appropriate Resolution for Measurements 9
As Simple as Possible, No Simpler 10
Tying These Principles Together 11
Monitoring for the Long Term 12
Conclusion 15

v

Monitoring Distributed Systems

Written by Rob Ewaschuk
Edited by Betsy Beyer

Google’s SRE teams have some basic principles and best practices for
building successful monitoring and alerting systems. This report
offers guidelines for what issues should interrupt a human via a
page, and how to deal with issues that aren’t serious enough to trig‐
ger a page.

Definitions
There’s no uniformly shared vocabulary for discussing all topics
related to monitoring. Even within Google, usage of the following
terms varies, but the most common interpretations are listed here.

Monitoring
Collecting, processing, aggregating, and displaying real-time
quantitative data about a system, such as query counts and
types, error counts and types, processing times, and server life‐
times.

White-box monitoring
Monitoring based on metrics exposed by the internals of the
system, including logs, interfaces like the Java Virtual Machine
Profiling Interface, or an HTTP handler that emits internal sta‐
tistics.

Black-box monitoring
Testing externally visible behavior as a user would see it.

1

1 Sometimes known as “alert spam,” as they are rarely read or acted on.

Dashboard
An application (usually web-based) that provides a summary
view of a service’s core metrics. A dashboard may have filters,
selectors, and so on, but is prebuilt to expose the metrics most
important to its users. The dashboard might also display team
information such as ticket queue length, a list of high-priority
bugs, the current on-call engineer for a given area of responsi‐
bility, or recent pushes.

Alert
A notification intended to be read by a human and that is
pushed to a system such as a bug or ticket queue, an email alias,
or a pager. Respectively, these alerts are classified as tickets,
email alerts,1 and pages.

Root cause
A defect in a software or human system that, if repaired, instills
confidence that this event won’t happen again in the same way.
A given incident might have multiple root causes: for example,
perhaps it was caused by a combination of insufficient process
automation, software that crashed on bogus input, and insuffi‐
cient testing of the script used to generate the configuration.
Each of these factors might stand alone as a root cause, and each
should be repaired.

Node (or machine)
Used interchangeably to indicate a single instance of a running
kernel in either a physical server, virtual machine, or container.
There might be multiple services worth monitoring on a single
machine. The services may either be:

• Related to each other: for example, a caching server and a
web server

• Unrelated services sharing hardware: for example, a code
repository and a master for a configuration system like
Puppet or Chef

Push
Any change to a service’s running software or its configuration.

2 | Monitoring Distributed Systems

https://puppetlabs.com/puppet/puppet-open-source
https://www.chef.io/chef/

Why Monitor?
There are many reasons to monitor a system, including:

Analyzing long-term trends
How big is my database and how fast is it growing? How quickly
is my daily-active user count growing?

Comparing over time or experiment groups
Are queries faster with Acme Bucket of Bytes 2.72 versus Ajax
DB 3.14? How much better is my memcache hit rate with an
extra node? Is my site slower than it was last week?

Alerting
Something is broken, and somebody needs to fix it right now!
Or, something might break soon, so somebody should look
soon.

Building dashboards
Dashboards should answer basic questions about your service,
and normally include some form of the four golden signals (dis‐
cussed in “The Four Golden Signals” on page 6).

Conducting ad hoc retrospective analysis (i.e., debugging)
Our latency just shot up; what else happened around the same
time?

System monitoring is also helpful in supplying raw input into busi‐
ness analytics and in facilitating analysis of security breaches.
Because this report focuses on the engineering domains in which
SRE has particular expertise, we won’t discuss these applications of
monitoring here.

Monitoring and alerting enables a system to tell us when it’s broken,
or perhaps to tell us what’s about to break. When the system isn’t
able to automatically fix itself, we want a human to investigate the
alert, determine if there’s a real problem at hand, mitigate the prob‐
lem, and determine the root cause of the problem. Unless you’re
performing security auditing on very narrowly scoped components
of a system, you should never trigger an alert simply because “some‐
thing seems a bit weird.”

Why Monitor? | 3

Paging a human is a quite expensive use of an employee’s time. If an
employee is at work, a page interrupts their workflow. If the
employee is at home, a page interrupts their personal time, and per‐
haps even their sleep. When pages occur too frequently, employees
second-guess, skim, or even ignore incoming alerts, sometimes even
ignoring a “real” page that’s masked by the noise. Outages can be
prolonged because other noise interferes with a rapid diagnosis and
fix. Effective alerting systems have good signal and very low noise.

