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Foreword

Quid est veritas? (“What is truth?”) Even if detached from its religious roots,
perhaps especially if detached from its religious roots, this is the most serious
question a human being can ask. For if we do not have a comprehensible conception
of what truth is, then we lack the foundation on which all statements must rest.
While it is not the case that we presently speak only cacophony and write only
nonsense, if our conceptions of certainty and uncertainty are murky, we then proceed
with a disturbing absence of attachment of practice to justification.

And yet, for decades, indeed centuries, the accepted conception of truth has
been one of skepticism, a denial that truth exists in more than a probabilistic
manner. In this book, William Briggs challenges this accepted wisdom with
powerful arguments explained most cogently. With airtight, deep logic, he exposes
weaknesses of probability, statistics, causality, modeling, deciding, communicating,
and uncertainty—the whole kit and caboodle, “everything to do with evidence.”

This is no small claim, and I approached Briggs’s work with some skepticism
of my own. After all, our conceptions of probability, statistics, and the rest have
seemed to work pretty well. Then I read Briggs’s book.

Much of the first part of this book, indeed the gist before Briggs gets to work on
his positive insights, is refutation of our accepted concepts of probability statistics,
evidence, chance, randomness, regression analysis, parameters, hypothesis testing,
and a host of other concepts insufficiently questioned until now.

All this sets the stage for Briggs’s central point: All truths are known because of
the conditions assumed. All probability, like all truth, is conditional. All truths that
are known are known because of the conditions assumed.

Briggs brings to his work the widest range of relevant competencies. He has
applied his extensive training and research to a wide range of analyses including
cryptology, weather forecasting, prediction (and, perhaps most tellingly, the basic
failure of prediction), and, more generally, philosophy of science and epistemology.
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viii Foreword

Briggs’s central point is that truth exists, but in a world currently plagued
by an over-certainty, which “is already at pandemic levels.” It is the failure to
understand that all probability is conditional on evidence and resides in the mind,
not in objects—probability has no ontological existence—that makes this pandemic
possible.

In practice, and in all of science, conditional truths are far more relevant than are
necessary truths. While thought could not proceed without necessary truths (P is P
and not P is not-P), it is probability and conditional truth that is the launch pad for
Briggs’s great many original thoughts and the arena that surrounds and binds them.

Uncertainty presupposes, and demonstrates, the existence of truth. Uncertainty
must be about something. You cannot be uncertain about nothing. The something
implied by uncertainty means that truth exists. Without truth there can be no
probability. Since there is probability, there must be truth.

Despite this, probability, and more generally our conception of truth—indeed our
conception of anything—must inevitably be anchored in a metaphysical ground. Our
understanding of essence and our incomplete and often faulty knowledge of it make
this inevitable

Probability is the central issue in this book. Beginning with the traditional
definition of logic—the relationship between propositions, and with the separation
of the logical from the empirical—Briggs emphasizes and exploits the fact that
probability, too, concerns the relationship between propositions. “The rest,” he
writes, “is mere detail.”

Probability is epistemologically conditional. It can be epistemologically true, but
it does not exist in ontological reality, but in the epistemology of the mind. Unlike
the moon, or the stars, or human beings, probability does not have an existence in
reality.

Mathematical proofs depend on premises and chains of premises; proofs found to
be incorrect are nearly always found so not on the basis of miscalculation, but of the
failure to take into account a necessary constraint. (It is interesting that proofs shown
to be incorrect are virtually always demonstrated to be incorrect for this reason and
not because their conclusions are incorrect. The conclusions are virtually always
shown to be correct by a later proof.)

This book is full of subtle surprises. For example, it is almost universally assumed
that deductive proofs are certain, while inductive arguments are uncertain. “But
because we know indubitable propositions more surely than any other, induction
produces greater certainty than deduction.”

As central as are Briggs’s methodological insights, equally crucial are their
implications for decision-making. Thus, for example, his suggestion that we
eliminate hypothesis testing, which serves merely to affirm biases, would go far
to improve the decisions resting on probability.



Foreword ix

What I have written here is but a glance at the foundation on which Briggs’s
edifice rests. The deepest satisfaction to the reader of Uncertainty resides in
following Briggs’s thought and logic and the explanation they generate. Anyone
who does so will find that this is a marvelous, marvelous book.

Professor Emeritus of Sociology Steven Goldberg
City College, City University of New York
New York City, NY, USA
January 2016





Preface

Fellow users of probability, statistics, and computer “learning” algorithms, physics
and social science modelers, big data wranglers, philosophers of science, epistemol-
ogists, and other respected citizens. We’re doing it wrong.

Not completely wrong; not everywhere; not all the time; but far more often, far
more pervasively, and in far more areas than you’d imagine.

What are we doing wrong? Probability, statistics, causality, modeling, deciding,
communicating, uncertainty. Everything to do with evidence.

Your natural reaction will be—this is a prediction based on plentiful observations
and simple premises—“Harumph.” I can’t and shouldn’t put a numerical measure
to my guess, though. That would lead to over-certainty, which I will prove to you
is already at pandemic levels. Nor should I attempt to quantify your harumphiness,
an act which would surely contribute to scientism, which is when pseudo-numerical
values assigned to mental states are taken as scientific.

Now you may well say “Harumph,” but consider that there are people who think
statistical models prove causality or the truth of “hypotheses,” that no probability
can be known with certainty until the sound of the last trump, that probabilities can
be read from mood rings, that induction is a “problem,” that randomness is magic,
that chance is real, that parameters exist, that p-values validate or invalidate theories,
that computers learn, that models are realer than observations, and that model fit is
more important than model performance.

And that is only a sampling of the oddities which beset our field. How did we
go awry? Perhaps because our training as “data scientists” (the current buzzword)
lacks a proper foundation, a firm philosophical grounding. Our books, especially
our introductions, are loaded with a legion of implicit metaphysical presumptions,
many of which are false or which contradict one another. The student from the start
is plunged into formula and data and never looks back; he is encouraged not to ask
too many questions but instead to calculate, calculate, calculate. As a result, he never
quite knows where he is or where he’s going, but he knows he’s in a hurry.

The philosophical concepts which are necessarily present aren’t discussed well
or openly. This is only somewhat rectified once and if the student progresses to the
highest levels, but by that time his interest has been turned either to mathematics or
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xii Preface

to solving problems using the tools with which he is familiar, tools which appear
“good enough” because everybody else is using them. And when the data scientist
(a horrid term) finally and inevitably weighs in on, say, “what models really are,” he
lacks the proper vocabulary. Points are missed. Falsity is embraced.

So here is a philosophical introduction to uncertainty and the practice of
probability, statistics, and modeling of all kinds. The approach is Aristotelian. Truth
exists; we can know it, but not always. Uncertainty is in our minds, not in objects,
and only sometimes can we measure it, and there are good and bad ways of doing it.

There is not much sparkling new in this presentation except in the way the
material is stitched together. The emphasis on necessary versus local or conditional
truth and the wealth of insights that brings will be unfamiliar to most. A weakness
is that because we have to touch on a large number of topics, many cannot be
treated authoritatively or completely. But then the bulk of that work has been done in
other places. And a little knowledge on these most important subjects is better than
none, the usual condition. Our guiding light is Thomas Aquinas, ora pro nobis, who
said, “The smallest knowledge that may be obtained of the highest things is more
desirable than the most certain knowledge obtained of lesser.” It is therefore enough
that we form a fair impression of each topic and move onward. The exceptions are
in understanding exactly what probability is and, as importantly, what it is not and
in comprehending just what models are and how to tell the good from the bad.

This isn’t a recipe book. Except for simple but common examples, this book
does not contain the usual lists of algorithms. It’s not that I didn’t want them, it’s
more that many proper ones don’t yet exist or aren’t well understood; and anyway,
they can be a distraction. This book is, however, a guide on how to create such
recipes and lists, as well as a way to shoehorn (when possible) older methods into the
present framework when new algorithms haven’t yet been created. This book is thus
ideal for students and researchers looking for problems upon which to work. The
mathematical requirements are modest: This is not a math book. But then probability
is not a mathematical subject, though parts of it are amenable to calculation.

Some will want to know what to call this unfamiliar new theory. Well, it isn’t
a theory. It is the way things are. The approach taken is surely not frequentist, a
method which compounds error upon error, but it is also not Bayesian, not in the
usual sense of that term, though it is often close in spirit to objective Bayesianism.
There is no subjectivism here. The material here is closely aligned to Keynes’s,
Stove’s, and Jaynes’s logical probability. Many elements from the work of these and
similar gentlemen are found here, but there are also subtle and important differences.
If a name must be given, probability as argument is as good as any, though I prefer
simply probability.

If we’re doing it wrong, what’s right? Return to understanding cause. Models
should be used to make probabilistic predictions of observable entities. These
predictions can, in turn, be used to make decisions. If the predictions fail, the models
fail and should be abandoned. Eliminate all forms of hypothesis testing, Bayesian or
frequentist, and forever banish p-values, which only serve to confirm biases. Do not
speak of parameters; talk of reality, of observables. This alone will go miles toward
eliminating the so-called replication crisis.



Preface xiii

Here is the book in brief. All truth is conditional on or with respect to something.
There are thus necessary or universal and conditional or local truths. Truth resides
in the mind and not in objects except in the sense that objects exist or not. Truth is
not relative in the modern sense of that word. Probability aims at truth. We come
to know many truths via induction, which is widely misunderstood and is not a
“problem”; indeed, it provides the surest form of knowledge. Logic is the study of
the relationship between propositions and so is probability. All probability, like all
truth, is therefore known because of the conditions assumed.

Most probabilities are not quantifiable, but some are. Probability is not sub-
jective, and limiting relative frequency is of no use to man or beast. Chance and
randomness are not mystical entities or causes; they are only other words for
ignorance. Science is of the empirical. Models—whether quantum mechanical,
medical, or sociological—are either causal or explanative. Causal models, which
are in reality as rare as perfect games (baseball, of course), provide certainty,
and explanative models state uncertainty. Probabilistic models are thus not causal
(though they may have causal elements).

Bayes is not what you think. Hypothesis testing should immediately and forever
be tossed onto the scrap heap of intellectual history and certainly never taught to
the vulnerable. Probability is not decision. The parameter-centric, even parameter-
obsessed, way of thinking about models must also be abandoned; its use has led to
widespread, enormous over-certainty and caused more than one soul to be lost to
scientism. Its replacement? If somebody asks, “How does changing X change my
uncertainty in Y” tell them that and nothing else. Models, which provide the basis
of these statements, are and must be checked against reality. The best way to check
against reality is conditional on the decisions to which models are put. The most
common, widespread errors that come in failing to not treating probability logically
are shown, including the common mistakes made in regression, risk measures, the
overreliance on questionnaires, and so on.

The language used in this book will not be familiar to regular users of probability
and statistics. But that is rather the point. It ought to be. Along the way we’ll solve
things like induction, Gettier “problems,” Grue, the Doomsday Argument, so-called
paradoxes in probability assignment, the reproducibility crisis, and much more.

How working statisticians and probabilists should read this book. Start with
Chap. 6 “Chance and Randomness,” and then read the four successive chapters
“Causality,” “Probability Models,” “Statistical and Physical Models,” and “Mod-
eling Strategy and Mistakes.” After this, return to the beginning for the proofs of the
assumptions made in those chapters.

Everybody else, and in particular students, should start at the beginning.

Manhattan Island, New York City, NY, USA William Briggs
December 2015
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Chapter 1
Truth, Argument, Realism

“Quid est veritas?”

The answer to the above, perhaps the most infamous of all questions, was so obvious
that Pilate’s interlocutor did not bother to state it. Truth was there, in the flesh, as
it were, and utterly undeniable. Everyone knows the sequel. Since that occasion,
at which the answer was painfully obvious, the question has been re-asked many
times, with answers becoming increasingly skeptical, tortured, and incredulous. The
reasons for this are many, not the least of which is that denial of truth leads to
interesting, intellectually pleasing, unsolvable but publishable puzzles.

Skepticism about truth is seen as sophistication; works transgressive to truth are
rewarded, so much so that finding an audience accepting of truth is increasingly
difficult. More than sixty years ago Donald Williams [224], exasperated over the
pretended academic puzzlement over the certainty of truth, said the academy

in its dread of superstition and dogmatic reaction, has been oriented purposely toward
skepticism: that a conclusion is admired in proportion as it is skeptical; that a jejune
argument for skepticism will be admitted where a scrupulous defense of knowledge is
derided or ignored; that an affirmative theory is a mere annoyance to be stamped down
as quickly as possible to a normal level of denial and defeat.

Yet truth is our goal, the only destination worth seeking. So we must understand it.
There are two kinds of truth: ontological and epistemological, comprising existence
and our understanding of existence. Tremendous disservice has been done by
ignoring this distinction. There are two modes of truth: necessary and local or
conditional. From this seemingly trivial observation, everything flows.
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1.1 Truth

Truth exists, and so does uncertainty. Uncertainty acknowledges the existence of
an underlying truth: you cannot be uncertain of nothing: nothing is the complete
absence of anything. You are uncertain of something, and if there is some thing,
there must be truth. At the very least, it is that this thing exists. Probability, which
is the language of uncertainty, therefore aims at truth. Probability presupposes
truth; it is a measure or characterization of truth. Probability is not necessarily the
quantification of the uncertainty of truth, because not all uncertainty is quantifiable.
Probability explains the limitations of our knowledge of truth, it never denies
it. Probability is purely epistemological, a matter solely of individual understanding.
Probability does not exist in things; it is not a substance. Without truth, there could
be no probability.

Why a discussion of truth in a book devoted to probability? Since probability
is the language of uncertainty, before we can learn what it means we need to
understand what it is that probability aims at. Hempel understood this, but couldn’t
help himself from writing the word without scare quotes, as if “truth” might not
exist, [110]. What is the nature of probability’s target? What does it mean to be
uncertain? How do we move from uncertainty to certainty? How certain is certain?
It will turn out that statements of probability (assuming they are made without error,
an assumption we make of all arguments unless otherwise specified) are true. When
we say things like “Given such-and-such evidence, the probability of X is p”, we
mean to say either that (the proposition) X is true, or that not-X is. So truth must be
our foundation. What follows is not a disquisition on the subject of truth, merely an
introduction sufficient to launch us into probability. This chapter is also a necessity
because the majority of Western readers have grown up in a culture saturated in
relativism. There is ample reason Pilate’s question is so well remembered.

Our eventual goal is to grasp models, and models of all kinds, probabilistic or
otherwise, are ways of arguing, of getting at the truth. All arguments, probabilistic
or not, have the same form: a list of premises, supposeds, accepteds, evidence,
observations, data, facts, presumptions, and the like, and some conclusion or
proposition which is thought related to the list. Related how and in what way is a
discussion that comes later, but for now it loosely is associated with what causes the
proposition to be true. Arguments can be well or badly structured, formally valid
or invalid, and sound or unsound. Unlike most logical, mathematical, and moral
arguments, which often end in truth, probabilistic arguments do not lead to certainty.
Whenever a probabilistic argument is used, it is an attempt to convince someone how
certain a proposition is in relation to a given body of evidence, and only that body
of evidence.

Anybody who engages in any argument thus accepts that certainty and truth
exist. We should have no patience for philosophical skepticism, which is always
self-defeating. If you are certain there is no certainty, you are certain. If it is true
that there is no truth, it is false there is no truth. If you are certain that “Every
proposition is subject to uncertainty” then you speak with forked tongue. Certainty
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and truth therefore exist. But we must understand that truth resides in our intellects
and not in objects themselves, except in the sense of existence. That being so,
probability also does not exist physically; it also resides in our intellects and not
in things themselves.

All arguments have stated and tacit premises, with those tacit usually about
the meaning of the words and grammar used to state the argument, but also
about how arguments themselves are to be interpreted, about how we move from
premise to conclusion. Confusion usually enters when there are misunderstandings
or disagreements formed about the tacit premises. Badly structured arguments are
incautious in their use of tacit premises, containing too many or those which are
prone to dispute. Ajdukiewicz confirms this in his lost classic Pragmatic Logic, an
excellent book for students to understand the nature of arguments, [4]. There is also
a burgeoning field called argumentation theory which can be looked up.

1.2 Realism

No definition of truth is better or more succinct than Aristotle’s: “To say of what is
that it is not, or of what is not that it is, is false, while to say of what is that it is,
and of what is not that it is not, is true.” St Thomas Aquinas, following Aristotle’s
Metaphysics, in his Summa Theologica (First Part, Q. 16, articles 1 and 8) said
“the true denotes that towards which the intellect tends.” “Truth, properly speaking,
resides only in the intellect, as said before (1); but things are called true in virtue of
the truth residing in an intellect.”

This view encapsulate what is called correspondence and reflect the metaphysics
of (moderate) realism; see [222] and below in the chapter on Causality. When we
later say of a proposition “It is necessarily true”, this is never meant to imply that
the proposition is true in or because of some theory. The proposition is necessarily
true for reasons in the proposition itself and the evidence which supports it; the
proposition is not true “in” or because of a theory. It is true because it is true.

Moderate realism is the common-sense position that there exist real things, that
there is an existence independent of our minds, that an external world is “out there”
and that we can know it, that we can “know things as they are in themselves”, to coin
a phrase. Moderate realism holds that greenness exists apart from or in addition to
individual green things; exists as an intellectual idea, that is. Realism says the idea
of color exists independent of individual colored things. Mathematicians are realists
when they insist all triangles have three straight sides and an interior sum of angles
of 180ı. Individual approximations to or implementations of triangles also exist, but
given the way the world is, all are imperfect representations of the universal ideal.
Try drawing one. Catness exists and so do individual cats. We can tell cats from dogs
because we know the nature or essence of both. Knifeness exists as do individual
knives, even though it’s not always clear if a given object is a knife or only acts
like one.
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These natures (or ideas) are universals. They don’t exist as physical objects in
some ethereal realm, à la Plato; instead they exist in the objects which instantiate
them—redness exists in red apples, knifeness exists in cleavers—or they exist as
idea in intellects, as immaterial concepts. This is scholastic realism, a modified form
of Aristotle’s philosophy. Excellent introductions to moderate realism are given by
Feser [70, 71].

Contrary to realism is nominalism, which denies universals exist. Under this
view, individual triangles exist but there is no concept of an ideal, perfect triangle.
This appears to leave out mathematical definitions and, it would seem to follow,
all of mathematics, since this field is founded on universal truths (see below; also
see Franklin’s Aristotelian conception of mathematics, [81]). Under nominalism,
two drawings of triangles are not two drawings of triangles, just two drawings
which might have vague similarities, the similarities bespeaking of no central
thing in common. How, then, if nominalism is true, could we even have the word
triangle or even similarity? Man is also therefore a meaningless term: there are
individual bipedal creatures which might coincidentally look somewhat alike and
share some DNA (but is all DNA actually DNA?), just as they are more dissimilar to
quadrupedal creatures. The higher concept of man or human being holds no higher
meaning. Things do not instantiate natures. Things just are, never mind how. Most
working scientists are not nominalists, for obvious reasons.

Nominalism comes in various forms and subtleties, but no branch holds any
interest for probability and statistics. If there were no universals, there would be
little point in conducting experiments or grouping data, which admits of universals
or essences. The acts of grouping and collating say, do they not?, “All these
data represent the same underlying essential thing.” Even those dismal objects p-
values admit of universal “null” and “alternate” hypotheses; these surely bespeak of
universal essences and do not point to physical substances (p-values, God rot them,
are discussed later). And neither is probability, as de Finetti taught us in a loud
voice, a tangible physical quantity, something that can be measured with a physical
apparatus. Probability, like logic, as we’ll see, assumes universals.

The opposite of nominalism (if such a thing could have an opposite) is idealism,
the concept that reality does not exist, rather that individual physical objects do not
exist, but that only universals do. Our thoughts are capital-I It, our thoughts are
everything, our thoughts define existence. If so, how do we know when you and I
are thinking of the same thing? We cannot. I don’t consider idealism to be on any
interest. The best overview and refutation of idealism is found in David Stove’s
essay “Idealism: A Victorian horror story”, [208].

There are many other ways for thought to go wrong, and those which have a
bearing on probability will be outlined later. For now, I’ll boldly state all scientists
are realists, or ought to be. There’s no use for a scientist who subscribes to some
form of idealism. After all, if the universe is only in his mind, there’s no guarantee
that the universe which is my mind is in any way the same thing as the universe in
his. If idealism is true, why not make up how the universe is? Saves research time.
If nominalism is true, what is true here might not be true there, and it is of little to
no use to speak of “laws” or causes.
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1.3 Epistemology

Can we know any truths? Yes. And if you disagree you necessarily agree. In
disagreeing you’d at least know that you can’t know anything, which would be
a truth, and then you’d realize you bit yourself in the tail. Any attempt to deny
there are truths is self-contradictory. Roger Scruton said that the people who tout
theories which deny truth or our knowledge of it are inviting us to disbelieve them,
an invitation which we eagerly accept, [193].

That there are truths and we can know them is traditionally called rationalism.
A prime example of a known truth is Aristotle’s principal of non-contradiction.
The epistemic version states that a proposition cannot be both true and false
simultaneously (given the same evidence). It is impossible, and not just unlikely, for
somebody to doubt this principle. It is possible, and unfortunately not uncommon,
for some to claim to doubt it. But claiming and doing are not identical as everybody
knows, and that is why we have the words like deception, mistaken, and lying—
words, incidentally, which admit the existence of truth and knowledge. Claiming to
doubt the principle of non-contradiction is like the man who boasts of disbelieving
the reality of gravity. No matter the degree of his earnestness or the number of his
scholarly credentials, if he takes a long walk off a short dock he is going to end
up wet.

A ontological version of the non-contradiction principle is that something
cannot be and not-be at the same time, that something cannot exist and not-exist
simultaneously. Existence is an ontological truth. You cannot exist and not-exist at
the same time; further, it is impossible, and not just unlikely, to believe that you exist
and that at the same time don’t exist. This is not the same as saying, for example with
respect to certain very small objects in physics, that you do not know if or where a
thing exists or not. A thing’s existence and our knowledge of it are different. Indeed,
the mixing up of epistemological and ontological claims is a routine problem in
probability.

Everyone, regardless of what they might claim, knows that an external world
exists. And all scientists ought to admit it, else they’re in the wrong business. This
is another way to state realism. Anybody asking the question of another, “Does
an external world exist?” has answered it affirmatively, since to ask it requires a
person to ask and another to answer it, hence an external world in which the other
person exists to answer it, hence we can know it exists, hence we know there are
other people, too (the traditional way to phrase it is that we know there are “other
minds”).

Another truth known to everybody is that solipsism is impossible. Again, if you
disagree with me, you agree with me and acknowledge the complete fallaciousness
of your position because, of course, to disagree with me implies someone other than
yourself exists, hence solipsism is false.

But what if I were an illusion? What if, that is, you were hallucinating my
obstreperousness? From David Stove’s masterful essay “I only am alone escaped
to tell thee: Epistemology and the Ishmael Effect”, [207, pp. 61–82]:
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[I]t is true, and also contingent, that some of us sometimes hallucinate. But it does not
follow from that, (even if Descartes thought it did), that it is logically possible that all of
us are always hallucinating. Some children in a school-class may happen to be below the
average level of ability of children in that class, but it not logically possible that all of them
are. Neither is it logically possible that we are all always hallucinating. For we—that is,
all human beings—are perceived by (unless indeed we are hallucinations of) at least one
human being: ourselves if no other. Whence, on the supposition that we—that is, all human
beings—are always hallucinating, it follows that all human beings are hallucinations of at
least one human being. And that is not logically possible.

Empiricism insists on the observational verifiability of all propositions, in contrast
with realism, which does not. But not all propositions can be verified; think, for
example, of truths reached by induction or mathematical deduction, especially
statements about various infinite sets and so forth. The realism-rationalism view says
all knowledge begins in sense impressions, and then moves from those particulars to
grasp universals, which are entities which cannot be checked or verified empirically.
Since most of our reasoning involves these universals, we’d be in a world of
intellectual hurt if empiricism were true. Only the experiments we have seen are
those we can say are true. We could never extrapolate from them. Those results
which are merely similar or the same at other times and places might, under strict
empiricism, be different. Mathematical axioms cannot be seen, touched, tasted,
heard, or smelt, yet we insist on their truth. That logic in particular cannot be wholly
empirical is dealt with in the next chapter, a useful exercise because probability
follows directly from logic.

1.4 Necessary and Conditional Truth

Given “x; y; z are natural numbers and x > y and y > z” the proposition “x > z” is
true (I am assuming logical knowledge here, which I don’t discuss until Chap. 2).
But it would be false in general to claim, “It is true that ‘x > z’.” After all, it
might be that “x D 17 and z D 32”; if so, “x > z” is false. Or it might be that
“x D 17 and z D 17”, then again “x > z” is false. Or maybe “x D a boatload and
z D a humongous amount”, then “x > z” is undefined or unknown unless there is
tacit and complete knowledge of precisely how much is a boatload and how much
is a humongous amount (which is doubtful). We cannot dismiss this last example,
because a great portion of human discussions of uncertainty are pitched in this way.

Included in the premise “x; y; z are natural numbers and x > y and y > z” are not
just the raw information of the proposition about numbers, but the tacit knowledge
we have of the symbol >, of what “natural numbers” are, and even what “and”
and “are” mean. This is so for any argument which we wish to make. Language, in
whatever form, must be used. There must therefore be an understanding of and about
definitions, language and grammar, in any argument if any progress is to be made.
These understandings may be more or less obvious depending on the argument.
It is well to point out that many fallacies (and the best jokes) are founded on
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equivocation, which is the intentional or not misunderstanding double- or multiple-
meanings of words or phrases. This must be kept in mind because we often talk
about how the mathematical symbols of our formulae translate to real objects,
how they matter to real-life decisions. A caution not heard frequently enough: just
because a statement is mathematically true does not mean that the statement has any
bearing on reality. Later we talk about how the deadly sin of reification occurs when
this warning is ignored.

We have an idea what it means to say of a proposition that it is true or false.
This needs to be firmed up considerably. Take the proposition “a proposition cannot
be both true and false simultaneously”. This proposition, as I said above, is true.
That means, to our state of mind, there exists evidence which allows us to conclude
this proposition is true. This evidence is in the form of thought, which is to say,
other propositions, all of which include our understanding of the words and English
grammar, and of phrases like “we cannot believe its contrary.” There are also
present tacit (not formal) rules of logic about how we must treat and manipulate
propositions. Each of these conditioning propositions or premises can in turn be true
or false (i.e. known to be true or false) conditional on still other propositions, or on
inductions drawn upon sense impressions and intellections. That is, we eventually
must reach a point at which a proposition in front of us just is true. There is no
other evidence for this kind of truth other than intellection. Observations and sense
impressions will give partial support to most propositions, but they are never enough
by themselves except for the direct impressions. I explore this later in the chapter
on Induction.

In mathematics, logic, and philosophy popular kinds of propositions which are
known to be true because induction tells us so are called axioms. Axioms are
indubitable—when considered. Arguments for an axiom’s truth are made like this:
given these specific instances, thus this general principle or axiom. I do not claim,
and it is not true, that everybody knows every axiom. The arguments for axioms
must first be considered before they are believed. A good example is the principal
of non-contradiction, a proposition which we cannot know is false (though, given
we are human, we can always claim it is false). As said, for every argument
we need an understanding of its words and grammar, and, for non-contradiction
specifically, maybe the plain observation of a necessarily finite number of instance
of propositions that are only true or only false, observations which are consonant
with the axiom, but which are none of them the full proof of the proposition: there
comes a point at which we just believe and, indeed, cannot do other than know the
truth. Another example is one of Peano’s axioms. For every natural number, if x D y
then y D x. We check this through specific examples, and then move via induction
to the knowledge that it is true for every number, even those we have not and, given
our finiteness, cannot consider. Axioms are known to be true based on the evidence
and faith that our intellects are correctly guiding us.

This leads to the concept of the truly true, really true, just-plain true, universally,
absolutely, or the necessarily true. These are propositions, like those in mathematics,
that are known to be true given a valid and sound chain of argument which leads
back to indubitable axioms. It is not possible to doubt axioms or necessary truths,
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unless there be a misunderstanding of the words or terms or chain of proof or
argument involved (and this is, of course, possible, as any teacher will affirm).
Necessary truths are true even if you don’t want them to be, even if they provoke
discomfort, which (again of course) they sometimes do. Peter Kreeft said: “As
Aristotle showed, [all] ‘backward doubt’ terminates in two places: psychologically
indubitable immediate sense experience and logically indubitable first principles
such as ‘X is not non-X’ in theoretical thinking and ‘Good is to be done and evil to
be avoided’ in practical thinking,” [134, Part VI].

A man in the street might look at the scratchings of a mathematical truth and
doubt the theorem, but this is only because he doesn’t comprehend what all those
strange symbols mean. He may even say that he “knows” the theorem is false—think
of the brave soul who claims to have squared the circle. It must be stressed that this
man’s error arises from his not comprehending the whole of the argument. Which of
the premises of the theorem he is rejecting, and this includes tacit premises of logic
and other mathematical results, is not known to us (unless the man makes this clear).
The point is that if it were made plain to him what every step in the argument was,
he must consent. If he does not, he has not comprehended at least one thing or he
has rejected at least one premise, or perhaps substituted his own unaware. This is no
small point, and the failure to appreciate it has given rise to the mistaken subjective
theory of probability. Understanding the whole of an argument is a requirement to
our admitting a necessary truth (our understanding is obviously not required of the
necessary truth itself!).

From this it follows that when a mathematician or physicist says something
akin to, “We now know Flippenberger’s theorem is true”, his “we” does not,
it most certainly does not, encompass all of humanity; it applies only to those
who can and have followed the line of reason which appears in the proof. That
another mathematician or physicist (or man in the street) who hears this statement,
but whose specialty is not Flippenbergerology, conditional on trusting the first
mathematician’s word, also believes Flippenberger’s theorem is true, is not making
(to himself) the same argument as the theory’s proponent. He instead makes a
conditional truth statement: to him, Flippenberger’s theorem is conditionally true,
given the premise of accepting the word of the first mathematician or physicist. Of
course, necessary truths are also conditional as I have just described, so the phrase
“conditional truth” is imperfect, but I have not been able to discover one better to my
satisfaction. Local or relative truth have their merits, but their use could encourage
relativists to believe they have a point, which they do not.

Besides mathematical propositions, there are plenty other of necessary truths that
we know. “I exist” is popular, and only claimed to be doubted by the insane or
(paradoxically) by attention seekers. “God exists” is another: those who doubt it
are like circle-squarers who have misunderstood or have not (yet) comprehended
the arguments which lead to this proposition. “There are true propositions” always
delights and which also has its doubters who claim it is true that it is false. In Chap. 2
we meet more.
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There are an infinite number and an enormous variety of conditional truths that
we do and can know. I don’t mean to say that there are not an infinite number
of necessary truths, because I have no idea, though I believe it; I mean only that
conditional truths form a vaster class of truths in everyday and scientific discourse.
We met one conditional truth above in “x > z”. Another is, given “All Martians
wear hats and George is a Martian” then it is conditionally true that “George wears
a hat.” The difference in how we express this “truth is conditional” is plain enough in
cases like hat-wearing Martians. Nobody would say, in a general setting, “It’s true
that Martians wear hats.” Or if he did, nobody would believe him. This disbelief
would be deduced conditional on the observationally true proposition, “There are
no Martians”.

We sometimes hear people claim conditional truths are necessary truths, espe-
cially in moral or political contexts. A man might say, “College professors are
intolerant of dissent” and believe he is stating a necessary truth. Yet this cannot
be a necessary truth, because no sound valid chain of argument anchored to axioms
can support it. But it may be an extrapolation from “All the many college professors
I have observed have been intolerant of dissent”, in which case the proposition is
still not a necessary truth, because (as we’ll see) observational statements like this
are fallible. Hint: The man’s audience, if it be typical, might not believe the “All”
in the argument means all, but only “many”. But that substitution does not make
the proposition “Many college professors are intolerant of dissent” necessarily true,
either.

Another interesting possibility is in the proposition “Some college professors are
intolerant of dissent,” where some is defined as at least one and potentially all.1

Now if a man hears that and recalls, “I have met X, who is a college professor,
and she was intolerant of dissent”, then conditional on that evidence the proposition
of interest is conditionally true. Why isn’t it necessarily true? Understand first that
the proposition is true for you, too, dear reader, if we take as evidence “I have
met X, etc.” Just as “George wears a hat” was conditionally true on the other explicit
evidence. It may be that you yourself have not met X, nor any other intolerant-of-
dissent professor, but that means nothing for the epistemological status of these
two propositions. But it now becomes obvious why the proposition of interest is
not necessarily true: because the supporting evidence “I have met X, etc.” cannot
be held up as necessarily true itself: there is no chain of sound argument leading
to indubitable axioms which guarantees it is a logically necessity that college
professors must be intolerant of dissent. (Even if it sometimes seems that way.)

We only have to be careful because when people speak or write of truths they
are usually not careful to tell us whether they have in mind a necessary or only a
conditional truth. Much grief is caused because of this.

One point which may not be obvious. A necessary truth is just true. It is not
true because we have a proof of it’s truth. Any necessary truth is true because of
something, but it makes no sense to ask why this is so for any necessary truth. Why

1I keep this definition throughout the book unless otherwise specified.
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is the principle of non-contradiction true? What is it that makes it true? Answer: we
do not know. It is just is true. How do we know it is true? Via a proof, by strings
of deductions from accepted premises and using induction, the same way we know
if any proposition is true. We must ever keep separate the epistemological from the
ontological. There is a constant danger of mistaking the two. Logic and probability
are epistemological, and only sometimes speak or aim at the ontological. Probability
is always a state of the mind and not a state of the universe.

1.5 Science and Scientism

The example of the intolerant college professor is like most propositions in science.
Examples, “Radium has the atomic weight of w”, “The speed of light is c”, “The
earth is warmed by the sun’s rays”, “Creatures evolve by natural selection”, and
on and on. These statements are all contingent, meaning there is (so far) no known
route to proving their necessary truth (though that is the goal in physics). They are
all conditionally true, given various facts and evidence. In any of these propositions
none of the conditioned-on facts or evidence meets the test of a sound chain
of valid argument leading to indubitable axioms. In other words, none of these
propositions are logically necessary. It is a logical possibility that any of them might
be (necessarily or observationally) false. That radium does not have the atomic
weight of w might be false if the equipment, no matter how sophisticated or fine,
erred in its measurements. That the speed of light is some number might also be false
for the same or some other reason. Many physical formulas (and this is obviously
theory dependent) rely on “constants”, such as the speed of light in a vacuum or
Planck’s constant, which are productions of the result of measurements. They are
not themselves deduced from earlier truths; i.e. there is nothing which we know
of that states Planck’s constant must of logically necessity take the precise value it
does (though, as I said, this is the goal of physics). The same is true for all statistical
use of parameters. This lack spoken of is what makes these creatures parameters,
about which much more later. That means any theory which relies on contingent
premises might be false. It might be incredibly improbable, given the evidence we
have, for our best scientific theories to turn out false, but we cannot claim any are
necessarily true.

Scientific statements are therefore contingent statements which can only ever be
conditionally true and not necessarily true (the math used in science is an exception,
of course). All scientific propositions are therefore subject to doubt. Not always
reasonable doubt. Here is a scientific proposition, “If I walk off the edge of the
twenty story building I will fall.” There is no chain of argument which proves this is
universally true, therefore the proposition is contingent. It is not logically necessary
that falling must occur. But I will not be walking off the edge of any twenty-story
buildings. I’m also happy with the atomic weight of Radium, even though I’ve taken
none of the pertinent measurements myself. The premise of trust is ever present,
though as the business of science expands, this premise is weakened.
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All science is an attempt to remove as much of the contingency as possible from
the supporting evidence for propositions (theories) of interest. The ultimate Theory
of Everything would be one which is necessarily true, which begins at indisputable
axioms and progressed toward a complete explanation for how everything works,
including complete deduced explanations of why the speed of light and Planck’s
constant (if they should turn out to remain finally important) take the values they do.
Those who have read in physics know how distant, and perhaps even unattainable,
this goal is.

People before Newton knew apples fell, and would say so. The reasons they
gave for this produced conditional truths—“Apples fall because they have an affinity
for the ground”, maybe—which allowed for good predictions: sure enough, apples
always fell. Nobody not delusional walked off a mountain cliff in anno Domini
1600 in expectation of not falling because they didn’t understand Newton’s theory
of gravitation. Newton’s great trick was to replace highly contingent and more-or-
less dubious premises with better evidence which had less contingency. He never
removed the contingency completely, of course. But then neither did Einstein when
he refined Newton’s premises further. And still nobody has supplied a universally
true argument which shows the logical necessity of gravity behaving the way it does.
Scientists labor still to remove the remaining contingencies (and there are plenty).
Whether they can eliminate them entirely and arrive at scientific statements with all
the rigor of mathematical proofs is not known. There is plenty of reason to doubt
it, however; but that discussion would take us too far afield. Suffice to say that no
known scientific theory is necessarily true. All are at best conditionally true, many
are only probably true, and still others are probably or certainly false (examples of
these will follow).

Many scientists, perhaps heeding too closely to their citizen cheering section,
have the bad habit of insisting that their conditional truths are necessary truths. Some
have the even worse habit of insisting probable truths are not only not conditionally
but are universally true. Bad habits lead to iniquity, which in this case is the sin of
scientism. This is the false belief that the only truths we have are scientific truths.
Since scientific truths are only conditional at best, and likely only probable and
sometimes false in fact—a truth captured in the slogan “science is self-correcting”,
which implies it errs—it is not possible that it is a necessary truth that conditional
or probable truths are necessary truths. Tongue twisting? It is not from science
we learn “I exist”. Though, if it can be credited, some scientists would say that
consciousness of our existence is an “illusion”, an obviously self-contradictory
proposition. Who is having the illusion? But that’s not a problem for us to solve in
a book on probability. Science is also mute on all mathematical (necessary) truths,
which is amusing because scidolators (those who inveterately practice scientism)
often wield mathematical truths to show how scientific they are.

Jacques Barzun said this about scientism, [14]: “Scientism is the fallacy of
believing that the method of science must be used on all forms of experience and,
given time, will settle every issue.” And Pascal in his Pensees had this to say, an
observation which could be the motto of this book:
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The world is a good judge of things, for it is in natural ignorance, which is man’s true state.
The sciences have two extremes which meet. The first is the pure natural ignorance in which
all men find themselves at birth. The other extreme is that reached by great intellects, who,
having run through all that men can know, find they know nothing, and come back again
to that same ignorance from which they set out; but this is a learned ignorance which is
conscious of itself. Those between the two, who have departed from natural ignorance and
not been able to reach the other, have some smattering of this vain knowledge, and pretend
to be wise. These trouble the world, and are bad judges of everything. The people and the
wise constitute the world; these despise it, and are despised. They judge badly of everything,
and the world judges rightly of them.

The increasing politicization of science is also distressing. This is found whenever
is heard somebody (almost never himself a scientist) screeching (this is never
spoken politely) about some contingent proposition, “The debate is over!”, as
if their frenzy or level of ardency removed the obvious contingencies from the
proposition in dispute. This tactic is always an obvious fallacy (unless it is applied
to a demonstrable necessary truth). But this subject is too depressing to continue, so
let it pass. We later meet many examples of scientism.

1.6 Faith

Faith is another difficult word. It has connotations of trust and honesty, but also
of religion. In religion it is used to describe a kind of belief or as a label for a
system or practice, e.g. “the Methodist faith.” But you’ll have noticed I used it
above when describing epistemology. It is not out of place. To repeat: we know
axioms and the like are true because our intellects tell us they are, and we trust that
our intellects are not misleading us; that is, we have faith in our inductions. Faith
is in this sense ultimate belief, the ground of all our beliefs. Belief is a decision,
an act on top of knowledge or uncertainty. We prove via induction an axiom is
true. This is knowledge. And then we believe, or have faith (if you like), in this
knowledge. Of course, though our intuitions sometimes mislead us, it is false that
they always do. Belief is not the same as knowledge because we can also believe that
which is unlikely or uncertain, or even necessarily false. The practice of statistical
hypotheses testing asks us to believe or have faith in the uncertain, in the unproved.
The error is to assume that knowledge or probability and belief or faith are identical.

There is also a scurrilous definition of faith that it pleases some to state (see
the Skeptic’s Dictionary, [38]), which goes something like this: “Faith is believing
contrary to evidence.” It is possible to believe something you know is false, but the
act is bound to cause distress. For example, I may claim to believe that I do not
exist, based on who knows what evidence, but I am forced to confront myself when
making the claim, which is psychically painful. I have to discount the knowledge,
to pretend it doesn’t exist while knowing it does. Doublethink. If I say, “I take it
on faith that I don’t exist”, then this would fit the skeptic’s definition. But nobody
really believes statements like this. The proposition “I don’t exist” starts with its
own disproof.
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Anyway, the kind of skeptic who says faith is believing contrary to evidence
is substituting sloganeering for actual argument. He has a set of premises which
lead him to knowledge or high certainty of some proposition, call it “not-X” (e.g.,
“God does not exist”), and he calls his premises “the evidence”, which is fair
enough. Except that his opponent has a different set of premises which he too calls
“the evidence”. Who is right? Well, he who can show a valid sound deduction, he
who does not mistake a conditional for a necessary truth. My favorite sound valid
deduction in this vein about this proposition is by [73].

A second tactic is for the skeptic to claim he has found a flaw in a proof
for X. This may even be a genuine flaw for a given argument. If it is, and the
skeptic is unable to persuade his opponent of it, but this opponent still claims to
believe X based on the (flawed) proof, then the skeptic has a good example of
somebody believing a claim contrary to evidence—but not contrary to faith. Love
of bad arguments happens simply and frequently because most people are not well
equipped to judge philosophical arguments at a deep level. What usually happens
is that the opponent will hear the claim that a skeptic has found a flaw, and he
might even believe this skeptic, but the opponent will still believe on other grounds.
And this is not unreasonable unless the skeptic offers a necessary valid sound
proof of not-X. If the skeptic hasn’t, then he commits the fallacy of supposing that
demonstrating one argument for X is flawed then all are. When this happens, what
the skeptic really wishes is that everybody would be like him.

This digression is not as odd as it might seem. Arguments shooting past their
targets are found everywhere. Scientism and the politicization of science have
increased the kinds of fallacies noted here.

1.7 Belief and Knowledge

The word belief is ambiguous: statements of belief can belie knowledge, certainty,
faith, or even uncertainty. You can only know what is true, but you can believe
many things. Belief (the word) is often accompanied by the idea of lying; many
people lie and say they believe a thing, while secretly doubting or disbelieving. This
is what makes politics. The dependability of a person’s public utterances accurately
matching his actual state of mind depend strongly on his milieu. In repressive or
totalitarian societies, like in the Soviet Union and some Western universities, the
correspondence between public avowals and belief can be weak, or even negative.

We have to be careful and settle on one of the many definitions of belief. True
belief (or just belief) is averring to or the acceptance of a conditional or a necessary
truth. It is assent, or the acting as if some proposition were true, either necessarily or
in the circumstances. As said above, belief is an act, a decision; it is not knowledge
itself. I should believe conditional truths like “George wears a hat” given “All
Martians wear hats and George is a Martian”. I had better believe it. Why? Because
the rules of truth and of logic demand it. If I doubted, which is to say if I did
not believe “George wears a hat” given this evidence, it must be because I am
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using different evidence than the propositions “All Martians etc.” What this different
evidence is doesn’t matter, but I must have it. I may claim to hold with “All Martians
etc.” but if I still don’t believe “George wears a hat” then I must also be accepting
other evidence which contradicts or trumps “All Martians etc.”

We’re finally ready to tackle knowledge, which is a necessary truth. You cannot
have knowledge of a conditional truth, but you can believe one. Rather, you can
have knowledge of the conditionality of conditional truth. Knowledge is sometimes
called “justified true belief”, the justification being that chain of sound valid
argument which leads to indubitable axioms. This means (though we haven’t yet
discussed them) we can’t have knowledge of probabilistic propositions (we can
surely understand the propositions themselves, of course). It will turn out that
propositions like “Given the evidence, the probability of X is p” (the entire thing
inside the quotation marks) is itself necessarily true: p is not true, mind, but the
proposition in which it appears is.

Succinctly: we only know and must belief necessary truths, and we cannot know
but can believe (and usually do) conditional truths.

There are other (more confusing) ways to think about knowledge. Here I
paraphrase the well-known ideas of Laurence Bonjour [24, pp. 27–52] (and use
his notation p for a proposition). In order to know (the truth of) a proposition p in
the “Cartesian conception of knowledge” (a theory!) three conditions must be met,
the first two of which are: a person must believe or accept the proposition p without
harboring doubt, and the person must have a reason or justification that guarantees
the truth of p. The third condition is the strangest: p must be true.

But Bonjour, like most authors, does not separate necessary from conditional
truths, nor do most authors recall the goal of the analysis of belief. I shall keep
the distinctions. There are always two aspects to consider: whether something is
necessarily or conditionally true, and what argument somebody is using to arrive
at their proposition of interest. The failure to recognize these distinctions in truth
opens up a curious situation called Gettier “problems”.

Here is an example. In a standard raffle somebody must win; via the rules of
such games we therefore know and believe that p D “Somebody must win.” This
is an existence proof, a statement of ontology, and a conditional truth. It is not a
necessary truth because there is nothing proving it is logically necessary the raffle
goes as planned (for instance, it may be played in Chicago). Who will win we do
not learn until the drawing. If you are in the raffle it is therefore conditionally true,
given the premises about standard raffles, that p D “I might win”. You believe this
given the accepted rules of raffles and because you own at least one ticket. The
conditional truth of p is the reason and justification for believing p; it is also the
proof p is conditionally true. Again, p is not necessarily true.

The example is worth giving because of so-called Gettier problems, named for
Edmund Gettier the man who first inflicted them on philosophy [24, pp. 43–45].
Gettier claimed there were situations in which a person has a justified true belief,
yet that belief does not meet the test of knowledge because the statements p are not
true. Keep p D “I might win” which you believe is true because your wife said she
bought you a ticket for the raffle. Yet your wife was teasing; she didn’t buy a ticket,
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she only told you she did. However, unbeknownst to her or you, your mother did in
fact buy you a ticket. Therefore you believe p, and indeed p is true, but, says Gettier
followers, your belief cannot count as knowledge because your belief is based on a
fiction (your wife’s joke).

Naturally, I do not account situations like these as problems in understanding
uncertainty. Since truth is conditional, the conditions you use to judge the truth of
p—your wife said she bought a ticket, your wife told the truth, the rules of raffles,
etc.—prove p conditionally. That is, given you accept those premises p is true, you
should believe p. P is also conditionally true given the alternate premises “your wife
lied and your mother bought you a ticket” (and removing “your wife told the truth”).
P is also conditionally true if you live in Chicago, don’t have a ticket but you get the
wink from your alderman. There are many ways for p to be conditionally true. Your
belief is driven by p’s truth conditional on whatever evidence you used to prove p
conditionally true.

But p is not necessarily true; you do not have knowledge that it is. No one does.
There is therefore no problem with the concept of knowledge as justified true belief.
Why? The outside observer who is aware of what both your wife and your mother
has done, and who also is aware of the rules of raffles, also believes p is true, though
in his case he is closer to a necessary truth because he has removed more of the
contingency than you have. And once again, as must be repeatedly emphasized, you
can still can believe your conditional truth and act on it; so can the outside observer
who knows of your wife’s shenanigans and your mother’s beneficence.

Gettier “problems” stem from misunderstanding which evidence is being used
at what stages and by whom to judge conditional and necessary truths. As long
as you keep these clear and distinct, the “problems” disappear. To be clearer: you
argue from the premises “My wife bought me a ticket and this is a standard raffle”
which is probative of p D “I might win”. P is true given the premises. But we know,
i.e. we have justified true belief, that p is false given “The wife did not buy him a
ticket.” We need the JTB account of knowledge in order to argue that something is
wrong with it! The goal here is the problem. Is the goal to ensure p is true? Or is
it to ensure the premises are themselves true or clean from as much contigency as
possible? If our goal is to make predictions of p’s truth, then you will have made
an accurate prediction. But if the goal is to assess the truth of the premises, then
even though you are correct about p, you still fail because your premise, given the
outside premise about the fact of the matter, is false. That means you only have local
or conditional justified true belief because you only accepted contingent premises.
But since most of the premises we accept are contingent, most accounts of JTB are
contingent in the same way the lottery example was.

Because some consider the JTB account of knowledge to be “problematic”
(again, how do they know this?) there have been many attempts at “restoring” the
idea of knowledge to philosophy, such as “virtue” or “luck” epistemology; see [117]
for many others. There is no hope of covering all these thrusts here, but it’s worth
examining very briefly the idea of “epistemic luck”; see [177, 178]. The idea is that,
in the absence of JTB, an “agent” (by which philosophers always means a person
but somehow can’t bring themselves to say) hits upon an observable premise that
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is true. For some reason these accounts always focus on observables and not non-
observable propositions that can be learned via induction (see Chap. 3). At any rate,
suppose you are confronted by a multiple-choice quiz, with possible answers A–D.
D, as it turns out, is the answer designed as correct by the teacher. But suppose you
have no idea what the correct answer is, but you don’t want to leave the answer
blank, so you choose D. So you “win”, just like in the lottery. Some philosophers
want to say you hit upon knowledge because of your lucky guess—and it was luck.
But this again mixes up the goal of the analysis. If your goal, as an epistemologist,
is to check correct predictions, then indeed you nailed it. If the goal is instead to
check the premises, you have failed. Why? We learn later that you must have been
arguing from premises similar to, “There are four possibilities, only one of which
is correct, and I must select one.” The probability, given this premise, that you are
right is 1/4. You might change the premises, if you know something of the subject
and grammar, knowledge of the teacher, and so on; but none of that makes any
difference. The point is that your premise was false in the sense that it should have
been (something like) “Oho, I know what the question means and only one answer
is possible.” Whether anybody can get a student to admit that he didn’t have the
right premise and was only guessing limits the ability of a premise-analysis, which
shows why multiple-choice questions are so poor at assessing knowledge. At any
rate, luck had nothing to do with actual knowledge, which is always formed by
premises of some kind. In this case, the premises were wrong. Justified-true-belief
is in no danger.

Because true is such a useful word, and because necessarily true and condi-
tionally true are cumbersome, like most people in ordinary speech, I will use true
to mean either, relying on the context in most cases to define whether we have a
conditional or necessary truth. But if there is sufficient ambiguity or the subject
important, I’ll spell it out.



Chapter 2
Logic

“All cats are creatures understanding French,” said Alice’s father. “And some chickens are
cats.”
“Wait, I know!” said Alice, chirruping. “That means that some chickens are creatures
understanding French.”
“What you said is true, my dear,” said Alice’s father, his voice full of pride.

What Alice said was true in the conditional sense that given or accepting or
conditional on the evidence or premises or observations “All cats are creatures
understanding French and some chickens are cats” then “Some chickens are
creatures understanding French” logically follows. The conclusion is conditionally
true.

Of course, Charles Dodgson knew, and we all know, that there are no chats
qui comprennent le français, and that being so it cannot be true that des poulets
comprennent le français. Which is to say we know these propositions are false.
How? Because all evidence we have of our feline friends insists none understand
French. Cats are diffidence personified and refuse familiarity with any language
save their own.

So the proposition “Some chickens are creatures understanding French” is both
true and false. There is no contradiction. It is true based on one set of premises,
false on another. Logic says so; see inter alia [142]. Logic is the science or study
of connections or relations between propositions, and to say an argument is true
or false is to speak of the relation and not strictly of the propositions, thus when
any proposition in an argument changes, the relation is liable to morph, too. The
relation between Alice’s evidence and the proposition is therefore true, and the
relation between our observational evidence and the proposition is therefore false.

Dodgson, writing as Lewis Carroll, said his propositions were [36, p. 57]:

so related that, if the first two were true, the third would be true. (The first two are, as
it happens, not strictly true in our planet. But there is nothing to hinder them from being
true in some other planet, say Mars or Jupiter—in which case the third would also be true
in that planet, and its inhabitants would probably engage chickens as nursery-governesses.
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They would thus secure a singular contingent privilege, unknown in England, namely, that
they would be able, at any time when provisions ran short, to utilise the nursery-governess
for the nursery-dinner!)

Since probability, the main focus of this book, is the continuation, fullness, or
completion of logic, and since logic is the study of relations between propositions,
therefore probability is also the study of relations between propositions. Note
carefully: between. With that conclusion we are done: we have everything we need
to know; this is the complete “theory” of probability and statistics. The rest is mere
detail.

2.1 Language

Aristotle (again) says our knowledge of truth begins in sense experience. But not
everything we know or is true can be sensed, except in the weakest form of that term
by which “sensed” means the workings of our thought process, which can be felt
not as muscle movement or nerve excitement, but as mental images and exertions
and so forth. There are three acts of the mind: apprehension, judgment, reasoning.
We need to understand each, at least broadly.

Apprehension is learning the content of each argument. We first need to
apprehend the nature of each word and also the grammar in which propositions
are written. Ambiguities are more than possible, especially when asking questions.
For example, how happy are you? On a scale of one to eleven-point-four, of course,
in units of the seventh root of � (numbers make this science). There are many who
find this question comprehensible. I do not. Happiness we can grasp, but arbitrarily
indexing it to a number just so it can be manipulated by well-loved equations I do
not follow. This question and its multitudinous cousins are responsible for a great
deal of scientism and over-confidence. About these subjects, and about ambiguity,
more later.

Every term, every universal, has extension. Tree is a term, individual trees are
its extension. Happy is a term, individual instances, mental states of persons, are
its extension. Every term also has intension (not intention) or comprehension.
Intensions are those attributes or qualities that make up the notion of the term.
These are important probabilistically. We have a way of speaking which indicates
universality which does not follow strict rules for syllogisms, but which nevertheless
conveys truth. For example, when we say “Men are taller than women” we do not
imply that the shortest man is taller than the tallest women. Instead we mean it
is in the nature or essence of men to be taller than women, a truth conditional
on extensive observation and the induction to the generalization. Men taller than
women is what we expect to find (I use this word in its plain English connotation).
This is also to speak probabilistically: the sentence implies there is some high but
unquantified chance that any given man is taller than any given woman. Stereotypes
also follow these rules. Steven Goldberg notes that most stereotypes are true in this
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probabilistic sense, but that people’s conception of why they are true is often at fault,
[97, 98]. It is the why that is a major concern to us in this book.

The second act of the mind is judgment. Our concern is with propositions,
sentences which can be true or false or somewhere in between. In logic we move
from one, or one set, of evidentiary propositions to a conclusion, which is another
proposition. In strict logic there is the idea that the conclusion is derived or deduced,
and while this happens in formal cases, in reality it is we who specify the evidentiary
propositions, also called premises or evidence or data, and we who specify the
conclusion or proposition of interest. This freedom is what gives rise to the fallacy
of “subjective” probability, as we’ll see.

The last act of the mind is reasoning, the activity that separates men from brutes.
For instance, we reason (here, a verb) that “P is not not-P” and that tautologies
are truths. Tautologies have a special place in logic and in probability. Examples:
“If it is raining, it is raining”, “You either have cancer or you don’t”, “All gloomy
people are gloomy”, or the old classic “All bachelors are unmarried men.” These
propositions are all necessarily true, given our innate knowledge of logical rules
and of the words themselves, given, that is, our understanding of the nature of
logic and the intension of the terms. Since tautologies are necessarily true, they add
nothing to any argument. What good and what insight, after all, is there in telling
a woman, “You either have cancer or you don’t”? None, of course. And nothing is
added if you change the tautology to “You either have breast cancer or you don’t.”
Yet that tautology is suddenly seen full of fearful importance. (Switch “breast” with
“prostate” for men.) And that is because people understand the grammar to mean
more than it strictly implies. Words matter.

2.2 Logic Is Not Empirical

Much of this section is a paraphrase from David Stove’s magnum opus The
Rationality of Induction, a neglected, or rather unknown, work in probability, [206].

We cannot know all logical truths empirically. For example, there is no way to
learn through observation the validity of the argument “‘James is a man and Harry
is a man’ entails ‘James is a man.” We can of course observe the maleness of either
individual, but we cannot witness the entailment, that which makes the argument
true. Neither can we observe that “‘X is a man and Y is a man’ entails ‘X is a
man”’, because witnessing each and every X and Y is impossible. Neither is it true
that “‘James is a man and Harry is a man’ entails ‘James is a man” because “‘X is a
man and Y is a man’ entails ‘X is a man”’; it is true all on its own and not because
it is part of some schema or formal theory. It is not our organizations of logic that
makes true statements true: they are true on their own merits.

A matter of supreme importance can be teased from this. Here is a proof that
we must come by knowledge that cannot be acquired solely by experience. The
knowledge alluded to here are the rules of logic, the very steps in reasoning, the
how we know when something is true or false.
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This example is also from Stove (modified slightly). In order to know via
experience the validity of (say) the schema A D “For all x, all F, all G, either ‘x is F
and all F are G’ is false, or ‘x is G’ is true”, we could make observations like O1 D
“David is bald and David is a person now in this room and all persons in this room
are bald.” But in order to get from O1 to A; that is, to know A is necessarily true, we
have to already know that O2 D “O1 confirms A”, and that is to have non-empirical
logical knowledge. Or you could insist that O2 was learned by experience, but that
would require knowing some other logical knowledge, call it O3, which somehow
confirms O2. And then there would have to be some O4 which somehow confirms
O3, and so on. There cannot be an infinite regress—the series must stop somewhere,
at a point where we just know (my guess is O2)—so we must, are forced, to rely on
induction (which is examined next chapter) to supply us things like O2.

This isn’t all. We can learn from observation the following argument is invalid:
“‘All men are mortal and David is mortal’ therefore ‘David is a man” if perchance
we see David is not a man (maybe he’s a puppy). And we can learn from observation
the invalidity of “‘All men are mortal and Peter is mortal’ therefore ‘Peter is a man”
only if we see Peter is not a man (maybe he’s a cow). But we cannot learn the
invalidity of “‘All men are mortal and X is mortal’ therefore ‘X is a man” through
observation because we would have to measure every imaginable X, and that’s not
possible. If we believe “‘All men are mortal and X is mortal’ therefore ‘X is a man”
is unsound, and it surely is, this belief can be informed by experience but it cannot
be solely because of it that we have knowledge of it.

Stove: “If an argument from P to Q is invalid, then its invalidity can be learnt from
experience if, but also only if, P is true and Q is false in fact, and the conjunction
P-and-not-Q, as well as being true, is observational. This has the consequence,
first, that only singular judgements of invalidity can be learnt from experience; and
second, that very few even of them can be so learnt.” And here’s the kicker: “If
the premise P should happen to be false; or the conclusion Q should be true; or
if the conjunction P-and-not-Q is not observational but entails some metaphysical
proposition, or some scientific-theoretical one, or even a mere universal contingent
like ‘All men are mortal’: then it will not be possible to learn, by experience, the
invalidity of even this particular argument” (pp. 155–156). The key is that “scarcely
any of the vast fund of knowledge of invalidity which every normal human being
possesses can have been acquired from experience.”

Examples? The invalidity of the argument “Given ‘The moon is made of cheese’
therefore ‘Cats do not understand French”’ cannot be learned from experience. Nei-
ther can “Given ‘Men can breathe underwater unaided’ therefore ‘The atmosphere
is largely transparent to sunlight”’. In neither can we can ever observe the conjunct
P-and-not-Q. Yet we know these are false. Why? Induction again.

We often in mathematics invoke the continuum, the infinity of numbers on the
“real line”, or of different kinds of infinities. None of these are ever observed and can
never be observed, yet no mathematician doubts their truth. These and various other
“puzzles” are solved by induction, a highly misunderstood concept, as we’ll see.
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2.3 Syllogistic Logic

Mathematical propositions are highly formal. It would not do, for example, to claim
this mathematical equation is universally true: “AB D BA.” The proposition is
sometimes true, for instance when A and B are finite natural numbers, but it is in
general false when A and B are matrices. Mathematicians in their proofs are thus
sticklers for detail. Limitations and constraints on their propositions are laid out with
excruciating rigor. Indeed, rigor is a high compliment. Sometimes these efforts are
beautiful; sometimes they are ponderous. Only rarely does somebody catch out an
error in a proof, and when it happens it is usually not because of a miscalculation but
because a constraint not thought necessary actually was. As a result of this vigorous
scrutiny, people trust mathematicians when they say something is so. But we must
never forget that their proofs are true in relation to the premises used. And those
premises are true only because of earlier premises in the chain of the proof, and so
on down to the axioms which everybody believes true conditional on their intuitions
(induction). This is what makes for a necessary truth.

Besides the usual mathematical expressions found in analysis, number theory,
and the like, there is a formalization of logic which has various names like symbolic
or mathematical logic and propositional or sentential calculus. These fields belong
properly to mathematics, though they provide useful results to syllogistic logic,
which is our main interest. Syllogistic or Socratic logic is meta or street logic,
arguments as they are used in life and in science and statistics or in assessing the
value of the more formalized logics. It is always there, the bulwark of everything
else. Mathematical logics are no different than other mathematical subjects: proofs
are given with meticulous assiduity paid to constraints on the symbols used, indeed
to the very languages used, languages which (oft times) resemble actual speech not
at all. But since we need ordinary words to have real arguments, we need to grasp
the limitations, fallibilities, and the ultimate strengths of Socratic logic.

Syllogistic, two-valued, Aristotelian, plain-words logic is employed when
philosophers attempt to prove the superiority of other logics or in describing the
usefulness and necessity of mathematical logics, and even to explain why syllogistic
logic is not to be preferred, see [164]. Even in Principia Mathematica, the book
which taught us (eventually) 1 C 1 D 2, Alfred North Whitehead and Bertrand
Russell were obliged to use plain language to describe what their symbols meant.

Language and not mathematics is the tool we’re stuck with and which we must
use to express ideas, such as certainty and uncertainty. If you disagree, write me
a letter stating why. Syllogistic logic is written in ordinary language, which is
always and necessarily found at the start and finish of any argument or analysis,
including scientific analyses. It’s there when we tell our audience what the results
mean and what we should do about them. Syllogistic or meta-logic is needed in
mathematics, too, especially in the branch known as applied mathematics. This is
when mathematical, which is to say purely metaphysical, ideas are applied to real
life contingent, i.e. physical, processes.
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Every time an equation is called in to support, say, how much weight a bridge can
hold, syllogistic logic comes in play. The equations used in support of engineering
have no meaning by themselves; they must be given meaning by us. The arguments
which support these labelings are difficult and drawn out, but they are all examples
of syllogistic logic. Since these arguments involve physical principles, i.e. contin-
gent events, the end results are always at best conditional truths, and sometimes only
probable truths. And occasionally even nonsense. I have seen equations applied to
human behavior, usually in economics or social science, all mathematically spotless,
which when applied to real people are gibberish. The problem is that people commit
the simple fallacy, “Since the equations are mathematical truths, the objects to which
they are said to apply must be those objects, and therefore the predictions and
theories which gave rise to the mathematics are therefore true.” We’ll meet these
fallacies later when we discuss models.

Besides, if we opt for symbolic logic we’re apt to take perfectly understandable
propositions like this “Socrates is wise” and turn them into curiosities like this:
.9x/.Sx&.y/.Sy $ y D w/&Wx/, an example from [164, p. 191]. As useful as this
sort of thing is to understand the fine shadings of mathematical logic, it is a positive
bar to clear understanding of real problems.

2.4 Syllogisms

There isn’t much point rehearsing the kinds of syllogisms, enthymemes, major and
minor premises, barbara, celarent, and other staples of logic. These are all too
well known, and there are many texts which do a superior job, see [134]. Even
high schoolers still know that given “No academics have a sense of humor and all
teachers are academics” that it is conditionally true that “No teachers have a sense of
humor.” No: what we have to understand is what kind of truths syllogisms give us.

As the last example showed, syllogisms can give us conditional truths. Since
the premise—written as one single premise, cobbling the major and minor premise
together, but there is no difficulty in doing so—is known not to be true in your
author’s case. The proposition “No teachers have a sense of humor” is, with
respect to that evidence, universally false. Thus it is false and true simultaneously,
depending on which set of premises one chooses to believe or employ. But don’t
forget, any set of premises includes tacit knowledge of the meaning of the words
used. This is inescapable.

Some syllogisms give universal truths. Given “All men are mortal and you, the
reader, are among the race of mankind” then the proposition “You are mortal”
is necessarily true because the premises are known, through a chain of sound
observation and argument, to be necessarily true. Don’t wait forever to make out
your will.
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As said in Chap. 1, in ordinary speech we’ll say the conclusions of both
arguments are “true”, which can be harmless because most people take the point. But
since language can be ambiguous, we have to take care to say just we mean when
speaking formally, or when discussing sensitive topics like politics. An example in
line with our ultimate goal: given “Some systems of government are stultifying and
all stultifying systems of government are deadly” then it is true that “Some systems
of government are deadly.” The proposition is therefore true and not probable,
though it carries the sound of probability because of that “some”.

Later we will learn that given “The rules of logic and mathematics and accepting
this and such evidence which is probative of Y” that the propositions “It is probable
that Y”, “Y has a p% chance”, “Y might be true” and the like are themselves
true. But conditionally true because although the rules of logic and mathematics
are necessarily true, the evidence probative of Y will not be. It is we who specify
that evidence, picking from an veritable infinite universe of evidence.

For this reason many, but not all, probability statements are conditional truths. An
example: X D “Given certain evidence, the chance of Y is p%”. X itself, assuming
the tacit premise of no miscalculation or other mistake in applying the evidence to
Y, is necessarily true. But that the “Chance of Y is p%” is only conditionally true
based on the certain evidence.

One logical tidbit which is awfully useful: Any valid argument from P to Q is
unchanged if a necessary truth is added to the list of premises P. That is, P to Q is
identical in truth value with P & T to Q, where T is a necessary truth (this is like
multiplying an algebraic equation by 1). This applies to syllogisms and probability
arguments. Another: it is impossible to deduce necessarily true consequences from
contingent premises. Believing the opposite is like trying to support the earth with
turtles.

2.5 Informality

Because street logic is informal it is not possible to constrain the reach and type
of propositions used. Anything goes. This freedom, as all freedoms do, comes at a
price. Each argument must be judged on its merits; judged individually, I mean.
Truth tables, proof by parallel argument, similarity to a set of symbols said to
represent arguments of this or that schema, and the like are therefore not useless
but are of limited applicability.

Stove [206] defines formality in an argument as when “it employs at least one
individual variable, or predicate variable, or propositional variable, and places no
restriction on the values that that variable can take”. Stove claims that “few or no
such things” can be found. This will be useful for us to recall when discussing the
hideously complex regression models that are much in fashion in some circles. The
so-called rule of transposition is an example of what formality in logic might look
like. The rule is: the proposition “If p then q” entails “If not-q then not-p” for all
p and for all q. This is formal in the sense that we have the propositional variables
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p and q for which we can substitute actual instances, but for which there are no
restrictions. If Stove is right, then we should be able to find an example of formal
transposition that fails.

First a common example that works: let p D “There is food” and q D “I can eat”,
then “If p then q” translated is “If there is food I can eat”. By transposition, not-q D
“I can’t eat” and not-p D “There is no food” thus “If not-q then not-p” translates
to “I can’t eat if there is no food.” For an example in which formal transposition
fails (this is Stove’s, too), let p D “Baby cries” and q D “We beat him”, thus “If p
then q” translates to “If Baby cries then we beat him”. Heartless; but logic is a hard
taskmaster. But then by transposition, not-q D “We do not beat Baby”, not-p D “He
does not cry”, thus “If not-q then not-p” translates to “If we do not beat Baby then
he does not cry.” And this is obviously false.

So we have found an instance of formal transposition that fails, which means
logic cannot be “formal” in Stove’s sense (I do not intend to give a full proof of
this here). It also means that theorems which use transposition in their proofs will
have instances in which those theorems are false if restrictions are not placed on
its variables—it’s the restrictions that are important. It’s actually worse than this,
because transposition is logically equivalent to several other logical rules, putting
those theorems in jeopardy. Those who prove theorems are, however, usually very
careful detailing restrictions and, as said, those theorems found to have failed usually
suffered from lack of complete or improper restrictions.

It is Stove’s contention that all logical forms have examples where the logic is
turned on its head, like with transposition, unless, like in formal mathematics and
mathematical logic, restrictions are in place. As said above, it is not a universal truth
that “AB D BA.” But it is when we add the restriction to (say) natural numbers. This
means we have to be very careful in saying what are the precise conditions and
limitations of our models.

2.6 Fallacy

Not all fallacies are what they seem. Given “All dogs have four legs and Iris has
four legs” it does not follow that “Iris is a dog”, not because in some formula or
schema like “‘X is F’ does not follow from ‘All F are G and X is G”’, but because
it might be that Iris is a cow or some other creature with four legs. It is because we
can summon evidence about the range of these alternate possibilities that the truth
of the proposition is in question. Symbols in formulae and so forth are scratches on
a page and take no meaning until we supply one, thus symbols or schema can’t be
true or false. Only arguments can.

To avoid fallacy, we always must take the information or evidence supplied as
given and concrete, as sacrosanct, even, just as we do in any mathematical problem.
Therefore we accept arguendo that “All dogs have four legs”, even though by our
observation we know some do not (never play fetch near a highway). We know of the
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four-leggedness of dogs because that is their nature, just as we know three-legged
dogs are deficient or are suffering from a privation.

It is not true that “Iris is a dog” given “All dogs etc.” But that does not imply
the logical negation of our proposition, i.e. it might be so that Iris is, in fact, a dog.
Another way of putting it is that given “All dogs etc.” it is not false that “Iris is a
dog”. The status of our proposition, conditional on the only evidence we have, is
murky. Relying solely on dichotomous logic leaves us hanging. The logical status
of “Iris is a dog” is not empty, though, and it would be a mistake to think it was.
Here we know Iris has four legs; dogs do, too. Iris therefore might be a dog. We
just don’t know for certain she is. The ambiguity drives us to probability, where we
complete our understanding of the proposition. There is no fallacy in the argument
unless somebody insists or implies it is certain Iris is a dog.

A depressing but far from unknown fallacy goes: “If X then not-P, P, therefore
not-P.” The variable X is a cherished theory or belief, usually a popular or faddish
theory of human behavior, but also perhaps a physical theory which has powerful
interests, and P any proposition about that behavior or a state the theory says cannot
happen. After P is observed to occur, the theory X would appear to be in difficulty.
But human ardency is infinitely malleable, especially if X is the creation of its
believer. P is denied, or perhaps the No True Scotsman is invoked for P, or an R
is invented such that the original argument is modified to “If X-and-R then P or not-
P, R, etc.”, where R is an excuse; anyway, X survives. This will be important when
we discuss falsifying models.

Another popular fallacy in studies which use statistics is the peer-review or
credential fallacy, which appears in several forms, as variants of the Appeal to
Authority and Genetic fallacies. The most common is in journal writing, where
an author will write, “Jones (1999) showed that X”, with the implication (at least
sometimes) that X is therefore true because “Jones (1999)”. The reference is
offered as sufficient proof, especially if the journal in which Jones’s work appeared
is prestigious. Usually authors will clump a dozen or so references as a useful
summary, and this can be a move to bludgeon the reader into submission. If several
authors write on a doubtful proposition, the mass of citations is often taken as proof.
Hence intellectual fads have strong inertia in our publishing age. Physicians also
sign their names on papers as “John Smith, M.D.” for the same reason. Members
of the public, though very often academics, too, especially on political subjects,
will refuse to listen to an argument of an opponent unless it first be ensconced
in a “peer-reviewed” publication. These are obvious and perennial fallacies, but
still unfortunately persuasive. Since they have been with us forever, it is rational
to conclude (via induction, which we discuss next chapter) that they always will be.

There are many other fallacies, which will be dealt with in turn, when they are
more specifically tied to certain statistical procedures, such as the epidemiologist
fallacy. Formal fallacies, broken syllogisms and the like, are easy to spot, and when
they are a necessary truth has been discovered, which is the complement of the
fallacy. Formal fallacies aren’t especially rare, either, and are found in increasing
frequency the further one gets from mathematics. Particle physicists, say, generate
few formal fallacies, but literature and social science professors are positively
bursting with them. We’ll examine the more common of these in due course.
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Perhaps the worst fallacy is the We-Have-To-Do-Something fallacy. Interest
centers around some proposition Y, about which little is known. The suggestion
will arise that some inferior, or itself fallacious, method be used to judge Y because
action on Y must take place. The inferiority of fallaciousness of the method used to
judge Y will then be forgotten. You may think this rare. It isn’t. An entire branch of
statistics, hypothesis testing, is built around this fallacy. We come to this in time.



Chapter 3
Induction and Intellection

“[W]hen Mr Wells says (as he did somewhere), ‘All chairs are quite different,’ he utters not
merely a misstatement, but a contradiction in terms. If all chairs were quite different, you
could not call them ‘all chairs.”’—G.K. Chesterton

There is no knowledge more certain than that provided by induction. Without
induction, no argument could, as they say, get off the ground floor; this is because
induction provides that ground floor. No argument could even be phrased if it
were not for induction, because phrasing requires language and language requires
induction. When we say apple, we know it applies to all apples.

