

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1814

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/webdev

We’ve compiled the best insights from
subject matter experts for you in one place,

so you can dive deep into what’s
happening in web development.

Davey Shafik

Upgrading
to PHP 7

Modern Tools for
Static Website Development

Static Site
Generators

Brian Rinaldi

KYLE SIMPSON

UP &I

 GOING

“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

Jens Oliver Meiert
Foreword by Lindsey Simon

The Little Book
of HTML/CSS
Coding Guidelines

http://oreil.ly/webdev

Davey Shafik

Upgrading to PHP 7

978-1-4919-4009-9

[LSI]

Upgrading to PHP 7
by Davey Shafik

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Matthew Hacker
Copyeditor: Marta Justak

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

October 2015: First Edition

Revision History for the First Edition
2015-10-29 First Release

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

1. Upgrading to PHP 7. 1
PHP 7 Timeline 1
How We Got Here 2
Release Cycle 2

2. Deprecated Features. 5
Alternative PHP Tags 5
POSIX-Compatible Regular Expressions 6
Multiple Default Cases in Switches 10
Removal of the Original MySQL Extension 11
Summary 15

3. Uniform Variable Syntax. 17
Consistency Fixes 17
New Syntax 18
Dereferencing scalars 21
Future Syntax 22
Backward Compatibility Issues 22
Summary 23

4. Basic Language Changes. 25
Operators 25
Constant Arrays 27
Unpacking Objects Using list() 27
New Functions 27
Regular Expressions 28
Cryptographically Secure Values 29

vii

Function Changes 29
Filtered unserialize() 30
Move Up Multiple Levels with dirname() 30
Salts Deprecated in password_hash() 30
Summary 31

5. Expectations and Assertions. 33
Expectations 34
Summary 35

6. Error Handling. 37
Exceptions on Constructor Failure 37
Engine Exceptions 38
Error Exceptions 40
Catchable Fatal Errors 43
\Throwable and Userland 43
Calling Methods on non-objects 44
Summary 44

7. Unicode Enhancements. 45
Unicode Codepoint Escape Syntax 45
New Internationalization Features 46
Working with Unicode Characters 46
Summary 47

8. Closure Enhancements. 49
Bind Closure On Call 49
Summary 50

9. Generator Enhancements. 51
Generator Return Values 51
Generator Delegation 52
Summary 53

10. Changes in Object-Oriented Programming. 55
Context-Sensitive Lexer 55
PHP 4 Constructors Deprecated 56
Group Use Declarations 57
Anonymous Classes 58
Anonymous Class Names 59

viii | Table of Contents

Summary 60

11. Type Hints. 61
Scalar Type Hints 61
Return Type Hints 65
Reserved Keywords for Future Types 66
Summary 66

A. Resources. 67

B. RFCs for PHP 7.0. 69

Table of Contents | ix

CHAPTER 1

Upgrading to PHP 7

PHP 7 is here, and it’s the most dramatic update to PHP in over a
decade. A revamped engine (Zend Engine 3), numerous new fea‐
tures, and lots of language cleanup mean lots of exciting changes to
the language that runs the Web.

Bringing with it huge speed improvements and minimal backward
incompatibility, there are major benefits to upgrading today.

PHP 7 Timeline
With PHP 7.0 now released, we will see the end of life for PHP 5.5
on July 10, 2016, and PHP 5.6 will move to security-only fixes just a
few months later on August 28, 2016—with its end of life scheduled
to take place a year later.

What this also means, implicitly, is that any PHP version prior to 5.5
has already reached its end of life and is no longer receiving security
fixes.

Given the backward incompatibility issues with moving to PHP 7,
you might think that upgrading will be a painful and long process;
however, the PHP team has done a fantastic job at minimizing back‐
ward incompatibility. In fact, I would go so far as to say that the
upgrade to PHP 7.0 is easier than upgrading from 5.2 to 5.3.

1

How We Got Here
Keen-eyed readers will have noticed that we skipped straight from
PHP 5 to PHP 7, and if you’re curious like me, you might be won‐
dering just why that would be the case. While you might be tempted
to think we’re following in the footsteps of Microsoft® Windows
(which skipped version 9 and jumped from 8.1 to 10), in actual fact,
it was a subject of much debate filled with intrigue, mystery, and
murder. OK, maybe not murder, but there were definitely some ALL
CAPS emails on the PHP internals mailing list!

The primary reason behind the jump was that PHP 6 existed as a
real project that many people put a lot of hours into—between
August 2005 and March 2010 when it was finally killed off, that’s
almost five years!—that would’ve brought native Unicode support
throughout the language.

Unfortunately, it never came to fruition, and to stop the project
from stagnating, it was decided to release PHP 5.3 in June 2009 with
all the other features that were waiting for the Unicode support
being completed before they could be released.

Those features included things you might take for granted these
days, like closures and namespaces.

Additionally, there were books, many blog posts, and other content
produced around the PHP 6 that never was. Between this, and the
fact that it was a real thing, even if unreleased, it was decided to skip
6.0 and jump straight to 7.0.

Release Cycle
The release cycle timeline for PHP 7 has been incredibly rapid, pri‐
marily because the major change (a large rewrite of parts of the
Zend Engine) was performed prior to the decision to embark on a
new major version, and announced by Zend as php-ng.

The timeline for PHP 7 was formalized in the PHP 7.0 Timeline
RFC, which was passed in November 2014, and it was projected for
a mid-October release date—just 11 months later.

The timeline called for a feature freeze on March 15, then a further
three months to finalize the implementation of the agreed-on fea‐

2 | Chapter 1: Upgrading to PHP 7

https://wiki.php.net/rfc/php7timeline
https://wiki.php.net/rfc/php7timeline

tures. Finally, between June 15th and the mid-October release date
we saw multiple betas and release candidates (Figure 1-1).

Figure 1-1. PHP 7.0 release timeline

As you will see, despite its relatively short timeline, PHP 7.0 is a very
impressive release: bringing many new features to the language that
powers most of the Web in a mostly backward-compatible way,
while increasing performance at the same time.

Release Cycle | 3

CHAPTER 2

Deprecated Features

Over the last few releases of PHP 5.x, we’ve seen a number of fea‐
tures marked as deprecated, and with PHP 7.0, they have all been
removed.

Deprecated

A feature is marked as deprecated to warn developers
that it will be removed in an unspecified future version
of the language so that they can start to migrate away
from using the feature or avoid using it in the
first place. In PHP, using these features will cause an
E_DEPRECATED error to be emitted.

Alternative PHP Tags
While some developers may not even be aware of it, PHP has alter‐
native open and close tags, both of which have been removed.

These were known as script tags, as shown in Example 2-1, and ASP
tags—which included a short echo tag—as shown in Example 2-2.

Example 2-1. PHP script tags

<script language="php">
 // Code here
</script>

5

Example 2-2. PHP ASP tags

<%
 // Code here
%>

<%=$varToEcho; %>

While I expect that the number of people using these tags is mini‐
mal, I have seen the ASP syntax used for templates. If you are using
them, you will need to change to using the standard PHP tags,
<?php, <?=, and ?>.

POSIX-Compatible Regular Expressions
Deprecated in PHP 5.3, POSIX-compatible regular expressions, used
for string pattern matching, have been removed in PHP 7.0. This
means that the entire ext/ereg extension has been removed.

This includes the following functions:

• ereg()

• eregi()

• ereg_replace()

• eregi_replace()

• split()

• spliti()

• sql_regcase()

Migrating to Perl Compatible Regular Expressions
Due to the lengthy deprecation period (six years!), the usage of the
ereg extension has declined dramatically. If you have not yet migra‐
ted, you will need to switch to the preg_ family of functions.

Thankfully, POSIX-compatible regular expressions are reasonably
compatible with Perl Compatible Regular Expressions (PCRE). The
two major changes you will have to make to simple expressions are
the addition of delimiters around the expression string (usually a /)
and using the i modifier instead of dedicated case-insensitive
functions.

6 | Chapter 2: Deprecated Features

However, there is a more subtle difference that you might run into,
which is known as greediness.

With POSIX regular expressions, matches are not greedy, which
means they will match as much as possible up until they reach some‐
thing matching the next part of the expression.

With PCRE, by default, matches are greedy, meaning they will
match as much as possible until the next part of the expression no
longer matches.

It is possible to fix this in two ways. The first is to follow quantifiers
with a question mark (?)—this will make that part of the pattern
have the same ungreedy behavior as POSIX regular expressions. The
second is to use the U modifier, which will invert the greediness,
making all quantifiers ungreedy by default and using the ? to make
them greedy.

I personally prefer to use the default behavior, as it is the default
behavior and is what most developers will expect when reading your
code.

Here we take a look at a simple regular expression for matching seg‐
ments of a URL. As you can see the code is very similar between the
POSIX-compatible regular expression and the PCREs.

Example 2-3. Migrating from POSIX- to Perl compatible regular
expressions

$url = "https://example.org/path/here";

// POSIX
$matches = [];
$regex = "^(http(s?))://(.*)$";
if (eregi($regex, $url, $matches)) {
 // string matched
 var_dump($matches);
 /*
 array(5) {
 [0] =>
 string(29) "https://example.org/path/here"
 [1] =>
 string(5) "https"
 [2] =>
 string(1) "s"
 [3] =>
 string(21) "example.org/path/here"
 }

POSIX-Compatible Regular Expressions | 7

 */
}

// PCRE
$matches = [];
$regex = "@^(http(s?))://(.*)$@i";
if (preg_match($regex, $url, $matches)) {
 // string matched
 var_dump($matches);
 /*
 the resulting array is the same as with eregi above
 */
}

eregi() is used for case-insensitive matching.

