

Philip Estes and Doug Davis

Open by Design
The Transformation of the Cloud

through Open Source
and Open Governance

978-1-491-94109-6

[LSI]

Open by Design
by Philip Estes and Doug Davis

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Nan Barber
Production Editor: Dan Fauxsmith
Proofreader: Rachel Head

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

September 2015: First Edition

Revision History for the First Edition
2015-09-28: First Release
2015-12-07: Second Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Open by Design,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com

Table of Contents

Introduction. ix

1. Open Source: A Brief History. 1
What Is Open Source? 1
Popularization and Commercialization 2
Disruption 4

2. Open Governance: The Foundation Model. 13
Beyond Open Source 13
Rise of the Foundations 14
The “Other” Open Source: Open Standards 19
Open Governance: Critical for Cooperation 21

3. Collaborating on the Open Cloud. 23
Successful Collaboration Through Open Governance 23
Case Study: Closed Standards and Private APIs 25
Case Study: Open Source Builds Open Clouds 27
Case Study: Open Foundations Extending Cloud

Collaboration 31
Playing Your Part in the Open Cloud 33
Summary 34

vii

Introduction

If “software is eating the world,” then maybe we can say that open
source software is devouring it. While open source software is no
new kid on the block (look at the rich history of the heavyweights in
the room—Linux, for starters), current statistics around community
participation, lines of code submitted, corporate involvement, and
revenue impact are increasing at amazing rates. At LinuxCon North
America 2015 in August, the Linux Foundation announced that over
64.5 million lines of open source code have been contributed into its
own umbrella of projects, not including Linux itself! These contri‐
butions came from thousands of unique contributors, from students
to corporate-employed software engineers, to the tune of a rough
valuation of US$5.1 billion dollars of software components.

While this is interesting in and of itself, what is possibly more inter‐
esting is that open source is not just about lines of code hosted in
public online repositories with reasonable open source licenses.
Today’s open source, managed by open governance and collabora‐
tive foundations, is fueling a developer revolution across broad,
worldwide communities to solve the next set of computing chal‐
lenges around the cloud: from infrastructure services to platform
and application packaging, to delivery and operational challenges in
web-scale production applications.

This open source revolution is changing the landscape of how com‐
panies think about developing software, and specifically cloud solu‐
tions for their customer base. What we find is that this new era of
openness is itself breeding open thinking and collaboration at a
massive new scale among experienced developers who formerly
were applying their expertise to similar, or even the same, challenges

ix

http://on.wsj.com/1Hkyems

but within the proprietary confines of their own enterprises.
Instead, we now are increasingly seeing openness as an explicit
design point in software generally, and cloud computing specifically,
for many enterprise organizations that would traditionally have
“rolled their own.” We are calling this new era the time to be Open
by Design.

x | Introduction

CHAPTER 1

Open Source: A Brief History

What Is Open Source?
To have a reasonable discussion on the topic of open source, we first
need to agree on what we mean by the term. After we establish a
baseline definition, we’ll review a brief history of how and why it
exists, and follow its maturation into a viable and valuable compo‐
nent within the development processes of many industries and soft‐
ware domains.

First, while it is valuable for everyone to read and understand the
Open Source Initiative’s 10-point open source definition, clearly one
of the most important truths about open source is that access to
source code is a necessary but not sufficient component in defining
whether any given software is truly open source. As the OSI’s defini‐
tion clarifies, access to source code is a stepping stone that should be
followed up with free redistribution—both legally and practically—
as well as the removal of roadblocks (discrimination) against dispa‐
rate (and possibly unpredicted) usage as well as disparate groups of
people, both consumers and developers. The best and most valuable
open source projects have low friction in all these areas—code
access, code sharing, and freedom of use and distribution—allowing
ease of use and ease of modification by any and all parties.

It is worth highlighting a key point of the OSI’s definition. While
there are many open source projects available, simply putting the
source code on the Internet is not sufficient. In particular, there are
many open source projects that have licenses that make it virtually

1

http://opensource.org/definition

impossible for corporate interests to participate in them. This limits
the number of developers available to help, and, therefore, the
projects’ chances for long-term growth and success. For example, a
project that requires all derivations of the source code to also be
open sourced would be forcing commercial offerings to give their
value-add (possibly proprietary) logic away for free. For some, this
would be a nonstarter. The most successful open source projects
realize the variety of reasons why people might participate in the
projects and encourage adoption of their technologies without such
strong restrictions.

Beyond having access and rights to source code, truly valuable open
source projects are much more than codebases. Valuable open
source projects include broad, collaborative communities working
together toward a single purpose. A single developer, or even a sin‐
gle company’s open source project, may be useful to some degree,
but true value comes when a disparate group of interested parties
invest themselves in improving the codebase. These additional
hands are able to invest time and resources to make the software
better tested, better documented, more resilient to errors, and with
increased functionality to meet the user’s needs and requirements.
The original author may have intended all those qualities, but truly
the power of open source is for a collective of interested parties to
provide their time and expertise to accelerate this maturation at a
speed and rate practically unavailable to the original author.

Popularization and Commercialization
While we can definitively say that the modern GNU/Linux and Free
Software Foundation–fueled era of open source has its roots in a
countercultural shift away from corporate interests, patent portfo‐
lios, and legacy closed source and proprietary systems, it would be
of interest to look at open source history just prior to that point on
the timeline of computing history.

In the 1950s and ’60s, many of the early computing systems from
IBM, DEC, and others were developed in concert with academia,
research institutes, and in some cases the government. This led to
initial software operating systems and other key software compo‐
nents being assumed to be shared resources among the user and
developer bases—which at this point in computing history tended to
be one and the same. Early computer system providers would

2 | Chapter 1: Open Source: A Brief History

deliver their hardware with the entire source code to the software
for the systems, including the tools required to modify and build the
software. For the IBM 701 mainframe system, this particular sharing
of source code led to the SHARE user groups and conferences that
continued for several decades. SHARE was a vibrant community of
systems programmers and users who shared stories about their
issues and problems, and then shared code and additions/changes to
solve each other’s problems.

While the availability of ubiquitous high-bandwidth networks and
ease of worldwide communication were still decades away, these
beginnings were the roots of the modern open source movement: a
collaborative community sharing solutions, source code, and exper‐
tise with others without expectation of monetary renumeration, pat‐
ent rights, or licensing revenue.

Fast-forwarding to the modern era, the introduction of the GNU
project and accompanying free software ideas from Richard Stall‐
man in the 1980s, quickly followed by Linus Torvalds and the Linux
operating system in 1991, were milestones that, combined with the
increasing ease of network connectivity around the globe and mass
communication via access to email, early primitive websites, and
code repositories on FTP servers, led to a huge influx of new partici‐
pants in the open source movement. Linux and various GNU
project components provided a free base layer for open source activ‐
ities. All the tools necessary for participating in open source—com‐
pilers, editors, network clients, and additional scripting languages
and utilities—were embedded in a single freely accessible operating
system environment, thereby significantly lowering the bar for
entry and involvement by any party with access to a basic personal
computer.