All arguments must trace eventually back to some foundation. This foundational
knowledge is first present in the senses. Through noesis or intellection, i.e.
induction, first principles, universals, and essences are discovered. Induction is what
accounts for our being certain, after observing only a finite number of instances
or even one and sometimes even none, that all flames are hot, that all men are
mortal, that white is always white, that for all natural numbers x and y, if x D y,
then y D x, and for the content and characteristics of all other universals and
axioms. Because we know these indubitable propositions more surely than any
other, induction produces greater certainty than deduction.

Arguments are not valid because of their form. It is not because of barbara (a
common syllogistic form) that because all men are mortal and Socrates is a man that
we deduce Socrates is mortal. That conclusion is made obvious to us by observing
the congruence of all the propositions in the argument, and it is induction that tells us
the major premise is true and it tells us that the congruence provides or gives proof.
But induction only works for telling us what we know and not why a necessary truth
is caused to be true. Indeed, the standard story is backward: barbara and other
syllogistic forms are discovered from instances like “All men: : :” via induction.
Induction provides the certainty that, given these premises, the proposition or
conclusion is true. Just as it provides the certainty that the probability of “George
wears a hat” is 50% given “Half of all Martians wear hats and George is a Martian”.

Mistakes in induction occur, as they do in every area of intellectual activity. When
a man sees several white swans and reasons, “All swans are white”, he is proved
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wrong when a black swan in sighted (as in Australia). Why he is wrong is explored
below. When a poll, asked of one set of people, is enlisted to “work” on a second set
of folks who differ in those characteristics responsible for first set’s answers on the
poll, again induction fails. But statistical induction, of which polls are instances, is
only one kind of induction. Induction is of five different kinds, some more and some
less strong.

Since at least Hume it has been fashionable to pretend mystification about why
induction is “justified” or to claim that it is not. Hume said, “We have no reason
to believe any proposition about the unobserved even after experience!” [116].
Howson and Urbach [115], for instance, (p. 4) say that there is no “solution” to
induction and that this sad fate “is no longer controversial.” Speaking of induction,
Karl Popper asked, “Are we rationally justified in reasoning from repeated instances
of which we have experience [like the hot flames] to instances of which we have
had no experience [this flame]?” His answer: “No” [175]. He also said, “The truth
of any scientific theory is exactly as improbable, both a priori and in relation to
any possible evidence, as the truth of a self-contradictory proposition” (i.e. It is
impossible; see also [176]).

Fisher, though not of the same skeptical bent—he often talked about how
scientists used inductive reasoning, though he wasn’t always entirely clear by what
he meant by “inductive” [77, 78]—agreed in principle with Popperian ideas and
used these beliefs to build his system of statistics. Theories (propositions) could
only be “rejected” and never verified and so on. Popperian skepticism is common
in statistics. For example, a well known statistician on his blog wrote “[I]nduction
doesn’t fit my understanding of scientific (or social scientific) inference” [92]; also
see [93] for the standard limited view of induction in statistics. As we will see, such
skepticism is unwarranted.

3.1 Metaphysics

Why a section on metaphysics in a book about probability? Because probability,
like the philosophy of anything else, must rest on some ground. That ground is
our knowledge and understanding of essence, substantial forms, intellection, on the
quiddity (the whatness of things) and (in the old way of speaking) induction.

Material things are composed of matter (or matter and, equivalently, energy) and
form, and the study of such is called hylemorphism. A simplistic example: the same
lump of clay may be fashioned into a vase, an ashtray, a fanciful backscratcher, or
many other things, each of a different form. A substantial form of an ashtray would
be those elements, or rather arrangements of matter, that make the clay an ashtray
and not, say, a backscratcher. We might say an ashtray has a bottom to collect ash,
and so a sculpture of a donut made of clay would lack the substantial form of an
ashtray. An accidental form is something part of the substantial form which is not
essential. For instance, the ashtray can be an ashtray with a carved initials or without.
The initials are a form, but their absence would not remove the substantial form of
the ashtray.
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The essence of a thing is its nature, its whatness. Everybody knows that a chair
is not a house nor is water mercury nor are men chickens, except metaphorically.
But even metaphors need induction to work. Everybody, even non-scientists, knows
there are differences between kinds of things because they understand the essence
of different objects—chairs, houses, water, mercury, men, chickens—and they know
at least partically the reasons behind that which makes them what they are, even if
they do not comprehend the totality of their essences. Nor need any man understand
all there is to know of a thing to understand part of its essence. That things have
natures and the study of their substantial forms is called essentialism. The best
book for readers of this volume is David Oderberg’s Real Essentialism [166], where
these matters are defined and defended at length and (I think) conclusively.

All scientists and all users of models of uncertainty take essentialism for granted.
Whenever “data” are collected, they are collected on like objects, objects which
have the same essence (or are thought to). A doctor testing a new pill collects
measurements on people, and not people, ferns, and Buicks. A physicist measuring
heat ensures to the best of his ability that the apparatus and experimental milieu
remain the same or similar for each iteration. The essence of interest for the doctor,
though this is usually unacknowledged, is human beings. He knows what is a human
being and what isn’t. And similarly for any controlled experiment: essences are a
given. This is not to say that mistakes in identifying essences aren’t made. Finger
bowls are drunk from. But there can’t be accidents like these without essences (this
will turn out to be a good pun). Science is (a weaker pun) the essence of discovering
essences.

Deduction assumes essence. If we accept “All men are mortal” and “Socrates is a
man”, it is deduced that “Socrates is mortal” because we know that Socrates, being
a man, shares in the essence of men. There is more to arguments than that, of course,
because we also have to understand mortal, all, is, and so forth. All of these words,
some of which describe essences and some other things, are known inductively.

To expand on the examples above, the essence of thing is not merely a collection
of its properties. The lumberyard, which contains all the necessary components for a
house, is not a house. We need to marry the material of the house with its substantial
form for the house to come to be. An accident is a property that does not necessarily
have to belong to an object for it to retain its essence. Houses can be white or green;
a house’s color is an accident; that is has a color is part of its essence. Humans
can wear shorts, dresses, pants, or nothing; clothing is an accident. Everybody can
grasp that this is a house or that is a human regardless of the accident of color or
clothing. It is a necessary or essential property of houses to have roofs and for
humans to have hearts, even “artificial” ones (the word acknowledges essence). It
is the essential properties of a thing that define the thing. A roof-less house would
not be a house but a shell without a cover; likewise a human without a heart is
not human but a corpse. Suppose a house is under construction and lacks a roof
because of a hurricane. That some house-like objects do not have roofs does not
imply that houses don’t have to have roofs to be houses, or that the essence of a
house is impossible to define. A three-legged dog which has ignored the advice
about playing in traffic is not a stool. Everybody knows that four legs are part of the
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essence of being a dog. Scientists who study dogs and those who breed them know
more about what is essentially a dog than most people, but again the entirety of an
essence does not have to be known. People can tell the difference between dogs and
cats and kumquats. Some dogs are missing legs and some are missing ears, just as
some are black and others brown. These are all accidents. We come to know the
essence or nature of a thing by recognizing its essential properties and not by its
accidents.

This too is acknowledged by the experimenter. The doctor trying out a new
prostate treatment gives it to many men. Each of these men have the same essence—
they are men!—but they differ in accidental ways. Some are taller, some shorter,
some have gene variant G1 others variant G2, some grew up in this region and others
that, some smoke and others don’t, and so on. It is not that accidents are ignorable.
In the doctor’s experiment, many accidents to being a man will be measured because
it is thought or conjectured that the accidents, or some combination of them, interact
differently with the causal powers of the treatment. I take up this again in the chapter
on Causality, but it should be obvious that if there were Ano accidents between (or
in) the men and the experimental protocol was identical for each, then the outcome
would be of the same nature for each; where the “same nature” might not mean
“identical” but could, but where it does mean “in a known stated range”. This will
make more sense when discussing causality and quantum mechanical events. If
there were no accidents but the protocol varied between men, however slightly, then
outcomes could be different.

3.2 Types of Induction

One reason induction is widely misunderstood, even considered a “problem” in
the academic sense, is because it is analogical. Mistaking one use of induction for
another is equivocation, and, as I stated, equivocation makes the best jokes1 but
the worst fallacies. As with all analogical terms, sometimes it is harmless to leave a
word unadorned and sometimes it is not. In this section, and elsewhere when needed,
I hyphenate the word to indicate which type of induction is meant.

In this chapter I largely follow Louis Groarke’s wonderful An Aristotelian
Account of Induction [102], which is must reading, especially given the controversy
over this topic. Also see [103]. Groarke’s work is largely unknown in probability and
statistics, but it shouldn’t be. There is no way to adequately summarize the entire
work, which is long and deep. Only a few highlights sufficient to dispel the sense
that induction is problematic are given here.

“The goal of induction,” Groarke tells us, “is not simply to prove that something
is the case but to provoke an understanding of the general case.” We here and
elsewhere follow the dictum nihil in intellectu nisi prius in sensu, “there is nothing

1Two cannibals are eating a clown and one says to the other, “Does this taste funny to you?”
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in the intellect which is not first in the senses.” Our senses tells us what is the
case. Induction moves from the particularities collected by the senses, and moves to
unobservable, unsensible generalities or universals, such as knowledge of a thing’s
essence. Induction starts with the finite and progresses to the infinite; so although
we can never entirely grasp the infinite, we can and even must know part of it.
Induction, Aristotle’s epagoge, comes in different flavors; at least five. There is no
appreciation of this that I have ever seen in the uncertainty, probability, or statistics
literature, except in the works of David Stove, David Williams, and a few others.
But, as we shall see, even they only “justified”—by which I mean clarified what was
already true: no human can “justify” any necessary truth—one form of induction, i.e.
induction-probability, which most people already believed unproblematic. Certainly
all probabilists and statisticians acted as if induction-probability were useful.

According to Groarke’s view, induction is “the cognitive/psychological mecha-
nism that produces the leap of insight” necessary for all understanding. He gives five
flavors, aspects, or facets of induction. These are (in my modified terms more useful
for probability) (1) induction-intellection, (2) induction-intuition, (3) induction-
argument, (4) induction-analogy, and (5) the most familiar induction-probability.
The order is from that which provides the most to the least certainty.

Induction-intellection is “induction proper” or “strict induction”. It is that which
takes “data” from our limited, finite senses and provides “the most basic principles
of reason.” Senses provide information of the here-and-now (or there-and-then),
but induction-intellection tells us what is always true everywhere and everywhen.
We move with certainty from the particular to the general, from the finite to the
infinite. Without this kind of induction, no argument can ever get anywhere, no
argument can ever even start; without it language would not be possible. Induction-
intellection “Operates through infallible exercise of [nous], through the activity
of intellection, understanding, comprehension, insight.” It produces “Abstraction
of necessary concepts, definitions, essences, necessary attributes, first principles,
natural facts, moral principles.” In this way, induction is a superior form of reason
than mere deduction, which is something almost mechanical, and can be done on
a mindless computer. Induction-intellection is instantaneous learning, it proceeds
by “flashes” of insight. (How this happens is not a question here answered; that it
happens is indubitable.) Intellection-inductions are not found in the slogging labor
of mechanically working out consequences of accepted premises, like deductive
reasoning is. The knowledge provided by induction-intellection comes complete
and cannot be deduced; it is the surest knowledge we have. Numbers come from
this form of induction. We see one apple, two apples, three. And then comes 1, 2,
3, : : : Deduction has much to say about that “: : :”, but knowing that we can reason
deductively comes from this form of induction; see [81]. See [103] for a discussion
of how induction works (or might work), a topic I do not here broach.

Induction-intuition is similar to induction-intellection. It “operates through
cleverness, a general power of discernment of shrewdness” and provides knowledge
of “any likeness or similitude, the general notion of belonging to a class, any
discernment of sameness or unity.” Axioms arise from this form of induction.
Axioms are of course the ground of all mathematical reasoning. We have to be
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careful because some use the word axiom loosely, and merely mean assumption,
a proposition which is not necessarily believed but is desirable: thus, by axiom
I mean those base propositions which are fundamental and believed by all those
who consider them (like Peano’s axioms, etc.). This fits with work like Göedel’s,
who proved, as it were, that axiomatizing never stops, that induction-intuition must
always be present, that not all things can be proved by reason alone. We don’t know
that syllogisms, for instance, provide validity except first by knowing via induction-
intuition that syllogisms are deductive. The foundational rules of logic are provided
to us by this form of induction. These rules do not occur to all—not everybody
comprehends every truth, as is clear in any prolonged contact with students—but
that rules are grasped (if they are) is done via induction and not reason. We observe
that our mom is now in this room and now she isn’t, and from that induce the
principle of non-contradiction, which cannot be proven any other way. If mom
is here, she can’t not be here. Therefore, induction says, if a thing exists it can’t
simultaneously not-exist (our knowledge about thing’s existence can be indefinite,
of course). No universal can be known except inductively because nobody can ever
sense every thing. Language exists, and works, because induction-intuition.

Induction-argument, given by inductive syllogisms, is the “most rigorous form of
inductive inference” and provides knowledge of “Essential or necessary properties
or principles (including moral knowledge)”. The forecaster on television announces
E D “It’s probably going to rain tomorrow” and we’re interested in the conclusion
Y D “It will rain tomorrow”. Y does not follow validly from E, but can can induce
Y given the tacit premise P D “All the times I heard this guy on TV say it will rain
he’s been right”. Y is now certain if we accept this additional premise. But that is
a weak example. A better is when a physicist declines to perform an experiment
on electron number 2 because he has already performed the experiment on electron
number 1, and he claims all electrons are identical. Induction-argument can provide
conditional certainty, i.e. conditional truth.

Induction-analogy is the least rigorous but most familiar (in daily life) form of
induction and provides knowledge of “What is plausible, contingent or accidental;
knowledge relating to convention, human affairs.” This form of induction explains
lawyer jokes.2 Stereotypes fall under this form. As Goldberg has repeatedly shown
us, [97, 98], stereotypes are often accurate, but the causes of these stereotypes is just
as often in error. See also the work of Jussim on the correctness of many stereotypes
[129, 130].

Induction-probability of course is the subject of most of this book. It provides
knowledge of “Accidental features, frequency of properties, correlations in popu-
lations” and the like. It is, as is well known by anybody reading these words, the
most prone to error. But the error usually comes not in failing to see correlations
and confusing accidental properties with essences, but in misascribing causes, in

2What’s the difference between a good lawyer and a bad lawyer? A bad lawyer makes your case
drag on for years. A good lawyer makes it last even longer.
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mistaking correlation for causation even though everybody knows the standard
admonition. Knowledge of this “law” never seems to stop everybody violating it,
though.

In trying to solve the “problem” of induction Stove and Williams separately
showed that reasonably sized (but still small) samples can “resemble” their popula-
tions in essence. Their results should come as no surprise to any statistician familiar
with sampling, though some philosophers over-fond of Hume and his progency were
taken aback: many do not seem to be able to resist the allure of doubt. On the other
hand, Stove and Williams and their sympathizers do not appear to understand that
they are demonstrating the soundness of only one type of induction, i.e. induction-
probability.

In general, and across all types or flavors, an induction is an inference about
the unobserved conditioned on that which has already been observed, where the
propositions of both (unobserved and possibly unobservable and the observed) are
in some way similar, i.e. share an essence. Induction is another way to speak of
essences, with varying degrees of certainty depending on the type. But there is
another sense of the word initiated by Carnap and others. To them, induction is any
(believed) inference not deductively valid, which is a much wider class of inferences
than what I mean by inductive inferences, an enormous class which contains even
absurdities. “If the moon is made of cheese then it’s noon” is “inductive” in this
sense, thus it is not surprising that some see a problem with “induction” when it
is put into such loose terms. Part of the difficulty is that modern logicians will call
this proposition true because of its (logical) form whereas the civilian, scientist, and
old-school logician will think the modernist is nuts. Why insist on such bizarre argu-
ments! It’s not form that is important, but cause and essence, knowledge of which
is provided by real induction. Since our goal is to understand (logical) probability, I
adopt the older meanings of induction, as given above. I also do not use, recommend,
or like Carnap’s use of the term “inductive probability”. Probability is probability,
but Carnap often used his term to apply to non-inductive arguments.

All these forms of induction have “stages” or levels. The first is ordinary, the
simple noticing of how things are, like sugar tends to be sweet, ice floats, that people
walk. The second is the identification of accidents, like all people on this street are
wearing (or rather affecting) peasant clothing (jeans). The third is the abstraction of
necessary properties, that people have two legs, that they breathe air, that one plus
one must equal two. Finally comes the realization of essences, that having two legs,
a heart, and the powers of rationality is what makes a human. Probability models, as
we shall see, come into play in each.

Here is an example tying induction to essence. Suppose I observe a raven. It’s
black. I see a second, also black. And so on for a few dozen more. I reason, or rather
I argue with myself, “Since all the many ravens I’ve seen have been black, the next
raven I see will be black.” There are seeming problems with this self-argument, this
induction-argument. It appears to be invalid since, as is probably obvious, it might
be that a non-black raven, perhaps even an albino raven, exists somewhere. And
if that’s true, then the next raven I see might not be black. Also, the argument is
incomplete—as written, though not as thought. As thought, it contains the implicit
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premise “All ravens are the same color.” That makes the entire argument: R D “All
ravens are the same color and every raven I have seen was black; therefore the next
raven I see will be black.” That argument is valid.

Therefore, it is a local truth that “The next raven I see will be black” given those
premises. We are back to the same kind of situation as when we discussed Gettier
problems. What is our goal here? Is it to assess the truth or falsity of the premises?
Or to make predictions? Given the premises are true, then it necessarily follows I
will make flawless predictions.

Now “every raven I have seen is black” is true (I promise), so the only question
is “All ravens are the same color.” Where did that arise? That was an induction-
intuition, arising from the judgment that having black feathers is the essence of
being a raven, or at least part of the essence. If this judgement is true, if having black
feathers is essential to being a raven, then this premise is also true and the conclusion
to R follows. The crux is thus the step, i.e. the induction, from the observations to an
understanding of what it is to be a raven. But there have been observed white ravens,
and it is said (by biologists) that these suffer from a genetic defect. A defect is thus
a departure from the “norm”, from what is expected, and what is expected is the
form given by the essence. With this in mind we can fix the argument. R0 D “All the
ravens I’ve seen have been black and it is the essence of ravens to be black; therefore
the next raven I see which is properly manifesting its essence will be black.” This is
a valid argument, and sound if indeed, as induction tells us, having black feathers is
part of the essence of being a raven.

Some people have mistakenly identified features thought to be essential but
which were instead accidents. It is not essential that all swans have white feathers;
some have black. But because mistakes are made in the induction of essences does
not prove that inductions are of no use. Many people make mistakes in math—
probably more than who make mistakes in inductions of essences—yet we do not
say math is a “problem”, where that word is used in its philosophical sense as an
unresolved or paradoxical question.

Another example. Who is taller, men or women? Obviously, some women are
taller than some men, but everybody knows, via induction from finite observations,
that it is the nature or essence of men to be taller. Probabilistically, as we shall learn,
it means only that if all we know the nature of sex differences and that A is a man
and B a woman, the chance A is taller than B is greater than 50%. Not everybody
knows why this sex difference is so, nor need they know why. It is enough for most
decisions and questions to know it exists. Knowing more, we will learn, we can
tighten that probability, or come to a deeper understanding of biology. But these are
niceties.

We know, via induction, that “men are taller than women”, and we know what
that phrase means. Goldberg [97, 98] points out that the within-group difference of
height in men or women is much larger than the between-men-women difference,
but nobody is foolish enough to think this means that men and women are equally
tall, or that the small between-group difference doesn’t lead to large differences
both on average and at the extremes. Yet several very good scientists have been
caught making the error that because within-group differences are larger than
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between-group differences, the between-group differences are, somehow, not there,
i.e. that somehow induction has misled us. In other words, because men vary
in height considerably, and women too, and because the average difference in
height between men and women isn’t are large as these differences between men
or between women, it doesn’t follow that induction has lied to us and that men
aren’t taller than women. Of course, nobody does make this mistake regarding
height differences. The error is usually made on more politically or socially charged
questions.

Many applications of induction in science are made at the lowest induction-
probability level, where our knowledge is the least surest. Experiments or obser-
vations are made to provide the grist for the inductive-probability mill. We observe
most men are taller than most women, so we move, via induction-probability, to
say it is of the essence of men to be taller than women, which has as shown
a probabilistic interpretation. Male-female sex differences in height (and other
characteristics) in this probabilistic sense is so firm a piece of knowledge that official
“randomized controlled trials” (a term which is highly misleading, as we shall see)
aren’t run to confirm it. But in most instances in science where experiments are
run or observations taken we do not claim knowledge of essential differences. The
methods used in classical procedures, both frequentist and Bayesian, are sometimes
thought to prove these differences, but we later learn this view is false. We must
always come to knowledge of essence via induction, and while experiments and
observations can provide the grist they cannot turn the crank of the mill. This is
done via intellection. Knowledge does not come via the result of some mathematical
calculation such as hypothesis testing. In short, we can never do without induction
in some form if we want to do science.

3.3 Grue

The so-called problem of grue (to be defined momentarily) was introduced by
Nelson Goodman in 1954 [101] as a “riddle” about induction, a riddle which has
been widely thought to cast doubt on the validity and rationality of induction. That
unnecessary doubt in turn is partly responsible for the reluctance to adopt the view
that probability is part of logic: for that view see, e.g., [35, 79, 122, 206]. Several
authors have pointed out deficiencies in grue, most notably [102, 208]. Nevertheless,
the “problem” still excites some authors, e.g. [194] (and references therein).

Here, adapted from Groarke (p. 65), is the basis of grue, along with another
simple demonstration that the “problem” makes no sense (Groarke lists others, as
does Stove). Grue is a predicate, like green or blue, but with a built-in ad hoc time
component. Objects are grue if they are green and observed before (say) 21 October
1978 or fast and observed after that date. A green grape observed 20 October 1978
and a fast (say, white) car observed 22 October 1978 are grue. But if you saw the
green grape after 21 October 1978, or remember seeing that fast car in 1976, then
neither are grue. The definition changes with the arbitrary date.
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Imagine it’s before the Date and you’ve seen or heard of only green emeralds.
Induction (of what type?) says future, or rather all unobserved, emeralds will also
be green. But since it’s before the Date, these emeralds are also grue, thus induction
also says all unobserved emeralds will also be grue. Finally comes a point after
the Date, and lo, a green and not a fast emerald appears, thus not a grue emerald.
Induction, which told us that emerald should be grue, is broken!

Why is this wrong? The reason we expect (via induction) unobserved emeralds
to be green is we expect that whatever is causing emeralds to be green will remain
the same through time. Whether this is the formal, material, efficient, or final cause
depends on the perspective one takes, of course, but unless there is other specific
information, we expect constancy of cause. We comprehend the essence of what it
is to be an emerald is unchanging. And that is what induction is: the understanding
of this essence, an awareness of cause. Rather, that is one form of induction, as we
now know.

Nobody has ever seen a fast emerald; neither are blithe, winsome, electrifying,
salty, nor brutal emeralds observed. Nobody has ever seen a blue one either, yet it
is blue that is the traditional alternate predicate stated in the “problem”, not fast or
blithe, etc. The choice of alternate predicate is arbitrary; there is nothing special
about blue. Using an absurd one like fast makes the so-called problem of grue
disappear, because we realize that no emerald can suddenly change nature from
green to fast. That is, our understanding (via induction) that it is the essence of
emeralds to be green, that some thing or things are causing the greenness, is what
leads us to reject the idea that this cause can suddenly switch and create blithe or
fast emeralds instead of green ones.

Incidentally, there is no causation in the predicate grue, as has often been noted.
Which is to say, the riddle does not suppose emeralds are changing their nature
(meaning no change in any formal, material, efficient, or final cause takes place),
but that induction is supposed to indicate that some change in nature should take
place on the Date but doesn’t. After all, some thing or things must operate to cause
the change. Grue, then, is a mix up in understanding causation.

Again, we do not know of any cause (or any type) that will switch emeralds
abruptly from green-mode to blue-mode or to fast-mode. It is thus obvious that the
predicate blue is what caused (in our minds) the difficulty all along. We observe
that colors change in certain objects like flowers or cars. Via induction, we expect
that this change is natural or is of the essence of these objects. Why? Because we’re
aware of the causes of color change which make the object at one time this color
and at another time that color. For instance, a leaf changing from green to red on a
certain date. This does not shock because we are aware of the cause of this change.
Amusingly, if we re-create the grue “problem” for the leaf using green and red, and
we get the right date, then grue-type induction works for autumn leaves.

There was never anything wrong with induction. Far from causing us to doubt
induction, thinking about grue strengthens the confidence we have in it because we
realize that grue seemed problematic because it tortured our understanding of what
caused emeralds to be green.
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Groarke calls belief in Goodman’s grue “an adamant will to doubt rather than
an evidence-based example of a deep problem with induction” and likens it to the
fallacy of the false question (e.g. “Have you stopped using p-values yet?”). Groarke
says (p. 65):

The proposition, “emeralds are grue,” [if true] can be unpacked into three separate
claims: emeralds are green before time t (proposition1); emeralds are blue after time t
(proposition2); and emeralds turn from green to blue at time t (proposition3). Goodman ille-
gitimately translates support for proposition1 into support for proposition2 and proposition3 .
But the fact that we have evidence in support of proposition does not give us any evidence
in support of all three propositions taken together.

What does the arbitrary time have to do with the essential composition of an
emerald? Not much; or rather, nothing. Again, the reason we expect (via induction)
unobserved emeralds to be green is we expect that whatever is causing emeralds to
be green will remain the same. That is, the essence of what it is to be an emerald
is unchanging, and that is what induction is: the understanding of this essence, an
awareness of cause. Groarke emphasizes that the time we observe something is not
a fact about the object, but a fact about us. And what is part of us is not part of the
object. Plus, the only evidence anybody has, at this point in time, is that all observed
emeralds have been green. We even have a chemical explanation for why this is so,
which paradox enthusiasts must ignore. Thus “there is absolutely no evidence that
any emeralds are blue [or fast or hyperbolic or tall or etc.] if observed after time t.”

Somewhat related to induction and grue is Kripke’s quus example, which I’ll
hold off on until discussing under-determination in Chap. 7.



Chapter 4
What Probability Is

“He’s alive Frank, though he’s on life support. Doctors say he’s got a 50–50 chance of
living: : :though there’s only a 10% chance of that.”—Captain Ed Hocken in Naked Gun.

Probability is, like logic, an argument. Logic is the study of the relation between
propositions, and so is probability. Like logic, probability is not a real or physical
thing: it does not exist, it is not ontological. It cannot be measured with any appa-
ratus, like mass or energy can. Like logic, probability is a measure of certainty,
where by custom non-extreme certainty is called probability; extreme probability,
certainly false and certainly true, are thus a special case of probability, probabilities
of 0 and 1.

Probability is widely misunderstood for two main reasons: the confusion between
ontological and epistemological truth, and the conflation of acts or decisions with
probability; [188] also insists on this distinction. These errors are discussed in the
next chapter, but it’s helpful here to have a précis. A thing is ontologically true
if it exists, and it is ontologically false if it does not. An epistemological truth is
when we know, given certain unambiguously specified evidence, that a proposition
is so. Epistemologically true propositions do not have to be ontologically true.
We know the proposition “Mike is green” is true given “All dragons are green
and Mike is a dragon”. This is an epistemological conditional, or local, truth. But
we also know the major part of the premise is ontologically false because there
are no dragons, green or otherwise. That we know it is ontologically false—that
we know there are no dragons—is itself both an ontological and an epistemological
truth, conditional on observation. The lack of dragons is ontologically contingent.
The subjects of contingent propositions can only be or not be, exist or not, they
cannot have ontological probabilities: they can only be ontologically true or false.
Yet since we might not know whether a thing be or not, propositions can and do
have epistemological probabilities. Probability is the simple extension of logic to
situations where the evidence does not guarantee epistemological certainty.

The truth or probability of any proposition is conditional on the given or
accepted premises. We know that “All men are mortal” is true because our
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senses confirm individual instances and because induction-intellection provides the
certainty. This is also why we know “For all natural numbers x and y, if x D y, then
y D x” is true. Individual instances are observed, and induction supplies the rest. We
know that “Chicken-man wears a costume” is true if we accept “All super heroes
wear costumes and Chicken-man is a super hero.” But we also know that the same
proposition is false if we accept “No super heroes wear costumes and Chicken-man
is a super hero.” And we know that “The probability Chicken man wears a costume
is 32%” is true if we accept “Just 32% of super heroes wear costumes and Chicken-
man is a super hero.”

Counterfactuals are always ontologically false; i.e. they begin with premises
known observationally to be false. Yet counterfactuals can have meaningful (epis-
temological) probabilities. The conclusion “Germany won the war” is likely true
(we may say) given “Hitler decided not to attack the Soviet Union” and other
premises (those which follow) which are plausible or deducible given that premise.
Counterfactuals are surely meaningful epistemologically but never ontologically.
Counterfuturals, a neologism, are ontologically unknown, but also valid proba-
bilistically. A counterfutural, in relation to a proposition of interest, is a premise
which assumes what will be ontologically true but which might not eventuate. Given
“Assuming mom comes for dinner” then “I will make cookies.” In other words, a
counterfutural is a standard, run-of-the-mill prediction, which nobody disputes can
be handled with probability.

There is no such thing, therefore, as an unconditional truth or probability.
Everything follows from this simple fact. The truth or probability of any proposition
changes depending on the evidence. We could not say anything else but that “The
probability Chicken-man wears a costume is 32% and no other number” is true,
given only “Just 32% of super heroes wear costumes and Chicken-man is a super
hero” and the tacit premises about the meaning of the words, the grammar, and our
implicit understanding (formed via induction, too) about how sets of propositions
like these are related to one another.

4.1 Probability Is Conditional

As we saw in Chap. 1, all truth is relative in the sense that all propositions which
are (epistemologically) true are so because of some reason or reasons; see [143],
except that I do not endorse the use of “inductive probability” because, as we have
seen, induction is a many-faceted thing. Also see [170]. All things that exist are also
ontologically true given some reason (some cause), incidentally. The propositions
of which I speak include necessary truths, which are absolutely true propositions
given a set of premises which, if not themselves indubitable, are the valid result of
reasoning from inductions using sound rules. We distinguished between necessary
truths, which are universally or always true, and locally conditional truths, which
are propositions accepted as true when reasoned from given but not necessarily true
premises. An example of a necessary truth is the proposition “P is P and not not-
P” (where P itself is a proposition, and we include, as always, the tacit premises
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provided by our understanding of grammar and so forth). This is the so-called Law
of Identity. A conditional truth is the proposition “George wears a hat” conditional
on the premise “All Martians wear hats and George is a Martian.” That probabilities
are conditional is recognized in many of the authors mentioned, but also, after a
fashion, in [1, 99, 124].

This difference between necessary and conditional truths is no small distinction,
as we’ll soon learn in the area called “subjective” probability. Most workaday or
ordinary truths, and all scientific ones, are conditional truths, propositions which
are not necessarily true because the premises which support them are not themselves
necessary truths. In most of regular life, and in science, we argue with contingent
premises, therefore we can do no better than conditional truths. The constant danger
is that conditional truths are taken for necessary truths; and when this happens it is
often because of scientism. I’ll prove this with examples in later chapters.

Since probability is like logic (or is logic), before we can understand the proba-
bility of any proposition we have to know which premises are given to support that
proposition. In other words, there is no such thing as an unconditional probability.
Many authors think there might be; for example Hájek [105]. These authors speak of
the supposed difference between epistemic, aleatory, factual, stochastic probability,
among other terms: factual or physical probabilities are thought to exist. Now to
exist is an ontological and not an epistemological statement. If factual probabilities
existed ontologically they could, at least in principle, be measured, like mass or
electric charge can. Dice throws and human births are often given as examples of
things that have factual probabilities. The chance of a boy, we hear, is something
like 51 %, a number which comes about by measuring actual births and tallying the
relative frequency of boys.

But there is no such thing as factual probability. Each birth is caused to be a boy
or a girl by some thing or things. Among these things are the genetic makeup of the
father’s gametes, the conditions in the mother’s uterus, environmental stressors and
so forth. Each baby is produced by slightly different causes which vary for many
reasons. The process itself is constrained to follow certain lines. Human mating
doesn’t produce turtles or kitchen mops: miniature human beings are made. That
we don’t know precisely what all these causes are in this birth is one question,
and a good one for biologists and families-to-be, but the causes must be there. Our
(epistemological) knowledge of the proposition “It will be a boy” can of course be
informed by what we know of the causes and of what we have seen in previous
births. But there is no ontological probability driving any birth this way or that, a
probability which somehow “balances the books” across all of humanity so that just
51 % of boys are born. To think there is to commit the gambler’s fallacy.

Maybe this is better seen in a simpler example. Suppose we have a device into
which marbles are dropped and which must come out slot A or B, and that the hole
through which the marble drops is wider for slot A. Given this evidence and our
common experience of falling objects, our epistemological probability is that the
marble is more likely to show in slot A in one drop or averaged over many. But
each marble as it bumps and spins and drops its way through the device is caused
to take the path it does. If we knew the characteristics of the machine and the initial



42 4 What Probability Is

conditions of the drop and the equations of motion for objects like marbles, we could
deduce which slot the marble must go through (as we can with, say, coin flips). The
answer would be both an (eventual) ontological certainty (for the marble to be at
this or that slot) and an epistemological certainty.

The exception to this appears to be for quantum mechanical events; photons
going through this and that or this or that slot, the time at which a nucleus disgorges
an alpha particle, whether this particle is spin up or down and its entangled pair
the opposite, and so forth. Experiments repeated under very similar conditions—
one cannot claim absolute similarity except by induction; if one could know all
conditions, then quantum mechanics would not be mysterious, but do not forget
all is the most demanding word there is—show stable frequencies of outcomes.
But so would repeated experiments with the marble in the machine, as do human
births, coin flips, and so forth. The equations which give rise to the quantum
mechanical experiments are probabilistic in nature; they speak of probabilities and
not certainties. On the other hand, so do equations saying things about coin flips.
Yet in everyday, schoolyard coin flips or all quantum mechanical experiments, all
we know is that we don’t know the cause which gave rise to the observations. We do
know, or we should know, that some thing or things must have caused the outcome.
With our marble or with coin flips, being so exposed to the world, as it were, we
have some ability to know what these causes are. But this isn’t so in quantum
mechanics, where the causes are hidden from us. But QM is different: in QM we
know we can’t know why any QM experiment happened, but that something caused
the outcome we do know. That we know, or should know, causes exist and the nature
of causes is discussed later in the chapter on Causation (which includes a discussion
on Bell’s theorem for QM). All that is important here is that our epistemological
understanding (or ignorance) of causes are conditional.

Now to say, “The probability of X is p”, where X is some proposition, is to speak
incorrectly. Colloquially we often do say things like that, but there is always and
must be tacit evidence behind the p. A man says, “The Tiger’s are probably going to
win today.” The man who says this assumes his audience shares the same or much
of the information about the game he does, and if this audience does not, the man
might use the statement to launch into an analysis, which is a listing of his premises
(many of which will be vague) and how they are probative to the proposition of
interest “The Tigers win today”. Or the listener may say nothing but might, for
instance, supply the premise “I trust this guy” and therefore agree with p. The trust
is the condition or premise which must exist if he agrees with p and does not know
the man’s other premises.

To speak properly one must say, “Given this evidence, the probability of X is p.”
This is why there is no such thing as a probability of being struck by lightning or of
dying from a heart attack or whatever. Probability is not intrinsic; there must always
be conditions. No probability exists ontologically, and therefore no probability can
be calculated unless it is conditional on some evidence. Probabilities speak only
of the possible truth or falsity of propositions. Thus (as will be proved below) the
probability of “Pat the cat shot at least 30 rounds” given “50% of cats shoot at least
30 rounds and Pat is a cat” is 50 %, but the same proposition has probability 60 %
given “60% of cats, etc.”



4.1 Probability Is Conditional 43

Our job in probability, so to speak, is to figure which side of the equation we’re
on. All probabilities fit the schema Pr.PjQ/, where P is the proposition of interest
and Q are the premises, evidence, data, “for granteds”, or whatever you wish to
call them. The Q must always be there; and so must the P. Now it could be that
we could deduce a P from a given Q, like we do in syllogisms, but this needn’t
be the case. Given Q D “All men are mortal and Socrates is a man” we could
deduce P D “Socrates is mortal.” But given that same Q we could equally ask
the probability of P D “Socrates would have liked Oldsmobiles.” The choice of
P is ours. This P is, of course, silly, but probability, like logic, does not give any
guidance from where or whence propositions arise. This point is basic: reflect on
it. Logic and probability speak about the connections between propositions, and not
the propositions themselves. This choosing part of probability really is, or partly is,
subjective, because the choice of P and Q is sometimes free, and sometimes supplied
to us by outside agencies. But once P and Q are fixed—however they are fixed—
probability is no longer subjective, and is itself fixed. This will be proved in the next
chapter. For now, we need to recognize there are two actions we can take.

The first is in finding the best or “good” Q for a fixed P. Suppose P D “The Tigers
win tonight’s game.” This is evidently a contingent proposition, in the sense there is
(unfortunately) nothing in the universe which would make P necessarily true. After
the game is played, we can use the observation Q D “The Tigers won; hooray” and
then the probability of P is 1 conditional on this evidence (the event is then also
ontologically true). But before the game, what is the best Q? One possible Q is
the tautology, “The Tigers will either win or they won’t.” From this, Pr.PjQ/ is the
unit interval, i.e. .0; 1/. This is because (see below, and as we learned in Chap. 2)
tautologies or any necessary truth cannot be used to deduce contingent propositions.
Q contains implicitly information on the contingency of P, but that is all it contains.
Another Q might be, “The Tigers won 4 of their last 5”. This gives some idea that
P is likely, but we cannot deduce a single, fixed probability from this Q. This non-
quantifiability is true of most situations in life. It is only because of scientism that
we believe we can impose numbers on everything. Now it may be that this 4-out-of-
5 is the only Q we have or were provided. In that case, we’re done. The best we can
say is the probability of P with this Q is (something like) “pretty good” or “fair.” No
numerical probability is possible; or, at least, not without tacit premises which insist
exactly what “4 out of 5” means regarding future events. Of course, some numerists
(as we might call them) jump on examples like this and readily supply premises
which become models. More on this later.

It could also be that we have an opportunity, within our means, of searching for
additional evidence which is probative of P. This may be the scouting reports on
both teams’ pitchers, whether the game is home or away, a longer record of wins
and losses, injury reports, the weather, batting records, sports writers’ opinions, the
consequence of the game (is it for the playoffs?), and on and on. There is the sense
that as Q increases in richness or content the probability of P should head toward 0
or 1, as the case may be.

It is far from clear that in all cases, particularly those dealing with human
behavior, that a realistic Q can be found which puts P arbitrarily close to 0 or 1.
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Man has free will1 and acts unpredictably. But if we had the experimental set up
with the marble and wanted to know P D “The marble will arrive in slot A”, we
have a much better sense, as described above, that we can discover a realistic Q
(given precise measurements, say) such that the probability of P is very close to 0
or 1. The realistic qualifier is there because we can always and trivially produce
a Q which puts the probability of any P at 0 or 1; e.g. Q D “P is impossible”
or Q D “P must happen”. Realistic evidence is that which itself is ontologically
true or possible or necessarily true epistemologically (conditioned on still yet other
acknowledged premises). Think of realistic evidence as that evidence which you
must justify to outsiders dubious about P. For the marble, this includes the initial
conditions, equations of motion, the gravitational field, friction, and so on. Given
enough time and effort, we have the idea a pretty accurate Q can be discovered. The
search for “Qs” for fixed “Ps” is what science is all about. And, as said, there are
some P, such as in QM, for which no Q which leads to certainty will ever be found.

In our daily experience, say when we’re flipping coins to solve minor disputes,
we don’t have the information necessary to find a Q beyond “There is a two sided
coin marked H and T, one side of which must show when flipped.” This is why we
say the probability of an H is 1/2. It is with respect to that and only that evidence,
but not to the evidence of the physicist who has taken pains to measure the coin flip
“experiment” precisely. About the real coin in front of us we know nothing except
that it shares the two qualities mentioned in the premises. It shares in the essence
of other backyard coin flips. These premises become a model, a subject which is
discussed more later.

The second action is to play detective, to discover the P which best accords with
the given, fixed Q. Let Q D “A murder was reported at the mansion, in which resided
the Duke and his lady, four aristocratic guests of varying and known histories, and
twelve servants. The de-monocled body of Lord Wistful was found strangled in the
library. The layout of the mansion and grounds are this and such. The train schedule
and distance of the station from the mansion are in this table, etc.” In other words, all
the standard clues British television detectives are taught to collect at crime scenes.
Now suppose you entertained P D “The President of the United States did the deed
(though he probably had a good reason to do so, for he is a member of the party
for which I habitually vote).” The president was not a guest of the Duke, and was
not known to be within thousands of miles of the mansion. Still, P is contingent.
Given this Q, which does not exclude any human being by name, it is possible that
P is true, though it is very unlikely (recall we are accepting Q, which would include
premises about how anybody could have done the deed). As above, given Q and
including the tacit premise about contingency, the probability of “The President did
it” is again the open unit interval.

Clearly, there are better suspects; e.g. P D “The butler did it.” Note carefully that
Q is not “There are 18 suspects one of which is the murderer and the Butler is one
of the suspects.” Just on that, and only that, evidence, the probability of P D “The

1If you say you don’t, you contradict yourself.
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Butler did it” is 1/18. Even this Q does not limit us, if examined closely; there is a
tacit premise that some human being in the world did the deed, but that is it. Q is
hardly definite, but it is definite enough for the police to begin their interviews. The
police would not restrict themselves to the eighteen inhabitants; somebody unknown
to the household could have committed the crime. With this Q, no P allows of a
numerical probability, but given the nature of Q, some P will be more probable
than others. “The butler did it” is an obvious one, and so is “Mrs Duke did it.” But
those propositions flow from tacit premises in Q given evidence of past murders and
so forth.

Of course, the additions and culling of both sides of the probability equation are
more natural than my stilted prose has it. As the murder investigation continues, Q
is amended and the list of P’s tightens. This happens in scientific investigations, too.

So all probability is conditional. My experience is that after introducing this
notion, those trained in classical probability and statistics are suspicious and reject
the truth that all probability is conditional. The following exercise is usually
convincing: try and write down an unconditional probability. Notation is a problem.
Many write things like “Pr.P/”, which appears unconditional, but that’s only
because the Q is removed off site. It’s always there, however. The danger is reifying
the notation so that the conditions Q are thought not to be there because they’re not
written. Once you try this, you’ll quickly become convinced. Hint: be careful not to
forget the tacit premises of grammar and logic, a negligence which often convinces
students they have finally “discovered” an unconditional probability.

Franklin [79, 82] wonders whether there are probabilistic relations between
necessary truths. For instance, all the relevant facts, i.e. premises, might be known
which support a mathematical theorem, i.e. a proposition of interest such as the
Riemann Hypothesis, which, at this writing, remains unproved. It is not known,
given the premises mathematicians have today, whether the theorem is proved or
not, yet we would think that because all the necessary premises are there, and they
really do logically imply truth of the theorem, but we cannot see how, that logical
probability might be incomplete. In other words, why isn’t the Riemann Hypothesis
given all the premises we have, premises which would presumably be the same
once somebody comes through with the formal proof? If logical probability were
complete, we should see the probability of the theorem was 1. But there is a flaw in
this thinking. The easy answer is that any set of premises are not only the premises
themselves, but include any number of tacit premises, as we have been assuming
all along. For instance, consider you come upon a pile of unconnected electronic
parts, resistors, capacitors, wire, solder, and so forth, and the proposition “This is
a radio” comes to mind. All the parts for the radio are there, so the answer is that
the proposition is true, sort of. The parts are there but the tacit premises of how
they fit together are missing. Same thing with the mathematical theorem. We might
have all the relevant premises, but how they fit together and in what order is not
known. After the theorem is officially proved, it later becomes clear that the facts
were necessary and sufficient and these are wondered over, yet how they fit together
isn’t considered as important. But the form, or the how of all fits together, is also a
premise. That is currently missing for the Riemann Hypothesis. This state of mind
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is natural because talking of the fitting together adds a mental burden when all one
wants to convey is the importance of the theorem. Nevertheless, when discussing
probability, like in discussing logic, tacit premises should never be forgotten.

4.2 Relevance

We need the idea of relevant and irrelevant evidence. Irrelevance occurs when the
probability of some proposition, given whatever evidence we already have, is not
changed in the face of different and new evidence. The probability of P would
obviously not change it we merely repeated evidence in Q which was deducible from
extant evidence. That is, the probability of P given Q is identical to the probability
of P given “Q & Q”; and if Q logically implies W, then the probability of P given
“Q & W” must equal the probability of P given Q—but it is not necessarily the case
that Pr.PjQ/ D Pr.PjW/.

Causality and its lack also plays a role. For instance, the proposition “This cargo
ship is over 100,000 tons” has high probability given the evidence, “Most cargo
ships are over 100,000 tons, and this ship is a cargo ship.” If I add the true premise
“Einstein enjoyed tobacco” the probability doesn’t change: the evidence is irrelevant
because we cannot identify any causal connection, no matter how complex, between
the propositions. This supposition falls short of proof, naturally, but that’s because
we are in the realm of the contingent. I cannot prove to you that Einstein’s hobby
is unrelated to cruise ship weights; nevertheless, induction demands it. There is
no identifiable logical connection between cargo ships and Einstein’s smoking.
Induction lurks here as everywhere. The reason we know Einstein’s smoking has
no bearing on the question is because of induction.

The opposite of irrelevant is relevant. If I add the premise “This cargo ship is
smaller than most”, the probability of our proposition changes: by how much is not
known, of course, but it is obvious, given our (tacit) understanding of the English
language, that this new evidence is probative, that it is relevant, and it is relevant
because it is determinative.

It makes a difference when evidence is introduced. If P D “John was the killer”
and we began with Q1 D “The murderer was a dentist and John is a dentist” the
additional minor premise Q2 D “John graduated from Honest Ben’s Dental College”
is irrelevant because we already know John is dentist. But if all we had was Q3 D
“The murder was a dentist”, adding Q2 (and leaving out Q1)is relevant. This point
is taken up again in models (especially time series). Relevance is itself conditional
on the accepted premises.

Evidential importance or weight to a fixed proposition is measured, when it can
be measured, but how much the probability of a proposition changes on the addition
of new evidence. Importance is thus also relative to the information already present
in the premises. If we start with Q D “At least 6 of the 11 balls are orange, and
this is a ball”, the probability of P D “This ball is orange” can be calculated (see
below). If we add to Q the evidence “There are 6 orange balls”, the probability of
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P conditional on the augmented Q is 6/11. How much has the probability “moved”?
Clearly by some appreciable and happy amount. We have reduced the choices from
six to one. Weight will not always be quantitative, just like probability is not always
quantitative. For instance, we could start with Q D “Some of the 11 balls are orange,
and this is a ball”. As before, we revisit this technique when we discuss modelling.

How relevancy, irrelevancy, importance, and weight are measured, using for
instance the techniques of entropy and the like are, of course, of tremendous
practical interest. But those techniques, while interesting, are incidental to the
philosophical points made here. Jaynes [122] is an ideal reference work.

4.3 The Proportional Syllogism

Given Q D “An Metalunan interocitor must be in one of n states, s1; s2; : : : ; sn and
S is a interocitor” then the probability Q D “S is in state sj” equals 1=n (a tacit
premise here and throughout is that n is finite; happily, in real life n always is). This
value arises from the proportional or statistical syllogism. Carl Hempel originated
the idea in statistics, and it is stressed in philosophy in the works of Stove [204, 205],
Williams [224], Groarke [102], and Franklin [79]. The proportional syllogism arises
in the natural way from recognizing the equality of probabilities in equations like
this, called the symmetry of logical constants:

Pr.S is in state sjjQ/ D Pr.S is in state skjQ/I j; k 2 1 : : : n: (4.1)

There is no proof of (4.1): its truth is intuitive, i.e. provided by induction.
Now “intuitive” does not mean every person can be made to understand it (or
any proposition!), only that some can. Notice carefully that there is no evidence
whatsoever about the interocitor except that it can take certain states; especially
lacking is any evidence about the symmetry of its workings. There may or may not
be any; we have no clue. All we have is that the interocitor must take a state with
one of n labels (Q insists on this). We have no idea how any of these states arise. We
cannot argue from physical symmetry or indeed use any knowledge from physics
or engineering; though some try, e.g. [13]. Except for the assurance each of the n
states are possibilities, the workings of the machine are a complete mystery to us
and, in fact, can be no better than imaginary because, I shouldn’t have to add, there
are in reality no Metalunans thus there are no Metalunan interocitors. This is of
zero importance, however, because logic is not concerned with reality but with the
relations between propositions. Recall the French-speaking cat example. Given we
know the machine has to be in one of n states, and that is all we know, then the
probability it is any one of them just is equal.

Interestingly, Persi Diaconis and ET Jaynes attempted proofs of the statistical
syllogism which, they thought, avoided the necessity of the symmetry of logical
constants, but it will be shown below that the proofs are circular and rely on the
symmetry of logical constants after all. David Stove has a proof which also works
but which has a quirk, and it will also be shown.
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The proportional syllogism is a deduced principle of probability from the equi-
probability of logical constants, as in (4.1). Whether in specific instances the results
which flow from it match the results given by some other calculation device or
principle, such as maximum entropy, is a nice coincidence, but does not obviate it.
These principles, whatever nice or desirable properties they have, are not strictly
part of probability. Take for example the premise Q D “90% of Martians wear hats”
together with “George is a Martian” then the probability P D “George wears a hat”
is 90 %, which is also so because of the proportional syllogism; but it is constructed
differently. To see that, let GM D “George is a Martian”, GH D “George wears a
hat”, and S D “Sally”, etc.; then

Pr.GHjQ and GM/ D Pr.SHjQ and SM/: (4.2)

Here we have no idea how many Martians there are, except that there are
enough to form an even 90 %. Unlike in (4.1), the evidence also changes. Note
that Pr.GHjQ and GM/ ¤ Pr.SHjQ and GM/ because Sally could be a human or
Metalunan. In general, Pr.XHjQ and XM/ D Pr.YHjQ and YM/ where X and Y
are names. The “symmetry”, to use that word loosely, comes in considering that any
names (labels) X and Y can be used: there is no information to prefer any name over
another, thus the probabilities are equal.

The probability “George wears a hat” given “50% of Martians wear hats and
GM” is less than the probability “Sally wears a hat” given “90% of Martians wear
hats and SM”, a fact which also follows from the proportional syllogism. Just as
“George wears a hat” has higher probability given the premise “Most Martians
wear hats and GM” compared to the premise “Few Martians wear hats and GM.”
This example requires the tacit premise that most is more than few. Numbers aren’t
needed. The probability “George wears a hat” given “X% etc.” is equal to “Sally
wears a hat” given “X% etc.”, with only the tacit premise, given our understanding
of percentages, that X is somewhere in 0–100.

It is a simple principle of logic that if the argument from Q to P is valid, then
the argument from “Q and T” to P is also valid, where T is any necessary truth.
Intuitively, adding something which cannot possibly be false to Q adds “nothing”;
we might say that it doesn’t change how P flows from Q; it is like multiplying a
simple algebraic equation by 1. Given “All men are mortal and Socrates is a man”
then “Socrates is mortal” is true; and nothing changes if we append to the premise
a necessary truth such as “A is A”.

Common necessary truths are logical tautologies. Examples, “Either Mars now
is 12 parsecs from Earth or it isn’t,” “If it is sunny then I will go swimming which
implies I will not go swimming if it is not sunny” (we take the entire proposition
here), “Either unicorns like chocolate or they don’t” (this is true whether unicorns
exist or not), and the standby “P or not-P” (which we know is necessarily true based
on tacit premises of logic). That last proposition means if Q to P is valid “Q and ‘P
or not-P”’ to P is also valid. Adding the necessary truth “P or not-P” did not change
the argument in any way.
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The same conditions hold in probability. If on the argument from Q to P we
deduce the probability of P given Q to be some value, then adding a tautology or
other necessary truth to Q does not and cannot change this value. Thus

Pr.PjQ/ D Pr.PjQ and T/: (4.3)

And this holds even if Pr.PjQ/ doesn’t have a numerical value or if it is an
interval; it also holds if T D “P or not-P”. A concrete example. As above, given
only Q D “A Metalunan interocitor must be in one of n states, s1; s2; : : : ; sn and
S is a interocitor” then the probability P D “S is in state sj” equals 1=n. Take the
tautology T D “S is in state sj or it isn’t.” T is necessarily true whether Metalunan
interocitors exist or not, and true regardless which state any of them might happen
to be in. Adding T to our list of premises thus does nothing to the conclusion that
P takes probability 1=n. T, because it is a tautology, does not suddenly change our
notion of P, nor does it add any information about it.

Consider the probability of P D “S is in state sj” given only T D “S is in state sj

or it isn’t.” Since again T is a tautology it gives no information about P. In particular
it is false, though it is often asserted, that Pr.PjT/ D 1=2. This is more easily
believed when any necessary truth can take the place of T. Let T0 D “There are
82 millions ducks in the world or there aren’t.” Then obviously Pr.PjT’/ ¤ 1=2, but
even stronger

Pr.PjT/ D Pr.PjT0/I (4.4)

and this is so even though neither side produces a unique, single number. The closest
Pr.PjT/ comes to a number is the interval .0; 1/; note that this does not include the
extremes, which is just another way for saying P is contingent. In this sense there
is some information in T and T0, or rather the words and grammar of T, T0, or P,
which is usually that P is contingent, and which is enough to exclude complete
certainty, but that’s all; information in tautologies is thus of (literally) infinitesimal
value (when it has any value).

Another version of the tautology is T00 D “S might be in state sj.” Implicit in
this is that S might not be in state sj, thus T D T00. Still another version is T3 =“S
might be in state sj or sk” with the same tacit inclusion (though it can be argued this
version says only these two states are possible; words matter!). Another: T4 D “S
might be in state s1 or s2 or, : : : , or sn”, again with the tacit admission they might
not. Note carefully that T4 is not equivalent to Q D “A Metalunan interocitor must
be in one of n states, s1; s2; : : : ; sn and S is a interocitor” because T4 never asserts
that any interocitor must be in any state, only that it might be in one or another state,
or none at all.

It turns out that Metalunan interocitors are actually that race’s version of dice,
that n D 6, and that each “state” is a side upper most upon tossing. Thus Q really
equals “A Metalunan die when tossed must show one of 6 sides, labeled 1 through 6,
and S is the side that shows on a toss” then the probability P D “S is 3” equals 1=6.
This also follows from the proportional syllogism. Adding tautologies, I hope is
now plain, changes nothing. As above,
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Pr.S is jjQ/ D Pr.S is kjQ/I j; k 2 1 : : : 6: (4.5)

And this is so even though we know where are no such things as Metalunan dice.
Note that Q does not contain, nor should it, any evidence about “fairness” or
“symmetry” or “equally weighted sides” or any other similar words, all of which
attempt to say something about the actual objects themselves, whereas probability
is only concerned with the connections between propositions and not objects per se.
How to attach probability arguments to objects is what modelling is, which I discuss
later.

Any premises about “fairness” are superfluous to probability, which is to say, to
the epistemology of the situation, though they might be important to the ontology.
Saying that a Metalunan die is “fair”, if it means anything to the epistemology,
is no more than a restatement that each side is “equally likely”, a conclusion we
had already reached with the proportional syllogism. That is, given the premise
that a device is “fair” then the probability of equal outcomes is uniform; a circular
definition. It is like saying, “Given the probability of X is p, the probability of X is
p”, which is tautological.

But to the ontology, to call a Metalunan—or any Earthly—die “fair”, what else
can it mean but to claim that each side is perfectly symmetric, even down to the
quantum level (or whatever, if anything, is below that)? To call an object fair,
symmetric, balanced, equally weighted or whatever is to say that no inspection
would reveal any conceivable asymmetry. What a remarkable claim! This pristine
state of proportionality, which I suppose might exist in some fanciful physics
experiment of the future, is impossible in practice to verify. How do you know,
except by great expense and effort, whether any device is symmetric across all its
constituents? How can you ensure any die or coin toss is “symmetric” or “fair”?
How can you even define what that means? How can a toss be “fair” except that it
is designed to produce equal numbers of heads and tails, or equal numbers of sides,
etc.? The answer is obvious; and contra, e.g. [209].

Now it is a separate question whether the manner in which any particular,
necessarily physically real, device produces more or less uniform outcomes. There
can be no real tosses of a Metalunan interocitor, but that does not stop us from
learning its probabilities. But for a real device, we have to do a lot more thinking.
To say a device is “fair” says nothing about the mechanism of how that device will
register a state. In a real die toss, even if we claim the die itself is “fair”, i.e. perfectly
symmetric, we have said nothing about how it will be tossed. These are ontological
matters; see [50]. There will be a gravitational field, perhaps varying. There will
be air at a certain density, temperature, and moisture content through which the die
flies. The die will leave some person’s hand, perhaps coated with traces of sweat and
skin, with a certain spin and momentum; it will have begun its position in the hand
in a certain orientation. It will hit the floor or table or whatever at a certain angle, and
the floor itself will be more or less elastic and which will give some level of frictional
resistance. And this does not exhaust the characteristics of the physical environment
of the real toss. Indeed, the number of things which might influence the outcome are
very large (but not infinite). Experience tells us that most of these things will have
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scant or negligible effect, but perhaps, for this toss, something happens which gives
more weight to a previously unconsidered dimension. Who knows? Let’s have no
more talk about tossing “fair” dice.

We can extend fair to include not only symmetries of the device but also to the
environment where the device will be “activated”, but as you can now see, this is to
say a lot. To the epistemology, nothing changes: we still have a circular definition of
the probability. But to the ontology, it is everything. Perhaps, as in highly controlled
experiments, we will have a lot of evidence about the physical set up. But often we
do not, especially when investigating the behavior of people, which do not act as
predictably as dice. It is boastful to say even of a simple coin or die toss that the
environment is “fair.” But we do not have anything like that level of omniscience
when it comes to people. Of course, experience over a great many actual dice tosses
show us which environments produce uniform outcomes. Casinos rely on this! That
experience feeds into our premises and is then used to deduce probabilities.

So what do we say about the chance this real object comes up this or that number?
Well, that is the subject of modeling, which we will do later. A brief summary:
we begin with whatever clear evidence (premises) we have, judging that some
characteristics are important and others ignorable, and then move forward to either
make predictions or to experimentation, and after experimentation we produce more
predictions.

4.4 Details

The statistical syllogism cannot be escaped, and neither can the symmetry of
individual constants from which the syllogism is derived. Yet some authors have
attempted escapes. The most noteworthy are Jaynes, Diaconis, and Stove. All
were interested in assigning equi-probability to events like die tosses. But since
assigning equi-probability, or uniformity, has historically been seen as dogmatic,
each author tried to derive the assignment of equi-probability from what they saw
as different, less dogmatic premises. These attempts are ultimately failures, as I
demonstrate below. Stove’s come closest, and indeed has the answer hidden in his
effort. This section is necessarily mathematical and could be skipped for those
already convinced of the statistical syllogism’s utility; though all should at least
skim Stove’s effort. Our first notion of “parameters” arises in these proofs, too.

The following arguments start with the definite knowledge E that M is contingent
and can be decomposed into a finite number of possibilities (like sides in coin flips
or states of interocitors, or whatever) M1; M2; : : : ; Mn, n < 1.

Jaynes [122] gives a permutation argument in an attempt to deduce the statistical
syllogism (he does not call it that), but which relies on an unacknowledged
assumption. Introduce evidence E which states that either M1 or M2 or etc. Mn

can be true, but that only one of them can be true. In the case where M is a coin
flip, the result can be either M1 D“head” or M2 D“tail”. Thus, Pr.M1 _ M2 _ � � � _
MnjE/ D Pn

iD1 Pr.MijE/ D 1. At this point, there is no assertion that each of these
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probabilities is equal, only that the sum is 1. We want to assign the probabilities
Pr.MijE/ for i D 1 : : : n. The set of possibilities is M D fM1; M2; M3; : : : Mng. Let
� be a permutation on the set f1; 2g. Let M0 D fM�.1/; M�.2/; M3; : : : Mng. That is,
the set M and M0 are the same except the first two indexes have been swapped in
M0. The evidence E is fixed. Therefore, it must be that Pr.M1jE/M D Pr.M�.2/jE/M0

and Pr.M2jE/M D Pr.M�.1/jE/M0 . Jaynes then makes a crucial step, which is to add
to E evidence which states that the total evidence is “indifferent” to M1 and M2, i.e.

if it [the evidence] says something about one, it says the same thing about the other, and
so it contains nothing that would give [us] any reason to prefer one over the other (p. 39,
emphasis mine).

Accepting this for the moment, E then says that our state of knowledge about M
or M0 is equivalent, including the order of the indexes. Thus, (note the change
in indexes) Pr.M1jE/M D Pr.M�.1/jE/M0 , Pr.M2jE/M D Pr.M�.2/jE/M0 and
Pr.MjjE/M D Pr.MjjE/M0 ; j D 3; : : : ; n. Which implies Pr.M1jE/M D Pr.M2jE/M:
that is to say, equi-probable or uniform prior assignment.

We seem to have proven equi-probability. And this argument is fine if what
Jaynes says in the quotation holds. But we can see in it the presence of two tell-tale
phrases, “indifferent” and “no reason”, which are used, and are needed, to justify
the final step. This is just begging the question all over again, for how else could
the evidence E be “indifferent”? It cannot mean non-probative or irrelevant. That is,
Jaynes has assumed uniform probability (and thus, the statistical syllogism) as part
of the evidence E, which is what he set out to prove.

De Finetti has a famous “exchangeability” theorem which states that if an
“infinite series” of “variables” exists and the order in which the variables arise
is not probative, then a “prior” probability of the states exists. The form of the
prior is not given by the theorem; that is, how the probabilities are assigned is not
stated by the theorem; we know only that it exists. Diaconis [55] investigated finite
exchangeability in an attempt to see how assignment might arise (see also [131]).

This argument is more mathematically complicated. De Finetti’s theorem, which
can be found in many places, e.g. [21], states that in an infinite sequence of
exchangeable 0–1 variables there is hidden, if you like, a formal (induced) repre-
sentation as a probability model with a unique measure of the probability model’s
parameters. The key, of course, is that the sequence must be infinite. Diaconis,
after showing that some finite exchangeable sequences fail to be represented as
probability models with unique measures, goes on to offer a proof for certain
other finite exchangeable sequences that do. The word “hidden” was apropos, for
in exchangeability arises the concept of parameters (in parameterized probability
models), a concept which relies on the existence of infinite sequences. I investigate
this important topic in Chap. 8.

Here, I follow [55] as closely as possible, almost copying the theorem as it stands
but using my notation; interested readers should consult the original if they desire
the details, particularly since the original uses graphical notions which I ignore. Let
Pn represent all probabilities on M D Qn

iD1 Mi where Mi D f0; 1g; 8i, where M is
a finite (n < 1) sequence of 0–1 variables. Pn may be thought of as the probability
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models on M: it may be written in coordinate form by p D .p0; p1; : : : ; p2n�1/ where
pj represents the outcome j where 0 � j < 2n is the binary expansion of j written
with n binary digits. Diaconis gives the example if n D 3; j D 1 refers to the point
001. Let M.m; n/ be the set of j with exactly m ones. The number of elements in
M.m; n/ is

�n
m

�
: this much is true—the number of elements in M.m; n/ is

�n
m

�
—

regardless of what the actual probabilities of any outcomes are.
Now, let En be the exchangeable measures in Pn: En will take the place of the

measure on Pn’s “parameters”. The theorem is stated thus: En has n C 1 points
e0; e1; : : : ; en, where em is the measure putting mass 1=

�n
m

�
at each of the coordinates

j 2 M.m; n/ and mass 0 at the other coordinates. (Uniqueness of each point in En is
also covered, but not of interest here.) How is this theorem proved?

en represents the measure of drawing n balls without replacement from an urn
with n balls, m of which are marked 1, and n � m marked 0, so each en is
exchangeable. If en can be written as a proper mixture of other exchangeable points,
it has the form en D pg1 C .1 � p/g0, where 0 < p < 1: also, g1; g0 must
assign 0 probability to the outcomes which en assigns 0 probability. But because
of exchangeability of the coordinates j 2 M.m; n/ g1 and g0 must be equal. And
because the probability for any j 2 M.m; n/ must sum to 1—and here is the big
assumption used in the proof—the mass of each coordinate is 1=

�n
m

�
.

Clearly, the intuition that gave rise to these particular masses asserted in the
proof came from the fact that the number of elements in M.m; n/ is

�n
m

�
. However,

other masses work too, as long as they sum to one and assign a probability of 0 to
coordinates not in M.m; n/. For example, for j 2 M.m; n/ assign 1=2m for the first
m coordinates and 1=.2.

�n
m

� � m// to the remaining
�n

m

� � m coordinates.
The reason that the 1=

�n
m

�
mass was chosen is understandable, but there was

no explicit reason for it (other than having the probabilities sum to 1) and the
desire for symmetry and the equi-probable assignment. So again, the statistical
syllogism/equi-probability is tacitly assumed.

Now Stove’s attempt, in my notation and somewhat shortened. The statistical
syllogism is deduced from the symmetry of logical constants in this example. Given
H D “Just two of Abe, Bob, and Charles are black”, the probability of B D “Abe
is black”, relying on the statistical syllogism, is 2/3. Let T be any tautology, a
necessary truth. Then Pr.HBjT/ D Pr.HjT/ Pr.BjTH/. Rearranging, and because
logically TH is equivalent to H, we have Pr.BjH/ D Pr.HBjT/= Pr.HjT/.

H is logically equivalent to

B1B2Bc
3 _ B1Bc

2B3 _ Bc
1B2B3;

where B1 D “Abe is black”, Bc
3 D “Charles is not black”, and so forth. And that

means

Pr.B1jH/ D Pr..B1B2Bc
3 _ B1Bc

2B3 _ Bc
1B2B3/B1jT/

Pr.B1B2Bc
3 _ B1Bc

2B3 _ Bc
1B2B3jT/

:



54 4 What Probability Is

Distributing B1 in the numerator gives

Pr.B1jH/ D Pr.B1B2Bc
3jT/ C Pr.B1Bc

2B3jT/

Pr.B1B2Bc
3jT/ C Pr.B1Bc

2B3jT/ C Pr.Bc
1B2B3jT/

:

because Bc
1B2B3B1i is impossible. Here is Stove’s big move. He states

Pr.B1B2Bc
3jT/ D Pr.B1Bc

2B3jT/ D Pr.Bc
1B2B3jT/I (4.6)

but also

0 < Pr.B1B2Bc
3jT/ < 1: (4.7)

Thus because of the symmetry of individual constants, the statistical syllogism
is deduced. The 2/3 probability follows from the labels, here the names, being
“exchangeable” with respect to T.

4.5 Assigning Probability: Seeming Paradoxes
and Doomsday Arguments

Assigning, or rather deducing, probabilities isn’t always easy; indeed it could
be formidably difficult, or even impossible. It’s sometimes unclear whether, in a
problem, the focus is on the P or the Q in Pr.PjQ/. Because of that, disputes about
the nature of probability arise. This section shows how tricky assignment can be.

The Monty Hall problem is infamous. Here are the premises: A contestant on a
game show is offered to choose one of three doors, A, B, or C. Behind one and only
one is a prize, and behind the others there is nothing. The contestant chooses, say, B.
Monty then opens, say, C, behind which is nothing. The contestant is then offered to
stay with his original choice or to switch to A. What decision maximizes the chance
he wins something?

This problem became infamous when Marilyn vos Savant wrote a column in
which she revealed the contestant ought to switch, which gives a 2/3 chance of
winning the prize. Many—all too many—irate readers wrote in, claiming various
superior credentials, including being professors of mathematics. These folks said
vas Savant was wrong and that the probability of winning switching or staying was
“obviously” 1/2. These professors were, it might surprise you to learn, right. But
then so was vos Savant. Because all probability is conditional, people were giving
the right answer to the wrong question: they did not see that their premises were
different than vos Savant’s.

Given only the premises, Q D “Before us are two doors, A and B, only one of
which conceals a prize”, then the probability P D “A has the prize” is 1/2; and for
door B, too. Switch or stay; it’s the same. But those aren’t the premises vos Savant
used. She began with the original premises but added to them knowledge that if the
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contestant initially chose the right door, Monty could open either remaining (thus
the contestant should stay); but if the contestant had chosen incorrectly, then Monty
could only open the one remaining empty door (thus the contestant should switch).
Since picking the right door on the initial premises has a 1/3 probability, vos Savant
was right: switching makes more sense. This incident, which attracted nation-wide
attention, proves that it’s often tough to remember what the premises are and when.

There are many other probability “paradoxes” and problems. The Sleepy Beauty,
three envelopes, one child born on a Tuesday, and many, many more, all of which
share the same nature as the Monty Hall. Which is to say, they all have hidden, or
not readily visible, premises, or they have deductions and implications which are
missed, or information that is hideously complex to grasp. But all of them prove
that probability is conditional; indeed, it is their conditionality which makes them
interesting and (for some of us) fun.

Another class of probability problems also exist, such as Buffon’s needle and the
so-called marginalization paradox (see Jaynes, Chap. 10 for a gruesome vivisection
of this concept), all of which involve making finite choices from infinite sets.
These problems also show that probability is conditional. But because messing with
infinity is like walking through a raging forest fire and hoping for the best, many
folks get burned. Or perhaps it is better to say infinity is like a foreign country;
rather, many foreign countries, since there are many kinds of infinities. Mistakes are
made when the traveler thinks he has the whole place figured out after only a brief
visit. Whenever it is claimed that some “paradox” involving infinity has invalidated
this or that philosophy of probability, it is safest to put the claim down to enthusiasm
and to continue believing in probability. I say more about infinity when discussing
measurement and models. But first a simple example I learned from an unpublished
work on probability by Purdue’s Paul Draper,2 also see [63]. There is nothing unique
about the example, which is familiar especially in criticisms of Bayesian theory on
assigning “prior” probabilities, though Draper phrases it nicely.

Imagine a factory that spits out tiles anywhere from 1 to 3 inches in width. The
so-called principle of indifference would lead to a uniform probability assignment to
the widths between 1 and 3 in. Since the tiles are square, the surface area is anywhere
from 1 to 9 in2. Considering area under the principle of indifference, says Draper,
leads to the assignment of an uniform probability to the areas from 1 to 9 in2. But
then there is a contradiction. Given the indifference criterion and the evidence we’re
provided, there is probability 1/2 for the proposition “The surface area of this tile
is between 1 in2 to 4.5 in2”, which corresponds to widths 1 in and 2.12132 in. But
there is also probability 1/2 for the proposition “The width of this tile is between 1
in and 2 in.” What has gone wrong? Many blame probability. Instead, our ideas of
measurement have gone awry.

Any real tile can only be manufactured in discrete increments. Call those
increments ı. These do not have to be equal, and one length may even depend on
another; the only restriction is that ı > 0. For ease, I’ll assume this is fixed. That
means the widths can be 1 in, 1 C ı in, 1 C 2ı in, and so on up to 3 in (with the

2Draper, D.: Unpublished manuscript (2014).
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additional assumption that for some n, 1 C nı D 3, but again, this is only for ease).
Since widths are fixed, so are areas, which can now only be 1 in2, .1 C ı/2 in2,
.1 C 2ı/2 in2, and so on up to 32 in2. No surface area between 1 in2 and .1 C ı/2

in2 is possible. Using the statistical syllogism, the probability “The width of this
tile is 1 C mı in, where 0 � m � n” is 1=.n C 1/. Obviously, since the surface
areas are one-to-one with the widths, the uniform probability applies to them as
well. No contradiction. And no restriction, either, because we can let ı be as small
as we like, smaller even than a quark!, as long as it is non-zero. It is only at the limit
where these odd contractions pop up, but that is because, as already said, infinity is
a strange place, and because the limit here is not only ı going to 0, but the n going
to infinity in some sort of tandem. How you get to infinity matters.

Another example from Draper. There are three balls in a bag, each of which must
be either white or black. Given this evidence, what is the probability “All three balls
are black”? Drapers says 1/8 because “Consider the following eight statements: all
three balls are black, the first two are black and the third white, the first two are
white and the third black, etc. One can easily imagine having no more reason to
believe any one of those eight statements than any other.” But then, says Draper,
“there are also four possible ratios of black balls to total balls in the urn (i.e., 1,
2/3, 1/3, and 0): : :[and] the principle of indifference implies that the probability of
the urn containing three black balls is 1/4.” Contradiction! Yet Draper forgets some
of his evidence. One of the ratios is indeed three out of three, and another is two
out of three. But there are three ways to get 2/3: B1B2W3, B1W2B3, W1B2B3.
Likewise, there are three ways to get 1/3, and just one way to get 0/3, That makes
eight total ratios, only one of which contains all black balls; thus, conditional on the
full evidence (and notice even Draper started by labeling the balls but then forgot),
we’re back to 1/8. Many similar paradoxes resolve in precisely the same way.

