

http://oreil.ly/free_resources

Jason Edelman

Network Automation
with Ansible

978-1-491-93783-9

[LSI]

Network Automation with Ansible
by Jason Edelman

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and Courtney
Allen
Production Editor: Nicholas Adams
Copyeditor: Amanda Kersey

Proofreader: Charles Roumeliotis
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

March 2016: First Edition

Revision History for the First Edition
2016-03-07: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Network Automa‐
tion with Ansible and related trade dress are trademarks of O’Reilly Media, Inc.
Cover image courtesy of Jean-Pierre Dalbéra, source: Flickr.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

1. Network Automation. 1
Simplified Architectures 3
Deterministic Outcomes 3
Business Agility 4

2. What Is Ansible?. 5
Simple 5
Agentless 6
Extensible 7

3. Why Ansible for Network Automation?. 9
Agentless 9
Free and Open Source Software (FOSS) 11
Extensible 11
Integrating into Existing DevOps Workflows 12
Idempotency 12
Network-Wide and Ad Hoc Changes 13

4. Network Task Automation with Ansible. 15
Device Provisioning 15
Data Collection and Monitoring 18
Migrations 20
Configuration Management 20
Compliance 20
Reporting 21

5. How Ansible Works. 23
Out of the Box 23

iii

Ansible Network Integrations 26

6. Ansible Terminology and Getting Started. 29
Inventory File 31
Playbook 31
Play 31
Tasks 32
Modules 33

7. Hands-on Look at Using Ansible for Network Automation. 37
Inventory File 38
Playbook 40

8. Summary. 45

iv | Table of Contents

CHAPTER 1

Network Automation

As the IT industry transforms with technologies from server virtual‐
ization to public and private clouds with self-service capabilities,
containerized applications, and Platform as a Service (PaaS) offer‐
ings, one of the areas that continues to lag behind is the network.

Over the past 5+ years, the network industry has seen many new
trends emerge, many of which are categorized as software-defined
networking (SDN).

SDN is a new approach to building, managing, operat‐
ing, and deploying networks. The original definition
for SDN was that there needed to be a physical separa‐
tion of the control plane from the data (packet for‐
warding) plane, and the decoupled control plane must
control several devices.
Nowadays, many more technologies get put under the
SDN umbrella, including controller-based networks,
APIs on network devices, network automation, white‐
box switches, policy networking, Network Functions
Virtualization (NFV), and the list goes on.
For purposes of this report, we refer to SDN solutions
as solutions that include a network controller as part of
the solution, and improve manageability of the net‐
work but don’t necessarily decouple the control plane
from the data plane.

1

One of these trends is the emergence of application programming
interfaces (APIs) on network devices as a way to manage and oper‐
ate these devices and truly offer machine to machine communica‐
tion. APIs simplify the development process when it comes to auto‐
mation and building network applications, providing more struc‐
ture on how data is modeled. For example, when API-enabled devi‐
ces return data in JSON/XML, it is structured and easier to work
with as compared to CLI-only devices that return raw text that then
needs to be manually parsed.

Prior to APIs, the two primary mechanisms used to configure and
manage network devices were the command-line interface (CLI)
and Simple Network Management Protocol (SNMP). If we look at
each of those, the CLI was meant as a human interface to the device,
and SNMP wasn’t built to be a real-time programmatic interface for
network devices.

Luckily, as many vendors scramble to add APIs to devices, some‐
times just because it’s a check in the box on an RFP, there is actually
a great byproduct—enabling network automation. Once a true API
is exposed, the process for accessing data within the device, as well
as managing the configuration, is greatly simplified, but as we’ll
review in this report, automation is also possible using more tradi‐
tional methods, such as CLI/SNMP.

As network refreshes happen in the months and years
to come, vendor APIs should no doubt be tested and
used as key decision-making criteria for purchasing
network equipment (virtual and physical). Users
should want to know how data is modeled by the
equipment, what type of transport is used by the API,
if the vendor offers any libraries or integrations to
automation tools, and if open standards/protocols are
being used.

Generally speaking, network automation, like most types of automa‐
tion, equates to doing things faster. While doing more faster is nice,
reducing the time for deployments and configuration changes isn’t
always a problem that needs solving for many IT organizations.

Including speed, we’ll now take a look at a few of the reasons that IT
organizations of all shapes and sizes should look at gradually adopt‐

2 | Chapter 1: Network Automation

ing network automation. You should note that the same principles
apply to other types of automation as well.

Simplified Architectures
Today, every network is a unique snowflake, and network engineers
take pride in solving transport and application issues with one-off
network changes that ultimately make the network not only harder
to maintain and manage, but also harder to automate.

Instead of thinking about network automation and management as
a secondary or tertiary project, it needs to be included from the
beginning as new architectures and designs are deployed. Which
features work across vendors? Which extensions work across plat‐
forms? What type of API or automation tooling works when using
particular network device platforms? When these questions get
answered earlier on in the design process, the resulting architecture
becomes simpler, repeatable, and easier to maintain and automate,
all with fewer vendor proprietary extensions enabled throughout the
network.

Deterministic Outcomes
In an enterprise organization, change review meetings take place to
review upcoming changes on the network, the impact they have on
external systems, and rollback plans. In a world where a human is
touching the CLI to make those upcoming changes, the impact of
typing the wrong command is catastrophic. Imagine a team with
three, four, five, or 50 engineers. Every engineer may have his own
way of making that particular upcoming change. And the ability to
use a CLI or a GUI does not eliminate or reduce the chance of error
during the control window for the change.

Using proven and tested network automation helps achieve more
predictable behavior and gives the executive team a better chance at
achieving deterministic outcomes, moving one step closer to having
the assurance that the task is going to get done right the first time
without human error.

Simplified Architectures | 3

Business Agility
It goes without saying that network automation offers speed and
agility not only for deploying changes, but also for retrieving data
from network devices as fast as the business demands. Since the
advent of server virtualization, server and virtualization admins
have had the ability to deploy new applications almost instantane‐
ously. And the faster applications are deployed, the more questions
are raised as to why it takes so long to configure a VLAN, route, FW
ACL, or load-balancing policy.

By understanding the most common workflows within an organiza‐
tion and why network changes are really required, the process to
deploy modern automation tooling such as Ansible becomes much
simpler.

This chapter introduced some of the high-level points on why you
should consider network automation. In the next section, we take a
look at what Ansible is and continue to dive into different types of
network automation that are relevant to IT organizations of all sizes.

4 | Chapter 1: Network Automation

CHAPTER 2

What Is Ansible?

Ansible is one of the newer IT automation and configuration man‐
agement platforms that exists in the open source world. It’s often
compared to other tools such as Puppet, Chef, and SaltStack. Ansi‐
ble emerged on the scene in 2012 as an open source project created
by Michael DeHaan, who also created Cobbler and cocreated Func,
both of which are very popular in the open source community. Less
than 18 months after the Ansible open source project started, Ansi‐
ble Inc. was formed and received $6 million in Series A funding. It
became and is still the number one contributor to and supporter of
the Ansible open source project. In October 2015, Red Hat acquired
Ansible Inc.

But, what exactly is Ansible?

Ansible is a super-simple automation platform that is agentless and
extensible.

Let’s dive into this statement in a bit more detail and look at the
attributes of Ansible that have helped it gain a significant amount of
traction within the industry.