The @ delimiter is used to avoid escaping the / characters in the
URL.

The i modifier is used after the closing delimiter to use case-
insensitive matching.

In addition to being able to replicate the behavior of POSIX-
compatible regular expressions, PCREs bring a host of other new
features to the table.

For example, they support Unicode and localization.

My personal favorites are naming capture groups using (?<NAME>
expression) and accessing the matches using the named key in the
resulting matches array. As well as ignoring capture groups using
(:? expression), they also support advanced features like look-
aheads and look-behinds, and many more.

Another great feature is the x modifier, which will ignore nonex‐
plicit whitespace and allow you to add comments using the # line
comment syntax. This makes it easy to document complex regular
expressions as shown in Example 2-4.

Example 2-4. Using the PCRE x modifier

$url = "https://example.org/path/here?foo=bar";

$matches = [];
$regex = "@ # Delimiter
^ # Begining of the string
(?<protocol> # Name the submatch: protocol

8 | Chapter 2: Deprecated Features

 http # Match the http protocol
 (?: # Ignore the subgroup used for https matching
 s? # Optionally match the s in the https protocol
)
)
:// # Match the :// from the protocol
(?<host> # Name the submatch: host
 .* # Match any characters
 ? # But don't be greedy.
 # This will stop at the first '/'.
)
(?<path> # Name the submatch: path
 / # Match the /
 [^\?]+ # Match any character that isn't a ?
)
? # but only if the path exists
(?: # Ignore the subgroup for the ?
 \? # Match the query string delimiter
 (?<query> # Name the submatch: query
 .+ # Match the query string itself
)
)
? # but only if it exists
$ # End of string
@ix"; # Use the i (case-insentive)
 # and x (extended) flags

if (preg_match($regex, $url, $matches)) {
 // string matched
 var_dump($matches);
 /*
 array(9) {
 [0] =>
 string(37) "https://example.org/path/here?foo=bar"
 'protocol' =>
 string(5) "https"
 [1] =>
 string(5) "https"
 'host' =>
 string(11) "example.org"
 [2] =>
 string(11) "example.org"
 'path' =>
 string(10) "/path/here"
 [3] =>
 string(10) "/path/here"
 'query' =>
 string(7) "foo=bar"
 [4] =>
 string(7) "foo=bar"
 }

POSIX-Compatible Regular Expressions | 9

 */
}

Note that this last comment is a standard PHP comment.

A key exists with the result of each named subexpression, proto
col, host, path, and query.

The s is not returned by itself as the capture group was ignored
with ?:.

I highly recommend O’Reilly’s Mastering Regular Expressions for an
in-depth look at the full power of PCRE.

Multiple Default Cases in Switches
When creating the PHP language spec, a bug was found: you could
define multiple default: cases inside a switch, but only the last one
would execute, which could lead to potential—hard to find—bugs,
as shown in Example 2-5.

Example 2-5. Defining multiple default cases inside a switch in PHP
5.x

switch ($expr) {
 default:
 echo "Hello World";
 break;
 default:
 echo "Goodbye Moon!";
 break;
}

Only the last default case will execute.

To solve this, the ability to define this was removed, and now PHP 7
will throw a fatal error if you try to do so:

Fatal error: Switch statements may only contain one default
clause

10 | Chapter 2: Deprecated Features

http://shop.oreilly.com/product/9780596528126.do
https://github.com/php/php-langspec

Removal of the Original MySQL Extension
Deprecated in PHP 5.5, the original ext/mysql extension has been
removed; this includes all mysql_ functions.

This is likely to be the largest change to your existing code if you are
using it without any sort of wrapper.

Migrating to Procedural mysqli
The simplest migration path is to the procedural mysqli_ functions,
which are part of the ext/mysqli extension. For the most part, they
function almost identically to their mysql_ counterparts, except for
the i suffix.

In most cases, all you need to do is change the function name, and
in about 50 percent of the cases you will need to pass the database
handle (returned by mysqli_connect()) in as the first argument.

Incompatible functions

The following functions have no direct equivalent in
ext/mysqli, although mysql_freeresult(),
mysql_numrows(), and mysql_selectdb() have simi‐
larly named, functionally identical equivalents as
noted.

A list of incompatible functions can be seen in Table 2-1.

Table 2-1. List of incompatible functions between ext/mysql and ext/mysqli

mysql_client_encoding() mysql_list_dbs() (use SHOW DATABA
SES query)

mysql_db_name() mysql_list_fields()

mysql_db_query() mysql_list_processes() (use SHOW
PROCESSLIST query)

mysql_dbname() mysql_list_tables() (use SHOW
TABLES query)

mysql_field_flags() mysql_listdbs() (use SHOW DATABA
SES query)

mysql_field_len() mysql_listfields()

Removal of the Original MySQL Extension | 11

mysql_field_name() mysql_listtables() (use SHOW
TABLES query)

mysql_field_table() mysql_numfields()

mysql_field_type() mysql_numrows() (use
mysqli_num_rows() instead)

mysql_fieldflags() mysql_pconnect() (append p: to the
hostname passed to mysqli_connect())

mysql_fieldlen() mysql_result()

mysql_fieldname() mysql_selectdb() (use
mysqli_select_db() instead)

mysql_fieldtable() mysql_table_name()

mysql_fieldtype() mysql_tablename()

mysql_freeresult() (use
mysqli_free_result() instead)

mysql_unbuffered_query()

It should be reasonably easy to write a compatibility layer that wraps
ext/mysqli using the old function names, as they no longer exist in
PHP and can be defined in your own code.

Migrating to an Object-Oriented API
There are two options if you want to make the jump to an object-
oriented API at the same time that you are migrating away from
ext/mysql. The first is again, ext/mysqli, which provides both a
procedural and object-oriented API, and the second is the PHP Data
Objects (better known as PDO), or ext/pdo with ext/pdo_mysql.

My personal preference is PDO, but either one of the extensions will
bring better security and more features, such as prepared statements
and calling stored procedures.

Using PDO
The PDO extension allows you to connect to a variety of databases
using a (mostly) consistent API. While it is not an abstraction layer
for the SQL queries, it allows you to only have to learn one API for
working with many databases, rather than a different API for each.
You can see an example of using MySQL via PDO in Example 2-6.

12 | Chapter 2: Deprecated Features

Example 2-6. Using PDO in place of ext/mysql

$email = \filter_var($_POST['email'], FILTER_SANITIZE_EMAIL);

try {
 $pdo = new \PDO("mysql:host=localhost;dbname=test", "test");
} catch (\PDOException $e) {
 // Connection failure
}

$sql = "
SELECT
 first_name, last_name, email
FROM users
WHERE
 email = :email";

$values = [":email" => $email];

try {
 $query = $pdo->prepare($sql);
 $result = $query->execute($values);

 if (!$result || $query->rowCount() == 0) {
 return false;
 }

 foreach ($query->fetch(\PDO::FETCH_OBJ) as $row) {

 }
} catch (\PDOException $e) {
 // Something went wrong
}

PDO connections use a Data Source Name (DSN), a string that
denotes the driver to use, the host, and the database to connect
to, as well as additional optional connection settings.

Use a placeholder of :email to denote your condition value for
your prepared query.

Prepare the query, returning an instance of \PDOStatement.

Execute the query passing in the values for all placeholders.

Query failed, or no results were found.

Removal of the Original MySQL Extension | 13

Using a fetch mode of \PDO::FETCH_OBJ will mean that $row
contains an object whose properties are named after the col‐
umns selected, and that they contain the appropriate values.

Fetch Modes
In the previous example, we return an object for each row selected;
however, PDO supports many different types of data structures for
returned rows. You can also use \PDO::FETCH_ASSOC to return an
associative array indexed by column name, \PDO::FETCH_NUM to
return a numerically keyed array index on column position, or
\PDO::FETCH_BOTH, which will return an array with both associative
and numeric keys.

Additionally, you can do other things such as fetch into an existing
object, or use custom objects with the result data injected into it for
each result.

Using Mysqli
The mysqli extensions object-oriented interface is quite different
from PDO. Mysqli only supports anonymous placeholders (denoted
by a question mark: ?) rather than named placeholders, and it
requires you to bind variables explicitly to each placeholder. It also
does not throw exceptions on errors. If you wish to use ext/mysqli
instead of PDO, the previous example would be rewritten as
Example 2-7.

Example 2-7. Using ext/mysqli in place of ext/mysql

$email = \filter_var($_POST['email'], FILTER_SANITIZE_EMAIL);

$mysqli = new \mysqli('localhost', 'test', null, 'test');

if (\mysqli_connect_errno()) {

}

$sql = "
SELECT
 first_name, last_name, email
FROM users
WHERE
 email = ?";
$query = $mysqli->prepare($sql);
$query->bind_param('s', $email);

14 | Chapter 2: Deprecated Features

$result = $query->execute();

if (!$result) {
 return false;
}

$result = $query->fetch_result();

while ($row = $result->fetch_object()) {

}

Because ext/mysqli does not throw exceptions, you must check
for connection errors manually.

Use a placeholder ? to denote your condition value for your
prepared query.

Prepare the query, returning an instance of \mysqli_stmt.

Bind the $email variable to the first placeholder as a string.

Execute the query.

