

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15306

“ Velocity is the most
 valuable conference I have
 ever brought my team to.
 For every person I took
 this year, I now have three
 who want to go next year.”
 — Chris King, VP Operations, SpringCM

Join business technology leaders,
engineers, product managers,
system administrators, and developers
at the O’Reilly Velocity Conference.
You’ll learn from the experts—and
each other—about the strategies,
tools, and technologies that are
building and supporting successful,
real-time businesses.

Santa Clara, CA
May 27–29, 2015

http://oreil.ly/SC15

http://oreil.ly/SC15

Jonathan Thurman

Unsung Tools of DevOps

Unsung Tools of DevOps
by Jonathan Thurman

Copyright © 2014 Jonathan Thurman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

October 2013: First Edition

Revision History for the First Edition:

2013-10-09: First release

2014-04-09: Second release

2015-03-24: Third release

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. 5 Unsung Tools of DevOps and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc., was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 978-1-491-94517-9

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

5 Unsung Tools of DevOps. 1
RANCID 1
Cacti 4
lldpd 8
IPerf 10
MUltihost SSH Wrapper 12
Conclusion 14

iii

“It has long been an axiom of mine that
the little things are infinitely the most

important.”
—Sir Arthur Conan Doyle

5 Unsung Tools of DevOps

The tools we use play a critical role in how effective we are. In today’s
ever-changing world of technology, we tend to focus on the latest and
greatest solutions and overlook the simple tools that are available.
Constant improvement of tools is an important aspect of the DevOps
movement, but improvement doesn’t always warrant replacement.

So here are five tools that I use almost every day. They either provide
insight into or control over the environment around me while requir‐
ing minimal installation and configuration. They are not the flashiest
tools, but they are time tested and just work.

RANCID
Configuration management (CM) tools like Puppet and Chef are real‐
ly useful for keeping your systems in line, but what about your infra‐
structure? The Really Awesome New Cisco confIg Differ—or RANCID
for short—is the first step in tackling this problem. In essence, RAN‐
CID is a suite of utilities that enables automatic retention of your con‐
figurations in revision control. If you have a physical infrastructure at
any level, you should be working to have the same level of control as
you do on your servers with your CM solution.

So that sounds good, but what problem does RANCID really solve?
The core usage is to create an audit trail of software configurations
and hardware information for the devices that glue servers together.
The configuration of your switches, routers, and load balancers may

1

http://www.shrubbery.net/rancid/

not be changing as fast as the code in your Rails app (at least I hope
not!), but it does change over time. The rate of change is usually tied
to how fast your environment is either changing or expanding.

Auditing is a great first step in the automation process. You have to
know where you are to get where you’re going after all! RANCID does
this out of the box for devices from Cisco, Juniper, F5, and many other
vendors. The audit process requires a basic installation of RANCID
and configuration of a read-only user on the devices you want to
monitor. The result is a current configuration automatically pulled on
a regular schedule, committed to revision control, and an email de‐
tailing the changes in your inbox.

So now you’re ready to try out RANCID, but where to start? If you are
a Subversion shop, you’re set—go grab the latest tarball and follow
along with the Getting Started guide. Git users can grab a fork of
RANCID that is patched to add git functionality. Though git isn’t na‐
tively supported by the maintainer of RANCID, I prefer git to Sub‐
version, so that’s the codebase that I use.

Once you have RANCID installed, there are a few base configuration
items that need to be set in /etc/rancid/rancid.conf (or wherever your
rancid.conf was installed).

rancid.conf
RCSSYS=git
FILTER_PWDS=YES
LIST_OF_GROUPS="pdx slc ord"

Configuring RANCID to pull configs requires the username and pass‐
word used to connect to each device, optionally using hostname
matching. RANCID supports connecting to devices over telnet and
ssh. I’m sure this goes without saying, but don’t use telnet, and don’t
even enable it on the devices! Some devices support key-based au‐
thentication (like Juniper and F5) and do not require passwords. In
this case, RANCID will use the ssh key if one has been configured for
the ranice user, and RANCID is configured to connect via ssh. Other‐
wise you configure passwords in the .cloginrc file, which can be found
in the rancid user’s home directory. Here is an example:

2 | 5 Unsung Tools of DevOps

http://www.shrubbery.net/rancid/
http://dotwaffle.github.io/rancid-git/

~/.cloginrc
We only use SSH
add method * {ssh}

Wildcard for all devices
add password *.example.com LoginPassword EnablePassword
add password router.example.com OtherPass AndAnotherPass

Finally you need to configure which group a device belongs to. You
will need a directory with the same name as each group you identified
above, and each should contain a configuration file. This is where
RANCID shows some of its heritage, as the configuration file for this
is called router.db. It’s not limited to routers, however, and it’s not a
database but a simple text file. Each line in the file represents a device
in the form of hostname:type:status, where type is the type of device
from the list of supported devices and status is either up or down.
Devices that are marked down are not queried for their configuration,
but they remain in revision control. Here is an example:

~/pdx/router.db
switch.example.com:cisco:up
router.example.com:juniper:up
balance.example.com:f5:up

Now, assuming you configured the user RANCID runs as on the above
devices, as the RANCID user, you should be able to manually run
rancid-run to gather all the configs. Once the devices have been quer‐
ied, the full config is available at ~/pdx/configs/switch.example.com
and a diff is emailed to rancid-pdx, which should have been aliased to
you previously.

Phew—now you can rest knowing that the configurations and hard‐
ware details for all of your configured devices are safely on the system
running RANCID. That might be good enough, but having that repo
pushed to, say, your local git server, is probably better. That’s another
easy setup.

Set up a remote for the git repo
$ git remote add upstream <git url>

Create the following file at ~/.git/hooks/post-commit
#!/bin/sh
Push the local repo to my upstream on commit
git push upstream

5 Unsung Tools of DevOps | 3

Now that you’re armed with the basic details of setting up RANCID
and a newly found tool for keeping track of your configurations, go
forth and hack at it! With the goal of controlling your equipment, you
can extend your current CM solution to reach down into the depths
of the networking stack.

For more details, check out http://www.shrubbery.net/rancid/ and be
sure to take a look at the other tools available from Shrubbery Net‐
works, Inc.

Cacti
I think of Cacti as the granddaddy of Graphite. It is a round robin
database–based statistics graphing tool primarily targeted at network
equipment using SNMP (Simple Network Management Protocol),
and you can find it at http://www.cacti.net/ It’s not trendy and it’s not
written in Node, so why would you consider it? Cacti is a great fit when
you need to poll devices to gather information instead of having them
report data in. The configuration is centralized to the server it runs
on, and for the most part, it Just Works™.

Cacti provides the Web UI that you need to get up and going quickly,
including user, device, and graph management. For the backend, Cacti
leverages RRDTool to store the time-series data collected from all the
devices that you have configured. RRD is convenient for storing this
data for a set period of time, as the file never grows. Cacti handles
longer retention by storing data in multiple round robin archives
(RRAs). RRAs define how many data points to store (Rows) over a
specific length of time (Timespan), and how to aggregate that data
(Steps). Steps is the number of data points to average into one data
point for that RRA.

You can of course adjust the defaults as well as create your own RRAs
for 18 months, 2 years, or any other timespan that you want. The im‐
portant items to note here are the Steps and Rows. The step size defines
how many data points are aggregated into one data point in the RRA.

4 | 5 Unsung Tools of DevOps

http://www.shrubbery.net/rancid/
http://graphite.wikidot.com/
http://www.cacti.net/
http://oss.oetiker.ch/rrdtool/

Timespan defines how many seconds to use when creating the actual
graph from the data.