Simple
One of the most attractive attributes of Ansible is that you DO NOT
need any special coding skills in order to get started. All instruc‐
tions, or tasks to be automated, are documented in a standard,
human-readable data format that anyone can understand. It is not

5

uncommon to have Ansible installed and automating tasks in under
30 minutes!

For example, the following task from an Ansible playbook is used to
ensure a VLAN exists on a Cisco Nexus switch:

- nxos_vlan: vlan_id=100 name=web_vlan

You can tell by looking at this almost exactly what it’s going to do
without understanding or writing any code!

The second half of this report covers the Ansible ter‐
minology (playbooks, plays, tasks, modules, etc.) in
great detail. However, we have included a few brief
examples in the meantime to convey key concepts
when using Ansible for network automation.

Agentless
If you look at other tools on the market, such as Puppet and Chef,
you’ll learn that, by default, they require that each device you are
automating have specialized software installed. This is NOT the case
with Ansible, and this is the major reason why Ansible is a great
choice for networking automation.

It’s well understood that IT automation tools, including Puppet,
Chef, CFEngine, SaltStack, and Ansible, were initially built to man‐
age and automate the configuration of Linux hosts to increase the
pace at which applications are deployed. Because Linux systems
were being automated, getting agents installed was never a technical
hurdle to overcome. If anything, it just delayed the setup, since now
N number of hosts (the hosts you want to automate) needed to have
software deployed on them.

On top of that, when agents are used, there is additional complexity
required for DNS and NTP configuration. These are services that
most environments do have already, but when you need to get
something up fairly quick or simply want to see what it can do from
a test perspective, it could significantly delay the overall setup and
installation process.

Since this report is meant to cover Ansible for network automation,
it’s worth pointing out that having Ansible as an agentless platform
is even more compelling to network admins than to sysadmins.
Why is this?

6 | Chapter 2: What Is Ansible?

It’s more compelling for network admins because as mentioned,
Linux operating systems are open, and anything can be installed on
them. For networking, this is definitely not the case, although it is
gradually changing. If we take the most widely deployed network
operating system, Cisco IOS, as just one example and ask the ques‐
tion, “Can third-party software be installed on IOS based platforms?”
it shouldn’t come as a surprise that the answer is NO.

For the last 20+ years, nearly all network operating systems have
been closed and vertically integrated with the underlying network
hardware. Because it’s not so easy to load an agent on a network
device (router, switch, load balancer, firewall, etc.) without vendor
support, having an automation platform like Ansible that was built
from the ground up to be agentless and extensible is just what the
doctor ordered for the network industry. We can finally start elimi‐
nating manual interactions with the network with ease!

Extensible
Ansible is also extremely extensible. As open source and code start
to play a larger role in the network industry, having platforms that
are extensible is a must. This means that if the vendor or community
doesn’t provide a particular feature or function, the open source
community, end user, customer, consultant, or anyone else can
extend Ansible to enable a given set of functionality. In the past, the
network vendor or tool vendor was on the hook to provide the new
plug-ins and integrations. Imagine using an automation platform
like Ansible, and your network vendor of choice releases a new fea‐
ture that you really need automated. While the network vendor or
Ansible could in theory release the new plug-in to automate that
particular feature, the great thing is, anyone from your internal engi‐
neers to your value-added reseller (VARs) or consultant could now
provide these integrations.

It is a fact that Ansible is extremely extensible because as stated,
Ansible was initially built to automate applications and systems. It is
because of Ansible’s extensibility that Ansible integrations have been
written for network vendors, including but not limited to Cisco,
Arista, Juniper, F5, HP, A10, Cumulus, and Palo Alto Networks.

Extensible | 7

CHAPTER 3

Why Ansible for Network
Automation?

We’ve taken a brief look at what Ansible is and also some of the ben‐
efits of network automation, but why should Ansible be used for
network automation?

In full transparency, many of the reasons already stated are what
make Ansible such as great platform for automating application
deployments. However, we’ll take this a step further now, getting
even more focused on networking, and continue to outline a few
other key points to be aware of.

Agentless
The importance of an agentless architecture cannot be stressed
enough when it comes to network automation, especially as it per‐
tains to automating existing devices. If we take a look at all devices
currently installed at various parts of the network, from the DMZ
and campus, to the branch and data center, the lion’s share of devices
do NOT have a modern device API. While having an API makes
things so much simpler from an automation perspective, an agent‐
less platform like Ansible makes it possible to automate and manage
those legacy (traditional) devices, for example, CLI-based devices,
making it a tool that can be used in any network environment.

9

If CLI-only devices are integrated with Ansible, the
mechanisms as to how the devices are accessed for
read-only and read-write operations occur through
protocols such as telnet, SSH, and SNMP.

As standalone network devices like routers, switches, and firewalls
continue to add support for APIs, SDN solutions are also emerging.
The one common theme with SDN solutions is that they all offer a
single point of integration and policy management, usually in the
form of an SDN controller. This is true for solutions such as Cisco
ACI, VMware NSX, Big Switch Big Cloud Fabric, and Juniper Con‐
trail, as well as many of the other SDN offerings from companies
such as Nuage, Plexxi, Plumgrid, Midokura, and Viptela. This even
includes open source controllers such as OpenDaylight.

These solutions all simplify the management of networks, as they
allow an administrator to start to migrate from box-by-box manage‐
ment to network-wide, single-system management. While this is a
great step in the right direction, these solutions still don’t eliminate
the risks for human error during change windows. For example,
rather than configure N switches, you may need to configure a sin‐
gle GUI that could take just as long in order to make the required
configuration change—it may even be more complex, because after
all, who prefers a GUI over a CLI! Additionally, you may possibly
have different types of SDN solutions deployed per application, net‐
work, region, or data center.

The need to automate networks, for configuration management,
monitoring, and data collection, does not go away as the industry
begins migrating to controller-based network architectures.

As most software-defined networks are deployed with a controller,
nearly all controllers expose a modern REST API. And because
Ansible has an agentless architecture, it makes it extremely simple to
automate not only legacy devices that may not have an API, but also
software-defined networking solutions via REST APIs, all without
requiring any additional software (agents) on the endpoints. The net
result is being able to automate any type of device using Ansible
with or without an API.

10 | Chapter 3: Why Ansible for Network Automation?

Free and Open Source Software (FOSS)
Being that Ansible is open source with all code publicly accessible
on GitHub, it is absolutely free to get started using Ansible. It can
literally be installed and providing value to network engineers in
minutes. Ansible, the open source project, or Ansible Inc., do not
require any meetings with sales reps before they hand over software
either. That is stating the obvious, since it’s true for all open source
projects, but being that the use of open source, community-driven
software within the network industry is fairly new and gradually
increasing, we wanted to explicitly make this point.

It is also worth stating that Ansible, Inc. is indeed a company and
needs to make money somehow, right? While Ansible is open
source, it also has an enterprise product called Ansible Tower that
adds features such as role-based access control (RBAC), reporting,
web UI, REST APIs, multi-tenancy, and much more, which is usu‐
ally a nice fit for enterprises looking to deploy Ansible. And the best
part is that even Ansible Tower is FREE for up to 10 devices—so, at
least you can get a taste of Tower to see if it can benefit your organi‐
zation without spending a dime and sitting in countless sales meet‐
ings.

