
The Business of Speed

Web
Performance
Warrior

Andy Still
ISBN: 978-1-491-91961-3

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15306

“ Velocity is the most
 valuable conference I have
 ever brought my team to.
 For every person I took
 this year, I now have three
 who want to go next year.”
 — Chris King, VP Operations, SpringCM

Join business technology leaders,
engineers, product managers,
system administrators, and developers
at the O’Reilly Velocity Conference.
You’ll learn from the experts—and
each other—about the strategies,
tools, and technologies that are
building and supporting successful,
real-time businesses.

Santa Clara, CA
May 27–29, 2015

http://oreil.ly/SC15

Andy Still

Web Performance Warrior
Delivering Performance to Your

Development Process

978-1-491-91961-3

[LSI]

Web Performance Warrior
by Andy Still

Copyright © 2015 Intechnica. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Kristen Brown
Copyeditor: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

February 2015: First Edition

Revision History for the First Edition
2015-01-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491919613 for release details.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491919613

For Morgan & Savannah, future performance warriors

Table of Contents

Foreword. vii

Preface. ix

Phase 1: Acceptance
“Performance Doesn’t Come For Free”. 1
Convincing Others 1
Action Plan 7

Phase 2: Promotion
“Performance is a First-Class Citizen”. 9
Is Performance Really a First-Class Citizen? 9
Action Plan 12

Phase 3: Strategy
“What Do You Mean by ‘Good Performance'?”. 17
Three Levels of the Performance Landscape 18
Tips for Setting Performance Targets 22
Action Plan 25

Phase 4 : Engage
“Test...Test Early…Test Often...”. 27
Challenges of Performance Testing 27
Test Early 30
Test Often 33
Action Plan 36

v

Phase 5 : Intelligence
“Collect Data and Reduce Guesswork”. 39
Types of Instrumentation 40
Action Plan 43

Phase 6: Persistence
“Go Live Is the Start of Optimization”. 45
Becoming a PerfOps Engineer 45
The PerfOps Center 49
Closing the PerfOps Loop to Development 49
Action Plan 49

vi | Table of Contents

Foreword
In 2004 I was involved in a performance disaster on a site that I was
responsible for. The system had happily handled the traffic peaks
previously seen but on this day was the victim of an unexpectedly
large influx of traffic related to a major event and failed in dramatic
fashion.

I then spent the next year re-architecting the system to be able to
cope with the same event in 2005. All the effort paid off, and it was a
resounding success.

What I took from that experience was how difficult it was to find
sources of information or help related to performance improve‐
ment.

In 2008, I cofounded Intechnica as a performance consultancy that
aimed to help people in similar situations get the guidance they
needed to solve performance issues or, ideally, to prevent issues and
work with people to implement these processes.

Since then we have worked with a large number of companies of dif‐
ferent sizes and industries, as well as built our own products in
house, but the challenges we see people facing remain fairly consis‐
tent.

This book aims to share the insights we have gained from such real-
world experience.

The content owes a lot to the work I have done with my cofounder
Jeremy Gidlow; ops director, David Horton; and our head of perfor‐
mance, Ian Molyneaux. A lot of credit is due to them in contributing
to the thinking in this area.

Credit is also due to our external monitoring consultant, Larry Haig,
for his contribution to Chapter 6.

Additional credit is due to all our performance experts and engi‐
neers at Intechnica, both past and present, all of whom have moved
the web performance industry forward by responding to and han‐
dling the challenges they face every day in improving client and
internal systems.

Chapter 3 was augmented by discussion with all WOPR22 attendees:
Fredrik Fristedt, Andy Hohenner, Paul Holland, Martin Hynie, Emil
Johansson, Maria Kedemo, John Meza, Eric Proegler, Bob Sklar, Paul
Stapleton, Neil Taitt, and Mais Tawfik Ashkar.

Preface

For modern-day applications, performance is a major concern.
Numerous studies show that poorly performing applications or
websites lose customers and that poor performance can have a detri‐
mental effect on a company’s public image. Yet all too often, corpo‐
rate executives don’t see performance as a priority—or just don’t
know what it takes to achieve acceptable performance.

Usually, someone dealing with the application in real working con‐
ditions realizes the importance of performance and wants to do
something about it.

If you are this person, it is easy to feel like a voice calling in the wil‐
derness, fighting a battle that no one else cares about. It is difficult to
know where to start to solve the performance problem.

This book will try to set you on the right track.

This process I describe in this book will allow you to declare war on
poor performance to become a performance warrior.

The performance warrior is not a particular team member; it could
be anyone within a development team. It could be a developer, a
development manager, a tester, a product owner, or even a CTO.

A performance warrior will face battles that are technical, political
and economic.

This book will not train you to be a performance engineer: it will
not tell you which tool to use to figure out why your website is run‐
ning slow or tell you which open source tools or proprietary tools
are best for a particular task.

ix

However, it will give you a framework that will help guide you
toward a development process that will optimize the performance of
your website.

It’s Not Just About the Web

Web Performance Warrior is written with web develop‐
ment in mind; however, most of the advice will be
equally valid to other types of development.

The Six Phases
I have split the journey into six phases. Each phase includes an
action plan stating practical steps you can take to solve the prob‐
lems addressed by that phase:

1. Acceptance: “Performance doesn’t come for free.”
2. Promotion: “Performance is a first-class citizen.”
3. Strategy: “What do you mean by ‘good performance'?”
4. Engage: “Test…test early…test often…”
5. Intelligence: “Collect data and reduce guesswork.”
6. Persistence: “‘Go live’ is the start of performance optimization.”

x | Preface

Phase 1: Acceptance
“Performance Doesn’t

Come For Free”

The journey of a thousand miles starts with a single step. For a per‐
formance warrior, that first step is the realization that good perfor‐
mance won’t just happen: it will require time, effort, and expertise.

Often this realization is reached in the heat of battle, as your systems
are suffering under the weight of performance problems. Users are
complaining, the business is losing money, servers are falling over,
there are a lot of angry people about demanding that something be
done about it. Panicked actions will take place: emergency changes,
late nights, scattergun fixes, new kit. Eventually a resolution will be
found, and things will settle down again.

When things calm down, most people will lose interest and go back
to their day jobs. Those that retain interest are performance warri‐
ors.

In an ideal world, you could start your journey to being a perfor‐
mance warrior before this stage by eliminating performance prob‐
lems before they start to impact the business.

Convincing Others
The next step after realizing that performance won’t come for free is
convincing the rest of your business.

Perhaps you are lucky and have an understanding company that will
listen to your concerns and allocate time, money, and resources to

1

you to resolve these issues and a development team that is on board
with the process and wants to work with you to make it happen. In
this case, skip ahead to Chapter 2.

Still reading? Then you are working a typical organization that has
only a limited interest in the performance of its web systems. It
becomes the job of the performance warrior to convince colleagues
it is something they need to be concerned about.

For many people across the company (both technical and non-
technical, senior and junior) in all types of business (old and new,
traditional and techy), this will be a difficult step to take. It involves
an acceptance that performance won’t just come along with good
development but needs to be planned, tested, and budgeted for. This
means that appropriate time, money, and effort will have to be pro‐
vided to ensure that systems are performant.

You must be prepared to meet this resistance and understand why
people feel this way.

Developer Objections
It may sound obvious that performance will not just happen on its
own, but many developers need to be educated to understand this.

A lot of teams have never considered performance because they
have never found it to be an issue. Anything written by a team of
reasonably competent developers can probably be assumed to be
reasonably performant. By this I mean that for a single user, on a
test platform with a test-sized data set, it will perform to a reason‐
able level. We can hope that developers should have enough pride in
what they are producing to ensure that the minimum standard has
been met. (OK, I accept that this is not always the case.)

For many systems, the rigors of production are not massively greater
than the test environment, so performance doesn’t become a consid‐
eration. Or if it turns out to be a problem, it is addressed on the
basis of specific issues that are treated as functional bugs.

Performance can sneak up on teams that have not had to deal with it
before.

Developers often feel sensitive to the implications of putting more of
a performance focus into the development process. It is important to
appreciate why this may be the case:

2 | Phase 1: Acceptance “Performance Doesn’t Come For Free”

Professional pride
It is an implied criticism of the quality of work they are produc‐
ing. While we mentioned the naiveté of business users in
expecting performance to just come from nowhere, there is
often a sense among developers that good work will automati‐
cally perform well, and they regard lapses in performance as a
failure on their part.

Fear of change
There is a natural resistance to change. The additional work that
may be needed to bring the performance of systems to the next
level may well take developers out of their comfort zone. This
will then lead to a natural fear that they will not be able to man‐
age the new technologies, working practices, etc.

Fear for their jobs
The understandable fear with many developers, when admitting
that the work they have done so far is not performant, is that it
will be seen by the business as an admission that they are not up
to the job and therefore should be replaced. Developers are
afraid, in other words, that the problem will be seen not as a
result of needing to put more time, skills, and money into per‐
formance, just as having the wrong people.

