Systems Science and Modeling for Ecological Economics

# Systems Science and Modeling for Ecological Economics 

Alexey Voinov

Academic Press is an imprint of Elsevier
84 Theobald's Road, London WC1 X 8RR, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
First edition 2008

Copyright © 2008, Elsevier lnc. All rights reserved
No part of this publication may be reproduced, stored in a retrieval system or transmitred in any form or by any means electronic, mechanical, phorocopying, tecording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science \& Technology Rights Department in Oxford, UK: phone $(+44)(0) 1865843830$; fax $(+44)(0) 1865853333$; email: permissions@elsevier.com. Alcernatively you can submic your request online by visiting the Elsevier web sice ar hrcp://elsevier.com/ locate/permissions, and selecting Obtaining permission to use Elsevter material

## Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matcer of products liability, negligence or otherwise, or from any use or operation of any merhods, products, instructions or ideas contained in the matertal herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

Library of Congress Cataloging in Publication Data
A catalog record for this book is available from the Library of Congress
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0.12-372583-7

For information on all Academic. Press publications visit our web site at hutp://elsevierdirect.com

Typeset by Charon Tec Lid., A Macmillan Company.
(www.macmillansolutions.com)
Printed and bound in China

## Working together to grow <br> libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

## 

To those who led - my parencs, Zoe and Arkady;
and to those who follow - my sons, Anton and Ivan

## Contents

Preface ..... Lx
Acknowledgements ..... $x v$
1 Models and Systems ..... I
1.1 Model ..... 1
1.2 System ..... 6
1.3 Hierarchy ..... 12
1.4 The modeling process ..... 16
1.5 Model classifıcations ..... 21
1.6 Systems thinking ..... 25
2 The Art of Modeling ..... 29
2.1 Conceptual model ..... 30
2.2 Modeling software ..... 49
2.3 Model formalization ..... 70
3 Essential Marh ..... 79
3.1 Time ..... 81
3.2 Space ..... 99
3.3 Structure ..... 105
3.4 Building blocks ..... 108
4 Model Analysis ..... 111
4.1 Sensitivity analysis ..... 112
4.2 Model calibration ..... 115
4.3 Model testing ..... 129
4.4 Conclusions ..... 134
5 Simple Model, Complex Behavior ..... 139
5.1 Classic predaror-prey model ..... 140
5.2 Modifications of the classic model ..... 146
5.3 Trophic chains ..... 150
5.4 Spatial model of a predator-prey system ..... 162
5.5 Conclusions ..... 194
6 Water ..... 197
6.1 Modeling as a hydrology primer ..... 198
6.2 Unit mode! ..... 223
6.3 Spatial model ..... 229
6.4 Conclusions ..... 244
7 Adding Secio-Economucs ..... 249
7.1 Demographics ..... 250
7.2 Dynamics on the market ..... 264
7.3 Corporate rule ..... 272
7.4 Suscamabiliry ..... 278
7.5 The end ot cheap oil ..... 287
7.6 The World ..... 296
8 Optimization ..... 307
8.1 Introdiaction ..... 307
8.2 Resource management ..... 315
8.3 Fishpund ..... 324
8.4 Landscape optimization ..... 338
8.5 Opumality principles ..... 347
9 The Practice of Modeling ..... 355
9.1 Why models don't work ..... 355
9.2 Participatory and adaptive modeling ..... 362
9.3 Open-surrce, web technologies and decision support ..... 382
9.4 Conclusions ..... 395
To Conclude ..... 401
Index ..... 407

## Preface

## Why?

As I am finishing this book, Science magazine is running a special issue about the sequencing of the macaque genome. It turns out that macaques share about 93 percent of their genes with us, humans. Previously it has been already reported that chimpanzees share about 96 percent of their genes with us. Yes, the macaque is our common ancestor, and it might be expected that, together with the chimps, we continued with our natural selection some 23 million years ago until, some 6 million years ago, we departed from the chimps to continue our further search for better adaptation. Actually it was not quite like this. Apparently it was the chimps that departed from us; now that we have the macaques as the starting point, we can see that the chimp's genome has way more mutations than ours. So the chimps are further ahead than we are in their adaptation to the environment.

How did that happen, and how is it then that we, and not the chimps, have spread around all the Earth? Apparently at some point a mutation put us on a different track. This was a mutation that served an entirely different purpose: instead of adapting to the environment in the process of natural selection, we started adapting the environment to us. Instead of acquiring new features that would make us better suited to the environment, we found that we could start changing the environment to better suit us - and that turned out to be even more efficient. And so it went on. It appears that not that many mutations were needed for us to start using our brainpower, skills and hands to build tools and to design microenvironments in support of the life in our fragile bodies - certainly not as many as the chimps had to develop on their road to survival. Building shelters, sewing clothing or using fire, we created small cocoons of environments around us that were suitable for life. Suddenly the rate of change, the rate of adaptation, increased; there was no longer a need for millions of years of trial and error. We could pass the information on to our children, and they would already know what to do. We no longer needed the chance to govern the selection of the right mutations and the best adaptive traits, and we found a better way to register these traits using spoken and written language instead of the genome.

The human species really took off. Our locally created comfortable microenvironments started to grow. From small caves where dozens of people were packed in with no particular comfort, we have moved to single-family houses with hundreds of square meters of space. Our cocoons have expanded. We have learned to survive in all climatic zones on this planet, and even beyond, in space. As long as we can bring our cocoons with us, the environment is good enough for us to live. And so more
and more humans have been born, wirh more and more space occupied, and more and more resources used to creare our microcosms. When microcosms are jomed rogecher and expand, chey are no longer "micro." Earch is no longer a big planer with infinite resources, and us, the humans. Now it is the humans' planer, where we dominate and regulare. As Vernadskii predicted, we have become a geological force that shapes chis planer. He wasn's even ralkıng abour climate change ar char cume Now we can do even chat, and are doing so.

Unfortunately, we do not seem to be prepared to understand that. Was there a glitch in that mutation, which gave us the mechanism and the power but forgor abour the selt-concrol? Are we driving a car thar has the gas pedal, bur no brake? Or we just have not found it yel? For all chese years, human progress has been and still is equared to growrh and expansion We have been pressing the gas to the floor, only accelerating. Bur any driver knows that at high speed it becomes harder to steer, espectally when the road is unmarked and the destination is unknown. Ar higher speeds, the price of error becomes faral.

Bur let us cake a look at the other end of the spectrum. A colony of yeast planced on a sugar substrate starts to grow. It expands exponencially, consuming sugar, and chen it crashes, exhauscing the feed and suffocacing in ics own products of mecabolism. Keep in mind chat there is a lor of similarity between our genome and that of yeast. The yeas keeps consuming and growing; it cannor predice or understand the consequences of its acrions. Humans can, bur can we acc accordingly based on our understanding? Which part of our genome will take over? Is it the part that we share whth the yeast and which can only push us forward inco finding more resources, consuming them and multiplying? Or is it going to be the acyured parc chat is responsible for our intellect and supposedly the capacity to understand the more distant consequences ot our desires and the actions of coday?

So far there is not much evidence in favor of the latter. We know quite a few examples of collapsed civilizations, but there ate not many good case studies of sustainable and long-lasting human sociertes. To know, to understand, we need to model. Models can be different. Economics is probably one of the most mathemacuzed branches of science after physics. There are many models in economics, bur those models may not be the best ones to take into accounc the ocher systems that are droving the economy. There is the natural world, which provides resources and takes care of waste and pollurion. There is the social system, which describes human relationships, life qualicy and happiness. These do nor easily fir inco che linear programming and game theory that are most widely used in conventional economics. We need orher models if we want to add "ecological " to "economics."

So far our major concern was how co keep growing. Juse like che yeast popularion. The Ancient Greeks came up with theortes of oikonomık - the skills of household management. This is what lacer became economics - che science of production, consumption and discribution, all for the sake of growch. And that was perfectly fine, while we were undeed small and vulnerable, facing the huge hostile world out there.

Ironically, ecology, oikology - the knowledge and understanding of the household - came much later. For a long rime we managed our household withour knowing ir, without really underscanding what we were doing. And that was also OK, as long as we were small and weak. After all, what kind of damage could we do to the whole big powerful planer? However, at some point we looked around and realized that accually we were not that weak any more. We could already wipe out enture species, change landscapes and turn rivers. We could even change the climate on the planer.

It looks as though we can no longer afford "economics " - management wirhout knowledge. We really need to know, to understand, what we are doing. And that is what ecological economics is all about. We need to add knowledge about our household to our management of it.

Understanding how complex systems work is crucial. We are part of a complex system, the biosphere, and we further add complexity to it by adapting this biosphere to our needs and adding the human component with its own complexites and uncertanties. Modeling is a fascinating tool that can provide a method to explore complex sysrems, to experiment with them without destroying them at the same time. The purpose of this book is to introduce some of the modeling approaches that can help us to understand how this world works. I am mostly focusing on tools and methods, rather than case studies and applications. I am trying to show how models can be developed and used - how they can become a communication tool that can take us beyond our personal understanding to joint community learning and decision-makıng.

Actually, modeling is pretty mundane tor all of us. We model as we think, as we speak, as we read, as we communicate - and our thoughts are mental models of the reality. Some people can speak well. clearly explaining what they think. It is easy to communcate with them, and there is less chance for misunderstanding. In contrast, some people mumble incoherent sentences that it is difficult to make any sense of. These people cannot build good models of their thoughts - the thoughts might be great, but they still have a problem.

Some models are good while others are not so good. The good models help us to understand. Especially when we deal with complex systems, it is crucial that we learn to look at processes in their interaction. There are all sorts of links, connections and feedbacks in the systems that surround us. It we want to understand how these systems work, we need to learn to sort these comnections out, to find the most important ones and then study them in more detail. As systems become more complex, these connections become more distant and indirecr. We lind feedbacks that have a delayed response, which makes it only harder to figure out their role and guess their importance.

Suppose you start spinning a big flywheel. It keeps rotating while you add more steam to make it spin faster. There is no indication of danger - no cracks, no squeaks it keeps spinning smoothly. An engineer might stop by, see what you're dorng and get very worried. He will tell you that a flywheel cannor keep accelerating, that sooner or later it will burst, the internal tension will be too high, the material will not hold "Oh, it doesn't look that way," you respond, after taking another look at your device. There is no evidence of any danger there. But the problem is that there is a delayed response and a threshold effect. Everything is hunky-dory one minute, and then "boom!" - the flywheel bursis into pieces, metal is flying around and people are injured. How can that happen? How can we know that it will happen?

Oh, we know, but we don't want to know. Is something similar happening now, as part of the global climate change story and its denial by many politictans and ordinary people? We don't want to know the bad news; we hate changing our lifestyle. The yeast colony keeps growing till the very last few hours.

Models can help. They can provide understanding, visualization, and important communication tools. The modeling process by itself is a great opportunity to bring together knowledge and data, and to present them in a coherent, integrated way. So modeling is really important, espectally if we are dealing with complex systems that span beyond the physical world and include humans, economies, and sacieties.

## What?

This book originated from an on-line course that I starred some 10 years ago. The goal was to buld a stand-alone Interner course that would provide both access to the knowledge base and interaction between the instructor and the students. The web would also allow several mstructors at different locations to participate in a collaboratwe teaching process. Through their joint efforts the many teachers could evolve and keep the course in the public domain, promoting cruly equal opportunity in education anywhere in the world. By constantly keeping the course avalable for asynchronous teaching, we could have overlapping generations of students involved at the same time, and expect the more advanced students to help the beginners. The expectacion was that, in a way that mımics how the open source paradigm works for software development. we would start an open education effort. Clearly, the ultimate test of this idea is whether it catches on in the virtual domann. So far it is still a work in progress, and there are some clear harbingers that it may grow to be a success.

While there are always several students from different countries around the world (Including the USA, Chuna, Ireland, Sourh Africa, Russia, etc.) taking the course independently, 1 also use the web resource in several courses 1 teach in class. In these cases I noticed that students usually started with promtung out the pages from the web. This made me think that maybe after all a book would be a gond idea.

The book has gone beyond the scope of che web course, with some entirely new chapters added and the remaining ones revised. Sull, I consider the book to be a companion to the wel course, which I intend to keep working and updated. One major advantage of web tutortals is that new facts and findings can be incorporated almost as soon as they are announced or published. It takes years to publish or updare a book, but only minutes to insert a new finding or a URL into an existing web structure. By the time a reader examines the course thungs will be different from what I originally wrote, because there are always new ideas and results to implement and present. The virtual class discussions provide additional material for the course. All this can easily become part of the course modules. The book allows you to work offline when you don't have your computer at hand. The on-line part offers interaction with the instructor, and downloads of the working models.

Another opportunity opened by web-based education can he described as disrributed open-source teaching, which mimics the open-source concept that stems from the hacker culture. A crucial aspect of open-source licenses is that they allow modifications and derived works, but they must also be distributed under the same terms as the license of the original software. Therefore, unlike simply free code that could be borrowed and then used in copyrighted commercial distributions, the opensource definition and licensing effectively ensures that the derivatives stay in the open-source domain, extending and enhancing it. Largely because of this feature, the open-source community has grown very quickly.

The open-source paradigm may also be used to advance education. Weh-based courses could serve as a core for joint efforts of many researchers, programmers, educators and students. Researchers could describe the findings that are appropriate for the course theme. Educators could organize the modules in subsets and sequences that would best match the requirements of particular programs and curricula, and develop ways to use the tools more effectively. Programmers could contribute software tools for visualization, interpretation and communication. Students would test the materials and concribute their feedback and questions, which is essential for umprovements of both content and form.

Some of this is sreil in the tuture. Perhaps if you decide ro read the hook and take the course on-line, you could beenale part of this open-source, open-eduction ctert.

## How?

1 believe that modeling cannot be really taught only lcarned, and that it is a skill and requires a lor of pracrice - just as when babies leam to speak they need ro practice saying words, making mistakes, and gradually learning to say them the right way. Similarly, wet formal modeling, without going through the pitalls and surnises of modeing, is is nor possible to understand the process properly. Leaming the skill must be a hands-on experience of all the major srage: of modeling, from dara acyuisition and building conceptual models to formalizing and itcratively improving simulaton models. That is why 1 strongiy recommend that you look on the web, get yourself a trial or demo version of some of the modeling software that we are working with in rhis book, then downoed the models that we are discussing. You can then not just read the book, but also follow the story with the model. Do the tests, change the paramerers, explore on your own, ask questions and ry to imd answers. It will be way more fun that way, and it will be much more useful.

Best of all think of a topic that is of interest to yeu and start working on yous individual propect. Figure out what exacrly you wish to tind out. see what data are availalle, and then go through the modeling steps shat we will be discoussing in the book.

The web couse is at http:/www likbecomiAV/Simmontheml, and will remain open $w$ ail. You may wish to register and take ic. You will find where in overlaps with the book, you will be able to send your anestions, get answers and interact with orher students.

Ar the end of each chapter, you will find a bibliograply. These books and articles may not necessarily be about models in a conventimal sense, but they show huw complex systems should te analyzed and how emergent properties appear from this analusis. Check our some of those references for more in-depth real-life examples of different kind of models, systems, challenges and solutions.

Best of all, learn to apply your systems analysis and modeling skills an yost cveryday life when you need to make small and big decisions, when you make your next puthase or go to vote Learn to bok ar the system as a whole, to identity the ele. ments and ihe links, the feedtacks, controls and forcings, and to reaize how things are interconnected and huw inportant is is co srep back and see the big proture, the pessible delayed effects and the crutical sitates.

## Acknowledgements

Many people have contributed to my understanding of modeling and to this effort. Professor Yuri Svirezhev, who passed away in 2007, was my teacher, and he certainly played a great role in shaping my vision of modeling - of what it should be, and what it can and what it can't do. My colleagues on many modeling projects in various parts of the world helped me to learn many important modeling skills. I am grateful to my students, especially those who took the on-line modeling course and connributed by asking questions, participating in on-line discussions, and letting me know what kind of improvements were needed. The Gund Institute for Ecological Economics and its director, Robert Costanza, provided a stimulating and helpful environment for developing various ideas and applications. I very much appreciate that. For almost a decade I have been teaching a modeling course as part of the MSc Program in Environmental and Natural Resource Economics at Chulalongkorn University in Bangkok. I am grateful to Jiragorn and Nantana Gajaseni tor inviting me and helping with the course. My thanks are due to the Thai students who took the course and helped me improve it in many respects.

Several people have reviewed various chapters of the book and provided very useful comments. My thanks are due to Helena Vladich, Carl Fitz, Urmila Diwekar, Evan Forward and Narhan Hagens. I appreciate the suggestions I received from Andrey Ganopolski, Dmitrii O. Logofet, and Jasper Taylor. I am grateful to Erica Gaddis, who helped with several chapters and co-authored Chaprer 9. Joshua Farley encouraged me to write the book, and has been the resource on all my questions on ecological economics. Finally, my thanks go to Tatiana Filatova, who diligently read the whole manuscript and provided valuable comments on many occasions.

## 1. Models and Systems

1.1 Model
1.2 System
1.3 Hierarchy
1.4 The modeling process
1.5 Model classifications

### 1.6 Systems thinking

## SUMMARY

What's a model? Why do we mondel? How do we model! These grestrons are addressed in this chapere. It is a very baste mernducrion to the tade. We shall agree on definitions - what is a system, what are parameters, forcing functions. and houndanes? We will also consoder sume uther lasicic questions - how do we buld a conceptual model' How are elements connected? W'ant are the flows ot material, and where is it actually miormation? How do interactions create a positive teedhack that allows the system to run our of control or, conversely, how do negative feedthacks manage to keep a system in shape? W'here do we ger our parameters trom? We shall then hreefly explore how models are buil, and ery to come with some dichocomies and classes for difterene models.

## Keywords

Complexiry, resolution, spatial, cemporal and structural scales, physical mudels, mathematical models. Neptune, emergent properties, elements, holism, reducturnism, Thaldonude, flows, stocks, mreractuons, links, feedsacks, global warmung, structure, tunctom, hierarchy, sustainabilicy, boundaries, variables, conceptual model. modeling process.

### 1.1 Model

## A model is a simplification of reality

We model all the tune. even though we don't think abost it. With words thar we speak or write, we build models of what we thomk. I used to have a poster in my office of a bis gorilla scracthing his head and saying. "You think you understoed whar I said, hur l'm not sure that what I said is what I thought." One of the reasons it is sometimes hard to communicate is that we are not always good at modeling our thoughts by the words that we







 al.














 Iocntion






















Nnte that the models we build are detmed by che purposes that they serve. It. for example, you only want to show a friend how to get to your house, you will draw a very smeple dagrarn, avonding descripton of varoms places of interest on the way. However, if you want your friend to take nutice of a particular location, you might also show her a phorograph, which is alsu a moxdel. Its purpose is very different, and so are the mplementation, the scale and the detals.

The best model, indeed, should strike a balance between realism and simplicity. The

The best explanation is as simple as possible, but no simpler.

Albert Einstein human senses seem to be extremely well tuned to the levels of complexity and resolution that are requed to give us a model of the word that is adequate to our needs. Humans can rarely distinguish objects that are less than 1 mom in sise, but then they hardly need to in therr everyday lite. Probably for the same reason, more distant ohecrs are modeled with less detail than are the close ones. If we could see all the details across, say, a 5 km distance, the bram would be overwhelmed by the amount of information it would need to process. The abslicy of the eye to tocus on individual objects, while the surounding picture becomes somewhat blured and loses detail, probably serves the same purpose of simplifying the image the hrain is currently studying. The motel is. made simple, but mo simpler than we need. If our vision is less than 2020, we suddenly realite thas there are certain important features that we can no longer model. We rush to the optician for advice on how to bring our modeling capabilities back to cercain standerds.

As in space, in time we also register events only of appropriate duraton. Slow motion cscapes our resolution capacity. We cannot see how a tree grows, and we cannol register the movement of the sun and the monn; we have to go back to the same observation point to see the change. On the other hand, we do not operate too well ar very high process tates. We do not see how the fly moves its wings. Even Jriving rauses froblems, and quite often the human bram cannot cope with the flow of information when driving too fast.

Whenever we are interested in more detall regarding time or space, we need to extend the modeling capabilities of our senses and brain with some additional devices microscopes, telescopes, high speed cameras, longeterm monitoring devices, etc. These are required for specitic modeling goals, specific tempotal and spatial scales.

The inage created by our senses is stanc; it ss a maphor of reality. It is only changed when the reality itself changes, and as we continue otserving we get a series of snapshots that gives us the idea of the change. We cannot mokify this model to make it change in time, unless we use our imagnation to play "what if" ganes. These are the mental experiments that we can make. The models we create outsinte our brain, physical models, allow us to stuity certan features of the real life system:, even without modifying their prototypes - for example, a model of an airplane is placed in a wind tunnel to evaluate the aerodynamic properties of the real molane. We cans stuly the behavior of the aitplane and its parts in extreme condirions. we can make them actually break withour risking the plane itself - whech is, of course, many times more expenswe than its model. (For examples of wind cunnels and how they are used, see httpr:/wte lare nasa govi.)

Physical models are very usetul in the "what if?" analysis. They have been widely used in engineering, hydrology architecture, ete In Figure 1.1 we see a physical model developed to study stream flow. It mimics at real channel, and has sand and gravel to


Figure 1.1 A physical madel to study stream flow in the Main Channel Facility at the St Anthony Falls Laboratory (SAFL) in Minnesota.
The model is over 80 m long, has an intake from the Mississippı River with a water discharge capacity of $8.5 \mathrm{~m}^{3}$ per second. and is configured with a sediment (both gravel and sand) recirculation system and a highly accurate weigh-pan system for measuring bedload transport rates (hnp://iwuwnced umn edu'streamlab06_sed_xport)
represent the thedtorms and allow us ro analyze how changes in the boutom profiles can affect the flow of water in rhe stream. Physical models ate quire expensive to create and mainean. They are also very hard ro modity, so cach new device feven if it is tairly similar to the one already suatied) may requite the huilitug of an entirely new physical model.

Mathematics offers another tool for modeling. Once we have derived an adequare mathematical relationship for a certan process, we can stat analying it in
many different ways, predicring the behavior of the real-life object under varying conditions. Suppose we have derived a model of a body moving in space described by the equation

$$
S=V \cdot T
$$

where $S$ is the distance covered, $V$ is the velocity and $T$ is ume.
This model is obviously a sumplificanon of real movement, which may occur with varying speed, be reciprocal, erc. However, this simplification works well for srudying the basic princoples of motion and may also result in additional findings, such as the relationship

$$
T=\frac{S}{V}
$$

An important feature of mathematical models is that some of the previously derived marhematical propertes can be applied to a model in order to creare new models, at no additional cosr. In some cases, by studying the marhemancal model we can denive properties of the real-life system which were not previously known. It was by purely marhemancal analysis of a model of planerary monon that Adams and Le Verrer first predicred the position of Neprune in 1845. Neptune was later observed by Galle and d'Arrest, on 23 Sepcember 1846, very near to the location independently predicted by Adams and Le Verrer: The story was simular with Plute, the last and che smallest planer in the Solar System (alchough, as of 2006, Pluto is no longer considered ro be a planer; it has been decided that Pluto does nor comply with the definition of a planet, and thus it has been reclassified as a "simall planet"). Actually, the model that predicted its existence turned out to have errors, yet it made Clyde Tombaugh persist in his search for the planer. We can see thar analysis of abstract models can result in quise concrete findings about the real modeled world.

All models are wrong because they are always sumpler than the reality, and thus some

## All models are wrong ... Some models are useful.

William Deming features of real-life systems get misrepresented or ignored in the model. What is the use of modeling, then? When dealing with something complex, we tend to study it step by step, looking at parts of the whole and ignoring some deralls to ger the bugger picture. That is exactly what we do when building a model. Therefore, models are essential to undersuand the world around us.

If we understand how sumething works, it becomes easter to predict its behavior under changing condtoons. If we have built a good model that takes into accounc the essential features of the real-life object, its behavor under stress will likely be sımilar to the behavior of the protorype that we were modeling. We should always use caution when extrapolating the model hehavior to the performance of the prototype because of the numerous scaling issues that need be considered. Smaller, simpler models do not necessarily behave in a similar way to the real-life objecrs. However, by applying appropriate scaling factors and choosing the right materials and media, some very useful results may be obrained.

When the object periormance is understood and its behavior predicred, we get addıtional information to control the object. Models can be used to find the most sensutive components of the real-life system, and by modifying these components we can efficiently tune the system into the destred state or set it on the required trajecrory.


#### Abstract

     H1...


## Exercise 1.1

 ni pour modala



### 1.2 System


 may ba considered a sustern

Hall and Dav ! 977

 when s.ni tatt thrik.









2. The futstymit


















7 ne whoie is :more than the sum af pants.



v:n Bertalanty '968 i r. be -he

## Exercise 1.2


 SMal makes \& : swiert

## Elements $\leftarrow \rightarrow$ whole







 mlewnt--mesmer

 I









## Exercise 1.3


a. A steam enget

- Ancety
c A Therumonear vile
- ACN

 Divetern?


## Reductionism $\leftarrow \rightarrow$ holism






























道
 :cos.
 al a drug called thalidemida 11 wat olgimaly aynilse gized in 19fia, matheing siarted in 1957 , end is use rap-
 Amsiea ane Adrica Thalidomide was presanted ea e "wonder ding" thal provited 'sale. eound slaep" It was a sejabue that wase lound to be attective whan given to progrum woman to combal many of the symploms essociesed with morning adcreat it wea rol roatped then treidomide moleculer could dans the plecered wall and aflect tha ferus Egris monpla wer. an apr. dame of mallormanions aeried in bities bon to math. els who red luten the drug ounng there pregnencies Thom bebee born with thumbe with tree andy. with only thee ingeri or whit astoned eoss an probibly be ernsidered tuck Mory oftres thed frends growing arecrip from ther athoulders Other tribus sutiened fiom metiometione of the ecerinit argente - time neen. the boval the unerie and the groundom thout 40 precem


$\pi$ was perradery diline to mala the connection beceuse of the imporime trie fector the sensere priod sthom ary 36 to 49 of the oreg-



 ponduces tre that is enother wery eed story















1. Matalal thens





Figure 1.2 Elements and interactions.
We first identify elements in the system (A), then figure out which ones are connected (B). Next we start describing the types of interactions : C - which element influences which, and howl. By putting together these kinds of relationship diagrams we can better understand and communicate how systems work.
energy (iight, heat, elecricity, etc.), meney, etc. It is something that can he measured and tracked. Also, if are element is a donor of this substance the amount of substance in this element will decrease as a result of the exchange, while at the same time the amount of this substance will increase in the receptor element. There is always a mass or energy conservatoon law in place. Nothing appears from nothing, and nothing can disappear to nowhere.

The second type of exchange is an information tlow. In this case, element $A$ gers the information atout element $B$. Element $B$ at the same time may have no information atout element $A$. Even when element $A$ gets information abour $B$, element $B$ does not lose anything. Information can be about the state of an element, about the quantity that it contains, about its presence or absence, etc. For example, when we sit down for breaktast, we ear food. As we eat, there is less food on the table and mone food in our stomachs. There is a flow of material. At some point we look at the clock on the wall and realize that it is rme to stop eatug and go to work. There is a flow of information from the clock to us. Nurhong has been taken from the clack, yet we leamed somerhing from the information fow that we used.

When describing thows in a system it is useful co dentify when the flows play a stimulating or a dantapening effect. For example, consider a population growth process.










 4, ©


 ...liane







 somp pork the vein shule the flow mece Now we heve "the mort - the last" stuation.


 englowion M dowe not tive by

 thow to stop they al fooling mamalives unth they run out ol steem. or amply blow ud e.eryting.

Kow this is whef melies the oatrems of globol climatis et ange look piatiy dim. The ondy

 seets much hower in benck Whie seame to rallect more sunshine and I don't gat so hat This es caled atredo. White thes high atbedo: bleckt hat kow albado So the Arctic has lost almosi 30 cencent of its ice ceceuse now it'e wermat. Bus thie meane that there is lest white over thare and mare deak - bui the diket it geis the holitu it gats, and ilve mote ioll is malied and the mote datk agers. and Well, you can see. "the more- im mota' Nen good, and not goung io stod unill will the ice is gone
 those huge togs. which used to be frosen Now they are maling end telecting huge amome of some gases unto the aimosphere. and appaienily thase oumes hapdan io be rust the omet


 more bogs miti gnd the more gases thay pump into the amospheze and tia more tumper
 lisizan toges hive maltar

So where is thes goxing to take us? Hiw much is the cirnale supposed io trange tar we regan 1.0 me equilitrium?

## Structure $\leftarrow \rightarrow$ function


 - : :











 Il.ewnin

### 1.3 Hierarchy

## Subsystem $\leftrightarrow \rightarrow$ System $\leftrightarrow$ Supersystem

din any hieratchical siructure ithe higher iavels errbrace or "comprehent' the



Hsught. 1984











Figure 1.3
Hierarchies in systems.
Systems may be presented as interacling subsystems. Systems thernselves interact as parts of supra-systems. There are var ous hierarchical levels that can be identified to improve the descriptions of systems in models. Elements in the same hierarchical level are usually presented in the same level of detal in the space-time-structure dimensions.
same level. However, lower levels of those sumilar systems are hardly important tor rhis system. They enter the higher levels in terms of their function; the individual elements may be negligible but their emergent properties are what matter. Fietheman describes this in his theory of integrative levels as follows: "For an orgamism at any given level, its mechanisun lies at the level below and ise purpuse ar the level athove" (Fiebleman, 1954:61).

For example, consider a student is a system. The student is part of a class, whuth is the nexr hierarchical level. The class has certain properties that are emergent for the set of students that enter it. At the class level, the only thing that is impertant about students is their learning process. It does not matter what individual students had tor breakfast, or whecher they are tall or shorr. On the ocher hand, their individual ability to learn is affected by their individual properties. If a student has a headache after the party on the night before, he or she probably will not be able to study as well as a neightor who went to the gym instead. The class as a whole may be characterzed by a certain degree of acadennic achievement that will be different from the talents and skalls of individual students. yet that will be the benchmark that the teacher will consiler when working with the class. Fatch student affects this emergent property to a certain extent, thut not entirely. On the contrary, the class average affects each individual student. setting the level of instruction that is to be offered by the teacher. Different classes are assembled into a school, which is the next level in the hierarchy. Schools may te elements in a Regional Division, and sor on.

At the other end of this hierarchy, we can start by "decomposing" each individual student, looking at his or her lody organs and considering their functions - and so on, until we get to molecules and aroms. There are many ways we can carry out the decompostion. Instead of considering a stutent as an elemeat of a class, we may look at that student as an element of a family and build the herarchy in a difterent way. As with inodeling in general, the eype of hierarchy that we create is very much driven by the goals of our study The herarchical approach is essential in order to place the study object within the context of the macto- and micro-worlds - that is, the super- and subsystems - relative to it

Accorling ti) T. Saty (1982). "herarches are a fundamental tool of the human mind. They involve idenafying the elements of a problem, grouphg the elements into homogeneous sets, and arranging these sets in different levels." There may be a variety of hierariches, the simplest of which are linear - such as unverse $\rightarrow$ galaxy $\rightarrow$ constellation $\rightarrow$ solar system - planiet $-\ldots \rightarrow$ molecuic $\rightarrow$ atom $\rightarrow$ nucleus $\rightarrow$ proton. The more complex ones are networks of interactang elements, with multiple levels atfecting each of the elements.

It is important to remember that there are no real herarchies in the world we study. Herarchies are always creatoons of our hrain and

Herarchies do not exist. We make them up to understard a system and to communcate our understarding to others. are driven by our study. They are just a useful way to look at the system, to understand it, to pur it in the context of scale, ot other components that affect the system. There is nothing objective atrout the hierarchies that we develop.

For example, consider the hierarchy that can be assumed when looking at the Earth systen. Clearly, there are ecological, economic and social subsystems. Neoclassical economists may forget ahout the ecological subsystem and put together therr theores with only the economic and social subsystems in mind. That is how you would end up with the Cobb-Douglas production function that calculares output as a function of lature (sexial systern) and capital (economic system).

Environmental economsts woukd certanly recognize the importance of the ecological switem. They would want to take into account all three subsysems, but would think about them as it they were acting side-hy-side, as equal components of the whole (Figure 1.4A). For them, the production function is a prextuct of population (labor), resources (land) and capital. All three are equally important, representing the social, natural (ecologicall) and economic suhsystems, respectively. They are also substitutable: you can either work more or invest more to ger the same result. You can also come up










A x'a






We wial be considenng sustainsoility and suatainable development in more detes in Cnaptet 7. Here, let us use this notion to damonstrate how systems and hieiarchives may be of uselul 100 l for some lar-reaching conclusions The warta Commigsion on Ermionment and Development NNCED. $1897 /$ introduced the idea of sustainsbility several decades 500 . but there is stll no single agreod detinition for it. Most woudd agree that It implies that a sysiem is to be manrained at a certain level, held vathin certain limits Sustansedity denies lun-bwey grawit, but also precludes amy substantial set backs $\alpha$ ails Whie mosi - probsbly all - ratural systams go through a renewal eycle, where growth is followad by decline and eventual disiniegration. sustemebility in a way has the goal of preventing the syatem from decining end collapsing. Onginaliy the Brundarid Commission came up with the concepl of susta רabiny at the global level. as a way 10 protect our brosphere from becoming uninhabitable by humens, and human lives becoming full ol suffering and turmoil kecause of the tack of natural rescurees ond assimilative cepacity of the plamet

However, sametoov in the envionmental movernent the goal of sustainability was translatery into the regional and local levels. Indeed. me famous Schumecher idee of -Think glebally - act localiy apparerity means that the obvious path 10 global susia nabily is ithrough making sure inat our local systems are suatainabie. Is that seally the case? Let us apoly some ol ithe icoass about hierarthies and fystams

Keep in mind that renewal alows or reequalment and adaptation Hoverver it is the nexi higrarchacal level that benefits trom this adaptation Renewal in componenis helps a systerm 10 persist; therefore. 'ar a hierarchical system 10 axtend is existence to be susismeble its suosysitems need to go through eenevitl cratios. In thes waty. the denth of subsystems coninbutes to the sustamedbily of the suprasystem, prowding materise and space for reorgani 2ation and adapiation. Costanza and Pation 11995: 196, looking at sustamabiliy in terms of componens longevily or existence time. recognaed ihal "evalution cannol oceur unless theie is imitec langevin of the componemi carts so that new alternalivas can be salected ${ }^{\text {d }}$

Sustainability of a sysiem boriows fom sustainabity of a supra system and rests on lack of sustamebrity in subsystems. This might be mard to perceive, because al firsi glance it seams that a system made of sustainatio. lasting componenis should be susiainmble as well. However, in systems theory it has been lang recognazed that "the whole is more than the sum of parts" Iwon Bertaiantly. is68: 55), trat a sysiem function is not prouded only ty the functions of its componenis, and therefore. in taci. system susiainability is not a product of sustainable parts and nea versa. Thia ta espegaliy true fo' living. dynamicalty evolung
 heve to take into andount the ralations between the vercul getordraiad swatema wat the syelemit which are sugarordinated to then in order 10 undersiand the behi on of perie" non Bataientiy 1980 14月



 at the prosent levin of ihair diveliopment it is alio tha scalm then fiects tra homanis as a whole, the system that a shaved by all peogie and should thetefore be of mer concai10 a





## Exercise 1.4



2. Thnt od an arample wher a susiem 3 atected t a spope- -

3. Il a sustem collapses dies ofli can sumsparems survoe:"

### 1.4 The modeling process





















## 






















all of rhem, or some of them are entirely unknown? Which are the limitung ones, where are the gaps in our knowledge? What are the interactions berween the elemencs?

We might already need to go back and forth from the goals to the data sers. If our knowledge is insufficient for the goal in mind, we need either to updare che dara sers to betrer comply with the goals, or to redefine the goals to make them more feasible ar the exiscing level of knowledge.

By answering the basic questions about space, time and structure, we describe the concepcual model of the syscem. A conceptual model may be a mental model, a sketch or a flow diagram. Bulding the right conceptual model leads us halfway os success. In the conceptual model, the following components of the system should be clearly idencified.

1. Boundaries. These distingush rhe sysrem from the outside world in boch time and space. They are important in deciding what material and information flows inco and out of the sysem, which processes are internal (endogenous) and which are excernal (exogenous). The ourside world is somerhing that we assume is known and do not try to explore in our model. The outside world matrers for the model only in terms of its effects upon the system thar we are studying.
2. Variables. These characterize the elements in our system. They are the quanrities that change in the system that we analyze and reporr as a result of the modeling exercise. Among variables, the following should be distunguished:

- State variables, or ourpur variables. These are che ourpurs from che model. They are decermined by inputs that go into the model, and by the model's internal organızation or wiring.
- Intermediate or auxiliary variables. These are any quantries defined and computed in the model. They usually serve only for incermediace calculations; however, in some cases looking ac them can help us to understand what happens "under the hood" in the model.

3. Parameters. These are generally all quantities that are used to describe and run a model. They do nor need to be constanr, bur all their values need to be decided before the model runs. These quantities may be further classified into the following categories:

- Boundary conditions. These describe the values along the spatial and cemporal boundaries of a syscem. For a spatially homogeneous syscem we have only inırial condırions, which describe the state of the variables at tume $\iota=0$ when we start the model, and the length of the model run. For sparially distributed systems. in addition we may need to define che condıtions along the boundary, as well as the geomerry of the boundary atself.
- Constants or parameters in a narrow sense. These are the various coefficients and constants measured, guessed or found. We may want to distinguish berween real constants, such as gravicy, $g$, and, say, the half-sacuration coefficient, $K$, in the Michaelis-Menten function that we will consider in the next chaprer. While both of them take on constant values in a particular model run, $g$ will he always the same from one run to anorher, but $K$ may change quice substantially as we improve the model. Even if $K$ comes from observations, it will normally be measured with certain error, so the exact value will nor be really known.
- Forcing functuons. These are paramerers that describe the effect of the outside world upon the syscem. They may change in time or space, but they do
not tespond to changes within the system They are external to st driven by proceses in the higher herarehoal levels. Climatic condtions (raiball, temperature. cte.) certainly affect the growth of tomatoes in my garden, but the comatoes hardly affece the temperature or the rantall patems. If we build a model of tomato grow h, the temperature will he a forcing tunction.
- Control functoms. These are also parameters, except that they are allowed to change to see how theit change affects systems dynamics. It is like tuning the knot on a radionet. Every time the knob es dialed to a certan position, hut we know that is maty vary ated will result in a different pertomance by the system.

Note that in some texis parameters will he assumed ung in the marow sense of constant that may sometimes change, like the egowth rate or halt-maturation coetficients. However, this may be somewhat confiniag, since torcing functions are alos such paranueters of they are fixed. Suppose we want to run a model with the comperature hed constant and equal wo the mean wer a certain period of time - way, the 6 months of the growth scason tor a crog. Then suppose later on we want to teed into the motel the actual data that we have medsured tor temperature. Temperature is now no longer a constant, but changes every day according to the recorded tune series. Docs this mean that temporature will no lunger he a parameter' For any given monent it will still be a comstant. It will only change trom tume to time according to the data available Prohahly, is would make sense still to treat it as a parameter, except now it will he no kinger constant hut will change accordingly.

Suppose now that we approximate the cousse of temperarures hy a function with some constanta that control the form of this tunction. Suppose we use rhe sine functon ind have parameters for the amplitude and the period. Now temperature will no longer be a prameter. Note that we no longer need to define all the values war temperature before we hit the "Run" butom. Instead, temperature will become an intermedrate variahle, while we will have cwo new patameters in the sme function that now specifies temperature - one parameser ( $B=4$ ) will make the perind cqual to 6 months, the oblier parameter (A) will define the amplinute and make the temperature change from a minimal value ( 0 ) w the maximal value ( 40 , if $A=20$ ) and lack over this periont of time, as in the finction:

$$
\text { Temperature }=A^{*} \operatorname{SIN}\left(t * \frac{B^{*} \pi}{365}+\frac{3^{*} \pi}{2}\right)+A
$$

where $t$ is time, $r$ is a constant $\pi=3.14$, and $A$ and $B$ are parimeters. It $B=2$, then the period will change from 6 to 12 months. Burl $A$ and $B$ are ser before we start running the madel.

There may be a number of was to determine model parameters, including the following.

1. Measurements in situ. This is prol, illy the hest method. since the measurements detine the valuc of exdesly what is assumed in the model. However, such meastue. ment, are the most lator, and cost -minenswe, and they also come with large margins of errer. Besides, in many cases sucla measurements may not le possithe ar all. it a parameter repuesents some agregated value aran extreme condition that may not ocenr in reality for example, the maxinal temperature for a population to tolerate - this may differ from one orgamsm to another, and such conditions may be hard to find in realiry).
2. Experiments in the lab (in vitro). These are usually performed when in siru experiments are impossible. Say we take an organısm and expose it to high temperatures to find out the limits of its colerance. We can create such condsions artificially in a lab, but we cannor change the cemperature for the whole ecosystem.
3. Values from previous srudies found from literature, web searches or personal communications. If data are available for sunilar systems, it certainly makes sense to use them. However, always keep in mind that there are no rwo idencical ecosystems, so it is likely that there will be some error in the parameters borrowed from another case study.
4. Calibration (see Chaprer 4). When we know what the model ourpur should look like, we can always tweak some of the parameters to make the model perform at its best.
5. Basic laws, such as conservacion principles and rherefore mass and energy balances.
6. Allometric principles, stouchiomerry, and other chemical, physical, etc., properties. Basic and derived laws may help to establish relationships between parameters, and therefore idenufy at least some of them based on the orher ones already measured or estimated.
7. Common sense. This always helps. For example, we know that population numbers cannot be negative. Setting this kind of boundary on certain parameters may help with che model.

Nore that in all cases there is a considerable level of uncertainty present in the values assigned to various model parameters. Furcher testing and cedious analysis of the model is the only way to decrease the error margin and deal with this uncertainty.

Creating a conceptual model is very much an artistic process, because there can hardly be any exact guidelines for that. This process very much resembles that of perception, which is individual to every person. There may be some recommendarions and suggestions, but eventually everybody will be doing it in his or her own personal way. The same applies to the rest of the modeling process.

Wher a cunceptual model is creared, it may be useful to analyze it with some rools borrowed from mathematics. In order to do this we need to formalize the model - that is, hind adequate mathematical terms to describe our conceprs. Instead of concepts, words and images, we need to come up with equations and formulas. This is not always possible, and once again there is no one-to-one correspondence between a conceptual model and its mathematical formalization. One formalism can turn out to be becter for a particular system or goal than another. There are certain rules and recommendacions, but no ultumate procedure is known.

Once the model is formalized, its further analysis becomes pretty much technical. We can first compare the behavior of our mathematical object with the behavior of the real syscem. We statr solving the equatoons and generate trajectories for the variables. These are to be compared with the data available. There are always some paraneters that we do nor know exactly and that can be changed a litrle to achieve a better fit of the model dynamics to the one observed. This is the so-called calibration process.

Usually it makes sense to first identify those paramerers that have the largest effect on system dynamics. This is done by performung sensitivity analysis of the model. By incrementing all the paramerers and checking out the model inpur, we can identify to which ones the model is most sensitive. We should then focus our attention on these parameters when calibrating the model. Besides, if the model has already been tested and found to be adequate, then model sensitivity may be translated into system
sensitivity: we may conclude thar the system is most sensitive to certan parameters and therefore the processes that these parameters describe. If the calibration does not look good enough. we need to go back to some of the previous steps of our modeling process (reiterate). We may have got the wrong conceptual model, or we did not formalize it properly, or there is something wrong in the data, or the goals do not match the resources. Unfortunately, once again we are plunged inro the imprecise "artistic" domain of model reevaluatuen and reformulation.