Extensible
We stated earlier that Ansible was primarily built as an automation
platform for deploying Linux applications, although it has expanded
to Windows since the early days. The point is that the Ansible open
source project did not have the goal of automating network infra‐
structure. The truth is that the more the Ansible community under‐
stood how flexible and extensible the underlying Ansible architec‐
ture was, the easier it became to extend Ansible for their automation
needs, which included networking. Over the past two years, there
have been a number of Ansible integrations developed, many by
industry independents such as Matt Oswalt, Jason Edelman, Kirk
Byers, Elisa Jasinska, David Barroso, Michael Ben-Ami, Patrick
Ogenstad, and Gabriele Gerbino, as well as by leading networking
network vendors such as Arista, Juniper, Cumulus, Cisco, F5, and
Palo Alto Networks.

Free and Open Source Software (FOSS) | 11

Integrating into Existing DevOps Workflows
Ansible is used for application deployments within IT organizations.
It’s used by operations teams that need to manage the deployment,
monitoring, and management of various types of applications. By
integrating Ansible with the network infrastructure, it expands what
is possible when new applications are turned up or migrated. Rather
than have to wait for a new top of rack (TOR) switch to be turned
up, a VLAN to be added, or interface speed/duplex to be checked, all
of these network-centric tasks can be automated and integrated into
existing workflows that already exist within the IT organization.

Idempotency
The term idempotency (pronounced item-potency) is used often in
the world of software development, especially when working with
REST APIs, as well as in the world of DevOps automation and con‐
figuration management frameworks, including Ansible. One of
Ansible’s beliefs is that all Ansible modules (integrations) should be
idempotent. Okay, so what does it mean for a module to be idempo‐
tent? After all, this is a new term for most network engineers.

The answer is simple. Being idempotent allows the defined task to
run one time or a thousand times without having an adverse effect
on the target system, only ever making the change once. In other
words, if a change is required to get the system into its desired state,
the change is made; and if the device is already in its desired state,
no change is made. This is unlike most traditional custom scripts
and the copy and pasting of CLI commands into a terminal window.
When the same command or script is executed repeatedly on the
same system, errors are (sometimes) raised. Ever paste a command
set into a router and get some type of error that invalidates the rest
of your configuration? Was that fun?

Another example is if you have a text file or a script that configures
10 VLANs, the same commands are then entered 10 times EVERY
time the script is run. If an idempotent Ansible module is used, the
existing configuration is gathered first from the network device, and
each new VLAN being configured is checked against the current
configuration. Only if the new VLAN needs to be added (or
changed—VLAN name, as an example) is a change or command
actually pushed to the device.

12 | Chapter 3: Why Ansible for Network Automation?

As the technologies become more complex, the value of idempo‐
tency only increases because with idempotency, you shouldn’t care
about the existing state of the network device being modified, only
the desired state that you are trying to achieve from a network con‐
figuration and policy perspective.

Network-Wide and Ad Hoc Changes
One of the problems solved with configuration management tools is
configuration drift (when a device’s desired configuration gradually
drifts, or changes, over time due to manual change and/or having
multiple disparate tools being used in an environment)—in fact, this
is where tools like Puppet and Chef got started. Agents phone home
to the head-end server, validate its configuration, and if a change is
required, the change is made. The approach is simple enough. What
if an outage occurs and you need to troubleshoot though? You usu‐
ally bypass the management system, go direct to a device, find the
fix, and quickly leave for the day, right? Sure enough, at the next
time interval when the agent phones back home, the change made
to fix the problem is overwritten (based on how the master/head-
end server is configured). One-off changes should always be limited
in highly automated environments, but tools that still allow for them
are greatly valuable. As you guessed, one of these tools is Ansible.

Because Ansible is agentless, there is not a default push or pull to
prevent configuration drift. The tasks to automate are defined in
what is called an Ansible playbook. When using Ansible, it is up to
the user to run the playbook. If the playbook is to be executed at a
given time interval and you’re not using Ansible Tower, you will def‐
initely know how often the tasks are run; if you are just using the
native Ansible command line from a terminal prompt, the playbook
is run once and only once.

Running a playbook once by default is attractive for network engi‐
neers. It is added peace of mind that changes made manually on the
device are not going to be automatically overwritten. Additionally,
the scope of devices that a playbook is executed against is easily
changed when needed such that even if a single change needs to
automate only a single device, Ansible can still be used. The scope of
devices is determined by what is called an Ansible inventory file; the
inventory could have one device or a thousand devices.

Network-Wide and Ad Hoc Changes | 13

The following shows a sample inventory file with two groups
defined and a total of six network devices:

[core-switches]
dc-core-1
dc-core-2

[leaf-switches]
leaf1
leaf2
leaf3
leaf4

To automate all hosts, a snippet from your play definition in a play‐
book looks like this:

hosts: all

And to automate just one leaf switch, it looks like this:

hosts: leaf1

And just the core switches:

hosts: core-switches

As stated previously, playbooks, plays, and inventories
are covered in more detail later on this report.

Being able to easily automate one device or N devices makes Ansible
a great choice for making those one-off changes when they are
required. It’s also great for those changes that are network-wide:
possibly for shutting down all interfaces of a given type, configuring
interface descriptions, or adding VLANs to wiring closets across an
enterprise campus network.

14 | Chapter 3: Why Ansible for Network Automation?

CHAPTER 4

Network Task Automation
with Ansible

This report is gradually getting more technical in two areas. The
first area is around the details and architecture of Ansible, and the
second area is about exactly what types of tasks can be automated
from a network perspective with Ansible. The latter is what we’ll
take a look at in this chapter.

Automation is commonly equated with speed, and considering that
some network tasks don’t require speed, it’s easy to see why some IT
teams don’t see the value in automation. VLAN configuration is a
great example because you may be thinking, “How fast does a VLAN
really need to get created? Just how many VLANs are being added
on a daily basis? Do I really need automation?”

In this section, we are going to focus on several other tasks where
automation makes sense such as device provisioning, data collec‐
tion, reporting, and compliance. But remember, as we stated earlier,
automation is much more than speed and agility as it’s offering you,
your team, and your business more predictable and more determin‐
istic outcomes.

Device Provisioning
One of the easiest and fastest ways to get started using Ansible for
network automation is creating device configuration files that are

15

used for initial device provisioning and pushing them to network
devices.

If we take this process and break it down into two steps, the first
step is creating the configuration file, and the second is pushing the
configuration onto the device.

First, we need to decouple the inputs from the underlying vendor
proprietary syntax (CLI) of the config file. This means we’ll have
separate files with values for the configuration parameters such as
VLANs, domain information, interfaces, routing, and everything
else, and then, of course, a configuration template file(s). For this
example, this is our standard golden template that’s used for all devi‐
ces getting deployed. Ansible helps bridge the gap between render‐
ing the inputs and values with the configuration template. In less
than a few seconds, Ansible can generate hundreds of configuration
files predictably and reliably.

Let’s take a quick look at an example of taking a current configura‐
tion and decomposing it into a template and separate variables
(inputs) file.

Here is an example of a configuration file snippet:

hostname leaf1
ip domain-name ntc.com
!
vlan 10
 name web
!
vlan 20
 name app
!
vlan 30
 name db
!
vlan 40
 name test
!
vlan 50
 name misc

If we extract the input values, this file is transformed into a template.

Ansible uses the Python-based Jinja2 templating lan‐
guage, thus the template called leaf.j2 is a Jinja2 tem‐
plate.