Handling Developer Objections
Developer concerns are best dealt with by adopting a three-
pronged approach:

Reassurance
Reassure developers that the time, training, and tooling needed
to achieve these objectives will be provided.

Professional pride
Make it a matter of professional pride that the system they are
working on has got to be faster, better-scaling, lower memory
use, etc., than its competitors. Make this a shared objective
rather than a chore.

Incentivize the outcome
Make hitting the targets rewardable in some way, for example,
through an interdepartmental competition, company recogni‐
tion, or material reward.

Convincing Others | 3

Business Objections
Objections you face from within the business are usually due to the
increased budget or timescales that will be required to ensure better
performance.

Arguments will usually revolve around the following core themes:

How hard can it be?
There is no frame of reference for the business to be able to
understand the unique challenges of performance in complex
systems. It may be easy for a nontechnical person to understand
the complexities of the system’s functional requirements, but the
complexities caused by doing these same activities at scale are
not as apparent.

Beyond that, business leaders often share the belief that if a
developer has done his/her job well, then the system will be per‐
formant.

There needs to be an acceptance that this is not the case and
that this is not the fault of the developer. Getting a truly per‐
formant system requires dedicated time, effort, and money.

It worked before. Why doesn’t it work now?
This question is regularly seen in evolving systems. As levels of
usage and data quantities grow, usually combined with addi‐
tional functionality, performance will start to suffer.

Performance challenges will become exponentially more com‐
plex as the footprint of a system grows (levels of usage, data
quantities, additional functionality, interactions between sys‐
tems, etc.). This is especially true of a system that is carrying
technical debt (i.e., most systems).

Often this can be illustrated to the business by producing visual
representations of the growth of the system. However, it will
then often lead to the next argument.

Why didn’t you build it properly in the first place?
Performance problems are an understandable consequence of
system growth, yet the fault is often placed at the door of devel‐
opers for not building a system that can scale.

There are several counterarguments to that:

4 | Phase 1: Acceptance “Performance Doesn’t Come For Free”

• The success criteria for the system and levels of usage, data,
and scaling that would eventually be required were not
defined or known at the start, so the developers couldn’t
have known what they were working toward.

• Time or money wasn’t available to invest in building the
system that would have been required to scale.

• The current complexity of the system was not anticipated
when the system was first designed.

• It would actually have been irresponsible to build the sys‐
tem for this level of usage at the start of the process, when
the evolution of the system and its usage were unknown.
Attempts to create a scalable system may actually have
resulted in more technical debt. Millions of hours of devel‐
oper time is wasted every year in supporting systems that
were over-engineered because of overly ambitious usage
expectations that were set at the start of a project.

Although all these arguments may be valid, often the argument
as to why this has happened is much simpler. Developers are
only human, and high-volume systems create challenges that
are complex. Therefore, despite their best efforts, developers
make decisions that in hindsight turn out to be wrong or that
don’t anticipate how components integrate.

Handling Business Objections
There are several approaches to answering business objections:

Illustrate the causes of the problem
Provide some data around the increased size, usage, data quan‐
tities, and complexity of the system that illustrate performance
problems as a natural result of this growth.

Put the position in context of other costs
Consider the amount of resources/budget that is applied to
other types of testing, such as functional and security testing,
and urge that performance to be considered at the same level.
Functional correctness also doesn’t come for free. Days of
effort go into defining the functional behavior of systems in
advance and validating them afterwards. Any development
team that suggested developing a system with no upfront defi‐
nition of what it would do and no testing (either formal or
informal) of functional correctness would rightly be con‐

Convincing Others | 5

demned as irresponsible. Emphasize that performance should
be treated in the same way.

Put the problem in financial terms
Illustrate how much performance issues are directly costing the
business. This may be in terms of downtime (i.e., lost sales or
productivity) or in additional costs (e.g., extra hardware).

Show the business benefit
Explain how you could get a market advantage from being the
fastest system or the system that is always up.

Illustrate why the process is needed
Show some of the complexities of performance issues and why
they are difficult to address as part of a standard development
process; that is, illustrate why poor performance does not nec‐
essarily equal poor-quality development. For example, argu‐
ments such as:

• Performance is not like functional issues. Functional
issues are black and white: something either does what it
should do or it doesn’t. If someone else has complained of
a functional error, you can replicate it by manipulating the
inputs and state of the test system; and once it is replica‐
ted, you can fix it. Performance issues are infinitely more
complex, and the pass/fail criteria are much more gray.

• Performance is harder to see. Something can appear to
work correctly and perform in an acceptable manner in
some situations while failing in others.

• Performance is dependent on factors beyond the devel‐
opers control. Factors such as levels of concurrency, quan‐
tity of data, and query specifics all have an influence.

6 | Phase 1: Acceptance “Performance Doesn’t Come For Free”

Action Plan
Separate Performance Validation, Improvement, and
Optimization from Standard Development
A simple step: if no one realizes that performance requires work,
start pointing it out. When estimating or doing sprint planning, cre‐
ate distinct tasks for performance optimization and validation.
Highlight the importance so that, if performance is not explicitly put
into the development plan by the organization, it has to make a con‐
scious choice not to do so.

Complete a Performance Maturity Assessment
This is an exercise in assessing how mature your performance pro‐
cess is. Evaluate your company’s processes, and determine how well
suited it is for ensuring that the application being built is suitably
performant. Also evaluate it against industry best practice (or the
best practices that you feel should be introduced; remember to be
realistic).

Produce this as a document with a score to indicate the current state
of performance within the company.

Define a Strategy and Roadmap to Good Performance
Create an explicit plan for how to get from where you are to where
you need to be. This should be in achievable, incremental steps and
have some ideas of the time, effort, and costs that will be involved. It
is important that developers, testers, managers, and others have
input into this process so that they buy in to the process.

Once the roadmap is created, regularly update and track progress
against it. Every step along the roadmap should increase your per‐
formance maturity score.

Performance won’t come for free. This is your chance to illustrate to
your business what is needed.

Action Plan | 7

Phase 2: Promotion
“Performance is a

First-Class Citizen”

The next step on the journey to becoming a performance warrior is
to get your management and colleagues to treat performance with
appropriate seriousness. Performance can be controlled only if it
truly is treated as a first-class citizen within your development pro‐
cess.

Is Performance Really a First-Class Citizen?
Performance can kill a web application. That is a simple fact. The
impact of a performance issue often grows exponentially as usage
increases, unlike that of a functional issue, which tends to be linear.

Performance issues will take your system out completely, leading to
complete loss of income, negative PR, and long-term loss of busi‐
ness and reputation. Look back at news reports related to website
failures in recent years: very few are related to functional
issues; almost all relate to performance.

Performance issues can lead to a requirement for complete re-
architecting. This can mean developing additional components,
moving to a new platform, buying third-party tools and services, or
even a complete rewrite of the system.

Performance is therefore important and should be treated as such.

9

This chapter will help you to elevate performance to a first-class citi‐
zen, focusing on the challenges faced with relation to people, pro‐
cess, and tooling.

People
As the previous chapter explained, many companies hold the view
that performance issues should just be solved by developers and that
performance issues are actually simply caused by poor-quality devel‐
opment. Managers and developers alike feel like they should be able
to achieve good performance just through more time or more pow‐
erful hardware.

In reality, of course, that is true up to a point. If you are developing a
website of average complexity with moderate usage and moderate
data levels, you should be able to develop code that performs to an
acceptable level. As soon as these factors start to ramp up , however,
performance will suffer and will require special expertise to
solve. This does not reflect on the competency of the developer; it
means that specialized skill is required.

The analogy I would make to this would be to look at the security of
a website. For a standard brochureware or low-risk site, a competent
developer should be able to deliver a site with sufficient security in
place. However, when moving up to a banking site, you would no
longer expect the developer to implement security. Security special‐
ists would be involved and would be looking beyond the code to the
system as a whole. Security is so important to the system and so
complex that only a specialist can fully understand what’s required
at that level. Managers accept this because security is regarded as a
first-class citizen in the development world.

Performance is exactly the same: performance issues often require
such a breadth of knowledge (APM tooling, load generation tools,
network setup, system interaction, concurrency effects, threading,
database optimization, garbage collection, etc.) that specialists are
required to solve them. To address performance, either appropri‐
ately skilled individuals must be recruited or existing people skilled
up. This is the role of the performance engineer.

Performance engineers are not better than developers (indeed they
are often also developers); they just have different skills.

10 | Phase 2: Promotion “Performance is a First-Class Citizen”

Process
Performance is often not considered in a typical development pro‐
cess at all, or is done as a validation step at the end. This is not treat‐
ing performance as a first-class citizen.

In this sense, performance is again like security, as well as other
nonfunctional requirements (NFRs). Let’s look at how NFRs are
integrated into the development process.

For security, an upfront risk assessment takes place to identify nec‐
essary security standards, and testing is done before major releases.
Builds will not be released if the business is not satisfied that security
standards have been met.

For user experience (UX) design, the company will typically alloca‐
ted a design period up front, dedicate time to it within the develop‐
ment process, and allow additional testing and validation time after‐
ward. Builds will not be released if the business is not happy with
the UX.