It was soon after this influx of new participants in the mid-1990s
that for-profit companies were born out of this grassroots open
source movement, including big names like Red Hat, SuSE, VA
Linux, Netscape (soon to be Mozilla), and MySQL AB. Not only
were new companies formed, but many large enterprises soon saw
the value of open source development models and began participat‐
ing in open source communities, with salaried employees directed
toward full-time “upstream” open source work. IBM was an early
adopter of this strategy: in 1998 it created the IBM Linux Technol‐
ogy Center, hiring Linux kernel experts and repurposing internal
employees to work on the Linux kernel and other upstream open

Popularization and Commercialization | 3

source projects. The goal was to enable Linux across all of IBM’s
hardware platforms and enable Linux versions of all of its key mid‐
dleware products. IBM created Linux versions of its popular enter‐
prise software suites like DB2 and WebSphere, and even traditional
mainframe-oriented software like CICS and MQSeries. Many other
large enterprises followed suit: Oracle, SAP, HP, Intel, and other
companies began working directly on Linux, or enabled many of
their hardware or software offerings to run on the Linux operating
system. No longer was open source just for the “unwashed hippies”
(as they had sometimes been ridiculed) of the free software move‐
ment; it had now entered the well-heeled boardrooms of
multibillion-dollar corporations.

From those early days of corporate involvement in open source, ini‐
tial uneasiness around using open source software intermixed with
proprietary software and solutions has waned considerably. Today it
would be hard to find any software solution, from mobile devices to
embedded control systems to enterprise data center solutions, that
doesn’t include some form of open source software. This populariza‐
tion and commercialization of open source continues apace today,
and it has definitely marked a significant place in cloud computing,
with the Linux OS as the enabler of web-scale compute resources,
followed by many significant open source projects providing the
scaffolding around this—from hypervisors to infrastructure man‐
agement, deployment, and application layer frameworks. The lion’s
share of these projects are open source both in name and in the
open nature of the communities themselves. In some cases, open
governance communities via foundations have been created around
them as well. But before we turn our attention there, we’ll look at the
history of industry disruption birthed through open source.

Disruption
Whether they understand it or not, most consumers today are also
consumers of open source software. Even consumers who have little
technological awareness are reaping the benefits of open source—
many unwittingly. A significant share of these end-user benefits
come via consumer-oriented devices, from GPS units to wireless
home routers to streaming devices like Roku and Chromecast.
Android, an open source project as well, is used daily by more than
one billion people via smartphones and tablets worldwide. Even on
personal computers with commercial operating systems, the use of

4 | Chapter 1: Open Source: A Brief History

1 Jon Brodkin, “Linux is king *nix of the data center—but Unix may live on forever,” Ars
Technica, October 22, 2013.

open source software like Firefox and Google Chrome continues to
grow. Stepping back a layer from the personal user to the realm of
the hosting provider, the Apache web server continues to be far and
away the top web server across all hosted sites, with another open
source project, Nginx, quickly gaining market share. In the context
of the Web, we should also mention the huge popularity and growth
of the open source WordPress content management platform,
through which millions of blog posts are written and delivered daily
—many by people who have no knowledge that the underlying plat‐
form they’re using is open source all the way down to the hardware
drivers. Given this basic truth that open source software exists in
some form at nearly all layers of software and hardware ecosystems,
let’s take a brief look at the disruptive force of open source across
several key areas over the last 15 years.

Server Operating Systems
Prior to the arrival of Linux, Windows and a long list of commercial
Unix variants had the lion’s share of the server operating system
market. Even in the early days of Linux, the expectation was that
enterprise customers would not switch to the fledgling open source
operating system, even if it was “free.” Of course, as the Linux eco‐
system grew and companies formed to offer enterprise-class, sup‐
ported Linux distributions, the market share picture began to
change rapidly. By the end of 2007, IDC reported that Linux had
finally broken the US$2 billion barrier in a single quarter and had
grown to represent 12.7% of all server revenue. By 2010 the share
percent for Linux had grown to 17%, but the breakout moment
arrived in 1Q 2012, when the IDC reported that Linux had grabbed
20.7% of worldwide server revenue compared to 18.3% for Unix:

At the Linux Foundation’s annual conference in August, IBM VP
Brad McCredie told the crowd something that was probably
unthinkable when Linus Torvalds created his new operating system
kernel two decades ago.
“The Linux market now is bigger than the Unix market,” he said.1

Turning our attention to supercomputing for a moment, we see an
even more significant shift away from traditional Unix to Linux. In
Figure 1-1, note that between 2000 and 2010 the Linux share of the

Disruption | 5

http://arstechnica.com/information-technology/2013/10/linux-is-king-nix-of-the-data-center-but-unix-may-live-on-forever/

2 Data from “Worldwide and U.S. Server 2014 Vendor Shares,” published by IDC on June
5, 2015.

TOP500 supercomputers operating system market went from
around 5% to nearly 90%! Obviously, one of the great strengths of
an open source operating system is the ability for researchers and
hardware designers to quickly innovate on hardware acceleration
features, custom-tuned device drivers, and enhanced kernel technol‐
ogy to rapidly prototype, benchmark, and improve high-
performance computing workloads. Needless to say, IBM also inves‐
ted significantly in Linux, bringing Linux support to its POWER
and z Systems mainframe platforms and providing Linux in concert
with traditional IBM enterprise hardware strengths in a single pack‐
age for its enterprise customers.

Figure 1-1. Operating systems used on TOP500 supercomputers
(source: Wikimedia Commons)

As recently as the latest 2014 report, IDC continues to report year-
over-year increases in Linux revenue and server shipments. Looking
at worldwide server shipments in 2014, Linux approached 40%
share—a 16.4% YoY growth rate—and was bested only by Microsoft
Windows, at 59% share on a 4% decline. Interestingly, when looking
only at US server shipments in 2014, Linux increased nearly to par‐
ity with Windows server shipments, at 48.7% and 50.3%, respec‐
tively.2

6 | Chapter 1: Open Source: A Brief History

https://commons.wikimedia.org/wiki/File:Operating_systems_used_on_top_500_supercomputers.svg

While we can clearly see the disruptive nature of Linux in the server
operating system market, it also opened the way for myriad other
open source market entrants who quickly followed on the heels of
Linux’s success. We’ll look at a few here, starting with one of the
most venerable and long-standing open source software projects
broadly used worldwide.

Web Serving
In the early days of the Web, there were few choices for web server
software, so the public domain NCSA software developed by Rob
McCool was the de facto standard. In the mid-1990s, Microsoft
began offering its Internet Information Services (IIS) web server
with Windows NT 3.51, and at about the same time, the Apache
open source web server project was born. Apache was based on the
underpinnings of the NCSA server, which at that point was no
longer being maintained. More than having publicly available source
code, which was true of the NCSA server, the Apache project was
intent on having coordinated development across a set of interested
parties, and soon an initial eight core contributors formed the origi‐
nal Apache Group, with more to follow soon after.

In the years ahead, the Apache web server developed into a feature-
rich and extensible architecture that was ported and ran across
myriad CPU architectures and operating systems. By 1999, the
Apache Software Foundation had been formed, formalizing the
early community of developers with financial backing, governance,
and administrative/legal help. This foundation would soon serve a
vast array of open source projects encompassing much more than a
simple web server.

To this day, Apache is far and away the most popular web server
platform for hosted Internet sites. Figure 1-2 shows a graph of
Apache’s dominance in this space, which has continued over two
decades.

Disruption | 7

http://www.ncsa.illinois.edu

Figure 1-2. Web server market share, all domains, 1995–2012 (source:
Netcraft)

As a postscript to this section, we will show one more graph of web
server statistics from the past few years. What Figure 1-3 depicts is
disruption again, as yet another open source web server project,
nginx, is now taking significant market share away from its fellow
open source titan, Apache.

8 | Chapter 1: Open Source: A Brief History

http://news.netcraft.com/archives/2012/07/03/july-2012-web-server-survey.html

Figure 1-3. Web server market share, top million sites, 2008–
2015 (source: Netcraft)

While we don’t have time or space to discuss all the popular web-
related open source software projects that became the heart and soul
of the Internet, it is worth noting that Linux and Apache formed the
foundation of what was commonly termed the LAMP stack. The M
stood for the vastly popular open source database MySQL, and P
represented PHP, a popular scripting language for the Web that has
only recently been eclipsed by the Node.js project (also an open
source software project, and now a foundation as well).