16 | Chapter 4: Network Task Automation with Ansible

Note that in the following example the double curly braces denote a
variable.

The resulting template looks like this and is given the filename
leaf.j2:

!
hostname {{ inventory_hostname }}
ip domain-name {{ domain_name }}
!
!
{% for vlan in vlans %}
vlan {{ vlan.id }}
 name {{ vlan.name }}
{% endfor %}
!

Since the double curly braces denote variables, and we see those val‐
ues are not in the template, they need to be stored somewhere. They
get stored in a variables file. A matching variables file for the previ‐
ously shown template looks like this:

hostname: leaf1
domain_name: ntc.com
vlans:
 - { id: 10, name: web }
 - { id: 20, name: app }
 - { id: 30, name: db }
 - { id: 40, name: test }
 - { id: 50, name: misc }

This means if the team that controls VLANs wants to add a VLAN
to the network devices, no problem. Have them change it in the
variables file and regenerate a new config file using the Ansible
module called template. This whole process is idempotent too; only
if there is a change to the template or values being entered will a new
configuration file be generated.

Once the configuration is generated, it needs to be pushed to the
network device. One such method to push configuration files to net‐
work devices is using the open source Ansible module called
napalm_install_config.

The next example is a sample playbook to build and push a configu‐
ration to network devices. Again, this playbook uses the template
module to build the configuration files and the

Device Provisioning | 17

napalm_install_config to push them and activate them as the new
running configurations on the devices.

Even though every line isn’t reviewed in the example, you can still
make out what is actually happening.

The following playbook introduces new concepts such
as the built-in variable inventory_hostname. These
concepts are covered in Chapter 6.

 - name: BUILD AND PUSH NETWORK CONFIGURATION FILES
 hosts: leaves
 connection: local
 gather_facts: no

 tasks:
 - name: BUILD CONFIGS
 template:
 src=templates/leaf.j2
 dest=configs/{{inventory_hostname }}.conf

 - name: PUSH CONFIGS
 napalm_install_config:
 hostname={{ inventory_hostname }}
 username={{ un }}
 password={{ pwd }}
 dev_os={{ os }}
 config_file=configs/{{ inventory_hostname }}.conf
 commit_changes=1
 replace_config=0

This two-step process is the simplest way to get started with network
automation using Ansible. You simply template your configs, build
config files, and push them to the network device—otherwise
known as the BUILD and PUSH method.

Another example like this is reviewed in much more
detail in “Ansible Network Integrations” on page 26.

Data Collection and Monitoring
Monitoring tools typically use SNMP—these tools poll certain man‐
agement information bases (MIBs) and return data to the monitor‐

18 | Chapter 4: Network Task Automation with Ansible

ing tool. Based on the data being returned, it may be more or less
than you actually need. What if interface stats are being polled? You
are likely getting back every counter that is displayed in a show inter‐
face command. What if you only need interface resets and wish to
see these resets correlated to the interfaces that have CDP/LLDP
neighbors on them? Of course, this is possible with current technol‐
ogy; it could be you are running multiple show commands and
parsing the output manually, or you’re using an SNMP-based tool
but going between tabs in the GUI trying to find the data you
actually need. How does Ansible help with this?

Being that Ansible is totally open and extensible, it’s possible to col‐
lect and monitor the exact counters or values needed. This may
require some up-front custom work but is totally worth it in the
end, because the data being gathered is what you need, not what the
vendor is providing you. Ansible also provides intuitive ways to per‐
form certain tasks conditionally, which means based on data being
returned, you can perform subsequent tasks, which may be to collect
more data or to make a configuration change.

Network devices have A LOT of static and ephemeral data buried
inside, and Ansible helps extract the bits you need.

You can even use Ansible modules that use SNMP behind the
scenes, such as a module called snmp_device_version. This is
another open source module that exists within the community:

 - name: GET SNMP DATA
 snmp_device_version:
 host=spine
 community=public
 version=2c

Running the preceding task returns great information about a
device and adds some level of discovery capabilities to Ansible. For
example, that task returns the following data:

{"ansible_facts": {"ansible_device_os": "nxos", "ansi-
ble_device_vendor": "cisco", "ansible_device_version":
"7.0(3)I2(1)"}, "changed": false}

You can now determine what type of device something is without
knowing up front. All you need to know is the read-only commu‐
nity string of the device.

Data Collection and Monitoring | 19

Migrations
Migrating from one platform to the next is never an easy task. This
may be from the same vendor or from different vendors. Vendors
may offer a script or a tool to help with migrations. Ansible can be
used to build out configuration templates for all types of network
devices and operating systems in such a way that you could generate
a configuration file for all vendors given a defined and common set
of inputs (common data model). Of course, if there are vendor pro‐
prietary extensions, they’ll need to be accounted for, too. Having this
type of flexibility helps with not only migrations, but also disaster
recovery (DR), as it’s very common to have different switch models
in the production and DR data centers, maybe even different ven‐
dors.

Configuration Management
As stated, configuration management is the most common type of
automation. What Ansible allows you to do fairly easily is create
roles to streamline the consumption of task-based automation. From
a high level, a role is a logical grouping of reusable tasks that are
automated against a particular group of devices. Another way to
think about roles is to think about workflows. First and foremost,
workflows and processes need to be understood before automation
is going to start adding value. It’s always important to start small and
expand from there.

For example, a set of tasks that automate the configuration of rout‐
ers and switches is very common and is a great place to start. But
where do the IP addresses come from that are configured on net‐
work devices? Maybe an IP address management solution? Once the
IP addresses are allocated for a given function and deployed, does
DNS need to be updated too? Do DHCP scopes need to be created?

Can you see how the workflow can start small and gradually expand
across different IT systems? As the workflow continues to expand,
so would the role.

Compliance
As with many forms of automation, making configuration changes
with any type of automation tool is seen as a risk. While making

20 | Chapter 4: Network Task Automation with Ansible

manual changes could arguably be riskier, as you’ve read and may
have experienced firsthand, Ansible has capabilities to automate
data collection, monitoring, and configuration building, which are
all “read-only” and “low risk” actions. One low risk use case that can
use the data being gathered is configuration compliance checks and
configuration validation. Does the deployed configuration meet
security requirements? Are the required networks configured? Is
protocol XYZ disabled? Since each module, or integration, with
Ansible returns data, it is quite simple to assert that something is
TRUE or FALSE. And again, based on it being TRUE or FALSE, it’s
up to you to determine what happens next—maybe it just gets log‐
ged, or maybe a complex operation is performed.

Reporting
We now understand that Ansible can also be used to collect data and
perform compliance checks. The data being returned and collected
from the device by way of Ansible is up for grabs in terms of what
you want to do with it. Maybe the data being returned becomes
inputs to other tasks, or maybe you just want to create reports.
Being that reports are generated from templates combined with the
actual important data to be inserted into the template, the process to
create and use reporting templates is the same process used to create
configuration templates.

From a reporting perspective, these templates may be flat text files,
markdown files that are viewed on GitHub, HTML files that get
dynamically placed on a web server, and the list goes on. The user
has the power to create the exact type of report she wishes, inserting
the exact data she needs to be part of that report.

It is powerful to create reports not only for executive management,
but also for the ops engineers, since there are usually different met‐
rics both teams need.