In contrast, performance is often not considered at all. If it is, the
developers do it in vague, subjective terms (“must be fast to load”),
with no consideration of key issues such as platform size, data quan‐
tities and usage levels. It is then tested too late, if at all.

To be an effective performance warrior, you must start considering
performance throughout the development lifecycle. This includes
things such as doing performance risk assessments at the start of a
project, setting performance targets, building performance testing
and performance code reviews into the development process, and
failing projects if performance acceptance targets are not met. Many
of these are addressed in more detail in later chapters.

Tooling
To effectively handle performance challenges, you need the right
tools for the job.

A wide range of tools that can be used, from tools that come built
into the systems being used (for instance, Perfmon on Windows), to
open source toolsets (for instance, JMeter), free web-based tools
(such as WebPagetest), and tools that you can pay a little or a lot for.

Determining the right toolset is a difficult task and will vary greatly
depending on:

Is Performance Really a First-Class Citizen? | 11

http://www.webpagetest.org/

• The kind of performance challenge you are facing (poor perfor‐
mance under load, poor performance not under load, poor
database performance, networking congestion, etc.)

• The platform you are working on
• The type of system you develop (website, desktop, web service,

mobile app, etc.)
• The budget you have to work with
• Skillsets you have in house
• Other tools already used in house or existing licences that can

be leveraged

Choosing the right tools for your situation is very important. Poor
tool choices can lead to wasted time and effort when trying to get to
the bottom of a problem by misdiagnosing the root cause of an
issue.

It is also essential that sufficient hardware and training is provided
to get the full value out of the selected tools. Performance tooling is
often complex, and users need to be given time and support to get
the full value from it.

Action Plan
Make Performance Part of the Conversation
All too often, performance flies under the radar because it is never
discussed. As a performance warrior, your first step is to change
that, and a few simple steps can move the discussion forward:

• Start discussing performance at planning sessions, standups,
retrospectives, and other get-togethers.

• Start asking the business users what they expect from perfor‐
mance.

• Start asking the development team how they plan on addressing
potential performance bottlenecks.

• Start asking the testers how they plan on validating perfor‐
mance.

Often the answers to these questions will be unsatisfactory, but at
least the conversation is started.

12 | Phase 2: Promotion “Performance is a First-Class Citizen”

Set Performance Targets
It is essential that everyone within the team know what levels of per‐
formance the system is aiming for and what metrics they should be
considering. This subject is addressed in more detail in the next
chapter.

Treat Performance Issues with the Same Importance
and Severity as Functional Issues
Performance issues should fail builds. Whether informal or formal
performance targets have been set, there must be the organizational
policies to declare a build not fit for release on the grounds of per‐
formance.

This then will require testing for performance, not just for function‐
ality.

Assign Someone with Responsibility for Performance
Within the Project
When performance is not being considered, a good way to move
things forward is to assign someone within a team who is responsi‐
ble for performance on that project/product. This doesn’t necessar‐
ily mean that this person will be doing all performance target set‐
ting, testing, optimization, etc. She will just be responsible for mak‐
ing sure that it is done and that performance is satisfactory.

How to Integrate Performance Engineers into
Development Projects

There are several structures you can choose from to implement a
performance ethos into a development team:

1. Assign an existing team member.
For smaller teams, this is often the only option: an existing
team member is assigned this job alongside his usual role.

Pros
• That person has a good understanding of the project in

a wider context.
• Low cost.

Action Plan | 13

Cons
• It will inevitably create conflicts with the time needed

for that person’s existing role.
• The person selected will not be a specialist in perfor‐

mance.

2. Place a dedicated person within the team.
Embed someone within the team who is a dedicated perfor‐
mance engineer.

Pros
• Dedicated resource focused only on performance.
• In-depth knowledge of the project, and thus well

aligned with other team members.

Cons
• Can result in inconsistent performance practice across

different projects.
• An expensive proposition if you have a large number of

teams.
• May be underutilized during some parts of the develop‐

ment process.

3. Create a separate performance team.
This team will be spread across all projects and provide exper‐
tise as needed.

Pros
• Pool of performance experts providing best practice to

all projects.
• Can share expertise across entire business.

Cons
• Not fully part of the core delivery team, which can lead

to an us/them conflict.
• Can lead to contention among projects.
• Performance team members may not have the detailed

knowledge of the product/project being completed.

4. Use an external agency.
There are external agencies that provide this expertise as a ser‐
vice, either as an offsite or onsite resource.

14 | Phase 2: Promotion “Performance is a First-Class Citizen”

Pros
• Flexible because company can increase or reduce cover‐

age as needed.
• Reduced recruitment overhead and time.
• High level of expertise.

Cons
• Can be expensive.
• Time needed to integrate into team and company.

Give People What They Need To Get Expertise
Performance engineering is hard: it requires a breadth of under‐
standing of a wide range of aspects of application development that
can contribute to performance issues (clients, browsers, network,
third-party systems, protocols, hardware, OS, code, databases, etc.).
There are also many specialist tools that can be used to identify the
cause of performance issues. All these require a specialist’s skills.

Performance testing presents a new set of challenges (what to test,
how to test, how the load model should be constructed, where to
test from, how to analyse the results, etc). These skills don’t lie
beyond most people within development teams, but they do need
time to learn and practice the skills needed and the budget to buy
the tools.

Create a Culture of Performance
This sounds grandiose but doesn’t need to be. It simply means
evolving your company to see the performance of its systems as a
key differentiator. Good performance should be something that
everyone within the company is proud of, and you should always be
striving toward better performance. Often this culture will start
within one team and then be driven out to the wider business.

Some simple rules to follow when thinking about how to introduce a
performance culture include:

• Be realistic: focus on evolution, not revolution. Change is hard
for most people.

• Take small steps: set some achievable targets and then celebrate
hitting them, after which you can set harder targets.

Action Plan | 15

• Put things into a relevant context: present stats that convey per‐
formance in terms that will matter to people. Page load time will
be of little interest to the business, but the relationship between
page load time and sales will be.

• Get buy-in from above: performance can begin as a grassroots
movement within an organization, and often does; but in order
to truly get the results the site needs, it eventually needs buy-in
from a senior level.

• Start sending out regular reports about performance improve‐
ments and the impact they are having on the business.

16 | Phase 2: Promotion “Performance is a First-Class Citizen”

Phase 3: Strategy
“What Do You Mean by

‘Good Performance'?”

Having got buy-in to introducing performance as a central part of
your development process, the next question you have to answer as
a performance warrior is, “What do you mean by ‘good perfor‐
mance’?”

The answer to this question will vary for every product and project,
but it is crucial for all stakeholders to agree on a definition. It is easy
to get drawn in to vague concepts like “The site must be fast,” but
these are of limited value beyond high-level discussions.

Fundamentally, all stakeholders need to share an understanding of a
performance landscape. This is a communal understanding of the
key performance characteristics of your system, what measures of
performance are important, and what targets you are working
toward.

It is important to define your success criteria and the framework
within which those criteria must be met. This includes ensuring that
you have defined the platform that the system will be running on,
the expected data quantities, the expected usage levels, and so
on. Defining this landscape is essential to allow developers to make
reasonable assessments of the levels of optimization that are appro‐
priate to perform on the system.

All the time, effort, and investment that has been put into the first
two phases can be undermined if this phase is handled badly. This is
where you identify the value of performance improvements to the

17

business and how that value will be assessed. This is what you will be
measured against.

Three Levels of the Performance Landscape
There are three levels at which to define what you mean by good
performance.

• Performance vision
• Performance targets
• Performance acceptance criteria

Performance Vision
The starting point for performance across any system is creating a
performance vision. This is a short document that defines at a very
high level how performance should be considered within your sys‐
tem. The document is aimed at a wide audience, from management
to developers to ops, and should be written to be timeless and talk
mainly in concepts, not specifics. Short-term objectives can be
defined elsewhere, but they will all be framed in terms of the overall
performance vision.

This document is the place to define which elements of performance
are important to your business. Therefore, all the statements should
be backed by a valid business focus. This document is not the place
where you define the specific targets that you will achieve, only the
nature of those targets.

For example, this document would not define that the homepage
must load in less than two seconds, only that homepage loading
speed is an area of key importance to the business and one that is
used as a means of differentiation over competitors.

As a performance warrior, this document is your rules of engage‐
ment. That is, it doesn’t define how or where the battle against poor
performance will be fought, but it does define the terms under
which you should enter into battle.

It is important to get as much business involvement as possible in
the production of this document and from people covering a wide
swath of the business: management, sales, customer service, ops,
development, etc.

18 | Phase 3: Strategy “What Do You Mean by ‘Good Performance'?”

The following sidebar shows an example of a performance vision for
a rock- and pop-music ticketing site.

Sample Performance Vision
Headlines

• The ability to remain up under load is a key differentiator
between the company and competitors.

• Failure to remain up can result in tickets being transferred to
competitors and PR issues.

• The industry is largely judged by its ability to cope under load.
• Peaks (1,000 times normal load) are rare but not unknown.