Setting Reasonable Expectations for
Monitoring
Monitoring a complex application is a significant engineering
endeavor in and of itself. Even with substantial existing infrastruc‐
ture for instrumentation, collection, display, and alerting in place, a
Google SRE team with 10–12 members typically has one or some‐
times two members whose primary assignment is to build and
maintain monitoring systems for their service. This number has
decreased over time as we generalize and centralize common moni‐
toring infrastructure, but every SRE team typically has at least one
“monitoring person.” (That being said, while it can be fun to have
access to traffic graph dashboards and the like, SRE teams carefully
avoid any situation that requires someone to “stare at a screen to
watch for problems.”)

In general, Google has trended toward simpler and faster monitor‐
ing systems, with better tools for post hoc analysis. We avoid “magic”
systems that try to learn thresholds or automatically detect causality.
Rules that detect unexpected changes in end-user request rates are
one counterexample; while these rules are still kept as simple as pos‐
sible, they give a very quick detection of a very simple, specific,
severe anomaly. Other uses of monitoring data such as capacity
planning and traffic prediction can tolerate more fragility, and thus,
more complexity. Observational experiments conducted over a very
long time horizon (months or years) with a low sampling rate
(hours or days) can also often tolerate more fragility because occa‐
sional missed samples won’t hide a long-running trend.

Google SRE has experienced only limited success with complex
dependency hierarchies. We seldom use rules such as, “If I know the
database is slow, alert for a slow database; otherwise, alert for the
website being generally slow.” Dependency-reliant rules usually per‐

4 | Monitoring Distributed Systems

tain to very stable parts of our system, such as our system for drain‐
ing user traffic away from a datacenter. For example, “If a datacenter
is drained, then don’t alert me on its latency” is one common data‐
center alerting rule. Few teams at Google maintain complex depend‐
ency hierarchies because our infrastructure has a steady rate of
continuous refactoring.

Some of the ideas described in this report are still aspirational: there
is always room to move more rapidly from symptom to root
cause(s), especially in ever-changing systems. So while this report
sets out some goals for monitoring systems, and some ways to ach‐
ieve these goals, it’s important that monitoring systems—especially
the critical path from the onset of a production problem, through a
page to a human, through basic triage and deep debugging—be kept
simple and comprehensible by everyone on the team.

Similarly, to keep noise low and signal high, the elements of your
monitoring system that direct to a pager need to be very simple and
robust. Rules that generate alerts for humans should be simple to
understand and represent a clear failure.

Symptoms Versus Causes
Your monitoring system should address two questions: what’s bro‐
ken, and why?

The “what’s broken” indicates the symptom; the “why” indicates a
(possibly intermediate) cause. Table 1-1 lists some hypothetical
symptoms and corresponding causes.

Table 1-1. Example symptoms and causes

Symptom Cause
I’m serving HTTP 500s or 404s Database servers are refusing connections

My responses are slow CPUs are overloaded by a bogosort, or an Ethernet cable is
crimped under a rack, visible as partial packet loss

Users in Antarctica aren’t
receiving animated cat GIFs

Your Content Distribution Network hates scientists and felines,
and thus blacklisted some client IPs

Private content is world-
readable

A new software push caused ACLs to be forgotten and allowed
all requests

“What” versus “why” is one of the most important distinctions in
writing good monitoring with maximum signal and minimum
noise.

Symptoms Versus Causes | 5

Black-Box Versus White-Box
We combine heavy use of white-box monitoring with modest but
critical uses of black-box monitoring. The simplest way to think
about black-box monitoring versus white-box monitoring is that
black-box monitoring is symptom-oriented and represents active—
not predicted—problems: “The system isn’t working correctly, right
now.” White-box monitoring depends on the ability to inspect the
innards of the system, such as logs or HTTP endpoints, with instru‐
mentation. White-box monitoring therefore allows detection of
imminent problems, failures masked by retries, and so forth.

Note that in a multilayered system, one person’s symptom is another
person’s cause. For example, suppose that a database’s performance
is slow. Slow database reads are a symptom for the database SRE
who detects them. However, for the frontend SRE observing a slow
website, the same slow database reads are a cause. Therefore, white-
box monitoring is sometimes symptom-oriented, and sometimes
cause-oriented, depending on just how informative your white-box
is.