Reporting | 21

CHAPTER 5

How Ansible Works

After looking at what Ansible can offer from a network automation
perspective, we’ll now take a look at how Ansible works. You will
learn about the overall communication flow from an Ansible control
host to the nodes that are being automated. First, we review how
Ansible works out of the box, and we then take a look at how Ansi‐
ble, and more specifically Ansible modules, work when network
devices are being automated.

Out of the Box
By now, you should understand that Ansible is an automation plat‐
form. In fact, it is a lightweight automation platform that is installed
on a single server or on every administrator’s laptop within an orga‐
nization. You decide. Ansible is easily installed using utilities such as
pip, apt, and yum on Linux-based machines.

The machine that Ansible is installed on is referred to
as the control host through the remainder of this
report.

The control host will perform all automation tasks that are defined
in an Ansible playbook (don’t worry; we’ll cover playbooks and
other Ansible terms soon enough). The important piece for now is
to understand that a playbook is simply a set of automation tasks
and instructions that gets executed on a given number of hosts.

23

When a playbook is created, you also need to define which hosts you
want to automate. The mapping between the playbook and the hosts
to automate happens by using what is known as an Ansible inven‐
tory file. This was already shown in an earlier example, but here is
another sample inventory file showing two groups: cisco and
arista:

[cisco]
nyc1.acme.com
nyc2.acme.com

[arista]
sfo1.acme.com
sfo2.acme.com

You can also use IP addresses within the inventory file,
instead of hostnames. For these examples, the host‐
names were resolvable via DNS.

As you can see, the Ansible inventory file is a text file that lists hosts
and groups of hosts. You then reference a specific host or a group
from within the playbook, thus dictating which hosts get automated
for a given play and playbook. This is shown in the following two
examples.

The first example shows what it looks like if you wanted to automate
all hosts within the cisco group, and the second example shows
how to automate just the nyc1.acme.com host:

 - name: TEST PLAYBOOK
 hosts: cisco

 tasks:
 - TASKS YOU WANT TO AUTOMATE

 - name: TEST PLAYBOOK
 hosts: nyc1.acme.com

 tasks:
 - TASKS YOU WANT TO AUTOMATE

Now that the basics of inventory files are understood, we can take a
look at how Ansible (the control host) communicates with devices
out of the box and how tasks are automated on Linux endpoints.

24 | Chapter 5: How Ansible Works

This is an important concept to understand, as this is usually differ‐
ent when network devices are being automated.

There are two main requirements for Ansible to work out of the box
to automate Linux-based systems. These requirements are SSH and
Python.

First, the endpoints must support SSH for transport, since Ansible
uses SSH to connect to each target node. Because Ansible supports a
pluggable connection architecture, there are also various plug-ins
available for different types of SSH implementations.

The second requirement is how Ansible gets around the need to
require an agent to preexist on the target node. While Ansible does
not require a software agent, it does require an onboard Python exe‐
cution engine. This execution engine is used to execute Python code
that is transmitted from the Ansible control host to the target node
being automated.

If we elaborate on this out of the box workflow, it is broken down as
follows:

1. When an Ansible play is executed, the control host connects to
the Linux-based target node using SSH.

2. For each task, that is, Ansible module being executed within the
play, Python code is transmitted over SSH and executed directly
on the remote system.

3. Each Ansible module upon execution on the remote system
returns JSON data to the control host. This data includes infor‐
mation such as if the configuration changed, if the task passed/
failed, and other module-specific data.

4. The JSON data returned back to Ansible can then be used to
generate reports using templates or as inputs to subsequent
modules.

5. Repeat step 3 for each task that exists within the play.
6. Repeat step 1 for each play within the playbook.

Shouldn’t this mean that network devices should work out of the
box with Ansible because they also support SSH? It is true that net‐
work devices do support SSH, but it is the first requirement com‐
bined with the second one that limits the functionality possible for
network devices.

Out of the Box | 25

To start, most network devices do not support Python, so it makes
using the default Ansible connection mechanism process a non-
starter. That said, over the past few years, vendors have added
Python support on several different device platforms. However,
most of these platforms still lack the integration needed to allow
Ansible to get direct access to a Linux shell over SSH with the
proper permissions to copy over the required code, create temp
directories and files, and execute the code on box. While all the
parts are there for Ansible to work natively with SSH/Python and
Linux-based network devices, it still requires network vendors to
open their systems more than they already have.

It is worth noting that Arista does offer native integra‐
tion because it is able to drop SSH users directly into a
Linux shell with access to a Python execution engine,
which in turn does allow Ansible to use its default con‐
nection mechanism. Because we called out Arista, we
need to also highlight Cumulus as working with Ansi‐
ble’s default connection mechanism, too. This is
because Cumulus Linux is native Linux, and there isn’t
a need to use a vendor API for the automation of the
Cumulus Linux OS.

Ansible Network Integrations
The previous section covered the way Ansible works by default. We
looked at how Ansible sets up a connection to a device at the begin‐
ning of a play, executes tasks by copying Python code to the devices,
executes the code, and then returns results back to the Ansible con‐
trol host.

In this section, we’ll take a look at what this process is when auto‐
mating network devices with Ansible. As already covered, Ansible
has a pluggable connection architecture. For most network integra‐
tions, the connection parameter is set to local. The most common
place to make the connection type local is within the playbook, as
shown in the following example:

 - name: TEST PLAYBOOK
 hosts: cisco
 connection: local

26 | Chapter 5: How Ansible Works

 tasks:
 - TASKS YOU WANT TO AUTOMATE

Notice how within the play definition, this example added the con
nection parameter as compared to the examples in the previous
section.

This tells Ansible not to connect to the target device via SSH and to
just connect to the local machine running the playbook. Basically,
this delegates the connection responsibility to the actual Ansible
modules being used within the tasks section of the playbook. Dele‐
gating power for each type of module allows the modules to connect
to the device in whatever fashion necessary; this could be NET‐
CONF for Juniper and HP Comware7, eAPI for Arista, NX-API for
Cisco Nexus, or even SNMP for traditional/legacy-based systems
that don’t have a programmatic API.

Network integrations in Ansible come in the form of
Ansible modules. While we continue to whet your
appetite using terminology such as playbooks, plays,
tasks, and modules to convey key concepts, each of
these terms are finally covered in greater detail in
Chapter 6 and Chapter 7.

Let’s take a look at another sample playbook:

 - name: TEST PLAYBOOK
 hosts: cisco
 connection: local

 tasks:
 - nxos_vlan: vlan_id=10 name=WEB_VLAN

If you notice, this playbook now includes a task, and this task uses
the nxos_vlan module. The nxos_vlan module is just a Python file,
and it is in this file where the connection to the Cisco NX-OS device
is made using NX-API. However, the connection could have been
set up using any other device API, and this is how vendors and users
like us are able to build our own integrations. Integrations (mod‐
ules) are typically done on a per-feature basis, although as you’ve
already seen with modules like napalm_install_config, they can
be used to push a full configuration file, too.

Ansible Network Integrations | 27

One of the major differences is that with the default connection
mechanism, Ansible launches a persistent SSH connection to the
device, and this connection persists for a given play. When the con‐
nection setup and teardown occurs within the module, as with many
network modules that use connection=local, Ansible is logging
in/out of the device on every task versus this happening on the play
level.