Senn [195] has a similar paradox, one common in Bayesian statistics and which
causes consternation, using an argument from continuity. He first defines an “event”
which can take one of two values, e.g. success and failure. He then defines the
“probability of success” of this event as � , and says it in turn is equally likely to take
any value in .0; 1/ (sans extremes). Bayesians would call this putting a “flat prior on
� .” He says “Suppose we consider now the probability that two independent trials
will produce two successes. Given the value of � this probability is �2. Averaged
over all possible values of �” this is 1/3 (the integral of �2d�). The difficulty enters
in the next step: “A simple argument of symmetry shows that the probability of
two failures must likewise be 1/3 from which it follows that the probability of one
success and one failure in any order must be 1/3 also and so that the probability of
success followed by failure is 1/6 and of failure followed by success is also 1/6.”

Ignoring the language about “events” and “independence”, this is a seeming
paradox. Why? Because of the odd statement “Suppose that we believe every
possible value of � is equally likely: : :” What can that mean? Nothing. There are
more than a simple infinity of numbers of possible values of � when that parameter
is continuous, and to “believe” each is equally likely (based on what premises?) is
to claim rather shocking, almost omnipotent knowledge. On this view, what is the
probability (still with undefined or vague premises) that � takes any value? Well,
zero. How about after we take some data, consisting of some observed string of
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successes and failures, what then is the probability � takes any value. Bayes’s rule
tells us the answer is the same: zero. This � is a truly strange creation, a continuous
string of numbers: no, they are not numbers at all, � is the continuum itself. And
it came out of the blue, with premises that just asserted it. To put a probability
to every value of the continuum is to claim knowledge of those values, which
is never something we can directly have. The math works out because we have
indirect knowledge in the sense of we know the continuum exists and that it has
certain properties, but we can never have knowledge of more than a (limited) finite
set of those values. Anyway, as is now easy to see after Draper’s examples, the
paradox disappears if � is a as-large-as-you-want finite set of values. I’ll leave this
as homework for the reader to prove. There are, it is suspected, many things to be
learned from investigating the continuum, as infinities always boggle the mind. This
is why it is right to suspect our limited understanding of the infinite and not our
understanding itself when confronted with a paradox.

Next consider the famous Doomsday Argument [17], given in various (anthropic)
forms, which supposedly predicts the total number of humans who will ever live.
It’s also called the Carter catastrophe; the same Carter famous for the anthropic
principle, e.g. [11, 146]. The literature is voluminous. The DA is said to be obviously
wrong by all who encounter it, but it’s also said that everybody’s explanation why
it’s wrong is flawed. Below is a full and correct explanation why the DA fails. The
short version is that sloppy notation and forgetting all probability is conditional
causes the error.

To solve the DA, the only rule we need recall is this: all probability is
conditional—and conditional only on the information provided. The idea is that
you’re born, you notice your birth, and you reason that your place in the order of
all human births is nothing special. From that, can we conclude how many more of
us we expect? This situation is analogous, at first, to balls in a bag. Our evidence
is X D “There are N balls labeled 1 through N in a bag, from which only one will
be removed.” The probability of Y D “The ball will have label j, where j is from
1 to N inclusive” is 1=N, via the statistical syllogism. We deduce via the language
used that N is finite (no bag can hold an infinite amount of any real thing; this is no
restriction, let N increase to a googolplex to the power of a googolplex to the power
of a googolplex, 84 times, which is a mighty big number, but finite).

Reach into the bag and pull out the ball B. It will have a label; call it B D j.
Our evidence is now augmented: we have in toto X0 D “X and the ball has label j”.
What can we say about N? Well, given X0, the probability N is less than j is 0, and
the probability N is at least j is 1, both of which are obvious. But what about these
interesting and relevant probabilities (both given X0, naturally): “N D j”, “N > j”?

We do not know. Why? Because there is no information in X or X0 about the
possible values of N, except that Nmust be at least equal to j (given X and not X0),
information which is deduced. Now mentally you might add information that is not
provided, by, say, thinking to yourself, “This j is awfully low and that’s such a big
bag; therefore, surely N is large.” Or “I know this Briggs, who is a trickster. He
made the bag big on purpose. N is small.” Or anything, endlessly. None of these
additions are part of the problem (the stated evidence), however, and all such moves
are “illegal” in probability.
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Now suppose we legally augment our X and, for fun, say that N is some number
in the set S. We don’t need to know much about S, except that it exists, is finite, and
contains only natural numbers. Thus, X now equals “There are N balls labeled 1
through N in a bag, from which only one will be removed; and N is a number in the
set S.” Given X, the probability “N D si (one of the set S)” is 1=jSj, where jSj stands
for the number of elements in S (its cardinality); thus, the probability “N D si” is
1=jSj, where I’ll assume the si are increasing in i. What about the probability that
the ball withdrawn has label j? Here it gets tricky, so let’s be careful.

The key lies in realizing the bounds of j are between 1 and the largest value of S.
First suppose N D s1. We want: Pr.B D jjN D s1; X/. This is 1=s1 for j D 1 to s1,
and 0 for all those j up to sI (the largest value of S). Now Pr.B D jjN D s2; X/ D
1=s2 for j D 1 to s2, and 0 for all values up to sI . From this, we notice we have to be
careful about specifying j precisely. From total probability we know

Pr.B D jjX/ D Pr.B D jjN D s1; X/ � Pr.N D s1jX/ C � � �
C Pr.B D jjN D sI; X/ � Pr.N D sI jX/;

and where knowledge of j is relevant to the probability. If j D 1, then

Pr.B D 1jX/ D Œ.1=s1/ C � � � C .1=sI/� � .1=jSj/;

but if j is a number larger than, say, s1 but smaller than s2, then (call this j0) Pr.B D
j0jX/ D Œ0 C .1=s2/ C � � � C .1=sI/� � .1=jSj/ and so forth for other j (don’t forget S
is known).

The ball is withdrawn and B D j. Can we now say anything more about N? As
before, there is 0 probability N is less than j, and so if j is greater than some si, there
is 0 probability N equals those si. We can do more, using the good reverend’s rule,
but it’s still tricky:

Pr.N D sijB D j; X/ D Pr.B D jjN D si; X/ Pr.N D sijX/

Pr.B D jjX/
:

First suppose j D 1, then

Pr.N D sijB D 1; X/ D Œ.1=si/ � .1=jSj/�=.Œ.1=s1/ C � � � C .1=sI/� � .1=jSj//
D .1=si/=Œ1=s1 C 1=s2 C � � � C 1=sI�:

If you stare at that fraction for a moment, and recalling that the si are given
in increasing number, you realize that values of smaller N are more probable
than larger values. As a for-instance, suppose S D f20; 21; � � � ; 40g, which has
cardinality 21. Given X, the probability “B D 1” is .1=20 C 1=21 C � � � C 1=40/ �
.1=21/ D 0:02761295. Thus Pr.N D 20jB D 1; X/ D 0:04416451, Pr.N D
21jB D 1; X/ D 0:04206144, etc. out to Pr.N D 40jB D 1; X/ D 0:01472150.
Notice that these probabilities do not change for j between 1 and 20.
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In this same example, next let j D 21, then

Pr.N D sijB D 21; X/ D Pr.B D 21jN D si; X/ Pr.N D sijX/

Pr.B D 21jX/
:

For “N D 20”, the first term on the right equals 0, and so Pr.N D sijB D 21; X/ D
0, as desired. For “N D 21”, we have

Pr.N D 21jB D 21; X/ D Pr.B D 21jN D 21; X/ Pr.N D 21jX/

Pr.B D 21jX/

D .1=21/ � .1=21/

.Œ0 C 1=21 C 1=22 C � � � C 1=40� � .1=21//

D .1=21/

Œ0 C 1=21 C 1=22 C � � � C 1=40�

D 0:06994537;

and for Pr.N D 22jB D 21; X/ D 0:06676604, out to Pr.N D 40jB D 21; X/ D
0:03672132.

Collecting all these tidbits leads to the conclusion that smaller (but not impos-
sible) values of N are always more likely than larger, regardless of the value of j.
Why? That’s easy. Before we see B, the possible values of N are s1, s2, and so on
up to SI , each equally likely. After we see B, some values of N (from S) might now
be impossible, but since j will always be less than any remaining possible larger
members of S, smaller values of N are closer to j than larger, thus smaller values are
more likely. Simple as that.

What does this have to do with Doomsday? Everything. The crucial step was
in conjuring the set S. Where did that come from? I made it up. S was known
throughout second part of the calculations and unknown through the first part. When
S was unknown, N was unknown, and there was nothing we could say about N
except that it had to be as large as j. I mean nothing in its literal, logical sense. In
that case, given only that you witness your birth order, your B D j that is, we are
blind about the future of humanity.

When S was known, we had a rough idea of what N was, which we tightened
slightly by learning where N might not be (by removing the ball; by witnessing
your birth number). But for an S with large cardinality, we aren’t learning much by
viewing B. Equal probability on S is what we started with, and something very like
equal probability on S is what we ended with. But this is cheating because I made
the S up. We wanted N, of which we are ignorant, and then we pretend we know
an S that tells us something but not everything about N! All the other solutions to
the Doomsday argument I have seen also make up S, but then they add an extra
layer of cheating. We posited a discrete finite S, from which deduced that N might
equal any of its members with equal probability (before seeing B). But those who
conjure up more creative S often fix the set so that smaller values of S are more
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likely (hence smaller values of N are more likely, even before we see B). Some
form of exponential “distribution” for S is popular, though some thinkers create
two-member (and not 20-member) sets like f1010; 10010g, i.e. a low value for all
humans and a large value. Some even use non-probability arguments on N (called
“improper priors”), which is triply cheating.

Once S is fixed, however it is fixed, the calculations flow in the same manner as
above, but it’s easy to see that smaller values of N are always going to be more likely
than larger, and that’s because the j will always be smaller (or no greater) than the
maximum value of S. And given that some let S toodle out to infinity, it’s no shock
at all to discover that N is not expected to be big. Also understand that N is not
“drawn” from S: N is caused to be some number, depending on myriads of reasons.
Probability represents uncertainty, not cause (as we shall see).

Thus the Doomsday Argument is really a non-problem which includes its own
answer in its formulation, which is cheating. Of course, it makes perfect sense to ask
the question of how many of us there will be left, but trying to discover the answer
using only your birth order is doomed to failure (beyond proving that N must be
at least as large as j). Since all probability is conditional on only the information
supplied, many different answers for our future numbers are possible. It’s easy
to think of probative information: demographics, politics, epidemics, apocalypses
(giant rocks from the sky, Christ’s return, etc.), and on and on. (Of course, some of
these sets of information may lead to the guesses people have made about S.) I do
not have a good answer how to use these to put uncertainty on (the real) N.

There is more we can say about the errors made in the DA. One difficulty lies in
misunderstanding Bayes’s theorem, which some mistakenly write like this:

Pr.N D sijB D j/ D Pr.B D jjN D si/ Pr.N D si/

Pr.B D j/
;

where the evidence about N in X is left off (finding the denominator is no problem
because Pr.B D j/ D P

i Pr.B D jjN D si/ Pr.N D si//. Pr.N D si/ is thus “naked”
and violates the rule that all probability is conditional, yet users of Bayes’s theorem
are trained to posit “priors” like this, and so posit one they do. It seems, say critics
of the theory, that these priors are pulled from thin air. The critics are right. It’s
completely arbitrary to conjure a Pr.N D si/, and so the resulting Pr.N D sijB D j/
cannot be trusted.

Of course, I made up my own “prior”, but referenced as being a deduction from
X. The probability Pr.N D sijB D j; X/ is thus true. The attention then focuses on
X, where it belongs. Why my X? No reason at all. If we’re after the best information
about N, that is what should go into X. But it has to be information that is not N
itself, like my S was. My S was merely a presumption that I already knew a lot
about N; it was N by proxy, but a fuzzy proxy. Cheating, like I said. It’s not Bayes’s
theorem that’s the problem. It works just fine when we supplied information in X
about S. But it also worked dandy when X was just “There are N balls labeled 1
through N in a bag, from which only one will be removed.” (The reader should
verify this.)
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The DA also illustrates the traps of poor notation. There is, as I have been
stressing, no such thing as unconditional probability, and in displaying probability
when the conditions are dropped, which often makes manipulating the equations
easier, you run the risk of introducing error, which is what happens in the
standard DA. A standard application of the DA starts by asking for this: Pr.N < 20j/
(the 20 comes from the magic number in statistics). Note the missing conditions.
Accepting the bare notation, then Pr.N < 20j/ D Pr.N=20 < j/ D Pr.j > N=20/ D
1 � Pr.j � N=20/ D 1 � 0:05 D 0:95. It is said Pr.j � N=20/ D 0:05 because j
is “uniform” or is “uniformly distributed”, as if probability has life. The fatal error
has been made, because we notice that this result appears to hold regardless what
value N or j has. But there just is no such thing as Pr.N < 20j/. There can, however,
easily be a Pr.N < 20jjX/.

Here’s what we actually want:

Pr.N < 20jjB D j; X/ D Pr.B D jjN < 20j; X/ Pr.N < 20 � jjX/

Pr.B D jjX/
: (4.8)

Now X can be anything relevant; it as least says there are balls 1 through N, but
it must also say something about N (directly or implied). Suppose X contains
information that N is in the set f1; 2;. . . ; 19g. Then Pr.N < 20jjX/ D 1 for any
j. Never forget j runs from 1 to N, which is where the DA goes wrong: knowledge of
N is relevant to knowledge of j, and vice versa. When that is forgotten, anything can
happen. It appears, because of loose notation, many forget that j and N are related.

The result of (4.8) is the right-hand-side is 1/1, and thus Pr.N < 20jjB D j; X/ D
1, as expected. So here is a proof showing that at least one “prior” on N ruins that
95 % finding. Here’s another one. Suppose X says N D 20. Then Pr.N < 20jjX/ D
0 for j D 1, and Pr.N < 20jjX/ D 1 for j > 1. This amounts to the same thing,
that Pr.N < 20jjB D j; X/ D 0 when j D 1, else it equals 1 for all other j. Next
suppose X says N is in set f20; 21; � � � ; 40g. Starts to get interesting. I leave this one
as homework.

4.6 Weight of Probability

Many authors following Keynes write about the “weight” of a probability, e.g. [197].
The weight speaks of the judgment of a probability in relation to its evidence,
how important that evidence is with respect to the other acknowledged evidence.
According to Keynes [132, p. 78]:

As the relevant evidence at our disposal increases, the magnitude of the probability of the
argument may either decrease or increase, according as the new knowledge strengthens the
unfavorable or the favourable evidence; but something seems to have increased in either
case,—we have a more substantial basis upon which to rest our conclusion. I express this
by saying that an accession of new evidence increases the weight of an argument. New
evidence will sometimes decrease the probability of an argument, but it will always increase
its ‘weight.’
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If we have two sets of premises Q1 and Q2 which are unrelated to each other in the
sense one is not the other with additions, or that one is deducible from the other,
where both are probative to some proposition X, then Pr.XjQ1/ might not equal
Pr.XjQ2/. Since the two premises Q1 and Q2 are not related, one cannot be said to
give more or less weight to X than the other. Adding weight implies adding relevant
information. For example we might say the probability judgment Pr.XjQ1&Q2/ has
more weight than Pr.XjQ1/ or Pr.XjQ2/ alone. This use of weight is uncontroversial
and sensible. But there is another sense where weight can be misinterpreted.

Jim Franklin gives the following example [79]. He says the probability of “this
coin comes ups heads” given “this coin appears symmetrical and about 500 of the
1000 throws with it have come up heads” equals 1/2. But he also says the probability
“this coin will come up heads” given “this coin appears symmetrical” also equals
1/2. Franklin says, “Though the numerical value of the probability is the same in
each case, there is plainly some important difference between the two.” And this
difference is the idea of “weight.” The former evidence seemingly has greater weight
than the latter, at least, some say, in the sense that any change to the premises of the
latter can change the probability dramatically.

We needn’t accept Franklin’s probability assessments (though they are harmless
enough), because it is not clear in the first case the probability should be a single
number, and it is the case, as argued earlier, that symmetry or fairness arguments
are circular (though symmetry implies two-sidedness here). Anyway, accept the
values for the sake of argument. The probabilities are then correct, and given they
are correct, both should be believed. They should be believed in just the same way
that “Exactly half of all Martians wear hats and George is a Martian” gives the
probability of 1/2 to the proposition “George wears a hat.” The “weight” of belief,
and not of evidence, is and should be equal in all these cases.

Perhaps it is not yet clear, so let’s imagine three people, C, D, and E. C is a
newcomer to the (now dwarf) planet Pluto and has never seen the game of plutonk,
which is explained to him as a device which when activated must take only one of
two states, s1 and s2. Based on this evidence and using the statistical syllogism, C
reasons the probability of s1 equals that of s2. D is an experienced player and has
been standing for several Plutonian days in front of the same machine. He knows
the same rules as C does, plus he has seen the device come up s1 about 500 times out
of the last 1000 activations. He figures the probability of s1 is also about 1/2. If C or
D were to bet on the next activation, they would use that 1/2 probability in figuring
the amount of their wager (the exact amount depends on factors not relevant to the
probability). Both would be figuring correctly.

Enter E, an inveterate and suspicious gambler. Like C, he has never seen this
particular device, but he knows the rules. His worry engine starts: “This device
might be crooked.” Adding that premise to the list changes nothing because it is a
tautology: yes, the device might be crooked, but then again it might not be. Simply
claiming it might be is to say nothing. But now E adds, “I don’t trust it until I’ve seen
it in action.” Adding that premise does change the probability; indeed, depending
on how we interpret it, the probability s1 may be non-numerical or perhaps some
interval. It surely cannot be calculated simply.
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Each player has their own probability of s1, but each player starts with different
evidence. Since probability is conditional on the evidence, the probability is liable to
change with it. As shown earlier in this chapter, there is no unconditional probability,
hence no unconditional probability of s1. The feeling that there should be is what
accounts for the different feelings of “weight” given the three different sets of
premises. We are after that “unconditional” or “true” probability of s1—and which,
in this case, everybody “knows” is 1/2. Weight of belief is in this sense thus a
confusion or a false expectation that a true ontological probability exists for every
unique situation.

There is another interpretation of weight of evidence, however. If we start with
C’s premises, we can make predictions. I’ll not do those here; I will when we
do modeling. Anyway it’s obvious predictions can be made. Before we see the
device in action, the predictions will be imprecise, based on C’s premises. After
we add evidence like D’s, then our probability will change and our predictions
will become sharper. The increase sharpness is a measure of the weight of the
observational evidence. After 1000 observations, it is not likely the next observation,
or indeed other evidence, will change the probability much. New observations are
thus accorded little weight, where weight is now the difference (of some kind) in
probabilities deduced for the two sets of premises. Jaynes provides a wealth of
mathematical details about this idea in his “Ap” distribution. This version of weight
is like importance described above, and is relative or conditional.

This kind of weight accords with tradition and common sense and is why we
say (things like) extraordinary claims require extraordinary evidence. The weight of
new evidence for startling claims has to be very large to overthrow, say, centuries of
tradition.

4.7 Probability Usually Is Not a Number

If the evidence is “Most Martians wear hats and George is a Martian” then the
probability of “George wears a hat” is not a unique number. This is because of the
ambiguity of most. There is no information in the premise to say precisely what
most means. Nevertheless, using its plain English definition—I mean the one we
carry in our heads and not any official dictionary’s version—most implies, to my
ear, at least half but not all. Given the original premise and this tacit one, then the
probability of the proposition is greater than 1/2 but less than 1, an interval. But
other tacit premises are possible. Of course, we haven’t yet proved that probability
can (sometimes) be represented numerically, but accepting that it can, we have at
least one case where probability is an interval. Note carefully that if we do not have
this tacit definition of most in hand, then there is no probability; and even when we
do, the probability is not a unique number.

Switch to “Some Martians wear hats, etc.” and the probability becomes fuzzier.
Some has a colloquial and a logical definition; either can be used, and the result
depends on what you bring to the word. In my ear, it means not none and not all.
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That is not the logical definition, which extends to possibly all. But using my tacit
premise gives a probability greater than 0 and less than 1, i.e. the uncapped unit
interval. I don’t mean this is a subjective interval: I mean that if some takes the
definition not none and not all then the probability of “George wears a hat” is
necessarily the uncapped interval between 0 and 1. If you accept the given and
the tacit premise then you too must agree with this probability, just as you must
agree with the probability of 1 when the premise is “All Martians wear hats, etc.” If
you find yourself rebelling at this, wait until the discussion of so-called subjective
probability. Again, there is no movement unless we supply the tacit definition.

Of course, we always do and must bring these tacit premises: we bring to
every argument our understanding of all its words and grammar. It is the same
understanding you bring to understanding this sentence.

Suppose the premise is “David, who is 50800, is 205 pounds.” Given that, what
is the probability “David is fat”? There is no answer given just this information
because there is ambiguity in fat. The word incorporates sex, height, weight, age,
culture, any number of personal biases. But there is the sense that if we had the
specific definition of fat, especially with regard to sex (David is a man’s name),
height and weight, then the probability “David is fat” is either 0 or 1, depending
on whether the premises matched the definition, and accepting the other dimensions
(age, culture, etc.) have no bearing. Yet we do not have this definition, so there is no
probability. We could supply them, as we did with most or some, but they are not
part of the given evidence. Supplying them changes the problem. And there surely
is less agreement as to what constitutes fat than most.

Ambiguity can appear in both the premises and the proposition of interest. Let
“There is a humongous number of balls in the bag”; given that, the probability
of “There is a boat-load of balls in the bag” is undefined. What is humongous to
boat-load? Are they equivalent? Is one higher than the other? Who knows? There
is no dismissing this example on the grounds of ambiguity because, as we all
know, much communication is in this form. People in their daily lives are often
satisfied with imprecision; indeed, why should they not be? What advantage in
forced quantification outweighs the burdens of investigating it most of the time?
In highly technical areas the answer is obvious, but for most of life it surely is not.

We often hear and speak sentences like, “It’s probably not going to rain,” “I
think the Tigers will win,” “It isn’t too likely she’ll come”, “It might happen”, “It’s
a possibility”, “It’s a probability.” The latter two are distinct in British English
but not so much or at all in American English, so we have to be careful about
misinterpretation, as always. The propositions of interest to which these sentences
speak are easy to extract: “Rain”, “The Tigers win”, and so on. The evidence or
premises used are hidden, and are more or less known by the listener. Locutions
like this acknowledge the non-quantifiable nature of probabilities with respect to
certain evidence; see [147]. And unless we have a crucial decision riding on the
proposition, like a bet, then we’re happy with this level of fuzziness. Although I
don’t here discuss it, “fuzzy logic”, where it is coherent and relevant to questions of
uncertainty, is a rediscovery of probability or probability by another name (this was
also Martin Gardner’s view, [87]).
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Some have conducted experiments to see what numerical probability is most
associated with words like likely, maybe, and so forth, e.g. [47]. The results from
studies like these are quaint and of some interest to, for instance, linguists, but they
provide no philosophical insight. We might learn, of this certain kind of people,
that when they hear “likely” they interpret it to mean numbers in the range, say, 0.8
to 0.9. But unless we knew what a specific person was thinking about a probability
word, it doesn’t help. If we knew the person belonged to the certain group, we might
be able to specify an interval.

Legally, guilt in capital crimes is (or was) meant to be “beyond reasonable
doubt.” The jurors hear the evidence Q, and this is augmented with their own ideas,
prejudices, beliefs, experiences, which includes understanding words, grammar,
science, and so on. Beyond reasonable doubt implies the probability of P D “He
is guilty” must be “large”, but “large”, thank God, is not defined. That it is not
is acknowledgement that not all probability is, and not all probability should be,
quantifiable. Besides the idea of “subjective” probability, which in the next chapter I
prove is not viable, there is no way to quantify reasonable doubt. But that, of course,
would not bar lawyers and judges under the sway of scientism to invent some tedious
criteria, perhaps some adaptation of a p-value. Can you imagine trials? “Your honor,
my opponent’s formula showed a p-value of less than 0.0001, but as you know, the
state in Sanity vs. Scientism decided guilt beyond a reasonable doubt must have
a p-value smaller than 0.00009. Therefore my client is entitled to be acquitted.”
The horror, the horror. Jim Franklin’s treatise on probability before the advent of
reflexive quantification is not to be missed, [80].

4.8 Probability Can Be a Number

Kolmogorov in his 1933s Foundations of the Theory of Probability gave us axioms
which put probability on a firm mathematical footing. To grasp these, we first
need to define an “event”, which we can take as a mathematical proposition, i.e. a
proposition about something which happens, i.e. is observable, or is about the value
of certain numbers. Kolmogorov’s first axiom is that the probability of an event,
defined over something called an “event space”, which we can take loosely as “the
set of all those things which can happen”, is defined as a non-negative real number.
The second axiom is that the probability that something in this event space happens
is 1. A third is that this probability is the sum of the probability of each event even
if the number of possible events is infinite, but only if the events are “mutually
exclusive”, “disjoint”, or, as classical statisticians would say, “independent.”

We’re trying to demonstrate that probability can be a number. But the problem
with Kolmogorov’s axioms is that the first axiom said obliquely but insistently
“probability is a number”. The second was a repetition, and the third gave a rule for
manipulating these numbers. The axioms also require a good dose of mathematical
training to comprehend, a situation which contributed to the idea probabilities
are always numbers. Anyway, that probability is a number is assumed but not
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demonstrated by Kolmogorov. Notice, too, that definition of an event space is an
assumption of conditionality, albeit hidden, which is why it’s usually not recognized.

Kolmogorov’s axioms, when stated in their proper mathematical symbology, also
embed probability firmly within measure theory, a field in which we can speak of
Borel sets, Lebesgue measures, Radon-Nikodym derivatives, and a host of other
rich terms. I don’t for a second wish to take away from the vast accomplishments
of this field, with which any aspiring mathematician must have some familiarity if
not intimate knowledge. But investigating these would take us too far from our path.
I recommend Patrick Billingsley’s delightful book Probability and Measure, [22].3

The level of mathematization of probability at this date is astounding, but we must
remember that however some equation was derived, if it is going to be used it must
be interpreted in non-mathematical terms.

Different but nevertheless appealing axioms were given by Richard Threlkeld
Cox in 1961 [51]. Cox, a physicist, built the foundations of logical probability using
Boolean algebra and just two axioms, which are so concise and intuitive that I repeat
them here. Their appeal was their statement in plain English and concordance with
common sense. Cox’s axioms demonstrate probability can be quantified by all finite
discrete propositions, and that it can be for many infinite continuous propositions.
But there have been complaints, as there always are when dealing with infinity, that
certain difficulties can arise if the axioms are pushed too far. Cox’s rigor, questioned
in e.g. [107, 108] was subsequently stiffened by several authors, e.g. [64, 65], though
it’s doubtless (given our previous experience with statements about infinity and
probability) that these will not be the last word.

Axiom 1: “The probability of an inference on given evidence determines the
probability of its contradictory on the same evidence.” Axiom 2: “The probability
on given evidence that both of two inferences are true is determined by their
separate probabilities, one on the given evidence, the other on this evidence with
the additional assumption that the first inference is true.”

These axioms, conjoined with several other premises about functional equations
and the like, yield two fascinating results. First, as was shown above, is that
probability is always conditional. Conditionality is assumed in the first axiom.
As above, we should never write (say) Pr.A/, which reads “The probability of
proposition A”, but must write Pr.AjB/ which is “The probability of A given
the premise or evidence B.” This should come as no shock to logicians, who
know that the conclusion of any argument must be conditioned on premises or
evidence of some kind. In statistics and other probability texts it is always found
that probabilities are written as if they are unconditional, i.e. in the “Pr.A/” form.
This mistake is deepened when later in these books “conditional” probability is
introduced as if it were a separate thing. Of course, in mathematics it is a burden
to write and manipulate things like Pr.AjB/, especially when folks are anxious to
do calculations, so the shorthand is forgivable. But it must never be forgotten that
mathematical symbols are mere stand-ins, shorthand for ordinary language.

3Not only was Billingsley a brilliant mathematician, but he was also an accomplished stage actor.
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The second interesting result proves probabilities are sometimes numbers.
Certainty has probability 1, falsity probability 0, just as expected. And, given some
evidence B, the probability of some A plus the probability of the contrary of A must
equal 1: that is, it is a certainty (given B) that either A or not-A is true. So we have
numbers, but only sort of, because there is no proof that for any A or B, Pr.AjB/

will or must be a number. And indeed, there can be no proof, as we’ve seen.
Cox’s axioms (and their many variants) are known, or better to say, are only

followed by only a minority of physicists and Bayesian statisticians. They are
certainly not as popular as Kolmogorov’s, even though following Cox’s trail can and
usually does lead to Kolmogorov. Which is to say, to mathematics, i.e. numbers.

Williamson [225] in his work on mathematically objective Bayes adds to these
lists of axioms another, that one (p. 17) “should equivocate between propositions in
the absence of evidence.” This trick allows everywhere the creation of a numerical
probability in the absence of evidence. Thus, if all we knew was that a certain
proposition was contingent, Williamson’s trick would equivocate, which is to say
it would add evidence such that the new conditional probability is 1/2. Adding
information is unwarranted, of course. Given the bulk of his book, it appears
that Williamson’s goal is to produce numbers everywhere so that they can be
manipulated. But it’s not necessary. Consider Walley [217], who develops an entire
mathematical framework for manipulating what he calls “imprecise” probabilities,
i.e. numeric intervals. Also see [147] on imprecision in probability assessment.



Chapter 5
What Probability Is Not

“Le calcul des chances c’est un calcul des illusions.”—Cournot.

Logic is not an ontological property of things. You cannot, for instance, extract a
syllogism from the existence of an object; that syllogism is not somehow buried
deep in the folds of the object waiting to be measured by some sophisticated
apparatus. Logic is the relation between propositions, and these relations are not
physical. A building can be twice as high as another building; the “twice” is the
relation, but what exists physically are only the two buildings. Probability is also the
relation between sets of propositions, so it too cannot be physical. Once propositions
are set, the relation between them is also set and is a deducible consequence, i.e. the
relation is not subjective, a matter of opinion. Mathematical equations are lifeless
creatures; they do not “come alive” until they are interpreted, so that probability
cannot be an equation. It is a matter of our understanding.

So-called subjective probability is therefore a fallacy. The most common inter-
pretation of probability, limiting relative frequency, also confuses ontology with
epistemology and therefore gives rise to many fallacies. Some authors are keen
on not declaring any single definition of probability, and are willing to say that
probability changes on demand, but this argument is, as far as I can tell, aesthetical
and not logical; see [104]. Probability like truth and (Aristotelian, or “meta”) logic
is unchanging regardless of application.

5.1 Probability Is Not Physical

Here is perhaps the simplest demonstration that probability is not a physical
property. Take the game of craps, played with two six-sided dice. On the come-
out, the shooter wins with a 7 or 11. The two-dice total will come to something,
possibly this 7 or 11. Is this total caused by “chance” or probability? What we know
is that the two-dice total is constrained to be a number between 2 and 12 inclusive.
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If the only—I mean this word in its most literal sense—information that we have is
that X D “There will be a game played which will display a number between 2 and
12 inclusive”, then we can quantify our uncertainty in this number, which is that
each number has probability 1/11 of showing (there are 11 numbers in 2–12, the
statistical syllogism provides the rest). If you imagine that this total is made by two
dice, then you are using more information than is provided. With only X, which is
silent on how the total is produced, silent on dice, and silent on many other things,
then the probability is 1/11 for every total.

Craps players have more information than X. They know the total can be from
2 to 12, but they also know the various ways how the total can be constructed, e.g.
1C1; 1C2; 2C1; � � � ; 6C6. There are 36 different ways to get a total using this new
information, and since some of the totals are identical, the probability is different
for different totals. For example, snake eyes, 1 C 1, has 1/36 probability.

It should now be clear that these different probabilities are not a property of
the dice (or the dice and table and shooter, etc.). If probability were a physical
property, then it must be that the total of 2 has 1/11 physical probability and 1/36
physical probability! How does it choose between them? Quantum mechanical wave
collapses? No, the parsimonious solution is that probability is a state of mind; rather,
it states our uncertainty given specific information. Change the information, change
the probability.

There have been many attempts to tie probability to physical chance or propen-
sity; for a discussion of both which doesn’t quite reach a conclusion, see [16];
for a full-throated defense see [126] and [187]. I think all of these fail. Let A
be some apparatus or experimental setup; the things and conditions which work
towards producing some effect P, which is, as ever, some proposition of interest.
For example A could be that milieu in which a coin is flipped, a milieu which
includes the person doing the deed, the characteristics of the coin, the physical
environment, and so forth. P D “A head shows.” A theory of physical chance might
offer Pr.PjA/ � p, which is considered a property of the system (which I mark with
the equivalence relation). Few deny that the argumentative or logical probability
of P, perhaps also given A, would have the same value, but the argumentative
probability is acknowledged properly as epistemological whereas the equivalence is
seen as a physical essence in the same way length or mass might be. Indeed, Lewis’s
so-called Principal Principle (sometimes also called Miller’s Principle) states that
the logical probability should equal the physical chance (in my notation; see the
definition provided by [115]):

Pr.Pj Pr.PjA/ � p/ D p: (5.1)

The conditions (premises) A are not seen as causative per se; they only
contribute to the efficient cause of P (or not-P). What actually causes P? Well,
according to this principle, p: the probability itself. Nobody makes that statement
blatantly, but that is what is implied by physical chance. This p does not act alone,
it is felt, it is a guiding force, it is a mystical energy. This also is never explicitly
stated by it supporters. Physical probability is mysterious, mystical, even. Yet it
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doesn’t operate alone; it requires the catalyst A: A allows p to operate as it will,
sometimes this way, sometimes that, or sometimes, as in some quantum theories,
an infinite number of ways. Just how p rises from it hidden depths and operates,
how it chooses which cause to invoke—which side of P to be on, so to speak—is a
mystery, or, as is again sometimes claimed in quantum theories, there is no cause of
P and p is its name.

The cause of an event cannot be logic, a claim with which any but strict idealists
would agree. And since probability is logic, at least sometimes, as chance theorists
admit, probability-as-logic cannot be a cause. Therefore, unless there be no cause of
an event, if we are to save, as we must, the principle of causation, in at least some
situations chance itself must be the cause, or contribute to the overall cause. Yet
saying chance is a cause is saying Fortuna herself still meddles in human affairs!

As already detailed in Chap. 4, if we knew the initial conditions of a coin flip
and knew the forces operating on the coin, we could predict with certainty whether
(say) P D “Head” is true. This knowledge is not the cause. Neither are the initial
conditions the cause. The equations with which we represent the motion of the
spinning object are not the cause; these beautiful things are mere representations
of our knowledge of part of the cause. No: the coin itself, its handler, and the
environment are the material cause; the formal cause is the flip, the physical forces
themselves are the efficient cause of the outcome, and final cause is the object of the
flip, the Head itself. (I investigate cause more fully in Chap. 7.)

It is obvious enough that because a man does not know the cause of some effect,
that it is a fallacy to say the effect has no cause. It follows that because two men
do not know the cause, that it is also a fallacy to say the effect has no cause, and
so on for all men. Ignorance itself cannot be a cause. Ignorance is the absence
of knowledge, a nothingness, and nothing cannot be a cause. Nothing is no thing.
Nothing has no power whatsoever: it is nothing.

Something caused P to be ontologically true or false. If P were observable, that
is; i.e. empirical. Nothing is causing, or can cause, Martians to wear hats. This
won’t be the last time where we observe a decided empirical bias in the treatment of
probability. Somehow that bias never was taken up in logic, a subject an enterprizing
historian can tackle.

Now if A were a complete description of the coin flip then p would be 0 or 1
and no other number. We would know whether P was true or false. In everyday coin
flips we don’t know what the outcome will be; our premises are limited. But some
complete A does exist—it would not be proper to call the premises of A “hidden
variables”; instead, they are just unknown premises—because some thing or things
cause the outcome. And because this is true, it implies that physical chance is real
enough, but it only has extreme probabilities (0 or 1). In everyday coin flips we
have, or should have, the idea that the conditions change from flip to flip, and that
whatever is causing P or not-P is dependent on these changes. Our knowledge of
these changes might be minimal or nonexistent, but that means nothing to whatever
causes are operating on the coin.

The study of chaos is instructive, which in the simplest form is defined as
sensitivity to initial conditions. Causality is not eschewed in chaos theory; indeed,
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it is often known precisely what the causes are. Equations in chaos theory are fully
determinative: if the initial conditions and values of all constants are known—as
in the logical known and not some colloquial loose more-or-less sense—then the
progress of the function is also known precisely. A chaotic equation is thus just
like a non-chaotic one, when it comes to knowing what determines what. We know
what determines the value ft for any t if ft D ft�1 C 1 and f0 D 1; that which
determines it is ft D ft�1 C 1. This determination does not disappear because it is,
for example, hidden from view and only (say) a picture ft is shown. Again, because
some individual does not know the causes of ft, or what determines it, does not
imply that the causes or determinations do not exist.

Another point needs clarification. You will often hear of a series of data, usually
time series, that a model which represents it is wrong because the model does not
account for “chaos.” We’ll later discuss models in much more detail, but this view
is incorrect. Any model which fails to predict perfectly would be wrong (predicts
non-extreme probabilities) on this view. Like probability, models only encapsulate
what we know, not everything that can be known. Models, we will learn, do not have
to be causal or determinative to provide accurate (in a sense to be defined) forecasts.

Imperfect models are as good as we can get with quantum systems. The
strangeness of quantum mechanics has led to two incorrect beliefs. The first is
that since we cannot predict with perfect accuracy, no cause exists. The second
is that this non-cause which is a cause after all is probability. Here is Stanley Jaki
[120, pp. 183–184] quoting Turner: “Every argument that, since change cannot be
‘determined’ in the sense of ‘ascertained’ it is therefore not ‘determined’ in the
absolutely different sense of ‘caused’, is a fallacy of equivocation.” Jaki says that
this fallacy “has become the very dubious backbone of all claims that epistemology
is to be drastically reformulated in terms of quantum mechanics, including its latest
refinements of Bell’s theorem.”

Contrary to what is sometimes read, Bell did not prove causes of QM events
do not exist. He only showed that, in certain arrangements, locality must be false.
Local efficient causes therefore do not always exist (this assumes we accept all the
other standard QM premises). But, for example in a crude summary of a typical
QM EPR experiment, if with an entangled pair of particles one is measured to be
“spin up” along its “x-axis” while the other instantaneously, and at a great distance
away, becomes “spin down”, some thing or things still caused these measurements.
Locality is violated. What “paradoxes” like this show is that the cause cannot be
localized to the places the measurements are taking place. They do not show, and
cannot show, nothing caused the measurements. Nothing cannot be a cause. Nothing
is the absence of causes. Some physicists however, e.g. [5, 214], are determined to
believe causes aren’t real. I’ll discuss this view more later.

Bell did not even show that we can never know a QM event’s causes. Since
this isn’t a book on quantum physics, I leave aside the question whether such
a proof exists. I tend to think it might, even though the mind of the First
Cause is almost surely closed off to us. Meanwhile, QM theory allows us to
make good predictions, i.e. specify the probabilities of events. We can say these
probabilities “determine” the events in the sense of “ascertain”, but we cannot
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say the probabilities “determines” the outcomes in the sense of “caused.” If, after
working through the math and fixing the values of some constants, like Planck’s—
these are our premises—we predict (say) there is an 82 % chance a particle will be
in a certain region of space when measured, and we subsequently measure it there,
that 82 % itself did not cause the value of the measurement. That 82 % did not cause
the probability to “collapse”. How could a probability make itself “collapse”?

All we know with QM is that in experiments where we know as many premises
as it is possible to know (we think), we can make excellent predictions. But we
can do the same in coin flips or dice throws; indeed, casinos make a living doing
just that. That systems exhibit stability does not mean that probabilities are causes.
Here’s another proof. Repeatedly let go of apples from the top of a tall building. We
can work out the theory that says the apple will fall with a 100 % chance. It wasn’t
the 100 % chance that caused the apples to fall, it was gravity.

One of latest attempts to avoid admitting defeat about knowledge of QM causes
is Everett’s Many Worlds (there are other similar attempts). This can be paraphrased
as when the wave-function of each of every object which “collapses” (when it
“collapses”), it does so across “many worlds”, such that each possible value of
“collapse” is realized in one (or every one) of these worlds. The number of “worlds”
thus required for this theory since the beginning of universe is a number so large that
it rivals infinity, especially considering that wave-function equations are typically
computed on a continuum. Even if this theory were true, and I frankly think it is not,
it doesn’t change a thing. Many worlds does not say, and cannot say, why this wave-
function “collapsed” to this value in this world. Some cause still must have made it
happen here-and-now. Many World’s is an ontological theory, anyway. Murray Gell-
Mann, for instance, offers a purely epistemological view of that theory which better
accords with my view, [90]. This section also does not imply the wave-function
does not exist, in some sense, as argued in [182]; anyway, the probabilities derived
from wave-functions are not the wave-functions themselves, but the probabilities
are conditioned on the wave-functions, just as all probabilities are conditioned on
something. Probabilities derived from wave-functions are just that: derivations and
are not the wave-functions themselves, though some (if I understand them correctly)
do make this claim. See inter alia [84, 85].

5.2 Probability and Essence

A brief note. There is a use of the word “statistics” in physics that roughly means
what mathematicians and statisticians think of when considering probability-plus-
cause. “Statistics” are found in, or rather are the product of, ensembles, like
collections of gas molecules in some closed system, see [32, 168, 215]. This has
advanced to a very sophisticated means of making predictions and in gaining
physical insight into why these ensembles do what they do. But there is a strange,
albeit weak, mysticism here, too. The ensemble itself behaves this way or that, it is
said. This isn’t strictly true. The gas molecules do behave, and groups of them do this
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and such. Some thing or things is still causing each molecule to have the orientation
and acceleration is has, and so forth. Ensembles are just summaries of these causes,
not complete descriptions of them. They cannot be. In this sense, ensembles are
like groups (countries, say) of people to demographers. Demographers can make
excellent predictions about large groups, but they can’t say what the cause of each
and every individual to take some action was.

Probability in all its uses, and physics in all of its, cannot escape metaphysics.
(No subject can!) Experiments in statistics and physics are grouped, i.e. samples are
collected. Why and how? To gain information and because we know, or assume,
the items in the collectives (I do not mean to imply von Mises’s use of this word)
have the same essences, the same natures. This is why we continually return to
discussions of cause.

5.3 Probability Is Not Subjective

Cournot was right “le calcul des chances” is “un calcul des illusions.” Illusions are
what allow the false belief that there is a unique probability number for any problem.
And this would be all right, except that this has been allowed to develop into a
separate theory of probability; i.e. the curious theory of subjective probability. This
states that the right probability value, for any problem, is that one that “floats your
boat” or that gives you warm feelings. It is not surprising that this theory developed
in a century when relativism of every kind was in vogue.

Truth and probability are not subjective, contra [75, 123, 139, 140, 175], all of
whom makes the errors detailed here. The certainty of any proposition is to be
adjudged only by the accepted evidence, just like any math problem must be solved
only by the conditions set by an examiner. If an instructor said, “Given x C y D 7

and y D �3” and asks “Solve for x” and a student says, “I feel, oh so strongly,
that the probability x D 32 is 100%” the student would, at least in the old days, be
marked wrong. But a subjective probabilist would have to say to the student, “You
must be right: your feelings are what count.”

When evidence which is not accepted or commonly or tacitly understood is
injected into lists of premises, the certainty of the conclusion changes—as it
must. This injection is why probability can appear subjective. Yet if probability
were subjective then any conclusion would follow from any set of premises. Take
“There are 10 Schmenges and 4 Minyks in a room and only one of these persons
will come out”. We deduce “The probability a Schmenge comes out” as 5/7. But
if probability were subjective we could say this probability is “0.01 %” or any
other number, including 0 or 100 %, that gives us a “positive” feeling. Anchoring
probability on feelings is a dubious idea: it admits indigestion could play a role in a
proposition’s chances.

Since probability is not subjective, if the probability of a proposition is different
than the one which is deduced (or deducible) from its premises, this always implies
injected or substituted premises (or a simple mistake in calculation, which is the
same thing).
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If our evidence is “A heck of a lot of people like this product and Mary is a
person”, the probability of “Mary likes this product” is not a number because the
notion “A heck of a lot of people” is vague and unquantifiable. Yet some might still
form a notion of the likelihood of Mary’s pleasure based on tacit premises regarding
the meaning of “A heck of a lot: : :” These differing premises are what make it appear
probability is subjective.

To prove that, let’s pick a homelier example. People gamble on sports. One
person says the Tigers will win, another says they will lose. That a person gambles
does not imply the person has fixed a probability for an event (as we’ll see below).
But let’s suppose each of our two persons do form coherent probabilities for
tonight’s game. Person A says the probability of victory is 80 % and B says 30 %.
This makes probability appear subjective. We ask each how they came to their
judgment. A recounts past games, and his comprehensive (he claims) knowledge of
tonight’s pitchers. B admits the past games, but lays more emphasis on the batting.
A discussion like this can range far and wide and last forever. Each party can admit
the other’s points, but each might stick to, or adjust part way, his assessment. Again,
probability seems subjective. But that is only because the premises are so many in
number that it is difficult or impossible (and probably impossible) to show how the
probabilities that are held are deduced from these premises.

And we can’t quite tease out whether the stated probabilities are actual deduced
probabilities or decisions. They may well be decisions and not probabilities because
not all premises imply single-number probabilities, or even numerical probabilities.
In those cases, when a probability is stated, it is because a decision has been made
or because additional premises have been added or others subtracted.

The key is that if two people agree exactly, precisely, and completely on a set
of premises, and on how those premise are probative to the proposition of interest,
they must, or rather should, agree on the probability. See also [10], who proves
the similar specialized proposition “If two people have the same priors, and their
posteriors for an event A are common knowledge, then these posteriors are equal.”
The result is much more general than considering priors and posteriors. Probability
is only subjective in the weak sense that the choice of premises is not fixed. People
are free, in many cases, and especially day to day, in choosing premises. But this
freedom is, and should be, greatly reduced in science. The goal of science is to find
just those premises which make a proposition as near to certain as possible, so there
is no subjectivity.

Another simple problem, as above. Solve for x—give a single, unique number—
in the following equation: x C y D 3. Of course, it cannot be done: under no rules
of mathematics can a unique x be discovered; there are one too many unknowns.
Nevertheless, someone holding to the subjective interpretation of probability could
tell us, say, “I feel x D 7.” Or he might say, “The following is my distribution for
the possible values of x.” He’ll draw a picture, a curve of probability showing higher
and lower chances for each possible x, maybe peaking somewhere near 3 and tailing
off for very large and small numbers. He might say his curve is equivalent to one
from the standard toolkit, such as the normal. Absurd?
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It shouldn’t sound absurd. The situation is perfectly delineated. The open premise
is that x D 3 � y, with a tacit premise that y must be something. The logical
probability answer is that there is no probability: not enough information. (We don’t
even know if y should be a real number!) But why not, a subjectivist might say, take a
“maximal ignorance” position, which implies, he assumes, that y can be any number,
with none being preferred over any other. This leads to something like a “uniform
distribution” over the real line; that being so, x is easily solved for, once for each
value of y. Even if we allow the subjectivist free rein, this decision of uniformity is
unfortunate because it leads to well known logical absurdities. There cannot be an
equal probability for infinite alternatives because the sum of probabilities, no matter
how small each of the infinite possibilities is, is always (in the limit) infinity; and
indeed this particular uniform “distribution” is called “improper.” Giving the non-
probability a label restores a level of comfort lost upon realizing the non-probability
isn’t a probability, but it is a false comfort. Aiding the subjectivist is that the math
using improper probabilities sometimes works out, and if the math works out, what’s
to complain about?

To say we are “maximally ignorant” of y, or to say anything else about y (or x), is
to add information or invent evidence which is not provided. Adding information
that is not present or is not plausibly tacit is to change the problem. If we are
allowed to arbitrarily change any problem so that it is more to our liking we shall,
naturally, be able to solve these problems more easily. But we are not solving the
stated problems. We are answering questions nobody asked.

Subjective probabilists make several errors, sometimes singly and sometimes
in concert. These are: to add to or change the premises or evidence, to confuse
probabilities with decisions or acts, to assume the propositions which receive the
probability must be physical “events,” and to assume all probabilities must be
numerical.

The first and most blatant is, as was just said, to add to or change the given
premises. Gamblers, even intelligent ones who well know the rules of the games
they are playing, are notorious for this, saying certain numbers are “due” or that
others are “over played.” Even if they don’t act, they change the accepted premises to
accommodate their superstitions about the probabilities. Bayesian statisticians often
invent “priors” (which we’ll discuss later) to accompany ad hoc probability models,
these being necessary to solve the equations. But these “objective” “maximum
entropy”, “ignorance”, or “reference” priors are not (or almost always are not)
suggested by the given premises.

Now these inventions are more or less harmful, and even at times useful if the
premises guessed or invented turn out to match reality, in the sense that the premises
which led to assigning probabilities where none was previously possible are agreed
on and provide useful decisions. But it is always the case that adding premises
changes the problem. Adding any information not tacitly plausible—such as we did
when assuming more meant at least half and not all, or even when we assumed that
all meant each and every one without exception—is to answer a different question.
It is not to play the same game. I emphasize this because experience has shown that
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this point is difficult to accept. People see little trouble adding whatever information
they desire to stated, fixed problems merely so that they can arrive at a solution.
However practical this is, it is not answering the stated, fixed problem, but answering
a new, self-created one. Subjective probability in this sense is like the student on a
high school algebra example saying (in the last example), “I think y D 3 therefore
x must be 0” and that student expecting to be rewarded for his perspicacity. The
premise “x C y D 3” is not equivalent to “x C y D 3 and y D 3” or “x C y D 3 and
y 2 Œ�4; 4�” or anything else.

Typical justifications for subjective probability, thanks mainly to Bruno De
Finetti and Frank Ramsey, involve Dutch books. In the simplest example, there is
an “event” of interest. This event is a proposition, usually of the form E D “X will
happen at such and such a time and place.” We want the probability of E. There are
no stated premises, so the problem is not solvable—unless we add premises; in this
case, unstateable subjective feelings. Now if our man says that, given his feelings,
the probability of E is 0.7, but that given these same feelings the probability of
not-E (X will not happen) is 0.5, then our man’s emotions have led him astray;
his probabilities are said to be incoherent because they do not sum to 1. Whatever
method of elicitation we use must lead to coherence, or Dutch book can be “made”
against him. The man faces sure loss.

His incoherence made plain to him, our man is now invited to think in terms of
money or of its mental equivalent, “utility”, a fictional currency made of, it appears,
discretized emotions. A price for a ticket is set such that our man will pay $1 (or
some other amount; however, this figure makes the math easy) if E obtains, and
nothing if it doesn’t. His opponent, Nature, also given to gambling, gets to choose
either side of the bet; that is, Nature can choose to either buy or to sell the ticket,
and the man must accept Nature’s decision; his only freedom is in setting the price.
Obviously, the price must be $0 if the man thinks E impossible, and $1 if he thinks
E certain. If the man thinks E impossible and offers a price of (say) $0.4, Nature
will decide to sell the ticket. Since, to the man, E will never happen, he will be out
$0.4; thus if he truly thinks E impossible, the only reasonable price is $0. The idea
is that considering his feelings and knowing Nature gets to decide which side of the
bet the man is on, he will set the price which best reflects his idea of E’s likelihood.
The price (since the payoff is $1, or otherwise suitably normalized) becomes the
“probability.”

This works as a gamble because if the man’s stated probability is not coherent, in
the sense noted above, Nature can make a sure profit against the man. For example,
if the man’s stated probability for E is 0.7 and for not-E is 0.5, Nature could sell the
$0.7 ticket for E to happen and sell the $0.5 ticket for E not to happen. If E occurs,
Nature looses $0.3 on the ticket for E to happen, but it gains $0.5 on the ticket for
E not to happen, for a net profit of $0.2. If E does not occur, Nature gains the full
$0.7 on the ticket for E to happen, but looses $0.5 on the ticket for E not to happen,
again for a profit of $0.2. If the man is incoherent, Nature must necessarily win.
Incoherence is a Dutch book, or Nature’s arbitrage.
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Now none of this tells us whether the man has set his probability for E soundly,
even if coherently. Soundness is another matter entirely. But you can now see that
setting a probability based on emotional evidence does not give a probability but
instead is a decision, an act, a bet. Bets are not numerical probabilities, no more than
words like might and likely are numerical probabilities. They are good indicators
of propensities, markers of behaviors and proclivities, but they are not themselves
probabilities.

These betting justifications for probability are backward: Dutch book theory
works because of probability; they do not define probability. Instead of defining
probability, what they show is that probability is coherent, and that which is
not probability might not be. Coherence surely does not guarantee a profit! The
empirical bias in probability theory also shows here. There is no betting on the
state of the Metalunan interocitor mentioned last chapter, and no Nature to take
bets, simply because there are no Metalunans. But there is still probabilities of
interocitors taking states.

To amplify that last objection, let Q D “There are exactly 100 Martians and only
one wears a hat and George is a Martian.” The probability of P D “George wears a
hat” given Q is 0.01. But a subjectivist can say, “Based on my utility, it’s 83.7%!”,
or whatever. How can you prove him wrong? There are no experiments that can be
run because there are no Martians. There are thus no bets that can be made, because
there is no “event” to occur or not. Unless probability is treated as logic, you have
nothing to say to the subjectivist and must accept his probability as being right,
which is absurd.

5.4 Probability Is Not Limiting Relative Frequency

Probability can be relative frequency, but it makes little sense to speak of limiting
relative frequency. If Q D “5 of 10 Martians wear hats and George is a Martian”
the probability of P D “George wears a hat” given Q is 1/2, because of the relative
frequency of hat-wearing Martians. But Q does not, of course, imply real instances
of real Martians, so “relative frequencies” do not have to be ontologically real. The
probability of P would also be 1/2 if Q D “5 of 10 Frenchmen in this room wear
hats and George is a Frenchman now in this room.” Here, Q expresses a relative
frequencies of real things. Either way, probability works.

There are other popular ideas of relative frequencies. Von Mises introduced the
mathematical idea of a collective, which is an infinite sequence of “attributes” in
some set C—and we should stop there. There are no and can be no infinite sequences
of any physical thing nor of time. If there were any instances of an infinite number
of anything, that thing would be all you would ever see (if indeed you could see
anything!) since our finite universe would be filled with that thing. Now whatever
mathematical sense this definition makes, and it does make some, it is therefore
of no use in measuring the uncertainty of any physical thing. And since most
people take an interest in probability and statistics because they want to quantify



5.4 Probability Is Not Limiting Relative Frequency 79

uncertainty in some real thing, infinite relative frequencies are therefore of no use.
Except, possibly, as approximations. We meet these later.

Nor can we use the mathematical apparatus of such a theory on the idea that, even
if infinite relative frequencies cannot exist “in real life”, we can “imagine” they can.
No: we cannot imagine any such thing; we can only say we can imagine it, which is
very different. I can imagine a unicorn—mentally picture it, I mean. I can imagine
flying through the air or scores of other things. But I can’t imagine what an infinite
set looks like, or an infinite collective, or an infinite length of time, or Omniscience
or Omnipotence. I can speak, think, or imagine analogically about the infinite, but I
can never know it.

Limiting relative frequencies are sometimes said to be probability, to define them.
We take some measurable attribute in an infinite collective, count the number of
times the attribute is found—we count in a proper, sophisticated way, of course,
doing all this at the limit—and then divide by the total. That limiting relative
frequency becomes the probability. Thus we have to wait for the long time to
know any probability. As Keynes quipped, in the long run we shall all be dead.
Limiting relative frequency as a justification of or for a definition of probability
suffers from the same flaw as betting as a definition does: they are backward. Study
this objection closely. No probability can be known unless the infinite collective be
surveyed. Since this never has yet happened, and never will in any of our lifetimes,
no probability can ever be known. Probabilities can be made up, of course, in the
subjective sense, and this is exactly what frequentists must do whenever they want
to make a calculation: make up numbers.

Alan Hájek has done yeoman service in regard to showing the problems with
limiting relative frequency with two papers listing 30 arguments against the theory,
[105, 106]. These do not exhaust all possible criticisms, nor are all (as he admits)
strong, but they are all good and, taken together, are conclusively devastatingly.
Let’s examine some of these.

Hájek defines hypothetical relative frequentism as: “The probability of an
attribute A in a reference class B is p [if and only if] the limit of the relative
frequency of A’s among the B’s would be p if there were an infinite sequence of B’s.”
Below is my numbering, not Hájek’s. I skip some of his more technical criticisms,
such as those referring to Carnap’s “c-dagger” or to facts about uncountable sets or
about different limits for a named sequence, as I think these mix up causality and
evidence of the same. I also do not hold with his alternative to frequentism, but that
is another matter.

Before we begin, the natural question is why does it seem that frequentism
sometimes works? The answer: why does any approximation work? When frequen-
tist methods heed close to the real definition of probability, they behave well, but
the farther away they venture, the worse they get. Most “frequentists” implicitly
recognize the difficulties of the theory, and tacitly and unthinkingly reject the idea
of infinite sequences in practice without realizing that they have kicked over their
theoretical support, i.e. that they are not really using frequentism. Here are the
biggest objections.
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1. In order to know the probability of any proposition, we have to observe an infinite
sequence. There are no observed or observable infinite sequences of anything.
We can imagine such sequences—we can imagine many things!—but we can
never see one. Therefore, we can never know the probability of any proposition.
Hájek: “any finite sequence—which is, after all, all we ever see—puts no
constraint whatsoever on the limiting relative frequency of some attribute.”
A finite observed sequence may equal 0.9, but the limit may evince 0.2, or any
other number besides 0.9. Who knows?

In order to picture an infinite sequence, we also, as Hájek emphasizes, must
conjure a universe “utterly bizarre” and totally alien to ours. “We are supposed
to imagine infinitely many radium atoms: that is, a world in which there is an
infinite amount of matter (and not just the 1080 or so atoms that populate the
actual universe, according to a recent census).” Universes with infinite matter are
required if frequentism is to be true; or rather, if any probability is to be had. It’s
unclear whether Hájek uses universe in the philosophical sense of all there is, in
which case this criticism has far less force, or in the physical sense of the stuff
local to us (or local universe in some set of universes, to speak loosely), in which
case the criticism is accurate.

If you do not see this criticism as damning, you have not understood fre-
quentism. You have said to yourself that “Very large sequences are close enough
to infinity.” No, they are not. Not if frequentism is to retain its mathematical
and philosophical justification. Why? Every finite sequence is infinitely far away
from infinity. As you’ll see, the main critique of frequentism is that it confuses
ontology and epistemology, i.e. existence with knowledge of the same.

2. If our premises are E D “This is an n-output machine with just one output
labeled * which when activated must show an output, and this is an output before
us”, the probability of Q D “An * shows” is 1/n as we have been defining it.
A frequentist may assert that probability for use in textbook calculations (e.g.
which he often does, say, in demonstrating the binomial for multiple throws of
hypothetical dice), but in strict accordance with his theory he has made a grievous
error. He has to wait for an infinite sequence of activations first before he knows
any probability. The only way to get started in frequentism is to materialize
probability out of thin air, on the basis of no evidence except imagination.
Probabilities may be guessed correctly, but never known. Frequentists are thus,
whenever they give examples, acting as secret subjectivists.

3. In the absence of an infinite sequence, a finite sequence is often used as a
guess of a probability. But notice that this is to accept the argument definition
of probability, which in this case is, given only E D “The observed finite
relative frequency of A is p” the probability of Q D “This new event is A” is
approximately equal to the observed relative frequency p. Notice that logical
probability has no difficulty taking finite relative frequencies as evidence.

For a frequentist to agree, he first has to wait for an infinite sequence
of observed-relative-frequencies-as-approximations before he can know the
probability that P D Pr.QjE/ is approximately equal to the observed finite
relative frequency is high or 1. Nothing short of infinity will do before he can
know any approximation is reasonable. Unless he only takes a finite sequence of
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approximations and uses that as evidence for the probability all finite sequences
are good approximations, but then he is stuck in an infinite regress of
justifications.

4. Hájek: “we know for any actual sequence of outcomes that they are not initial
segments of collectives, since we know that they are not initial segments of
infinite sequences—period.” This follows from above: even if we accept that
infinite collectives exist, how do we know the initial segments of those collectives
are well behaved? “It is not as if facts about the collective impose some constraint
on the behavior of the actual sequence.”

If hypothetical frequentism is right, to say any sub-sequence (Von Mises’s
more technical definition relies on infinite sub-sequences embedded in infinite
sequences, which is a common method in analysis; here I mean finite sub-
sequence) is “like” the infinite collective, is to claim that the infinite collective,
which is not yet generated, “reaches back” and causes the probabilities to behave.
And this is impossible. In other words, something else here-and-now is causing
that sequence to take the values it does, and probability should be a measure of
our knowledge of that here-and-now causality.

5. Hájek: “For each infinite sequence that gives rise to a non-trivial limiting relative
frequency, there is an infinite subsequence converging in relative frequency to
any value you like (indeed, infinitely many such subsequences). And for each
subsequence that gives rise to a non-trivial limiting relative frequency, there is a
sub-subsequence converging in relative frequency to any value you like (indeed,
infinitely many subsubsequences). And so on.”

And how, in our finite existence, do we know which infinite subsequence we
are in? Answer: we cannot. We do not. The problem with infinities is anything
possible can and will happen. There is no justification whatsoever, if frequentism
is true, for treating with any finite sequence.

6. Our evidence is E D “One unique never-before-seen Venusian mlorbid will be
built. It has n possible ways of self-destructing once it is activated. It must be
activated and must self-destruct. X is one unique way it might self-destruct.” The
probability of Q D “X is the way this one-of-a-kind mlorbid will self-destruct”
is unknown, unclassifiable, and unquantifiable in frequency theory. In logical
probability it is 1/n. Even if we can imagine an infinite collective of mlorbids,
there is no way to test the frequency because Venusians build no machines. No
sequence can ever be observed.

Hájek: “Von Mises famously regarded single case probabilities as
‘nonsense’: : :” Yet, of course, all probabilities are for unique or finite sequences
of events. David Stove listed this as a key criticism against frequentism. The
sequence into which a proposition must be embedded is not unique. Take
Q D “Jane Smith wins the next presidency.” Into which sequence does this
unambiguously belong? All female leaders? All female elected leaders? All male
or female leaders elected in Western democracies? All presidential elections of
any kind? All leadership elections of any kind? All people named Jane with
the title of president? And on and on and on. Plus none of these can possibly
belong to an infinite collective. Of course, if probability is logical, each premise
naturally leads to a different, not necessarily quantifiable, probability.
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7. Hájek: “Consider a man repeatedly throwing darts at a dartboard, who can either
hit or miss the bull’s eye. As he practices, he gets better; his probability of a hit
increases: : :the joint probability distribution over the outcomes of his throws is
poorly modeled by relative frequencies—and the model doesn’t get any better if
we imagine his sequence of throws continuing infinitely.”

We have to be careful about causality here, but the idea is sound. The
proposition is P D “The man hits the bull’s eye.” What changes each throw is
our (really unquantifiable) evidence. The premises for the n-th throw are not the
same as for the n C 1-th throw. Hájek misses that in his notation, and lapses in
the classical language of “independence”, which is a distraction. The point is that
each throw is necessarily a unique event conditioned on the premise that practice
brings improvements. The man can never go back (on these premises) so there is
no way to embed any given throw into a unique infinite collective.

8. Our Q D “If the winter of 1941 was mild” to our P D “Hitler would have
won the war.” A counterfactual. There are many ways of imagining evidence
to support P to varying degrees (books have been written!), but there is no
relative frequency, not infinite and not even finite. No counterfactual Q-P has
any kind of relative frequency, but counterfactuals are surely intelligible and
common. A bank manager will say, “If I had made the loan to him, he would
have defaulted”, a proposition which might be embedded in a finite sequence,
but the judgement will have no observations because no loans will have been
made. The logical view of probability handles counterfactuals effortlessly.

Addendum to the mathematically minded, especially in regards to criticisms
1–3. If we assume we know a probability, we can compute how good a
finite approximation of that probability is, which is essentially what frequentist
practice boils down to. But since, if frequentism is true, we can never know any
probabilities, we can never know how good any approximation in practice is.

5.5 Probability Is Not Always a Number Redux

Here is an example adapted from Henry Kyburg [138]. The proposition of interest
is Q D “This (really quite tasty) bottle of 2009 Muga Rioja Reserve will break into
N pieces when struck by a hammer”. The answer is that there is no answer: there
is no intrinsic probability of Q. This non-answer answer holds for all Q which are
not self-referential, and the reason is that, as said, probability is a measure between
propositions. This is why there is no such thing as a probability “of” being struck
by lightning, or being bit by a bee, or of dying of a heart attack, or of anything.
So much we already know. Subjective probabilists presented with Q and asked for
its probability are tempted to provide an answer. But it requires them to provide
evidence so that Q can be put into a relation. Such evidence is in the form of a
complex proposition, which might look like this E D “I feel this and that.” We
can now have Pr.QjE/. But is this a number? That all depends on whether E has
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information about N and about the nature of being hit by a hammer. Note that
this would have to be very specific information, too, if we are to extract a number.
Suppose E D “I’ve hit bottles before and shards went everywhere.” We have the idea
from “shards went everywhere” that N will be “large”. But since “large” is relative,
it can only be large with respect to something, say, sweeping up. An example of
very specific information is E D “When hit by hammers bottles like this break into
N D 1, 2, 3, or 4 pieces.” If that doesn’t seem realistic (and it doesn’t to me), then
that only means we have some vague but unstateable idea of what N might be. In
other words, the probability of Q isn’t a number.

If the only evidence you have, received from a question you asked a friend,
Q D “How would I know whether that Maduro wrapped Romeo y Julieta will
taste good?” the probability that P D “This cigar will taste good” is the entire
interval from 0 to 1, end points not included. The endpoints are not included
because a tacit premise is that the “event” (the observable proposition) is contingent,
therefore neither it nor its contrary are logically necessary. If the evidence is instead
the tautology T D “This cigar will taste good or it won’t”, the probability is also the
unit interval. Tautologies, or any necessary truth, do not provide information, as we
already know, except to possibly tacitly admit contingency. There is no information
in Q or T about P other than that P is contingent. Knowing that a proposition is
contingent is some kind of evidence, but very weak. Contingency tells us that a
proposition cannot be a necessary truth. It can, of course, be a local truth.

There is no way to derive a probability of P from either Q or T without adding
additional premises. For instance, your friend has uttered Q, but in the back of your
mind you recall M D “Maduro wrappers are often good”. That is probative of P, and
so Pr.PjQM/ is not the unit interval, but it is also—and this is key—not Pr.PjQ/. As
above, if we are asked for Pr.PjQ/ we are not free to substitute Pr.PjQM/.

Now Pr.PjQM/ is not the unit interval because a tacit premise of grammar says
that often means usually but not always. To you, it may mean something else. But
let’s leave it at that. Pr.PjQM/ is still not a precise number. It is not a number at all.
Contingency is still present, but without it we have a numerically precise definition
of often no numerical probability is possible. Suppose I insisted O D “often means 6
out of 10 times or better”, then Pr.PjQMO/ � 0:6, which is still not a fixed number.

What if we want to bet whether P is true? Perhaps the question is whether to
buy the cigar or not, which is very like a bet. Based on Q there is no information
whether P. P is not “50/50”, so if you say, “Well, I’ll take a chance on it”, it is not
because the probability of P based on Q is 50 %. It is because you made a decision,
which weighed the pros and cons of buying the cigar, and on balance the pros won.
It’s hardly even likely that the pros and cons were quantifiable in this mundane
decision. Something put you over the edge and caused you to make the purchase, but
it wasn’t because you relied on some complicated set of decision analysis formulas.
It’s true that in making this decision you will have considered many premises about
the cigar—“It smells good and cigars that smell good typically taste good”, “The
senorita on the band is pretty and that might make the cigar taste good”, etc.—but
unless one of these premises was explicitly quantitative, no numerical probability of
P will result.
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It will now be obvious that most probabilities are in this form. Real quantification
is rare; it really only happens in formal problems where quantification is an explicit
goal, such as in science or those endeavors in life which seek to approximate science.
But, as we’ll learn, even in science many of these quantifications are ad hoc, and
over-certainty is the result. Some of this over-certainty is institutionalized because
of the view that all probabilities should be numerical. Numbers are more tangible,
they feel “realer” than the vagueness which is reality.

One caution. Some probabilities that at first appear non-numerical or non-precise
might be precise. If our evidence is Q D “50 to 70 of the 100 marbles in this bag
are cats eyes” then the probability of P D “Pulling out a cats eye” might appear to be
50–70 %, the interval. But it’s possible to infer more from the premises. Marbles are
discrete, and there could be 50, 51, : : :, 70 cats eyes. The essence of the others do
not matter. We could then invoke the statistical syllogism and, through the obvious
calculations, come to a probability of 0.6. If there were greater than 50 marbles
but as many as 70, then the probability is 0.605, which is notable only because
there cannot be, in 100 marbles, any fraction which equals 0.605. As above, we
do not need to confirm this by referring to limiting relative frequency of “draws.”
This is the probability. Empirical evidence is not needed for confirmation; indeed,
the example is easily changed so no empirical evidence is possible (make them
“Martian marbles”).

5.6 Confirmation and Paradoxes

Paradoxes, or those claimed to be, crop up from time to time to cast doubt on the
ability of probability to provide consistent information. One is Hempel’s so-called
ravens paradox. This is dealt with adequately in any number of sources, like [115],
so that it no longer has any force. Invariably, these paradoxes are resolved after it
is discovered some equivocation in wording or that a calculation with impossible
values had slid under the radar. Let’s do one of these, an example I learned from
Deborah Mayo [156] called the “paradox of irrelevant conjunctions.”

Loosely quoting Mayo, a hypothesis (proposition) H is confirmed by X (another
proposition) in the presence of D if Pr.HjXD/ > Pr.HjD/ where D is any
other proposition. The proposition H is disconfirmed if Pr.HjXD/ < Pr.HjD/. If
Pr.HjXD/ D Pr.HjD/ then X is irrelevant to H given D. Lastly, H0 means “H is
false”.

Mayo (I change her notation ever-so-slightly) says “a hypothesis H can be
confirmed by X, while H0 disconfirmed by X, and yet Pr.HjXD/ < Pr.H0jXD/.
In other words, we can have Pr.HjXD/ > Pr.HjD/ and Pr.H0jXD/ < Pr.H0jD/ and
yet Pr.HjXD/ < Pr.H0jXD/.” In support of this contention, she gives an example
due to Popper (again changing the notation) about dice throws. First let D D “A
six-sided object which will be tossed and only one side can show and with sides
labeled 1, 2, etc., i.e. the standard evidence we have about dice.
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Consider the next toss with a homogeneous die, and let H D “6 turns up”, H0 D
“6 does not turn up”, X D “An even number turns up.” Then

Pr.HjD/ D 1=6; Pr.H0jH/ D 5=6; Pr.HjH/ D 1=2:

Mayo gives the example due to Popper:

The probability of H is raised by information X, while H0 is undermined by X. (It’s
probability goes from 5/6 to 4/6.) If we identify probability with degree of confirmation,
X confirms H and disconfirms H0 (i.e., Pr.HjXD/ > Pr.HjD/ and Pr.H0jXD/ < Pr.H0//.
Yet because Pr.HjXD/ < Pr.H0jXD/, H is less well confirmed given X than is H0. (This
happens because Pr.HjD/ is sufficiently low.) So Pr.HjXD/ cannot just be identified with
the degree of confirmation that X affords H.

I don’t agree with Popper. Because

Pr.HjD/ D 1=6 < Pr.HjXD/ D 2=6

and

Pr.H0jD/ D 5=6 > Pr.H0jXD/ D 4=6:

In other words, we started believing in H to the tune of 1/6, but after assuming (or
being told) X, then H becomes twice as likely. And we start by believing H0 to the
tune of 5/6, but after assuming X, this decreases to 4/6, or 20 % lower. Yes, it is still
true that H0 given X and D is more likely than H, but so what? We just said (in X)
that we saw a 2 or 4 or 6: H0 is two of these possibilities and H is only one.

“Does X (in the presence of D) confirm H?” is a separate question from “Which
(in the presence of X and D) is the more likely, H or H0?” The addition of X
to D “confirms” H in the sense that H, given the new information, is now more
likely. Mayo recognizes this distinction by quoting Carnap who noted to confirm
is ambiguous. It can mean (these are my words) “increases the probability of” or it
might mean “making it more likely than any other.” Pick whichever you like. Neither
is a difficulty for probability, which flows perfectly along its course. The problems
here are the ambiguities of language and labels, not with logic.

Finally enter the so-called “paradox of irrelevant conjunctions.” The idea is if
X “confirms” H in the presence of D, then X should also “confirm” HP in the
presence of D, where P is some other proposition. There are limits. If P D H0,
then HP is always false or nonsensical, no matter which X is picked. Ignore these
strange cases. As before we can say P is irrelevant to X in the presence of D if
Pr.XjHD/ D Pr.XjHPD/. Continuing the example, let P D “My hat is a fedora”;
then Pr.XjHD/ D 1 and so is Pr.XjHPD/ D 1.

