“The most useful technical security bobki{'ve read l‘ﬁan A must-have for all who protect
systems from malkcious software.”

-Lenny Zeltser, Security Practice D \

“The ultimate guide for anyone ware analysis.” \
-Ryan Olson, Director, VeriSig 1?* Jhr Response Team
"Every page is filled with p

-Afron Walters, Lead D !

or at Savvis and Senior Faculty Member at SANS Institute

ge, innovative ideas, and useful tools. Worth its weight in gold!”
and "u"P of Security R&D at Terremark

alware Analyst’'s

Lookbook and DVD

: EtHNléu;s FOR FIGHTING MALICIOUS CODE

/f
,’/”/

. VY
lé Ligh gtewzn Adair, Blake Hartstein, and Matthew Richard

.-f

5

Malware Analyst’s
Cookbook and DVD

Malware Analyst’s
Cookbook and DVD

Tools and Techniques for
Fighting Malicious Code

Michael Hale Ligh
Steven Adair
Blake Hartstein
Matthew Richard

WILI
Wiley Publishing, Inc.

Malware Analyst’s Cookbook and DVD: Tools and Techniques for Fighting Malicious Code

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-61303-0

ISBN: 978-1-118-00336-7 (ebk)
ISBN: 978-1-118-00829-4 (ebk)
ISBN: 978-1-118-00830-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or website is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should be aware that
Internet websites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2010933462
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All

other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any
product or vendor mentioned in this book.

To my family for helping me shape my life and to my wife

Suzanne for always giving me something to look forward to.

—Michael Hale Ligh

To my new wife and love of my life Irene and my family.
Without your support over the many years, I would not be where

I .am or who I am today.

—Steven Adair

Executive Editor
Carol Long

Project Editor

Maureen Spears

Technical Editor
Michael Gregg

Production Editor
Kathleen Wisor

Copy Editor
Nancy Rappaport

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelance Editorial Manager

Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Maureen Forys,

Happenstance Type-O-Rama

Proofreader
Word One New York

Indexer

Robert Swanson

Cover Image
Digital Vision/Getty Images

Cover Designer
Ryan Sneed

ichael Hale Ligh is a Malicious Code Analyst at Verisign iDefense, where he special-

izes in developing tools to detect, decrypt, and investigate malware. In the past few
years, he has taught malware analysis courses and trained hundreds of students in Rio De
Janeiro, Shanghai, Kuala Lumpur, London, Washington D.C., and New York City. Before
iDefense, Michael worked as a vulnerability researcher, providing ethical hacking services
to one of the nation’s largest healthcare providers. Due to this position, he gained a strong
background in reverse-engineering and operating system internals. Before that, Michael
defended networks and performed forensic investigations for financial institutions through-
out New England. He is currently Chief of Special Projects at MNIN Security LLC.

Steven Adair is a security researcher with The Shadowserver Foundation and a Principal
Architect at eTouch Federal Systems. At Shadowserver, Steven analyzes malware, tracks
botnets, and investigates cyber-attacks of all kinds with an emphasis on those linked to
cyber-espionage. Steven frequently presents on these topics at international conferences
and co-authored the paper “Shadows in the Cloud: Investigating Cyber Espionage 2.0.”
In his day job, he leads the Cyber Threat operations for a Federal Agency, proactively
detecting, mitigating and preventing cyber-intrusions. He has successfully implemented
enterprise-wide anti-malware solutions across global networks by marrying best practices
with new and innovative techniques. Steven is knee deep in malware daily, whether it be
supporting his company’s customer or spending his free time with Shadowserver.

Blake Hartstein is a Rapid Response Engineer at Verisign iDefense. He is responsible
for analyzing and reporting on suspicious activity and malware. He is the author of the
Jsunpack tool that aims to automatically analyze and detect web-based exploits, which
he presented at Shmoocon 2009 and 2010. Blake has also authored and contributed Snort
rules to the Emerging Threats project.

Matthew Richard is Malicious Code Operations Lead at Raytheon Corporation, where
he is responsible for analyzing and reporting on malicious code. Matthew was previously
Director of Rapid Response at iDefense. For 7 years before that, Matthew created and ran
a managed security service used by 130 banks and credit unions. In addition, he has done
independent forensic consulting for a number of national and global companies. Matthew
currently holds the CISSP, GCIA, GCFA, and GREM certifications.

ichael would like to thank his current and past employers for providing an envi-

ronment that encourages and stimulates creativity. He would like to thank his
coworkers and everyone who has shared knowledge in the past. In particular, AAron
Walters and Ryan Smith for never hesitating to engage and debate interesting new ideas
and techniques. A special thanks goes out to the guys who took time out of the busy days
to review our book: Lenny Zeltser, Tyler Hudak, and Ryan Olson.

Steven would like to extend his gratitude to those who spend countless hours behind
the scenes investigating malware and fighting cyber-crime. He would also like to thank
his fellow members of the Shadowserver Foundation for their hard work and dedication
towards making the Internet a safer place for us all.

We would also like to thank the following:

Maureen Spears and Carol A. Long from Wiley Publishing, for helping us get through
our first book.

Ilfak Guilfanov (and the team at Hex-Rays) and Halvar Flake (and the team at
Zynamics) for allowing us to use some of their really neat tools.

All the developers of the tools that we referenced throughout the book. In particular,
Frank Boldewin, Mario Vilas, Harlan Carvey, and Jesse Kornblum, who also helped
review some recipes in their realm of expertise.

The authors of other books, blogs, and websites that contribute to the collective
knowledge of the community.

—Michael, Steven, Blake, and Matthew

INtrOAUCHION . . oo XV

ONThe BOOK'S DVD ...ttt XXiii
Anonymizing Your Activities. 1
Recipe 1-1: Anonymous Web Browsing with Tor. 3
Recipe 1-2: Wrapping Wget and Network Clients with Torsocks 5
Recipe 1-3: Multi-platform Tor-enabled Downloader in Python 7
Recipe 1-4: Forwarding Traffic through Open Proxies 12
Recipe 1-5: Using SSH Tunnels to Proxy Connectionscooooivo... 16
Recipe 1-6: Privacy-enhanced Web browsing with Privoxy 18
Recipe 1-7: Anonymous Surfing with Anonymouse.org. 20
Recipe 1-8: Internet Access through Cellular Networks 21
Recipe 1-9: Using VPNs with Anonymizer Universal 23
HONBYPOTS ... 27
Recipe 2-1: Collecting Malware Samples with Nepenthes. 29
Recipe 2-2: Real-Time Attack Monitoring with IRC Logging 32
Recipe 2-3: Accepting Nepenthes Submissions over HTTP with Python. 34
Recipe 2-4: Collecting Malware Samples with Dionaea 37
Recipe 2-5: Accepting Dionaea Submissions over HTTP with Python 40
Recipe 2-6: Real-time Event Notification and Binary Sharing with XMPP 41
Recipe 2-7: Analyzing and Replaying Attacks Logged by Dionea. 43
Recipe 2-8: Passive Identification of Remote Systems with pOf. 44
Recipe 2-9: Graphing Dionaea Attack Patterns with SQLite and Gnuplot 46
Malware Classification 51
Recipe 3-1: Examining Existing ClamAV Signatures 52
Recipe 3-2: Creating a Custom ClamAV Database. 54
Recipe 3-3: Converting ClamAV Signhatures to YARA. i, 59
Recipe 3-4: Identifying Packers with YARA and PEID 61
Recipe 3-5: Detecting Malware Capabilities with YARA 63
Recipe 3-6: File Type Identification and Hashing in Python. 68

Recipe 3-7: Writing a Multiple-AV Scanner in Python 70

X

Contents

Recipe 3-8: Detecting Malicious PE Files in Python. 75
Recipe 3-9: Finding Similar Malware with ssdeep 79
Recipe 3-10: Detecting Self-modifying Code with ssdeep 82
Recipe 3-11: Comparing Binaries with IDA and BinDiff 83
Sandboxes and MUlti-AV SCaNNErs 89
Recipe 4-1: Scanning Files with VirusTotal 90
Recipe 4-2: Scanning Files with Jotti o i 92
Recipe 4-3: Scanning Files with NoVirusThanks 93
Recipe 4-4: Database-Enabled Multi-AV Uploader in Python 96
Recipe 4-5: Analyzing Malware with ThreatExpert, 100
Recipe 4-6: Analyzing Malware with CWSandbox. 102
Recipe 4-7: Analyzing Malware with Anubis 104
Recipe 4-8: Writing AutoIT Scripts for Joebox i, 105
Recipe 4-9: Defeating Path-dependent Malware with Joebox 107
Recipe 4-10: Defeating Process-dependent DLLs with Joebox 109
Recipe 4-11: Setting an Active HTTP Proxy with Joebox 111
Recipe 4-12: Scanning for Artifacts with Sandbox Results.......................... 112
Researching Domains and IP Addresses. ... 19
Recipe 5-1: Researching Domains with WHOIS 120
Recipe 5-2: Resolving DNS HOSENAMESo ovt i 125
Recipe 5-3: Obtaining IP WHOIS Records, 129
Recipe 5-4: Querying Passive DNS with BFK. 132
Recipe 5-5: Checking DNS Records with Robtex. 133
Recipe 5-6: Performing a Reverse IP Search with DomainTools. 134
Recipe 5-7: Initiating Zone Transfers with dig 135
Recipe 5-8: Brute-forcing Subdomains with dnsmap 137
Recipe 5-9: Mapping IP Addresses to ASNs via Shadowserver. 138
Recipe 5-10: Checking IP Reputation withRBLs oo... 140
Recipe 5-11: Detecting Fast Flux with Passive DNS and TTLs. 143
Recipe 5-12: Tracking Fast Flux DOMains, 146
Recipe 5-13: Static Maps with Maxmind, matplotlib, and pygeoip. 148
Recipe 5-14: Interactive Maps with Google Charts APL 152
Documents, Shellcode,and URLs 155
Recipe 6-1: Analyzing JavaScript with Spidermonkey 156
Recipe 6-2: Automatically Decoding JavaScript with Jsunpack 159
Recipe 6-3: Optimizing Jsunpack-n Decodings for Speed and Completeness 162

Recipe 6-4: Triggering exploits by Emulating Browser DOM Elements. 163

Contents

Recipe 6-5: Extracting JavaScript from PDF Files with pdfpy.................... ... 168
Recipe 6-6: Triggering Exploits by Faking PDF Software Versions 172
Recipe 6-7: Leveraging Didier Stevens’s PDF Tools 175
Recipe 6-8: Determining which Vulnerabilities a PDF File Exploits 178
Recipe 6-9: Disassembling Shellcode with DiStorm 185
Recipe 6-10: Emulating Shellcode with Libemu o ... 190
Recipe 6-11: Analyzing Microsoft Office Files with OfficeMalScanner. 193
Recipe 6-12: Debugging Office Shellcode with DisView and MalHost-setup 200
Recipe 6-13: Extracting HTTP Files from Packet Captures with Jsunpack. 204
Recipe 6-14: Graphing URL Relationships with Jsunpack 206
Malware Labs o 211
Recipe 7-1: Routing TCP/IP Connections in Your Lab. 215
Recipe 7-2: Capturing and Analyzing Network Traffic. 217
Recipe 7-3: Simulating the Internet with INetSim 221
Recipe 7-4: Manipulating HTTP/HTTPS with Burp Suite 225
Recipe 7-5: Using Joe Stewart’s Truman oo, 228
Recipe 7-6: Preserving Physical Systems with Deep Freeze 229
Recipe 7-7: Cloning and Imaging Disks with FOG 232
Recipe 7-8: Automating FOG Tasks with the MySQL Database 236
AUtOMALION ... o 239
Recipe 8-1: Automated Malware Analysis with VirtualBox 242
Recipe 8-2: Working with VirtualBox Disk and Memory Images. 248
Recipe 8-3: Automated Malware Analysis with VMware 250
Recipe 8-4: Capturing Packets with TShark via Python. 254
Recipe 8-5: Collecting Network Logs with INetSim via Python 256
Recipe 8-6: Analyzing Memory Dumps with Volatility 258
Recipe 8-7: Putting all the Sandbox Pieces Together. 260
Recipe 8-8: Automated Analysis with ZeroWine and QEMU 271
Recipe 8-9: Automated Analysis with Sandboxie and Buster 276
Dynamic ANAlYSIS.ot 283
Recipe 9-1: Logging API calls with Process Monitor 286
Recipe 9-2: Change Detection with Regshot 288
Recipe 9-3: Receiving File System Change Notifications 290
Recipe 9-4: Receiving Registry Change Notifications. 294
Recipe 9-5: Handle Table Diffing i 295
Recipe 9-6: Exploring Code Injection with HandleDiff 300

Recipe 9-7: Watching Bankpatch.C Disable Windows File Protection 301

Xi

xii

Contents

Recipe 9-8: Building an API Monitor with Microsoft Detours 304
Recipe 9-9: Following Child Processes with Your API Monitor. 311
Recipe 9-10: Capturing Process, Thread, and Image Load Events 314
Recipe 9-11: Preventing Processes from Terminating. 321
Recipe 9-12: Preventing Malware from Deleting Files 324
Recipe 9-13: Preventing Drivers from Loading. 325
Recipe 9-14: Using the Data Preservation Module 327
Recipe 9-15: Creating a Custom Command Shell with ReactOS 330
Malware Forensics........... ... 337
Recipe 10-1: Discovering Alternate Data Streams with TSK 337
Recipe 10-2: Detecting Hidden Files and Directories with TSK 341
Recipe 10-3: Finding Hidden Registry Data with Microsoft’s Offline APL 349
Recipe 10-4: Bypassing Poison Ivy’s Locked Files 355
Recipe 10-5: Bypassing Conficker’s File System ACL Restrictions 359
Recipe 10-6: Scanning for Rootkits with GMER. 363
Recipe 10-7: Detecting HTML Injection by Inspecting IESDOM 367
Recipe 10-8: Registry Forensics with RegRipper Plug-ins 377
Recipe 10-9: Detecting Rogue-Installed PKI Certificates 384
Recipe 10-10: Examining Malware that Leaks Data into the Registry 388
Debugging Malware oo 395
Recipe 11-1: Opening and Attaching to Processes. 396
Recipe 11-2: Configuring a JIT Debugger for Shellcode Analysis 398
Recipe 11-3: Getting Familiar with the Debugger GUL. 400
Recipe 11-4: Exploring Process Memory and Resources. 407
Recipe 11-5: Controlling Program Execution 410
Recipe 11-6: Setting and Catching Breakpoints 412
Recipe 11-7: Using Conditional Log Breakpoints 415
Recipe 11-8: Debugging with Python Scripts and PyCommands 418
Recipe 11-9: Detecting Shellcode in Binary Files oo, 421
Recipe 11-10: Investigating Silentbanker’s APT Hooks 426
Recipe 11-11: Manipulating Process Memory with WinAppDbg Tools. 431
Recipe 11-12: Designing a Python API Monitor with WinAppDbg 433
De-Obfuscation. 441
Recipe 12-1: Reversing XOR Algorithms in Python 441
Recipe 12-2: Detecting XOR Encoded Data with yaratize. 446
Recipe 12-3: Decoding Base64 with Special Alphabets. 448

Recipe 12-4: Isolating Encrypted Data in Packet Captures 452

Contents

Recipe 12-5: Finding Crypto with SnD Reverser Tool, FindCrypt, and Kanal 454
Recipe 12-6: Porting OpenSSL Symbols with Zynamics BinDiff 456
Recipe 12-7: Decrypting Data in Python with PyCrypto 458
Recipe 12-8: Finding OEP in Packed Malware 461
Recipe 12-9: Dumping Process Memory with LordPE 465
Recipe 12-10: Rebuilding Import Tables with InpREC 467
Recipe 12-11: Cracking Domain Generation Algorithms 476
Recipe 12-12: Decoding Strings with x86emu and Python 481
Working With DLLS 487
Recipe 13-1: Enumerating DLL EXports, 488
Recipe 13-2: Executing DLLs with rundll32.exeo oo, 491
Recipe 13-3: Bypassing Host Process Restrictions 493
Recipe 13-4: Calling DLL Exports Remotely with rundll32ex....................... 495
Recipe 13-5: Debugging DLLs with LOADDLL.EXEccooviiein... 499
Recipe 13-6: Catching Breakpoints on DLL Entry Points 501
Recipe 13-7: Executing DLLs as a Windows Servicec.ccoiiiiii .. 502
Recipe 13-8: Converting DLLs to Standalone Executables. 507
Kernel DebUgEINg oot 5T
Recipe 14-1: Local Debugging with LiveKd 513
Recipe 14-2: Enabling the Kernel’s Debug Boot Switch. 514
Recipe 14-3: Debug a VMware Workstation Guest (on Windows) 517
Recipe 14-4: Debug a Parallels Guest (on Mac OSX) 519
Recipe 14-5: Introduction to WinDbg Commands And Controls 521
Recipe 14-6: Exploring Processes and Process CONtexts.oouo... 528
Recipe 14-7: Exploring Kernel Memory o .. 534
Recipe 14-8: Catching Breakpoints on Driver Load 540
Recipe 14-9: Unpacking Drivers to OEP. 548
Recipe 14-10: Dumping and Rebuilding Drivers.o ... 555
Recipe 14-11: Detecting Rootkits with WinDbg Scripts 561
Recipe 14-12: Kernel Debugging with IDAPro., 566
Memory Forensics with Volatility ... 571
Recipe 15-1: Dumping Memory with MoonSols Windows Memory Toolkit............. 572
Recipe 15-2: Remote, Read-only Memory Acquisition with F-Response. 575
Recipe 15-3: Accessing Virtual Machine Memory Files 576
Recipe 15-4: Volatility in a Nutshell. 578
Recipe 15-5: Investigating processes in Memory Dumps. 581

Recipe 15-6: Detecting DKOM Attacks with psscan., 588

xiii

xiv Contents

Recipe 15-7: Exploring csrss.exe’s Alternate Process Listings. 591
Recipe 15-8: Recognizing Process Context Tricks 593
Memory Forensics: Code Injection and Extraction........................ ... 601
Recipe 16-1: Hunting Suspicious Loaded DLLs, 603
Recipe 16-2: Detecting Unlinked DLLs with ldr_modules 605
Recipe 16-3: Exploring Virtual Address Descriptors (VAD). 610
Recipe 16-4: Translating Page Protectionsc.oviiiie e .. 614
Recipe 16-5: Finding Artifacts in Process Memory. 617
Recipe 16-6: Identifying Injected Code with Malfind and YARA 619
Recipe 16-7: Rebuilding Executable Images from Memory. 627
Recipe 16-8: Scanning for Imported Functions with impscan. 629
Recipe 16-9: Dumping Suspicious Kernel Modules 633
Memory Forensics: RoOtkits. 637
Recipe 17-1: Detecting IAT Hooks. i 637
Recipe 17-2: Detecting EAT HOORSot 639
Recipe 17-3: Detecting Inline APT Hooks. 641
Recipe 17-4: Detecting Interrupt Descriptor Table (IDT) Hooks 644
Recipe 17-5: Detecting Driver IRP Hooks i 646
Recipe 17-6: Detecting SSDT Hooks 650
Recipe 17-7: Automating Damn Near Everything with ssdt_ex 054
Recipe 17-8: Finding Rootkits with Detached Kernel Threads 655
Recipe 17-9: Identifying System-Wide Notification Routines 658
Recipe 17-10: Locating Rogue Service Processes with svescan 661
Recipe 17-11: Scanning for Mutex Objects with mutantscan. 669
Memory Forensics: Network and Registry ..., 673
Recipe 18-1: Exploring Socket and Connection Objects 673
Recipe 18-2: Analyzing Network Artifacts Left by Zeus. 678
Recipe 18-3: Detecting Attempts to Hide TCP/IP Activity. 680
Recipe 18-4: Detecting Raw Sockets and Promiscuous NICs 682
Recipe 18-5: Analyzing Registry Artifacts with Memory Registry Tools 685
Recipe 18-6: Sorting Keys by Last Written Timestamp 689
Recipe 18-7: Using Volatility with RegRipper.o i .. 692

alware Analyst’s Cookbook is a collection of solutions and tutorials designed to

enhance the skill set and analytical capabilities of anyone who works with, or
against, malware. Whether you're performing a forensic investigation, responding to an
incident, or reverse-engineering malware for fun or as a profession, this book teaches you
creative ways to accomplish your goals. The material for this book was designed with sev-
eral objectives in mind. The first is that we wanted to convey our many years of experience
in dealing with malicious code in a manner friendly enough for non-technical readers to
understand, but complex enough so that technical readers won't fall asleep. That being
said, malware analysis requires a well-balanced combination of many different skills. We
expect that our readers have at least a general familiarity with the following topics:

Networking and TCP/IP

Operating system internals (Windows and Unix)
Computer security

Forensics and incident response

Programming (C, C++, Python, and Perl)
Reverse-engineering

Vulnerability research

Malware basics

Our second objective is to teach you how various tools work, rather than just how to use
the tools. If you understand what goes on when you click a button (or type a command)
as opposed to just knowing which button to click, you'll be better equipped to perform an
analysis on the tool’s output instead of just collecting the output. We realize that not every-
one can or wants to program, so we've included over 50 tools on the DVD that accompanies
the book; and we discuss hundreds of others throughout the text. One thing we tried to
avoid is providing links to every tool under the sun. We limit our discussions to tools that
we’re familiar with, and—as much as possible—tools that are freely available.

