
3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 1/14

Designing a RESTful API with Python and Flask
Posted by Miguel Grinberg under Python, Programming, REST, Flask.

In recent years REST (REpresentational State Transfer) has emerged as the standard architectural design for web services and
web APIs.

In this article I'm going to show you how easy it is to create a RESTful web service using Python and the Flask
microframework.

What is REST?
The characteristics of a REST system are defined by six design rules:

Client-Server: There should be a separation between the server that offers a service, and the client that consumes it.
Stateless: Each request from a client must contain all the information required by the server to carry out the request. In other words, the server cannot
store information provided by the client in one request and use it in another request.
Cacheable: The server must indicate to the client if requests can be cached or not.
Layered System: Communication between a client and a server should be standardized in such a way that allows intermediaries to respond to
requests instead of the end server, without the client having to do anything different.
Uniform Interface: The method of communication between a client and a server must be uniform.
Code on demand: Servers can provide executable code or scripts for clients to execute in their context. This constraint is the only one that is
optional.

What is a RESTful web service?
The REST architecture was originally designed to fit the HTTP protocol that the world wide web uses.

Central to the concept of RESTful web services is the notion of resources. Resources are represented by URIs. The clients send
requests to these URIs using the methods defined by the HTTP protocol, and possibly as a result of that the state of the affected
resource changes.

The HTTP request methods are typically designed to affect a given resource in standard ways:

HTTP Method Action Examples

miguelgrinberg.com

Home
About Me
About This Blog

May 20 2013

Tweet

Share

http://blog.miguelgrinberg.com/author/Miguel%20Grinberg
http://blog.miguelgrinberg.com/category/Python
http://blog.miguelgrinberg.com/category/Programming
http://blog.miguelgrinberg.com/category/REST
http://blog.miguelgrinberg.com/category/Flask
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.python.org/
http://flask.pocoo.org/
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://blog.miguelgrinberg.com/
http://blog.miguelgrinberg.com/
http://blog.miguelgrinberg.com/post/about-me
http://blog.miguelgrinberg.com/post/about-this-blog
http://blog.miguelgrinberg.com/feed
https://www.facebook.com/miguelgrinbergblog
https://plus.google.com/u/0/117786742456929977820
http://www.linkedin.com/in/miguelgrinberg
https://twitter.com/#!/miguelgrinberg
https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fblog.miguelgrinberg.com%2Fpost%2Fdesigning-a-restful-api-with-python-and-flask&text=Designing%20a%20RESTful%20API%20with%20Python%20and%20Flask%20-%20miguelgrinberg.com&tw_p=tweetbutton&url=http%3A%2F%2Fblog.miguelgrinberg.com%2Fpost%2Fdesigning-a-restful-api-with-python-and-flask&via=miguelgrinberg
http://twitter.com/search?q=http%3A%2F%2Fblog.miguelgrinberg.com%2Fpost%2Fdesigning-a-restful-api-with-python-and-flask
javascript:void(0);

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 2/14

GET Obtain information about a resource http://example.com/api/orders
(retrieve order list)

GET Obtain information about a resource
http://example.com/api/orders/123
(retrieve order #123)

POST Create a new resource
http://example.com/api/orders
(create a new order, from data provided with the request)

PUT Update a resource
http://example.com/api/orders/123
(update order #123, from data provided with the request)

DELETE Delete a resource
http://example.com/api/orders/123
(delete order #123)

The REST design does not require a specific format for the data provided with the requests. In general data is provided in the
request body as a JSON blob, or sometimes as arguments in the query string portion of the URL.

Designing a simple web service
The task of designing a web service or API that adheres to the REST guidelines then becomes an exercise in identifying the
resources that will be exposed and how they will be affected by the different request methods.

Let's say we want to write a To Do List application and we want to design a web service for it. The first thing to do is to decide
what is the root URL to access this service. For example, we could expose this service as:

http://[hostname]/todo/api/v1.0/

Here I have decided to include the name of the application and the version of the API in the URL. Including the application
name in the URL is useful to provide a namespace that separates this service from others that can be running on the same
system. Including the version in the URL can help with making updates in the future, since new and potentially incompatible
functions can be added under a new version, without affecting applications that rely on the older functions.