One of the strengths of Cacti is template-based configuration, which
allows for excellent customization. To start, there are templates for
different types of devices called Host Templates. The Host Template
defines which Graph Templates are associated with a certain type of
device. For example, there is a built-in Host Template named Cisco
Router. When you assign this to a device, Cacti knows which graph
templates are relevant. It would quickly become overwhelming if you
had to sort through the entire graph template list!

So how would Cacti know how many ports your switch has? The short
answer is that Cacti asks the device using SNMP or another custom
Data Query. Yes, SNMP is getting long in the tooth, but it’s still a quick
and easy way to get structured data, and that’s where Cacti’s Data
Queries come into play. Data Queries like SNMP - Interface Statistics
know that there is an index value within the result and use that to walk
through the results and gather the relevant information. If you have
data that is not available via SNMP, Cacti supports custom scripts that
are run on the server to collect data via whatever means required.

Configuring a new device is done through a simple web form that asks
a lot of questions, but it boils down to Description, Hostname, and
Host Template. Most other settings can be inherited from system-wide
defaults, such as timeouts and the SNMP connection details. When
configuring SNMP on the remote hosts, be sure to change the com‐
munity and not use the default of “public.” It is also strongly recom‐
mended to limit which hosts can query SNMP data or even what data
those hosts are able to see.

Once you have successfully created the host, you’ll be redirected to the
details of that host and have the option to create graphs. Clicking on
that link brings you to a page listing the Graph Templates that are
associated with the device. Simply check the box next to the graphs
that you want to create and click Create.

5 Unsung Tools of DevOps | 5

Within the next five minutes (the default polling interval), you should
start seeing new data being graphed for the device you just created.
Here is an example Hourly graph for a very low-usage switch port. The
stair steps are due to the default polling cycle, which at five minutes is
probably a bit too long by today’s standards. The green area is the
inbound traffic, and the blue line represents the outbound. This graph
template also includes the 95th percentile (not actually visible on the
graph)--a very common way of billing network traffic, which is usually
bursty in nature.

You can easily look at graphs for a specific host, but that’s not always
the most useful way to see the data. Another feature of Cacti is called
Graph Trees. Graph Trees allow you to create a folder-like structure
for sorting and viewing your graphs. Want to look at the network
throughput of all of your Raspberry Pis at once? No problem! Here we
create a Switch heading in the Default Tree that only contains graphs
we care about:

6 | 5 Unsung Tools of DevOps

http://www.raspberrypi.org/

To view all our hard work, we move away from Console to the Graph
view in Cacti. These two modes distinguish configuration from nor‐
mal use and slightly change the interface. Don’t worry, though: it’s just
clicking what looks like a tab at the top of the page to toggle back and
forth.

This is the Graphs view of Cacti, which contains the Graph Tree on
the left, a quick filter across the top, and the resulting graphs in the
main body. This is also where Cacti shows some of its age. While the
page is mostly dynamic content, there is no AJAX in use, so the page
refreshes via a meta tag, and you cannot directly interact with the
graphs to change the time range you’re looking at.

If you’re paying close attention, you might have noticed that these
graphs are for the Last Hour and are showing data from the Hourly
RRA. If you want to see all the time periods for a specific graph, just
click on it and you will be taken into the entire stored history of that

5 Unsung Tools of DevOps | 7

data. This is very useful for identifying trends over time, which hope‐
fully lets you plan for future growth.

lldpd
Link Layer Discovery Protocol (LLDP) is one of the most under-
utilized yet extremely useful networking protocols you may never have
heard of. Ever unplug the wrong server from a switch because of out-
of-date documentation or spaghetti wiring? Yeah, me either…but now
you can know exactly which port a server is plugged into with confi‐
dence! You just need to enable LLDP on your switch and install lldpd.

It is important to note that there are other Link Layer protocols that
have been implemented by multiple network equipment vendors over
the years. LLDP was defined by IEEE 802.1AB to provide a vendor-
neutral specification. This is an important step, as now cross-vendor
devices could finally exchange information, and network engineers
were pleased. Now it’s time to spread the information out to a broader
audience.