Lastly, this book is not a comprehensive guide to all tasks you should perform during
examination of a malware sample or during a forensic investigation. We tried to include
solutions to problems that are common enough to be most beneficial to you, but rare enough
to not be covered in other books or websites. Furthermore, although malware can target
many platforms such as Windows, Linux, Mac OS X, mobile devices, and hardware/firmware
components, our book focuses primarily on analyzing Windows malware.

XVi

Introduction

Who Should Read This Book

If you want to learn about malware, you should read this book. We expect our readers to
be forensic investigators, incident responders, system administrators, security engineers,
penetration testers, malware analysts (of course), vulnerability researchers, and anyone
looking to be more involved in security. If you find yourself in any of the following situ-
ations, then you are within our target audience:

You're a member of your organization’s incident handling, incident response, or
forensics team and want to learn some new tools and techniques for dealing with
malware.

You work as a systems, security, or network administrator and want to understand
how you can protect end users more effectively.

You're a member of your country’s Computer Emergency Response Team (CERT)
and need to identify and investigate malware intrusions.

You work at an antivirus or research company and need practical examples of ana-
lyzing and reporting on modern malware.

You're an aspiring student hoping to learn techniques that colleges and universities
just don’t teach.

You work in the IT field and have recently become bored, so you're looking for a
new specialty to compliment your technical knowledge.

How This Book Is Organized

This book is organized as a set of recipes that solve specific problems, present new tools, or
discuss how to detect and analyze malware in interesting ways. Some of the recipes are stand-
alone, meaning the problem, discussion, and solution are presented in the same recipe. Other
recipes flow together and describe a sequence of actions that you can use to solve a larger
problem. The book covers a large array of topics and becomes continually more advanced
and specialized as it goes on. Here is a preview of what you can find in each chapter:

Chapter 1, Anonymizing Your Activities: Describes how you conduct online inves-
tigations without exposing your own identity. You'll use this knowledge to stay safe
when following along with exercises in the book and when conducting research
in the future.

Chapter 2, Honeypots: Describes how you can use honeypots to collect the mal-
ware being distributed by bots and worms. Using these techniques, you can grab
new variants of malware families from the wild, share them in real time with other

Introduction xvii

researchers, analyze attack patterns, or build a workflow to automatically analyze
the samples.

Chapter 3, Malware Classification: Shows you how to identify, classify, and orga-
nize malware. Youw'll learn how to detect malicious files using custom antivirus
signatures, determine the relationship between samples, and figure out exactly what
functionality attackers may have introduced into a new variant.

Chapter 4, Sandboxes and Multi-AV Scanners: Describes how you can leverage
online virus scanners and public sandboxes. You'll learn how to use scripts to con-
trol the behavior of your sample in the target sandbox, how to submit samples on
command line with Python scripts, how to store results to a database, and how to
scan for malicious artifacts based on sandbox results.

Chapter 5, Researching Domains and IP Addresses: Shows you how to identify and
correlate information regarding domains, hostnames, and IP addresses. You'll learn
how to track fast flux domains, determine the alleged owner of a domain, locate
other systems owned by the same group of attackers, and create static or interactive
maps based on the geographical location of IP addresses.

Chapter 6, Documents, Shellcode, and URLs: In this chapter, you'll learn to ana-
lyze JavaScript, PDFs, Office documents, and packet captures for signs of malicious
activity. We discuss how to extract shellcode from exploits and analyze it within a
debugger or in an emulated environment.

Chapter 7, Malware Labs: Shows how to build a safe, flexible, and inexpensive lab
in which to execute and monitor malicious code. We discuss solutions involving
virtual or physical machines and using real or simulated Internet.

Chapter 8, Automation: Describes how you can automate the execution of malware
in VMware or VirtualBox virtual machines. The chapter introduces several Python
scripts to create custom reports about the malware’s behavior, including network
traffic logs and artifacts created in physical memory.

Chapter 9, Dynamic Analysis: One of the best ways to understand malware behavior
is to execute it and watch what it does. In this chapter, we cover how to build your
own API monitor, how to prevent certain evidence from being destroyed, how to log
file system and Registry activity in real time without using hooks, how to compare
changes to a process’s handle table, and how to log commands that attackers send
through backdoors.

Chapter 10, Malware Forensics: Focuses on ways to detect rootkits and stealth
malware using forensic tools. We show you how to scan the file system and Registry
for hidden data, how to bypass locked file restrictions and remove stubborn mal-
ware, how to detect HTML injection and how to investigate a new form of Registry
“slack” space.

Xviii

Introduction

Chapter 11, Debugging Malware: Shows how you can use a debugger to analyze,
control, and manipulate a malware sample’s behaviors. You'll learn how to script
debugging sessions with Python and how to create debugger plug-ins that monitor
API calls, output HTML behavior reports, and automatically highlight suspicious
activity.

Chapter 12, De-obfuscation: Describes how you can decode, decrypt, and unpack
data that attackers intentionally try to hide from you. We walk you through the
process of reverse-engineering a malware sample that encrypts its network traffic
so you can recover stolen data. In this chapter, you also learn techniques to crack
domain generation algorithms.

Chapter 13, Working with DLLs: Describes how to analyze malware distributed
as Dynamic Link Libraries (DLLs). Youwll learn how to enumerate and examine a
DLL’s exported functions, how to run the DLL in a process of your choice (and
bypass host process restrictions), how to execute DLLs as a Windows service, and
how to convert DLLs to standalone executables.

Chapter 14, Kernel Debugging: Some of the most malicious malware operates only
in kernel mode. This chapter covers how to debug the kernel of a virtual machine
infected with malware to understand its low-level functionality. You learn how to
create scripts for WinDbg, unpack kernel drivers, and to leverage IDA Pro’s debug-
ger plug-ins.

Chapter 15, Memory Forensics with Volatility: Shows how to acquire memory
samples from physical and virtual machines, how to install the Volatility advanced
memory forensics platform and associated plug-ins, and how to begin your analysis
by detecting process context tricks and DKOM attacks.

Chapter 16, Memory Forensics: Code Injection and Extraction: Describes how you
can detect and extract code (unlinked DLLs, shellcode, and so on) hiding in process
memory. You'll learn to rebuild binaries, including user mode programs and kernel
drivers, from memory samples and how to rebuild the import address tables (IAT)
of packed malware based on information in the memory dump.

Chapter 17, Memory Forensics: Rootkits: Describes how to detect various forms
of rootkit activity, including the presence of IAT, EAT, Inline, driver IRP, IDT, and
SSDT hooks on a system. You'll learn how to identify malware that hides in kernel
memory without a loaded driver, how to locate system-wide notification routines,
and how to detect attempts to hide running Windows services.

Chapter 18, Network and Registry: Shows how to explore the artifacts created on
a system due to a malware sample’s network activity. You'll learn to detect active
connections, listening sockets, and the use of raw sockets and promiscuous mode
network cards. This chapter also covers how to extract volatile Registry keys and
values from memory.

Introduction

Setting Up Your Environment

We performed most of the development and testing of Windows tools on 32-bit Windows
XP and Windows 7 machines using Microsoft’s Visual Studio and Windows Driver Kit.
If you need to recompile our tools for any reason (for example to fix a bug), or if you're
interested in building your own tools based on source code that we've provided, then you
can download the development environments here:

The Windows Driver Kit: http://www.microsoft.com/whdc/devtools/WDK/default
.MSpx

Visual Studio C++ Express: http: //www.microsoft.com/express/Downloads/#2010-
Visual-CPP

As for the Python tools, we developed and tested them on Linux (mainly Ubuntu 9.04,
9.10, or 10.04) and Mac OS X 10.4 and 10.5. You'll find that a majority of the Python tools
are multi-platform and run wherever Python runs. If you need to install Python, you can
get it from the website at http://python.org/download/. We recommend using Python
version 2.6 or greater (but not 3.x), because it will be most compatible with the tools on
the book’s DVD.

Throughout the book, when we discuss how to install various tools on Linux, we assume
you're using Ubuntu. As long as you know your way around a Linux system, you're com-
fortable compiling packages from source, and you know how to solve basic dependency
issues, then you shouldn’t have a problem using any other Linux distribution. We chose
Ubuntu because a majority of the tools (or libraries on which the tools depend) that we
reference in the book are either preinstalled, available through the apt-get package man-
ager, or the developers of the tools specifically say that their tools work on Ubuntu.

You have a few options for getting access to an Ubuntu machine:

Download Ubuntu dil‘eCtlyZ http://www.ubuntu.com/desktop/get-ubuntu/download
Download Lenny Zeltser’s REMnux: http://REMnux.org. REMnux is an Ubuntu
system preconfigured with various open source malware analysis tools. REMnux is
available as a VMware appliance or ISO image.

Download Rob Lee’s SANS SIFT Workstation: https://computer-forensics2.
sans.org/community/siftkit/. SIFT is an Ubuntu system preconfigured with vari-
ous forensic tools. SIFT is available as a VMware appliance or ISO image.

We always try to provide a URL to the tools we mention in a recipe. However, we use
some tools significantly more than others, thus they appear in five to ten recipes. Instead

Xix

X-X 2day

Introduction

of linking to each tool each time, here is a list of the tools that you should have access to
throughout all chapters:

Sysinternals Suite: http://technet.microsoft.com/en-us/sysinternals/bb842062
.aspx

Wireshark: http://www.wireshark.org/

IDA Pro and Hex-Rays: http://www.hex-rays.com/idapro/

Volatility: http://code.google.com/p/volatility/

WinDbg Debugger: http://www.microsoft.com/whdc/devtools/debugging/
default.mspx

YARA: http://code.google.com/p/yara-project/

Process Hacker: http://processhacker.sourceforge.net/

You should note a few final things before you begin working with the material in the
book. Many of the tools require administrative privileges to install and execute. Typically,
mixing malicious code and administrative privileges isn’t a good idea, so you must be sure
to properly secure your environment (see Chapter 7 for setting up a virtual machine if you
do not already have one). You must also be aware of any laws that may prohibit you from
collecting, analyzing, sharing, or reporting on malicious code. Just because we discuss a
technique in the book does not mean it’s legal in the city or country in which you reside.

Conventions

To help you get the most from the text and keep track of what’s happening, we've used a
number of conventions throughout the book.

RECIPE X-X: RECIPE TITLE

Boxes like this contain recipes, which solve specific problems, present new tools, or discuss
how to detect and analyze malware in interesting ways. Recipes may contain helpful steps,
supporting figures, and notes from the authors. They also may have supporting materials
associated with them on the companion DVD. If they do have supporting DVD materials,
you will see a DVD icon and descriptive text, as follows:

=D You can find supporting material for this recipe on the companion DVD.

ONTHE DVD

For your further reading and research, recipes may also have endnotes' that site Internet
or other supporting sources. You will find endnote references at the end of the recipe.
Endnotes are numbered sequentially throughout a chapter.

! This is an endnote. This is the format for a website source

Introduction xxi

NOTE

Tips, hints, tricks, and asides to the current discussion look like this.

As for other conventions in the text:

New terms and important words appear in italics when first introduced.
Keyboard combinations are treated like this: Ctrl+R.
File names are in parafont, (filename.txt), URLs and code (API functions and vari-
able names) within the text are treated like so: www.site.org, LoadLibrary, varl.
This book uses monofont type with no highlighting for most code examples. Code
fragments may be broken into multiple lines or truncated to fit on the page:

This is an example of monofont type with a long \

line of code that needed to be broken.
This truncated line shows how [REMOVED]

This book uses bolding to emphasize code. User input for commands and code that
is of particular importance appears in bold:

$ date ; typing into a Unix shell

Wed Sep 1 14:30:20 EDT 2010

C:\> date ; typing into a Windows shell
Wed 09/01/2010

he book’s DVD contains evidence files, videos, source code, and programs that you
can use to follow along with recipes or to conduct your own investigations and analy-
sis. It also contains the full-size, original images and figures that you can view, since they
appear in black and white in the book. The files are organized on the DVD in folders named
according to the chapter and recipe number. Most of the tools on the DVD are written in
C, Python, or Perl and carry a GPLv2 or GPLv3 license. You can use a majority of them
as-is, but a few may require small modifications depending on your system’s configuration.
Thus, even if you're not a programmer, you should take a look at the top of the source file
to see if there are any notes regarding dependencies, the platforms on which we tested the
tools, and any variables that you may need to change according to your environment.
We do not guarantee that all programs are bug free (who does?), thus, we welcome
feature requests and bug reports addressed to malwarecookbook@gmail.com. If we do pro-
vide updates for the code in the future, you can always find the most recent versions at
http://www.malwarecookbook.com.
The following table shows a summary of the tools that you can find on the DVD, includ-
ing the corresponding recipe number, programming language, and intended platform.

Recipe Tool Description Language Platform

1-3 torwget.py Multi-platform TOR-enabled URL Python All
fetcher

23 wwwhoney.tgz CGl scripts to accept submissions from Python All

nepenthes and dionaea honeypots

33 clamav_to_yara.py Convert ClamAV antivirus signatures Python All
to YARA rules

3-4 peid_to_yara.py Convert PEID packer signatures to Python All
YARA rules
3-7 av_multiscan.py Script to implement your own antivi- Python All

rus multi-scanner
3-8 pescanner.py Detect malicious PE file attributes Python All

3-10 ssdeep_procs.py Detect self-mutating code on live Python Windows
Windows systems using ssdeep only (XP/7)

xxiv On The Book’s DVD

Recipe

4-4

4-12

4-12

5-13

5-14

6-9

8-1

8-1

8-7

8-7

9-3

9-5

9-10

Tool

avsubmit.py

dbmgr.py

artifactscanner.py

mapper.py

googlegeoip.py

sc_distorm.py

vmauto.py

mybox.py

myvmware.py

analysis.py

RegFsNotify.exe

HandleDiff.exe

Preservation.zip

Description

Command-line interface to VirusTotal,
ThreatExpert, Jotti, and NoVirusThanks

Malware artifacts database manager

Application to scan live Windows sys-
tems for artifacts (files, Registry keys,
mutexes) left by malware

Create static PNG images of IP
addresses plotted on a map using
GeolP

Create dynamic/interactive geographi-
cal maps of IP addresses using Google
charts

Script to produce disassemblies (via
DiStorm) of shellcode and optionally
apply an XOR mask

Python class for automating malware
execution in VirtualBox and VMware
guests

Sample automation script for
VirtualBox based on vmauto.py

Sample automation script for VMware
based on vmauto.py

Python class for building sandboxes
with support for analyzing network
traffic, packet captures, and memory.

Tool to detect changes to the Registry
and file system in real time (from user
mode without APl hooks)

Tool to detect changes to the handle
tables of all processes on a system
(useful to analyze the side-effects of
code injecting malware)

Kernel driver for monitoring notifica-
tion routines, preventing processes
from terminating, preventing files from
being deleted, and preventing other
drivers from loading

Language

Python

Python

Python

Python

Python

Python

Python

Python

Python

Python

Platform
All

All
Windows

only (XP/7)

All

All

All

All

All

All

Linux

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only

10-2

10-4

10-7

10-8

10-8

10-8

10-8

10-9

10-10

11-2

1-9

11-10

1-12

Tool

cmd.exe

tsk-xview.exe

closehandle.exe

HTMLInjection
Detector.exe
routes.pl

pendingdelete.pl

disallowrun.pl

shellexecute-

hooks.pl

dumpcerts.pl

somethingelse.pl

scloader.exe

scd.py

findhooks.py

pymon.py

Description

Custom command shell (cmd.exe) for
logging malware activity and backdoor
activity

Cross-view based rootkit detection
tool based on The Sleuth Kit APl and
Microsoft’s Offline Registry API.

Command-line tool to remotely close
a handle that another process has
open

Detect HTML injection attacks on
banking and financial websites

RegRipper plug-in for printing a com-
puter’s routing table

RegRipper plug-in for printing files that
are pending deletion.

RegRipper plug-in for printing pro-
cesses that malware prevents from
running

RegRipper plug-in for printing
ShellExecute hooks (a method of DLL
injection)

Parse:Win32Registry module to
extract and examine cryptography
certificates stored in Registry hives

Parse:Win32Registry module for find-
ing hidden binary data in the Registry

Executable wrapper for launching shell
code in a debugger

Immunity Debugger PyCommand for
finding shellcode in arbitrary binary
files

Immunity Debugger PyCommand for
finding Inline-style user mode API
hooks

WinAppDbg plug-in for monitoring
API calls, alerting on suspicious flags/
parameters and producing an HTML
report

On The Book’s DVD

Language

C

Perl

Perl

Perl

Perl

Perl

Perl

Python

Python

Python

Platform

Windows
only
(XP/7)

Windows

XP only

Windows
only (XP/7)

Windows
XP only
All

All

All

All

All

All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

XXV

xxvi On The Book’s DVD

Recipe

12-1

12-10

12-11

13-7

13-7

13-8

14-8

14-10

14-T1

Tool

xortools.py

trickimprec.py

kraken.py

sbstrings.py

rundll32ex.exe

install_svc.bat

install_svc.py

dll2exe.py

DriverEntryFinder

windbg_to_ida.py

WinDbgNotify.txt

Description

Python library for encoding/decod-
ing XOR, including brute force meth-
ods and automated YARA signature
generation

Immunity Debugger PyCommand for
assistance when rebuilding import
tables with Import REconstructor

Immunity Debugger PyCommand for
cracking Kraken's Domain Generation
Algorithm (DGA)

Immunity Debugger PyCommand for
decrypting Silent Banker strings.