The next step is to select the resources that will be exposed by this service. This is an extremely simple application, we only
have tasks, so our only resource will be the tasks in our to do list.

Our tasks resource will use HTTP methods as follows:

HTTP Method URI Action

GET http://[hostname]/todo/api/v1.0/tasks Retrieve list of tasks

GET http://[hostname]/todo/api/v1.0/tasks/[task_id] Retrieve a task

POST http://[hostname]/todo/api/v1.0/tasks Create a new task

PUT http://[hostname]/todo/api/v1.0/tasks/[task_id] Update an existing task

DELETE http://[hostname]/todo/api/v1.0/tasks/[task_id] Delete a task

We can define a task as having the following fields:

id: unique identifier for tasks. Numeric type.
title: short task description. String type.
description: long task description. Text type.
done: task completion state. Boolean type.

And with this we are basically done with the design part of our web service. All that is left is to implement it!

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Query_string

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 3/14

A brief introduction to the Flask microframework
If you read my Flask Mega-Tutorial series you know that Flask is a simple, yet very powerful Python web framework.

Before we delve into the specifics of web services let's review how a regular Flask web application is structured.

I will assume you know the basics of working with Python in your platform. The examples I will show below are for a Unix-
like operating system. In short, that means that they will work on Linux, Mac OS X and also on Windows if you use Cygwin.
The commands are slightly different if you use the Wndows native version of Python.

Let's begin by installing Flask in a virtual environment. If you don't have virtualenv.py installed in your system, you can
download it from https://pypi.python.org/pypi/virtualenv.

$ mkdir todo-api

$ cd todo-api

$ virtualenv.py flask

New python executable in flask/bin/python

Installing setuptools............................done.

Installing pip...................done.

$ flask/bin/pip install flask

Now that we have Flask installed let's create a simple web application, which we will put in a file called app.py:

#!flask/bin/python

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():

 return "Hello, World!"

if __name__ == '__main__':

 app.run(debug = True)

To run this application we have to execute app.py:

$ chmod a+x app.py

$./app.py

 * Running on http://127.0.0.1:5000/

 * Restarting with reloader

And now you can launch your web browser and type http://localhost:5000 to see this tiny application in action.

Simple, right? Now we will convert this app into our RESTful service!

Implementing RESTful services in Python and Flask
Building web services with Flask is surprisingly simple, much simpler than building complete server side applications like the
one I built in the Mega-Tutorial.

There are a couple of Flask extensions that help with building RESTful services with Flask, but the task is so simple that in my
opinion there is no need to use an extension.

The clients of our web service will be asking the service to add, remove and modify tasks, so clearly we need to have a way to
store tasks. The obvious way to do that is to build a small database, but because databases are not the topic of this article we are
going to take a much simpler approach. To learn about proper use of databases with Flask once again I recommend that you
read my Mega-Tutorial.

http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
http://www.cygwin.com/
https://pypi.python.org/pypi/virtualenv
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 4/14

In place of a database we will store our task list in a memory structure. This will only work when the web server that runs our
application is single process and single threaded. This is okay for Flask's own development web server. It is not okay to use this
technique on a production web server, for that a proper database setup must be used.

Using the base Flask application we are now ready to implement the first entry point of our web service:

#!flask/bin/python

from flask import Flask, jsonify

app = Flask(__name__)

tasks = [

 {

 'id': 1,

 'title': u'Buy groceries',

 'description': u'Milk, Cheese, Pizza, Fruit, Tylenol',

 'done': False

 },

 {

 'id': 2,

 'title': u'Learn Python',

 'description': u'Need to find a good Python tutorial on the web',

 'done': False

 }

]

@app.route('/todo/api/v1.0/tasks', methods = ['GET'])

def get_tasks():

 return jsonify({ 'tasks': tasks })

if __name__ == '__main__':

 app.run(debug = True)

As you can see, not much has changed. We created a memory database of tasks, which is nothing more than a plain and simple
array of dictionaries. Each entry in the array has the fields that we defined above for our tasks.