The next step in the “paradox” is to note that if X “confirms” H in the
first sense above, then Pr.XjHD/= Pr.XjD/ > 1. In our example, this is
1=.1=3/ which is indeed greater than 1. So we’re okay. Now we assume P is
irrelevant, so Pr.XjHPD/ D Pr.XjHD/. Divide this by Pr.XjD/, then because
Pr.XjHD/= Pr.XjD/ > 1 so too does Pr.XjHPD/= Pr.XjD/ > 1. There are no
difficulties so far; just some manipulation of symbols.
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Then it is claimed that X, since it “confirmed” H, must also “confirm” HP. Why
is this so? Mayo says (still with my notation) there exists an “Entailment condition:
If X confirms T, and T entails P, then X confirms P” which is plain enough. “In
particular,” she says, “if X confirms HP, then X confirms P” by the argument that HP
entails P. Here is the magic: “if X confirms H, then X confirms P for any irrelevant
P consistent with H. (Assume neither H nor P have probabilities 0 or 1). It follows
that if X confirms any H, then X confirms any P.”

What has gone wrong? That parenthetical note gives the clue. In our example, H
does not entail P, but HP does entail P. What does entail mean? Well, Pr.PjHP/ D 1.
The paradox says X confirms P just because HP entails P. But this can’t be right.
What’s happened here is the conditioning information, which is absolutely required
to compute any probability, got lost in the words. We went from “X and HP” to “X
and P”, which is a mistake. Here is the proof.

If X confirms H, then Pr.HjXD/ > Pr.HPjD/ (using the weaker sense of
“confirmed”). Because P is irrelevant to H and X, then Pr.XjPD/ D Pr.XjD/ and
Pr.HjPD/ D Pr.HjD/ and Pr.XjHPD/ D Pr.XjXD/. But if P is confirmed by X,
then it must be that Pr.PjXD/ > Pr.PjD/. But Pr.PjD/ doesn’t exist: it has no
probability. What, after all, does knowing the particulars of some dice have to do
with whether or not I wear a fedora? Nothing. Neither therefore does Pr.PjXD/

exist. Wearing hats has nothing to do with dice. You can’t get there from here. This,
after all, is a consequence of P’s irrelevancy. (You might tease out P’s contingency
from the gammar, but objects like Pr.PjXD/ are then the unit interval.)

So P can’t be confirmed by X in the usual way. What if we add H to the
mix, insisting Pr.PjXHD/ > Pr.PjHD/? Not much is gained, because again
neither of those probabilities exist. You can’t have inequalities with non-existent
quantities. And when we “tack on” irrelevant P, we are always asking questions
about Pr.HPjXD/or Pr.HPjD/ and not Pr.PjXD/ or Pr.PjD/:

Result? No paradox, only some confusion over the words. Probability as logic
remains unscathed. I presented this argument on my website in 2014 and a semi-
anonymous reader “Jonathon D” pointed out the proof of the non-paradoxical nature
can be had earlier, by nothing in the very first step there is no probability Pr.HPjD/

either. This is true and for the same reasons, but I leave the rest of the argument in
place for completeness.



Chapter 6
Chance and Randomness

“What is that chance of that?”—Asked of every statistician by any civilian whenever
anything interesting happens.

Randomness is not a thing; neither is chance. Standard statistical interpretation,
see e.g. Chapter 1 of [197], assumes randomness is a real physical property. Both
randomness and chance are measures of uncertainty and express ignorance of causes
and essences. Because randomness and chance are not ontologically real, they
cannot cause anything to happen. Immaterial measures of information are never
and can never be physically operative. It is always a mistake, and the beginning
of vast confusion, to say things like “due to chance”, “caused by random (chance,
spontaneous) mutations”, “these results are significant and not due to chance”, “no
different than chance”, “these results are explainable by chance”, “random effects”,
“random variable”, “that isn’t random”, “only random samples count”, and the like.

A coincidence is a concurrence of observations where one thing is said to be the
cause, directly or indirectly, of another thing, but where the cause of the concurrence
(and not the events) is unknown or immeasurable or suspected to be directed by
certain higher powers. The invocation of randomness or chance as this unknown
cause is always wrong (but that the higher powers exist might not be). There is
an enormous amount of magical thinking which plagues probability and statistics on
these questions, including in physics with quantum mechanics and in information
theory.

All this holds in quantum mechanics, where the evidence for physical chance
appears strongest. What also follows, although it is not at first apparent, is that
simulations are not needed. This statement will appear striking and even obviously
false, until it is understood that the so-called “randomness” driving simulations is
anything but “random”. Lastly, how this ties in with information theory and the
notion of randomness in that field is given.
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6.1 Randomness

The English random has its roots, so says the Oxford English Dictionary [59],
from the French, with implications of impetuousness, haste, and violence. It once
expressed the range of a piece of ordnance. It wasn’t that this ranging distance was
variable or chaotic per se: random was the maximum. One form of random in 1624
meant a haphazard route or path. Of course, (mis)hap and hazard themselves are
tied to randomness, pace a modern definition: “Having no definite aim or purpose;
not sent or guided in a particular direction; made, done, occurring, etc., without
method or conscious choice; haphazard.” A definition of random noise is “unwanted
electrical signals caused by randomly occurring transient disturbances: : :a signal
component whose instantaneous amplitudes follow a statistically random or Gaus-
sian distribution.” Finally, random number, “a number selected from a given set
of numbers in such a way that all the numbers in the set have the same chance of
selection”. Although not from the OED, people will say of observing some quirky
event, “That was random.”

Random, to us and to science, means unknown cause. This view is contrary to
many authors who claim, without proof, randomness is a real property and found
in, say, (realistically impossible) infinite sets; see [33, 104, 137] among others.
Random does not and cannot mean no cause. Any change (as we shall see much
later) must be brought about by something actual, and something actual cannot be
“randomness”. Variables, therefore, cannot be “random”; variables are propositions
that take specific values, such as “The temperature will be t”, where t is a placeholder
for potential values, or is some stated value. Yet some thing or things will cause the
eventual t, and this cause or these causes cannot be randomness. Determine is a
dangerous word. It can mean caused or made known by. We may know (as we learn
next chapter) what determines the truth of a proposition in the sense of what makes
the value known, but we may be ignorant of the cause. Randomness is the absence
of knowledge of cause or of what determines whether a proposition is true. If you
don’t know behind which of three doors is the prize, the proposition “It is behind
door number 1” is not known to be true because you don’t know the cause of the
prize being wherever it is and because there is no other information that would let
you deduce where the prize is. The outcome is random, even though the prize was
put there by some agency.

Coin flips, dice throws, sheeps-knuckle tosses, and the like are caused. But these
kinds of events have their own interest. The results are sensitive to their initial and
environmental conditions and are therefore chaotic, which as we earlier learned does
not mean “not-caused”, but they are sensitive to initial (or just-plain) conditions. For
some events, it is so difficult to physically manipulate conditions that the event must
be ever practically (but not necessarily theoretically) unpredictable. But because
these events are as sensitive as they are, tiny, even possibly quantum mechanically
sized, deviations in conditions can cause the event to go a certain way or another
easily. This is taken advantage of in two ways. Here is one illustration.
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So they proposed two, Joseph called Barsabbas, who was also known as Justus, and
Matthias. Then they prayed, “You, Lord, who know the hearts of all, show which one of
these two you have chosen to take the place in this apostolic ministry from which Judas
turned away to go to his own place.” Then they gave lots to them, and the lot fell upon
Matthias, and he was counted with the eleven apostles. Acts 1, 23–26.

It is here that agency might enter the story, as it often does when speaking of
randomness. The apostles reasoned in one of two ways. The first is that they trusted
that God would “tweak” the conditions of the tumbling lots so that they would
land in the optimal way, in the sense of selecting the optimal apostle. I have seen
Buddhists at temples in Taiwan, for instance, do a similar thing with crescent-shaped
blocks of wood called bwa bwei. These are a pair of asymmetric, hand-sized blocks
which are thrown onto stone or dirt floors; they bounce around a bit, and come to
rest with one or both bwa bwei having the round or flat size uppermost. Questions
are asked of the “device” and answered depending whether the sides match or
mismatch. The appeal is to a higher power, but one which is somehow unwilling
to perform a macro feat, as God could easily do, for instance in the case of the lots,
by having had the apostles places the lots on the ground and then God could turn
them so that they pointed to Matthias. The same is true of bwa bwei. The faithful
could merely place the bwa bwei on the ground and ask the local deity to move them
to the position which matches the correct answer. But in both cases this seems like
asking for a great amount of work from God or the deity. Instead, when asking for
interventions, we ask for the smallest possible assistance, the tiniest adjustment to
the conditions, that which requires an almost infinitesimal physical force, so that
the device is caused to take its eventual state in such a way that the higher power is
not unduly taxed. This act on our part recognizes the sensitive and even precarious
nature of the device; indeed, it makes active use of it.

But there is a second sense in which we can interpret the choosing of the
substitute apostle which is vastly more plausible. This sense won’t work for
the bwa bwei petitioner, who simply is asking for a physical intervention. Because
the apostles understood that the tossing of the lots is unpredictable and nearly
impossible to gaff, i.e. to finagle or scam, there would be no sense of human agency
in the choice of the next apostle. If the eleven would have had a vote, Joseph might
have won or Matthias would have. There would have been some apostles in favor
of Joseph, and some in favor of Matthias. A discussion would begin and politics
would enter. And people have long memories. Feelings could be hurt. Since both
men were eligible, why not let some unpredictable device make the selection so that
everybody is excused from making a choice? This is, after all, why we let referees
decide who gets the ball first by coin flips (I have more to say about this below).
Randomness, i.e. unpredictableness, solves some political conundrums.

What makes the first example different from the statistician waiting to see what
value a “random variable” takes? Only this: the higher power is not usually thought
to be a wilful agency, and is instead some vague, almost mystical hidden power.
One example is “noise”, the “error” or “residual” or “�” term in a regression or in
a simulation (about which, more below). The value of some � is thought to come
about “randomly”, and if this “randomly” is thought about at all, and often it is
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not, it is often thought “random” mystical forces are performing the cause. Hence
statisticians will talk about “sampling” so that these mysterious forces “cancel”
each other out upon repeated “trials”. It is often said that “probability distributions”
underlie a set of observations, which again imply probability is cause. The main
exception to this magical thinking is electronic engineering and the like, where
engineers are forced to think about causes of everything that happens, though even
in these fields, thinking that randomness is a cause is not unknown. Opposite this
are those uses of statistics applied to human behavior, where what causes the “�s”
is always said to be randomness. Whatever causes any � to take the value it does, it
is not randomness.

I either have in my pocket as I write this my pipe or I don’t. That is, I own a pipe
and sometimes smoke it while writing, except when I need both hands I put it in my
pocket, or I don’t carry it at all hence it can’t be in my pocket. The proposition of
interest is P D “Briggs had a pipe in his pocket when he wrote this proposition.” P is
random to you, because the only evidence you have is that which I provided, which
is not sufficient for you to form a unique probability. Of course, you can always add
evidence which is not provided, but by that maneuver you make probability subject
to whim, which is to say subjective. P is not random to me, because I possess enough
extra information that the P is an extreme probability, either 0 or 1.

That is, you must judge Pr.PjBriggs owns a pipe and: : :/ whereas I must judge
Pr.PjI have my pipe/. The former probability is not a fixed number (it may be
the unit interval sans endpoints if you consider the tacit premise that the event
is contingent; that “I do or don’t have a pipe” is a tautology and provides zero
information), but the latter probability is 1 (and would have been 0 if I changed by
evidence to “I don’t have my pipe”).

Randomness therefore exists when the probability of a proposition given stated
evidence or model is not 0 or 1. That is, randomness applies to the premises (or
model) we have and not the outcome. All uncertain events are thus random. An
event is random only if it is unknown (in its totality). A state is random if it is
unknown. Randomness is thus a synonym for unknown. That, and nothing more.

Statisticians speak, somewhat incorrectly as we have just seen, of random vari-
ables. These are mathematical creatures, propositions which contain or represent an
unknown quantity. For example, S D “Sally’s grade point average is x” where x is
unknown, i.e. “random.” S is neither true nor false—it does not have an extreme
probability—and can be neither true nor false because there is no premise with
which to judge it, except perhaps that “The grade point average will be some number
in this set”. But even given that evidence, the proposition has no probability because
x is not a number but a placeholder. It’s like saying “The color is _______”. It is an
incomplete statement. This seemingly trivial point is crucial to retain. There is no
observation of x. Once we do observe an x, the proposition becomes true with respect
to that observation. Thus random variable means a proposition with an unknown
quantity (the quantity may of course be multidimensional).

Of course, there is a purely mathematical way to speak of “random” variables,
i.e. as some kind of measurable function from a probability space into a measure
or state space, and so forth. However useful this technique is for computation, and
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it is, when applying probability to real propositions of interest in arguments, we
must not forget that the mathematics are not real. I speak more on the Deadly Sin
of Reification which arises from attempts to give equations life in the discussions of
modeling.

Chance is identical to randomness in most senses, though it often comes with
connotations of unpredictability. Take a “game of chance” such as craps, which
is based around a two-dice total, or score. The bounds of the total are deduced
from the rules of the game. These bounds are, as is obvious, predictable, so chance
does not mean complete inability to predict. There are any number of physical
mechanisms that cause each dice total, causes of which we are mostly or completely
ignorant. We know the causes must be there, we just don’t know what they are for
individual plays. We do know there are many causes: imagine the bouncing rolling
dice flopping around, buffeted by this and that. If we knew some of these causes for
individual rolls—perhaps we could measure them in some way as the dice fly; say,
by noting the walls of the table are cushier and more absorbent than usual—then
we could incorporate that causal information and use this to update the probabilities
of the totals. A 7, which is a winning score on the come out, might be more or
less probable depending on how the information “plays”. The probability changes
because the information changes. Incidentally, unless your knowledge of cause is
complete, you might not necessarily beat the casino for any single game, but if you
have good causal knowledge, you will beat them over multiple games. It is for this
reason that casinos ban contrivances that could measure causes or proxies of causes.
In any case, chance is unpredictability, which is a synonym of ignorance, which is
what random means.

6.2 Not a Cause

Randomness is not a cause. Neither is chance. It is always a mistake to say things
like “explainable by chance”, “random change”, “the differences are random”,
“unlikely to be due to chance”, “due to chance”, “sampling error”, and so forth.
Mutations in biology are said to be “random”; quantum events are called “random”;
variables are “random”, and all of these things take values because of chance. An
entire theory in statistics is built around the erroneous idea that chance is a cause.
This theory has resulted in much heartbreak, as we shall see.

Flip a coin. Many things caused that coin to come up heads or tails. The initial
impetus, the strength of the gravitational field, the amount of spin, and so on, as we
have discussed previously. If we knew these causes in advance, we could deduce—
predict with certainty—the outcome. This isn’t in the least controversial. We know
these causes exists; yet because we might not know them for this flip does not imbue
the coin with any magical properties. The state of our mind does not effect the coin
in any, say, psychokinetic sense.

Pick up a pencil and let it go mid air. What happened? It fell, because why?
Because of gravity, we say, a cause with which we are all familiar. But the earth’s
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gravity isn’t the only force operating on the pencil; just the predominant one. We
don’t consider the pencil falling to be “random” because we know the nature or
essence of the cause and deduce the consequences. We need to speak more of what
makes a causal versus probabilistic model, but a man standing in the middle of
a field flipping a coin is thinking more probabilistically than the man dropping
a pencil. Probabilities become substitutes for knowledge of causes, they do not
become causes themselves.

The language of statistical “hypothesis testing” (in either its frequentist or
Bayesian flavor with posteriors or Bayes factors; for the latter, see Chapter 4 in
[100]) is very often used in a causal sense even though this is not the intent of
those theories. We must acknowledge that the vast majority of users of models of
uncertainty think of them in causal terms, mistakenly attributing causes to variously
ad hoc hypotheses or to “chance.” Attributing anything to “chance” is to attribute it
to a chimera, a ghost. This kind of attribution language, which is nearly universal,
also implies that the parts not attributable to “chance” are attributable to the other
“variables” in the model in a causal sense, which is an unjustifiable stance, as we’ll
see next chapter.

Specific examples will be offered later, but for now suppose the user of a model
of income has input race into that model, which occurs in two flavors, J and K
(these letters are next to each other on my keyboard). The “null” hypothesis will
be incorrectly stated as “there is no difference” between the races. We know this is
false because if there were no difference between the races, we could not be able
to discern the race of any individual. But maybe the user means “no difference in
income” between the races. This is also likely false, because any measurement will
almost surely show differences: the measured incomes of those of race J will not
identically match the measured incomes of those of race K. Likewise, non-trivial
functions of the income, like mean or median, between the races will also differ.

If the observed differences are small, in a sense to be explained in a moment,
the “null” has been failed to be rejected; it is never accepted. Why this curious and
baffling language is used is explained in the Causality chapter when we discuss
falsifiability. For now, all we need know is that small (but actual differences) in
income will cause the “null” to be accepted. (Nobody really thinks in terms of failing
to reject, despite what the theory says.) When the “null” is accepted it is repeated
that there is “no” difference between the races, or that any differences we do see are
“due to”, i.e. caused by, chance.

But chance isn’t a cause. Chance isn’t a thing. There is no chance present in
physical objects: it cannot be extracted nor measured. It cannot be created; it cannot
be destroyed. It isn’t an entity. The only possible meaning “due to chance” or
“caused by chance” could have is magical, where the exact definition is allowed
to vary from person to person, depending on their fancy.

Some thing or things caused each person measured to have the income he did.
Race could have been one of these causes. An employer might have looked at an
employee and said to himself, “This employee is of race K; therefore I shall increase
his salary 3% over the salary I would have offered a member of race J.” Or he
might not have said it, but did it anyway, unthinkingly. Race here is a partial cause.
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The man did not receive his entire salary (I suppose) because he was of race K.
This kind of partial cause might have happened to some, none, or all of the people
measured. If the researcher is truly interested in this partial cause, then he would
be better served to interview whoever it is that assigns salaries and so discover
the causes of salary in each case. Assuming nobody lies or misremembers and can
bring themselves to proper introspections—an assumption of enormous heftiness—
this is the only way to assign causes. But actual measurements are time consuming
and expensive and, if employed universally, would slow research down to a crawl.
Results must needs be had! The advantage to taking this more measured pace would
be that many results wouldn’t be absurd, like the results of many studies conducted
with ordinary statistics surely are. Why? Researchers have been falsely taught that
if certain statistical thresholds are crossed, causality is present. This fallacy is the
cause of the harm spoken of above.

Even if the null is not rejected it is still possible that some or even all of the
people measured had salaries in part assigned because of their race. There isn’t any
way to tell looking only at the measured incomes and races. If the null is accepted,
no person, it is believed, could have had their incomes caused partially by their
race. Again, there isn’t any way to tell by looking only at the data. But when the
null is accepted, almost all researchers will say that causality due to race is absent—
replaced, impossibly, by chance; or the researcher bent of proving differences in
cause will say, if the null is accepted, that the differences are still there, he just can’t
now prove it. The truth is we have no idea and can have no idea, looking just at
measured race and income and at nothing else why anybody got the salaries they
did. To say we can is wild invention, to replace reality with wish.

On that latter point, when the null is accepted, but the researcher had rather
not accept it, perhaps because his hypothesis was consonant with his well being
or it was friendly to some pre-conception, he immediately reaches to factors outside
the measured data. “Well, I accepted the null, but you have to consider this was a
population of new hires.” That may be the case, but since that evidence did not form
part of the premises of the model, it is irrelevant if we want to judge the situation
based on the output of the model. I have much more to say on this when discussing
models. It is anyway obvious, that, to his credit, the researcher is looking for causes.
Even if he gets them wrong, that is always the goal, or should be.

Another popular fallacy, when “nulls” are rejected, is the I-can’t-think-of-
another-reason-so-my-explanation-is-correct fallacy. If the classical (or any) proce-
dure says there are (which we could have known just by looking) differences, then
the researcher will say those differences are caused by the differences in race. He
will assume his cause always applies, or at least it mostly or usually applies. Yet he
never will have measured any cause, so he is being boastful, especially considering
how easy it is to reject “nulls”. Later when discussing hypothesis tests, I cover this
false dichotomy in more details.

Aristotle (2 Physics v) gives this example of what people mean when they say
“caused by chance”:
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Some people even question whether [chance and spontaneity] are real or not. They say that
nothing happens by chance, but that everything which we ascribe to chance or spontaneity
has some definite cause, e.g. coming “by chance” into the market and finding there a man
whom one wanted but did not expect to meet is due to one’s wish to go and buy in the
market: : :

A man is engaged in collecting subscriptions for a feast. He would have gone to such and
such a place for the purpose of getting the money, if he had known. [But he] actually went
there for another purpose and it was only incidentally that he got his money by going there;
and this was not due to the fact that he went there as a rule or necessarily, nor is the end
effected (getting the money) a cause present in himself – it belongs to the class of things
that are intentional and the result of intelligent deliberation. It is when these conditions are
satisfied that the man is said to have gone “by chance”. If he had gone of deliberate purpose
and for the sake of this—if he always or normally went there when he was collecting
payments—he would not be said to have gone ‘by chance’.

Notice that chance here is not an ontological (material) thing or force, but a
description or a statement of our understanding (of a cause). Aristotle concludes, “It
is clear then that chance is an incidental cause in the sphere of those actions for the
sake of something which involve purpose. Intelligent reflection, then, and chance are
in the same sphere, for purpose implies intelligent reflection.” And “Things do, in a
way, occur by chance, for they occur incidentally and chance is an incidental cause.
But strictly it is not the cause—without qualification—of anything; for instance, a
house-builder is the cause of a house; incidentally, a flute player may be so”. Chance
used this way is like the way we use coincidence.

There is also spontaneity, which is similar: “The stone that struck the man did
not fall for the purpose of striking him; therefore it fell spontaneously, because it
might have fallen by the action of an agent and for the purpose of striking.” But this
does not mean that nothing caused the stone to fall. It could very well be that the
stone was made to fall by some wilful agency, as many might imagine, but because
we have no evidence of this, save our suspicions, we can’t be sure. We can have
faith that the stone was sent by God for some purpose, we can have superstition that
some evil entity caused the tumble, we can believe it was just “one of those things”.
Which is the right attitude, faith, superstition, disbelief? It can’t be known from the
concurrence alone. Just like the in the race-income example, we have to look outside
the “data”. This necessity is ever present. Data alone are meaningless.

Persi Diaconis and Fred Mosteller provide a well known definition of coinci-
dence: “A coincidence is a surprising concurrence of events, perceived as meaning-
fully related, with no apparent causal connection,” [58]. The phrase “no apparent
causal connection” is apt but incomplete, as we now see. Coincidences are rather
taken to prove causation, by whom or what we might not know but only suspect.

Lastly, again Aristotle, “Now since nothing which is incidental is prior to what is
per se, it is clear that no incidental cause can be prior to a cause per se. Spontaneity
and chance, therefore, are posterior to intelligence and nature. Hence, however true
it may be that the heavens are due to spontaneity, it will still be true that intelligence
and nature will be prior causes of this and of many things in it besides.” In other
words, “posterior to intelligence and nature” means they come after as explanations
and not prior as causes (Bayesians ought to take pleasure in that choice of words).
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The language of calling chance, randomness, and spontaneity explanations is risky
because explanation quickly becomes caused, and, as just said, we can’t know the
“higher” cause of any event just by examining the data at hand. It is thus better to
avoid the words altogether, especially in science where the goal is to understand
cause, unless one can be exceedingly careful.

6.3 Experimental Design and Randomization

A purposely absurd, yet telling, example. You’re a statistician and new recruit to
ISIS assigned to crucify three score perceived enemies. However, you’ve run out
of wooden crosses. But there are some sturdy metal poles that you think might
make good substitutes. So you go to the chief and say, “Boss, I want to prove that
crucifixion by metal pole is as efficacious as by wooden cross. I have drawn up an
experimental design to randomize victims to either wood or metal. If all goes well,
I’ll be able to show that death by metal-pole crucifixion is statistically identical with
wooden-cross crucifixion.”

Why is the example absurd? It is true that since metal-pole crucifixion hasn’t
been tried, victims might not die. The event is contingent. And since statistical
evidence in the form of a “gold standard” randomized controlled trial hasn’t been
supplied, how could anybody believe metal works as well as wood? Don’t skip
lightly over these questions. Their answer explains why randomization isn’t needed,
and that some experiments are of no utility. Essence and cause are once again
present.

What is the purpose of an experiment? To provide evidence probative towards
some proposition of interest. Here the proposition is, “Victims will die by metal
crucifixion”. Evidently, the “data” that can be gathered is probative. If nobody
dies while welded (tied, trussed, nailed, or whatever) to a metal pole, then we
have learned that metal-pole crucifixion does not work, or does not work well.
Contrariwise, if everybody dies strapped to a metal pole, this is also probative,
and we’ll have evidence giving weight to our proposition. Since the experiment
obviously fulfills the desideratum of an scientific experiment, we haven’t discovered
why the example is absurd.

Similarly, randomization is meant to guard against the possibility of experimental
error of a certain kind. Everybody “knows” randomization is a good thing; indeed,
it is believed essential for a quality study. But since your experiment will use
randomization, again we have fulfilled the standard desideratum of experimental
design. And we still haven’t discovered why the example is absurd.

Could it be because, “It’s obvious that metal poles are no different than wooden
crosses”? This is necessarily false. If there were no difference, they would both
be made of the same material; and we’d probably not have different words nor
would we be able to form separate mental images for the two objects. They are
not the same; they are different; of course they are different! Plus, this difference



96 6 Chance and Randomness

was acknowledged by the design of the experiment. If you had thought they
were identical, there would have been no need to gather new evidence. It is because
there are known differences that you proceeded. Still no absurdity.

The answer is this: it’s obvious that people crucified to metal poles will die
as they do when tied to wood crosses because the cause of death is excruciating
exposure. This is an induction, and a true one, coming to us in syllogistic form as
we saw in Chap. 3. We induce that the essence of the kind of death, the experimental
“outcome”, is excruciating exposure and that however one is strung up, be it metal,
plastic, wood, or some other substance, the result will be the same. We already have
the evidence we need that makes the proposition of interest true, evidence supplied
by induction-argument. Notice also that our interest was always the cause of death
and nothing to do with metal poles per se. We didn’t want to gather evidence that
would make the proposition of interest likely, we wanted to know what caused it to
be true. And this we got for free.

Randomization wasn’t needed. But perhaps that’s because the experiment itself
wasn’t needed. Perhaps in other instances the blessings provided by randomization
are needed. They aren’t, as we shall see. But before I can prove that, we need to
understand more the purpose of experimentation.

The difficulty lay in the definition of the experiment. An experiment is the pro-
cess of discovering information probative to a proposition of interest. Experiments
can be active or passive. They are passive when nothing but mental labor is involved
in discerning this evidence as was the case in the crucifixion example, or they
are mixed passive and active in cases where data is gathered in some (usually
mechanical) fashion. So-called observational experiments are more passive than
active, but they can be just as active as so-called controlled experiments; e.g. “chart
reviews” in medicine. None of these dividing lines are sharp, and most experiments
are really mixtures of these types, but controlled experiments usually see evidence
generated or caused newly to be made under conditions controlled, to various extent,
by the experimenter.

The experimenter in any kind of experiment is the person responsible for the
three most important things: deciding the proposition of interest, stating what evi-
dence is probative, and then gathering it. This isn’t an empty statement. Propositions
of interest are not free for the asking. They are related almost always to decisions
people want to make in the face of uncertainty. The possibility of mixup is great,
because propositions that are answerable are often stand-ins or proxies for what
is of real interest. Also, readers of experiments often mix up or misunderstand
just what the proposition of interest was that guided the experimenter. By the time
most “studies” reach the press they are as badly garbled as a Shakespearean sonnet
conveyed by the Telephone Line game played by first graders.

Propositions of interest are anything from “The weight of this elementary particle
is y” to, “The value of this biological measure is w”, to “The amount a person
will spend is z”, etc. The times when we can deduce or induce evidence which
tells the cause of propositions of interest are rare. Or, rather, they only seem so
because nobody records the “mental experiments” like the crucifixion example. But
because they’re not recorded, they come to seem as if they are not experiments,
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which is too bad. We only come to know the “hard cases”, i.e. those propositions
where the evidence of cause is inconclusive. Or we know those cases in which the
proposition of interest has been deduced given a set of circumstances (premises),
and the experiments are such that they verify the conditions (premises)-proposition
concordances. These are, of course, local deductions based on contingent premises
and not necessary truths. If they were necessary truths, we’d again have no need to
perform any experiment (except for pedagogical purposes).

What evidence is probative? This is the real question. Let’s work with an
example. Y D “The value of this biological measure is y”. If I claim X D “This
biological measure can only be y D 120 mm/Hg”, then the probability Y takes any
value but 120 mm/Hg is 0. Or I could have said, X D “This measure can only be
120 mm/Hg or 160 mm/Hg”, then the probability that it is 120 m/Hg is 0.5 and so
forth. But where do these X come from? I made them up. Given the X I supplied, the
probability of Y is deduced by the rules of probability (which only takes as condition
the information supplied and none other). But if my audience is genuinely interested
in Y, they are unlikely to be convinced that my probative X—and it Ais probative—is
proper. What experiments are looking for, then, are X which are themselves true or
can be reasonably believed given another or “outside” our observed set of premises.

For instance, suppose I conducted an experiment to take actual measures of this
Y, and further suppose that each time the measurement was 120 mm/Hg. I announce,
given my experiment—my X, which are my measurements—the probability of Y
D “The measure is 120 mm/Hg” is high. Now you can choose to believe this or
not. If you do, you are supplying tacit premises of the form, W D “This Briggs is
honest and his measurements were error free and in the milieu, form, and type that
I expect.” Then, given W and X (the conjunction), the probability is Y is high. But
if you reject W and suppose instead, “I haven’t a clue what Briggs is on about; why
are all the numbers the same?; maybe they weren’t of the form I expected”, then
the probability of W and X is not high. (The probability of Y given X is, no matter
what, high.)

Real experiments tighten this. They list all the premises which led to the
measurements or collection of data thought probative of Y. No matter how good
a job I do at listing premises (explaining the experiment), you still must trust if you
are to believe. The best experiments find those premises where the probability of
Y is extreme or high and where trust (or faith!) is high, and the worst experiments
find premises which are murkily related to Y and were trust is low. The premises in
which the probability of Y is extreme or high are those most related to the cause or
causes of Y.

Control, true control, is what produces the best evidence, not randomization. To
understand what causes some thing to happen, the ideal experiment is of course that
which focuses on that thing or things that are the cause. If we can hold fast every
condition which we assume might be a cause of Y (our proposition of interest) and
vary or manipulate only one, we are then certain that the changes in Y are caused by
this manipulated condition. This is a local truth. It is not a necessary truth because
it presumes that we have identified all possible causes. Since Y will usually be
contingent, it is likely we might err in this presumption, especially if Y concerns
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complicated matters like human behavior. Of course, holding all things constant is
a tremendous demand, one that perhaps can never be met in practice. This is the
implication of, for example, Nancy Cartwright’s work, [39], who has repeatedly
emphasized the necessity of identifying true causes.

If we can hold everything constant and manipulate one X and witness the changes
in Y, then we can make statements like this: “Assuming all other things constant, and
set at these certain levels, when X D x, Y D y.” This produces a local truth that Y
D y (and possibly even a necessary one if the “all things constant” is sufficiently
tight, i.e. deduced from axioms). Probability is not needed: there is no uncertainty.
This easily extends to multidimensional X and Y. Since this is so, we don’t need
randomization when we can control. Indeed, randomization is the opposite of what
we want. Randomization could introduce variation into those things which are
potentially causative and we thought we were controlling!

True controlled experiments demonstrate cause; they confirm cause. But because
controlling everything that might be a cause of Y is difficult or practically
impossible when Y has many causes, as does human behavior, we often have to
settle for experiments where only some, or maybe even no, things that are causative
can be controlled or observed. We posit race as one of many causes of income. We
can measure race and income, but it is clear that race is not (or almost never not) the
sole cause. We can now only say things like this: “Assuming race is causally related
to income, and given some observed race-income pairs, as well as assuming some
technical modeling details, when race is K, the probability of incomes (for people
we haven’t yet measured) larger than x is pK, whereas if race is J, the probability
is pJ.” We’ll discuss “causally related” in the next chapter. We would also have to
say “Assuming race is not causality related to income, and given some observed
race-income pairs, as well as assuming some technical modeling details, when race
is J or K, the probability of incomes (for people we haven’t yet measured) larger
than x is p; i.e. p is the same for J and K.”

Causal relations are what drive the probability. The uncertainty is only in those
causes which we could not measure. And if we cannot measure potential causes
because we don’t know what they are, then randomizing does nothing for us. It gives
probability no special boost; randomizing does not, as it is tacitly thought, bless
statistical results. If we don’t know what all potential causes are in some human
experiment, for instance, we then do not know if person 1 has a potential cause and
person 2 does not and so on, therefore randomizing does nothing. And there may
be many causes each person possess that are unknown to us, thus mixing people
up helter-skelter is absolutely no guarantee of producing equal mixtures of people
with these unknown causes in each of our experimental groups. We are flying blind.
What probability does for us is to regain partial, but still hazy vision for those causes
we have assumed are operative.

Besides, “randomizing” isn’t even a thing that one can do in the mystical
sense people usually take that word. Since randomness only means unknown,
to randomize can only mean to make unknown and that is the opposite goal of
any experiment! Adding “randomness” to experiments does not make them valid,
it makes them worse. Thus randomizing, if it means anything, means removing
control. And that is fascinating.
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There is still the vague unsettling notion that “randomizing” does something
for us. And this is true. It can, in some situations, restores trust, or rather allay
suspicions of deceit. But this is only when randomizing is used in its proper sense
of removing control. When dealing with duplicitous lying unscrupulous scheming
self-decepting conniving canny chiseling human beings we need often to have some
procedure to lessen the chance of falsehood. This is why we have referees flip a coin
to decide who gets the ball first. The coin flip is random in the sense of unknown.
It is also chaotic in the sense that it is sensitive to conditions. We all understand
it is difficult—but not impossible!—to manipulate the flip so that a given outcome
occurs. In this way, we let “nature” decide who gets the ball. Or, better, we remove
the knowledge that some human being is cheating us in some way. Feelings aren’t
hurt. We also remove control (randomize) patients in medical trials. Doctors are
as prone (and maybe more?) to self-deception as the rest of us, and they can too
easily veer patients into treatment and control groups to make the treatment seem
better or worse than it really is. So we remove control from the doctor and give
it another, say, a statistician. This isn’t ideal because usually the statistician thinks
he is “randomizing” in the mystical sense. It would be far better to examine each
patient and control assiduously which group in an experiment this patients goes,
and for this control to be open so that fears of abuse are minimized. Stephen Senn
has many insights on this subject, [194, 196]. And notice physicists don’t rush to
“randomize”: they control. That’s because cheating, including self-cheating, is far
less of a problem (but not non-existent).

6.4 Nothing Is Distributed

People sometimes speak as if random variables “behave” in a certain way, as if
they have a life of their own. Thus “X is normally distributed”, “W follows a
gamma”, “The underlying distribution behind y is binomial”, and so on. To behave
is to act, to be caused, to react. Somehow, it is thought, these distributions are
causes. This is the Deadly Sin of Reification, perhaps caused by the beauty of
the mathematics where, due to some mental abstraction, the equations undergo
biogenesis. The behavior of these “random” creatures is expressed in language
about “distributions.” We hear, “Many things are normally (gamma, Weibull, etc.
etc.) distributed”, “Height is normally distributed”, “Y is binomial”, “Independent,
identically distributed random variables”.

I have seen someone write things like “Here is how a normal distribution
is created by random chance”. Wolfram MathWorld [219] writes, “A statistical
distribution in which the variates occur with probabilities asymptotically matching
their ‘true’ underlying statistical distribution is said to be random.” There is no such
a thing as a “true” distribution in any ontological sense. Examples abound. The
temptation here is magical thinking. Strictly and without qualification, to say a thing
is “distributed as” is to assume murky causes are at work, pushing variables this way
and that knowing they are “part of” some mathematician’s probability distribution.
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To say “X is normal” is to ascribe to X, or to something, a power to be “normal”
(or “uniform” or whatever). It is to say that forces exist which cause X to be
“normal,” that X somehow knows the values it can take and with what frequency.
If this curious power notices we have latterly had too many small X, it will start
forcing large ones so that the collective exhibits the proper behavior. This is akin to
the frequentist errors we earlier studied.

To say a thing “has” a distribution is false. The only thing we are privileged to
say is things like this: “Give this-and-such set of premises, the probability X takes
this value equals that”, where “that” is calculated via a probability implied by the
premises. (Ignore that the probability X takes any value for continuous distributions
is always 0; this is discussed much later under measurement.) Probability is a
matter of ascribable or quantifiable uncertainty, a logical relation between accepted
premises and some specified proposition, and nothing more.

Observables also do not “have” means. Nor do they have variances, autocorre-
lations, partial or otherwise, nor moments; nor do they have any other statistical
characteristic you care to name. Means and all the rest can be calculated of
observables, of course, but the observables themselves do not possess in any
metaphysical sense these characteristics. This goes for observables of all kinds.
Time series are, in some analyses, supposed to be “stationary”. A stationary process,
it is said, has the property that the mean, variance and autocorrelation structure do
not change over time. Actual functions of observables such as means do change
over time, as all know. Premises from which we deduce probabilities if they include
observable propositions can also change, and thus so can the probabilities. Specific
model premises which hold fixed various parameters (about which much more later)
can be assumed or not. That is all stationarity means epistemologically. Causes of
observables can and often do change, but since probability is never a cause, neither
can stationarity nor any other statistical characteristic be a cause.

Back to Sally and her grade point. We had S D “Sally’s grade point average is x”.
Suppose we have the premise G D “The grade point average will be some number
in this set”, where the set is specified. Given our knowledge that people take only
a finite number of classes and are graded on a numeric scale, this set will be some
discrete finite collection of numbers from, say, 0 to 4; the number of members of
this set will be some finite integer n. Call the numbers of this set g1; g2; : : : ; gn.

As said above, the probability of S given G does not exist. This is because x is
not a number; it is a mere placeholder, an indication of where to put the number
once we have one in mind. It is at this point the mistake is usually made of saying x
has some “distribution”, usually normal or perhaps uniform (nearly all researchers
I have seen in applications of GPA say normal). They will say “x is normally
distributed.” Now if this is shorthand for “The uncertainty I have in the value of x
is quantified by a normal distribution”, the shorthand is sensible—but unwarranted.
There are no premises which allow us to deduce this conclusion. The conclusion is
pure subjective probability (and liable to be a rotten approximation).

Evidently, many do not intend this meaning, and when they say “x is normally
distributed” they imply that x is itself “alive” in some way, that there are forces
“out there” that make, i.e. cause, x to take values according to a normal distribution.
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Maybe the central limit theorem lurks and causes sums of individual grades, which
form the GPA, to take certain values. This is incoherent. Each and every grade Sally
received was caused, almost surely by a myriad of things, probably too many for us
to track; and there is no indication that the same causes were at work for every grade.
But suppose each grade was caused by one thing and the same thing. If we knew
this cause, we would know the value of x; it would be deduced from our knowledge
of the cause. And the same is true if each grade were caused by two known things;
we could deduce x. But since each grade is almost surely the result of hundreds,
maybe thousands—maybe more!—causes, we cannot deduce the GPA. The causes
are unknown, but they are not random in any sense where randomness has causative
powers.

What can we say in this case? Here is something we know:

Pr.x D g1jG/ D Pr.x D g2jG/; (6.1)

where x D g1 is shorthand for S D “Sally’s GPA is g1” (don’t forget this!). This
is the symmetry of individual constants, as seen in Chap. 4. G is equivalent to “We
have a device which can take any of n states, g1; : : : ; gn, and which must take one
state.” From this we deduce

Pr.x D gijG/ D 1=n; i D 1; 2; : : : ; n: (6.2)

There are no words about what caused any x; merely deduced information that
the chance we see any value is as likely as any other value in the set of possible
values. We could say that the uncertainty in x is quantified by a uniform distribution
over g1; : : : ; gn, but since that leads to sin, it is better to say the former. Incidentally,
a natural objection is that GPAs don’t seem to be equally likely to be any number
between 0 and 4, but that is because we mentally add to G evidence which is not
provided explicitly. (I’m not claiming G is a good model.)

Can propositions have “true” distributions? Only in a limited sense. So-called
random variables do not have to represent the “outcome” of the event from some
experiment. Suppose X D “The color of the dragon is x”; if we let D D “Dragons
can be green, black, or puce”, the probability of “x” is easily computed, but we
will never see the event. And there will be no real cause, either. This is the true
probability, or true distribution, if you like. Any time we can deduce the “model”,
as it were, we have a true probability. But it is never the proposition that “has” a
distribution or probability, it is only our understanding that does.

Lastly, when people think variables have “true” distributions, they are likely
to blame data which does not conform to their expectations. Thus we see people
tossing out “outliers”. And since current practice revolves around model fit, data
which does not fit increases the fit of what is left, leading to over-certainty.
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6.5 Quantum Mechanics

A physicist designs an experiment according to quantum mechanical theory. This
theory, or rather model, predicts that a certain quantum mechanical event, say
a photon exhibiting circular or planar polarization, will occur with a certain
probability. I discuss what models mean later, but for now this is clear enough.
Given this model, we can deduce that if the experiment were run so many times,
about so many circularly polarized photons will be observed. The experiment is run
and it is discovered the model closely matches reality.

Experiments like this are of course conducted everywhere and often, with results
closely matching reality being the norm. We therefore have strong confidence of the
model’s or theory’s validity. But don’t forget that in each and every case, without any
exception whatsoever, some thing or things caused the outcomes of the experiment.
If the photon is measured circularly polarized, something caused that to happen; if
measured plane polarized, something caused that, too. What are these causes? Hold
that question.

Given, “This is a two-sided coin which when flipped must show only one side”
we deduce “The probability of H equals 1/2.” We can run the experiment, as also has
been done everywhere and often, and discover that, once again, our model matches
reality. We have earlier seen that each flip was caused to fall as it did. But we usually
don’t know these causes. Because we do not know them does not mean they do
not exist. Indeed, with coins not only do we know theses causes exist, but we can
even, under certain controlled conditions, know the exact causes and thus deduce
the events, i.e. predict them with certainty.

But not for quantum mechanical events. It appears we are barred from knowing
causes beneath some level. Just like with the coin, though, because we do not know
the causes does not imply they do not exist. Causes must exist. Things cannot happen
for no reason, or spontaneously, which is sometimes a synonym.

Now there are claims that Bell’s Theorem proves there are no causes of quantum
mechanical events because Bell outlaws “hidden variables”, which are taken to be
the only possible kinds of causes for QM events. This is false, and must be false.
Bell’s arguments are probabilistic, and probability is an epistemological measure,
not an ontological one, and so his proof, given his premises (assumptions), is about
the state of our knowledge, or the lack of it. It cannot be that Bell has discovered
places where the principle of causality is violated. Shimony has said [198] “no
physical theory which is realistic and also local in a specified sense can agree with
all of the statistical implications of Quantum Mechanics.” All this shows is that we
cannot know what the causes are, or perhaps that the causes don’t have a particular
form implied by the theory; or it shows that the causes are “non-local”. Yet on that
point Murray Gell-Mann [90, pp. 171–172] laments that after experiments to test
Bell were run “a wave of reports began to spread alleging that quantum mechanics
had been shown to have weird and disturbing properties.” What properties?

The principle distortion disseminated: : :is the implication: : :that measuring the polarization,
circular or plane, of one of the photons somehow effects the other photon. In fact, the
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measurement does not cause any physical effect [i.e. cause] to propagate from one photon to
another: : :If, on a particular branch of history the circular polarization of one of the photons
may be measured, in which case the circular polarization of both photons is specified with
certainty: : :no signal passes from one photon to the other in the experiment that confirms
quantum mechanics.

Gell-Mann’s intuition that causes are different than knowledge is correct. Consider
this. Since everything that changes is at base quantum mechanical, or whatever it is
that is “below” this (strings, say), then to say that every quantum mechanical events
happens “spontaneously” is to say every single thing changes “spontaneously.” That
must mean everything that happens ultimately happens for “no reason.” This is nuts.
If there were no reason to anything, the world could no exhibit consistent structure.
Science would be impossible, predictions would be of no use. The experiment ran
above was carefully and diligently controlled, as quantum mechanical experiments
tend to and must be. Single and paired photons are involved, and accurate predic-
tions are made. But how to model complex entities like baseballs, trees, and human
beings, how does everything fit together? That cannot be answered by relying on
“randomness”

There are some authors, incidentally, like Fuchs who attempt subjective Bayesian
probability QM theories. But since we have seen subjective probability is incorrect,
I do not explore these further. This entire section, as is obvious, relies on the
assumption that cause must be present, which is proved next chapter. I also do not
attempt a complete explanation for QM here; the literature is vast and deep, and
there obviously isn’t the space here to survey it.

6.6 Simulations

These words from Jaynes are right: “It appears to be a quite general principle
that, whenever there is a randomized way of doing something, then there is a
nonrandomized way that delivers better performance but requires more thought.”

We often hear of “simulating random normal” or creating “stochastic” or
“synthetic” variables, or perhaps “drawing” from a normal or some other dis-
tribution. Such things form the backbone of many statistical methods, including
bootstrapping, Gibbs sampling, Markov Chain Monte Carlo (MCMC), and several
others. As with every other mistake about randomness, these methods are wrong
in the sense that they encourage loose and even magical thinking about causality,
and they are an inefficient use of time. If assiduously applied, reasonably accurate
answers from these algorithms can be had, but they don’t mean what people think
and more efficient procedures are available, as Jaynes said.

The way simulations are said to work is that “random” or “stochastic” numbers
are input into an algorithm and out pops answers to some mathematical question
which is not analytic, which, that is, cannot be solved by pencil and paper (or could,
but at too great a difficulty). Let’s work with an example. One popular way
of “generating normals” is to use what’s called a Box-Muller transformation.
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Any algorithm which needs “normals” can use this procedure. It starts by “generat-
ing” two “random independent uniform” numbers U1 and U2 and then calculating
this creature:

Z D
p

�2 ln U1 cos.2�U2/; (6.3)

where Z is now said to be “standard normally distributed.” We don’t need to worry
about the math, except to notice that it is written as a causal, or rather determinative,
proposition: “If U1 is this and U2 is that, Z is this with certainty.” No uncertainty
enters here; U1 and U2 determine Z.

As above, random or stochastic means unknown, and nothing more. Yet there
is the unfortunate tendency to assume that “randomness” somehow blesses sim-
ulations. But since randomness means unknowingness, how can unknowingness
influence anything if it isn’t an ontological cause? It can’t. It is felt that if the
data being input to simulation algorithms aren’t “random”, or simulated to look
“as if” they were random, then the results aren’t legitimate. This is false. Since
randomness is not a cause, we cannot “generate” “random” numbers in any sense.
We can, of course, make up numbers which are unknown to some people. Example:
I’m thinking of a number between 32 and 1400: to you, the number is random, but
to me it is generated, i.e. caused, by my feverish brain.1

Since probability is a measure of information, computers cannot generate random
numbers (nothing can). What happens, in the context of our math above, is that
programmers have created algorithms which will cause numbers in the interval
.0; 1/ (notice this does not include the end points); not in a regimented way so
that we first see 0.01, then 0.02, etc., but caused with reference to some complex
formula. These formulas which, if run long enough, will produce all the numbers
between .0; 1/ at the resolution of the computer (some will be repetitions): infinite
resolution is not possible.

Suppose this resolution is 0.01; that is, our resolution is to the nearest hundredth.
Then all the numbers 0.01, 0.02, : : :, 0.99 will eventually show up (again, many
will be repeated; of course, we assume the programmer hasn’t left a hole in this
sequence). Because the numbers do not show up in sequence, many fool themselves
into thinking the numbers are “random”, and others, wanting to hold to the odd
mysticism but understanding the math, call the numbers “pseudo random”, an
oxymoron.

If we want to use the Box-Muller algorithm, we can sidestep this self-induced
(and unnecessary) complexity and simply write down all the numbers in the
sequence, i.e. all the pairs in .0; 1/2 (since we need U1 and U2) at whatever resolu-
tion we have; with our resolution, this is .0:01; 0:01/; .0:01; 0:02/; : : : ; .0:99; 0:99/

(this is a sequence of pairs of numbers, of length 9801). We then apply the
determinative mapping of .U1; U2/ to Z as given above, which produces (3.028866,
3.010924, . . . , 1.414971e-01). What it looks like is shown in Figs. 6.1 and 6.2.

1The number, incidentally, is 32.32.
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Fig. 6.1 The 9801 values of Z for each pair of (U1; U2) starting from (0.01, 0.01) and progressing
to (0.99, 0.99)
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Fig. 6.2 The “true” value of the cumulative standard normal distribution in a dashed line, and the
value of the ECDF for Z given by the mechanical approach

Figure 6.1 shows the mappings of the pairs .U1; U2/ to Z, along the index of
the number pairs. If you’ve understood the math above, the oscillation, size, and
sign changes are obvious. In not, spend a few moments with this and it will become
clear. Figure 6.2 shows the empirical cumulative distribution (ECDF) of the mapped
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Z (solid), overlayed by the (approximate) analytic standard normal distribution
dashed), i.e. the true distribution to high precision (as given by the R function
pnorm which itself relies on an analytical approximation). It is difficult to see the
deviation in the two plots.

There is tight overlap between the analytical approximation and the mechanical
mapping, except for a slight bump or step in the ECDF at 0, owing to the crude
discretization of .U1; U2/. Computers can do better than the nearest hundredth, of
course. Still, the error even at this rough resolution is small. I won’t show it, but even
a resolution 5 times cruder (nearest 0.05; number sequence length of 361) is more
than good enough for most applications (a resolution of 0.1 is pushing it, but the
reader should try it). This picture gives a straightforward, calculate-this-function,
pen-and-paper-like analysis, with no strangeness about randomness—and it works.

What use is Z? Suppose we were after, say, “What is the probability that Z is less
than �1?” All we have to do is ask: calculation from the ECDF involves counting
the number of “generated” Z as less than �1 divided by (in this case) 9801, the
length of the pairs of U. Simple as that. There are no epistemological difficulties
with the interpretation, it comes right from the rule that all probability is conditional
on the information supplied.

The analytic approximation to the probability Z < �1 is 0.159 (this is our
comparator; calculated from R’s standard approximation). With the resolution of
0.01, the direct method shows 0.160, which is close enough for most practical
applications. A resolution of 0.05 gives 0.166, and 0.1 gives 0.172. I’m ignoring
that we could have shifted U1 or U2 to different start points; I’m not attempting to
provide optimal algorithms, only to show that the traditional “random” interpreta-
tion is wrong.

None of these answers have plus or minuses, though. With the 0.01 resolution, all
we have is the answer with no idea of the size of the approximation error. In essence,
there is no error, because the probability we have is conditional on the evidence we
accepted. However, it is the evidence itself which is questioned. If this evidence is
not logically equivalent to the function under consideration, then an approximation
exists. The approximation is the accepted premises (resolution, the mapping, and so
on) to the function of interest. Given our setup (starting points of 0.01 for U1 and
U2, and the mapping function above), these are the answers. There is no probability
attached to them, because none need be: we are certain of these answers given these
premises. But we would like to have some idea of the error of the approximation.
We’re cheating here, in a way, because we know the right answer (to high degree),
which in actual problems we won’t. In order to get some notion how far off that
0.160 is we’d have to do more pen-and-paper work, engaging in what might be a
fair amount of numerical analysis. Of course, for many standard problems, just like
in MCMC approaches, this could be worked out in advance.

Contrast the determinative, fixed-pair method to the standard mystical or “sim-
ulation” approach. For the latter, we have to specify something like a resolution,
which is the number of times we must “simulate” “normals”, which we then collect
and form the estimate of the probability of less than �1. This is done by counting
like the fixed-pair method. To make it fair, pick 9801, which is the length of the
0.01-resolution series.



6.6 Simulations 107

I ran this “simulation” once (using R’s runif function and the Box-Muller
transform) and got 0.162; a second time 0.164; a third showed 0.152. There’s a
new problem: each run of the “simulation” gives different answers. Which is the
right one? They all are; a non-satisfying but true answer: they are all local or
conditional truths. So what will happen is the “simulation” itself is iterated, say
5000 times, where each time we “simulate” 9801 “normals” and each time estimate
the probability Z < �1, keeping track of all 9801 estimates? That kind of thing is
the usual procedure. Turns out 90 % of the results are between 0.153 and 0.165, with
a median and mean of 0.159, which equals the right answer (to the thousandth). It’s
then said there’s a 90 % chance the answer we’re after is between 0.153 and 0.165.

This or similarly constructed intervals are used as error bounds, which are
“simulated” here, but could and should be calculated mechanically, as in the
mapping approach. Notice that the uncertainty in the mystical approach feels greater,
because the whole process is opaque and purposely vague. The numbers seem like
they’re coming from nowhere. The uncertainty is couched probabilistically, which
is distracting.

It took 19 million calculations to get us the simulation answer above, incidentally,
rather than the 9801 calculations (more or less) from the mechanical-causative
approach. But if we increase the resolution to 0.005 in that approach, the answer
is 0.159 at a cost of just under 40,000 calculations. Of course, MCMC fans will
discover shortcuts and other optimizations to implement in their procedure; the 19
million may be substantially reducible. The number of calculations is a distraction
here, anyway. Because we want to understand why the “simulation” approach
works. It does (at some expense) give reasonable answers, as is well known. If we
remove the mysticism about randomness and all that, we get Fig. 6.3.

The upper two plots are the results of the “simulation”, while the bottom two
are the mechanical-causal mapping. The bottom two show the empirical cumulative
distribution of U1 (U2 is identical) and the subsequent ECDF of the mapped normal
distribution, as before. The bump at 0 is there, but is small.

The top left ECDF shows all the “uniforms” spit out by R’s runif() function.
The only real difference between this and the ECDF of the mechanical approach
is that the “simulation” is at a finer resolution (the first U happened to be
0.01031144, 6 orders of magnitude finer than the mechanical method’s purposely
crude 0.01; but the Us here are not truly plain-English uniform as they are in the
mechanical approach). The subsequent ECDF of Z is also finer. The red lines are
the approximate truth, as before.

Here’s what’s revealed by these pictures, the big secret: the “simulation” just is
the mechanical approach done more often! After all, the same Box-Muller equation
is used to map the “uniforms” to the “normals”. That’s the secret to the success of
simulations: the two approaches, causal and simulation, are equivalent!

Which is now no surprise: of course they should be equivalent philosophically.
We could have taken the (sorted) Us from the “simulation” as if they were
the mechanical grid .U1; U2/ we created and applied the mapping, or we could
have pretended the Us from the “simulation” were “random” and then applied the
mapping. Either way, same answer, which they had to be because there is nothing
mysterious in “random” numbers.
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Fig. 6.3 The upper-left plot shows the realized values of U1 from R’s runif function (U2 looks
the same), and the upper-right shows the ECDF of the calculated values of Z (solid) and the true
standard normal (dashed). The bottom-left shows the sequence of U1 (U2 is the same), and bottom-
right shows the ECDF of the calculated and true values of Z. Both the simulation and mechanical
approach give nearly identical answers to reasonable accuracy

The only difference (and advantage) seems to be in the built-in error guess from
the “simulation”, with its consequent fuzzy interpretation. But we could have a
guess of error from the mechanical algorithm, too, either by numerical analysis
means as mentioned, or even by computer approximation. One way is this: estimate
quantities using a coarse, then fine, then finest grid and measure the rate of change of
the estimates; with a little analysis thrown in, this makes a fine solution of the error.
Much work can be done here.

The benefit of the mechanical approach is the demystification of the process.
It focuses the mind on the math and reminds us that probability is nothing but a
numerical measure of uncertainty, not a live thing which imbues “variables” with
life and which by some sorcery gives meaning and authority to results.
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6.7 Truly Random and Information Theory

One thing has to be admitted outright: that no field invents more tantalizing (and
marketable) terms than computer science. Machine learning, neural nets, universal
approximators, genetic algorithms, artificial intelligence, fuzzy logic, and the list
goes ever onward. The promises implied in these phrases is inspiring. Machines that
learn! Algorithms that figure out any problem with no human intervention! That a
method fails to live up to its pledges is never remembered in the rush to embrace the
next.

The empiricist bias of the methods is never noticed, either. Of course, computers
work with “data”, with empirical renderings of one kind or another, so that methods
that are entirely empirically based are to be expected in practice. But we have
already seen that some inductive reasoning extends beyond the empirical. Though
many would argue the point, computers cannot do what rational minds can, for
instance in induction-intellection. Recall in Chap. 3 that Groarke said induction-
intellection provides the “Abstraction of necessary concepts, definitions, essences,
necessary attributes, first principles, natural facts, moral principles.” Though data to
start these induction-intellections comes from empirical senses, it immediately (and
instantaneously) extends beyond the empirical to the universal, to what can never
be empirically verified. Computers, since they cannot think in this way, cannot do
this.

Induction-intellection, induction-intuition, induction-argument, induction-
analogy, i.e. the bulk of inductive reasoning, lie beyond the ability of any formal
algorithm. Computer methods will thus never be a panacea for creating knowledge.
Induction-probability is, however, is ripe for the picking, at least as far as the kinds
of propositions in which we have an interest are observable, which we understand
by now isn’t always the case. The propositions of science are in large part empirical,
so it is here we expect information theory and computer science to play the largest
role.

One of the architects of information theory was Ray Solomonoff. His classic
paper “A Formal Theory of Inductive Inference. Part I”, [201], purports to be an
existence proof for probabilities for “all problems in inductive inference”, where
he uses the term induction in its induction-probability sense, and where he does
not appear aware that other senses of induction exist. Neither is the field to this
date aware, as far as I can tell. In this paper (p. 16) he says his model—where he
uses “model” in the sense of his scheme for computing probabilities and not in the
sense used by statisticians—accounts for new observations in some sequence in an
“optimum manner” (pp. 16–17):

By “optimum manner” it is meant that the model we are discussing is at least as good as any
other model of the universe in accounting for the sequence in question. Other models may
devise mechanistic explanations of the sequence in terms of the known laws of science,
or they may devise empirical mechanisms that optimally approximate the behavior and
observations of the man within certain limits. Most of the models that we use to explain the
universe around us are based upon laws and informal stochastic relations that are the result
of induction using much data that we or others have observed. The induction methods used
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in the present paper are meant to bypass the explicit formulation of scientific laws, and use
the data of the past directly to make inductive inferences about specific future events.
It should be noted, then, that if the present model of the universe is to compete with other
models of the universe that use scientific laws, then the sequence used in the present model
must contain enough data of the sort that gave rise to the induction of these scientific laws.
The laws of science that have been discovered can be viewed as summaries of large
amounts of empirical data about the universe. In the present context, each such law can
be transformed into a method of compactly coding the empirical data that gave rise to that
law.

The hope is that an automatic method to discover all scientific “laws” (a term I
discuss next chapter) is on the horizon. All we need is data of sufficient length,
a computer powerful enough to hold it, and his algorithm which “automatically”
applies probabilities, and all knowledge will be ours. But since “laws”, such as
they are, involve understanding causality, nature, and essences, and these acts of
understanding are provided by inductions of forms other than induction-probability,
this is a false hope.

What is to be applauded in Solomonoff’s reasoning is his emphasis on prediction.
He is not in the least interested in parameters, the obsession of statisticians, but
only in what past observations have to say about future (rather, those not yet made
known) data. We’ll meet Solomonoff’s probability formulation in the discussion of
parameters in Chap. 8.

Related to Solomonoff’s work is the idea of algorithmic complexity, and, with it,
what information scientists call “random.” Chief is the concept that we are working
with a set of observed data, or a “string” of some fixed length written in some code
(as the data of this sentence is written in English). We next take some model, or
computer or real language, and express the string (observed data) in that language.
The complexity of the string is the length of the shortest description of the string
from the models under consideration. Loosely speaking, if this shortest description,
conditional on the models, is no shorter than the length of the original data, the
data is said to be “random”. Another way: if the data can’t be compressed by
the model, the data is “random.” Randomness is thus conditional on the model
or models considered and is, as is clear, a synonym of unpredictable. Chaitin [43,
p. 111] says, “There’s only one definition of random: : :something is random if it is
algorithmically incompressible or irreducible,” and he humbly develops a measure
of this which he calls “Chaitin randomness.” Although his notation does not show
it, Chaitin randomness, i.e. randomness, is conditional on the model or “machine”
used, as notions of uncertainty always are. Again, unpredictable.

Knowledge provided by forms of induction like induction-intellection is thus
random in this sense, since there is no way to get to this knowledge using any
model. So axioms are random, too; all sui generis knowledge is random in this way.
Randomness in the sense used by information theory is thus related to predictability.
That which cannot be predicted with certainty, i.e. deduced, from some model, i.e.
some set of accepted premises, is in some sense random; and this accords with
the statistical meaning of the term. It is “beyond” the model or base of existing
knowledge. The digits of � , for instance, are random in this sense, because their
simplest description is just to list the digits. We know not from whence these
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digits come in any universal sense, given the premises that come in (for example)
number theory. But the digits of � can be calculated to any finite expansion because
algorithms exist. So � is not entirely random.

Finally, we can now see that so-called tests for randomness are misnamed. Since
there is no such thing as randomness, tests for it are like tests for Bigfoot. Instead,
what is tested for, and what should be acknowledged, is predictiveness. A sequence
of numbers, or a string, or whatever, is more or less predictable. So what does
predictable mean? That we have identified the premises which determine or which
cause the sequence. Once this model is known, if it can be known, and we have
seen in QM that not all models are knowable, but then again what causes axioms
to be true is also not knowable, we can predict with certainty. Being able to predict
without certainty is where uncertainty or “randomness” enters.

The amusing things about many tests for “randomness”, i.e. predictability, is that
they always turn a blind eye to the premises which are known to be determinative.
One such algorithm is the Mersenne Twister. Its content is not of interest; what is,
is that the sequence put out by it is, knowing the content and initial conditions,
perfectly known. Tests for randomness are used on a given sequence, and these are
said to be “random”, but only because the content of the algorithm are ignored in the
test! There are also firms that will supply, for a fee, “genuinely random” numbers,
perhaps created through physical or mechanical processes. But since these don’t
exist, what is the customer getting? Simply a sequence which, examining only the
sequence, does not allow certain predictions to be made of the (of future values of
the) sequence. Of course, we have that sort of thing with QM. We can only predict
within certain bounds, depending on the kind of experiment. And, again, the only
limitation, but a big one, is that we are guaranteed not to know the causes behind the
sequence. Since we can prove this by other means, there is no need to have a “test”
for the randomness of such sequences.

Let me clarify that last, but utmost important, point. We often know what deter-
mines (i.e. ascertains) a necessary truth; these determinations are the basis of proof.
But we can never know why, or rather, what causes these truths. Why are Peano’s or
any axioms true? Why a universe (where I use that word in its philosophical sense
of all there is) like this, with these fundamental properties, whatever they turn out
to be? I do not claim we know what we now call fundamental is fundamental in
the same sense axioms are. I only ask why whatever is fundamental is fundamental.
Answer: we have no idea, and we can have no idea. The mind of God is not ours to
know. Necessary truths are the Way Things Are. And that is that.

Lastly, to clarify the clarification, here is an interesting point about “true”
randomness that arose from a work by Donald Knuth [133]. Start with these
equations:
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The remarkable thing about (6.5) is that we can figure the n-th digit of � without
having to compute any digit that came before. All it takes is time, just like in
calculating the digits of e in (6.4). Now (the digits of) � and e are often said to
be “random”, e.g. [5, 12, 42, 155]. Since we have a formula, we cannot say that the
digits of � are unknown or unpredictable. Yet there they all are: laid bare in a simple
equation. I mean, it would be incorrect to say that the digits are “random” except
in the sense that before we calculate them, we don’t know them. They are perfectly
predictable, though it will take infinite time to get to them all. But by “random” what
is meant is that e and � are transcendental, meaning numbers that aren’t algebraic,
which in turns means that they cannot be explicitly and completely solved for. Yet
Eqs. (6.5) and (6.4) solve for them in the certain sense that all the digits can be had
if one is willing to wait long enough.

The equations here are determinative; they tell us the digits of e and � , and so
these transcendentals are not random in a predictive sense since we have perfect
predictability, but they are random in the sense that their origins are unknown.
They don’t tell us why it’s these digits rather than some others. Nature is silent
on the cause of these values. Why does � D 3:1414593 : : : ? and not something else
entirely? Answer: we do not know. It is the Way Things Are.



Chapter 7
Causality

“Anybody who writes a book in order to generate doubt on causality refutes the message
by the very means that carries it.”—Stanley Jaki.
“Felix, qui potuit rerum cognoscere causas”—Virgil.

A philosopher writes a book to convince his readers that causality is nonexistent. He
hopes by his actions to cause his reader to adopt his view. How did the words get
on the pages of the book demonstrating causality doesn’t exist? The contradiction
is never noted, perhaps because many expositors of theories exempt themselves
from the consequences of their creations. Many modern philosophers are deeply
suspicious about causality, a doubt reaching even to philosophical skepticism. Much
of the distrust and misunderstanding of causality is because of post-Decartesian
philosophy, which laid aside Aristotelian views prematurely, especially about the
nature of cause. And this is odd because to Aristotle, the goal of science, and not
necessarily its practice, is a matter of rerum cognoscere causas, or knowledge of the
cause of things. This goal has largely been replaced by predictive ability in many of
the sciences, which has much going for it, and which is a goal I suggest is returned
to in fields which must use probability. But the ultimate aim of science must be the
knowledge of the cause of things. If that is science, the predictive goodness and
what is useful is not science per se, but techne or engineering.

That causality is doubted by some philosophers probably accounts for why
many physical scientists routinely ignore philosophers. Scientists make their livings
pursuing and even sometimes discovering (secondary) causes and can’t countenance
the idea that causes don’t exist. Except for those scientists who are earnest in
their attempts to say their measurements happened by magic, i.e. just happened
for “no reason.” On the other hand, some scientists enthusiastically believe all
causal relationships can be discovered by applying the right computer algorithm
or scientific “procedure”. In an influential book, Judea Pearl writes [166], “The
possibility of learning causal relationships from raw data has been on philosophers’
dream lists since the time of Hume (1711–1776).” He, like Solomonoff in the last
chapter, believes he has found this Statistician’s Stone (this is my term). He hasn’t

© Springer International Publishing Switzerland 2016
W. Briggs, Uncertainty, DOI 10.1007/978-3-319-39756-6_7

113



114 7 Causality

because it can’t exist. And at any rate, learning causal relationships has been on
philosophers’ lists since the pre-Socratics: causality did not come into existence
with Descartes, Hume, or Kant. And indeed, their view and the views of some other
moderns is particularly stunted.

Cause is analogical. There is not one type or flavor or aspect of cause, but
four: a formal, material, efficient, and final or teleological. Most causation concerns
events which occur not separately, as in this before that, but simultaneously, where
simultaneous events can be spread through time. Many causal data are embedded
in time, and there two types of time series which are often confused: per se and
accidental. These should not be mistaken for non-causal data series which are all
accidental.

Causes, if they exist and are present, must always be operative, a proposition that
has deep consequences for probability modeling. Falsifiability is rarely of interest,
and almost never happens in practice. And under-determination, i.e. the possibility
of causes other than those proposed, will always be with us.

Here is an example. Suppose scientists, via one of the NASA Rovers, found
a device on Mars. It is roundish, the color of the Martian soil and occasionally
displays, or is thought to display, what appear to be numbers. Scientists have
decided the device has two “inputs”, which are thought to be two protuberances
in the “back”. Through a series of inferences, it has been decided that the displayed
numbers are correlated (I mean this word in its plain English sense) to the “inputs”,
which have been discovered to be “activated” (they flash different colors) in the
same base of numbers as the display.

Put plainly, and I’ll convert the numbers to base 10 for ease of understanding,
the display is the sum of activations of input A and of input B. Mathematically,
ACB D D.isplay/. So far, since the Rovers have not had much chance of observing
the object, dubbed The Calculator, the activations of A and B have never been greater
than 56 individually. I mean A; B < 57, which necessarily implies D < 113.

Naturally, since it is plain this is a device, scientists want to know its purpose.
Theories are flying around NASA thick and fast. Though there are more theories
than there are scientists, three rough camps have coalesced. Camp 1 says it’s
coincidental that so far A; B < 57, thus always A C B D D no matter the number of
activations of A and B. Camp 2 theorizes that the activations are “obviously” caused
by two types of cosmic rays, which if they were to exceed some tolerance, they
would cause D D 5. This, they say, is a derivation of string theory. I mean, if either
A; B > 56, then the function is no longer a straight plus, but is instead a “quus”; i.e.

A C B D D ; if A; B < 57;

A C B D 5 ; if A; B > 56:

Camp 3 says ACB D D for any number of activiations, but that after some period of
time the device must start to degrade and that, because of various technical reasons,

A C B D D ; before Date;

A C B D C < D ; after Date;

and where the inequality is strict. We have plus and quus already, so call this (and
this is my suggestion, not the scientists’) “cuus”.
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The observations of the device are consistent with each of these three theories—
and with many more theories, too. Recall I’ve only given you the three most popular.
Obviously, none of the theories put forward by any of the scientists are inconsistent
with the observations. We conclude from this that the physical observations are
indeterminate; I mean, the state of the device, or the world plus the device, do not
fully determine the device’s purpose.

Still, even though the facts are indeterminate, we’d still like to know which of the
plus, quus, cuus theories is right. I have no idea. Later (in Chap. 10) we’ll learn that
no theory “has” a probability, so there is no joy to be found in searching which of
theories is more “likely”. Of course, we could use each theory to make predictions
and see which is better in some decisionable sense, which is very useful. But we’ll
never know which of plus, quus, cuus, or even some other theory, is true until we
understand the purpose of the device. And we’ve seen that the facts alone do not and
cannot determine what this purpose is.

To understand the purpose is to understand, in part, the cause of the device.
Cause, as explained, is of four aspects: the formal or form, the material, the efficient,
and the purpose, final, or end. In this case, the form is obvious enough: the device
is “disguised” or made to look like a rock. The material is unknown at this point,
but it’s thought to be at least a rocky covering, or something which simulates rock.
The efficient cause is, all agree, some kind of intelligence and whatever comprises
the internal workings. Whether the designer is Martian or some clever human is
unknown.

But what about the purpose of the device? Well, that’s what the real unknown
is. If it turns out that some Martian (or whomever) designed the device to count
activations, however these are brought about, then plus is the right theory. If instead
the final goal of the device was to count cosmic rays, then we’re on to quus. Now
it could be that quus and cuus are right, on the guess that the harsh cosmic rays are
causing the degradation. That means the quus-purpose is right, but the cosmic rays
efficiently cause a degradation which leads to cuus. So we have to be careful to keep
in mind what part of the cause we’re examining.

If somehow we discover the user’s manual or tech specs for the device (and could
translate them), then we’d know the cause of D—we’d know all aspects of the cause,
and then we’d know the theory. And, as should now be obvious, what holds for
this Martian device holds for all devices, whether made by Martians or via natural
processes. It is only after we have knowledge of cause that under-determination
ceases to be a problem.

Knowledge of cause is above, or rather beyond or deeper than, knowing what
happens. Even beasts can know what happens, but they don’t and can’t understand
why. Knowledge of cause is the grasping of essence, of the natures and substantial
forms of the objects under consideration. None of these things are material in
themselves, but are universals above and beyond the material world. Thus to come
to knowledge of cause is to understand universals, which we get through a form of
induction. Induction is the immaterial “movement” from finite particularities to an
infinite generality and is such that only rational creatures can accomplish it.

The “quus” example is from Saul Kripke, as many will recognize. If not see [72].
Quus isn’t usually presented with respect to under-determination, but of language
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and thought and how the intellect must be immaterial. I have concentrated on the
epistemology, because uncertainty is our main interest.

7.1 What Is Cause Like?

In order to grasp cause, we need a brief, a very brief, introduction to the Aristotelian
metaphysics of change. These are ancient views, once largely abandoned but becom-
ing current one again for the very good reason they are correct. Philosophers like
Nancy Cartwright [40], William Wallace [216], Ed Feser, and others are restoring a
full and robust philosophy of Aristotelian causality back to the sciences. And there
are other calls for scientists to sort out just what scientific pronouncements are:
predictions or understanding of cause? See [41, 68]. What follows in this section
is a précis of Feser’s Scholastic Metaphysics, [74]. Full arguments are not given
here, just enough information is provided to grasp the essential concepts; interested
readers should follow up with the authors mentioned.

Contingent things, such as the book or “device” you are holding, exist as
composites of act and potency, or actuality and potentiality. A lump of clay is
potentially a vase. A lump of clay is not potentially a 1965 Barracuda with a 273 cu
in. LA V8 (a weepingly beautiful automobile) nor is it potentially a stereo. A vase
is in potentia to being a pile of shards. A vase is in actuality a vase, and a lump of
clay is in actuality a lump of clay. The reader is in potentia to receiving a salary of
fifty-thousand a year, unless he already possess that trait, and is therefore in actuality
receiving it. And so on.

Some thing or things must cause every potentiality to become an actuality, that is,
something actual must cause every change, where every change is an actualization
of a potential. A potter is required to turn the potential vase in a lump of clay into a
vase, while a child (in any of dozens of ways) can actualize the shards which are in
potentia in that same vase, once it completed. Feser (p. 33): “These potentialities or
potencies are real features: : :even if they are not actualities.” Potentialities therefore
exist in a certain sense, but in potentia. For instance, the number of numbers between
0 and 1 is potentially infinite, but not actually infinite in practice, a fact which has
special consequences in measurement of real things.