Extended version of rundl(32.exe that
allows you to run DLLs in other pro-
cesses, call exported functions, and
pass parameters

Batch script for installing a service DLL
(for dynamic analysis of the DLL)

Python script for installing a service
DLL and supplying optional arguments
to the service

Python script for converting a DLL
into a standalone executable

Kernel driver to find the correct
address in kernel memory to set
breakpoints for catching new drivers
as they load

Python script to convert WinDbg
output into data that can be imported
into IDA

WinDbg script for identifying mali-
cious notification routines.

Language

Python

Python

Python

Python

Batch

Python

Python

Python

WinDbg
scripting
language

Platform
All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only

Windows
only

Windows
only

All

Windows

XP only

All

Windows
only

In our daily lives we like to have a certain level of privacy. We have curtains on our win-
dows, doors for our offices, and even special screen protectors for computers to keep out
prying eyes. This idea of wanting privacy also extends to the use of the Internet. We do
not want people knowing what we typed in Google, what we said in our Instant Message
conversations, or what websites we visited. Unfortunately, your private information is
largely available if someone is watching. When doing any number of things on the Internet,
there are plenty of reasons you might want to go incognito. However, that does not mean
you're doing anything wrong or illegal.

he justification for anonymity when researching malware and bad guys is pretty

straightforward. You do not want information to show up in logs and other records
that might tie back to you or your organization. For example, let’s say you work at a finan-
cial firm and you recently detected that a banking trojan infected several of your systems.
You collected malicious domain names, IP addresses, and other data related to the malware.
The next steps you take in your research may lead you to websites owned by the criminals.
As aresult, if you are not taking precautions to stay anonymous, your IP address will show
up in various logs and be visible to miscreants.

If the criminals can identify you or the organization from which you conduct your
research, they may change tactics or go into hiding, thus spoiling your investigation.
Even worse, they may turn the tables and attack you in a personal way (such as identity
theft) or launch a distributed denial of service (DDoS) attack against your IP address.
For example, the Storm worm initiated DDoS attacks against machines that scanned an
infected system (see http://www.securityfocus. com/news/ll482).

This chapter contains several methods that you can use to conduct research without
blowing your cover. We've positioned this chapter to be first in the book, so you can use
the techniques when following along with examples in the remaining chapters. Keep in
mind that you may never truly be anonymous in what you are doing, but more privacy is
better than no privacy!

Malware Analyst’s Cookbook

The Onion Router (Tor)

A widely known and accepted solution for staying anonymous on the Internet is Tor. Tor,
despite being an acronym, is written with only the first letter capitalized and stands for
The Onion Router or the onion routing network. The project has a long history stemming
from a project run by the Naval Research Laboratory. You can read all about it at http://
www . torproject.org.

Tor is a network of computers around the world that forward requests in an encrypted
manner from the start of the request until it reaches the last machine in the network, which
is known as an exit node. At this point, the request is decrypted and passed to the destination
server. Exit nodes are specifically used as the last hop for traffic leaving the Tor network and
then as the first hop for returning traffic. When you use Tor, the systems with which you are
communicating see all incoming traffic as if it originated from the exit node. They do not know
where you are located or what your actual IP address is. Furthermore, the other systems in the
Tor network cannot determine your location either, because they are essentially forwarding
traffic with no knowledge of where it actually originated. The responses to your requests will
return to your system, but as far as the Tor network is concerned, you are just another hop along
the way. In essence, you are anonymous. Figure 1-1 shows a simplified view of the Tor network.

‘ Tor node N Tor node
Tor node Tor
‘ ‘ exit node

Tor user T -

Tor node Tor node Destination
Tor Web server
node . Tor

exit node
Tor node \
Tor node
Tor node
-------- Encrypted traffic

Unencrypted traffic

Figure 1-1: Simplified Tor Diagram

Anonymizing Your Activities

RECIPE 1-1: ANONYMOUS WEB BROWSING WITH TOR

The Tor software is free to use and available for most computing platforms. You can install
Tor on your Ubuntu system by typing apt-get install tor. For other platforms, such as
Windows or Mac OS X, you can download the appropriate package from the Tor download
page.! In most cases, the “Installation Bundle” for your operating system is what you want
to install. If you need additional help, the website also has step-by-step instructions and
videos.

The remainder of this recipe assumes you're installing Tor on Windows; however, the
steps are largely the same for other platforms. Once it is installed, you can immediately
start using Tor to anonymize your activity on the Web. Chances are that a lot of your
investigative activities will be conducted through a web browser, and as a result you need
your web requests to go through Tor. This is quite simple to do, because recent versions
of the Tor bundles come with a Firefox extension called Torbutton.? Figure 1-2 shows
what the button looks like when it is turned on and turned off. This button is located in
the bottom right-hand corner of the browser once it is installed.

Tor Enabled Tor Disabled

Figure 1-2: Firefox Torbutton

A simple click of the mouse allows you to enable or disable the use of Tor in the
browser.

If you are using a browser other than Firefox, or you opt not to use the Torbutton add-
on, you need to set up your browser to use Tor as a SOCKS4 or SOCKS5 proxy. Tor should
bind to the localhost (127.0.0.1) on TCP port 9050 in its default configuration. This means
it only accepts connections from your local computer and not from other systems on your
network or on the Internet.

Internet Explorer Configuration

To configure Internet Explorer (IE) to use Tor, follow these steps:

Click Tools = Internet Options & Connections &> LAN settings = [x] “Use a proxy
server for your LAN” > Advanced. The Proxy Settings dialog appears.

In the Socks field, enter localhost in the first box for the proxy address and then
9050 for Port.

Figure 1-3 shows how the IE Proxy Settings page should look once configured.

-1 2day

-1 2day

Malware Analyst’s Cookbook

Proxy Settings _i-
Servers
& Tme Proxy address to use Port
v =
HITP:
Seawre:
ElP:
Sogks: locahhost = 9050

[s the sames proy server for ol protocols

[Cxceptions
»~ Nn oot 1me provy server fie addresses heginning with:
=

LIse spmicninns (7) tn sPRArate entries.

Lo][coma |

L

Figure 1-3: Internet Explorer Proxy Settings

Firefox Configuration

You can configure Firefox to use Tor as a SOCKS proxy in the following manner:

Click Tools = Options = Advanced = Network = Settings &> Manual proxy con-
figuration. The Connection Settings dialog appears.

For the SOCKS Host, enter localhost and for Port enter 9050 (you can select either
SOCKS v4 or SOCKS v5).

Figure 1-4 shows how the Firefox Connection Settings page should look once
configured.

P v

Configure Fromes to Access the Internet
Disshle Torbutton to change these settings.
Mare information
Ho praxg
Auto-detect proxy settings for this netgork
@ Manwal proxy configurstion:

HTTR Progy: Bort: o0
1| Use thie prowy server for all protecel:

S84, Prowy: Pert: 05

ETP Prazy: Port: o

Gopher Praxy: Port: LI

SOCKS Host: localhost Po: 208075

SOCKS W | SOCKS v5
o Provy for: localhose, 127.0.01
Example: amusilla.org, vt 192168.1.0/24
7 Autematic prowy configuration URL:

Relued

o) o) G |f

Figure 1-4: Firefox Connection Settings

Anonymizing Your Activities

At this point, you are up and running and can start browsing the Web, conducting
research, and accessing content anonymously. To validate that your activities are now
anonymous, we recommend that you quickly pull up a website such as www.ipchicken
.com O www.whatsmyip.org and verify that the IP address returned by the website is not
the IP address of your system. If this is the case, then everything is working fine and you
can move along with your business anonymously.

NOTE

The Tor Browser Bundle is a self-extracting archive that has standalone versions of Tor,
Vidalia (the Tor GUI), Polipo, and Firefox. It does not require any installation, and can
be saved to and used from a portable storage device such as a USB drive. This can be
very useful if you cannot install files on a system or want to quickly be up and running
on a new machine without needing to install anything.

'http://www.torproject.org/easy-download.html.en

https://addons.mozilla.org/en-US/firefox/addon/2275

Malware Research with Tor

When researching malware, you may often need to anonymize more than just your web
browsing. Tor can be used with command-line URL-fetching tools such as wget, or when
connecting to SSH, FTP, or IRC servers. This section looks at tools that can be used to
wrap Tor around your applications to ensure their connections appear to come from the
Tor network and not directly from your system.

RECIPE 1-2: WRAPPING WGET AND NETWORK CLIENTS WITH TORSOCKS

=D You can find supporting material for this recipe on the companion DVD.

ONTHE DVD

In a Linux environment, you can use Torsocks? to wrap SOCKS-friendly applications with
Tor. Torsocks ensures that your application’s communications go through Tor, including
DNS requests. It also explicitly rejects all (non DNS) UDP traffic from the application you are
using in order to protect your privacy. To install Torsocks, use the following command:

S sudo apt-get install torsocks

71 2day

71 2day

Malware Analyst’s Cookbook

Once installed, you can begin using Torsocks, so long as Tor is running. By default,
Torsocks sends its connections to TCP port 9050 on the localhost. This is the default port
to which Tor binds. You can now leverage usewithtor to execute wget, ssh, sftp, telnet,
and ftp, and their requests will be routed through the Tor network.

The fOllOWil’lg commands access www.unlockedworkstation.com/ ip.php with and with-
out the Tor network. The ip.php script returns the IP address of the connecting client and
can be used to validate that your request went through Tor. The output shows that our IP
without Tor is x.x.44.192 (sanitized for privacy) and the IP with Tor is 59.31.236.91.

S wget www.unlockedworkstation.com/ip.php

S cat ip.php
x.x.44.192

S usewithtor wget www.unlockedworkstation.com/ip.php
$ cat ip.php
59.31.236.91

As long as the returned IP address is not that of your system, you know the request has
worked. Keep in mind that wget, by default, will leak information about your system. For
example, the following line may appear in the target website’s access logs:

59.31.236.91 - - [03/Apr/2010:10:04:41 -0400] "GET /ip.php HTTP/1.0" \
200 12 "-" "wWget/1.12 (linux-gnu)"

The request told the web server that you were using wget version 1.12 and were sending
it from a Linux-based system (Ubuntu in this case). This may not be a big deal, as your
browser normally indicates the user agent and operating system being used. However, you
may still wish to obfuscate this by providing a different user agent. You can do this with
wget by using the -u flag.

$ usewithtor wget www.unlockedworkstation.com/ip.php \
-U "Mozilla/5.0 (Windows NT; en-US) Gecko/20100316 Firefox/3.6.2"

This makes your request appear as if it came from a Firefox browser on a Windows 7
system. The more generic or common you make the user agent, the less likely it is that your
requests can be distinguished from others. A simple bash script can be set up on your system
to always use Torsocks, wget, and an alternate user agent. You can find a copy of the script
named tgrab.sh on the book’s DVD. Before using it, change the file’s access permissions so
that it can be executed.

$ cat tgrab.sh
#!/bin/bash

TSOCKS="which usewithtor"
WGET="which wget"

Anonymizing Your Activities

if [$# -eq 0]; then

echo "Please enter a URL to request";

exit;
fi

STSOCKS SWGET $1 -U "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; \
Trident/4.0; GTB6; .NET CLR 1.1.4322)"

$ chmod +x tgrab.sh

Now you can grab files with the command that follows without having to type out
the user agent each time or having to precede the wget command with usewithtor each
time.

S./tgrab.sh www.unlockedworkstation.com/ip.php

You can also wrap other applications with Torsocks just as you did with the wget com-
mand. Launch the applications as you would typically, but make sure to add usewithtor
in front of your requests.
usewithtor ssh username@your-site-here.edu
usewithtor ftp user@your-site-here.edu

usewithtor sftp user@your-site-here.edu
usewithtor telnet your-site-here.edu 8000

wr r U

Consider setting up small bash scripts, as we demonstrated in the previous code seg-
ment, for any commands that you run repetitively. You can easily paste any command
you frequently run into a file, give it executable access permissions, and then run that file
directly. This can save you time and prevent you from accidentally forgetting to send a
particular request through usewithtor.

3http://code.google.com/p/torsocks/

RECIPE 1-3: MULTI-PLATFORM TOR-ENABLED DOWNLOADER IN PYTHON

<=» You can find supporting material for this recipe on the companion DVD.

In the previous recipe, you learned how to wrap wget requests with Torsocks. However,
Torsocks does not support Mac OS X or Windows environments. This recipe shows you
how to create a simple Tor-enabled file downloader in Python. As long as you can install
Tor, Python, and the SocksiPy module (a generic SOCKS client), you can use this program
to grab files from remote web servers without exposing your IP address.

7

¢-1 2day

¢-1 2day

8 Malware Analyst’s Cookbook

To install the SocksiPy module, download the archive, extract socks.py from the Zip,
and copy it into your site-packages directory.

$ unzip SocksiPy.zip

Archive: SocksiPy.zip
inflating: LICENSE
inflating: BUGS
inflating: README
inflating: socks.py

S cp socks.py /usr/lib/python2.5/site-packages/

The path to your site-packages directory will vary depending on your operating system.
Here are the most likely locations for the correct site-packages directory on each platform
(assuming you run Python 2.5):

Linux: /ust/lib/python2.5/site-packages/
Mac OS X: /Library/Python/2.5/site-packages/
Windows: C:\Python25\site-packages\

Ensure that Tor is up and running on your system and locate the torwget.py script from
the companion DVD. You may need to configure the following two variables at the top of
torwget.py if you changed the default IP and port for Tor during set up.

TOR_SERVER = "127.0.0.1"
TOR_PORT = 9050

The script uses those variables to initialize a SOCKS proxy that sends all traffic through
Tor. Then it overrides the default Python socket object with the class from SocksiPy. Any
code used or imported from your Python script that uses sockets will then automatically
send traffic through the Tor-enabled socket. In particular, since the script imports the
nttplib module (which uses sockets) to fetch URLs, the HTTP requests will be able to
use Tor.

Override the socket object with a Tor+Socks socket

socks.setdefaultproxy (socks.PROXY_TYPE_SOCKS5, TOR_SERVER, TOR_PORT)
socket.socket = socks.socksocket

You can print the script’s usage by passing the -help flag, like this:

S python torwget.py -help
usage: torwget.py [options]

options:
-h, --help show this help message and exit

Anonymizing Your Activities

-r REFERRER, --referrer=REFERRER
use this Referrer
-u USERAGENT, --useragent=USERAGENT
use this User Agent
-c SITE, --connect=SITE
Connection string (i.e. www.sol.org/a.txt)
-z, --randomize Choose a random User Agent

If you want to download a file using a particular referrer and a random user agent, you
can specify the following arguments. The user agent isn’t truly random, it is just randomly
selected from a hard-coded list in the torwget.py source code, which you can configure
to your liking.

$ python torwget.py -c http://xyz.org/file.bin -r http://msn.com -z

Hostname: xyz.org

Path: /file.bin

Headers: {'Referrer': 'msn.com', 'Accept': '*/*', 'User-Agent':
'Opera/9.80 (Windows NT 5.1; U; cs) Presto/2.2.15 Version/10.00'}
Saving 21569 bytes to xyz.org/file.bin

Done!

The current version of torwget.py only supports fetching URLs using HTTP, however
future versions may support FTP and other protocols.

*http://socksipy.sourceforge.net

Tor Pitfalls

While Tor is a great service to use, it does have its pitfalls. These pitfalls may affect your
speed of browsing, the security and integrity of data sent over the network, and your
ability to access resources. Do not let these issues get in your way, but do make sure you
are aware of them.

Speed

At the time of this writing, the chief complaint against Tor is how slow browsing can be for
the end user. This is a very well-known issue and exists for a few reasons. Your connection
might be bouncing all over the world adding latency along the way—not to mention some
Tor nodes may be low on bandwidth or already saturated. Fortunately, there are currently
plans underway aimed at improving the speed and performance of the Tor network. You
can’'t complain though, right? The service is free, after all. Of course you can—this is the
Internet and everyone complains!

9

10

Malware Analyst’s Cookbook

Untrustworthy Tor Operators

Unscrupulous people have been known to run Tor exit nodes. What does that mean to
you? It means there may be a Tor operator running an exit node that is specifically look-
ing to monitor your traffic and in some cases modify it to their benefit. If you log into an
application that does not use SSL to encrypt its passwords or session data, your credentials
may be available to a snooping exit node operator.

Also, beware that Tor exit node operators, in their capacity to act as a man-in-the-
middle, can inject traffic into unencrypted sessions. For example, should you be browsing
anormal website, the unscrupulous exit node operator could inject an iframe or JavaScript
reference that points to a malicious exploit website. If the code attempts to exploit some-
thing your system is vulnerable to, you may find your system infected with malware.

Tor Block Lists

Several websites and services on the Internet specifically track what systems are acting as Tor
exit node servers. This means that you may find yourself unable to access certain websites
during your research if you are using Tor. While the majority of Tor usage may be legitimate,
people can also use Tor to hide illegal and/or immature activities. As a result, some site admin-
istrators choose to block access from these IP addresses to cut down on this activity.

Proxy Servers and Protocols

One of the original ways to stay anonymous on the Internet was through the use of
proxy servers, or proxies. A proxy server is a system designed to work as an intermediary
between a client making a request and the server responding to it. Organizations com-
monly use proxies to speed up traffic and save bandwidth through web caching, and to
block unwanted content through content filtering. However, they can also be used for the
specific purpose of remaining anonymous on the Internet.

When you use a proxy, all of your requests are first sent to the proxy and then to their des-
tination. The proxy essentially acts as a man-in-the-middle between you and your destination.
This set up may sound a lot like Tor. In reality, there are two very important differences.

Unlike Tor, which has a whole network of systems, the proxy server you are com-
municating with is generally the only system between you and your destination,
besides networking equipment and similar devices.

Most importantly, there is no privacy between you and the proxy server. The proxy
server knows who you are and knows that each request it receives is actually coming

Anonymizing Your Activities

from you. Compare that with Tor, where the exit node has no idea where the original
request came from.

It is important that you know there are several proxy types. While proxies do act as a
man-in-the-middle, they do not necessarily provide you full anonymity. Figure 1-5 shows
how proxy servers work.

Proxy Server Web Server
(Intercepts and (Receives traffic
retransmits traffic from proxy and
Client — You from client) not client, and
(Configured to responds o
use proxy when proxy)

sending traffic
to web server)

Figure 1-5: Proxy Server Diagram

Different proxies support a few different protocols. The three protocols you will see
frequently are HTTP, SOCKS4, and SOCKSS5. If you are just attempting to anonymize the
research you are doing through a web browser, the protocols may not concern you. However,
the following sections highlight some of the key differences between the three.