Instead of the index entry point we now have a get_tasks function that is associated with the /todo/api/v1.0/tasks URI,
and only for the GET HTTP method.

The response of this function is not text, we are now replying with JSON data, which Flask's jsonify function generates for us
from our data structure.

Using a web browser to test a web service isn't the best idea since web browsers cannot easily generate all types of HTTP
requests. Instead, we will use curl. If you don't have curl installed, go ahead and install it now.

Start the web service in the same way we started the sample application, by running app.py. Then open a new console window
and run the following command:

$ curl -i http://localhost:5000/todo/api/v1.0/tasks

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 294

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 04:53:53 GMT

{

 "tasks": [

 {

 "description": "Milk, Cheese, Pizza, Fruit, Tylenol",

 "done": false,

 "id": 1,

 "title": "Buy groceries"

 },

 {

http://curl.haxx.se/

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 5/14

 "description": "Need to find a good Python tutorial on the web",

 "done": false,

 "id": 2,

 "title": "Learn Python"

 }

]

}

We just have invoked a function in our RESTful service!

Now let's write the second version of the GET method for our tasks resource. If you look at the table above this will be the one
that is used to return the data of a single task:

from flask import abort

@app.route('/todo/api/v1.0/tasks/<int:task_id>', methods = ['GET'])

def get_task(task_id):

 task = filter(lambda t: t['id'] == task_id, tasks)

 if len(task) == 0:

 abort(404)

 return jsonify({ 'task': task[0] })

This second function is a little bit more interesting. Here we get the id of the task in the URL, and Flask translates it into the
task_id argument that we receive in the function.

With this argument we search our tasks array. If the id that we were given does not exist in our database then we return the
familiar error code 404, which according to the HTTP specification means "Resource Not Found", which is exactly our case.

If we find the task then we just package it as JSON with jsonify and send it as a response, just like we did before for the entire
collection.

Here is how this function looks when invoked from curl:

$ curl -i http://localhost:5000/todo/api/v1.0/tasks/2

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 151

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:21:50 GMT

{

 "task": {

 "description": "Need to find a good Python tutorial on the web",

 "done": false,

 "id": 2,

 "title": "Learn Python"

 }

}

$ curl -i http://localhost:5000/todo/api/v1.0/tasks/3

HTTP/1.0 404 NOT FOUND

Content-Type: text/html

Content-Length: 238

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:21:52 GMT

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<title>404 Not Found</title>

<h1>Not Found</h1>
<p>The requested URL was not found on the server.</p><p>If you entered the URL manually please check your spelling and try again.</p>

When we ask for resource id #2 we get it, but when we ask for #3 we get back the 404 error. The odd thing about the error is
that it came back with an HTML message instead of JSON, because that is how Flask generates the 404 response by default.
Since this is a web service client applications will expect that we always respond with JSON, so we need to improve our 404

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 6/14

error handler:

from flask import make_response

@app.errorhandler(404)

def not_found(error):

 return make_response(jsonify({ 'error': 'Not found' }), 404)

And we get a much more API friendly error response:

$ curl -i http://localhost:5000/todo/api/v1.0/tasks/3

HTTP/1.0 404 NOT FOUND

Content-Type: application/json

Content-Length: 26

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:36:54 GMT

{

 "error": "Not found"

}

Next in our list is the POST method, which we will use to insert a new item in our task database:

from flask import request

@app.route('/todo/api/v1.0/tasks', methods = ['POST'])

def create_task():

 if not request.json or not 'title' in request.json:
 abort(400)

 task = {

 'id': tasks[-1]['id'] + 1,

 'title': request.json['title'],

 'description': request.json.get('description', ""),

 'done': False

 }

 tasks.append(task)

 return jsonify({ 'task': task }), 201

Adding a new task is also pretty easy. The request.json will have the request data, but only if it came marked as JSON. If the
data isn't there, or if it is there, but we are missing a title item then we return an error code 400, which is the code for the bad
request.