And in traditional Ansible fashion, each network module returns
JSON data. The only difference is the massaging of this data is hap‐
pening locally on the Ansible control host versus on the target node.
The data returned back to the playbook varies per vendor and type
of module, but as an example, many of the Cisco NX-OS modules
return back existing state, proposed state, and end state, as well as
the commands (if any) that are being sent to the device.

As you get started using Ansible for network automation, it is
important to remember that setting the connection parameter to
local is taking Ansible out of the connection setup/teardown process
and leaving that up to the module. This is why modules supported
for different types of vendor platforms will have different ways of
communicating with the devices.

28 | Chapter 5: How Ansible Works

CHAPTER 6

Ansible Terminology and Getting
Started

This chapter walks through many of the terms and key concepts that
have been gradually introduced already in this report. These are
terms such as inventory file, playbook, play, tasks, and modules. We
also review a few other concepts that are helpful to be aware of when
getting started with Ansible for network automation.

Please reference the following sample inventory file and playbook
throughout this section, as they are continuously used in the exam‐
ples that follow to convey what each Ansible term means.

Sample inventory:

sample inventory file
filename inventory

[all:vars]
user=admin
pwd=admin

[tor]
rack1-tor1 vendor=nxos
rack1-tor2 vendor=nxos
rack2-tor1 vendor=arista
rack2-tor2 vendor=arista

[core]
core1
core2

29

Sample playbook:

sample playbook
filename site.yml

 - name: PLAY 1 - Top of Rack (TOR) Switches
 hosts: tor
 connection: local

 tasks:
 - name: ENSURE VLAN 10 EXISTS ON CISCO TOR SWITCHES
 nxos_vlan:
 vlan_id=10
 name=WEB_VLAN
 host={{ inventory_hostname }}
 username=admin
 password=admin
 when: vendor == "nxos"

 - name: ENSURE VLAN 10 EXISTS ON ARISTA TOR SWITCHES
 eos_vlan:
 vlanid=10
 name=WEB_VLAN
 host={{ inventory_hostname }}
 username={{ user }}
 password={{ pwd }}
 when: vendor == "arista"

 - name: PLAY 2 - Core (TOR) Switches
 hosts: core
 connection: local

 tasks:
 - name: ENSURE VLANS EXIST IN CORE
 nxos_vlan:
 vlan_id={{ item }}
 host={{ inventory_hostname }}
 username={{ user }}
 password={{ pwd }}
 with_items:
 - 10
 - 20
 - 30
 - 40
 - 50

30 | Chapter 6: Ansible Terminology and Getting Started

Inventory File
Using an inventory file, such as the preceding one, enables us to
automate tasks for specific hosts and groups of hosts by referencing
the proper host/group using the hosts parameter that exists at the
top section of each play.

It is also possible to store variables within an inventory file. This is
shown in the example. If the variable is on the same line as a host, it
is a host-specific variable. If the variables are defined within brack‐
ets such as [all:vars], it means that the variables are in scope for
the group all, which is a default group that includes all hosts in the
inventory file.

Inventory files are the quickest way to get started with
Ansible, but should you already have a source of truth
for network devices such as a network management
tool or CMDB, it is possible to create and use a
dynamic inventory script rather than a static inventory
file.

Playbook
The playbook is the top-level object that is executed to automate
network devices. In our example, this is the file site.yml, as depicted
in the preceding example. A playbook uses YAML to define the set
of tasks to automate, and each playbook is comprised of one or
more plays. This is analogous to a football playbook. Like in foot‐
ball, teams have playbooks made up of plays, and Ansible playbooks
are made up of plays, too.

YAML is a data format that is supported by all pro‐
gramming languages. YAML is itself a superset of
JSON, and it’s quite easy to recognize YAML files, as
they always start with three dashes (hyphens), ---.

Play
One or more plays can exist within an Ansible playbook. In the pre‐
ceding example, there are two plays within the playbook. Each starts
with a header section where play-specific parameters are defined.

Inventory File | 31

The two plays from that example have the following parameters
defined:

name

The text PLAY 1 - Top of Rack (TOR) Switches is arbitrary
and is displayed when the playbook runs to improve readability
during playbook execution and reporting. This is an optional
parameter.

hosts

As covered previously, this is the host or group of hosts that are
automated in this particular play. This is a required parameter.

connection

As covered previously, this is the type of connection mechanism
used for the play. This is an optional parameter, but is com‐
monly set to local for network automation plays.

Each play is comprised of one or more tasks.

Tasks
Tasks represent what is automated in a declarative manner without
worrying about the underlying syntax or “how” the operation is per‐
formed.

In our example, the first play has two tasks. Each task ensures
VLAN 10 exists. The first task does this for Cisco Nexus devices,
and the second task does this for Arista devices:

tasks:
 - name: ENSURE VLAN 10 EXISTS ON CISCO TOR SWITCHES
 nxos_vlan:
 vlan_id=10
 name=WEB_VLAN
 host={{ inventory_hostname }}
 username=admin
 password=admin
 when: vendor == "nxos"

Tasks can also use the name parameter just like plays can. As with
plays, the text is arbitrary and is displayed when the playbook runs
to improve readability during playbook execution and reporting. It
is an optional parameter for each task.

The next line in the example task starts with nxos_vlan. This tell us
that this task will execute the Ansible module called nxos_vlan.

32 | Chapter 6: Ansible Terminology and Getting Started

We’ll now dig deeper into modules.

Modules
It is critical to understand modules within Ansible. While any pro‐
gramming language can be used to write Ansible modules as long as
they return JSON key-value pairs, they are almost always written in
Python. In our example, we see two modules being executed:
nxos_vlan and eos_vlan. The modules are both Python files; and in
fact, while you can’t tell from looking at the playbook, the real file‐
names are eos_vlan.py and nxos_vlan.py, respectively.

Let’s look at the first task in the first play from the preceding exam‐
ple:

 - name: ENSURE VLAN 10 EXISTS ON CISCO TOR SWITCHES
 nxos_vlan:
 vlan_id=10
 name=WEB_VLAN
 host={{ inventory_hostname }}
 username=admin
 password=admin
 when: vendor == "nxos"

This task executes nxos_vlan, which is a module that automates
VLAN configuration. In order to use modules, including this one,
you need to specify the desired state or configuration policy you
want the device to have. This example states: VLAN 10 should be
configured with the name WEB_VLAN, and it should exist on each
switch being automated. We can see this easily with the vlan_id and
name parameters. There are three other parameters being passed
into the module as well. They are host, username, and password:

host

This is the hostname (or IP address) of the device being auto‐
mated. Since the hosts we want to automate are already defined
in the inventory file, we can use the built-in Ansible variable
inventory_hostname. This variable is equal to what is in the
inventory file. For example, on the first iteration, the host in the
inventory file is rack1-tor1, and on the second iteration, it is
rack1-tor2. These names are passed into the module and then
within the module, a DNS lookup occurs on each name to
resolve it to an IP address. Then the communication begins
with the device.

Modules | 33

username

Username used to log in to the switch.

password

Password used to log in to the switch.

The last piece to cover here is the use of the when statement. This is
how Ansible performs conditional tasks within a play. As we know,
there are multiple devices and types of devices that exist within the
tor group for this play. Using when offers an option to be more
selective based on any criteria. Here we are only automating Cisco
devices because we are using the nxos_vlan module in this task,
while in the next task, we are automating only the Arista devices
because the eos_vlan module is used.