HTTP

HTTP proxies support specially crafted requests that they will proxy and forward along
to the requested resource. HTTP proxies are generally used for non-encrypted connec-
tions, but some may support SSL. They may also support FTP and HTTP methods such
as CONNECT, which allow non-HTTP communication.

SOCKS4

SOCKS4 is a protocol that is designed to handle traffic between a client and server by way
of an intermediary proxy. SOCKS4 only supports the TCP communication protocol. It does
not contain a method for authentication. SOCKS4 is not the most recent version of the
SOCKS protocol, but it is still widely used and accepted. It is worth noting that SOCKS4A
is an extension to SOCKS4 that added support for resolving DNS names.

n

#-1 2doy

12

Malware Analyst’s Cookbook

SOCKS5

SOCKSS5 is the current version of the SOCKS protocol and is an extension of the SOCKS4
protocol. It supports both the TCP and UDP protocols for communication. It also adds on
methods to support authentication from the client to the proxy server.

RECIPE 1-4: FORWARDING TRAFFIC THROUGH OPEN PROXIES

=D You can find supporting material for this recipe on the companion DVD.

ON THE DVD

The first thing you need to do before setting up and using a proxy is to find one that works.
To do this, you can consult several websites that provide a list of free proxies to use. These
websites generally list the IP address of the proxy, its port, protocol, and type. Below are
a few websites that contain a list of free proxies that you can use.

http://www.xXroxy.com
http://www.proxy4dfree.com
http://aliveproxy.com/

http://www. freeproxylists.com

Once you locate a proxy, you can configure your web browser to use it by following the
steps detailed in Recipe 1-1 for configuring Tor. Just enter the IP address of the proxy and
the port that the proxy is listening on. You can validate that the proxy is working in the same
manner as you validated Tor—by going to a website that will return back your IP address
(e.g. http://www.ipchicken.com).

Choosing a Proxy Type

The most important factor when choosing a proxy is to determine what type to use. When
we say proxy type, we are not referring to what protocol it is using, but rather the level of
anonymity that you have as a proxy user. Proxy types include transparent, anonymous,
and highly anonymous.

In this recipe, we are going to introduce you to the various proxy types and show you
examples of additional artifacts that they may add to your requests. We will show you how
you can test the proxies and see what HTTP fields they modify (if any) and what informa-
tion may potentially be leaked as a result. Aside from protecting your own identity, you
can use this knowledge when tracking attackers who are hiding behind proxies.

Anonymizing Your Activities

NOTE

There is no way to guarantee that the proxy you are using hasn’t been set up by mis-
creants to sniff traffic or is not a misconfigured device that has been discovered on the
Internet. Use caution when selecting and using proxies found on these websites.

Validating Proxy Type

To test a proxy, you'll need to capture what the target website sees when the proxy for-
wards your requests. You can do this by setting up a PHP script on a web server that you
own, and visiting it while using the proxy. For convenience, we created a script called
header_check.php, which can be found on the companion DVD. Below you will find the
contents of the header_check.php script. Place this file in an accessible directory on your
web server to use it.

<?php
Sget_headers = apache_request_headers();

echo $_SERVER['REQUEST METHOD'] . " "
$_SERVER['REQUEST URI'] . " " .
$_SERVER['SERVER_PROTOCOL'] . "
";

foreach ($get_headers as Sheader => $value) ({
echo "$header: $value
\n";

echo "

Your IP address is: " . $_SERVER['REMOTE_ADDR'];
?>

Requesting this file from a web browser will result in it returning the request you made
along with all HTTP headers. By using the REMOTE_aDDR variable, it can also print the IP
address of the client machine.

In the following examples, we sanitized the IP addresses of the proxies we used for
privacy. Here is a list that you can use for reference:

192.168.5.88 is the IP address of the system we are making the requests from.
10.20.30.40 is the IP address of a transparent proxy.

10.20.30.50 is the IP address of an anonymous proxy.

10.20.30.60 is the IP address of a highly-anonymous proxy.

13

#-1 2doy

14 Malware Analyst’s Cookbook

Before moving on, you should use the script to generate a baseline of what requests look
like from your browser without the use of a proxy. The output below shows the headers
printed by header_check.php.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \
Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;qg=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;qg=0.7

Keep-Alive: 300

Connection: keep-alive

Your IP address is: 192.168.5.88

The above request returned our baseline header information, which we can compare to
the other requests that are made with proxies enabled. This will allow us to see what types
of elements might be added by different proxy types. As the output shows, the server sees
our connection originating from our real IP address.

Transparent Proxies

RFC 2617 defines a transparent proxy as a proxy that does not modify the request or
response beyond what is required for proxy authentication and identification. In other
words, most fields should not be modified. However, transparent proxies—at least most
of the ones you find on the Web—often do not conceal information about the source of
their requests. When a client uses a transparent proxy, all requests to the server still come
from the IP address of the proxy server. However, the proxy server adds an additional
HTTP header indicating the original source of the request.

The request that follows is what a web server sees from a browser that is using a trans-
parent proxy:

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \
Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;qg=0.7

Keep-Alive: 300

Via: 1.1 proxy:3128 (squid/2.5.STABLE1ll)

X-Forwarded-For: 192.168.5.88

Cache-Control: max-age=259200

Connection: keep-alive

Your IP address is: 10.20.30.40

Anonymizing Your Activities

To the target web server, our connection appears to have originated from the IP address
of the proxy. 10.20.30.40 is the address that will show up in the web access logs. However,
as you can see, several HITP header fields were added to this request. In particular, the
x-Forwarded-For and via headers identify our real IP address and which proxy software
is being used. This provides little to no anonymity.

Anonymous Proxies

Anonymous proxies do not reveal your IP address to the server to which you are mak-
ing a request. However, they normally add in some form of additional information that
will indicate that the request is coming from a proxy server. They may still contain an
x-Forwarded-For header but the IP address that is supplied will likely contain the IP
address of the proxy server or a value that is otherwise not your IP address. If the sup-
plied value is a real IP address but does not belong to you or the proxy server, the proxy
is said to be a distorting proxy.

Compare the following request that a web server sees from a browser using an anony-
mous proxy to the baseline request that did not use a proxy.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \

Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;qg=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;qg=0.7

Keep-Alive: 300

Connection: keep-alive
Via: 1.1 x81lprx00 (NetCache NetApp/6.0.7)

Your IP address is: 10.20.30.50

Now you can see that your IP address was not passed along in this request. However,
an additional HTTP header called via was added to the request, which identifies the proxy
software being used (x81prx00). Some identifiers that are passed by anonymous proxies
might be unique to you. This means that while the target web server might not be capable
of converting this information back to your IP address, it may still distinguish all of your
requests from others.

Highly Anonymous Proxies

Highly anonymous proxies do not reveal your IP address or any other information to a
target web server. These are the most desired of the proxy types because they provide the
highest level of anonymity. When you use a highly anonymous proxy, request headers

15

#-1 2doy

¢-1 2day

16 Malware Analyst’s Cookbook

from the proxy server appear no different from those you make yourself. However, they
are coming from the IP address of the proxy server.
GET /header_check.php HTTP/1.1
Host: www.unlockedworkstation.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT; en-US; rv:1.9.1.5) \
Gecko/20091102 Firefox/3.5.5
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8
Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;q9g=0.7
Keep-Alive: 300
Connection: keep-alive

Your IP address is: 10.20.30.60

Compare this request with the one sent without a proxy; you'll notice they look identi-
cal. The only difference is that the web server saw the connection coming from the proxy
IP instead of your IP. This is not to say that all highly anonymous proxies do not make
some modifications to headers, but the modifications should not identify you or the fact
that the server is a proxy.

RECIPE 1-5: USING SSH TUNNELS TO PROXY CONNECTIONS

A great way to proxy your connections is to use port forwarding through an SSH tunnel.
SSH tunnels allow you open up a listening port on your local workstation, connect to
your server via SSH, and then use your server as a SOCKS4/5 proxy. You can then use any
application that supports SOCKS4/5 proxies to access resources using the 1P address of
the server you have logged into via SSH.

The first step in this process is to have a shell account on a remote SSH server that you
would like to use for your tunneling. Several companies offer cheap shell accounts that
can be used for this purpose. The Super Dimension Fortress (SDF) Public Access UNIX
System’ offers SSH tunneling/port forwarding as a part of their MetaARPA membership
for $36 a year.

Setting up an SSH tunnel to be used as a SOCKS4/5 proxy in Linux or Mac OS X is
simple. Just follow these steps:

From a shell on your workstation, launch ssh to your server with the -p flag.

S ssh user@shell-server.net -D1080

Anonymizing Your Activities

This sets up dynamic application-level port forwarding by binding a listening socket
to your system on TCP port 1080. If the connection succeeded, you should see the
SSH client listening on the port specified.

$ sudo netstat -tnlp | grep 1080
tcp 0 0 127.0.0.1:1080 0.0.0.0:% LISTEN 17190/ssh

You can now configure applications that support SOCKS4/5 proxies to use your
workstation (localhost or 127.0.0.1) and TCP port 1080 for connections. Your SSH
server will effectively be a SOCKS proxy accessible to your local system.

You can be more specific with SSH tunneling by forwarding connections to a certain
local port to a specific IP and port combination. For example, if you only wanted
to proxy your SSH connections to unlockedworkstation.com on TCP port 80, you
would do the following:

S ssh user@shell-server.net -L2080:unlockedworkstation.com:80

Now you can make connections to your localhost on TCP port 2080 and they will
be proxied through your SSH server to the IP address for unlockedworkstation.com
on TCP port 80.

S wget http://localhost:2080

When you use ssh to set up a tunnel, it will result in a command shell on the SSH server.
You may not want to keep this window open, but if you close it, your tunnel will no longer
persist. To alleviate this problem, you can keep the connection alive and throw it in the
background. The following is a modified version of one of our earlier examples.

$ ssh user@shell-server.net -D1080 -f -N
The -t flag requests that the SSH client process goes into the background just before

command execution. The - flag tells SSH not to execute any remote commands (just
maintain an open tunnel).

SSH Proxies on Windows

The steps to accomplish an SSH tunnel on a Windows workstation are very different, but
can still be easily accomplished with the PuTTY® SSH client. The Web Hosting Talk website
has a good post with step-by-step instructions’ for doing this with PuTTY.

Shttp://sdf.lonestar.org
Shttp://www.chiark.greenend.org.uk/~sgtatham/putty/

"http://www.webhostingtalk.com/showthread.php?t=539067

17

9-1 2d19y

18 Malware Analyst’s Cookbook

RECIPE 1-6: PRIVACY-ENHANCED WEB BROWSING WITH PRIVOXY

If you are interested in enhancing your privacy while browsing the Internet, with or
without anonymity, you may want to consider looking into Privoxy.® Privoxy is a non-
caching web proxy that filters out ads and other unwanted content. The software is highly
configurable, but by default it can:

filter banner ads, web bugs, and HTML annoyances
bypass click-tracking scripts and redirections
remove animation from GIFs

You can run Privoxy on your local system or you can set it up on a server on your
network that multiple users can access. Privoxy does not support authentication, so you
should only use it in a trusted network or otherwise apply some form of access restriction
to the system.

On an Ubuntu system, you can install Privoxy by typing apt-get install privoxy. Then
you can start it by using the service command or by launching /etc/init.d/privoxy.

S service privoxy start
Starting Privoxy, OK.

If the service started properly, you'll see a process listening on port 8118 of localhost
(127.0.0.1).

$ sudo netstat -tnlp | grep privoxy
tep 0 0 127.0.0.1:8118 0.0.0.0:* LISTEN 28270/privoxy

Configuring Privoxy for Multiple Clients

As previously mentioned, you can configure Privoxy to act as a server so that multiple
clients can access it. To do this, modify the 1isten-address parameter in the Privoxy
configuration file (/usr/local/etc/privoxy/config on most systems). The default is shown
in the following code:

listen-address 127.0.0.1:8118
Modify 127.0.0.1 to be the IP address of your server that is accessible to the other

clients on your network. If your IP address is 192.168.1.200, edit the config to look like
the following:

listen-address 192.168.1.200:8118

Anonymizing Your Activities

Configuring Browsers to Use Privoxy

Once clients configure the HTTP proxy setting of their browsers to use 192.168.1.200:8118,
all web requests will go through Privoxy. If you want to use Privoxy and Tor, you can do
that, too. Simply modify the Privoxy config file to point to the Tor listener as a SOCKS5
proxy. If the system running Privoxy is also running Tor, you can uncomment the fol-
lowing from the config file:

forward-socks5 / 127.0.0.1:9050 .

If this is uncommented, Privoxy will send all outbound requests through Tor (assuming
Tor is running and bound to the server locally on port 9050), giving you both anonymity
and a higher level of privacy.

Shttp://www.privoxy.org/

Web-Based Anonymizers

Web-based anonymizers are essentially HTTP proxies wrapped up into a web interface.
Instead of configuring the proxy settings of your browser, you visit an anonymizer site and
tell it where you want to go. This is often easier and quicker than the proxies we described
in Recipe 1-4. The web-based anonymizer sends your request to the destination and dis-
plays the web pages back to you, as if you visited the destination directly. You will notice
that the URL bar on your browser still contains the address for the anonymizer site.

The set up and configuration of various web-based anonymizers vary from site to
site. They will likely only work for HTTP or HTTPS communication. Depending on the
site, you may have restrictions on common HTTP methods (POST requests may not be
allowed), download sizes, allowed ports, cookies, and other limitations imposed by the
server. Much like other proxy types we discussed earlier in the chapter, web-based ano-
nymizers often add fields to your requests that make it readily apparent you are using
a proxy. However, most web-based anonymizers do not have fields that present your IP
address to the destination server.

Most web-based anonymizers are available for free. However, there are pay services
that offer additional features, such as content filtering and protection from known phish-
ing and exploit websites. The same pitfalls and risks mentioned in the Tor and Proxies
sections apply here, especially when using the free services.

19

L-1 2doy

20 Malware Analyst’s Cookbook

RECIPE 1-7: ANONYMOUS SURFING WITH ANONYMOUSE.ORG

The website www.anonymouse.org is a free web-based anonymizer that can be used from
virtually any browser. When you visit the site, enter your destination URL and press the
Surf anonymously button, as shown in Figure 1-6.

) Enter website addrns_s:
hetped Surf anonymously)

for example: "hitp:/iwww.yahoo.com"

Figure 1-6: Anonymouse.org Web Form

You are anonymously redirected to the website you entered and the page loads as if
you visited it directly, only with a few minor changes. The website’s title has the text
[Anonymoused] appended to it. Additionally, the HTML source for the website has an
iframe at the bottom that loads an advertisement on the page. You can close the advertise-
ment, but it will reappear each time you browse to a new page. Alternatively, you may sign
up to use the Anonymouse service without advertisements for a small monthly fee.

The anonymouse . org website is an anonymous proxy. The website hides your IP address,
browser type, and operating system when making requests to websites on your behalf. However,
it modifies the HTTP headers, which makes it obvious that you used a proxy service. The
following example shows what a web server sees when a request is made to it through the
Anonymouse proxy service. We used the header_check.php script described in Recipe 1-4
to capture the data.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: http://Anonymouse.org/ (Unix)
Connection: keep-alive

Your IP address is: 193.200.150.137

The IP you see in the output is the address of a proxy server owned by Anonymous
.org. The service makes it apparent through the user agent string that your request is com-
ing from the anonymouse.org website. This keeps your identity safe but makes it readily
apparent to anyone that is looking that you are using a web-based proxy service for your
requests.

Anonymizing Your Activities

Alternate Ways to Stay Anonymous

There are a few alternate ways to stay relatively anonymous while doing your research. In
particular, the use of cellular Internet connections and virtual private networks (VPNs)
can be great options. You may have to shell out a few dollars for either solution, but in
the end it may be well worth it. Both solutions provide a certain level of anonymity as
far as the outside world can tell. You will not have to worry about leaked DNS queries, or
configuring browsers or applications to use proxies with either of these two methods.

Cellular Internet Connections

The main benefit to using a cellular Internet connection to stay anonymous is that the IP
address by itself cannot be tied directly back to you by any outside party. Your cellular
carrier, of course, has the capability to link the IP address to you. Each time you connect,
you will likely receive a different, dynamically assigned IP address. If someone is tracking
your previous activity based on your IP address, they will run into trouble, because you
can change your IP by simply reconnecting.

The strength of the signal and the quality of the coverage in your area may have a drastic
impact on the type of speeds you see when you connect to a cellular network. However, you
should be able to do light investigative work. Because you are already relatively anonymous,
it may not be necessary to use one of the other anonymizing services such as Tor or a
proxy. Should you choose to use one of these other services on top of your cellular Internet
connection, you may find your browsing and related activities become very slow.

Some computing devices, such as laptops, often have cellular modems built into them
these days. However, cell phone companies generally provide you with a cellular modem
(often at a cost) to use their service. These modems plug right into your laptop or computer
and allow you to connect to the Internet with additional software. USB-based cellular
modems allow you the most flexibility because you can use them with most laptop and
desktop computers.

RECIPE 1-8: INTERNET ACCESS THROUGH CELLULAR NETWORKS

The first step to connecting anonymously with a cellular Internet provider is to sign up for
the service and obtain a cellular card or device. Most cellular cards come with software that
helps you connect to the service. Some cards may automatically configure themselves, such
as PCI-X and PCMCIA cards for Mac OS X. Figure 1-7 shows an example of the Verizon
VZAccess Manager that is used for connecting to Verizon’s cellular network.

21

8-1 2dpay

8-1 2day

22 Malware Analyst’s Cookbook

L Verizon Wireless - VZAccess

Figure 1-7: Verizon VZAccess Manager

The bars on the right side under the menu bar work the same as they do on your cellular
phone and indicate signal strength. Click the Connect WWAN button to initiate the con-
nection. Once connected, Verizon Wireless supplies you with an IP address from a large
pool of addresses that they own. You can now browse the Internet anonymously.

A final item to keep in mind is that you can still essentially be profiled while using a
cellular Internet connection. Your IP address may change all the time, but it is still pos-
sible for someone to figure out your general location. In addition, someone looking into
your activity can tell that you are using a cellular Internet connection for your access. If
you continually do research from these services, the bad guys may also determine that the
research you do on subsequent visits is related to past research, even if the IP address has
changed.

Virtual Private Networks

There are many different types of VPNs and ways to both authenticate and connect to
them. When you use a VPN, you are setting up a connection with a remote server that
allows you to send traffic through it, similar to how a proxy works. However, the main
difference is that your system is generally assigned an IP address on the VPN’s network
and all the traffic between your machine and the VPN is encrypted.

If you want to build your own VPN infrastructure, you can purchase a virtual private
server from a hosting provider such as Linode (http: //www.1linode.com) or Amazon’s EC2
(nttp://aws.amazon.com/ec2/). Then install and configure a free, open source product such
as OpenVPN (http: //openvpn.net/) onto your server. Alternately, you can use a commercial
solution, which cuts down on the set up and maintenance that you'll need to perform.