We then create a new task dictionary, using the id of the last task plus one (a cheap way to guarantee unique ids in our simple
database). We tolerate a missing description field, and we assume the done field will always start set to False.

We append the new task to our tasks array, and then respond to the client with the added task and send back a status code 201,
which HTTP defines as the code for "Created".

To test this new function we can use the following curl command:

$ curl -i -H "Content-Type: application/json" -X POST -d '{"title":"Read a book"}' http://localhost:5000/todo/api/v1.0/tasks

HTTP/1.0 201 Created

Content-Type: application/json

Content-Length: 104

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:56:21 GMT

{

 "task": {

 "description": "",

 "done": false,

 "id": 3,

 "title": "Read a book"

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 7/14

 }
}

Note: if you are on Windows and use the Cygwin version of curl from bash then the above command will work just fine.
However, if you are using the native version of curl from the regular command prompt there is a little dance that needs to be
done to send double quotes inside the body of a request:

curl -i -H "Content-Type: application/json" -X POST -d "{"""title""":"""Read a book"""}" http://localhost:5000/todo/api/v1.0/tasks

Essentially on Windows you have to use double quotes to enclose the body of the request, and then inside it you escape a
double quote by writing three of them in sequence.

Of course after this request completed we can obtain the updated list of tasks:

$ curl -i http://localhost:5000/todo/api/v1.0/tasks

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 423

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:57:44 GMT

{

 "tasks": [

 {

 "description": "Milk, Cheese, Pizza, Fruit, Tylenol",

 "done": false,

 "id": 1,

 "title": "Buy groceries"

 },

 {

 "description": "Need to find a good Python tutorial on the web",

 "done": false,

 "id": 2,

 "title": "Learn Python"

 },

 {

 "description": "",

 "done": false,

 "id": 3,

 "title": "Read a book"

 }

]

}

The remaining two functions of our web service are shown below:

@app.route('/todo/api/v1.0/tasks/<int:task_id>', methods = ['PUT'])

def update_task(task_id):

 task = filter(lambda t: t['id'] == task_id, tasks)

 if len(task) == 0:

 abort(404)

 if not request.json:

 abort(400)

 if 'title' in request.json and type(request.json['title']) != unicode:

 abort(400)

 if 'description' in request.json and type(request.json['description']) is not unicode:

 abort(400)

 if 'done' in request.json and type(request.json['done']) is not bool:

 abort(400)

 task[0]['title'] = request.json.get('title', task[0]['title'])

 task[0]['description'] = request.json.get('description', task[0]['description'])

 task[0]['done'] = request.json.get('done', task[0]['done'])

 return jsonify({ 'task': task[0] })

@app.route('/todo/api/v1.0/tasks/<int:task_id>', methods = ['DELETE'])

def delete_task(task_id):

 task = filter(lambda t: t['id'] == task_id, tasks)

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 8/14

 if len(task) == 0:

 abort(404)

 tasks.remove(task[0])
 return jsonify({ 'result': True })

The delete_task function should have no surprises. For the update_task function we are trying to prevent bugs by doing
exhaustive checking of the input arguments. We need to make sure that anything that the client provided us is in the expected
format before we incorporate it into our database.

A function call that updates task #2 as being done would be done as follows:

$ curl -i -H "Content-Type: application/json" -X PUT -d '{"done":true}' http://localhost:5000/todo/api/v1.0/tasks/2

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 170

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 07:10:16 GMT

{

 "task": [

 {

 "description": "Need to find a good Python tutorial on the web",

 "done": true,

 "id": 2,

 "title": "Learn Python"

 }

]

}

Improving the web service interface
The article was originally published without this section, but a reader suggested a small improvement that I thought is interesting
enough to share.

The problem he observed with my design is that clients are forced to construct URIs from the task identifiers that are returned.
This is pretty easy in itself, but it indirectly forces clients to know how these URIs need to be built, and this will prevent us from
making changes to URIs in the future.