If the the looks grood enough, we mught

Once you qaik now understandina with your modes, you may realize that something is missing. It's OK go back and improve the modet. You don't build a model going down a straught path. You build a model going in circles. want to do another test and check if the model behaves as well on a part of the data that was not used in the calibration process. We want to make sure that the model indeed represents the system and not the particular case that was described by the data used to tweak the parameters in: our formalization. This is called the vaidauon process. Once agan, if the fit does nor match our expectations we need to go back to the conceptualization phase.

However, if we are happy with the model performance we can actually start using it. Already, while huilding the model, we have increased our knowledge abour the system and our understanding of how the system operates. That is probathy the magor value of the whole modeling process. In addition ro that we can start exploring some of the conditoons rhat have not yet occurred in the real system, and make estimates: of tes behavior in these conditions. This is the "what if?" kind of analysis, or rhe scenario analyss. These results may become imporant for making the right decisions.

### 1.5 Model classifications

There may be several criteria used to classify models. We will consider examples of many of the models below in much more detail in the following chapters. Here we give a brief overview of the kinds of models that are out there, and try to figure ways to pur some order in their descriptions. Among many ways of classififying the models we may consider the following:

1. Form: in which form is the model presented?

- Conceptual (verbal, descriptive) - only verbal descriptions are made. Examples include the following.
- A description of direcrions to my home: Take Road 5 for 5 meles East, then ake a left to Main Street and foliow through wo lights. Take a vight to Cedar Lane. My house is 3333 on the left. This is a spatial model of my house location relative to a certain starting poinc. I describe the mental model of the route to my house in verbal terms.
- A verbal portratr of a person: He is tail with red hair and green eyes, his checks are pale ard his nose is bampled. His left ear is karger than the rught one and one of hus frome teeth is missing. This is a static verbal model of a person's face.
- Verbal description of somehody's behavor: W'hen she wakes up in the morning, she is slow and sleepy untul she has her first cup of coffec. Afler that she starts to move somewhat faster and has her bond of cereal with the second cup of coffee. Only that brings heri back to her nomal pace of life. This is a dynamic conditional verbal model.
- A verhal descraption of a ranfall event: Rainfall occurs eqery now and then. if temperature is bether $0^{\circ}(\mathrm{C})(32 \mathrm{~F}$ ) the rain is called snow and it is accumulated as snow or ice un the terain. Ocheruse te comes in liquid fomn and part of it infulisates theo the subsurface tayer and adds to the unsankrated storage underground. The resr stays on the sutface as surface water.
- Conceprual (dagramazic) - in some cabes a gued drawing may be worth a thuusand words. Examples include the pllowing
- A diagram that may explain yeest model even hetter than words
- A drawing or an image is also a model. In some cases it can uffer much more informaton than the verbat deseciprion, and may be also
 easier to understand and communa. cate among people. Also noce thas In some cases a dagram can exclude some of the ancertamties that may come from the verhal description. For example, the verbal model cited above mentioned the left ear, hut did not specily whether it is the person's left car on the person's lett car as seen by the observer. This ambuity disappears when the image is offered.
- Dyrame features can be included in an animation or a cilltsons.
- A conceprual model of the bydrohgic cycle.

- [hysical - a reconstruction of the real object at a smaller scale. Examples include the tolliswing.
- Matchbox toy cars.
- Remember those mamequns they put in cars to crash them against a brick wall and see what happens to the passengers? Well. those are models of
humans. They are no good for scudyıng $I Q$, but they reproduce certain features of a human body that are important to design car safecy devices.
- An airplane model in a wind tunnel.
- A fairly large (abour $50-\mathrm{m}$ long) model was creared in the 1970s co analyze currents in Lake Balaron (Hungary). Large fans blew ant over che model and currents were measured and documented.
- A physical model co scudy stream flow (see Figure 1.1).
- Formal (marhematical) - chat is when equatons and formulas reproduce the behavior of physical objects. Examples include the following.
$-Q=m C\left(t_{1}-t_{2}\right)$-- a model of hear emitred by a body of mass m , when cooling from temperature $t_{1}$ to temperarure $t_{2}$. C is the heat capacity parametel.
- $Y=Y_{0} * 2^{\text {i/i }}-$ a model of an exponentially growing population, where $Y_{0}$ is the instial population and $d$ is doubling time.

2. Time: how is time treated in the model?

- Dynamic vs static. A scatic model gives a snapshot of the realicy. In dynamic models, tume changes and so do the variables in the model. Examples include the following.
- A map is a stacic model; so is a photo.
- A carcoon is a dynamic model.
- Differencial or difference equarıons are dynamic models.
- Continucus vs discrece. Is cime incremented step-wise in a dynamic model, or is it assumed to change constancly, in infinitesimally small increments! Examples include the following:
- You may watch a roy car roll down a wedge. Ir will he a physical model wirh concinuous time.
- Generally speaking, systems of differencial equations represent concinuous time models.
- A difference equation is a discrete model. Time can change, but it is incremented in steps ( 1 munure, 1 day, 1 year, erc.)
- A movie is a discrete model. Motion is achieved by viewing separate images, taken at certain intervals.
- Stochastic vs decerministic. In a decerministic model, the sare of che system at the next cime scep is encurely defined by the scate of the system at che current time step and the transfer functions used. In a stochastic model, there may be several furure states corresponding to the same current state. Each of these future states may occur with a cercain probabilicy.

3. Space: how is space treated in the model?

- Spatial vs local (box-models). A point model assumes that everything is homogeneous in space. Either it looks at a specitic locality or it considers averages over a certann area. A spacial model looks an spacial variability and considers sparially hererogeneous processes and variables. Examples include che following.
- A demographic model of population growth in a city. All the population may be considered as a point variable, the sparial distribution is not of interest, and only che romal population over che area of the ciry is modeled.
- A box model of a small lake. The lake is considered to be a well-mixed contamer, where spatial gradients are ignored and only the average concentrarions of nutrients and biora are considered.
- A sparial hydrologic model. The watershed is presenced as an array of cells with water moving from one cell to another downhill, along the elevation gradienc.
- Contınuous vs discrete. Like time, space may be represented either as contınuous or as a mosaic of uniform objects. Examples include the following.
- A paintıng vs a mosaic. Both represent a spatial picture and borh look quire similar from a distance. However, at close observation it is clear that smooth lines and color changes in a painting are substututed by discrete uniform elements in the mosaic, which change their color and shape in a stepwise manner.
- Differential equations or equations in partial derivatives are used for continuous formalizations.
- Finite elements or difference schemes are used to formalize discrete models.

4. Scructure: how is the model structure defined?

- Empırical (black-box) vs process-based (simulation) models. In empurical models, the output is linked to the input by some sort of a mathematical formula or physical device. The structure of the model is not important as long as the input signals are translated into the output ones properly - that is, as they are observed. These models are also called black-box models, because they operate as some closed devices on the way of the information flows. In process-based models, individual processes are analyzed and reproduced in the model. In any case, it is nor possible to go into all che detalls or to describe all the processes in all their complexity (it would not be a model then). Therefore, a process-based model may be considered as being built from numerous black boxes. The individual processes are still presented as closed devices or empirical formulas; however, their interplay and feedbacks between them are taken into account and analyzed.
- Simple vs complex. Though qualitatively clear, this distinction might turn out to be somewhat hard to quantify. It is usually defined by the goals of the model. Simple models are built to understand the system in general over long time intervals and large areas. Complex models are created for detailed studies of particular system functions. The increased structural complexity usually has to be compensated by coarser temporal and spatial resolutions.

5. Method: how is the model formulated and studied?

- Analytic vs computer models. Analytical models are solved by findıng an analytical mathematical solution to the equations. Mathematical models easily become too complex to be scudied analycically. Instead, numerical methods are derived that allow solving equations on a computer.
- Modeling paradigm.
- Stock-and-flows or systems dynamics models assume that the system can be represented as a collection of reservorrs (that accumulate biomass, energy, material, etc.) connected by pipes (that move the material between reservoirs).
- Individual- (or agent-) based models. These describe individual organisms as separate entities that operate in time and space. There are rules that define the behaviol of these agents, theil growth, movement, etc.
- Network-based models.
- Inpur/outpur models.
- Arcificial neural networks.

6. Field-related classification: what feld is the model in (e.g. ecology)?

- Population models. These are built to study the dynamics and structure of populations. A population is easily characterized by its size, which may be why population ecology is probably the most formalized branch of ecology.
- Communiry models rake several populations and explore whar happens when they unteract. The classic predator-prey or host-parasice syscems and models of trophic interactions are the most prominent examples.
- Ecusystem models arcempt to represent the whole ecosystem, not just some components of it. For example, a model has been developed for the werland ecosysrem in the Florida Everglades (hrtp://my.stwmd.gov;pls/porcal/url/page/PG_ SFWMD_HESM/PG_SFWMD_HESM_ELM?narpage=elm). It includes the dynamics of water, nucrients, plants, phytoplankton, 20oplankton and fish. The goal is to understand how changes in the hydro-period affect the biora in that area, and how che biota (plants) affects hydrology.

7. Purpose: what is the model built for?

- Models for underscanding would normally be simple and qualitative, focusing on particular parts or processes of a system - for example, the predator-prey model that we consider in Chapter 5.
- Models for education or demonstration. These are buils to demonstrate parcicular features of a system, to educate students or stakeholders. For example, the well-known Dasy World model is used to demonstratc how the planet can self. regulare ins temperacure, using black and whice daisies (See hotp://www.informatics.sussex.ac.uk/research/prujects/daisyworld/daisyworld.html for more about the model or htcp://hbrary.thinkquest.org/C003763/flash/gaıal.htm for a nice Flash animation).
- Predictive models are detailed and scrupulously tested simulations that are designed to make real decisions. A perfect example is a weather model that would be used for weacher forecasts.
- Knowledge bases. Models can serve as universal repositories of information and knowledge. In chis case, the model structure purs various data in a context providing conceptual links becween different qualitative and quantitative bits of information. For example, the Multi-scale Incegrated Models of Ecosystem Services (MIMES - hrtp://www.uvm.edu/gıee/mimes/) organizes an extensive body of information relevant to ecosystem services valuation in five spheres: anchroposphere, atmosphere, biosphere, hydrosphere, and lithosphere.


### 1.6 Systems thinking

In more recent years, people have really starred to apprectate the importance of the systems appioach and systems analysis. W/e are now talking about a whole new mındset and worldview based on this understanding of systems and the interconntectedness berween components and processes. With systems we can look ar connections between elements, at new properties that ennerge from these connections and feedbacks, and at the relationships berween the whole and the part. This worldview is referred to as "systems chinking."

The roots of systems thinkıng go back to studies on systems dynainics ar MIT led by Jay Forrester, who was also the inventor of magnetic-core memory, which evolved into the random access memory used in all computers today. Even though back in 1956 he never mentioned systems thinking as a concept, the models he was building clearly chiseled out the niche that would he then filled hy this type of holistic, integrative, cross-disciplinary analysis. Wirh his background in electrical and computer engıneering, Forrester has successfully applied sume of the same engineering principles
to social, economic and environmental problems. You can find a certain resemblance between electric curcuits and systems diagrams that Forrester has introduced. The titles of his most famous books, Industrial Dynamics (1962), U'rban Dynamies (1969) and Wonld Dynamics (1973), clearly show the types of applicanons that have been studied using this approach The man idea is to focus on the system as a whole. Instead of traditional analyetical methods, when in order to study we distneegrate, dig unside and study how parts work, now the focus is on stud=ying how the whole works, how the parts work together, what the functions are, and what the drivers and feedbacks are.

Forrester's works led to even more sophisticated world models by Donella and Dennis Meadows. Their book, Limits to Growth (1972), was published in paperback and became a national bestseller. Systems dynamics got a mojut boost when Barry Richmond at High Performance Systems introduced Scella, the first user-friendly icon-based modeling sotcware.

Despite all the power and success of the systems dynamics approach, it still has its limits. As we will see later on, Scella should not be considered to be the ultumate modeling cool, and chere are other modeling systems and modeling paradigms that are equally important and useful. It would be wrong to think that systems approach and the ideas of systems chinking are usurped by the systems dynamics methods. Systems can be described in a variecy of differenc ways, not necessarily using the stock-and-flow formalism of Scella and the like.

Systems chinking is more chan jusc systems dynamics. For example, the so-called Lite Cycle Assessment (LCA) is clearly a spin-off of systems thinkung. The idea of LCA is that any economic procluction draws all sorts of resources from a wide varecy of areas. If we want to assess the crue cost of a certain product, we need to take into account all the various stages of its production, and estimate che costs and processes that are associated with the different other products that went into the production of this one. The resulting diagrams become very complex, and there are elaborate databases and economerric models now avallable to make these calculations. For example, to resolve the ongoing debate about the efficiency of corn-based ethanol as a substitute for orl, we need to consider a web of interactions (Figure 1.6) that determine the so-called Energy Return on Energy Invested (EROEI). The idea is that you always need co invest energy to derive new energy. If you need to invest more than you get, it becomes meanungless to run the operations. That is exactly why we are not going to run out of oul. What will happen is it will become more expensive in terms of energy to extract it than we can gain from the product. That is when we will stop pumping oil to burn te for energy, but perhaps will still extract it for orher purposes, such as che chemical industry or material production.

So if $e_{\text {out }}$ is che amount of energy produced and $\mathrm{e}_{\text {in }}$ is the amount of energy used in production, chen EROEI, $e=e_{\text {cul }} / \mathrm{e}_{\mathrm{m} \text {. }}$. In some cases the net EROEI index is used, which is the amount of energy, we need to produce to deliver a unit of net energy to che user: $e^{\prime}=e_{\text {curr }} /\left(e_{\text {cuir }}-e_{10}\right)$. Or $e^{\prime}=e /(e-1)$. As we unwind the various chains of products and processes that go into the production of energy from corn, the EROEI dramatically falls. The current estimate stands at about 1.3, and there are still some processes that have not been meluded in this estimate. A true systems thinking approach would require that we go beyond the processes in Figure 1.6 and also look at social impacts as well as further ecological impacts, such as the eminent deforestation that is required for expanded corn production, and the loss of wildlife that will follow. Taking all that into account, the question arises: with an EROEI of 1.3 or less, is it worth it? To compare, the EROEl for crude oil used to be about 100; nowadays it is falling to about 10 .


Figure 1.6 The lifecycle of energy from biomass production.

## Further reading

 systems cheory, and one of the ciassies of this approwh.
Hall, C. and Day, J. (1977). Ecosystem Mudeling in Theny and Pouctice. An Introducaon weth
 a arriaty of madebs form wery dfferent tiers of life.
Ford, A. (1999). Mudelng the Envirommenc. Jsland Press. - An contivety Stell based texthook
 gone on betheth the sullt incerfoce. The book is perfect for a muthanancall aeprwed modder
Berlinski, D. (1978). On Systems Arvalysis. An Essa) Cumberung the Lumianums of Sume Manhematiat Methots in the Social, Polticat, and Biowgial Siences. MIT Press. - A curows cuitechor of critiques of some very famous models. May be tecommended to better understand that models ave net the ulamate solution, that there are cluave wertain linuarans of ther use and thut these tuntutims shomb be exptectiv made part of the model.
There is some controtersy dhout who actudly said, "All models are urome .. Some models are ue-
 ron of quores McCoy. R. (1994). The Bese of Demmg. Staristial Pherex Conrol Press. However,
 ing", page 202 of Rotustmess in Staristics (1979), Launer, R.L. and Wilkinsun G N., Elhtots. Acaulemic Press. Atter all it defso't really matter whor said it thist; it is certainly very true.

Sarty. T.L. (1982). Dectsion Making for Leaders. Lifenme I.earning Publicatıons. p. 28 - This is not exactly related to modeling but gives a good analysis of hierarchues and their applicanons in decision making. Saaty distinguishes between structural and funcuonal herarchues. In structural hierarchies systems are decomposed into their constutuent paits in descending order according to structural properties such as stre, shape, color, age, etc This is the type of hierarchtes most useful m building process-based models. Saat' is analyzing functonal hicrarches that are created accord$m g$ to the essental relationships between the elements. His herarchues are essental to analyze the decision makng process and help in confluct resolution
Some philosophical interpretations of hierarchies can be found in Haught, J F. (1984). The Cosmic Adventure Science, Religon and the Quest for Purpose. Paulist Press (also available online at hetr:/w'ww.religion-onlme.org/showchapter.asp?'title $=1948 \& \mathrm{~K}=1814$ ) An interesting analysis of hievarchical levels and then intercution is performed by Fiebleman, J. (1954). Theory of Integrative Levels. The Brazsh Journal for the Philosophy of Sctence, 5 (17): 59-66.
There is more on sustainabiluty in Chapter 7. The Bruntand Commission report grves a good introduction to the concept: WCED (World Commission on Environment and Development, 1987). Our Common Future. Oxford University Press. Some of the assues related to hierarchy theory are presented by von Berralanfy, L. (1950). An Outline of General System Theory. The British Journal for the Phiosophy of Scrence, 1 (2).134-165. For more on how sustamabiticy relates wo longeutly and eventually - to hierarchies see: Costanza, R, and Patten, B. (1995). Defining and predicting sustanability. Ecological Economics: 15, 193-196. For an overvew of sustanablity, us defininons, and how different it can be in different herarchical levels see Vomov, A. (2007). Understanding and communicating sustainability: glabal versus regionai perspectives. Environ. Dev. and Sustaın. (hoce:// www.springerlink.com/content/e77377661p8,2786/). If you want to see how this can be reiated to discounang, see Vonov, A. and Farley, J. (2007). Reconciling Sustainability, Systems Theory and Discouncing. Ecological Economics, 63:104-113.
The modeling process is very well described by Jakeman, A J. Letche। R A and Norton J.P. (2006). Ten werative steps in development and evaluation of envionmental models. Environmental Modelling and Soffware 21(5): 602-614.
There are quite a few web sutes on Systems Thinking. hotp://www, chesystemsthinker.com/systemsthinkinglearn. heml gives a good overview of the field. Another good introduction is available at hocp://www.thinking.net/Systems_Thinking/Intro_to_ST/intro_to_st.html
The several classic books that led to many concepts of systems thanking are by I. Forrester: (1969). Urban Dynamics. Pegasus Communicatıons, Inc.; (1962) Industrial Dynamics, The M.I.T. Press \& John Wiley \& Sons.; (1973) World Dynamics, Wrıght-Allen Press; and a general overveew in his 1968 book. Principles of Systems, Pegasus Communications.

Another classic is the book by Meadows D. H., Randers J., and Meadows D. L.. (1972). Limits to Growth. Signec. Is paperback edition was a bestseller at that time. More recently the topic was revisued in the 2004 edition. Limits to Growth: The 30 -Year Update, Chelsea Green, 368 p.

## 2. The Art of Modeling

### 2.1 Conceptual model

2.2 Modeling software
2.3 Model formalization

## "How to avoid false proof?

1. allow no hasty and predetermined judgment;
2. decompose each difficult problem into simple ones that you can resolve;
3. always start with simple and clear, and gradually move on to more complex;
4. make complete surveys of all done before and make sure that nothing is left aside."

Descartes

## SUMMARY

There is really a lon of art in bulding a good moxdel. There are no clear rules, wally guidelines for good practice. These are constantly modified when required by the goals of modelug, the data available, and the particular strengeths and weaknesses of the research team. In many cases it is possible to achieve the same level of success coming from very different directions, choosing different solutions. However, chere are certain steps or stages that are common to most models. It is important to understand these and lean to apply them. Any system can be described in the spatial, remporal and structural context. It is important to be clear ahour these three dimensions many model, to avoid inconsistencies or even errors.

We start with a concepual model describing the system in general terms, qualitatively. It needed, we will then find the right quantitative formalizations for the processes involved. We may apply theoretical knowledge or rely on data Irom another similar system to do this, or we can base our search on data that are available only for the particulat system we are studying and tiy to reproduce these in our equatoms As a result, we will get either process-based or empirical "black-box" models. They both have their strengths and weaknesses.

A brief introduction to Setlia, a systems dynamics modeling package, is plesented, with step-by-step instructons for model huilding using this formalism.

It is umportant to have a versom ot this or other sumblar sutware (Madunna, Simile, Vensim, or the like! and start practicing, since modeling is like playng a piano - it is hard to leam tu do ir only by reading tooks and listening to lectures. You have to get your hands direy and de it yourself.

## Keywords

Time, space, structure, conceptual models, resolution, Supertund, bological time, grids, black box models, empirical models, process-hased models, Bomumis paradox, syscems dynamics, software, Stella, stocks and flows, exponential growth, hemiting taciors, Michaelis-Menten function.

There is no predefiacd paescription for how to build a goond model It is the modelbuidung pucess itself that is most valuable for a better understanding of a system, for exploring the iateractwons between system components, and tor denifying the possible eftects of various toreing functions upon the syytem. Once the model has been buile it is a usetul tool to explain the system propertes. and in some cases may lead to new linimgs aloun the system, but if is clearly the process if modeling that atds most to our knowledge about and understanding of the system

Even though we do not know the ultimate model-making algorithm, we are aware of some key rules that are always useful to keef in mind when creating a model. By athering to them, a great deal oi frustration and various crises can be avoided. The list of such rules can be quite long, and varies shighty for every modeler and every modeled system. Therefore, as in are in modeling - experience is prohatly the nose valuable asset, and there is no way to avod all emors. We can only tiy to decrease their number

### 2.1 Conceptual model

In mose cases. the moleling process starts with a concepual model. A conceptual mudel is a qualuanve description of the sysiem, and a good concepmal motel is hali the modeling etrorn. To create a concepual motel, we need to study the sysem and collect as much intomation as possible boh alout the system melt and about samilar systems studied eliewhere. When creating a conceptual model, we start with the goal of the study and then tey to explan the system that we have in cerms that weald match the goal. In designing the conceptual model, we decide what temporal, spatial and structural rexclutions and ranges are needed for ome study re reach the poal. Reciprocally, the conceptual model eventually hecomes umporanc to refine the goal of model development. In many cases the goal of the sudy is quite vague, and it is only atter the cenceptual model has been created and the available dara sess evaluated that the goals of modeling can become clear. Modeling is an essentially iterntize process. We cannot prescribe a sequence di steps that take us to the goal; it is an adaptive process where the target is repeatedly adusted and moved as we go along, depending both on our modehng progress and on the external conditions that may be changing the scope of rhe study. It is like shouring at a moving targe. - we camot make the larget stop to take a gow dim and then stan the process; we need to lean to readjust, to refine our model as we go. Bulding a gocit conceptual model is an important stepon this path.

## Temporal domain

In the temporal domain, we hist hgure out the specific rates (resolution) of the man processes that we are to model and decide for how long (range) we want to observe the system. If we are lnoking at bacterial processes with microorganisms developing and changing the population size withun hous, it is unlikely that we would want to track such a system fon over a hundred years. On the other hand, if we are modeling a forest we can protably ignore the processes that are occurrng within an hour, but we would want to watch this sysrem for decades or even centuries.

If there is litte change registered over the study pertod, the model may not need to be dynamic. It may be static and focus on other aspects of the system. For example, a photo can be a snapshot that captures the state of the system at a particular moment, or a series of snapshots can be averaged over a certain time interval. In a way every phote is like that, since it is never really mstantaneous. Some time needs to pass between the moment the shutter opens and the moment it closes. A picture on a photo can be just a litele bit blurred, representing the change in the spatem while the shucter was open, and we may not even notice it if the exposure was shont enough. In some photos where the exposure was


A photo as a snapshot may not be an instantaneous model. It may actually represent averages over time for certan system components not set right this comes out quite clearly, and in most cases these photos end up in the trash bin, except when we actually wanted to see the trajectory of the otject while it was moving and intentionally kept the shutter cpen for a while. That would be a static representation of a dynamic syscem, in a way showing is average state.

If remporal change is inportant, we need to identify how this change occus. In reality, time is continuous. However. in some cases it may be useful to think of tome as being discrete and to descrube the system using event-based formalism. Or we can think of change in time as a sequence of snapshots. A serites of snapshors creates a better represencation of dynamics. That is how a movie is made, when by alternating many static images we cueate the feeling of moving objecte.

If a dynamic approach is selecred and warranted to answer the questions posed in the study, we should start thinking about the appropriate resolution of our temporal model. To have the move smoothly rolling, we need to display ar least 16 snapshors per second. In this model that we watch on the screen, the remporal resolution is then one-stxeenth of a second. This resolution is dictated by the goal, which is

















 . - A onf




MTIA I;ATKN


SIMNII.AIICN


- XII







 countur. Evarything that happens within the imakema of en exeaga Purmin Mespen semens io

 ingless to us; il does not ratert io ary procestes then wa unow and cere aboul At ine amet







 furat imagina how many becteral you kill when you the eratioves Smbly. our concerns


 How ilse woudd we arpuen our ossession with the ibee of econorric growth which is almosi afvery astociuled with luatier ibsource contumpton at ona end and poluron at the outer)

 ard in has sigulcenity decieesed mortaly there used to be clem conmebon barwean the






 and billions of dolvers to deen up the meen then wes lah tor us by ou pradecestors
 at the abendored mazadous waste sted tis wiso tha name od the fund establatiod by the
 That law was enecied in the wete of the arscovery of touct waste durpiot such as Love Cural and Trmas Beach in the r970s The EPA usen ma Aci and te thoney to dean up surh shes, and to comper tesconstien pertes to pertorm cteerrupe or ctrmburat the govainment for
 steadily noreesing. Whide the amount of meney git goes mothe fund verias from yam to veat th uss the progem rocened 5140 tilion in mpreprations. it years later it rectento

 deosiont of our predmonsions




 seven gererayons" Are there any modarn socin fes where decisions zre mandu beved on mod ca wit such le lemporal exient?

Actully. in some syatems tuma avolvas in quid difleient wivitam we mo used For ceran processes in piants. for example. the number of alapsod munutes and ays
 "agors thair prooesses is the raial number of lair days whan ierrpaiature in "athe than a
 trme, atso arled brogical home, io ligure aut when ithe plans start to grow, when reeds sprout. when heves acpest, aic the lime then is calculsiad as

$$
t-3 \max \left(D_{1} t_{1}-E\right)
$$

 of warts day over which its brological lume exceade certain value II the eping a wirm


 whict our normed bma en eccalatite of alow down dapanding on climatic conditions

## Spatial domain

$\therefore$, 14 .





















 har.je


## Figure 2.2







 mbore it bluted mages are a cenuli, ol a mowng abrect profecting over several pinala ot


 1. a simg gram particie on me film "Slow' Ilime iequire much more exposure to produce



 The spatiad casolution, the longer in tokes tor the abject to marine on the firn. the sower 1 tes object should move to avoid the blux it boola as trough there is a certan trede-of bainem rampored and spatial iesolution on that trad of moom, in the case. tis is spoplated by chemr

 coldey to have hat serroorsi and spmiad resolution al the same time







## Figure 2.3 Unitorm grid of equal square

cells
A watershed is represented by ditterent larduse types. The grid simply mimics the raster information that comes from a landuse map. The cell is given the attribute of the landuse that covers the largest proportion of the area of a cell.
improssible to work with. Agam, depending upon the syseem specincs and the goal of our model, we would wane to use different spatial resolutions.

It is not just the size of the grain that is important; the form of the grain also matters Should we use a gnd of untorm. equal-sised square cells, as we would do on a rasterized map (Figure 2.3) : Or perhaps the cells should not be unturn, representing the actual configuration of the ecosystem? And where do we draw the boundary in this case - espectally it there is an exchange of material across the boundary, as is the case at the courlet of a bay' And huw small should rhe cells be (Figure 2.4)? Perhaps a triangulated grid would be better (Figure 2.5): This certainly works berter it we have non-uniform spatial complexity and need on describe certan spatial entities in more detail than others. Suppose we model a watershed. It makes sense to have fincer tesolurion along the wer to capture some of the effects of the riparian zone. On the orher hand, vast stretches of forest or agricultural land may be presented as spatally homogeneous entities - there is no need wo subdivide them into smaller areas. The boundares may alse need a higher resolution. A triangular grid serves these purposes really well. Bur then other considerations also come into play: What data do we have? How much complexity can we afford with the type of computer that we have at our desposal! 'What are the visualization tools that we have to make the most of the model results?

Maybe instead of triangles we prefer to use hexagens (Figure 2.6). These can do a better iob describing dispersion, since they measure about the same distance from


Figure 2.4
A non-uniform grid of quadrangles used to model the Chesapeake Bay. There is also the third, depth dimension fas in Figure 2.2, which is not visible in this picture
A. The original grid of 4,000 cells. B. Ar advanced grid of 10.000 cells, which also expanded into the ocean to give a better description of the boundary conditions. C. The iatest 14,000 - cell gric, with finer resolution in tributaries. Ironically, changing from one grid to another did not make the model any more accurate, however it did help incorporate more processes.


E

##  <br>  





Figure 2.7 Polygons as spatial compartments.
The area is described by much smaller number of entities. Flows beiween compartments need special attention. In most cases they are connected with some other processes, like river llow, for example
the center to the boundary and they are symmerrical in terms of diagonal flows. No marter in which of the six directions we go, the links with neightoring cells will he the same. This is not so in the case of square cells, it we want them to communicate with eight surrounding cells, assuming diagon:al hows.

Perhaps polygons could be used, as in the case of vectur-based Gecgraphic Information Systems (GIS) such as ArclNFO (Figure 2.7). Here the space is descrited by polygons, which are presented in cerms of vectors of coorlmates for all vertices of the polygons Converting regular continuous gengraphic maps into vector-based dig. rial sets is usually performed in a tedious process of "digitizing," using special equipment that regosen the coordmates of varous poonts chosen along the boundary. The more points you choose to describe the polygon that will approximate the area digitized, the higher the precisin of the digital image and the closer it is to the onginal.

Polygons are gook for map and image processing, since they create a digital mage that is more accurate with far less informatoon to store. To achieve the same accuracy with raster maps, we would need many more cells and therefore much larger data sets. However, for purposes of modeling, polygons are guate hard to handle if you want to streamline processing Each polygon is unique, and needs to be specially defined. If something changes - say, land is converted from one landuse type to another - then the motel may need to be remitialized. Tiangular grids seem to present a good compromise, ofle ring greater flexihility: the size of each triangle might vary, yet it is still a triangle, with three boundarics and three vertices, and each can be handled in a similar way in the model.

Cherosing the right spatial representation and designing a goost spatial grid is a craft in its own rughe. As you have seen, there are uniform and non-uniform grids,
triangular hexemenal, square, ere. grids. For a complex model of a large spatial object, say the Chesapeake Bay or an ocean, che design of a grid can take many months if not years. There are alse software torls that help to deagn the nght grd. Model pertormance and even resules can change substancially when switching from one grid to another, so the impurtance of this step in the model-building process should not be underestimated

## Structural domain

Finally, we decide how to represent the structure of the system. One important distinction is between empirical und process-based models (Figure 2,8). An emprical model may be considered as a "hack tox," which rakes certan inpurs and produces outputs in reaponse (o) the imputs. Perbap)s because we do not know, or do not care, or cannot afford geater compung resources or laxer Jeadines, we make a delitherare decision not to consider what happens and how mode the hack hox that presente the system. The :nternal structure in this case is not analyed, and our only goal is to ford the apmoprace function to translate mputs intu turputs. Thas is usually done by scatsstical methods. We have information about the dara sers that describe the imputs, and we have the data regarding outpur values. We then try to represent the numerical values of outpurs as marhematical functions of mputs. Below, we will consider an example of how this can he done.

In the case of a process-based or mechanistic model, we attempt to look inside the black box and try tu dentify some of the processes that seceur on the system, analyze them and represent them in a serics of equations. Process-based models cmploy the addtional information about the system that we may have tron previous studies of analogous systems, or about the individual processes that we are looking at. They may use certan theorencal knotledge coming from a variety of disciphines. In this sense, a process-hased model may he even more useful than the information availahle abour the system studhed.

It should be noted, though, that all process-based models are still empirical, in a sense. We can never descrite all the detals of all the prucerses in a system. It is

A. A black-box model, where the output is calculated as a function of the inouts: $b_{1}=f\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, without looking at what is happening inside the system. B. A white-box model, where the structure of the system is analyzed and represented in the mooel.
just that we go into further depth in the system, providing more detall abour the processes in it. Yer we still end up with certan black boxes, which we do not wish to or cannor consider in any more decail. If that were nor the case, we would hardly be accomplishing the major gual of any modeling efforr. which is a sumplification of the system description. We would be ending up with models as complex as the original systems, and therefore delivering little value for purposes of synthesis.

If we choose to build a process-based model, we may start describing the structure by using a diagram, representing the major components of the system: variables, forcing functions and control functions.

When deciding on the model structure, it is important to match the structural complexity with the goals of the study, the available data, and the appropriate temporal and spatial resolution. For example, if we are modeling fish populations (Figure 2.9), which grow over several years, there is lictle use in considering the dynamics of bactenal processes, which have a specific rate of hours. In this case we may consider the bacterial population to be in equilibrium, quickly adapring to any changes occurring in the system in "fish cume", which is weeks or months. We may still want to consider the bacterial biomass for mass balance purposes, but in this case it makes perfect sense to aggregate it with the derrital biomass.

However, certain fast processes may have a derrmental effect upon the system. For example, it is well known that fish kills may occur during night-rime and in the early morning hours, when there is still no phorosynthesis, but only respiration from algae in the system. As a result, the oxygen content may fall below certan threshold levels. The oxygen concentrations in this case vary from hour to hour, whereas fish


Figure 2.9 Conceptual model of a fishpond. This model is not very detailed. It represents the chosen state variables and some of the forcing functions (fertilizers, feed). It is not clear what the other forcing functions involved are, such as environmental, climatic conditions. There is also no indication of the spatıal and temporal scale. Apparently this information is contained in the narrative about the model that usually goes together with the diagram.


Figure 2.10 Conceptuaı model of a lake ecosystem structure.
The model structure is different for the different spatial segments used in the model.
bionass changes :nuch more slowly. Wie might want to consider oxygen as part of the system, to make sure that we do nor miss such critical regimes.

In the lake ecosystem model shown in Figure 2.10, in addition to trophic relations certain spatial properties are present. The diagran shows how the model structure is presented in the three vertical segments that describe the pelagic part of the lake. In the upper part three phytoplankton groups (AI, A2, A3) are present; they are food tor zooplankion (Z) and fish ( R ). Various forms of nutrients (organic and unorganic nitrogen (NOW: NIW) and phosphorus (POW, PIW) are supplied by deconsposition of detritus (D). In the bottom segments. there are no biota, only nutrients (PIS, POS, NOS, NIS) and demtus.

Conceptual models may present more than flows of material. Figure 2.11 shows a diagram used in a simple model developed to analyze sustainable development in a socio-economic and ecological system. The model will be considered in more detail in Chapter 7 . Here, note that, in addition to the variables, the diagram also contans :nformation about the processes and their causes. It describes both the flows of material and information in the system.

When making all these decisions about the model structure, its spatial and temporal resolution, we should always keep in mind that the goal of any modeling exercise is to simplity the system, to seek the most important drivers and processes. If the model becomes too complex to grasp and to study. its utility drops. There is little advantage in: substrituring one complex system that we do not understand with another complex system that we also do not understand. Even if the model is sumpler than the orginal system, it is quite useless if it is still too complex to shed new light on the system and to add to the understanding of it. Even if you can perform experiments on this model that you might not be able to do in the real world, is there much value in that if you cannot explan your results, figure out the causes, and have any rrust in what you are producing?

## Bonnini's paradox

 atiluting one complex ayalum with anothat. Dut then I laterned sher something similat has baen alraady deseribed by Dutton and Siastuat in 1871 as the "Eonnimf garedoa"





 obrcura. The simulation program is no easme to uncergtend then the par process was

Seatout and Dution, 1971


Figura 2.11








## Figure 2.12 Forrester's formalism for conceptual diagrams.

The rate and the level are two main icons that can be used to put together more complex diagrams such as the one for the insect population (from: http/i/www.ento vt.edit-sharoviPopEcolilec 1'struct.htmli).
models for such systems as cities, industries and eveia the whole world. Similar formalism was later used in several modeling software packages.

Odum created another set of symbols to model systems based on the energy flows through them. He called them energy diagrams, and used six main icons (see Figure 2.13). All systems are described in te:ms of energy, assuming that tor all variables and frocesses we can calculate the "embodied" energy: In this case, energy works as a general currency to measure all processes and "things."

In many software packages (like some of those considered in the next paragraph), conceptual dhagrams are used to infut the model. For example, one of the reasons that systems dynamics software such as Stella became so popular in modeling is that they are also handy cools to put togesher conceptual diagrams, and, moreover, these diagrams are then automatically converted into numeric computer mosels. Figure 2.14 presents a sample conceprual model for a river system put together on the Stella interface. Ir describes the river newwork as a combination of subwatersheds. river reaches and reservoirs. The Srella intertace can be used as a drawing board to pur together various conceptual diagrams and discuss them with orher people in a process known as partic!patory modeling. In this case, the major value of the interface is that it is possible to easily add or delete variables and processes and immediately


Figure 2.13 Odum's formalism for energy. based conceptual diagrams.
A. Source of energy, B. Sink lloss of energy from system). C. Storage tank, D. Production unit (takes in energy and information to create other quality of energy!. E. Consumption unil, F. Energy mixer or work gate.
see the impact on model pertormance. The model treeli hecomes a tool for deliherarion and consensus building.

Very similar diagrams can be put rogether using orher systems dynamics software, such as Matoma, Vensim, Fowersim or Simile. In these seftware packages, "stock-and-flow" tormalism is used to describe the system. The diagrams are also known as flow diagrams, because they represent how material flows through the system.

As we will see below, a somewhat different formalism is used in such packages as GoldSim, Simulink and Extend. Here we have more flexibility in describing what we wish to de in the model, and the model dees nor present only stocks and flows. Groups of processes can be defined as submodels and encapsulated into special cons that become part of the icon set used to put together the diagrams. As usial, we ger more functionality and versatility at the expense of a steeper learning curve and higher complexity of design.

Yet another option in building conceprual diagrams is provided by the Universal Modeling Language (UML.), which is a standardized specification language for object modeling. It is designed as a diagrammatic tool that can be used to build models as diagrams, which can be then automatically converted into a number of objectoriented languages, such as Java, $\mathrm{C}++$, Python, erc. In this case you are actually

almost writing computer code when developing the conceptual model. Once again, even more universality and almost intinice flexibility is achieved at the price of yer greater effort spent in mastering the tool. Figure 2.15 presents a sample conceptual diagram created in UML to tormulare an agene-based model of a landscape used by sheep tarmers, foresters and Narional Park rangers, who are inceracting on very different temporal and spatial scales with different development objectives (sheep producrion, cimber production and nature conservation, respectively).

There are several eypes of diagrams that can be created using UML. One of them is the activity diagram, which describes the cemporal dimension of your model. The


Figure 2.15
A UML class diagram of a system can be used both as a conceptual diagram and as a way to program the model ifrom: http///jasss.soc. surrey.ac. uki6; $2 / 2$. html, reproduced with kind permission of the Journal ol Arificial Societies and Social Simulation, Centre for Research on Social Simulation, Surreyl.
class diagram presented in Figure 2.15 in a way corresponds to the structural dimension, but also has elements of the spatial representation such as that displayed in the lake model in Figure 2.10. Most software tools designed to create UML diagrams. such as Visuai Paradigm (http://www visual-paradigm comíproduccivpuml/), also provide code generatoss that will convert your UML diagram mose computer code in a language of your choice.

More recently, there have been atcempts to standardize the conceptual, dagrammatic representation of systems using domain ontologies. A domain ontology represencs a cerrain domain, ecosystem or part of an ecosystem by defining che meaning of varous terms, or names as they apply to those ecosystems. The idea is to define all the various componerts of coosystems and present therr interactions in a hierarchical way, so that when you need co model some part of the world you can pull out che approprace set of defimtions and connections and have your conceprual model. Several formal languages have been proposed ro describe such ontologies. Among them, OWI is probably the best known, and is designed to work over the World Wide Web. It is yet to be seen how these ontological approaches will te accepted by the inodeling community. As with ocher atcempes to streamline and automate the modeling process, we may be compromising its most essential part - that is, the exploratuon and research of the system, us elements and processes, at the level of decat needed for a particular scudy goal. Any artempr to automare this part of the modeling process may forfeit the exploratory part of modeling and thus diminish the new understanding about the system that the modeling process usually offers.

## To conclude...

Conceptual diagrams are powerful modeling tools thar help design models and communicate them to stakeholders in case of a collaborative, participatory modeling efforr. In most cases, building a concepcual diagram is che first and very important srep in the modeling process.

## "A maxim for the mathematical modeler: start simply and use to the fullest resources of theory."

Berlinski

When making decisions regarding a model's structure, its spatal and temporal resolution, we should always keep in mind that the goal of any modeling exercise is to simplify the syscem and to seek the mosc important drivers and processes (Descartes's second principle). If the model becomes too complex to perceive and to study, its utility drops. As stated above, there is little gam in substituting one complex system that we do not understand with another complex syssem that we also do not understand. Even if the model is simpler than che original system, it is useless if it is still too complex to shed new light and to add to the understanding of the system. So our first rule is:

## KEEP IT SIMPLE

It is better to start with a simplified version, even if you know it is unrealistic, and then add componencs to 1 I . It helps a lor when you have a model chat always runs and the performance of which you understand. This is much becter than pucting together a model that has everything in it to satisfy the most general goals and requirements. Complex models are hard to handle, they tend to go out of control, they behave counter-intuitively and produce unreliable and uncertain results. At every step of model developmenc you should try to have a running and tested version of the model, and you can then build more into ic. You will then always know
ar what point the model fails and no longer produces something reasonable, and thus what kind of recent changes have caused rhe problem. Our second rule is:

## KEEP IT RUNNING. KEEP TESTING IT

Everything you know about the system is good for the model. The more you know about the system, the better the model However, that does not mean that all the avatable data and information from previous or sımilar studies have to end up as part of the model. Modeling and data collection are nterative processes; one drives another. You never know which data at what stage of the modeling study will be required, and how these will modify your interpretation and understanding of the system. At the same tune, one of the must important values of the modeling effort is that it brings tugether all the available information about the system in an organized and structured format. The model then checks that these dara are full and consistent. Even if the model rurns out to be a fallure and does not produce any reliable predictions and conclusions, by bringing the data togerher new understanding is creared and important gaps in our knowledge may be identified. So the third rule is:

## the data drive the model. The model drives the data

No matrer wherher the goal ot the model is reached or the model falls to produce the expecred resulrs, the modeling effort is always useful. When building a model, a great deal of information is brought together, new understanding is creaced, and new networks and collaborations between researchers, expermenters, stakeholders, and decision-makers are emerging. This clearly brings a study to a new level. We therefore conclucle chat:

## THE MODELING PROCESS MAY BE MORE IMPORTANT THANTHE PRODUCT

### 2.2 Modeling software

There is a lor of software currently available thar can help to build and run models. Between the qualitative concepual model and the computer code, we could place a variety of software tools that can help to convert conceptual ideas into a running model. Usually chere is a crade-off between universalıy and user-friendliness. At one extreme we see computer languages that can be used to translate any concepts and any knowledge into working compurer code, while at the other we find realizations of particular models that are good only for the particular systems and conditions that they were designed for. In between, there is a variety of more or less universal tools (Figure 2.16).