When collecting telemetry for debugging, white-box monitoring is
essential. If web servers seem slow on database-heavy requests, you
need to know both how fast the web server perceives the database to
be, and how fast the database believes itself to be. Otherwise, you
can’t distinguish an actually slow database server from a network
problem between your web server and your database.

For paging, black-box monitoring has the key benefit of forcing dis‐
cipline to only nag a human when a problem is both already ongo‐
ing and contributing to real symptoms. On the other hand, for not-
yet-occurring but imminent problems, black-box monitoring is
fairly useless.

The Four Golden Signals
The four golden signals of monitoring are latency, traffic, errors, and
saturation. If you can only measure four metrics of your user-facing
system, focus on these four.

6 | Monitoring Distributed Systems

Latency
The time it takes to service a request. It’s important to distin‐
guish between the latency of successful requests and the latency
of failed requests. For example, an HTTP 500 error triggered
due to loss of connection to a database or other critical backend
might be served very quickly; however, as an HTTP 500 error
indicates a failed request, factoring 500s into your overall
latency might result in misleading calculations. On the other
hand, a slow error is even worse than a fast error! Therefore, it’s
important to track error latency, as opposed to just filtering out
errors.

Traffic
A measure of how much demand is being placed on your sys‐
tem, measured in a high-level system-specific metric. For a web
service, this measurement is usually HTTP requests per second,
perhaps broken out by the nature of the requests (e.g., static ver‐
sus dynamic content). For an audio streaming system, this
measurement might focus on network I/O rate or concurrent
sessions. For a key-value storage system, this measurement
might be transactions and retrievals per second.

Errors
The rate of requests that fail, either explicitly (e.g., HTTP 500s),
implicitly (for example, an HTTP 200 success response, but
coupled with the wrong content), or by policy (for example, “If
you committed to one-second response times, any request over
one second is an error”). Where protocol response codes are
insufficient to express all failure conditions, secondary (inter‐
nal) protocols may be necessary to track partial failure modes.
Monitoring these cases can be drastically different: catching
HTTP 500s at your load balancer can do a decent job of catch‐
ing all completely failed requests, while only end-to-end system
tests can detect that you’re serving the wrong content.

Saturation
How “full” your service is. A measure of your system fraction,
emphasizing the resources that are most constrained (e.g., in a
memory-constrained system, show memory; in an I/O-
constrained system, show I/O). Note that many systems degrade
in performance before they achieve 100% utilization, so having
a utilization target is essential.

The Four Golden Signals | 7

2 If 1% of your requests are 10x the average, it means that the rest of your requests are
about twice as fast as the average. But if you’re not measuring your distribution, the
idea that most of your requests are near the mean is just hopeful thinking.

In complex systems, saturation can be supplemented with
higher-level load measurement: can your service properly han‐
dle double the traffic, handle only 10% more traffic, or handle
even less traffic than it currently receives? For very simple serv‐
ices that have no parameters that alter the complexity of the
request (e.g., “Give me a nonce” or “I need a globally unique
monotonic integer”) that rarely change configuration, a static
value from a load test might be adequate. As discussed in the
previous paragraph, however, most services need to use indirect
signals like CPU utilization or network bandwidth that have a
known upper bound. Latency increases are often a leading indi‐
cator of saturation. Measuring your 99th percentile response
time over some small window (e.g., one minute) can give a very
early signal of saturation.

Finally, saturation is also concerned with predictions of
impending saturation, such as “It looks like your database will
fill its hard drive in 4 hours.”

If you measure all four golden signals and page a human when one
signal is problematic (or, in the case of saturation, nearly problem‐
atic), your service will be at least decently covered by monitoring.

Worrying About Your Tail (or, Instrumentation
and Performance)
When building a monitoring system from scratch, it’s tempting to
design a system based upon the mean of some quantity: the mean
latency, the mean CPU usage of your nodes, or the mean fullness of
your databases. The danger presented by the latter two cases is obvi‐
ous: CPUs and databases can easily be utilized in a very imbalanced
way. The same holds for latency. If you run a web service with an
average latency of 100 ms at 1,000 requests per second, 1% of
requests might easily take 5 seconds.2 If your users depend on sev‐
eral such web services to render their page, the 99th percentile of
one backend can easily become the median response of your
frontend.