Details

The primary aim of the system is to deliver throughput of sales at
all times. It is acceptable for customers to be turned away from the
site or have a reduced service as long as there is a flow of completed
transactions.

There is an acceptance that there will be extremely high peaks of
traffic and that there is no intention of being able to scale out to
meet the load of those peaks, but the system must remain up and
serving responses and completing transactions throughout those
peaks. The more transactions that can be processed, the better, but
the cost of being able to process additional transactions must be
financially feasible.

It is essential to maintain data integrity during high load. Repeated
bookings and duplicate sales of tickets are the worst-case scenario.

Most peaks can be predicted, and it is acceptable for manual pro‐
cesses to be in place to accommodate them.

During peak events, there are two types of traffic: visitors there for
the specific event and visitors there shopping for other events who
are caught up in traffic. Visitors there for the specific event will be
more tolerant of poor performance than the normal visitors.

There is an expectation that the system will perform adequately
under normal load, but this is not seen as the key area of focus or
an area of differentiation between the business and competitors.

Three Levels of the Performance Landscape | 19

KPIs / Success Criteria

The following KPIs will be tracked to measure the success of the
performance of this system:

• The level of traffic that can be handled by the system under
high load. This is defined as the number of people to whom we
can return an information page explaining that the site is busy.

• The level of transactions per minute that can be possessed suc‐
cessfully by the system while the site is under peak load.

• The impact of peak events on “normal traffic,” i.e., users who
are on the site to buy tickets for other events.

Performance Targets
Having defined your performance vision, the next step is to start
defining some measurable key performance indicators (KPIs) for
your system. These will be used as the basis for your performance
targets. Unlike the performance vision, which is designed to be a
static document, these will evolve over time. Performance targets are
sometimes referred to as your performance budget.

If the performance vision is your rules of engagement, the perfor‐
mance targets are your strategic objectives. These are the standards
you are trying to achieve. Your KPIs should include numeric values
(or other measurable targets) against which you can assess your pro‐
gress.

It is essential that performance targets be:

• Realistic and achievable
• Business focused
• Measurable
• In line with the performance vision

Your performance targets fulfill two important roles:

• They create a focal point around which the development team
can all work together toward a shared objective.

• They create a measurable degree of success that can be used by
the rest of the business to determine the value of the
performance-improvement process.

20 | Phase 3: Strategy “What Do You Mean by ‘Good Performance'?”

Once the performance targets are defined, it is essential to assess
progress toward them regularly and report the progress throughout
the business.

Example performance targets could be:

• Homepage loads in under 5 seconds.
• Above-the-fold homepage content visible to users in less than 1

second.
• Site capable of handling 10,000 orders in 1 hour.
• Site capable of handling peak load on 8 rather than the current

12 servers.
• Homepage load time faster than named competitors.
• Average search processing time less than 2 seconds.
• No SQL query execution should take more than 500 millisec‐

onds.

Performance Acceptance Criteria
Having defined your rules of engagement (performance vision) and
your strategic objectives (KPIs), you now need to define tactical
objectives. These are short-term, specific objectives that will move
you toward one or more of your strategic objectives. They will take
the form of performance acceptance criteria that are defined for
each feature, user story, or specification.

Any piece of work that is accepted into development, whether in an
agile world (e.g., a feature or user story) or traditional waterfall
development (e.g., a specification), should have a pre-defined set of
performance-related criteria that must be met for the development
to be accepted. Anything not meeting these criteria should be
deemed as not fit for purpose.

All performance acceptance criteria should be framed in the context
of moving towards, or at least maintaining the current state, of one
of the KPIs.

Two types of acceptance criteria are associated with tasks:

• Those where the task is specifically focused on performance
improvements and should see an improvement of performance
against a KPI.

Three Levels of the Performance Landscape | 21

• Those where the task is additional functionality and the main
objective will be to ensure that performance remains static or
has an acceptable level of degradation against a KPI.

In both cases, is important to keep the criteria realistic.

Tips for Setting Performance Targets
Solve Business Problems, Not Technical Challenges
An often-heard complaint from budding performance warriors who
are trying to get buy-in from their business and are struggling is,
“Why don’t they realize that they want as fast a website as possible?”

The simple answer to this is, “Because they don’t!” The business in
question does not want a fast website. The business wants to make
as much money as possible. Only if having a fast website is a vehicle
for them doing that do they want a fast website.

This is an essential point to grasp: make sure you are solving busi‐
ness problems, not technical challenges.

As a techie, it’s easy to get excited by the challenge of setting arbi‐
trary targets and putting time and effort into continually bettering
them, when more business benefit could be gained from solving
other performance problems or investing the money in non-
performance enhancements.

There is a lot of professional pride to be had in having a faster page
load time than your nearest competitor (or the company you used to
work for), but slow page load time may not be your company’s pain
point.

So take a step back and understand the performance problems and
how they are impacting the business. Start your performance opti‐
mization with a business impact, put it into financial terms, and
provide the means to justify the value of the performance optimiza‐
tion to the business.

Think Beyond Page Load Time
The headline figure for a lot of discussions around performance is
page load time, particularly page load time when under typical, non-
peak traffic levels. However, it is important that you actually focus

22 | Phase 3: Strategy “What Do You Mean by ‘Good Performance'?”

on addressing the performance issues that are affecting your busi‐
ness.

The issues you are seeing may be slow page load when the system is
not under load. It’s equally possible, however, that you are seeing
slowdowns under adverse conditions, intermittent slowdowns
under normal load, excessive resource usage on the server necessi‐
tating an excessively large platform, or many other potential prob‐
lems.

All of these examples can be boiled down to a direct financial impact
on the business.

As an example, one company I worked with determined that its
intermittent slowdowns cost 350 sales on average, which would
work out to £3.36 million per year. This gives you instant business
buy-in to solve the problem and a direct goal for developers to work
on. Furthermore, it provides an observable KPI to track achieve‐
ment and know when you are done, after which you can move on to
the next performance problem.

Another company I worked with had a system that performed per‐
fectly adequately but was very memory hungry. Its business objec‐
tive was to release some of the memory being used by the servers to
be used on alternative projects (i.e., reduce the hosting cost for the
application). Again, this was a direct business case, a problem devel‐
opers can get their teeth into and a observable KPI.

Look at the actual problems your business is having and understand
the impact, then set your KPIs based on this.

Beware Over-optimization
When setting your targets, always remember: be realistic. Many a
performance warrior has fallen into the trap of setting their targets
too high, being over-ambitious, and trying to build an ultra-
performant website.

But shouldn’t you always build the most ultra-performant system
you can?

No. You should always build an appropriately performant system.
Over-optimizing a system can be just as negative as under-
optimizing. Building a ultra-performant, scalable web application
takes many factors, such as:

Tips for Setting Performance Targets | 23

Time
Building highly performant systems just takes longer.

Complexity
Highly optimized systems tend to have a lot more moving parts.
Elements such as caching layers, NoSQL databases, sharded
databases, cloned data stores, message queues, remote compo‐
nents, multiple languages, technologies and platforms may be
introduced to ensure that your system can scale and remain
performant. All these things require management, testing,
development expertise, and hardware.

Expertise
Building an ultra-performant website is hard. It takes clever
people to devise intelligent solutions, often operating at the lim‐
its of the technologies being used. These kind of solutions can
lead to areas of your system being unmaintainable by the rest of
the team. Some of the worst maintenance situations I have seen
have been caused by the introduction of some unnecessarily
complicated piece of coding designed to solve a potential per‐
formance problem that never materialized.

Investment
These systems require financial investment to build and sup‐
port, in terms of hardware, software, and development/testing
time and effort. The people required to build them are usually
highly paid.

Compromises
Solving performance issues is done often at the expense of good
practice or functionality elsewhere. This may be as simple as
compromising on the timeliness of data by introducing caching,
but often maybe accepting architectural compromises or even
compromises in good coding practice to achieve performance.

24 | Phase 3: Strategy “What Do You Mean by ‘Good Performance'?”

Action Plan
Create Your Performance Vision
The first step is to define the performance vision for your company/
system.

This typically starts with one or a number of workshops with rele‐
vant parties gathering data about how performance impacts their
worklife in a positive and negative manner. A good starting point for
these workshops is with the question, “What do we mean by ‘good
performance’?”. Remember always to try and focus the discussions
around what the business impact of the subjects being discussed are.

From the workshops, create a one-page performance vision for gen‐
eral agreement.

Set Your Performance Targets
From the performance vision, extract some key KPIs that you are
going to focus on, and set realistic, achievable targets for them.

Ensure that the first improvements that you target are a nice mix of
quick wins from which the business benefits. This will enable the
rest of the business to see progress and value as soon as possible.

Create Regular Reports on KPIs
Institute a regular proactive reporting mechanism on your progress
against KPIs, especially one that highlights success. This could be a
regular email that you send out across the business, an item dis‐
played on notice boards, inclusion in regular company newsletters,
or mentions in company update meetings.

In whatever manner you deliver the reports, you should get the mes‐
sage of progress to the wider business. This is essential to get the
culture of performance accepted throughout the business, which
will avert pushback when requested functionality is delayed because
of performance-related issues.