We can distinguish berween modeling languages, which are compurer languages designed specifically for model development, and extendable modeling systems, which are modeling packages thac allow specific code to he added by the user if che existing merhods are nor sufficient for their purposes. In contrast, there are also modeling systems, which are completely prepackaged and do not allow any additions to the methods provided. There is a remarkable gap berween closed and extendable systems in terms of their user-friendliness. The less power the user has to modify the sysrem, the fancier the graphic user interface is and the easier it is to learn the system. From modeling systems we go to extendable models, which are actually individual models that can be adjusted


Figure 2.16 Hierarchy of modeling software.
for different locations and case studies. In these, the model structure is much less flexible, the user can make choices from a limited list of options, and it is usually just the parameters and some spatial and temporal charactenstics that can be changed.

## Models

Any model we run on a computer comes as a plece of software. Therefore, in some cases, to solve, a particular modeling rask we may try to find an appropriare model that has been developed previously for a similar case, and see if this software package, if available, can be adapred to the needs of your projecr. This can save you time and money; another benefir is that the model may have already been calibrated in a vartety of locations and circumstances, and thus be more easily accepted by a group
of stakeholders. Some mostels are distributed for a pace, while others are availatle free of chatge. The Register of Ecological Models (REM - hurphecowsum-kassel. defecolas haml) is a mera-datahase for models in ecology. Is con be a grod starting pount it you are looking for a particular model. In some cases you wall be athle to download the executahles from the wetsice, in whers you will have co concace the authors. For the vast maprity bif models the souce conde in unlikely to be avalahle. and we can never be sure what actually goes on inside the procestor. We can only look at the output and the documentation, run scenarise and analyze creals, that ultimately we have to trust the madel developers that the model is programmed properly. We also can make no chanyes to this kind of model.

The fact that models come as suftware hack hoses maty be once of the reasuns that model re-use is not very cotmon. It may cake a long time of learm and understand an off-the-sheff model, and is can be quite frustrating if. after this investment of time and effurt, we fond that the model is not gute applicable to sur case. lo certainly helps when models are well documented, have ghad uer gudes and tummals, and come with nice graphic user interfaces (GUA). Mose of the models that are commercially distribured have very slick GUls that helf set uF these tools tor patticular applications. For example, the WEAP (Water Evaluntsin and Flanning system - hete:/www.weap21. orgindex asp) is a user-friendly software cool that helps with an integrated approach to water resources plamung. The core of the model is a water balance molel that calculares the dynamics of supply and demand in a river system. To set up the model the usel is guided through a series of screens, which start with a river schematic that can he arranged on top of an ArcView map, and chen takes care of data input with a series of dialogue lowes for water ence, lus and re-use, demand management, priorites. ere. The results are then displayed in the same CUl in chars and tables, and on the schematic of the river system. Scenarios that descrite ditferent demand and supply measures are driving the system, and are connected with the varions resules.

These user mintertacer certainly help with using the models, however, extending the model capabolites is not a straightorwaral cask, if it is possible ar all. In particular when moktek are nor oper worce, it is usually an "all or morhing", deal - wa erther use the model as is is, or drop it entirely it it does nor have some of the features needed tor your study.

Some models ane delitherately designed as games, with special emphasis put on the graphic intertace and ease of use. One gexd example is the SimCity computer game, which has a sophisticated socio-economic and ecological model at is core, but mes one orber than the model develupers has ever seen this model and users do nor know whether the mudel was calitrated or whilated. The purpose here is to enhance the interactuve utility of the program, to maximize ith user-friendliness and simplity the learning process

## Extendable models

Some mudels and modeling systems are designed in such a way that they allow authtions to their structure. For eximple. OASIS (Operatumal Analysis and Simulation of Inegrated Systems) is a suffware parkage designed to model river, reservoir and hydropower system ro develip operating policies and optimize water use. OASIS has a graphical user interiace that allows easy contiguration of rhe syseren. You can descrite how the river system lisuks, locate rhe inputs and with brawals, and enter bistorical data sets that the system is to work with. In addition, there is an Operation Control Langure ( $O(5)$ ) a speciat language used to enter rules and constrames that
are specific for your case study. OCL also acts as a bridge from OASIS to other computer programs. Users can express all operating rules as operating goals or operating constraints, and can account for hoth human control and physical constraints on the system. This takes care of all sorts of "it-then" operations, which can go beyond just operational rules. To model any system, the problem must simply he appreached as a set of goals and constraints. The software then works out the hest means of moving water through the system to meet these goinls and constraints. OCL allows data to be sent and received between OASIS and other programs while the programs are runnmg, and each program can then react to the intormation provided by the other. Thus you are Jealing with a prefabricated "clused" system, yet have some flexibility to modify it to the particula needs of a study. There is clearly more flexibility than in case of a pre-packaged model; however, the user is stil! operating within the set of assumptions and formalizations embedded in the model core of the software. There are also limitations to what $O C L$ can hande as extensions to the OASIS system.

## Modeling systems

Unlike pre tabricaled models, which are after all developed for specific syssems, there are also generic software tools that can help to build models of any systems. These are probahly moss interesting to consider when a new modeling task is in order. However, the more versatile and powertul the system gets, the harder it becomes to master it and the more inclinet modelers will be to stick to what they already know how to use the well-known "hammer and nail" paradox, which we will revist in Chapter 9 .

Here, we will give a briet overview of some software tools that are available for modeling, along with some recommendations about their applicability. It should be nored thar there is a great deal of development in progress, and new features are beng added to the software packages, quite rapidy, so it is alway, recommended that you check out the larest develupments on the respective web pages. Nore that nelther of these tools mplies any kind of core model; they wan be used to put togerher any models. However, each one assumes a particular modeling paradigm and therefore has certam lumitaions.

## Systems dynamics tools

Most of these appeared as an ourgrowth of the systems dynamics approach of lay Forrester and his DYN.ANO language. Stella was inspired by Forrester's tormalism, and quickly gained worldwide recugnition. In the following years a number of other software packages have appeared that are better than Stella in many aspects, and are certainly worth investigating and comparing prior to any purchase decisions.

Stella - isee systems (formerly HPS), http://www.iseesystems.com/ - Free Player and 1-month trial version - MacNWin

Most used in academia, and has much legacy code developed. Over the past decade has been heavily prioritizing the User Interface features with nice capabiltites to create game-like models, where the modeling part can be hidden from the user and oniy the tront-end, which is similar to a Flight Simulator dashboard, is provided. Recent addition of isee NET Framework promises more integration with other tools. but is not extensively used and tested yet.

## Vensim - Ventana Systems, http://www.vensim.com/ - Free Vensim PLE (personal learning edition) - Mac Win

Same basic features for stock-and-flow modeling as Stella, with recent addition of some important functionality, such as calibration iwill automatically adjust parameters to get the best match between model behav. ior and the data), optimization (efficient Powell hill-climbing algorithm searches through the parameter space looking for the largest cumulative pay-off), Kalman filter. Monte Carlo analysis, Causal Tracing (a tree diagram shows a selecied variable and the variables that "cause" it to changel, etc. Vensim DLL is a way to communicate with other applications such as Visual Basic, C. $\mathrm{C} \div \uparrow$. Excel, multimedia authoring tools, etc. The DLL allows access to a Vensim model from custom-built applications; it can send data to Vensim, simulate a model, make changes to model parameters, and collect the simulation data for display

Powersim - Powersim, http://www.powersim.com/ - Free Player and trial version, Win

This modeling tool has mostly been catering for the business community. Communicates with MS Excel. Powersim Solver is a companion product that handles calibration, optımızation, risk analysis and risk management

## Madonna - UC Berkeley, http://www.berkeleymadonna.com/ - Free Run Time version, Win/Mac

Runs many times faster than Stella. Will do parameter calibration (curve fitting), and optimization. Has several more numeric methods to solve ordinary differential equations. Stella compatible will take Stella equations almost as is and work with them.

## ModelMaker4 - Exeter Software (formerly Cherwell), http://www.exetersoftware. com/cat/modelmaker.html - No free versions, Win

Same as the others in this category, plus quite extensive optimization and numeric methods. including Marquardt or Simplex methods, simulated annealing and grid search methods of initial parameter estimation, ordinary, weighted. and extended least squares methods of error scaling, comprehensive statistical reporting; Monte Carlo global senstivity with 14 distribution types, 5 different integration methods - Runge-Kutta, Mid-Poınt, Euler, Bulirsch-Stoer and Gear Gear's is an appropriate solver lor stiff simulations where processes happen on very different timescales.

SIMILE - Simulistics (formerly open-source AME, Agroforestry Modelling Environment), http://www.simulistics.com/ - Free Evaluation Edition, Mac/Win/Linux

Allows object-based representation that handes disaggregation and individual-based modeling, autogenerates $\mathrm{C}-+$ model code. plug-and play modules. Supports modular modeling: any part of a model can be extracted and used separately. Has plug-In displays, allowing field-specific graphics. Also has options for spatial models with some basiclinks to GIS

The basic mathematical formalism and the interface conventions used in all chese packages are quite similar, so once you have mastered one of them in should be quite easy to switch ro another if you are looking for certain special features.

Pros: The development of all this modeling software has certanly sumplified the process of building models. to the extent that programming is no longer needed to pur together models, and only very basic numeric and marhematical skills are required. Systems dynamics has become widely used in a variery of applications.

Cons: There is also a reverse side to in. Most of the software developers advertising their products will rell you that buikling a model is now as simple as clicking your mouse. Unfortunately this is srill not quire so, and can hardly ever be so, since modeling is primarily a research process that requrres knowledge and understanding of the system to generate more knouledge and more understandung. By sumply putting together diagrams and pretending thar now you can run a model of your system, you may generate false knowledge and illusions. The modeling systems are indeed very helpful if you know how to build models; orherwise, they can become deceptive distractions.

## Systems diagrams

An outgrowth of the systems dynamics approach is what we called systems diagrams tools. The software discussed here has many more icons than the stocks, flows and parameters that the systems dynamics tool operates with. Whole submodels or solvers for mathematical equations, say, partial differentral equations, may be embedded into specially designed icons chat later on become part of the roolbox for furure applications. Once again we get more functonality and flexibility, but certanly at the expense of a much sreeper learning curve.

## Exrend - Imagine-That, http://www.imaginethatinc.com/index.html - Free Demo, Win/Mac

As follows from the name of the product, the system is extendable. It encourages modularty, providing the functionality to encapsulate certain processes and subsystems into blocks that can be further reused. Extend models are constructed with library-based iconic blocks. Each block describes a calculation or a step in a process. Interprocess communication allows two applications to communicate and share data with one another. This feature allows the integration of external data and applications into and out of Extend models. Information is automatically updated between Extend and Excel, can be connected with databases (Open DataBase Connectivity), has embedded ActiveX or OLE (Object Linking and Embedding), and works with DLL (Dynamic-Link Library). Block-building is based on ModL - a language that provides high-level functions and features while having a familiar look and feel for users with experience programming in C. Also allows scripting to develop "wizards" or self-modifying models. Evolutionary Optimizer employs powerful enhanced evolutionary algorithms to determine the best model configuration.

GoldSim - GoldSim Technology Group, http://www.goldsim.com - Free Evaluation and Student version, Win

Uses the same approach based on an extendable library of icons ("hierarchical containers") for a variety of processes. The user controls the sequence of events, and can superimpose the occurrence and consequences


#### Abstract

of discrete events onta continuously varying systems Dther teatures inciude particularly strong stochastic, Monte Carlo simulation component to treat uncertainty and risks inherent in all complex sysiems, embedded optımization, sensitivity analyses (e.g. tornado charts, statıslical measures); external dynamic links to programs and spreadsheets, and direct exchange of data with DDEC compliant databases. Models can be saved as player files. There are several extension modules le.g. tor Contaminant Transport using solvers for PDE, tinancial analysıs, etc.l.


#### Abstract

Simulink - The Mathworks, http://www.mathworks.com/products/simulink/index. html - Free trial and web demo, Win/Mac/\NIX

Built on top of MATLAB isee belowl. Provides an interactive graphical environment and a customizable set of block libraries, which can be extended for specialized applications. More power, but harder to master. Can generate C code lor your models, which can be further embedded into other applications. Based on the same concept of expandable libraries of predefined blocks, with an inceractive graphical editor for assembling and managing block diagrams, with functionality to interface with other simulation programs and incorporate hand-written code including MATLAB algorithms. Has full access to MATLAB for analyzing and visualizing data, developing graphical user interfaces, and creating model data and parameters.


Pros: Power, versatility, leximolis, expandabilaty
Cons: In a way the pros become their cons, since after investing much tume tu fully master these systems it is most likely thas shey will become your "hammer" for rhe future. Besiles, when becommg wedited to proprietary sotware there is always a risk of running into limitations that will be hatil so wercome.

## Modeling languages, libraries and environments

Complations of molel languages, libraries approptiace co specihe applications, and softhare enwronments ate even more general, rely less on some embedted assump. tions abour the model struccure and the logic ot compucations, bur require more programming elforts.

## Spreadsheets

The well knowt spreatkheets are probably the most widely known sotware apphcartons that Gan also help huilal quire sophasticated models. Microsolt Excel is by far the bent-known and walely used spreadsheet. However, there is also Lotus 123 . which actually poneered the spreadsheet concept and is now owned hy IBM, or the rgen-murce Open-Office sure. Both offer wety similar fonctionality. The other oprion is wo use Goggle spreadsheets, which are found on rhe weh and can be shared among several developers, who can then access and updare the docunent from anywhere around the world using just an Internet browser.

The bass tuncmonahty that comes with spreadsheers is that tormulas can be programmed using some very smple anventions. For dyamic models these formulas can be reiterited, using a TIME column, and using the resules of previsus caleulations (rows) to generate che values for the next time step.

Pros: These wols are free or almost free, since they come as part of Microsoft ()ffice, which is more or less standard these days, or can be downloaded as part of OpenOffice, or can be used over the Internet with Google. Another advantage is that many users already know how to use them.

Cons: Spreadsheers can quickly get very cumbersome as model complexity increases, especially if you are trying to add dynamics co ic. There is no good GUI for modeling, so models may be hard tu present and visualize. Only the simplest numeric methods can feasibly be implemented (say, Euler for ODE).

## Mathematical solvers

There are several specialized marhematical packages designed to help solve marhemarical problems. As such they can be useful for modeling, since, after all, models are mathematical entities which need to be solved. These packages are nut very helpful in formulating models. In this regard they are as universal as spreadsheers, but unlike spreadstieets, which are quite well known and intuitive to use, rhe machemarical packages have a sreep learning curve and require learnmg specialized programming languages. On the benefic side, the computing power and versarility of marhematical methods is unsurpassed.

## MATLAB -The MathWorks, http://www.mathworks.com/products/matlab/ - Free trial version, Mac/Win/Unix

This is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis and numeric computation. It is faster to master MATLAB than C or Fortran, but it certainly requires a major investment of time. Includes mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization (including genetic algorthms), and numerical integration; 2D and 3D graphics functions for visualizing data; tools for bullding custom graphical user interfaces; and functions for integrating with external applications and languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel. May be a great tool to analyze models, but offers little help in conceptualizing and building them. There are sister products, such as Simulink (see above) or Simscape that are designed to handle the modeling process.

Mathematica - Wolfram Research, http://www.wolfram.com/products/ mathematica/index.html - Free web seminars and demos, Mac/Win/Linux/Unix

The software integrates numeric and, importantly, symbolic computations. It provides automation in algorithmic computation, interactive document capabilities, powerful connectivity, and rich graphical interfaces in 2 D and 3 D . It is based on its own advanced programming language, and it needs time and effort to master this. Has no specific tools to support modeling per se, but can be very useful to solve, run and analyze already built models. Can be very useful to study individual functions that are used in your model - for example, to test how parameters impact the functional response (see, for example, http://www.wolfram.com/products/ mathematica/newin6/content/DynamicInteractivity/FindSampleCodeInTheWoiframDemonstrationsProject.htmll.

Pros: Mathematical power that is hard to match.
Cons: Steep learning curve, requires a solid mathematical background.

## Environments

Up ti) 80 percent of a modeling code may suppore varieus inputioutput functionality and interfaces with data and other programs. It makes pertect sense to huild soft ware packages that would take care of these data-sharing and communication procedures, so that modelers can focus on the actual formatiation of processes and systems. There are numerous modeling environments developect to suppers mosedeling and to increase model functionality:

## OpenMI - OpenMI Association, http://www.openmi.org/openminew/ - Open source, platform independent

OpenMI stands for Open Modeling Interface and Environment, a standard for model IInkage in the water domain. OpenMI avoids the need to abandon or rewrite existing applications. Making a new component OpenMI-compliant simpl fies the process of integrating it with many olher systems. It provides a method to link models, both legacy code and new ones OpenMI standardizes Ihe way data transter is specified and executed, it allows any model to talk to any other model (e g. from a different developer) without the need for cooperation berween model developers or close communication between integrators and model developers. Based on Java and NET technology, currently OpenMI has some 20+ compliant models in its library.

SME - UVM, http://www.uvm.edu/giee/IDEAS/Imf.html - Open source, Mac/Linux/Unix

The Spatial Modeling Environment iSME) links Stella with advanced computing resources. It allows modelers to develop simulations in the Stella user-friendly. graphical interlace, and then take equations from several Stella models and automatically generate $\mathrm{C}++$ code to construct modular spatial simulations and enable distributed processing over a network of parallel and serial computers. It can work with several GIS formats, and also provides a Java viewserver to present results of spatial simulations in a vanety of graphic formats.

SAMT - ZALF, http://www.zalf.de/home_samt-Isa/ - Open source, Linux
Spatial Analysis Modeling Tool (SAMT) is a modeling system with some GIS features, designed to help with spatial analysis. It is an open system that links to different models lespecially fuzzy-models, neural networks. etc.). It can also link to a general-purpose modeling language DESIRE.

Pros: Added functionality to other models and modeling tools.
Cons: Hardly any, since modeling enviromments mostly serve other modeling paradigms rather than imposing any of their own upon the user. In most cases, it is the next level of modeling that may require quite goxel modeling and systemic sk:lls. Usually, user and developer groups are quite limited and are very much driven hy enthusiasm. Therefore, future development and support may he quite uncerta:n.

## Agent-based tools

Agent-based modeling requires more complicated formalism to describe rhe helaw, ior and dynamics of individual agents and their spatial distribution and hehavior.

Perhaps for this reason chere are no "drag-and-lrop" and "clack-and-tun" suftware parkages available se far. All software cowls in this area are designed around some programming language. It can be cuther versions of higherend full iledged programming languages such as $\mathrm{C}++$ or lava, or a simplined languge such as Loge. However, it sill requires some programming to gel de model to run. All packages have lanks to GIS dara, though sone make a special effor wemphaswe that This connecton usually gues in one durection, and is provaleal he reutines that mpari dafa from raster GIS (ArcView, ArcGIS) and make : available for the modeling raols.

Swarm - Swarm Development Group, http://www.swarm.org/wiki/Swarm_main_ page - Open source, any platform

This is a collection ol sollwate librames, written in Objective C, originally developed at the Santa Fe institute and since then taken up as an open-source project with developers all over the world. Swarm is a software package for multi-agent simulation of complex systems. It is specifically geared toward the simulation of agent-nased models composed of large numbers of objects. EcoSwarm is an extension library of code that can be used for individual-based ecological models ihtip:/www.humboldt eduf-ecomodel/mdex.htmi

Repast - ROAD (Repast Organization for Architecture and Development), http:/ repast.sourceforge.net/- Open source, any platform

Repast [REcursive Porous Agent Simulation Toolkit) is an agent-based simulation toolkit originally developed by researchers at the University of Chicago and the Argonne National Laboratory. Repast borrows many concepts Iron the Swarm toalkit. It is different in its multiple pure implementations in several languages (Java, CF. Net, Pythonh and its built-in adaptive features, such as genetic algorithms and regression. Includes libraries for genetic algorithms, neural networks, random number generation, and specialized mathematics, has buitt-in systems dynamics modeling capabilities, has integrated geographical information systems [GISI support

> MASON - George Mason University, http://cs.gmu.edu/~eclab/projects/mason/Open source, any platform

MASON Stands for Multi-Agent Simulator Of Neighborhoods ... or Networks ... or something ... the developers are not sure It contains both a Java model library and an ontional suite of visualization tools in 2 D and 3 D . It can cearesent contmuous. discrete or hexagonal $2 \mathrm{D}, 3 \mathrm{D}$ or Network data, and any combination of these. Provided visualization tools can display these environments in 2 D or in 3 D . scaling, scrolling or rotating them as needed Documentation is limited.

## Cormas - Cirad, http//cormas.cirad.fr/indexeng.htm - Freeware

Programming environment to model mult-agent systems, with focus on matural-resources management. It is based on VisualWorks, a programming environment which allows the development of applications in Smalltalk programming language and is freely available from a thicd-party website.

OpenStarLogo - MIT, http://education.mit.edu/starlogo/ - Open source, Mac/Win

A programmable modeling environment for exploring the behaviors of decentralized systems, such as bird llocks, tratfic jams and ant colonies. and designed especially for use by students. It is an extension of the Logo programming language, which allows control over thousands of graphic individuals called "turtles" in parallel. Comes with a nice interface, making it user-triendly and ready to use. Some basics of the logo language are simple to learn, and users can start modeling in less than an hour

> NetLogo - Uri Wilensky (Northwestern University), http://cll.northwestern.edu/ netlogo/ - Freeware, Mac/Win/Linux

NetLogo, a descendant of Stailogo, is a multi-platlorm general-purpose complexity modeling and simulation environment. The design is similar to StarLogo' it also has a user-intertace. It is written in Java and includes APIs so that to can be controlled trom external Java code, and users can write new commands and reponers in Java. It comes with hundreds of sample models and code examples that help beginners to get started. It is very well documented, and also has a systems dynarnits component

Pros: These systems oller perhaps the unly pussible way to identify emergent petpurries that come from interaction between agents. Most of the applications are open siource, which creares infinire possthilices tor linkages, extensions, and improvenents.

Cons: Require programmung skills, cheretore may take a consuderable time to learn.

## Wrap-up of software

Ir should be noted that there are hundreds and mayhe chousands ol sotware pack. ages that can be related to modeling, and by no means can we overview even a small fraction of them. My goal here was to look at some representative examples and try to put them in some order. Clearly, Far heginners, espectally shose with no or tew quancteative and programmong skills, ir makes more sense to stant at the easier end of the spectrum and explore some of the existing models or modeliag systems. They will take care of much of the tednass mondel onganization and make sure that the moilel is consistent, they may helf with unit converxions and logic of computations, and they will inmediately offer some numeric methods to run a simulation. In some cases they may actually work as is, "off che shelf," for some applications that are repeated frequenty for similar systems. As casks become more complex. there will prutathly be the need to move hugher up the dagram in Figure 2.16 , and explore some of the more sophist cated modelng touls and methods.

Mose of che sotware tools. like living organisms, go chrough life sages afer they are born, they deveiop, reach maturity, and then sometmes declone and die. It is hard to predict what the future of many ot these products will he. especially when they are corporately owned and depend upon the dybamics of world markets. In thes regard, well-developed open-source produces promise more continuicy. hut even they can tade away or be teplaced with something better. This is what we are now seeme with Swarm, which cends on murph into other products, such as Repast. Similarly, SME has been hardly developing over the past few years. In the propretary werld, there
does not seem to be much progress in the ModelMaker development. Similarly, Stella seems to be relying on its previous success and has not shown much improvement over the past several years. There are also the models that are offered by federai agencies, which are free to download and use, but for which the source code is closed and proprietary. Except for the price factor, there is no big difference berween these and the closed commercial products; in both cases users have very litele to say about the future development of the sotware and enturely depend on some obscure decision-making process and funding mechanism, either in the corporate world or by the government.

The bottom line ts that we need to keep a close eye on all these systems, and be flexible enough to migrate from one to another. The "hammer-nat" syndrome should be avoided. No modeling software is universal; there are always systems that could be better modeled using a different formalism and different mathenatics and software. If you confine yourself to only one modeling system, you may start to think that modeling is only what the sofoware is offering. In realicy, there are numerous different approaches, and all of them may be worth considering when deciding how to model the system of interest.

Models built using open-source software are most desirable, since they can be modified to meet particular needs of various applications. Moreover, they can be tested and fixed if errors are found. While commercial proprietary software comes as closed "black boxes", where you can never be sure what's inside, open-source models are open, and the source code can be viewed and modified. On the other hand, commercial products tend to be better documented and supported. One rule of thumb is that if a proiect has involved a great deal of brampower and enthusiasm, go for open source; if there is good funding for the project, go for commercial products.

Modeling is iterative and interactive. The goal is frecuently modificd while the project evolves. It is much more a process than a producr. It becomes harder to agree on the desired ourcomes and the features of the product. This certainly does not help when choosing the right software package to support modeling efforts. There is also a big difference between software development and modeling, and software engineers and modelers may have different attitudes regarding software development. For a software engineer, the exponential growth of computer performance offers unlimited resources for the development of new modeling systems. Models are viewed by software engineers merely as peeces of software that can be built from blocks or objects, almost automatically, and then connected, perhaps even over the well, and distributed over a network of computers. It is simply a materer of choosing the right archirecture and writung the appropriate code - the code is either correct or not; either tt works or crashes. Not so with a research model. Instead, scientists would say that a model is useful only as an eloquent smplification of reality, and needs profound understanding of the system to be builc. A model should tell more about the system than simply the data available. Even the best model can be wrong, and yet still quite useful if it enhances our understanding of the system. Moreover, it often takes a long tume to develop and test a scientific model.

As a result of this difference in point of view and approach, we tend to see much more rapid development of new languages, software development tools, and code- and information-sharing approaches among sottware engineers. In sume cases, new software packages appear faster than their user community develops. In contrast, we see relatively slow adoption of these conls and approaches by the research modeling community. The applied modeling community, driven by strict deadlines and product-oriented, may be even more reluctant to explore new and untested tools, especially sunce such exploration always requires addirional investment for acquisition,
installation and learnumg The proliferaten of modeling software, as in the case of systems dy namics modeling tools, may even be considered an mpediment, since of there were only one ar two modeling tools generally accepted by all then these could he used in a common modelng flatorm, as a communication tool to share and disuribute models W'ith so many difterent clones of the same basic approach we get a whole variety of dialects. using which is may be harder to find common ground.

In this lwok we will mostly be using Srella fur our demonsratoms. Stella's success is largely due to its user-triendly graphic antertace (GUI) and a farty wise markering program that mosily targers students and universty professors. Stella helps to illustrare a lor of modeling concepts. I do not intend to endorse or promore Stella in any way, ir is no better than the other wottware patkages available It is juse a matter of miy persomal experience and the legacy code that is available. Therefore, you will need ro get ar least a rrial or Flayer version ol Seella ro be able ro do the exercises and study the models that are presented in this boak and can be downloaded from the book wehsite. Doing rhis in alternative packages is an optoon that os only encouraged. Some systems dyyamics tools described athove offer tools to read and run Stella models. For example, Maconna will take Siella equations and, with some minmal tweaking, will run rhem - actually many times taster - and olfer some adjitional exciting teatures. We will see how this works in Chaperer 4.

The bistic mathematical tormalism and rhe interface conventions used in all these packages are quire similar - so once you have mastered one of them. it should $\mathrm{l}_{x}$. quice easy to swach to another it you are looking for certan special features lf you are untamiliar with Stella, sone limired instructons are available below. As mentioned above, the OUI in Srelld is extremely user-friendly and the learning curve is gradual, so it should not take long for you to be able to use it for the purpeses of this course.

## A very quick introduction to Stella and the like

Before you start learning Stella or some of the other modeling parkages described above, please ensure that you realize there are different modeling paradigms used in these packages and in certain respects this makes is hard to compare them. In this book we are mostly studying dynamic models, so we will be locking for software tha: can help us with this kind of modeling The dynamic feature means that the system that we study changes over time and that there ore variables that evolve. This also means that there are certan imiations and certain conventions There are systems that are not very well suted to mode inc with Stella and the ike it we simply want to use Stella for certain calculations we may probably dc it. but this may not be the besi way to go - using, say. Excel may be much simpler Fcr example. cerrain standard economic systems, which are usually formulated in :erms ct scme equilibrium state, may be hard to define in Stella, unless we move away from the equilibrum and consider the transiticin processes as well. Stella has very limited capabilities ior statistical analysis $\ddagger$ a s.mple empirical model is all you need, you may be better off with a statistical soff ware package. which would also be much better tor analyzing uncertanty and generating more sophisticated statistics

Keep in mind that Stella and some other dynamic modeling packages assume the sc-called "stock-and-flow" iormalism, where the system is to be describec in terms cl reservoirs, called stocks. which are connected with pipes that carry flows S:ccks are therefore always measured in terms of certain quantities of material, energy. bicmass. population numbers, etc., while flows are always rates of mate:ial transferred per unit of time. or energy passed per unit of time. etc So when using Stella we start with identifying the state
variables. which will be called stocks, and then figuring out what makes these variables increase because there are lows of material or energy coming ini, or decrease because there are flows that go out? While all solts ol formulas can be used to define the flows. the stocks can be changed only by the flows; they cannot be calculated in any other way

Stella coens with a graphic menu that contains à number of icons.


The first four are the mân building blocks for you model figure 217 describes what they are


## Figure 2.17

Mair building blocks in Stella. Note :hat they are the same in Madonna, Simile and others.

To build a model using these tools, first click on the State variable icon and then somewhere in the window, where this variable will be located on the diagram. The variable appears with a "Noname" name. Click on this title and type the name that you want this variable to have.


Next, click on the Flow icon and choose where you want to draw the flow that will go inte or from the state variable. Then hold on the mouse button and drag the cursor from where the flow starts to where it goes. If you want a state variable to receive a flow or to be draned by a flow, make sure that the State variable icon s highlighted as you put the cursor on top of it. !f it does, then it will be attached to the flow; if it dees not, then it will not be associated with the flow - and this might create a problem in the future if you do not notice that there is a cloud placed somewhere on top of your State variable or right next to it. You will be thirking that the flow is there, while in reality it is not.

As you drag the flow from one element to another, you can make it angle if you hit the Shift key. This is useful to keep the diagram tidy and clear. Then give a name to the "Noname" flow similarly to the above.


You may now need to add an auxiliary variable. In a similar way to above, choose the crifle icon and place it somewhere on your diagram. Give it a name. If you click and hold on any ol the narnes of the elements in the diagram, you can draç the name around the icon that it belongs to. This is useful to keep your diagram tidy.


Finally, use the connector arrows to link variables; flows and state variables. Just as with flows, after choosing the connector icon you click the mouse on the origin of information and then drag the arrow to connect it with the recipent of the information

By drawing this diagram. you have already formulated one differential for rather differencei equation that will go into your model.

$$
S_{-} \text {VARIABLE }(t)=S_{-} \text {VARIABLEit }-d t i+F L O W^{*} d t
$$

Next, you need to specify the actual size of FLOW and the initial condition for S_VAFIABLE Before you go any further, switch the model from the so-called "Mapping Mode" to the "Modeling Mode." To do this. click on the button on the left-hand side that shows the globe You may notice that "?" will appear on all elements in the diagram that need further definition


If you double click on the parameter icon, this dialogue window appears:


Even though it requires that you "place the right-hand side of eauation here." in reality all you need to do is give the value for the parameter that you want to use in your model Suppose the rate you want to use is 0.0 i . Simply type that value in instead of the highlighted words, and click on the "OK" button (or hil the "Enter" key) If for some reason you piefer only to click, you can also use the numerical pad offered in the dialogue box. You can also use some arithmetic expressions. like $1 / 100$, or choose some of the bult-in functions that are listed trete.

Next we double click on the flow icon and open this dialogue box.


Now indeed you are to "place the right-hand side of equation here" The required inputs are listed above, and if you click on any of them they will be copied :nto the equation field. Here, describe the flow as a product of the available stock in S_VARIABLE and the rate coefficient that has already been specified in PARAMETEZ. PARAlvETER*S_VARIABLE goes into the equation field

Click "OK" and similarly dousle click on the State variable icon This opens the dialogue window : : specify the initial conditions


The list of "Allowable inputs" may be somewhat coniusing, because it is only rareiy that you will need any of the flows or other state variables to specily the initial conditions. In most cases you will simply lype a constant - say, 10 Or you may store this constant as a pararrieter and then refer 10 it in this tox.

Note that there :s a check-box that says "Non-negative." By detault, all state variables come checked as non-negative. This can be quite misleading. You want the llows in your model to make sense and to work in such a way that the stocks do not get depleted and negative. By ciamping them with this check-box. you lose track of what is really happening in your mocel. You may well be generating some totally crazy behavior that is supposed to make a stock negative, however, you will not even nolice that if that variable is clamped. It is recommended that you keep this pox unchecked. unless you really know what you are doing and have a clear understanding of the effect of various flows on the state variable

Now that all the question marks have gone, your model is ready to run. You can also check out the equations that you have generated by clicking on the downward arrow in the upper let-hand corner:


The equation here describes the exponential growth model:

```
S_VARIABLE(t)=5 YARIABLE (t-dt) +(FLOM) * dt
    INITS YARIABLE = 10
    INFLOWS:
                            H}\mathrm{ FLOW= PARAMTS YARIAELE
[. PARAM=0.1
```

Before you start running the model, specify what you want the output to lock like. Returning to the other icons at the top of the window, the next group of three is mostly for convenience, these are not essentia to create models The first one allows you to place buttons in the diagram, which may be handy for navigation or for model runs. Instead of going through menus, you can get something done by simply pressing a bution in the diagram. The next icon allows you to group certain variables and processes into sectors. this is useful to achieve more order in the diagram It also allows you to run only certain parts of the model. The third icon allows you to wrap certan detals about processes and display them as one icon in the diagram, this also mostly serves esthetic purposes.


The next group of four is the Outpul Too!s

- Click on the Graph icon. choose a place on the diagram, and click again. A new window is opened to display the graphs. Double click anywhere in that window, and a dialogue box is opened. By double clicking on any of the values in the lefthand side you add them to the list of variables on the right-fiand side. These will be graphed (no more than five per graphic). You can check out the different buttons and options avalable The most useful is the scaling, which is controlled by highlighteng iclicking once) a variable among those selecied and then clicking on the arrow to :he right of it You can then change the minimal and maximal values for this var abie that will define the scale in the graph.

- In a very simiar way. you can define a Table using output values that variables take during the course of the simulation. Choose the Table icon, click anywhere in the diagram. and a Table window opens. double click anywhere in that window, and a dialogue box opens

- Once again, choose the variables that you want to display and specify some of the characteristics of your Table. Similarly, you can generate output for an individual variable. In this case. you will get the value that it attains by the end of the simulation
- As a result, for the model being buit it is possible to design the output and run the model by choosing "Run" from the Run meriu, or pressing Coirmand-R (on a Mac) or Cirl-R lin ivindows). In this case, the graphic of exponential growth is displayed


Finally. look at the Editing Tools presented by the fourth grouk of icons

- -he navigation cursor the handl is the one you will mostly be using to open and close windows and to arrange elements of your diagram The paintbrush icon is :o add some color to the diagram - you can color individual elements or change the color of your graphics. The dynamile' icon is used to delete things in the diagram. Be careful - there is no "undo" in Stella until version 8 . if you
 blow something up. it is gore! To use th's tool, click on the dynamite icon, choose the element you want to delete. and click on it. this will highlight what is to be blown up. Do not release the mouse button until you have verified that what is highighted is really vihat you want to get rid of ${ }^{1}$

The "ghost" is very useful when you need to connect elements that are very far apart in the diagram. In that case, the diagram gets too busy ff you do all the connections directly Click on the ghost icon, then on any of the elements in the diagram you want to ghost A copy of it will be created that can be put anywhere else in the dragram.

Once açain, here are the mam building elements in Stella


This brief overview covers only some of the basics of Ste ta. However, it may je suff:cient as a starter. since most of the dialogue boxes and menu options are quite self-explanatory and may be mastered oy the good od tral-and-error method. Please note that:

- You cannct connect iwo stocks with an information flow. only material flows can change a slock. The information obout a stock can afiect a material flow or an auxiliary variable but not the information flow.
- A material flow is assumed io be positive if if becomes negative. Stella will clamp it to zero. A negative inflow is actually an outilow; inerefore, since you specify the sirection of your flow. the sign matters, and Ste'la makes sure that all flows are positive. If you need a flow that can become negative. use the billow option A biflow can go in both directions. Make sure that you have the positive flow associaied with the direction in which you first diew the biflow. The negative flow will then go in the opposite direction.
- You cannot connect auxiliary variables with material flows. Only nformation flows are appropriate in this case

Also please note the iollowing rules of good styie when building your madels

- Try to keep your diagram tidy Avoid long connectors and conlusing names, and avoid criss. crossing flows. The easier it is to read your diagram, the less errors you will make and the more appeating it will be to anyone else who needs to uncerstand the mode.
- There is no such thing as too mucr socumentation. Every variable or llow in Stelia has a document option, which is usetul to record your ideas and comrrents about what you are modeling and the assumptions you are making. It is extremely important both for the model ceveloper and the model user.

As mentoned atove in our review, general-purpose spreadsheer software is a simple alternative to Stella and the like. For example, Excel may be used on huild many moklels considered in this beok (see Figure 2.18). You can download this model (Model_Of_Exponential_Growth) from the book websice, and experiment


## Figure 2.18

An example of a spreadsheel model for an exponential growth system (see Chapter 5 for more detail)
with the parameter and the formalizaton of the equation. It becomes quite difficult, if possible ar all, to do this modeling for numerical methods other than Euler. Also, it gets very complicated as the model structure becomes more complex. Check out another example (Predator_Prey_Model), which is a two-variable model of preda-tor-prey dynamics. It is still doable, but not as much fun as in the systems dynamics software.

### 2.3 Model formalization

The model formalization stage requires that each of the processes assumed in the conceptual model in a qualitative form be described quantitatuely as a mathematical formula, logical statement or graph. This is what you do in Scella when you double click on any of the flow icons and get the dialogue box that invites you to specify the right-hand side of the equations. Choosing the right mathematical description to represent your qualitative ideas about a process may be quite tricky and ambiguous.

At this stage, describe how you envision the rates of flows between varous variables. Suppose you are describing the growth rate of a bacterial population. The variable is the population size. There are two processes associated: the birch race and the mortality rate. You need to decide how to describe both of these processes as functions of the stace of the system (the current size of the population in this case) and the state of the environment (temperature, available food, space, etc.). Suppose that it is known that the reproduction rate is a function of temperature, such that at low cemperatures the divisions are rare, and as temperature grows the number of divisions steadily increases until it reaches a maximal value. Suppose that, based on the available data, you can describe this relationship by a graphic shown in Figure 2.19. In this case, $m$ is the maximal growth rate that we know.

How do you input this information into the model? One option would be to use the Stella graphing option and redraw the graphic in the model.


In the Stella model that you have started to build, rename the variables to reflect the system that is being considered now


Now you have the stock that represents the population imeasured here in biomass units instead of numbers). The size of tre stock is controlled by two flows: the inflow is the births. simitar to before, but now there is also the outflow, which is the deaths in addition to simply having the births propoitional to the size of the population. the temperature limitation is introduced by inserting the T_limitation function in the equation
Births = B_param*T_limitation "Population

T_limitation should be a function of temperature as described above. To use the graphic functhon in Stella to define 1t, double ciick on the T_limitation parameter to open the regular dialogue box that has temperature listed as the required input. Note the "To Graphical Functiori" button at the bottom left
-... Conventer


If vou click on this button. you will see another panel, which is designed specificaliv to input a graphic that is to define what value this T_limitation parameter is to return, depending upon the value that the temperature parameter will teed in


In this case. a functicn is designed that will change heiween 0 and 1 jine most of the limiling functionsl. while the temperature values are anticipated to be in the range between 0 and 60 . Here the units for temperature are degrees Celsius, while the output of the limiting function itself is dimensienless - it will be a modifier for the birth rate that will slow down growith to zoro when temperatures are low, and will have optimal growth values at temperatures close to $50^{\circ} \mathrm{C}$. Perhaps this is good enough for bacterial growtr. The actual values are then either typed as numbers in the table provided on the dialogue box, or produced when you draw the graphic using your cursor Now the limiting function s finished with, but it is still necessary to figure out how to provide the data for temperature Certainly, another grophic can be produced.


Here. a imeseries for temperature is presented. using a built-in called TIME to describe how temperature is changing in with time in the model. Some real climatic data can be copred from an Excel spreadsheet or text editor and then pastea into the table in the graphical
function, or the graph can again be drawn using the cursor. In this case. a series of annual temperature cycles is defined where temperature varies from 0 to $40^{\circ} \mathrm{C}$ over a time period of about 365 days There are data for about 3 years (or 1000 days). which can be seen in fuil in the graphic if the "ALT" key on the keybcard is cressed and held:


This graphical function is a nice feature, but it has one major Jrawback. If modification of the function is required to reflect some newly acquired knowledge, it is necessary to go into the graphic and manually redraw it. Suppose that you want to change the curvature, so that the oprimal birth rate is attained faster, or suppose that the maximal birth rate shomd the increased - in all these cases, every time the graphic needs to be redrawn. This may become qute boring. As an alcernative to the graphic representation of the data, you can assume a function that would gencrate the kind of response that you need. For example, tor the temperature deperidency shown alove the function

$$
F=\frac{m i}{t_{i}+t}
$$

can be used, where $m$ is the maximum birth rate and $t$. repesents the temperature at which the birth rate is half the maximal. This tunction happens to he known as the Michaelis-Menten function, widely used to model growth kinetics and population dynamics. Now there are two parameters that can easily modidy the shape of the function. By changing $m$ it is possible to ratse or lower the asymptote, the maximal value to which the function tends. By moving $t_{3}$, the function can be mide to grow faster (smaller $t_{4}$ ) or slower (larger $t_{8}$ ). All these modifications are made without any need to redraw ary graphics, but simply hy changing a parameter value.

Similarly, the timesenes for temperature can be defined as a formula instead of a graph Of course. if you are using real climatic data it makes perfect sense to stick to it and import it into the graphic function, as described above However, if the timesenies is hypothetical, it might be easier to have a iormula to preseni it. For example, it is possible to generate the dynamics very similar to the graphic used above by using the following equation

$$
\text { Temperaiure }=20 * \operatorname{SINiTIME} / 365 * 2 * \mathrm{PI}+3 * \mathrm{PI}(\hat{2})+20
$$

It does take some effort to figure out the right amplitude and phase for the SIN function; however, even with some very basic knowledge of trigonometry and a few trial-and-eror runs in Stella. this can be done It can even be made more realistic if some random fluctuations in temperature are added. using the RANDOM function - another built-in in Stella ljusi like SIN. PI or TIME - all these can be found if you scroll down the list of Stella bullt-ins that appear in any parameter of flow dialogue box)

Temperature $=20 * \operatorname{SINITIME} / 365 * 2 * P I+3^{*} \mathrm{PI} / 2 \mid+24+$ RANDOMi-4.4.01
The output from this model looks like this.


It may te hard quickly to find the right function to represent the kind of response that you have in mind tor a particular process. It helps a lot if you know the behavior of some hasic mathematical functions; then you can put togerher the right response curves by combining certain functions, the hehavior of which you know. Figure 2.20 contains a collection of some useful functions that may he used as building blocks to describe varnous prucesses.