Whatever is changed, is changed by another: whatever is in potential, is made
actual only by something actual. Whatever cannot be changed, is not changed. It is
not the lump’s potential to be a vase that turns it in into a vase, it is an actual potter.
The potter uses his power of making a vase; his hands are the efficient cause. The
formal cause is the form of the vase, the material cause is the clay itself, and the final
cause is the goal, the desire for the vase and not an ashtray. Clearly, the potter has
the power to make the vase even when he is not making it (say, when he’s taking his
Barracuda out for a spin). Aquinas said,“nothing can be reduced from potentiality
to actuality, except by something in a state of actuality” (Summa Theologiae I.2.3;
quoted in Feser, p. 40). This is the principle of causality which I take as axiomatic.
Things do not happen without causes, potentialities are not made actual by nothing,
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for nothing is not a thing, and that which is empty of everything has no power
to cause anything. If things happened, i.e. change occurred, for no reason, then
there would be no way to know that this change was a potentiality made actual
by something actual or that this change happened for no reason or by magic. Batter
steps up the plate and knocks on over the right field wall. Was this flight of the ball
one of the times Nothing stepped in and did its non-cause trick which didn’t cause
the ball to take flight but which made it look like the ball was at one moment on
the bat and the next soaring through the air for no reason? Or was this the time the
batter gets the credit? Why bother doing science if you’re not sure nature is going to
cooperate or be whimsical? Change does not occur without it being caused. There
is no magic.

Science deals with the contingent: (p. 106) a “contingent thing is such that its
existence is distinct from its essence, where its essence is in potency relative to
its existence, which actualizes it: : :To cause a contingent thing is thus to actualize
a potency: : :whatever is contingent has a cause: : :” which is everything in science.
This is not to say that everything has a cause; only that contingent things do, because
only contingent things can be in potency. In Summa Contra Gentiles (Chapter 99, 2),
Aquinas said, “Whatever sometimes is and sometimes is not, results from a cause:
for nothing brings itself from not-being to being: since what is not yet, acts not.”
Only contingent things can sometimes be and sometimes not be.

A child throws a ball and it hits the vase. As the ball hits, the vase buckles; as
the ball hits, the vase begins to break. The “event” is the ball-hitting-vase, and the
ball hitting the vase event is simultaneous, which is not to say instantaneous. The
ball hitting and the vase buckling happen over a short period of time; they are not
different events “entirely loose and separate”, to use Hume’s mistaken phrase: there
is one event, the simultaneity. It is not because we “happen” to see, or “chance” upon
the spectacle of ball-hitting-vase that we know the ball caused the vase to break. It
is because we learn, via induction, that balls traveling at sufficient speed have the
power to break vases of this certain type. It is the vase’s nature to break when hit
by balls like that under these circumstances. We are back to essence. Understanding
essence and powers is to understand cause.

Many modern authors put this the wrong way, saying first the ball hits then the
vase breaks. This is not so. There are not two separate events, but one joint event,
spread through time. This point is crucial. It is difficult to find modern examples
where distinctness in events and separateness in time is not assumed. Of course,
that the ball-hitting-vase is spread through time, however brief, does not mean that
all events are. Certain quantum mechanical events are thought to be instantaneous
(but proof of this is lacking; instantaneous is a remarkably strong attribute). But that
merely confirms the view that we are not witnessing “loose and separate” events, but
joint ones.

Knowing the ball was the efficient cause of the vase breaking is not the whole
story, though it is enough for most (it was for my mother). There are all sorts of
forces involved, including the ball’s momentum, friction, elasticity of both objects,
and so forth. These are not necessary to understand to say the ball caused the break.
These additional forces can be investigated to form a deeper understanding the
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precise mechanisms and powers and to, say, knowing when the vase will or won’t
break. Each of these micro-investigations, as it were, are no different than the gross
version. The essence and powers of the forces involved are understood to be causes.
But there are limits to our knowledge.

Let’s investigate the ball-hits-vase joint event more closely. The ball and vase are
not monoliths, but composed of smaller parts. As the ball pushes into the vase,
the molecules of the ball and vase are themselves undergoing change. These
changes, which are actualizations of potentials, are caused by something actual,
which are the atoms in the molecules. These are also undergoing change, which
are again actualizations of potentials, which are also caused by something actual.
This might be the interactions of the constituents of the atoms, the electrons,
protons, and neutrons, which are also undergoing change. That means there are
more actualizations of potentials caused by other somethings which are actuals.
These may be quarks, which are themselves pushed about by (say) actual strings
(or super-strings), which themselves, perhaps, are caused to change by something
“below” (at a more fundamental level than) them. All of this is happening here-
and-now, simultaneously, but again not necessarily instantaneously. All of these
actualizations of potentialities by other actualities is called a per se times series, or
a per se series of events in the here-and-now time.

But you can see that this process cannot continue to infinity. It must bottom out,
or nothing can ever get moving; no changes could ever be made. There must be
some first cause or first mover or first changer. This makes all other causes in the
chain secondary causes. Secondary causes are the subject of physics; the first or
base cause belongs to metaphysics. The first cause must be entirely actual and have
no potential. It is what makes all “bottom” potentialities actual. It is responsible
for every contingent event, at base. This is the prime or primary cause, which is
ever-present. Science is and must forever be ignorant of this cause; that is, of the
why of this cause, or how this cause is decided or acts. A per se series is a handy
explanation of quantum mechanical EPR-like events, or whatever is “beneath” them,
as discussed earlier. Again, all of the other here-and-now causes—string into quark
into protons into etc.—are secondary causes. All have powers and essences, and it
is the goal of science to understand these secondary causes.

There is another type of causal series, this one distinct in time, an accidental
series. The classic, and really perfect, example is that a grandfather caused his son
to be made and he, your father, caused you to be made. This doesn’t stop with your
grandfather, naturally, but continues along a string of relatives into the past (and
perhaps into the future, if you are so blessed). Remove one of the knots in the string,
i.e. remove one of the causes, and you would not be reading this now.

There are also non-causal accidental series. Unfortunately, in practice, data
analysts often think of accidental series as if they were causal. The field of time
series analysis comes to mind. Examples of non-causal accidental series: yearly
(or monthly or daily or hourly or whatever) average temperature (or sales figures
or unemployment rates or suicides, or etc., etc.). Last year’s average did not and
could not cause this year’s average. How can an average, a mere weightless number,
cause anything? Yet these kinds of series are often supposed to be causal. Result?
Misascribed causes and wild over-certainty. I leave discussion of these accidents
until the last chapter.
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7.2 Causal and Deterministic Models

A causal model is a collection of premises from which are deduced a set of
propositions that are certainly true or false and where we have an understanding
of the powers and essences of the objects considered. Without understanding of the
powers and essences, the model can be no better than deterministic. For example,
given “At time t the object will be red, else blue” the proposition “It is not time
t and the object is red” is false. The object may be red at times other than t,
and, if so, the model is falsified. But this is not a causal model, because we don’t
have any understanding of the nature or essence of the color change. The premises
are enough, however, to determine the change. We must be ever on guard of the
analogical nature of the word determine. To make the model causal, we’d have to
add the “why” of the color change.

The model may, of course, be perfectly predictive but that does not make the
model causal. Why? Notice carefully that there is nothing in the model that describes
the efficient cause of the object changing colors.

There are four types or kinds of causes: formal, material, efficient, and final. We
can make the model causal by grasping the nature of the object and powers of the
thing bringing about the (secondary) cause. The object of which we speak must
have a certain form. Say, a red lollipop. The form of this sucker, as we called them
in Detroit, is constructed of some material, usually sugar, chemical coloring and
flavoring. Some thing took these materials and put them into the form we see; this
might be an assembly line with its associated machinery. This machinery was the
efficient cause. In the end, we eat the thing, which is its purpose or end; rather, the
end was the creation of an edible piece of candy.

In the first example (a very weak model) there are no premises about the object
changing form other than its color: it may change shape as well, but only to the
extent that we still recognize the object as the same object. It’s not clear whether
the color change will be the addition of new material (say, ink), the subtraction of
another (perhaps by sun bleaching), or because it was the nature of the object to be
red at times or blue at times, a change triggered by who knows what efficient cause.

A simple model is “If X then Y”. When somebody asks “Why Y”? The
indubitable answer is “Because X.” This model is as simplistic as can be, but it
is not trivial or empty. All our knowledge provided inductively, like axioms, are
given by this form, where, of course, X might be a compound statement. On the
other hand, these are not truly causal models: these are not even explanations. Why
is or how is it that the (say) principle of non-contradiction is true? We cannot say. It
just is. We can say that we know it is true given our scant observations via induction.
But that is an epistemological explanation and not a causal explanation. We cannot
know why or how something that is necessarily true is necessarily true. That kind
of understanding, like knowing the full nature of the first cause, is closed off to us.
There are some things we must accept on faith.

True causal models instead relate to secondary causes, of the type mentioned
above. Y D “The vase is in shards.” Why Y? Because X D “The ball hit it,” where
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X is shorthand for the forces we know to be responsible. This, too, is a weak model
because it only applied to this ball and this vase. But we can broaden it to all balls
and all vases under specified conditions. This can be informal, as nearly all of our
causal models are, or formalized with mathematics. The danger with mathematics,
as ever, is the Deadly Sin of Reification, when we give life to the equations and
forget they represent real objects. Also, we cannot mathematize all parts of most
real-life events, we can only create abstractions from them. Reification happens, all
too often, when we forget that our creations are abstractions and not reality.

A fuller example. The equation for the height y of a projectile is given as
y D tan.�/ � x � g.2v2

0 cos2 �/�1 � x2, where � is the initial angle of the projectile
launched with initial velocity v0, gravitational acceleration g, and the distance from
the (arbitrary) origin of the throw x. This is a deterministic model. It says that given
g, v0, and x, y will be such-and-such a value with certainty. But it doesn’t say what
causes y; it only says the value of y is determined, i.e. made known, because of these
other things. To understand the efficient cause of y, we must go deeper. The nature of
the “projectile” is vague enough, but we understand that it is the nature or power of
the impelling force, and of the other forces, to cause the projectile to scuttle along.
It could be a coincidence that this equation, which yields perfectly reasonable, or
even completely accurate, predictions, is itself the result of other causes that are the
real cause of y. We only know to stop this kind of thinking after induction tells us
we have understood the essence or nature of the situation.

The premises of this model are explicit and not subject to “fuzzy” interpretation.
One premise is “This precise single fixed g”, not “This g more or less.” The same is
true of the proposition itself: y will be this and only this value, not this value plus-
or-minus or more-or-less. Add “close enough” conditions to the premises and the
model retains its deterministic status; adding them to the proposition of interest turns
the model from deterministic to (perhaps partly) probabilistic. Many deterministic
models are treated probabilistically when the propositions of interest are observed
to be false. If, given the premises, the projectile is not precisely at y, but at y more-
or-less, it is usually thought that the main model is doing “most of the causing” and
therefore there must exist unobserved or unnoticed, or at least unconsidered, causes
that also operate on the projectile which are not in the model. This is fair enough
when the nature or essences of the main causes are certain, but we really have a
probabilistic model.

Finally, if we do understand the cause of some thing, we don’t need a model or
experiment. Why? Because we know the cause! We only need deterministic models
(like the projectile equation) to understand the extent of a cause in a situation which
specified conditions. This is, of course, a trivial observation, but it will have an
important sequel.
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7.3 Paths

There is a difference, as there was for truth (necessary and conditional or local),
between universal and partial or limited deterministic models. The model of the
projectile was, in absence of any other information, partial; so was the red-blue-
object model. Both models say propositions will be true or false given the stated
conditions, but the partial model contains premises which are not (known to be)
necessarily true. Deterministic models may also be over-loaded, which is when two
partial deterministic models have different, not logically equivalent premises, but
which make identical predictions about a set of propositions. More than one model
can explain the same set of facts. But there can only be one true understanding of
cause.

The goal is to discover universal deterministic models, which contain necessarily
true premises and which lead to certainty and where the nature and essence of
the events are understood. Given the results of quantum mechanics, it appears this
goal cannot be met for efficient causes for some events. No full, universal efficient
deterministic model of nature exists: if one did, it would be the prized Theory of
Everything. Even though we are barred from complete knowledge, rich and useful
conditional models abound.

Einstein, Podolsky, and Rosen [67] famously said that “If, without in any way
disturbing a system, we can predict with certainty (i.e., with probability equal to
unity) the value of the physical quantity, then there exists an element of reality
corresponding to that quantity.” What might that mean to deterministic versus causal
models?

Before you is a machine that has a dial marked 1 through 3 and a light.
Moving the dial through its states and the light turns yellow, blue, white. From
this you form the premise (with obvious shorthand) “If D1, yellow; if D2, blue;
if D3, white.” This is a deterministic model. It says that, given certain conditions,
certain other things happen with certainty. Extreme probabilities (0 and 1) are easily
derived from deterministic models with the addition of a minor premise and some
proposition of interest. For instance, add the minor premise “D2 (the dial is in
position 2)” and propositions “The light is white” or “The light is chartreuse.” Given
this model, these propositions are false. We could have also deduced, from these two
premises, the proposition “The light is blue.”

Why did the model turn its various colors? I have no idea. How can the model
be causal if we don’t know all the causes of some event? Because it turns out we
don’t know all (as in all) the causes in any contingent event, yet we can sometimes
understand essences. I don’t need to know, or even need to care about every cause
of the light, either, not if all I am interested in is its color.

The model relates to propositions of the light’s colors, even though there are lots
of facts about the machine and it milieu which exist but which we ignore. It is I
hope obvious that some thing or things were the efficient cause of the light turning
color. The dial played a role, but given our understanding of physics, we suspect
it wasn’t the dial itself that made the light glow. The light glowed because certain
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elements were electrified as opposed to others, and the electrification was caused
by the states of certain resistors, diodes, etc. And the states of those resistors etc.
in turn were caused to be in those states by their chemical components being in a
certain way. And so on down the chain, all the way to the bottom (which we saw
above must exist).

That is, the best we can do is to end at uncertainty. We don’t know how the
Ultimate Cause works; we don’t even know how electrons work, not entirely, and
seem to be forbidden that knowledge. Quantum mechanics is, of course, a theory of
uncertainty. And since uncertainty is a measure of knowledge, quantum mechanics
is not a causal theory, but it is a probabilistic-deterministic one. We don’t know
why this particle takes this spin rather than that spin. We can say, given a set of
premises, the probability it takes this spin. But this is not to abandon causality. Some
thing or things must be causing whatever happens to happen, something must be
reducing the potentiality of being in the state spin up to being actually in that state.
Quantum mechanics events cannot happen for no reason. It cannot be that nothing
causes these events. How could it? It’s nothing. Nothing is the complete absence of
anything. To say that events happen “spontaneously” in the sense of “from nothing”
or “uncaused” is to fool oneself and to embrace a kind of mysticism or magic. EPR’s
“element of reality” can be interpreted as the actuality, whatever it is, that actualizes
the potential. Bell’s Theorem (appears to) prove that we can’t know what this is, but
it cannot prove that it doesn’t exist. Nothing has no power.

Why this is the case was explored previously. The point here is that if we
knew all the conditions and causes of why the light turned yellow, we would have
a full or universal causal model. Since instead we have only limited knowledge
(the dial positions), we have a local deterministic model. The terms universal and
local apply to the completeness of the model. Since we never know everything, all
scientific models are thus local. No matter how well we understand any system, we
will never be able to understand why what is happening at the most foundational
levels is happening. So whenever we speak of causal models, we’re always leaving
something out. The degree to which we leave things out is great or small, but there
is no difficulty is saying the dials “caused” the light to turn various colors, or that
the “x” caused the “y” in the trajectory equation, as long as we keep in mind this is
shorthand.

A local deterministic model is a collection of premises for which any proposition
in relation to this collection is certainly true or false or irrelevant. Since all we ever
have in science are local models, henceforth I’ll drop the “local.” The irrelevancy is
necessary. Suppose we have our dial model and desire the (conditional) probability
of “Mike likes tacos”. How do we know this proposition is irrelevant with respect
to this model? Why aren’t we conducting an experiment to verify this? Because
we discern the essence of the machine and of people like Mike, and we know via
induction that the two things have nothing to do with one another. We can never
escape induction.

But this isn’t quite the right flavor. Actually, in models, we usually start out with
the propositions of interest and search for premises which make these propositions
true or likely and others false or unlikely. The propositions of interest with our
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machine is “The light is yellow”, etc. Models which make any proposition true
are trivially found. For instance, given “The light is yellow” it is true that “The
light is yellow.” But we don’t accept this premise in our model because we are
after understanding of causes. Adding the trivial premise does nothing to further
our knowledge.

Accept the same model: now what if the light glowed red? Then our model
is falsified because (our information insists) the dial must be in one of the three
positions, and these we have said certainly lead to other colors. Suppose the dial in
fact was in position 2 when the light turned red. We can then modify our model in the
obvious way, allowing for the possibility of two colors in position 2. This turns the
deterministic model into a probabilistic one. It also makes a new model. This point
cannot be too highly stressed. Any change to a model such that the probabilities or
certainties of the outcomes (propositions we put to the model) also change creates
a new model, even though it might, through custom, retain its old name. We cannot
say in general that adding new premises creates a new model, because we can always
add necessarily true premises or even possibly irrelevant ones without changing the
probabilities of propositions.

We needn’t capture everything that can happen to have a causal or deterministic
model. For instance, here is an alternate model “If D1, yellow, otherwise something
else.” This model works. It is even as accurate as the first model! Whether it is
more or less useful, however, depends on decisions and actions taken based on the
model. It is obviously less precise, but less precision can be a blessing. We might
have thermometers which measure air temperature to the nearest hundredth degree,
but most people will be content to knowing the value within two or three degrees
(Fahrenheit). Indeed, in all problems, the measurements and models should be no
finer than the decisions to be made. This point is taken up again later.

One reason why it is thought probability models can discern cause, especially in
the computer sciences, is a because of an unrecognized bias. As of this writing, a
hot topic is “deep learning”, which can be described as machine “learning” iterated,
a suite of computational tricks to find “signals” buried in “noise.” The hope is that as
datasets increase in size and complexity automated (deep “learning” or otherwise)
algorithms will discover the causes of “outcomes”; see e.g. [158]. The bias is
exposed by thinking about who decides what goes into the databases as potential
causes or proxies of causes. Consider the proposition “Bob spent $1,124.52 on his
credit card.” This “effect” might have been caused by the sock colors of the residents
of Perth, say, or the number of sucker sticks longer than three inches in the town
of Gaylord, Michigan, or anything. These odd possibilities are not in databases of
credit card charges, because database creators cannot imagine how these oddities
are in any way causative of the effect of interest. Items which “make the cut”
are there because creators can imagine how these items are causes, or how they
might facilitate or block other causes, and this is because the natures or essences of
these items are known to some extent. The form of the blocking (see below) or the
conditions of when the cause operates might not be known, but that an item plays
some role in the causal process is at least suspected.
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7.4 Once a Cause, Always a Cause

This section is relevant for all statistical and probability models which form the
conceit that they have identified the cause of some data; the material is based on
[28]. Suppose we learned that 1000 people were “exposed” to PM2.5—which is to
say, particulate matter 2.5 microns or smaller—at some zero or trace level, and that
another group of the same size was exposed to high amounts. Call these two groups
“low” and “high PM2.5”. Suppose, too, it turns out five people in the low group
developed cancer of the albondigas, and that 15 folks in the high group contracted
the same dread disease. (If you don’t love this example, substitute placebo versus
drug or some other on-and-off, yes-or-no dichotomous state.)

What caused the observed difference in cancer rates? Some thing or things
caused each unfortunate person in our experiment to develop cancer. What could
this cause or these causes be? Notice I emphasize that there may be more than one
cause present. It needn’t be the same thing operating on each individual. Each of
the 20 people may have had a different cause of their cancer; or each of the 20 may
have had the same cause. And this is so even though it may be that cancer of the
albondigas is caused in the human body in only one way. Suppose some particular
bit of DNA needs to “break” for the cancer to develop, and that this DNA can only
break because of the presence of some compound in just those individuals with a
certain genetic structure. Then the cause or causes of the presence of this compound
become our main question: how did it come to be in each of these people? That
cause may be the same or different.

There is no proof in the data that high levels of PM2.5 cause cancer of the
albondigas. If high levels did cause cancer, then why didn’t every one of the 1000
folks in the high group develop it? If high PM2.5 really is a cause—and recall
we’re supposing every individual in the high group had the same exposure—then
it should have made each person sick. Unless it was prevented from doing so by
some other thing or things; e.g. perhaps a counter-balancing cause operates that
acts “oppositely” of PM2.5. High PM2.5 cannot be a complete cause: it may be
necessary, but it cannot be sufficient. And it needn’t be a cause at all. The data
we have is perfectly consistent with some other thing or things, unmeasured by us,
causing every case of cancer. And this is so even if all 1000 individuals in the high
group had cancer.

This always-or-nothing is true for every hypothesis; that is, every set of data.
The proposed mechanism is either always an efficient cause, though it sometimes
may be blocked or missing some “key” (other secondary causes or catalysts) or be
counterposed by some other cause, or it is never a cause. There is no in-between.
Always-or-never a cause is tautological, meaning there is no information added
to the problem by saying the proposed mechanism might be a cause. From that
we deduce a proposed cause, absent knowledge of essence, said or believed to
be a cause based on some function of the data, is always a prejudice, conceit, or
guess. Because our knowledge that the proposed cause only might be always (albeit
possibly sometimes blocked) or never an efficient cause, and this is tautological, we
cannot find a probability the proposed cause is a cause—conditioned only on that
tautology, that is.
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Consider also that the cause of the cancer could not have been high PM2.5 in the
low group, because, of course, the five people there who developed cancer were not
exposed to high PM2.5 as a possible cause. Therefore, their cause or causes must
have been different if high PM2.5 is a cause. And even if PM2.5 is a cause, it is not
necessary the only cause. The same cause that operated in the low group, or some
other cause entirely, might have struck some or all of the afflicted in the high group.
In other words, since we don’t know if high PM2.5 is a cause, we cannot know
whether whatever caused the cancers in the low group didn’t also cause the cancers
in the high group. Recall that there may have been as many as 20 different causes.
We conclude that nothing in the plain observations is of any help in deciding what
is or isn’t a cause. That statement has tremendous importance when considering
standard statistical procedures.

Given the multitude of possible measures we can make on actual people—
everything from whatever they’ve eaten over the course of their life to the
environments to which they have been exposed, and on and on almost (but never
in reality) endlessly—it is more than reasonable to suppose that we can discover
some thing which is also different between the two groups besides exposure levels.
Suppose it turns out—and something like this almost surely will—every person in
the high group ate at least one more banana than did folks in the low group. That
means whatever conclusions we reach via some statistical analysis, we could have
equally well put down to having eaten more bananas. This is because the label “low
PM2.5” and “high PM2.5” can be swapped for “low banana” and “high banana”, a
set of measurements just as true and valid. Call this the banana test.

Clearly, there was some thing or some things different between the two groups.
There must have been, because the number of people who got cancer was different,
and the difference was caused, as must be true. But there is absolutely nothing in the
observations alone that tell us what this cause was or what these causes were. We
are not just discussing PM2.5. The criticisms here apply to every classical statistical
analysis ever done.

Yet there is plausible suspicion that PM2.5 and not bananas might cause disease.
We know this because we suspect it is in the nature of fine particulate matter to
interact with, and possibly interfere with, the functioning of the lungs, the nature of
which we also have some grasp. We do not know just based on the raw data—and
never forgot that we can only know what is true: though we can believe anything—
that PM2.5 causes cancer. A reasonable condition, given what we have learned from
other dose-response relationships, is that greater exposure to PM2.5 will give more
opportunity for whatever it is in PM2.5 that causes cancer to operate. But we don’t
have that in this experiment. So we can only assume PM2.5 is a cause and make
verifiable predictions to test this assumption.

Notice that in this approach we must assume that (high) PM2.5 is always a cause
but that sometimes it is stopped from operating because of some lack: say, a person
has to have a specific genetic code, or must inhale the dust only when breathing is
labored, or some chemical must be present, or whatever—the exact conditions may
be exceedingly complex. As we saw above, the only other assumption is that PM2.5
is not a cause, and if it is not, then we must not use a probability model supposing
PM2.5 is a cause.
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This implies the following curious result. Probability models aren’t what you
might have thought. If we assume PM2.5 is a cause, then we must conclude that it
is sometimes blocked, else all 1000 in the high group would have become ill. And
recall that if we assume PM2.5 is a cause, it necessarily implies there is at least
one other cause, a cause which must exist to account for the illnesses in the low
group. Saying PM2.5 is a cause thus creates a mystery: what is this other cause
(or causes)? But it also means that the probability model in the high group is not
a model of cause: it is a model of blocking. The probability models doesn’t say,
not really, “This person has a this-or-that chance of developing illness if exposed
to PM2.5”, rather, “The chance the causal effect of PM2.5 is blocked is this-and-
such.” And even that pronouncement is still conditional on believing the other cause
or causes besides PM2.5 don’t operate in the presence of PM2.5, and where is the
evidence for that? There is none. Probability models always belie uncertainty. They
are never proof of cause, which is why automated attempts to “prove” cause in large
collections of data, e.g. in [166], must fail. Uncertainty always lingers unless there
is knowledge of power and essence. Probability models themselves are explored in
depth next chapter.

7.5 Falsifiability

There is passed around a corruption of a quip by George Box that runs “All models
are false” or “All models are wrong.” What Box actually said was “Remember that
all models are wrong; the practical question is how wrong do they have to be to not
be useful.” This is an instance where shortening helps the grammar. Either way, the
sentiment is false: all models are not wrong.

All models cannot be false. Indeed, something like the opposite is true: given
their premises, all models are valid, assuming no errors in calculation or application,
of course. Not all models are sound, but many are. Not all models are useful, but
some are. A simple model is a coin flip. Given “This is a two-sided coin with just
one side labeled H, which will be flipped and which must land on only one side” the
probability “The coin lands H” is 1/2. There is no word in this model about what
causes the coin to land H or T. These causes must always exist. There is also no
way to deduce from the premises that this model “fits” or “works” with real coins.
Change “coin” to “interocitor” to see this. The probability remains the same—the
model is valid—but there are no interocitors.

Falsified has a precise, unambiguous, logical, mathematically rigorous meaning:
that something was shown to be certainly false. Given xC2 D 7, it is false certainly
that x D 2. There is no ambiguity here. If a deterministic, causal, or probability
model says that Y is (or will be) true, i.e. it has 100 % certainty, and it turns out
upon observation that Y is not observed, then the model is falsified. If any model
said, “The probability Y D y is 1” and Y is observed to be anything but y, the model
is falsified. But if the model said “The probability Y D y is �” and Y is observed to
be y, the model is not falsified. If anything, the model is verified, since the model
said Y could be y, and it was observed to be y.
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According to Karl Popper, and widely believed by many, a theory is said not
to be scientific unless it is falsifiable. This is an understandable definition, but
as something philosophically useful it fails because most theories scientists hold
are not falsifiable because of their, at least semi, probabilistic nature. The call
for falsifiability retains its appeal, however, because those who champion flawed
theories are annoying and we desire a weapon to dispatch dumb theories.

A theory or model is a set of propositions which are taken or assumed
true. Presumably these propositions are not self-contradictory, though in complex
theories, who can say? It is not necessary that any one person know each of the
propositions, or even that the set is closed (as we’ll see). A complex theory contains
more propositions than a simple one. There is no need to be more precise than this
except to stress that a theory or model is its premises. Changing any one of them
changes the theory into a new theory.

We hear things like, “Given my theory of the weather, tomorrow’s high will
be 70ıF.” This is usually shortened to “Tomorrow’s high will be 70ıF” which the
conditioning left implicit. Now if the high temperature tomorrow is anything but
70 ıF, the theory is falsified. The theory said some thing would occur with certainty:
it did not: the theory is false. End of story.

But nobody understands the phrase “will be 70ıF” to mean “will be precisely,
exactly, to the nth decimal place 70ıF.” Words mean something. Our task is to
translate the prediction into the vernacular. That means adding some “fuzz” around
70 ıF; or, in other words, by taking the phrase to mean “There is a good (but not
perfect) chance the high will be 70ıF”. And, of course, “good (but not perfect)
chance” puts us on probabilistic grounds.

In this case, the theory only said something might happen. If it didn’t, the theory
is not falsified. How can it be? One of the things the theory said could happen didn’t
happen. This cuts both ways. If 70 ıF obtains, the theory is not completely validated,
either. That is because, adding uncertainty, the theory might have also said it could
have been 69 or 71 ıF, albeit with a smaller chance, and these did not occur. Whether
the theory is useful depends on the decisions we make given the prediction; which
is to say, on how we have (or would have) acted on the predictions as they stand (or
stood). This is an entirely different topic, the gist of which is that a theory useful to
one man may be useless to another. This topic is explored later.

You have it by now: if the predictions derived from a theory are probabilistic
then the theory can never or rarely be falsified. This is so even if the predictions
have very, very small probabilities. If the prediction (given the theory) is that X will
only happen with probability � > 0, and X happens, then the theory is not falsified.
Period.

Most theories, even though stated in deterministic or causal terms, are actually
meant, and are surely taken, in a probabilistic cast like the temperature forecast.
This is because of the presence or suspicion of measurement error, imperfect
specifications, and a host of other reasons which accompany any theory in practice.
Entire fields are nowhere near falsifiable in the sense that the predictions associated
with them are probabilistic or “fuzzy”: biology (the theory of natural selection and
every single evolutionary psychology theory), sociology, economics, psychology,
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education, and such forth. But even a broad range of theories within more rigorous
fields, like physics and chemistry, are also not falsifiable in the practical sense. (The
reader can apply on his own the arguments given here to discern whether his favorite
theory can be falsified.)

Again, the sole way a theory can be falsified is if it states, in no uncertain terms,
boldly and forthrightly, adamantly and insistently and uncompromisingly that X
cannot happen, that the probability of X is 0, exactly 0. Then if X happens, à la
mort, else not. Falsified is akin to mathematical proof: it is undeniable.

All theories of the contingent are therefore trivially falsifiable (in logic) for some
propositions. For example, we can derive from most any theory the prediction that
the probability X D “The existence of a twelve-and-a-half footed half-duck half-
snake that speaks (what else?) French on Uranus” is 0. But since we have to travel
to that frigid locale in order to verify X, we will never learn whether the theory
is falsified in fact because, of course, since X is contingent it might (conditioned
merely on the premises which identify its contingency) be true. Therefore, we are
interested in falsifiability in practice.

One last thing about probability models and falsification. If a probability model,
conditional on whatever evidence it has, says X will happen with some non-zero
probability and X is never observed, then the model is not falsified. Now many
statistical models employ the so-called normal distribution, such as in regression.
Later I’ll use a grade point average example. GPA cannot be less than 0, but a
normal-regression will always given probabilities to values less than 0 (incidentally,
this is called probability leakage, [26]); indeed, this model gives positive probability
for any conceivable interval. Thus no observation can ever falsify it. If we want
to say how good this model is, then, we’ll have to look for another way. This is
provided using the concepts of verification, scoring, and skill, given in Chap. 9.
Given that many physical models often have subjective fuzz to them when they fail,
it is no wonder that falsifiability has never proven to be a useful concept in practice.

7.6 Explanation

Inference to the best explanation, a.k.a. abduction, is often defined with respect
to surprise. But all surprise is conditional on tacit or already accepted knowledge.
Your dad comes into the house, his clothes smeared with red paint. What is the
explanation for the paint (and not your dad entering the house per se; as always,
we pick the propositions of interest)? Well, it could be that he was out painting the
house. Or perhaps he was painting the car, or maybe even an old chair in the garage.
Or it could be that scamps drove by your house and paint-bombed him. Or perhaps
he was abducted by Martians and the splotches are their probe markings. And so on,
endlessly.

Pick one of these explanations and suppose it’s the only one we have. Say E
D “Dad was out painting the house”. The observed data is D D “Paint-smeared
clothes.” There must be tacit premises floating about, something to connect painting
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with paint on clothes, like “One who paints often but not always gets smeared,” or a
plain “One who paints [always] gets smeared”. Whichever, E is the best explanation.
Why? We have inferred the best explanation because it was the only explanation.
Probabilities like Pr.DjE/ and Pr.EjD/ are irrelevant, and incorrect. This point is
often confused because of miswriting Bayes’s theorem. Some incorrectly, or rather
incompletely, write

Pr.EjD/ D Pr.DjE/ Pr.E/

Pr.D/
: (7.1)

The mistakes are “Pr.E/” and “Pr.D/”, which do not exist (they have no conditions).
It might be tempting to argue the denominator can be expanded:

Pr.D/ D
X

i

Pr.DjEi/ Pr.Ei/;

but this repeats the error (for every i) in writing Pr.Ei/, none of which exist. No
unconditional probability exists, as proved earlier. The same mistakes would be
made were D and E swapped in these equations.

There is no way to say how surprising D was except by reference to some
explanation. To think otherwise is commit the fallacy of p-values in a Bayesian
context (e.g. [20, 62, 91, 157]). Suppose that Pr.DjE/ is small but non-zero. Yet if
E is all we have on offer (completed by whatever tacit premises we accept), then
E must be conditionally true, thus it is irrelevant how likely or surprising D is. If
Pr.DjE/ D 0 (precisely 0) then, given D, E must be false even if E is the only
possible explanation. In cases like that, we are left in ignorance, which is no bad
thing, as long as we admit it.

How did we arrive at E anyway? Well, we searched our past experiences and hit
upon the explanation which would make the probability of D, given that explanation
E, high, if not certain. Since all we could come up with is this E, then, conditionally
on our experiences, this E is the best—the only—explanation.

This is one of those areas where notation is both responsible and is the fix for our
troubles. There isn’t anything wrong with Bayes’s theorem (how could there be?),
but only with improper uses of it like in (7.1). Pr.E/ isn’t the “prior” probability
of the explanation “before” we see D; it isn’t anything; it is a set of meaningless
symbols. To become meaningful, some premises are needed. Perhaps “Experience”:

Pr.EjD; Experience/ D Pr.DjE; Experience/ Pr.EjExperience/

Pr.DjExperience/
: (7.2)

And this works if our experience suggests only this explanation because

Pr.DjE; Experience/ D Pr.DjExperience/;
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neither of which are 0, and because Pr.EjExperience/ D 1. That makes the left
hand side 1, too. No magic has been done here, and it is as simple as said above.
Because this was the only E we could think of, this is the only possible explanation;
a tautology. Note carefully that probability qua probability, nor Bayes’s theorem,
tells us how we came to E, what caused us to think of this explanation. That is done
by induction, as was shown earlier. Not the for the last time I emphasize probability
does not solve all problems of uncertainty and evidential reasoning.

Instead of only one possibility, suppose our intuition or experience suggested
two possibilities—or we are told to consider only two possibilities, which amounts
to the same thing—E1= “Garage painting with splatter,” E2= “Scamps drove by and
paint-bombed dad.” Experience, or outside directive or whatever, is the proposition
“Just one of E1 or E2 is the correct explanation.” (This is similar to our familiar
two-sided coin proposition and is not a tautology.) We then have

Pr.E1jD; Experience/ D Pr.DjE1; Experience/ Pr.E1jExperience/

Pr.DjExperience/
: (7.3)

Now

Pr.E1jExperience/ D Pr.E1jE1 or E2/ D 1=2;

and

Pr.DjE1; E1 or E2/ D Pr.DjE1/:

And it must be that Pr.DjExperience/ D Pr.DjE1 or E2/ D 1 since at least one of
these must explain the data we have, and to explain means to describe the cause. That
means Pr.E1jD; Experience/ D 0:5 � Pr.DjE1/ and thus Pr.E2jD; Experience/ D
0:5 � Pr.DjE2/.

But wait: if E1 is an explanation, then Pr.DjE1/ D 1, which E1 says why
D came out; and the same is true for E2! That makes Pr.E1jD; Experience/ D
Pr.E2jD; Experience/ D 1=2.

And this should make eminent sense: we start with the premise that one of E1 or
E2 must be the cause or explanation of D, which is a trivial premise. Since either
can explain D, either has equi-probability of being the cause. There is nothing in
D to help us pick: D is a consequence of either explanation. It is now clear that
inference to the best explanation is a misnomer in any sense which makes use of an
observation. There was never a problem with the non-illuminating mathematics. It
was our misapplication, writing things like Pr.D/, that caused confusion.

Yet it seems in the context of paint-splattered father that his painting the garage
is more likely than his being paint-bombed. Why? Both activities would cause the
same paint; and our intuitions or some outside directives told us only to consider
these and no other explanations. Well, at least my experience—my premises, which
are rich and not all articulable—suggests that paint-bombing is pretty rare and
garage painting isn’t. If I had to pick either E1 or E2 given these premises and the
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deduced non-numerical probability, that is, of course, to make a decision. And that
means accounting for non-probability matters like loses and gains: probability isn’t
decision. Supposing none of those are important, and using the (not here justified
rule) of picking the most likely cause, I’d pick garage painting. Simple as that. Once
again, to understand cause and explanation, is to seek after knowledge of nature and
essence.

A word about the multiplicity of cause. Olympic runners competing for the 100 m
run. The gold medalist comes in at 9.69 s, while the silver medalist is right behind at
9.67 s. The winner has won by being faster. We do not need a statistical test to verify
this, assuming (conditional on) the measurement equipment is working properly—
but then we never need a statistical test or model to tell us what happened in the
absence of measurement error. Something caused the winner to win. The cause was
not one thing, but many, and this is because the movement of the human body over
that distance comes about not by one cause but by many. Some of these causes will
be more important than others, and these can (possibly) be known by controlling and
measuring whatever these conditions are. The exact number of causes is enormous
and scarcely countable: among these causes are everything the athlete has eaten
(over such-and-such a time), all the elements that enter into his training regime, and
on and on.

Next consider winning times over a number of races. Men gold medalists are
always faster than the fastest woman. Does male sex cause the men to out-race their
feminine competitors? As everybody knows, it is not sex per se that causes men to
be faster; instead, sex causes differences in anatomy and physiology that are tied to
athletic performance. Men have more muscle, and muscle causes fleetness, and so
on. This is why the myriad of models that “control” for sex and which imply sex is
a cause are always wrong—unless they are modeling direct effects of sex, such as
pregnancy, and in which case, no model is used because we understand the essence.
Sex is a proxy for (usually) multiple other causes and is itself not a cause. And this
kind of reasoning also applies for such things as race, income, and so on. Statistical
models aren’t capable of discerning cause.

7.7 Under-Determination

Per the Duhem-Quine thesis, scientific theories are under-determined and through
any finite collection of facts you can always draw multiple theories, e.g. [135,
150, 153, 179, 180]. And explanatory power is not a guarantee a true cause has
been discovered. A contemporary political example might be best in displaying
the difficulty under-determination poses for discovering causes because of the
importance people place on social questions. Chess Grandmaster Nigel Short said
publicly that men and women are different and that men are better at chess than
women. He said this was because the two sexes are “hard-wired very differently”.
According to a newspaper account [218], Short said:
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Why should they [men and women] function in the same way? I don’t have the slightest
problem in acknowledging that my wife possesses a much higher degree of emotional
intelligence than I do: : :we just have different skills. It would be wonderful to see more
girls playing chess, and at a higher level, but rather than fretting about inequality, perhaps
we should just gracefully accept it as a fact.

A chess player and writer named Amanda Ross said in response to Short that it
is “incredibly damaging when someone so respected basically endorses sexism”.
Without being especially careful, we can define sexism as when a disparity of some
kind exists between males and females and which is caused by men or society
itself “pushing down” or otherwise limiting females. Short argues for biological
differences; Ross claims egalitarianism is true. Now Ross begins her argument with
the observation that a female once beat Short in a game, which to Ross proves males
and females are equal. And she would be right if “equal at chess” meant “some
woman somewhere can beat some man at chess.” Evidently, this is not what Short
meant when he said men and women were “unequal at chess.” He meant something
like, “In any list of top players, the majority will be men.”

There is a list of Grandmasters, the highest title chess players can earn (awarded
by the World Chess Federation, [221]). As of this writing, there are 1413 men and
33 females on the list. This evidence bolsters Short’s claim that men are better in
the sense he meant. But it also boosts Ross’s theory that sexism is rampant. The
same data supports both theories. Short says men are superior chess players and
here is a list showing they are. But Ross says mankind (and presumably culture)
is sexist and keeps women from reaching top levels, and here is a list showing her
prediction is right. The data cannot decide which theory is true. The theories are
under-determined. And, of course, other theories might also explain the data. Men
and women might be in essence equally skilled, but men like playing more. Or are
allowed to. And so on.

There is no use bringing in Bayes’s Theorem and asking about “prior” proba-
bilities on the truth of each theory, because the holders of both theories start by
believing they are true. The data we have can’t shake either Short or Ross free from
the conviction he or she is right. The data wouldn’t help us (from our perspective)
either if we are indifferent between the theories. It is true that different data might
support Short and Ross differently. Suppose on the list were 722 men and 722 non-
men. Ross, claiming the triumph of equality over sexism, is upheld. But then it
would be Short’s turn to claim that men really are superior, but the culture is pushing
them down.

There is no general solution. The under-determination of the contingent is a fact.
Collecting more data wouldn’t work, either. What we have to do, and even this is not
a complete solution as is by now clear, is to look outside the data. For instance, we
might argue that chess is an abstract analytical activity. If Short is right, men should
be better than women at other abstract analytical activities. What’s more analytical
than mathematics? The list of Fields medalists contains only one woman.

For Short to be right, only one thing must be true: men must have different
brains, i.e. the essence of men must be different than the essence of women. For
Ross to be right, many more things must be happening in more places and at
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more times. Sexism under Ross’s scheme must operate like the nervous say the
Trilateral Commission does: a worldwide occult top secret network with strange
unstoppable powers. If we accept the premise that fewer premises are more often
associated with true theories, then there is good evidence Short is right. But it’s
doubtful we’d get Ross to agree. Or perhaps some of you have thought of other
objections to Ross; just as some of you might have thought of criticisms of Short.
Jaynes’s [122, Chapter 5] on the Queer Uses of Probability is not to be missed on
this subject; Jaynes has several numerical examples that will be of interest.



Chapter 8
Probability Models

“But what a weak barrier is truth when it stands in the way of an hypothesis.”—Mary
Wollstonecraft Shelley.

A model is an argument. Models are collections of various premises which we assign
to an observable proposition (or just “observable”). That is, modelling reverses the
probability equation: the proposition of interest or conclusion, i.e. the observable
Y, is specified first after which premises X thought probative of the observable are
sought or discovered. The ultimate goal is to discover just those premises X which
cause or which determine Y. Absent these—and there may be many causes of Y—it
is hoped to find X which give Y probabilities close to 0 or 1, given X in its various
states.

Not all probability models apply to observable Y. But an implicit premise to
all observables is that Y is contingent. Given just that premise, (as we have seen)
the probability of Y is the unit interval sans endpoints. Models which supply X
which sharpen this probability are of potential interest. The more the probabilities
are sharpened the more interesting the model. Interestingness and usefulness are
not identical. A model’s usefulness is described by what decisions are made with
it, and how costly and how rewarding those decisions are. When calculations of
usefulness are possible, which is rare for “public models” (such as those which
appear in academic journals) except by gross approximation, usefulness is reckoned
by a proper score. The usefulness of models are easily compared by scores; when
one model has a better score than another, the superior model is said to have skill
with respect to the lesser (conditional on the score type). Only proper scores should
be used.

A probability model is the same as a causal or deterministic model except that
the propositions of interest Y are not all certainly true or false given the collection
of premises X. Our old friend, given X D “This is a two-sided object which when
flipped must show one of H or T” the proposition Y D “An H shows” is neither
true nor false, but in-between. There needn’t be a real object which conforms to
these premises, although many can. Do not forget the empirical bias in discussions
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of probability. To implement this “coin” model in real life, simply find any two-
sided or two-state object which conforms to the premises or something like them.
This becomes a model. Whether this model is useful for this object is a different
question.

Probability models can and do have causative elements. But these are generally
found in very large, integrated physical models, such as weather and climate models,
engineering models which investigate air or water flow over vessels, and that sort
of thing. These are models which might even be fully causal or deterministic in
the sense given last chapter, but which are treated as probabilistic in practice. Tacit
premises are added to the predictions from these models which adds uncertainty so
that falsification is avoided.

8.1 Model Form

Recalling our goal is not the particulars of a mathematical theory but of understand-
ing, a probability model takes the form:

Pr.YjX/; (8.1)

where, as is usual by now, Y is the proposition of interest and X the compound
list of premises thought probative of Y. A probability model produces non-extreme
probabilities for Y for the Xs considered, whereas a causal or deterministic model
produces only extreme, i.e. 0–1, probabilities for all X considered. Example: Given
X D “A Metalunan interocitor must be in one of n states, s1; s2; : : : ; sn and S
is a interocitor” to discover the probability of Y D “S is in state sj”. Statistical
and physical models are, as we learn next chapter, probability models applied to
observable Y. Probability models are thus more general than statistical models.

Models are often written with parameterized Xs in forms like this:

Y � N.m; s2/; (8.2)

where Y becomes variable or changeable. A loose example: Y is Y D “The value
is y1”, “The value is y2”, etc. This is a sloppy way of writing the model because
the X (the evidence or premise) which gave rise to the normal is missing; only
the parameters and “distribution” remains, as if falling from above. This form also
tends to reify the probability, making it appear that Y is caused, made to be, by the
normal distribution, which is impossible. This form is why things like this are often
(always?) heard: “Temperature is normally distributed”. No it is not. Temperature
is caused. Our uncertainty in the value temperature might take is quantified (but
only ever approximately) by a normal distribution with central parameter m and
spread s; in other words, given some X which specifies these values. Incidentally, for
unfortunate historical reasons, these parameters often take for names their classical
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estimates, “mean” and “variance”. That seemingly small error leads to pervasive
over-certainty when m and s are unknown; and they are usually are not known.

If it’s not already obvious, (8.1) is written in a predictive form, saying something
about Y which we do not already know, or do not choose to know; anyway, Y
itself is not part of X. If it were, the model would be circular and produce extreme
probabilities, which would make it causal or deterministic. Equation (8.2) is also
written predictively, though it might not seem like it is. But that is because attention
in classical statistics takes inordinate interest in the parameters and not on the model
per se. The limitations of that approach are discussed below and in the next chapter.

The reader should recall the discussion of the relation between probability
models and causality. If we knew (somehow) X was not causally or deterministically
related to Y, then X should never be used in a model of Y. Any association of X with
Y in these cases is coincidental, spurious. It is only if we accept that X is causally or
deterministically related to Y that it should appear in a model of the uncertainty of Y.
Incidentally, it is a model of the uncertainty of Y, and not a model of Y; the latter
language is casual or deterministic. That should be repeated, and even shouted: these
are not models of Y but of the uncertainty in Y! Only causal and deterministic models
are models of Y. Probability models, don’t forget, rest on the assumption of causal
or deterministic relations somewhere in the universe, and in uncertainty remains, it
must be that blocking of these causes must be occurring at least sometimes.

8.2 Relevance and Importance

As covered in Chap. 4, an X that is added to a model which, in the presence of the
other premises (other “Xs”), does not change the probability of Y is irrelevant or
not probative. The data X which are used to “fit” a model are of course themselves
premises, i.e. X1;1 D “Observed the value 112.2 mm/Hg” (for the first premise, say
of systolic blood pressure, first observation from some collection). The importance
of each premise, given the presence of the other premises, is judged by how much
it changes the probability of Y. If an X does not result in extreme probabilities of
Y, this X is not necessarily causal, though an injurious, flabbergasting tradition has
developed (predominately in the “soft” sciences) which says or assumes it is.

For example, if Pr.YjX1/ D Pr.YjX1X2/ then X2 is irrelevant in the presence
of X1, even if Pr.YjX2/ is something other than the unit interval. That is, X2 may
be separately probative of Y but it adds no information about Y that is not already
in X1. There are thus two kinds of relevance, in-model, which is rather a measure
of importance, how much a premise changes our understanding of Y, and out-
model, whether the premises is even needed. A third is a variant of the first: sample
relevance.

Suppose Y itself takes different states (like temperature) and that Pr.YajX1/ D
Pr.YajX1X2/ but Pr.YbjX1/ ¤ Pr.YbjX1X2/. X2 in the presence of X1—the
condition which must always be stated—is then relevant to Y; or, better, relevant
only when Y is Yb.
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Suppose Pr.YjX1/ D Pr.YjX1X2/ C �, with the obvious constraints on �. Then
X2 in the presence of X1 is relevant. Whether the difference � makes any difference
to any decision is not a question probability can answer. “Practically irrelevant” is
not irrelevant. Irrelevance is a logical condition. The practice of modeling is the art
of selecting those X (premises) which are relevant, in the presence of other premises,
to Y. Invariably, some new premise will add “only” � to the understanding of Y.
Whether this is enough to “make a difference” is a question only the modeler and
whomever is going to use the model can answer. The only “test” for relevance is
thus any change in the conditional probability of Y.

Relevance, as we see next chapter, is how models should be judged before
verification of their predictions arrive. Assessing relevance is hard work—but who
said modeling had to be easy? That modeling is now far too easy is a major problem;
because anybody can do it, everybody thinks they’re good at it. Supposing Y is
simple (yes or no, true or false), and a list of premises, the relevance of each Xi—
its subscript indicates it is variable—is assessed by holding those other Xj which
are variable at some fixed level and then varying the Xi. For example, to assess the
relevance of X1, which can take the values a1 and a2, compute

Pr.YjX1 D a1; X2 D b; : : : ; Xp D p; W/;

where W are those premises which are fixed (deductions, assumptions, etc.), and

Pr.YjX1 D a2; X2 D b; : : : ; Xp D p; W/:

The difference between these two probabilities is the in-model relevance of X1 given
the values the other X take. The out-model relevance is assessed by next computing

Pr.YjX2 D b; : : : ; Xp D p; W/;

and comparing that to the model which retains X1. Note that all the other X have
kept their values. Sample relevance is computed by calculating the same probability
but or the addition (or subtraction) of a new “data point.” Irrelevance is:

Pr.YjXnC1/ D Pr.YjXn/:

For instance, suppose we have n observations and on the n C 1 the probability Y is
true remains unchanged. Then this new data point has added no new information,
in the presence of the first n. Of course, these may be used to hunt for those data
points which are most relevant, or rather, most important, and which are irrelevant
(given the others). Those familiar with classical parametric methods will see the
similarities; this approach is superior because all measures are stated directly and
with respect to the proposition of interest Y.

I should highlight I am not here trying to develop a set of procedures per se, only
defining the philosophically relevant constituents of probability models. We want to
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know what it means to be a probability model—any probability model, and not just
one for some stated purpose. Readers interested in working on new problems will
discover lots of fertile ground here, though.

It should be by now obvious that each of these probabilities is also a prediction.
They say “Here is the probability of Y should all these other things hold.” So not
only probabilities, but all predictions are conditional, too. This form of model also
forms the basis of how statistical methods should work. All concentration is centered
on asking how X influences our knowledge of Y—and even in rare cases, how X
causes or determines Y.

Relevance is made more difficult when Y is allowed to vary, but the underlying
idea is the same. Except for the X of interest which is varied or removed from the
model, fix the others Xs, and compute the probability of the Ys and see what changes
to this probability happen. Relevance is when there are changes, and irrelevance
when not. This is obviously going to be a lot of work for complex Ys and Xs, but
nothing else gives a fairer and more complete picture of the uncertainty inherent in
the problem. And, again, who said it had to be easy?

8.3 Independence Versus Irrelevance

What’s the difference between independence and irrelevance and why does that
difference matter? This typical passage from The First Course in Probability by
Sheldon Ross [185, p. 87] is lovely because many major misunderstandings are
committed, all of which prove “independence” a poor term. And this is a book I
highly recommend as an introduction to probability calculations; for readability, I
changed Ross’s notation slightly, from e.g. “P.E/” to “Pr.E/” to keep in the style of
this book.

The previous examples of this chapter show that Pr.EjF/, the conditional probability of E
given F, is not generally equal to Pr.E/, the unconditional probability of E. In other words,
knowing that F has occurred generally changes the chances of E’s occurrence. In the special
cases where Pr.EjF/ does in fact equal Pr.E/, we say that E is independent of F. That is,
E is independent of F if knowledge that F occurred does not change the probability that E
occurs.
Since Pr.EjF/ D Pr.EF/= Pr.F/, we see that E is independent of F if Pr.EF/ D Pr.E/ Pr.F/.

The first misunderstanding is “Pr.E/, the unconditional probability of E”. There
is no such thing. No unconditional probability exists, as shown earlier. All, each,
every probability must be conditioned on something, some premise, some evidence,
some belief. Writing probabilities like “Pr.E/” is always, every time, an error, not
only of notation but of thinking. It encourages and amplifies the false belief that
probability is a physical, tangible, implicit, measurable thing. It also heightens the
second misunderstanding. We must always write (say) Pr.EjX/, where X is whatever
evidence one has in mind.
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The second misunderstanding, albeit minor, is this: “knowing that F has occurred
generally changes the chances of E’s occurrence.” Note the bias towards empiricism.
We do not have to deal with observables in probability models, though we do
in statistical and physical. In other places Ross writes, in order to judge these
probabilities, we must imagine “An infinite sequence of independent trials is to be
performed” (p. 90), which is an impossibility. Another misconception: “Independent
trials, consisting of rolling a pair of fair dice, are performed (p. 92). We already
learned “fair” dice are impossible in practice. “Events” or “trials” “occur”, says
Ross, echoing many other authors, which are propositions that can be measured in
reality, or are mistakenly thought to be measurable. Probability is much richer than
that and applies to propositions that are not observable.

Non-empirical propositions, as in logic, easily have probabilities, as we recall.
Example: the probability of E D “A winged horse is picked” given X D “One of a
winged horse or a one-eyed one-horned flying purple people eater must be picked” is
1/2, despite that “events” E and X will never occur. So maybe the misunderstanding,
or the empirical bias, isn’t so minor at that. The bias towards empiricism is what
partly accounts for the frequentist fallacy, about which we already know something;
but there is more to say below. Notice that our example E and X have no limiting
relative frequency. Instead, we should say of any Pr.EjF/, “The probability of E
(being true) accepting F (is true).”

Those missteps are common and not the main difficulty. The third and grand-
daddy of all misunderstandings is this: “E is independent of F if knowledge that
F occurred does not change the probability that E occurs.” The misunderstanding
comes in two parts: (1) use of “independence”, and (2) a mistaken calculation.

Number (2) first. It is a mistake to write “Pr.EF/ D Pr.E/ Pr.F/” because given
the same E and F, there are times when this equation holds and times when it doesn’t.
A simple example. Let E D “The score of the game is greater than or equal to 4”
and F D “Device one shows 2”. What is Pr.EjF/? Impossible to say: we have no
evidence tying the device to the game. Similarly, Pr.E/ does not exist, nor does
Pr.F/.

Let X D “The game is scored by adding the total on devices one and two, where
each device can show the numbers 1 through 6.” Then Pr.EjX/ D 33=36; Pr.FjX/ D
1=6, and Pr.EjFX/ D 5=6; thus Pr.EjX/ Pr.FjX/ .� 0:153) which does not equal
Pr.EjFX/ Pr.FjX/ (�0.139). Knowledge of F in the face of X is relevant to the
probability E is true. Recall these do not have to be real devices; they can be entirely
imaginary.

Now let W D “The game is scored by the number shown on device two,
where device one and two can show the numbers 1 through 6.” Then Pr.EjW/ D
1=2; Pr.FjW/ D 1=6; and Pr.EjFW/ D 1=2 because knowledge of F in the face of
W is irrelevant to knowledge of E. In this case Pr.EFjW/ D Pr.EjW/ Pr.FjW/:

The key, as might have always been obvious, is that relevance depends on the
specific information one supposes.

Number (1). Use of “independent” conjures up images of causation, as if through
dependence, somehow, F is causing, or causing something which is causing, E. This
error often happens in discussions of time series, as if previous time points caused
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current ones. We have all heard times without number people say things like, “You
can’t use that model because the events aren’t independent.” But you can use any
model you like, it’s only that some models make better use of information because,
usually, knowing what came before is relevant to predictions of what will come.
Probability is a measure of information, not a quantification of cause.

Here is another example from Ross showing this misunderstanding (p. 88, where
the author manages two digs at his political enemies):

If we let E denote the event that the next president is a Republican and F the event that there
will be a major earthquake within the next year, then most people would probably be willing
to assume E an F are independent. However, there would probably be some controversy over
whether it is reasonable to assume that E is independent of G, where G is the event that there
will be a recession within two years after the election.

To understand the second example, recall that Ross was writing at a time when it
was still possible to distinguish between Republicans and Democrats. The idea that
F or G are the full or partial efficient cause of E suffuses this example, a mistake
reinforced by using the word “independence”. If instead we say that knowledge
of the president’s party is irrelevant to predicting whether an earthquake will
soon occur we make more sense. The same is true if we say knowledge that this
president’s policies are relevant for guessing whether a recession will occur.

This classic example is a cliché, but is apt. Ice cream sales, we hear, are
positively correlated with drownings. The two events, a statistician might say, are
not “independent”. Yet it’s not the ice cream that is causing the drownings. Still,
knowledge that more ice cream being sold is relevant to fixing a probability more
drownings will be seen! The model is still good even though it is silent on cause.
This point cannot be stressed too highly. Good and useful models can badly screw
up causes but they can still make useful predictions. A woman can insist gremlins
power her automobile and still get where she’s going.

The distinction between “independence” and “irrelevance” was first made by
Keynes in his unjustly neglected A Treatise on Probability [132, pp. 59–61].
Keynes argued for the latter term, correctly asserting, first, that no probabilities
are unconditional. Keynes gives two definitions of irrelevance, which amplify the
previous section. In my notation but his words, “F is irrelevant to E on evidence X,
if the probability of E on evidence FX is the same as its probability on evidence X;
i.e. F is irrelevant to E|X if Pr.EjFX/ D Pr.EjX/”. This is as above.

Keynes tightens this to a second definition. “F is irrelevant to E on evidence X, if
there is no proposition, inferrible from FX but not from X, such that its addition to
evidence X affects the probability of E.” In our notation, “F is irrelevant to E|X, if
there is no proposition F’ such that Pr.F’jFX/ D 1; Pr.F’jX/ ¤ 1, and Pr.EjF’X/ ¤
Pr.EjX/.” Note that Keynes has kept the logical distinction throughout (“inferrible
from”). Lastly, Keynes introduces another distinction (p. 60):

h1 and h2 are independent and complementary parts of the evidence, if between them they
make up h and neither can be inferred from the other. If x is the conclusion, and h1 and h2

are independent and complementary parts of the evidence, then h1 is relevant if the addition
of it to h2 affects the probability of x.
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This passage has the pertinent footnote (in my modified notation): “I.e. (in
symbolism) h1 and h2 are independent and complementary parts of h if h1h2 D h,
Pr.h1jh2/ ¤ 1, and Pr.h2jh1/ ¤ 1. Also h1 is relevant if Pr.xjh/ ¤ Pr.xjh2/:”

Keynes’s formulation emphasizes that it is not only the “raw” X which are
premises, but those propositions which can be deduced from them, which was
mentioned above but not emphasized. Note: two (or however many) observed data
points, say, x1 and x2 are independent and complementary parts of the evidence
because neither can be deduced—not mathematically or logically derived per se—
from each other. Observations are thus no different than any other proposition. In
other words, every observation if of the schema, X D “The value x was seen”.

8.4 Bayes

Bayesian theory isn’t what most think. Most believe that it’s about “prior beliefs”
and “updating” probabilities, or perhaps a way of encapsulating “feelings” quanti-
tatively. The real innovation is something much more profound. And really, when it
comes down to it, Bayes’s theorem isn’t even necessary for Bayesian theory. Here’s
why.

Again, any probability is denoted by the schematic equation Pr.YjX/, which is
the probability the proposition Y is true given the premise X. As always, X may be
compound, complex or simple. Bayes’s theorem looks like this:

Pr.YjWX/ D Pr.WjYX/ Pr.YjX/

Pr.WjX/
: (8.3)

We start knowing or accepting the premise X, then later assume or learn W, and
are able to calculate, or “update”, the probability of Y given this new information.
Bayes’s theorem is a way to compute Pr.YjWX/. But it isn’t strictly needed.
We could compute Pr.YjWX/ directly from knowledge of W and X themselves.
Sometimes the use of Bayes’s theorem can hinder.

An example. Given X D “This machine must take one of states S1, S2, or S3”
we want the probability Y D “The machine is in state S1.” The answer is 1/3.
We then learn W D “The machine is malfunctioning and cannot take state S3”.
The probability of Y given W and X is 1/2, as is trivial to see. Now find the
result by applying Bayes’s theorem, the results of which must match. We know
that Pr.WjYX/= Pr.WjX/ D 3=2 (because Pr.YjX/ D 1=3). But it’s difficult at first
to tell how this comes about. What exactly is Pr.WjX/, the probability the machine
malfunctions such that it cannot take state S3 given only the knowledge that it must
take one of S1, S2, or S3? If we argue that if the machine is going to malfunction,
given the premises we have (X), it is equally likely to be any of the three states, thus
the probability is 1/3. Then Pr.WjYX/ must equal 1=2, but why? Given we know
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the machine is in state S1, and that it can take any of the three, the probability state
S3 is the malfunction is 1/2, because we know the malfunctioning state cannot be
S1, but can be S2 or S3. Using Bayes works, as it must, but in this case it added
considerably to the burden of the calculation.

Most scientific, which is to say empirical, propositions start with the premise
that they are contingent. This knowledge is usually left tacit; it rarely (or never)
appears in equations. But it could: we could compute Pr.YjY is contingent/,
which even is quantifiable (the open interval .0; 1/). We then “update” this to
Pr.YjX & Y is contingent/, which is 1/3 as above (students should derive this).
Bayes’s theorem is again not needed.

Of course, there are many instances in which Bayes facilitates. Without this tool
we would be more than hard pressed to calculate many probabilities. But the point
is the theorem can but doesn’t have to be invoked as a computational aide. The
theorem is not the philosophy.

The real innovation in Bayesian philosophy, whether it is recognized or not,
is the idea that any uncertain proposition can and must be assigned a probability.
This dictum is not always assiduously followed; and the assignment need not be
numerical. This is contrasted with frequentist theory which assigns probabilities to
some unknown propositions while forbidding this assignment in others, and where
the choice is ad hoc. Bayesian theory has two main flavors, subjective and objective.
The subjective branch assigns probabilities based on emotions or “feelings”, a
practice we earlier saw leads to absurdities. Objective theory tends to insist every
probability can and should be quantified, which also leads to mistakes. We’ll find
a third path by quantifying only that which can be quantified and by not making
numbers up to satisfy our mathematical urges.

8.5 The Problem and Origin of Parameters

There has been an inordinate and unfortunate fascination with unobservable param-
eters which are found inside most probability models. Parameters relate the X to Y,
but are understood in an ad hoc fashion; see [210, 212, 213]. Since models are often
selected through custom or ignorance of alternatives (and recall we’re talking about
actual and not ideal practice), the purposes of parameters are not well considered,
to say the least. Most statistical practice, frequentist or Bayesian, revolves solely
around parameters, which has led to the harmful misconception that the parameters
are themselves the X, and the X causal. P-values, confidence intervals, and posterior
distributions, hypothesis tests and other classic measures of model “fit” are abused
with shocking frequency and with destructive force. Probability leakage is the least
of these problems; mis-ascribed causality the worst. It’s time for it to stop. People
want to know Pr.YjX/: tell them that and not about some mysterious parameters.

Parameters arise from considering measurement. All measurement is finite and
discrete, regardless of the way the universe might happen to be (I use universe in
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the philosophical sense of all that exists). Measurement drives X, which in turn
are probative of Y. Parameters are not necessary when all is finite and discrete,
but they may be used for mathematical convenience. But their origin must first
be understood. Parameters-as-approximations arise from taking a finite discrete
measurement process (which all are processes) to the limit. The interpretation of
parameters in this context then becomes natural. This area, as will soon be clear, is
wide open for research. Below, I’ll show how parameters arise in a familiar set up;
but how they come about in others is mostly an open question.

Where do parameters come from? Here is one example, which originates with
Laplace, and which necessitates some mathematics, which, I remind us, are not our
main purpose here. The parallels to Solomonoff’s approach (cited in Chap. 6) will
be obvious to those familiar with algorithmic information theory. Begin with the
premise E that before us in an urn which contains N objects, objects which can take
one of two states. From this language we infer N is finite, which is absolutely no
restriction, because N can be very large indeed. Call them “success” and “failure”,
or “1” and “0”, if you like. From this we deduce there can be anywhere from 0 to
N successes. Given these premises—and no others—or rather this evidence E, we
deduce the probability that there are M D i; i D 0; : : : ; N successes is 1=.N C 1/.
No number of success (or failures) is more likely than any other.

Now suppose we reach in and grab a sample of size n. In this sample there
will be n1 success and n0 failures, so that n1 C n0 D n. To say something about
these observations, we want the probability of j successes in n draws, without
replacement where the urn has N total successes. It will also be helpful to rewrite,
or rather parameterize this by considering N� , where � D i=N, which is the
fraction of successes. Note that � is observable. The probability is (with the obvious
restrictions on j):

Pr.n1 D jjn; �; N; E/ D
�N�

j

��N�N�
n�j

�

�N
n

� ; (8.4)

which is a hypergeometric. We are still interested in the fraction � (out of all N) of
successes. Since we saw n1 successes so far, � must be at least as large as n1=N,
but it might be larger. We can use Bayes’s theorem to write (again, with the obvious
restrictions on j)

Pr.� D j=Njn; n1; N; E/ / Pr.n1 D jjn; � D j=N; N; E/ Pr.� D jjn; N; E/:

(8.5)

This is the posterior “parameter” distribution on � , which turns out to be

Pr.� D j=Njn; n1; N; E/ D
 

N � n

j � n1

!
ˇ.j C 1; N � j C 1/

.n C 1/ˇ.n1 C 1; n0 C 1/
; (8.6)

where ˇ./ denotes the beta function.
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Here is where parameters arise. Following Ross (op cit., p. 180) in showing how
the hypergeometric is related to the binomial for large samples, let N ! 1 in (8.6).
The result is

lim
N!1

1

N C 1

�N�

j

��N�N�

n�j

�

�N
n

� D
 

n

n1

!

�.n1C1/�1.1 � �/.n0C1/�1; (8.7)

which is the standard beta distribution posterior on � when the prior on � is “flat”,
i.e. equal to a beta distribution with parameters ˛ D ˇ D 1.

We started with hard-and-fast observable propositions, and a finite number of
successes and failures, and considered how expanding their number in a specific
way towards infinity, and we end up with unobservable parameters. As Jack Aubrey
would say, Ain’t you amazed? The key is that we don’t really need the infinite
version of the model; the finite one worked just fine, albeit that it is harder to
calculate for large N. But then there is no arguments over where the prior for � came
from. It arises naturally. This small demonstration is like de Finetti’s representation
theorem (see below), only it also gives the prior instead of saying only that it exists.

What does the parameter � mean? With a finite N—which will always be true of
all real-world situations—it was the total fraction of successes (given the premises).
This is sensible and measurable, at least in theory. Whether anybody ever measures
all N mentioned in the premises is another matter. � is discrete: it can take only the
values 0=N; 1=N; : : : ; N=N, and no value inside this set is impossible; at least, not
on the evidence we have assumed. At the limit, � is continuous and can take any
value in the unit interval. Which is to say, it can take none of them, not empirically,
because as Keynes said, in the long run we shall all be dead: infinity can never
be reached. The parameter is no longer the fraction of successes, only something
like it. But what? The mind should boggle at imagining the ratio infinite successes
in infinite “chances”; indeed, I cannot imagine it. I can only picture large finite
approximations to it. This � is not, as it is often called, “the probability of success.”
We already deduced the probability of success given the premises. So what is it?
An index with a complex definition involving limits, a definition so complex that its
niceties are forgotten and people speak of it as if it were its finite cousin, that is, as
it if were a probability.

Notice very carefully that the parameter-solution is an approximation. We don’t
need it. Though calculating (8.6) may be cumbersome, we have the exact result.
We don’t need to quarrel about the prior, impropriety, ignorance, non-informativity
or anything else because everything has been deduced from the premises. This
situation is also well behaved. Approaching the limit (in a certain specified way)
produced a result which is familiar. The continuous-valued parameter ties nicely to
a finite-sample result: it keeps the roughly same meaning. I have no idea whether
this will be true for all stock distributions in our cookbook, but we have great
reason to doubt it. In his book, Jaynes (op cit., Chapter 15) shows how the so-called
marginalization paradox disappears when one very carefully tracks how one heads
off to infinity. Buffon’s needle paradox is another well known example where the
path matters.
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There’s more to this example. Suppose we’ve taken our sample, n0 and n1, and
want to know the possibilities for the remaining number of successes d. This is
d D N� � n1, so N� D d C n1 (N is finite here). Then

Pr.D D djn; n1; N; E/ / 1

n C 1

�n1Cd
d

��N�n1�d
N�n�d

�

�NC1
nC1

� : (8.8)

This is an unnormalized form of the negative hypergeometric, which is an alternate
name for the beta-binomial distribution. Before we have removed any of the balls
from the urn, we can compute the prior predictive distribution of n1 in the initial
sample. This quantity is critical since it forms the normalization constant of the
posterior distribution in Eq. (8.6). To derive this we simply sum over the possible
values of � in expression (8.8) which is equivalent to summing a beta-binomial
mass function over its range. The result is

Pr.n1 D jjn; N/ D 1=.n C 1/; j 2 f0; : : : ng: (8.9)

If we reach in and grab out just one ball, the chance that it is a 1 or 0 is 1/2, no
matter what N is. This result is well known and forms the basis of Laplace’s rule of
succession. Furthermore, if we grab n > 1 balls, the result says that n1 is equally
likely to be any result in f0; 1; : : : ; ng, and where knowledge of N is also irrelevant.
This is intuitive, since we began with all proportions � being equally likely a priori
and have not yet collected data that suggests otherwise.

Given the original sample A whose size is now denoted by na, with n1a the
number of successes and n0a the number of failures, let a new sample of size
nb � N � na be collected. We want to know the distribution of successes, n1b,
in this new sample. It is known that 0 � n1b < N� � na. Given d, the distribution of
n1b is clearly hypergeometric.

This allows us to compute the posterior predictive distribution on n1b. This turns
out to be:

Pr.n1bjnb; n1a; na; N; E/ D
 

nb

n1b

!
ˇ.n1a C n1b C 1; n0a C n0b C 1/

ˇ.n1a C 1; n0a C 1/
(8.10)

which is a beta-binomial distribution with parameters .nb; na1 C 1; na0 C 1/.
Knowledge of N is irrelevant here, too, except in the weak sense the total sample
na C nb � N. Also, � does not appear. This quantity is far more interesting that
anything we have to say about � . It conforms to the true goal of statistical modeling,
which is to say sensible things about that which can be measured. Interestingly, this
is the same answer one gets starting from a “flat” prior on a continuous � , integrating
out the uncertainty in � and forming the regular posterior predictive distribution.

We did not start with any parameters and we did not end with any. Parameters
aren’t needed, as promised.
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Laplace’s rule of succession follows the same course, although he stated it dif-
ferently; see [228] for another taken on succession. Laplace derived the probability
of the next observation in some ill-defined process being a success given we have
seen n1a successes in the first n instances. The well known answer is

Pr.xnC1 D 1jn1a; n; fuzzy/ D n1a C 1

n C 2
(8.11)

where the “fuzzy” indicates Laplace was not quite clear about his premises. It is easy
to check that (8.11) is equivalent to (8.10). That means the fuzziness is replaced
by our firm premises E. If Laplace had started with E, all would have been well.
But he chose an unfortunate example, that of the sun rising. He used the rule of
succession to calculate the probability that the sun will rise tomorrow, given that it
has risen every day for the past however many years. Call it 6000 years. That makes
n D 2;191;500 which makes the probability about 0.9999995.

Large, but many objected saying it surely ought to be higher because we know a
lot more about sunrises than Laplace admits in his formula. This is true. But it is also
beside the point. Laplace’s formula is the right answer to a different question, that’s
all. It is a deduced probability given the premises fixed in E. That we apply these
premises to a sunrise is our (and Laplace’s) mistake. It doesn’t make the formula
wrong.

Jaynes [122] has an example similar to this, but for the normal, showing the
derivation for the normal distribution from premises starting with something like
“The error in the measurement can be any value, positive or negative.” But a
hidden, or rather tacit, premise derivable from that is that the measurement can be
continuous, that it has infinite gradations, which is always impossible in practice.
Instead, a superior working premise is that that error in measurement can be one of
only a set of values, where the values are specified by the apparatus at hand. If this
set is allowed to go to the limit, then it is likely (I haven’t made the calculations)
the normal would result. But if the set is fixed by the apparatus, we don’t need to
go to the limit. The resulting predictive distribution will be parameter-free, a fully
deduced model, just as above (it will resemble, I am guessing, a multinomial in the
limit, or something like it in finite form). As I said above, this kind of thing is ripe
with research topics.