8 | Monitoring Distributed Systems

The simplest way to differentiate between a slow average and a very
slow “tail” of requests is to collect request counts bucketed by laten‐
cies (suitable for rendering a histogram), rather than actual laten‐
cies: how many requests did I serve that took between 0 ms and 10
ms, between 10 ms and 30 ms, between 30 ms and 100 ms, between
100 ms and 300 ms, and so on? Distributing the histogram bound‐
aries approximately exponentially (in this case by factors of roughly
3) is often an easy way to visualize the distribution of your requests.

Choosing an Appropriate Resolution for
Measurements
Different aspects of a system should be measured with different lev‐
els of granularity. For example:

• Observing CPU load over the time span of a minute won’t
reveal even quite long-lived spikes that drive high tail latencies.

• On the other hand, for a web service targeting no more than 9
hours aggregate downtime per year (99.9% annual uptime),
probing for a 200 (success) status more than once or twice a
minute is probably unnecessarily frequent.

• Similarly, checking hard drive fullness for a service targeting
99.9% availability more than once every 1–2 minutes is proba‐
bly unnecessary.

Take care in how you structure the granularity of your measure‐
ments. Collecting per-second measurements of CPU load might
yield interesting data, but such frequent measurements may be very
expensive to collect, store, and analyze. If your monitoring goal calls
for high resolution but doesn’t require extremely low latency, you
can reduce these costs by performing internal sampling on the
server, then configuring an external system to collect and aggregate
that distribution over time or across servers. You might:

1. Record the current CPU utilization each second.
2. Using buckets of 5% granularity, increment the appropriate

CPU utilization bucket each second.
3. Aggregate those values every minute.

Choosing an Appropriate Resolution for Measurements | 9

This strategy allows you to observe brief CPU hotspots without
incurring very high cost due to collection and retention.

As Simple as Possible, No Simpler
Piling all these requirements on top of each other can add up to a
very complex monitoring system—your system might end up with
the following levels of complexity:

• Alerts on different latency thresholds, at different percentiles,
on all kinds of different metrics

• Extra code to detect and expose possible causes
• Associated dashboards for each of these possible causes

The sources of potential complexity are never-ending. Like all soft‐
ware systems, monitoring can become so complex that it’s fragile,
complicated to change, and a maintenance burden.

Therefore, design your monitoring system with an eye toward sim‐
plicity. In choosing what to monitor, keep the following guidelines
in mind:

• The rules that catch real incidents most often should be as sim‐
ple, predictable, and reliable as possible.

• Data collection, aggregation, and alerting configuration that is
rarely exercised (e.g., less than once a quarter for some SRE
teams) should be up for removal.

• Signals that are collected, but not exposed in any prebaked
dashboard nor used by any alert, are candidates for removal.

In Google’s experience, basic collection and aggregation of metrics,
paired with alerting and dashboards, has worked well as a relatively
standalone system. (In fact Google’s monitoring system is broken up
into several binaries, but typically people learn about all aspects of
these binaries.) It can be tempting to combine monitoring with
other aspects of inspecting complex systems, such as detailed system
profiling, single-process debugging, tracking details about excep‐
tions or crashes, load testing, log collection and analysis, or traffic
inspection. While most of these subjects share commonalities with
basic monitoring, blending together too many results in overly com‐
plex and fragile systems. As in many other aspects of software engi‐

10 | Monitoring Distributed Systems

3 See “Applying Cardiac Alarm Management Techniques to Your On-Call” for an exam‐
ple of alert fatigue in another context.

4 Zero-redundancy (N + 0) situations count as imminent, as do “nearly full” parts of your
service! For more details about the concept of redundancy, see https://en.wikipedia.org/
wiki/N%2B1_redundancy.

neering, maintaining distinct systems with clear, simple, loosely
coupled points of integration is a better strategy (for example, using
web APIs for pulling summary data in a format that can remain
constant over an extended period of time).

Tying These Principles Together
The principles discussed in this report can be tied together into a
philosophy on monitoring and alerting that’s widely endorsed and
followed within Google SRE teams. While this monitoring philoso‐
phy is a bit aspirational, it’s a good starting point for writing or
reviewing a new alert, and it can help your organization ask the
right questions, regardless of the size of your organization or the
complexity of your service or system.