Nore that for the numerical realization of the model you will need to provide actual values for all the parameters that are used in the functions. Therefore, the fewer parameters a function uses, the easier it will be to find all the values needed. It also helps a lot if the parameters used to describe a function have an ecological meaning. In that case, you can always think of an experiment to measure their value. For example, in the temperature function considered above, $m$ can be measured as the hirth rate at opeumal conditions, when temperature is not limiting. Sumilarly, t , can be estunated as the temperatuee value at which birth is approximately equal to half the maximal. Both these parameters can te measured and can be then used in the motel. This is one of the basic differences hetween process-hased and empirical


## Figure 2.20 A list of formulas to facilitate your choice of the mathematical expressions that can

 properly describe the processes in your model.Certainly there are many others that you might find more appropriate for your particular needs. To check out how a function performs with different parameters and to choose the parameters that will best suit your particular needs. you can input the function into, say, a spreadsheet program such as $\mathrm{Exsel}^{\text {a }}$ and buid graphs with various parameters. Another application that is especially useful for these purposes is the Graphing Calculator It comes as parn of the Mac OS-X and probably there are also versions for Windows. It should be noted that in most cases using a formula with parameters is preferred, rather than inserting a graphic, to describe the process in your model. One significant advantage is that certain parameters that change the form of the curve can be easily used to study the sensitivity of your model to these sorts of changes Similarly. changing graphics is a much more tedious job and more difficult to interpret.











 the -



## Exercise 2.1






## A modal ol a car daalesabip












## A simple population growit modal








## A socio-aconamic model









## A model of the biosphere







## A madel ol body weight







## A model al ativar








## Further reading

```
|****)
```










* "
0-4」cen. - - - - 」 d









## 3. Essential Math

3.1 Time<br>3.2 Space<br>3.3 Structure<br>3.4 Building blocks

The full set of dynamic equations of a given physical system presented in one of the approximate forms, along with the corresponding boundary conditions and with the algorithm for the numerical solution of these equations - inevitably containing means from a finite-difference approximation of the continuous fields describing the system - form a physico-mathematical model of the system.
A.S. Monin

## SUMMARY

Many models are based on some mathematical formalism. In some cases it may be quite elaborate and complex; in many others it is straightorward enough and does nor require more than some basic high-school math skills to understand it. In all cases it can help a lot it you know what the mathematics are that stand behind the model that you tuild or use. Most of the systems dynamics models that we use in this book are based on ordinary differential of difference equations. Some basics of those are explained in this chapter. We look at how models can tend to equilibrimu condtitions, and explore how these equilibria can be rested for stability. If the spatial dumension is added. we may end up with equations in partial derivatives. We will see how the advection and diffusion processes can be formalized. Finally, in the structural domain we may also find models that will be structurally robust and stable. Such models are preferable, especially when there is much uncertainty about model parameters and processes.

## Keywords

Discrete vs continuous, initial conditions, ordinary differencial equations, state variables, difference equations, exponential growth, time-step, numerical mechod, Euler method, Runge-Kutta method, equilibrium, stable or unstable equilibrium, box models, compartmental models, continuous models, advection, diffusion, equations in partial derivatives, rigid and soft systems, structural stability.

Modeling and systems analysis first appeared as marhemanical disciplines. Reciprocally, much of modern mathematics has origmated from models in physics. U'ntil recently, a solid mathematical background was a prerequisite of any modeling effort. The advent of computers and user-friendly modeling sofitwate has created the feeling that mathematical knowledge is no longer nceded to huild realistic models, even for complex dynamic systems. U'infortunately, this illusion results in many cases in faulty models that either misrepresent the reality entirely or represent it only in a very narrow doman of parameters and forcong funcrions, while the conclusions and predictions that are made are most likely to be presented as heing quite general and long lasting.

This does not mean that modeling cannor be done unless you have a PhD in marhematics or engineering. Many of the software packages that are currently available can indeed help a lot in the modeling process. They can certainly eliminare most of the programming work needed. In is importans, however, for the modeler to know and understand the major mathematical principles that are used within the framework of those packages, otherwise the models will te prone to error. David Berlimstioffers some noteworthy examples of how models can be misused, misunderstood, and in error when the marhematics is ignored

Let us take another look at the model that we have developed in Stella. Open the modei and click on the litte arrow pointing downwards in the upper let. corner. iln more recent versions of Stella the interface has been changed and vou have separate tabs or the left of the winduw for the interlace, the model and the equations.i


What you get is a list of equations


So these will be the actual equations that the model will be solving. The Graphic User Interfiace has reaily fust one ourpose to formulate these equations and then display the results of solving them What are these equations, and how do they work?

As we have seen in the previous chapter, a system may be considered in three dimensions: temporal, spatal and structural. In the temporal dumension we decide how the system evolves in time; in the spatial dimension we research the spatial organiation of the systen; and in the structural dimension we define the complexity of the mosel. For each of these facets mathematics are used in modeling.

### 3.1 Time

Most computer models operate in discrete time. The tume is represented as a sequence of snapshots, or states, which change momentarly every given time interval. The major cyuestion to he answered when considering chas cemporal ewhlution of a system is, what will be its state at time if its state is known at the previous time $t$ - l' If we know how the system changes state, then we can descobe its dynamics once we know the initial statc of the system. Suppose we have a population of five cells and each cell divides into two over one time-step - say, I hour. Then after I hour we will have 10 cells, since each cell is to be replaced hy two; after ? hours there will be 20 cells; after 3 huurs there will be 40 cells, and so on

This is a verbal mondel of a system. Let us formalize it on describe it in math. ematical terms. Let $x(n)$ he the number of cells ar time-step $n=1,2, \ldots$ Then the doubling process can be described by

$$
\begin{equation*}
x(n+1)=2 x(n) \tag{3.1}
\end{equation*}
$$

If we provide the initial condition $x(0)=a$, we can calculate the number of cells after any $n$ time steps:

$$
\begin{equation*}
x(n)=a 2^{\prime \prime} \tag{3.2}
\end{equation*}
$$

This is a simple model of exponentari grouth. The nice thing about the mathematical formalism is that it provides us with a general solution Instead of doing iterative (i.e. repeating) catculations to find out the number of cells atter, say, 100 divisions, and redoing these calculations if instead of five initial cells we were to consider six of them, we can inmediacely provide the result hased on the gencral sulution (3.2).

How did we get from (3.1) to (3.2)? Certainly, if $x(n+1)=2 x(n)$, then similarly $x(n)=2 \times(n-1)$ and $x(n-1)=$ $2 \times(n-2)$ Substituting, we get: $x(n)-$ $2 \times(n-1)=2 \cdot 2 x(n-2)$, and so on, $x(n)=2 \cdot 2 \ldots 2 \times(0)$. Keeping in mind that $x(0)=a$ and that $2 \cdot 2 \ldots 2(n$ times) $=2^{\prime}$, we get the result in (3.2).

However, this model can only describe systems that are very well synchronized in time, where all the cells divide simulcaneously and similarly. This is quite rate for real populations, where divisions occur all the time, and therefore the process is not so discrete. In this case it makes sense to assume a different model that we formulate in terms of growth rate. Suppose that cach cell produces one new cell once an hour. This is more-or-less equivalent to the above mndel, but now we can remove
the synchronization. In two hours une cell will produce two cells, and in halt-anhour a cell will produce halt of a new cell. This may not make sense for an individual cell, bur with no synchronization this makes pertect sense for a population of, say, 100 cells. It simply means that in half-an-hour 50 new cells will be pruduced. We can then reformulate (3.1) as:

$$
\begin{equation*}
x(t+\Delta t)=x(t)+x(t) \cdot \Delta t \tag{3.3}
\end{equation*}
$$

We have substituted $t$ for $n$ to show that time no longer needs to change in inte. ger steps. $\Delta c$ is the time increment in the model. Nore that if $\Delta t=1$, model (3.3) is identical to model (3.1):

$$
\begin{equation*}
x(t+1)=x(t)+x(t) \cdot 1=2 x(t) \tag{3.4}
\end{equation*}
$$

However, it we run the same model with $\lambda_{i}=0.5$, we get a different result:

$$
x(t+0.5)=x(t)+x(t) \cdot 0.5=1.5 x(t)
$$

Then similarly

$$
x^{\prime}(t+1)=x(t-0.5)+x(t+0.5) \cdot 0.5=1.5 x(t+0.5) .
$$

Substituting from the above, we ger:

$$
x(\underline{t}+1)=1.5 \cdot 1.5 x(t)=2.25 x(t),
$$

which is different from what we had for $\lambda t=1$ in (3.4). We see that when we change the time-step $\mathrm{Si}_{\text {, we }}$ wet quite different results (see Figure 3.1). The more often we update the population of cells, the smaller the time-step in the model, the faster the population grows. Since new growth is based on the existing number of cells, the nore ofen we update the population number, the more cells we get to contribute to further growth.
lndeed, let us take a closer look ar Figure 3.1 and zoom in on the first two steps (Figure 3.2). We start with a certain initial condition - say, 2. We decide to run the model with a cerran time-step - say; At $=1$. According to (3.3), the next value at $x(1)-x(0)+x(0) \cdot \Delta t=2+2 \cdot 1=4$. At time 0 we define (3.3) for the first timestep, and we know that during this period of tme nothing is supposed to change in the equation. Only when we get to the next point in time do we re-evaluate the variables in (3.3). Now we change the equation and diverge from the straight bold line chat we once followed: $x(2)=x(1)+x(1) \cdot A t=4+4 \cdot 1=8$.

If we had chosen to run the model with a tine-step $A_{t}=2$, then we would have stayed on the course longer (the broken line in Figure 3.2), and then $x(2)=x(0)+x(0)$. $\Delta t=2+2 \cdot 2=6$. See the difference?

Alcernatively, if we had chosen to run the model with a time-step of $A t=0.5$, we would have corrected the trajectory already after the first half-step taken (the dashed line in Figure 3.2), and then later on every half-step we would have been correcting the course. As a result, by the time we got to time 2 we would have got to a difterent value, a substantially different one compared with the case with $\Delta t=2$. So the smalier the time-step we use, the more often we correct the course, the less the computational error.

Note that equation (3.3) is similar to the kind of equations that we saw previously, generated in Stella. Remember when we were clicking the litrle triangle in



 frocices lis lastes growin

: ie -

 - ا $\boldsymbol{A}$ -
 ice:

thow on wh cel lram if 51 :c te 6i? 'Hal it dodd' This s just a math. Ar"uracal inalalion tral inpleselits

 in the wenabla ranc dits tre meiament

 Y. © Es: : Nole If al it is the deat rat we














$$
12 \text { - }
$$



$$
\int \frac{1 x}{1} \int d
$$


nls


$$
x a t-w
$$



 lum ilir . .





 :
to the model formalization: 2.72 in (3.7) is not that much larger than 2 in (3.2) However, the exponenr that is used in the model blows up rhis difference tremendously. The rime-stef used in the model becomes a crucial facror. This is somerhing to remember: models with rapidy changing variables are extremely sensitive to the size of the time -step used.

So what does this mean in terms of our little Stella model? As we have seen above, there is a ot in the equations tile. So now we know what it is all about There is also a way to change this at. Click on the "Run" menu and then choose "Run Specs." This will open a dalogue box that contains the time specitications tor your model iun. "From" will spearly at what tirne you start the simulation, "To" tells when to end. "DT" is the time-step to use in the simulation.


Let us start with DT $=0.25$ and run the model The result should toox something like :his


If we now change the time-step to DT - 2 we will get a similar picture, but not exactly the same


Nolice that with a larger t me-step we see that the temperature changes less frequently. and, besides, the population grows to a smal'er size. See the scale on the Population axis: it has changed from 400 maximium to 300 Something we could expect just as in Figure 3.2. we see that the growth is slower when the time-step is larger, the variables are updated less frequentiv. and therefore the growth base is smaller in each time-step

Equation (3.3) in a more general form is

$$
\begin{equation*}
x(t)=x(t-d t)+f(t, x(t), a) d t \tag{3.8}
\end{equation*}
$$

where $f(t, x(b), a)$ is the transition functom that descrives how the syscem changes ar rime $t$. It depends upon the current state of the system $x(t)$, and a vector of parameters $a-\left(a_{1}, a_{2}, \ldots, a_{1}\right)$. These parameters do not change over time. Sometimes we assume that the paramerers are hidden and write simply $f(x, x)$. As a differencial equatom, this will be:

$$
\frac{d x}{d t}=f(c, x, a)
$$

Differential equations are very useful in formulating various dynamic models. The left-hand side $d x / d i$ is the instantaneous change in the size of variable $x$. On the right-hand side, we can specify what the processes are that contribute to this change. In the example above we have a very simple trancition function: $f(t, x(t), a)=x(a)$. In real models, the function can be quite complex.

Some of the more simple differencial equations can be solved analycically. However, once we start purring ugether realistic models of systems, very yuickly we arrive at equations that are too complex for an analytical solution. These equations are then sulved numerically, using a numerical merhod on a compurer. The smplest numerical method is given by the approximation that is used in (3.8). The equation in (3.8) is called a difference equation, and it is a numerical approximation of a differencial equation. As we have seen above, such difference equations are discrere and can be solved on a computer by going chrough all the time-steps starting from the initial condition. The equation in (3.8) is also called the Euler method, which is the







 the mall lateend drle exust n.el

$$
\left.28!-f_{1}\right)=111-i \cdot d \text { (1) ! } 11:
$$







 Tive fiviral amond




## Exarcisa 3.1

 moder will dencrto ated goperam?

 The doutio-rowns model?














| Amenticer |  |
| :---: | :---: |
| Iragt pr smolaten | Whatimer Bue wour |
| 4-mm | , menr tax mar |
|  | Dert Criv 1-ut |
| 7\% 178 | 2 Weab menilian micte |
|  | Menmi 99xamer |
| 571 | Oune Alymim |
|  | - Vams |
| mun = | 900\% |
|  | 4 |
|  | Sum 1pent |
|  |  |
| s-rye tulld |  |
| 2,4er -umb |  |
|  |  |

## Cband

T"



 - 1 н
 t



The more complicated and most often used version of the R:nge-Kutta algorithin uses a werghted average of several approximatest values of $f(t, x)$ within the merval ( $t, t+d r$ ). The formula known as the "fourth order Runge-Kutta formula" is given by

$$
x(t+d t)=x(t)+\left(\frac{d t}{6}\right)\left(k_{1}+2 k_{1}+2 k_{1}+k_{4}\right)
$$

where

$$
\begin{gathered}
k_{1}=f(t, x(t)), \quad k_{2}=f\left(t+\frac{d t}{2}, x(t)+\left(\frac{d t}{2}\right) k_{1}\right), \quad k_{3}=f\left(t+\frac{d t}{2}, x(r)+\left(\frac{d t}{2}\right) k_{2}\right), \\
k_{4}=f\left(t+d t, x(t)+d t k_{3}\right)
\end{gathered}
$$

In our population model, if we choose the Runge-Kutta 4 method we get the population of exactly 1,484 after the 100 days of a run. That is a perfect match with the analytic solution. Quite outstanding!

Tou ren the simulation, we also start with the initial conditton, at $x_{3}, x_{0}=x^{\prime}\left(t_{0}\right)$ and find $x_{1}=$ $x\left(4_{0}+d t\right)$ using the formula alovere. Then we plug in $x_{1}$ to hnd $x_{2}=x\left(s_{1}+d t\right)=x\left(t_{0}+2 d t\right)$, and so on. Once again we pay a price for the mproved accuracy of calculations: now we have to calculate the transition function four times.

The Runge-Kutta algorithm is known to he very accurate and hehaves well for a wide range of problems. However, like al numerical methods, it is never perfect and there are models where it fals. One universil rule is that the smaller the time-step, no matter what method we use, the hetter the accuracy of the simulation. To ensure that you are getang the right result with you numerical method, you may want to keep decreasing the time-step unal you do not see any difference in the results that you are generating. There are some adaptive step-size algorithms that do exactly that autematically. Other algorithms are also available, such as the Adams method or Bulirsch-Stoer or predictor-torrector inerhods, that can be way more elhcient for sume problems, especially when very high accuracy is essential. Just remember that there is always a price to pay for higher accuracy. The smaller the tume-step, the longer it takes to run the model. The more accurate the method, the longer it takes to run the model. However, sometimes one method is semply better for a particular type of a model - it runs laster and gives better accuracy. So it always makes sense to try a few methods on your model and see which one works best.

We have already seen that the size of the time-step chosen for the numerical solution of the mondel can significantly change the outpur produced. Let us consider another example. Surpose we are modeling a stock of some substance that is accumulared due to a flow coming in and is depleted by an outflow:


The equations for this model will be:


```
    INIT Stuft = 0
    INFI.OWS:
    ##}\quadln=
    OUTFLOWS
    # Out = GFAPH(Slulf)
    -(000.0.09), (01, 0.63), (02.106).(0.3.1 32). (0.4 1.47) (0.5 1.56), (0.6, 1.62),
        (0.7 1.67). (08, 1.72), (0 9, 1.75). (1,1.77)
```

The mflow is constant, whereas the ourflow is in tunction of the substance accumulared. It may be described by a simple graphic function of the form:


If we first :un the model with DT -1 using the Euler method, we get a very bumpy rede, and an uscillating rrajectory:


The very same model bur with a smaller come-srep of $D T=0.25$ produces enrirely different dynamics:


Finally, it we swith to the Runge-Kurra, fourth-order merhod, we ger very smouth behavior, wirh rhe erajecrury reaching satmation level and staying there:


The very same model produces earirely different dynamics by simply changing the time-step assumed. Clearly you do not want to run your model with row small a LDT, since ir will require more computational tune and may hecome more difficult to analyze properly. However, roo large a DT is also inappropriate, since the results you produce may be entitely wrong.

Here is yer another example that shows that DT matrers and that ir is always important ro remember the equarmons that are solved to rut vour model. Qure ofren in models we want to do somerhing to the endire amount sroed :n one of the variables. For example, ar certain times we need ro deplere a rescrvoir, and then stan $r$ filling it all over again. Or we may be looking ar an ape-structured population, when
after reaching a certan age the entire population moves from one stage (say, eggs) to another stage (say, chicks).

Let us consider a simple model of a flush tank that we all use several times a day. Water flows into the tank at a constant Flow_Rate $=R$, which is altered by a floater attached to a valve. As the water level tends to a maxumun, the valve shuts the flow of water off. Knowing the volume of the cank Tank_Capacity $=V$, we can describe the inflow as

$$
F_{m}=R\left(1-\frac{T}{V}\right)
$$

where $T_{1}$ is the current volume of water in the tank.
The outflow is such chat every now and then somebody opens the gate and all the available volume of water is flushed out. To describe the outflow, let us assume that Use $=\mathrm{u}$ is a random value between $[0,1]$, and let us define Flush as:

$$
F_{z: x}=\left\{\begin{array}{ll}
0, \text { if } & u<0.99 \\
T, & \text { ocherwise }
\end{array}\right\}
$$

It we just put these equations into Stella, we will get this model:


It can be downloaded from the book website
Using the Euler method and $d t=1$, we will get:

which looks exacily how we wanted. Every now and then the tank is empried, and then it is gradually rehlled. Suppose now that instead of $d \mathrm{~d}-$ I we wish to get a more accurate solution and nake $\mathrm{dt}=0.5$. Now, the output looks yute different:


Not quite as expecred. The tank does not get empried any more. Whar has happened? Ler us look at the Stella equanoms for this model:

```
[] Tank(f)= Tank(f - af + {Inlow - Flush) 'ot
    |N|T Tank =0
    INFLOWS
        %) Inllow _ Fluw_Rate*(1-TankTank_Capacily)
    OUTF_ONS:
        *0 Flush = IF Use }>0.999\mathrm{ THEN Tank ELSE 0
    Flow_Rate = 0.1
O Trak_Capacity = 12
O)Use r RANDOM(0, 1,14)
```

It is clear that, contrary tu what we mended, the outlow is not $T$, hut $T$. it. That is why dt scarted to modity the model outpur so dramatically. It should he rememhered that whenever a llow is described in Stella or another siunilar packade. it is then mulciplied by do when it is inserted into the real equations to be solved. Therefore. if is is actually the entire stock that you want to move. you should describe the flow as Tidt. Then when it is inserted into the equations, the dr gets cancelled out and we can realy ilux the entire amount ats it was iatended

Therefore, the conect Stella equations should be:







 , (1)


 (1.,



## Exercise 3.2












 -4 ᄂ...l









A№. 1
 10
$\left.\frac{d 1}{d}=6\right)$ P 4 (i)



In this case the lefthant side is the vartition in your accoune, neasured in $\$$ per month. We make sure that the flows on the righr-hand side are presented in similar unics. For example, it is important to remember that the interest rate $k$ is monthly, and should therefore be recalculated from the more frequently used annual interest rate.

When $d x / d s=0$, there is no change in che varable. If the intlows and outflows are balanced, the variable is at equilibrium, it does not change because nothing is added to it and nothing is taken away. By setting $d x / d t-0$, we can calculate the equilitrium conditions in our model. From (3.9) we get:

$$
\begin{gather*}
k x+p-q=0 . \\
x^{4}=\frac{q-p}{k} . \tag{3.10}
\end{gather*}
$$

If you make $(q-p) / k$ your mitial condition: $x(0)=(q-p) / k$, there will never be any increase or decrease in the value of the vartable; your accounc will reman unchanged. A nice guideline wo balance your account? However. what will happen if your initial condition is slightly larger or smaller than the equilibrium ( 3.10 )?

In model (3.9) if we are even slightly below the equilibrium: $x<(q-p) / k$ then $d y d s<0$. The derivative is negative when the function is decreasing. Theretore, for values less than the equibrium equation, (3.9) takes us further away from it and we will he gerting decreasing values for the account (Figure 3.3). Similarly, if we start even slightly above the equilibtium, then $x>(q-p) / k$ and $d x / d t>0$. Now the derivative is positive. so the function grows, and therefore again we start moving away from the equilibrium. The farther we move away from the equilibrium, the larger $d x / d \mathrm{~g}$ gers, the farther it takes us away from che equilibrium. This positive feed. back sets us on a path of exponential growth. The equilibrium state is unstable. It you rake one srep away from the equilibrum, even a very small one, you will shide furcher away from it. Small deviations from the equilibrium will only increase with time.

Here is another example. Suppose a population of worneles lives on a small island that has enough grass to support only A wooles If there are more woozles than


Unstable equilibrium. Small displacements from steady slate result in increasing divergence from it


Figure 3.4
Stable equilibrium. When system is perturbed Irom steady state $A-1000$, it returns to it.

A, they die off from hunger. We can use the following formalism to describe this system:

$$
\begin{equation*}
\frac{d x}{d t}=k x\left(1-\frac{x}{A}\right) \tag{3.11}
\end{equation*}
$$

Here, $k$ is the growth rate of woozles and $A$ is the carrying capacity of the island. As $x$ approaches $A$, the multiplieı ( $1-x / A$ ) effectively slows down the growth rate $d x /$ $d t$, making it zero when $x=A$. If somehow $x$ becomes larger than $A$, this same muluplier makes the growth rate neyative, providing that the population size decreases until it reaches the size $x=A$ (Figure 3.4).

We see that $x=A$ is an equalibium point. There is yet another equilibrium point, where $d x / d t=0$. This is $x=0$. From Figure 34, we readily see that when $0<x<A$ the derivanve is posituve and therefore $x$ grows. It $x$ could be negative (not the case in our system, but it could be if the same formalism was used for a different system), then $d x / d t<0$ and therefore $x$ further decreases, rending to $-\infty$. The equilibrium $x=0$ is clearly unstable. On the contrary, as we can see when the system is perturbed from the equilibrium $x=A$, the sign of the derivative is opposite to the sign of the perturbation (negarive reedback) and the system is returned to equilibrium. This equilibrium is stable.

A classic illustration for the different types of equilibrimm is the movement of a ball put in a convex bowl or on the same boul iurned upside down (Figute 3.5). Even if you manage to balance it on top of a turned-over bowl. the slightest disturbance fiom that state of equilibrum will allow the force of gravity so move the ball further away. You do not even need to balance a ball inside a bowl; it will find its way to the pomt of equilibrium by tself. The third, so-called neutral type of equilibrium happens when the ball is placed on a flat surface. In this case, perturbations from the state of equilifitum do not cause any further movement of the ball (Figure 3.6).

Analysis of the equilibrium and its stability may prove to be extremely important for understanding model behavior. In some cases the model produces trajectorses that seem to converge to a certain state, no matter what changes are made to model parameters. In that case, chances are that the trajectury is at equilibrium and there


Figure 3.5 Derivative daidras lanc-ion of $x \mid A=1000$


Figure 3.6




 :






 - Il:

## Exercise 3.3




 dyramics of wizzes on this isiand?


## The importance of initial conditions ...


















 with, we wall inevilabr; end uti in total ouverty.













On the olher hand. I monder if this is also one of the reasoiss whw tile mainsrearn ainn





#### Abstract

     


### 3.2 Space

! I2w an: we :




## Box models












 14

$$
\begin{aligned}
& \frac{d Y}{d i}=1, \text { XIt } 1 . P_{1} \\
& 30^{2}=3 .
\end{aligned}
$$











## Compartmental models





spatially homogeneous component, also called a compartmenc. These are chen linked cogerher by flows of material or energy. In effect, a compartmencal model is a number of box models joined cogecher. For example, this is how we might want to present a small stratified lake, where che upper part of the lake (epilimnion) is separared from the deep waters (hypolimnion) because of the temperacure gradienc. The warmer warer stays on top and gets well mixed by wind-induced currents, making this upper layer spatially uniform. However, the currents are strong enough to mix only a cercain portion of water; che rest of the cooler warer is nor involved in the curnover and remains somewhat separated from the eplimmon. It makes sense to represent each of these spatial units as separace box models and link rhem by certain fluxes, such as the sedimentation process of material across the boundary of the two compartments.

Each of the box models may be described by a system of differential equarions with initial condituons:

$$
\begin{gathered}
\frac{d^{\prime} X_{1}}{d t}=F_{1}\left(X_{1}(t), P_{1}\right), X_{1}(0)=X_{01} \\
\frac{d X_{2}}{d t}=F_{2}\left(X_{2}(t), P_{2}\right), X_{2}(0)=X_{02} \\
\cdots \\
\frac{d X_{n}}{d t}=F_{n}\left(X_{n}(t), P_{n}\right), X_{n}(0)=X_{0 n}
\end{gathered}
$$

Here, once agann, $X_{\text {: }}$ is the vector of the state variables in compartment $i, P_{1}$ is the vector of paramerers used in the model in compartment $i, X_{0}$, is the vector of initial conditions for compartmenc $i$.

As a discrete interpretation, simular to chat which Stella generaces, we ger a system of differencial equations:

$$
\begin{gathered}
X_{1}(t)=X_{1}(t-d t)+F_{1}\left(X_{1}(t-d t), P_{1}\right) d t \\
\ldots \\
X_{n}(t)=X_{n}(t-d t)+F_{n}\left(X_{n}(t-d t), P_{n}\right) d t
\end{gathered}
$$

These are then linked by flow equations:

$$
\begin{aligned}
X_{1}(t)=X_{i}(t-d t)+ & \left(\sum_{j \neq 1} X_{j}(t-d t) \cdot Q_{j i}-\sum_{j \neq 1} X_{i}(t-d t) \cdot Q_{1 j}\right. \\
& +\sum_{j \neq i} D_{i} \cdot\left(X,(t-d t)-X_{1}(t-d t)\right) d t
\end{aligned}
$$

Here, we distinguish between two types of flows: advection and diffusion. Advection describes motion caused by an excernal force (such as gravity, which causes sedimencation). $Q$ defines the advective flux. $Q_{1,}$ represents the flows that flow into the ith comparment from the surrounding jth compartments; $Q_{11}$ are the flows that flow out of the ich comparment. Diffusion is defined by the gradıent or difference berween the







 adde. Moremver. there is also dxjiti ivad inis is whal haocons winen wil fealize thot ian state vanam Tecends
 ond scace. sumumaneous'y in th.s sase.

 P-are kuking at ins'anigincers ithayo or our funcram is the tome increment was apcroacting rewo. rowv bue san leok al similai diange in imo cimerticns -
 instantgneours metement when consed ered in one dmengion is called a pas Ifit gervalive and is sricion as $d x$ Then
 tho erigrase in space it tecomes even more interesimg if we consion mele fikn ane sfiatial noordindie Truan ve
 ent varacles.

## Continuous models
















Kin: -



## $X(1.20)=X(t)$.










## Time and space scales ...

are somovinat relatod in most casos wo obserwe that systems with larger soatial scales Isizesl hava longe temoo:a scales. It en intereating to note how in cosmic scases time and spoce become comoned into a unil sud, as a light year, whid is actully the distance mat is cosered if tigueling unt the speed of light for 1 year -1 light yoor $=94605284 \times 10^{19}$ metars
whach is cuile $\begin{gathered}\text { d disiancel Somatrang gimatar is tound in the subaiomic world. As we }\end{gathered}$ rave seen, the liny parisias of the micreworld hewe litetrmes ad less itan a milbonth of $t$ second. This is exitemely short in the human limescale. Howevar, their suze is also very small and itiey tiaval at ightingh-iast velocities to make moce sense of ihis compasisan, physicisis have come up with in measure called a "particie second" - a unit of ime equal
 limes its own saze Various parictes have hifimes that vary berween 10 and 100.000 paricle seconcts

Such resolutions do no: make any sense if we afe considerng geelcgical change, movement of conimenis or rising ol mouniains Howover, coriain slow processes may be ablupily miferrupled by lasi and viclent ifuctuations Slow geologica' change vields 10 an earirquake. when in minutes and hours we see more distuibance ihan over the thousand vears tefore that. Modaling processes that xccur on a variely of scates is a big chalenge. since it is prohizitively hara 10 represent ing skow prouedses at the scale of the rasid ones Howewar. if wo ignore tie singular 1 ies cormoleteiv 'we tray miss some reall; impor'ani cranges and lrans'ormatrons in the system

When stzes den't difler that much, there in no exaci telationahig beiween temporal and spatial scales For instance. suils regestor ther environment once in evary 4 seconds. Even though humens are larger, they can do a tetter pob For us. the woild arcund us changes approximately once ewary $\mathbf{i / 2 4 t h}$ of a second. "his resolution of ours is what delmes ing rate of charige of smapshols in movies that we watch. If we do il iess liequently, we see how the motion becomes discontinuous. hidures stari 10 mowe in jorks. If wo do it fasier, wo will not see the difference We can acturity insen anolher frame and we will nol ingister it. They saty that theie is a method at manipulaing people. called ino "25th frame:" This is when a 25ih frame is ingeried onc the movies fun al $1 / 25$ ih of a second Thig singin 2 Sin frame can W6 entitely Dut of contexi and tiumans 10 not consciously egister il However. apparenily it aftecis our subconscicus end ite information finds its way to the light parig of the brain, influencing our opinuons and deciswons

This would not be possible far a thy, which scans the erwironment 20 limes faster than we do. $\Delta$ fly would staie at ine 25ih frame tor long enough to realize that scnvething torally oul of contexi was being disalayed On the orter hand, a smea wound rever even see this frama Molsover, if you move last enough, in 4 seconds you can piek a snail from the grourd and put it in vour basket For the anail this kind of transiormation will occur instanianeousiy. it wil never know how it got fom one dace 10 another. Triese considcraticns aro important when choosing ihe 'ight resolutions for yoer models.
 deriser.

## Modeling advection










We also assume that rhere se a certam velocity of flow in the canal, $r$, and that it is constant

Ler us now dehne the concentration of the contents in any given segment at time $t+\Delta t$, assuming that we know the concentration there ar time $t$. Since calculating concentration may be conlusing, let as wite the equation tor the total amome of marerial in segment $x$ at time $r+\Delta r$

Reartanging the temm, we get:

$$
C(t+\Delta t, x) \cdot \Delta x-C(t, x) \cdot \Delta x=C(t, x-\Delta x) \cdot r \cdot \Delta t-C(t, x) \cdot r \cdot \Delta t
$$

Diveding both sides by $\Delta x \Delta t$ :

$$
\frac{C(t+\Delta t, x) \cdot \Delta x-C(t, x) \cdot \Delta x}{\Delta x \cdot \Delta t}=\frac{C(t, x-\Delta x) \cdot r \cdot \Delta t-C(t, x) \cdot r \cdot \Delta t}{\Delta x \cdot \Delta t}
$$

Or, cancelling $\Delta x$ on the letr-hand side and $\Delta x$ on the ryht hand sule:

$$
\frac{C(t+\Delta t, x)-C(t, x)}{\Delta t}=; \frac{C(t, x-\Delta x)}{\Delta x}-C(t, x)
$$

Now if we let $\Delta x \rightarrow 0$ and $\Delta t \rightarrow 0$, we get the well-known advection equaton as a partial difterential equarion:

$$
\frac{\partial c}{\partial x}=\frac{\partial c}{\partial x} .
$$

In discrete notation, the equation for concentration at the next time-step is:

$$
\begin{equation*}
C(t+\Delta t, x)=C(t, x)-\frac{|C(t, x)-C(t, x-\Delta x)| \cdot r \cdot \Delta t}{\Delta x} \tag{3.12}
\end{equation*}
$$

If we know the comcentration at the prevenus tome-step, we con calculate the concencration at the nexe time-step. To be able to use chis equation at any ( $x, t$ ) , we still need to dehne two more condinons. First, we need to know where to start - what was the distribution of materia! along the canal at the beginning, at time $:=0$. That will the the initial condition:

$$
\mathrm{CO}(\mathrm{x})-\mathrm{c}_{0}(\mathrm{x})
$$

Besides. it wou look at cquation (3.12) you may notice that to solve it for any t we need to know what the concentration at the lett-most ceil is, where $x=0$. That is the boundary condition:

$$
C(t, 0)=b(c)
$$

There may be other ways to inutialize equation (3.12) on the boundary. For example, instead of defining the value on the boundary, we may define the flow, assuming, say, that

$$
C(t, 0)=C(t .1)
$$

This will be a condition of no flow across the boundary, and will also be sufficient to start the iterative process to solve equation (3.12).

## Modeling diffusion

Let us now consider diffusion as the driving force of change in the concentration in our system. The force that makes the substance move in this case is the difference between concentrations in adjacent segments. It is also good to remember that in this discrete approximation we are actually dealing with points on a continuum, in this case a line $0 x$. The concentrations that we are considering are located ar these points. We are dealing with average concentrations for the whole segments, and are assuming that these averages are located at these nodes. Therefore, if there is no outside force to move the material, it would be reasonable to assume that the farther away the points we consider are, the less material can be moved between them by the concentration gradient.


Just as hefore, let us define the concentration of matertal in any given segment at time $t+\Delta t$, assuming that we know the concentration there at time $t$. The equation for the total amount of material in a segment at time $t+\Delta t$ is:

$$
\begin{aligned}
& C(t+\Delta t, x) \cdot \Delta x= \\
& C(t, x) \cdot \Delta x+\frac{C(t, x-\Delta x)-C(t, x)}{\Delta x} \cdot D \cdot \Delta t+\frac{C(t, x+\Delta x)-C(t, x)}{\Delta x} \cdot D \cdot \Delta t
\end{aligned}
$$

In this equation, $\frac{C(t, x+\Delta x)-C(t, x)}{\Delta x}$ is the empirically derived equation for the diffusive flux berween two adjacent segments. $D$ is the diffusion coefficient that characterizes the environment, the media; it rells us how fast diffusion can occur in this kind of media.

After some rearranging we ger:

$$
\frac{C(t+\Delta t, x)-C(t, x)}{\Delta t}=\Gamma \frac{\frac{C(t, x-\Delta x)-C(t, x)}{\Delta x}-\frac{C(t, x)-C(t, x-\Delta x)}{\Delta x}}{\Delta x}
$$

Once agan, it we let $\Delta x \rightarrow 0$ and $\Delta t \rightarrow 0$, we get the well-known diffusion equation as a partial difterencial equation:

$$
\frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}}
$$

In discrece notation, the equation for concentration at the next time-siep becomes:

$$
\begin{equation*}
C(t+\Delta t, x)=C(t, x)+\frac{[C(t, x-\Delta x)-2 C(t, x)+C(t, x+\Delta x)] D \cdot \Delta r}{\Delta x^{2}} \tag{3.13}
\end{equation*}
$$

If we know the concentraton at the previous time-step, we can calculate the concentration at the next time-step. lust as in the advectum example, to calculate this equation at any ( $x, s$ ) we need to define the intital condition:

$$
C(0, x)=C_{0}(x)
$$

As for the houndary conditions, in the case we will need cwo of them. We can. not use equation (3.13) to calculate the value both on the left hand sude buundary $\mathrm{C}(\mathrm{r}, \mathrm{D})$ and on the righr hand side boundary $\mathrm{C}(\mathrm{t}, \mathrm{N})$, where N is the number of the maximal segment that we consider. Therefore, we need two bundary cundtinns:

$$
C(c, 0)=b_{i}(c) ; \quad C(t, N)=b_{2}(c)
$$

Similarly, there may be other types of houndary conditions, such as:

$$
C(t, O)=C(t, 1), \quad C(t, N-1)=C(t, N)
$$

This will be a condinon ot no tlow acrons the boundaries.

### 3.3 Structure

Consider a communicy of two compeng species that eliminate one another. We can describe this system by the following two ODEs:

$$
\begin{align*}
& \frac{d x}{d!}=-b y  \tag{3.14}\\
& \frac{d y}{d t}=-a x
\end{align*}
$$

where $a$ and $b$ are humting etficiencues of species $y$ and $x$ respectively. This mutel can be resolved analytically:

$$
\begin{aligned}
\frac{d x}{d y} & =\frac{b y}{a x} \\
a x d x & =b y d y \\
a x^{2}-b y^{2} & =c o n s t
\end{aligned}
$$

A good way to look at system dynamics, especially in case of two variables, is to draw the phase portrait, which presents the change in one variable as a function of the other variable. Figure 3.7 presents the phase porrait for model (3.14). It can be seen that the two populations eliminate each other following a hyperbola. The initial conditions detne which trajectory the system will follow: ln any case, one of the two spectes gets eaten up first, while the other species remains. If the initial condition is on the line equation $\sqrt{(a x)}=\sqrt{(b y)}$, then the two populations keep exterminating each other at infinite length, tending to complete mutual extermination. If the inttial conditions are below this line, then $y$ is extermonated and $x$ persists. If the mintal conditions are above this line, then $y$ wins. Models like those considered above may be called ngid (Arnold, 199) ; their structure is totally defined. In contrast to a rigid model (3.14), a sofi model would be formulated as:

$$
\begin{align*}
& \frac{d x}{d t}=-b(x, y) y  \tag{3.15}\\
& \frac{d y}{d t}=-a(x, y) x
\end{align*}
$$

where $a(x, y)$ and $b(x, y)$ are certain functions from a certain class. It may be shown that for most functions $a(x, y)$ and $b(x, y)$ the phase portrait of system (3.15) is qualltatively similar to the one in system (3.14) (Figure 3.8). One of the species is still exterminated. but the threshold line is no longer straight.

An important feature of model (3.15) is its structural stability. Changes in func. tions $a(x, y)$ and $b(x, y)$ that describe some features of the populations do not change the onerall qualitatwe behavior of the system. Since in most cases our knowledge about the objects that we model is not exact and uses a good deal of qualitative description, soft models are more reliable for predicting the sysem dỵnamics. Unforturately, there are very limited analytical methods to study the structural stability of models. The only way to analyze structural stabiltcy in broader classes of models is to run extenstere sensitivity analysis, varying seme functions and relations in the model as well as changing paraneters and initial cond!tions.


Structural analysis of models requires duire sophisticated marhematics Even tor a simple model like that above, analysis of its structural statility lies way beyond the scope of this book. In general, Table 3.1, from von Bertalanfly (i968), shows that there is a very small domain of mathematical models that can be analyzed by analytical merhods.

Most of the real-world models turn out wo be non-linear, with several or many equations. Besides, mose of the systems are spatially distribured, which almose frecludes analyrical methods of analysis. However, there are numerous examples of quite successful and stimulating analytical studies that have led to new theories and new undersanding. Physics especially has an abundance of this sort of model. Probably this is why most of the inathematics that is used in modeling came from physical applications.


## Figure 3.8 Phase portrait tor the soft modet of mutual extermination.

|  | Linear equations |  |  | Non-linear equations |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equation | One equation | Several equations | Many equations | One equation | Several equations | Many equations |
| Algebraic | irivial | Easy | Essentially impossible | Very difficult | Very difficult | Impossible |
| Ordinary differential | Easy | Difficult | Essentially impossible | Very difficult | Impossible | Impossible |
| Partial differential | Difficult | Essentialy impossible | Impossibie | Impossible | Impossible | Imposs:ble |

Ecology, social sciences and economics have yer ro ilevelop adequate mathemat. ucal methouts of analysis. Up till now, most of the models in these sciences have been numerical, analyzed by means of compurer simulations.

### 3.4 Building blocks

Let us consider some of the mann cypes of equations and formulas that you can encounter in dynamic models (Figure 3.)). It you have a gond feel for how they work, you can pur cogerher quice suphisticated motels using these simple formalizations as building blocks While, indeed, complex non-linear models are notorious for springing surprises, for their unexpected behavior, it is always nice to have some level of control regarding what is going on in the moxtel. Knowing some of the math behind the equations and tormulas in a modeling software package such as Seella will add some predictability to how your model may behave. Knowing how some of the very simple formalizations perform as stand-alone modules will help you to construct models that will be better behaved and easier to calibrate. Cerrainly, interactoon of these processes will create new and uncertan behavior, which it will be haril or impossible to prectiot in some cases. However, in many other cases you will be able to have a precty good expectation of what the output will be when you pur together the building blocks.


[^0]| (C) Growth with saturation |  |  |
| :---: | :---: | :---: |
| $d x^{\prime} d t=a x-b x^{2}$ <br> where $a$ and $b=$ const |  |  |
| Solution $x=\frac{a c e^{2 t}}{a+b c\left(e^{a t}-1\right)}$ |  |  |

The exponential growth is now dampened by exponential decline At smaller populations the linear function $(a x)$ dominates. As numbers increase the parabola ( $b x^{2}$ ) overwhelms and shuts down growth. The solution is the so-called logisic equation. Note that the model is identical to the model with carrying capacily $a x-b x^{2}=a x(1-b x i a)$ The carrying capacity in this model is then a/b. When $x=a / b$ the growth is zero and the model saturates.

## (D) Growth with peaking

$d x / d t-a x-b x^{s t}$
where $a$. $b$, and $s=$ consl


A simple way to make the model peak and then decline is to have a variable exponent in the outlow part and make this outflow grow with time. In this case again at lirst the outflow is very small and the system grows. Later on the outfow becomes dominant and grad.saliy reverses the dynamics eventually getting the system down to zero. Used less often than the first three blocks but still may be handy.

## (E) Delayed response

$$
d x / d t=a x-b x^{2}(t-\Delta t)
$$

where $a$ and $b=$ const $\Delta t$ - is time delay


A powerful way to get pretty confus ng results. th this model of saturated growth (see above) we assumed that mortality is controlled by the population size several time-steps ago. This may be if we assume that mortality is due to a disease and the disease has an incubation period of $\Delta t$. If $\Delta t=1$ we still have a saturation. If $\Delta t=2$ we suddenly run into oscillations as shown in graph. With $\Delta t>2$ we have a population peak and collapse somewhat similar to the dynamics in the previous block. The delay lunclion should be always used with caution, since it can easily desiabilize your model.