8.6 Exchangeability and Parameters

Suppose (for simplicity) Y is true-false and is to be assessed more than once. Given
E, the usual way to say that Y is exchangeable is if

Pr.Y1Y2 : : : YnjE/ D Pr.Y�1Y�2 : : : Y�n jE/ (8.12)
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where �i is a permutation of the numbers 1; : : : ; n. The order doesn’t matter.
Exchangeability is not quite the same as irrelevance (or independence), which might
not be obvious given this way of writing. To see why consider a Polya urn model.

We have an urn with n white and m black balls. We grab one out, note its color,
and then toss it and another ball of the same color back into the urn. We then grab
out a second ball, and repeat. Given this evidence, the probability of grabbing a first
white ball is n=.n C m/. Suppose the first ball grabbed is white. Another white ball
is tossed into the urn, giving now n C 1 white balls. Given this updated information,
the probability the second ball drawn is white is .n C 1/=.n C m C 1/. But then
suppose a black ball had been drawn first. Then the probability the second ball is
white is n=.n C m C 1/. Knowledge of which ball drawn first is relevant to knowing
the probability the second ball is white. In other words, the notation above might be
incomplete. We really have (with obvious notation)

Pr.first whitejn; m/ D n

n C m
;

then

Pr.second whitejn C 1; m/ D n C 1

n C m C 1
;

or

Pr.second whitejn; m C 1/ D n

n C m C 1
:

Now, given our evidence, the probability of the first ball being white is, no matter
what, n=.n C m/. And the probability the second is white is then (simplifying)

Pr.second whitejE/ D Pr.w1w2 or b1w2jE/

D n

n C m C 1

n C 1

n C m C 1
C m

n C m C 1

n

n C m C 1

D n.n C 1/ C mn

n C m C 1
D n

n C m
:

The probability of white on the first is the same as on the second, as it is on the
third or fourth, etcetera. Intuitively this makes sense, because we’re augmenting the
original urn with more-or-less the same proportion of new white and black balls. But
this result is a consequence of the evidence, not the definition of exchangeability.
Exchangeability would be if (in this case)

Pr.w1b2jE/ D Pr.b1w2jE/;

which is easily seen to be true. Of course, we need not check the cases w1w2 and
b1b2. And it is easily shown that no matter how long the (finite) string is, the
sequence is exchangeable, given this evidence. To emphasize, exchangeability is
just as conditional as probability and relevance are.
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We have earlier seen that exchangeability is important in understanding how
probabilities are assigned or deduced (Chap. 4) for propositions with finite content.
And we saw above how parameters can arise by taking finite information to the
limit in a well defined manner. We can get to parameters another way, using
exchangeability and De Finetti’s representation theory.

Suppose evidence E is such that Pr.YjE/ D p, where p is non-extreme. Then if
Y is exchangeable and part of an infinite sequence it can be shown that

Pr.Y1Y2 : : : YnjE/ D
Z 1

0

nY

iD1

pYi.1 � p/1�Yi dQ.p/: (8.13)

This is an existence proof, not a constructive one as above. All it says is that some
distribution dQ.p/ exists, we know not what. Bayesians have formed the habit of
parameterizing this “prior” distribution on p in an ad hoc way, which is natural
since there is no guidance in (8.13). A typical choice here is to set dQ.p/ D dp, i.e.
a “flat” prior, which gives the same results as above. In a way.

It’s only “in a way” because the theorem isn’t needed if, as we claim,
Pr.YjE/ D p, because, of course, we know p and we can prove exchangeability.
Everything we need to know we have deduced from E, as we did above. We only
move to infinity as approximation if it helps finite calculations. Bayesians use the
theorem when they assume p is unknown but—and additional assumption—that it
is fixed number.

8.7 Mystery of Parameters

As long as we start with parameterized models without understanding the nature of
their origin, we’re courting over-certainty. Nearly all models—I speak of those in
actual practice and not only those pursued by specialists—are ad hoc. They are used
because of custom or because of ignorance of alternatives. The parameters inside the
models just appear.

There are, however, natural places for parameters. For instance, Planck’s “con-
stant” h, which has the units of a physical action and is commonly expressed in
Joule-seconds. This parameter is necessary to a host of equations and is part of
several theories (or one grand one) of quantum mechanics. Werner Heisenberg’s
uncertainty relation between a particle’s location and momentum, for example, is
�x�p D h=4� . This h is posited; it is a premise of these theories (or of one grand
theory); its value is not deduced. If it were deduced, we would know its value.
We do not even know if it is deducible; which means we do not know if it is an
epistemological helper, as parameters usually are, or it is an ontological part of
nature. Is it part of us or the world? If us, it means the theories we have about
motion are incomplete. If part of the world, it means we have learned something
fundamental about reality.



150 8 Probability Models

The goal of all physical theories, as we discussed in models of causality, is to
deduce from indubitable axioms the causes of change; all of them (some claim that
extensions of string theory are just that, e.g. [214]). We are obviously not at that
point, and it is not at all clear we ever will be. If we understood all, we would have
a theorem, possibly monstrous in length, that said, given X, h D this. Because we
do not have that, and we do not even know if we can have that, this is proof we do
not fully understand all causes. We do have parameterized models, which means the
“laws” of physics are at least partly, at this point in time, epistemological. We do not
even have proof that “constants” are constant, i.e. that they take the same values in
all parts of the universe at all times. Instead we have the assumption (our premise) of
constancy (some parameters in some theories are said to change, a subject beyond
this book). Again, this implies laws which contain uncertain premises are to be
interpreted in an epistemological sense. It is not proof that the objects to which
the laws refer are not real, only that our understanding of them is incomplete.
Think of the ubiquitous coin flip: the probability which describes our uncertainty
is epistemological, but the physical coins and flip mechanism are ontological, and
the two things—reality and our understanding of it—are separate. Even in the coin
flip we have the tacit premise of constancy; that is, that the essence or nature remain
unchanged in time and space. Observation gives weight to this premise, as it does to
some physical “constants”, but perhaps not all of them.

As it is, h and many other similar parameters—fine-structure, speed of light,
gravitational, etc.—can only be estimated through experimentation. Necessarily,
there will be uncertainty associated with the measurements, which implies we
cannot be certain of the value of parameters. That again shows our understanding of
these parameters is at least partly epistemological. Anyway, the uncertainty inherent
to the estimates is, or should be, in every situation “stuck to” the parameters—not
just in physical models; all models. That means when a parameter is input into a
predictive equation, the uncertainty of the parameter should be carried forward. So
if we say, based on h (and other premises), that the particle will be at x (or whatever),
we should instead say that the particle will be at x˙ this-or-that. And this judgment
holds even greater force if those other premises also contain uncertain parameters.
All the uncertainty “adds up” (it may not be linear, of course), and can’t be ignored
unless the decisions made on the predictions are insensitive to the size of resultant
uncertainty. I am not arguing against the extreme usefulness of back-of-the-envelope
calculations. But I am saying that when it counts, as it often does, specification of
complete uncertainty is warranted.

Now most statistical models are not used in the same way, as we shall see next
chapter. Instead, an ad hoc parameterized model is given and the focus is put solely
on the parameters as if the parameters were the reality. We start by wanting to know
how some X is relevant to knowledge of some Y, but end with assuming falsely that
some parameter � of X is not only X but a cause of Y. X is all but forgotten; and
so, really, is Y. The Deadly Sin of Reification has struck. There were, in the past,
good computational excuses for this. Calculating uncertainty of actual observables
was difficult. But that is no longer so. The problem is strange because statistical



8.7 Mystery of Parameters 151

model parameters are usually very unlike physical parameters, but that’s because
explanation and the discovery of causes is the goal of physics. It isn’t of statistics,
which has understanding of uncertainty as its destination.

Not for the last time I emphasize that problems should be set up based on
the limitations of measurement and acknowledgement of finiteness. Only then can
limits-as-approximations be used, after it is understood how these approximations
work in the given problem. We need desperately to understand the origin of
parameters. And we must view statistics in a predictive not parametric sense. This
eliminates much over-certainty. But not all. People will constantly invent new ways
of going wrong.



Chapter 9
Statistical and Physical Models

“The only useful function of a statistician is to make predictions, and thus to provide a basis
for action.”—W. Edwards Deming.

Statistical models are probability models and physical models are causal or deter-
ministic or mixed causal-deterministic-probability models applied to observable
propositions. It is observations which turn probability into statistics. Statistical
and physical models are thus verifiable, and all use statistics in their verification.
Statistics are summaries of or are simple observations themselves; statistics are
observed propositions (or mathematical functions of them).

Classical frequentist statistical modeling emphasizes hypothesis or “signifi-
cance” testing and estimation. Testing flows from the desire to know and to decide
whether a proposition is true or false. And estimation comes from the wish to know
how much or how strong some signal or force is. These are the correct aspirations,
so it’s surprising that not only is neither goal met using classical approaches, but
that everybody thinks they are. Physical models usually are on the side of angels
here, engaging reality often and then, as is proper, mercilessly culling models which
don’t match observations. Politics, however, in both statistics and physics, has been
known to save unrealistic models.

Frequentist hypothesis testing and estimation are parameter-centric. And so is
classical Bayesian prior-posterior analysis. These methods tell us about things inside
models, but they are silent on what’s going on outside; that is, they are mute about
reality. It is all but forgotten that we can be as certain as we like about what’s
happening inside a model while remaining largely ignorant of what is happening
in reality. To assume, as nearly everybody does, that the certainty which applies to
a model’s guts applies equally to reality results in gross, systematic, and, at times,
ridiculous over-certainty. Entire fields make their living based on misunderstandings
of classic statistical theory—in both its frequentist and Bayesian forms.

However careful, say, an academic statistician is and however diligently he
admonishes his readers not to over-interpret results, it is true and confirmed end-
lessly that his students will over-interpret and misbehave shockingly. Why? Because
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classical methods do not answer questions ordinary people ask, and nobody can
remember the arcane and esoteric interpretations given to the questions it can
answer. If you doubt this, ask any, say, sociologist for the interpretation of a
hypothesis test or confidence interval. It won’t even be close to correct. Or, better,
look to journals which use statistics routinely. Over-certainty abounds. The blame
for this situation ultimately rests on those who invent and promulgate theories, or,
in other words, us. This is because the misuses of statistics are so egregious and
pervasive that the reaction from the top should have long ago been abject horror,
instead of the complacency we see. It’s well past the time for a fundamental change
in practice.

If we’re doing it wrong, how do we do it right? The answer is obvious: answer
questions people ask. Look outside our (mostly ad hoc and in many cases dubious)
models and speak of reality. We must come to a proper understanding of causality in
probability models. And, as will become clear, we must guard against the we-must-
do-something fallacy, a disease which largely affects academics anxious to produce
research. In this and the next chapter I’ll often use the shorthand “statistical model”,
which applies to any kind of model of observables, since statistics are the main way
to judge them.

9.1 The Idea

This section is addressed primarily to those who use probability and statistics but
who had no part in the development of its methods; developers can skip ahead to
the next section.

The idea is this: (1) Look, (2) Don’t model. Very many times, simple summaries
and plots of data are superior to models. But if you’re going to model, follow
Deming’s advice: make predictions. Predictions are verifiable.

Misunderstanding statistics is causing much harm. The failings of the current
methods of practicing statistics are known but largely unheeded, e.g. [9, 230].
Arguments by critics are now so common that I do not reproduce any but the most
relevant here. Significance chasing, a.k.a. wee p-value hunting, is parameter- and
hypothesis-centric, which inverses the normal order of scientific questioning and
usually involves unobservable entities. The solution to the problem is not a simple
replacement of frequentist with Bayesian prior-posterior distribution analysis. Both
classical frequentist and Bayesian methods do not allow the assessment of model
performance and usefulness. Both answer questions nobody but mathematicians
ask, questions which are almost always irrelevant for real decisions.

What are relevant questions? You go to the doctor and he recommends a new pill.
What do you want to know? The sensible thing: what are the chances this pill cures
your disease. Statistics as currently designed stubbornly won’t answer that question.
It’s worse than it sounds, because the doctor is basing his recommendation on
studies which, for instance, compared this new pill against an old one, studies which
pronounced whether observed differences in the pills’ effects were “significant”.
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What did the researcher designing the study on which the doctor relied want
to know? The sensible thing: what are the chances more people get better taking
the new pill rather than the old. Again, statistics won’t answer that. Statistics
will only announce whether the results were “significant”. Suppose they were.
What happens next? Everybody wrongly falsely incorrectly mistakenly and without
warrant assumes that significance is equivalent to knowledge that the new pill is
better than the old, or that all the differences in the observations were caused by the
new pill. “Significance” is the criterion of evidence the FDA, EPA, and every other
rule-making body uses. This is a dismal state of affairs.

Here is how statistical modeling should, but does not, work: Compile evidence
probative of some proposition of interest, and then calculate the probability this
proposition is true given this evidence.

That’s all of statistics in twenty words. How is this done? Simplest example in the
world. Proposition of interest, “This coin comes up head in a flip.” What evidence
is probative? Well, the coin is two-sided, one side labeled heads the other tails,
which when flipped (in such-and-such a manner) must show one of these two. The
probability the proposition is true given this evidence is 1/2, as expected. But we’re
not restricted to this evidence. A physicist might step up and measure the coin’s
spin, the force of the flip, and so on. Using that evidence, he can come to a different
probability the coin lands heads. Indeed, and as has been done, with precise enough
measurements, the physicist can predict with something close to certainty what will
happen.

Or we might have a two-valued “coin” or coin-like object the physics of which
are unknown or where the knowledge of its properties is limited. We might compile
the results from a sequence of “experiments”, the causal nature of which is known
in varying degrees. From this, and from the starting knowledge that we have a two-
valued “process”, like the coin flip we can deduce the probability the process is in
one of its states in this next experiment or in the next n experiments or whatever. We
can form any observable proposition we like about to-be observed process. And then
we can check whether our model “works” in the sense of giving useful probabilities.

In coin flips, the difference between, say, a referee on the field and a physicist is
that they have different information; they have different models of the situation, as it
were—as it is. Different models give different probabilities. This is not a profound
statement, yet all evidence suggests remembering it is monumentally difficult.

The trial for the new pill—or for any other situation—works in the same way.
Gather evidence relevant to the question at hand, this evidence becomes a model
from which probabilities are calculated. Now this might happen in mathematically
complicated ways, but that is nothing. We don’t need to understand the math to
comprehend the answers. “The probability of this with respect to that” makes sense
to everybody. This is statistics-as-argument. It is a predictive approach.

This form of statistics is actually used, and in more places than you might
have guessed. Every time you drive through an automated toll booth the machine
that takes a picture of your license plate must take the evidence it has—the
picture itself, the characteristics of the kind of images stored, and the like—and
calculate the probability the license is “YAC 893” or whatever. It must make a
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classification (a decision) based on a calculated probability and an understanding
of the consequences of the decisions. If you’ve ever made a bet, say on the stock
market or a sports team, you’ve used this form of statistics. Here you’re painfully
aware that if only you had had better evidence (a better model), you would have
formed superior probabilities. And here you understand there is a difference from
the probability the team will win and the decision or bet you make.

This reality-based statistics is sometimes called predictive statistics because it
predicts what will happen (but this term has multiple meanings, so be careful);
for some examples, see [88, 89, 127, 128, 144, 200]; there are parallels with so-
called objective Bayes, see e.g. [225]. In this scheme, models are checked against
the world. Bad models are rejected, good ones cherished. This sounds like science;
or how science used to be. Science uses predictive statistics in many fields, usually
the closer these are to engineering, but it is also, or used to be primarily, found
in physics. The idea is to make testable predictions so that model goodness can
be assessed. This is impossible in hypothesis testing or Bayesian parameter prior-
posterior analysis.

9.2 The Best Model

The best model happens to be the least used among professionals, but the most
resorted to by civilians, who thus gain a decided edge. The best model is no model.
The best model is to just look at the data, evidence, and premises gathered and
ponder them. No model is ever needed to tell us what we observed, the first step
in gaining an understanding of essence and nature. We know what we observed
because we have observed what we have observed. That sounds a useless sentence,
but it isn’t. It is emphasized because it is everywhere (in professional circles)
doubted and perhaps even disbelieved. I have often put it to statisticians and the
most positive response I have received was a blank stare.

You’re a doctor (your mother is proud) and have invented a new pill, profitizol,
said to cure the screaming willies. You give this pill to 100 volunteer sufferers, and
to another 100 you give an identical looking placebo. Here are the facts, doc: 71
folks in the profitizol group got better, whereas only 60 in the placebo group did.
Here is the question: in what group were there a greater proportion of recoverers?

Every statistician hearing that believes there’s a trick, and to solve it he will
propose a model, say, a “z test”, or whatever. Yet the untrained—he must be
untrained—civilian will say, “The drug group”, which is the right answer. Of course
it is!

Question two: what caused the difference in observed recovery rates? I don’t
know. But I do know that some thing or things caused each person in each group
to get better or not. I also know that “chance” or “randomness” weren’t the causes.
They can’t be, because they are measures of ignorance and not physical objects,
as we have already seen. Lack of an allele of a certain gene can, say, cause non-
recovery, or a diet of carrots in sufficient quantity can speed the recovery, but
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“chance” is without any power whatsoever. Results are never due to chance, they
are due to real causes, which we may or may not know. If our goal is only to make
the statement which group got better at greater rates, no model is needed. Why
substitute perfectly good reality with a model? That is to commit the Deadly Sin of
Reification, which is explored in greater detail next chapter.

If our goal is to say something about patients not yet seen, then a model is not
only just the thing, it is required. How to build such a creature we next discover.
It is without question a model is needed because we did not measure anything that
could have caused the observed difference, and it is a certainty that more than one
cause was at work. If there was only cause at work every result would always be the
same, as we learned earlier; or if there were only two causes at play, then everybody
would have the same outcome in each group, but each group would be different. It
is also unlikely that our model will discover the pertinent causes; the best we’ll be
able to do is to characterize the uncertainty we have in new observations, which is
usually an adequate goal.

Perhaps my admonition now seems needlessly strong. After all, it is obvious
which group had the higher proportion of recoverers, and, the objection will
continue, the experiment was run for the purposes of making statements about yet-
to-observed patients, so a model was required after all. There are two reasons why,
if anything, my caution was not strong enough. One is due to the various uses to
which data is put, which I answer next. And the second is the “modeling reflex”.

This reflex is so strong that it isn’t realized that there is no model deducible
from the stated premises. All we know is that pills were given to 200 folks, and
this many got better and this many didn’t. We know nothing about the pills or
the people, not any of their demographic or biological conditions nor how many
folks in the future will be eligible for the pills and so forth. There is surely
positive information in our data (premises) that the drug is possibly doing something
(but only sometimes) the placebo is not. But it’s unlikely we’ll be able to make
sufficiently detailed measurements if we were to repeat the experiment such that
we identify the precise causes of a cure in each individual. In order to model
using the information provided, something additional has to be assumed. Perhaps
this something will be right or approximately right, or again perhaps it will be
wrong. There is a good case that in medical or other situations where measurement
is careful, assumptions necessary to make models are often reasonable. But that
case cannot be made where measurements are sloppy or crudely conducted and
where theories of causation are fanciful, as they often are in some fields (those
which use questionnaires, mainly, as we shall see). Models have to be justified.
They usually are not. That they were done by “competent” researchers is usually
the only justification offered, and that is insufficient. All probability is conditional
and so all models are conditional on the premises assumed. Different premises lead
to different models. The public (including politicians) are far too accepting of the
justification of models used to rule and regulate their lives, and they are blissfully
unaware that models are not unique. As we’ll see below, there are good ways to test
the assumptions that create models.
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Time series data, or rather observations that occur in time, are abused the most.
One example will suffice, though I’ll change the names and details to protect
the guilty. One author claimed that violent deaths were decreasing in time, and
he offered a model and a reason why this was so. A second author claimed the
first author was wrong: deaths were not decreasing, but he offered no reason
beyond a model why this was so. The same, or similar data, produced two models
with diametrically different conclusions. The reader will recognize many similar
situations.

Both parties pointed to their models to say, “Deaths (are) (are not) decreasing”.
It was the model in each case which was the arbiter of the truth. This is the Deadly
Sin of Reification. No model is needed to say what happened. Either author had
merely to look at the data and conclude, with perfect certainty, whether deaths
were increasing, decreasing, or holding steady. Only one small additional premise
is needed: a definition of “decreasing” (or its obverse “increasing”). As stated at the
beginning of this book, the meaning of the words used in argument are themselves
tacit premises. These tacit premise must be made to “come out into the open” when
arguing formally. Next chapter, we’ll see the mistakes which are made when the
tacit premises are left tacit when I discuss “trends” in time series. For now, only
assume that a definition is had and is agreed to by all parties: “decrease” means
this, “increase” that, and “hold steady” something else. I beg the reader will attend
closely: with the definition settled, all we have to do is to look. Either the conditions
of the definition will have been met, or they will not have been. And since, it is
presumed, these three categories are exhaustive (about death trends), somebody will
be certainly right and the other certainly wrong. There is no need to argue! And
with even greater force, there is no need, there is absolutely no need, for any kind
of model.

Models in these cases are replacements for reality. What possible reason could
there be to replace a perfectly good reality with a fiction? I ask because it is done
all the time. Each was sure of his model and (of course) his cause. That’s what
really caused the dispute. Love of models. Scientists these days are like modern-
day Pygmalions, falling in love with their creations. Only they are not as blessed as
Pygmalion; a scientist’s model is forever lifeless.

Now if it were true that the data in a given situation were measured with error
and we wanted to quantify the uncertainty in what the truth might have been, then
we need a model, just as we need a model if we want to quantify the uncertainty
in what the future will be. Models are used to quantify the uncertainty in what we
don’t know; when we are certain, they are not needed. Unknown is unknown. On
the other hand, if the data is known it is known. Don’t play with it. Unnecessary
fiddling is rife. As I say next chapter, an entire book could be written of the abuses
spoken of in this small section, but that will have to wait for another day.

But aren’t models also needed for hypothesis tests, to see if the observed
differences are “due to chance”? No. This is always a mistake: hypothesis testing
should never be used. This is proved below.
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9.3 Second-Best Models

The goal of modeling should be this: to gather evidence X to make probability
statements about propositions Y. Schematically, as in the last chapter (this is
expanded in a practical sense several sections below):

Pr.YjX/: (9.1)

Although probability is general and places no restrictions on the nature of the
propositions Y, statistics and the physical sciences by custom and as a useful
division of labor, but not of philosophy, restricts Y, and much of X, to be observable
(contingent). X will contain past observations and other information, including
deductions and possibly causal or logical propositions, thought probative of Y.
Premise, assumption, or observation as names for X are preferred over variable,
because premise and the like are easily seen to be what they are: assumptions.
“Variable”, unless one is careful, can led to reification and mistakes in assigning
cause. There are no parameters here, nor are there decisions: this model is pure
probability. In this section, only the idea behind this approach is given; there are
some suggestions about how to go about this at the end of this chapter, and specific
implementations in the next chapter.

Most unfortunately, statistics as practiced is rarely like (9.1) and is something
else entirely. Which is to say, the material that follows is not standard—but
should be. Statistics as classically practiced is like this:

Y � D.X; �/; (9.2)

where the observable Y is said to be “distributed” according to some probability
distribution D, which is a function of premises (usually a smaller set than in (9.1))
X, themselves indexed by parameters � . Now (9.2) can be turned into (9.1) by
“integrating out” the uncertainty in the unobservable parameters. The operation
is an integration over (9.2) if � is continuous, else it is a sum. In other words,
given X, the probability of Y is the value of (9.2) weighted by the uncertainty in � .
Schematically:

Pr.YjX/ D
X

i

Pr.YjX; �i/ Pr.� D �ijX/: (9.3)

where X “contains” everything we know, including past observations of the
proposition of interest and probative observational data, other premises specifying
the model, and specifications of new values of the probative data. (This is a cartoon
equation, which is made specific in individual implementations.)

In modeling as commonly practiced, discussion settles on measures and state-
ments about the parameters, about, that is, objects like Pr.Xj� D h/ in frequentist
statistics or like Pr.� D hjX/ in Bayesian, for some value of the parameter h
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(this can be a set). The remainder of the equation is forgotten. Because all or most of
the math (as is proper) is set aside when communicating results, classical methods
make errors in inference hard to spot, and it has led to a ritualized form of statistics.
Decisions about Y based on statements about parameters mixes up probability and
decision. Even in “non-parametric” statistics, the goal is decision not probability.

In the predictive approach, as given in (9.1) or (9.3), measures of relevance
should replace hypothesis testing, and direct calculation of propositions of actual
interest should replace estimation. The classical methods of testing and estimation
are discussed below. The replacement in both cases is the same; which is to say,
Eq. (9.1) or (9.3) and not (9.2). The onus of decision should be removed from the
method and put where it belongs, on the narrow shoulders of users. Statistics must
become less like ritual and more like hard work. Statistical pronouncements must
be put in the form where they can be verified—independently verified by direct
comparison with reality. Models which fail to conform to reality are to be expunged.

Some rough but familiar examples first. Suppose X is a compound proposition
about past observations, nature of employment, residence and the like, and sex
(M or F), and Y is the proposition Y D “Income is greater than fifty thousand.” We
might be interested in (with obvious shorthand notation) Pr.YjXM/ and Pr.YjXF/.
If both of these are equal, then knowledge of sex is irrelevant to knowledge of
Y—given the remainder of what’s in X. If the other constituents of X change,
sex might become relevant to Y (as was shown previously). If Y is modified to
a different obtainable monetary figure, say Y0 D “Income is greater than seventy
thousand”, and Pr.Y0jXM/ D Pr.Y0jXF/, then again, knowledge of sex is irrelevant
to knowledge of (as is obvious) Income at this level—assuming again, of course,
the other conditions in X apply. Of course, there may be amounts of Y at which sex
is relevant. Plots can be made in which Y indexed by amounts forms the abscissa
and the probabilities calculated assuming the X of interest the ordinate (reversing
the x-y!). In other words, plot y by the probability of Y D “Income is greater than
y” by conditioned on whatever (combination of) X is of interest.

If, say, Pr.YjXM/ D Pr.YjXF/ C � for some small �, then knowledge of sex
is relevant to knowledge of Y (and its stated income figure; recall Y is a fixed
proposition). Whether � is “large” and “important” or “small” and “negligible” or
whatever are not statistical questions. Any � > 0 is enough to prove relevance.
Whether this is “practical” relevance or not depends on the decisions to be made
with the information. The size of � might be important in one context and ignorable
in another. Suppose Pr.YjXM/ D 0:4 and Pr.YjXF/ D 0:45. There is a higher
chance that women, given what we know in X, will make the income stated in Y.
Is that extra 5 % “enough” to make a difference? That depends on what decisions
are going to be made of these probabilities. Is somebody going to be sued? How
many people matching the premises implied by X exist? Probability is silent—and
should be—on the import of any number. Now it might be that the person making the
calculation may judge this difference of 0.05 probability negligible. That being so,
sex can be removed from X, i.e. stricken from the model. In more classical language
sex is removed from the model, making the model more parsimonious. Or it might
be kept in and used for downstream decisions.
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To emphasize: there is no telling what � is important. None. An � D 0:01 may
be crucial to one man and less than trivial to another. Relevance is always an extra-
statistical question. Its importance is always conditional on outside criteria. May the
first man who says, “Why not make � D 0:05 be the standard?” be anathema.

If an element, such as sex in the example, was among (or was) the main reasons
for a study, then it can be argued that no � > 0 is too large to exclude that element
from the model. It is the value of � that should be reported to the world. Let each
make of it what they will. Of course, the investigator can make of it as he wills,
too. He can show the consequences of its removal or of retaining the element under
circumstances he judges interesting. That is, as it sounds, a lot of work; vastly more
effort than throwing data at a software package and hunting for wee p-values. But
this approach is vastly more honest.

Another example. Suppose Y D “This person has COPD” and X is a compound
proposition about the nature of a particular group of people including their body
mass index (BMI), a weak and somewhat inaccurate measure of obesity. If
Pr.YjXBMID29/ D Pr.YjXBMID30/ then knowledge of differences of BMI at these
two levels is irrelevant to knowledge of Y. A plot may be made of Pr.YjXBMIDx/

by x. If this probability varies at all, BMI is relevant to Y, given the remainder of X
(each premise in X will be fixed at some value). If the probability does not vary, BMI
is irrelevant, given X. If the levels do vary, what is important not only depends on the
difference between BMI levels, but what BMI’s are “actionable”. This depends both
on measurement and on the consequences of decisions. We discuss measurement
next. What levels of BMIs are “expected” (where I use this word in its plain-English
sense)? That could depend on premises partly in X, and partly not in X. That is,
outside information may have to be incorporated to see how serious or how likely
any differences in probabilities between different levels of BMI would be.

Another example. A group of persons with measured (medical) characteristics X.
We’re interested in Y D “Person p will live past time t” given his characteristics and
the information from the measured people. Note very carefully that we’re talking
about future events for this person: if he is already dead, we know that and don’t
need probability. Compute Pr.YjXp/, where Xp represents the characteristics of the
measured people and person p. A plot of t by this probability can be made. This is,
of course, survival analysis, but it differs in that this curve will not have uncertainty
in it: there will be no “confidence” or “credible” bounds. The probability is the direct
prediction for this person who has certain stated characteristics. Plots for fictional or
representative persons having stated characteristics can be made in the obvious way.
Relevance is ascertained as before: if the survival curves do not differ for different
levels or values of some pertinent characteristic, then this characteristic is irrelevant
(given the others) else it is relevant.

Another example. A group of objects belong each to one of several categories.
Past data on similar objects and their category membership is available; all this
is X. We want Y D “This object belongs to category c”. Compute Pr.YjXc/. This
is classification. Relevance is the same as before. Again, this is a direct prediction
with no extra bounds or uncertainty. Further, it is stated as a direct probability and
easily interpreted.
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Keen observers will have noticed that there are no uncertainty bounds, “confi-
dence” or “credible” intervals and the like, not just in the survival analysis example,
but nowhere. They are not there because they are not needed. Why? Because no
parameters exist in (9.1). Parameters might appear in the math which facilitates
calculations, but they are “integrated” out at the end, as they are in (9.3). We
are making predictions, stating strengths of associations; we are not producing
statements about unobservable and uninteresting parameters.

9.4 Relevance and Importance

Recalling Chap. 8, in-model relevance is when

Pr.YjXWi/ ¤ Pr.YjXWj/; i ¤ j; (9.4)

where X are the “main” premises and W the premises under test, and where W can
take more than one level or value. All that is required for relevance is an inequality
of probabilities for at least two different levels or values of W. Any inequality, not
matter how small, produces relevance. Premises which do not exhibit any in-model
relevance—there is equality for each i; j—are irrelevant, which is better phrased as
out-model irrelevance. This is when

Pr.YjXW/ D Pr.YjX/: (9.5)

Adding W has done nothing, in the presence of X, to add to our understanding of Y.
It is not necessary to the model. Any premise deducible from X is irrelevant. Any
necessary truth, such as a tautology, is irrelevant. In particular, as we saw earlier, the
tautology “Y can happen or it can’t” is irrelevant for understanding Y. Again, any
inequality, no matter how small, proves relevance.

Equation (9.4) is ripe for plotting, but with a strong proviso. The values of Wj

take the x-axis and the probabilities in (9.4) the y-axis. Departures from irrelevance
are easily spotted. The proviso is: for a fixed X. Which X to pick? This question
stresses the difference between the predictive and the classical approach. Those X
which are felt important to a decision maker are the X that should appear in (9.4).
It could be that W is irrelevant or judged unimportant for those X which are of
no decisionable interest, but W could still be relevant for other X. The decision
about which X is not statistical. If an author is trying to convince an audience of the
importance of some W, it is up to him to pick those X which are convincing to that
audience. This also allows the audience, as the predictive approach insists, to verify
the model independently of the author. This is the basis of true and not interested
replication.

For understanding how the model works with the data at hand, obvious candi-
dates for (9.4) are those X we have already seen. That is, each “data point” is used
to compute
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pi D Pr.YijXi/: (9.6)

And then pi may be plotted (or otherwise examined) for each premise in X. For
example, suppose X D “Xa Xb Xc” (the conjunction). The plots (or examinations)
of Xa;i etc. by pi may be made. If Y is multi-valued, some creativity is needed to
display all probabilities at once, but it can be done.

The same sorts of assessments may be made for the addition or subtraction of
data points. Adding more data usually adds information, but it doesn’t have to. For
a fixed X (or fixed XW conjunction), how much does adding new data points change
our understanding of Y? That can be plotted. This is done predictively. We imagine,
or assume, the new X. That means we have to specify the values of all X. Again,
which to vary and which to hold fix depends on the decisions to be made. A cruder
approach would be to see how each new data point changes a summary measure of
information, such as entropy. This leads us to importance.

Importance—probabilistic and not practical importance—is the level of influ-
ence a premise (variable) has in the model, given the other premises (variables). It is
therefore related to the probability Y is true given that premise and given the others.
A premise which cannot take “levels” can only exhibit out-model importance. Either
it is in the list of premises or it isn’t. The corresponding change in the probability
of Y is its importance. But some premises are variable; e.g., sex. The changing
probabilities of Y as the premise steps through its levels is the importance of that
premise. There will arise a clamor for single-number summaries of importance. This
should be resisted, and fought off by armed force if need be. It won’t be, though. So
here are some possibilities.

Out-model importance is easy. Compute p D Pr.YjXW/ and q D Pr.YjX/, just
as we would for testing relevance. The absolute difference jp � qj is the importance.
If W is irrelevant jp � qj D 0. This is obviously bounded in .0; 1/. It is also
conditional on X (and on values y might take inside Y). If X is not multileveled
or multi-valued, we’re done. But most X will be. Therefore, one thing we can do is
step through the data and compute pi D Pr.YijXiWi/ and qi D Pr.YijXi/ and form
the collection pi � qi. If W is irrelevant for all X then pi � qi D 0; 8i. W may be
irrelevant for some i, which is to say, some X.

What to do with the collection pi � qi? What indeed. Take its mean, compute its
entropy or variance. All summaries remove information, and each kind of summary
removes different parts. Entropy has additional reasons for use, as are well known
(I leave aside the various methods for calculating it). Importance is related to
information, and information is often summarized—and not fully specified—by
entropy, see e.g. [136]. W is more statistically—and not necessarily practically—
relevant the larger entropy of the collection pi � qi is. Practical, which is to say
real-life, relevance is assessed as given above, by specifying those premises of real
interest to decisions.

These calculations are not, incidentally, defined with respect to the more usual
statistical expected value of W given X. Instead, the suggestion it to compute the
average entropy of the W at each of the levels it takes given a fixed X. In order to
calculate statistically defined expected value we need to have information external
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to X, say Z, which is probative of W, so that we can derive probabilities of W.
In particular, W cannot be deducible from X because if it were it is by definition
redundant.

Guidelines for relevance “levels” are not recommended, for whatever summary is
computed. The last thing science needs is another magic number. No one anywhere
ever should recommend anything remotely like, “If the difference in probabilities
(or entropies or etc.) is greater than � , the results are ‘significant.”’ Significance
depends on decision, and decision is not probability.

9.5 Measurement

This subject was discussed briefly last chapter in the section on parameters, which
should be reviewed first. It is meant as a compliment and amplification of the idea
that models of observables should start out discrete and finite, and only passed
to the limit in certain, specific ways. Infinite-valued models will result as an
approximation to real-life measurement. How good these approximations are can
only be discovered if the finite-discrete models are known.

No measurement can be infinite in scope or refinement. Every measurement is
instead discrete and finite. For example, a digital thermometer has a minimum and
maximum detectable temperature and can only display at fixed marks or output. An
analogue thermometer must be interpreted in some fashion but has the same kind
of limitations. Income can only be measured to the nearest cent (or whatever), and
infinite incomes are impossible. A physics experiment to measure reflected light
must use a device which gives limited information. Computers with off-line storage
can calculate large numbers, but none can calculate infinite ones, and all storage is
discrete and finite. And on and on for every real thing. Now whether there be actual
infinities of anything, or whether infinities are always potential and not actual, is
a separate and fascinating question, just as are whether our minds can grasp the
infinite, and, if so, to what extent. See [186] for a discussion. But in the sciences,
we must take reality in pieces and this has consequences for our understanding of
uncertainty, which is again epistemological and not ontological.

Measurement is closely related to decision. Suppose there is interest in grade
point average. If grades are awarded on a numerical scale, and since only a finite
number of classes can be taken and discrete numerical grades earned in each, only
a discrete set of values of GPA can result. If the number of students tracked is large,
the set of possible grades is also large—but always discrete and finite. Perhaps some
values in this possible GPA set are 3.00119, 3.00120, 3.00121, and so forth. These
numbers are different (not equal). But are they different enough such that different
decisions would be made informed by probability calculations with these numbers
as functions? That depends on the context. With one exception, it is difficult but not
impossible to imagine real-life scenarios where these numbers are not all “equal to”
3—practically speaking. The exception is to award the best or worst GPAs. There,
3.00121 trumps 3.00120.
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Measurement should thus be tied to decision. Any analysis should come after
understanding what decisions will be made with the measurements. For instance, we
might want to know, given suitable evidence, the probability the top student’s GPA
will be exceeded. If that GPA was 3.00121, the answer can surely be calculated,
but, as anyone familiar with these kinds of models understands, this will require
an enormous sample size. It depends on the premises/model, but the answer to that
question and the question “What is the probability the GPA exceeds 3” will most
likely differ by a trivial amount—where “trivial” is in the context of most real-
world decisions. Thus it is better to further compact the measurements. Perhaps
every hundredth or even tenth of a point is sufficient; or even to the nearest whole
number for simple decisions. Collapsing saves effort, tailors analyses to decisions,
and makes for cleaner reporting, which in turn tempers over-certainty. How many
times have you read papers which said something like the mean age for some group
under study was 38.145? That “0.145” after the 38 corresponds to just over 52.8
days; and if this fractional part were decremented to 0.144, it would correspond to
just under 52.5 days. Are our decisions really going to fall to these measly difference
in days? Worse, those superfluous digits instill over-certainty, the false feeling that
science is happening.

It will be objected that collapsing measurements loses information. This is so.
But the information was by the collapse put into the form useful for the decision
at hand. Collapsing removes extraneous information for this decision. It clarifies.
Collapsing only loses information for decisions, and thus analyses, which require
the finer yardstick. Of course, collapsing already occurs when using histograms,
when summarizing responses to survey questions and on and on. There are questions
about how, say with histograms, to pick the bin widths and edges, but nobody said
it had to be easy. Putting the data into the form ready for decisions is eminently
sensible. Collapsing also allowed easier use of parameter-free, deduced models
(which were described in Chap. 8). Of course, collapsing does not have to be done.
Measurements are still discrete and finite.

Suppose a many-objects-in-bins example, resembling a classical multinomial.
Each measurable GPA gets a bin. If GPAs were measured to the nearest thousandth
than to the nearest tenth, many more measurements would have to be taken to
flesh out our uncertainty because unless the sample size were enormous most
“bins” would likely be empty. This makes predictions problematic. Not conceptually
problematic, but computationally. Collapsing measurement requires more work up
front than is traditional, because it requires taking a view of how the decisions fit in
with the uncertainty. But since the tradition is what is in question, this objection does
hold much force. Another objection is that methods for discrete, finite, and collapsed
data are not developed or are not widely available. This is very true. Regression, the
most used of all techniques, does not fit into the framework developed here. Discrete
regression is categorical data analysis and can certainly be done (see [2] for what
I mean by categorical data analysis). I leave it to mathematically adept readers in
search of problems to discover.
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Traditional analysis of some quantities presume infinite values, as discussed
when investigating the nature of parameters. Take income. Regression and other
traditional methods assume it can increase without limit or be comprised of infinite
gradations. As an eventual approximation, this might be fine: it depends on the
decisions to be made. The approximation is likely to be worse the “chunkier” the
real measurements.

There is more that can be said. Suppose an object y is known to lie at one
of m locations. If a measuring device which has no error were to assess the
object’s location, we would know that location with certainty. The inerrancy of
the measurement and the possible locations are premises; i.e., they are the model.
Such a model is not uncommon nor barren. “To the nearest year, how old are you?”,
“How many people are in the room?”, “Are you male or female?” (the latter is, of
course, subject to error), and many more. If we didn’t have this model, we could
never take or trust most measurements.

Suppose under this model and a static reality two measurements are taken in
succession. Since nothing changes, both measurements must be some yi. But, for
instance, if the first is y2 and the second y4, the model has been falsified. Either
the object moved between measurements or there was error injected into one or
both measurements, or both the object moved and the measurement erred. There
is no indication of cause in this case. If measurements differ but the premise of
immovability of the object y is kept, our model is of measurement error. Now if we
knew at each instance the nature of the measurement error, then again we would
know the location of the object with certainty. For instance, if we knew the device
added error 3 units up (or whatever), then we would deduce that the object was really
3 units down. But this kind of information about the nature of the error isn’t usually
provided. Instead, under most assumptions of measurement error, we only know that
error of some kind has been added, but where the exact cause of error is not known,
though some details of the cause might be, e.g. the error is additive. We might have
a premise like “the additive error may be one of these numbers e1; e2; : : : ; ep”. This
premise implies that every time a measurement is taken, the error can be different
and is one of the set e1; e2; : : : ; ep, but which of these applies each measurement we
do not know.

Assuming this model and adding the premises that n measures xi D yj C ei were
taken (we see xi but yj is the static truth), we can form the average

s D n�1
X

i

xi D yj C n�1
X

i

ei;

where yj says the location of the object is yj. Given the model, i.e. the premises
that the object is at one of the m locations y1; : : : ; ym and that the error for each
measurement can be one of e1; : : : ; ep, s must take one of the values

y1 C n�1
X

i

e1 D y1 C e1
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or

y1 C n�1

iDn�1X

iD1

e1 C n�1e2; : : : ; yn C n�1
X

i

ep D yn C ep

This makes it natural to think of how far off the average is, or rather, how much
measurement error there is in the average.

For example, let the possible errors be �1; 0; 1. If we take n D 1 measurement,
the chance the average is error-free is 1/3, which is also the chance the error
is �1 and the chance it is 1. If n D 2 measurements are taken, the error
can be in the set �2=2; �1=2; 0=2; 1=2; 2=2 with corresponding probabilities
1=9; 2=9; 3=9; 2=9; 1=9. By the time we have n D 4, the possible errors are

f�4=4; �3=4; �2=4; �1=4; 0=4; 1=4; 2=4; 3=4; 4=4g

with probabilities

f1=81; 4=81; 10=81; 16=81; 19=81; 16=81; 10=81; 4=81; 1=81g:

There are thus two strategies. Take the measurements, form the average and then
list the probabilities of all possible errors, or pick a threshold of acceptable error in
the average and the probability the observed error is at least this small, and solve
for the number of measurements that must be taken. If this error is, say, 0.2 and the
acceptable chance is 80 %, then at least n D 5 measurements must be taken.

It is of interest to let the number of possible errors expand or the number of
measurements to become “large”, or both. Done suitably, as before, parameters will
emerge, which might be useful as approximations to the exact answers.

9.6 Hypothesis Testing

Classical hypothesis testing is founded on the fallacy of the false dichotomy. The
false dichotomy says of two hypotheses that if one hypothesis is false, the other
must be true. Thus a sociologist will say, “I’ve decided my null is false, therefore
the contrary of the null must be true.” This statement is close, but it isn’t the fallacy,
because classical theory supports his pronouncement, but only because so-called
nulls are stated in such impossible terms that nulls for nearly all problems are
necessarily false, thus the contrary’s of nulls are necessarily true. The sociologist
is stating something like a tautology, which adds nothing to anybody’s stock of
knowledge. It would be a tautology were it not for his decision that the null is false,
a decision which is not based upon probability.

To achieve the fallacy, and achieve it effortlessly, we have to employ (what we
can call) the fallacy of misplaced causation. Our sociologist will form a null which
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says, “Men and women are no different with respect to this measurement.” After he
rejects this impossibility, as he should, he will say, “Men and women are different”
with the implication being this difference is caused by whatever mechanism he has
in mind, perhaps “sexism” or something trendy. In other words, to him, the null
means the cause is not operative and the alternate means that it is. This is clearly a
false dichotomy. And one which is embraced, as I said, by entire fields, and by most
civilians who consume statistical results.

Now most statistical models involve continuity in their objects of interest and
parameters. As before, a parameterized model is Y � D.X; �/ where the � in
particular is continuous (and usually a vector). The “null” will be something like
�j D 0, where one of the constituents j of � is set equal to a constant, usually
0, which is said to be “no effect” and which everybody interprets as “no cause”
of Y. Given continuity (and whatever other premises go into D) the probability
�j D 0 is 0, which means nulls are always false. Technicalities in measure theory
are added about “sets of measure 0” which make no difference here. The point is,
on the evidence accepted by the modeler, the nulls can’t be true, thus the alternates,
�j ¤ 0, are always true. Meaning the alternative of “the cause I thought of did this”
is embraced.

If the alternates are always true, why aren’t they always acknowledged? Because,
again, decision has been conflated with probability. P-values, which have nothing
to do with any question anybody in real life ever asks, enter the picture. A wee
p-value allows the modeler to decide the alternate is true, while an unpublishable
one makes him decide the null is true. Of course, classical theory strictly forbids
“accepting”, which is to say deciding, a null is true. The tortured Popperian language
is “fail to reject”. But the theory is like those old “SPEED LIMIT 55 MPH” signs on
freeways. Everybody ignores them. Classical theory forbids stating the probability
a hypothesis is true or false, a bizarre restriction. That restriction is the cause of the
troubles.

Invariably, hunger for certainty of causes drives most statistical error. The false
dichotomy used by researchers is an awful mistake to commit in the sense that it is
easily avoided. But it isn’t avoided. It is welcomed. And the reason it is welcomed
is that this fallacy is a guaranteed generator of research, papers, grants, and so on.
Two examples, one brief and one in nauseating detail will prove this.

Suppose a standard, out-of-the-box regression model is used to “explain” a
“happiness score”, with explanatory premise sex. There will be a parameter in this
model tied to sex with a null that the parameter equals 0. Let this be believed. It
will then be announced, quite falsely, that “there is no difference between men and
women related to this happiness score”, or, worse, “men and women are equally
happy.” The latter error compounds the statistical mistake with the preposterous
belief that some score can perfectly measure happiness—when all that happened
was that a group of people filled out some arbitrary survey. And unless the survey,
for instance, were of only one man and one woman, and the possible faux-quantified
scores few in number so that a tie is likely, then it is extremely unlikely that men
and women in the sample scored equally.
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Again, statistics can say nothing about why men and women would score
differently or the same. Yet hypothesis testing always loosely implies causes were
discovered or dismissed. We should be limited to statements like, “Given the natures
of the survey and of the folks questioned, the probability another man scores higher
than another woman is 55%” (or whatever number). That 55 % may be ignorable
or again it may be of great interest. It depends on the uses to which the model
are put. Further, statements like these do not as strongly imply that it was some
fundamental difference between the sexes that caused the answer. Though given
our past experience with statistics, it is likely many will still fixate on the causal
possibility. Why isn’t sex a cause here? Well, it may have been some difference
besides sex in the two groups was the cause or causes. Say the men were all surveyed
coming out of a bar and the women a mall. Who knows? We don’t. Not if all we are
told are the results.

It is the same story if the null is “rejected”. No cause is certain or implied. Yet
everyone takes the rejection as proof positive that causation has been dismissed.
And this is true, in its way. Some thing or things still caused the observed scores.
It’s only that the cause might not have been related to sex.

If the null were accepted we might still say “Given the natures of the survey
and of the folks questioned, the probability another man scores higher than another
woman is 55%”. And it could be, after gathering a larger sample, we reject the null
but that the difference probability is now 51 %. The hypothesis moves from lesser
to greater certainty, while the realistic probability moves from greater to lesser.
This often occurs, particularly in regressions. Variables which were statistically
“significant” barely cause the realistic probability needle to nudge, whereas “non-
significant” variables can make it swing wildly. That is because hypothesis testing
often misleads. This is also well known, for instance in medicine under the name
“clinical” versus statistical “significance.”

It may be—and this is a situation not in the least unusual—that the series of
“happiness” questions are ad hoc and subject to much dispute, and that the people
filling out the survey are a bunch of bored college kids hoping to boost their grades,
see [111] on WEIRD people, who form the backbone of many studies, where
WEIRD D “Western, Educated, Industrialized, Rich, and Democratic”. Then if the
result is “Given the natures of the survey and of the folks questioned, the probability
another man scores higher than another woman is 50.03%”, the researcher would
have to say “I couldn’t tell much about the difference between men and women in
this situation.” This is an admission of failure. The researcher was hoping to find
a difference. He did, but it is almost surely trivial. How much better for his career
would it be if instead he could say, “Men and women were different, p < 0:001”?
A wee p then provides the freedom to speculate about what caused this difference.

Finally, here is an extended analysis showing how hideously difficult it can be
to discover a cause in the simplest of situations, using an example known to many
historians of statistics. A certain English lady claimed to be able to tell whether
her tea or milk was poured first into her cup. The statistician and geneticist Ronald
Fisher put her to the test by presenting her four cups with the tea poured first and
four cups with the milk poured first. The lady did not know the order of the cups.
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Can we use this experiment to discover whether the lady has the ability
she claims? We only have the evidence of this one test. The situation seems
straightforward enough, but there are hidden depths. The difficulty lies in defining
has the ability. We cannot afford to be sloppy here.

Which of these best describes “has the ability”:

• She always guesses correctly (she is never wrong);
• In any experiment with N cups, she always gets at least N=2 right;
• In any experiment with N cups, she might get at least N=2 right;
• She always guesses correctly when the tea is poured first, but will sometimes

guess wrongly when the milk is poured first;
• She always guesses correctly when the milk is poured first, but will sometimes

guess wrongly when the tea is poured first;
• She guesses all cups correctly until the Mth cup (M < N), after which her palate

becomes fatigued. M may depend upon a host of factors, such as the time of day,
the food she at earlier that morning, her mental attitude, and so forth;

• She guesses at least M=2 cups correctly until the Mth cup (M < N), after which
her palate becomes numb, etc.?

I could have expanded this list easily. For example, “She always guesses at least
W=2 cups correctly when the tea is poured first, but will sometimes guess wrongly
when the milk is poured first, where she is presented with 2W D N total cups.” Some
of these lead to tricky counting, because if, say, she always guesses the tea-first cups
correctly, and these come first in the sequence, and she assumes she knows these
guesses are correct, after she sees N=2 cups she knows all the rest will be milk-cup
first and she will therefore guess accordingly.

None of these definitions is in any way strange: each could really be what we
mean when we say this lady knows her elevenses. Where is the classical “She
guesses better than chance?” Are you sure it’s not already there? The phrase guesses
better than chance must be an idiom, because as we have learned, chance is not
causative; that is, chance cannot be presented with cups of tea and asked to guess.
So what is it idiomatic for?

Imagine an experiment where you are presented with N cups, but you do not
touch, sniff, taste, or see inside these cup. You do not even see or know who places
them in front of you; indeed, the cups can be left in a distant room, miles away from
you. However, you must still make a guess whether the tea or milk was poured first
into these occult cups. You could guess none right, or just 1, or just 2, and so on up
to all N. What is the probability that you guess none right? Because our evidence
(or premises) do not specify any known causal path for you to guess correctly, and
because there is a natural ordering of guesses, we deduce via the statistical syllogism
the probability you guess any individual cup correctly equals 1/2. As long as you are
not told whether your prior guesses were correct, this probability remains fixed. This
lack of feedback success becomes extremely important in, say, ESP experiments. If
the subject knows how many successes and failures he has had, and the total number
of guesses, he could use this information like in card counting to modify his future
guesses. An example of how this plays is given below. See [57] for mathematical
details.



9.6 Hypothesis Testing 171

Here, you are not asked to guess the sequence, but whether tea or milk was
poured first; i.e. we want to know the number of your correct guesses and are not
interested in the order of these guesses. Also notice that there is no information in
these premises that suppose there will be an equal number of tea-first and milk-first
cups. But even if there were, even if we knew there were equal numbers of each and
thus that there were 2N possible sequences of cups, we are still not interested in the
probability of your particular guessing sequence, but only in the total correct.

The uncertainty in the number you guess correctly—given no causal path—thus
follows a binomial (if we don’t know how many of each cup; if we do, it’s something
else). Importantly, you could guess, and we could figure the probability of your
guessing, none right, or just 1, or 2, or even all. So, “guessing by chance” must mean
the ability to guess any number correctly. Since you can and will guess some number
(even all) correctly, you cannot “guess better than chance.” There is circularity. No
matter if you get 0 right, 1 right, up to N right, all are consistent with guessing by
chance. But we have at least learned that “by chance” means “by no (known) causal
path.”

Now suppose it’s you against the lady; same lack of causal path for you, and her
using all her powers. Who will win? If she always guesses correctly, then at best
you could only match her. The probability of matching is .1=2/N , which makes the
probability of her beating you 1 � .1=2/N . We deduce this assuming she never fails.
Similarly, if we assume that “had the ability” means that “in any experiment with
N cups, she always gets at least N=2 right”, and although the math is slightly more
complicated, we could also calculate the probability of you tying, losing to her, or
even winning.

We could go through each of our definitions of “has the ability” (and more like
them) and calculate probabilities of you winning, losing, or tying. But none of these
exercises tells us which of these definitions is true, or which is more likely true than
another. For that, we must turn our thinking around.

We want to know whether for this sweet old lady “has the ability” is true or
false, or if not true or false, then with what probability it might be true. To judge
this probability we have the evidence of our experimental setup, and whatever facts
may be deduced from these premises. We also have the evidence of the experiment
itself: how many cups she got right and wrong. Can we agree that we should only
use this information and no other? I mean, we should only use the evidence of what
happened. What didn’t happen and what we cannot deduce from our experimental
setup is information which is entirely irrelevant. So for example if we gave the lady
N D 8 cups, it is irrelevant that we could have given her N D 50 cups, or whatever.
We gave her 8 and we have to deal with just that information. We do not want to
fool or distract ourselves. These are of course is trivial requirements, but I put them
there to focus the mind on the question.

Now, if we accept that “has the ability” means “She always guesses correctly”,
then the probability that the lady correctly identifies any cup placed before her must
be 1. This phrase is also our model. I mean, “She always guesses correctly” is our
model, our theory, our hypothesis.
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Why did we assume this particular model? The choice was up to us. It is
one interpretation of—it naturally follows from—“has the ability.” Given this
model/hypothesis, and before putting her to the test, what is the probability
distribution for our uncertainty in her guessing correctly none right, just 1 right,
just 2 right, etc., up to all N right? It is 0 for all numbers except for N, where it is
1. But suppose we run our experiment and she correctly identifies only 3 < N cups.
Given just our model, what is the probability that she guesses 3 correct? Again,
0. This proves the principle that any (logical) argument can only be judged by the
premises given, and by no other information.

However, suppose we conjoin our model with our observation “She always
guess correctly and She guessed 3 < N correctly” and, conditioning on this joint
statement, re-ask what is the probability that she guess 3 correct? It is unanswerable
because we are conditioning on a contradiction, a statement which is necessarily
false. Actually, given this necessary falsity, we could derive any numerical value for
guessing 3 correct, but this is obviously absurd.

We have two probabilities, the first of which is:

Pr.Guesses 3 < N correctlyjAlways guess correctly/ D 0:

But we can turn the question around and ask

Pr.Always guess correctlyjGuesses 3 < N correctly/;

which is obviously 0 (and understanding there is additional evidence about the
experimental set up in the probabilities but suppressed here in notation). This is
a rare instance where we have falsified a model—a situation only possibly when
a model says “Y cannot be” yet Y obtains or occurs. That cannot is dogmatic: it
means just what it says, X is impossible—not unlikely—but impossible.

Now, the question is this:

Pr.Has the abilityjGuessed M out of N; Experiment premises/; (9.7)

where “has the ability” is for us to define (such as “always guesses correctly”), M
and N are observations of the experiment, where we also take care to consider the
Experimental set up (from this we know what N is, etc.).

Asking (9.7) the probability a model is true is a natural question in Bayesian
probability, but not in frequentism where any statement/question must be embedded
in an infinite sequence of “similar, but randomly different” statements/questions. It
is difficult, perhaps impossible, to discover in what unique infinite sequence this (or
any) model-statement lies. I hope you understand how limiting this is. Of course, it
is possible to develop non-theory-dependent rules-of-thumb for deciding a model’s
truth or falsity, but any true theory of probability must be able to answer any question
put to it in a non-ad hoc manner.

What about the rest of our models/interpretations of “has the ability”? We last
time outlined several possibilities, each of them consonant with the phrase “has
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the ability.” Which of these is the correct model and which are incorrect? That is
up to us. It is an extra-logical, extra-probability question—at least with respect the
premises we have allowed ourselves in this experiment.

Now, we could go through a similar procedure as above and calculate the
probability each interpretation is true. That is, if we do not have a fixed idea in
advance which interpretation (model) is true, we could use the evidence from the
experiment to tell us which is most likely than any of the others. However, we
must start from somewhere: some external evidence must tell us how likely each of
these models is before we begin the experiment. It doesn’t matter what this external
evidence is; it merely must exist. The most common evidence allows us to derive that
each is equally likely (before the experiment commences), but that’s rather arbitrary.

Let us now assume a definite model structure and see where it gets us. We
suppose the lady guesses each cup correctly or not, that she knows she will see an
equal number of tea-first and milk-first cups, and that she is provided no feedback
about the correctness of her guesses; we assume her palate never fatigues and that
her “hit rate” is the same for either cup type. We will not assume perfection, but
we allow its possibility. Indeed, it might even be that she always get every cup
backwards; i.e. she is always wrong. This is as bland a set of premises as possible.
In advance of the experiment, we will assume merely that she can get any number
of cups right, from 0 to N.

We have our model in hand. “Has the ability” in our model says that the lady can
guess any number of the N cups correctly. All the lady knows is that N is divisible by
2, that she will see an equal number of milk-first and tea-first cups. She will receive
no feedback on her guesses (this is important). Thus, we do not assume (initially)
she will employ an optimal guessing strategy.

What is an optimal guessing strategy? Suppose we gave the lady feedback and
told her whether her guesses were right or wrong as the experiment progressed. If,
say, the first four cups were all milk-first and she knew she got these all correct, even
if she has no ability and did so just by guessing, then (if she was paying attention)
she ought to get the last four correct, too (even before tasting!). My experience with
ESP testing suggests most people do not use optimal guessing strategies, but if they
did we can account for it, though it’s not easy to do so. So for ease, we’ll forbid
feedback.

Question 1 Given this model (and only our other premises), and before running
the experiment, what is the probability in our uncertainty the lady guesses 0 right, 1
right, 2 right, up to N right? This question is equivalent to asking what fraction of
cups she will guess correctly: 0=N, 1=N, up to N=N. It is not equivalent to asking
what sequence of correct and incorrect guesses she will evince. The fraction of
correct guesses is easily answered, for 0; 1; : : : ; N is 1=.N C 1/; 1=.N C 1/; : : :; that
is, the probability that she guesses j cups correctly is 1=.N C 1/ for j D 0; 1; : : : ; N.

Stated yet one more way, since we have assumed as a premise the model that
she may guess any number of cups correctly, the probability that she does so is 1
divided by the number of possibilities. (That last statement is derived in the previous
chapter.)
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Question 2 Suppose we run our experiment for 2 < N cups and are interrupted.
Given our model and premises, but also given her guesses up to this point, what is
the probability that she guesses 0 cups right, 1 right, up to N � 2 cups right? The
exact answer has a simple mathematical form (as in the last chapter in developing
parameters).

Question 3 The experiment is finished. She has guessed M correct out of N (M is
a sum of the correct milk-first and correct tea-first cups). Given our model and given
M, what is the probability that she guessed a fraction K=N correct, where K does
not equal M? It is 0. A silly question to ask, yes, but let’s expand it. Same premises:
what is the probability she guessed a fraction M=N correct? It is 1. Another silly
question, trivially answered. So why bother?

Ordinary hypothesis testing theory would have us ask something like this: what
is the probability that she guessed .M C 1/=N correct, and the probability she
guessed .M C2/=N correct, and .M C3/=N correct, up to N=N correct? For us, and
conditional on what happened, the sum of these probabilities is 0, as we agreed. But
not in hypothesis testing, where the meaning of the word “guessed” is changed. It no
longer means “guessed” but “Might be guessed were we to embed the experiment
in an infinite series of experiments, each ‘identical’ with the first but ‘randomly’
different; we also hypothesize that if we were to average the correct guesses of this
infinite stream, the result would be precisely N=2 correct guesses.”

In other words, frequentist theory demands we calculate a probability of what
could have—but did not—happen in fictional “repeated trials” (where “repeated
trials” is shorthand for “embedded in a sequence of infinite repetitions”). The theory
must also hypothesize a baseline, a belief that the infinite sequence converges to
some precise average (here, N=2 correct guesses). Stated differently, frequentist
theory asks the probability of seeing results “better” or “worse” than what we
actually saw, given the model is true, a value for the baseline, and M.

This violates our agreement that we should use only the evidence from the
experiment (and knowledge of the experimental set up) to test the truth of our model.
Hypothesis testing does not make statements about what happened, but what might
have happened but did not in experiments that will never be conducted.

This probability is the p-value, as is obvious. If the p-value is “small”, the
hypothesis that the baseline is N=2 is “rejected”, i.e., it is believed to be, or rather
decided to be, certainly false. The p-value does not give a probability that the
baseline is false: it instead asks us to believe absolutely in the truth or falsity some
contingent hypothesis (i.e. that “baseline D N=2”). In other words, a decision based
on the p-value implies that the probability of “baseline D N=2” is 1 or 0 and no
other number.

Harold Jeffreys famously summarized the predicament of hypothesis testing,
“What the use of P [values] implies, therefore, is that a hypothesis that may be
true may be rejected because it has not predicted observable results that have not
occurred.”

It is finally time to reveal what happened! Our good lady guessed M D N D 8

cups: she got them all right. (Some reports claim she got M D 6 right, missing
one milk-first and one tea-first guesses; for our sake, it doesn’t matter.) Remember
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our goal: we want to know whether or not she “has the ability.” The hypothesis
calculates this:

Pr.T.M; N/ � jt.M; N/jjDoes not have ability/; (9.8)

where T.N/ and t.N/ are some identical mathematical function of the data, but
where the t.M; N/ is the value of the statistic we actually observed and T.M; N/

is the value of the statistic in repetitions of the trial, where these repetitions are
embedded in an infinite sequence of trials.

T.M; N/ and t.M; N/ are called “statistics”; they are not unique; their form
and use are not deduced. They are entirely ad hoc. Indeed, for this experiment
we have (at least) our choice of the binomial and Fisher’s exact statistics. For the
former, (9.8) D 0.0039 and for the latter (9.8) D 0.014. We could have easily
expanded this list to other popular test statistics, each providing different solutions
to (9.8). Fishing around for a test statistic which gives pleasing results is a popular
pastime (we want the statistic or statistics which give 0.05 or less for (9.8), this
being the magic number).

Which of these is the correct test statistic? Neither. Fisher’s test could be used if
the lady knew she was getting exactly four cups of each mixture, the binomial could
be used if she didn’t; but other choices exist. (It is the lady’s perspective that matters
there, not yours.) In any case, we have two p-values. Can they help answer our
original question? They cannot. Equation (9.8) is not Eq. (9.7). In no way is (9.8)
a proxy for (9.7); it is even forbidden in frequentist theory to suppose that it is.
Classical theory merely says that if (9.8) is less than the magic number we “reject”
the theory “she does not have the ability”. That is, we claim that “she does not have
the ability” is false, which necessarily makes “she has the ability” true.

But recall that “she has the ability” had multiple interpretations. Which of these
is the hypothesis tester saying is the right one? Well, none of them and all of
them. Actually, the answer the anxious hypothesis tester will give when posed this
question is usually a variant of, “Is that the bus? I must run.” However, there is still
the “agnostic” model; see below. Incidentally, if she got two wrong, (9.8) is 0.24 for
Fisher’s and 0.14 for the binomial.

We cannot answer (9.7) without first deciding what “She has the ability” means.
If we decide, in advance, it means “She always guesses correctly” then as long as
M D N this theory has probability 1, i.e. (9.7) D 1. If M < N then (9.7) D 0.
And that is that. If we decide it means “She always guesses at least N=2 correctly”
then as long as M >D N=2, (9.7) D 1, else it is 0. And similarly for any other
interpretation.

That means that if we have one fixed interpretation and are willing to entertain
no other, then as long as the observations are consistent with this theory, we must
continue to believe this theory is certainly true (conditional on our premise). And
if the evidence is not consistent, we will have falsified our interpretation and thus it
must believe it is certainly false. But if we have falsified it, this does not mean we
have given a boost to some other theory because, of course, we have already said
that there were no other theories. This is a serious and fundamental point.
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In order to have non-extreme probabilities attached to a model’s truth, we must
have more than one model in contention. One model alone is either true or false: the
premise of only one model leads to the tautology “this model is correct”, which
is why this premise does not provide additional evidence. So suppose we have
decided that “has the ability” means either M1 D “always guesses correctly” or
M2 D “guesses at least N=2 correctly”. Good arguments, after all, can be made for
both interpretations. Before we see the experiment, based on these arguments, we
must assign a probability either is true. If our evidence is only that we have these
two to pick from, then we would assign probability 1/2 to each. This is weak and
arbitrary. Far better to look outside our data and experiment to understand which of
these is more likely, meaning finding premises which are probative of both. But for
ease only, each equi-probable.

Then if we see M D N � 1 (which is > N=2) then we have still falsified M1; this
necessarily makes the probability of M2 as 1 (given our premises). And if we see
M < N=2 we have falsified both— leaving no alternative. But if M D N then since
this evidence is consonant with both models, we have not changed the evidence that
either is true. This is it; this is the answer no matter how many interpretations we
initially consider.

The one possibility left is the agnostic model. Suppose the lady got M D 0 right
in N D 40 cups (say). Would you say she “has the ability”? Sort of: she appears to be
a perfect negative barometer. If you knew somebody who was always wrong about
picking stocks, he would be as useful to you as somebody who was always right. So
we leave ourselves agnostic about her ability and say it could be guessing anything
from 0 to N. At the end, we remain agnostic but we are able to predict how well she
will do in N new trials. This is important because even if we are agnostic, there are
different forms of agnosticism. That is, we are assuming uniform agnosticism, but
it may be that a better model might be one which allows different performance for
milk-first and tea-first cups. And it could be that milk-first and tea-first cups differ,
but her palate fatigues after W cups. And so on and on for all the other possible
models.

Being agnostic has not excused us from formulating a model—which we can test
and verify on new data. We have turned hypothesis testing into science. But enough
is enough. Never use hypothesis tests. That sounds dogmatic. Aren’t there instances
where we have an unobservable hypothesis which we would like to know is true or
false and where “hypothesis testing” may seem reasonable? Take situations akin to
jury trials, where the hypothesis of interest is “guilt”, and where the “null” might be
“not guilty”. Evidence is accumulated and a decision is made, reject the null or fail
to accept it.

But this is only a surface similarity: jury decisions are not like classic hypothesis
test after all. What happens is this. The proposition of interest is “He did the deed” or
“He is guilty”. We want the probability of this with respect to the evidence presented
in court and how that evidence relates to the common-sense wisdom of the jury. One
piece of evidence might be a positive confession from the accused. “I did it,” he said.
We want Pr.GuiltyjConfession & C/ where C is the collective wisdom of the jury
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as it relates to this trial. C is that knowledge the jury brings with them coupled with
the evidence, some of it intangible, discovered in court. For instance, in C might
be prior suppositions about false or coerced confessions coupled with ideas about
why the accused could not look anybody in the eye when confessing. Whatever
Pr.GuiltyjConfession & C/ is, it won’t be amendable to calculation. Evidence piles
up. We want Pr.GuiltyjEvidence at this time & C/. Those who have ever sat on a
jury knows that this probability swings in wide arcs, and not just because evidence
accumulates, but because some is forgotten and then brought back to mind.

In any case, at the end of the trial we have p D Pr.GuiltyjAll Evidence & C/.
This also is not quantifiable, and thank the Lord for that. The last thing we need is
the scientism inherent in meaningless quantification made part of our legal system.
But even though p isn’t a number, jurors have an idea about it. That all don’t agree is
not because probability is subjective, but because the “All Evidence & C” is different
for every juror (and even for the same juror through time).

In criminal trials in the United States at this writing (but things change), jurors are
asked whether or not their p represents “guilt beyond a reasonable doubt.” This does
not imply any numerical value for p; again, thank God. But all are told it means a
very “high” p. Now most juries have to be unanimous, which means each has to have
a high p. These p will differ juror to juror, but only because they are working with
different sets of evidence (which includes the common-sense). Discussion between
jurors at this point begins, which is a process to agree on just what evidence is
relevant, and this includes that introduced in the courtroom and that brought in by
common-sense. If this works, then all are brought crudely to the same point, which,
since probability is argument, means everybody’s probabilities must be in rough
agreement. It would be in perfect agreement if everybody agreed exactly on the
evidence. Thus it is not the probability itself which is important, but the process
whereby jurors agree on relevance and irrelevance. Juries decide fact.

Any probabilities which follow from this fact are not nearly as interesting, except
that the p must be “large”, after which a decision is made whether the collective-p
is “large enough” to decide guilt. This decision, like all decisions, is independent of
the probability. Different crimes and circumstances are accompanied by different
decisionable p. A crime may be minor and the expected punishment so trivial
that the jurors decide on a low (yet still “high”) p to conclude guilt. Or again the
crime moderate but the expected punishment so frightening that a much higher p is
demanded. Whatever the decision, it is unrelated to the probability on the accepted
evidence. Though some jurors might be tempted to exclude or include certain
evidence to lower or raise the group p. Of course, if agreement cannot be had, the
jury can be declared “hung”, which might bring a warning to come to agreement on
the evidence or a dismissal of the jury.

It is worth noting that some jurisdictions are adopting a “preponderance of
evidence” criterion for some crimes, such as rape. This is an awful criterion, for
consider if the only evidence we have is she said he did it, and he denies, the
probability of guilt is exactly at 50 %—a rare case where we can calculate a
number (via the statistical syllogism). But since we are in this perilous state, it only
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requires the slightest additional evidence to push the probability greater than 50 %,
a “preponderance” of evidence, and so convict the man. This is awful because it is
precisely in those jurisdictions which adopt this criterion that tend to eschew juries,
relying instead on the decision of (an interested) “judge.” It is far too easy for a
judge in rape case to come to a probability larger than 50 %.

Anyway, even here we do not have a hypothesis test in the classical sense. We
have a probability, quantifiable or not, based on evidence. In other words, ordinary
probability as argument.

Lastly, to wrap up the PM2.5 example, a standard test of proportions (z-test)
gives a p-value less than the magic number, ordering the conclusion that PM2.5 is
therefore a cause of cancer of the albondigas. We have already seen this ascription
of causality is unwarranted. Amusingly, if one fewer person (14 instead of 15 of the
1000 in the high group) had cancer, the p-value is no longer wee and we are then
forced to conclude PM2.5 is not a cause. So much hinges on one observation! But
some will argue that a different test would give different p-values. This is true, and
demonstration of yet another weakness of hypothesis testing. p-Values are taken up
next.

9.7 Die, p-Value, Die Die Die

So much has been written on the dismal subject of p-values, including some above,
that it seems like piling on to say more. Here are a few out of hundreds of critical
articles, [19, 48, 49, 94, 119]. But I do say more only to note three things, two of
which are commonplace and that lead to a third which is not.

First, nobody ever remembers the definition of a p-value. Everybody translates it
to the probability, or its complement, of the hypothesis at hand. For this reason alone
p-values should be abandoned. Second, even some self-labeling Bayesians want to
keep p-values, but in a Bayesian sense. This is to give an old error a new name,
but it will still be an error. Thirdly is something more interesting: the arguments
commonly used to justify p-values are fallacies. Here is the proof.

It turns out that frequentist theory implies that the distribution of the measure
of difference, like in the race-income problem, actually called the “p-value of the
test statistic”, is “uniformly distributed”. What that means is discussed in the next
section, but what the theory implies is (something like), “If the null is true, the
p-value can be any number between 0 and 1, and is equally likely to be any of them”.
The argument people employ, however, progresses like this: “The null entails that
we see a p-value between 0 and 1. We see a p-value that is less than the magic
number. Therefore, the null is false, or rather rejected as if it were false.”

This argument is not valid because the first premise says we can see any p-value
whatsoever, and since we do (see any value), it is actually evidence for the null and
not against it. There is no p-value we could see that would be the logical negation
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of “0 < p-value < 1”; other than 1 or 0, which may of course happen in practice.1

And when it does happen in practice, then regardless whether the p-value is 0 or 1,
either of those values legitimately falsify the null, not just 0. That is, an observed
p-value of 1 is evidence against the null, according to the argument.

Importantly, the first premise to that argument is not that “If the null is true, then
we expect a ‘large’ p-value,” because we clearly do not. But the argument would
be valid, and the null truly falsified, if the first premiss were “If the null were true
we would see a large p-value,” but nowhere in the theory of statistics is this kind of
statement asserted. Though something like it often is. R.A. Fisher, the inventor of
p-values, was fond of saying this—and something like this is quoted in nearly every
introductory textbook, [76]:

Belief in null hypothesis as an accurate representation of the population sampled is
confronted by a logical disjunction: Either the null is false, or the p-value has attained
by chance an exceptionally low value.