An error occurred executing the query.

Fetch the result set, returning an instance of \mysqli_result.

Using \mysqli_result->fetch_object() will mean that $row
contains an object whose properties correspond to each selected
column, containing their values. As with PDO, there are many
other ways to retrieve results.

Summary
While this isn’t every backward-incompatible change, it is what will
likely trip you up when migrating to PHP 7.0.

Moving away from these deprecated features may not be quick or
easy, but doing so will bring more performance, enhanced security,
and better code to your projects.

If you aren’t using any of these deprecated features, your transition
to PHP 7 will largely be painless, so congratulations!

Summary | 15

CHAPTER 3

Uniform Variable Syntax

Until the Uniform Variable Syntax RFC was proposed, I had never
considered just how inconsistent PHP’s variable syntax was, particu‐
lar around variable-variables and variable-properties.

For example, given the syntax $object->$array[key];, as develop‐
ers we are just expected to know that PHP will first resolve
$array[key] to a string and then access the property named by that
string on the $object.

With Uniform Variable Syntax, all of this inconsistency is fixed, and
while it is a backward-incompatible change, it is fairly trivial to
change your code to be both forward- and backward-compatible,
but it is also a very difficult change to spot.

Consistency Fixes
With uniform variable syntax all variables are evaluated from left to
right.

This is primarily only an issue when constructing complex dynamic
variables and properties. As you can see in Example 3-1 we are mov‐
ing from the inconsistent PHP 5.x behavior to a new left to right
consistent behavior. Also, as shown in Example 3-1, you can achieve
the same PHP 5.x behavior in PHP 7, or the new PHP 7 behavior in
PHP 5.x by explicitly specifying the order of operations with the
addition of appropriate parentheses () and braces {}.

17

http://bit.ly/uni_var_syntax

Example 3-1. Examples of left-to-right consistency changes

// Syntax
$$var['key1']['key2'];
// PHP 5.x:
// Using a multidimensional array value as variable name
${$var['key1']['key2']};
// PHP 7:
// Accessing a multidimensional array within a variable-variable
($$var)['key1']['key2'];

// Syntax
$var->$prop['key'];
// PHP 5.x:
// Using an array value as a property name
$var->{$prop['key']};
// PHP 7:
// Accessing an array within a variable-property
($var->$prop)['key'];

// Syntax
$var->$prop['key']();
// PHP 5.x:
// Using an array value as a method name
$var->{$prop['key']}();
// PHP 7:
// Calling a closure within an array in a variable-property
($var->$prop)['key']();

// Syntax
ClassName::$var['key']();
// PHP 5.x:
// Using an array value as a static method name
ClassName::{$var['key']}();
// PHP 7:
// Calling a closure within an array in a static variable
(ClassName::$var)['key']();

New Syntax
One of the primary benefits of uniform variable syntax, other than
consistency, is that it enables many new combinations of syntax—
including some that are not yet supported by the language but that
are no longer blocked by a parser that can’t handle the syntax.

18 | Chapter 3: Uniform Variable Syntax

New Combinations
There are many new combinations of existing syntax that are now
available to use, as shown in Example 3-2, including the ability to
dereference characters within strings returned by functions.

Example 3-2. Newly supported syntax combinations

// Call a closure inside an array returned by another closure
$foo()['bar']();

// Call a property by dereferencing an array literal
[$obj1, $obj2][0]->prop;

// Access a character by index in a returned string
getStr(){0};

Nested double colons
Additionally, PHP 7 now supports nested double colons, ::, at least
in some cases, as shown in Example 3-3.

Example 3-3. Some examples of nested double colons

// Access a static property on a string class name
// or object inside an array
$foo['bar']::$baz;

// Access a static property on a string class name or object
// returned by a static method call on a string class name
// or object
$foo::bar()::$baz;

// Call a static method on a string class or object returned by
// an instance method call
$foo->bar()::baz();

There are still a number of ambiguous cases, however, that cannot
be resolved, even with uniform variable syntax, and even when
adding parentheses and braces, as shown in Example 3-4.

Example 3-4. Unsupported ambiguous nested double colons

$foo = 'Foo';
$class = 'CLASS';
$constant = 'BAR';

New Syntax | 19

echo $foo::$class::$constant;
echo $foo::{$class}::$constant;
echo $foo::{"$class"}::$constant;
echo $foo::{"$class"}::{"$constant"};
echo $foo::CLASS::$constant;
echo $foo::CLASS::{"$constant"};
echo $foo::($class)::($constant);

Nested Method and Function Calls
Furthermore, you can now nest method and function calls—or any
callables—by doubling up on parentheses, as shown in Example 3-5.

Callables

In PHP 5.4, callable was added as a type hint for any
value that could be called dynamically. This includes:

• Closures
• String function names
• Objects that define the __invoke() magic method
• An array containing a string class name and a

method to call for static method calls (e.g. [class
Name, 'staticMethod])

• An array containing an object and a method to
call for instance method calls (e.g., [$object,
method])

Example 3-5. Nested method and function calls

// Call a callable returned by a function
foo()();

// Call a callable returned by an instance method
$foo->bar()();

// Call a callable returned by a static method
Foo::bar()();

// Call a callable return another callable
$foo()();

20 | Chapter 3: Uniform Variable Syntax

Arbitrary Expression Dereferencing
Starting in PHP 5.4 with dereferencing arrays returned by methods
and functions, and continued in 5.5 with dereferencing literal arrays,
in PHP 7, you can now dereference any valid expression enclosed
with parentheses. You can see some examples of arbitrary expression
dereferencing in Example 3-6.

Example 3-6. Arbitrary expression dereferencing

// Access an array key
(expression)['foo'];

// Access a property
(expression)->foo;

// Call a method
(expression)->foo();

// Access a static property
(expression)::$foo;

// Call a static method
(expression)::foo();

// Call a callable
(expression)();

// Access a character
(expression){0};

This finally allows us to call a closure when we define it, and call a
callable within an object property, as you can see in Example 3-7.

Example 3-7. Dereferencing callables

// Define and immediately call a closure without assignment
(function() { /* ... */ })();

// Call a callable within an object property
($obj->callable)();

Dereferencing scalars
PHP 7 also has some new dereferencing for scalars, in particular the
ability to call methods using array-notation callables, as well as the

Dereferencing scalars | 21

less than useful ability to use scalar strings as class names. Some
examples can be seen in Example 3-8.

Example 3-8. Dereferencing scalars

// Call a dynamic static method
["className", "staticMethod"]();

// Call a dynamic instance method
[$object, "method"]();

// Use a string scalar as a class name
'className'::staticMethod();

Future Syntax
Additionally, as noted previously, the addition of universal variable
syntax also allows us to look forward at new possibilities for the lan‐
guage. The one possibility that most people are excited about is the
prospect of object scalars—that is, the ability to call methods that act
directly upon a scalar value. While they are not yet possible in PHP
7.0, some examples of potential syntax can be seen in Example 3-9.

Example 3-9. Possible future syntax

// Object scalars — method calls on scalar values
"string"->toLower();

Backward Compatibility Issues
There was one casualty that will now be a parse error, rather than
just interpreted differently, and that is when you mix variable-
variables and the global keyword. With PHP 7, global will now
only take unambiguous variables. You can see the old unsupported
syntax and the unambiguous alternative in Example 3-10.

Example 3-10. Changes to the global keyword

global $$foo->bar; // Now a parse error

// instead make sure to add braces to make it unambiguous
global ${$foo->bar};

22 | Chapter 3: Uniform Variable Syntax

Summary
While Uniform Variable Syntax finally brings some much needed
consistency to PHP—even if we didn’t know it!—it also introduces
what are probably the hardest bugs to detect when upgrading to
PHP.

Thankfully, it mostly affects variable-variables and other more com‐
plex variable syntax that have long been considered poor practice
and are rarely used.

Summary | 23

CHAPTER 4

Basic Language Changes

PHP 7.0 introduces numerous small changes to the language, new
operators, functions, and changes to existing functions and
constructs.

Operators
PHP 7.0 adds two new operators, the null coalesce operator and the
combined comparison operator.

Null Coalesce Operator
The new null coalesce operator ?? will return the left operand if it is
not null; otherwise, it returns the right operand. The most interest‐
ing part of this operator is that it will not emit a notice if the operand
is a nonexistent variable—similar to isset().

Effectively, this is a shortcut for isset() combined with a ternary
for assignment. Example 4-1 shows this new, more compact syntax
compared to the older syntax.

Example 4-1. Null coalesce operator

$foo = isset($bar) ? $bar : $baz;

$foo = $bar ?? $baz;

The two lines in the preceding example are functionally identical.

25

You can also nest the operator, and it will return the first non-null
(or the last argument), as shown in Example 4-2.

Example 4-2. Nested null coalesce operators

$config = $config ??
 $this->config ??
 static::$defaultConfig;

This shows a common fall-through scenario, whereby a local
configuration may be set in $config, otherwise fallback to the
instance level $this->config, or finally, fall back to the static
defaults static::$defaultConfig.

Combined Comparison Operator
Affectionately called the spaceship operator, the combined compari‐
son operator (<=>) is the first trinary operator in PHP.

This means that rather than return a simple binary true or false, it
can actually return three distinct values:

• -1 if the left operand is less than the right operand
• 0 if the operands are equal
• +1 if the left operand is greater than the right operand

This is frequently used for sorting items, for example, using the
usort() function with a callback.