Anonymizing Your Activities

RECIPE 1-9: USING VPNS WITH ANONYMIZER UNIVERSAL

Anonymizer, Inc. offers a service called Anonymizer Universal,’ which provides an
encrypted L2TP/IPSec VPN service that has a pool of tens of thousands of constantly
rotating “untraceable IP addresses” for approximately $79.99 a year. It allows you to con-
nect in an instant and start conducting all of your activities from one of the untraceable
IP addresses. Anonymizer does not modify your traffic to include identifying information
that might lead back to you or your real IP address.

After you obtain an Anonymizer account, you'll be able to download client software and
configuration files for Windows, Mac OS X, and the iPhone. The set ups for Windows and
Mac OS X are very straightforward. You can just launch the Anonymizer Universal applica-
tion, as shown in Figure 1-8.

Enter your account information and save it. You will then be brought to a screen that
displays your IP address. It shows that you are “unprotected,” as all of your network activ-
ity will come from the personal IP address that is displayed. Now click Connect and let
Anonymizer establish a VPN connection with its back-end service. Once the connection
succeeds, you are assigned a new IP address, as shown in Figure 1-9.

Not Connected to Anonymizer

- : : UNPROTECTED

Password Personal IP Address:

Connected to Anonymizer

PROTECTED

Anonymous IP Address: 198.65.160.156

Figure 1-9: Anonymizer—Protected

23

6-T 2day

6-1 2day

24 Malware Analyst’s Cookbook

You now have an IP address that is not tied back to you. In this case, the IP address the
Anonymizer service has assigned to you is registered to NTT America. The GeoLocation
for the IP address says it is in Colorado and the WHOIS information points to Delaware
and California. Nothing about this IP address reveals that is a proxy. You can now perform
your investigations over the Internet and all of the activity will come from the IP address
198.65.160.156.

http://www.anonymizer.com

Being Unique and Not Getting Busted

This chapter discussed a few ways you might be fingerprinted or otherwise stand out
while trying to remain anonymous. Whether it is through a proxy-modified HTTP header
or an IP address range, repeated activity can clearly make you stand out to someone that
is watching.

Your browser and the various plug-ins can reveal a lot of information. Often a simple
request to a website can result in passive fingerprinting that can determine your operating
system, browser type and version, language settings, and more. Various plug-ins—Adobe
Flash, Acrobat, QuickTime, Java, and even Facebook—can also probe your system.

The Electronic Frontier Foundation (EFF) has a website called Panopticlick (http://
panopticlick.eff.org/) that helps determine how unique your browser is when com-
pared to others. This website uses code from BrowserSpy (http://browserspy.dk/) to
determine how much information is revealed about your computer through your web
browser. Using these tools, it may be possible for someone to fingerprint each of your
visits to their website, despite the fact that you visited on different days using a different
IP address each time—and they can do this without the use of cookies or any persistent
data set by the website. If you are interested in understanding more about how finger-
printing works and how you can be identified and tracked, it's definitely worth taking a
look at the Panopticlick website.

Other techniques that attackers may use can reveal your real IP address even if you're
using a highly anonymous proxy. For example, code on a web page can often instruct Flash
to make a connection that does not go through your proxy, thus revealing your real IP
address. Other methods may reveal your DNS server. Potentially, you could do anonymous
research from your place of business and someone could watch your activities, see that
your DNS lookup came from nsl.your-company-name-here.com, and bust you as a result.
The website for the Metasploit Decloaking Engine (http://decloak.net/) has a tool to
demonstrate several of these issues. Use this website to see if they can, in fact, decloak
you while you're behind a proxy.

Anonymizing Your Activities

Despite all of this, you can do several things to defend yourself against these methods
of fingerprinting. A simple measure that can go a long way is to disable JavaScript dur-
ing your anonymous research activities. You can further manage and control this, even
during your non-research activities, through the NoScript (attp: //noscript.net) Firefox
extension. This add-on for Firefox can protect you from exploits using JavaScript, Java,
Flash, or other browser plug-ins.

You should follow a few other general rules and practices to stay anonymous during
research activities. The following is a list of considerations to take into account before
starting any research:

When signing up for various accounts, do not use an account name that identifies
you or your organization. Additionally, do not use a password that you use elsewhere
in your normal day-to-day activity.

If you come across something that seems questionable or if your own activities worry
you, even though they are anonymous, you should stop.

Although you think you're doing all you can to stay anonymous during your activities,
consider that your research might reduce your level of anonymity. For example, your
organization may have been targeted with a piece of malware that, when run, connects
to bad-website.com/connection/report.php. If you were to attempt to access this domain
yourself, even while taking all the right steps to stay anonymous, you might still end up
revealing yourself to the bad guys. Unknown to you, the bad guys may have used the
domain name specifically to attack your organization and no others. So searching, probing,
or otherwise revealing the existence of this domain shows the bad guys that the activity
is coming from someone at your company. Although you did not provide any information
to directly identify yourself or use an IP address with ties to your organization, you have
been indirectly identified and your cover has been blown.

25

oneypots are systems that are designed to be exploited, whether through emulated

vulnerabilities, real vulnerabilities, or weaknesses, such as an easily guessable SSH
password. By creating such systems, you can attract and log activity from attackers and net-
work worms for the purpose of studying their techniques. Honeypots are usually categorized
as either high-interaction or low-interaction:

High-interaction: Systems with a real non-emulated OS installed on them that can
be accessed and explored by attackers. These systems may be virtual machines or
physical machines that you can reset after they are compromised. They are frequently
used to gain insight into human attackers and toolkits used by attackers.
Low-interaction: Systems that only simulate parts of an operating system, such
as a certain network protocols. These systems are most frequently used to collect
malware by being “exploited” by other malware-infected systems.

Honeynets, on the other hand, consist of two or more honeypots on a network. Typically,
a honeynet is used for monitoring a larger and more diverse network in which one hon-
eypot may not be sufficient. For example, an attacker may gain access to one honeypot
and then try to move laterally across the network to another computer. If there are no
other computers on the network, the attacker may realize that the environment isn’t the
expected corporate network; and then he’ll vanish. The purpose of this chapter is not
to study an attacker’s every move, so we do not discuss honeynets or high-interaction
honeypots. Instead, this chapter focuses on low-interaction honeypots for the purpose of
collecting malware samples.

Setting up a low-interaction honeypot such as nepenthes, dionaea, or mwcollectd
(nttp://code.mwcollect.org/—not covered in this chapter) is a great way to capture the

28

Malware Analyst’s Cookbook

malware that botnets and worms distribute. You can also potentially use them to detect
new vulnerabilities being exploited in the wild, study trends and statistics, and develop
a workflow that streamlines the process of obtaining, scanning, and reporting on new
malicious code. Figure 2-1 shows a diagram of the high-level honeypot infrastructure that
you can build with recipes in this chapter.

{ HTTP submit !
i module sends
Botnet Binary + binary and reports i XMPP

Command and Collection activity to
Control Server Server i XMPP chatrooms. :

Server

' Sends command for bots !
to scan and exploit
systems on the Internet. :

Honeypot

System
Infected Computer : Y

(Part of Botnet) 31

Scans for vulnerable
systems and exploits them.

Honeypot system is 1
exploited and malware !
is received from bot.

Figure 2-1: Honeypot example diagram

Nepenthes Honeypots

Nepenthes (http: //nepenthes.carnivore.it) is one of the most well-known and widely
deployed low-interaction honeypots on the Internet. Markus Kotter and Paul Bacher first
developed it in 2005. Nepenthes includes several modules for emulating Microsoft vulner-
abilities that can be remotely exploited by systems scanning the Internet. In this section,
you'll learn how to collect malware samples, monitor attacks with IRC logging, and accept
web-based submissions of malware from your nepenthes sensors.

Honeypots 29

RECIPE 2-1: COLLECTING MALWARE SAMPLES WITH NEPENTHES

Nepenthes runs on a variety of operating systems, including Windows via Cygwin, Mac

-7 2day

OS X, Linux, and BSD. The extensive readme! file explains how to download pre-compiled
binaries or install nepenthes from source for any of the aforementioned systems. However,
the instructions in this recipe are specific to using nepenthes on Ubuntu.

Installing Nepenthes
To get started with the installation, type the following command:

$ sudo apt-get install nepenthes

This will install nepenthes and add the user account and group (both named nepenthes)
that the daemon process runs as. Once the package is installed, you can start nepenthes as
a service with the following command.

$ sudo service nepenthes start

When nepenthes begins running, it binds to several ports on your system. These are the
ports on which nepenthes expects to see common remote exploitation. As you can see in
the following netstat output, the nepenthes process has a process ID of 14243. Each line
represents a different socket in the LIsTEN state (waiting for incoming connections). The
top line indicates that nepenthes is listening on port 80 of all IPv4 addresses (0.0.0.0) on the
machine and there is currently no remote endpoint (0.0.0.0:*) connected to the socket.

S sudo netstat -ntlp | grep nepenthes

tep 0.0.0.0:80 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:10000 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:6129 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:465 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:5554 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:27347 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:17300 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:21 0.0.0.0:%* LISTEN 14243 /nepenthes
tep 0.0.0.0:3127 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:2103 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:2105 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:2745 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:25 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:2107 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:443 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:220 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:445 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:1023 0.0.0.0:% LISTEN 14243 /nepenthes
tecp 0.0.0.0:1025 0.0.0.0:%* LISTEN 14243 /nepenthes
tep 0.0.0.0:993 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:995 0.0.0.0:% LISTEN 14243 /nepenthes

-7 2day

30 Malware Analyst’s Cookbook

tep 0.0.0.0:314 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:135 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:5000 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:42 0.0.0.0:% LISTEN 14243 /nepenthes
tecp 0.0.0.0:139 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:3372 0.0.0.0:%* LISTEN 14243 /nepenthes
tecp 0.0.0.0:110 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:143 0.0.0.0:% LISTEN 14243 /nepenthes

To receive connections on these ports from machines on the Internet, you must allow
access to the ports through any firewalls on your network. Also, if you are dropping or
restricting traffic to your system with iptables (a host-based firewall), you can use the
following command to open access to the ports required by nepenthes.

$ sudo iptables -I INPUT -p tcp --dport <port_number> -j ACCEPT

NOTE

Nepenthes also may require port forwarding if your system is behind a home router
or other device that performs network address translation (NAT). Also, note that NAT
deployments can be problematic because of the use of bindshells, which may attempt
to open a random port on the honeypot system for the attacking system to connect
back to.

Nepenthes Logs

The default configuration that nepenthes comes with is enough to start capturing malware.
Once up and running, youw'll want to know what attacks your honeypot logged and what
files (malware) were downloaded as a result of the attacks. Here is a list of the directories
and files that are associated with nepenthes.

/var/log/mepenthes/: The default logging directory.
/var/log/mepenthes/logged_downloads: Contains a list of all download attempts.
/var/log/mepenthes/logged_submissions: Contains a list of all successful download
attempts.

/var/log/mepenthes/binaries/: Stores downloaded binaries. Each file is named after
its Mps hash and is only saved the first time it is received; it is not re-downloaded if
seen in subsequent attacks.

/var/log/nepenthes.log: The primary log file for nepenthes that contains all activ-
ity, including detection of duplicate attacks and other messages associated with
nepenthes’s health and status.

Honeypots

To see what attacks your honeypot has received and what malware the attacking systems
are trying to distribute, take a look at the logged_downloads file. (In the following output,
the authors sanitized their honeypot’s IP addresses to 10.1.84.6.)

$ tail /var/log/nepenthes/logged_downloads

[2010-07-07T16:29:38] 74.160.64.241 10.1.84.6 tftp://74.160.64.241/ssms.exe

[2010-07-07T17:00:25] 74.109.128.237 10.1.84.6 tftp://74.109.128.237/ssms.exe

[2010-07-07T17:16:58] 74.72.155.203 10.1.84.6 ftp://1:1@74.72.155.203:56187/ssms.exe

[2010-07-07T18:45:57] 74.109.128.237 10.1.84.6 ftp://1:1@74.109.128.237:51288/ssms.exe

[2010-07-07T19:02:00] 67.55.20.66 10.1.84.6 tftp://67.55.20.66/ssms.exe

[2010-07-07T23:23:05] 74.138.48.239 10.1.84.6 ftp://1:1@74.138.48.239:11781/ssms.exe

[2010-07-08T00:18:02] 113.42.142.88 10.1.84.6 creceive://113.42.142.88:9988/0

[2010-07-08T00:38:47] 74.124.228.117 10.1.84.6 tftp://74.124.228.117/ssms.exe

[2010-07-08T04:56:56] 74.102.142.103 10.1.84.6 tftp://74.102.142.103/ssms.exe

[2010-07-08T07:31:54] 74.51.226.134 10.1.84.6 tftp://74.51.226.134/ssms.exe

This log file is in the format:

[Timestamp] [Source IP] [Destination IP] [Download instructions]

In the output, you can see attacks from nine unique source IP addresses over the
course of 15 hours. Although the source addresses are different (with the exception of
74.109.128.237, which probed us twice), the download instructions are similar. For exam-
ple, the protocol is either FTP or TFTP and the name of the file is always ssms.exe. If
the protocol is FTP, the supplied username and password is 1:1. These patterns indicate
that the attacking IPs may all belong to the same botnet or at least share similar code for
spreading malware.

One thing you can’t tell at this point is whether all remote systems are hosting the same
version of smss.exe. It may be a different variant of the malware on each system, despite
the same file name. Any time you want to investigate entries in the logged_downloads file,
you can use grep on the nepenthes.log file for additional information, like this:

S grep 74.51.226.134 nepenthes.log -A2 | grep Downloaded -A2

[08072010 07:32:17 info down handler dia] Downloaded file

tftp://74.51.226.134/ssms.exe 171795 bytes

[08072010 07:32:17 spam mgr submit] Download has flags 0

[08072010 07:32:17 info mgr submit] File

ecfbf321d3deal3ec732e7957blbb7bla has type PE32 executable
for MS Windows (GUI) Intel 80386 32-bit

You can see that the attack resulted in the download of ssms.exe and that file had the
mD5 hash ecfbf321d3dea3ec732e7957blbb7bla. Now let’'s check the timestamp for the
corresponding file in the nepenthes download directory:

$ 1s -1 /var/lib/nepenthes/binaries/ | \

grep ecfbf321d3dea3ec732e7957blbb7bla

-rw-r--r-- 1 nepenthes nepenthes 171795 2010-06-11 20:18
ecfbf321d3deal3ec732e7957blbb7bla

31

-7 2day

-7 2dnay

32

Malware Analyst’s Cookbook

Do you notice an inconsistency in the data? According to logged_downloads, 74.51.226.134
instructed the honeypot to download smss.exe on 2010-07-08, but the timestamp on the
corresponding file is 2010-06-11. This isn’t an error. As previously mentioned, nepenthes
doesn’t store duplicates of files that already exist in the downloads directory. Using the first-
seen timestamp, you can get an idea of whether the bots are spreading new or old malware
samples. Botnets and worms will often attempt to spread the same file repeatedly for a long
time, so the behavior you're observing isn’t out of the ordinary.

The following command searches the downloads directory for any activity on 2010-
07-08:

$ 1ls -1t /var/lib/nepenthes/binaries/ | grep 2010-07-08

-rw-r--r-- 1 nepenthes nepenthes 57856 2010-07-08 00:18
e3c1fb9c29107£dab8920840£10d25b5

According to the results, only one of the attacks in the logged_downloads file resulted
in a malware sample that had not been previously seen by the nepenthes sensor. This
means that all the other download attempts from the log file were duplicates or otherwise
resulted in an error. If you want to perform some automated processing of newly collected
samples, you can set up a nightly cron job each day and grep the download directory for
the current date.

'http://nepenthes.carnivore.it/documentation:readme

RECIPE 2-2: REAL-TIME ATTACK MONITORING WITH IRC LOGGING

Frequently reviewing your nepenthes log files and directories is a good way to find new
activity. However, this is more of a manual process and it is a bit tedious. Fortunately,
nepenthes comes with a number of useful modules that you can configure to receive near
real-time alerts. This recipe shows you how to set up the 10g-irc module to receive alerts
on an IRC channel of your choice. Before you begin, note that the configuration files for
available nepenthes modules are located alongside the main nepenthes configuration file
(nepenthes.conf) in the /etc/nepenthes directory.
To set up and configure logging to IRC, follow these steps:

Edit nepenthes.conf and make sure the following line is uncommented:
"logirc.so", "log-irc.conf", "" // needs configuration

Edit log-irc.conf with the appropriate IRC settings. The following code shows a
sample configuration that works with the Rizon IRC network.

log-irc
{

use-tor "o";

Honeypots

tor
{
server "localhost";
port "9050";
Y
irc
{
server
{
name "irc.rizon.net";
port "6667";
pass "y
Y
user
{
nick "nep-cookbook" ;
ident "nep-sensorl";
userinfo "http://nepenthes.mwcollect.org/";
usermodes it
}i
channel
{
name "#malware_analysts_cookbook";
pass "

Y
Y

Consider the following tips when setting up your sensor to log to IRC:

If you plan to use a proxy or Tor, you can set use-tor to "1* and configure the server
and port accordingly. See Recipe 1-1 for information on how to set up Tor.

When you choose a nickname for your logging bot, be sure to choose one that is
not in use; otherwise it will never successfully connect to the IRC channel.

After changing the configuration file, you must restart nepenthes.

Once you do this, nepenthes will begin logging information on probes and attacks in
near real-time on IRC. All you need to do is log into the IRC channel using your favorite
IRC client to receive the messages. The following code shows an example of the output
from when our nepenthes sensor was attacked by 113.42.142.88.

01:17 <nep-cookbook> Unknown ASN1_SMB Shellcode (Buffer 172 bytes)
(State 0)

33

-7 2dnay

¢-7 adnay

34 Malware Analyst’s Cookbook

01:17 <nep-cookbook> Unknown PNP Shellcode (Buffer 172 bytes)

(State 0)

01:17 <nep-cookbook> Unknown LSASS Shellcode (Buffer 172 bytes)
(State 0)

01:17 <nep-cookbook> Unknown DCOM Shellcode (Buffer 172 bytes)
(State 0)

01:17 <nep-cookbook> Unknown NETDDE exploit 76 bytes State 1

01:17 <nep-cookbook> Unknown SMBName exploit 0 bytes State 1

01:17 <nep-cookbook> Handler creceive download handler will download
creceive://113.42.142.88:9988/0

01:18 <nep-cookbook> File e3clfb9c29107fdab8920840£10d25b5 has type
PE32 executable for MS Windows (GUI) Intel 80386 32-bit

With IRC logging enabled, you can immediately see when activity is occurring and when
your honeypot system is successfully exploited. In the preceding example, the system was
sent a binary with the ups hash e3c¢1fb9¢29107fdab8920840f10d25b (fetched with the
creceive module, which is a generic TCP downloader). That file could then be retrieved
from the binaries directory for analysis.