While the inner working of LLDP is beyond the scope of this paper,
the basics are quite simple. A device, be it a server, switch, router, or
anything else, sends information about itself at regular intervals out
of all connected network interfaces. This information typically in‐
cludes the system name, name of the interface the data was sent on,
and the system management IP address.

The receiving device then collects that data, adds what interface it saw
that data coming from, and stores it for a specific amount of time. The
data is only exchanged between devices directly connected over Ether‐
net, so you now can be certain which neighbor is really on a specific
interface.

Capability Codes: R - Router, T - Trans Bridge,
 S - Switch, H - Host, I - IGMP, r - Repeater
Device ID Local Intrfce Capability Platform Port ID
rpi-1 Fas 0/2 H Linux eth0
rpi-2 Fas 0/1 H Linux eth0

In this example from an old Cisco switch, we have two Linux hosts
connected. So if I need to disconnect the eth0 interface from rpi-1, I
know that it is plugged into the local port FastEthernet 0/2 of the
switch. I can also tell that rpi-2 is not another switch, as the Capability
column identifies it as H, which means it is a host.

8 | 5 Unsung Tools of DevOps

There are a few implementations of LLDP for Linux: Open-LLDP,
ladvd, and lldpd. I prefer lldpd for its simplicity of configuration, it’s
ability to speak other proprietary discovery protocols like Cisco Dis‐
covery Protocol, and multiple output formats of the client utility.

Depending on what distribution you are running, lldpd might not be
available as a package, but compilation and installation is standard.
Once you have the package installed, there really isn’t much to the
configuration. For example, when using the Rasbian package for in‐
stallation, all you need to do is start the daemon to get up and running.
Enabling CDP requires a slight modification to the configuration, as
follows:

/etc/defaults/lldpd
Start SNMP subagent and enable CDP
DAEMON_ARGS="-x -c"

Once you have lldpd installed and running, it only takes a few seconds
for data to start coming in from your neighboring devices. The com‐
mand to view the current LLDP information is lldpctl, and by default
it prints out some very verbose information. In the following example,
you can see that we are actually using CDP to communicate with a
very old Cisco 2924 Switch:

LLDP neighbors:

Interface: eth0, via: CDPv2, RID: 4, Time: 8 days, 00:58:39
Chassis:
ChassisID: local switch.example.com
SysName: switch.example.com
SysDescr: cisco WS-C2924-XL
MgmtIP: 192.168.1.2
Capability: Bridge, on
Port:
PortID: ifname FastEthernet0/2
PortDescr: FastEthernet0/2
VLAN: 1, pvid: yes VLAN #1

So far all of this has been useful information for humans to parse, but
that’s not really the scale I want to work at. lldpdctl helps us out by
providing multiple output formats including key-value and XML.
Here is the same example in key-value format for comparison:

$ lldpctl -f keyvalue
lldp.eth0.via=CDPv2
lldp.eth0.rid=4
lldp.eth0.age=8 days, 01:00:23

5 Unsung Tools of DevOps | 9

http://open-lldp.org/
http://www.blinkenlights.nl/software/ladvd/
http://vincentbernat.github.io/lldpd/
http://www.raspbian.org/

lldp.eth0.chassis.local=switch.example.com
lldp.eth0.chassis.name=switch.example.com
lldp.eth0.chassis.descr=cisco WS-C2924-XL
lldp.eth0.chassis.mgmt-ip=192.168.1.2
lldp.eth0.chassis.Bridge.enabled=on
lldp.eth0.port.ifname=FastEthernet0/2
lldp.eth0.port.descr=FastEthernet0/2
lldp.eth0.vlan.vlan-id=1
lldp.eth0.vlan.pvid=yes
lldp.eth0.vlan=VLAN #1

Now we have information on the server about how it’s connected to
the rest of the world, in a parsable format, that with a little work we
could pass to our configuration management software. One reason
this becomes important is that it allows for automatic discovery of
parent-child relationships between servers and the network equip‐
ment they’re attached to. With some simple wrapping—perhaps a cus‐
tom fact if you are a Puppet user—you have the hostname of the switch
you’re attached to (your parent). Now when you dynamically generate
your monitoring configuration, you can pass along that you are con‐
nected to Switch.example.com.