Mobile Devices
Leaving the realm of servers and the web technologies that went
along with them, we turn to the world of mobile devices. The explo‐
sion of the modern mobile device era, marked by the introduction
of the smartphone, only dates back to 2007. That year saw two key
events: the heavily anticipated iPhone launch with Apple’s iOS, and
the introduction of Google’s Android OS for mobile devices. While
both Android and iOS have their significant proponents, and
debates continue to this day about which platform is “better,” it is
clear that as an open source project, Android has enabled a signifi‐
cant ecosystem of phones, tablets, and other devices across myriad

Disruption | 9

http://news.netcraft.com/archives/2015/08/13/august-2015-web-server-survey.html

manufacturers. Due to this broad market, even though revenue
numbers tend to favor Apple, active worldwide handset delivery
numbers show Android in the lead (see Figure 1-4).

Figure 1-4. Worldwide smartphone OS market share, 2010–
2014 (source: IDC data)

Given that Android enables the low-cost and entry-level market
more favorably than the iOS platform, it is no surprise that finer-
grained data shows a nearly order-of-magnitude difference between
iOS and Android yearly shipments in major markets in India,
China, and other developing nations, as noted most recently in the
full-year 2014 data.

Virtualization
While software hypervisors existed long before the advent of
VMware Workstation in 1999, many of them were part of signifi‐
cantly expensive enterprise servers from manufacturers such as
IBM, Sun, and HP—systems that most engineers would never
approach during their careers. However, when VMware Worksta‐
tion appeared on the scene, what technologist doesn’t remember the

10 | Chapter 1: Open Source: A Brief History

http://www.idc.com/getdoc.jsp?containerId=prUS25450615

wonder and excitement of seeing a virtual computer booting
through a BIOS sequence inside a window on a laptop or PC? And
for nearly a decade, virtualization was the hot topic: not only
because of the ease of hosting physical workloads in virtual
machines that were simple to back up, configure, and migrate, but as
an entirely new way to pack larger numbers of isolated workloads
onto the same physical hardware, leading to a major shift in data
center operational models.

It wasn’t long before the open source community also had offerings
in the virtualization arena. The Xen hypervisor appeared first in
2003, offering a paravirtualization-based kernel feature for Linux;
combined with the QEMU emulation software it has continued to
grow in features and functionality, such as offering hypervisor capa‐
bilities to non-x86 architectures like POWER and, more recently,
ARM. You might recognize one of the oldest public cloud offerings,
Amazon Web Services (AWS), which has offered virtualized com‐
puting to end users since 2006. What you might not be aware of is
that AWS runs its virtual machines atop the Xen hypervisor.

Also in the mid-2000s, an Israeli startup named Qumranet was
working on its own hardware virtualization-based hypervisor
named KVM, exploiting the Intel VT-x (or AMD-V) hardware-
assisted features for virtualization. KVM was merged into the main‐
line Linux kernel in 2007, and Qumranet was acquired by Red Hat
in 2008; KVM went on to become one of the most popular hypervi‐
sors supported across many Linux distributions and was the basis
for several Linux enterprise virtualization products, such as Red Hat
Enterprise Virtualization (RHEV) and IBM’s PowerKVM product
for the Linux-centric Open POWER hardware platform.

Cloud Computing
Given that software and hardware virtualization is the core technol‐
ogy that enables “cloud computing” to even exist, it provides a per‐
fect segue to look at this most recent area of rapid innovation and
significant market investment. All the major players in hardware
and enterprise IT have created offerings or are significantly involved
in the private, public, and hybrid cloud arenas.

While there are proprietary players in this space, what we are seeing
today is myriad enabling open source software projects playing sig‐
nificant roles in the unfolding of cloud computing innovation. In

Disruption | 11

addition to pure open source projects, the lines are blurring, as we
see traditionally proprietary players like Microsoft hosting Linux
virtualization offerings in its Azure cloud, with an even more recent
push to work upstream in the Docker open source project to bring
container technology to Windows Server and the Azure cloud as
well.

In essence, as Sam Ramji, executive director of the Cloud Foundry
Foundation, stated recently: “Open source has won.” It is difficult to
envision any current cloud computing offering being devoid of
some open source component, be it at the hypervisor or host operat‐
ing system layer, or up at the application runtime layer, with open
source projects like Node.js, PHP, Ruby, and Python as popular
examples.

What we are seeing today is an open source renaissance, where
much of the critical activity and innovation around the cloud is hap‐
pening in and through open source communities and their respec‐
tive foundations. Three of these communities are worth highlight‐
ing, as they have had significant impact on major IaaS and PaaS
implementations from the largest IT enterprises. OpenStack, Cloud
Foundry, and Docker all have substantial open source communities
and are continuing to grow rapidly, with annual conferences boast‐
ing thousands of attendees, significant media coverage, and a broad
range of partners and supporters from all the biggest IT enterprises.
In Chapter 2 we will begin to the look at the introduction of the
foundation model as a maturation point of open source, and how it
has impacted both the communities mentioned previously and sev‐
eral historically large open source projects.

12 | Chapter 1: Open Source: A Brief History

1 From “Three Pillars of Open Source Governance.”

CHAPTER 2

Open Governance:
The Foundation Model

Beyond Open Source
We’ve seen that open source is no longer a collective of independent
or unaffiliated parties: the commercialization and popularization of
open source has brought with it the investment and involvement of
corporations and large enterprises. Along with that, however open
source–savvy the participants are, there will obviously be potential
conflicts between commercial and community interests in these
projects.

The intersection of open source and commercial interests raises
questions about authority, authenticity, and culture.
—Nathen Harvey, Information Week1

Three questions that Nathen Harvey asks in his Information Week
article on the topic are: “Is the project driven by the commercial
sponsor or outside contributors? Will commercial interests trump
the wishes of the community? How and where do you draw lines
between a commercial entity and the open source community?”

These are critical questions to answer, and many of them can be
resolved through the process of open governance via the foundation
model. First, it will be helpful to understand the history and rise of
foundations in the open source software world.

13

http://www.informationweek.com/strategic-cio/it-strategy/three-pillars-of-open-source-governance/a/d-id/1318585

Rise of the Foundations
Let’s look at a few of the more significant foundations and their roles
in specific communities. By taking a quick walkthrough of these
foundations we can better understand the way in which specific
communities developed their shared visions via the open foundation
model.

Apache Software Foundation
The Apache Software Foundation (ASF) was established in 1999
and, at the time, was mainly focused on coordinating the develop‐
ment, funding, and governance of the Apache HTTP web server
project. Today, it is one of the most widely known and successful
open foundations for hosting open source software projects, with
more than 300 such projects under its domain. The ASF paved the
way for many other open source hosting and collaboration efforts by
defining the legal and collaborative frameworks that many other
foundations have emulated to this day. For example, the Apache
License, under which all Apache projects are distributed, is one of
the most popular and accepted open source licenses in use today,
even well beyond projects directly hosted under the ASF. Though
the ASF started with a sole focus on the Apache web server project,
it has branched out into a broad range of other technologies, includ‐
ing programming languages, cloud computing, and even office pro‐
ductivity tooling.

The ASF operates as a meritocracy and conducts all of its business
and project work in the open via popular social technologies, such
as public mailing lists, wikis, and source code repositories. While
several projects developed under the ASF have become very popular,
and might even be seen as de facto standards for certain technolo‐
gies, the ASF is not a standards body and does not create “stand‐
ards” such as those organizations like the W3C produce.