RECIPE 2-3: ACCEPTING NEPENTHES SUBMISSIONS OVER HTTP WITH PYTHON

<=> You can find supporting material for this recipe on the companion DVD.
You might find it useful to automatically send binaries that your honeypot collects to a
server elsewhere. This recipe shows you how to create CGI scripts in Python that accept
binaries from nepenthes honeypots over HITTP; and then how to configure nepenthes to
perform the automated submissions.

On the book’s DVD you will find a file named wwwhoney.tgz, which contains a small
Python web server and the necessary scripts to receive HTTP-based submissions from
nepenthes and dionaea (see Recipe 2-5 for using the scripts with dionaea). To get started
with the web server, extract the archive to your desired location like this:

S tar -xvf wwwhoney.tgz

wwwhoney /

wwwhoney/binaries/

wwwhoney /README

wwwhoney/cgi-bin/

wwwhoney/cgi-bin/libhoney.py

wwwhoney/cgi-bin/dionaea.py

wwwhoney/cgi-bin/nepenthes.py
wwwhoney/cgiserver.py

Honeypots

Here is a description of the files that you'll find inside the wwwhoney.tgz archive:

/binaries/: Directory where received binaries are stored
/cgi-bin/libhoney.py: Library with functions shared by honeypot scripts
/cgi-bin/dionaea.py: Script for accepting files from dionaea
/cgi-bin/nepenthes.py: Script for accepting files from nepenthes
cgiserver.py: Small Python-based CGI web server used to serve scripts

To start the web server in the background, use the following command:

$ python cgiserver.py &
Server running on port 9000!

The default port is set to 9000 and can be modified by editing the source of cgiserver.py.
You can now configure your nepenthes sensor to submit malware samples to your web server.
To do this, edit /etc/nepenthes/submit-http.conf. If you were running your web server from
the TP 192.168.1.100, you would modify your nepenthes submit-http module to look like
this:

submit-http

{

url "http://192.168.1.100:9000/cgi-bin/nepenthes.py";
email "your@email"; // optional
user "httpuser"; // optional

pass "httppass"; // optional
Y

The only required field is the URL to which the binaries are submitted. The URL can be
http or https. A username and password can be supplied via the user and pass parameters
for basic access authentication if the URL you wish to submit to is restricted to authenti-
cated access only.

At this point, all new binaries received by nepenthes are submitted to the nepenthes.py
script. The code that follows shows the source of nepenthes.py.

#!/usr/bin/python

import sys

import cgi

import hashlib

from libhoney import *

form = cgi.FieldStorage()
if not form:

sys.exit ()

(data, filename) = getFile(form, "file")

35

¢-7 2dnay

36 Malware Analyst’s Cookbook

printHeader ()

the initial POST didn't include the file, so request it
if not data or not filename:

print "S_FILEREQUEST"

sys.exit ()

if the file already exists, we don't want it again
md5 = hashlib.md5 (data) .hexdigest ()
if fileExists(md5) :

print "S_FILEKNOWN"

sys.exit ()

store the file according to its md5 hash
if storeFile(data, md5):

print "S_FILEOK"
else:

print "S_ERROR"

The script first checks if the file is already in the web server’s archive. If not, the script
requests it from the nepenthes sensor by replying with s_rirereQuEST. The files are saved in
the ./binaries/ directory named according to their ups hash. Keep in mind that this is just a
start to your honeypot infrastructure. Here are a few ways that you can extend the template:

Add a database back end to track and store samples (see the Remote Root website
for an example in PHP that logs to MySQL).?

Import the Python module we present in Recipe 4-4 for scanning submissions with
VirusTotal, Jotti, ThreatExpert, and NoVirusThanks.

Import the Python module presented in Recipe 3-8 to detect malicious attributes
in the PE file headers.

Import the Python modules presented in Chapter 8 to automate the execution of
the samples you collect in a VMware or VirtualBox environment.

2http://www.remoteroot.net/2008/07/21/nepenthes-submit-http-server-with-
file-upload/

Working with Dionaea Honeypots

Dionaea (http://dionaea.carnivore.it) is a low-interaction honeypot and is considered
the successor to nepenthes. Markus Kotter, one of the original developers of nepenthes,
initially developed dionaea as part of the Honeynet Project’s Summer of Code 20009. In this
section, you'll learn how to collect malware samples with dionaea as well as how to send

Honeypots

and receive collected samples over HTTP. You'll also learn how to set up real-time event
notification and sample sharing over XMPP, how to analyze and replay attacks, how to
integrate pof to passively identify operating systems, and how to graph attack patterns.

RECIPE 2-4: COLLECTING MALWARE SAMPLES WITH DIONAEA

Before we begin with installing and setting up dionaea, here are a few of the most inter-
esting features:

It is written in C, but exposes a Python interface so you can easily add new modules
without recompiling the base.

It supports IPv6 and TLS, and uses 1ibemu (see Recipe 6-10) for shellcode detection.
It implements a Python-based version of the Windows Server Message Block (SMB)
protocol, allowing it to properly establish sessions before being exploited by attacking
machines. Other low-interaction honeypots only simulate certain vulnerable func-
tions. Given that attacks over SMB will likely account for the majority of traffic that
your honeypot will see, this gives dionaea a big advantage over other honeypots.

It can send real-time notifications using the XMPP protocol (see Recipe 2-6).

It logs information on attacks to an SQLite3 database, which gives you a simple way
to generate and graph statistics (see Recipe 2-9).

Installing dionaea

There are numerous packages to install to properly set up dionaea. Rather than detail each
step, we will refer you to the dionaea project page,’ which has the installation process well
documented. You need to compile several packages from source, as dionaea needs ver-
sions of various packages that are likely not available through your package manager. The
recommended OS for installing dionaea is Ubuntu or Debian Linux; however, you should
be able to set it up on most Unix-based platforms.

Once you have successfully installed dionaea, you should have all of your files in /opt/
dionaea. The next few recipes refer to this directory as $SDIONAEA_HOME. One of the
first things youwll want to do is decide on some basic settings found in dionaea’s main
configuration file at $DIONAEA_HOME/etc/dionaea/dionaea.conf.

The Logging Section

By default, dionaea will log everything (debug, info, message, warning, critical, and error
messages). It's good to keep the default settings while you install and become familiar
with dionaea. However, if you are running a very busy sensor, the size of your log file
can increase by several hundred gigabytes per day. Before putting your honeypot into

37

-7 2day

$-7 2doy

38 Malware Analyst’s Cookbook

“production” mode, we recommend changing the logging configuration in the following
manner:

Table 2-1: Log Level Changes to Consider
Under the “default” parameters
Original Value New Value
levels = "all" levels = "all, -debug"

Under the “errors” parameters
Original Value New Value

levels = "warning, error" levels = "error"

Like nepenthes, dionaea also has options to submit files over HTTP. The configuration
is set up by default to submit binaries to the online sandboxes of Anubis, Norman, and
the University of Mannheim’s CWSandbox instance (see Recipe 4-6). If you do not want
to submit files to these sandboxes, you need to comment out the relevant portions in the
configuration file. In the logging section, you can also set up dionaea to submit code to
Joebox or even to your own HTTP handler—which is described more in Recipe 2-5.

The IP Section

By default, dionaea will bind to all IP addresses using both IPv4 and IPv6. Depending on
how many IP addresses you have configured on your honeypot system, this can cause
dionaea to take a bit of time to initialize. If you want to quickly have dionaea bind to all
IPs without iterating each one, or restrict the IPs to which it binds, you may want to make
changes like the following to the configuration file:

mode = "manual" // was "getifaddrs"
In the previous example, we changed the mode to "manual", which is set to "getifaddrs"
by default. When the configuration file is set to manual, you must then supply information

about what interface(s) and IP address(es) you want dionaea to bind to. The following are
five possible example settings showing how you could configure your sensor.

bind to all IPv4 addresses on eth0 interface
addrs = { eth0 = ["0.0.0.0"] }

bind to .50 and .51 on ethO interface
addrs = { eth0 = ["10.14.49.50", "10.14.49.51"] }

bind to .50 on eth0 and all IPv4 on ethl
addrs = { eth0 = ["10.14.49.50"], ethl = ["0.0.0.0"] }

bind to all IPv6 addresses on eth0

Honeypots

addrs = { eth0 = ["::"] }

bind to all IPv4 and all IPv6 addresses on eth0
addrs = { eth0 = ["::"], eth0 = ["0.0.0.0"] }

You can choose to bind to all IPv4 addresses on an interface by using 0.0.0.0, all IPv4
and IPv6 addresses by using : :, and individual addresses by just listing them out sepa-
rated by a comma. You can mix and match different settings and protocols with different
interfaces.

The Module Section

In the modules section, you can enable, disable, and configure various features and tools
used by dionaea. Of particular interest are two of its subsections, ihandlers and services.
Their default settings are shown in the following code:

ihandlers = {
handlers = ["ftpdownload",

"tftpdownload",
"emuprofile",
"cmdshell",
"store",
"uniquedownload",
"logsqgl",

// "logxmpp",

// "pOf",

// "surfids"]

services = {

serve = ["http",
"https",
"tftp",
"fep",
"mirror",
"smb",
"epmap"]

}

Dionaea can make use of an SQLite database (the 10gsql handler) and it is enabled by
default. If you do not want to use a SQLite database to store the activity from your sen-
sor, you can comment out that line. You will learn to use the 1ogxmpp and pof handlers in
Recipes 2-6 and 2-8, respectively. As for the services section, you may want to consider
removing several of the listed services such as http, https, and £tp. Consider the informa-
tion below to help you determine if you want to disable any of dionaea’s services.

smb and epmap: Essential to collecting malware with dionaea, because a majority of
malware is seen from attacks against the smb and epmap services.

39

$-7 2doy

¢-7 aday

40 Malware Analyst’s Cookbook

tftp: Functions as a TFTP server that accepts arbitrary file transfers and also detects
attempts to exploit vulnerabilities against the TFTP service.

http and https: Act as a web server and serves files from $DIONAEA_HOME/var/
dionaea/wwwroot/.

ftp: Permits all logins and captures files should someone choose to upload them.
We recommend disabling this service as it does not currently have exploit detection
and turning your machine into a file server for the Internet can be dangerous.

If you choose to disable any services, you can delete the service’s name from the configu-
ration or place a comment (//) to the left of the name. We recommend using comments
so you don’t forget the service names if you ever want to re-enable them.

Running dionaea
To start dionaea, execute the following command:

S sudo ./dionaea -u nobody -g nogroup \
-p /opt/dionaea/var/dionaea.pid -D
Dionaea Version 0.1.0
Compiled on Linux/x86 at Jul 10 2010 13:03:11 with gcc 4.4.3
Started on sl.mac running Linux/i686 release 2.6.32-22-generic-pae

[12072010 22:26:12] dionaea dionaea.c:238: User nobody has uid 65534
[12072010 22:26:12] dionaea dionaea.c:257: Group nogroup has gid 65534

Dionaea is now running and will interact with attacks as they occur. The next recipes
show what you can do with the samples after you collect them.

3http://dionaea.carnivore.it/#compiling

RECIPE 2-5: ACCEPTING DIONAEA SUBMISSIONS OVER HTTP WITH PYTHON

<=> You can find supporting material for this recipe on the companion DVD.
As mentioned earlier, by default, dionaea is set up to submit samples it receives to three differ-
ent sandbox systems. However, you can configure dionaea to submit files to any URL that you
want. This recipe assumes that you've read and followed the same steps described in Recipe
2-3 to set up the wwwhoney Python web server supplied on the book’s DVD. The code that
follows shows the contents of dionaea.py, which handles submissions from dionaea.

#!/usr/bin/python

import sys

import cgi

import hashlib

Honeypots 41

from libhoney import *

form = cgi.FieldStorage()
if not form:
sys.exit ()

(data, filename) = getFile(form, "upfile")
printHeader ()

error if there's no file
if not data or not filename:
sys.exit()

if the file already exists, we don't want it again
md5 = hashlib.md5 (data) .hexdigest ()
if fileExists(md5):
sys.exit ()
else:
storeFile(data, md5)

This script takes binary submissions from the dionaea sensors, checks if the file exists in
your collection, and if not, saves the file to the ./binaries/ directory. To configure dionaea to
play its role in the setup, you can add the following configuration to your dionaea.conf:

Malware_Analysts_Cookbook =
{

urls = ["http://192.168.1.100:9000/dionaea.py"]
email = "malware@cook.book"

user = "malware"

pass = "cookbook"

}

You, of course, need to modify the URL to point to your own server and only need
to supply a username and password if you are protecting access to the URL with basic
authentication. Once this is set up, you can point any number of dionaea sensors to your
server and collect malware binaries in a central location.

RECIPE 2-6: REAL-TIME EVENT NOTIFICATION AND
BINARY SHARING WITH XMPP

9-7 2day

One of the most interesting and innovative modules that comes with dionaea is the Exten-
sible Messaging and Presence Protocol (XMPP) module, which you can use for real-time
communications. If you have ever used a Jabber server or Google Talk, you have used

9-7 2day

42 Malware Analyst’s Cookbook

XMPP. But dionaea takes real-time communication and binary sharing to a whole new
level with its XMPP module. Instead of just logging information to chat channels, dionaea
shares the binaries it has received with other clients on the channel. This gives you the
power of distributed malware collection if you have friends or relationships with companies
who also use dionaea.

Configuring Dionaea to Use XMPP

If you plan to use XMPP, you first need access to an instant messaging server that supports
Jabber/XMPP protocols. The developers of dionaea use a modified version of Prosody,*
and it may also be possible to use ejabberd.’ Regardless of which software you choose, it is
a good idea to use a server that was specifically set up for honeypot activity. The amount
of data and size of files may not be permitted on public servers and may result in your
being banned or removed from the server for abuse. You can read more about XMPP on
the dionaea developer blog.®

For dionaea to use the XMPP module, you first need to enable 1ogxmpp in the ihandlers
section of dionaea.conf. The default configuration is set to use the developer’s Prosody
server and share binaries anonymously with other clients. This means that identifying host
information is removed when data is sent to the chat rooms. The amount of information
shared is configurable from within dionaea.conf in the 1ogxmpp section under the events
directive.

Logging Attack Data from an XMPP Channel

To log attack data from to an XMPP channel, you can use the Python script at $DIONAEA _
HOME/modules/python/util/xmpp/pg_backend.py. It logs into the specified XMPP server
and parses all the XML messages sent to the chat rooms that you join. This XML data con-
tains attack information and malicious binaries that are seen by the dionaea sensors. When
you use pg_backend.py, you can provide a path to which binary files should be saved. If
you supply database credentials, all attack activity from the various sensors can be logged
to a central database. The following command shows the syntax for joining two channels,
logging data to a database, and storing binary files to the /tmp directory.
S python pg backend.py -U username -P password \
-M server -C anon-files \

-C anon-events -d database \
-u db_user -p db_pass -f /tmp/

Table 2-2 provides a quick explanation of the switches.

Honeypots

Table 2-2: Options for pg_backend.py

Switch Description

-U Chatroom username

-P Chatroom password

-M XMPP server address

-C Multi-user chatroom to join

-d Database

-u Database username

-p Database password

-f File path where binaries will be saved to

*http://prosody.im/
Shttp://www.ejabberd.im/

Shttp://carnivore.it/2010/01/26/xmpp_-_basics

RECIPE 2-7: ANALYZING AND REPLAYING ATTACKS LOGGED BY DIONEA

Dionaea makes use of something the developers call bi-directional streams or bistreams.
Bistreams provide you with an easy way to retransmit data previously sent to your honeypot
in a manner similar to the tcpreplay’ tool. You can leverage bistreams to replay an attack to
a target server (your honeypot or any other system) for testing or troubleshooting purposes.
If you take it a step further, you can modify bistreams to verify if any other input leads to
exploitable conditions and perhaps to create a metasploit module out of your findings.

To create bistreams, dionaea records all attacks and stores the payloads from the incom-
ing and outgoing packets as a list of Python tuples. The first entry is the direction (in or
out) and the second is the data that is sent or received. For example, if a remote machine
sent the NULL-terminated string 'hello' to your honeypot and the honeypot responded
with 'goodbye', the conversation would be represented like this:

stream = [('in', b'hello\x00'), ('out', b'goodbye\x00'),]
The previous line of code is saved in a Python file named according to the date, the ser-

vice (such as smb, epmap, http) that handled the traffic, and the remote system’s IP address.
Once you determine which file contains the attack data that you want to replay, use the

43

L-7 2dpay

L-7 2dpay

8-7 2day

44 Malware Analyst’s Cookbook

Python script at $DIONAEA_HOME/modules/python/util/retry.py. The following command
shows an example of replaying the traffic sent from 99.60.24.198 to your honeypot.

S ./retry.py -sr -H localhost -p 445 -f smb-99.60.24.198\:4997-LAUhVL.DY

doing smb-99.60.24.198:4997-LAUhVL.py

recv 89 of 89 bytes

recv 142 of 142 bytes

recv 142 of 142 bytes

recv 50 of 50 bytes

recv 139 of 139 bytes

recv 128 of 128 bytes

recv 84 of 84 bytes

If you replay an attack against your dionaea server, the results and activity are logged
along with everything else. You can navigate to the bistreams directory and obtain a copy
of the replay attack as dionaea sees it. Here’s how you verify that your honeypot received
the replay traffic:

$ 1s -1 |grep 127.0.0.1
-rWw----—--- 1 nobody nogroup 10291 2010-07-12 01:52 smb-127.0.0.1:48060-eaNqUN.py

In reality it would not serve much purpose to just replay an attack against your own
dionaea server. It would more likely be useful for you to test this attack against a Windows
VM that you have patched. For example, if you noticed a new attack, you could test for
a possible 0-day exploit by replaying it against your fully patched system. As previously
mentioned, you can use a text editor and manipulate data in the bistreams and then replay
the attack using a variation of the original.

"http://tcpreplay.synfin.net/

RECIPE 2-8: PASSIVE IDENTIFICATION OF REMOTE SYSTEMS WITH POF

Dionaea supports integration with pof ®—a passive operating system identification tool.
While not essential to analyzing malware, you can use pof to identify the architecture (e.g.,
Windows, Linux), version (e.g., 2000, XP, Vista), service pack, and link type of the systems
probing your honeypot. To get started, install po£ using the following command:

$ sudo apt-get install pOf

You will then need to enable pot in dionaea.conf by removing the comment from pos and
logsql (because dionaea logs pof results to an SQLite database) in the ihandlers section.
By default, dionaea is configured to read data collected by po£ using a Unix domain socket
(for inter-process communication) created at /tmp/pOf.sock. You can modify this name if

Honeypots

you want, as long as it is supplied at the command line when you run po£. To start pof so
that dionaea can use it, run the following command:

S sudo pOf -i any -u root -Q /tmp/pOf.sock -g -1 -d -o /dev/null \
-c 1024

Table 2-3 provides an explanation of the switches.
Table 2-3: pOf Switches

Switch Description

-iany The interface to listen on, such as eth0, ethl, and so on, or any to lis-
ten on all available interfaces.

-uroot chroot and setuid to root.

-Q /tmp/p0f.sock Creates a Unix domain socket using the specified name.
-q Does not display a banner.

-1 Uses single line output.

-d Runs p0Of as a daemon.

-o /dev/null Sends all output to /dev/null.