This is the same argument as before; but Fisher’s “logical disjunction” is evidently
not one, as the first part of the sentence makes a statement about the unobservable
null hypothesis, and the second part makes a statement about the observable p-value.
But it is clear that there are implied missing pieces, and his quote can be fixed easily
like this: “Either the null is false and we see a small p-value, or the null is true and
we see a small p-value.” Or just: “Either the null is true or it is false and we see a
small p-value.”

Since “Either the null is true or it is false” is a tautology, and is therefore
necessarily true and thus can be removed, we are left with, “We see a small p-value.”
Which is of no help at all. The p-value casts no direct light on the truth or falsity of
the null. This result should not be surprising, because remember that Fisher argued
that the p-value could not deduce whether the null was true; but if it cannot deduce
whether null is true, it cannot, logically, deduce whether it is false; that is, it cannot
falsify the null.

Current practice is that a small p-value is taken to be by everybody to mean “This
is evidence the null is false or likely false.” That is because people are arguing like
this: “For most small p-values I have seen in the past, the null has been false; I now
see a new small p-value” as evidence for the proposition “The null hypothesis in this
new problem is false.” But this doesn’t work because the major premise is false, or
at least unknown.

Given all this, and of the myriad other criticisms no doubt well known to the
reader, plus the ineradicable Cult of Point-Oh-Five, it is far past the time for p-values
to go.

Lastly, because confidence intervals are sometimes seen as the fix or alternative
to p-values, let me prove to you nobody ever gets these curious creations correct.
According to frequentist theory, the definition of a confidence interval (for a

1The simplest example is a test for differences in proportion from two groups, where n1 D n2 D 1

and where x1 D 1; x2 D 0, or x1 D 0; x2 D 1. Small “samples” frequently bust frequentist
methods.
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parameter) is this. If an experiment is repeated an infinite number of times, each
one “identical” to the last except for “random” differences (ignore that this is
meaningless), and for each experiment a confidence interval is calculated, then (say)
95 % of these intervals will overlap or “cover” the “true” value of the parameter.
Since nobody ever does an infinite number of experiments, and all we have in
front of us is the data from this experiment, what can we say about the lone
confidence interval we have? Only this: that this interval covers the “true” value
of the parameter or it doesn’t. And that is a tautology, meaning it is always true
no matter what, and, as we learned earlier, tautologies add no information to any
problem.

We cannot say—it is forbidden in frequentist theory—that this lone interval
covers with such-and-such a probability. And even if we manage to repeat the
experiment some finite number of times, and collect confidence intervals from each,
we cannot use them to infer a probability. Only an infinite collection, or rather one in
the limit, will do. If we ever stop short and use the finite collection to say something
about the parameter, we reason in a logical and not frequentist fashion. And if we
use the length of an interval to infer something about the parameter, we also reason
in a logical and not frequentist fashion. Since the majority of confidence intervals in
use imply a “flat” (improper, usually) prior on the parameter of interest, all working
frequentists are actually closet Bayesians. Now all we have to do is take the short
step from Bayes to logic, and probability will be on firm ground everywhere.

9.8 Implementing Statistical Models

We know what not to do. So what do we do instead? The answer is in (9.1), but that
cartoon equation is not especially helpful. It’s right in spirit but not in detail. Here
are more details, saving specific implementations until the final chapter. A paper on
the final sections of this chapter is available at [29].

Let past observables be labeled D D .Y; X/old, where Y is the observable in
which we want to quantify or explain our uncertainty, and X are the premises or
observables assumed probative of Y (the dimensions of each will be obvious in
context). Let the premises which lead to a probability model (if one is present)
be labeled M. And let X D Xnew be the premises or assumed values of new
observables. The goal of all probability modeling is this:

Pr.Y 2 yjX,D,M/; (9.9)

where y are values of the observable Y which are of interest to some decision maker,
and there Y is written to express the quantitative portion of the proposition Y (if it
has one beyond true and false). Models should be rare, because most probability
is not quantifiable—and we must resist the temptation to force quantification by
making up scientific-sounding numbers. But even if we do, (9.9) can be calculated,
as long we as supply the premises which led to our creations. Although it may



9.8 Implementing Statistical Models 181

be obvious, the equation reads, “The probability Y takes the values y given the
premises or assumptions X, the past data D, and the model M.” If the model is
parameterized and Bayesian philosophy is adopted, (9.9) is the posterior predictive
distribution, and M incorporates those premises or assumptions from which the
priors are deduced (see e.g. [21, 184]). The key is that no parameters are explicit
in (9.9); the uncertainty in them has been “integrated out.” Only observables and
plain assumptions remain. Logical probability would supply premises from which
the model M is deduced (there would be no parameters thus no priors).

Equation (9.9) eliminates, or rather combines, the efforts of testing and estima-
tion into one form. The focus is entirely on observables and the assumptions made
and their effect on the uncertainty of not-yet-seen or unknown values of Y. Not-yet-
seen values of Y are those unknown or assumed unknown; usually they are as yet
unmeasured, e.g. in the future.

A simple example of a deduced model is a die roll in which M D “This is a
six-sided object with labels one through six and which when tossed must show only
one side.” The model is deduced based on these premises. There is no X probative
beyond M and D can be absent or can be a record of previous flips (i.e. X and D are
null or are assumed not probative). An application of (9.9) is Pr.Y D 6jX,D,M/ D
1=6. Because the model was deduced, no parameters were ever present.

It is unfortunately rare that models are deduced; most are posited ad hoc. That
is, M is usually “I’m using regression”, i.e. an act of will. Model deduction can be
accomplished if the measurement of observables are properly accounted for, as we
saw earlier. Another deduced model of finite “successes” and “failures” was given in
Chap. 8 in the discussion of parameters. That model gives the predictive probability
of seeing so-many future successes and failures given we have seen this many thus
far. Most of the time, however, we are stuck with arbitrary or capricious models.
Suppose we are interested in Y D “First-year college grade point average” of
students. Observations X thought probative are the high school grade point average
and SAT score. The model M will be ordinary regression. The goal is to produce
statements like this:

Pr.Y > 3:8jXh D 3:5; Xs D 1160; D,M/; (9.10)

where the subscript “h” is for high school GPA, and “s” is for SAT. The D are past
observations. Since regression uses continuous normal probability, we unfortunately
cannot ask about observables like “Y D 4:0” and must restrict our attention to
intervals.

At any rate, the main questions of interest are only two: (1) how do changing
values of Xh and Xs change the uncertainty in Y in the presence of D, M, and
y, and (2) of what value or descriptive power is M? M includes Xh and Xs as
components, in the sense that the premises that led to M led to deciding these objects
were probative of Y. Since the beginning of this book it has been emphasized that
the propositions and premises we use are decided by us; it is still true in statistical
modeling.
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There is no notion of “significance” in either of these questions, and no notion
of correctness in any instance where the model was not deduced. All probability is
conditional, and that means the probabilities given in equations like 9.10 are correct.
If, at some later point, it is decided that Xs is of no interest and the model is updated
to reflect this, then the probabilities derived from the new model are also correct.
One model may be superior to another, however, but only with respect to decisions
made conditional on the models.

There is more work to be done by model builders in this way because values of y
must also be chosen, and so do values of X. This implies a model may be useful in
some decision contexts and of no use or even harmful in others. There is and should
be no default or automatic levels of usefulness. The last thing the field of probability
and statistics needs is another magic number à la “significance” with p-values.

The importance of probative observables and assumptions X is thus also a matter
of decision and cannot be made automatically. This is plain from Eq. (9.9), which
encapsulates all we know about Y given our assumptions. It is we who made these
assumptions, and we who can change them. Again, the only ultimately true model
of Y is that which is deduced from true premises, as in the die and success-failure
examples (from the previous chapter). Every other model is therefore only useful
or not conditional on the premises we assume. Since most models are ad hoc, as
regression always is, we can only speak of usefulness. Deduced models are true by
definition and thus nothing more need be done with them except make predictions.
Deduced models do not even need to be verified.

The idea is, conditional on D and M, to vary X in the range of expected,
decisionable, or important values to some decision maker and see how these change
the probability of Y 2 y. If a particular X as it ranges along the values we choose
do not change the probabilities of Y 2 y in any important way, then these X
are themselves not important. The opposite is also true. Importance is a matter
of decision, which varies by decision maker. Importance is not a probability or
statistical concept and therefore cannot be ascertained within probability models.
If the probability of Y 2 y changes in any as X does, then that X is relevant to
understanding Y, else it is not. Relevance is a probabilistic concept, but as the reader
will see, it is almost always present given the assumption that the X is causally
related to the Y. If X is known not be causally related to Y, then X is irrelevant by
definition, and therefore should not be part of any model.

There is no hypothesis testing in the frequentist or Bayesian sense (as implied
by Bayes factors, for instance). And there is no estimation of parameters. There are
only plain, understandable, and verifiable probability statements. These probability
statements can and should and must be verified. This allows communication of
model goodness and usefulness in an intelligible, actionable manner. It reduces over-
certainty but cannot eliminate it unless models are deduced.

Here is an example. There are 100 observations of first-year college students’
grade point averages. We want to quantify the uncertainty in the GPAs of new
students given these observations, and also given information thought probative,
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in this case high school GPAs and SAT scores.2 We assume an ad hoc ordinary
regression model. If we adopt the Bayesian philosophy, we need priors, and here an
assumption of “flat” priors will do. As is well known, in ordinary regression this
assumption matches the answers given by frequentist philosophy. But it doesn’t
matter. Any premises that give different priors will do. Our purpose here is
not (directly) to investigate priors, but the uncertainty inherent in Y given the
assumptions we make.

It turns out

Pr.Y > 3:8jXh D 3:5; Xs D 1160; D; Mh,s/ D 0:038: (9.11)

Notice that the dependence of the model on the assumptions has been annotated,
as it always should be. If, given D, we insist on M and on the presence of Xh and
Xs, then this is the final and true answer. Nothing more need be done. The values
picked for y, Xh, and Xs are those I, and perhaps nobody else, thought important.
A different decision maker might pick different values.

But suppose I am interested in the relevance of Xh. Its presence is an assumption,
a premise, one that I thought important to make. There are several things that can be
done. The first is to remove it. That leads to

Pr.Y > 3:8jXs D 1160; D; Ms/ D 0:0075: (9.12)

Notice first that both (9.11) and (9.12) are correct, they are both conditional truths.
The probability in (9.11) is five times larger than in (9.12). This is a measure of
relevance and importance, given y D 3:8 and Xs D 1160. Importance and relevance,
like probability itself, are always conditional on our assumptions. A second measure
of importance is the change in probabilities when Xh is varied. That can be seen in
the following figure (Fig. 9.1).

There is a change from about 0 to 8 % over the range of high school GPAs. If
high school GPA was not probative of Y > 3:8 given these premises then the graph
would be flat, indicating no change. In other words, it would resemble the dashed
line, which is (9.12), the model without high school GPA. Is this “departure” from
flatness important? There is no single answer to this question. That entirely depends
on the uses to which this model is put. If a decision would be made differently
given these varying values of the probability, then high school GPA is important,
otherwise it is not. The answer is not a matter of probability or statistics. That the
line is not flat is proof, however, that, given M, y, and Xs, knowledge of high school
GPA is relevant to knowledge of Y.

It cannot be emphasized too strongly that importance and relevance are con-
ditional, just as probability is. A linear function of high school GPA added to a
regression model already supplied with high school GPA would be irrelevant. It
might be that high school GPA is relevant or important at some levels of SAT, and

2The data is available at http:\\wmbriggs.com\public\sat.csv.

http:\wmbriggs.compublicsat.csv
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Fig. 9.1 Pr.Y > 3:8jXh D x; Xs D 1160; D; Mh,s/ allowing Xh to vary from 1 to 4 in increments
of 0.1. The notation on the figure conditions on E, which is shorthand for all the evidence we have.
The dashed line is Pr.Y > 3:8jXs D 1160; D; Ms/

Fig. 9.2 Pr.Y > 3:8

jXh D 3:5; Xs D
1160; Xw D x; D; Mh,s,w/

allowing Xw to vary from 0 to
26. The notation on the figure
conditions on E, which is
shorthand for all the evidence
we have. The dashed line is
Pr.Y > 3:8jXh D 3:5; Xs D
1160; D; Mh,s/

0 5 10 15 20

0.
03

8
0.

04
0

0.
04

2
0.

04
4

0.
04

6
0.

04
8

0.
05

0

Hours spent studying

P
r(

Y
 >

 3
.8

 | 
E

)

irrelevant and unimportant at others, and the same is true for the goodness measures
of SAT. Information X is not isolated and is related to all the assumptions we made,
and these include the other X in the model.

Now add the information Xw D “hours studied a week” to the model and create
a relevance plot for it (Fig. 9.2).
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The (conditional, as always) probability of Y > 3:8 varies little, from 0.038
to about 0.044, a change of only 0.006. Time studying is relevant because the
probability differs from the straight line, which is the probability using the model
sans time studying. But it is important? Given the values of high school GPA,
SAT, and y, the change from 0.038 to 0.044 is small and therefore many decision
makers might conclude that adding time studying provides no benefit to our
understanding. Of course, such a small change might be useful to somebody. It is
not the statistician’s job to decide, but the decision maker’s.

I cheated, because “time studying” isn’t that at all. In fact, it is made-up numbers
using R’s rnorm() and abs() functions. It is therefore not surprising that the
pertinent probability should vary little. That it does at all is only because of
coincidence. By “coincidence” I do not mean “randomness” or “chance”, because I
know the determinative cause of these numbers, but happenstance, a known lack of
causal connection between the made-up numbers and the observable of interest. We
should add information presumed probative into a model only if we have a plausible
belief that the information is related (somehow) to the cause of the observable of
interest. If this connection is lacking, the information should not be added. Thus
“time studying” should certainly be removed.

The strategy is to create scenarios that are of direct interest to a decision maker,
the person or persons who will use the model. Plots like those above can be made
at the values of the probative observables in which the decision maker is interested.
There is no one set of right or proper values, except in the trivial sense of excluding
values that are, given exterior information, known to be impossible. For instance,
given our knowledge of grade points, the value Xh D �17 is impossible. Assessing
relevance and importance for large models will not be easy. But who insisted it
should be? That classical statistical procedures now make analysis so simple is part
of the problem we’re trying to correct.

Given the model and old observations, every set of Xh and Xs, at some y, produce
a prediction. For instance, for future students with Xh D 3:5 and Xs D 1200 the
(conditional) probability that Y > 3:8 is 0.045. In regression, incidentally, we do not
have to restrict ourselves to a fixed y, because the model will produce a prediction of
every possible value of Y. These predictions can and must be verified. An example
of such a report is given in Table 9.1. Considerable art and thinking will have to
go into presenting predictions from a model loaded with probative X. This may
seem like a drawback, but in fact it is a boon. Far too many models are crammed
with extraneous “controlling variables”; their usefulness is scarcely ever considered.
This approach forces such consideration and encourages leanness; which is to say,
models without fat. Lean models are not necessarily small. This example will be
concluded after model goodness is introduced in the next section.

Other authors are beginning to advocate similar approaches, such as [152], who
recommend “blind” testing of results. The predictive approach does away with the
necessity of blinding, because the results are there for all to see. Of course, no
method of release of results can forestall cheating or authors fooling themselves,
but the predictive approach minimizes the harms from such activities.
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Table 9.1 The predictions for Pr.Y < 2jXh D h; Xs D s; D; M/ and Pr.Y >

3jXh D h; Xs D s; D; M/ for common values of h and s, and two points of y
thought to be of interest

Pr.Y < 2jh; s; D; M/ Pr.Y > 3jh; s; D; M/

h/s 400 800 1200 1600 400 800 1200 1600

0.5 0.99 0.94 0.760 0.4600 3.9e-05 0.00065 0.0093 0.071

1.0 0.98 0.89 0.640 0.3400 1.4e-04 0.00180 0.0200 0.120

1.5 0.95 0.81 0.510 0.2200 5.0e-04 0.00500 0.0420 0.190

2.0 0.90 0.70 0.370 0.1300 1.7e-03 0.01300 0.0820 0.290

2.5 0.83 0.57 0.250 0.0730 5.0e-03 0.03100 0.1500 0.420

3.0 0.73 0.43 0.160 0.0360 1.4e-02 0.06600 0.2400 0.550

3.5 0.61 0.30 0.089 0.0170 3.3e-02 0.13000 0.3700 0.680

4.0 0.48 0.20 0.048 0.0074 6.9e-02 0.22000 0.5000 0.790

Every X in the model appears in the table

9.9 Model Goodness

All probability models have a predictive sense. Equations (9.1) and (9.9) are written
predictively, but even classical parametric models imply (9.1) or (9.9) once the
parameters are eliminated (“integrated out”). Statistical models say Y will happen,
or will be revealed to us, with a non-extreme probability. Physical models often
claim certainty of Y, though almost always users of these models add “fuzz” to the
predictions to avoid falsification, as we have seen. A weather forecast model might
say Y D “Today’s high will be 72ıF” and if we observe 71 ıF the model is formally
falsified, but most will say “close enough”. Whether they say this will depend, of
course, on the decision made conditional on the model. The weatherman who issued
the 72 ıF would have better served his clientele had he attached uncertainty to the
forecast. All forecasts of the contingent should ideally be stated probabilistically.
Removing probability, neglecting the state the uncertainty, makes a decision and
that decision may not be, and probably won’t be, best for all users of the forecast.
Eliminating uncertainty makes a decision because it transforms the probability into
a bet. And not all would make the same bet.

Any model which issues non-extreme probabilities can be never proved wrong;
that is, it cannot be falsified unless it gives precisely zero probability to an
observation that is later seen, e.g. [3, 6, 8, 159, 160]. Given most probability models
use or assume continuity, falsification never happens. But models can be shown
poor in comparison with rival models of Y. A model can also be classed as good or
bad based on decisions made with the model. Indeed, every (non-deduced) model
should be judged by the decisions made with it. The same model can be valuable to
one person and a burden to another because these people make different decisions
based on the model. Because of this fluidity, model verification is a broad subject
and can’t be covered in detail here. But some general comments can be given.
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First, what to verify? There are only two possibilities: the data already seen and
that which is yet to come (or be made known to us). The traditional terms are
in-sample and out-of-sample data. What usually happens in building statistical (or
even physical) models is a model-fitting process. Premises are put forward which
imply a model, and that model is judged or weakly verified with a generally ill-
thought-out or harmful measures such as p-values, and then premises are added or
rejected in an effort to make the model “fit” the observed data better. The process
stops at some point. The measures of fit of this final model to the sample at hand,
like p-values or “residuals”, are put forward as “proof” of the model’s veracity.
That’s when (in some fields) explanations start to fly thick and fast. After all, some
thing or things caused the data at hand, and if the model “fits” well the hypothesis-
testing false-dichotomy (written about above) is invoked and theories aplenty are
discovered to be the cause. Sometimes caution is urged and it is reluctantly admitted
that the theories bruited might be mistaken but this is mere boilerplate, like adding
“more research is needed” to every paper ever published, and in any case, theories
promulgated are believed.

Under-determination, as we have seen, guarantees perfect (or necessary) cer-
tainty is not to be had for the contingent. Nevertheless, models can be useful
epistemological devices. And they do provide evidence for causes, or are reasons
to believe certain causes. Fitting past data well is certainly to be applauded and a
clue that the model might have identified important associations of the proposition
of interest. But past fit is weak, very weak, evidence of model goodness. As the
saying goes, past performance is no guarantee of future success. This logical truth
is nearly everywhere forgotten in the rush to do something. The appalling demand to
produce ever more research is directly responsible for a great deal of nonsense put
forward as “proved” because of classical statistics. And this is done in good faith.
Everybody believes in confirmation bias, just as everybody believes it only happens
to the other guy.

The true and only test of model goodness is how well that model predicts data
never before seen or used in any way. That means traditional tricks like cross
validation, bootstrapping, hind- or back-casting and the like all “cheat” and re-use
what is already known as if it were unknown, they repackage the old as new. The key
and overwhelming advantage of the predictive approach is that it displays models
in the form where they can be used to make predictions independent of the model
authors. Others can see for themselves whether the model “works.” What can be
fairer than that?

This approach is of course standard practice in some fields. Engineers who
only build theoretical (model) bridges do not find large audiences. Classification
models like, say, retinal or hand-writing recognition are an example of field-tested
(often hybrid probability-physics) models—even though they go under names like
“machine learning”. Physicists once swore by the predictive approach, but some are
lamenting this is no longer the case, see [68]. What theory (before the latter part
of the last century) was ever believed without finding experimental support? But
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many subfields have voluntarily or under political pressure decamped Reality for
the calmer pastures of Pure Models. The effects this has had are easily seen (by
those left behind).

Every field that does not insist on out-of-sample verification has, because of
classical statistics, suffered. Over-certainty is pandemic. We mustn’t forget that the
largest users of statistical models are not academics, but civilians and bureaucrats
playing with spreadsheets, folks eager to arrive at a pre-determined destination.
To restore sanity to science, it must everywhere return to predictive methods. That
means insisting on models which speak of observables, which are testable. The best
test, as you are by now tired of hearing, is how well the model works for decisions
you yourself make with it. How the model works for others is always guesswork,
but some statements are possible.

Testing in a general sense—when the specific decisions to made with the model
aren’t known—can be done with scores. A score takes two inputs: a probability for
some Y and the observation of that Y. It provides a measure of closeness of the
probability and outcome. A score treats the model as a model and not a decision.
That is, the model is a probability forecast and not a decision or a rule based on
that forecast. Usually scores are linear over forecasts, but they needn’t be; dynamic
scores are more than possible. Verifying time series predictions are an example.
Another: a store manager buying quarterly stock using forecasts as guidance. Scores
also needn’t be singular, but can be multidimensional. Verifying meteorological,
climatological, and even astronomical models come to mind.

Scores are also limited where decisions are not. A score would say the stock
broker who always says the stock will rise when it falls and vice versa is terrible,
but the opposite is obviously true. The predictions of that broker can be useful. Yet
models must always be taken as they are given and not transformed in any way. Any,
even the slightest modification to any model which is not deducible from the model
premises or is not tautological makes a new model. Given my experience, this point
cannot be stressed enough. A “model” which undergoes almost constant revisions
is often called the same model. That might be useful for bookkeeping, but it’s not a
good principle in verification.

Let f D Pr.YjX/, a number. If Y is multi-valued, Fy D P
y Pr.Yy � yjX/ is

obviously conditional on X, and Yy is the schematic proposition “The value is y”.
And let Oy be the (ultimately) observed value of Y; O is a proposition, e.g. Oy

D “The value y was observed”. Since it helps to have an example, a popular loss
function is the continuous rank probability score (CRPS), which is more or less a
distance between the empirical distribution function of the model and the staircase
step-function of the observable [95, 112]. Numerically:

CRPS D
X

y

�
Fy � Ify � Og�2 (9.13)

where I is the indicator function. The “continuous” part of the name is
because (9.13) can be converted to continuity in the obvious way. Briefly, the
score is proper, and it is sensitive to distance (meaning that observations closer
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to models score better). Proper scores are defined conditional on X. Given X, the
proper probability to announce is Fy, but other probabilities could be announced by
scheming modelers, say Gy, where is tacit on hidden premises likely related to X.
Propriety in a score is when

X

y

S.Gy; O/Fy �
X

y

S.Fy; O/Fy: (9.14)

In other words, given a proper score the modeler does best when announcing the
probability implied by X. Propriety is a modest requirement, yet it is often violated.
The bearer of bad news often substitutes G for F knowing S is improper. Forecasts
of doom, especially environmental doom à la Paul “Population Bomb” Ehrlich, at
odds with the best evidence are usually more welcome than predictions of status
quo. Incidentally, it is often said proper scores are those that encourage modelers to
give the “true” probability of Y. As we know by now, there is no true unconditional
probability. There is only that probability implied by the X which is stated or
claimed to be held. Whether X really is or not held is always a mystery. In any
case, the stated model should be (seen to be) deduced from X.

A perfect prediction has a CRPS (or any proper score) of 0, an interesting tidbit
because it shows that models which do not put extreme probabilities on events
can never be perfect. And models of the contingent should never assign extreme
probabilities. Once again, perfection is not ours to have. The CRPS has found wide-
spread use in meteorology, for example [223]. Other measures are possible and, as
it cannot be stressed strongly enough, the best measure is that in accord with the
decisions made with the model.

If F (as an approximation) is a (cumulative) normal distribution, or can be
approximated as such (be careful: an approximation of an approximation!), then
the following formula may be used:

CRPS.N.m; s2/; O/ D s
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(9.15)

where 	 and ˚ are the standard Normal probability density function and cumulative
distribution function, and m and s are known numbers.

CRPS, or any score, is calculated per prediction. For a set of predictions, the
sum or average score is usually computed, though because averaging removes
information it is best to keep the set of scores and analyze those. A few techniques
for that will be given. But first we need the idea of skill. Skill is when one model
demonstrates superiority over another. Skill is thus conditional on the chosen score.
Skill scores K have the form:

K.F; G; O/ D S.G; O/ � S.F; O/

S.G; O/
; (9.16)



190 9 Statistical and Physical Models

where F is the prediction from what is thought to be the superior or more complex
model and G the prediction from the inferior. Since the minimum best score is 0 and
given the normalization, a perfect skill score has K D 1. Skill exists when K > 0,
else it is absent. Incidentally, receiver operating characteristic (ROC) curves are not
to be preferred to skill since these do not answer questions of usefulness in a natural
way; see [31] for details.

Models which do not have skill should never be boasted of. Why? Except in the
most trivial sense, natural comparison models always exist. Take ordinary regression
as an example (assume for now all parameters are known). Predictions made from a
complex model F, say one with a dozen “regressors” (I’m thinking of economics
or sociological models here) can always be compared with the “null” model’s
predictions G, i.e. a regression with no regressors, one which says the uncertainty
in Y always and everywhere is quantified as a normal distribution (and the same
distribution everywhere). F ought to be able to beat G. If it can’t, F stinks, to
put it in purely philosophical terms. As before, skill can be demonstrated in- or
out-of-sample. Out-of-sample is the only true test of model goodness. Skill, like
proper scores themselves can also be averaged or otherwise summarized across
observations or examined with respect to model premises to assess where models
do better and where poorly.

If it isn’t already plain, every statistical model should be put into predictive
form and checked in-sample by proper scores and for skill, and then re-checked
at sometime in the future when new data becomes available for out-of-sample skill.
Just as how engineers and physicists of old built their models.

Model calibration is also of interest in determining where and how a models
perform. A calibrated model lines up with reality in its particularities. Calibration
only concerns collections of forecasts and not individuals ones, as will be clear. I’m
discussing actual and not theoretical calibration as is written about in for instance
Dawid [52–54], which concerns what happens to models in the limit (which is never
reached in practice; incidentally, though Dawid’s prequential principle shares many
things in common with full-conditional probability and the predictive approach,
prequential statistics errs on cause and implies, at times loosely and at others more
strongly, probability is a cause, where probability reaches back from infinity to the
present “generated” values). These are interesting mathematical discussions but are
of little practical value. These discussions invoke “nature” “picking” probabilities or
make claims that there are “true distributions” meaning unconditional distributions,
or rather that probability is ontological. “Nature” causes things to happen; and
even in physics where we have excellent grasp of premises which imply certain
probability models, it is that calibration follows from the model, as a property of
the model, and is not the other way around, that somehow models “strive” for
calibration. This is essentially the frequentist fallacy that gets things backwards, that
defines probabilities as that which happens in some limit, rather than the deduced
probability which implies the behavior of frequencies.

Calibration has three aspects: calibration in probability, exceedance, and
marginal calibration, [96]; see also [151]. The model, conditional on various X,
makes predictions. If the X were constant the model’s predictions would also be
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constant. Each prediction, conditional on each X, is a separate (but fixed, deduced,
predictive) number for each value or level Y can take, i.e. Fx;y. Next collect n
observed values O for all predictions Fx;y; let Oy be the observed value of y,
and form

P
y I.Oy � y/=n, the so-called empirical cumulative distribution of the

observable. This is usually written without its condition on X.
Calibration in probability is when for each x; y in which Fx;y is constant (the same

probability), the average of
P

y Oy=n for each of the y at that probability is equal
to Fx;y. In other words, for those times the model says the probability of at least y
is some probability, we want the observed frequency of values of at least y to equal
that probability. So-called calibration plots are made to display Fx;y by

P
y Oy=n, but

these plots are named for calibration in probability and not the other kinds. A model
may be calibrated for some x; y and miscalibrated for others. Mark Schervish has
proved (for models of a general kind) that models calibrated in probability are better
in terms of scores than other similar models, [191]. The nature of his discussion
would bring us too far afield here. Suffice to say that calibration in probability, and
in the other ways, is desirable, as intuition suggests.

Over-confidence is the typical symptom of miscalibration in probability. Doctors,
for example, are infamous of being too sure of themselves and, as a hypothetical but
realistic example, that when one collects the instances when the doctor says “The
probability of dying within six months is 80%”, one usually finds only 20 % of
these patients have actually died. Phil Tetlock has made a career showing how over-
confident political experts are in this sense, e.g. [211]. Consistent miscalibration in
probability is good to be recognized because it is possible, but rarely done, that the
miscalibrated model can be improved with simple adjustments. Of course, the loss
one faces when announcing a probability may not be symmetric. That is, the loss
for a false negative may be substantially larger than for a false positive, as is often
the case. There are ways of incorporating decisions and losses into calibration and
other verification, but these are too far afield for us here. For more on verification
see [30, 31, 159, 160, 202, 220]

To understand exceedance calibration, first take the collection of Fx;y for a
fixed y (different x will give different probabilities for this fixed y). Each of
these probabilities will equal a frequency from

P
y Oy=n, where each frequency is

possibly a different y. If the mean of these observed y equals the fixed y for all y, we
have exceedance calibration. These too can be plotted.

Marginal (sometimes called climatological) calibration is easiest to obtain. This
is when the mean of Fx;y for a fixed y equals the mean of

P
y Oy=n for the same fixed

y, and that this equality holds for all x; y. If Y were dichotomous, then the average
of the predicted probabilities (averaged over all x) would equal the mean number of
occurrences Y was true.

Lastly, it is worth emphasizing that a scenario is a projection is a forecast.
Since all probabilities are conditional, and a prediction from a statistical model is
conditional on x, we might just as well say that x is a “scenario.” This is highlighted
because of a disquieting tendency that has developed in some quarters to dismiss
criticisms of failed models because model owners say their predictions were not
forecasts or predictions but scenarios.
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Let’s now finish the GPA example started above. The verification strategy is this.
A model is built using importance and relevance, as above. It is then released into the
wild, as it were, to wait for new data to arise. Every new data point will have a value
of .Xh; Xs; Y/. These are fed into the model and the prediction for the probability of
Y is given (with, say, y D Y). These prediction-observable pairs are then evaluated
in relation to a proper score and possibly also with respect to a simpler version of
the model, in a move to assess model skill. Probability leakage is also discoverable
[26]. This is when the model gives non-zero probability to values of Y which are
known to be impossible given external evidence, evidence which is usually ignored
in the model-building process (regression, for instance, is horribly over-used). For
instance, we learn that at this college a GPA of 4 is the maximum. Yet in our model
with Xh D 4 and Xs D 1400 the probability that Y > 4 is 0.105. This is substantial
leakage and a guarantee of model weakness.

We can also compare our touted model with a simpler model, which is perhaps
a standing competitor or one otherwise natural to consider. In the example, time
spent studying was revealed to be faked. But suppose I were to give the data to a
statistician and not tell him of the fraud. Time studying sounds plausibly causally
related to grade point. The check of relevance and importance do not excite. Thus it
is reasonable to say two models are in contention, Mh,s,w and Mh,s. If, considering
whatever proper score we are using, Mh,s,w cannot “beat” Mh,s, Mh,s,w is said
not to have skill in relation to Mh,s. In regression, as said, the so-called null model
(only with an “intercept”) is always available as a comparator.

As above, the CRPS is used. Skill is a relative measure of improvement this score,
here .scorefull � scorepartial/=scorepartial, comparing a full or larger model with
a partial, less complex, or otherwise natural comparator. The mean CRPS for the
“full” model with “time studying” is 0.0734, while for the “partial” model without
it is 0.0749. The skill score is 0.02. This shows the full model is superior, but only
just barely. Here is a per-observation analysis of CRPS and skill.

The first graph in Fig. 9.3 shows the CRPS calculated for each observation for
the full and partial models; a one-to-one line is over-plotted. The addition of “time
studying” does not lead to uniform improvement. The next graph are histograms
of CRPS scores; the partial model is the dashed line. This is useful for a decision
maker deciding how valuable either model is. Again, the best score is that which is
related directly to the decisions made with the models. Whether CRPS is this score
is situation dependent. The last graph shows the skill score for each observation
of college GPA. A mixed bag, as far as “time studying” goes. If we didn’t already
know, we’d suspect that “time studying” is not adding much, and is even subtracting
from, our knowledge of college GPA.

In Fig. 9.4 show the skill plots over each X in the model for each observation.
Skill is had for values greater than 0. The view that “time studying” is nearly useless
is confirmed. The last graph is particularly revealing. As “time studying” moves to
either extreme, the skill bifurcates, showing a process that “can’t make up its mind.”
If “time studying” were truly valuable, the signal would be coherent. At this point,
conferring with the decision maker, the statistician might drop “time studying” and
compare his new “full” model consisting only of high school GPA and SAT with
(perhaps) a “partial” model consisting only of an “intercept”.
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Fig. 9.3 Top left: the CRPS calculated for each observation for the full and partial models; a one-
to-one line is over-plotted. Top right: the histograms of CRPS scores; the partial model is the
dashed line. Bottom left: the skill score for each observation. Bottom right: the skill plotted for
each observation of college grade point. Skill is had for values greater than 0

The verification process can be done on the already-observed data as an initial
check on model goodness. The analogy is standard residual analysis. The same
weaknesses apply, however, because the temptation to tweak the model to produce
better verification measures will not be able to be resisted. Over-fitting and over-
confidence will result, as always, but with an important twist. Since the model will
be known and published in its predictive form, outsiders do not have to trust the
in-sample verification. They can wait for new data and apply verification on them
themselves.

Once verification measures are known, it is a mistake to say that X is linked to,
or is associated with, or predicts Y, or, worse, some variant of “When X equals x,
Y equals y”. These are versions of a colossal misunderstanding, which is to say X
causes Y, It is true that X determines the uncertainty we have in Y, but determines
is analogical; it has an ontological and epistemological sense, as we now know.
Probability is only concerned with the latter usage. The only function probability
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Fig. 9.4 Top left: the skill plots for each observation of high school GPA. Top right: skill for each
observation of SAT. Bottom left: skill for each observation of “time studying”

has is to say how our assumptions X determine epistemologically the uncertainty
we have in Y. If we knew X was a cause of Y, we have no need of probability.

Importance, relevance, skill and the like are replacements for testing and
estimation, but not painless ones. The recipient of an analysis is asked to do much
more work than is usual in statistics. However, this is the more honest approach.
The benefit is that Eq. (9.9) answers questions which are always asked us in the
form expected. The probabilities are in plain English and painless to interpret.
Everything is stated in terms of observables. Everything is verifiable. The conditions
on which the model relies are made explicit, made bare for all to see and to agree
or disagree with. Gone is the idea that there is one “best” model which researchers
have somehow discovered and which gives unambiguous results. Gone also is the
belief that the statistical analysis has proved a causal relationship.

The model is made plain so that all can use it for themselves to verify predictions
made with it. Everybody will be able to see for themselves just how useful the model
really is.
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9.10 Decisions

I have avoided the topic of decisions, except to insist on what is true: probabilities
are not decisions, and vice versa. What somebody does with a probability is of no
interest, so to speak, to the probability itself nor its calculation. This view is contra
[18, 75, 190] and others who equate probabilities and decision. There are clear ties
between decisions and probability, of course, as these authors also recognize; also
see [23, 121]. The difference between probability and decisions was understood
as early as Newman [161], who separated understanding of uncertainty into three
progressive mental steps: doubt, inference, and assent. In our language, these are the
forming of the proposition of interest and discovery of probative premises, objective
probability calculation (numerical only if warranted), and then decision. Newman
was writing prefatory to examining evidence of religious beliefs, so his book did not
become well known in the probability literature.

To make a decision means understanding the uncertainty. Uncertainty is condi-
tional on the assumptions made. But so are the gains and losses to be realized in
any decision conditional on assumptions. Making a decision means also making a
decision about how one wants to decide, a screwy but true statement. Does one want
to avoid maximum loss? Does one want to realize some expected gain? This is an
entirely separate field of study for which there is no room in this present volume,
except to say one or two small things.

Many of the same admonitions made about probability apply to decision making.
All decisions are conditional, just as all probability is. Change the premises, change
the decision. All decisions involve finite and discrete objects, just like probability
when it comes to real measurement of observables. Money, for instance, is not
infinite nor continuous. Pseudo-quantifications, like “utility” often, ought to be
avoided to keep the danger of the subjective fallacy at bay. A decision useful or
optimal for, say, your doctor or government isn’t necessarily optimal for you. And
so on.

Clearly decisions are important to “model-building.” What “variables” to include
or exclude from a model are decisions, and based on the probabilities output from
the model. Adding an X to the model changes the probability of interest by some
small amount. Is that amount important? That depends entirely on what’s important
to the decision maker. No general guidelines can—nor should—be given. People
like easy decisions, and the classical methods of statistics, using either p-values of
Bayes factors, were designed to make decisions as easy as possible. People no longer
had to think; hypothesis tests did the thinking for them. I’d like to see a return to
difficult decisions, especially in models for complex entities, like human behavior,
or large-scale biological or natural processes. To make a quick or easy decision is to
risk over-certainty. And that means bad decisions.

It should also be emphasized that algorithms that lead to point-predictions, like,
for instance, machine learning, “tree” models, and the like are making decisions and
not (necessarily) providing probabilities. It’s true they’re basing these decisions on
probability, but the results still eliminate uncertainty. This is fine if these models
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are “tuned” to decisions in particular contexts, usually in automated systems, like
license plate number recognition, grocery store checkout scanners, and so forth
(everything is put into a discrete “bucket” here, which is in line with the discrete
limitations of measurement mentioned above). But if these models are meant for a
broad or a scientific audience, they do that audience a disservice by not including
uncertainty.

Frequentist modeling focuses on “likelihood”-based methods, which use param-
eterized models and where speaking of uncertainty in the parameters is forbidden,
though guesses of the parameters are allowed (we’ve already seen confidence
intervals are of no use in stating uncertainty). Information-theoretic methods which
use plug-in parameter guesses are sometimes used to decide between models. The
idea is that models which fit the data better while also penalizing model complexity
are said to be “good” or better. The penalties for model complexity are needed
because a model can always be found which fits any set of data perfectly. These
“perfect” models will often be extraordinarily complex, and when they are used to
make predictions of unknown measurements they fail spectacularly. The approaches
of [34, 136] best illustrate these ideas. But they are not to be recommended. Firstly
because the focus of modeling should never be on parameters, as demonstrated
above and because parameter-centric models never fully state the uncertainty of
a problem. But mostly because information theoretic model choice methods are like
any other “bootstrapping” procedure which attempts to get something for nothing.
Model fit is a necessary but far from sufficient criterion for model goodness. The
only way to tell if a model is any good, as I have repeatedly stressed, is to use it.
Of course, information theoretic techniques can certainly help in comparing full
models and in giving an assist in characterizing parameter uncertainty (should one
insist upon their use), as often demonstrated in Jaynes [122].

With those preliminaries, here are a few close intersections of probability and
decision without having to discuss the nature of decision too much. The first is
the gambler’s fallacy. Black has come up often on last several spins of the roulette
wheel, therefore, thinks the gambler, red is “due.” He therefore bets red; i.e., he
makes a decision based on his vague probability. This simplistic belief brings a
smile to our face when we realize we’re much smarter than the poor fellow donating
his paycheck to the casino, but we shouldn’t be so glib. What this situation different
than the thousands of textbook examples illustrating suspicions of “biased coins?”
(those same books will also have the gambler’s fallacy). The answer is: nothing.
The gambler thought probability was some kind of cause, just as probability is often
thought to be the cause of coins landing this or that way.

Why do we think it is a fallacy to say “red is due”? Only one reason: because
we understand the nature of the causes of the ball dropping, and we believe those
causes—for there are obviously many on each spin—have remained constant in
nature from spin to spin. Indeed, it is because we understand the nature of the causes,
at least in a broad sense, that we can deduce the probability of red (and black and
green). Notice that we do not need to know every cause in every detail, which is
(as I demonstrated earlier) an impossibility if we include the primary cause. All we
need to do probability is to have some knowledge, but it needn’t be complete.
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Very well, what if we suspect the wheel is crooked? Hypothesis testing is out, in
its frequentist or Bayesian form, as we saw above. The simple and tedious answer
is to make predictions based on whatever premises you have about bent wheels
and then verify whether these premises were good. Standard modeling, which of
course takes time. What does it mean to suspect the wheel is crooked? That there is
the possibility the nature of the cause(s) changed. So much is uncontroversial, but
let’s see how it fits into the so-called Jeffreys-Lindley paradox, e.g. [183], with an
example from Tommaso Dorigo, [61] (using my notation).

A particle counter collects n D 1;000;000 instances of some quantum mechan-
ical event, of which nC D 498;800 were “positive” and n� D 501;200 were
“negative.” The details aren’t especially interesting to us, except to note that the
theory T which informs these counts suggests that numbers of positive and negative
hits should be equal. Suppose you fire up the machine and run n D 1 instance of the
event. Will nC D n�; i.e., will the counts be equal? Obviously not: it is impossible.
So is T, that said that nC D n�, wrong? The answer, which may be counter-intuitive
is, yes it is. T is false; rather, T has been falsified.

That is, if T says, “In any experiment, nC D n�” and we run an experiment
where nC did not equal n�, therefore we have falsified T. Not fair? Well, the word
any inside T does mean any: there is no escape. Suppose instead that T actually
means, “In any experiment where n is divisible by 2, nC D n�.” This is more of
a fair playing field. Fire up the detector: n D 2 and, say, nC D 2; n� D 0. Is T
true or false? False again and for the same reason, nC does not equal n�. But wait
a second. These are quantum mechanical events, and we expect a T which allows
more wriggle room. So suppose T contains premises which allow us to deduce that
the probability of n C is1=2. From T we can also infer that the probability of n�
is also 1/2. So now if we see n D 2 and nC D 2; n D 0, we are no longer sure
that T is true or false, because given T these kinds of results can happen. In fact, no
matter what n is, if in any experiment we see nC D n; n� D 0—or we see any other
values of nC; n�—we cannot say that T is false because T says that any sequence
of nC; n� can happen. As long as n is observationally less than infinity, which it
always will be, no observations can prove T wrong; indeed, since every possible
(finite) observation conforms to T, every possible observation confirms T. We can,
for fun or for interest, calculate the probability, given T and a fixed n, of seeing some
count nC; n�.

Enter the “paradox”. Dorigo imagines a frequentist statistician measuring nC D
498;800 and n� D 501;200. That frequentist, in order to simplify life, calculates
x D n C =n� and s2 D x.1 � x/=n, and then plugs these values into a normal
distribution as the central and spread parameters. The frequentist also accepts that T
is true. This lets him calculate the probability that x < 0:4988 (the observed fraction)
given T is true and that this normal approximation is okay and given the plug-in
values for the parameters are uncertainty-free. This calculation gives a probability
p D 0:0082: Incidentally, the normal approximation isn’t really necessary; we can
easily do the actual binomial calculation but it gives the same answer to this level
of accuracy. So skip worrying about the approximation and worry instead about
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what this number means. Well, it is, assuming T is true, the probability of seeing
nC D 498;800 or fewer hits in an experiment with n D 1;000;000 runs.

Next Dorigo imagines a Bayesian thinking to himself that T might be true, as he
was told it might be by a physicist. The Bayesian says to himself that “I might as
well suppose that the probability that T is true is 1/2, which means the probability T
is not true is also 1/2. Now T says that the probability of nC is 1/2. But an alternative
to T, call it T

0

, might say that the probability of nC D 1=4. Still another alternative,
T

00

, might say the probability of nC D 2=3, and so on for other alternatives.”
How many alternatives to T are there? If T is the continuum, then uncountably

many. Every number between 0 and 1 (excepting 1/2, which is reserved for T itself)
is a potential alternative. The Bayesian doesn’t know which of these uncountably
many alternatives is more likely true than another and so decides to give them all the
same probability: after assuming the probability T is true is 1/2, he spreads out the
other 1/2 over the other possibilities. Then, through the miracle of Bayes’s theorem,
the Bayesian can calculate the probability T is true given the observed values of
nC; n�, given the assumption that T and its alternatives each had those certain a
priori chances to be true. This probability (of T’s conditional truth), again using the
normal approximation, is q D 0:978.

Here’s the so-called paradox. The frequentist “rejects” his “null” hypothesis that
T is true based on the wee p-value, but the Bayesian says it’s all but certain that T is
true. Unfortunately, both the frequentist and the Bayesian have produced numbers
which are completely useless and answer no real-life questions. In other words, the
paradox is the gambler’s fallacy, done two ways: frequentist and Bayesian.

If T is true, the probability that nC < 498;800 is of no interest to anybody unless
they want to be ready for nC values less than this figure (for whatever reason).
Remember, if T is true, any value of nC which is less than or equal to n is possible,
so just because we see one of these values means nothing. Just like the roulette
wheel. The solution to the paradox is that both frequentist and Bayesian were wrong.

Why is it that the Bayesian thought the probability of T being true was 1/2 and
that every other value of probability of nC; n� (implied by different T) was equally
likely? From where did he derive his premises for this bizarre specification? Sounds
like rampant subjectivism. Since the Bayesian started with something absurd,
his result is nothing more than a curiosity. The frequentist based his calculation
assuming either T was true or possibly that it was false, but he offered no alternative
to T, so this is the fallacy of the false dichotomy. Calculating the probability
nC < 498;900 given T is true is not calculating the probability T is true. It assumes
T is true. If our question is to ask, “What is the probability T is true?” we must
provide alternatives based on justifiable premises or we must just accept that T is
true, just like the roulette wheel.

What we need if we doubt T are realistic alternatives, just like with the roulette
wheel. What are these alternatives? I certainly don’t know; at least, not for this
experiment. The physicist might be able to provide them, and even be able to
say (given some other theory to provide a basis) what probability each of these
alternatives is true. If he can, then the Bayesian can work his magic and incorporate
them into Bayes’s formula and produce a quantification that, given the evidence of
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the alternatives and the experimental data, the probability T is true. If the physicist
can’t quantify these alternatives—and chances are he can’t, since there are too many
ways for an experiment to go wrong—he would be better going by his gut. Are there
any cables loose? Somebody forget to divide by 2? Probably T + E is true, which
is T plus some measurement error. Or perhaps the theory that gave rise to T needs
to be altered? Or T really is false, but something like T is true. Do changes to this
theory give us models (different T

0

, T
00

) which better predict the observed data?
This is all hard work—unavoidable hard work. Conclusion: there is no paradox,
only unrealistic assumptions.

An analysis of the uses and (largely) misuses of the precautionary principle could
fill a book, but a word is appropriate here, since the PP relies on uncertainty. There
is as always a proposition of interest, say, Y D “The destruction of the word”, which
is interpreted in some given (horrible) sense. There are a set of premise which are
thought to be probative of this “event.” “Over-population” was one such set, another
is “global warming”, and there are many others. A good one is X D “Alien invasion.”
If hostile aliens from outer-space (or even inner-space, for that matter) were to
invade we can assume the worst for humanity. That means, Pr.YjX/ is certain, or
is as certain as you like. Now, given X, i.e. given hostile aliens do indeed invade,
the costs, whether in dollars, utiles, or whatever, would be incalculable; the highest
possible. Therefore, according to the PP, anything we do, short of the destruction
the aliens would wreak, to protect against this threat will be worth it. And this is
so—if X occurs.

How many are therefore ready to march on government to demand they protect us
from certain alien-induced doom? The problem, as is clear, is that even if Pr.YjX/ D
1, there is absolutely zero evidence X itself will happen. Or rather, there are many
premises we could accept that would make the probability of X relative to these
premises as high as you like. But what we want are premises that are observationally
true, that all decisions makers agree on. And there aren’t any; at least, not for alien
invasion. The problem with the PP is that it is always used to infer that because
Pr.YjX/ D 1 thus Pr.XjE/ is high for some observational premises E which all
decision makers agree upon. This is a blantant, but often convincing, fallacy. It is
convincing because who wants to be against protecting the world? Another problem
is that there are any number of X that make Y certain, or nearly certain. You could
go on endlessly finding ways to “destroy the planet.” According to users of the PP,
anything we do to protect against all of them is not out of the question. But this
is silly. No, what is needed is to find E that all agree upon which that Pr.XjE/ is
sufficiently high. If these E can’t be found and agreed upon by decision makers,
then we’re left arguing over what’s true. As usual.

The two-envelope paradox, also called by Sandy Zabell the exchange paradox, is
another good but complicated illustration of the union of probability and decision,
see e.g. [45]. (This is a digression that may be skipped.) Before you are two
envelopes, A and B. One of them contains X and the other 2X dollars, yen, or
whatever; some unit of money. You pick one envelope and are (1) asked if you
would like to keep it or switch, or (2) open it, view its contents, and then asked if
you would like to keep it or switch. Which strategy, keeping or switching, is likeliest
to win the big bucks? First the no-peek solution.
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The traditional paradoxical solution to (1) is to argue this way. Suppose you pick
A, which can be said or assumed to have X. There is then a 50 % chance that B
contains 2X and a 50 % chance B contains X=2. The “expected value” of B is said
to be

0:5 � 2X C 0:5 � X=2 D 5=4X:

So clearly you should switch, since the expected value of the envelope you did not
pick is larger than X, which is y assumption the value of the envelope you hold. But
wait: you could have picked up B, in which case the expected value of A would be
5=4X, too. (Incidentally, since A can argued to have X or 2X, each equally likely, the
expected value is 3X=2, but on that reasoning the expected value of B is also 3X=2.)
Of course, there is no possibility of seeing 5=4X, which is thus never “expected”
in the plain English meaning of the word. The phrase has a technical meaning,
of course, but that only means the 5=4X is some result to a function, and it, too,
can never be seen. In some areas of decision theory the goal is to maximize this
expected value, which here cannot be done, as either choice gives the same value.
And that’s the solution. The expected value, which is fictional, cannot be compared
to actual values. In other words, it is of no interest that the expected value of (say)
B is larger than the supposed actual value of A. True, they seem to both have the
same monetary units, but it’s still comparing apples and oranges. What’s really being
compared are, say, expected-dollars to real-dollars, and nobody knows the exchange
rate. Equivocation on expected has done us in.

This is not likely very controversial, and all it means is that one has to be careful
with the expected value criterion of decision making. Ensure only expected or real
values are compared, and so forth, or pick another criterion. (Recall here I am not
specifically interested in what makes a good criterion.) Now the peeking solution.
A is opened and, lo, X is seen. You thus have incontrovertible proof that A has X.
Should you switch?

B can still contain 2X or X=2, right? Not necessarily, if X is real, then maybe
that’s so, but if X is actual-real, meaning it is discrete and finite, then the situation
is different. Suppose the units of X are dollars, as may be reasonably inferred from
the game’s premises: it makes no difference what currency is used; the only point is
that X comes to us in discrete, indivisible chunks (for instance, we could do pennies
for the most basic unit). It’s also true, we also infer from the game’s premises, that
if somebody were to really play this game, they would not have an infinite amount
of money available. There would be at most N dollars, where N can be as large as
you like, just not infinite, so this is no limitation. Suppose you pick A and find it
contains $1. Do you switch or keep? Switch! Because there is conditional on this
a 0 % chance B contains $1/2, which is now an impossible amount because, don’t
forget, X comes in discrete units and cannot be found in fractions. Indeed, if X is
any odd value of X then you should switch, because, given our inferred premises,
we are then certain the other envelope contains 2X! Switching will always double
your money if X is odd.
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What about even X even? Well, then we are closer to the no-peeking solution,
because we might think there is a 50 % chance that the envelope you did not pick
has 2X and another 50 % chance that it has X=2. But if we have more information
about N, we can do more. The total amount of money in the game is 2X C X D 3X,
which must be less than or equal to N. Suppose you open A and find some amount
W such that W C 2W > N. Then you are 100 % sure that B has W=2. You should
keep, and not switch, any envelope where three times its amount is greater than N
(because we know that W C W=2 � N. We can call these keeper Ws “large.” One
consequence is that large Ws will always be even. But we should switch when X is
even when we know that 3X < N, because we are gaining information by knowing
this fact. Thus, when N is known, and X is real money, we have a solution guaranteed
to maximize your profit. To emphasize: this works only when N is known, yet there
is nothing in the premises which gives us any information about N.

Of course, we can always add information about N, but that’s cheating. So let’s
cheat: it then turns out that if you know N, then the optimal solution is always to
switch. Let’s see why this is the case. First assume we know N; we open an envelope
and see X. What do we know about X? If it’s odd, we switch. If it’s even its only
possible values are 2, 4, 6,: : :, up to N=3; actually, the nearest integer less than
or equal to N=3, or floor.N=3/. Why? Well, suppose X is larger than N=3, then 3
times that number would be larger than N, which is impossible because we already
decided to keep such X. The X we see is, by our tacit assumption, equally likely to
be any even number up to floor.N=3/. But the number of the other envelope is not
equally likely to be any even number. Why?

Suppose the X we see is 2, then the unopened envelope might be 1 or it might
be 4. Thus it is possible that the unopened envelope is odd. Change gears and think
about the amount you win in this situation with even X, which is either an even X
less than or equal to floor.N=3/ or the value in the unopened envelope. We have just
learned that that amount might be odd (if we peeked and saw that X was odd, we
would have already switched).

Suppose the unopened envelope is odd. Then X can only be even and only be
less than or equal to floor.N=3/. This means that the unopened envelope can only
be odd values up to floor.N=3/=2 (actually, the nearest odd less than or equal to
this): it may not take odd values larger than this because that would make 3X > N.
Next, turn this around and suppose the unopened envelope turned out to be 4, then
X could have been 2 or 8. But if the unopened value was 6, then X can only be 12
but not 3; if it was 3, we would have already switched. This is the crucial point.

We have already discovered that X is equally likely to be any even number up
to floor.N=3/. And we know that the unopened envelope can be any odd value up
to floor.N=3/=2, or it may also take each even value up to this level. But after that,
it may only take even values that are divisible by 4. Why? Because only numbers
divisible by 4 when divided by 2 are even: and we know that X must be even (and
less than or equal to floor.N=3/).

Let’s collect the possibilities of the unopened envelope: (a) odd numbers up to
floor.N=3/=2, (b) even numbers up to floor.N=3/=2, (c) even numbers divisible by 4
larger than floor.N=3/=2 up to a maximum 2floor.N=3/. Each of these possibilities
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are not equally likely: even numbers divisible by 4 but still less than floor.N=3/=2

can appear in two ways (when X is twice or half the value). Odd numbers (a) are just
as possible as large even (c), but each (b) is twice as likely. What it means is that the
values for the unopened envelope are not equally likely. This is a consequence of
two things: the tacit assumption of equally likely game amounts, and our knowledge
that X must be even and less than or equal to floor.N=3/. Now, the probability
that the unopened envelope contains values larger than floor.N=3/ is non-zero. But
X is stuck below that value. Switching can lead to higher win amounts, keeping
guarantees lower amounts. So switching makes sense if you’d like the chance of
higher amounts. This is a decision strategy that you might not enjoy, of course, but
if you did, switching is the way to go. Instead, you might want to minimize risk,
or whatever, and decide to stay. But whatever strategy is used relies on these same
probability arguments.

Finally, this works when we known N, but since the calculations are the same
whatever N is, we don’t actually need to know it. So always switching is the best
strategy (with the given decision criterion).



Chapter 10
Modelling Goals, Strategies, and Mistakes

A genuine expert can always foretell a thing that is 500 years away easier than he can a
thing that’s only 500 seconds off.—Mark Twain

An entire book could be written of various implementations of models in the
predictive, observable form Pr.Y 2 yjX,D,M/ (see the previous chapter for the
explanation of this form). Here I can do no more than cover those areas that seem
most important to decisions common in science. I emphasize not so much particular
models by specific persons, but how model results should be communicated and the
errors usual in the classical methods. Universally, statistical results are presented
as if they were not conditional on a model, which of course all are. Over-certainty
abounds.

Regression is of paramount importance. The horrors to thought and clear
reasoning committed in its name are legion, a fact which is well known, e.g. [56, 83].
But it’s more than bad regression: misunderstandings of the nature of evidence
are everywhere, but that this is so is increasingly gaining attention; see among
many [163, 227], and in the hot field of neuroscience [189]. It’s bad enough in
academia, but if any reader has experienced consulting in non-academic settings,
in, for instance, marketing, you will realize the problems detailed below are trivial.
From my many experiences I have been able to discover that ordinary people think
statistics is something akin to magic. The discussion on how statistical “control” is
not control in the section on regression should be read by everybody.

Reification is the deadly sin of modelling. The model is not the territory, though
this fictional land is unfortunately where many choose to live. When the data do
not match a theory, it is often the data that is blamed for marring a beautiful
model. Models should never take the place of actual data, though they often
do, particularly in regression and time series. Risk is nearly always exaggerated.
The fallacious belief that we can quantify the unquantifiable, especially human
emotions, is responsible for scientism. Hayek [109], in his Nobel prize speech,
cautioned against assuming that the data we have, which is often times the only
data we have, must therefore, because of its availability, be causal. This is a form
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of availability fallacy. Incidentally, Hayek also recommended (a version of) the
predictive approach, especially with economic data. “Smoothed” data is often given
pride of place over actual observations. Over-certainty is, as I have already claimed,
at pandemic levels.

The general, overarching admonition is to escape the Cult of the Parameter.
Speak of observables and not parameters. Models should be used in the predictive
sense and checked against reality.

Because this chapter describes the some of the many (infinite?) ways probabilis-
tic thinking can go awry, it is more conversational in tone. Finally, at the end, I
express some hope about the future.

10.1 The Goal of Models

For those who are cheating and starting at the end, or for those in want of a
review, these brief comments on the goal of modeling. The overarching goal of all
models is to understand cause. What caused the contingent proposition of interest
Y to be true? Was it X? Something else? Knowledge of cause is provided by the
comprehension of essence, power, and nature; it is the kind of knowledge which
moves from the particular to the general. Knowledge of cause is thus always
provided through some form of induction, which is why machines can never
discover cause. Machines do not have the power to make inductive leaps, no matter
how cleverly they are programmed; machines do not have intellects and cannot,
however fleetingly or minutely, grasp the infinite as beings with intellects can.
Knowledge of cause is never complete and rarely full. We can understand that it is
gravity that is causing apples to fall without having total comprehension that space
is being warped, though if we do know that, and much more besides, we can make
better predictions over a wider variety of circumstance. Knowledge of cause, even
though it is apparently closed off to us in its primary mechanism and in the very
small, should be restored and understood by all as the primary purpose of science.

Second to understanding of cause, and often an apt substitute, is knowledge of
determination. If we know the cause of Y, we also know what determines it. But
knowing only what determines Y does not imply we also understand the cause
of Y. Instrumentalist accounts of science are deterministic, in the sense I am using
the word, as in ascertains. We can have an equation which, fed by X, determines
uniquely and precisely the status of Y, but this does not mean X is a cause of Y.
Given Y is contingent and because of under-determination, a poor phrase, it could
be that what we thought was a cause of Y was not. Under-determination says that,
in essence, the contingent always has another explanation, where by explanation
I mean determination. Y only has one cause; it’s our knowledge of that cause
that is open to doubt. Once again, we meet the distinction between ontology and
epistemology. Instead of under-determination, perhaps a suitable replacement is
just contingency. The danger is that explanation or determination will be mistaken
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for cause, somebody might think Y has more than one cause. Of course, most
contingent, or observable, Y do have many forces, i.e. causes, acting in concert
to being Y about, but that is only because Y is not simple.

Take Y D “The atmospheric temperature is y”. This is not a simple proposition
because atmospheric temperature is the product of a vast number of constituents
acting in concert, both in the air and at the air-measurement-apparatus junction.
There are a plethora of causes of Y. For some measurements, in precisely controlled
experiments of isolated (a relative term) environments, these causes may be sought.
But the finer and more isolated these experiments grow, the greater the singularity,
so to speak, of Y disappears and we must speak not only of Y but of the measurement
and Y simultaneously. Cause can be influenced by measurement—and not only at
the very small. How does an anthropologist measure behavior without influencing
it? Answer: he cannot. For most measurements it is hopeless to identify all its
causes. Instead, a deterministic approach is taken. With temperature, physicists
speak of “ensembles” of gases or of “statistics”; meteorologists might speak of
“parcels” or convection. These is a fine approaches, as long as it is remembered,
which is often is not, that these terms are deterministic and not causal approaches.
They are conglomerations of cause. Knowledge or understanding of cause can be
and is had by studying these conglomerations, but the danger of over-certainty is
ever present.

The danger is never avoided with probability models, the third level of modeling.
Almost universally, users of probability models believe they have identified causes.
This, as examples below will prove, is the cause (another cause!) of pandemic
over-certainty. Causal models are deductions, and so there is no uncertainty,
unless outside events add causes which were unplanned for. Causal models speak
ontologically. Deterministic models also have no uncertainty. They say things will
happen with certainty. Deterministic models speak epistemologically, though, and
not ontologically. Outside causes intrude in deterministic models, too. We have an
deterministic equation which says the projectile will certainly be at y at time t. But
the location is measured as y C �. This model is formally, strictly falsified since
something it said was impossible happened. But everybody treats all deterministic
models, and most causal ones, even those models for the very small, in for example
quantum mechanics, in probabilistic terms. Look at any argument showing why
the results from some collider confirms a deterministic (and probably not causal)
projection, even though the observations do not lie precisely exactly with-no-
deviation on the curve theory predicted. The departures from the curve do not have
to be probabilistically quantified, though sometimes they are. Not all probability is
quantifiable. Of course, it can only be, as I said, that if the observations do not lie
precisely on the theory-determined curve, outside causes must have intruded if the
theory is true. These outside causes are shrugged off even though they provide strict
falsification, if we are asking whether and not assuming that the theory is true. The
shrugging off is acknowledgement that complete understanding of all causes in any
situation will always be lacking. Understand that the probability spoken of in these
shruggings off is of the measurement and not the theory, which is assumed true.



206 10 Modelling Goals, Strategies, and Mistakes

Now probability models say nothing about cause or determination, but an unfor-
tunate and curious culture has developed that associates parameters in probability
with cause. Causal hypotheses, or theories, are accepted or rejected depending
on the value estimates (or functions of these estimates) of these non-observable
parameters take. Even if this made any sense, which I proved earlier does not
since these tests are based on the fallacy of the false dichotomy, it cannot be that the
certainty one has based on parameters could be as strong as the certainty one has in
actual observables. This statement applies to judgements made of “effect size” and
the like, too, which also speak of unobservable parameters. It is never remembered
that one can be as certain as one likes in the value of a parameter, while remaining
mostly ignorant about the observable itself. The certainty (or rather uncertainty) in
parameters is always taken as certainty in the observables. Some consequences of
this mistake are detailed below. But note that this is only some. As I said above, an
entire book can be written on the abuses generated by parameter-based statistical
methods. For instance, I do not here criticize the methods of so-called structural
equations, factor analysis, machine learning, so-called neural nets, and many, many
others. But once the material here is absorbed, it doesn’t take much work to identify
their flaws.

We’re sick of hearing about this, but these probability models do not identify
cause. They may help understand cause, in a weak way, and they lend some interest
to comprehending determination, but their goal in life is only to say how our
uncertainty in Y is related to some premises X. And that’s it. This is all they do.
Especially when the “Ys” are related to human behavior, probability models are
mute on cause. Just what are all the causes of a person receiving, say, an income
of y dollars a year? Can you even imagine a successful argument which defends
such a list? No. Probability models examine observables like physicians used to
examine patients before the advent of surgery. Only the vaguest perceptions as to
what is really happening can be had. It is therefore grieve-worthy that all who use
probability models speak with such monstrous confidence. It is all a bluff, though.
Bluffs that ought to be called. How?

I promised at the beginning a discussion of the We-Must-Do-Something fallacy, a
malignant tumor in the body of science. Probability models, just like their causal and
deterministic brethren, can and must be verified. That means only one thing: making
predictions of observables never before seen. I mean never as in never. Known
observables, in concert with facts already known or assumed, are used to posit a
model. Since any known set of observables can be predicted with absolute certainty
by the trick of arranging clever post hoc premises, we cannot trust any measure of
how close a model “fits” or explains what is already known. These measures have
some slight utility in judging between potential models, yes, but as guides to the
future (rather, to the unknown) they are very nearly useless. Instead, models should
be posited and then predictions made. If the model makes useful predictions—where
usefulness is related to the decisions one makes with a model—the model is good,
else it is bad. As I said earlier, this technique is slower than the old way of hypothesis
testing, parameter estimation, and the like, which are methods fecund in “results.”
And it is results which are desired by the We-Must-Do-Something fallacy. This is
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a fallacy that applies to the generation of results as well as the decisions made by
or on the results themselves. How easy it is to say “X causes Y because of this
wee p-value”! How very productive is the research which flows! No. It’s past time
to slow down. What was the old saying? Trust but verify. That is how all research,
particularly that on human behavior should be conducted.

Given that admonition, which I wish I could make stronger because I am sure that
many who are reading it who agree that the other guy often makes these mistakes,
but he won’t see the plank in his own eye, there are some general comments to
made about “model building” which I haven’t elsewhere spoken of. Suppose a
set of premises includes the explanatory (not causal) premise sex; call this set of
premises X. From that, we can form Pr.YjX/. This is one model. But then, because
of internal measures of “fit”, the researcher decides to drop sex from the premises.
Call this reduced set X�s. Speaking correctly, we now have two different models.
Any change to a set of premises (such that the change produces a new set where
the old set cannot be deduced from the new reduced set) produces a new model.
Often in science the model will retain its old name, as a convenience. But it is a new
and different model just the same. This name-retention makes it difficult to know
what is being assessed. Is it the old model or the new one with the same name? But
that is merely bookkeeping. Since probability is not decision, and it may be unclear
what decisions are to be made on the models X and X�s, what is the researcher
to do? Well, if he is not the decision maker, he simply makes two predictions, one
conditional on X and one conditional on X�s. We then sit back and wait for reality
to decide (conditional on the decision to be made) which is better. Whatever we do,
we must never ever never decide on a science-wide criterion of relevance. Relevance
depends on decision, and that can never be anything but individualistic.

In the language used here a theory is a model is a hypothesis is a supposition.
All predictions, since they are always conditional, are scenarios are forecasts. And
so forth. Now there comes a time when a theory is either believed or beloved but it
hasn’t yet met the test of reality, which is the comparison with theory predictions
with observables, as outlined in the previous chapter. This is natural. Theories are
to their creators like the statue was to Pygmalion: beautiful objects of love, as
stated before. It is thus perfectly understandable that theory creators defend their
creations. But they cannot do it with probability. Here is a cautionary tale of one
attempt. Though it applies to the so-called multiverse, everything said below applies
to theories or models of any kind.

There is in physics whether the so-called multiverse exists. It is thought to by
some who support a certain theory from which the multiverse is deduced; about
the multiverse, see [149]. One physicist, Joseph Polchinski, wanted to prove the
existence of the multiverse using probability. From his notable paper, [169]:

To conclude this section, I will make a quasi-Bayesian estimate of the likelihood that
there is a multiverse. To establish a prior, I note that a multiverse is easy to make: it
requires quantum mechanics and general relativity, and it requires that the building blocks
of spacetime can exist in many metastable states. We do not know if this last is true. It
is true for the building blocks of ordinary matter, and it seems to be a natural corollary
to getting physics from geometry. So I will start with a prior of 50%. I will first update
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this with the fact that the observed cosmological constant is small. Now, if I consider only
known theories, this pushes the odds of a multiverse close to 100%. But I have to allow
for the possibility that the correct theory is still undiscovered, so I will be conservative and
reduce the no-multiverse probability by a factor of two, to 25%. The second update is that
the vacuum energy is nonzero. By the same (conservative) logic, I reduce the no-multiverse
probability to 12%. The final update is the fact that our outstanding candidate for a theory
of quantum gravity, string theory, most likely predicts a multiverse. But again I will be
conservative and take only a factor of two. So this is my estimate for the likelihood that the
multiverse exists: 94%.

Without taking any opinion on the existence of the multiverse, let the theory, i.e.
the very complex set of premises, which include a vast array of metaphysical,
physical, and mathematical propositions, from which we can deduce the multiverse
be called T. T is a complex proposition, and we are interested in whether T itself
is true. Why? Because we know the multiverse is true if T is: the multiverse is a
deduction or theorem of T. Polchinski wants to bring in Bayesian theory to answer
whether T is true. That was mistake number one.

Mistake two is this statement, “I will start with a prior of 50%.” This makes
no sense. Theories do not have probabilities. And since theories are nothing but
(complex) propositions, neither do propositions have probabilities. Indeed, no thing
has a probability. Probabilities are measures of knowledge, therefore they have
to come equipped with gauges, i.e. conditions. In other words, all probability is
conditional, as earlier proved.

Many think one natural gauge is the proposition W D “T might be true”, which
is logically equivalent to “T is true or it is false”. Both of these are tautologies,
which we know are true conditional on our knowledge of logic and understanding
of English grammar. But it makes no sense to say, as Polchinski said, Pr.TjW/ D
50 %. Tautologies are non-informative. The best we can do, as I pointed out
earlier, is to deduce T’s contingency, which gives it a unit interval probability, sans
endpoints. Of course, Polchinski may not have had the tautology in mind, but some
other gauge. Call this G, which relates to come complex proposition in Polchinski’s
head. Then it might be true that Pr(T|G) D 50 %.

But what would this G have to look like? Well, it would have to be directly
probative of T itself, which means of the propositions of which T is composed. And
if Polchinski really had such a G, it is more plausible these G-propositions would
already be in T to give it support. Why withhold from T knowledge relevant to
multiverses? It doesn’t make sense. But then G might have nothing probative to say
about T except its contingency like W, in which case 0 < Pr.TjG/ < 1:

According to the rules of probability, Pr.T falsejG/ D 1 � Pr.TjG/. But what
does it mean to say T is false? Just that at least one of propositions within T is
false. And if we knew that, then we would never entertain T. We would instead
modify T (which really means making a brand new T) to remove or transform these
troublesome propositions. If G told us which part of T was wrong we would fix it.
Put all this another way. If all we had in contention for the multiverse was T, then
T is all we have. We can’t judge its truth or falsehood because we have nothing to
compare it to. T is it. It’s T or bust.
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I’m sure (though I didn’t check) Polchinski’s numerical calculations are on the
money, but the end result is meaningless. T has to be compared not against some
internal gut reaction, because there is no such thing as subjective probability, but
against the predictions T makes or against rival theories, which provide the only
natural comparators. That is, Polchinski might have some alternative theory M in
mind, a rival to T such that, given M, the multiverse is not a theory of M. Polchinski’s
G makes a little more sense.

There may be, and almost certainly are, overlapping elements of T and M,
sub-propositions which they share. Nevertheless, T is not deducible from M, nor
vice versa, else they would be the same theory. We’ve already seen that it makes
little sense to have in G propositions which duplicate the multiverse-predictability
propositions in T, and the same objection applies to M. That means G is something
else. The simplest would be the “freshman” G, which is “There are two rival
theories, T or M, and only one of which can be true” (and is the only thing a
freshman in physics is capable of knowing). Therefore, Pr.TjG/ D Pr.MjG/ D
1=2, via the statistical syllogism. But that’s as far as we can go without additional
evidence, such as observations of the multiverse (which won’t be had, it is claimed)
or via observables deducible from T or M. Other G are possible, but it is easy enough
to see, since there is no such things as subjective probability, we’re up against the
unquantifiable. Gut feeling as a decision takes the place of probability. In other
words, it’s better to go out and find proof of T or M.

Naturally, everything said holds for theories of any kind, as I said. Readers
will also see in the criticism of Polchinski the standard argument why hypothesis
testing, whether by wee p-value or Bayes’s rule, is based on the fallacy of the false
dichotomy.

10.2 Regression

We have two observations and want to discover if there is a relationship between
them, in the sense that knowledge of one is relevant to knowledge of the other.
The observations take the form of propositions, e.g. Y D “The value of object one
is y1 and X D “The value of object two is x4” (these are labels and not measure-
ment numbers). In classical language, we can apply “correlation” or “regression.”
Those techniques are rather restrictive, however, as they specify “straight-line”
relationships between the parameters of the observations, which can only be had
by assuming continuity. If the two observations were unrelated to one another, then
knowledge of one would be irrelevant everywhere to the other. If at some level of
the X the probability Y takes any of its values differs from the same probabilities
for at least one other level of X, the two observations are related, or “correlated”, as
it were.

Before us are p bins, mapping to the levels in X; that is, the possible values for
the X proposition are .x1; x2; : : : ; xp). In each bin there are N objects which can take
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m states, corresponding to the possibilities of Y; that is, the possible values for the
Y propositions are .y1; y2; : : : ; ym). Another way to say it is that each bin or level of
x1 contains objects with the labels y1; y2; : : : ; ym. And those are all the premises we
need for discovering some functional probability relationship between X and Y—
but not necessarily a linear one. Indeed, a strictly linear function will be rare and
difficult to realize since X and Y form a p � m grid.