The following two functions are identical, the first using PHP 5.x
syntax, and the second using the new combined comparison opera‐
tor. You can compare the older, less compact syntax in Example 4-3.

Example 4-3. Sorting with the combined comparison operator

// Pre Spacefaring^W PHP 7
function order_func_traditional($a, $b) {
 return ($a < $b) ? -1 : (($a > $b) ? 1 : 0);
}

// Post PHP 7
function order_func_spaceship($a, $b) {
 return $a <=> $b;
}

26 | Chapter 4: Basic Language Changes

Constant Arrays
Up until now, constants defined with define() could only contain
scalar values. With PHP 7.0, they have been updated to match con‐
stants defined by const, allowing you to set them to constant arrays.
Example 4-4 demonstrates this new capability.

Example 4-4. Constant arrays using define()

define('FOO', [
 'bar' => 'baz',
 'bat' => 'qux'
]);

echo FOO['bar'];

This will output baz.

Unpacking Objects Using list()
The list construct will now allow you to unpack objects that imple‐
ment the \ArrayAccess interface, allowing you to use them just like
arrays, as shown in Example 4-5.

Example 4-5. Unpacking objects using list()

$object = new \ArrayObject(json_decode($json));
list($foo, $bar, $baz) = $object;

\ArrayObject implements \ArrayAccess and can take an array,
or an object, so no matter which json_decode() returns, we can
now use it with list().

New Functions
Several new functions have been added with this release.

Integer Division
The new intdiv() performs integer division, effectively the inverse
of the modulo operator (%). Example 4-6 shows an example of this
new function.

Constant Arrays | 27

Example 4-6. Integer division

intdiv(8, 3);

Returns two.

Regular Expressions
As shown in Chapter 2, ext/ereg has been removed, but this isn’t
the only change to regular expressions in PHP 7.0.

This release adds a new preg_replace_callback_array() function
that makes it much nicer to perform a number of regular expression
replacements with different callbacks for each. As shown in
Example 4-7, you pass in an array with regular expressions for keys,
and closures—or other callables—that accept an array of matches.
All matches will be replaced with the return value from the callable.

Example 4-7. Multiple replace callbacks

$header = "X-Custom-Header: foo\nbar";

$normalizedHeader = preg_replace_callback_array(
 [
 "/(.*?):/" => function($matches) {
 return strtolower($matches[0]);
 },
 "/\s+/" => function($matches) {
 return "-";
 }
],
 $header
);

This will transform the input header to x-custom-header:-
foo-bar.

The other change to the PCRE functions is the removal of the /e
modifier used with preg_replace(). This modifier allowed you to
use code that would be evaluated against matches to create the
replacement value. You should use preg_replace_callback() or
the new preg_replace_callback_array() instead.

28 | Chapter 4: Basic Language Changes

Cryptographically Secure Values
Traditionally, we’ve resorted to either very poor sources of random‐
ness or openssl to generate cryptographically secure integers or
strings.

PHP 7.0 adds two new simple functions, random_bytes() and
random_int() to solve this problem in a platform-independent way.

CSPRNG functions

Collectively, these form the CSPRNG functions.
CSPRNG stands for cryptographically secure psuedor‐
andom number generator.

As you might expect from the name, random_int() will return a
random integer from a range, while random_bytes() will return a
random string of a given length as shown in Example 4-8.

Example 4-8. Generating cryptographically secure random values

random_bytes(16);
random_int(0, 10000);

Returns 16 random bytes in binary format. You will probably
want to pass the result to bin2hex() before using it.

Returns a random number between 0 and 10000.

Function Changes
There have also been a few changes to existing functions.

Sessions
It is now possible to pass an array of INI settings to
session_start().

A new setting session.lazy_write has also been added. This new
setting, which is enabled by default, will mean that session data is
only rewritten if there has been a change to it.

You can disable this new setting as shown in Example 4-9.

Cryptographically Secure Values | 29

Example 4-9. Changing session configuration on call

session_start([
 'use_strict' => true,
 'lazy_write' => false
]);

Filtered unserialize()
In an attempt to enhance security, it is now possible to filter which
classes will be instantiated when unserializing using unserialize().

This is done by adding a second argument that takes an array of
options, of which there is currently only one, allowed_classes.

You can pass in one of three values for the allowed_classes option:

• false will instantiate all objects as __PHP_Incomplete_Class
object instead.

• An array of class names will instantiate those as-is and return
__PHP_Incomplete_Class for any others.

• true will result in the same behavior we’ve always had, and all
objects will be instantiated they are.

Move Up Multiple Levels with dirname()
The dirname() function can now accept a second parameter to set
how many levels up it will go, meaning you can avoid nesting as
shown in Example 4-10.

Example 4-10. Moving up two directories using dirname()

$path = '/foo/bar/bat/baz';
dirname($path, 2);

This will return /foo/bar.

Salts Deprecated in password_hash()
The salt option for password_hash() has been deprecated, and it
will now emit an E_DEPRECATED when used.

30 | Chapter 4: Basic Language Changes

Summary
While these changes are small, they all add up to a nicer developer
experience, and make the language more consistent.

Summary | 31

CHAPTER 5

Expectations and Assertions

PHP has had an assert() function since PHP 4; it gives you the
ability to add sanity-checks to your code. assert() is intended for
development use only, and it can be easily enabled and disabled
using assert_options() or the assert.active INI setting.

To use assertions, you pass in either an expression or a string as the
first argument. If you pass in a string, it is evaluated by the assert()
function as code. If the expression result, or the result of evaluating
the string evaluates to false, then a warning is raised.

Example 5-1. Using assertions

assert('$user instanceof \MyProject\User');
assert($user instanceof \MyProject\User);

Single versus double quotes

Ensure that you use single quotes; otherwise, variables
will be interpolated.

In Example 5-1, we see the same assertion using a string and an
expression. If either of these evaluates to false, then a warning is
raised:

Warning: assert(): Assertion "$user instanceof \MyProject
\User" failed in <file> on line <num>

33

Using string assertions

While eval() is typically frowned upon, if you pass a
string into assert() and assertions are disabled, the
string is not evaluated at all. Using strings is considered
best practice.

Expectations
With PHP 7, assert() has been expanded by the Expectations RFC,
allowing for so-called zero-cost assertions.

With this change, you not only disable assertions, but you can also
remove all overhead entirely. With this setting, assertions are not
compiled, regardless of string or expression arguments, and there‐
fore have zero impact on performance/execution. This is different
than just disabling assertions, which will still result in expressions
being evaluated (potentially affecting execution) and will just skip
the call.

This is done by changing the zend.assertions INI setting, as
shown in Example 5-2.

Example 5-2. Enable/disable assertions

zend.assertions = 1
zend.assertions = 0
zend.assertions = -1

Enable assertions.

Disable assertions and stop string evaluations.

Zero-cost assertions.

Additionally, you can now have assertions throw an exception
instead of a warning when the assertion fails. Again, this is an INI
setting. Simply set assert.exceptions to 1 to throw exceptions or 0
(the default) to emit backward-compatible warnings instead.

34 | Chapter 5: Expectations and Assertions

https://wiki.php.net/rfc/expectations

Further details

For more on assert exceptions, see Chapter 6.

The final change is the addition of a second argument, which allows
you to specify a custom error message—as shown in Example 5-3—
or an instance of an Exception.

Example 5-3. Specifying a custom assertion error message

assert(
 '$user instanceof \MyProject\User',
 'user was not a User object'
);

When you specify this custom message, it is shown instead of the
expression on failure:

Warning: assert(): user was not a User object failed in <file>
on line <num>

If you enable exceptions, the custom message will be used as the
exception message, or if you specify an instance of an Exception, it
will be thrown instead on failure.

Summary
With the addition of zero-cost assertions, you finally have a light‐
weight way to add sanity checking to your code during develop‐
ment, without impacting production.

While assertions are not for everybody, they can be a first step on
the road to adding unit testing to your application.

Summary | 35

CHAPTER 6

Error Handling

Errors and error handling in PHP has remained pretty much
unchanged since PHP 4, except for the additions of E_STRICT in
PHP 5.0, E_RECOVERABLE_ERROR in PHP 5.2, and E_DEPRECATED in
PHP 5.3.

Despite adding exceptions to PHP 5 and seeing limited application
within PHP (e.g., ext/pdo and ext/spl), numerous attempts to
replace traditional errors with them have failed. In PHP 7.0, this has
finally changed, with the “Exceptions in the engine (for PHP7)”
RFC.

Exceptions on Constructor Failure
Prior to PHP 7.0, if an internal class failed to instantiate properly,
either a null or an unusable object was returned.

With PHP 7.0, all internal classes will throw an exception on __con
struct() failure. The type of exception will differ on the object
being instantiated and the reason for failure—as shown in
Example 6-1. If you pass in an argument of the incorrect type, a
\TypeError is thrown (see “\TypeError” on page 42).

Example 6-1. Consistent constructor failure

try {
 new MessageFormatter('en_US', null);
} catch (\IntlException $e) {

37

http://bit.ly/engine_exceptions
http://bit.ly/engine_exceptions

}

This will result in an \IntlException with the message Con
structor failed.

Engine Exceptions
With PHP 7.0, almost all fatal errors and catchable fatal errors are
now engine exceptions. This is possible because an uncaught excep‐
tion still results in a traditional fatal error, ensuring that the change
is mostly backward compatible.

Other error types

Changing other (nonfatal) types of errors to exceptions
would mean fatal errors for things like notices and
warning when the exceptions are not handled. This
would not be backward compatible.