## Further reading

1f. you feel that your math is too flaky you may want to refresh it Any textbook in calculus will be more than enough. Try this one for example: Thomas, G.B. Finney, R.L. (1989). Elements of Calculus and Analytic Geomerry Addison-Wesley These days you can also find a lot on the web. Just type "dufferentral equations" meo Googic and you uill get quute a few links evth pretcy good explananons to choose from.
Berlonskı, D (1978). On Systems Analysıs An Essay Conceming the Limitataons of Some Mathematical Methods in the Social, Political, and Bwogical Sctences. MIT' Press - This does a really good job explaining why machemancs can be quite important for building good modek Berlinsks may be overly critical of some of the classic modeling creatises, including books of Bertalanffy and Meadous, however most of his crivitsm makes a lot of sense. It is important to remember thar modth are more than mathemancal objeck, and that in some cases they may be useful even urth flawed or inadequare mathemancs

Vladmir I. Anoid has been suressing the difference beween soft and rigid modeis in his 1997 presentanons. His clossic book: Arnold, V. 1. (1992). Ordmary differential equatons. Sprmger.Verlag Can be recommended for those who want to get a better understanding of modeling with ODE's and master some analyucal techneques.
von Berralanfty, L. (1968). General System Theory. George Braziller - Contans some important mathemancs and ideas about the bulding blocks in modeling.

## 4. Model Analysis

### 4.1 Sensitivity analysis <br> 4.2 Model calibration <br> 4.3 Model testing <br> 4.4 Conclusions

## SUMIMARY

There are many wavs in which a model can be analyzed and rested, and some of them have become more-or-less standard for the trade. There may be many unknowns or assumptions that go into the mondel. Sensitivi:y analysis is a way to figure out how important these assumptions are and what effect they may have on the model performance. Sensitivity can be tested by disturbing a model component that is not known for certain (a parameter, a function, a link), and then seeing how this disturbance propagates through the model structure and how difterent the results that come from the disturbed model are. A second standard analysis is performed to see how closely the model can be made to reproduce the experimental data (qualitative and quantita. tive). This is model calibration. The mosel paramerers are :nodified to minimise the difference between model output and the available data. Finally, other tests can be conducted to validate the model and verify its performance. This analysis uncludes dif. ferent methods, ranging from diligent debugging of software code and mathematical formalizations to cemparisons with independent data sets, and extensive scenario runs

## Keywords

Uncertainties, parameters, initial conditions, critical parameters, inverse problem. data model, error model, Theil's mdex, $R^{i}$ index, weighted average, empirical model. trendline, process-based modeling, objecrive function, minimization, trial and error, optimizatom, Madonna sottware, curve fitting, open syserems, CLIMBER model, validation, verilicatun, scenarw, credibility.

Choosing variables and connecting them witt flows and processes is not enough to build a model. Actually, this is just the beginning of the modeling process. By identifying the variables and formalizing the processes that conneat them, in Stella or in any other modeling tool, only one possible description of the system is created. We still need to make sure that this description really describes the system, and then try to use the model in a meaningtul way to generate additional knowledge about the system. Why else model at all?

This stage of testing and working with the preliminary model built is called model analysis. It the model is a mathematical formalization - say, a system of ordinary differential equations - we may try to solve the equations. If this is possible, we get a functional representation for all model variables and can pretty much say what
they will be at any time or place, and see clearly how different paramerers affect them However, as previously indicated, the chances are guite slim that we will get an analytical solution. We may still try to analyze the phase plane of the model variables and derive some general understanding of the model behavior - perhaps by testing for equilibrium conditions, or trying to identity when variables grow and when they decline The more results we can derive from thus analyucal analysis the better, because all the analycical unformation we obsain is general and ic describes the system behavior lor al: kinds of parameter values that we may msert moto the model -- not just the smgle set of parameters that we use when we run the model numerically on the computer

### 4.1 Sensitivity analysis

If no analytical analysis is possitle, we have to turn to numerical methods. Using Seella, in order to see how the model performs we need to "Kun" ut. By dong this, we numerically solve the system of difterence equations that Stella has put together based on the diagram and process formalizations that we have formulated. A numerical solution of a model requires that all parameters take on certain values, and as a result $t s$ dependent on the specified parameter values. The result of a montel rum is dependent on the equations we choose, and the initial conditions and parameters that are specified. Some parameters do not mater much; we can vary them quite sig. nificancly, but will not see any large changes in the model dynamics. However, ocher parameters may have a very utvous effect on the model pertomance. Even small changes in their values result in dramatically different solutions.

Analyaing motel pertormance under various conditions is called senssienty andlysis. If we start modifying a parameter and keep re-running the model, instead of a stingle trajectory we will generate a bunch of crajectories. Smularly, we can start changing the initial conditions or even some of the formalizations in the process descriptions. By comparing the model sutput, we get an idea of the most essental parameters or factors us the model. We also get a better teeling of the role of individual paramecers and processes in how the model output is formed, what paramecers affect what variables, and within which ranges the parameters may be allowed to vary. This is very important because, in contrast to an analytical solution where we could find an equation telating model output to the inpur parameters, with numerical models we do not have any orher way to learn what the connectoon is between the various parameters and the model output, except by rerunning the model with different parameter values. Whereas in the analyucal solution we can use a lormula that clearly shows how a parameter allects the mutput, in case of numeric runs we know nothing about what to expect from the output when a parameter changes.

In Stella. there is a method of making estriates for model sensitivity Choose "Sensi Specs.." in the Run menu A window will open that will allow you to set up your sensitivity test

The following steps will be required:

1. Double click on the parameter that you want to test for model sensitivity. It will be moved to the right pane
2. Highlight the parameter in the right pane

| Rut Help |  |
| :---: | :---: |
| S-Run | 26 R |
| Eluse |  |
| 2an |  |
| Sector Specs... Sensi Specs... | KY |
| Run Specs... Range Specs... | Ver |
| Check Unlis |  |

3. Set the number of parameter values that you wish to test for.
4. Choose how you want the parameter to change its value.
5. Make sure you click the Set button to lill in the table on the right, where parameter vaiues will be atitomaticallv calculated to run the model.


If you now click "OK," the model will run several times in a row for the differen values of the parameter chosen. Before you do that, you need to prepare your output. Make sure you create a "Comparative" graph to see the difference in the output that you will be generating. For example, in the modei that we were building above, if we start changing the Birth Rate paiameter we will produce a family of curves, which show that the model is quite serisitive to changes in this parameter


114 Systems Science and Modeling for Ecologica Economics


If you modify ancther parameter, say the one that is related to the effect of temperature. you will get another bunch of trajectories.

You may already notice that apparently the change in this parameter has a less promınent effeci. While you can see some considerable variation, you do not get the curve to decline to zero - at least not for :he values ol the parameter chosen for this experiment

Sensiuvity analysis explores the parameter space and can help us identify some of the citical parameter values, where the model might, for example. crash or run away to intinty Every combination of parameter values translates into a specific model output. it is like testing the landscape for hidden surprises and trying to eapture trends in model hehavior in response to the changing combinations of parameter values, figuring out how so make certan vanables grow, or decline and at what time.

Later on in the modeling process, when we collect evidence of the model actually representing the system. and have sufficient confidence in the model pertormance, we. can perturm turther sensitivity analysis to the point where we trake conclusions about





A 1 .I! © © finillite len he .




### 4.2 Model calibration























How is it thal she are sotuing on imberse prablem? Suppose we have a amplo linear eowaicn: $y=a x+b$ Thle will be our direci problem: al we know the wilues of a and ofor any $x$ valuo. we cen catculate the value lot $v$. As a result, we get a grant inal is a stieglit line describing the linear functional response defined ty ine equation. Supcose now that we do not know what the vereses of $a$ and $b$ are, but we do know whal the graph looks like - that is we know mal there ano tovo doints with coordinates $\left\{x_{1}\right.$. $y_{1}$ lard $\left|x_{2} y_{2}\right\rangle$ inal sil on lims grach isince we can draw orty one line passing thraugh iwo given ponts. the Iwo cocrdinales tha: are defined above should be enough to deline the graph I So how do we figure oul the ecrastion for the line that will pass ithrough these two points' Let ue solve ine inverse probiem

We can write that $y_{1}=a x_{1}+b$ and $y_{2}-a x_{2}+b N$ Now end bate the unknowns Sciving ind sysiem of inear squatrons, me immedibely ger:

$$
b-y_{1}-a x_{1}-y_{2}=a x_{2}+b=\Delta x_{2}+v_{1}-a x_{1}
$$

## It follows ins:

$$
a=\frac{y_{2}-y_{1}}{\boldsymbol{x}_{\mathbf{3}}-\boldsymbol{x}_{1}}
$$

and

$$
b-\frac{y_{1}-\cdots-y_{1}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1} y_{2}-x_{y_{2}}}{x_{1}-x_{1}}
$$

By solving the ifverse probem, we liave identified the parame:ers of our equation based on the graph el ilie obserwert funcione. That re pretry much exactiv what we aro cong in the calibration aftort. except hare we have the luxuly of en analytical solution, which is quite rase in reat models



















Thu mut.|n ca:!









 which case we sill he parimg :





Qualitative comparison may become difficult as we close on our target, getung the model output almost identical to data. We may be still improving the results somewhar, but we can no longer distinguish the gains by simply staring at the graphics. A nother case is when we get a becter match berween output and data in one time range for one set of parameters, but achieve a better match with a different tume range for another set of paramecers. Which parameters do we choose chen? In chese cases. visual comparisons can fail. Quancitative mathematical formulas can then become useful. One simple formula for the error model is:

$$
\begin{equation*}
E=\sum_{i=1}^{n} \frac{\left(x_{i}-y_{i}\right)^{2}}{y_{i}{ }^{2}} \tag{4.1}
\end{equation*}
$$

where $x_{1}$ are the data points and $y_{\text {, }}$ are the values in the model outpur thar correspond in time or space to the data points. Note thar this formula tracks the relarive proximity of the two models - that 1 s , for larger values we allow larger errors. The smaller the error, $E$, the better the model calibration. This index is quite simular to Thell's measure of forecast quality:

$$
\begin{equation*}
E_{:}=\frac{\left[\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right]^{1 / 2}}{\left[\sum_{i=1}^{n} y_{i}^{2}\right]^{1 / 2}} \tag{4.2}
\end{equation*}
$$

In some cases, we may be concerned only with the average values over certan ume periods. Then we can compare the mean values:

$$
\begin{equation*}
E_{i}=\frac{\left|\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}\right|}{n}=\frac{\left|\sum_{i=1}^{n}\left\langle i_{i}-y_{i}\right)\right|}{n} \tag{4.3}
\end{equation*}
$$

Very often, the metric used to compare the models is the Pearson moment product correlation coefficient,

$$
\begin{equation*}
r=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{t}}{\sqrt{\left[n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} \mid\left[n \sum_{i=1}^{n} y_{1}^{2}-\left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]\right.}} \tag{4.4}
\end{equation*}
$$

or the $R^{2}$ value, which is equal to $r^{2}$. This correlation coefficienc is good for matching the peaks. Note that unlike the above error models, where the best fit came with the minumal value of $E$, here the best fit is achieved when $r^{2}=1$.

These formulas become more cumbersome if we calibrace for several variables at once. In the sumplest case, we can always take an average of error models for individual stare variables:

$$
E^{*}=\frac{\sum_{j=1}^{k} E_{j}}{k}
$$



## Figure 4.1 Experimental model ot the microbial system.

where $E$ are the individual errors calculated using equations (4.1)-(4.3) or similar metrics. In some cases, calibration with regard to one variable may be more important than the fit for the orher ones. For example, when we have the best data model for a certain variahle but very approximate information ahout the others, we would want to make sure that we calibrate more to the relable information, while the imporance of other data sets may be secondary. In this case, we may want to :ntroduce certann weights into the formula so that particular vatiables ger move attention in the comparison:

$$
E_{k}^{*}-\frac{\sum_{j=1}^{k} w_{j} E_{j}}{k}
$$

where $w_{1}$ are the weights associated with $k$ different variables,

$$
\sum_{i=1}^{k} w_{i}=1
$$

The error model is then alfected most of all by the varable that has the higher weight. This means $t \mathrm{t}$ is more efficient to get the error down for that variable as fat as possible, since the total error then gets reduced the most

Let us consider an example. Suppose that we have heen rumning an experiment in rhe lalr measuring the growith of a batch of microoganisms over a period of 100 hours, taking a sample every; hours. We then use a spreadsheer program to store the results and to present them in a graphic format (Figure 4.1). Also surpose that we are measurmg a certan lumiting factor - say, temperature, or substrate availability - that describes how suitable the lab environment is for the growth of the organisms that we are observing (Figure 4.2). We are nommalizing this medsured value to bring it within a range of $[0,1 \mid$. This can te done if we divide all the data hy the maximum ohserved value.

Let us build a model of the system. Suppose we ate not interested in the struc. ture of the system and want to build an empirical, "black-loox" model.

## Empirical model

The output that we have consists of the data about the number of organisms. The infut is time, and the infomation absut the temperature in the environment. One suluple empirical model can be created immedately in a spreadsheet program. For example, in Excel it is called "adding a trendline to the graph."


Figure 4.2 Experimental model of temperature in the microbial system.


Figure 4.3 A trencline as a black-box model that uses time as input.

In this case, the only input information that is used is time. The model is the equation of the line, which is a polynomial of order 2:

$$
y=-0.0978 x^{2}+14.554 x-81.443
$$

As we can see in Figure 4.3, the trendline does a pretty good job of representing the model results, though there is obviously a difference between the model outpur and the data points available. Note that Excel labels the independent variable $x$, while in our case it should rather be $t$ for time. By adjusting some of the parameters in the model, we may make the model output closer to or further anay from the data points measured in the experiment. Actually, this is exactly how Excel came up with this equation. It cook a geneal form of a second-order polynomial and started to tweak the three coefficients. We can see how this works if. instead of "Adding the trendline" in the Chart menu, we ser up a general form of polynomal and use the "Solver" option in the "Tools" menu. We will then be able actually to see how the values of the three coefficients will be modifed while Excel will be optimizing somerting to get the two curves to march as closely as possible.

This process of tweaking the model parameters in an attempt to get a better representation of the data available is the calibration of the model. In our case, the coefficients of the polynomial are the unknown model parameters that have been varied in an attempe to get the polynomial trendline as close as possible to the data poincs.


## Figure 4.4 A fith-order polynomial as a black-box model that uses time as input.

The $R$-squared value for the model described above is $R^{2}=0.9232$. Recall that this error model is such that the fit is getring better as $R^{-}$is approaching I. If we use another model, a sixth-order polynomial, we can improve the $\mathrm{R}^{-}$value and raise it (1) $R^{2}=0.9775$ (Figure 44) In this case we will have to guess the best values for seven parameters instead of three. Even though we get very high $R^{2}$ values from these models, they have the problem of generating negative output at certain times. This should be prolabited due to the nature of the modeled process - the population numbers cannor be negarive.

The simplest way to avoid this is to clamp the model with an "if" statement:

$$
y=\left\{\begin{array}{l}
0, \quad \text { if }-0.0978 x^{2}+14.554 x-81.443<0 \\
-0.0978 x^{2}+14.554 x-81.443, \quad \text { utherwise }
\end{array}\right.
$$

This would be then our empirical model, where the numeric coefficients are the calibrated values.

There are orher statistical tools that are available in Excel (such as the Solver or the Goal Seek tools) or in orher packages that may be further used for a refinement of our calibration. We may also try to bring in the orher available data set - that is, temperature - and run multiple regression for tume and temperature to try to improve further our empirical model; however, this will require more sophisticated statistical tools than Excel, unless we formulate sur own equation and use the Solven to minmize the errou model.

In any case, what is important is that, when building these empirical models, we entirely rely on the information that we have in the data sets. We come up with some type of equation and then quite mechanically adjust the parameters in an attempr to reproduce the data as well as possitble. All the information we know about the system is in the data. It may be somewhat risky to use the same model in different conditions for example, when the temperature is comsstenty $5^{\circ}$ lower. Temperature has not been included in this model at all, and clearly the results will be totally off if it changes

## Process-based model

Instead of further exploring the empirical model, ler us try to build a process-based model for the microbial system that we are studying. We will draw on some of our understanding of population growth, consider some of the processes that may be involved, and describe them in the model. This brings up a whole different paradigm
of modeling, where, in addition to the information contained in the data sets, we bring in orher intormatoon availatile from similar sudies conducted before on similar systems, or from general ecological theory, or from mass conservation laws, or simply from common sense

For the microbial system that we are considering, just as for any other population, the processes of growth and death are most likely playing an important role. Perhaps we can try to describe the life of the whole population in terms of these two processes. The simplest mode of population growth can be then presented by the following Steila equations:

Population(tit = Populationit -dt$)^{+}($Growth - Mortality $){ }^{*} d t$
INIT
Population $=10$
INFLOWS:
Growth - GrowthRate*Lim_factor*Population*(1 - Population/C_Capacity)
OUTFLOWS:
Mortality $=$ MortalityRate*Population
C_Capacity $=500$
GrowthRate $=06$
MortalityRate $=0.15$.
We can alsc insert the values for the limiting temperature lactor as a graphic:
Lim factor $=$ GRAPH (TIME
 $(70.0 .0 .93),(80.0,0.86!,(90.0 .0 .71),(100.0 .00)$

By looking at the cata points we see that atter the intial period of rapid growth. the population size seems to saturate at a certain level As we have seen above. there is a simple way to control growth in the model by introducing the Carrying Capacity. which represents the maximum number ol organisms that can survive in the lab environment $W$ ith the parameters listed above, the model produces the following dynamics:


Curve 111 on the graph represents the experimental values that we 7 ave been observing. while curve $\{21$ is the simulated behavior Here, too, we see that there is a certain error or distance between the two models The size of this error depends on the parameter values used in the model Let us run sensitiviiy analysis for the three parameters in this model.



These graphics show how the model reacts to changes in GrowthRate ifrom 03 to 08 i, C_Capacity (1rom 300 to 700 ) and MortalityRate (from 0.1 to 0.3 ) We may notice that changes in grovith rate and mortality have a rather similar eflect. mostly altering how the population changes during the intial growth period As might be expected, the carrying capacity value defines where the population saturates later on We may already start to make some mean ngtul changes to the parame ers, tiying to make the output closer to the data


To keep track ol our garns and losses, we can put together an error model Described in terms of Stella equations. the error model might be as follows

```
Error(t! = Error(t-ct) + {Er_In} ' dt
INIT Error = 0
INFLOWS:
Er_In = Population - DATA\^2/DATA^2
```

This formula reproouces the metrics described above as the sum of squares E in (4 1) Notice that at each time-step we add another error term. whicn makes it equivalent to the summation that we see in (4.1). Keeping in mind the results of sensitivity analysis, we can now start to tweak some of tie model parameters and see luw this changes the onstance between the data ana pooulation that is also measured by the erroi variable. Most ukely the GrowthRate will need to go down a little to make the nopulation grow slower, but the C_Cacacity snould probably go up to make it saturate at a higher level. That should bring the moael output somewhat closer to the Data This is an iterative tnal-and-error process that may o: may not ge: us io :ne perfec: maten

Yeu may have noticed that there is a difference in calibrating empirical and process based inudels. In empirical models, we rely entiely on the information that we have in the dara sers. We come up wirh some rype of equarion, and then yure mechancally adjust the parameters in an attempt to reproduce the data as well as possible. All the information we know abum the system is in the data, and the parameters usually can take any values as long as the errer model is minimal.

In process-based models calibration is different, since we are restricted by the ecological, physical or chemical meaning of the paraneters that we change Besides, there are usually some esumates for the size of the parameters: they are arely precisely measured, but at lenst the order of magnitude or a range is ustally known. Moreover, there are other factors that may play a role, such as confidence in the
available estunares for the paramerer, sensitivity of the model to a paramerer, etc. These are important considerations in the calibration process.

Ac the boctom of any calibration we have an optimization problem. We will learn more about optimization in Chapter 8, but here we just want to note that optumization in this case is about seeking a minimum for the error model. We have certain parameters for which values are known and others that are only estimated within a certain domain of change. We call che lacter ones "free" paramerers. These are the ones to change in the model in order to runimize the size of the error. To perform optımızation, we firsc formulace a goal function (also called an objective function). Then we try to make this function as little (or as large) as we can by changing different parameters that are involved. In case of calibration, the goal function is the error model $E=f(\mathrm{P}, \mathrm{C}, \mathrm{R})$, described as a function of the parameter vector P , the vector of initial conditions C and the vector of restrictions R . So we search for a minimum:

## $\min E$

over the space of the free parameters P and inıtial conditions C , making sure that the restrictions R (such as a requiremenc that all state variables are positive) hold. It is rare that chere is a real system model that will allow this task to be solved analytically. It is usually a numerical procedure chat requires the employment of certain fairly complicated software.

There are different ways to solve chis problem. One approach is to do it manually, as we did above with the so-called trial-and-error method or educated-guess approach. The model is run, then a parameter is changed, then the model is rerun, the output is compared, the same or anorher parameter is changed, and so on. It may seem quite ciresome and boring, but actually this process is extremely useful in understanding how the system works. By playing with che paramerers we learn how they affect outpur (as in the sensitivity analysis stage), but we also understand the synergetic effects that parameters may have. In some cases we get quite unexpected behavior, and it takes some thought and analysis to explain how and why the specific change in parameters had this eftect. If no reasonable explanation can be found, chances are there is a bug in the model. A closer look at the equations may solve the problem: someching may have been missed, or entered wich a wrong sign, or some effect may not have been accounted for.

In addition to the educared-guess approach, there are also tormal mathematical methods that are available for calibration. They are based on numerical algorithms that solve the optumization problem.

Some modeling systems have the functionality to solve che optimization problem and do the curve fitting for models. One such package is Madonna. One big advantage of Madonna is chat it can also take Stella equations almost as is and run chem withun trs own shell. Madonna also has a nice graphic user interface of its own so it is as well for us to start puctung the model cogerher direcrly in Madonna, if we expect some optimization to be needed.

To do the parameter calibration for our Stella model in Madonna we will have to:

- Go to the Stella equations
- Save them as a text file (File -> Save As Text)
- Open the file from Madonna, using the Open command in the File menu
- Bhternatively you can "choose all" and "copy" the equations from Stella, and then "paste" them directly irito an Equations windows in Madonna: however, in this case you will have to remove al! the "INFLOW:" and "OUTFLOW:" statements in the eapuations by hand)
- Define the control specs suck as the STARTTIME, STOPTIME. and DT

The model is now ready to run in Madonna.
Running the same population model, bult now in Madorna we get the following output, which is - rot surprisingly - identical to the Stella cutput:


As we start running the model. the first thing we notice is that Madonna runs much faster than Stella. That is because in contrast to Stella, which interprets the equations on the fiy, Madonná has a built-in compiler that first compiles sur model and only then runs it. On some models, the difference is quite significant, up to orders of magritude. This is especially essential for optimization, since all optimization algorithms require numerous model runs to be performed

The next thing we need to do to calibrate our medel is input the data into Madonna. This is done as par of the optimzation dralogue, which in this case is called Curve Fitting in the "Farameters" menu, we choose "Curve Fit...." A dialogue box will open:


## Here, we need to specify four items

1. Choose the free parameters that can be changed for model calibration
2. For each parameter, identify the maximal and minimal allowed values, and two "guesses" values in the domain of change that will be used to inıtialize the optımization process
3. Choose the state variable that we are calibrating - "Population" in this case
4. The data set to which we wish to calıbrate the model - "\#calibdata" in this case The data set should be in a file, one value on a row which can be generated. say, from Excel if the data are saved as Text On clicking the "Import Data set. ." button, we will be given the opportunity to choose the file with the data.

Now, if we press the "OK" button, some number crunching will begin; after 144 model runs we will get a new set of parameters that provides a much closer fit between the data and the simulation model.

The new values for the model parameters are:
C_Capacity $=57.73$, GrowthRate $=0.42061$, MortalityRate $=0.0760512$

The calibration problem may not have a unique solution. There may be several parameter vectors $P$ that produce almust similar output or deliver the same or almost the same minima to the optmization task. In that case, it may be unclear what parameters to choose for the model. Other considerations and restrictions may be used to make the decision. For instance, with C_Capacity $=600$, GrowthRate $=0.5$, MortalityRate $=0.1$, we get a fit almost as good as that achieved with Madonna. Which of the two parameter sets should we choose for the model? Normally this decision is made based on the orher information about the system that is available. For example, there may be some experimental data that would either identify a value for one of the rate coefficients, or at least put a range on them. Then we can see which of the calibrated values is in better agreement with rhese restrictoons. In some cases this information may not be available. and there may be some uncertainty about the system. This can further drive our experiments with the system, or tell us more about the system behavior.

Suppose we have done our best when finding the values for all che parameters in the simulation model and yet still the error is inappropriately large This means that someching is wrong in one of the models that we are comparing. Either the conceptual model needs to be revised (rhe structure changed or the equations modified), or the chosen scales were incorrect and we need to reconsider the spatial or temporal resolution. Alternatively, the data are wrong - which happens quite often, and can never be dismissed as a possibiliry.

To conclude, there are different ways to describe systems by means of models. There are different models that may be built. The process of adjustment of one model to match the output from another model is called calbration. This is probably the most general definition. In most cases we would speak of calibration as the process of fitting the model output to the available data pounts, or "curve fitung." In this case, it is the data model chat is used to calibrate the mathematical model.

Note that there is hardly any reason always to give preference to the data model. The uncertannty in the data model may be as high as the uncertainty in the simulation


 athut lice sotere:

 م:prate: :









 : h!

## Exercise 4.1








 and why cer:ans sumaish has bean chaser :cascribe the sustegn


```
INIT Algae - I
INFLONWS
A_prow = c_a_gros"Ns tlien:s"Agae '1'_וmit
```



```
GUTFLONS
```



```
MMorialoty is proporional to the exesingocimasai
```


INIT Detritus - : 0
INFLOMS
A_mort = c.a mer * Algae
M_mist $=$ C_m_mort $^{\circ}$ Macrcolvyles

oulflenss
D_decomp = r_decomp'Detrifus

```
|Lass of detirus due to decomposinn|
M_d_grow - C_md grow 'Cerrifus 'Macrootwlés
```



```
Oul = 0.09
|A cespain part si remomed watr a cun:y:all mudlrav|
```




```
INIT MocropltyINS = J
```

INIT MocropltyINS = J
INFLONS:

```
INFLONS:
```




```
M_d_grow = C_md_grov" Delinus "M acropmyes
```

M_d_grow = C_md_grov" Delinus "M acropmyes
|MEcrophytes can upiake both nufitnis dissolved or wolor a ke del
|MEcrophytes can upiake both nufitnis dissolved or wolor a ke del
OUYFLOWS
OUYFLOWS
M_mori - C_m_nucri"Maćcyim+es

```
M_mori - C_m_nucri"Maćcyim+es
```






```
INIT NuAments = 02 
```

INIT NuAments = 02
INFLONS
INFLONS
D_dsesmn - c_decomp" Imequtus

```
D_dsesmn - c_decomp" Imequtus
```




```
Lood = c_loed* Precmandian
```

```
Lood = c_loed* Precmandian
```




```
OUTFLOWS
```

```
OUTFLOWS
```




```
M_grow = c_m_grow*Nutherts "Macljp"y2es
```

```
M_grow = c_m_grow*Nutherts "Macljp"y2es
```


conditonsl
c_orow $=000$
cAmort = 007
c_decorno $=0$
cflord $=12$
c_md_grow $=0002$
c_neron - 0 O 1
CM_mor $=C 6$

## 





```
Alowe_data = CRANH \INt!
```







Deinius_dala - GRAPH:TIMEJ












## Nutrents_data $=$ GRAFI







Precipitation = GRaphitimel








 0.001 .1345 .0231 .1350 .00011356 C.011 1380.000

### 4.3 Model testing





 if it. © .
 "guti .. : :





The solution is to approximate the parameter values based on che data we have abouc the dynamics of state variables, or flows. That is the model calibration procedure. We are solving an inverse problem: finding the parameters based on the dynamics of the unknowns. This would be fine if we could really solve that problem and find the exact values for the parameters. However, in most cases this is also impossible and, instead, we are finding approximate solutions that come from model fitting. But then how is this differenr from the fitting we do when we deal with empirical models? In that case, we also have a curve equation with unknown coefficients, which we determine empirically by finding the best combination of parameters that make the model outpur as close as possible to the data.

The only difference is that instead of some kind of generic equation in the empirical models (say, a polynomial of some form), in process-based models we have particular equations thar have some ecological meaning. These equations display certain behavior by themselves, no macter what parameters are inserted. A polynomial can generate pretty much arbirrary dynamics as long as the right coefficients are chosen. However, an equation of exponential growth will always produce an exponent, and, say, a classic predator-prey system (considered in the next chapter) will always produce oscillations, no matter what coefficients we insert. Ot course. for some paramerers they may crash even before generating any meaningful outpur, but otherwise the dynainics will be determıned by the type of equations used, at least tor a large enough range of coefficients. So we may conclude that, to a large extent, we are building a good model as long as we chose the right dy'namic equations to describe our system.

On top of the basic dynamic equations we overlay the many other descriptions for the processes that need to be included in the model. These may be the limiting factors, describing the modifying effect of temperature, light or other external condrnons. There may be some other details that we wish to add to the system. However, if these processes are not studied experimentally, and if the related coefficients are not measured, their role in the model is no different from that of the coefficients that we have in an emprrical model. In both cases we figure out therr values based on a time-series of model output; in borh cases the values are approximate and uncertan. They are only as good as they are the best ones found; we can never be sure that a better parameter set does not exist.

So the bottom line is that there is a good deal of empiricism in most processbased models, and the more paramerers we have estimated in the calibration process, the more empuricism is involved, the less applicable the model will be in sıtuations outside the existing data range. How can we make sure that we have really captured the essence of the sysrem dynamics, and can reproduce the system behavior beyond the domain that we have already studied?

To answer these questions, the model needs to undergo a process of vigorous testing. There is nor (and probably never will be) a definite procedure for model testing and comparisons. The obvious reason is that models are bult for various purposes; therr goals may be very different. Moreover, these goals may easily change when the project is already underway. There is no reason why goal-setung should be left out of the iterative modeling process. As we start generating new knowledge and understanding with a model, its goals may very well change. We may start asking new questoons and need to modify the model even before it has been brought to perfection.

Besides, ecological and socio-economic systems are open, which makes their modcling like shooting at a moving target. While we are studying the system and building a model of $i t$, it is already evolving. It evolves even more when we start administering concrol, when we try to manage the ecosystem. As a result, models can very well












 I: An:fall I :














 mare sirnulations. The moder has a ocarid iparial resoludion that can only resalve the com-


 specific humain and memosparic catulation ato patamatariand Thase parametargations comore the verical protiles af temoeratuia, humidily and valcaity thal me used fal catcula
 using a m. atilevel ndation scherre 110 lavels) that accounis for watel vapor. ozcons. $\mathrm{CO}_{2}$ and ive compuled doud cover. Tho ocean modal is a mullthan, zonally averaged modrl The ien-ce madal predicts ice thickness and concenitaison, and includas ice advectori. In the -ierarchy of models. this model is p'reed belween spatially uniform e'raigy balinoe modets and general circulation models (GCMg). Or a wortatation. the model can be magratea to sbour 10,000 model years in a diay.

The model has been used to analya a varaly of chrnatic smationa wein ia one enam



 nel toteng. pasibily from the Sun Thart are whllonown ond woitpronourced solat cychas of 81 and 210 yems. the so-aned DoVnes and Glenssberg soler ovcles, but no one so lar hat owecred a 1.470 -may molter cred
 Ocusn in evoles of 87 and 210 vems. CLIMEER monated rapud climate shites similar to the D-0 wents with a sowne of 1.410 vets Ins iobust 1.470 wear response timg car be

 condions. \#rily everils do nol coar to ond therebore be concluded that ihe glacy



 refolution models The erpeded aponsan molest that the trown solpy feg.encias are
 nonlineer neuse of the syitern

Whenevti the moded can reproduce sommen-e that is obserned bul wat not anted so





 mete with the mudh greviet ones od Gremiend Once agan. una made prederud sometrip
 validity



















Another important step in model analysis is tenfication. A model is verined when it is scrupulously checked for all sort of iatemal inconsistences. errors and bugs. These can be in the equations chosen, in the units used, or in links and connecrions. There may simply be programing bugs in the code that is used to solve the model on the conputer, or there may be conceptual erross, when wrong data sets are used to drive the model. Once again, there is hardly a prescribed method to weed these our. Just check anst recheck. Run the mosiel and rerun in. "fess it and cess again. There is to agreed procedure for motel verification, especially when models become complex and difficuit to paramererize and analyze. We iwo keep studying its behavior under ali sores of conditions.

One efficient method of model resting is to ren the model with extreme values of forcing functions and paramerers. There are always certain anges where the forcing functions can vary. Suppose we are talking about temperature. We make the temperature as high as it possibly can be in a particular syscem, or as low as it can be, and see what happens to the model. Will it still perform reasonatly well? Will the oupur stay wuhin certain plausible values, or will the model crash? If so, we need to try to figure out why Is it somett:ing that can te explained? If so, then probatly the molel can be sill salvaged and we may simply need to remember that the forting fanction should stay within cercain allowed limits. If the behavior cannot be explained, we need to keen digeing - most likely, there is something wrong.

Just as when we are resting a new car. the best way to find our how it performs is to torce it. Step on the pedal, and let it run as fast as it can. See if somecthing goes wrong, and where it might fail. The beauty of testing the model is that it is mot wrecked when it goes wrong! If we force the car too hard, we will ruin it. With rhe model, we can do whatever we wan to it - change all the parameters as much as we wish. If the compurer does not overheat. we can always go back to previous parameter values, and the model will run again like new. However, we will collect some valuable information about what ro expect from It , where the bugs and the teatures are, what we an let ueers do to it, and where we should add some limits to make sure they do not have surprises that we cannot explain.

Awoher important check is based on first principles, such as mass and energy conservation. It is important to make sure that there is a mass balance in the model, so that nothing gete created from rothing and nothing is lose.

Rutning scenarios is another great way to rest a model. This step inay already be considered as model use rather than just testing. A scenario in this context is a story about what can happen to the system. To detme a scenario, we need to tormulate all the forcing finctions (say, patterns of climate, or pollution loading. or landese patcerns) and all the control parameters (say, management rules, or external global variatles). In a way, we are modeling what the external forcings are to which the system will be reacting. For example, if we are considering a model of landuse change for an urban area, we can tormulare a so-called "business as usual" scenario that will assume that all the existing development trends continue into che turure. che population, the economy, the investments, elc, will continue to grow at the same rate, there will he no additional controls or limits incroduced, or climatic perturbations, etc. These we feed into ile landuse model and ton it to generate patterns of landuse under this scenario.

We may then thgure out a different scenario - perhaps a sustaioable development plan. We witl need to formulate this in terms of the model. This means thas we ranslate the sustamable developnent plan into the paramerer values and forting :unctions that wall most closely describe that In a way, we model what we think will
be a sustainable furure. In our case we may assume that there is a control over population growth, so that certain birth-rate reductions are introduced. Furthermore, we will tie economic growth to the natural resources that are available in the area, and make the growth rate slow down as natural capital gers deplered We can also include some rules for investments that would stimulate the green economy. As a result, we will get a different set of parameters that control the model, and the model run will now produce some different pattern of landuse as a result of this scenario.

Yet anorher scenario can be put togerher for devastating clunaric conditıons - say, a storm that will flood the area and destroy property and population. We will need to formulate some climatıc conditıons describing this storm. Once again, we are modeling cerrain condirions or forcings for the system. Nore that scenarios are also models, coherent and feasible models of external conditions that will then drive the model of the system chat we are studying.

Nore that scenario runs are also powerful tools of model resting. In this case, we are likely to explore the unknown domains of model parameter values. We do nor have the data about the model behavior that we might expect, but we do want the model to produce somerhing qualitatwely reasonable. If that does not happen, we may question the model validicy and have some clues where to look for errors. For example, if a model of sustaunable growth results in pacterns of further urban sprawl, this would be a warning indicating that somerhing is not working right in the model. We should take a closer look ar the formalism we used, or perhaps at the parameter values that we calibrated.

The bottom line regarding all this testing is that there is no perfect model. It is hardly possible to ger a perfect calibration, and the validation results will likely be even worse.. No matter how long you spend debugging the model and the code, there will always be another bug, another imperfection. Does this mean that this is all furile? By no means! As long as we reach new understanding of the system, as long as the model helps to communicare understanding to orhers and to manage and control the system, we are on the right path and our effores will be frustful. Any model that is useful is a good model.

### 4.4 Conclusions

One obvious conclusion from all the above is that puting the model cogecher is not just about establishing variables and connections and writing the equations for them. We also need to do a lot of number crunching, running the model many times. If the model is complex and requires a grear deal of computer power to run it, we will be limited in the extent of testing and improving that can be done with the model. We will have to be prepared to do che job on our slow desktop (and spend more time), or we will need to find a more powerful super-computer (and spend more $\$ \$$ ), or we will have to limit ourselves in the amount of testung and calibrating that we can do (and get a poorer model and less well-underscood system). Yet anocher option is to go back to the model design sage and try to simplify the model.

There is a porential Catch-22 in this process. On the one hand, the more information about the system we can use in our model, the more processes we can include and the more detail abour these processes we can formalize, the better our model should be and the more ushould be able to tell us about the real system. On the orher hand, the more complexity there is bult into the model, the longer it will take










 -




 - me iml -


 we wate to moow a lathoond we engit treiefora want to include oxygen as a state rariable and would proonbly add an oxygen forcing
 function lor tisth martality in this function. pral es neaded. the mortality would increase as arygan concentrations fel below 2.

Suoposes wre buad this model and sien surong is wath the clatd that we have, and with ine aming entormation we never ge: eryumere eten citasa to rypoxia. We can selaty num tre inodel tor cupoer oxxcentro tors will over 3 mg i Thes noteales thei all the sensutivit andivis thet wa certorn wall

 makn the model as smple es ooserb? And why woud we want so have the redurdercy of
 "managig" in eoospstem Dy. sy. merasing the amount of fan beec that we apply. we are
 etass would then secorte very rroortent once egen. but mev ace no longer in tha model. sence
 gome stionanal procesies in tre syste-n



the decisisn to be made. This is probalily a good writy to trame it. Here, we include both the model goal and the model users in the evaluation process. Indeed, there is no use talking ahout some overall miversal model validity; the model is valid only with respect to the goals that it is pursuing, and only the users of the model can define wherher it suits their needs or not.

There is a good deal of concom abosut the unceranties that are inherent in almost any modeling effort. Pretry much any stage of the modeling process is full ol uncertannes. We state trom the goals withe stuty and immediately we realize that there are differenc expectations that various users may have fur a model. The goals are communicated in some lingustic form, in words, and this in itself is a model of a col lection of thoughts or deas abour what we want. Such models alreaty may be tuzty, and may change as the mind, knowledge and ideas of people evolve. Fepectally when we are dealing with socio-economic processes that intlude people, ther opinions, and frorities, we immediately enter a realm of huge umertanty and mum huesswork.

Very much like in quantum phystes, where the mere occurence of the experiment influences its results, so it is in soctal work, where, for example. thy polling people and asking them a question we immediately hias the outcome hy how we ask the question and by the simple fact of the guestion, which already can make penple think differently from how they might have done without beng expoised to the question.
"How do you value thar forest" Well, chances are the respondents never even roticed the forest and could not care less almout us existence. However, now that they are asked about it, they may start thinking: "So why would they ask me? Actually yes, there is that lorest. And I rememher going there as a kid. Once. And it was pretry cool. And how an I going to look of I say that I don't care about this for. est? No, probatly I should say that 1 value it at least somewhat. And may he actually there is value in it, or why would they ask orherwise?" We see that the response is already differenc from what 15 was supposed to be at first. The person quickly built a mental model, analyed at and produced an answer, wheh in fact is sull full of uncercanties, especially since we will never know what the real chatn of thought was and what intermediate evolution the person's mond hat gone through.

It does not get any better as we step up to the nexs stages of model building. As we have already seen, we hypothese all sorts of thongs atout a system when we model in. Besides, we need to simphify it, introducing even more uncertancties. And then of course there a all of the calthation process, when looking at the semsitivity test should he enough to realize that differenc parameters can result in a dramatically different model output. A model that does not have much sensitivity to its parameters, that is quite robust, will be adding less to the overall uncertainty than will a model that is wery sensitive to centain parameters. Sensitwe parameters then need to be measured with especially high accuracy, which may not be possihle in some cases. Obvously, as model become mure complex, overall uncertanty also grows very tast. In some cases, greater complexity can make the model more rohust to variations in parameters; however, this normally comes at the expense of overall model controllability, when the complex model starts to operate as an entity in itselt, and we approach the Bomani paradox stuation - that is, we replace the real-life complex system hy another complex system - the model.

Still, we will model. There sis simply no other hetrer way to perform analysis and to produce synthesis. We have to find a way to simplify a complex system if we want to undersand it. As long as we are ready to go back, to try again, to reiterate and test, test, test, we will eventually end up with a useful product. And if it is usetul, it means that the model we have built is a good une

## Exercise 4.2





 Can we do it to various mockis anu susierins)

 most interestrang ones will tie ther pive:nd tran

## Further reading















 م




宛










 van :




# 5. Simple Model, Complex Behavior 

5.1 Classic predator-prey model<br>5.2 Modifications of the classic model<br>5.3 Trophic chains<br>5.4 Spatial model of a predator-prey system<br>5.5 Conclusions

## SUMMARY

Non-linear systems are those that can generate the mose unusual and hard to predict behavior. A syseem of two species where one eats the other is a classic example of such non-linear interactons. The predacor-prey model has been well studied analytically and numerically, and produces some very exciting dynamics. This simple twovariahle model can be furcher generalized to explore sysems of many species that are linked into crophic chains. Further complexity is added when these populations are considered spatially as so-called metapopulations.

## Keywords

Lorka-Volterra model, non-linear systems, trophic function, cquilibrium, phase plane, carrying capacaty, Monot function, Kolmogorov theorem, periwinkle snail, even and odd rrophic levels. Yellowstone wolves, Stella arrays, Simile, Spatial Modeling Enviromment (SME).

Twostate variable systems have been honored with the most attention from mathematical modelers. This may te readily explained by the dramatically increasing complexity of marhematical analysis as the number of variables grows. As seen previnusly. it is only the simplest models that can be treated analytically. On the other hand, two state variables prodice much more interesing dynamics than one variable, enpectally it there is some mon-linearity included. Mathematically, such systems are more challenging and certainly more rewarding. All sorts of exciting mathematical results have cone from analysis of these systems. In addition to adwancing mathematics, analy. sis of these simplest two-state-variable systems has provided a wealth of results that may have important ecological implications and are certainly interesting in the art of modeling even in more general and complicared cases.

One ot the hirst and also hest-studied commmities is the so-called "predarorprey" system, where organisms of one population serve as food for those of the other. Viro Volterra studied hish populations, and in 1926 formulated a model that turned
out to be very insightful regarding the understanding of populanon dynamics. Alfred Lotka proposed the same model in 1925, so the model is sometimes known as the Lotka-Volserra model, or just the Volterra model, since it was he who did most of the mathematical analysis.

### 5.1 Classic predator-prey model

Suppose we are considering a predator-prey system, where rabhits are the preys and wolves are the predators. The conceptual model for this system can be presented by the simple diagram in Figure 5.1.

