O'REILLY"

Release
ENgineering

m m' '

L

Dinah McNutt
Betsy Beyer
Tim Harvey

Short. Smart.
Seriously usetful.

Free ebooks and reports from O'Reilly
at oreil.ly/ops-perf

OREILLY®

HTTP/2

A New Excerpt from
High Performance Browser Networking

Security

Using Containers Safely in Production

IN Practice

DevOps
for Fmance

Reducing Risk Through Continuous Delivery

Kubernetes

Scheduling the Future at Cloud Scale

llya Grigorik

Get even more insights from industry experts
and stay current with the latest developments in
web operations, DevOps, and web performance
with free ebooks and reports from O'Reilly.

Q
)
Q
i

OREILLY®

http://oreil.ly/ops-perf

Release Engineering
How Google Builds and
Delivers Software

Dinah McNutt

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

Release Engineering
by Dinah McNutt

Copyright © 2016 O’'Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and Interior Designer: David Futato
Virginia Wilson Cover Designer: Karen Montgomery
Production Editor: Kristen Brown lllustrator: Rebecca Demarest

Copyeditor: Kim Cofer
June 2016: First Edition

Revision History for the First Edition
2016-06-10: First Release

The O’Reilly logo is a registered trademark of O’'Reilly Media, Inc. Release Engineer-
ing, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-96521-4
[LSI]

http://safaribooksonline.com

Table of Contents

Release ENGINeering.cvuveunirenieenneeniereneeenneennnns 1
The Role of a Release Engineer 2
Philosophy 2
Continuous Build and Deployment 4
Configuration Management 9
Conclusions 0

Release Engineering

Written by Dinah McNutt
Edited by Betsy Beyer and Tim Harvey

Release engineering is a relatively new and fast-growing discipline of
software engineering that can be concisely described as building and
delivering software.! Release engineers have a solid (if not expert)
understanding of source code management, compilers, build config-
uration languages, automated build tools, package managers, and
installers. Their skill set includes deep knowledge of multiple
domains: development, configuration management, test integration,
system administration, and customer support.

Running reliable services requires reliable release processes. Site
Reliability Engineers (SREs) need to know that the binaries and con-
figurations they use are built in a reproducible, automated way so
that releases are repeatable and aren’t “unique snowflakes” Changes
to any aspect of the release process should be intentional, rather
than accidental. SREs care about this process from source code to
deployment.

Release engineering is a specific job function at Google. Release
engineers work with software engineers (SWEs) in product develop-
ment and SREs to define all the steps required to release software—
from how the software is stored in the source code repository, to
build rules for compilation, to how testing, packaging, and deploy-
ment are conducted.

1 D. McNutt, “Accelerating the Path from Dev to DevOps”, in ;login:, vol. 39, no. 2, April
2014.

https://www.usenix.org/system/files/login/articles/05_mcnutt.pdf

The Role of a Release Engineer

Google is a data-driven company and release engineering follows
suit. We have tools that report on a host of metrics, such as how
much time it takes for a code change to be deployed into production
(in other words, release velocity) and statistics on what features are
being used in build configuration files.” Most of these tools were
envisioned and developed by release engineers.

Release engineers define best practices for using our tools in order
to make sure projects are released using consistent and repeatable
methodologies. Our best practices cover all elements of the release
process. Examples include compiler flags, formats for build identifi-
cation tags, and required steps during a build. Making sure that our
tools behave correctly by default and are adequately documented
makes it easy for teams to stay focused on features and users, rather
than spending time reinventing the wheel (poorly) when it comes to
releasing software.

Google has a large number of SREs who are charged with safely
deploying products and keeping Google services up and running. In
order to make sure our release processes meet business require-
ments, release engineers and SREs work together to develop strate-
gies for canarying changes, pushing out new releases without
interrupting services, and rolling back features that demonstrate
problems.

Philosophy

Release engineering is guided by an engineering and service philos-
ophy that’s expressed through four major principles, detailed in the
following sections.

Self-Service Model

In order to work at scale, teams must be self-sufficient. Release engi-
neering has developed best practices and tools that allow our prod-

2 Bram Adams, Stephany Bellomo, Christian Bird, Tamara Marshall-Keim, Foutse
Khombh, and Kim Moir, “The Practice and Future of Release Engineering: A Roundta-
ble with Three Release Engineers”, IEEE Software, vol. 32, no. 2 (March/April 2015),
pp- 42-49.