Action Plan | 25

Revise Your User Story Gathering/Specification Process
to Include Performance Acceptance Criteria
The earlier you start thinking about performance, the better, so it is
important to start building this into the process as early as possi‐
ble. Performance acceptance criteria should be included within the
other standard NFRs that are determined before development starts.

Re-evaluate Your “Definition of Done” to Include
Performance Acceptance Criteria
Many agile development teams now have a published “definition of
done.” This details all the actions that have to be completed before a
piece of work can be declared done. This ensures that when work is
declared as done, it is release ready, not just development complete.

Any team that has a definition of done should expand it to require
that sufficient testing has been completed to ensure that the stated
performance acceptance criteria of the application have been met.

This could be that as part of the sprint, you have created automated
performance tests that will validate that your performance accept‐
ance criteria have been met and fail builds until those have been
passed. On a simpler level, it could be that a set of performance tests
have been executed and the results manually analyzed or that per‐
formance code reviews have been carried out by other developers or
performance engineers.

26 | Phase 3: Strategy “What Do You Mean by ‘Good Performance'?”

Phase 4 : Engage
“Test...Test Early…Test Often...”

You have now defined good performance. You can’t just sit back and
hope that the development you have done is good enough to hit
those targets. A good performance warrior will now start testing to
determine that they are being met ahead of pushing to production.

This opens up a whole new set of challenges that could fill a whole
book (that book is The Art of Performance Testing by Ian Molyneaux
(O’Reilly), an essential read for any performance warrior), so I’ll just
present a quick overview of some of the issues to be addressed.

Challenges of Performance Testing
Tooling
Performance testing tools range from open source to very, very
expensive, each of them having their pros and cons. Some rely heav‐
ily on scripts and are aimed more at competent developers, whereas
others are more drag-and-drop, aimed at less technical people.
Some target particular technologies, such as Citrix-based systems.

For general web-based systems, JMeter is a good starting point. It is
open source, has a reasonable learning curve, and has built up a
good community to go to for support.

Environments
The environment that you test on can make a big difference. Obvi‐
ously, if your live system runs on 10 quad core servers, each with 64

27

http://bit.ly/art-app-perf-testing

GB of RAM, testing on a single dual core server with 32 GB RAM
(or just on your laptop) will not get the same results. It doesn’t inva‐
lidate the testing, but you need to scale down your expectations.

Other aspects of your environment beyond hardware also have to be
considered. Think also about infrastructure (are you going through
the same load balancer, firewalls, switches, bandwidth, etc.?), data
quantities (are you testing with 10 products when there are 100,000
in production?), contention (are their other systems that share ele‐
ments of the system under tests?), and so on.

Often, creating a reasonable performance-testing environment is
difficult for logistical or economic reasons, so you may need to think
out of the box. Cloud environments are a good option to quickly
spin up and down large platforms. Disaster recovery (DR) environ‐
ments are another option if they can be temporarily used for perfor‐
mance testing.

Some companies actually use their own production environments
(after all, what could be more production like?) during periods of
low or no usage. Many subtleties and risks have to be considered
before doing this, particularly, how you minimize the impact on real
users during that period and how you isolate any data created by
performance testing from production data.

User Journeys
Performance testing is usually based around replicating user jour‐
neys through your system to simulate multiple actions by multiple
users simultaneously. It takes effort to simulate these actions in a
manner that reflects what will happen on the production system.

Getting these as representative as possible is a complex task, espe‐
cially for a greenfield project where much is based on conjecture and
guesswork. For existing systems, server logs and analytics (e.g., Goo‐
gle Analytics) provide an excellent starting point.

It is important that a wide enough range of representative user jour‐
neys is created with sufficient randomization of data to ensure that
the system under test is being effectively exercised while not invalid‐
ating the test by making it not repeatable.

28 | Phase 4 : Engage “Test...Test Early…Test Often...”

Load Model
One of the most complex elements of performance testing is gener‐
ating the pattern and levels of users to execute the user journeys.
This is the load model.

On existing systems, server logs and analytics packages can be a
good starting point.

It is essential that this is realistic and you create a valid number of
users, acting in a realistic manner with realistic think times between
each step of their journey. If your performance targets are focused
around hitting a target level of transactions per second, then it is
possible to reverse engineer the load model to determine how many
users will be required to hit that level.

A reasonable test execution plan will include multiple
load models to mimic different patterns of usage such
as normal load and peak load.

Types of Tests
There are different type of tests, and it is essential when executing a
test that you are aware of the type of test that you are running and
have defined what you hope to determine from that test.

Some examples of the types of performance test that can be executed
are:

Load test
A test to determine how a system performs when a specified
level of traffic is executed against it.

Soak test
A long-running test to determine the ongoing performance of a
system over a longer period of time, illustrating issues, such as
memory leaks, that become apparent only over a long period of
time.

Capacity test
A test that escalates levels of load being applied until a system
reaches a breaking point.

Challenges of Performance Testing | 29

Iterative Improvements to Performance Testing
All these elements create hurdles that must be overcome, but they
are all surmountable. The important message here is that some test‐
ing is better than none. Once you are doing some testing, work on a
program of continuous improvement and refinement until you are
seeing more and more value from the testing you are doing.

During the early stages, you will likely see false positives (i.e., tests
that indicate potential performance problems that don’t materialize
on production). You also may see performance issues on production
that were not caught in testing. This does not invalidate the testing
process; it just reveals that you need to understand why the test fail‐
ure have occurred and evolve your testing process to mitigate that in
future.

At each step of improving your testing process, the important ques‐
tions to ask yourself are:

• What aspects of this test may mean that the results will not be
representative of live use? How may these be mitigated to make
the result more reliable?

• How are these tests working toward validation of my perfor‐
mance KPIs?

Test Early
The traditional role of performance in the development cycle was to
get a release signed off through functional testing and complete a
performance testing process prior to going live. This approach leads
to a some fundamental problems:

• The project is generally regarded as finished by this point. Test‐
ing at the end of the project inevitably gets squeezed as previous
steps overrun their deadlines. This results in:
— Lack of time to realistically run the tests.
— Resistance against dealing with any issues that come out of

the testing because delays threaten deadlines.
• Performance issues often are caused by underlying architectural

issues and are therefore much harder to fix than functional
issues.

30 | Phase 4 : Engage “Test...Test Early…Test Often...”

These two factors combine to create the perfect storm. You are find‐
ing bugs that are the hardest to fix, at the time when they are hardest
to fix, at a point when people are not inclined to want to spend addi‐
tional time doing major changes, all to be completed in a period of
time that is constantly squeezed by the earlier phases.

Having said all that, why do many companies still insist on testing
only at the end of projects? Arguments are usually based around one
or more of the following reasons:

• Performance testing is hard. It takes additional time and effort
to generate scripts. There is no point in doing this until there is
a stable application to test against.

• There is only limited access to an environment for testing.
• There is no point in performance testing earlier; the app is only

a development version and hasn’t been performance optimized
yet.

On the surface, all of these arguments have validity, but the same
claims could be made for any kind of testing. Nevertheless, the agile
movement has consistently shown that earlier functional testing
results in faster, more reliable development.

The traditional approach of “finish development, go through a load
testing process, and approve/reject for go-live” really doesn’t work in
a modern development environment. The feedback loop is just too
slow.

Alternative Methods of Early Performance Testing
As performance warriors, you need to be looking at methods to exe‐
cute performance testing earlier. However, the arguments against
executing complete performance tests earlier in the process have a
degree of validity, so it is worth considering other methods of vali‐
dating performance at that stage.

Examples include:

• Waterfall chart analysis of pages being returned that can be
automated using a tool such as WebPagetest or manually using
Firebug or Chrome Developer Tools. See Chapter 5 for more
information on these tools.

• Adding timers around your unit tests. Monitor for trends
toward poor performance and for failures to hit a performance

Test Early | 31

threshold. This can also be used for integration testing if you are
running tools such as Cucumber.

• Parallelization of unit tests to get some idea of concurrency
impacts.

• Using performance monitors or application performance man‐
agement (APM) in continuous integration (CI) environments to
get an understanding of what is happening within your applica‐
tion. See Chapter 5 for more information on these tools.

Many problems occur only under heavy loads, and these kinds of
testing won’t encounter such conditions, but they may provide some
early indications of such problems.

These low-level methods should be augmented with performance
testing with higher volumes of traffic as early in the process as possi‐
ble.

As well as testing earlier, it is also important that the performance
engineering team has a lot of integration with the development
team, for both practical and political reasons. As discussed in
“Assign Someone with Responsibility for Performance Within the
Project” on page 13, there are several ways of integrating a perfor‐
mance engineer into the team.

When issues are identified, performance engineers and developers
must cooperate and share their knowledge to resolve the problem.
Performance engineers should not just identify problems; they must
be part of the solution.

Performance Engineers Still Need Space for Analysis
One of the downsides to pushing performance testing at early stages
is that it often results in additional testing without appropriate space
for analysis. Analysis of performance testing is important to expose
testing’s insights; performance is not based on black-and-white
results.