In this case we are not concerned with the effects ol the enviromment tupon the community, and focus only on the interactions between the two species. Let $x(t)$ be the number of rabbits and $y(t)$ be the number of wolves at time $t$. Suppose that the prey pupulation is limited only by the predator and, in the absence ot wolves, rabbirs multiply exponentally. This can be described by the equation:

$$
\begin{equation*}
\frac{d x}{d t}=\alpha x \tag{5.1}
\end{equation*}
$$

When the wolves are bruught into play they start to consume rabbits at a tate of $V=V(x)$, where $V(x)$ is the number of rabbits that each wolf can find and eat over a unit time. Naturally this amount depends on the number of rabbics available, $x$, because when there are just a few rabbits it will be harder for the wolves to find chetu than when the prey are everywhere. The torm of the functor for $V(x)$ may be differ. ent, but we may safely assume that it is momone and increasing. Then the equation for rabbits will be

$$
\begin{equation*}
\frac{d x}{d t}=x x-V(x) y \tag{5.2}
\end{equation*}
$$

The growth of the wolt population is determined hy the success of the wolves' hunting activities. It makes sense to assume that only a certain patt of the biomass (energy) consumed is assimulated, while some part of it is loss. To account for that, we describe the growth of the wolf population as $k V(x) y$, where $0<k<1$ is the eff. ciency coefficient. The wolt population declines due to natual mortality, with $\mu$ being the morality tate. As a result. we get a sysrem of two ordinary differential equations (GDE) to describe the wolt- rabbit communty:

$$
\begin{align*}
& \frac{d x}{d t}=\alpha x-V(x) y  \tag{5.3}\\
& \frac{d y}{d t}=k V(x) y-\mu y
\end{align*}
$$



In the absence of rabbits, the wolf population exponencially decreases. $V(a)$ is called the trophe function, and it describes the rate of predarion as a function of the prey abundance. The form of the crophic function ss speces-specific, and may also depend upon envirommencal conditions. Lisually it grows steadily when the prey population is sparse, but then rends to saturation when the prey becomes abuadanc. Holline has identied thee man cypes of trophe functions, as shown in Figure 5.2.

The hrst cwo types of the trophic functions (A, B) are essentially the same. except that on case B the funcoon has a well pronounced saturation threshold. The third rype of trophic funcrion behaves differendy for small values of prey densities. It tends to -eru wich a zero derivative, which means that neat zero the trophus function decreases taster than the prey density. This behavior is found in populations that can learn and find refuge from the predator. For such populations there is a becter chance to persst, because rhe predator cannot drive the prey to total extinction.

Volcera constered the simplest case, when the trophic function is linear. This corresp:nds to functum $B$ below the saturation threshold. The wolves are assumed to Te always hungry, never allowing the rabbuts to reach saturation densities. Then we can think that the crophic function is hnear: $V=\beta x$. The classical Volterra predator-prey model is then formulated as:

$$
\begin{align*}
& \frac{d x}{d t}=x x-b x \\
& \frac{d y}{d t}=k \beta x y-\mu y \tag{5.4}
\end{align*}
$$

It can easily be seen that this system has two equilibria. The first is the so-called trivial one. which is when toth the wolves and the rabbics are driven to extinction, $x=0, y-0$. There is atso a non-crival equilibrimm when $x^{*}-\mu / k \beta, y^{*}=x / \beta$ Ohviously, it the community is ar an equilitrium state, it srays there. However, the chances that the intial conditions will exactly hit the non-rivial equilibrium are null. Therefore, it is important to find out whether the equilibria are stable or nor. For a simple model thike this, some qualitanve study of the phase plane may precele further analytical or numerical analysis of the model. In fact, we may nore that when there are more rabbits than ar equilibrium ( $x>x^{*}$ ). the population of wolves decreases ( $d y / d t<0$ ) The opposite is true when $x<x^{*}$. Similarly, when there are more wolves than at equilibrium ( $y>y^{*}$ ), the population ol rabbiss declines ( $d x / d t<0$ ) it grows


When $y<y^{*}$. We may cherefore break the phase plane into four areas and in each of them show the direction of the rajectory of the model solution (Figure 5.3).

This yualitative analysis already shows that there appears to be some cyclic movement around the equilibrium point The trajectories are likely to wind around this point. There is still a chance that the pount is stable, in which case we start circling around the equilibrum, gradually moving back into the center. However, this qualitative analysis unly indicates that the model trajectories will loop around the non-trivial equilibroum, but it is not clear whether these loops form a spiral converging towards the equilibrium (point stable) or whecher the spiral will be heading away from the center (point unstable). In any case, we may expect oscillations in populations of rabbit and wolf. Let us see what a simple Stella medel can tell us about the dynamecs in the preda-tor-prey system (Figure 5.4).

You can either put together a model yourself for further analysis, or download it from the book websice. The phase portrast very well matches our expectations. We do get the loop that behaves exactly as our qualatative analysis predicted. As expected, the model produces cyclic behavior, where an explosion in the rabbit population is followed by a peak in the wolt population. The mbbits are then wiped out, after


Figure 5.3 The direction of change on the phase plane for the Volterra model In I, both $x$ and $y$ decline; in II, $x$ declines as $y$ grows, in III, $x$ grows and $y$ falls. in IV, both $x$ and $y$ grow


Figure 5.4 The Stella diagram for the predator-prey model
which the wolves die from starvation, almost to extinction. When there are very few wolves left, the rabbits start to multiply again and the pattern recurs (Figure 5.5). If we run the model with the Euler method, we see that there is no trend towards the equilibrium in the center, and the amplitude of the oscillations gradually increases until the system crashes. However. if we switch to the Runge-Kutra fourth-order method, we find that actually we get a closed loop in the phase plain. Populations of both wolf and rabbic follow the same identical trajectory, going through the same patrern of oscillations (Figure 5.6). There is no convergence cowards the equilibrium in the center, and neither is there a run-away from it, which we erroneously suspected at first when running the model with the Euler method.

However, unless we find an analytical solution we cannor be really sure that this will be the kind of behavior that we get under all conditions and combinations of parameters. Luckily, in the time of Vito Volterra there were no computers and he studied the model quite rigorously, analycically proving that the model trajcctories always loop around the equilibrium point.

It may be noted that the initial condstions turn out to be very important for the overall amplitude of the cycle. Nore that if all the paramerers stav the same but the inital condutions are modified the system still produces a cycle, although its form may change quite dramatically. This is a somewhat unexpected result, showing that the curtent state of the system depends very much upon the state of the system a considerable length or time ago, when the initial conditions were established to start up the process.

The changes in the parameter values also do not change the overall form of the rajectories, which are still looping around the non thivial equiltbria. However, they do move the loops on the phase plane (Figure 5.7).

Stella is unlikely to get the loops using any other method of integration than fourth-order Runge-Kutta. The Euler merhod uuickly results in increasing oscillations



Figure 5.6 The dynamics of prey and predator in the Volterra model as solved by the Runge-Kutta lourth-order method.
A. Graphs for the Wolves and Rabbits B. Phase porrrait for the Volterra model.
that eventually explode the system. Seconilorder Runge-Kutta parsists for longer, but eventually also tends to fall apart. This is another illustration of the importance of careful choice of the time-step and rigorous analysis of the influence of the timestep upon the simulation results. If there were no analytical solution available for the Volterra model and we had been running it with the Euler method in Stella, we would have been getting qualitatively different results, and would not even be suspecting that the true dynamics of the system are rorally different.

The major result thar comes from the Volterra model is that population cycles olten registered in theld studies may be explained ty some internal dynamic features of the system. They do not necessarily stem from some environmental forcings, such as the seasonal variations in clmatic factors. Cecles may occur simply as a result of interaction between the two species.


## rigura 6.1




 landory

## Exercise 5.1


 In lie piedatur-prey modil'







 all orstem drumes'

### 5.2 Modifications of the classic model









$\therefore: 1$







[^1]

Figure 5.8 Dynamics of Rabbits and Wolves with carrying capacity introduced for Rabbits.


Figure 5.9 Phase porrrait for the Volterra model with prey saturation run with different initial conditions.
the system dynamics does not depend upon the initial conditions. The coexistence state appears to he stable, and the oscillatory hehavion is only iransiem (Figure 5.9).

As mighe be expected, the model also becomes more robust with respect to the numerical method for its solution. We can salely run the tuodel with Euler method and much larger time-steps, yer still arrive at the same steady state (Figure 5.10).

Let us consider some turther adjustments for the Vilterra nowdel As nuted above, another simplification in the inodel, that was hardly realistic, was the assumption regarding the linear trophic function. The wolves remained equally hungry, no mater hnow many rahhis they had already eaten Thes secms unlikely. Let us now


## Figure 5.10

 Phase portrall for the Volierra model with prey saturation run using Runge-Kutta (blue) and Euler (red) methods.choose a Holling type II functional response, assuming a Monod trophic function, to describe how wolves eat rabbits:

$$
V(x)=\frac{\beta x}{K+x}
$$

Here, $\beta$ is the maximal growth rate and $K$ is the half-saturation coefficient. The function makes sure that the process (predation, in this case) occurs with saturation at $\beta$, and it reaches $\beta / 2$ when the prey population is equal to K (this explains the "half" in the name) The function is identical to the Michaelis-Menten function that we encomented above: for some reason in population dynamics it is known as the Monod function, while in chemical kinetics it is known as Michaelis-Menten.

The dynamics in this model are somewhat similar to those in the classic model. W'e get non-damping oscillations for the variable, or a cycle in the phase plane. However, there is a major difference: now, different initial conditions result in the same limit cycle. No matter where we start, we end up looping along the same crail in the phase plane. This is called a limit cycle, and it is stable (Figure 5.11). There are mathematical methods to prove that the cycle in this case is indeed stahle; however, this is a bit too complex to describe here.

As in the previous case, when prey growth was stabilized by carrying capacity, here again the model can be solved by the Euler method as well as hy Runge-Kutta. Whenever you have a "stable" situation that attracts the trajectories, Euler works too. The cycle it generates will be slightly different from that which the RungeKutta method derives, but qualitatively the behavior of the system will te identical.

Kulmogorov (1936) considered a very general system that covers all the cases studied above. He analyzed a system of two ordinary differential equations:

$$
\begin{align*}
& \frac{d x}{d t}=\alpha(x) x-V(x) y  \tag{5.6}\\
& \frac{d y}{d t}=K(x) y
\end{align*}
$$



Figure 5.11 Phase portrait for the Volterra model with prey saturation and type-2 trophic function for predation. Note that different initial conditions result in the same limit cycle.

We can see that Volterra's system is a special case of this system; however, there are many other systems that can be also descobed by these equations - the Volterra system is just one of them. The functions $x(x), V(x)$ and $K(x)$ can be any, although as long as we are describing population dynamics they have to comply with certan obvious restrictions:

1. $d \neq / d x<0 ; \alpha(0)>0>\alpha(x)$ - this is to say that the prey birth rate is decreasing as the prey population grows (the derivative of over $x$ is less than 0 ), gomy from positive to negative values. This is something we were getting with the carrving capacity function in (5.5). which is quite a natural assumption for populations with intraspecific competition and a limited resource. With this assumption, even with no predator to concrol it the prey pospulation grows, but it is then stabtlized at a certan value given by the cquation $x\left(x^{\prime \prime}\right)=0$.
2. $d K^{\prime} / d x>0 ; K(0)<0<K(\infty)$ - this is to make sure that the predator birch rate increases with the prey population. It stirts with a negative value, when there is no food available, and then increases to positive values.
3. $V(x)>0$ for $x>0$; and $V(0)=0$ - this is to make sure that the trophic function is positive for all positive values of the prey population. It also equals zero when there are no prey.

Under these conditions, system (5.6) has either two or tine positive equilibria:

1. The crival equilibria $x=0 ; y=0$
2. $x=x^{0}$ (where $x^{\prime \prime}$ is the solution th $x(x)=0 ; y=0$
3. Foint $\left(x^{*}, y^{*}\right)$, which is the solution to

$$
\begin{gathered}
\alpha\left(x^{*}\right) x^{*}-V\left(x^{*}\right) y^{*}=0 \\
K\left(x^{*}\right)=0 \\
\text { at } \alpha\left(x^{*}\right)>0, \text { that is when } x^{*}<x^{\mathrm{u}} .
\end{gathered}
$$


 wath



 1.ロ1子11'









## Exercise 5.2



INTT Frobas = 1



HNT Mhmes - j $\alpha$


$A=1$
alpna $=0.25$
Hena - 3 6
$t=01$
$m=02$
$\mathbf{S S}=0.5$




### 5.3 Trophic chains






 .




 uation with wome ol tha Southem sali marshas These marghas atruto Irom Chasapaake Bew to ine cenirat Fionde cosete. and are some of the mosi groductiog grastende in the word

 zuffor shorelinas fior erowion the rarshes ecalogy and wellbang it vely mifh yependert








 oredict




















 *min


Figure 5.12 A genetal diagran ol a trophie chain of lenyth $q$ and a Stella model that describes it Here, a species preying on another species is in turn prey to another predator $N$ is the external resource flow.ng into the system. $T_{i}$ are the biomasses or numbers ol organisms in the trophic levels


## Figure 5.13

Dynamics of five trophic levels in a trophic chain. Odd and even trophic levels behave differently
thuse ones in the even levels. By turcher increasing the inflow inco the system we do not change the values in the even levels, whercas the ostd levels gradually continue to increase then equifbrium bionass.

Tu check whether this is juse a coincidence that might gu iway if parameter val. ues are modifed, or whether in is something real regarding the system dynamiss, we may take a look at the equations and figute out the epulthria. In the most general form, the equarions for the moded are.

$$
\begin{aligned}
& T_{:}=N-u_{1} T_{1} T_{2} \\
& T_{2}= u_{l} T_{1} T_{2}-u_{1} T_{2} T_{i} \\
& \ldots \\
& T_{i}=u_{i-1} T_{1}, T_{1}-u_{1} T_{i} T_{i+!} \\
& T_{k}=u_{k-1} T_{k}, T_{k}-u_{k} T_{k}
\end{aligned}
$$

The tass equation yields an equilitrium ar:

$$
T_{k-1}=\frac{u_{k}}{u_{k-1}}
$$

which means that this equilibrom is independent of the flow of material into the system.

Alsu:

$$
T_{1.1}=\mathrm{u}_{1} \frac{\mathrm{~T}_{1-1}}{u_{1-1}}
$$

which allows us to calculate lonck, starting from $\mathrm{T}_{\mathrm{k}-\mathrm{l}}$, all the equilibria for odd (even) trophic levels if $k$ is even (odd). Nore that all of them are constant and independ. ent of N . From the first equation, we have euther $\mathrm{T}_{1}=\mathrm{N} /\left(\mathrm{u}_{1} \mathrm{~T}_{2}\right)$, or $\mathrm{T}_{2}-\mathrm{N} /\left(u_{1} T_{1}\right)$. Therefore, if we know all the equilibna for otd trophac levels, we can calculare the
 Similerlf, if $k$ is odd and we know all the even equilibrid, we can calculate $T_{i}$, and then buld up the equilitrum values tor all the remainug even trophic levels.

What is important is that we ger every other rophtuc lovel constans and independent of the amount of How into the system: whereas materal rccumulates only on the remaining tropha levels. We have an alternating patten of equibna, where every orher trophic level simply passes material through to the next trophic level. The analytic treatment confims some of the assumptions that we made from watching the dynamies of the system in Madonna. Moreover, it confrems thate thes is really the way the systom belaves boyond the simalation period and parametet valucs chosen.

The overall dynamics look quite similar to the second case diseussed abowe, when we inoroduced carrying capacity for the prey population (equation 5.5). This migh well be expecred, if we realize that at carrying capacity we have a cunstanc low of extenal resources inco che system, which is exactly the formulation we are consintering now: $N=$ const Su the fact that the system equilibrates and the equilihrium appears to be sable is quite consistent with what we observed in the simple two-species system What is somewhat surprisug is the distinctly different lehavior observed in the odd and even trophic levels.


Figure 5.14 A Stella model of a five-level trophic chain with mortality

In the model above we assumed that natural mortality is negligible compared with the predator uptake. Suppose this is nor so. Let us consider a truphe chain, which has a certain fraction of biomass removed trom each trophac level due to mortaliny (Figure 5.14), and see how the model dynamics is miluenced by changes in the amount of resources N provided to the system

The apparently subele change in the model formulation results in quite substantial differences in the syscem dynamics. Once again, we can easily put the model together in Stella or, even hetter, in Madonna. It we look at how the system reacts to changes in the flow of the external resource $N$, we may see that now, for substanctally high flow moo the system, all the heve trophic levels can coexist and equilibrace at certain values that appear to be stable. It we start to decrease the external How $N$, the species equilibrate to lower and lower values, unal the last, hifth, trophic level becomes extinct. The tourch level then follow's and so on, until all species become extinct when there are no external sources of energy or material ( $\mathrm{N}=0$ ) (Figure 5.15).

This result may have an interesting ecological interpretation. The more resources How into a crophic chain, the longer the trophic chain that can be sustained. Nor only do the egulilirium values increase; also, entirely new trophic levels spring up.


## Figure 5.15 Dynamıcs of five trophic levels in a trophic chain with morality.

The length of the trophic chain is defined by the amount of resource flowing into the system.

This kind of phenomemon has been otserved in real-life system. In agriculture, it has been noticed that when larger amounts of fertilizers are applied new pests appear, which effectively extends the existing trophic cham, adding a onew level to et

Ar this time, however, we still can make qualicative conclusions only abour the system we have analyzed, and only lor the parameter valuen, that we have used. With respect ro parameter values, the system seems to te uquice rohust. We may start modifying the coeftcients in a fairly wide range (as long as they stay ecologically teasible that is, positive and perbaps less than I for most of the rate coetficents, like morrality). The system behavor seems to be the sime. However, if we want to consider a crophic chain with more species involved, we may need to pur together another model and repear the analysis. It is mose likely that, qualitatively, the dynamics will te the same, but still we can never be 100 percent sure unless we pertom some analytical treatment.

A full analytical solution to this problem can be found in Svire:hev and Logoter (1983). Here. ler us take a ipuck glance ai what the equilitria can look like and what makes species fall out of the system. The system of algetraic equations that defines the equilitria in this model is quite simple:

$$
\begin{aligned}
& N-d_{1} T_{1}-u_{1} T_{1} T_{2}=0 \\
& u_{1} T_{1}-u_{2} T_{1}-d_{2}=0 \\
& u_{1-1} T_{i-1}-u_{1} T_{1+i}-d_{1}=0 \\
& \cdots \\
& u_{4} T_{1}-u_{5}-d_{5}=0
\end{aligned}
$$

> Always check to see if there is sotmething you cak get out of an analytical study. Even if a full solution is impossible, see of you can get some constraents on parameters or try to figure out equibrium. conditions

From the last equation, we immediately get:

$$
T_{4}=\frac{u_{5}+d_{5}}{u_{4}}-\text { const }
$$

Playing with the odd and even numbers, as we did above, we can now calculare the orher equilibria:

$$
T_{2}=\frac{u_{3} I_{4}+d_{1}}{u_{2}}
$$

where we can substiture the value for $T_{4}$ from the above and see that $T_{2}=$ const. Knowing $T_{i}$, we can calculate

$$
T_{1}=\frac{N}{d_{1}+u_{1} T_{2}}
$$

Nore that this time the equilibuum is dependent on the external flow N . So tar, all the equilibria have been positive at any time. Based on the second equation, we can now calculace

$$
T_{3}=\frac{u_{1} T_{1}-d_{2}}{u_{2}}
$$

For this equithrimen we need to make sure that $T_{1}>d / w_{1}$, otherwise the equilibmum is negative and makes no ecological sense. This condition translates immediately inco a requirement for N : the flow of external resiurce has to be larger than a certain value. Similarly, for $T_{4}$ to be non-negative we need $T_{3}>d_{4} / u_{3}$ or, substituting for $T_{3}$,

$$
T_{1}>\frac{d}{u_{1}}+\frac{\frac{\mathrm{d}_{2} \mathrm{u}_{4}}{u_{3}}}{\mathrm{u}_{1}}
$$

This explains why, with decreasing $N$, the equilibria for $T_{1}, T_{3}$ and $T_{5}$ are getting smaller and sinaller, and eventually the spectes ceases to exist as the equilibria become negative. However, this does not explain the fate of the other two trophic levels, $T_{2}$, and $T_{4}$, which are supposedly constant and independent of $N$. So what is going on?

Ler us take a closer look ar the model dynamics in the animation above. Nore that actually at first, when we start cutting the input of N , the equilibria for $\mathrm{T}_{2}$ and $T_{4}$ are indeed fixed and do not change. It is the other three equilibria that show a downward trend. It is only after $T_{5}$ hits zero that $T_{2}$ and $T_{4}$ start to change. But note: when $T_{5}$ becomes extinct, we no longer have the same five-level trophic shain Instead we have only four trophic levels, and the equations that we are co solve now change. Now, for four trophic levels, we have $T_{1}$ and $T_{1}$, constant and independent of $N$, whereas $T_{2}$ and $T_{4}$ are defined by $N$ and decrease with $N$. Indeed, this is what we see in the animation. Now $T_{1}$ and $T_{3}$ stay fixed until $T_{4}$ hits zero, when unce again the system and the equations are redefined. Again the system has an odd number of levels, and now $T_{i}$ becomes fixed while $T_{1}$ and $T_{3}$ start to tall.

Now that we have tigured out what goes on in the sysem, we can with far greacer contidence describe the system behavior with an arbirary number of crophic levels. There is strong evidence that the equilibria are stable. and we have understood how the odd and even trophic levels are alcernating their behavior as che flow of resource
into the system changes. We also know that the parameters of the model define the intervals in the N continuum rhat correspond to the particular numbers of trophic levels in the system. Ler us lowik ar how the system evolves in the other direction, when we start with $N-0$, and then start increasing $N$ Once $N>0$, there is a resource that can support one spectes. As $N$ increases, the population in this trophic level keeps growing until $N$ passes a threshold. after which anorher species in the next trophic level appears. At this point the first trophic level stabilites, and from now on all the resource is transmitred to the new trophic level, the population of which starts to grow. Next, atter $N$ pasises another threshold, another, third trophic level appears. Now the second rrophic level freezes, while the first and the third (odd) trophic levels srate to grow. Then, ar some point, as $N$ passes another threshold, a fourth (even) trophic level becomes established. From now on, ond levels become frozen, and even levels start to grow biomass. And soon.

In both rhe trophic chains considered above, we had the inpur of external resource independent of the bomass in the first trophic level. We assumed that it was the resource that was always limitng growth, and there were as many organisms in that rrophic level as were needed to uptake all the resource that was made available. This is different from what we had in the classic model. What will the trophic chain look like if the resource is not limuting! This may appear to be a farly subte change in the system; ho wever, the dynamics will be guite different.

Let us put togerher a smplified version with only thee trophic levels:

$$
\begin{aligned}
& T \cdot(t)=T_{1}(t-d t)+\left(N-R_{1} \mid \cdot d t\right. \\
& I N I T T_{1}=1 \\
& N=u_{0} \cdot T_{1} \\
& R \cdot=u_{1} \cdot T_{1} \cdot T_{2} \\
& T_{2}\left(t t_{1}=T_{2}\left|t-d t+\left|R_{1}-R_{2}\right| \cdot d t\right.\right. \\
& \mathbb{N} \mid T T_{2}=2 \\
& R=u_{1} \cdot u_{1} \cdot T_{1} \cdot T_{2} \\
& R_{2}=u_{2} \cdot T_{2} \cdot T_{3} \\
& T_{3}(t)=T_{3}|t-d t|\left(R_{2}-R_{3} \mid \cdot d t\right. \\
& |N| T T_{3}=1 \\
& R_{2}=u_{2} \cdot T_{2} \cdot T_{3} \\
& R_{3}=u_{3} \cdot T_{3} \\
& u_{0}=0.1 \\
& u_{1}=0.1 \\
& u_{2}=0.1 \\
& U_{3}-0.1
\end{aligned}
$$

Note that in this model $N$ is not constant; instead, it is a linear function of $T_{1}$, Now the model looks exactly the same as the "classic" model but with one addirional trophic level. We can import theses equations into Madonna, or quickly assemble the model in Stella or one of the other packages to do some preliminary qualitarive analysis. With the model "as :s," we get the lamilear oscillations (Figure 5.16). However, if we change the coefficients $u$, even slightly, we get a dramatically different picture: either the species become extinct, or they start to grow exponentally (Figure 5.17).


Figure $\mathbf{5 . 1 6}$ Dynamics in a three trophic leve model with no resource limitation.


Figure 5.17
Dynamics in a three trophic leve model with no resource limitation with unequal rate coetlicient. The system ether dies of or species produce infinite growth.

If $u_{c}$ or $u_{2}$ ate even slightly increased, trophic levels $T_{1}$ and $T_{;}$grow exponentially while $T$ : keeps oscillating arproaching a positive equilibrium. A similar crend is produced when $u_{1}$ on $u_{2}$ are decreased. If $u_{i}$ or $u_{2}$ are even slightly decreased, trophe levels $T_{1}$ and $T_{3}$ go extinct while $T_{2}$ keeps uscillating approaching a positive equalibrium. A similar crend is produced when $u_{1}$ or $u_{3}$ are increased.

A cuick analycical look at the equililria gives us only a very general idea ahout the underpinnings of these trends. First, we find that there are two equations for equilibrium in the second trophic level: $T_{2}=u / u_{1}$, and $T_{2}=u_{i} / u_{2}$. Second, we see that for the cauilibria in the first and third trophic levels we have $u_{1} T_{1}=u_{2} T_{3}$. The cquilibrium in the second crophic level is therefore feasible only if $u_{1} u_{3}=u_{3} u_{2}$.

These calculations explain some of the qualicative dynamics we observed above. If $u_{i} u_{3}=u_{0} u_{3}$, we get stable oscillations; if $u_{1} u_{3}>u_{0} u_{2}$, we have the downward trend that leads to species extunctions. Otherwise, we have oscillations following an
exponential growth trend. We could have been expecting this from what we saw in the model; however, it might have heen hard to guess the exact relationship betueen the parameters that defines the course of the rrajectories. We also see that there is a relationship between $T_{1}$ and $T_{\text {; }}$, whach makes them hehave in a similar way - something we also observed from the model output.

However. this is probably all we can say abour the system, based on this primitive analysis. We do not know what makes $T$, and $T$, grow to infinity or vanish from the system, when the parameters are chusen in some specitic way. Unlike the "classic" model, which produced the loop in the phase plane for any combination of parameters, now a loop is pussible only tor specitic values. Moreover, a would be hard to imagine in real lite an exact equality of the kind $u_{1} u_{1}=u_{0} u_{i}$. Therefore, we may conclude that a three- or more rrophic level system of the predator-prey type is unstable and unlikely to exist in realicy.

What will happen if, instead of three, we have four trophic levels? Will the results be the same' The answer is a definite NO. To our surprise, the system always persists, even though it goes through some dramatic oscillations which in many cases appear ro resemble chaos. Once again, it is strongly recommended that you reproduce the model in one of the modeling packages. Below are the equations that you can simply paste into Madoana and enjoy the inodel performance yourselt

```
\(\left.T_{1}(t)=T_{1}(t-d t)+i N-R_{1}\right)^{*} d t\)
\(\mathrm{INIT}_{1}=1\)
\(N=u 0^{\circ} T_{1}\)
\(R_{1}=\zeta_{1} \cdot T_{1} * T_{2}\)
\(T_{2}(\mathrm{t})=\mathrm{T}_{2}(\mathrm{t}-\mathrm{dt})+\left(\mathrm{R}_{1}-\mathrm{R}_{2}!^{*} \mathrm{at}\right.\)
INIT T \(T_{2}=2\)
\(R_{1}=\omega_{1} \cdot T_{1} \cdot T_{2}\)
\(R_{2}=U_{2} \cdot T_{2}{ }^{*} T_{3}\)
\(T_{3}(t)=T_{3}(t-d t)+\left(R_{2}-R_{3}\right)^{*} d t\)
\(\mathrm{N}_{\mathrm{N} I T} \mathrm{~T}_{3}=1\)
\(R_{2}=U_{2}{ }^{*} T_{2}{ }^{*} T_{3}\)
\(R_{3}=u_{3}{ }^{*} T_{3} T_{4}\)
\(\left.T_{4}(t)=T_{4}(t-d t)+i R_{3}-R_{4}\right) * d t\)
INIT T \(\mathrm{T}_{4}=1\)
\(R_{3}=u_{3}{ }^{*} T_{3} * T_{4}\)
\(R_{4}-u_{4}{ }^{*} T_{4}\)
\(\iota_{\nu}=0.1\)
\(u_{1}-0.1\)
\(u_{2}=01\)
\(u_{3}=0.1\)
\(u_{4}=0.1\)
```

The variety of designs that the crajectories produce when we start modifying the parameters is tuuly remarkable. A few examples appear in Figure 5.18. In the left-hand column we are looking at the regular graphs of state varrables vs time; in the right-hand column we have the scatter graphs. where $T_{1}$ and $T$, are displayed as functoons of $T_{1}$,

$u_{0}=0.1 \quad u,-0.1 \quad u_{2}=0.1 \quad u_{3}=0.1$

$u_{0}=013 u_{1}=0.1 u_{2}=01 u_{1}-01$


$u_{0}=0.13 u_{1}=0.06 u_{2}=0.19 u_{4}-0.1$


$u_{0}=015 u_{1}=006 u_{2}-017 u_{2}-02$

ThUFET5.18 Adding another trophic level ifourth) stabilizes the system and makes it persist, even though some of the oscillations seeni to be chaotic.
The left-hand column shows the dynamics of the four populations; the right-hand column graphs are phase dynamics of populations of the first two trophic levels as functions of the third trophic level population These show how irregular the oscillations may become

 "'i't",


$$
1=\frac{1.1}{4} \cdot 1 \cdot \frac{-1}{2} \quad \cdots \frac{\because}{1} \quad \text { T. } \frac{\cdots}{1}
$$

















 the mochic atens in that econtrytern is the foliowng

$$
\text { Ascen } \rightarrow \varepsilon / k g=\text { Wolves }=\text { Humana }
$$

 it was dacideo that the wotvet were a nusance in the palh. Dasicest thate were complanks
 Yellowitione Immedatioly, the alk population peated By axammeng rea unge. it wes shown that the palk'taspent mopped reganeraing soon the inal





 eres ther recovery accorang to reseworafs a nok smoty because the woves we hunting

 mas creoted a moie nologn. Dly dwatie and hather ecosybiam

Now we are tending lowards a syalem with high bromaes of aspen, low alk pooutalion. hrog woty numbers. and law human ruinting oresaure tha is again amiler to what our theo rebcal model ingowed.

### 5.4 Spatial model of a predator-prey system

The models we have looked at so far have been local - that is, spatially they had no resolution, assuming that the whole area that we were modeling was uniform, and that the same populations with the same parameters of growth and death were distributed across the area. We did nor know or care about any sparial differences. But what if that is not the case?

Suppose we do care about spatial differences. Suppose that the populations have different numbers across the landscape. How can we model the system in this case?

First, let us decide on how to represent space. In Chapter 2, we saw several ways to make space discrete so that we can put the spatial dımension into a model. We need to decide on the form and size of the spatial segments that we wish to use. In doing that, as always in modeling, we will be looking at the goal of the study and the spatial resolution of the data that are avaılable. Then we will select modeling software for these sparial simulations.

Srella may not be the best tool for this. Theoretically, we could replicate our model several times and have several stocks for prey and several stocks for predator, representing their numbers in different spatial locatıons. We could also add some rules of transition berween these stocks, representing spatial movement between different places. The Stella model would look like Figure 5.19 (see page 165). In this case, we assume that organisms migrate to the compartment where the existing population size is lower

This could probably work for two, three or four locations - maybe even ten - but then the Stella model would become almost incomprehensible. We could use the array functionality in Stella, which would make it a little bit easier to handle. If you are unfamiliar with arrays in Stella, read the pages of the Help File. It does a really good job of explaining how to set up arrays in Stella. For example, the model above on a $3 \times 3$ grid of 9 ceils can be presenced with a dagram that looks quite simple (Figure 5.20 ; see page 165 ); however, the equations are not simple at all:
 R_migration(col1, row 1)] * dt
|NIT Rabbits[col1, row1] = 1
Rabbits|col1,row2|(t) = Rabbits|col1,row2|(t-dt) - (R_births|col1,row2)-Predation|col1,row2|-
R_migration|col1,row2|) * dt
|NIT Rabbits|col1, row2) $=2$
Rabbits $(c o l 1$, row3|(t) $=$ Rabbits $\mid c o l 1$, row3 $3 \mid(t-d t)+$ (R_births|col1, row3|-Predation|col1, row3|-
R_migration[col1, row3]) $~ d t$
INIT Rabbits(col1,row3] = 3
Rabbits $\mid c o l 2$, row $11 \mid(t)=$ Rabbits $\mid c o l 2$,row1 $1(t-\alpha t)+$ (R_births|col2,row1l-Predation|col2,row1|R_migration $\mid c o l 2$, row 1]) * dt
|NIT Rabbits(col2,rowl] $=3$
Rabbits $[$ col 2 ,row2] $(t)=$ Rabbits $(c o l 2$,row2) $(t-d t)+$ (R_births|col2,row2]-Predation|col2,row2|-
R_migration(coi2,row2)) * dt
|NIT Rabbits|col2, row2| $=2$
Rabbits|col2,row3)(ti) = Rabbuts|col2,row3l(t-dt) + (R_birthslcol2,row3)-Predation|col2,row3)R_migration $(c o l 2$, row.3|) * $d t$
$\operatorname{IN} \mid T$ Rabbits $\mid c o l 2$, row $3 \mid=1$
 R_migration (col3,row 1 1) ${ }^{*} \mathrm{dt}$
INIT Rabbits(col3,row1) = 1
Rabbits|col3,row2|(t) = Rabbits|col3,row2|(t-dt) + (R_births[col3,row2l-Predatıon[col3,row2]R_migration $[$ col3,row 2$]$ ) ${ }^{*}$ dt
|NIT Rabbits[col3,row2] $=2$
 R_migration!coi3,row 31 ) * dt
INIT Rabbits $(\operatorname{col} 3$, row 3$)=3$
INFLOWS:
R_births[column,row] = alpha* Rabbits|column, rowl
OUTFLOWS:
Predation(column,row) = beta*Rabbits|column, row|*Wolves[column,row|
 gamma*(Rabbits|col1, row1]-Rabbits[col1,row2])
R_migrationicol1, row2) = gamma* ((Rabbits $\mid$ col1, row2l-Rabbits|col1, row1|) - (Rabbits $\mid$ col 1 ,
row2)-Rabbits(col2,row2|) + (Rabbits|col1, row2)-Rabbits(col1, row3)i)
 row2)-Rabbits|coi2,row3|\})
R_migration|col2,row1) = gamma* ((Rabbits $\mid c o l 2$, row 1$]-$ Rabbits $\mid c o l 1$, row 1$])+($ Rabbits $\mid c o l 2$, row1]-Rabbits[col2,row2]) + (Rabbits[col2,row1]-Rabbits[col3,row1]))
R_migratıon|col2,row2| = gamma* ((Rabbitslcol2,row2]-Rabbits $[$ col 2 ,row1 $\mid\}+\{$ Rabbits $[$ col2 ,
row2]-Rabbits $\mid c o l 2$, row3l $)+($ Rabbits $\mid c o l 2$, row2)-Rabbits|col1, row2]) + (Rabbits $(c o l 2$, row2)Rabbits|col3, row2)"
R_migratıonlcol2, row3) = gamma* ((Rabbits $(\operatorname{col} 2$, row3 $\mid-$ Rabbits $(c o l 1$, row $3 \mid)+($ Rabbits $\mid c o l 2$, row3|-2Rabbits|col2, row2|) + (Rabbits|col2,row3|-Rabbits|col3, row3|))
R. migrationlcol3,row1 $)=$ gamma* (\{Rabbits $\mid c o l 3, r o w 1]-R a b b i t s \mid c o l 2$, row 1$])+\{$ Rabbits $\mid c o l 3$. row1)-Rabbits|col3,row2l|)
R_migration [col3, row2] = gamma* $($ Rabbits $[$ col3, row2 $\mid-$ Rabbuts $\mid c o l 3$, row1 $\rangle+|$ Rabbits $\mid$ col3 ,
row2)-Rabbits|col2, row2)! + (Rabbits!col3,row2)-Rabbits|col3, row31)!

row3)-Rabbits(col2,row31)]
Wolves $[$ col1,row1l $(t)=$ Wolves $\mid c o l 1$, row $1 \mid(t-d t)+(U p t a k e \mid c o l 1$, row1] -
W_mortalitylcol1,row1]-W_mıgration(col1,row1)) * dt
INIT Wolves $[$ col1, row 1$]=1$
Wolves $($ col1,row2 $)(t)=$ Wolves $(c o l 1$, row2 $)(t-d t)+(U p t a k e(c o l 1$, row2l-W_mortalitylcol1,row2l-W_migration|col1,row2|) * dt
INIT Wolves[col1,row2] = 2
Wolves|col1, row3| $(t)=$ Wolves $\mid c o l 1$, row3l $(t-d t)+($ Uptakeicol1,row3l-W_mortalitylcol1,row'3)-W_mıgration $(c o l 1$, row3l) * dt
INIT Wolves $\mid$ col 1 , row $3 \mid=3$
Wolves|col2,rowi $\mid$ (t) $=$ Wolves $[\operatorname{col} 2$, row $1 \mid(\mathrm{t}-\mathrm{dt})+($ Uptakelcol2,row1|W_mortality $(c o l 2$, row $11-W=m i g r a t ı o n(c o l 2, r o w 1 \mid) * d t$
|NIT Wolves|col2,row1| = 3
Wolves|col2,row2|(t) = Wolves|col2,row2|(t-dt) + (Uptake[col2, row2)W_mortality|col2, row 2 I-W_mıgration $(c o l 2 \text {, row } 2 \mid)^{*} d t$ INIT Wolves $\operatorname{col} 2$,row2 $1=2$

```
Wolves[col2,row3|(t) = Wolves[col2,row3](t-dt) + (Uptake[col2, row3|-
W_mortalitylcol2,row3]-W_migration [col2,row3li * dt
INIT Wolves (col2, row3) \(=1\)
```



```
W_rnortality[col3,row 1]-W_migration \([\) col3,row1]) * dt
INIT Wolves [col3,row 1\(]=1\)
```



```
W_mortality[col3,row2l-W_migrationlcol3,row2l) * dt
|NIT Wolves[col3,row2| \(=2\)
Wolves \((\operatorname{col} 3\),row3) \((t)=\) Wolves \((\operatorname{col} 3\), row3) \((t-\delta t)+(U p t a k e l c o l 3\), row3) -
W_mortality[col3,row3l-W_rnigration (col3,row3l) * dt
INIT Wolves(col3, row3) \(=3\)
INFLOWS:
Uptakelcolurnn,row) \(=k *\) Predation(column,row)
OUTFLOWS:
W_mortality \([\) column,rowl \(=\) mu*Wolves \([\) column, row]
W_migration[col1,row1] = delta*((Wolvesicol1, row1]-Wolves \([\) col2, row11) + \{Wolvesicol1,
row11-Wolves(col1.row2l))
W_migration|col1,row2l = delta \({ }^{*}(\) (Wolves \(\mid\) col1, row2] - Wolves \((c o l 1\), row'l|) + iWolves \((c o l 1\),
row2]-Wolves[col2,row2]) + (Wolves \([\) col1, row2l-Wolves (col1, row3)))
W_migration \([\) col1, row3 \()=\) delta* \((\) Wolves \([\) col1, row3l-Wolves \([\) col 1, row2l \()+\langle\) Wolves \([\) col1 ,
row2|-Wolves(col2, row3)i)
```



```
row1]-Wolves[col2,row21) + (Wolves[col2,row1|-Wolves [col3,row1|)]
```



```
row2]-Wolves(col2,row3l) + (Wolves[col2,row2l-Wolves \(\{\) col1, row2]) + (Wolves \(\{\) col2,
row21-Wolves [col3,row2) is
W_migration \(\mid\) col 2 , row \(3 \mid=\) delta* \(\{(\) Wolves \(\mid c o!2\), row 3\(]-\) Wolves[col1,row3] \()+(\) Wolves \([\) col2
row3|-Wolves[col2,row2l) + (Wolves|coi2, row3)-Wolves|col3,row3|) )
W_rnigration(col3,row1) = delta*((Wolves|col3,row1)-Wolves[col2,row1!) + (Wolves[col3.
row1|-Wolves (col3, row2|))
W_migration \(\{\) col3,row2 \()=\) delta \(^{*}(\) (Wolves|col3,row 2\(]-\) Wolves \((\) col3,row 1\(\left.]\right)+(\) Wolves \(\mid\) col3,
row2]-Wolves(col2,row21) + (Wolves (col3,row2]-Wolves[col3,row31))
```



```
row3|-Wolves|col2.row31)
alpha \(=1\)
beta \(=1\)
delta \(=0.02\)
gamma \(=0.01\)
\(k=0.1\)
\(\mathrm{mu}=01\)
```

In particular, it is a real headache to define the equations of movement, migration. We assume that our cells are arranged as in Figure 5.21, and both wolves and rabbirs can move to the next cell if the population size there is lower than in the current cell. There will be lots of clicking on the Stella diagram to define all the conncctions. As the number of spatial cells grows, the model description quickly


Figure 5.19 A two compartment Stella model of a predator-prey system.



## Figure 5.21 The flows between array elements

 It helps to have the diagram when describing how different array elements interact

Figure 5.22 A Simile model for the predator-prey system. Note that there are many more icons to use when constructing models. The whole model can be described as a submodel icalled a Cell, in this casel.
becomes very cumbersome; it becomes especially hard to inpur the data, visualize the output, or define various scenarios that involve spatial dynamics. Imagine dehn. ing a model with a hundred or more array elements! There has to be a better way to do this.

Let us take a look at some orher soltware towls that may he more surted to these tasks than Stella. One potentially powerful tool for spatial modeling is Simile, and we will explore an example in that modeling system.

## Simile model

The predator-prey system itself is very sumple to put together, especially it we already know Stella conventions. The basic interface in Simile is almost identical


Figure 5.23 Output from the Simile predator-prey model using the Plotter helper to create a time-dependent graph
This is identical to what we were generating in Stella.
(Figure 5.22). Here, we slightly moditied the model. describing Grass as prey and Rabbics as predator That would be one trophic level below what we were consid. rring alwove, hut there is really no need for much change in how we formulare the model. Whereas in its systems dynamics Simile follows Scella's formalism quire closely, it also goes way heyond Stella's functionality in a lot of ways. As you may notice, in Figure 5.22, there are quite a few more icons or building blocks in Simile. We will not go into much detail describing all of them - that can always be done by downloading the tree tral version of the fackage and exploring the different examples and concribured models. The Help tile and the Tucorial for Simile is nowhere nearly as foolproof as in Scella, so he prepared to spend quite some time if you decide to explore the more advanced features of the software.

Among these features let us mention the following.

- Modularity. In Simile, you can create a "submodel" that can be then used in other models. This is handy for disaggregation of models, for creating spatial models or for substicuting one model component for another.
- $\mathrm{C}^{++}$cokle. Simile generates $\mathrm{C}++$ code, which can be used within the framework of other systems, mertaces or environments. It can he porred to different compil. ers producing optimized computer code.
- Extendable incerfaces. All input/ourput is handled by Tcl/Tk programs called "Helpers." Users can create their own Hepers to suic the needs of a particular application, and port these programs into the software. For example, the output for the model in Figure 5.22 shown in Figure 5.23 comes from a particular Helper designed to plor model results



## 































Figure 5.25 A wo-dimensional graphic visualization that the Spatial Grid display helper generates. The intensity of the color corresponds to the population numbers ol Rabbits in different cells.