Once we observe actual values, no statistical model is needed to display what
happened. The data can be plotted after, as is hoped, compressing to a smaller grid
comprised of decisionable, i.e. measurable, points (in other words, make p and m
the minimum necessary for making decisions). The standard x-y plot is, after all,
such a grid, with points perhaps scaled to the number of overlapping observations
per grid point.

The premises as we have them say nothing about the relationship between
neighbor (near or far) X bins to any particular yi; meaning knowledge in what might
happen when X D xi is irrelevant to knowing what might happen when X D xj. High
values of Y might be more likely at X D xi, and low more likely at X D xiC1, and
again high more likely at X D xiC2, and so on. If we desire there to be a relationship,
like something resembling a line, we have to specify it in the premises.

What might these premises look like? That depends on the application and
information at hand. For example, classical regression assumes that higher (or
lower) values of Y are likely for higher values of X. The nature of this increase (or
decrease) is parameterized, a situation we want to avoid because parameters skate
over evidence, or rather, they introduce complex premises into situations which are
often unwarranted.

Our goal, as ever, is to discover, for as-yet unknown observations, Pr.Y D yjX D
x; D,M/. This can be plotted in the same manner as the scatter-plot. It will be a
p � m grid with probabilities at each point, specifying uncertainty in not-yet-known
values of Y. These can be displayed, for instance, by variously sized plot points or
by shading each grid point, like heat maps. Or simple tables can be created showing
only those probabilities which exceed some threshold important for decisions, as we
did in the last chapter. Extreme caution should be taken to summarize all available
information. For instance, tables showing the most likely value of Y for each level
of X, or the “expected” value of Y, will be tempting because they are simple, but
much information is lost in this maneuver and over-certainty encouraged.

If X is irrelevant to Y, then for each level of X, the probability of new Y taking
each of its values will be equal. Of course, any two sets of numbers pulled out of
thin air, given these premises, are likely to exhibit relevance at some levels of X. The
departure from irrelevance thought important thus not unexpectedly depends on the
decisions to be made.

Most modeling errors are found in regression simply because regression is used
more than any other technique. Like all models assuming continuity, regression
models are falsified in fact because they assign zero probability to events which have
been or will be observed. So if they are to have any use at all as approximations, it is
required they give reasonable (where they term is flexible and defined by decisions
based on the model) probabilities to intervals and not points of interest.
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Regression models often suffer from undiagnosed probability leakage. This
happens when Y constrained but the continuity isn’t. For example, income is
usually constrained to be greater than 0, grade point averages are between 0 and
4, answers to ad hoc survey “instruments” (see below) are often limited to take one
of only several discrete positive values, and so on. Of course, all real observables
are constrained in this sense because none can be infinite or continuous (see the
discussion on measurement in Chap. 9). But some are more constrained than others.

Classically, a regression begins when the ad hoc assumption (premise) that the
uncertainty in some proposition Y can be quantified using a normal. Normals have
two parameters, a central m and a spread s. A premise is added that the central
parameter is a (often linear) function of explanatory, probative X variables. Pace

m D ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇpxp; (10.1)

where in frequentist statistics no information is given about the ˇ or s, and where
in Bayesian statistics “flat” or other priors express uncertainty in these parameters.
Like all parameters, these do not exist; they can never be observed nor verified.
Reification happens here (and all the time) when this equation is thought to be of
the observables themselves, and not the unobservable parameters.

The goal of regression, almost never stated and realized as often as come honest
answers from political party spokesmen, is to make statements of the kind “Given
our modelling assumptions and the data we have observed, the probability of Y is p
when X D x”, where the Y and X are propositions of the sort with which we are now
familiar. The thing to note is that Y will be a proposition about an interval, such as
Y D “The value of y will be between y0 and y1”. Single values of y are impossible
in continuous models, but single values of x are usual, e.g. X D “The value of
x1 D w1 : : : and the value of xp D wp”. This is eminently commonsensical, and
just what the customer wants. But it is not what is done. Instead, classical procedure
revolves, as it does in most methods, around making statements about the ˇ, and,
sometimes but rarely, about s.

Civilians do not care about the parameters, but they are all the statistician will talk
about. And it is because of this reason that civilians, and then statisticians because
of their interaction with civilians, forget what parameters are and reify them into
observables and, worse, into believing parameters are proof of efficient causality.
The latter is the well known fallacy of supposing causation follows from correlation,
and the supposing of correlation comes from inflating the importance of parameters,
which is the Deadly Sin of Reification.

I don’t want to single out any individual, but headlines like the following are
typical “Restaurant rage: Living in an area with lots of fast food stores can make
you impatient and unable to savor things, researchers warn.” A reporter fashioned
this after reading a peer-reviewed paper, or, more likely, a press release about the
paper [114]. What did that paper say?

Researchers recruited people on-line, asked them in which zip code they lived,
looked up in a book how many fast food restaurants existed in that zip code,
ignoring that land area and land use in zip codes can change dramatically, asked



212 10 Modelling Goals, Strategies, and Mistakes

the participants some questions, quantified the answers to these questions, and ran
a regression which showed the answers to the questions and number of restaurants
(actually, the ratio of fast food to “normal” restaurants) were “correlated” in the
sense that parameters in the regression evinced wee p-values. The researchers then
committed the Deadly Sin of Reification and announced that their work showed
“that as pervasive symbols of impatience, fast food can inhibit savoring, producing
negative consequences for how we experience pleasurable events.”

Not to be too unkind, but this is nuts. But exceedingly typical. I also don’t want
to exaggerate, but entire fields make their living abusing statistics in this way. As a
sort of hobby, I have been collecting particularly egregious examples of such abuse.1

There is some harmless fun to be had exposing the errors committed, but no matter
how often or how many times I’ve done this, the assumption is always that it is the
studies I have found which are flawed and that others are fine. Maybe they’re not
perfect, but they’re close enough.

This is false. Entire areas of sociology, education, psychology, really any of the
so-called soft sciences, are beset with “results” given by regressions that, if not
outrightly false, are believed with a certainty far, far exceeding what is justified.
Indeed, it is more likely than not that any regression you have seen is in error. And
if you yourself have created a regression, you have very probably contributed to the
harmful pandemic of over-certainty which besets science and which has given rise
to scientism.

An entire book could be written on the abuses of knowledge done with
regressions, but this isn’t it. But you don’t have to take my word for it (see e.g. [27]).
Given here are the warning signs which can be used to check the next regression you
come across.

We need an example. Suppose a researcher invents a 1–7 “hate score”, with
higher numbers indicating more hate. About these kinds of maneuvers, more below.
The researcher “applies” his “instrument” to a group of volunteers, probably his
students, simultaneously measuring other characteristics of this group, such as each
volunteer’s sex, age, and so on, and perhaps also their answers on other “instru-
ments” popular in that researcher’s field. The data is collected and a regression run.
Incidentally, I’ve heard people say they “submit” data to the software package, as
if that package will authoritatively give the one correct answer. This is a hint of the
problems to come.

In this regression model will be a parameter related to sex. If it has a wee p-value,
the researcher will make the mistake of saying, “Men and women hate differently.”
Now they may, but this wee p-value is certainly not proof they do. The researcher
will also make the mistake of saying his “hate” score unambiguously and without
error is hate. Hate is a complex emotion, but the researcher will believe his one-
number of summary captures all or most of what is important. Only that which is
measurable becomes important. This is scientism.

1See my web page http://wmbriggs.com.

http://wmbriggs.com
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In his data, a certain number of women answered in a certain way, and so too the
men. Their answers can be tabulated. Suppose more women gave higher answers
than men. Which is evidence of what? Beside the obvious that these women gave
higher answers than these men, it is also positive evidence that other women “like”
these in situations “like” this, will give higher answers to this set of questions than
other men “like” ours in situations “like” this. And this can be quantified. Indeed,
we can form statements like this:

Pr.Woman has higher hate score than manjD,M/ (10.2)

where M contains the premises which led to the normal and regression and D the
observed data. This is a predictive equation. Bayesians would call it the predictive
posterior; frequentists the forecast or prediction. There are no parameters here: they
are “integrated out.” We are in the pure Land of Observables only.

The p-value for sex was wee, but it could very well be the probability in (10.2)
is 0.501. This kind of thing happens commonly: try it yourself. I mean, classical
answers will show “significance” where the predictive probability difference is
miniscule. It is then true that, given M and D, it is likely the next woman of the
type represented in M will have a higher hate score than the next man of the type
presented in M. Consider that if there were no differences in the way women and
men of M acted on hate scores, then the probability the next woman scores higher
would be 0.5. So is 0.501 a large enough departure from 0.5 to be important? I have
no idea. That depends on the decision one would make regarding that difference.
Because I can’t see how something so trivial can be important doesn’t prove it isn’t.
But the researcher surely has the burden of demonstrating how it can be important.
He has to provide scenarios relevant to the decision. Or he can agree it is trivial for
himself and his audience and he can drop sex from the model.

There is more to it. There are other variables besides sex in the model. That 0.501
is the probability of M women answering differently than M men conditional on
specific values of those other variables. All variables in any model must be specified
to compute probabilities like (10.2). Any one configuration, or set of all values, can
be called a scenario. That 0.501 is for one scenario. It may not hold for others. It
might be, for instance, that for some other scenario this probability rises to, say, 0.7
or as low as 0.28. Who knows? Two things must be drawn from this.

The first is a reminder that sex is irrelevant, conditional on M and D, if for all
scenarios, probabilities like (10.2) are constant. Of course, (10.2) is not the only
possible relevant probability. Another might be, given M and D, the probability of
women scoring 7 more often than men; another might have to do with the average
hate score, and so forth. These propositions of interest, as I said many times, are
not statistical matters. They are driven by the decisions to be made. It must be ever
emphasized that these decisions are rarely matters of science (this depends on the
field and the uses to which the data are put, of course). And that means it is not
incumbent upon the statistician to define pertinent propositions of interest. These
must be given by the (as it were) clients, who, experience shows, can be awfully
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lazy and want decisions to be made for them (this of course does not apply to you,
dear reader).

And this leads to the second conclusion. The pertinent scenarios are also for
the clients, not the statisticians, to decide, although some rough guidelines can be
stated. Now it might have been in the set of data at hand the age range was 18–22,
but the pertinent scenario relates to age 24. This can be computed. And since we are
calculating predictive probabilities, there is no difficulty calculating probabilities
for any value not seen in the data, or for the values seen. Suppose the proposition of
interest is (10.2). We have several built-in scenarios with which to calculate (10.2),
which are the observations themselves. Thus (10.2) can be calculated for every
observation on hand, as if that observation were a new scenario, and the data plotted.
To make it interesting, it can be sorted and the points examined for which values of
the other variables are associated with low and high values of (10.2). A conclusion
might be, say, “Ceterus parabis, the probability a woman like those surveyed has
a higher hate score than a man like those survey is about 40% for those under 20
years, about 50% for those 20 to 22, and roughly 62% for those 23 and older.” Those
demarcations and “about”s and “roughly”s are decisions made by the client.

It might not have been clear, but model-building strategies are not necessarily
difficult using this predictive-observable approach. The variables pertinent to the
client or researcher are left in, and those which are not are left out. Simple as that.
Well, not so simple, perhaps. The propositions of interest and pertinent scenarios are
not always easy to come by. But if they are not known, then why is the researcher
conducting an investigation?

Two words of caution. Wee p-values do not always lead to practical relevance,
nor do non-wee p-values always lead to practical irrelevance. As I have said often
enough, p-values should be abandoned with extreme prejudice. Never look at them
again. Look only at the probabilities of pertinent propositions of interest calculated
from researcher-drive scenarios. Secondly, I beg the Lord above that we not become
fixated on a probability which is considered “good” or “significant”. There is no
such thing. Goodness or real-life significance depends on the decisions to be made.
They are not statistical questions. To think they are is to engage in scientism.

Too many think they can discover the perfect model. This is not impossible in
theory, but it would be a full causal or deterministic model and not a probabilistic
one. What is forgotten is that all probability is conditional. Therefore the probabil-
ities derived from any model are correct (barring calculation error or cheating). A
regression does not say what causes what. Better models, as discussed previously,
are those that lead to better decisions, and that is measured by verification scores.

A researcher may be interested in the relevance of specific probative propositions.
These are entered into the model and probabilities of propositions of interest are
then calculated—given scenarios, which include values of other propositions the
researcher chose to put in. Practical relevance, as always, depends on the decisions
to be made. The researcher can, of course, make these decisions for his audience, but
he must justify them. If it is not already obvious, the lesson is this: there is no magic
formula or way to discover the best model. The process can be automated, however,
as long as all the decisions are made in advance. But since these decisions won’t be
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the same from researcher to researcher, this automation is—and should remain—
limited. A researcher should not, if he set out to discover differences in the sexes
relating to a hate score, say anything like “There are no differences between men
and women.” Unless strict irrelevance were discovered for all possible scenarios,
this will never be true. Instead, it is the researcher’s duty to state the probabilities
for (10.2) (or whatever) for those scenarios deemed important.

A word about “control”. In classical language, secondary “variables” are entered
into models like (10.1) and are said to be “controls”, e.g. “We controlled for age, sex,
and weight”. There will be some Y and some main X, as always, and a blizzard of
extra information that may or may not be of interest. See [229] for some examples
in economics. These extra or secondary propositions are the controls. The word
“control” here is spurious, an awful misnomer. Even in controlled experiments, in
the real sense of purposeful manipulation, as in say chemical “bench” work, these
secondary propositions are not controlled. For instance, a drug trial will allocate, i.e.
enforce the control, that half the patients eat the drug and half the placebo, but where
the secondary characteristics like age, sex, weight and so on are not controlled in
the least. Of course, many experiments are more complex and the giving of the drug
and placebo is balanced between more than one characteristic, like for instance sex.
Yet there will still always be other characteristics that are not purposely controlled,
and these are called controls, which is the exact opposite of the truth.

The mistake arises because, even when people know better, they cannot help
but think (10.1) is a causal or at least deterministic model. (The predictive, logical
approach advocated in this book will not eradicate this dogged fallacy.) Suppose
our trial—we know we do not need “randomization”—controlled, in the real sense,
for group, drug or placebo, and sex. Age and weight are incidental but measured,
as are, if the trial is typical, dozens of other things, including (as is now usual) the
scores from questionnaires (see below). There was nothing done in the experiment
to control the age beyond maybe allowing only adults and even less done about
weight. Could age or weight cause a change in the actual response? Not in (10.1),
which is pure probability and therefore not indicative of cause, but could a patient’s
weight causally change the outcome? In most experiments, given what we know of
medicine, the answer is yes. If this is true for our experiment, the only way to tell
is if we truly control weight. As it is, weight is incidental, and whatever it is that
is causing Y—and there are many possibilities and perhaps many partial causes—
might also be causing weight to vary (in some way).

Once more, (10.1) says nothing about Y. It says something about a parameter
(and only one of two) used to represent uncertainty in the value of Y. Even if we
knew weight is a partial cause, the way it enters into the model is as a function of a
parameter and not Y. Thus it still makes no sense to call these secondary propositions
controls. What are they then? They are propositions which change our uncertainty in
Y, conditional on the data we observe, the model and the other propositions we have
already entered into the model. And nothing else. When a user of a statistical model
says he has “controlled” for certain “variables” he is conveying to his audience, and
probably to himself, the false impression that he knows what is causing what. This
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kind of language is thus harmful even when it used as a shorthand. The temptation
to claim more certainty than is warranted is impossible to resist.

Reminder! As discussed in the last chapter, what should happen is this. The
pertinent questions are decided, the experiment designed, the data collected, the
model built, and then, every single time, the model should be used to make
predictions. And then we must wait until those predictions are verified before
pronouncing the model good or bad. This is the only way we can assess the value
of the model, to see whether it is any good. This is the way it is done in better
hard sciences. The model is announced as part of the findings, not hidden away and
assumed to be proper as it is in nearly all statistical analyses. An excellent summary
of what can go wrong with health data and nutritional guidelines is in [7].

10.3 Risk

A common way to report statistical models is by relative risk. The simplest way
to think of it is this: the probability of having a disease, or of dying or of having
or evincing whatever outcome of interest, given one exposure, divided by the
probability of disease given another exposure. Common exposures (for ease) are
high and low. A relative risk of 2 means the disease is twice as likely to be found
in the high group. Relative risk is a misleading way to report, however, because it
exaggerates risk, as I’ll prove. It must, too, be kept in the back of your mind that the
goal of all scientific research is to discover cause—where possible.

We’ll return to the particulate matter example from Chap. 7 on causality, which
should be reviewed. Recall we had two groups of 1000 each, one exposed to no
PM2.5 (the low group) and one exposed to some high level. Five folks in the low
group contracted cancer of the albondigas, and 15 in the high group did.

What’s the difference between a probability of one in ten million and one of two
in ten million? The official answer to most decision makers is “Not much,” but the
relative risk is 2, which is considered high. If the two numbers were the (conditional
on evidence) probability of disease in the low and high groups, one could honestly
write a paper that said, “Exposure to high PM2.5 doubles the risk of cancer.” But it
would highly misleading.

What counts as “exposed”? Daily inhalation? If so, for how long a period and
in what quantities? And what about the people “not exposed (to high PM2.5)”?
They were “not exposed” because they were certainly different than the people
who were “exposed.” That they must be different is a logical truism: if they were
the same they would have been exposed to high PM2.5, too. Since the low group
were not exposed, they are different. In how many ways are the people in the two
groups different? Nobody knows, and nobody can know. The number of measurable
differences, as we already saw, is astronomic.

Is our job made easy by defining “exposed to” as “any exposure of any kind in
any high amount”, which is certainly plain enough? No, because it begs the question
why the folks who did not see any exposure of any kind in any amount didn’t. Were
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they off on holiday? Did they eat different foods? Come from a different culture?
Were they older or younger? Have variant genetics? You can go on and spend a
lifetime and never be sure of identifying all things different between the groups.

Those problems are too hard, so let’s do something as easy as possible, which will
still lead to an important twist. Suppose God Himself told us that the probability of
cancer in the exposed (in any way to high PM2.5) group is 2 in ten million and
the probability of cancer in the not-exposed group is 1 in ten million. The relative
risk is 2.

Evidence suggests that Los Angeles is a “hot spot” for high PM2.5 exposure.
Now L.A. proper has about four million residents, some of whom will have been
exposed, some not. Suppose for the sake of argument the population is split: half
are exposed, half not. Remember: the Lord Himself assured us the relative risk of 2
is correct. The chance is thus 67 % that nobody in the exposed group will develop
cancer. Pause here. That’s no-body. Meaning there’s a two-out-of-three probability
that not a single soul of the two million exposed people will get cancer. Anti-
intuitive? Shouldn’t be: even with a relative risk a whopping 2.0, there’s still only a
paltry 2 in ten million chance of disease for any individual.

Likewise, we can calculate the chance nobody gets cancer in the not-exposed
group: it’s 82 %. Isn’t that 67 % versus 82 % odd? In the exposed group, the chance
at least one person gets cancer is one minus the chance nobody does, or 33 %; and
the chance at least one person gets it in the non-exposed group is thus 18 %. The
risk ratio is now 1.8, a big change from 2! But how can this be when God Himself
told us the relative risk is 2? That’s because the “2” is an abstract number. When we
start applying it groups of real people, the stark difference begins to disappear. For
example, if we applied the same calculations to the population of New York (about
eight million) the real relative risk is 1.67. Lower still. By the time we consider the
population of the entire United States, the real relative risk dwindles to 1.

Why is this happening? Because relative risk is stated in terms of single people.
When you’re concerned only with yourself, it’s the right calculation—but a silly
one, because you’re better off knowing the probabilities involved. Consider that you
have the same relative risk moving from 2 in ten million to 1 in ten million as from
1 in 2 to 2 in 2, yet the situations are worlds apart.

Let’s think again about the population of LA. The chance that just one person of
the two million in the exposed group develops cancer is 27 %. That means there’s a
94 % that either nobody gets it or just one person in two million does. And there’s
a 16 % chance just one person in the non-exposed group gets it, or a 98 % chance 0
or 1 people get cancer. The overwhelming probability—94 %—is no more than one
poor soul develops cancer in the exposed group, and that it’s more likely nobody
does (67 %). The same is true in the not-exposed camp.

Here’s another way to look at it. In all of LA’s population, some people in each
group might get cancer. The chance that more people develop cancer in the exposed
group than in the non-exposed group is only 28 %. Which is not even close to 100 %.
Even with a relative risk of 2, there’s only just over a 1 in 4 chance of larger numbers
of cancer patients in the exposed group. The largest chance, 59 %, is that both groups
will have the same number of people who develop cancer. And there is even a 13 %
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chance that the not-exposed group will have more people who develop cancer than
the exposed group! There is an enormous difference between sensational relative
and sober absolute risk.

Does 1 in ten million seem low? It doesn’t to the EPA. In one of many guides
[69, p. 5], they fret over risks as tiny as that. However, they often cite risks of 1 in a
million and 1 in ten thousand as regulation-worthy. Let’s use the latter and see what
boosting the exposed cancer chance to a whopping 2 in ten thousand does to our
calculations.

We first need a workable relative risk—2 is really too large. We need one
considered by the regulatory establishment high enough to warrant hand-wringing.
Use 1.06, the high-water relative risk in a series of widely touted papers by Michael
Jerrett and co-authors [125] who measured exposure to dust. Jerrett spoke of many
diseases, mainly cardiac and respiratory ailments, but what matters here is the size of
relative risk touted as worrisome. We’re still claiming that all that counts is exposure
or non-exposure; all or nothing. We can’t do here the harder problem of multiple
levels of exposure and the reasons for differences in exposure, but the sophisticated
reader can easily see the extensions. Assume some people had “enough” exposure
to dust and others didn’t. The disease for the sake of illustration is still cancer, but
it could be anything. With a relative risk of 1.06, the chance of disease in the not-
exposed group is 0.000189. Figure 10.1 shows a picture of the probabilities for new
disease cases in the two groups in LA, still considering a population of four million
and split exposure.

There’s a 99.99 % chance that from about 300 to 440 not-exposed people will
develop cancer, with the most likely number (the peak of the dashed line) about
380. And there’s a 99.99 % chance that from about 340 to 460 exposed people will

Fig. 10.1 The probability
citizens of Los Angeles
develop cancer with and
without exposure to high
PM2.5. These are not normal
distributions, but binomial
and only appear smooth.
These are non-zero
probabilities for observable
events
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develop cancer, with the most likely number about 400. A difference of about 20
folks. Surprisingly, there’s only a 78 % chance that more people in the exposed
group than in the not-exposed group will develop cancer. That makes a 21 % chance
the not-exposed group will have as many or more diseased bodies.

This not-trick question helps: how many billions would you pay to reduce the
exposure of high PM2.5 to zero? How many people would get cancer? The answer
is: this statistical model says nothing about what causes cancer. As shown in
Chap. 7, we have to assume PM2.5 is a cause. We can say is that eliminating high
PM2.5 eliminates high PM2.5, which is equivalent to saying that everybody else, all
four million folks, would be exposed to low PM2.5. This is important. Calculations
show there’s a 99.99 % chance that anywhere from about 650 to 850 people would
get cancer, with the most likely number being around 760.

There’s a 99.99 % chance that from between just under 700 to just over 860
people will have cancer, given exposure is split in the population between high and
low PM2.5. And there’s the same chance that from about 670 to 840 people develop
cancer assuming nobody is exposed to high PM2.5. The most likely number of
victims for the split population is 777, and it’s 754 in the all-low population, again,
only about 20 folks different. There’s only a 71 % chance more people in the split
population would have more people with cancer than in the all-low scenario, but
there’s also a 28 % chance more people in the all-low scenario have cancer.

This and not the previous picture is the right way to compare real risk—when the
risk is known with certainty. It’s not nearly as frightening as the normal methods of
reporting.

Figure 10.2 shows there’s a cap, a number which limits the amount of good you
can do (regardless whether cancer is caused by PM2.5 or something associated

Fig. 10.2 The probability of
the number of people having
cancer, when half the
population of LA is exposed
and half not, compared to the
supposing the entire
population isn’t exposed
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with it). If we use the 99.99 % threshold (adding a few 9s does not change the
fundamental conclusion) and we eliminate any possibility of high exposure, then
the best we could save is about 200 lives—assuming, too, the cancer is fatal. That
comes from assuming PM2.5 is cause, that 866 exposed people develop cancer and
670 not-exposed people get it (the right-most and left-most extremes of both curves).
There’s only a 0.005 % chance that 866 or more exposed people get cancer, and
there’s a 99.985 % chance at least as many as 670 in the not-exposed people get
it. The most likely scenario is thus a saving of about 20 lives. Out of four million.
Meaning our Herculean efforts to eliminate all traces of dust at best we’d affect
about 0.004 % of the population, and probably more like 0.0005 %. And never forget
we only assumed PM2.5 was a cause. If it isn’t, all our efforts are futile. How many
billions did you say?

There are other strong assumptions here. The biggest is that there is no
uncertainty in the probabilities of cancer in the two groups. No as in zero. Add any
uncertainty, even a wee bit, and that expected savings in lives goes down. In actual
practice there is plenty of uncertainty in the probabilities. The second assumption
is that everybody who gets cancer dies. That won’t be so; at least, not for most
diseases. So we have to temper that “savings” some more.

Assumption number three: exposure is perfectly measured and there is no other
contributing factor in the cancer-causing chain different between the two groups.
We might “control” for some differences, but recall we’ll never know whether we
measured and controlled for the right things. It could always be that we missed
something. But even assuming we didn’t, exposure is usually measured with error,
as we have seen. In our example, we said this measurement error was zero. In real
life, it is not; and don’t forget Jerrett relied on the epidemiologist fallacy. Add any
error, or account for the fallacy, and the certainty of saving lives necessarily does
down more.

Let’s add in a layer of typical uncertainty and see what happens. The size
of relative risks (1.06) touted by authors like Jerrett get the juices flowing of
bureaucrats and activists who see any number north of 1 reason for intervention.
Yet in their zeal they ignore evidence which admits things aren’t as bad as they
appear. Here’s proof.

Relative risk estimates are of course produced by statistical models, usually
frequentist. That means p-values less than the magic number signal “significance”.
Now (usually arbitrarily chosen and not deduced) statistical models of relative risk
have a parameter or parameters associated with that measure. Classical procedure
“estimates” the values of these parameters; and as we’ve seen, the guesses are
heavily model and data dependent. Change the model, make new observations, and
the guesses change.

There are two main sources of uncertainty (there are many subsidiary). This is
key. The first is the guess itself. We thus far assumed there was no uncertainty of
the first kind. We knew the values of the parameters, of the probabilities and risk.
God told us! Thus the picture drawn was the effect of uncertainty of the second
kind, though at the time we didn’t know it. We saw that even though there was
zero uncertainty of the first kind, there was still tremendous uncertainty in the



10.3 Risk 221

200 300 400 500 600

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Probabilities of Developing Cancer

Citizens with cancer

P
ro

ba
bi

lit
y

Exposed
Not exposed

Fig. 10.3 The probability citizens of Los Angeles develop cancer with and without exposure to
high PM2.5, factoring in parameter uncertainty

future. Even with “actionable” or “unacceptable” risk, the future was at best fuzzy.
Absolute knowledge of risk did not give absolute knowledge of cancer.

This next picture, Fig. 10.3 shows how introducing uncertainty of the first kind—
present in every real statistical model—increases uncertainty of the second.

The narrow, highly peaked lines are repeated from before in Fig. 10.1, which
were the probabilities of new cancer cases between exposed and not-exposed LA
residents assuming perfect knowledge of the risk. The wider lines are the same,
except I’ve added in parameter uncertainty (since I don’t have Jerrett’s numbers this
is only a reasonable guess). In Bayesian terms, we “integrate out” the uncertainty
in parameters and produce the posterior predictive distributions. The spread in the
distribution doubles: uncertainty increases dramatically.

There is also more overlap between the two curves. Before, we were 78 %
sure there would be more cancer cases in the exposed group. Now there is only
a 64 % chance: a substantial reduction. Pause and reflect. Parameter uncertainty
increases the chance to 36 % (from 22 %) that any program to eliminate PM2.5 does
nothing, still assuming PM2.5 is a cause. Either way, the number of affected citizens
remains low. Affected by cancer, that is. Everybody would be effected by whatever
regulations are enacted in the “fight” against PM2.5. And don’t forget: any real
program cannot eliminate exposure; the practical effect on disease must always be
less than ideal. But the calculations focus on the ideal.

As above, here in Fig. 10.4 are the real curves we should examine.
This is astonishing. By properly accounting for uncertainty, there is now only a

58 % chance that more citizens would develop cancer in the spilt-exposure group
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Fig. 10.4 The probability of
the number of people having
cancer, when half the
population of LA is exposed
and half not, compared to the
supposing the entire
population isn’t exposed,
factoring in parameter
uncertainty
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than in the all-not-exposed group. And there is a 41 % chance that more people
would have cancer in the all-not-exposed group. There is more uncertainty in the all-
not-exposed group, too, meaning the number of lives saves is up in the air; almost
unknowable. This is the benefit of examining predictive uncertainty. It gives the
best, of course still model and data dependent, picture of what we can expect.

We’re not done. We still have to add the uncertainty in measuring exposure,
which typically is not minor. For example, Jerrett (2013) assumes air pollution
measurements from 2002 effected the health of people in the years 1982–2000. Is
time travel possible? Even then, his “exposure” is a guess from a land-use model,
i.e. a proxy and not a measurement. Meaning he used the epidemiologist fallacy to
supply exposure measurements.

I stress I did not use Jerrett’s model—because I don’t have it. He didn’t publish
it. The example here is only an educated guess of what the results would be under
typical kinds of parameter uncertainty and given risks and exposures. The direction
of uncertainty is certainly correct, however, no matter what his model was.

And there are still sources of uncertainty we didn’t incorporate. How good is the
model? (The only “true” model is a fully causal one.) Classical procedure assumes
perfection. But other models are possible. What about “controls”? Age, sex, etc.
Could be important. But controls can fool just as easily as help, as we now know.
Anyway, controls don’t change the interpretation. If there were controls, we would
just have different pictures for each subset (say, males versus females, etc.).

All along we have assumed we could eliminate exposure completely. We cannot.
Thus the effect of regulation is always less than touted. How much less depends on
the situation and our ability to predict future behavior and costs. Not so easy.
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I could go on and on, adding in other, albeit smaller, layers of uncertainty. All of
which push that effectiveness probability closer and closer to 50 %. But enough is
enough. You get the idea.

10.4 Epidemiologist Fallacy

One fallacy is so common and so harmful that it deserves special mention. It is the
epidemiologist fallacy. It is born from the more well-known ecological fallacy, but I
prefer the neologism because without this fallacy, most epidemiologists, especially
those employed by the government, would be out of a job. The epidemiologist
fallacy is also richer than the ecological: it occurs whenever an epidemiologist says,
“X causes Y” but where he never measures X and where he uses classical statistics
to claim proof of a cause—based on, say, wee p-values or large Bayes factors; see
[27]. Over-certainty is guaranteed.

How frequent is this fallacy? As rare as a lobbyist on the northward-bound Acela
out of Washington D.C. on a Friday night. Over the years I have cataloged hundreds
of examples, usually of papers that catch the attention of the media. Public health
researchers and sociologists use the fallacy a lot. And so does the government.

Above I used an example of PM2.5. As far as I have been able to discover, the
usual practice is to rely on proxies and not actual exposure of PM2.5. A typical abuse
is to measure an average value of PM2.5 or to posit a “land-use model” of PM2.5
and then suppose everybody in or near some locale was exposed to the predicted
level of particulates. The uncertainty in these models or guesses is never—not once
that I could discover—carried forward. You might think such egregious practices
are rare. You would be mistaken. Indeed, I have yet to see a paper which claims
PM2.5 causes disease that didn’t rely on the epidemiologist fallacy. For examples
see e.g. [60, 113, 125, 171, 172, 181, 203]. See also [86] for a discussion of what
this over-confidence means in this application.

I would rather not point out specific studies because this will make it appear the
problem is less pervasive than it actually is. This is because if I mention one study,
another similar will get a pass because it wasn’t mentioned. I also don’t want to hurt
the feelings of any authors. Mostly, their gross misuse of statistics is not their fault.
It was how they were taught to do it. But I am obliged to give some idea of the extent
of the problem. So here are some examples.

The study [231] “A Population-Based Case-Control Study of Extreme Summer
Temperature and Birth Defects” purportedly investigated birth defects in New York
residents (the Y) and heat waves during pregnancy (X), which were claimed to
increase in frequency and severity once global warming finally strikes. “We found
positive and consistent associations between multiple heat indicators during the
relevant developmental window and congenital cataracts [in newborns]”. Various
statistical measures of correlation were attested to, and if the reader wasn’t careful
she would decide to stay out of the heat lest her unborn child develop congenital
cataracts.
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But exposure of women to heat during their “relevant development windows”
was never measured on any woman. There was no X. But there was a (let’s call it) W
said to be the X: the daily air temperature at “18 first-order airport weather stations”.
Women were assigned the temperature at the stations closest to where they listed
their residence at the time of birth for just those days thought to be crucial to fetal
development. Nobody knows where the women actually were during these days: it
may have been near the assigned airport, or it could have been Saskatchewan, or
perhaps in some cool building. The authors also say “we were unable to incorporate
air conditioner use data”. This paper was taken seriously by the press.

My personal favorite is the paper by David Yanagizawa-Drott and Andreas
Madestam [154] who suspected Fourth of July parade attendance (X) turned
innocent Americans into Republicans (their Y). How? Exposure to raw, unfiltered
patriotism would take its inevitable toll and cause people to turn wistful at the
mention of Ronald Reagan. They speculated, “Fourth of July celebrations in
the United States shape the nation’s political landscape by forming beliefs and
increasing participation, primarily in favor of the Republican Party.” The more
parades attended, the greater the likelihood of turning Republican.

It was very widely reported that X caused Y. Only it wasn’t so. The authors
never measured X. Instead, they gathered precipitation data from 1920 to 1990 in
towns where study participants claimed to have lived when young. If it rained on
the relevant Fourths of July, the authors claimed the participants did not go to a
parade, because they assumed all parades would be canceled. If it did not rain, they
claimed participants did go to a parade, because (they assumed) all towns invariably
had parades on clear days, and if there was a parade participants attended. Nowhere
was actual parade attendance (X) measured. Were any participants at grandma’s
house on those weekends instead of home? And think: if their hypothesis is true,
San Francisco would be teeming with Republicans because it almost never rains
there on the Fourth of July.

The epidemiologist fallacy is only a start. Not only do scientists incorrectly say
that they measured an X when they did not, sometimes they do not even measure
the Y and accept a proxy for it, too. Yet the story is still X causes Y. Sociologists
have the most fun with this. Take the article “Red Light States: Who Buys Online
Adult Entertainment?” by Benjamin Edelman [66] who claimed red states consume
more pornography than blue states with the strong implication that conservatives
are naughtier than progressives. Yet no individual’s consumption or political views
were ever measured.

I beg the reader to go to the literature and confirm for himself how widespread the
epidemiologist fallacy is. Anything focused on human behavior will do, including
especially politically sensitive subjects.
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10.5 Quantifying the Unquantifiable

The devastation to sound argument by quantifying the unquantifiable cannot be
quantified. But it is monumental. Every time a survey with arbitrarily quantified
answers is presented as a discovery or as “confirmation” of common sense the road
to scientism widens. Here is simple proof of this claim.

On a continuous scale of �3:2 to 1131=3, how would you rate the keenness of
quantifying the unquantifiable? Or how about something more scientific: on a scale
of 1 to 8.3, in units of 1=r where r is a prime number, how flummoxed does the
previous question make you? Do you think that a “flummoxedness” of 8 is twice
as flummoxed as a “flummoxedness” of 4? And is a “flummoxedness” of 4 twice
as flummoxed as a “flummoxedness” of 2? Have we captured all there is to know
about “flummoxedness” in this “scientifically validated instrument”?

Groups of questions are often called “instruments” in order to mimic the prestige
things like x-ray spectroscopy have. Social “instruments” are questions with ad hoc
numerical values attached to them, given first to a group of volunteers (likely college
students since the designers are mostly professors), and then given again to a second
group. Ad hoc scores are created from the quantified answers; sometimes the number
of separate scores calculated from even a limited set of questions can be quite large.
If the scores are somewhat similar between the first and second group, the scientist
calls his “instrument” “validated.” It is then released into the wild—though often
with a copyright attached so that would-be administrators of the instrument are made
to pay for its use.

There is an old Russian proverb which says the mind of another is like a black
forest. Yet modern science thinks it can plumbs the depths of any soul if only enough
quantified questions are asked. Though researchers say they are careful about
question wording, ambiguity in language, particularly about emotion states and
highly charged political questions is high. There is always the danger of questions
designed to solicit the desired outcome. Consider “Are you in favor of helping the
destitute or would you rather they just die and decrease the surplus population?”
versus “Are you in favor of a massive tax hike to fund a new inefficient stream of
welfare?”

Nobody disputes that there are levels of, say, happiness. One can be amused,
pleased, gratified, sated, satisfied, gleeful, ecstatic, serene, gloomy, depressed, sad,
grieved, aggrieved, and on and on. Yet it is only hubris that allows a researcher to
say, “How happy are you on a scale from 1 to 10?” and think he has well quantified
this complex emotion merely because some people checked off a number. But even
this might be okay, this crude, blundering quantifying of the unquantifiable—after
all, this is the purpose of all those different words we have for happiness—except
that the research must go on and submit his answers to classical statistical analysis.
Calamitous over-certainty is the result.

Quantifying the unquantifiable got its real start with Rensis Likert’s (then at
New York University) original 1932 paper “A technique for the measurement of
attitudes” [148]. Studying this work is revealing. In that paper, Likert (pp. 9–10)
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said “A series of verbal propositions dealing with the same general social issue are
assumed to be more or less equivalent, or at least to be closely related so as to permit
prediction from a knowledge of a subject’s attitude on one issue to the same subject’s
attitudes on other aspects of the same issue: : :. In statistical language, a group factor
is assumed at the outset.” He was concerned with measuring “pro- or anti-Negro
feeling” on several questions which were to be combined into a “Negro scale” (and a
separate “Internationalism scale” which I’ll ignore here). Initiating a practice which
would become customary (p. 14) “the attitudes tests were given to undergraduates
(chiefly male) in nine universities and colleges.” There were 15 questions fed into his
“Negro scale”, each question receiving different numerical weights. Some questions
were scaled (in order), such as “Yes”, “?” (he meant indeterminate), or “No”; others
were multiple choice. Here is question eight, scored 5 points for (a) down to 1 point
for (e):

In a community where negroes outnumber the whites, a negro who is insolent to a white
man should be:

(a) excused or ignored.
(b) reprimanded.
(c) fined and jailed.
(d) not only fined and jailed, but also given corporal punishment (whipping, etc.).
(e) lynched.

Is it really the case that because lynching an “insolent negro” is worth only 1 point
and that fining and jailing him is worth 3? Excusing insolence is only five times
as merciful as lynching? The answers are obviously not equally spaced in their
emotional or cultural content; not for us and not for his nine (yes, nine) students
in 1932.

Here is question 12: “If the same preparation is required, the negro teacher should
receive the same salary as the white”, with answers (values) “Strongly approve” (5),
“Approve” (4), “Undecided” (3), “Disapprove” (2), and “Strongly disapprove” (1).
Is it the case that strongly disapproving that a “negro” should receive the same
pay as a white teacher is numerically equivalent to lynching a man? It must be,
because Likert’s “Negro scale” is a simple average of the answers from all questions,
including this one. Except for some adjustment because some questions allowed
differing numbers of answers, all questions in the scale are weighted equally.
Thus lynching and strong disapproval of equal salaries are by definition morally
equivalent.

The percent of answers given to question eight, for example, were: (a) 29 %, (b)
42 %, (c) 26 %, (d) 3 %, (e) 0 %. Perplexingly, Likert said this and similar responses
“yielded a distribution resembling a normal distribution.” That is so only if we
take “resembling” in the same sense as “a man resembles a snail” because both
are animals. He used this approximation of normality to develop what he called
“Sigma scoring” (which is not of direct interest to us) which allowed comparing
values of answers of questions with differing number of responses. He summed up
the answers, which became the scale.
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Likert gave his questions to eight groups of varying sizes (30–100); naturally,
the distribution of scores did not match place to place. Variability is expected. But
neither did the scores from the same places match the scores on a re-test given
30 days later—there was an 0.85 correlation (calculated in the standard way). Of
course, it could be that opinions of the respondents changed during this time. Or
their attitude towards members of a different race might have remain fixed but
their understanding of the question wording change. Or it could be that they paid
a different level of the attention from that time to this. Or et cetera. This kind of
uncertainty in the answers is never, so far as I have been able to discover, accounted
for in any analysis which uses scored questions.

“Validity” to Likert (and his followers) is how well the means and standard
deviations of the scores match at different locations (or times). But that is obviously
circular reasoning. What is real validity? It should be how well the score matches the
underlying truth. That would be how well our scale above measured flummoxedness,
or how well Likert’s score measured the complexities of attitudes towards “negroes”.
But if our best poets and writers can barely plumb these depths, what arrogance it is
to suppose some simple quantified questions can!

As before, it’s worse than this. Researchers rarely report the result of one “scale”,
but often how different scales or instruments match one another. If there is any kind
of correlation, the emotion or psychological state claimed to be (exactly measured)
by one scale is said to either cause or be caused by the emotion or psychological
state claimed to be (exactly measured) by the second. What usually happens is that
the two scales have similarly worded questions. This is never recognized.

For example, the very widely used Center for Epidemiologic Studies Depression
(CES-D) scale in its short form asks level of agreement to inter alia the statements “I
felt that everything I did was an effort”, “I was bothered by things that don’t usually
bother me”, and “I was happy”. And the just-as-common SF-12 (a distillation of
the SF-36) Health Survey has the questions inter alia “Have you felt calm and
peaceful?”, “Did you have a lot of energy?”, and “Have you felt downhearted and
depressed?”.

Both of these “instruments” have scores. The 12-question SF-12 claims it
can measure ten separate dimensions of health! One of these 10 is “vitality”.
Researchers will model (usually with regression) the relationship between the scores
from the CES-D and SF-12, and when “significance” is discovered, they will say
something like “Depression lowers vitality” or “Vitality lessens depression.” They
will then scour the characteristics of the people measured for clues of how to raise
vitality and thus lower depression.

The over-certainty of these works is staggering. Has the CES-D really told us
all we know about flummoxedness; or, rather, depression? Has the SF-12 measured
with crystal precision vitality? Certainly not. Yet it is always assumed the scale
encapsulates every important facet of the emotion or psychological state assigned.
The objection that the wordings of questions are similar between two or more
“instruments” is never made. The scores are always assumed linear. That magic
trick is what allows regression to enter and for “sub-group analysis” to flourish.
There are hundreds of standard questionnaires in regular use, which has led to a
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this-correlated-with-that literature, the very existence of which is used as evidence
that researchers know what they are doing. Researchers take comfort that others are
doing as they, which is all the proof required that all is well. Once somebody gets
a stupendously over-certain theory into print, it is license for more such claims (but
this time studied on this or that interesting group that was heretofore “neglected”).

Because of the way they are developed, even inside questionnaires, the similar-
wording objection can be made. Researchers designing an “instrument” conjure
long lists of questions thought to be related to the emotion of interest. These
questions are given to a test audience, as it were, and the questions are successively
winnowed by ascertaining how close answers to each other question match in the
test sample. This closeness is taken as proof that the questions are measuring the
stated emotion. But does “Do you like the color blue” really differ from, “About
blue, rate how good it makes you feel?”

For a contemporary example, consider this hotly controversial topic. The paper
“Psychoticism, Immature Defense Mechanisms and a Fearful Attachment Style
are Associated with a Higher Homophobic Attitude” by Ciocca et al. [46] was
picked up by the press and announced with the headline “New Study Suggests
Connections Between Homophobia And Mental Disorders”.2 This press article
opened, “Homosexuality was long derided as a mental disorder: : :but a new study
suggests that it might be more likely that it’s actually homophobia that is a sign
of mental disorder.” The article quoted one of the study authors (E.A. Jannini)
as saying, “After discussing for centuries if homosexuality is to be considered
a disease, for the first time we demonstrated that the real disease to be cured
is homophobia, associated with potentially severe psychopathologies.” Potentially
severe psychopathologies? Sounds like the sort of thing that requires treatment,
perhaps against the will of patients.

Now this study asked a few hundred Italian students questions from something
called the “Homophobia Scale” as “validated by Wright, Adams, and Bernat”
([226]) and more questions from the Symptom Check List-90-R (SCL-90-R),
“one of the most widely used self-report psychometric tests in the area of psy-
chopathologic symptom assessment”, which provides nine “indexes,” one being
“psychoticism” (for the SCL-90-R questions, see [176]). A regression was ran
from the quantified answers and a wee p-value “confirmed” (notice the fallacious
identification of cause) “homophobia” described a “significant predictive value of
psychoticism.”

Italy is, of course, largely a Catholic country; indeed, 75 % of the respondents
identified as Catholic. Faithful Catholics are obliged to hold, and many do hold,
natural law views of homosexuality which consider homosexual acts as unnatural,
sinful, and harmful or (as the catechism has it) “objectively disordered”. Further,
while homosexual acts are condemned in the Bible, Catholics are taught to “love the
sinner, hate the sin.” These views are central Church teachings, yet there is, as all

2http://thinkprogress.org/lgbt/2015/09/11/3700857/homophobia-mental-disorder/, Accessed 13
September 2015.

http://thinkprogress.org/lgbt/2015/09/11/3700857/homophobia-mental-disorder/
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know, much variation in what individual Catholics believe. Whether these attitudes
are right or wrong is immaterial to the discussion here. What is relevant is that
Catholic views toward homosexual acts are in part or in whole matters of religion
and philosophy, and therefore “homophobia” must be considered in those contexts.
Do the scales relied upon by the researchers account for religion and philosophy?
No: they do not even come close.

For proof, here are some of the questions on the 25-item “Homophobia Scale”,
scored 1–5, “Strongly agree” to “Strongly disagree”: “3. Homosexuality is accept-
able to me”, “8. Marriage between homosexual individuals is acceptable”, “12.
Homosexuality is immoral”, “16. Organizations which promote gay rights are
necessary”, and “20. Homosexual behavior should not be against the law.” Now each
of these contribute to the score in the obvious way towards being “homophobic”.
But each also has an answer which is the opposite of homophobia (in the colloquial
sense of, say, “hating gays”) but which is in line with Catholic doctrine. We should
therefore expect those who are more religious or philosophical to have greater
“homophobia” scores but who are not actually homophobic in the sense used by
the study authors, which they define as “irrational fear, hatred, and intolerance of
homosexual men and women by heterosexual individuals.”

In the SCL-90-R there are ten questions related to “psychoticism.” The questions
are scored from 0 to 4, expressing agreement “Not at all” to “Extremely”. Some of
these, if answered honestly and forthrightly by participants, a condition nobody can
know, clearly indicate mental difficulties, to say the least. Two questions indicating
what most would consider mental illness: “7. The idea that someone else can
control your thoughts” and “16. Hearing voices that other people do not hear”. But
there are also questions that would just as obviously be answered by religiously
or philosophically minded people that do not indicate illness in the context of this
study. These are: “84. Having thoughts about sex that bother you a lot”, “85. The
idea that you should be punished for your sins”. Don’t forget that these questions
were asked immediately after the questions on homosexuality, so that any ideas
participants had in this direction were likely amplified.

It is thus no surprise that scores from these two “scales” should exhibit rough
correlation—which is exactly what was found: a wee p-value in a model with a
small effect and low proportion of variability explained (as is typical), and where the
authors gave no indication of having considered alternate explanations. Yet the lead
researcher was able to claim, in public, that “homophobia” is a “disease” “associated
with potentially severe psychopathologies.” This is not science. It is advocacy or
sloppy thinking. There is no third alternative.

We can now see that in the scale of research which causes over-certainty,
the runners-up are those researchers whose work leads to newspaper headlines
which begin “Science confirms: : :”. These confirmations will be on such things
as “Dressing well improves peoples’ opinion of you”, “Blisteringly hot days are
‘perceived’ as more comfortable than clement days”, “Daytime has more luminosity
than nighttime”, and so on endlessly. These studies come out with distressing
regularity, all driven by researchers’ need to publish something, anything, and all
of which enhances scientism, the fallacy that they only way to know anything worth
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knowing is if somebody in a white lab coat has certified it. Incidentally, take a
moment to spot the real study among the headlines just given. Have it? It’s the
first, from the paper “The Cognitive Consequences of Formal Clothing”, [199].

The damage done to clear thinking by pretending batteries of questions ade-
quately quantify emotional states cannot scarcely be underestimated.

10.6 Time Series

The mathematical implementation of time series, like in all other published
analyses, is usually flawless, but frequent mistakes are made in interpretation,
most of which include: (1) substituting models for actual data, i.e. reification;
(2) confusion over statistical significance, (3) model choice and verification, (4)
mistaking probability for causality, (5) over-smoothing data, (6) using parametric
and not predictive error bounds, and (7) counterfactual questions.

Assume yt, a time series, is measured without error. The simplest, fairest, and
grief-free analysis “method” is to summarize or plot the data without manipulation,
sans accoutrement. A common question is, “Has this time series increased [or
decreased]?”; a near equivalent is, “Is there a trend?” Unfortunately, these questions,
plain as they seem, are ambiguous. Consider the data in Fig. 10.5, the result of a
simple ARMA(1,1) process simulation (using R’s arima.sim() function; remind
yourself exactly what “simulation” means in Chap. 6). As is clear, sometimes
yiCk > yi, i; k D 1; 2; : : : ; n, sometimes yiCk < yi, and sometimes yiCk D yi.

In this case, “Has the temperature increased/has it a trend?” is poorly posed.
The answer will be “Yes” or “No”, depending on the values of i and k and on the

Fig. 10.5 A hypothetical
time series measured without
error, simulated with an
ARMA(1,1) process
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interpretation of the word “increased.” Increase or trend is consonant with “The
temperature has gone up more often than it has gone down”, “The series is higher at
the end than at the beginning”, “The arithmetic mean of the latter half is higher than
the mean of the first”, “The series increased on average at more or less the same
rate”, “There are more values in the second half (last quarter, or whatever) higher
than some constant than in the first half (quarter, etc.)”, “Each successive point is
equal to or greater than all previous points”, “A w% increase from time i to time
i C k”, and many others.

Whether or not there is an increase, decrease, or trend can be answered without
ambiguity or uncertainty, depending only on whether the series has met the criterion
specified. One person’s increase is another’s no change or even decrease. No
probability models are needed to distinguish if an increase/decrease/trend is present,
and there is no requirement for statistical interpretation. Of course, if the language in
the criterion of change is not clear, uncertainty remains. For instance, what exactly
does “more or less at the same rate” mean? Obviously, different things to different
people.

Authors often write (and the press occasionally repeats) that time-series trends
are “statistically significant”. There is scarcely any awareness that this “finding”
is model and statistic-inside-model dependent (p-values change with different
statistics). And even less that it is also conditional on the start and end point of
y used. It is enough to claim “significance” that the ritual has been passed. The
end point of a time series analysis is almost always picked as yn, where n is the last
observed point. This feels natural; though the temptation to cut the data off at a point
more convenient to the author has been noticed. The start point allows for creativity.
“Significant” trends appear and disappear by careful choice of beginning. Different
impressions of the nature of the series are had by how it is plotted, regardless
whether formal testing is invoked.

Figure 10.6 is the same as Fig. 10.5 except that two regression lines, i.e. common
models, have been over-plotted. The solid uses all the data, and shows a statistically
significant downward trend (effect D �0:017 per time unit, t-test p-value of 0.038).
The dashed line uses only the data from time 65 onwards and shows a statistically
significant upward trend (effect D 0.076 per time unit, t-test p-value of 0.027).
Depending on the start point, the story one wants to tell changes dramatically.

Most “trends” are identified with straight lines, usually via regression. Yet there
isn’t any reason to suppose straight-line regressions are good models of reality in
most instances. That this above all other models is used reveals the effects of custom.

Now causality. Suppose y D f61; 69; 69; 70; 72; 72; 73g (say, yearly average
temperature in degrees F; with notation suppressed). What caused the temperature to
take the value y1 D 61? The sun, the amount of moisture in the air, especially in the
form of clouds, the characteristics of the surface around the thermometer and how it
itself is situated, and things of that nature. Not just one cause, but many contributing
causes. Most time series are like this in not having a unique cause. And since yearly
averages are composed of monthly then of daily averages, which themselves are
averages of hourly measurements, it is difficult or impossible to identify clearly
all the causes that produced y1. Regardless of our ignorance, it has some cause or
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causes. What caused y2 D 69? It wasn’t and couldn’t have been y1: y1 is an effect,
not a cause. The causes of y2 were probably similar to the causes of y1, but they
were obviously not the same; if they were the same, then y2 would equal y1. And so
on for the remaining time points.

Since we can see a “rough” increase in this small set of numbers, defined here as
data that contains more increases than decreases, we know, with certainty, that some
thing or things caused this increase. The increase (as defined) is certainly there: we
see it. We just don’t know why it’s there. Suppose our imaginary model suggested
the trend was statistically important. This does imply a linear (or other) cause might
have been present. But it might imply multiple coincident causes could have been
operating.

Assume our model with linear trend predicts Pr.y8 > 73jy1:::7; M/ D 0:9 (the 73
temperature figure was chosen because it was decisionable, or otherwise important
to somebody). Did the model cause the value of y2 to be higher than y1, and will it
cause y8 to be larger than y7? Obviously not. The prediction can, however, be used
to verify the goodness of the model. If it turns out y8 D 64, the model did poorly; if
y8 D 74, the model did well.

Predicting and explaining can be complementary here as everywhere. Suppose
we have two models, one with and one without a trend component, and further
suppose Pr.y8 > 73jy1:::7; Mtrend/ D 0:9 and Pr.y8 > 73jy1:::7; Mno trend/ D 0:88.
The trend model says higher values are more likely, but not much more likely.
Whether 0.9 is much larger than 0.88 is, of course, a matter for the person making
decisions based on these predictions. Probabilities important to one person may
be irrelevant to another. The reader might think of this as an approximation to a
numerical Occam’s Razor. The trend model is more complicated, yet predictions
without the tend are not very different than with it. This gives evidence that the

Fig. 10.6 Same time series
as in Fig. 10.5, but with
statistically significant trend
lines drawn, each with a
different start point. The solid
line uses all the data and
reveals a statistically
significant downward trend;
the dashed line reveals a
statistically significant
upward trend starting at time
point 65. The data were the
result of a simple ARMA
process simulation
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trend is not especially explanatory (but it is not proof). As long as one does
not inadvertently insert causal language into the mix, this kind of comparison is
immensely useful.

Another popular way to represent time series is like this:

y D 67 C f�6; 2; 2; 3; 5; 5; 6g;

where y is supposed to be some central or mean value which is “shocked” into
departures. But that implies y returns to, or “desires” to return to this value and is
then continually “re-shocked”. However useful a modeling concept this is, it is a
mistake to think about it in terms of causality. This is to anthromorphize the data or
to make a plea to mysterious forces.

When dealing with a single time series, the risk of reification and over-certainty
are great when smoothing is applied. (This discussion concerns all types of analyses
where the model is shown in preference to reality.) The smoothed data becomes
more important than the noisy, uglier reality, and the model which the smoothing
implies is more probable than evidence dictates. With two or more series, smoothing
artificially increases the correlation between the series, again leading to over-
certainty. “Smoothing” is the replacement of the data with a model or with a more
aesthetically pleasing substitute, sometimes used to remove “noise”. Saying there is
“noise” implies one knows the cause. But if one knew the cause, then one needn’t
smooth.

Figure 10.7 is simulated normal “noise”, plotted in light gray, over which appears
in black a ten-unit rolling mean, a typical smoother (the example which follows

Fig. 10.7 Generated
numbers (in gray) with a
ten-unit rolling mean (in
black). The smoothed data
gives the false appearance
some regular, periodic cause
is operating
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works with any form of smoothing). As explained above, some thing or things
caused each of the values (in this case a fixed algorithm inside my computer). But
the black line gives the appearance that the underlying meta or single cause has
been identified and that it has this shape. But if we knew what this cause or these
causes were, we would show them and not the data. Smoothing implies a model,
and it might be a reasonable model, but since there is no verification of this model’s
predictions of new data, there is no way to judge how reasonable the smoothing
model is. Thus smoothing gives the appearance of greater certainty than there is.
Bluntly, smoothing is often a way of faking it, of suggesting more is known than
actually is.

Shown in Figs. 10.8 and 10.9 are a succession of images with two simulated
normal noise time series per panel that have nothing to do with one another.
Figure 10.8 shows the series with the correlation in the titles, and Fig. 10.9 shows
the series in x-y plot fashion overplotted with a regression line. The smoothing was
produced by increasing the window (k) of running means, but any type of smoothing
(e.g. “low-pass filters”) will produce similar effects. As the smoothing increases, the
correlations increase from near 0 to something quite high (in absolute value). I urge
the reader to try it for himself, experimenting with different kinds of smoothers (and
not just running means). Some surprising results can be had.

Of course, any given smoothing may decrease (in absolute value) the correlation
between two or more series and not increase it. To discover how general any increase
smoothing causes would require specifying not only the kind of smoother, but the
probabilistic structure of the time series, and so forth; a worthy investigation but one
which would take us too far afield here.

Experience shows the danger, however, is real and common. The reason the trick
“works” is that smoothing takes uneven points and “straightens” them, making them
more line-like, as the plots in Fig. 10.8 show. Any two lines with non-zero slopes
have perfect Pearson correlation, as is trivially proved below. Never should any time
series that has been smoothed be used as input for “downstream” analyses, e.g. that
which shows how the time series is associated with some external x. This substitutes
fake data for real, and causes massive over-certainty. Yet this mistake is often found.
And not only in time series. Regression analyses often make the same error.

Here is another warming that usually goes unheeded: if the data is reconstructed
by proxies or is measured with error (or both), the plus-or-minus error bars
accompanying the time series should be predictive, not parametric. Using the latter
introduces dramatic over-certainty. See also [141] for mistakes made in comparing
time series. One form of reconstruction, as it were, is to take data from several
locations and use it to interpolate values at unmeasured locations. Another is when
a set of locations, possibly changing over time, are used to calculate an index, e.g.
“global average temperature.”

Figure 10.10 shows a simulated time series y (in solid; an ARMA(0.9,0.8)) and
a “proxy” x (dashed) which is simultaneously measured (simulated from a gamma
with parameters (y1:1

i ,1)). That is, each yi is first generated, then the x is simulated
using a function of yi as a parameter to the gamma. By design, these two series
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Fig. 10.8 Two simulated normal noise time series, with successively higher amounts of smoothing
applied by a rolling mean of k units applied. From top left clockwise: k D 1; 10; 20; 30; a k D 1

corresponds to no smoothing. The original time series are shown faintly for comparison

closely match. The y series might represent temperature and the proxy might be
some oxygen isotope which is used to stand in for y when y is unavailable.

Figure 10.11 is the same as Fig. 10.10, but in a standard x-y plot. From this, it
is reasonable to suggest a linear (probability, not causal) relationship between the
proxy and time series. I next simulated new proxy data, in the same manner as
before: I simulated a new time series and then simulated the proxy from it. This
is an oracle approach because we actually know the value of the “unknown” time
series. I then assumed that this new proxy data was all I had and wished to use it
to estimate the unknown y. I fit a linear regression to the original data in Fig. 10.11,
and used it with the new proxy data to predict the new y. In other words, I assumed
y � N.
; �/ and modeled 
 D ˇ0 C ˇ1proxy. Many other models are possible,
but this one is not uncommon in the literature, particularly when “trend hunting”
or where the “proxy” is replaced by a time model component. What is said below,
however, holds for any model.
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Fig. 10.9 The same as in Fig. 10.8, but the two smoothed time series are plotted against one
another and a regression line over-plotted. The effects of the smoothing are quite jarring

The result is in Fig. 10.12: the solid line is the prediction of new y given the new
proxy, and the gray envelope is the 95 % parametric confidence interval due to ˇ1,
the parameter associated with the proxy.

The prediction looks good in the sense that, assuming the validity of the
model, the confidence limits are fairly tight (interpreted in the natural and not any
theoretical way). This is how many proxy reconstructions are plotted. But it is an
error to do so, because the confidence in ˇ1 is of no interest to man or beast. What
we want is the prediction limits of y, not the uncertainty of the parameter.

Figure 10.13 adds the 95 % prediction limits in lighter gray and, because this is
an oracle approach and we know the true values of y, these are added in open circles.
This is only one simulation among many, but notice that many of the circles are not
inside the inner-gray parametric limits, but that most (though not 95 %) are inside
the prediction limits.

Note too that the prediction limits are five to six times wider than the parametric.
Of course, these limits are dependent on the model and the structure of the data, and
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Fig. 10.10 A simulated
ARMA(0.9,0.8) series y
(solid), and a simulated proxy
x (dashed) from a
gamma(y1:1

i ,1)
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Fig. 10.11 The same as in
Fig. 10.10, but in a standard
x-y plot
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in other applications the difference between the parametric and prediction limits
might not be as dramatic. On the other hand, the differences might be, and often are,
even larger. One thing is certain, and provable: prediction limits are always wider
than the parametric intervals, whether one adopts a frequentist or Bayesian stance.
Once more, this goes for any kind of analysis, not just time series.

Again, the point is not to investigate strengths or limitations of this regression
model, or how the oracle approach reproduces the new simulated time series
(experience with the simulations shows that sometimes the prediction is better,
sometimes it is worse). Instead we want to understand how to use models in a
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Fig. 10.12 The result of using the regression of proxy on y to predict new values of y assuming
only the proxy is available. The black line is the prediction, the gray envelope is the 95 %
confidence interval of the regression parameter

predictive sense. One point of importance that might be lost is that any model
assumes that the proxy-y relationship is unchanged over the period which the proxy
was measured and y was not. Since this is subject to some unquantifiable doubt, the
quantitative results of uncertainty will themselves be too certain.

The worst mistake researchers make is to use only the solid black line, i.e.
the prediction, from Fig. 10.12. Perhaps that prediction is used as input to other
“downstream” analyses, or it’s just displayed as is. Doing this ignores all uncertainty
in the prediction, a bad but frequent habit. This error is almost habitual with
some who take (particularly temperature) predictions as input to models of other
things (things “caused” by global warming, for instance). The result of ignoring the
uncertainty will be to create in the downstream model p-values which are much too
small or posteriors that are too narrow. Many poor decisions are made.

Slightly better is to incorporate the parametric uncertainty in the same figure
(the darker gray envelope), which is rare enough. Best, and most honest, to use the
complete predictive uncertainty, and this is mandatory if the predicted series is used
as input for outside or future analyses.

Everything said in this section holds for time series measured with error, where
the observed data are themselves a proxy for the real, unmeasurable data. In these
cases, w D y C � is measured instead of y, where the � represents the departure
from the true observation (this needn’t be linear error as I have it; any sort can be
realized). Many measurement model errors exist (e.g. [37]), the purposes of which
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Fig. 10.13 Same as in Fig. 10.13 but with the 95 % prediction limits (in light gray) and actual
new values of y (open circles). The prediction limits are five to six time wider than the parametric
limits, a dramatic difference

are to estimate, as above, y. This must also be done in a predictive and not parametric
manner.

Particularly in economic and environmental data, external changes are known to
have occurred over the span of y. For example, temperatures measured at a fixed
geographical location which at one time was an open field but which now lies inside
a bustling city. If a town has grown around y, the data are still the data; that is, the y
is that still which is experienced.

Some researchers attempt to estimate what y would have been had the external
changes not occurred. The estimate is compared against the observed y, and the
differences are said to be caused by the external changes. These are interesting, but
counterfactual questions. As such, the output produced by any statistical analysis
can never be verified. The cause due to the external changes might account for the
(model-dependent) differences between the estimate and observation, but then again
they might not. There is no way to know. The number of possible causes are vast,
and the chance the researcher has hit upon the one-and-only best model in every
situation are slight.

These criticisms do not apply to so-called change point analysis, e.g. [44]. This
is where external causes to y are sought; or rather, the times at which these changes
occurred is sought. This can be a useful procedure if the model is used to make
predictions.

Shown in Fig. 10.14 are the monthly temperature anomalies from January 1997
until October 2014, De Bilt, The Netherlands, [118]. This data is interesting because
it has been manipulated five times: four times the measurement device changed or
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Fig. 10.14 Monthly
temperature anomalies from
January 1997 until October
2014, De Bilt, The
Netherlands
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was moved, and a “warming trend of 0.11ıC per century caused by urban warming”
was removed. This removal the researchers called “homogenization”. As stated
above, this practice is not justified. For one, it’s not clear how “stitching” the data
from different measurement sources effects any downstream analysis. Another and
larger problem is that how much urban warming there has been is a counterfactual
question, one to which nobody knows the answer. There must be uncertainty
generated in this homogenization, uncertainty that we should carry forward. I do
not do that here because how to do this would carry us too far afield. The reader
should remember that everything that follows below is thus too certain.

Next, “anomalies” were created, a common practice, by subtracting from each
actual temperature the mean of monthly temperatures from the 30-year-period
1961–1990.

What makes the period 1961–1990 special? Nothing at all. Shown in Fig. 10.15
are every possible set of anomalies created with each available 30-year-block of
temperature (the data began in January 1901). The data are now shown as a gray
envelope to indicate the uncertainty inherent in choosing the starting date of the
block.

As is plain, there is tremendous range for the “true” value of any anomaly, up to
2 ıC. The decisions one makes based on these values can thus vary remarkably. And
this is only shown for 30-year blocks. What makes 30 years special? Nothing at all.
Increasing the latitude in number of years only increases the envelope of possible
“true” values.

Suppose we define a trend for this series as if the value of the coefficient in a
straight-line regression of the data is non-zero. Does such a trend exist? Figure 10.16
shows the regression lines for every possible set of anomalies created by 30-year
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Fig. 10.15 Same as above,
but with every possible set of
anomalies created with
30-year-blocks of temperature
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Fig. 10.16 Same as above,
but with regression lines
added for every anomaly
block

2000 2005 2010 2015

−
6

−
4

−
2

0
2

4
6

Monthly Temperature Anomalies, De Bilt
Varying Anomaly Blocks

M
on

th
ly

 A
no

m
al

ie
s

blocks. The modeled decrease per decade was anywhere from 0.11 to 0.08 ıC, a fair
discrepancy.

What made starting at 1997 special? Nothing at all. Figure 10.17 is the series
of regression lines one gets starting separately from January 1990 and ending at
December 2012 (so there’d be about two years of data to put into the model) through
October 2014. Solid lines are statistically “significant”, dashed “insignificant” (it’s
difficult to see at this resolution, but the majority are “significant”). This picture
is brilliant for two reasons, one simple, one shocking. The simple is that we can
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Fig. 10.17 Same as above,
but with regression lines
added for every start point up
to December 2012
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get positive or negative trends by picking various start dates. That means if we’re
anxious to tell a story, all we need is a little creativity. This picture is just for the
1961–1990 block. Different ones would have resulted if had I used different blocks.

What’s shocking about this picture? Researchers will draw a regression line
starting from some arbitrary point (like I did) and end at the last point available. This
regression line is a model. It says the data should behave like the model; perhaps the
model even says the data is caused by the structure of the model (see above).

But the model also logically implies that the data before the arbitrary point should
have conformed to the model. The start point was arbitrary. The modeler thought a
straight line was the thing to do, that a straight line is the best explanation of the data.
That means the data that came before the start point should look like the model, too.

Does it? Not hardly. Pick any line, particularly among the increases. Does all the
data conform to this model? No. Yet each of these models can be (and usually is)
considered “correct.” The obvious absurdity means the straight line model stinks.
Does it matter whether some parameter within that model exhibits a p-value less
than the magic number? These models have nothing to do with reality. Even less
when we realize that the anomaly block is arbitrary and the anomalies aren’t the data
and even the data is “homogenized”. We could have insisted a different regression
line belonged to the period before each of our arbitrary start points, but that sounds
like desperation.

Since it often comes up, here is the quick proof two straight lines are perfectly
correlated. Pearson correlation r is calculated as:

r D 1

n � 1

nX

iD1

�
xi � Nx

sx

��
yi � Ny

sy

�

(10.3)
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and, e.g., sx D
q

1
n�1

Pn
iD1.xi � Nx/2.

Two straight lines can be written as x W a C bfIg and y W c C dfIg,
where fIg are the discrete points where the lines are measured. These needn’t be
these consecutive numbers, but they have to match for x and y, which they will
because these are the points at which the two lines are measured (think of any
ordinary x-y plot). For ease, suppose fIg D 1; 2; : : : ; n

First calculate NX D 1
n

P
.a C bi/ D a C b.n C 1/=2; and similarly for the mean

of y. It is also obvious .n � 1/ cancels in (10.3). Now Xi � NX D b.i � .n C 1/=2/ and
Yi � NY D d.i � .n C 1/=2/. So .Xi � NX/2 D b2.i � .n C 1/=2/2 and similarly for y.

Then the numerator of (10.3) is

X
b.i � .n C 1/=2/d.i � .n C 1/=2/ D bd

X
.i � .n C 1/=2/2

and the denominator is

p
b2.i � .n C 1/=2/2

p
d2.i � .n C 1/=2/2 D ˙bd

X
.i � .n C 1/=2/2:

We are left with r D C1 if b and d have the same sign, or r D �1 if b and d have
opposite signs. If b or d is 0 the problem is undefined.

10.7 The Future

My prayer is that predictive methods catch on; indeed, that they replace the
parameter-centric, hypothesis testing decision-is-probability classical procedures
that we now know are so productive of over-certainty. But will these new—actually,
conceptually they’re rather old—methods be seen as a menace to those who are
happy with the present state of affairs, generous as classical methods are in the
production of “results”? I am calling for a dramatic slow-down in research: that
is the consequence of validating models. Time has to pass before one speaks of
having any reasonable certainty in any theory. Who wants a decrease in certainty?
That is what the logical approach gives. My experience talking to folks about the
predictive methods is that it is a hard sell. People like the over-certainty provided by
classical approaches. Decision making is easy because the software is designed to
produce “significance”; and folks don’t like the mental effort and emotional turmoil
that comes in being less sure. Those two reasons alone account for how classical
statistical methods have become so widespread.

The real problem may be in how we teach students probability. Math should,
at first, be de-emphasized; philosophy should come first. I’ve said elsewhere that
it’s time to stop teaching frequentist methods to all undergraduates, [25]: this
admonition ought to be strengthened to all graduates, too. Most experts who teach
our subject, and experts are rare in universities where anybody with even modest
training is allowed to teach statistics, believe it to be (1) a branch of mathematics,



244 10 Modelling Goals, Strategies, and Mistakes

and (2) entirely about empirical propositions. I hope I have shown Probability is
properly a branch of philosophy, albeit one that has practical, mathematical aspects.
Probability doesn’t just apply to the empirical. Too often in classes designed as
the only exposure a student will have (this is the bulk of the students), the teacher,
thinking he is doing math, insists on that aspect of probability, and gives short shrift
to interpretation. The student thus never recalls anything except that his p-value
should be wee. Statistics is reduced to ritual, or magic, [94]. This is proved by how
people use probability and statistics after they are released into the wild (and by
the examples above). But even in those courses designed for probability students,
the emphasis is almost entirely on empirical mathematics. Any philosophy taught is
incidental. These biases lead to empiricism and scientism.

There is plenty of math to be done, to be sure. Current combinatoric methods
have to be scoured and new ones have to be created to produce working methods for
discrete, finite predictions. Comparing how these exact algorithms compare to the
continuous, infinite approaches will be of lasting benefit, especially in discovering
the origin of parameters in common models.

But the real benefit will be a return to a saner and less hyperbolic practice of
science, one that is not quite so dictatorial and inflexible, one that is calmer and in
less of a hurry, one that is far less sure of itself, one that has a proper appreciation
of how much it doesn’t know. As of this writing, the situation is dire. For instance,
there is much deserved and genuine angst about the “reproducibility crisis” which
plagues, it is not generally recognized, those fields which (over-) rely on statistical
methods; see e.g. [15, 119, 145, 162, 167] for details on the crisis.

Hypothesis testing, in either its Bayesian or frequentist forms, and regardless of
what it is called, is responsible for the bulk of the crisis, as should now be plain.
“Statistical significance”, as a term or as a goal, should be treated like the ebola
virus, i.e. it should be placed in a tightly guarded compound where any danger
can be contained and where only individuals highly trained in avoiding intellectual
contamination can view it. Second on the Most Wanted list are parameters. It’s
clear now that the reason parameters became such intense objects of scrutiny, at
the expense of reality, is that parameters and testing are nearly conjoined. It’s time
for parameters to return to their brown paper wrappers and for reality to once again
come into view. Mistaking models as reality, or as certain, rounds out the list. There
is hardly any recognition how fragile statistical models are.

The predictive approach eliminate all these problems—but not all problems:
humans are still human. Yet this solution only became obvious once we understood
the true nature of probability, that it is always-conditional, that it is silent on cause,
that it is entirely epistemological. Science needs not to return to reality, its true
pursuit. And that means chasing after a proper understanding of essence and cause.
Nothing else can eliminate over-certainty; nothing else can restore uncertainty to its
proper place.
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