Linux Foundation
The Linux Foundation was founded in 2007 through a merger of the
Open Source Development Labs (OSDL) and the Free Standards
Group (FSG), with the express purpose of providing a vendor-
neutral foundation that would support the development and
enhancement of the Linux operating system and related technolo‐
gies. According to its website:

14 | Chapter 2: Open Governance: The Foundation Model

http://www.linuxfoundation.org/about

The Linux Foundation protects and promotes the ideals of freedom
and generous collaboration established through the development of
Linux, and shares these ideals to power any endeavor aiming to
make the future a better place in which to live.

One of the early intentions of the Linux Foundation was to provide
an independent entity in which Linux creator Linus Torvalds could
work without dependence on a commercial entity that might seek to
provide undue influence on the direction of Linux kernel develop‐
ment priorities. This provision has continued through today, with
other key Linux community maintainers like Greg Kroah-Hartman
also being employed at the Linux Foundation. Beyond this safe har‐
bor for key Linux leaders, the Linux Foundation promotes Linux
through worldwide event management, protects the key Linux
trademark and handles legal and license issues, and helps standard‐
ize key Linux interfaces through work such as the Linux Standard
Base working group.

Linux Foundation collaborative projects
Similar to the ASF, the Linux Foundation has matured through the
years to become a collaborative umbrella for other open source
projects that are related to Linux, but not necessarily specific to
Linux operating system development. Through its Collaborative
projects initiative, existing Linux Foundation processes, administra‐
tive support, and governance procedures can be harnessed to
quickly and efficiently charter new collaborative endeavors. In
recent years the growing list of LF Collaborative Projects has
included everything from the Open Mainframe Project to Automo‐
tive Linux to very recent cloud computing projects such as the
Cloud Foundry Foundation, OpenDaylight, OPNFV, the Open Con‐
tainer Initiative, and the Cloud Native Computing Foundation.

To get insight into how these collaborative projects are being used
specifically in the cloud computing world, let’s take a brief look at
four of the most recently chartered foundations under the Linux
Foundation’s Collaborative Projects umbrella.

Cloud Foundry Foundation. Cloud Foundry is an open source project
providing a PaaS (Platform-as-a-Service) environment for efficient
developer application delivery across a wide range of runtime envi‐
ronments, from Java, to Node.js, to Python, PHP, Ruby, and Go-
based applications. Cloud Foundry was originally developed by

Rise of the Foundations | 15

VMware but has since been jointly owned by VMware, EMC, and
General Electric under a new company, Pivotal Software.

While Cloud Foundry under Pivotal was an open source project,
with Pivotal providing both free and commercial offerings based on
the open source codebase, Pivotal clearly had significant control
over the direction of the project and community. To address this
single-vendor control point, in December 2014 the Cloud Foundry
Foundation was announced under the umbrella of the Linux Foun‐
dation Collaborative Project. This new organization now ensures
that no one company dominates the leadership responsibilities of
the project and aligns Cloud Foundry with a true open governance
model.

Open Container Initiative. While we will talk more about the Open
Container Initiative (OCI) in Chapter 3 when we discuss collabora‐
tion in the cloud, it is useful to note it here as one of the key open
cloud initiatives formed under the umbrella of the Linux Founda‐
tion Collaborative Projects. In June 2015, the OCI was formed out of
a desire to standardize and harmonize two competing runtime lay‐
ers for the containerization of applications. It is an understatement
to say that Linux containers have been an extremely hot topic in the
last few years, with Docker dominating the conversation as the go-to
implementation for an application container runtime and ecosys‐
tem. It is also worth noting that Docker appeared on the scene very
recently, even though some of the core Linux technologies that make
up what we call a “container” have existed for over a decade! Given
the continuing hype cycle around containers, Docker is not without
its detractors and competitors, and in December 2014 CoreOS
announced Rocket, a competing container runtime. The OCI has
been set up as a vehicle for the harmonization of these two specifica‐
tions and implementations, with Docker contributing libcontainer,
its core container runtime component, and a new user runtime
named runC, an implementation of the specification, to the OCI’s
governance and control.

In many ways, the OCI is still in its formative stages, but both Cor‐
eOS and Docker (as well as Google, Red Hat, IBM, Huawei, and oth‐
ers) are among the initial founding members, with the goal being to
create a portable and standardized runtime specification with a ref‐
erence implementation available for consumption by innovative
container ecosystems like Docker and Rocket.

16 | Chapter 2: Open Governance: The Foundation Model

Node.js Foundation. Invented in 2009 by Ryan Dahl and a team of
engineers at Joyent, Node.js has proven an increasingly popular
JavaScript-based server framework for web application develop‐
ment. Node.js was an open source project from the beginning,
licensed under the MIT license. Joyent guided its development for
several years, taking it from a Linux-only runtime to on that sup‐
ports Microsoft Windows and Apple’s OS X, and other CPU archi‐
tectures like IBM POWER and z. In late 2014, due to internal differ‐
ences over Joyent’s governance, a forked open governance–based
project named io.js was announced, threatening the future of a sin‐
gle Node.js runtime and release cycle for the significantly large user
community.

At the annual Node.js conference in February 2015 the intent to cre‐
ate a vendor-neutral foundation was announced, and by early sum‐
mer, the two projects had combined under the new Linux Founda‐
tion Collaborative Project–governed Node.js Foundation. At this
point, Node.js looks to be a success story of the open governance
model as implemented via a vendor-neutral foundation. Similar to
many of the other foundations we have discussed, it will use a busi‐
ness (board) committee in combination with a technical steering
committee, with the latter being run as a meritocracy for technical
decision making.

With 6 platinum founders, including the technology’s creator, Joy‐
ent, and 16 other gold and silver foundation members, the Node.js
foundation is forging ahead with the same momentum as the
increasingly popular technology for which it guides development.

Cloud Native Computing Foundation. Whereas the OCI, discussed ear‐
lier, covers the low-level runtime specification for application con‐
tainerization, many of the key cloud players realized the need for
standardization beyond the base runtime layer provided by the
OCI’s work. While agreement on the basic management of a single
container runtime is critical, the need to extend this industry-wide
agreement to higher-level management constructs became evident.
In August 2015, again under the Linux Foundation Collaborative
Projects umbrella, the Cloud Native Computing Foundation
(CNCF) was formed. As of our publishing date, the exact scope of
the CNCF’s work is still being finalized, but a general focus will be
on the orchestration, distribution, discovery, and lifecycle manage‐
ment of clusters of containers within a data center. The collection of

Rise of the Foundations | 17

these technologies has been referred to as a “Datacenter Operating
System” (DCOS).

Like the OCI, the CNCF will be taking a code plus specification
approach, developing the specifications of the DCOS architecture at
the same time as the implementations. Already, Google’s Kubernetes
and Apache Mesos projects are being discussed as potential imple‐
mentations of the CNCF’s specifications.

Similar to the Node.js Foundation, the CNCF started with a broad
range of key cloud industry players: at the time of writing a total of
22 companies support the CNCF, including large enterprises such as
IBM, Intel, Huawei, Google, and AT&T. Interestingly, as we begin to
look at cross-collaboration in the cloud due to open source and
open governance, the supporting members also include Docker,
Cloud Foundry, Weaveworks, and CoreOS—all open source projects
in their own right that are interested in collaborating on this key
orchestration and management topic for the future of the cloud.
We’ll return to that discussion in the following chapter.

OpenStack Foundation
OpenStack was announced in 2010 as a joint project between NASA
and Rackspace to create a programmable, API-centric IaaS
(Infrastructure-as-a-Service) layer for data center infrastructure
management. By 2012 several other key vendors had joined the
open source initiative, and together they created the OpenStack
Foundation, which now operates the legal, technical, and adminis‐
trative governance of the OpenStack development project.