With this change, we get a number of benefits, the most obvious of
which is that we can now handle fatal errors in our code using try…
catch blocks. However, there are a number of other benefits:

• finally blocks are called.
• Object destructors (__destruct()) are called.
• Callbacks registered with register_shutdown_function() are

called.
• Catchable-fatal errors are much easier to handle.
• As with all exceptions, it will have a stack trace, making it easier

to debug.

Exception Hierarchy
For backward compatibility, we have to ensure that existing catch-all
catch blocks (catch (\Exception $e) { }) do not catch the new
engine exceptions and will therefore be a fatal error as before.

To solve this, the new exceptions do not extend the original base
\Exception class. The new exceptions are instead an \Error excep‐

38 | Chapter 6: Error Handling

tion, which is a sibling to the original \Exception class. All other
engine exceptions extend from the new \Error exception class.

Additionally, a new \Throwable interface was added with the pass‐
ing of the appropriately named “Throwable Interface” RFC, which
both \Exception and \Error implement.

With these new changes, we have a new exception hierarchy as you
can see in Example 6-2.

Example 6-2. New exception hierarchy for PHP 7.0+

\Throwable
├── \Exception (implements \Throwable)
│ ├── \LogicException
│ │ ├── \BadFunctionCallException
│ │ │ └── \BadMethodCallException
│ │ ├── \DomainException
│ │ ├── \InvalidArgumentException
│ │ ├── \LengthException
│ │ └── \OutOfRangeException
│ └── \RuntimeException
│ ├── \OutOfBoundsException
│ ├── \OverflowException
│ ├── \RangeException
│ ├── \UnderflowException
│ └── \UnexpectedValueException
└── \Error (implements \Throwable)
 ├── \AssertionError
 ├── \ArithmeticError
 ├── \DivisionByZeroError
 ├── \ParseError
 └── \TypeError

The new \Throwable interface is the top-level parent.

The original base exception \Exception now implements
\Throwable.

Engine exceptions use the new \Error exception.

With this change, if you want to do a true catch-all, you have to use
catch (\Throwable $e) { } instead.

Engine Exceptions | 39

http://bit.ly/throwable_interface

Error Exceptions
As you can see in the exception hierarchy, there are four new error
exceptions, each one used for a different purpose.

\Error
Standard PHP fatal and catchable-fatal are now thrown as \Error
exceptions. These will continue to cause a “traditional” fatal error if
they are uncaught. For example, calling a non-existant function will
result in an \Error exception with the message Fatal error:

Uncaught Error: Call to undefined function non_exist

ant_function().

Catching \Error exceptions is done the same was as regular excep‐
tions, as shown in Example 6-3.

Example 6-3. Error exceptions

try {
 non_existent_function();
} catch (\Error $e) {
 // handle error
}

\AssertionError
With the enhancements to assertions (see Chapter 5), if you set
assert.exception to 1 in your php.ini (or via ini_set()), an excep‐
tion is thrown when the assertion fails.

These exceptions are \AssertionError exceptions, as shown in
Example 6-4.

Example 6-4. AssertionError exceptions

try {
 ini_set('assert.exception', 1);
 assert('true === false', 'Assertion failed');
} catch (\AssertionError $e) {

}

40 | Chapter 6: Error Handling

This will result in an \AssertionError exception with whatever
you pass in as the second argument for assert() as the mes‐
sage, in this case: Assertion failed.

Assertion messages

If you do not pass a message as the second argument to
assert(), the \AssertionError exception with have
no message; however, its stack trace will reveal its ori‐
gins and the failed assertion.

\ArithmeticError and \DivisionByZeroError
Two exceptions have been added to handle issues when performing
arithmetic. The first, \ArithmeticError, will be thrown whenever
an error occurs when performing mathematical operations—for
example, if it results in an out-of-bound integer, or if you try to bit
shift by a negative amount. You can see this in Example 6-5.

Example 6-5. ArithmeticError exceptions

try {
 1 >> -1;
} catch (\ArithmeticError $e) {

}

This will result in an \ArithmeticError exception with a mes‐
sage of Bit shift by negative number.

A second, more specific \DivisionByZeroError has also been added
that is thrown whenever you attempt to divide by zero—this
includes using the / and % operators and the intdiv() function, as
shown in Example 6-6.

Example 6-6. DivisionByZeroError exceptions

try {
 10 % 0;
} catch (\DivisionByZeroError $e) {

}

Error Exceptions | 41

This will result in a \DivisionByZeroError exception with the
message Modulo by zero.

\ParseError
You can now handle parse errors in include and require state‐
ments, and eval() parse errors, as both now throw \ParseError
exceptions as shown in Example 6-7.

Example 6-7. ParseError exceptions

try {
 include 'parse-error.php';
} catch (\ParseError $e) {

}

Try to include a file containing a parse error.

This will result in a \ParseError exception with a message like
syntax error, unexpected $foo (T_VARIABLE), expecting

identifier (T_STRING) or (.

\TypeError
With the introduction of scalar and (especially) strict types in PHP
7.0 (see Chapter 11), these will also throw exceptions when a type
mismatch occurs. It is important to understand that this does not
apply just to scalar type hints, but also to traditional type hints, such
as class/interface names, callable and array. Example 6-8 shows
the new \TypeError in action.

Example 6-8. TypeError exceptions

function example(callable $callback)
{
 return $callback();
}

try {
 example(new stdClass);
} catch (\TypeError $e) {

}

42 | Chapter 6: Error Handling

This will result in a \TypeError exception with the message
Argument 1 passed to example() must be callable,

object given, called in <file> on line <num>.

Catchable Fatal Errors
Another important change in PHP 7.0 is with catchable fatal errors.
Previously, these could have been caught and handled using
set_error_handler(). However, with PHP 7.0, they are now
\Error exceptions, which, because an uncaught exception is still a
real fatal error, will no longer be catchable in set_error_handler().

This is a backward-compatible break and means that to work in
both PHP 5.x and 7, you need to use both set_error_handler()
and a try…catch block.

\Throwable and Userland
With \Throwable and the new exception hierarchy, it would make
sense that we could create our own branches in the exception hierar‐
chy for completely custom exceptions by simply implementing the
\Throwable interface.

Unfortunately, due to the fact that exceptions are magical under the
hood, to be able to do things like capture line/file and stack trace
information, you must still extend either \Exception or \Error, and
cannot directly implement \Throwable alone.

Trying to implement \Throwable as shown in Example 6-9 will
result in a fatal error.

Example 6-9. Implementing \Throwable

Fatal error: Class MyException cannot implement
interface Throwable, extend Exception or Error instead

However, this is not the full story. You can extend \Throwable and
then—while still extending \Error or \Exception—you can imple‐
ment your extended interface, as shown in Example 6-10.

Catchable Fatal Errors | 43

Example 6-10. Defining a custom interface

namespace My\Library;
interface MyExceptionInteface extends \Throwable {
 public function someMethod();

 public function someOtherMethod();
}

use \My\Library\MyExceptionInteface;
class MyException
 extends \Exception implements MyExceptionInterface
{
 // implement interface methods
}

Calling Methods on non-objects
Prior to PHP 7.0, if you were to attempt to call a method on a vari‐
able that did not contain an object, it would fatal error, with the
message Call to a member function method() on a non-

object.

It was initially decided that this should be a catchable fatal error;
however, the addition of engine exceptions supersedes this, and it
will now throw an \Error exception, which can be handled using
try…catch.

Summary
While these changes will have a large impact on how you write your
code—allowing you to gracefully handle almost all previously fatal
errors—it has been implemented in an almost complete backward-
compatible way.

In fact, if you are not using set_error_handler() to handle catcha‐
ble fatal errors, you should not need to make any changes at all to
your applications.

44 | Chapter 6: Error Handling

CHAPTER 7

Unicode Enhancements

While PHP 6 never emerged with its promise of Unicode greatness,
that doesn’t mean PHP doesn’t support Unicode. PHP 7.0 still
includes some enhancements to its existing Unicode support.

These additions come from two different RFCs. These are “Unicode
Codepoint Escape Syntax” RFC and the “IntlChar class” RFC.

Unicode Codepoint Escape Syntax
A simple, yet powerful change allows us to easily embed complex
Unicode characters in (double quoted) strings. Similar to other lan‐
guages, this uses the \u escape sequence; however, in other lan‐
guages, this is then followed directly by four hexadecimal digits to
represent the character. For PHP 7.0, we instead follow it with an
arbitrary number of hexadecimal numbers inside curly braces ({}).

The reason for this is that using a fixed length of four hexadecimal
digits would limit us to the Basic Multilingual Plane, or BMP (U
+0000 to U+FFFF), while many useful characters—in particular, emo‐
jis—reside outside of the BMP and require six hexadecimal digits.

Requiring six digits would mean that the majority of characters used
would need to be left padded with two zeros (e.g., \u001000). Allow‐
ing arbitrary lengths would introduce potential ambiguity for Uni‐
code points followed by other numbers, particularly if you were
expecting the same behavior as the other languages with four digits.

45

https://wiki.php.net/rfc/unicode_escape
https://wiki.php.net/rfc/unicode_escape
https://wiki.php.net/rfc/intl.char

With the curly braces, you can specify any number of hexadecimal
digits, without the need to left pad, and you can completely avoid
ambiguity.

This means that you can use \u{FF} or the more traditional
\u{00FF}. We can also express those non-BNP characters such as
“🐢” with \u{1F422}.