There is actually an easier (but also not very well-documented) way to do this if you define the array as being 2D. You do this by double clicking on the background of your stack of cells, which opens a dialuguc box:


Here we can input the dimensions of the array, making it two-dimensional. Let us specify the dimensions 10.10 . Now the array will be treated as rows and columns, and we will not need it worry about the conversion of a linear array moto a matrix.
_Rabdits, run 1

 The initial conditions are generated in random in the (1.2) interval, and each cell then develops on its own

To view the results of our spatial runs, we can choose the helper called "grid display." When defining the grid display we will be reguested to "click on the variable containing the positons of IDs of the columns" - click on the "col" variable. Then we will be asked whenese the variable to display, and will click on Rabbits.

If we now run the model, we can observe how Rabbit populations vary in all the cells (Figure 5.26). Nue that in this case the graphic display produces an ensemble of 100 curves, which originate somewhere in the interval $[1,2]$ and then oscillate like in the predator-prey model considered betiore.

So tar, the cells have been working independently. There has been no interacrion between variables in difierem cells. That is nor particularly interesting Ler us now make the Ralbbits move horriontally: Suppose that, as in the Stella model we considered above, we want to make Rabbits move from cells with higher density to cells where there are less Rabbits. This is similar to the diffusion process. For each cell we add the migration Hlow (Figure 5.27). which calculares the movement of Rabbits in each of the four directions: front, back, left and right. First, we define an array of Rabbits in all cells - R_A. Then

Migration $=$ delta $\cdot$ lif col $>1$ then Rasbits-elemeritl|R_Al. (row -1 ) * size + col - 1) else 0$)+(\mathrm{ft} \mathrm{col}<$ size then Rabbits-elementilR_Al. irow -1$) *$ size $+\mathrm{col}+1\}$ else 0$)+($ if row $>1$ then Rabbits-elementif_Al, frow - 2) - size + coll else 0 ) , (if row < size then Raobits elementil| AI. row' size + coll else 0)!


## Figure 5.27 Spatial predator-prey model in Simile with migration added for Rabbits.

The R_A variable stores the values for Rabbits in all cells as an array. The decision for migration is based on the number of Rabbits in adjacent cells. Rabbits jump to the neighboring cell if the population there is less than in the current cell.

This was pretty clumsy, but straghtforward. For each cell, we compare the number of Rabbirs with the numbers in the four adjacenc cells. If the difference is positive, we get a positive flow from the cell to the nemghorng. cell. If it is negative, we get a flow from the neighboring cell into the center cill. Here, we used the element built-in functoon element $\left([A]_{1}\right)$, which returns the ithe element of array $A$. Nore that here we are translating the 2 D ) definition in terms of (row;cell) back into the ID definition.

To test how this works, we will initialize the model differently. Lec us make the Rabbits bromass equal, say, three only in one cell (e.g. $i=25$ ), and make the biomass equal one in all orher cells. Let us also switch off all the ecological predator-prey dynamics by setung the growth, deach and predation rates to zero. If testung a particular process, horizontal dispersion in this case, it is important to ensure that nothing is interfering with it. If we run the model, we will see how rabbits gradually disperse across the area (Figure 5.28). Note that we have also added a variable, sum_R, to the diagram. This variable is equal to sum( $[$ R_A] $)$, another built-in functoon which recurns the sum of elements of an array. This is useful to check that we are not losing or gainıng rabbits; it works as a mass conservation check. As long as sum_R does nor change, we are OK.

What is also nice about Sumile is that we can change the size of the area and the number of cells just by changing the "size" variable and the number of instances of the "Cell" array. This can be done by double clicking on the Cell submodel and then specifying the dumensions. For example, we can switch from the $10 \times 10$ grid that we were exploring above to a $100 \times 100$ grid in just a moment, and start generating simular dispersion patterns on a much finer grid of cells (Figure 5.29). Imagine hulding a similar model on a $100 \times 100$ grid in Stella!

Simile can also save equations; however, here it is done using a programming language, Prolog, which makes it a bit harder to read for somebody unfamiliar with the conventions of that language - especially when the model becomes more complex for simple models like the one we are studying, it is still quite easy to understand what the statements are about. Below is the Grass-Rabbits model as described in Simile

Model R_G_array10000
Enumerated types: null
Variable R_A
R_A $=\quad$ [Rabbits]
Where:
|Raboits| $=$ Cell/Rabbits
Variable sum_R
sum_R $=\quad \operatorname{sum}(\mid R$ _Al)
Submodel Cell
Submodel Cell is a fixed_membership submodel with dimensıons [10000]. Enumerated types. I
Compartment Grass
Initial value $=2$
Rate of change $=+$ Growth - Grazing
Compartment Rabobts
Initial value $=$ if $($ index $(1)==2550)$ then 300 eise 1
Rate of change $=+$ Uptake - Mortality - Migration
Comments:
For random initialızation rand_const $(1,2)$
Flow Grazing
Grazing $=\quad$ beta*Grass*Rabbits
Flow Growth
Growth $=\quad$ alpha*Grass
Flow Migration
Migration $=\quad$ delta* (! $\mid f$ col $>1$ then Rabbits-element( $\left[R \_A\right],(r o w-1)^{*}$ size $+\mathrm{col}-1$ ) else 0 ) $+($ if col<size then Rabbits-element(IR_A),(row-1)*size $+\operatorname{col}+1)$ else $0)+\left(\right.$ if row $>1$ then Rabbits-element $\left(\left[R \_A\right]\right.$, (row-2)*size + col) else 0$)+($ if row<size then Rabbits-element (|R_Al,row*size + col) else 0)

Where.
$\left[R \_A\right]=. / R \_A$
Flow Mortality
Mortality $=\quad m u *$ Rabbits
Flow Uptake Uptake $=\quad k^{*}$ Grazıng
Variable alpha
alpha $=\quad 1$
Variable beta beta $=\quad 1$
Variable col $\mathrm{COL}-\quad \quad \mathrm{mod}($ Index(1) -1. size $)+1$
Variable delta delta $=\quad 0.1$

```
Variable k
    k=
    0.1
Variable mu
    mu = 0.1
Variable row
    row - floorl!ndex(1) - lyisizel + 1
Variable size
    size = 100
```


## Figure 5.28 Spatial output lor the model with migration.

First we use a simplified initial condition to make sure that we can generate a pattern ol dispersion, as we might expect to see in a model that is similar to the diffusion process.


Figure 5.29 The same model but with 10,000 cells active.
Switching from one model dimension to anuther is edsy. it iequites unly changing one parameter and the definition ol the array size

Nou that we are contident about how rabbits innve horizontally, we can switch the ecological processes back on and see how the system performs in space. Once again initializing Rabbirs and Cirass random? over the landscape, we can see how, due to dispersion, the patches become blurred; every now and then, when Grass is

depleted, the overall population falls to a low then, following general predator-prey dynamics. Rabhits reappear (Figure 5.30 ). We can also output the results as time graphics for each cell Figure 5.31 presents ensembles of 10.000 curves for Rabbits and Grass in each of the $10,00 \mathrm{C}$ cells. This graphic and the quantity of compuations that stand behind it should really be appreciaced. Interestingly, in spite of all this spatial variability, the totals for Rabhats and Grass follow exactly the classic predatorprey pactern that we have seen before (Figure 5.32). Well, almost exactly, as we can see from the scatrer-plot XY dagram in Figure 5.33. Whereas previously for just two variables in one cell the Runge-Kutta method produced an exact ellipsoid, winding over and over itself again and agan. with 1 C, (WC instances of the same model the behavior becomes quite different. There is certanly far more reason to expect that it is the error that accumulates and takes us slowly off track. Let us check: is it the error that causes this, or something else?

The first remedy to decrease computation error is to switch to hagher-order numerical methods or to decrease the tume-step. There is nothing better in Simile than Runge-Kutta, so higher-order methods are not an option. Ilowever, we can easily decrease the time-step. Above, we had DT $=\mathrm{C} .1$. Let us make it $\mathrm{DT}=0.01$ Now it will take us almost 10 times longer to run the model, yet unfortunately we are nor getung any different output Still the trajectory keens winding towards the center. So what else could be causing it?

$\square+$ - 国
_Grass, run 1


Figure 5.31 Using the plotter, we can view dynamics tor all the 10,000 cells.

Let us go back to the origimal model. In order to get there, we will remove the horizontal fluxes (Migration $=0$ if delta $=0$ ), and initalize all the cells the same. Now we are simply running a bunch of predator-prey models simultaneously. To make the model run faster, we can also make the spatial dimenstons smaller: let us set the size equal to 2 , and the dimension of cells equal to 4. If we now run the model, we will hinally get the expected ellipse (Figure 5.34A). Next, let us intialize the four cells that we have randomly selected. The result is sumewhat unexpected (Figure 5.34 B ), and answers uur dilemma: it is the random numbers in the initial conditions that nake the total population dynamics so different. If we increase the number of cells (size $=10$ ), the populations tend to be less chaotic and rend tumards a limit cycle (Figure 5.34C). The graphic in Figure 5.34 D is produced by the same 10,000 cells with horizontal migration switched on (delta $=0.1$ ), as we had in Figure 5.33, but after some 1,500 time-steps. Wie see that here also there is a clear trend to the center, where the pupulation almost equilsbrates.

This is quite remarkable, since, is you may recall, one of the major critiques of the classic Lotki-Voltera model was that it depends so much upon the initial

-sum R. run 2

$\square|+||-| |$
_-sum_G. run 2


Figure 5.32 Ouppul lor the total numbers ol Rabbits and Grass in all the 10,000 cells.
The totals seem to follow ilie classic predator-prey oscillations observed before, when dealing with a spatially aggregated modei.



## Figure 5.34 Resolving the mystery of dampened oscillations

A. When we have no spatial heterogeneity, the population is spatially uniform, and we have an ideal predatorprey ellipse as in the classic model. B. With the population randomly initalized in just four cells we get a chaotic behavior that fills the whole interior of the ellipsoid. C. With 100 cells randomly initialized, the area of chaotic dynamics shrinks to a smaller domain. D. With 10.000 cells there is no more chaos and the trajectories tend to a small limited cycle, around which they keep oscillating. This behavior no longer depends upon the initial conditions, as long as the cells are initialized with different values
condituns. The classic model describes a population over a certain area, where spatial hererogencities are ignored and all the organsms are lunped into one number representing the cotal population. However, in reality they are certainly unevenly distributed over space. If we split the space into just a few regions and present the dynamics in this spatial context, we get results that are significantly different from the classic model. Actually, it turns out that the stable oscillations are an artufact of the averaging over space. With several spatal entuties we have a converging dynamic, which also no longer depends upon the inatial conditions

II we take a closer lonk at the spatial distribuuons that correspond to this quastequilitrium state, we may find some weird spatial patrerns (Figure 5.35). Starting from the randomly distributed initial conditons (Figure 5.35A), after some 1.000 iterations, as the trajectory on the phase plane converges toward the center of the ellipsoid a spatial pattern emerges that, while changing to a degree, still persists, as can be seen from the series of snapshots taken approximately every 50 iterations


Figure $\mathbf{6 . 3 5}$ The spatial distribution in the $10,000-\mathrm{cell}$ model with migration
Starting with random initial conditions (AI. after some 1.000 iterations a pattern is formed, which then persists ( B -I). Thus there is a pattern that emerges both in time and space.
(Figure 5.35B-1). It is not clear how and why this pattern emerges, hut it is inceresting to register that emergent patterns can result from this kind of non-linear dynamics.

Using the so-called assuciation submodel concept in Simile we could put together much more elegant solutions for this moxdel; however, these models also beciome far more difficult to build and comprehend

Let us fut together an association submodel called NextTuCell. It will be defined by two relationships: "self" and "neighbor." These are cell attributes that are
provided by the stack of cells with the submodel in each of them. The existence of NextToCell submodel is defined by the condition cond 1 .


```
cond1 = ' {col_self == col_neighbor and row_self == row_neighbor) and
abs(col_self-col_neighbor) < 1.5 and absirow_self-row_neighbor) < 1 5
```

This condrtion is true only if the coordinates (col, row) of the two cells are adjacent to each other - that is, the difference berween the col and row coordinates is less than 1.5 and the cell is nue reself. In this way we can describe all eight cells in the vicinity of a given cell. For each of these neighbor cells we define a variable called

$$
\text { migration }=\text { Rabbits_neighbor }- \text { Rabbits_self }
$$

This is the difference berween the number of Rabbirs in the cell and the neighboring cell. This value is then fed back mro the model and is used to denine the flow called

$$
\text { In = delta*sum(\{mıgration_self\}) }
$$

Here we are summing all the migrations for the eight neighboring cells and, with the diffusion rate of delta, using this sum to update the number of Rabbits in the currence cell. Note chat when
Rabbits_neighbor > Rabbits_self
the flow is positive, and it is negarive orherwise. This should be sufficienc to describe the diffusion process of Rabbits in our system. Indeed. if we run the model we gen some very plausible distribution that looks very similar to what we have been generating above - but, we have to ngree, this formulation is way more elegant.


## SME model

Let us explore yet another way to build and run spatial models. The Sparial Modeling Environment (SME) is not quite a modeling system, since it does not require a language or formalism of its own It can take the equations from your Stella model and translate them into an incermediate Modular Modeling Language (MML), which is then translated into C++ cote. At the same time, SME will link your model to spatial data if needed

Let us irst put the same Grass-Rathits model into Scella and make sure that it runs properly. As a result, we will end up with the following system of Stella equations:

```
Grass(t)= Grass(t - dy + (G_growth Grazing)*dt
INIT Grass = 2
INFLOWS.
G_growth = alpha*Grass
OUTFLOWS
Grazing = beta*Grass*Rabbits
Rabbits(t! = Rabbuts(t - dt) + \Uptake - R_mortality **dt
INIT Rabbits = 1
INFLOWS
Uptake - k*Grazing
OUTFLOWS
R_mortality = mu*Rabbits
alpha = 1
beta = 1
k=0.1
ms=0.1
```

For these Stella equations, we do <Edit -> Select All> and then <Edit -> Copy>.

Next, we open a Text Editor on our computer (on a Macintosh it will be BBEdit, or TextEdit; in $W_{\text {Indows it }}$ is probably the NutePad) and paste the equations into the file, then save the file using the eqns extension and naming it R_Gl.eqns.

We now need to get SME running. SME is open source and is available for download from Source Forge, the main repository of open-source projects. The URL is htep://souceforge.net/projects/smodenv. SME is avaulable for Linux and Mac OSX operating syscems; there is no Windows version so far. Once we have downloaded and installed SME, we need to set up the SME propect.

Havung chosen a name for our project - let us say R_G, representing Rabbits\&Grass - we open the Terminal window and enter the command:
>SME project R_G
If the installation has been done properly, this sets up the project directory. Now we can put the equations file that we created in Stella into the directory Models. We will call the model R_Gl and perform the SME command:

```
>SME modeI R_G1
```

Now we get:
Current project directory is /Documents/SME/Projects/
Current project is R_G
Current model is $x x x$
Current scenario is $x x x$
Current model set to R_G1
Current project set to R_G
It is not importans ar shis tume, but let us also choose a scenario name. We will see what that is later on. Using the command
>SME scenario S1
we get:
Current project directory is /Documents/SME/Projects/
Current project is R_G
Current model is R_G1
Current scenario is 51
Now we can import and configure the model:
>SME import
This will take rhe equation file and translate it into the MML (modular modeling language) specification. There will probably never be any need to see the result, bui for the sake of curiosity it is possible to look at the file Models; R_GI.MML for the MML specification and then look ar Models;R_G1/R_Gl_module.xml, which is the same file in an intermedrate XML specification.

At the satme tume the first config file has been generated in Config/R_G1.MML. config. This fle srill coneains just a list of all variables and parameters of the model.

Let us do the build command now:

Something is processed, there are some messages, and at the end it can be seen that some $\mathrm{C}++$ code has already been compted. This is nor umporant at this tume, since we will probably still need to do some more configuring before we get somerhing meaningful. What is mportant is that a couple of more config files are generared. See what is in che Config directory now:
R_Gl.biflows, R_Gl.conf, R_Gl.SI, and R_G1.Sl.conf.out

The most important file is R_Gl.conf. This will be the config filc that we will be working with mose of the rime. Ac this rime it has the following list of parameters:
\# global $\operatorname{DS}(10,0) \mathrm{n}(1) \mathrm{s}(4332)$ ngi(0) op(0) OT $1,0.20) \mathrm{d}(0) \operatorname{UTM}(0,0.0,0.0)$ UTM(1, 1.0, 1.0) \$ R_G1_module

* Alpha pm(1)
* beta pm(1)
* GRASS sil)sC(C)
* GRAZING fti(u)
* G_GROWTH ft(u)
*K pm(0 100000)
* MU pm(0 100000)
* RABBITS sil) sC(C)
* R_MORTALITY ft(u)
* time
* UPTAKE ft(u)

If we compare this file wirh the Stella equations above, we see that it contains informarion alxuur all the parameters that we had chere. In the equations:

```
alpha = 1
beta = 1
k=0.1
mu=0 1
```

we find the same values in the R_G1.conf file.
What we have lost are the initial conditions. Thar is because in Stella we defined the inırial condirions in the state variables boxes, rather than as paramerers. SME does nor like that. Let us quickly go back to Stella and fix ir by detning initial conditions in terms of some auxtlary paramerers:

```
INIT Grass = G_init
INIT Rabbits \(=\) R_init
G_init \(=2\)
R_intt \(=1\)
```

Note the tiny difference between this set of equations and whar we had above. We will now have to do anorher $>$ SME import and $>$ SME build. Keep in mind that whenever we alter the equations, we need to do a re-mmport and a rebuild. We do nor need to reimport and rebuild if we only modify the paramerers in the config file. However, if any of the parameters are redetned as spatial, a rebuild is needed. We will get back to this later.

So another SME inporr modifies the R_GI.MML.confg file - but when we run SME buld the R_Gl.conf file will not be changed. This is a level of protection to make sure that the config file with all the valuable spatial information is not inadvertently overwritten, by re-mporting and rerumning the Stella equations that
do nor contain this dara. This might be a lictle confusing; however, it is importane to prorect the spatial verston ot the config file.

The output from the last rebuild can be found in R_G1.S1.conf.out, and if this is really what you want to do, you can delcte your R_Gi.conf file and rename the R_Gl.Sl.conf.out into R_Gl.conf. This ts what we will do now to get the following as che config file for the model.

```
# global DS(1.0,48) n(1) s(4332) ngl(0) op(0) OT(1.0,0.0,20.0) df 0) UTM(0,0.0.0 0)
UTM(1, 1.0,10)
$ R_G1_module
* AlPHA pm(1)
* BETA pm(1)
* GRASS s(1)sC(C)
* GRAZING ft(u)
* G_GROWTH ft'u)
* G_INIT pm(2)
*K pm(0.100000)
*MU pm(0.100000)
* RABBITS s(1) sC(C)
* R_INIT pm(1)
* R_MORTALITY f(u)
* TIME
* UPTAKE ft(u)
```

Note that the inttal conditions are now properly defined in chis file. We are ready to run the model in SME. However, first let us take another look at the config file. We have already guessed thar pm() is a parameter in Stella. Whatever value the parameter had in Stella, it was automatically transferred into the confg file. Also, the state variables (GRASS and RARBITS in this case) are described by two commands, $s()$ and ${ }_{s} C(C)$. What are they? The best avalable documentation for SME is on the web at hicf://www.uvm.edu/giee/SME3/frp/Docs/UsersGuide.html. Most of the commands are described there, though not in the most foolproof way. For the state variables, we learn that $s(1)$ means that we will be using the first-order precision numeric method. We might also learn that the rwo commands that were generated by the SME huild command are actually nor quite consistent with the latest documentation: the $\mathrm{SC}(\mathrm{C})$ command could be erased and instead the s command should be s(CIC). However, SME will ssill run with the $s C(C)$ command. " C " means that the variable should he clamped chat is, it will not be allowed to become negative. It is not unusual to find these kinds of glitches in open-source cexde; after all, these guys are nor pard to write the fancy turorials and documents to make their software useful! We have to etther bear with them (after all, the software is free) or, even better, help them. We can always contribure our bug reports and pieces of documentation that we put cogecher while exploring the program.

Next we need to configure the outpur. So far ic is undefined; we do not know what the program will output and where will it go. Let us use the P(0,0) cornmand to see how the state variables change. The lines for GRASS and RABBITS will now be:

```
* GRASS P(0,0) s(C1C)
* RABBITS P(0,0) s(C1C)
```

Note that we have also gor rid of the ourdated $s C(C)$ command. Just one more thing before we run the model. Take a look ac the first line in the config file, the one that starts with \#global. This is a set of general configuration commands that are
placed there by default by the translator. The two important ones that we may want to change right away are the OT() and the d() commands. Check out the SME documentation to learn more about them. The d() command sers up the debug level - that is, the amount it information that will he provided into the command line intertace. When we have $d(0)$, that is the minmal amount. It we want to see what equations are solved in which order and what actually happens during our model run, we prob. all $\mathrm{y}_{\mathrm{y}}$ need to bump up the debug level, making it $\mathrm{d}(1)$ or $\mathrm{d}(2)$.

The OT command detines the time-step. the start and the end or the simulation R ight now we have OT( $1.0,0.0,20.6$ ), which means that we will run the model with a ume-step of 1 , statting trom day 0 and finishing on day 20 . This will nor allow us to gobeyond 20 . It we wish to have a longer simulation time, we need to change it to, say, OT (IC,0,0,100.0). Now we can make up to 100 steps.

Finally we can run the model, using
$>$ SME run
See what happens In the command line intertace we get:
|AV-Computer:SME/Projecis/R_G| voinov\% SME run
*. Spatral Modeling Environment, Copyight (C) 1995 (TXU-707-542). Tom Maxwell
** SME comes with ABSOLUTELY NO WARRANTY
** This is free software, and you are welcome to redistribute it

*     * under the terms of the GNU General Public License

Current project duectory is /Documents/SME/Projects/
Current propect is $\mathrm{R}_{-} \mathrm{G}$
Cument model is $\mathrm{F}_{2} \mathrm{G} 1$
Current scenario is xxx
Running SME model R_G1 in serial mode, amd:
/Documents/SME/Prgjects//R_G/Dnver/R_G1
ppath/Documents/SME/Projects/-p R_G-m R_G1
-ci/Documents/SME/Projects//R_G/Config/F_G1.cont-pause 0 -scen $\times x \times$
info. Seting Project Name to R_G
info.
Allocating module R_G1_module, ignorable. 0
info. Reading Contig Files
info: Dpening config tile:/Documents/SME/Projects/R_G/Config/R_G1 conf:
info Reacing contig fle
warning: this program uses geistl, which is unsafe.
SME:
Here, the driver stops and waits for us to tell it what to do next. It looks like gatberish, but may actually contain some imporrant information - esfecially it we run inco etrors. To tun the model for 5 days, we use
$S M E>5$
If we have the deloug level set at $d(1)$, we will probably get:
info: Setup Events
info: CreateEventLists
info: ProcessTemporalDependencies
info: ProcessSpatalDependencies
info: CreateEventLists

```
into. FillintializationList
info: Split & Sort Lists
into.Setup Variables
into. Setting Up Frames & Schedules
info: Allocating Memory
into Posting Events
imlo Opened xmi File /Documents/SME/Projects/H_G/Models/F_G1/xxw/F_GI_
modulexml
inlo: ******************** Executing Event R_GI_module StateVarlnit al time
0.000000
ing: ********************* Executing Event F_G1_modure:FinalUpdete_S__ at
time 5.000000
TCL>5
SNE>
```

The model now srops again, and another r command as required to continue. Let us run it till day 100 :

SME > r 100
Now it stops and waits again. To yuit, we do
SME > $X$
It is important to ensure char Enter is pressed after each of these commands.
This is it. Now where are the resuls:' Go wopects/R_Gl/DriverOutput. Here, we might notice that two more files have been generated:

GRASS PTS P_P_O
RABBITS.PTS.P_O_1
These files cannot be seen until we have quit the model runt they appcar only atter the $X$ command has been issued. Now that we have exiced SME, the fles should be there. These are simple timeseries, with output for GRASS and RABBITS respec. tively. The first column is the rime, the second column is the value of the stare variable. One way to look at these resules is ro simply copy and paste the hles inta Excel or another spreadsheet program. We can draw the graph and see that, atter a couple of oscillations, the GRASS population crashes tollowed hy the slow dying oft of the RABRITS. This is not exactly what we would expect from a standard predator-prey model. Where are those mice population numbers, going up and down indefintedy'

Of course, we wete running the model with the first-order Euler merhoxi. That is a pretty rough approximation. Let us swirch to a mure accurate numeric method. We open the config file and change to the fourth-oder method:

```
* GRASS Pr0,01 sic4Cl
* RABBITS P{0,0) siC4Cl
```

Note that previously we hat $\mathrm{s}(\mathrm{ClC})$, now we have $\mathrm{s}(\mathrm{C} 4 \mathrm{C})$. This does ir. It we rerun the model (SME rum, then r l00), exit ( X ), go to the DriverOutpur directory and paste the output files ino Excel, then we will get what we were expecting - nice lasting oscillations of beth variahtes.

However, where are the spatial dynamics? 'We could get all this in Stella without the trouble of setting up the mudel in SME. But how can we expect anything spatial if
we have nor deñed anyching sparial in our model? So tar, we have simply replicated the Scella model. Now let us go spatial. First of all we will need some maps to describe the areas tor grass and rabbuts. Suppose we choose the area shown in Figure 5.36.

These days, the simplest way to generate these maps is to use Arclnfo or ArcGlS, the monopolist on the GIS market. However, it we run GRASS, an open-source GIS (do not confuse with one of the variables in this model) that will also work. Anvway, what we need to do is generace a simple ascii the thar will first of all descrobe the study area in our model. This will have Is inside the study area and Os everywhere else. It may look like this in one of the formars thar SME rakes, i.e. the Mapll formar:

FILETYPE =INTERCHANGE
ROWS=62
COLUMNS $=67$
CELLSIZE $=200000000$
FORMAT=DEC
1NFO="hunt wsh"
DATA $=0000000000000000000000000000000000000000000000000000000000000000000$ 0000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000011000000000000000000000000000000 0000000000000000000000000000000000011100000000000000110000000000000 0000000000000000000000000000000000111111000000000001111110000000000 0000000000000000000000000000000001111111141110001111111111110000000
 0000000000000000000000000000000111111111111111111111111111110000000
 0000000000000000000000000000111111111111111111111111111019100000000 0000000000000000000000000001111111111111111111111111100001100000000 0000000000000000000000000011111111111111111111111111100000000000000 0000000000000000000000000011111111111111111111111111000000000000000 000000000000000000000000011111111111111111111111110000000000000000 000000000000000000000000111111111111111111111111100000000000000000
 0000000000000000000000001111111111111111111111111100000000000000000 $00000000000000000000000 \cdot 1111111111111111111111111100000000000000000$ $000 C O O C O O O O 00000000 C 0 C 011111111111111111111111111100000000000000000$ 0000000000000000000000111111111111111111111111111110000000000000000 0000600000000000000001111111111111111111111111111111000000000000000 0000000000000000000011111111111111111111111111111111100000000000000 0000000000000000001111111111111111111111111111111111100000000000000 0000000000000001111111111111111111111111111111111111110000000000000 000000000001101111111111111111111111111111111111111111000000000000 00000000000111111111111111111111111111111111111111111100100000000 $00000000111111111111111111111: 11111111111111111111111111: 100000000$ 0000000011111119111111111111111111111111111111111111111111111000000
 0000000111111111111111111111111111111111111111111111111111111110000







 000001111111111111111111111111111111111111111111111111111110000
 0000001111111111111111111111111111111111111111111111111111000000 00000011111111111111111111111111111111119191111111111111000000 $0000001111111111111111 / 11111111111111111111111111111111000011100000$ 0000001111111911111111111111111111111111111119111111111000000000000 0000001111111100111111111111111111111111111000001111111000000000000 0000001111111000001111111111111111111111111000000001000000000000000 000000111111100000001111111111111111111111100000000000000000000000 00000011111100000000011111111111111111111110000000000000000000000000 00000011111000000000001111111111111111111100000000000000000000000000 0000000111000000000000111111111111111111110000000000000000000000000 0000000110000000000000111111111111111111110000000000000000000000000 00000001000000000000001111111111111111111100000000000000000000000000 $000000000000000000000000 \times 111111111111111100000000000000000000000000$ 0000000000000000000000001111111111111111100000000000000000000000000 00000000000000000000000001111111111111110000000000000000000000000000 0000000000000000000000000111111111001100000000000000000000000000000 0000000000000000000000000011111100000000000000000000000000000000000 0000000000000000000000000001110000000000000000000000000000000000000 0000000000000000000000000001110000000000000000000000000000000000000 $00000000000 C 000000000000000 C 110000000000000000000000000000000000000$ 0000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000 LABELS

















0000000000111111000000000001111110000000000000000000000000000000000 0000000000000110000000000000011100000000000000000000000000000000000 0000000000000000000000000000001100000000000000000000000000000000000 0000000000000000000000000000006000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000
：



chosen. Nuw we have mitialized the model as being spatial, but have not identified any sparial variahles: all of them are still treated as single numbers. To do that we can use another SME command - of(). It is called "override mitalization," and has two parameters. If the first parameter is positive, then the variable is assumed to be constant. It the second parameter is positive, then the variable is assumed to be spatially distributed. So if we configure, say, GRASS as

* GRASS siC4Cl orio.1)
we should get what we want - a spatially distributed variahle.
Next let us deal with the graphic output. This is handled by the so-called $V$ Vewserver, which we now need to start up.

Let us add yer another command to the prevous line:

- GRASS DDil s(CAC) diro.1)

The $D D()$ command estahlishes a connectoen with the Viewserver - a very important prece of software used to display the results of spatial simulation. The Viewserver should be starced using the command startup_viewserver. It is herter to do it from a separate terminal window. since the Viewserver generates a long conmand line output that will clog the cerminal that is being used co run SME

Let us also generate spanal sutput for the other model variable, RABBITS:

## * RABBITS DDO s(C4C)

Nore that in this case we do not even need to declare the variable as spatial. In the model it is dependent upon an already spatial varmble (GR.ASS), so ir will lrecome spatial automatically.

Once we have started the Vicwserver and done another SME run, we can see that the Viewserver receives output from the sunning model and a new data set is added to the list on the left panel of the Viewserver. If we highlight one of the dara sets and then choose a 2 ) animation viewer and click the "Create" butcon, we will get an image of the map that is now dynamically changing as the variables change their values across the whole area. You can watch how the Grass and Rabbits alternate their hiomasses, changing from mmmal (blue) to maximal (red) numbers (Figure 5.37).


Let us now make the model spatially heterogeneous. Suphose we have a spatially heterogeneous initial condition tor the GRASS biomass. and that grass is not uniformly distribuced but has different biomass in differens locations. We will initialize the (GRASS variable with a map that has different values in different cells. Lec us use the map in Figure 5.38.

Nore that the spatial extend of this map is different from that of the map ahove That is OK. SME will crop this map to match it to the ared defined above by the study area map. How do we mput this new map? Back to the contg file. This cime instead of defining the mitial condtion for GRASS as a constant parameter pm(2), we will use a map:

## * G_INIT diA./Documents/SME/Projects/R_G/Data/Maps/Biomass.arc, /Documents/SME/Projects/R_G/Data/Maps/Area.arc)

Agan, we have to provide the tull path to the map hile that we want to use. There is actually a hetter waly to do it using the Envirumment the. This nle should reside in the Data directory, and it contains all the paths that we may wish to use in the contgouration files. For this model, we will put the following two lines into the Projects, R_O Datai Environment file:
MAPS = /Documents/SME/Projects/R_G/Data/Maps
RMAP $=/$ Documents/SME/Projects/R_G/Data/Maps/Area asc
The first lue defines the Maps directory, which we seem whe constantly refer ring to. The other line is the full name of the reference map. or the study area map. which is used to crop all the wher maps in the project.

Now sume of the lines in the contiguration tile can be much shorter:
\$R_G1_module g(A. \$(RMAP), oefault. $\$$ \{RMAP) AL 10.0 )

* G_INIT diA, \$(MAPS)/Biomass.arc. $\$\{$ RMAP!


Moreover, the bromass map that we used to initialize the monlel has values berween 0 and 61 . The matral condion that we used before was 2. It would be mee if we could scale the map ro some values that would be closer to thene we hat orginally, and we can use the $\mathcal{S}$ ! command to do that. The syntax of this command is $S(a, b)$, which means that it $x$ is the mpur value then the result of this command is $y-a^{*} x+b$ So finally it we use the command

## - G_INIT d(A. $\$$ MAPS)/Biomass arc, $\$\{$ RMAPI; Si. $01 \mathrm{e}+00.1 .01$

this means that we will inpur the map from :he Bromassarc hle, then each value will be multiplied by 0.01 and added on 1 . That will be the result used in the simulations. Also nore that we no longer need the oi( 0,1 ) command, suce we now have the minal condition that initialized the variatle as a spatial one, whoch ensures that all the ress of the vaitables connected to the spatial one will also be spatial.

This is a litele more meteresting: now there are some spatial varbations, and chere are some ditterences in how various cells evolve (Figure 5.39). However, there is srill no meacum between cells, and the real spatial cuntext is not gresent. We simply have a whole bunch of models running in sync, but they do not interact with each orher.

Making cells "talk" to each orher is a lirtle more complex than anything we have done so far. Whereas until now we have simply used some predefined commands, and the model we hailt in Stella, from now on :t we are whe defne some meaningful spatial interaction we will need to do some programming.

There are some modules that we can use in the Litrary of Hydro-Ecological Modules (LIIEM - hatp:i/giee.uvmedu/LHEM); however, there are nor too many things we can do with those pre-designed modules. If we really want to be able to bund complex spatial models, we will probatly need to be capable of some level of $\mathrm{C}++$ prugraminug. SME supports sal-Called Lser (Code and offers tull access to its classes and incthods, which can significandy help us in designing our own conde for spatial dymames.

Suppuse tor the Rabits \& Grass model we wish to allow rabbics to move between cells an search of better grazing conditons We will assume that whenever rablits bind that there is mere grass in the neighburing cell, a certain proportion of

rabbits from the conent cell will move to the cell wath more grass. Ler us write the cole that will descrithe this behavior of the predaror:


```
#nclude "Rabbit.h"
```



```
vond MoveRabbits! CVariable& Rabbits, CVariab'e& Grass, CVarable& Rate )
// moves rabbits toward more grass. It there are less rabbits there
// arguments come from MML.config tie, first arg is always variable being configured
I
```

```
Grid_Direction il
```

Grid_Direction il
Float fl, R_moved = 0.
Float fl, R_moved = 0.
DistrbutedGnd\& grid := Rabbits Grid!:
DistrbutedGnd\& grid := Rabbits Grid!:
grid SetPointOrderingol.
grid SetPointOrderingol.
// sets grid ordering 1o default ordering (row-coll tordering \#(0)
// sets grid ordering 1o default ordering (row-coll tordering \#(0)
Rabbits LinkEdges(i:
Rabbits LinkEdges(i:
Grass LinkEdgesi!:
Grass LinkEdgesi!:
statce Cvariable* R Flux = NLLL;
statce Cvariable* R Flux = NLLL;
mitR_Flux = = NULL!
mitR_Flux = = NULL!
R_Fiux - Grass.CetSimilarvariable{"P_Flux"!;
R_Fiux - Grass.CetSimilarvariable{"P_Flux"!;
// intermediate mcrement to Rabbis
// intermediate mcrement to Rabbis
R_Flux-> Setio.0;;
R_Flux-> Setio.0;;
for( Pix p - grid.first() p; grid next(p) )
for( Pix p - grid.first() p; grid next(p) )
|
|
cons: OrdersdPont\& pt = grid.GetPonv:(p;;
cons: OrdersdPont\& pt = grid.GetPonv:(p;;
// sets currentPoin:
// sets currentPoin:
Ifl !grid onGridipt! ) continue;
Ifl !grid onGridipt! ) continue;
// ionGrid = = False)}\cdot>\mathrm{ - Ghost Point
// ionGrid = = False)}\cdot>\mathrm{ - Ghost Point
Hoat g_max - Grass(pt):
Hoat g_max - Grass(pt):
Fix p_max = p:
Fix p_max = p:
// for each point calculate where is the max Grass in the vicmity
// for each point calculate where is the max Grass in the vicmity
tort il = firstGDif; moreGDill; mcrGDill )
tort il = firstGDif; moreGDill; mcrGDill )
{
{
// enum Grid_Direction (NF = 2 EE, SE.SS,SW.WW. NW. NNN.
// enum Grid_Direction (NF = 2 EE, SE.SS,SW.WW. NW. NNN.
Pix ro = gud.NenghborPixl p.:1;
Pix ro = gud.NenghborPixl p.:1;
// relatve to pt, takes enum Grd_Drection as arg
// relatve to pt, takes enum Grd_Drection as arg
Ifrpl
Ifrpl
I
I
cunst OrderedPoint\& rpt = grid.GetFonttrpl;
cunst OrderedPoint\& rpt = grid.GetFonttrpl;
if (Grass(rpu) > g_max !
if (Grass(rpu) > g_max !
| g_max - Grassimpi).
| g_max - Grassimpi).
p_max = rp.
p_max = rp.
l
l
]
]
}

```
    }
```

```
const OrderedPoint\& pt_max = grid GetPoint(p_max):
// sets currentPoint
// If there is a cell in the vicinity where there is more Grass. then a
// portion of Rabbits moves to that cell
if ( g_max>Grass(pt))
    \(f r=\left(\operatorname{Rabb} \mid t s(p t)>\operatorname{Rabbits}\left(p t \_m a x\right)\right) ?\)
            (Rabbits(pt)-Rabbits(pt_max)) * Rate(pt): 0;
(*R_Flux)(pt_max) \(+=\mathrm{fr}\);
( \(^{*}\) R_Flux) \((\mathrm{pt})-=\mathrm{fr}\) :
R_moved \(+=f r\);
]// end area loop
Rabbits.AddDatal*R_Flux).
printf ("\ninfo: Rabbits moved \(=\%\) f," R_moved);
)
\(l^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / ~}\)
```

So here we have only Rabbits moving horizontally from one cell to anorher in search of a better life. How do we tell SME that chere is something new that the model wants to take into account?

First, we go all the way back to the MML.config fle that we can find in the Config directory. In this the we add a command for Rabbits:

* RABBITS UF( Rabbut.MoveRabbits,GRASS, RATE)

Here, Rabbit is the name of the file that contains the above C++ code. Actually its name is Rabbit.cc, and it resides in the UserCode directory. MoveRabbits is the name of the function in this hle that we use. GRASS and RATE are two variables that are passed to this function. While GRASS has always been there, RATE is new. The way we get it into the config tle is by modifying the Stella model and adding another variable. Once again, we have to export the equations and then do the "SME import" command. Alternatively, we can modify the equation the that we creared earlier from Stella equations. We simply need to add one line:
rate $=0.5$
and then we can also do this by hand in the R_G1.MML.config file. Note, however, that this is somewhat risky, since is is very easy to forget about some of these small modifications of the equation file, and there is no way we can import these modifications from the equations to the Stella model. As a result, once we have finally decided that we wish to modify the Stella model for some other reason later on, most likely we will forget about these modifications. When taking the equations from Scella and creating a new equation file, we will lose all these previous changes. The model will suddenly perform quice contrary to expectatons, and it will take a while to figure out why and to redo all the little updates. So while every now and then it seems very simple to modify just the equation file, actually it is much better if all the modifications are done directly to the Stella model.

As we remember, whenever the equations or the MML.config tile is changed we need to do the SME import command. Then we can do the SME build command, and update the config file to add the RATE parameter to it as well. Remember - either
it has to be done by hand, or the the can be renamed to use the R_Ol.Si.conf.ont instead. As a result, we get:

- Rate
pmio.5)
Are we ready to run' Almost, but there is still one glitech to fix. The variables that we have been passing to the newly designed function to move Rabhits are all assumed to be spatial.

MoveRabbits( CVariable\& Kabbits. CVariable \& Grass, CVarable\& Hate )
However, the RATE parameter as we define:l it above is a scalar. There is an easy fix. lust add the override command

* RATE pmio 5) ol(0.1)
and you will he hack in the game. Alternatively, you could also define this parameter as a map:
- RATE OXA. \$(HMAP).\$1RMAPYIS(5e + 00.0.0)

Here we used the study area map to mitialize this parameter, which, with this scaling factor, is identical to what we did above. However, chis could be any map, which would protably be the only reasonable way to define this paramerer if we wanted it to he spatially heterogeneous.

Alsernatively, if we do not want this parameter to be spatial, we must not refer to it as if it were spacial in the corde. Replace Rate(pt) hor Rate Value(). Race. Value() is a scalar, it will nor need to be intialized by a maf or a spatial variable. It will take $\mathrm{pm}(0.5)$.

Finally, we are ready to hir the "SME run" command and watch something mov. ing across the landscape - rabbits hoping from one place to another, grass dying and regrou'ng back when the predators leave, and so on (Figure 5.40).

Certanly, this was nut as easy as putting cogether a motel in Stella, or even Simule. However, for somebody commorable with $C++$ it would not be a hig deal and actually may rurn out to be smpler than learning the new formalism required for Simile. Once we are in the programining language moste, we have all the power we


[^2]need to create any complex model. So in a uay. SME may te treated as a nice interface berween Scelia and $\mathrm{C}^{+}+$power modeling.

### 5.5 Conclusions

A very simple model can produce an amaaingly diverse collection of bebavior patterns. The fact that the predatur-prey model contains non-linearity makes it a very exciting system to exfore. After many generations of mathematicians and modelers studying the system, it seill every now and then produces some interesting resules, especially if we add some detail in either the structural or the spatial interpretation. There are probalily hundreds if not thousands of papers about the dynamics in such or sumilar two-species systems.

What is always most intrugung alxout moxdels is when we find some emergent properties that were not at all expected when we first looked at the system. For example, the fact that pure species interactons may produce persistent oscillations in population numbers could be hardly expected. With everything constant in the system, with no external forcings, no climatic or environmental conditions involved. we still ger varrability in species pmpulations.

Systems with linear funcrional response are usually more predictable. It is when we find feed hacks that have a non-linear effect in the system that we should expect surprises. These systems need eppectally careful analysis. They are also hardest to amalyze amalyically.

Providing for spatal heterogeneity only adds to the list of surprises. Why would the spatial distributun make the predator-prep oscillation converge! Why does at stabilize the system? How general can these conclusions lxe? Does, thas mean that more diversity on the system also means mote stability? How tar can we go in this sort of generalization?

These are all exciting yuestuns that beg furcher research.

## Further reading

Inalling, $C S(1959)$ Some characteristes of simple eqpes of predatom and parasistism. The Conadian Encomoldgst, 91:385-389-A chissic work on trophic onteractoms One of the frost
 when truphw junctoons are cunsidered and used, espectally for mikipling.
Svirezhev Yu, M and Logofec, D.O. (1953) Sabhey of Solegical Commanuies. Mir Publishers. Thes is an exceltern erample of what analvecal studes cari do on research of popndutum dynamics. Two-species commumtes, nichuding Voterra model are wery well presented, as with as the theory of arophic chams. The hook ako coters the coments of the classic paper by Kolmogerov, A.N. whech was published in Italian in 1936: Sulla Teoria di Voleerra della Locta per l'Esistrenta. Gium Instinto lad. Aitimin, $\overline{7}, 84-6 \mathrm{C}$. Unfortunately the hank is also yuice hard to get. Some of the udeis have heen further develured in Lngofer D) (1993). Naries and Graphs Seability Probteme m Mathemutical Ecnloge, CRC. Fress
To read mote detaid abont the woles in the Yollowstome see the ditule by Virgina Morell (2007). Aspens Recurn wo Yellowstone, With Help Fom Some Whives. Science, Vol, 317(5837): 435439. The amamig stiry about the effect of bite crat on dune tormatom is reporred by Cheryl Dybas

Simia can be fotand at the Smamisacs In: ueb site ar herf /iwwo simulisicics.com, You can dounstoad a crail wersion that will het son then the madels hut well not alliou saming vour changes. It is a good aucy th explome the sotwore ond the models that we have in shis bonk.