Instead of returning task ids we can return the full URI that controls the task. For this we can write a small helper function that
generates a "public" version of a task to send to the client:

from flask import url_for

def make_public_task(task):

 new_task = {}

 for field in task:

 if field == 'id':

 new_task['uri'] = url_for('get_task', task_id = task['id'], _external = True)

 else:

 new_task[field] = task[field]

 return new_task

All we are doing here is taking a task from our database and creating a new task that has all the fields except id, which gets
replaced with another field called uri, generated with Flask's url_for.

When we return the list of tasks we pass them through this function before sending them to the client:

@app.route('/todo/api/v1.0/tasks', methods = ['GET'])

def get_tasks():

 return jsonify({ 'tasks': map(make_public_task, tasks) })

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 9/14

So now this is what the client gets when it retrieves the list of tasks:

$ curl -i http://localhost:5000/todo/api/v1.0/tasks

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 406

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 18:16:28 GMT

{

 "tasks": [

 {

 "title": "Buy groceries",

 "done": false,

 "description": "Milk, Cheese, Pizza, Fruit, Tylenol",

 "uri": "http://localhost:5000/todo/api/v1.0/tasks/1"

 },

 {

 "title": "Learn Python",

 "done": false,

 "description": "Need to find a good Python tutorial on the web",

 "uri": "http://localhost:5000/todo/api/v1.0/tasks/2"

 }

]
}

We apply this technique to all the other functions and with this we ensure that the client always sees URIs instead of ids.

Securing a RESTful web service
Can you believe we are done? Well, we are done with the functionality of our service, but we still have a problem. Our service
is open to anybody, and that is a bad thing.

We have a complete web service that can manage our to do list, but the service in its current state is open to any clients. If a
stranger figures out how our API works he or she can write a new client that can access our service and mess with our data.

Most entry level tutorials ignore security and stop here. In my opinion this is a serious problem that should always be addressed.

The easiest way to secure our web service is to require clients to provide a username and a password. In a regular web
application you would have a login form that posts the credentials, and at that point the server would create a session for the
logged in user to continue working, with the session id stored in a cookie in the client browser. Unfortunately doing that here
would violate the stateless requirement of REST, so instead we have to ask clients to send their authentication information with
every request they send to us.

With REST we always try to adhere to the HTTP protocol as much as we can. Now that we need to implement authentication
we should do so in the context of HTTP, which provides two forms of authentication called Basic and Digest.

There is a small Flask extension that can help with this, written by no other than yours truly. So let's go ahead and install Flask-
HTTPAuth:

$ flask/bin/pip install flask-httpauth

Let's say we want our web service to only be accessible to username miguel and password python. We can setup a Basic
HTTP authentication as follows:

from flask.ext.httpauth import HTTPBasicAuth

auth = HTTPBasicAuth()

@auth.get_password

def get_password(username):

http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Digest_access_authentication
https://github.com/miguelgrinberg/flask-httpauth

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 10/14

 if username == 'miguel':

 return 'python'

 return None

@auth.error_handler

def unauthorized():

 return make_response(jsonify({ 'error': 'Unauthorized access' }), 401)

The get_password function is a callback function that the extension will use to obtain the password for a given user. In a more
complex system this function could check a user database, but in this case we just have a single user so there is no need for that.

The error_handler callback will be used by the extension when it needs to send the unauthorized error code back to the
client. Like we did with other error codes, here we customize the response so that is contains JSON instead of HTML.

With the authentication system setup, all that is left is to indicate which functions need to be protected, by adding the
@auth.login_required decorator. For example:

@app.route('/todo/api/v1.0/tasks', methods = ['GET'])

@auth.login_required

def get_tasks():

 return jsonify({ 'tasks': tasks })

If we now try to invoke this function with curl this is what we get:

$ curl -i http://localhost:5000/todo/api/v1.0/tasks

HTTP/1.0 401 UNAUTHORIZED

Content-Type: application/json

Content-Length: 36

WWW-Authenticate: Basic realm="Authentication Required"

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 06:41:14 GMT

{
 "error": "Unauthorized access"