An oft-cited but still forgotten principle is that data is not informa‐
tion. Human intelligence is required to convert data into informa‐
tion. An important role of the performance engineer in improving
any process is to ensure that the extra step of creating information is
taken. Data is too often the focus of attention because it can be pro‐
vided more regularly. As a performance warrior, you must ensure

32 | Phase 4 : Engage “Test...Test Early…Test Often...”

sufficient quality, not just quantity, of performance testing during
the development process.

Data versus Information
Data

This second test run had average response times 12% higher
than the previous run.

Information
The second test run had a higher average response time pri‐
marily due to the “SearchProducts” transaction spiking 10
minutes into the test at the point where concurrent executions
for this transaction exceeded 100. In the previous test run, this
spike didn’t occur.

Considering running two levels of analysis on performance test
results:

1. An automated level of analysis that compares the data against a
set of KPIs at a high level and gives a RAG score. (Red flags a
serious problem, amber indicates something to watch in further
testing, and green means the system works as desired.) This is
useful for running regular performance tests as part of a CI pro‐
cess.

2. A more formal level of analysis done by a human who then rec‐
ommends actions and more in-depth assessments of the actual
results.

Test Often
It is an often-heard motto within the agile and continuous delivery
world: if something is hard to do, do it early and do it often!

The same is true of performance testing. The more often you can
test and the less of an special event a performance test becomes, the
more likely you are to uncover performance issues in a timely man‐
ner.

Cloud and other virtualized environments, as well as automation
tools for creating environments (e.g., Chef, Puppet, and CloudFor‐
mation), have been game changers to allow earlier and more regular

Test Often | 33

performance testing. Environments can be reliably created on
demand. To make testing happen earlier, we must take advantage of
these technologies. Obviously you must consider the cost and
licencing implications of using on-demand environments.

We can also now automate environment setup, test execution, and
the capture of metrics during the test to speed up the analysis pro‐
cess. APM tooling helps in this respect, giving easy access to data
about a test run. It also allows the creation of alerts based on target
KPIs during a test run.

Adding Performance to a Continuous Integration
Process
Once performance testing gets added to the tasks of the test group,
the obvious next step for anyone running a CI process is to integrate
performance testing into it. Then, with every check-in, you will get a
degree of assurance that the performance of your system has not
been compromised.

However, there are a number of challenges around this:

Complexity
Full-scale performance tests need a platform large enough to
execute performance tests from and a platform with a realistic
scale to execute tests against. This causes issues when running
multiple tests simultaneously, as may be the case when running
a CI process across multiple projects.

Automation can solve these problems by creating and destroy‐
ing environments on demand. The repeatability of datasets also
needs to be considered as part of the task. Again, automation
can be used to get around this problem.

Cost
Spinning up environments on demand and destroying them
may incur additional costs. Automating this on every check-in
can lead to levels of cost that are very difficult to estimate.

Many performance test tools have quite limited licensing terms,
based on the number of test controllers allowed, so spinning up
multiple controllers on demand will require the purchase of
additional licenses. The development team needs to consider

34 | Phase 4 : Engage “Test...Test Early…Test Often...”

these costs, along with the most cost-effective way to execute
performance tests in CI.

One solution to this is to use open source tools for your CI per‐
formance tests and paid tools for your regular performance
tests. The downside is that this requires the maintenance of
multiple test script packs, but it does, however, enable you to
create simplified, focused testing that is CI specific.

Time
CI is all about getting a very short feedback loop back to the
developer. Ideally this is so short that the developer does not feel
it is necessary to start working on anything else while waiting
for feedback. However, performance tests usually take longer
than functional tests (30 minutes is a typical time span); this is
increased if they first involve spinning up environments.

A solution for this is to run simplified performance tests with
every check-in. Examples include unit tests timings, micro-
benchmarks of small elements of functionality, and WebPagetest
integrations to validate key page metrics. You can then run the
full performance test as part of your nightly build, allowing the
results to be analysed in more detail by performance engineers
in the morning.

Pass/fail orientation
CI typically relies on a very black-and-white view of the world,
which is fine for build and functional errors. Either something
builds or it doesn’t; either it is functionally correct or it isn’t.

Performance testing is a much more gray area. Good versus bad
performance is often a matter of interpretation. For CI, perfor‐
mance testing needs to produce more of a RAG result, with a
more common conclusion being that the matter is worthy of
some human investigation, rather an actual failure.

Trends
Adopting a spectrum of failure over a pass/fail solution requires
people to investigate data trends over time.

The performance engineer needs access to historical data, ide‐
ally graphical, to determine the impact of previous check-ins to
enable the engineer to be able to get the the root cause of the
degradation.

Test Often | 35

Functional testing rarely needs a look back at history. If a func‐
tional test previously passed and now fails, the last change can
be reasonably blamed. The person who broke the build gets
alerted and is required to work on the code until the build is
fixed.

A performance issue is not that black and white. If you consider
a page load time of 10 seconds or more to be a failure, and the
test fails, the previous check-in may merely have taken page
load time from 9.9 to 10.1 seconds. Even though this check-in
triggered the failure, a look back at previous check-ins may turn
up a change that took the page load time from 4.0 to 9.9 sec‐
onds. Clearly, this is the change that needs scrutiny. Another
alternative is to look at percentage increments rather than hard
values, but this has its own set of problems: a system could con‐
tinuously degrade in performance by a level just below the per‐
centage threshold with every check-in and never fail the CI
tests.

So performance testing departs from the simple “You broke the
build, you fix it” model driving many CI processes.

Action Plan
Start Performance Testing
If you’re not currently doing any performance testing, the first step
is to start. Choose a free toolset or a toolset that your organization
already has access to and start executing some tests. In the short
term, this process will probably ask more questions than it answers,
but it will all be steps in the right direction.

Standardize Your Approach to Performance Testing
Next evolve your performance-testing trials into a standard
approach that can be used on most of your projects. This standard
should include a definition of the types of tests you will run and
when, a standard toolset, a policy about which environments to use
for which types of tests and how they are created, and finally, an
understanding of how results will be analyzed and presented to
developers and managers. If your development is usually an evolu‐
tion of a base product, look at defining a standard set of user jour‐
neys and load models that you will use for testing.

36 | Phase 4 : Engage “Test...Test Early…Test Often...”

This standard will not be set in stone and should constantly change
based on specific project needs. But it should be a good starting
point for performance testing on all projects.

Consider Performance Testing at Project Inception
In addition to defining the performance acceptance criteria
described in “Performance Acceptance Criteria” on page 21, the
project’s specification stage must also consider how and when to do
performance testing. This will enable you to drive testing as early as
possible within the development process. At all points, ask the fol‐
lowing questions while thinking of ways you can do elements of the
testing earlier without investing more time and effort than would be
gained by the early detection of performance issues:

• Will you need a dedicated performance test environment? If so,
when must this be available?

• Can you do any lower-level testing ahead of the environment
being available?

Look at the performance acceptance criteria and performance tar‐
gets and determine how you will be able to test them. What levels of
usage will you be testing, and what user journeys will you need to
execute to validate performance? How soon can scripting those user
journeys start? What data will you need to get back to determine
success? Will your standard toolset be sufficient for this project?

Integrate with Your CI Process
If you are running a CI process, you should try to integrate an ele‐
ment of performance testing within it. As described earlier, there are
a lot of issues involved in doing this, and it takes some thought and
effort to get working effectively.

Start with small steps and build on the process. Do not fail builds
until there is a degree of trust that the output from the tests is accu‐
rate and reliable. Always remember that the human element will be
needed to assess results in the gray area between pass and fail.

Action Plan | 37

Phase 5 : Intelligence
“Collect Data and Reduce

Guesswork”

Testing will show you the external impact of your system under
load, but a real performance warrior needs to know more. You need
to know what is going on under the surface, like a spy in the enemy
camp. The more intelligence you can gather about the system you
are working on, the better.

Performance issues are tough: they are hard to find, hard to repli‐
cate, hard to trace to a root cause, hard to fix, and often hard to vali‐
date as having been fixed. The more data can be uncovered, the eas‐
ier this process becomes. Without it you are making guesses based
on external symptoms.

Intelligence gathering also opens up a whole new theater of opera‐
tions – you can now get some real-life data about what is actually
happening in production. Production is a very rich source of data,
and the data you can harvest from it is fundamentally different in
that it is based on exactly what your actual users are doing, not what
you expected them to do. However, you are also much more limited
in the levels of data that you can capture on production without the
data-capture process being too intrusive.

Chapter 6 discusses in more detail the types of data you can gather
from production and how you should use that data.

During development and testing, there is much more scope for
intrusive technologies that aim to collect data about the execution of
programs at a much more granular level.

39

Types of Instrumentation
Depending on how much you’re willing to spend and how much
time you can put into deciphering performance, a number of instru‐
mentation tools are available. They differ in where they run and how
they capture data.