This isn’t the only way to differentiate between devices.
This is being shown to illustrate the use of when and
that variables can be defined within the inventory file.
Defining variables in an inventory file is great for get‐
ting started, but as you continue to use Ansible, you’ll
want to use YAML-based variables files to help with
scale, versioning, and minimizing change to a given
file. This will also simplify and improve readability for
the inventory file and each variables file used. An
example of a variables file was given earlier when the
build/push method of device provisioning was cov‐
ered.

Here are a few other points to understand about the tasks in the last
example:

• Play 1 task 1 shows the username and password hardcoded as
parameters being passed into the specific module (nxos_vlan).

• Play 1 task 1 and play 2 passed variables into the module instead
of hardcoding them. This masks the username and password
parameters, but it’s worth noting that these variables are being
pulled from the inventory file (for this example).

• Play 1 uses a horizontal key=value syntax for the parameters
being passed into the modules, while play 2 uses the vertical
key=value syntax. Both work just fine. You can also use vertical
YAML syntax with “key: value” syntax.

34 | Chapter 6: Ansible Terminology and Getting Started

• The last task also introduces how to use a loop within Ansible.
This is by using with_items and is analogous to a for loop. That
particular task is looping through five VLANs to ensure they all
exist on the switch. Note: it’s also possible to store these VLANs
in an external YAML variables file as well. Also note that the
alternative to not using with_items would be to have one task
per VLAN—and that just wouldn’t scale!

Modules | 35

CHAPTER 7

Hands-on Look at Using Ansible
for Network Automation

In the previous chapter, a general overview of Ansible terminology
was provided. This covered many of the specific Ansible terms, such
as playbooks, plays, tasks, modules, and inventory files. This section
will continue to provide working examples of using Ansible for net‐
work automation, but will provide more detail on working with
modules to automate a few different types of devices. Examples will
include automating devices from multiple vendors, including Cisco,
Arista, Cumulus, and Juniper.

The examples in this section assume the following:

• Ansible is installed.
• The proper APIs are enabled on the devices (NX-API, eAPI,

NETCONF).
• Users exist with the proper permissions on the system to make

changes via the API.
• All Ansible modules exist on the system and are in the library

path.

Setting the module and library path can be done
within the ansible.cfg file. You can also use the -M flag
from the command line to change it when executing a
playbook.

37

The inventory used for the examples in this section is shown in the
following section (with passwords removed and IP addresses
changed). In this example, some hostnames are not FQDNs as they
were in the previous examples.

Inventory File
[cumulus]
cvx ansible_ssh_host=1.2.3.4 ansible_ssh_pass=PASSWORD

[arista]
veos1

[cisco]
nx1 hostip=5.6.7.8 un=USERNAME pwd=PASSWORD

[juniper]
vsrx hostip=9.10.11.12 un=USERNAME pwd=PASSWORD

Just in case you’re wondering at this point, Ansible
does support functionality that allows you to store
passwords in encrypted files. If you want to learn more
about this feature, check out Ansible Vault in the docs
on the Ansible website.

This inventory file has four groups defined with a single host in each
group. Let’s review each section in a little more detail:

Cumulus
The host cvx is a Cumulus Linux (CL) switch, and it is the only
device in the cumulus group. Remember that CL is native Linux,
so this means the default connection mechanism (SSH) is used
to connect to and automate the CL switch. Because cvx is not
defined in DNS or /etc/hosts, we’ll let Ansible know not to use
the hostname defined in the inventory file, but rather the
name/IP defined for ansible_ssh_host. The username to log in
to the CL switch is defined in the playbook, but you can see that
the password is being defined in the inventory file using the
ansible_ssh_pass variable.

Arista
The host called veos1 is an Arista switch running EOS. It is the
only host that exists within the arista group. As you can see for
Arista, there are no other parameters defined within the inven‐

38 | Chapter 7: Hands-on Look at Using Ansible for Network Automation

http://docs.ansible.com/ansible/playbooks_vault.html

tory file. This is because Arista uses a special configuration file
for their devices. This file is called .eapi.conf and for our exam‐
ple, it is stored in the home directory. Here is the conf file being
used for this example to function properly:

[connection:veos1]
host: 2.4.3.4
username: unadmin
password: pwadmin

This file contains all required information for Ansible (and the
Arista Python library called pyeapi) to connect to the device
using just the information as defined in the conf file.

Cisco
Just like with Cumulus and Arista, there is only one host (nx1)
that exists within the cisco group. This is an NX-OS-based
Cisco Nexus switch. Notice how there are three variables
defined for nx1. They include un and pwd, which are accessed in
the playbook and passed into the Cisco modules in order to
connect to the device. In addition, there is a parameter called
hostip. This is required because nx1 is also not defined in DNS
or configured in the /etc/hosts file.

We could have named this parameter anything. If
automating a native Linux device, ansible_ssh_host
is used just like we saw with the Cumulus example (if
the name as defined in the inventory is not resolvable).
In this example, we could have still used ansi

ble_ssh_host, but it is not a requirement, since we’ll
be passing this variable as a parameter into Cisco mod‐
ules, whereas ansible_ssh_host is automatically
checked when using the default SSH connection mech‐
anism.

Juniper
As with the previous three groups and hosts, there is a single
host vsrx that is located within the juniper group. The setup
within the inventory file is identical to that of Cisco’s as both are
used the same exact way within the playbook.

Inventory File | 39

Playbook
The next playbook has four different plays. Each play is built to
automate a specific group of devices based on vendor type. Note that
this is only one way to perform these tasks within a single playbook.
There are other ways in which we could have used conditionals
(when statement) or created Ansible roles (which is not covered in
this report).

Here is the example playbook:

 - name: PLAY 1 - CISCO NXOS
 hosts: cisco
 connection: local

 tasks:
 - name: ENSURE VLAN 100 exists on Cisco Nexus switches
 nxos_vlan:
 vlan_id=100
 name=web_vlan
 host={{ hostip }}
 username={{ un }}
 password={{ pwd }}

 - name: PLAY 2 - ARISTA EOS
 hosts: arista
 connection: local

 tasks:
 - name: ENSURE VLAN 100 exists on Arista switches
 eos_vlan:
 vlanid=100
 name=web_vlan
 connection={{ inventory_hostname }}

 - name: PLAY 3 - CUMULUS
 remote_user: cumulus
 sudo: true
 hosts: cumulus

 tasks:
 - name: ENSURE 100.10.10.1 is configured on swp1
 cl_interface: name=swp1 ipv4=100.10.10.1/24

 - name: restart networking without disruption
 shell: ifreload -a

40 | Chapter 7: Hands-on Look at Using Ansible for Network Automation

 - name: PLAY 4 - JUNIPER SRX changes
 hosts: juniper
 connection: local

 tasks:
 - name: INSTALL JUNOS CONFIG
 junos_install_config:
 host={{ hostip }}
 file=srx_demo.conf
 user={{ un }}
 passwd={{ pwd }}
 logfile=deploysite.log
 overwrite=yes
 diffs_file=junpr.diff

You will notice the first two plays are very similar to what we already
covered in the original Cisco and Arista example. The only differ‐
ence is that each group being automated (cisco and arista) is
defined in its own play, and this is in contrast to using the when con‐
ditional that was used earlier.

There is no right way or wrong way to do this. It all depends on
what information is known up front and what fits your environment
and use cases best, but our intent is to show a few ways to do the
same thing.