When creating rules for monitoring and alerting, asking the follow‐
ing questions can help you avoid false positives and pager burnout:3

• Does this rule detect an otherwise undetected condition that is
urgent, actionable, and actively or imminently user-visible?4

• Will I ever be able to ignore this alert, knowing it’s benign?
When and why will I be able to ignore this alert, and how can I
avoid this scenario?

• Does this alert definitely indicate that users are being negatively
affected? Are there detectable cases in which users aren’t being
negatively impacted, such as drained traffic or test deployments,
that should be filtered out?

• Can I take action in response to this alert? Is that action urgent,
or could it wait until morning? Could the action be safely auto‐
mated? Will that action be a long-term fix, or just a short-term
workaround?

• Are other people getting paged for this issue, therefore render‐
ing at least one of the pages unnecessary?

Tying These Principles Together | 11

http://fractio.nl/2014/08/26/cardiac-alarms-and-ops/
https://en.wikipedia.org/wiki/N%2B1_redundancy
https://en.wikipedia.org/wiki/N%2B1_redundancy

These questions reflect a fundamental philosophy on pages and
pagers:

• Every time the pager goes off, I should be able to react with a
sense of urgency. I can only react with a sense of urgency a few
times a day before I become fatigued.

• Every page should be actionable.
• Every page response should require intelligence. If a page

merely merits a robotic response, it shouldn’t be a page.
• Pages should be about a novel problem or an event that hasn’t

been seen before.

Such a perspective dissipates certain distinctions: if a page satisfies
the preceding four bullets, it’s irrelevant whether the page is trig‐
gered by white-box or black-box monitoring. This perspective also
amplifies certain distinctions: it’s better to spend much more effort
on catching symptoms than causes; when it comes to causes, only
worry about very definite, very imminent causes.

Monitoring for the Long Term
In modern production systems, monitoring systems track an ever-
evolving system with changing software architecture, load charac‐
teristics, and performance targets. An alert that’s currently
exceptionally rare and hard to automate might become frequent,
perhaps even meriting a hacked-together script to resolve it. At this
point, someone should find and eliminate the root causes of the
problem; if such resolution isn’t possible, the alert response deserves
to be fully automated.

It’s important that decisions about monitoring be made with long-
term goals in mind. Every page that happens today distracts a
human from improving the system for tomorrow, so there is often a
case for taking a short-term hit to availability or performance in
order to improve the long-term outlook for the system. Let’s take a
look at two case studies that illustrate this trade-off.

Bigtable SRE: A Tale of Over-Alerting
Google’s internal infrastructure is typically offered and measured
against a service level objective (SLO). Many years ago, the Bigtable
service’s SLO was based on a synthetic well-behaved client’s mean

12 | Monitoring Distributed Systems

performance. Because of problems in Bigtable and lower layers of
the storage stack, the mean performance was driven by a “large” tail:
the worst 5% of requests were often significantly slower than the
rest.

Email alerts were triggered as the SLO approached, and paging
alerts were triggered when the SLO was exceeded. Both types of
alerts were firing voluminously, consuming unacceptable amounts
of engineering time: the team spent significant amounts of time tri‐
aging the alerts to find the few that were really actionable, and we
often missed the problems that actually affected users, because so
few of them did. Many of the pages were non-urgent, due to well-
understood problems in the infrastructure, and had either rote
responses or received no response.

To remedy the situation, the team used a three-pronged approach:
while making great efforts to improve the performance of Bigtable,
we also temporarily dialed back our SLO target, using the 75th per‐
centile request latency. We also disabled email alerts, as there were
so many that spending time diagnosing them was infeasible.

This strategy gave us enough breathing room to actually fix the
longer-term problems in Bigtable and the lower layers of the storage
stack, rather than constantly fixing tactical problems. On-call engi‐
neers could actually accomplish work when they weren’t being kept
up by pages at all hours. Ultimately, temporarily backing off on our
alerts allowed us to make faster progress toward a better service.

Gmail: Predictable, Scriptable Responses from Humans
In the very early days of Gmail, the service was built on a retrofitted
distributed process management system called Workqueue, which
was originally created for batch processing of pieces of the search
index. Workqueue was “adapted” to long-lived processes and subse‐
quently applied to Gmail, but certain bugs in the relatively opaque
codebase in the scheduler proved hard to beat.

At that time, the Gmail monitoring was structured such that alerts
fired when individual tasks were “de-scheduled” by Workqueue.
This setup was less than ideal because even at that time, Gmail had
many, many thousands of tasks, each task representing a fraction of
a percent of our users. We cared deeply about providing a good user
experience for Gmail users, but such an alerting setup was unmain‐
tainable.