New Internationalization Features
Most Internationalization (I18N) features reside in the ext/intl
extension, which has a new addition in PHP 7.0. The IntlChar
class.

Internationalization = I18N

Internationalization is often shortened to I18N because
there are 18 characters between the first and last char‐
acters, and it’s a lot easier to write! The same is com‐
monly done with Localization (L10N) and also Accessi‐
bility (a11y).

Working with Unicode Characters
The new IntlChar class provides a number of static methods that
provide access to information about Unicode characters.

To retrieve a character name, you use the new IntlChar::char
Name() method, passing in the Unicode character, as shown in
Example 7-1.

Example 7-1. Retrieving character names

IntlChar::charName("\u{1F422}");

Will return TURTLE.

You can also use it to detect the type of character you are dealing
with, for example, digits or punctuation.

Example 7-2. Detecting character types

$char = "\u{F1}";
IntlChar::isAlpha($char);

46 | Chapter 7: Unicode Enhancements

IntlChar::isAlnum($char);
IntlChar::isPunct($char);

\u{F1} represents the ñ character.

Returns true.

Returns true.

Returns false.

Summary
These changes bring a few of the new Unicode features to PHP 7.0,
but this chapter barely scratches the surface of what they provide.
However as you can see, the future of Unicode in PHP is alive and
well.

Summary | 47

CHAPTER 8

Closure Enhancements

Closures have been around since PHP 5.3, and with PHP 5.4, the
ability to access an early-bound $this within them was added. In
addition to this, the Closure class went from being an implementa‐
tion detail to being probably the easiest way to break PHP’s object
model.

PHP 7.0 makes this even easier.

Bind Closure On Call
With the addition of $this, Closure gained two methods,
the instance method Closure->bindTo() and the static method
Closure::bind().

Both of these functions do the same thing, but the first is called on
the closure instance itself, while the static version must be passed the
closure itself as the first argument. They both then take two argu‐
ments: the first is an object that $this will then point to, and the
second is the scope from which to access $this.

This second one is important, because it means that you can change
the scope to that of another class allowing you to call its private and
protected methods and properties.

Both of the functions will then return a clone of the closure with the
new $this and scope, rather than modifying the original.

The “Closure::call” RFC gives us an easier way to achieve the most
common case, without needing to clone the object.

49

https://wiki.php.net/rfc/closure_apply

With PHP 7.0, the Closure class has a new instance method,
Closure->call(), which takes an object as its first argument, to
which $this is bound, and to which the scope is set, and then it calls
the closure passing through any additional arguments passed to
Closure->call(), as shown in Example 8-1.

Example 8-1. Bind closure on call

class HelloWorld {
 private $greeting = "Hello";
}

$closure = function($whom) {
 echo $this->greeting . ' ' . $whom;
};

$obj = new HelloWorld();
$closure->call($obj, 'World');

In the previous example, the closure echos a nonexistent $this->
greeting property.

To resolve this, we call the closure using Closure->call() passing
in an instance of the HelloWorld object. This changes $this to be
that instance, and the calling scope to the HelloWorld class, allowing
access to the private $this->greeting property.

Summary
This small but powerful change makes working with closures both
much more convenient and more dangerous. Proceed with caution!

50 | Chapter 8: Closure Enhancements

CHAPTER 9

Generator Enhancements

Generators were my favorite feature in PHP 5.5, and the new
changes in PHP 7.0 are definitely close to the top of my list again.

Generator Return Values
In PHP 5.5, if a generator function has a return statement followed
by an expression (e.g., return true;), it would result in a parse
error.

With the “Generator Return Expressions” RFC, this has now
changed. As with the Closure class between 5.3 and 5.4, the Genera
tor class that provides the magic for generators has moved from an
implementation detail to a concrete implementation with the addi‐
tion of the Generator->getReturn() method.

Not only will it no longer cause a parse error, but the Generator->
getReturn() method will allow you to retrieve the value returned by
any return statement inside the generator. Example 9-1 shows this
new functionality.

Example 9-1. Retrieving generator return values

function helloGoodbye() {
 yield "Hello";
 yield " ";
 yield "World!";

 return "Goodbye Moon!";

51

http://bit.ly/gen_ret_exp

}

$gen = helloGoodbye();

foreach ($gen as $value) {
 echo $value;
}

echo $gen->getReturn();

Outputs Hello on iteration one, a space on iteration two, and
World! on iteration three.

Will output Goodbye Moon!

Generator Delegation
While generator return values are neat, generator delegation is by
far the more exciting of the enhancements being made.

Generator delegation allows a generator to yield other generators,
objects that implement the \Traversable interface, and arrays, and
they will be iterated on in turn. These are also known as
sub-generators.

This is done using the new yield from <thing to iterate> syn‐
tax, and has the effect of flattening the subgenerators, so that the
iterating mechanism has no knowledge of the delegation.

Example 9-2. Using generator delegation

function hello() {
 yield "Hello";
 yield " ";
 yield "World!";

 yield from goodbye();
}

function goodbye() {
 yield "Goodbye";
 yield " ";
 yield "Moon!";
}

$gen = hello();
foreach ($gen as $value) {

52 | Chapter 9: Generator Enhancements

 echo $value;
}

We yield from another generator, goodbye().

This will output Hello on the first iteration, a space on the sec‐
ond, World! on the third, Goodbye on the fourth, another space
on the fifth, and finally Moon! on the sixth.

If you wanted to, you could have further yield or yield from state‐
ments after the initial delegation, and any generator that you dele‐
gate to can, in turn, delegate, and the structure will be flattened
again.

Summary
Despite these additions, generators still manage to be a lightweight
alternative to Iterators. If you haven’t started using generators yet,
now is a great time to start looking into them.

Summary | 53

CHAPTER 10

Changes in
Object-Oriented Programming

Considering that PHP 5.0 and almost every subsequent release were
primarily about changes to the object model, it might seem odd that
there are hardly any changes to it in PHP 7.0.

But, few though they may be, PHP 7.0 still brings some new power‐
ful OOP features to the table.

Context-Sensitive Lexer
PHP 7.0 introduces the context-sensitive lexer, which allows for the
use of keywords as names for properties, methods, and constants
within classes, interfaces, and traits.

What this means is that PHP goes from having 64 reserved key‐
words to having just one—class—and only in the class constant
context.

You may now use any of the following keywords as property, func‐
tion, and constant names:

callable and include function

trait global include_once if

extends goto throw endswitch

55

implements instanceof array finally

static insteadof print for

abstract interface echo foreach

final namespace require declare

public new require_once case

protected or return do

private xor else while

const try elseif as

enddeclare use default catch

endfor var break die

endforeach exit continue self

endif list switch parent

endwhile clone yield class

The only exception is that you still cannot use const class, because
it clashes with the fully qualified class name magic constant added in
PHP 5.5.

PHP 4 Constructors Deprecated
While some called for them to be removed, the old PHP 4 construc‐
tors have instead been marked as deprecated in PHP 7.0.

Because removing PHP 4 constructors would be a backward-
compatible break, any potential removal would happen no earlier
than PHP 8.0, meaning this will probably not affect most people
much for quite a while.

56 | Chapter 10: Changes in Object-Oriented Programming

As a refresher, PHP 4 constructors have the same name as the class
in which they are defined. Meaning a class foo has a PHP 4 con‐
structor named foo().

The ability to use PHP 4 constructors was disallowed inside of
namespaced classes when namespaces were introduced (PHP 5.3).

Group Use Declarations
In an effort to reduce duplication and simplify your code, the
“Group Use Declarations” RFC was one of the more polarizing
changes that managed to squeak in—passing with just 67 percent of
the vote that required a two-thirds majority.

Group use declarations allow us to deduplicate the common prefixes
in our use statements and just specify the unique parts within a
block ({}) instead.

The way that you group statements is up to you. As you can see,
Example 10-1 can be written differently, as shown in Example 10-2.

Example 10-1. Using group use statements

// Original
use Framework\Component\ClassA;
use Framework\Component\ClassB as ClassC;
use Framework\OtherComponent\ClassD;

// With group use statements
use Framework\{
 Component\ClassA,
 Component\ClassB as ClassC,
 OtherComponent\ClassD
};

Example 10-2. Alternative organization of use statements

use Framework\Component\{
 Component\ClassA,
 Component\ClassB as ClassC
};
Use Framework\OtherComponent\ClassD;

Also, if you want to import functions or constants—a feature
that was added in PHP 5.6—you simply prefix the import line with
function or const, respectively, as shown in Example 10-3.

Group Use Declarations | 57

http://bit.ly/group_use

Example 10-3. Importing functions and constants with group use
statements

use Framework\Component\{
 SubComponent\ClassA,
 function OtherComponent\someFunction,
 const OtherComponent\SOME_CONSTANT
};

Anonymous Classes
The addition of anonymous classes gives us closure-like capabilities,
but for objects—with all the associated methods and properties that
go along with that.

Anonymous classes are probably as close as we will get to an object
literal syntax in PHP.

To create an anonymous class, you simple combine the new

class($constructor, $args) followed by a standard class defini‐
tion. An anonymous class is always instantiated during creation, giv‐
ing you an object of that class.

Example 10-4 shows a simple example of creating an anonymous
class.