The third play automates the configuration of interface swp1 that
exists on the Cumulus Linux switch. The first task within this play
ensures that swp1 is a Layer 3 interface and is configured with the IP
address 100.10.10.1. Because Cumulus Linux is native Linux, the
networking service needs to be restarted for the changes to take
effect. This could have also been done using Ansible handlers (out
of the scope of this report). There is also an Ansible core module
called service that could have been used, but that would disrupt
networking on the switch; using ifreload restarts networking non-
disruptively.

Up until now in this section, we looked at Ansible modules focused
on specific tasks such as configuring interfaces and VLANs. The
fourth play uses another option. We’ll look at a module that pushes a
full configuration file and immediately activates it as the new run‐
ning configuration. This is what we showed previously using
napalm_install_config, but this example uses a Juniper-specific
module called junos_install_config.

Playbook | 41

This module junos_install_config accepts several parameters, as
seen in the example. By now, you should understand what user,
passwd, and host are used for. The other parameters are defined as
follows:

file

This is the config file that is copied from the Ansible control
host to the Juniper device.

logfile

This is optional, but if specified, it is used to store messages gen‐
erated while executing the module.

overwrite

When set to yes/true, the complete configuration is replaced
with the file being sent (default is false).

diffs_file

This is optional, but if specified, will store the diffs generated
when applying the configuration. An example of the diff gener‐
ated when just changing the hostname but still sending a com‐
plete config file is shown next:

filename: junpr.diff
[edit system]
- host-name vsrx;
+ host-name vsrx-demo;

That covers the detailed overview of the playbook. Let’s take a look
at what happens when the playbook is executed:

Note: the -i flag is used to specify the inventory file to
use. The ANSIBLE_HOSTS environment variable can also
be set rather than using the flag each time a playbook is
executed.

ntc@ntc:~/ansible/multivendor$ ansible-playbook -i inventory
demo.yml

PLAY [PLAY 1 - CISCO NXOS]

TASK: [ENSURE VLAN 100 exists on Cisco Nexus switches]

changed: [nx1]

42 | Chapter 7: Hands-on Look at Using Ansible for Network Automation

PLAY [PLAY 2 - ARISTA EOS]

TASK: [ENSURE VLAN 100 exists on Arista switches]

changed: [veos1]

PLAY [PLAY 3 - CUMULUS]
**

GATHERING FACTS
**
ok: [cvx]

TASK: [ENSURE 100.10.10.1 is configured on swp1]

changed: [cvx]

TASK: [restart networking without disruption]

changed: [cvx]

PLAY [PLAY 4 - JUNIPER SRX changes]
**

TASK: [INSTALL JUNOS CONFIG]

changed: [vsrx]

PLAY RECAP

 to retry, use: --limit @/home/ansible/demo.retry

cvx : ok=3 changed=2 unreacha-
ble=0 failed=0
nx1 : ok=1 changed=1 unreacha-
ble=0 failed=0
veos1 : ok=1 changed=1 unreacha-
ble=0 failed=0
vsrx : ok=1 changed=1 unreacha-
ble=0 failed=0

You can see that each task completes successfully; and if you are on
the terminal, you’ll see that each changed task was displayed with an
amber color.

Let’s run this playbook again. By running it again, we can verify that
all of the modules are idempotent; and when doing this, we see that
NO changes are made to the devices and everything is green:

Playbook | 43

PLAY [PLAY 1 - CISCO NXOS]

TASK: [ENSURE VLAN 100 exists on Cisco Nexus switches]

ok: [nx1]

PLAY [PLAY 2 - ARISTA EOS]

TASK: [ENSURE VLAN 100 exists on Arista switches]

ok: [veos1]

PLAY [PLAY 3 - CUMULUS]
**

GATHERING FACTS
**
ok: [cvx]

TASK: [ENSURE 100.10.10.1 is configured on swp1]

ok: [cvx]

TASK: [restart networking without disruption]

skipping: [cvx]

PLAY [PLAY 4 - JUNIPER SRX changes]
**

TASK: [INSTALL JUNOS CONFIG]

ok: [vsrx]

PLAY RECAP

cvx : ok=2 changed=0 unreacha-
ble=0 failed=0
nx1 : ok=1 changed=0 unreacha-
ble=0 failed=0
veos1 : ok=1 changed=0 unreacha-
ble=0 failed=0
vsrx : ok=1 changed=0 unreacha-
ble=0 failed=0

Notice how there were 0 changes, but they still returned “ok” for
each task. This verifies, as expected, that each of the modules in this
playbook are idempotent.

44 | Chapter 7: Hands-on Look at Using Ansible for Network Automation

CHAPTER 8

Summary

Ansible is a super-simple automation platform that is agentless and
extensible. The network community continues to rally around Ansi‐
ble as a platform that can be used for network automation tasks that
range from configuration management to data collection and
reporting. You can push full configuration files with Ansible, config‐
ure specific network resources with idempotent modules such as
interfaces or VLANs, or simply just automate the collection of infor‐
mation such as neighbors, serial numbers, uptime, and interface
stats, and customize reports as you need them.

Because of its architecture, Ansible proves to be a great tool avail‐
able here and now that helps bridge the gap from legacy CLI/SNMP
network device automation to modern API-driven automation.

Ansible’s ease of use and agentless architecture accounts for the plat‐
form’s increasing following within the networking community.
Again, this makes it possible to automate devices without APIs
(CLI/SNMP); devices that have modern APIs, including standalone
switches, routers, and Layer 4-7 service appliances; and even those
software-defined networking (SDN) controllers that offer RESTful
APIs.

There is no device left behind when using Ansible for network auto‐
mation.

45

About the Author
Jason Edelman, CCIE 15394 & VCDX-NV 167, is a born and bred
network engineer from the great state of New Jersey. He was the typ‐
ical “lover of the CLI” or “router jockey.” At some point several years
ago, he made the decision to focus more on software development
practices and how they are converging with network engineering.
Jason currently runs a boutique consulting firm, Network to Code,
helping vendors and end users take advantage of new tools and
technologies to reduce their operational inefficiencies. Jason has a
Bachelor of Engineering from Stevens Institute of Technology in NJ
and still resides locally in the New York City Metro Area. Jason also
writes regularly on his personal blog, jedelman.com, and can be
found on Twitter at @jedelman8.

	Cover
	4 Easy Ways to Stay Ahead of the Game
	Copyright
	Table of Contents
	Chapter 1. Network Automation
	Simplified Architectures
	Deterministic Outcomes
	Business Agility

	Chapter 2. What Is Ansible?
	Simple
	Agentless
	Extensible

	Chapter 3. Why Ansible for Network Automation?
	Agentless
	Free and Open Source Software (FOSS)
	Extensible
	Integrating into Existing DevOps Workflows
	Idempotency
	Network-Wide and Ad Hoc Changes

	Chapter 4. Network Task Automation with Ansible
	Device Provisioning
	Data Collection and Monitoring
	Migrations
	Configuration Management
	Compliance
	Reporting

	Chapter 5. How Ansible Works
	Out of the Box
	Ansible Network Integrations

	Chapter 6. Ansible Terminology and Getting Started
	Inventory File
	Playbook
	Play
	Tasks
	Modules

	Chapter 7. Hands-on Look at Using Ansible for Network Automation
	Inventory File
	Playbook

	Chapter 8. Summary