-c 1024 Caches size for use with -Q.

This starts pof as a daemon and makes it available for dionaea to use. You need to modify
the permissions to the socket so that the account you are running dionaea under can read it. If
you are running dionaea with the account nobody, you would make the following change:

S sudo chown nobody:nogroup /tmp/pO0f.sock

You must start (or re-start) dionaea for the po£ module to initialize. Once your honeypot
begins receiving probes and attacks, you can use the following commands to verify that
pof logging is working properly:

S sqglite3 /opt/dionaea/var/dionaea/logsqgl.sqlite
sglite> select pOf,p0f_genre,pO0f link,pO0f detail from pOfs limit 10;
1|Windows |ethernet/modem|2000 SP4, XP SP1l+
2|Windows | IPv6/IPIP|2000 SP4, XP SPl+

3 |Windows |ethernet/modem|2000 SP4, XP SPl+
4|Windows | ethernet/modem|2000 SP4, XP SPl+

5|Windows |IPv6/IPIP|2000 SP4, XP SPl+

6 |Windows|IPv6/IPIP|2000 SP4, XP SPl+

7|Windows |pppoe (DSL) |XP/2000 (RFC1323+, w+, tstamp+)
8 |Windows |ethernet/modem|XP SP1+, 2000 SP3

9 |Windows |ethernet/modem|2000 SP4, XP SPl+

10 |Windows|IPv6/IPIP|2000 SP4, XP SPl+

45

8-7 2day

6-7 2day

46 Malware Analyst’s Cookbook

As you can see, the first ten probes of our honeypot were all from Windows systems
running 2000 or XP. This isn’t highly surprising, but once you collect data for a while, the
statistics may be more meaningful for you. Keep in mind that pof results are not guaranteed
to be accurate, as some tools can disguise a machine’s network stack.

Shttp://lcamtuf.coredump.cx/p0f.shtml

RECIPE 2-9: GRAPHING DIONAEA ATTACK PATTERNS
WITH SQLITE AND GNUPLOT

If you enable 10gsql so that activity from dionaea is stored in an SQLite database, you may
be interested in plotting the data into a graph. This recipe shows how to use gnuplot’ to
generate graphs from dionaea’s SQLite database. In December 2009, the dionaea develop-
ment team posted two fairly large databases, named berlin and paris,'® which contain a
ton of attack data. This recipe uses one of the databases, berlin, for graph plotting. You can
download this database and follow the exact steps outlined in this recipe.

Berlin and Paris Details

The following list shows details about berlin:

Contains one month of data (November 5—-December 7, 2009)

Contains 600,000 recorded attacks that resulted in 2,700 binary downloads
Does not contain attacks by Conficker nodes (IP not in scan range)
Includes pot logging

The following list shows details about paris:

Contains just over a week of data (November 29-December 7, 2009)
Contains 7.8 million recorded attacks that resulted in 750,000 binary downloads
Contains large amounts of Conficker traffic

Generating Graphs with gnuplot

To generate graphs from a dionaea database, follow these steps:

Download the berlin database from the location specified in the following command.
Alternately, you can use paris or a database created by your own dionaea sensors.

S wget ftp://ftp.carnivore.it/projects/dionaea/rawdata/\

Honeypots 47

berlin-20091207-logsql.sqglite.bz2 --no-passive-ftp
S bunzip2 berlin-20091207-logsql.sqglite.bz2

The ftp.carnivore.it site uses active FTP, so you will need to add the —no-passive-
ftp flag when using wget.

Create a SQL query that retrieves the type of information you're interested in. The
query listed in the following code obtains the number of binary downloads and
attacks for each day in the databases. Save this query to a file called query.sql.

SELECT
strftime('%Y-%m-%d', connection_timestamp, 'unixepoch',
'localtime')AS date,
count (DISTINCT downloads),
count (DISTINCT connections.connection)

FROM
connections

LEFT OUTER JOIN downloads ON (downloads.connection ==
connections.connection)

GROUP BY
strftime('%Y-%m-%d', connection_timestamp, 'unixepoch',
'localtime"')

ORDER BY
date ASC;

Execute the query against your target database and save the output to a text file.

S sqglite3 berlin-20091207-logsql.sqglite
sglite> .output data.txt
sglite> .read query.sql

Exit SQLite by pressing Ctrl+D. Your data.txt file should look like the following:

$ cat data.txt
2009-11-05 80|529O
2009-11-06]62]5893
2009-11-07]73 4904
2009—11—08\92|7366
2009—11—09\76|5882
2009-11-10]94]5947
2009-11-11]65|5121
2009—11—12\59|5618
2009-11-13]56|4217
2009—11—14\53|3423
2009-11-15|51]4276
2009-11-16]69]4779
2009—11—17\83|8327
2009—11—18\69|13719
2009—11—19\362|l48790
2009—11—20\3|229618

6-C 2day

48 Malware Analyst’s Cookbook

2009-11-21|9]3324
2009-11-2275]8308
2009-11-23|68]7936
2009-11-24]87]9503
2009-11-25]1149823
2009-11-26|87]7769
2009-11-27|114]9168
2009-11-28|141]9420
2009-11-2963]4919
2009-11-30|95[12034
2009-12-01|65]12383
2009-12-02|79]8373
2009-12-03|77]7597
2009-12-04|112]8263
2009-12-05|96]10438
2009-12-06|81]9846
2009-12-07]16|1927

A pipe separates the columns. The first column is the date of the activity. The second
column is the number of binaries that were downloaded on the corresponding date.
The third column is the number of attacks that were observed on the corresponding
date (not every attack results in a downloaded file).

Create a graph from the data using gnuplot. The following commands show how to
install gnuplot on your Ubuntu system and then how to set the parameters of the
graph.

S apt-get install gnuplot

$ gnuplot

gnuplot> set terminal png size 750,210 nocrop butt font
"/usr/share/fonts/truetype/ttf-liberation\

/LiberationSans-Regular.ttf" 8

Terminal type set to 'png'

Options are 'nocrop font /usr/share/fonts/truetype/ttf-liberation\
/LiberationSans-Regular.ttf 8 butt size 750,210 '

gnuplot> set output "berlin.png"

gnuplot> set xdata time

gnuplot> set timefmt "%Y-%m-%d"

gnuplot> set format x "%b %d"

gnuplot> set ylabel "binaries"

gnuplot> set y2label "attacks"

gnuplot> set y2tics

gnuplot> set datafile separator "|“

gnuplot> plot "data.txt" using 1:2 title "binaries" with lines, \
"data.txt" using 1:3 title "attacks" with lines axes xly2

You should now have a PNG file called berlin.png in your current working directory
with data plotted on it that looks like Figure 2-2.

Honeypots 49

400 250000
350
300 i - 200000
g 2507 1 - 150000 =
& 200 Ak g
£ e o
S 150 AH - 100000 &
binaries
100 - 50000
507 attacks o el
O --.I- -------I---- I’ I" T > O
Oct Nov Nov Nov Nov Dec Dec
31 07 14 21 28 05 12

Figure 2-2: Attacks and binaries from the berlin database

The graph shows the number of attacks on a dotted line, plotted against the Y-axis on
the right. The number of downloaded binaries appears on a solid line, and is plotted against
the Y-axis on the left. As you can see, the number of downloaded binaries rises and falls
along with the number of attacks—which makes sense.

This is just one example of what you can do with the data from the dionaea database.
You can create new queries and create all kinds of graphs with different data sets in the
database. You can also learn more about the features of gnuplot from their website and
other tutorials on the Internet to create even more advanced plotting.

‘http://www.gnuplot.info/

Yhttp://carnivore.it/2009/12/08/post_it_yourself

One of the most common tasks malware analysts perform is initial triage, or classifica-
tion of unknown content. Classification ranges from the simple, as in detecting the type
of file, to the more complex, such as detecting the percent similarity with other samples
in the wild and determining which behaviors are shared between variants of the same
malware.

his chapter shows how to use various free and open source tools such as ClamAV and

YARA to quickly identify and classify malware. There are a number of companion
Python scripts in this chapter for converting from one signature format to another, scan-
ning files with multiple antivirus products, creating your own heuristic-based malicious
file detector, and so on.

Classification with ClamAV

ClamAV is an open source antivirus engine owned by Sourcefire, the makers of the Snort
intrusion-detection engine. ClamAV offers a fast and flexible framework for detecting
malicious code and artifacts. The uses for ClamAV include incident response, forensics,
and general malware protection or malware discovery. You can also use ClamAV to supple-
ment or replace existing antivirus scanners on desktops, file servers, mail servers, and
other places you might use an antivirus scanner.

ClamAV has a number of built-in scanning capabilities for handling archive files, packed
executables, HTML, mail, and other data types. This functionality allows you to write
signatures and scan a broad range of content without writing specific parsers. Additionally,
the ClamAV package includes the libclamav library as well as the command-line executa-
bles that interface with it. To keep signatures updated, you can invoke the command-line
tool called freshclam manually or install it as a cron job.

1-¢ 2day

52 Malware Analyst’s Cookbook

The most recent production-quality version of ClamAV is available from http: / /www.
clamav.net/download/sources/, but you can also use a package manager to install it. On
your Ubuntu machine, type the following commands:

S apt-get install clamav clamav-freshclam

Alternatively, if you'd like to use a more cutting-edge snapshot, you can download the
latest development release using git, like this:

S git clone http://git.clamav.net/clamav-devel.git

Sourcefire maintains the latest documentation for ClamAV at http: / /www.clamav.net/
doc/latest/. This documentation provides an excellent reference for writing ClamAV
signatures. Additionally, the next few recipes discuss real-world scenarios where modify-

ing ClamAYV signatures allows you to detect samples not already included in the ClamAV
database.

The primary detection databases in ClamAV include:

MD5 hashes of known malicious binaries (stored in .hdb)
MD5 hashes of PE sections (stored in .mdb)

Hexadecimal signatures (stored in .ndb)

Archive metadata signatures (stored in .zmd or .rmd)
White list database of known good files (stored in .fp)

Starting with ClamAV version 0.96, archive metadata signatures are deprecated.
However, the developers added the following new features:

Matching signatures (stored in .ldb)

Icon signatures (stored in .1db)

PE metadata strings (stored in .1db or .ndb)
Container metadata (stored in .cdb)

These detection capabilities provide a strong framework for you to build new signatures
and detect specific characteristics in a collection of unknown, potentially malicious files.

RECIPE 3-1: EXAMINING EXISTING CLAMAYV SIGNATURES

The ClamAYV signatures by default exist in compressed, binary files. You may want to see
the criteria for an existing rule so that you can confirm or deny a false positive, or build a
modified version of an existing signature. Luckily, ClamAV comes with a tool that allows
you to decompress and inspect the signatures in its database.

Malware Classification

Typically, the ClamAV signatures exist in /usr/local/share/clamav or /usr/lib/clamav on

Linux systems. You should expect to find main.cld and daily.cld (alternately they may have

.cvd extensions). The main.cld file contains the primary base of signatures and daily.cld

contains incremental daily updates.

To unpack the signature files, use sigtool, which is provided with the ClamAV source

package.

$ sigtool -u /var/lib/clamav/main.cld
$ sigtool -u /var/lib/clamav/daily.cld

These commands should result in the creation of the following files:

$ 1ls -Al

total 61684
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

17992 Jul
288 Jul
25622 Jul
16556 Jul
6891 Jul
967678 Jul
1425 Jul
12542 Jul
686 Jul

397 Jul
1790 Jul
7249 Jul
4908268 Jul
37626 Jul
317426 Jul
13229 Jul
4064 Jul
3687 Jul
8689 Jul
4731085 Jul
13533 Jul
1502569 Jul
901 Jul
34403973 Jul
15994685 Jul
217 Jul

R N B B e e e e B e e e e N B B e e

20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49

COPYING

daily.cfg
daily.db
daily. fp

daily.ftm
daily.hdb
daily.hdu
daily.idb
daily.ign

daily.ign2

daily.info
daily.1ldb
daily.mdb
daily.mdu
daily.ndb
daily.ndu
daily.pdb
daily.wdb
daily.zmd

main.
main.
main.
main.
main.
main.
main.

db
fp
hdb
info
mdb
ndb
zmd

Now, when you scan a file and ClamAYV detects it, you can search the uncompressed

signature file to see the byte pattern that produced the alert.

S clamscan 76ed99f6a94c542f81bf6af35d4829744

76ed99f6a94c542£81bf6af35d829744: XF.Sic.E FOUND

——————————— SCAN SUMMARY

Known viruses: 726064

Engine version: 0.96

53

1-¢ 2day

7€ 2dpay

54 Malware Analyst’s Cookbook

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 2.72 MB

Data read: 1.36 MB (ratio 2.00:1)
Time: 3.680 sec (0 m 3 s)

S grep "XF.Sic.E" *

daily.ndb:XF.Sic.E:2:*:2a2a536574204£75722056616c75657320616e642050\
617468732a2a??00002a2a416464204e657720576£7260626£6£6b\
2c20496e666563742049742c205361766520497420417320426£6£\
6b312e

If you convert this hexadecimal signature into ASCII (there’s an online conversion tool
here: http://www.dolcevie.com/js/converter.html), you'll find the signature is looking
for the following content.

Set Our Values and Paths???**Add New Workbook, Infect It, Save It As Bookl.

You could modify this signature to detect similar variations of the string, such as one that
ends with Book2 instead of Book1. However, you cannot include your modified signatures
in the default signature database. Any signature that you modify and save must go into a
new database file that we’ll discuss more in the next recipe.

RECIPE 3-2: CREATING A CUSTOM CLAMAYV DATABASE

<= You can find supporting material for this recipe on the companion DVD.
ON THE DVD

Writing new signatures for a custom ClamAV database allows you to scan for patterns
that the default signatures do not currently detect. This recipe shows how ClamAV’s flex-
ible syntax for writing signatures allows you to write anything from simple hexadecimal
signatures to complex logical signatures.

ASCII Signatures (Hello World)

To create a simple ASCII-based signature, you can use sigtool to convert the text to
hexadecimal. To use sigtool for this purpose, you execute it with the --hex-dump flag.
sigtool expects you to provide your text via STDIN and it outputs the hexadecimal version
to STDOUT. One common mistake when entering text via STDIN is failing to remove the
trailing line feed character, which is appended when you hit the enter key.

Malware Classification

The example that follows shows how you can use sigtool to generate the hexadecimal
output of hello world. Note the trailing oa that must be removed to match the original
pattern.

$ sigtool --hex-dump

hello world
68656c6c6£20776£726c640a

To convert this into a usable signature, you need to format it according to the ClamAV
signature syntax. Starting with ClamAYV version 0.96, the basic signature format is depre-
cated in favor of an extended signature format. This recipe focuses only on the extended
signature format, which consists of the following four fields separated by colons:

SigName:Target:Offset:HexadecimalSignature

The signamne field is a unique, descriptive name for your signature. The Target parameter
can be any of the following values.

0 = Any file type

1 = Windows PE

2 = OLE (e.g. Office, VBA)

3 = Normalized HTML

4 = E-mail file (e.g. RFC822 message, TNEF)
5 = Image files (e.g. jpeg, png)

6 = ELF
7 = Normalized ASCII file
8 = Unused

9 = Mach-O binaries (new in v0.96)

Assuming you want to detect any file containing the nello worla string, you would
create the following signature:

TestHelloWorld:0:*:68656c6c6£20776£726c64
This is a simple example using text, but you can create more complex signatures using
wildcards. For example, let's say you want to detect hello and world but not necessarily

with a space between them. You can do that with the following signature, which uses a
wildcard (2?) to match any byte value between 0 and FF.

TestHelloWorldAnySeparator:0:*:68656c6c6£?2?776£726c64

You can also specify that he1lo world occur at a fixed offset within a file.

TestHelloWorldOffsetd5:0:45:68656c6c6£20776£726c64

55

7€ 2day

56 Malware Analyst’s Cookbook

And you can also specify a range of offsets. The following signature will only trigger if
ClamAYV detects hello world between offsets 200 and 250 of a file.

TestHelloWorldBetween200And250:0:200,50:68656c6c6£20776£726c64

Finally, you can specify that he11o and wor1d occur in that order at any offset in the file.

TestHelloWorldAnyDistance:0:*:68656c6c6f*776£726c64

To use these signatures, you need to place them into a file with a .ndb extension. For
convenience, we've added the signatures to a file named clam_helloworld.ndb on the book’s
DVD. For testing purposes, we created a file with the following content:

"This is the data I'd like to scan looking for 'hello' and 'world'.
I'm not picky how close these words are together."

When using the custom signature database, you need to specify its location on the com-
mand line for clamscan using the -4 flag.

$ clamscan -d clam_helloworld.ndb test.txt
test.txt: TestHelloWorldAnyDistance.UNOFFICIAL FOUND

——————————— SCAN SUMMARY -----------
Known viruses: 5

Engine version: 0.96

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 0.00 MB

Data read: 0.00 MB (ratio 0.00:1)
Time: 0.015 sec (0 m 0 s)

Note that any time you create and use a signature that is not in the project signature
base, it will display with the extension .unorriciaL. ClamAV adds this extension to any
signatures that are not in the default project signature set. If you have multiple custom
databases, you can place all of the .ndb files into a directory and call c1amscan with the -a
DIRNAME argument.

Binary Signatures (Shellcode)

With the basic building blocks that we've discussed thus far, you can detect more com-
plicated malicious artifacts, such as shellcode. For example, consider the following disas-
sembly of shellcode from a malicious Microsoft Office document:

Offset Instruction Byte codes
00000000 XOr ecx,ecx 33c9
00000002 mov cx,0x147 66094701

00000006 xor byte [edx+ecx], 0xe9 80340ae9

Malware Classification

0000000A loop Oxfffffffc e2fa
0000000C jmp Oxc ebla

You can use the byte code values to create a binary signature, like this:

ShellcodeXOR:0:*:33c966b9470180340ae9e2faebla

This signature detects the specific shellcode block but fails to detect shellcode with dif-
ferent length values in CX, or different XOR mask values. You can broaden your signature
by inserting wildcards for the length value, XOR mask, and jump length. Here is the final
signature:

shellcode_xor:0:*:33c966b972??2280340a??e2??eb

This signature detects shellcode that performs the following list of actions:

zeroes-out the CX register (33c9)

moves a length into CX (66b9222?)

uses XOR to modify the data located at [edx+ecx] (80340a??)

loops back to start (e22?)

executes a jump to the resultant data (eb) when the loop is complete

Effectively, this signature detects the following pseudocode, which matches any pattern
of activity without regard to specific values.

XO0r ecx, ecx

mov cx, ?7?

xor byte [edx+ecx], ??

loop ?°7?

jmp ?7?

To use this signature, you can simply add it to your custom signature database (.ndb
file) and use the -a parameter with clamscan.