IPerf
A network can be a weird place, with ever-changing asymmetric paths
moving bits from one place to another. Sometimes this leads to very
different throughput performance between servers that appear to be
otherwise identical. After running a few common utilities like tracer‐
oute—or perhaps curl on an HTTP service—you are still unable to
replicate the problem.

Enter iperf, the network testing tool. Iperf is designed to measure the
throughput between two points and runs as a client/server pair. It
supports both UDP and TCP and can either test bidirectionally or
unidirectionally from each endpoint in a single command. The power
of iperf is how efficiently it is able to saturate a network connection.
For TCP, it reports the overall throughput. For UDP, you can adjust
the datagram size and the report includes throughput, packet loss, and
jitter.

Installation is easy, as the package exists in most major Linux distri‐
butions and is supported for cross-platform compiling, and Windows
binaries are available from third parties. To run iperf, you do need to
have your firewall configured to allow connections between the two
endpoints, with the default server port for TCP and UDP being 5001.

10 | 5 Unsung Tools of DevOps

https://puppetlabs.com/
http://iperf.sourceforge.net/

You also need to have iperf running on both sides of the connection
to test. Iperf can either run in Server or Client mode, one on each end
of the connection, as in the following examples.

TCP Server Mode
$ iperf -s

Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)

[4] local 192.168.1.101 port 5001 connected
 with 192.168.1.100 port 43697
[ID] Interval Transfer Bandwidth
[4] 0.0-10.1 sec 114 MBytes 94.1 Mbits/sec

TCP Client Mode
$ iperf -c 192.168.1.101

Client connecting to 192.168.1.101, TCP port 5001
TCP window size: 22.9 KByte (default)

[3] local 192.168.1.100 port 43697 connected
 with 192.168.1.101 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 114 MBytes 95.0 Mbits/sec

Performing an initial TCP test with iperf requires starting the server,
then firing the client at it. In the above example, a Raspberry Pi is
running as the server, with another system sending traffic to it. The
end result is the complete throughput as measured from the client to
the server. You can optionally measure both directions one at a time
with the -r flag, or run both directions at the same time with the -d flag
passed to the client. Which method to use depends on your expected
workload, but in general you should get statistically similar results
from the independent tests when each system is running on similar
hardware.

UDP Server Mode
$ iperf -s -u

Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 160 KByte (default)

[3] local 192.168.1.101 port 5001 connected
 with 192.168.1.100 port 55272
[ID] Interval Transfer Bandwidth Jitter Lost/Total

5 Unsung Tools of DevOps | 11

[3] 0.0-10.0 sec 114 MB 95.7 Mbps 0.158 ms 0/81482
[3] 0.0-10.0 sec 1 datagrams received out-of-order

UDP Client Mode
$ iperf -u -c 192.168.1.101

Client connecting to 192.168.1.101, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)

[3] local 192.168.1.100 port 55272 connected
 with 192.168.1.101 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 114 MB 95.8 Mbps
[3] Sent 81483 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 114 MB 95.7 Mbps 0.158 ms 0/81482
[3] 0.0-10.0 sec 1 datagrams received out-of-order

Since UDP is stateless, it has no idea how far it can push the network
like TCP does. So iperf has some sane defaults for sending UDP traffic,
and by default targets 1Mbps of throughput. The previous examples
worked around this by specifying our target bandwidth of 100M using
the -b flag.

You may also notice that the UDP view on the client side also presents
a Server Report. This is required since there are no guarantees with
UDP—the client could happily send packets all day long to a server
that was dropping them on the floor. Be mindful of this when com‐
paring UDP results, as the client and server should agree.