}

To be able to invoke this function we have to send our credentials:

$ curl -u miguel:python -i http://localhost:5000/todo/api/v1.0/tasks

HTTP/1.0 200 OK

Content-Type: application/json

Content-Length: 316

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 06:46:45 GMT

{

 "tasks": [

 {

 "title": "Buy groceries",

 "done": false,

 "description": "Milk, Cheese, Pizza, Fruit, Tylenol",

 "uri": "http://localhost:5000/todo/api/v1.0/tasks/1"

 },

 {

 "title": "Learn Python",

 "done": false,

 "description": "Need to find a good Python tutorial on the web",

 "uri": "http://localhost:5000/todo/api/v1.0/tasks/2"

 }

]

}

The authentication extension gives us the freedom to choose which functions in the service are open and which are protected.

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 11/14

To ensure the login information is secure the web service should be exposed in a HTTP Secure server (i.e. https://...) as this
encrypts all the communications between client and server and prevents a third party from seeing the authentication credentials
in transit.

Unfortunately web browsers have the nasty habit of showing an ugly login dialog box when a request comes back with a 401
error code. This happens even for background requests, so if we were to implement a web browser client with our current web
server we would need to jump through hoops to prevent browsers from showing their authentication dialogs and let our client
application handle the login.

A simple trick to distract web browsers is to return an error code other than 401. An alternative error code favored by many is
403, which is the "Forbidden" error. While this is a close enough error, it sort of violates the HTTP standard, so it is not the
proper thing to do if full compliance is necessary. In particular this would be a bad idea if the client application is not a web
browser. But for cases where server and client are developed together it saves a lot of trouble. The simple change that we can
make to implement this trick is to replace the 401 with a 403:

@auth.error_handler

def unauthorized():

 return make_response(jsonify({ 'error': 'Unauthorized access' }), 403)

Of course if we do this we will need the client application to look for 403 errors as well.

Possible improvements
There are a number of ways in which this little web service we have built today can be improved.

For starters, a real web service should be backed by a real database. The memory data structure that we are using is very limited
in functionality and should not be used for a real application.

Another area in which an improvement could be made is in handling multiple users. If the system supports multiple users the
authentication credentials sent by the client could be used to obtain user specific to do lists. In such a system we would have a
second resource, which would be the users. A POST request on the users resource would represent a new user registering for the
service. A GET request would return user information back to the client. A PUT request would update the user information,
maybe updating an email address. A DELETE request would delete the user account.

The GET request that retrieves the task list could be expanded in a couple of ways. First, this request could take optional
pagination arguments, so that a client can request a portion of the list. Another way to make this function more useful would be
to allow filtering by certain criteria. For example, a client might want to see only completed tasks, or only tasks with a title that
begins with the letter A. All these elements can be added to the URL as arguments.

Conclusion
The complete code for the To Do List web service is here: https://gist.github.com/miguelgrinberg/5614326.

I hope this was a simple and friendly introduction to RESTful APIs. If there is enough interest I could write a second part to this
article in which we can develop a simple web client that uses this service for a complete To Do List application. Let me know
what you think below in the comments!

UPDATE: A follow up to this tutorial is now online: Writing a Javascript REST client.

UPDATE #2: I have written yet another follow-up: Designing a RESTful API using Flask-RESTful.

Miguel

https://gist.github.com/miguelgrinberg/5614326
http://blog.miguelgrinberg.com/post/writing-a-javascript-rest-client
http://blog.miguelgrinberg.com/post/designing-a-restful-api-using-flask-restful

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 12/14

Tweet

46 comments

#1 Jason said 10 months ago:

Thanks for taking the time to share this. I'm going to go back and read the Mega tutorials before I give this a try. I'm new to Python and
not familiar at all with Flask. I'm looking to build off of what I'm learning and this a a great way to do so. Thank again, this is
awesome.