Logical Signatures (New in v0.96)

One of the most powerful new features in recent versions of ClamAV is the capability to
understand complex signatures based on logical expressions. This capability allows you
to write signatures where you need to include optional values or only trigger alerts when
multiple conditions are met. The format for logical signatures is:

SigName;Target;Expression;Sig0;Sig1;..;SigN
The sigName and Target fields have the same meaning as we described when discussing

the extended signature format. The Expression field consists of a logical expression where
each signature is represented by its index value. Thus, the number 0 refers to sigo and

57

7€ 2day

58

Malware Analyst’s Cookbook

the number 1 refers to sigl and so on. Each signature can be combined with the logical
operators OR (|) and AND (&). Further, by using the =, <, and > operators, you can control
the number of occurrences of each signature that must be found in a file before producing
an alert. For example, the expression (0>5)& (1=3) will trigger an alert when signature 0
occurs more than five times and signature 1 matches exactly three times.

Using the original hello world example, you can write a signature to detect the presence
of both hel1o and wor1d without regard to their ordering or position.

HelloWorldLogic; Target:0;0&1;68656c6c6f;776f726c64

This signature has two sub-signatures, 68656c6¢6f (hello) and 776{726¢64 (world), and
a logical expression, 0&1. The values 0 and 1 represent the indices of the sub-signatures.
You should also specify a file type target value of 0 that results in the scanning of any file
type.

For a more realistic example, consider malware that uses code injection to execute
within another process. One common way malware performs code injection is detectable
using the following criteria:

The writeProcessMemory and CreateRemoteThread strings: These are names of API
functions used to perform the injection.

The sepebugprivilege string: The name of the debug system privilege, which a
process must enable before calling either of the above API functions.

A string such as iexplore.exe Or explorer.exe: The name of the target process.

Logically, you can express this scenario by looking for any executable with either the
SUﬁngiexplore.exeOrexplorer.exe,bOﬂlWriteProcessMemoryandCkeateRemoteThread
strings, and the string sebebugpPrivilege. In other words, you want to match:

("iexplore" | "explorer.exe") & \
("WriteProcessMemory" & "CreateRemoteThread" & "SeDebugPrivilege")

Using the logical signature syntax, you could express that as the following rule.

Processlnjector;Target:l;(O\l)&(2&3&4);696578706c6f72652e6578\
65;6578706c6£7265722e657865;53654465627567507\
26976696c656765;43726561746552656d6£746554687\
2656164;577269746550726£636573734d65646£7279

This signature is named clam_inject.ldb and it is included on the DVD that accompa-
nies this book. If you want an alert for malware that injects a different target process, then
you'll need to modify the signature. Also, keep in mind this is just a simple example. If the
malware is packed, the strings we're using for detection may not be visible to ClamAV.

Malware Classification

NOTE

Also see http://www.clamav.net/doc/webinars/Webinar-Alain-2009-03-04.ppt for
additional examples of writing ClamAV signatures.

Classification with YARA

YARA (http://code.google.com/p/yara-project/) is an extremely flexible identification
and classification engine written by Victor Manuel Alvarez of Hipasec Sistemas. Using
YARA, you can create rules that detect strings, instruction sequences, regular expressions,
byte patterns, and so on. Then you can scan files using the command-line yara utility or
integrate the scanning engine into your own C or Python tools with YARA’s API. In the
next few recipes, we'll show you how to get started with YARA and we’ll introduce you to
other usage scenarios throughout the book.

RECIPE 3-3: CONVERTING CLAMAYV SIGNATURES TO YARA

<=» You can find supporting material for this recipe on the companion DVD.

This recipe provides a script for converting ClamAV signatures to YARA format. Gener-
ally, ClamAYV is able to perform scans quicker than YARA, so it is not useful to convert all
ClamAYV signatures. However, it is also not useful to “reinvent the wheel” and manually
convert signatures if you need to use them with YARA.

The clamav_to_yara.py script included on the book’s DVD handles the conversion
process for you by modifying ClamAV signatures to meet the requirements of YARA. In
particular, ClamAV jumps of more than 255 bytes, or where the end of the jump is more
than 255 bytes, require special handling. For example, the following ClamAV signature
uses {100000-} to indicate that there must be 100,000 or greater bytes between the first
sequence of hex bytes and the second sequence of hex bytes.

Trojan.Dropper-554:0:33107:4d5a80000100000004001000££E£0000\

400100000000000040{100000-}646c6c00446c6c43616\
e556e6c6£61644e6£7700446c6cd76574436¢C

In order to convert this signature to YARA format, you must change the {100000-} tag to
comply with YARA’s rules. YARA allows a maximum jump of 255 bytes, thus the ClamAV
signature must be split into two sequences of hex bytes joined with an AND clause. In
addition, the script automatically converts rule names to a YARA-compatible syntax. YARA
does not allow non-alphanumeric characters, except the underscore (_), in rule names.

59

¢-¢ 2aday

¢-¢ adnay

60 Malware Analyst’s Cookbook

rule Trojan_Dropper_554
{

strings:

$al
Sal

{ 4d5a80000100000004001000££££0000400100000000000040 }
{ 646c6c00446c6c43616e556e6c6£61644e6£7700446c6c476574436¢ 1}

condition:
$al0 and $Sal
}

This rule is less specific than the original ClamAV rule, because the second string could
theoretically occur within fewer than 100,000 bytes. Furthermore, the second string could
exist after the first string and still trigger a hit. One method of fine-tuning the conversion pro-
cess involves using YARA's first occurrence operator (e) in the condition field. If you precede
the name of a string with the e operator, you can get the offset of the first occurrence of the
string. For example, eao stores the first occurrence of $a0 and ea1 stores the first occurrence
of sa1. By using a condition of ea0 < @al you can ensure that $a0 exists first. You could also
use (@al - @a0d) >= 10000 to ensure that at least 10,000 bytes are between the two strings.

ClamAV and YARA use the same syntax for wildcards (27 for byte wildcards and
(aa|bb|cc) for explicit selection). In these cases, the conversion script does not perform
any modifications. The only exception is that YARA does not allow a signature to start with
any type of wildcard so the script skips any signature that starts with a wildcard.

The clamav_to_yara.py script requires two parameters, -£ for the input file name that
must be a ClamAV-formatted signature file and -o for the output file name. Optionally, the
script accepts a -s flag to filter the results only to those that match the specified string. Using
-s is the recommended use; otherwise, the script will create over 60,000 signatures from the
standard ClamAV database. The following command shows how to convert all signatures that
contain the term “Agent”:

$ python clamav_to_yara.py -f main.ndb -o clamav.yara -s Agent

[+] Read 61123 lines from main.ndb
[+] Wrote 3894 rules to test

Scanning files using the new clamav.yara rules shows that YARA can properly interpret
the converted ClamAYV signatures. In the output below, we scanned a directory of files
recursively with YARA and started getting hits:

$ yara -r clamav.yara /data/malcode
Trojan_Agent_ 13844 /data/malcode/mft.exe

Trojan_Agent_78 /data/malcode/file.php
Trojan_Agent_130266 /data/malcode/payload.exe

Malware Classification

RECIPE 3-4: IDENTIFYING PACKERS WITH YARA AND PEID

<=> You can find supporting material for this recipe on the companion DVD.
PEiD! is a GUI tool for Windows that you can use to detect packers. The PEiD signatures are
stored in a plain-text file that you can extend with new signatures and/or parse with your own
tools. The syntax for PEiD signatures is very similar to YARA, allowing you to easily use PEiD
signatures within YARA. Identifying packers in YARA allows you to leverage the detection
from PEiD in a more flexible way. For example, when using YARA as part of a Python script,
you could automatically take additional actions if you detect a particular packer.

The YARA project’s wiki? provides a handful of sample packer rules based on the PEiD
database. You can download the default PEiD database from the PEiD website (look for
UserDB.zip). Each PEiD rule is in the following format:

[signature name]

signature = hex_signature
ep_only=(true|false)

Here is an example signature:

[SPIRIT v1.5]
signature = B4 4D CD 21 E8 ?? ?? FD E8 ?? ?? B4 51 CD 21
ep_only = true

According to its name, the signature detects files packed with v1.5 of the $PIRIT packer.
Setting ep_only to true means that PEiD should only check for the signature at the pro-
gram’s entry point. Otherwise, PEiD should check for the signature in the entire file. Using
the peid_to_yara.py script on the book’s DVD, you can convert the entire PEiD ruleset into

a YARA-compatible rule file. Here is an example of using the script:

S python peid to_yara.py -f UserDB.TXT -o packer.yara

The resulting signatures in the packer.yara file will look like the following:

rule PIRITv15
{
strings:

$a0 = { B4 4D CD 21 E8 ?? ?? FD E8 ?? ?? B4 51 CD 21 }

condition:
$al0 at entrypoint

}

Here are some key points about the conversion process:

The at entrypoint keywords in the condition of a YARA rule have the same effect
as setting ep_only to true.

61

#-¢ adoy

$-¢ adoy

62 Malware Analyst’s Cookbook

Some PEiD rules leverage wildcards at the beginning of the rule, which YARA does
not support; therefore those rules are not converted.

In some cases, the name of the YARA rule may be different from the PEiD rule name
(for example, $PIRIT v1.5 versus PIRITv15). This is because YARA does not allow
non-alphanumeric rule names.

You can use the new packer.rules file in the same manner as any other YARA ruleset.
This gives you a cross-platform (Windows, Linux, Mac OS X, etc.) method of detecting
packed files on command line.

$ yara -r packer.yara /data/malcode

UPXv20MarkusLaszloReiser bad_file.exe
WinUpackv030betaByDwing el.exe
WiseInstallerStub NowWinDvdUpdate.EXE

In the output, we found files that triggered UPX, WinUpack, and WiseInstallerStub
signatures. For demonstration purposes, we wrote a script with YARA’s Python API that
automatically unpacks files if they’re packed with UPX. Youll need the UPX utility, which
you can get by typing apt-get install upx-ucl on your Ubuntu machine. Here is the
code and example usage:

S cat sample_script.py

#!/usr/bin/python
import sys, yara, commands

rules = yara.compile(sys.argv([1l])
data = open(sys.argv[2], 'rb').read()

matches = rules.match(data=data)
isupx = [m for m in matches if m.rule.startswith("UPX")]

if isupx:
outp = commands.getoutput ("upx -d %s" % sys.argv([2])
print outp

$ python sample_ script.py packer.yara /data/malcode/bad_file.exe
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2009
UPX 3.04 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 27th 2009

File size Ratio Format Name

422400 <- 176128 41.70% win32/pe bad_file.exe

Malware Classification

As you can see, the Python script calls upx -a (for decompress) after bad_file.exe trig-
gered the UPX packer signature. To extend this into a more useful script, you would need
to add handlers for any packers on which you want to conduct further analysis.

"http://www.peid.info/BobSoft/Downloads/UserDB.zip

http://code.google.com/p/yara-project/wiki/PackerRules

RECIPE 3-5: DETECTING MALWARE CAPABILITIES WITH YARA

<=> You can find supporting material for this recipe on the companion DVD.
This recipe shows how you can use YARA to design rules for detecting malware capabili-
ties. The common argument against using signature- or pattern-based detection is that
packers and encryption can evade your efforts. While this is true, the number of malware
samples that you can detect with creative YARA signatures will far exceed the few samples
that slip through the cracks. The capabilities.yara file on the book’s DVD contains the rules
presented in this recipe.

The following rule detects embedded PE files, which is a common characteristic of drop-
pers and installers. It produces an alert only if the string is found at an offset greater than
1024 in the file, which is outside of the typical PE header (otherwise it would produce an
alert on every PE file). The filesize keyword represents the total number of bytes in the
file or data buffer being scanned.

rule embedded_exe

{

meta:

description = "Detects embedded executables"
strings:

Sa = "This program cannot be run in DOS mode"
condition:

Sa in (1024..filesize)
}

The following rule detects several attempts to identify virtual machines, emulators,

sandboxes, or behavior-monitoring applications. The nocase keyword indicates a case-
insensitive string.

rule vmdetect
{

meta:
description = "Detects VMs/EMUs/Mons"

63

¢-¢ adnay

¢-¢ aday

64 Malware Analyst’s Cookbook

strings:

$Svm0 = "VIRTUAL HD" nocase

Svml = "VMWARE VIRTUAL IDE HARD DRIVE" nocase

Svm2 = "QEMU HARDDISK" nocase

$vm3 = "VBOX HARDDRIVE" nocase

$Svm4 = "The Wireshark Network Analyzer"

Svm5 = "C:\\sample.exe"

Svmbe = "C:\\windows\\system32\\sample_1.exe"

$vm7 = "Process Monitor - Sysinternals: www.sysinternals.com"
$vm8 = "File Monitor - Sysinternals: www.sysinternals.com"
$vm9 = "Registry Monitor - Sysinternals: www.sysinternals.com"
condition:

any of them

}

The following rule detects malware that is static-linked with Zlib or OpenSSL libraries.
If you get positive hits with this rule, it’s highly likely that the malware uses encoding

and/or encryption to obfuscate its network communications. Instead of specifying $z1ibo

and $z1ibl and $z1ib2[..] in the condition, you can specify a1l of $zlib*, which has
the same effect.

rule encoding

{

meta:

description = "Indicates encryption/compression"
strings:

$z1ib0 = "deflate" fullword

$z1libl = "Jean-loup Gailly"

$z1lib2 = "inflate" fullword

$z1ib3 = "Mark Adler"

$ss10 "OpenSSL" fullword

$ssll "SSLeay" fullword

condition:

(all of ($zlib*)) or (all of (S$ssl*))

}

The following rule detects malware that utilizes IRC. Because the strings may exist fre-

quently in files that do not utilize IRC, this rule produces an alert only if any file contains
at least four of the strings.

rule irc

{

meta:

description = "Indicates use of IRC"

Malware Classification 65

strings:

$irc0 = "join" nocase fullword
$ircl = "msg" nocase fullword
$irc2 = "nick" nocase fullword
$irc3 = "notice" nocase fullword
$ircd = "part" nocase fullword
$irch5 = "ping" nocase fullword
$ircé = "quit" nocase fullword
Sirc7 = "chat" nocase fullword
$irc8 = "privmsg" nocase fullword
condition:

4 of ($Sirc*)
}

The following rule detects attempts to sniff network traffic based on the existence of
“sniffer” in the file (believe it or not, this yields a good number of positive hits). It also
detects the names of WinPcap API functions, since many malware families drop or down-
load WinPcap DLLs for sniffing packets.

rule sniffer

{

meta:

description = "Indicates network sniffer"
strings:

Ssniff0 = "sniffer" nocase fullword

$sniffl = "rpcap:////" nocase
Ssniff2 = "wpcap.dll" nocase fullword

$sniff3 = "pcap_findalldevs" nocase
$sniff4 = "pcap_open" nocase
$sniff5 = "pcap_loop" nocase
$Ssniff6 = "pcap_compile" nocase
Ssniff7 = "pcap_close" nocase
condition:

any of them
}

The following rule detects malware that attempts to spread through autorun functional-
ity. The rule includes strings necessary for building an autorun.inf file that uses the open
action to execute a program.

rule autorun

{
meta:
description = "Indicates attempt to spread through autorun"

strings:

¢-¢ aday

66 Malware Analyst’s Cookbook

Sa = "[autorun]"
$b = "open="
condition:

all of them

}

The following rule detects attempts to send spam e-mails (or just e-mails in general

based on SMTP commands). The number of required matches can be increased to detect

spam or other strings that won’t be found in normal SMTP communication.

rule spam

{

meta:

description = "Indicates spam-related activity"
strings:

$spaml = "e-cards@hallmark.com" nocase

$spam2 = "hallmark e-card" nocase

$spam3 = "rcpt to:" nocase

Sspam4 = "mail from:" nocase

$spam5 = "smtp server" nocase

$spam6 = "cialis" nocase fullword

$spam?7 = "pharma" nocase fullword

$Sspam8 = "casino" nocase fullword

$spam9 = "ehlo " nocase fullword

$spama = "from: " nocase fullword

$Sspamb = "subject: " nocase fullword

$spamc = "Content-Disposition: attachment;" nocase
condition:

3 of ($spam*)

}

The following rule detects malware that uses the wrmsr instruction to patch the sySENTER

EIP_MsR register. The operands for wrmsr are placed in EAX, ECX, and EDX, but they can

be initialized in any order and using any source (a 32-bit immediate constant or a stack

variable). Therefore, the rule uses wildcards to detect many possible variations of the

behavior.

rule write_msr

{

meta:

description = "Writing MSR"

strings:
/*

mov ecx, [ebp+?7?]
mov eax, [ebp+?7?]

4D
4D
55
55
45
45

??
??
??
??
??

2?2

mov edx,
Wrmsr
*/
Swr0 {8B
Swrl {8B
Swr2 {8B
Swr3 {8B
Swrd {8B
Swrb {8B
/*
mov ecx,
mov eax,
mov edx,
Wrmsr
*/
Swré {B8
Swr7 {B8
Swr8 {B9
Swr9 {B9
Swra {BA
Swrb {BA
condition:

any of them

}

Here are a few additional ways you can use YARA signatures:

[ebp+?7?]

??
?2?
?2?
??

27

??
?7?
?7?
?7?
?7?

27

8B
8B
8B
8B
8B
8B

imm32
imm32
imm32

??
??
??
??
??

??

55
45
4D
45
55
4D

BA
B9
B8
BA
B8
B9

?2?
??
??
??
??

?2?

??
??
??
??
?2?

??

8B
8B
8B
8B
8B
8B

??
?7?
?7?
?7?
?7?

?7?

45
55
45
4D

??
?7?
??

??

4D ?7

55

??
27
27
??
27

27

??

B9
BA
BA
B8
B9
B8

OF
OF
OF
OF
OF
OF

27
27
27
27
27

27

30}
30}
30}
30}
30}
30}

??
??
?7?
??
??

?2?

27
27
27
27
27

27

OF
OF
OF
OF
OF
OF

30}
30}
30}
30}
30}
30}

Malware Classification

Create a rules file with common passwords to catch malware that attempts to brute
force accounts and logins.

Create a rules file with login strings, URL fields, or bank domains to catch malware

that targets financial institutions.

Create a rules file with names of antivirus processes, services, and domains to catch

malware that attempts to terminate or disable A/V products.

Putting It All Together

The best part about all of the tools described in this chapter thus far is that you can

incorporate them into tools that automate several actions at once. You can use a single

script to scan files with ClamAV, scan files with YARA, determine file type, detect packers,

compute checksums, and various other tasks. The next few recipes show how to combine

some of the aforementioned functionality and build your own multi-AV scanner and PE

file scanner.

67

9-¢ aday

68

Malware Analyst’s Cookbook

RECIPE 3-6: FILE TYPE IDENTIFICATION AND HASHING IN PYTHON

=D You can find supporting material for this recipe on the companion DVD.

ON THE DVD

This recipe shows how to determine file type and calculate cryptographic hashes in Python.
A common way to organize malware collections is in a directory structure based on file
type and/or hash value. For example, you might have a layout like this:

malware/6391{32e¢13aa789324¢112d9cfad31b9
malware/69e46a1967b4dacce63fa9fa6{342209
malware/be72b15fa85a65ce9fal2c97d60b14a3

Or you may have a layout like this:

malware/d1l/639{f32e¢13aa789324c¢112d9cfad31b9
malware/pdf/69e46a1967b4dacce63fa9fa6f342209
malware/exe/be72b15fa85a65ce9fal2c97d60b14a3

When