The OpenStack project originally focused on the management of
compute, storage, and networking resources, but has grown to
include a wide range of IaaS-related projects, each with a specific
code name; they begin life as incubated projects and then are poten‐
tially promoted to the official OpenStack semiannual release. Cur‐
rently, 16 unique subcomponents are scheduled to ship in the Lib‐
erty 2015 release of OpenStack.

The foundation itself has grown to encompass a broad range of
operator, user, and developer communities with a very strong gover‐
nance model that is codified in its bylaws, which guide its gover‐
nance and technical development processes, overseen by a board of
directors and the technical committee. OpenStack now has 8 plati‐

18 | Chapter 2: Open Governance: The Foundation Model

num sponsors (all with representatives on the board of directors), 17
gold sponsors, and over 120 corporate sponsors.

Without this formal governance and development process, it would
be unexpected for competing cloud providers to work together on
an IaaS layer and API. But, given the foundation structure, compa‐
nies such as HP, Rackspace, IBM, Intel, and others are collaborating
together on the core technology and innovating and differentiating
in their own product platforms based on OpenStack. We’ll look
more closely at this cooperation and “co-opetition” model in follow‐
ing sections.

Other Open Source Foundations
We don’t have the time or space to cover other key open source
foundations that exist to support open governance and related pro‐
cesses around commercial cooperation in open source. However, it
is worth mentioning that many foundations have been critical in
ensuring the overall health of open source software as it stands
today. Foundations such as the Free Software Foundation (FSF),
Creative Commons, the Eclipse Foundation, the Internet Systems
Consortium (ISC), the Mozilla Foundation, the Open Source Initia‐
tive (OSI), and the Software Freedom Law Center (SFLC), among
others, have all played a role in providing an even playing field for
commercial and independent interests alike to cooperate in the
development of open source software projects and initiatives.

The “Other” Open Source: Open Standards
Before we wrap up our discussion of open source and open gover‐
nance, it is worth mentioning that outside the current flood of com‐
mercial involvement in open source software projects, many indus‐
tries have used non-source-code–based attempts to achieve similar
vendor-neutral collaboration and co-opetition through the use of
standards bodies.

Ignoring the software industry for a moment and simply thinking
about everyday items you find around the house, you’ll uncover
numerous examples where corporations, and in some cases govern‐
ment agencies, have joined forces to create a standardized design or
component with the intent that this will be beneficial for all parties
—both producers and consumers. These standardized parts or
designs, like a USB port or national electrical plug type, enable a cer‐

The “Other” Open Source: Open Standards | 19

2 “The World Wide Web Consortium (W3C) is an international community that devel‐
ops open standards to ensure the long-term growth of the Web.” (From http://
www.w3.org.)

3 Internet Engineering Task Force. “The mission of the IETF is to make the Internet
work better by producing high quality, relevant technical documents that influence the
way people design, use, and manage the Internet.” (From https://www.ietf.org.)

tain degree of interoperability, portability, and reuse between manu‐
facturer products. Having an agreed-upon standard still allows
innovation and distinctive features to be developed on top of that
base standard; each manufacturer or producer still has the latitude
to differentiate itself while benefiting from a common standard.

Within the software world, we see this co-opetition occurring as
well. For example, as previously mentioned, the Apache web server
saw huge success through its collaborative open source project. But
the Apache project wasn’t started with the purpose of creating a
shared standard on the core technology of a web server; rather, it
was about using the source code as a basis for collaboration. Other
entities, such as the W3C2 (established in 1994 by Tim Berners-Lee,
widely viewed as the creator of the World Wide Web) and the IETF,
3 were established to develop the protocol standards that have made
the Internet the huge success it is today, and without these projects
like Apache would never have even had a chance to succeed.

These organizations, and the companies that made up their mem‐
bership, understood that without some degree of agreement on and
commonality across the basic underpinnings of how computers and
people communicate, the ubiquitous use of the Internet would sim‐
ply not be possible. For example, imagine the challenge of the Web
without an HTML standard, with each website implementing its
own language for described page layout! The Internet—and specifi‐
cally the Web, as a source of nearly limitless, easily accessible infor‐
mation—would not exist as we know it today without the core
standards put in place years ago.

While open standards bodies still play a critical role in parts of the
industry even today, we are seeing a shift from pure “on-paper
standards” to code as standards, or specifications with reference
implementations, like the Open Container Initiative discussed in the
prior section. Given this shift, we are finding that the open gover‐
nance foundation model of overseeing open source code projects is
a more compelling model for future work. Of course, future cloud

20 | Chapter 2: Open Governance: The Foundation Model

http://www.w3.org
http://www.w3.org
https://www.ietf.org/

computing activity may warrant new open standards that will lead
to open source implementations, but we believe that will be a case-
by-case decision led by vendor-neutral industry consortiums to
again provide a level playing field for both open standards and open
source software.

Open Governance: Critical for Cooperation
We began this chapter by looking at critical questions related to
commercial involvement in open source software projects. As we’ve
examined specific open governance implementations via the foun‐
dation model, we’ve noted that open governance practices answer
these questions about influence, ownership, leadership, and decision
making in open source. While every project will have its growing
pains as a mix of independent and commercial contributors join to
participate, we believe that open governance via vendor-neutral
foundations, built on meritocracy-style technical development prac‐
tices, will enable the continued rise of open source as the de facto
development mode for both commercial and non-commercial enti‐
ties alike.

In the next chapter, we want to look more practically at the pros and
cons of how communities operate and give examples and guidance
for those looking to jump on board with the open source revolution,
including those who might be planning on starting new collabora‐
tive projects in the future.

Open Governance: Critical for Cooperation | 21

CHAPTER 3

Collaborating on the Open Cloud

Given our prior discussions of the popularization and commerciali‐
zation of open source, we know that both collaboration and compe‐
tition will continue to coexist for the foreseeable future in open
source projects. We’ve looked at a set of foundations that have suc‐
ceeded in bringing about a vendor-neutral playing field in which
multiple corporate and independent members can operate under the
same set of meritocracy-based rules for development, technical
planning, and decision making in a project. In this chapter, we look
more completely at the key indicators of success in cloud computing
open source projects. We will also give guidance for future projects
based on what we find when we dig into what has been shown to
both work and not work for historic and current open source
projects and standards bodies. First, let’s summarize what we saw
regarding governance models in the last chapter.

Successful Collaboration Through Open
Governance
It’s worth trying our best to answer the question, “What makes a
good governance model?” Looking at success in past and current
projects—for example, the Apache Software Foundation or the W3C
—a key aspect we find in common is the measure of “openness”
within the project’s culture: both its human organization and its
administrative and development processes. “Openness” in this con‐
text can take different forms, but examples include:

23

• Does the community operate in such a way that anyone—even
people outside the community—can follow community discus‐
sions and progress? For example, are all of the documents
(meeting minutes, lists of issues, future work items, and so on)
kept on publicly accessible websites, easily found by and visible
to all interested parties?

• Do they welcome input from non-community members? Are
there mechanisms in place for members as well as non-
members to provide feedback, ask questions, and suggest
changes?

• Do they have an IP policy in place that encourages the sharing
of ideas? Clearly, certain open source projects have licenses that
make it a challenge for companies to leverage the source code in
commercial products. Conversely, if the IP policy in use doesn’t
require contributions to be unencumbered and freely reusable
by the community (without, for example, paying a royalty fee),
then that will strictly limit the exchange of ideas and, therefore,
community success.