#2 Michael Tiller said 10 months ago:

Overall, I think you've done a nice job putting together this material. My one beef is that it perpetuates an unfortunately common
pattern. You constantly refer to an 'id' when it would be much better to simply use a URI. The issue is that any client working with
your API will have to know how to construct URLs for requests they want to make. This is completely unnecessary and brittle. I'm
referring to the so-called "HATEOAS" approach here. Using that discipline, your ids would be replaced by URIs and your POST
methods would return status code 201 (CREATED) and provide the URI of the resource created in the "Location" header.

#3 Miguel Grinberg said 10 months ago:

@Michael: I don't fully agree with the self-discovery ideas of HATEOAS. The proposers of this make it sound like a client should be
allowed to explore your web service and treat it like a user clicking through links in an HTML would. For an API that is not a good
idea, in my opinion. APIs serve a specific purpose and should be documented accordingly. That said, your suggestions are valid ones,
preventing the client from having to construct URIs is a good goal, so I'm updating the article to show how you would do that. Thanks!

#4 vannen said 10 months ago:

Nice tutorial miguel! I use MethodView class from Flask to build my API, in my opinion it is more structured.

http://flask.pocoo.org/docs/views/#method-based-dispatching

#5 Evan said 9 months ago:

Thanks for another great tutorial. The mega-tutorial got me up and running with flask, and this one is nice as well. I appreciate the time
you put into sharing knowledge.

#6 Leandro Guerra said 9 months ago:

Nice tutorial miguel! Could you help me please? Im trying to use the POST method, which we will use to insert a new item in our task
database, but I got bach this error: Bad Request The browser(or proxy) sent a request that this server could not understand. I dont know
how to fix it.

Thank you a lot.

#7 Miguel Grinberg said 9 months ago:

Share

https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fblog.miguelgrinberg.com%2Fpost%2Fdesigning-a-restful-api-with-python-and-flask&text=Designing%20a%20RESTful%20API%20with%20Python%20and%20Flask%20-%20miguelgrinberg.com&tw_p=tweetbutton&url=http%3A%2F%2Fblog.miguelgrinberg.com%2Fpost%2Fdesigning-a-restful-api-with-python-and-flask&via=miguelgrinberg
http://blog.miguelgrinberg.com/post/vannen.ws
http://blog.miguelgrinberg.com/post/about.me/leandro.guerra
javascript:void(0);

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 13/14

@Leandro: You need to look at your server code and figure out why this POST route returns bad request. It's probably validating your
request and finding it is invalid in some way.

#8 Leandro Guerra said 9 months ago:

Nice Miguel, tks again.

#9 Brent said 9 months ago:

Excellent article! Thanks Miguel

#10 JayKim said 9 months ago:

I am developing REST api that require authorization. I am going to use flask-HTTPAuth with HTTPS. Do I request api call with ID and
password for authorization? If I have to save ID and password, it is so dangerous. how can I do?

««
«
»»
»

Leave a Comment

Name *

Website

Email *

Comment *

Post Comment Note: all comments are screened before they are published. Thank you for your patience!

About Miguel
Welcome to my blog!

I'm a software engineer, photographer and filmmaker in Portland, Oregon, USA.

You can also find me on Facebook, Google+, LinkedIn and Twitter.

Thank you for visiting!

Flask Web Development Book

Privacy & Terms

Type the two words

http://blog.miguelgrinberg.com/post/about.me/leandro.guerra
http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask/page/0#comments
http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask/page/2#comments
https://www.facebook.com/miguelgrinbergblog
https://plus.google.com/u/0/117786742456929977820
http://www.linkedin.com/in/miguelgrinberg
https://twitter.com/#!/miguelgrinberg
http://www.google.com/intl/en/policies/

3/4/2014 Designing a RESTful API with Python and Flask - miguelgrinberg.com

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask 14/14

This page was generated in 0.575 seconds.

I'm currently writing a book on web development with Python and Flask, to be published by O'Reilly Media in 2014. The official site for this book is
http://flaskbook.com.

Flask Tutorial at PyCon 2014
If you want to learn Flask in a class setting then I hope you will consider my upcoming tutorial session at PyCon 2014 in Montréal on April 10th, 2014.
Visit the tutorial page for more information. I hope to see you there!