MUltihost SSH Wrapper
MUltihost SSH Wrapper, or mussh, is truly an old utility that you can
still find good use for today. At its core, mussh is just a shell script
wrapper around SSH that allows you to execute the same command
across multiple hosts either in sequence or parallel. The script has been
filling a gap that until recently most CM tools have ignored: running
one-off commands across your distributed systems.

We have configuration management, why would I possibly want to do
something outside of that? While it is true that you should be enforcing
system state with a bigger hammer, sometimes you only need to per‐
form a task once, or infrequently.

12 | 5 Unsung Tools of DevOps

Take for example NTP clock skew. I recently ran into an issue where
I found that a service had a dramatically increased network queue time
after a hardware upgrade. NTP configuration and service state were
being enforced through CM, so I knew that it was running. I wanted
to verify that all the system clocks were synchronized, and I didn’t want
to manually ssh to each of them.

$ mussh -l pi -m 2 -h rpi-1 rpi-2 -c 'sudo ntpdate -u ntp.home'
pi@rpi-1: ntpdate: adjust time server ntp.home offset 0.0151 sec
pi@rpi-2: ntpdate: adjust time server ntp.home offset 0.0006 sec

Whoa, that’s a long command. So let’s break it down.

Sync NTP across multiple hosts concurrently
$ mussh \
 -l pi \ # Set the ssh username
 -m 2 \ # Run on two hosts concurrently
 -h rpi-1 rpi-2 \ # Hostnames for the command
 -c ‘sudo ntpdate -u ntp.home’ # Sync ntp with this peer

The resulting output is in the format of hostname: output of the
command, which is useful when you run commands that you expect a
single line from. You can optionally pass the -b flag to have output
buffered by mussh, otherwise the output from all systems will display
interwoven with each other if you are expecting multiple lines of out‐
put per host.

We also make three assumptions in this example. The first is that you
have key-based ssh authentication working between your computer
and the list of hosts (you are using keys, right?). You also need to have
ssh-agent running and working so you’re not prompted for your pri‐
vate key password for every host. Finally, this example assumes that
the pi user is able to execute sudo on ntpdate without a password
prompt, which works well for demos in a lab environment but is not
a best practice for production.

Well, that’s all fine and dandy, but I don’t want to type all the server
names in for every command! Luckily, mussh supports reading the
hosts one line at a time out of a file with the -H option. So instead, grab
them from whatever storage mechanism you have (flat-file, database,
RESTful endpoint) and pipe them in!

$ grep "rpi-" servers.txt | mussh -l pi -H - -c 'uptime'
pi@rpi-1: 21:12:54 up 4 days, 23:18, 1 user, load average: 0.00
pi@rpi-2: 21:12:54 up 4 days, 23:18, 1 user, load average: 0.00

5 Unsung Tools of DevOps | 13

http://en.wikipedia.org/wiki/Ssh-agent

In this snippet, I’m searching through a text file for my Raspberry Pi
“servers” and sending those through mussh. The secret is in the -H -,
which tells mussh that the file to read from is stdin.

Conclusion
We still have a lot to learn from the past about where we can go in the
future. The tools of our past live on and inspire innovation, daring us
to replace them with the next generation. Some of the tools discussed
here have successors that are still in infancy. Some of them are still in
active development and could use an influx of motivated developers
to push them to the next level. All of them have contributed to getting
us where we are today and deserve—if nothing else—a tip of the hat.

14 | 5 Unsung Tools of DevOps

About the Author
Jonathan Thurman is a Site Reliability Engineer at New Relic where
he applies his systems, networking, and coding skills to automate their
infrastructure. For over the last 15 years, he has worked on a variety
of projects including unified communications, performance testing,
automation, and scaling for the Web.

	Cover
	Copyright
	Table of Contents
	5 Unsung Tools of DevOps
	RANCID
	Cacti
	lldpd
	IPerf
	MUltihost SSH Wrapper
	Conclusion

	About the Author