2 | Release Engineering

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=434819
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=434819

uct development teams to control and run their own release
processes. Although we have thousands of engineers and products,
we can achieve a high release velocity because individual teams can
decide how often and when to release new versions of their prod-
ucts. Release processes can be automated to the point that they
require minimal involvement by the engineers, and many projects
are automatically built and released using a combination of our
automated build system and our deployment tools. Releases are
truly automatic, and only require engineer involvement if and when
problems arise.

High Velocity

User-facing software (such as many components of Google Search)
is rebuilt frequently, as we aim to roll out customer-facing features
as quickly as possible. We have embraced the philosophy that fre-
quent releases result in fewer changes between versions. This
approach makes testing and troubleshooting easier. Some teams
perform hourly builds and then select the version to actually deploy
to production from the resulting pool of builds. Selection is based
upon the test results and the features contained in a given build.
Other teams have adopted a “Push on Green” release model and
deploy every build that passes all tests.?

Hermetic Builds

Build tools must allow us to ensure consistency and repeatability. If
two people attempt to build the same product at the same revision
number in the source code repository on different machines, we
expect identical results.* Our builds are hermetic, meaning that they
are insensitive to the libraries and other software installed on the
build machine. Instead, builds depend on known versions of build
tools, such as compilers, and dependencies, such as libraries. The
build process is self-contained and must not rely on services that are
external to the build environment.

3 D. V. Klein, D. M. Betser, and M. G. Monroe, “Making Push On Green a Reality”,
in ;login:, vol. 39, no. 5, October 2014.

4 Google uses a monolithic unified source code repository; see R. Potvin and J. Leven-
berg, “The Motivation for a Monolithic Codebase: Why Google stores billions of lines
of code in a single repository”, in Communications of the ACM, forthcoming July 2016.
Video available on YouTube.

Philosophy | 3

https://www.usenix.org/publications/login/october-2014-vol-39-no-5/making-push-green-reality
https://www.youtube.com/watch?v=W71BTkUbdqE

Rebuilding older releases when we need to fix a bug in software
that’s running in production can be a challenge. We accomplish this
task by rebuilding at the same revision as the original build and
including specific changes that were submitted after that point in
time. We call this tactic cherry picking. Our build tools are them-
selves versioned based on the revision in the source code repository
for the project being built. Therefore, a project built last month
won't use this month’s version of the compiler if a cherry pick is
required, because that version may contain incompatible or unde-
sired features.

Enforcement of Policies and Procedures

Several layers of security and access control determine who can per-
form specific operations when releasing a project. Gated operations
include:

 Approving source code changes—this operation is managed
through configuration files scattered throughout the codebase

o Specifying the actions to be performed during the release pro-
cess

+ Creating a new release

« Approving the initial integration proposal (which is a request to
perform a build at a specific revision number in the source code
repository) and subsequent cherry picks

+ Deploying a new release

« Making changes to a project’s build configuration

Almost all changes to the codebase require a code review, which is a
streamlined action integrated into our normal developer workflow.
Our automated release system produces a report of all changes con-
tained in a release, which is archived with other build artifacts. By
allowing SREs to understand what changes are included in a new
release of a project, this report can expedite troubleshooting when
there are problems with a release.

Continuous Build and Deployment

Google has developed an automated release system called Rapid.
Rapid is a system that leverages a number of Google technologies to

4 | Release Engineering

provide a framework that delivers scalable, hermetic, and reliable
releases. The following sections describe the software lifecycle at
Google and how it is managed using Rapid and other associated
tools.

Building

Blaze® is Google’s build tool of choice. It supports building binaries
from a range of languages, including our standard languages of C+
+, Java, Python, Go, and JavaScript. Engineers use Blaze to define
build targets (e.g., the output of a build, such as a JAR file), and to
specify the dependencies for each target. When performing a build,
Blaze automatically builds the dependency targets.

Build targets for binaries and unit tests are defined in Rapid’s project
configuration files. Project-specific flags, such as a unique build
identifier, are passed by Rapid to Blaze. All binaries support a flag
that displays the build date, the revision number, and the build iden-
tifier, which allow us to easily associate a binary to a record of how it
was built.

Branching

All code is checked into the main branch of the source code tree
(mainline). However, most major projects don’t release directly from
the mainline. Instead, we branch from the mainline at a specific
revision and never merge changes from the branch back into the
mainline. Bug fixes are submitted to the mainline and then cherry
picked into the branch for inclusion in the release. This practice
avoids inadvertently picking up unrelated changes submitted to the
mainline since the original build occurred. Using this branch and
cherry pick method, we know the exact contents of each release.