While certain governance models might include some level of hier‐
archy in the membership (based on annual investment, for exam‐
ple), there must be a fair process in place for all community mem‐
bers to have an equal chance to rise through that hierarchy. For
example, a “pay to play” model where a company can gain a key
leadership role by simply writing a check hurts the perceived objec‐
tivity of the organization. Typically, for technical community leader‐
ship, a merit/contribution-based model works best. In many of the
open source projects we’ve covered, only after submitting a signifi‐
cant number of meaningful code contributions is a contributor con‐
sidered for a code committer, reviewer, or maintainer role.

We also note that it is of utmost importance that projects have
vibrant, open, and welcoming communities. Successful projects lev‐
erage all of the aspects we’ve previously discussed to create an envi‐
ronment where new and existing members of the community are
treated equally. How “old-timers” treat newcomers is often a sign of
the openness of a community. Taking the time to answer questions
from “newbies” and help guide them through any issues related to
developer setup, initial change submissions, and the like helps grow
the community and make it more successful, as it encourages more
contributors and therefore a broader range of expertise and contri‐
butions. As a project matures, we note that existing developers can

24 | Chapter 3: Collaborating on the Open Cloud

1 Distributed Management Task Force, Inc. “DMTF standards support implementations
that enable the management of diverse traditional and emerging technologies, includ‐
ing cloud, virtualization, network, and infrastructure.” (From http://www.dmtf.org.)

tend to move on to newer assignments, and therefore it’s critical for
the ongoing health and success of an open source project to have a
steady stream of new contributors. If interested newcomers feel dis‐
couraged or ignored, they’ll look for other, more welcoming venues
in which to spend their time and efforts.

Case Study: Closed Standards and Private APIs
In this section, we’ll briefly look at two counterexamples in our tour
of open source and open standards–based governance models that
highlight the value of true open collaboration in cloud software
projects.

Closed Standards: Cloud Infrastructure Management
Interface
We’ve spent a fair amount of time discussing open source projects
and foundations, while only briefly mentioning some non-code-
based collaborative efforts, such as the W3C’s work on “paper stand‐
ards.” One such effort within cloud computing is the Cloud Infra‐
structure Management Interface (CIMI). This set of cloud comput‐
ing specifications is being developed under the DMTF,1 with the
intent to promote a set of IaaS APIs for managing virtual cloud
resources.

The work of the CIMI represents the traditional standards develop‐
ment method used by the Open Group and other historic consorti‐
ums. While standards from these bodies, like POSIX, are still valua‐
ble today, for the most part their work is done in private, with pay‐
ing membership, and not open to public scrutiny. There is no visi‐
bility to their discussions, mailing lists, issues, or future plans. While
several of the CIMI specifications have involvement from key indus‐
try players—for example, IBM is involved in the CADF specification
work, the results of which have been applied to the OpenStack
auditing and logging features that now use the standardized CADF
message format—they are generally focused on a “specification first”
approach. While sometimes valuable, these specifications are being
developed in the absence of real-world scenarios and implementa‐

Case Study: Closed Standards and Private APIs | 25

http://www.dmtf.org/
http://www.dmtf.org/standards/cadfwg

tions, and are potentially missing valuable input from non-paying
parties or open communities with broad expertise: the “many eyes”
phenomenon that has been written about generally in open source.

Unfortunately, this typically means that a reference implementation
is developed strictly for the purposes of testing the specification and
is not linked with real-world software systems. This may mean that
the specification—created in a vacuum of sorts—will not even meet
the critical end user or operator needs, which are more readily appa‐
rent in an open and transparent community development effort
around either open standards or an open source implementation.

While the work on the CIMI specifications is continuing, it’s not
clear how much adoption they will have in the broader cloud com‐
munity. Because of the nature of how the DMTF creates specifica‐
tions, and the lack of a closed feedback loop with an open commu‐
nity, the cloud industry as a whole appears to have moved toward
other venues for standardization on IaaS-layer APIs, such as Open‐
Stack.

Private APIs: Eucalyptus
Eucalyptus is an open source project first released in 2008. It was
one of the first IaaS open source projects developed and, for a time,
had growing momentum among some segments of the cloud com‐
puting community. However, in recent years we have seen Eucalyp‐
tus decrease in popularity, despite its being acquired by HP in 2014.
While we won’t venture to speculate on all the reasons why a project
like Eucalyptus hasn’t seen the broad adoption that more recent IaaS
projects have seen, we do have a few observations that are worth
noting.

First, Eucalyptus was specifically written to be compatible with
Amazon’s IaaS cloud offering, Amazon Web Services —it was a
direct implementation of Amazon’s cloud APIs. Given AWS’s
market-leading position in the public cloud market, it most likely
seemed a good choice to provide an API-compatible alternative to
an Amazon-hosted solution. This API conformance would allow for
a private and/or on-premise cloud implementation via Eucalyptus
that would be entirely compatible for users of the market-leading
AWS public cloud. However, we note two problems with this
approach. First, as an AWS-compatible solution, Eucalyptus had to
defer its design, feature set, and even potential success to Amazon’s

26 | Chapter 3: Collaborating on the Open Cloud

AWS cloud—and Amazon’s relentless march toward more features
(and therefore more APIs) meant that Eucalyptus would be in a
near-constant “catch-up” mode trying to match feature and API
changes made at the whim of Amazon. Eucalyptus effectively
handed Amazon control and influence over those decisions.

Additionally, and maybe more importantly, Amazon’s API and cloud
infrastructure management are closed and proprietary implementa‐
tions. Amazon provides no licensing guidance for its APIs, leaving it
up to potential differences of legal opinion whether other companies
have the freedom to implement the AWS API set. Given that Euca‐
lyptus relies on the ability to provide AWS APIs as its core and only
API offering to end users, this is a potentially risky proposition.
While we have seen other open source IaaS projects provide AWS-
compatible APIs as well, these are typically made available for com‐
patibility and migration and are not the core API set provided for
the end user.

In summary, we should note that as the case of Eucalyptus illus‐
trates, being an open source project does not overcome the fact that
there can be only limited collaborative activity and nearly zero true
open governance around an implementation of a closed, single-
vendor IaaS API. Whatever other factors are impacting Eucalyptus’s
uptake in the cloud computing world, we can at least surmise that
an open source cloud requires open collaboration and open gover‐
nance across the entire ecosystem—from API definition to imple‐
mentation—to provide a more welcoming, vendor-neutral commu‐
nity that can then attract contributions from a larger pool of indi‐
vidual and corporate players to generate momentum.

Case Study: Open Source Builds Open Clouds
After looking at those two counterexamples to our open collabora‐
tion and governance model, we’ll now revisit three major cloud
open source projects we briefly discussed from a foundation per‐
spective in Chapter 2. All three of these projects—OpenStack, Cloud
Foundry, and Docker—have open ecosystems with broad commu‐
nity participation, fully implemented or under-development open
governance, and increasing industry momentum that is impacting
real-world, production-ready cloud computing offerings across the
spectrum from startups to large enterprises.

Case Study: Open Source Builds Open Clouds | 27

OpenStack
As we noted in Chapter 2, OpenStack is a large and fast-growing
open source project aimed, primarily, at providing a comprehensive
API and implementation for the IaaS layer of the cloud stack; it is
focused mainly on compute, storage, and network resource manage‐
ment. The OpenStack Foundation has been formed to take on the
responsibility for governance, trademark and legal oversight,
administration, and promotion of the OpenStack project.

It is worth noting, though, that while OpenStack has broad industry
support and is used by many top-tier cloud providers, its open
source code implementation of the API specifications (which start
out life in the OpenStack model as “blueprints”) is not codified with
a traditional “paper standard” specification. Therefore, additional
bylaw changes as well as new projects have grown up within the
OpenStack Foundation to combat the potential for lack of interoper‐
ability between vendor implementations. The RefStack community
project and DefCore committee within OpenStack are remedying
this situation by providing a test suite and required “core” software
code implementations that will need validation if vendors wish to
use OpenStack marks and be certified as compatible. While these
kinds of bumps in the road can be expected in such a large and
diverse community, the OpenStack Foundation governance and
meritocratic development models are providing a solid framework
for continued collaboration and the growth of the community in
positive directions.