Example 10-4. Creating an anonymous class

$object = new class("bar") {
 public $foo;

 public function __construct($arg)
 {
 $this->foo = $arg;
 }
};

The preceding example will create an object with a __construct()
method, which has already been called with the argument bar, and a
property $foo, which has been assigned the value of that argument
by the constructor.

object(class@anonymous)#1 (1) {
 ["foo"]=>
 string(3) "bar"
}

58 | Chapter 10: Changes in Object-Oriented Programming

Anonymous classes can be namespaced, and they support inheri‐
tance, traits, and interfaces, using the same syntax as regular classes,
as shown in Example 10-5.

Example 10-5. Anonymous class feature support

namespace MyProject\Component;

$object = new class ($args) extends Foo implements Bar {
 use Bat;
};

Anonymous Class Names
It may seem silly to think about “anonymous” classes having names,
but internally every single one has a unique name, which is based on
the memory address of the operation that created it.

These look something like class@0x7fa77f271bd0.

This is important because if you were to create a class within a loop,
the instruction has the same memory address each iteration and
therefore only one class is defined—but many instances of it are
created.

This means that if the resulting object of two iterations have the
same property values, they will be equal (== but not identical ===).

However, even if you define another anonymous class with exactly
the same structure somewhere else in the code, it will have a differ‐
ent name based on its memory address and therefore not be equal.
Example 10-6 demonstrates this behavior.

Example 10-6. Anonymous classes created in loops

$objects = [];
foreach (["foo", "foo", "bar"] as $value) {
 $objects[] = new class($value) {

 public $value;

 public function __construct($value)
 {
 $this->value = $value;
 }
 };
}

Anonymous Class Names | 59

$objects[] = new class("foo") {

 public $value;

 public function __construct($value)
 {
 $this->value = $value;
 }
};

In Example 10-6, we create three instances of an anonymous class
inside a foreach loop. The first two are passed foo as their construc‐
tor, while the third is passed bar.

We then create a fourth new anonymous class with the same defini‐
tion and again pass in foo to the constructor.

Because of this, the first and second objects—$objects[0] and
$objects[1], respectively—are equal, but not identical. However,
neither of these two objects is equal to the third object—
$objects[2].

They also will not be equal to the fourth object—$objects[3]—
because it was defined outside of the loop and, despite its identical
structure and value, it is a different class with a different name.

Summary
While the focus in PHP 7 is not sweeping changes to the object
model, the changes that have been added are not insubstantial—in
particular, anonymous classes opens up a number of new architec‐
ture possiblities.

These changes will hopefully make for more robust, easier to write,
object-oriented code.

60 | Chapter 10: Changes in Object-Oriented Programming

CHAPTER 11

Type Hints

The most polarizing—and exciting—new feature added in PHP 7.0
is without a doubt the addition of scalar type hints. There have been
many RFCs for different variations of this feature over the years, and
finally, with PHP 7, we have an RFC that has passed—albeit after
numerous revisions and authors. Unfortunately, this issue was so
contentious that it even spilled out of the mailing lists into public
social networks before the current implementation was accepted.

Scalar type hints aren’t the only new feature related to type hints,
however. As you will see in this chapter, we also have return types,
strict types, and more.

Scalar Type Hints
Alongside the introduction of a robust object model in PHP 5.0, we
also got the first type hints: class/interface hints. The ability to
require a function/method parameter was an instanceof a given
class or interface.

PHP 5.1 introduced the array type hint, while PHP 5.4 added calla
ble—the ability to type hint on anything that was a valid callback
(e.g., closures, function names, etc.).

PHP 7.0 adds the ability to hint on scalar types:

• bool: Boolean values (i.e., true/false)
• float: Floating point numbers (e.g., 4.35)

61

• int: Integer numbers (e.g., 123)
• string: Strings (e.g., foo)

Example 11-1 shows each of these new hints in use.

Example 11-1. Scalar type hinting a function

function hinted(bool $a, float $b, int $c, string $c)
{

}

hinted(true, 4.35, 123, "foo");

Coercive Types
By default, PHP 7.0 will use coercive type hints, which means that it
will attempt to convert to the specified type, and, if possible, will do
so without complaint. This is the nonstrict option. Coercive types
come with some gotchas, most importantly, precision loss.

Example 11-2 shows type coercion in use.

Example 11-2. Type coercion

function sendHttpStatus(int $statusCode, string $message)
{
 header('HTTP/1.0 ' .$statusCode. ' ' .$message);
}

sendHttpStatus(404, "File Not Found");
sendHttpStatus("403", "OK");

Integer and string passed, no coercion occurs.

Integer string passed, coerced to int(403), string OK is left
untouched.

Precision Loss
Because of this coercion, you may unknowingly lose data when
passing it into a function. The simplest example is passing a float
into a function that requires an int, as shown in Example 11-3.

62 | Chapter 11: Type Hints

Example 11-3. Float passed into integer hinted argument

function add(int $a, int $b)
{
 return $a + $b;
}

add(897.23481, 361.53);

Both floats are turned into integers, 897 and 361. This is the
same behavior as casting, e.g., (int) 361.53 will return 361.

However, there are other precision losses, passing a string that starts
with a numeric and ends in non-numerics to a float/int will be
cast to that type, dropping the non-numeric characters. A string that
starts with (or only contains) non-numerics will cause a \TypeError
exception to be thrown, as it cannot be coerced.

You can read more on \TypeError exceptions in Chap‐
ter 6.

Also, passing integers in to float hinted arguments may cause pre‐
cision loss as 64-bit integers greater than 253 cannot be represented
exactly as a float.

By default, hint coercion will result in the following:

• int(1) ⇒ function(float $foo) ⇒ float(1.0)

• float(1.5) ⇒ function(int $foo) ⇒ int(1)

• string("100") ⇒ function (int $foo) ⇒ int(100)

• string("100int") ⇒ +function (int $foo) ⇒ int(100)

• string("1.23") ⇒ function(float $foo) ⇒ float(1.23)

• string("1.23float") ⇒ function(float $foo) ⇒

float(1.23)

Additionally, bool hints will follow the same rules as comparisons:
int(0), float(0.0), null, string(0), empty strings, empty arrays,
and a declared variable with no assigned value will all coerce to
false. Anything else will be coerced to true.

Scalar Type Hints | 63

Strict Types
In addition to the default behavior, PHP 7.0 also supports strict type
hints. This means that rather than coerce, any type mismatch will
result in a \TypeError exception.

Strict type hint behavior can only be enabled at the calling site. This
means that, for example, a library author cannot dictate that their
library is strictly typed: this can only be done in the code that calls it.

This might seem odd, because if you can’t enforce strict usage, how
can you be sure that your library is used correctly? While this is a
valid concern, you need not be worried that the resulting input will
ever be the wrong type. Regardless of strict mode, no matter what a
value is passed in as, it will always be the correct type within the
function.

To enable strict types, we use the previously esoteric
declare construct with the new strict_types directive:
declare(strict_types=1);.

The declare construct must be the first statement in the file. This
means that nothing can be placed between the open PHP tag and
the declare except for comments. This includes the namespace dec‐
laration, which must be placed immediately after any declare con‐
structs. Example 11-4 shows how to enable strict types.

Example 11-4. Enabling strict types

// Enable strict types
declare(strict_types=1);
namespace MyProject\Component;

hinted("foo", 123, 4.35, true);

This would result in a \TypeError exception for the first incor‐
rect argument with the message TypeError: Argument 1

passed to hinted() must be of the type boolean, string

given.

64 | Chapter 11: Type Hints

Return Type Hints
In addition to more types of hints being available for arguments, we
can now also type hint return values, using all the same types we can
use for arguments.

It bears repeating that you may use nonscalar type
hints for return hints also: classes/interfaces, array,
and callable. This is often overlooked, as return types
are seen as an extension of the scalar type hints RFC.

Return hints follow the same rules under coercive or strict type hint
settings. With coercive type hints, the return will be coerced to the
hinted type when possible, while strict type hints will result in a
\TypeError exception on type mismatch.

To add a type hint, simple follow the argument list with a colon and
the return type, as shown in Example 11-5.

Example 11-5. Return type hints

function divide(int $a, int $b): int
{
 return $a / $b;
}

divide(4, 2);
divide(5, 2);

Both calls will result in int(2) in coercive mode, or the second
will cause a \TypeError exception with the message Return
value of divide() must be of the type integer, float

returned in strict mode.

In the preceding example, we have added an int return type hint to
the divide() function that accepts two int arguments.

Despite the fact that all arguments are integers, because division can
result in a float, you again may see precision loss in coercive mode
or \TypeError exceptions in strict mode.

Return Type Hints | 65

Reserved Keywords for Future Types
One final change that was added for type hinting is that the follow‐
ing list of type names can no longer be used as class, interface, or
trait names:

• int

• float

• bool

• string

• true

• false

• null

This was done to facilitate potential future changes that would
otherwise need to wait until PHP 8 to preserve backward compatibl‐
ity in PHP 7.x.

Summary
Unlike other languages where it is all or nothing when it comes to
strict type hinting, PHP not only has opt-in strict hints, but it is up
to the calling code, rather than the defining code.

This behavior is probably the only way to do scalar type hints “the
PHP way.”

Regardless of this, you should still be able to reap the full benefits of
type hinting: more reliable code, and the ability to do things like
statically analyze it to ensure correctness.

However, there are still several features that some feel are missing
from the current type hinting, namely nullable types (which would
include null return types), compound types (e.g., int|float or pre‐
defined ones like numeric), a special void return type hint, and cus‐
tom types. While none of these are yet slated for inclusion in future
releases, there are many people working on most of them, so it could
happen in PHP 7.1 and beyond.