Testing

A continuous test system runs unit tests against the code in the
mainline each time a change is submitted, allowing us to detect
build and test failures quickly. Release engineering recommends that
the continuous build test targets correspond to the same test targets

5 Blaze has been open sourced as Bazel. See “Bazel FAQ” on the Bazel website, http://
bazel.io/faq.html.

Continuous Build and Deployment | 5

http://bazel.io/faq.html
http://bazel.io/faq.html

that gate the project release. We also recommend creating releases at
the revision number (version) of the last continuous test build that
successfully completed all tests. These measures decrease the chance
that subsequent changes made to the mainline will cause failures
during the build performed at release time.

During the release process, we re-run the unit tests using the release
branch and create an audit trail showing that all the tests passed.
This step is important because if a release involves cherry picks, the
release branch may contain a version of the code that doesn't exist
anywhere on the mainline. We want to guarantee that the tests pass
in the context of what’s actually being released.

To complement the continuous test system, we use an independent
testing environment that runs system-level tests on packaged build
artifacts. These tests can be launched manually or from Rapid.

Packaging

Software is distributed to our production machines via the Midas
Package Manager (MPM).® MPM assembles packages based on
Blaze rules that list the build artifacts to include, along with their
owners and permissions. Packages are named (e.g., search/shake-
speare/frontend), versioned with a unique hash, and signed to ensure
authenticity. MPM supports applying labels to a particular version
of a package. Rapid applies a label containing the build ID, which
guarantees that a package can be uniquely referenced using the
name of the package and this label.

Labels can be applied to an MPM package to indicate a package’s
location in the release process (e.g., dev, canary, or production). If
you apply an existing label to a new package, the label is automati-
cally moved from the old package to the new package. For example:
if a package is labeled as canary, someone subsequently installing
the canary version of that package will automatically receive the
newest version of the package with the label canary.

6 D. McNutt, “Distributing Software in a Massively Parallel Environment”, presentation
at USENIX LISA 2014, video available online.

6 | Release Engineering

https://www.usenix.org/conference/lisa14/conference-program/presentation/mcnutt

Rapid

Figure 1-1 shows the main components of the Rapid system. Rapid
is configured with files called blueprints. Blueprints are written in an
internal configuration language and are used to define build and test
targets, rules for deployment, and administrative information (like
project owners). Role-based access control lists determine who can
perform specific actions on a Rapid project.

ko |
Blueprint i @
A v External Services
Rapid Client . Rapid Service Rapid Build Job Source Repository
| :I Rapid Worker I
—— N __ ; l«—>{ Build & I?ackage
Legend E Tasks | Serv:;lsd
[C] Rapid Components ! Iﬁl riacs
[User Artifacts ! L] Deployment
[External Services ! Services

Figure 1-1. Simplified view of Rapid architecture showing the main
components of the system

Each Rapid project has workflows that define the actions to perform
during the release process. Workflow actions can be performed seri-
ally or in parallel, and a workflow can launch other workflows.
Rapid dispatches work requests to tasks running as a Borg job on
our production servers. Because Rapid uses our production infra-
structure, it can handle thousands of release requests simultane-
ously.

A typical release process proceeds as follows:

1. Rapid uses the requested integration revision number (often
obtained automatically from our continuous test system) to cre-
ate a release branch.

2. Rapid uses Blaze to compile all the binaries and execute the unit
tests, often performing these two steps in parallel. Compilation
and testing occur in environments dedicated to those specific
tasks, as opposed to taking place in the Borg job where the

Continuous Build and Deployment | 7

Rapid workflow is executing. This separation allows us to paral-
lelize work easily.

3. Build artifacts are then available for system testing and canary
deployments. A typical canary deployment involves starting a
few jobs in our production environment after the completion of
system tests.

4. The results of each step of the process are logged. A report of all
changes since the last release is created.

Rapid allows us to manage our release branches and cherry picks;
individual cherry pick requests can be approved or rejected for
inclusion in a release.

Deployment

Rapid is often used to drive simple deployments directly. It updates
the Borg jobs to use newly built MPM packages based on deploy-
ment definitions in the blueprint files and specialized task executors.