Categories
 Arduino (7)
 Blog (1)
 C++ (5)
 Cloud (1)
 Filmmaking (6)
 Flask (28)
 Games (1)
 Gear (6)
 HTML5 (1)
 Heroku (1)
 Javascript (3)
 Movie Reviews (5)
 Netflix (5)
 Node.js (1)
 Personal (1)
 Photography (6)
 Product Reviews (1)
 Programming (36)
 Project Management (1)
 Python (29)
 REST (4)
 Raspberry Pi (4)
 RhinoSteady (6)
 Robotics (6)
 Video (2)

© 2013 by Miguel Grinberg. All rights reserved. Questions?

http://flaskbook.com/
http://flaskbook.com/
https://us.pycon.org/2014/schedule/presentation/54/
https://us.pycon.org/2014/schedule/presentation/54/
http://blog.miguelgrinberg.com/category/Arduino/feed
http://blog.miguelgrinberg.com/category/Arduino
http://blog.miguelgrinberg.com/category/Blog/feed
http://blog.miguelgrinberg.com/category/Blog
http://blog.miguelgrinberg.com/category/C++/feed
http://blog.miguelgrinberg.com/category/C++
http://blog.miguelgrinberg.com/category/Cloud/feed
http://blog.miguelgrinberg.com/category/Cloud
http://blog.miguelgrinberg.com/category/Filmmaking/feed
http://blog.miguelgrinberg.com/category/Filmmaking
http://blog.miguelgrinberg.com/category/Flask/feed
http://blog.miguelgrinberg.com/category/Flask
http://blog.miguelgrinberg.com/category/Games/feed
http://blog.miguelgrinberg.com/category/Games
http://blog.miguelgrinberg.com/category/Gear/feed
http://blog.miguelgrinberg.com/category/Gear
http://blog.miguelgrinberg.com/category/HTML5/feed
http://blog.miguelgrinberg.com/category/HTML5
http://blog.miguelgrinberg.com/category/Heroku/feed
http://blog.miguelgrinberg.com/category/Heroku
http://blog.miguelgrinberg.com/category/Javascript/feed
http://blog.miguelgrinberg.com/category/Javascript
http://blog.miguelgrinberg.com/category/Movie%20Reviews/feed
http://blog.miguelgrinberg.com/category/Movie%20Reviews
http://blog.miguelgrinberg.com/category/Netflix/feed
http://blog.miguelgrinberg.com/category/Netflix
http://blog.miguelgrinberg.com/category/Node.js/feed
http://blog.miguelgrinberg.com/category/Node.js
http://blog.miguelgrinberg.com/category/Personal/feed
http://blog.miguelgrinberg.com/category/Personal
http://blog.miguelgrinberg.com/category/Photography/feed
http://blog.miguelgrinberg.com/category/Photography
http://blog.miguelgrinberg.com/category/Product%20Reviews/feed
http://blog.miguelgrinberg.com/category/Product%20Reviews
http://blog.miguelgrinberg.com/category/Programming/feed
http://blog.miguelgrinberg.com/category/Programming
http://blog.miguelgrinberg.com/category/Project%20Management/feed
http://blog.miguelgrinberg.com/category/Project%20Management
http://blog.miguelgrinberg.com/category/Python/feed
http://blog.miguelgrinberg.com/category/Python
http://blog.miguelgrinberg.com/category/REST/feed
http://blog.miguelgrinberg.com/category/REST
http://blog.miguelgrinberg.com/category/Raspberry%20Pi/feed
http://blog.miguelgrinberg.com/category/Raspberry%20Pi
http://blog.miguelgrinberg.com/category/RhinoSteady/feed
http://blog.miguelgrinberg.com/category/RhinoSteady
http://blog.miguelgrinberg.com/category/Robotics/feed
http://blog.miguelgrinberg.com/category/Robotics
http://blog.miguelgrinberg.com/category/Video/feed
http://blog.miguelgrinberg.com/category/Video
mailto:webmaster _at_ miguelgrinberg _dot_ com