66 | Chapter 0: Type Hints

APPENDIX A

Resources

The following is a list of resources. You can find the most up-to-date
list at http://daveyshafik.com/php7.

Further Reading
• PHP Manual: Migrating from PHP 5.6.x to PHP 7.0.x
• Blog post: “What to Expect When You’re Expecting: PHP7,

Part 1”
• Blog post: “What to Expect When You’re Expecting: PHP 7,

Part 2”
• Blog post: “An Exceptional Change in PHP 7.0”

Other Resources
• Rasmus Lerdorf ’s PHP 7 Dev Vagrant Box
• Jan Burkl’s PHP 7 Docker container (nightly builds)
• GoPHP7-ext, helping to migrate extensions to PHP 7

67

http://daveyshafik.com/php7
http://bit.ly/5-6-x_to_7-0-x
http://bit.ly/php7-part1
http://bit.ly/php7-part1
http://bit.ly/php7-part2
http://bit.ly/php7-part2
http://bit.ly/exceptional_change
https://github.com/rlerdorf/php7dev
http://bit.ly/docker_php7
http://gophp7.org/gophp7-ext/

APPENDIX B

RFCs for PHP 7.0

More than 45 RFCs went into PHP 7.0, and you can find them all
below ordered by category.

Deprecated Features
See: Chapter 2

• “Removal of dead or not yet PHP7 ported SAPIs and
extensions”

• “Make defining multiple default cases in a switch a syntax error”
• “Remove alternative PHP tags”

Uniform Variable Syntax
See: Chapter 3

• “Uniform Variable Syntax”

69

http://bit.ly/dead_sapis
http://bit.ly/dead_sapis
http://bit.ly/mult_default_err
http://bit.ly/remove_alt_tags
http://bit.ly/uni_var_syntax

Basic Language Changes
See: Chapter 4

• “Combined Comparison (Spaceship) Operator”
• “Null Coalesce Operator”
• “intdiv()”
• “Add preg_replace_callback_array function”
• “Easy User-land CSPRNG”
• “Filtered unserialize()”
• “Introduce session_start() options—read_only, unsafe_lock,

lazy_write and lazy_destroy”

Other RFCs
The following RFCs were not covered:

• “Remove the date.timezone warning”
• “Fix ‘foreach’ behavior”
• “Replacing current json extension with jsond”
• “Preserve Fractional Part in JSON encode”
• “Integer Semantics”
• “Fix list() behavior inconsistency”
• “Remove hex support in numeric strings”
• “Fix handling of custom session handler return values”

70 | Appendix B: RFCs for PHP 7.0

http://bit.ly/comb_comparison
https://wiki.php.net/rfc/isset_ternary
https://wiki.php.net/rfc/intdiv
http://bit.ly/preg_replace_callback_array
http://bit.ly/easy_userland_csprng
http://bit.ly/filtered_unserialize
http://bit.ly/session_start
http://bit.ly/session_start
http://bit.ly/date-timezone
https://wiki.php.net/rfc/php7_foreach
https://wiki.php.net/rfc/jsond
http://bit.ly/json_fractional_part
http://bit.ly/int_semantics
http://bit.ly/list_inconsistency
http://bit.ly/rem_hex_support
http://bit.ly/cust_sess_ret_values

Expectations and Assertions
See: Chapter 5

• “Expectations”

Error Handling
See: Chapter 6

• “Constructor behaviour of internal classes”
• “Throwable Interface”
• “Exceptions in the engine (for PHP 7)”
• “Catchable ‘call to a member function of a non-object’” (super‐

seded by Exceptions in the engine)

Other RFCs
The following RFCs were not covered:

• “Reclassify E_STRICT notices”
• “Continue output buffering despite aborted connection”

Unicode Enhancements
See: Chapter 7

• “Unicode Codepoint Escape Syntax”
• “ICU IntlChar class”

RFCs for PHP 7.0 | 71

https://wiki.php.net/rfc/expectations
http://bit.ly/internal_constructor
http://bit.ly/throwable_interface
http://bit.ly/engine_exceptions
http://bit.ly/catchable_call
http://bit.ly/e_strict_notices
https://wiki.php.net/rfc/continue_ob
https://wiki.php.net/rfc/unicode_escape
https://wiki.php.net/rfc/intl.char

Closures
See: Chapter 8

• “Closure::call”

Generators
See: Chapter 9

• “Generator Return Expressions”
• “Generator Delegation”

Object-Oriented Programming
See: Chapter 10

• “Context Sensitive Lexer”
• “Remove PHP 4 Constructors”
• “Group Use Declarations”
• “Anonymous Classes”

Type Hints
See: Chapter 11

• “Scalar Type Declarations”
• “Return Type Declarations”
• “Reserve More Types in PHP 7”

72 | Appendix B: RFCs for PHP 7.0

https://wiki.php.net/rfc/closure_apply
http://bit.ly/gen_ret_exp
http://bit.ly/gen_delegation
http://bit.ly/context_sensitive
http://bit.ly/php4_constructors
http://bit.ly/group_use
http://bit.ly/anon_classes
http://bit.ly/scalar_type
https://wiki.php.net/rfc/return_types
http://bit.ly/reserve_more_types

Internals Changes
As these are mainly changes to the inner workings of PHP, the fol‐
lowing were not covered:

• “Abstract syntax tree”
• “Turn gc_collect_cycles into function pointer”
• “Fast Parameter Parsing API”
• “Native TLS”
• “ZPP Failure on Overflow”
• “Move the phpng branch into master”
• “64 bit platform improvements for string length and integer in

zval”

RFCs for PHP 7.0 | 73

http://bit.ly/abs_syntax_tree
https://wiki.php.net/rfc/gc_fn_pointer
https://wiki.php.net/rfc/fast_zpp
https://wiki.php.net/rfc/native-tls
http://bit.ly/zpp_fail_on_of
https://wiki.php.net/rfc/phpng
http://bit.ly/64_bit_improvements
http://bit.ly/64_bit_improvements

About the Author
Davey Shafik is a full-time developer with over 14 years of experi‐
ence in PHP and related technologies. He is a Developer Evangelist
at Akamai Technologies and has written three books, numerous
articles, and spoken at conferences the world over. He is best known
for his books—the Zend PHP Certification Study Guide and PHP
Master: Write Cutting Edge Code—and as the creator of PHP
Archive (PHAR) for PHP 5.3.

Davey is passionate about improving the tech community. He coor‐
ganizes the Prompt initiative, which is dedicated to lifting the stigma
surrounding mental health discussions, and has worked with
PHPWomen since its inception.

http://zceguide.com
http://mhprompt.org

	Cover
	Web Platform
	Copyright
	Table of Contents
	Chapter 1. Upgrading to PHP 7
	PHP 7 Timeline
	How We Got Here
	Release Cycle

	Chapter 2. Deprecated Features
	Alternative PHP Tags
	POSIX-Compatible Regular Expressions
	Migrating to Perl Compatible Regular Expressions

	Multiple Default Cases in Switches
	Removal of the Original MySQL Extension
	Migrating to Procedural mysqli
	Migrating to an Object-Oriented API
	Using Mysqli

	Summary

	Chapter 3. Uniform Variable Syntax
	Consistency Fixes
	New Syntax
	New Combinations
	Nested double colons
	Nested Method and Function Calls
	Arbitrary Expression Dereferencing

	Dereferencing scalars
	Future Syntax
	Backward Compatibility Issues
	Summary

	Chapter 4. Basic Language Changes
	Operators
	Null Coalesce Operator
	Combined Comparison Operator

	Constant Arrays
	Unpacking Objects Using list()
	New Functions
	Integer Division

	Regular Expressions
	Cryptographically Secure Values
	Function Changes
	Sessions

	Filtered unserialize()
	Move Up Multiple Levels with dirname()
	Salts Deprecated in password_hash()
	Summary

	Chapter 5. Expectations and Assertions
	Expectations
	Summary

	Chapter 6. Error Handling
	Exceptions on Constructor Failure
	Engine Exceptions
	Exception Hierarchy

	Error Exceptions
	\Error
	\AssertionError
	\ArithmeticError and \DivisionByZeroError
	\ParseError
	\TypeError

	Catchable Fatal Errors
	\Throwable and Userland
	Calling Methods on non-objects
	Summary

	Chapter 7. Unicode Enhancements
	Unicode Codepoint Escape Syntax
	New Internationalization Features
	Working with Unicode Characters
	Summary

	Chapter 8. Closure Enhancements
	Bind Closure On Call
	Summary

	Chapter 9. Generator Enhancements
	Generator Return Values
	Generator Delegation
	Summary

	Chapter 10. Changes in Object-Oriented Programming
	Context-Sensitive Lexer
	PHP 4 Constructors Deprecated
	Group Use Declarations
	Anonymous Classes
	Anonymous Class Names
	Summary

	Chapter 11. Type Hints
	Scalar Type Hints
	Coercive Types
	Precision Loss
	Strict Types

	Return Type Hints
	Reserved Keywords for Future Types
	Summary

	Appendix A. Resources
	Further Reading
	Other Resources

	Appendix B. RFCs for PHP 7.0
	Deprecated Features
	Uniform Variable Syntax
	Basic Language Changes
	Other RFCs

	Expectations and Assertions
	Error Handling
	Other RFCs

	Unicode Enhancements
	Closures
	Generators
	Object-Oriented Programming
	Type Hints
	Internals Changes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