For more complicated deployments, we use Sisyphus, which is a
general-purpose rollout automation framework developed by SRE.
A rollout is a logical unit of work that is composed of one or more
individual tasks. Sisyphus provides a set of Python classes that can
be extended to support any deployment process. It has a dashboard
that allows for finer control on how the rollout is performed and
provides a way to monitor the rollout’s progress.

In a typical integration, Rapid creates a rollout in a long-running
Sisyphus job. Rapid knows the build label associated with the MPM
package it created, and can specify that build label when creating the
rollout in Sisyphus. Sisyphus uses the build label to specify which
version of the MPM packages should be deployed.

With Sisyphus, the rollout process can be as simple or complicated
as necessary. For example, it can update all the associated jobs
immediately or it can roll out a new binary to successive clusters
over a period of several hours.

Our goal is to fit the deployment process to the risk profile of a
given service. In development or pre-production environments, we
may build hourly and push releases automatically when all tests
pass. For large user-facing services, we may push by starting in one
cluster and expand exponentially until all clusters are updated. For

8 | ReleaseEngineering

sensitive pieces of infrastructure, we may extend the rollout over
several days, interleaving them across instances in different geo-
graphic regions.

Configuration Management

Configuration management is one area of particularly close collabo-
ration between release engineers and SREs. Although configuration
management may initially seem a deceptively simple problem, con-
figuration changes are a potential source of instability. As a result,
our approach to releasing and managing system and service config-
urations has evolved substantially over time. Today we use several
models for distributing configuration files, as described in the fol-
lowing paragraphs. All schemes involve storing configuration in our
primary source code repository and enforcing a strict code review
requirement.

Use the mainline for configuration. This was the first method used to
configure services in Borg (and the systems that pre-dated Borg).
Using this scheme, developers and SREs modify configuration files
at the head of the main branch. The changes are reviewed and then
applied to the running system. As a result, binary releases and con-
figuration changes are decoupled. While conceptually and proce-
durally simple, this technique often leads to skew between the
checked-in version of the configuration files and the running ver-
sion of the configuration file because jobs must be updated in order
to pick up the changes.

Include configuration files and binaries in the same MPM package.
For projects with few configuration files or projects where the files
(or a subset of files) change with each release cycle, the configura-
tion files can be included in the MPM package with the binaries.
While this strategy limits flexibility by binding the binary and con-
figuration files tightly, it simplifies deployment, because it only
requires installing one package.

Package configuration files into MPM “configuration packages.” We
can apply the hermetic principle to configuration management.
Binary configurations tend to be tightly bound to particular versions
of binaries, so we leverage the build and packaging systems to snap-
shot and release configuration files alongside their binaries. Similar
to our treatment of binaries, we can use the build ID to reconstruct
the configuration at a specific point in time.

Configuration Management | 9

For example, a change that implements a new feature can be
released with a flag setting that configures that feature. By generat-
ing two MPM packages, one for the binary and one for the configu-
ration, we retain the ability to change each package independently.
That is, if the feature was released with a flag setting of first_folio
but we realize it should instead be bad_quarto, we can cherry pick
that change onto the release branch, rebuild the configuration pack-
age, and deploy it. This approach has the advantage of not requiring
a new binary build.

We can leverage MPM’s labeling feature to indicate which versions
of MPM packages should be installed together. A label of much_ado
can be applied to the MPM packages described in the previous para-
graph, which allows us to fetch both packages using this label. When
a new version of the project is built, the much_ado label will be
applied to the new packages. Because these tags are unique within
the namespace for an MPM package, only the latest package with
that tag will be used.

Read configuration files from an external store. Some projects have
configuration files that need to change frequently or dynamically
(i.e., while the binary is running). These files can be stored in
Chubby, Bigtable, or our source-based filesystem.”

In summary, project owners consider the different options for dis-
tributing and managing configuration files and decide which works
best on a case-by-case basis.

Conclusions

While this report has specifically discussed Google’s approach to
release engineering and the ways in which release engineers work
and collaborate with SREs, these practices can also be applied more
widely.

It's Not Just for Googlers

When equipped with the right tools, proper automation, and well-
defined policies, developers and SREs shouldn’t have to worry about

7 C. Kemper, “Build in the Cloud: How the Build System Works”, Google Engineering
Tools blog post, August 2011.

10 | Release Engineering

https://google-engtools.blogspot.com/2011/08/build-in-cloud-how-build-system-works.html

releasing software. Releases can be as painless as simply pressing a
button.