Browser Tools
Client-side tools such as Chrome Developer Tools, Firebug, and Y-
Slow reveal performance from the client side. These tools drill down
into the way the page is constructed, allowing you to see data such
as:

• The composite requests that make up the page.
• An analysis of the timing of each element.
• An assessment of how the page rates against best practice.
• Timings for all server interactions.

Web-based tools such as WebPagetest will perform a similar job on
remote pages. WebPagetest is a powerful tool that also offers
(among many other features) the capability to:

• Test from multiple locations.
• Test in multiple different browsers.
• Test on multiple connection speeds.
• View output as a filmstrip or video: it is possible to compare

multiple pages and view the filmstrips or video side by side.
• Analyze the performance quality of the page.

Typically the output from these tools is in the form of a waterfall
chart. Waterfall charts illustrate the loading pattern of a page and are
a good way of visualising exactly what is happening while the page
executes. You can easily see which requests are slow and which
requests are blocking other requests. A good introduction to under‐
standing waterfall charts can be found at a posting from Radware by
Tammy Everts. Figure 5-1 shows a sample chart.

40 | Phase 5 : Intelligence “Collect Data and Reduce Guesswork”

http://www.webpagetest.org
http://bit.ly/1ya8irj
http://bit.ly/1ya8irj

Figure 5-1. Example waterfall chart, in this case taken from
WebPageTest

All of these tools are designed for improving client-side perfor‐
mance.

Server Tools
All web servers produce logfiles showing what page has been sent
and other high-level data about each request. Many visualization
tools allow you to analyze these logfiles. This kind of analysis will
indicate whether you’re getting the pattern of page requests you
expect, which will help you define user stories.

At a lower level come built-in metrics gatherers for server perfor‐
mance. Examples of these are Perfmon on Windows and Sar on
Linux. These will track low-level metrics such as CPU usage, mem‐
ory usage, and disk I/O, as well as higher-level metrics like HTTP
request queue length and SQL connection pool size.

Similar tools are available for most database platforms, such as SQL
Profiler for SQL Server and ASH reports for Oracle.

These tools are invaluable for giving insight into what is happening
on your server while it is under load. Again, there are many tools
available for analyzing trace files from these tools.

Types of Instrumentation | 41

These tools should be used with caution, however, as they add over‐
head to the server if you try to gather a lot of data with them.

Tools such as Nagios and Cactii can also capture this kind of data.

Code Profilers
For a developer, code profilers are a good starting point to gather
data on what is happening while a program is executing. These run
on an individual developer’s machine against the code that is cur‐
rently in development and reveal factors that can affect perfor‐
mance, including how often each function runs and the speed at
which it runs.

Code profilers are good for letting developers know where the
potential pain points are when not under load. However, developers
have to make the time and effort to do code profiling.

Application Performance Management (APM)
In recent years there has been a growth in tools aimed specifically at
tracking the underlying performance metrics for a system. These
tools are broadly grouped under the heading APM.

There are a variety of APM toolsets, but they broadly aim to gather
data on the internal performance of an application and correlate that
with server performance. They generally collect data from all execu‐
tions of a program into a central database and generate reports of
performance across them.

Typically, APM tools show execution time down to the method level
within the application and query execution time for database quer‐
ies. This allows you to easily drill down to the pain points within
specific requests.

APM is the jewel in the crown of toolsets for a performance engi‐
neer looking to get insight into what is happening within an applica‐
tion. Modern APM tools often come with a client-side element that
integrates client-side activities with server-side activities to give a
complete execution path for a specific request.

The real value in APM tooling lies in the ability it gives you to
remove guesswork from root-cause analysis for performance prob‐
lems. It shows you exactly what is going on under the hood. As a
performance engineer, you can extrapolate the exact method call

42 | Phase 5 : Intelligence “Collect Data and Reduce Guesswork”

that is taking the time within a slow-running page. You can also see
a list of all slow-running pages or database queries across all
requests that have been analyzed. Many tools also let you proactively
set up alerting on performance thresholds. Alerting can relate to
hard values or spikes based on previous values.

There is overhead associated with running these kinds of tools, so
you must be careful to get the level of instrumentation right. Pro‐
duction runs should use a much lower level of instrumentation. The
tools allow you easily to increase instrumentation in the event of
performance issues during production that you want to drill into in
more detail.

On test systems, it is viable to operate at a much higher level of
instrumentation, but retain less data. This will allow you to drill
down to a reasonable amount of detail into what has happened after
a test has run.

Action Plan
Start Looking Under the Hood During Development
Start by using the simpler tools that are easier to integrate (e.g., cli‐
ent tools and code profilers) within your development process to
actively assess the underlying performance quality of what you are
developing. This can be built into the development process or form
part of a peer/code review process.

Include Additional Data Gathering as Part of
Performance Testing
As part of your performance-testing process, determine which
server-side stats are relevant to you. At the very least, this should
include CPU usage and memory usage, although many other pieces
of data are also relevant.

Before starting any tests, it may be necessary to trigger capturing of
these stats, and after completion, they will need to be downloaded,
analyzed, and correlated to the results of the test.

Action Plan | 43

Install an APM Solution
APM tooling is an essential piece of the toolkit for a performance
warrior, both during testing and in production. It provides answers
for a host of questions that need answering when creating perform‐
ant systems and doing root-cause analysis on performance issues.

However, the road to successful APM integration is not an easy one.
The toolsets are complex and require expertise to get full value from
them. A common mistake (and one perpetrated by the vendors) is
to think that you can just install APM and it will work. It
won’t. Time and effort need to be put into planning the data that
needs to be tracked. You also need training, time, and space to learn
the system before performance engineers and PerfOps engineers can
realize the tool’s potential.

44 | Phase 5 : Intelligence “Collect Data and Reduce Guesswork”

Phase 6: Persistence
“Go Live Is the Start of

Optimization”

There has traditionally been a division between the worlds of devel‐
opment and operations. All too often, code is thrown over the wall
to production, and performance is considered only when people
start complaining. The DevOps movement is gaining traction to
address this issue, and performance is an essential part of its mis‐
sion.

There is no better performance test than real-life usage. As a perfor‐
mance warrior, you need to accept that pushing your code live is
when you will really be able to start optimizing performance. No
tests will ever accurately simulate the behavior of live systems.

By proactively monitoring, instrumenting, and analyzing what’s
happening in production, you can catch performance issues before
they affect users and feed them back through to development. This
will avoid end-user complaints being the point of discovery for per‐
formance problems.

Becoming a PerfOps Engineer
Unlike functional correctness, which is typically static (if you don’t
change it, it shouldn’t break), performance tends toward failure if it
is not maintained.

Increased data, increased usage, increased complexity, and aging
hardware can all degrade performance. The majority of systems will

45

face one or more of these issues, so performance issues are likely if
left unchecked.

To win this battle, you need to ensure that you are capturing enough
data from your production system to alert you to performance
issues while they happen, identify potential future performance
issues, and find both root causes and potential solutions. You can
then work with the developers and ops team to implement that solu‐
tion.

This is the job of the PerfOps engineer.

Just as DevOps looks to bridge the gap between development and
operations, PerfOps looks to bridge the gap between development,
performance, and operations.

PerfOps engineers need a good understanding of the entire applica‐
tion stack, from client to network to server to application to data‐
base to other components, and how they all hook together. This is
how to determine where the root cause of performance issues lies
and where future issues may arise.

The PerfOps Engineer’s Toolbox
Given that performance is such a complex and subtle phenomenon,
you have to be able to handle input from many types of tools, some
general-purpose and some more dedicated to performance.

Server/network monitoring
The Ops team will more than likely have a good monitoring system
already in place for identifying issues on the server/network infra‐
structure that you are using. Typically this will involve toolsets such
as Nagios or Cactii, or proprietary systems such as HP System Cen‐
ter.

These systems will probably focus on things such as uptime, hard‐
ware failure, and resource utilization, which are slightly different
from what you need for proactive performance monitoring. How‐
ever, the source data that you will want to look at will often be the
same, and the underlying systems are capable of handling other data
sources that you will need.

46 | Phase 6: Persistence “Go Live Is the Start of Optimization”

Real-user monitoring (RUM)
RUM captures data on the actual experience that users are getting
on your system. With this technology, you can get a real under‐
standing of exactly what every (or a subset) of users actually experi‐
enced when using your system.

Typically, for web-based systems, this works by injecting a piece of
JavaScript into the page that gathers data from the browser and
transmits it back to the collection service, which aggregates and
reports on it. There are now also RUM systems that integrate into
non-web systems, such as native apps on mobile devices that give
the same type of feedback.

Some of the newer RUM tools will integrate with APM solutions to
get a full trace of all activity on the client and the server. This allows
you to identify specific issues and trace the root cause of the issue,
whether on the client, on the server, or a combination.

RUM tools are especially useful for drilling down into performance
issues for subsets of users that may not be covered by testing or
issues that may be out of the scope of testing. For example:

Geographic issues
If users from certain areas see more performance issues than
other users, you can put solutions in place to deal with this. Per‐
haps you need to target a reduced page size for that region or
introduce a CDN. If you already use a CDN, then perhaps it is
not optimally configured to handle traffic from that region, or
an additional CDN is needed for that region.