OpenStack is still young in many ways, but with OpenStack-
powered clouds and offerings available from significant players like
IBM, HP, Rackspace, Huawei, and Cisco (Piston), among others, the
momentum is definitely growing for OpenStack to play a vital role
in open cloud collaboration for years to come.

Cloud Foundry
The Cloud Foundry (CF) open source project provides a PaaS envi‐
ronment to its users, focused on efficiently providing application
developers with a deployment framework that handles runtime
parameterization, scalability, and application lifecycle needs, such as
monitoring and autorestart. CF also automatically manages the load
balancing and routing of requests from end users of the application
as needed, removing many of the tedious tasks normally associated

28 | Chapter 3: Collaborating on the Open Cloud

2 Thomas DelVecchio, “Docker Scores the Best Ever NET Score in ETR History,” April
17, 2015.

with application management for both the developer and operator
alike.

As noted in Chapter 2, Pivotal has turned over governance of the CF
project to the Cloud Foundry Foundation, and it has been operating
with open governance and vendor-neutral meritocracy-based devel‐
opment processes since late 2014.

While Cloud Foundry has been an open source project from the
beginning, the addition of open governance has provided a healthy
ecosystem for continued vendor adoption and community growth
to a broad set of cloud industry participants. With Cloud Foundry–
based PaaS offerings from IBM, HP, ActiveState, Pivotal, and Cen‐
turyLink now available, the momentum for Cloud Foundry contin‐
ues to grow, and the young but solid governance structure provided
via its open foundation has set up a bright future for Cloud Foundry
and for collaboration around PaaS solutions across the industry.

Docker
Docker is one of the newest open source projects to take cloud com‐
puting by storm. At its core, Docker aims to take existing container
technologies—which are sometimes a confusing array of capabili‐
ties, or even downright cryptic Linux kernel functionality—and pro‐
vide a simple and clear user experience to “build, ship, and run”
application code anywhere, potentially in place of traditional virtual
machine or even PaaS use cases. And if the last two years have any‐
thing to say, Docker has succeeded in this quest in a very big way.
Recently, Enterprise Technology Research surveyed 685 enterprise
CIOs on their intention to spend money on Docker-related technol‐
ogy in the next year. The surprising result was that 97% specified an
intent to do so—the highest intent score that ETR had ever seen.2 As
another proof point of Docker’s success and influence, Amazon
recently agreed to support Docker’s APIs via its own AWS EC2-
based container service. While Amazon does support many tradi‐
tionally developed standards across its AWS platform, it is rare for it
to adopt another’s nonstandard API definition. This was clearly
done in recognition of Docker’s leadership position in the contain‐
erization space—similar to the way we have noted other projects

Case Study: Open Source Builds Open Clouds | 29

providing AWS IaaS API-compatible implementations due to Ama‐
zon’s own dominant market position.

Similar to the beginnings of other cloud open source communities
we’ve discussed, the Docker open source project is currently over‐
seen by a single-vendor commercial entity of the same name. While
Docker, Inc. does hold key roles and maintain leadership of the
open source project, we have experienced that the Docker commu‐
nity has many of the same positive aspects that we’ve discussed as
beneficial throughout this book. Almost all of Docker’s open source
community work, planning, and discussions take place in public
forums. The Docker, Inc. employees as well as open source commu‐
nity members are extremely good at providing a very welcoming
experience to new members; in fact, our experience is that they
(more than most other open source projects) go out of their way to
encourage new members to join, no matter their experience level or
level of project knowledge. While it’s not ideal that the open source
project has single-vendor control, as we’ve seen many times before,
this is fairly normal for a young project. We believe what happens in
the next cycle of Docker’s maturity will determine the long-term
success of the project and its governance and oversight.

With Docker’s success has come competitive pressure from other
cloud industry players seeking to also have a voice in the future of
the white-hot focus on containers as the future of cloud computing
application delivery. With that pressure has also come some com‐
munity fracturing: most notably when CoreOS, a long-time Docker
proponent, announced its own container runtime implementation,
named “Rocket,” alongside a container runtime specification initia‐
tive, “appc,” in December 2014. While this publicly exposed friction
and community rumblings have caused some dark clouds (hopefully
only temporarily) to gather over the Docker project, the initial
response has been a positive first step toward vendor-neutral open
governance for container technology in general, and core pieces of
the Docker runtime specifically.

As of June 2015, Docker has contributed the core of its container
runtime codebase—a subproject named “libcontainer" as well as a
new runtime interface called “runC”—to the Open Container Initia‐
tive, which we will discuss in more detail in the next section. Over
time, we expect a continued maturing of the open governance and
open collaboration around containers, which will allow for innova‐
tion and co-opetition between commercial and open source con‐

30 | Chapter 3: Collaborating on the Open Cloud

tainer product offerings, but with the interoperability and transport‐
ability that relieves the fear of vendor lock-in for consumers of this
currently very hot technology.

Case Study: Open Foundations Extending
Cloud Collaboration
While all of the open source cloud projects we’ve looked at are inter‐
esting and valuable in their own right, what we are seeing on the
horizon, and expect will become normative for the future, is the cre‐
ation of collaborative open foundations that span multiple open
source projects. These cloud computing foundations will encompass
specific technology areas to allow standardized interfaces and defi‐
nitions to open up cross-project collaboration to an even greater
degree than we are seeing today. These are exciting times for solving
the next generation of cloud challenges, and we want to highlight a
few recent foundations that we feel fit this new era of open cloud
collaboration.

Open Container Initiative
As previously mentioned, the Open Container Initiative (OCI) is a
project being run under the Linux Foundation that was formed
using Docker’s libcontainer component as a starting point imple‐
mentation for standardizing the container runtime model. In addi‐
tion to having a reference starting point with libcontainer, the OCI
is chartered to develop a specification that will harmonize the work
that CoreOS has done on the appc spec and Rocket with the Docker
de facto implementation. While at this time the OCI project is still
in the process of drafting a final approved charter and agreeing on
project scope, it is expected to at least standardize both the defini‐
tion of the container’s packaging or bundle format and the runtime
specification and APIs that determine how a container is managed
through its lifecycle. The bundle or packaging represents the con‐
tents of the container’s filesystem and all runtime and configuration
metadata needed for a runtime to execute it. The lifecycle definition
will define how to manage the container’s runtime via starting, stop‐
ping, checkpointing, and restoring the container.

The OCI is a good example of the next generation of standards
development and cross-project collaboration. As previously dis‐
cussed, in the past there have been standards organizations that

Case Study: Open Foundations Extending Cloud Collaboration | 31

developed “paper standards” and then asked for multiple implemen‐
tations to test those specifications. Conversely, there have been
plenty of open source projects that focused only on the code imple‐
mentation and whose APIs, given enough popularity, eventually
become de facto standards without any specification, interoperabil‐
ity testing, or joint agreement between all interested parties.