Most companies deal with the same set of release engineering prob-
lems regardless of their size or the tools they use: How should you
handle versioning of your packages? Should you use a continuous
build and deploy model, or perform periodic builds? How often
should you release? What configuration management policies
should you use? What release metrics are of interest?

Google Release Engineers have developed our own tools out of
necessity because open sourced or vendor-supplied tools don’t work
at the scale we require. Custom tools allow us to include functional-
ity to support (and even enforce) release process policies. However,
these policies must first be defined in order to add appropriate fea-
tures to our tools, and all companies should take the effort to define
their release processes whether or not the processes can be automa-
ted and/or enforced.

Start Release Engineering at the Beginning

Release engineering has often been an afterthought, and this way of
thinking must change as platforms and services continue to grow in
size and complexity.

Teams should budget for release engineering resources at the begin-
ning of the product development cycle. It’s cheaper to put good
practices and process in place early, rather than have to retrofit your
system later.

It is essential that the developers, SREs, and release engineers work
together. The release engineer needs to understand the intention of
how the code should be built and deployed. The developers
shouldn’t build and “throw the results over the fence” to be handled
by the release engineers.

Individual project teams decide when release engineering becomes
involved in a project. Because release engineering is still a relatively
young discipline, managers don’t always plan and budget for release
engineering in the early stages of a project. Therefore, when consid-
ering how to incorporate release engineering practices, be sure that

Conclusions | 11

you consider its role as applied to the entire lifecycle of your product
or service—particularly the early stages.

More Information

For more information on release engineering, see the following pre-
sentations, each of which has video available online:

o How Embracing Continuous Release Reduced Change Complex-
ity, USENIX Release Engineering Summit West 2014

o Maintaining Consistency in a Massively Parallel Environment,
USENIX Configuration Management Summit 2013

o The 10 Commandments of Release Engineering, 2nd Interna-
tional Workshop on Release Engineering 2014

o Distributing Software in a Massively Parallel Environment, LISA
2014

12 | Release Engineering

http://usenix.org/conference/ures14west/summit-program/presentation/dickson
http://usenix.org/conference/ures14west/summit-program/presentation/dickson
https://www.usenix.org/conference/ucms13/summit-program/presentation/mcnutt
https://www.youtube.com/watch?v=RNMjYV_UsQ8
https://www.usenix.org/conference/lisa14/conference-program/presentation/mcnutt

About the Author and Editors

Dinah McNutt is a Program Manager for Google’s Site Reliability
Engineering team and based in Dublin, Ireland. She has over 30
years of experience in systems administration, release engineering,
and software development. Dinah has written for various publica-
tions over the years, including Byte Magazine and the Daemons and
Dragons column for UNIX Review magazine. In addition to serving
as the program chair for several USENIX Release Engineering Sum-
mits and LISA VIII, she’s given talks and tutorials at numerous con-
ferences including LISA, FlowCon, and RELENG 2014. She has an
MS in Mechanical Engineering from MIT.

Betsy Beyer is a Technical Writer for Google in New York City spe-
cializing in Site Reliability Engineering. She has previously written
documentation for Google’s Data Center and Hardware Operations
Teams in Mountain View and across its globally distributed datacen-
ters. Before moving to New York, Betsy was a lecturer on technical
writing at Stanford University. En route to her current career, Betsy
studied International Relations and English Literature, and holds
degrees from Stanford and Tulane.

Tim Harvey is a Senior Technical Writer for Google Site Reliability
Engineering based in Mountain View. He worked previously in the
Electronic Design Automation software industry as a software engi-
neer for Mentor Graphics and Synopsys, among others. A deep
interest in linguistics drove his transition to technical writing. He is
a high school dropout and graduate of the California Youth Author-
ity system, with masters degrees in Fine Arts and Public Adminis-
tration. He left a nearly-completed masters in English program to
join Google SRE in 2006.

	Cover
	Web Ops
	Copyright
	Table of Contents
	Chapter 1. Release Engineering
	The Role of a Release Engineer
	Philosophy
	Self-Service Model
	High Velocity
	Hermetic Builds
	Enforcement of Policies and Procedures

	Continuous Build and Deployment
	Building
	Branching
	Testing
	Packaging
	Rapid
	Deployment

	Configuration Management
	Conclusions
	It’s Not Just for Googlers
	Start Release Engineering at the Beginning

	About the Author and Editors