Monitoring for the Long Term | 13

To address this problem, Gmail SRE built a tool that helped “poke”
the scheduler in just the right way to minimize impact to users. The
team had several discussions about whether or not we should simply
automate the entire loop from detecting the problem to nudging the
rescheduler, until a better long-term solution was achieved, but
some worried this kind of workaround would delay a real fix.

This kind of tension is common within a team, and often reflects an
underlying mistrust of the team’s self-discipline: while some team
members want to implement a “hack” to allow time for a proper fix,
others worry that a hack will be forgotten or that the proper fix will
be deprioritized indefinitely. This concern is credible, as it’s easy to
build layers of unmaintainable technical debt by patching over prob‐
lems instead of making real fixes. Managers and technical leaders
play a key role in implementing true, long-term fixes by supporting
and prioritizing potentially time-consuming long-term fixes even
when the initial “pain” of paging subsides.

Pages with rote, algorithmic responses should be a red flag. Unwill‐
ingness on the part of your team to automate such pages implies
that the team lacks confidence that they can clean up their technical
debt. This is a major problem worth escalating.

The Long Run
A common theme connects the previous examples of Bigtable and
Gmail: a tension between short-term and long-term availability.
Often, sheer force of effort can help a rickety system achieve high
availability, but this path is usually short-lived and fraught with
burnout and dependence on a small number of heroic team mem‐
bers. Taking a controlled, short-term decrease in availability is often
a painful, but strategic trade for the long-run stability of the system.
It’s important not to think of every page as an event in isolation, but
to consider whether the overall level of paging leads toward a
healthy, appropriately available system with a healthy, viable team
and long-term outlook. We review statistics about page frequency
(usually expressed as incidents per shift, where an incident might be
composed of a few related pages) in quarterly reports with manage‐
ment, ensuring that decision makers are kept up to date on the
pager load and overall health of their teams.

14 | Monitoring Distributed Systems

Conclusion
A healthy monitoring and alerting pipeline is simple and easy to
reason about. It focuses primarily on symptoms for paging, reserv‐
ing cause-oriented heuristics to serve as aids to debugging problems.
Monitoring symptoms is easier the further “up” your stack you
monitor, though monitoring saturation and performance of subsys‐
tems such as databases often must be performed directly on the sub‐
system itself. Email alerts are of very limited value and tend to easily
become overrun with noise; instead, you should favor a dashboard
that monitors all ongoing subcritical problems for the sort of infor‐
mation that typically ends up in email alerts. A dashboard might
also be paired with a log, in order to analyze historical correlations.

Over the long haul, achieving a successful on-call rotation and prod‐
uct includes choosing to alert on symptoms or imminent real prob‐
lems, adapting your targets to goals that are actually achievable, and
making sure that your monitoring supports rapid diagnosis.

Conclusion | 15

About the Author and Editor
Rob Ewaschuk is a Senior Staff Software Engineer at Google. He has
been on Site Reliability Engineering teams for Gmail, Google
Accounts, Bigtable, and Colossus. His current focus is improving the
economics and efficiency of Google’s storage systems.

Betsy Beyer is a Technical Writer for Google in New York City spe‐
cializing in Site Reliability Engineering. She has previously written
documentation for Google’s Data Center and Hardware Operations
Teams in Mountain View and across its globally distributed datacen‐
ters. Before moving to New York, Betsy was a lecturer on technical
writing at Stanford University. En route to her current career, Betsy
studied International Relations and English Literature, and holds
degrees from Stanford and Tulane.

	Cover
	Web Ops
	Copyright
	Table of Contents
	Chapter 1. Monitoring Distributed Systems
	Definitions
	Why Monitor?
	Setting Reasonable Expectations for Monitoring
	Symptoms Versus Causes
	Black-Box Versus White-Box
	The Four Golden Signals
	Worrying About Your Tail (or, Instrumentation and Performance)
	Choosing an Appropriate Resolution for Measurements
	As Simple as Possible, No Simpler
	Tying These Principles Together
	Monitoring for the Long Term
	Bigtable SRE: A Tale of Over-Alerting
	Gmail: Predictable, Scriptable Responses from Humans
	The Long Run

	Conclusion

	About the Author and Editor