With the OCI there will be the attempt to do both: the specification,
or standard, will be developed in concert with the reference open
source implementation. While the model isn’t necessarily new,
Docker has agreed to use that reference implementation as part of
Docker itself. In addition to Docker consuming the community-
defined reference implementation, we have also seen the Cloud
Foundry development community propose to use the reference
implementation, runC, as their container runtime within the Cloud
Foundry application framework. These early highlights from the
OCI show that this reference implementation will not only be an
accurate representation of the specification but also will immediately
be used and tested in real-world scenarios, with actual customer
experience to help ensure that the specification is directly addressing
the requirements of the cloud community. Additionally, we’re
already seeing multiple implementations of the OCI specifications
under development. This ensures that no one particular implemen‐
tation is codified within the specification unnecessarily. This focused
attention on linking the standard with a real-world codebase, devel‐
oped in concert with multiple cloud vendors, is a natural next step
for the standardization process and aligns well with the open gover‐
nance models we’ve noted as the cornerstone of successful open
source projects.

Cloud Native Computing Foundation
Not long after the OCI was formed in June 2015, many of the key
cloud players realized the need for standardization beyond the base
runtime initiative the OCI was focused on providing. While agree‐
ment on the core management of a single container is critical, the
need to extend this contract to higher-level container management
constructs became evident. In August 2015, within the scope of the
Linux Foundation Collaboration Project umbrella, the Cloud Native
Computing Foundation (CNCF) was formed. While, as of this writ‐
ing, the exact scope of the CNCF’s work is still being finalized, it
appears they will build on the foundation of the OCI’s work and

32 | Chapter 3: Collaborating on the Open Cloud

focus on standardizing the orchestration, distribution, discovery,
and lifecycle management of clusters of containers within a data
center.

While we can’t state what the exact scope of the CNCF’s work will be
at this time, we are again hopeful that with such a broad array of key
industry players, significant collaboration will occur to provide
standardized answers for some of the next challenges that are a step
removed from the foundation laid by OCI. Specifically, at this
higher orchestration and lifecycle layer, we would want to see com‐
monality around distribution, discovery, and management features,
allowing for the development of open and hybrid cloud solutions
that interoperate between providers.

Playing Your Part in the Open Cloud
We’ve looked at several case studies of open source, open gover‐
nance, and the foundation model and seen the value and future of
true openness as the path to collaboration with innovation and co-
opetition for cloud technologies. We’ve also noted that among major
cloud initiatives and projects, there is a growing sense that cross-
collaboration with other major projects is the way forward to solve
the cloud computing challenges looming on the horizon.

We can also see that the lines are blurring between operator, devel‐
oper, producer, and consumer, and that the nature of the code, com‐
munity, and culture of open source is shifting, transcending tradi‐
tionally designated roles. This is leading to an era where truly any‐
one can be an open source developer and contribute to projects that
interest them, whether by shoring up documentation as an avid end
user or providing proposals for new features as a potential innovator
within the project’s field.

For interested end users, this means no more standing on the side‐
lines as a pure consumer: getting involved in projects of interest
allows them to have a voice in the future direction of those projects,
based on their own needs. For companies producing cloud plat‐
forms or operating cloud offerings, investing in open source can
both benefit and highly accelerate time to market for required capa‐
bilities, as well as allowing them to provide their own niche exper‐
tise to a broader open community of interested parties. Getting
involved in the open governance foundations around key cloud
projects also helps provide a continued level playing field, as broader

Playing Your Part in the Open Cloud | 33

participation provides more voices to perpetuate vendor-neutral
decision making.

If you are considering open sourcing an in-house technology, or
creating a new community project guided by either independent or
corporate leadership, remember that intentionally choosing open‐
ness in the entire ecosystem of your project highly correlates to the
long-term viability of that project, as we’ve seen. You will need to
allow other parties the ability to have leadership roles, guided by a
healthy open governance model and meritocracy-based technical
development practices, and this will most likely be difficult at first—
who wants to cede control of a personally birthed idea or project?
However, as we have shown, this path is most beneficial to true col‐
laboration in the cloud.

Summary
We believe that open source software projects governed by healthy
open governance principles, often delivered practically through
vendor-neutral foundations, is the future of successful cloud com‐
puting technology. Already we have seen significant projects like
OpenStack, Cloud Foundry, Docker, and the foundations we have
discussed around each of these gaining momentum, partnerships,
corporate sponsorship, and participation, leading to viable produc‐
tion cloud offerings coming from an array of vendors, both small
and large. These open source and openly governed projects both
allow for broad community collaboration as well as unique innova‐
tion, enabling many traditional enterprises and startups to generate
revenue streams from cloud offerings based on open source technol‐
ogy.

Additionally, we believe the next phase of collaboration in the open
cloud is for growing cross-project collaboration through umbrella
foundations looking to standardize key pieces of both the low-level
and high-level orchestration and management components of cloud
computing. What most customers need is not a one-size-fits-all
approach to IaaS or PaaS, but rather a holistic approach that covers
potentially multiple open source projects and offerings. Having
standardized interfaces for orchestration, cluster management, and
distribution/deployment across multiple cloud infrastructure types
—for example, VMs and containers—is the next horizon, what we
believe will take cloud computing to the next level. When common

34 | Chapter 3: Collaborating on the Open Cloud

and interoperable implementations of these key concepts are colla‐
borated on across many vendors and many related open source
projects, even more potential for new revenue streams, new offer‐
ings, and new niche vendors will be realized.

We believe the future of the open cloud is that it will be Open by
Design.

Summary | 35

About the Authors
Phil Estes works as a senior technical staff member within the IBM
Cloud Open Technologies team, currently representing IBM in the
open source Docker community as a core maintainer. Phil also
works together with IBM product teams and customer accounts on
applying cloud open source technologies to products, solutions, and
IT projects. Phil’s broader team works upstream in OpenStack,
Cloud Foundry, Docker, and other key cloud open source projects.

Prior to his work with the Open Cloud team, Phil was the chief
architect in IBM’s Linux Technology Center for embedded Linux,
and he has deep expertise in Linux operating system packaging and
design. Phil has also worked closely with IBM product and legal
teams to provide expertise on technical and legal issues around open
source licensing, redistribution, and open source use within com‐
mercial products.

Phil holds a BS in Computer Engineering from Florida Tech and
received an MS in Software Engineering from The University of
Texas at Austin. He currently resides in beautiful central Virginia
with his wife and five children, as well as a dog, a rabbit, and two
parakeets.

Doug Davis works in the Cloud, Open Source, and Standards divi‐
sion of IBM. He has been working on open source and standards for
over 15 years and has been involved in many of the more popular
initiatives—such as Apache SOAP and Axis, most of the W3C and
OASIS standards around Web Services/SOAP, OpenStack, Cloud‐
Foundry, and most recently Docker, OCI, and CNCF. He founded
an interoperability consortium around Web Services, called WSTF,
and hosts a website that is used by several organizations to manage
their real-time collaborative discussions.

http://soaphub.org

	Cover
	name of event
	Copyright
	Table of Contents
	Introduction
	Chapter 1. Open Source: A Brief History
	What Is Open Source?
	Popularization and Commercialization
	Disruption
	Server Operating Systems
	Web Serving
	Mobile Devices
	Virtualization
	Cloud Computing

	Chapter 2. Open Governance: The Foundation Model
	Beyond Open Source
	Rise of the Foundations
	Apache Software Foundation
	Linux Foundation
	OpenStack Foundation
	Other Open Source Foundations

	The “Other” Open Source: Open Standards
	Open Governance: Critical for Cooperation

	Chapter 3. Collaborating on the Open Cloud
	Successful Collaboration Through Open Governance
	Case Study: Closed Standards and Private APIs
	Closed Standards: Cloud Infrastructure Management Interface
	Private APIs: Eucalyptus

	Case Study: Open Source Builds Open Clouds
	OpenStack
	Cloud Foundry
	Docker

	Case Study: Open Foundations Extending Cloud Collaboration
	Open Container Initiative
	Cloud Native Computing Foundation

	Playing Your Part in the Open Cloud
	Summary