Browser/OS/device issues
RUM will turn up whether certain browsers have performance
issues (or indeed, functional issues), or whether the problems
stem from certain devices or operating systems. Most likely, it
will be combinations of these that lead to problems for particu‐
lar individuals (e.g., Chrome on Mac OS X or IE6 on Windows
XP).

It is important to realize that RUM is run by real users on real
machines. It is not a clean room system (i.e., there are other external
activities happening on the systems that are out of your control,
meaning results could be inconsistent). Poor performance on an
individual occasion could be caused by the user running a lot of
other programs or downloading BitTorrent files in the background.

Becoming a PerfOps Engineer | 47

RUM is also affected by “last mile” issues, the variance in speed and
quality in the connection from the Internet backbone to the user’s
residence. RUM depends on having a large sample size so you can
ignore the outliers.

The other weakness of RUM is that performance problems will
become known only when they are already experienced by users. It
doesn’t enable you to capture and resolve issues before the users are
affected.

Synthetic monitoring
Synthetic monitoring involves executing a series of transactions
against your production system and tracking the responses. Trans‐
actions can be multiple steps and involve dynamically varied data.
Synthetic monitoring can evaluate responses to determine next
steps. Most solutions offer full scripting languages to enable you to
build complex user journeys.

As with RUM, synthetic monitors will integrate with APM to enable
you to see the full journey from client to server.

Synthetic monitors can be set up to mimic specific geographic con‐
nections as well as browser/OS/device combinations, and you can
often specify the type of connection to use (e.g., Chrome on a Gal‐
axy S3 connecting over a 3G connection).

Synthetic testing can also be “clean room” testing, usually executed
from close to the Internet backbone in order to remove “last mile”
problems.

Unlike RUM, it allows you to proactively spot issues before users
have necessarily seen them. However, it is limited to testing what
you have previously determined is important to test. It will not
detect issues outside your tests or issues that users will encounter
when performing actions or running device/browser combinations
you did not anticipate.

An ideal monitoring solution combines synthetic monitoring and
RUM.

APM tooling
APM tooling, as described in “Application Performance Manage‐
ment (APM)” on page 42, is the central point of data gathering for
many of the tools described here. While it does not 100% replace

48 | Phase 6: Persistence “Go Live Is the Start of Optimization”

other tooling, it does work well in aggregating high-level results and
correlating results from different sources.

The PerfOps Center
In the same way as your company may have a dedicated networks
operations center (NOC), it is a good idea to create a PerfOps center.

This doesn’t have to be a physical location but should be a central
gathering point for all performance-related data in a format under‐
standable by your staff, and with capability of drilling down to more
detail if needed. This will gather data from other monitoring, RUM,
and APM tools into one central point. A good PerfOps Center can
do predictive and trend-based analysis of performance-related data.

Closing the PerfOps Loop to Development
It is essential that, having gathered all the data and proactive moni‐
toring, you feed useful information back through to development
and work with the development team on solution to the problems
identified. The developers must be warned of performance issues,
whether actual or potential. This information describes the perfor‐
mance problem and the source of the data that has been used to
identify the problem.

Action Plan
Put Proactive Monitoring in Place
Create a monitoring strategy that gathers sufficient data to be able to
become aware of performance issues as early as possible and be aler‐
ted when they are happening. Being alerted to a performance issue
by an end user should be seen as a failure. In addition to the symp‐
toms of the problem that is happening, you should have sufficient
data captured to be able to do some root-cause analysis of the
underlying cause of the problem.

Carry Out Proactive Performance Analysis
Regularly revisit the data that you are getting out of your systems to
look for performance issues that have gone unidentified and trends
towards future performance issues. Evaluate your performance

The PerfOps Center | 49

against the defined KPIs. Again, these should be identified and you
should include root-cause analysis.

Close the Gap Between Production and Development
It is essential to provide a pipeline through to development for
issues identified by the PerfOps engineer. The PerfOps engineer
must also be involved in developing the solution, especially when
replicating and validating the fix. Pairing programmers and PerfOps
engineers for the duration of completing the fix is a good strategy.

Create a Dedicated PerfOps Center
Investigate the creation of a dedicated PerfOps center as a central
point for all performance-related data within the company. The cen‐
ter can be used for analysis of performance test data on test and pre‐
production platforms as well. This builds upon the earlier theme of
treating performance as a first-class citizen, as well as creating a
focal point and standardized view of performance that can be
accessed by more than just PerfOps engineers.

50 | Phase 6: Persistence “Go Live Is the Start of Optimization”

About the Author
Andy Still has worked in the web industry since 1998, leading
development on some of the highest traffic sites in the UK. After 10
years in the development space, Andy cofounded Intechnica, a
vendor-independent IT performance consultancy that focuses on
helping companies improve performance on their IT systems, par‐
ticularly websites. Andy focuses on improving the integration of
performance into every stage of the development cycle, with a par‐
ticular interest in the integration of performance into the CI process.

http://www.intechnica.co.uk

Wait.
There’s More.
4 Easy Ways to Stay Ahead of the Game
The world of web operations and performance is rapidly changing.
Find what you need to keep current at oreilly.com/velocity:

More Reports Like This One
Get industry intelligence in timely, focused reports written to keep you apprised of
the current and trending state of web operations and performance, best practices,
and new technologies.

Videos and Webcasts
Hear directly from some of the best minds in the field through free live or pre-recorded
events. Watch what you like, when you like, where you like.

Weekly Newsletter
News happens fast. Get it delivered straight to your inbox so you don’t miss a thing.

Velocity Conference
It’s the must-attend event for web operations and performance professionals, happening
four times a year in California, New York, Europe, and China. Spend three supercharged
days with the best minds, companies, and people interested in the same things you are.
Learn more at velocityconf.com.

©2014 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #14212

14212_Velocity_PA_Booklet_Ad_r4.indd 1 3/6/14 1:49 PM

http://www.oreilly.com/velocity/?cmp=pd-velocity-na-info-na_free_ebook_ad
http://velocityconf.com/velocity2014?cmp=pd-velocity-na-info-vlsc14_free_ebook_ad
http://www.oreilly.com/webops-perf/newsletter?intcmp=il-velocity-newsletter-lp-newsltr_ebook_report_ad

	Table of Contents
	Preface
	Chapter 1. Phase 1: Acceptance
“Performance Doesn’t Come For Free”
	Convincing Others
	Developer Objections
	Business Objections

	Action Plan
	Separate Performance Validation, Improvement, and Optimization from Standard Development
	Complete a Performance Maturity Assessment
	Define a Strategy and Roadmap to Good Performance

	Chapter 2. Phase 2: Promotion
“Performance is a First-Class Citizen”
	Is Performance Really a First-Class Citizen?
	People
	Process
	Tooling

	Action Plan
	Make Performance Part of the Conversation
	Set Performance Targets
	Treat Performance Issues with the Same Importance and Severity as Functional Issues
	Assign Someone with Responsibility for Performance Within the Project
	Give People What They Need To Get Expertise
	Create a Culture of Performance

	Chapter 3. Phase 3: Strategy
“What Do You Mean by ‘Good Performance'?”
	Three Levels of the Performance Landscape
	Performance Vision
	Performance Targets
	Performance Acceptance Criteria

	Tips for Setting Performance Targets
	Solve Business Problems, Not Technical Challenges
	Think Beyond Page Load Time
	Beware Over-optimization

	Action Plan
	Create Your Performance Vision
	Set Your Performance Targets
	Create Regular Reports on KPIs
	Revise Your User Story Gathering/Specification Process to Include Performance Acceptance Criteria
	Re-evaluate Your “Definition of Done” to Include Performance Acceptance Criteria

	Chapter 4. Phase 4 : Engage
“Test...Test Early…Test Often...”
	Challenges of Performance Testing
	Tooling
	Environments
	User Journeys
	Load Model
	Types of Tests
	Iterative Improvements to Performance Testing

	Test Early
	Alternative Methods of Early Performance Testing
	Performance Engineers Still Need Space for Analysis

	Test Often
	Adding Performance to a Continuous Integration Process

	Action Plan
	Start Performance Testing
	Standardize Your Approach to Performance Testing
	Consider Performance Testing at Project Inception
	Integrate with Your CI Process

	Chapter 5. Phase 5 : Intelligence
“Collect Data and Reduce Guesswork”
	Types of Instrumentation
	Browser Tools
	Server Tools
	Code Profilers
	Application Performance Management (APM)

	Action Plan
	Start Looking Under the Hood During Development
	Include Additional Data Gathering as Part of Performance Testing
	Install an APM Solution

	Chapter 6. Phase 6: Persistence
“Go Live Is the Start of Optimization”
	Becoming a PerfOps Engineer
	The PerfOps Engineer’s Toolbox

	The PerfOps Center
	Closing the PerfOps Loop to Development
	Action Plan
	Put Proactive Monitoring in Place
	Carry Out Proactive Performance Analysis
	Close the Gap Between Production and Development
	Create a Dedicated PerfOps Center