The Spatal Modeling Envionment, SME, is an open souce propect on SourceForge See hecp./f sourceforge.nedpropects/sinodenv. Some example prijects and latest developments velated the SME can be jound at hre://www.uvm.edu/giee/IDEAS/
Some rdeas about ine role of spotel inceractoons in addeng scabitey to the system can be found in MaynardSmith, J. (1978). Models in Ecology Cumbridge University Press. Later on these effects were studned for so-called mecapopulauons, which are collections of interacting poputations of the same species. There is even spectal softuare packages developed to study such populations. RAMAS is one of those (see herp://www.ramas,com/mpmosids.hem). To learn more abour metapopulaions see for example. Hanskı, I., Gaggıorti, O. eds. (2004). Ecology. genencs, and evolution of mecapopulacums. Elsevier Academic Press.

## 6. Water

6.1 Modeling as a hydrology primer<br>6.2 Unit model<br>6.3 Spatial model<br>6.4 Conclusions

## SUMMARY

There are critical natural resources that are essential for human susvival, and water is certainly one of them. The dynamics of water, its quantity and quality mirror what is happening at the watershed, and can serve as an indicator of overall envionmental quality. We fiss consider various parse of the hydrologic cycle. and some of the different processes that move water and that define its quality and quantiry in ditterent storages. We then put these processes togecher inno a unit mudel that can describe dynamics of water in a small, contned and spatally homogeneous plot or cell. A variety of temporal. spatial and structural scales and resolutions may be considered, as dictated by the goal of the modeling effort. We then present several ways in which water can be described over spatially heterogeneous area. The lumped modeling approach uses relatively large spatial compartments or hydrologic units, which are then connected over a stream network. In the grid-cell approach. locial dynamics are replicated across an array of grid cells that are driven by raster maps for variables and parameters. It time is not important, it is better to focus on spatial aspects using a Cils approach.

## Keywords

Excludable and rival resources, sooping moxlel, rainfall, snow/ice, surtace water, groundwater, unsaturated zone, intultration, precipitation, Jultan day, evaporation, Natronal Climatic Data Center, photuactive radiation, bi-flow, porosty, transpiatoon, perculation, field capacity, soil moisture, hydraulic conductivtȩ, soil types, Melateuca, Delay function, TR .55, retention, curve number, surface roughness, horizontal water tinnopert vertical water transport, lumped models, hydrologic unts, HSPF, SWAT, grid-based models, SME, CIS-based models, stormwater, ran barrel, retention pond, rain garden, LIDAR, ArcGiS, watershed management

Water, energy and land are the three most crucial limiting resources on this planet. This makes it especialiy important to understand how the systems related to these. resources cperate, the most eificient ways to control the deplerion of these resources, and how the resources can be restered if damaged. In this chapter, we start with water.

Water is essential for life on this planer. The water content of a human hody is about 60 percent. Humans can survive for more than 3 weeks without foed, but for only

3 days without water. There are some reports of longer survival umes, up to as many as 7-8 days; however, irreversithle damage to the organism ss mose likely to occut earlier than thar. and in any case it will be thirst rather than hunger that will kill tirst

Water is als, required for other organsms and plants so persist. It is an important transport mechanism that delivers nurtients to the plants. Ar the same time, ir proviles a mechanism tor pollution reduction through dilution. While most ecologists will tell you that "polluturn dilutum is not a sulutem," mital recently it was probably the main - if not the only - way to remove coxins and waste from our environmen. Or rather fo make them less toxic, since dilution centanly does not temove them. In 2000 , Format magazine predicted thar water "will be to the 21 st century what oil was to the 20rh."

Nore that as long as we rely upon furely renewable water (as well as ene:gy), it is non-tival and non-excludatle. That is, soldr eneigy and tantall are manlable, more or leas unitormly, over vast terntories. Whoever is there has access to that water and energy. We cannot prevent our neighbor trom having epual access to sunshine or rainfall, or collecting it in some way. We cannor exchude someone from using it, and since there is no rivalry ir makes no sense to attempt to do so. Certainly there may be geographical differences. Wie know thar there is very much more water in the Pacitic North West than in the Sahari, but these are regunal distinctions. Locally, everybody in the Pacific North West still has equal access to rainlall and sunshine. just as everyhody in the Sahara has equal access to the rainfall and sunshine there. However, as soon as we need to dip into reserves, into fossil water or energy, or even into the temperary reserves (lakes, teservoirs, or forest and crop biomass), immediately the resources become exchidible and rival (Daly and Farley, 2004). We can pur a fence arsund a reservor, privatize a torest, or outlaw pumping water fron underground - like Israel did in Palestine. This changes the whole political landscape, and reyures different types of management. As resources become scarcer and we dip into stocks, we are creating potential for contlict stuatwns (water and energy wars)

Ler us consider some smple models related to the water cycle, and figure our how they can be used to increase our understanding of what is happening with water

### 6.1 Modeling as a hydrology primer

As in other models, we should irst decide on the spatal and temporal scales that are whe used in our hydrologic model. Ar varing temporal acales processes luok fairly different Consider a major rainfall event when, say, during a thunderstorm there is a downpur that brings 10 cm of rain in 1 hour, then the storm moves away and there is no more rain over the next 2.3 hours.

If we assume a 1 -minute rme-step in sur model, we will need to take into accuunt the accumulation of water on the surface, its gradual infiltration mote the soll, and the removal of water hy overland flow. If we look more deeply ino the unsaturated layer, we can see how the front of inoisture produced by the infiltrating water will he mowing downwards through the layer of sol, eventually reaching the saturated layer. After the ram stops, in a while all the surlace water will he removed, eirher by overland flows on by infiltration. A new equilitrintm will be teached in rhe unsacurared layer, with some of rhe water accumulating on top of the saturared laver and effectively causing its level to rise somewhar, and the rest of the water staying in the unsaturated layer, increasing the mosture content of soil.

Now suppose rhat rhe model time-step is I day. The picture will he comally dilferent. In 1 day we will see no shifface water ar all, excepr in rivers or sreams $\ln$ oher farts of the landscape, the water will already have either gor into the soll or run downhill ro a nearly sticion on pomad. The unsaturated layer will nut show any wate-front propagation, if will have already equilibrated at the new state of mestrure content and groundwater level. The processes look quite different in the model. And we probatly already needed to know sumething atome the hydrologe processes in our system to higure all this our

Similarly, the spatial resolution is important. If all the varmables are averages uver a cerram area, then within this area we do no distingush any variability, and the amounts of sufface water, snowice, unsaturated and saturated water are considered io be rhe same. If we are lowhing at a $1-\mathrm{m}^{2}$ cell this does not cause any problem, and it as easy to intagine how to meature and track these varables. However, il we are considermg a much larger area - say $1 \mathrm{~km}^{2}$ - then within a single cell we may find hills, depressions, rivers and ravines. The genlogy and suils may le also frite different, and need to be averaged actoss the landscape. We may be able to crack many more processes, but the model cust will incrense accordingly as we will need far more data and greater cumputer power to deal with these spatially detailed models.

For the first teration of our modeling process, let us assume that the area of interest is a small watershed with quite uniform geo-morphougical conditwns, with more or less homugeneous sails, and ler us suppose that we wish to figure out the amount of water that drams off this watershed into the river downstream. With this goal in mind, we can probably consuler the systen using a dally cime-step - at least as a first iteration. A simplifed conceptual model of hydrulugec processes for this susrem is presenced in Figure 6. This diagram is only the up of the icelerg, with a lor of fairly complex processes that may lee furrher described in much more detail At this point, it is important to decide on the most important featmes of the swstem that need be considered

We chose rhe frillowing four variables for this general mondel:

1. SURFACE WATER - water on the sufface of the land (n most cases it is in rivers, creek - ponds and depressions).
2. SNOW/ICE - at freeing temperacures surface water lecomes ice, which then melts as temperature rises above $0^{\circ} \mathrm{C}$.
3. UNSATURATED WATER - the amount of water in the unsaturated layer of ground, Imagine the ground as a sponge; when we pour water onto it the sponge will holil a cortain amourt before it starts dripping. All rhe tume water can still be poured ontu and held by the sponge, it is in the unsaturated conditun.
4. SATURATED WATER - the amount of water in the saturated greund Once the sponge can no longer hold additional water, ir becomes satwrated. As wirh surface water, it we add water to the saturated some, its level increases.

These variables are connected by a variety of processes that we also need to understand in order to build a meanugful model. When working un complex models, it helps considerably if we split the whole system into components, or modules, and develop some simplitied models for these modules. It is very likely char some modifications will be necded when pulling all the module: togerher again; however, as previmusly discussed, it is so much easter to deal with a simplified model than to get lost in the jungle of a spagherti diagram of a complex model with numerous pucesses and interactions, and no clear understanding ui what affects what.


Brour
Note that this diagram describes certain processes as if they were spatially distributed with a horizontal dimension present |runoff "moves" water from rainfall to a pond, saturated water also movesi. In fact, when we run the model we assume that all these variables are uniformly distributed over the whole area and are represented by "point" quantities or concentrations.

Modeling is truly an iterative process As stated many times before. we want to know the spatial and temporal scales before we start building the model. But how do we higure them out if we have only a vague idea about the system? What are the processes involved? At what times are they important, and do we want to include them at all Or perhaps there are some other importani processes that we are simply unaware of

Indeed. there is no prescribed sequence of events Perhaps you want to start with a socalled "scoping mode" - a model that would put together whatever you already know about the system in a rat'rer qualitative format, ormiting al' the details that a'e not clear, outlining the system tn general and the processes that we think are important. This you can start discussing with colleagues and with potential future users of the model. These users are the ones who formulated the initial goal of the study, so they are most likely to know sometning about the system Start talking to them or. even better, engage them in a particioatory modeing process - something we will be discussing in a lot more detail in Chapter 9 .

In any case. do not think that there is anything final in your decisons about the scales and processes There will always be a reason and a chance to come back and make imnrovements. That is the beasty of computer models: they exist in virtual reality, to buld them you do not have to have something cut. ploughed. extracted or destroyed, and you car easily modify or refocus then if necessary

## Water on the surface

The surface evater variable is used to model water on the surface of the land. It we are looking at an area with no steep gradients and farly high porential rainfall (for example, the Florida Everglades or other wetlands), then surface water can accumulate
in uguticant amounts before it is absurthed by the soil. In this case it is necessary to consider the process that connects the accumulated surtace water and the underlying unsaturated layer. This process is known as infiltration. In most terrestrial areas with steeper slopes, most of the surface water will drain of into rivers, creeks, punds and depressons in which of will accumulate over a layer of saturated water. Therefore, there will be no intiltration. Instead, there will be an exchange prucess herween the surface water and the saturated layer.

It is hard to isolate a unit of surtace water without connecting it with the surrounding neighborhood. Much of the surface-water tmansort is due to hurisontal fluxes, and therefore a box-model approach will he only approximate when modeling surface-water dynamics. However, with appropriate spatial and temporal scaling we can think of an aggregated unit moxdel to represent surface water in a lowngeneous unit cell, assuming that we are modeling the total amount of water over a large enough area and one that can somehow be solated from the other terntones. This can be a small watershed, or an agricultural neld, tor which we can monitor the inflows and out flows. A sumple conceptual model can be described as in Figure 6.2 There are two major frocesses involved: precipitation and infilration

Preciptation is probably the process that is inturively must obvious. We deal with precipitation in our everyday lives when we decide whether we might need an umbrella on going out for the day. The amount of precipitation is what we are concerned with when building a hydrolegic model. It is also mimertant to know in what form (liguid or solst - rain or snow) the precipitation will arrive. Precipitation is recorded, by most of the meteorological stations, in milluneters or inches per day. A sample data sheet for precipitation registered at Baltimore Washington Airpors, MD in 1996 is shown in Figure 6.3.

In Figure 6.3 0.0T stands for traces, which means that the precipitation was recorded at levels below measurement accuracy. In many cases it is possitle to find metcorological data for a specific area at the National Climatic Data Center (NCDC: http:i/wwwenctc.noaa.gov/). For example, on entering this site and choos. ing Maryland, then the station at Baltimore Washington Airport, the relevant data can be found. A graphic can also be generated for a rable such as that reproduced here. The data can be downloaded in numeric format to use in a model. Temperature is important for us to decide whether the precipitation is rain or snow. The Snowilce model helow describes this process.

Infiltration is the process by which water from the surface is taken into the ground by means of gravitational and capillary forces. The rate of infiltration defines how much water will be left on the surface to contribute to the rapid runoff, and how


Figure 6.

DAILY

| Station BAL TMMORE W AR | I Paranetur Prop | \% Coverage 100 |
| :---: | :---: | :---: |
| PO Code MD | Latitude N39:11:00 | Benin MNi 081948 |
| Stild 465 | I onuitude wo76:40:00 | End M/Yi 124996 |
| County ANNE ARUNDEL | Elevation(m) 45.1 | \% Record Years 49 |


| 1996 | J3n | Feb | Nigr | Ape | Hey | Juri | Jut | dug | Sep | 08 | Hov | Dec | Annual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 001 | 009 | 0 | 085 | 0 OT | 0 | 004 | 0 OT | 0 | 001 | 007 | 117 |  |
| 2 | 102 | 0,34 | 0.21 | COT | 0.01 | 0 | 001 | 0 | 0 | 038 | 0 | 041 |  |
| 3 | 009 | 038 | 001 | 0 | 0.04 | 0 | 009 | 008 | 0.11 | 0 | 0 | 0 |  |
| 4 | 0 | 0 | 0 | 0 | 0.59 | 007 | 0 | 0 | 021 | 0 | 0 | 0 |  |
| 5 | $\square$ | 0 | 002 | ODT | 085 | 00 T | 0 | 0 | 0 | 0 | 0 | 10.57 |  |
| a | 0.07 | 0 | 018 | 004 | 0 | 0 | 0 | 0 | 048 | 0 | 009 | 0,32 |  |
| 7 | 251 | 003 | 0.53 | 000 | 0.3 | 0 | 0 | 0 | 0 | 0 | 009 | 0.51 |  |
| 8 | 082 | 0.17 | 0.18 | 007 | 0.33 | 0 | 015 | 0 | 008 | 133 | 205 | 003 |  |
| $\theta$ | 03 | 0 | 0 | 0.43 | 034 | 007 | 007 | 041 | 001 | 022 | 002 |  |  |
| 10 | 009 | $\bigcirc$ | 0 | 007 | 0 | 002 | 0 | 0 | 0 | 0 OT | 0 OLT | 0 |  |
| 11 | 0 | 0 | 0 | 0 | 094 | 0 | 0 | 0 | 135 | 0 | 0 | 023 |  |
| 12 | 073 | ODT | 0 | 0 | 0 | 017 | 112 | 148 | 02 | 0 | 0 | 007 |  |
| 13 | 0 | 0 | 0 | 0 | 0 | 0 | 228 | 094 | 008 | 0 | 0 | 273 |  |
| 14 | 0 | 003 | 0 | 0 | 0 | 007 | 011 | 0 | 0 | 0 | 005 | 005 |  |
| 15 | 0 | 0.14 | 017 | 133 | 009 | 0 | 0.11 | 0 | 0 | 0 | 0 | 0 |  |
| 1 18 | 007 | 1088 | 0 | 0.3 | 045 | 0 | 0 | 006 | 072 | 0 | 0 | 001 |  |
| 17 | 003 | 0 | 001 | 0 | 004 | 1 | 0 | 0 | 09 | 0 | 0 | 002 |  |
| 18 | 003 | 0 | 0 | 0 | 0 | 935 | 017 | 0 | 001 | 188 | 001 | 008 |  |
| 19 | 0.54 | 0 | 073 | $00 T$ | 0 | 138 | 032 | 0 | 0 | 036 | 002 | 02 |  |
| 20 | 0 | 016 | 0.07 | 0 | 0 | 0.13 | 0 | 0 | 0 | 0.07 | 0 | 0 |  |
| 21 | 0 | 0.18 | 0.07 | 007 | 055 | 0 | 0 | 007 | 0 | 001 | 0 | 0 |  |
| 22 | 0 | 0.14 | $1)$ | 0 | 0 | 0 | $0.1{ }^{7}$ | 0 | 0.12 | 001 | 0 | 001 |  |
| 23 | OOT | 012 | 0 | 012 | 0 | 0 | 0 | 0.07 | 0 | 002 | 0 | 007 |  |
| 24 | 027 | 003 | 0 | 0 | 001 | 036 | 0 | 0 | 001 | 0 | 0 | 022 |  |
| 25 | 0 | 0 | 007 | 0 | 007 | 0 | 1013 | 0 | 0 | 0 | 004 | 0 |  |
| 28 | 001 | 004 | 0 | 015 | 006 | 0 | 0.14 | 0 | 0 | OOT | 073 | 0 |  |
| 27 | 048 | 0.07 | 0 | 001 | 056 | 0 | 0 | 0.93 | 003 | 0.01 | 0.0 T | 00.15 |  |
| 28 | 0 | D0. | 13 | 0 | 016 | 0 | 001 | 028 | 065 | 007 | 0 | 00 T |  |
| 29 | OOT | 0 | 025 | 008 | 0.59 | 0.41 | 0.32 | 0 | 00 T | 0 | 0 | 0.1 |  |
| 30 | 0 | -. | 0 | 058 | 0 | 0.19 | 104 | 0 | 0 | 0 | 019 | 0 |  |
| 31 | OTT | -- | 001 | -- | $\square$ | -- | 027 | 0 | -. | 0 | -. | 0.07 |  |
| Tota Exar | e8 251 | 238 -588 | 357 15 | 378 138 | 568 0.44 | 408 138 | 738 228 | $\begin{aligned} & 417 \\ & 1.46 \end{aligned}$ | 385 135 | 432 188 | $\begin{aligned} & 3.77 \\ & 2.65 \end{aligned}$ | $\begin{aligned} & 8.7 T \\ & 273 \end{aligned}$ | $\begin{aligned} & 58.31 \\ & 273 \end{aligned}$ |

## Fit 1 Precipitation data at Baltimore Airoort in Maryland (USA)

Notice the treacherous inches/day used as a unit in this data set.


Figure 6.4 A bare-bones Stella model for local surface hydrology, and output from this modet
much will go into the ground and then travel slowly through the porous media. We will consider infiltration in more detail below, when discussing the unsaturated water storage.

A Stella model that conresponds to this conceptual model of surtace hydrology is presented in Figure 6.4. We have only one stock and two flows, and no
feedbacks. In this case we assume rhat the surface warer is delwered by rain and then gradually infilerates into the ground. The rainfall is fast, whereas infiltration is sluw. However, ramfall occurs only sometimes, wherea, mhileration is contmoous. The equations are:

```
Surface_Waterit) = Surface_Water(t - du + (Rainfarl - Infiltration) * dt
INIT Surface_Water \(=0.01\)
```

DOCUMENT. The surface water is assumed to be a function of two processes. Rapid rainfall
provides surface water, which then gradually infiltrates into the ground.
Rainfall = Precipitation"0 0254
DOCUMENT: Conve:ting rainfall in inches/day to m/day
Infiltration = 001
DOCUMENT. Infiltration rate (m/day) In reality this rate depends upon soul character'stics
habitat tyoe. slope, pare:r, of rainfall.

Dayd $=$ mod(time-1.365 $)+1$
DUCUMENT Julian day, 1 thru 365 This is a counter that resets the day to zelo after 355 iterations Needed to use the same graph function for several years of model runs

P:ecipitation $=$ GRAFH (Dayjul)
(1.00, 002), (2.00, 0.34), (3.00, 0.00), (4.00, 007). (500,000), 6.00.0 18), (700.046)
(354, 000 ), $1355,0.001,(356,0.15), 1357,0.00\},(358,0.00)$. 1359. 0001. (360,002), 1361
0.00 ). (362. 0.00). (363. 0 00). 1364, 0 001. (365, 0.001

DOCUMENT: Rainfall from Beltsville MD 1969 (in/d)

Nute a tew interestug features here, which may be helpful in orher models. First. notice the units. We have put together the nodel in meters and days, as would normally be the case in science. However, the data came from a US meteorological station where they still use inches for measurements. Therefore, we need the converter

$$
\text { Rainfall }=\text { Precipitation } * 0.0254
$$

where we use the conversion tactor 1 moh $=0.0254 \mathrm{~m}$. It is extremely important to make sure that all units are consistent throughout the model. While Stellia offers some background functunality to help track the units, it is really in your hest interest to

Mind the units. They can help test your model for consistency. Do not rely on the automatic unt checks offered by some software packages; you will wrderstand your system better if you track the mits yourself. make sure that you are always aware of the units in cach parameter and process and ascertain that the units match, both in rime and space The more involveil you are in the mexdel structure and formulation and the less you rely on some of the hult-in automatic features, the more you wrill learn atxum rhe system and the better you understand it.

Another trick is the introduction of the Dayjul variable, which is the Julian day calculator. The data we have from the station are for only 365 days. In Stella, once the data in a Graphic function are exhausted, the very last value is raken and







 |













## Exarcisa 6.1












 thal we mer be massurg?
$\because$ elmath ilice e













 -h wer. 1 dav









frinding a station that is located close to the site being mudeled. It is most problematic to ohtain data on solar radiation (also known as photoactive radiation - PAR). For some reason it is not one of the standard observanons, and direct measurements are rare. Therefure, in our model we will estmate solar radiatoon based on the latitude of a site and the generally available information about preciptation. All these factors are put cogether to estimate evapuratom in a simple mondel in Figure 6.6. The correspond. ing equations are as follows:

```
A = 720 52.6 68*LatDeg
Alr_temp_degC = {(Arr_temp_degF-32)*5/9 - Alr_temp_minCl/2
AII_temp_minC - {Air_temo_minF-32 )
B=105 94*(LatDeg-1748;^027
C= 175-3.6"LatDeg
cloudy = |f Precipitation > 0 then max(0. 10-1 155'(vap_press//Precipitation* 25 4*30|^0 5) else 0
Cl_facter = 0 15
DayJu! = moditime-DT.365i + 
Evap_M = EvapBelt "0.0254
Hyd_evap_calc = *Hyd_evap_r**SolRadGr/585*pan_CW*pan_CT *pan_CH
LatDeg = 39.0
pan_CH = 1.035 + 0.240*(Humidity/60)^2.0 275*(Humidity/60)^3
pan_CT = 0.463 + 0.425*(Arr_temp_degC/20) + 0.112* (Aוr_temp_degC/20;^2
pan_CW = 0 672 + 0 406*(Wind/6 7) + 0078*(Wind/6 71^2
SolRad = A + B*COS(T) +C*SIN!T)^2
SolRadGr - max(0,SolRad*(1-Cl_factor*cioudy)i
T = 2/365*P1*(DayJul-173)
vap_press = Humldity*6 1078*EXP(17269*Alr_temp_degC/IAIr_temp_degC + 2373!!
Wind = Wind_speed* 1852/24
-Hyd_evap_rc = 0.0028
Air_temp_degF = GRAPH (DayJul)
(100, 440). (2.00, 42.0), (3.00, 51.0), (4.00, 42.0), (5.00.38.0), 6.00, 43 0), (7.00, 44.0).
Air_temp_minF = GRAPH (DayJul)
(1.00, 19.0). (2 00, 21.0), (3.00. 22 0), (4.00. 26.0), (5.00, 19.0), (6.00, 210), (7.00. 32 0).
EvapBelt - GRAPH (DayJul)
(000,0.00), {1.00, 0.00}, 12.00,0.00}, (300,0.00), (4.00,000), 15.00, 0.00), (6.00, 0.00),\ldots
Humidity = GRAPH (Day.Jul)
(100.670). {2.00, 71.0}, 13.00, 69.0), 14.00, 50.0). (5.00. 65 0). 16.00. 88 0!, 17.00. 90 0).,
Precipitation = GRAPH (DayJul)
(100,0.00), (200,0 00), 13.00, 000), 4 00, 000), 15.00,0.00), 6.00, 0.051, (700, 0.41!,..
Wind_speed = GRAPH (DayJul)
(1.00, 129), 12.00, 113), {3.00, 148), {4.00,160), (5 00, 102), 6.00, 66.0), (700, 179)...
```

The climatic data are entered as graphs to represent the time series downloaled from the NCDO websice. Note that in this model we do not have any state varia. bles; we only reproduce some empirical relationships that correlate evaporation with known data. We do not really need to use Stella; all this could be done in a spreadsheer program such as Excel or Open Oftice. However, in this case Stella is useful to describe the cause-effect links that are important to estimate evaporation. The model is based on an empirical relationship by Christiansen (see Saxton and McGunness,


Figure 6.6 Stella model for evaporation. With no state variables this could easily be a spreadsheet in Excel


Figure 6.7 Goodness of fit for evaporation.
Comparison of model results with available data for evaporation for Beltsville. MO. 1991.
1982). The solar radiation is estimated by a smplified version ol an algorithon developed by Nikolov and Zeller (1992). We ean compare the results of this aralysis with existing measurements of evapuration wo see how well the model works (Figure 6.7).

There is a lon on variabiliry in eveporation caused by the differences in clamatic datio. In the mextel we have managed to obrain a gened estmate of the gencral trend, but have tailed to reproduce all the changes in evaporation. The data for wind speed, precipitatum


Figure 6.8 Variability ol climatic data
Data measured at Beltsville, MD, meteorological station in 199). There is hardly any seasonal pattern in the data for rainfall, humidity and wind.


Figure 6.9 $\quad$ Estimated solar radiation lor Beltsville, MD, 1991 (Latitude $39^{\circ}$ ).
and humdity show significant variahility (Figure 6.8). The model of solar radiation also shows significant variability caused by the cloudiness effect (Figure 6.9). The basic beltshaped uend for radiation that is detmed hy the latitude of the site is smooth. Added to tt is the stochastic pattern of climate that generates the cloudiness in our model.

Also mote that this model can be formulated as a pre-processor that is rut: to generace the missing time series to run the full model. There are no feedbacks that would pont into this module from anywhere else. The only purpose is to generate the nitssing time series for $P A R$ based on the existing climatic time series and the latitudeilongitude of the site we are modeling. We may want to ron this model only


 fud ing. G.ll n.avi aline with








 R




## Exercise 6.2


 varimbry in model exrous


 observe on tws case)

 versa ${ }^{3}$
 makes under oferen chrate row pions

## Snow and ice









part of that model. The accompanymg Stella model is shoun in Figure 6.11. We will wanc to sufflement the equations above wrth the following:

Snowlceit $)=$ Snowlcelt -dt$)+\left(\right.$ Freeze + Snowfall ${ }^{\text {• }} \mathrm{dt}$
INIT Snowlce - 0
DOCUMENT The amount of snow and ice on the suiface (m)
Freeze $=$ if Temperature $<0$ then Surface_Water/DT else - Melt
DOCUMENT. Freezing/melting of water/snow formulated as a biflow. When temperature is above $0^{\circ} \mathrm{C}$ snow lif availablet is melting at a constant rate. Otherwise water is freezing. All avallable water is assumed to freeze immediately.
Snowtall $=$ if Temperature $<-0$ then Precipitation 0.0254 ese 0
DOCUMENT: Snow accumulation from precipitation; use 0.0254 to transfer inches into m .
Melt $=0.01$
DOCUMENT: How much snow can melt per day (m/di)
Temperature $=25^{*} \operatorname{SIN}($ Daylul*PI/180/2)^2-5 + RANDOMI-3.3)
DOCUMENT: Temperature $\left({ }^{\circ} \mathrm{C}\right)$ is modeled by a combination of the SIN iunction and the RANDON: function. The amplitude of the SIN is ncreased to 25 . Power 2 is used to make is always positive The DayJul PI/180/2 conversion is used to switch to radians and stretch the SIN period over the whole year -5 is the lowest temperature generated All temperatures are modified by a random value between -3 and 3

Norice here that we ate using a so-called b-flow to descrube the conversion of uater into ice and back - the "Frecee" How. Srella allows only positive flows. Whenever a flow becomes negarive, it is clamped to zera. Sometimes this is a useful feature, but it can cause a lot of confusion if it is forgotren. If it is clear that the


Figure 6.11 A Stella model with snow/ice formation added
One importan process, called sublimation, is missing from this model. This is not important in warm climates, when snow does not stay on the ground for long periods of time.

How is suppused on be negative sometumes, it is important to ensure that It is described as a bi-flow by clicking on the radou button at the top of the flow dialugue box

Another teature to nute here is instancanecus conversion of all avalable surface water into snow or tee whenever the temperatures tall below zero. Rememher why we divide Surface_Water/DT? Also note the effort made to provide proper doctmentation directly in the body of the mudel. This can save a great deal of trouble later on, when we return to your model after a period of rme and are trying to lige. ure out once again what an eydaton was for and why a particular parameter looks so weird.

Also notice that tempera. ture is described as a formula in a similar way to that described in Chapter 2 . While the fermula is somewhat different, the result is cuite the same: cycles of warm and cold temperature over a 365 . day periow with some random noisc imposed on tof of them.

There is no such thing as too much
documentation. Never economize on commenting and descrabing your model and what you did woth it. This will make you very proud of yourself, and happy when you need it later on:! Which of the cwo tormulas is better? It is really hard us sily.

The model results are shown in Figure 6.12. We can see that surface water is delivered by ran and then gradually infiltrates into the ground. It will freese into soow/ice when the temperature is below $0^{\circ} \mathrm{C}$. and under freezing conditions preciputation also arrives as mow. Wie ohserve a rapul accumulation of sonow during the early, cold months of the year. Later on snow/ice disappears, and the dynamics are similar to those genemated by che surface water dynamacs model. Towards the end of the year there are ngain freezeng temperatures, and thus sume snow/ice is produced


Twernat it: Output from the snowfice model
Snowfice is present only during the first tew cold months and then quickly disappears. More snow appears at the end of the year when the temperature drops below zero.


#### Abstract

    


 vet rewtrionn a ive mookl-
## Exercise 6.3


 ente vinen mudal eonass to be rore ralisic?



## Water in the unsaturated layer



 -









 1- ינ!

 IBqundialimu dres

The factors that intluence infiltration may be grouped mo three categories (Figure 6.14):

1. Those related ta climatic condtions. The amount of water intaltrated depends upon the duration and intensity of rainfall. A 24 -hour drizale can be entarely accommodated by the soil, whereas the same amount of water recewed during a 20 -minute downpur will most probably end in in the surtace-water runoff. Temperature also matrers. When the ground is trozen. the intensity of intileration is reduced.
2. Those related to surface characteristics. Landuse and land cover translate into the mperviousness of the surface. A parking lot will leave litele water to infiltrate. whereas a forest may capture the entire amount of wate arriving. On the other hand, forests can intercept the incoming rainfall with leaves and trees in such a way that a certain portion of the incoming water never reaches the ground. This moisture is only expesed to evaporation. Slope also matters. In a tlat area there is more time for water to enter the ground, while on a hill it starts traveling downwards along the surface as soon as it hits the ground.
3. Those relared to soil characteristics. Sand is an excellent medium for infiltration. On the contrary, clay can block almost all infiltration. Moreover, it the soil is already saturated with water (the sol moisture content is high) there will be litule space left in the pores for additional water to infiltrate.

A typical iatiletation event evolves in both space and time (Figure 6.15). As the rantall starts, some water begins weep into the ground, gradually increasing the soil water concent (curves 1-3) ar the top of the soil layer. As more water comes with the raun it keeps entering the soil pores. The gravitation removes some water from the top layers and makes it thavel further deeper into the ground If this vertical movement is fate enough to tree up space on the top for the additional incoming water, then all the ran st absorbed. It the soil characteristice do not allow water to travel tast enough through the soil, then the pores on the top are all filled (curve 4-6) and the addtional water will be lett on the surtace to cravel with overland flows. This is when ponding may occur. The wave of saturated water propagates downwards through the soil Once the rainstops, the pores at the top start to dry out and get ready to accommodate a new rantall event

Loss of water from the unsaturated layer occurs by transpiration (upwarts) and percolatoon (duwnwards). Transprataion is a process that remoses water from the soil and transters it as water vapor into the atmosphere - just as in evaporatom. The major difference is that in transpiration plants are responsible for water transport. They suck moisture from the soil with their roots, move it up into the canupy and



Figure 6.15 Propagation of a water front through the unsaturated layer during a rainiall event. Note :hat this simple model does not describe the spatial dynamics in the vertical. See how the amount of water in unsaturated storage (ul changes as a function of depth (hi. Curve 1 , start of a rainfall event; curves $2-4$, increase ol unsaturated moisture until saturation is reached; curves $5-6$. propagation of the saturation front downwards, curve 7 , end of rainfall event, dryout from top.


Figure 6.16 How water travels through porous media. When all the pores are filled with water, soilis saturated.
then telease it into the air through them leaves. As a result, there is more water avalable for transpiration than there is for evaporation - which only picks up moisture from the surface and the very few centimeters towards the surface of the soil. Transpiration can access water as deep as the roots extend. So rranspirarion is a func. tion of the plane biomass which can change t:ver the simulation period.

Percolution is rhe princess hy which water form the unsaturated storage enters the saturated layer hy means of gravitational and capillary forces. Soil consists of material particles with air in hetween (Fiyure 6.!6), and these voids or pores can potentially he filled by water. When all the pores are filled the soil is referred to as saturated, and vern cal movement of water is very much slowed down. While the pores are not






$$
1 \cdot-1 \times
$$












$$
1 \cdot a^{1}
$$



 10.







Figure 6.18 A simple Stella model for water in unsaturated layer.
trom $1 \mathrm{~m}, \mathrm{~d}$ in sandy soils to 1 mm , d in clay. The percolation rate is also affected by the suil moisture content: $p=f(L) h_{c}$. The more mosture there is in the ssill, the higher the rate of percolation If $U<F_{i} P$, the moisture is ar field capacity and percolation is e. It tends to 1 when $U$ approaches 1 .

As the water percolates downwards, it alds to the anount of water already present in the unsaturated storage. It takes only $P-U$ water to thll in the unsaturated storage so that it hecomes saturated.

The Stella model for water in unsalurated layer is presented in Figure 6.18. The correspondeng equations are as follows:

```
Unsat_Depth(1) = Unsat_Depthit - dt) + (UD_plus - UD_minus) * dt
```

INIT Unsat_Depth $=12$

UD_plus = Transpiration/Porosily
DOCUMENT Unsaturated depth is increased by the effect of transpuration, which removes water from the salurated layer and can make it unsaturated (m/cay) NB. Note how porosity comes into play. Why do we do that?
UD_minus $=\boldsymbol{\pi}$ iUrsat_Water> = Unsat_Depth*Porosity) then (Unsat_DepthiDT else Percolation/ Porosity
DOCUMENT. Unsaturazed depth is decreased due 10 the percolation (mid) of water from the unsaturated zone to the saturated. which raises the water table if the amount of unsaturated water exceeds the potential unsaturated capacity (Unsat_Water> = Unsat_Depth*Porosily). this means that no unsaturated layer can reman. all soll becomes saturated. unsaturaiec depth becomes zero.
Unsat_Water(t) $=$ Unsat_Water $(1-d i)+$ IInfiltration - Fercolation - Transpiration $)^{*}$ dt INIT Unsat_Water $=011$
DOCUMENT: Amount of water in the unsaturated layer measured as height of water column if "squeezed" from the son! (m).
Infiltration $=$ m.nilnfil__rate. Precipitation ${ }^{*} 0.0254$, Porosity* Unsat_Depth-Lnsat _Water)
DOCUMENT: The amount of water infiltrated is the minimum of infiltration rate, the amount of precipitation avalabie .00254 converts incnes 10 m ). and the unsaturated capacity ( $\mathrm{m} / \mathrm{d}$ ) The
unsaturated capacity is the potential capacity the volume of pores in the soill minus Unsat_ Water the space already occupiedi

Percolation $=\|$ Unsat_Depin $=0$ then Unsat_Water/DT
else if Unsat_Water< = Field_cap*Unsat_Depth then 0
else Perc_rate
DOCUMENT Percolation flow ( $\mathrm{m} / \mathrm{d}$ ). The amount of water removed by gravity from the unsaturated layer. This process can remove only water in excess of field capacity.

Transpiration - NPP*Transp_rate
DOCUMENT: The transpiralion flow (m/day)
Day Jul $=\bmod (t!r \operatorname{te}-1,365)+1$
DOCUMENT: Julian day, 1 thru 365
This is a counter that resets the day to zero after 365 iterations. Needed to use the same graph function for several vears of model runs.
Field_cap $=0.13$
DOC.UMENT: The amount of moisture in soll that is in equilibrium with gravitational forces (dimless)
Infilt_rate $=0.5$
DOCUMENT: Rate of infltration - the amount of water imi that can be moved nto the unsaturated layer from the surface
Perc_rate $=0.01$
DOCUMENT Rate of water removal by gravitation (m/day) Deoends upon soll characterisucs
Porosity $=0.35$
DOCUMENT Proportion of pores in the soil They can be potentially filled with water (dimless)
Transp_rate $=0005$
DOCUMENT The amount of water that plants can remove from soll by the sucking action of their roots i m of water $/ \mathrm{kg}$ biomass ${ }^{*} \mathrm{~m}^{2} / \mathrm{dI}$
NPP = GRAPH (DayJul)
(0.00, 0.00), 133.2, 0.00), $664,0.00$ ), \{99.5, 004 ). (133, 0.41, (166, 0.925), 1199, 0.975), !232. 0.995). \{265. 0.985\}. \{299, 0 855). (332, 0.105\}. (365, 0.00)

DOCUMENT: An estimate of plant growth over the year $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
Precipitation = GRAPH (DayJul)
!1.00, 0.02). (2.00. 0.34). (3.00, 0.00), (4.00, 0.07), (5.00. 0.001. (6.00, 0 18), (700, 0.46),
(354, 0.00), $(355,0.00),(356,0.00),(357,0.00), 1358,000), 1359,0.00),(360,0.02),(361,0.00)$,
(362, 0.00), i363, 0.00), 1364, 0.00i, 1365, 0.00)
DOCUMENT: Rainfall from Beltsville. MD 1969. (in/d)

In this model we reproduce the dynamics that may be observed in a wetland that gets flooded during the wet season and dries out durng the dry period. The veg. etation that is removing significant amounts of water by transpration controls the stace of the wetland. The resulting dynamics of unsaturated water and unsaturated depth are shown in Figure 6.19. When the tramspiration rate is $0.005 \mathrm{~m} / \mathrm{kg} \mathrm{m} / \mathrm{l}$. the plants can remove almost all the water and keep the area dry for most of the year. When the transpiration rate declines to 0.C03, there is a succession of wet and dry periods. Certan species are known to be more effective in sucking the water our of the soil (e.g. Melaleuca quinquenetvia - the Australian cajeput, which is somerimes


## Figure 6.19

 Ryalawiben




## Exercise 6.4










## Water in the saturated layer
















 w- $\cdot$.










Figure 6.20




Figure 6.22 Calvert Cliffs in Maryland.
The layer of clay underlies the unsaturated layer. Clay has very low permeability, and water travels horizontally on top until it reaches the shore of Chesapeake Bay. Note the dry unsaturated layers on top of the wet saturated layers below.


Figure 6.23 Stella model 'or water in saturated layer.
sarurated and unsaturated zones moves and the two storages become closely relared. Whar was prevously the sarurared zone may turn to be unsarurated, and ance versa.

The model equations are as follows:

```
Sat_Water(t) = Sat_Water(t - dt) + (Percolation& - Recharge - Transp_Satt)* dt
INIT Sat_Water = 4
DOCUMENT Amount of water in the saturated loyer, measuled in m from some base darum
Percolation& = If Unsar_Depth > 0 then
(if Unsat_Water< = Field_cap*Unsat_Depth then O else Perc_rate)+
(if Unsat_Delta > O then Unsat_Water*Unsat_Delta/Unsat_Deptn/DT
else Unsat_Delta*Porosity/DT)
else Unsat_Water/DT
DOCUMENT: Percolation flow im/d} + the compensation for the change in the water table height
First term is percolation, the amcunt of water removed by gravity from the unsaturated layer This
process can remove only water in excess of field capacity. Second lerm tells how much water
was added to (or removed from - hence the biflow) the unsaturated zone when water table
went down (up).
```

Recharge $=$ Seepage *Sat_Water
DOCUMENT: Loss of saturated water to deeper aquifers ( $\mathrm{m} / \mathrm{d}$ )
Transp_Sât = Transp_Unsat
DOCUMENT: Assuming that transpiration from the saturated layer occurs at a rate equal to that
from the unsaturated layer
Unsat_Water(t) = Unsat_Water(t - dt) + (Infiltration - Percolation\& - Transp_Unsat) * dt
INIT Unsat_Water $=3$
DOCUMENT: Amount of water in the unsaturated layer measured as height of water column if
"squeezed" from the soil (m).
Infiltration = mintinfilt_rate.Precipitatıon*O 0254,Porosıty*Unsat_Depth-Unsat_Water/DT)
DOCUMENT: The amount of water infiltrated is the minimum of infiltration rate, the amount
of precipitation available ( 0.0254 converts inches to m ), and the unsaturated capacity ( $\mathrm{m} / \mathrm{d}$ )
The unsaturated capacity is the potential capacity (the volume of pores in the soil) minus
Unsat_Water (the space already occupied)
Percclation \& = if Unsat_Depth>0 then
(if Unsat_Water< = Field_cap*Unsat_Depth then 0 else Perc_rate) +
(if Unsat_Delta > 0 then Unsat_Water*Unsat_Delta/Unsat_Depth/DT
else Unsat_Delta*Porosity/DT)
else Unsat_Water/DT
DOCUMENT. Percolation flow ( $\mathrm{m} / \mathrm{d}$ ) + the compensation for the change in the water table height.
First term is percolation, the amount of water removed by gravity from the unsaturated layer. This
process can remove only water in excess of field capacity. Second term tells how much water
was added to (or removed from - hence the biflow) the unsaturated zone when water table went
down (up).
Transp_Unsat $=$ NPP $^{*}$ Transp_rate
DOCUMENT The transpiration flow ( $\mathrm{m} / \mathrm{d}$ )
DayJul $=\bmod ($ tıme $-1,365)+1$
DOCUMENT: Julian day, 1 thru 365
This is a counter that resets the day to zero after 365 terations. Needed to use the same graph
function for several years of model runs.

Elevation - 30
DOCUMENT Elevation of surface from base datum ( m )
Field_cap = 013
DOCUMENT: The amount of moisture in soll that is in equlibrium with gravitational forces (dimless)
Infilt_rate $=0.05$
DOCUMENT: Rate of infiltration-the amount of water ( $\mathrm{m} / \mathrm{d}$ ) that can be moved into the unsaturated layer from the surface
Perc_rate $=0.005$
DOCUMENT Rate of water removal by gravitation ( $\mathrm{m} / \mathrm{d}$ ). Depends upon soll characteristics
Porosity $=035$
DOCUMENT. Proportion of pores in the soil. They can be potentialy filled with water (dimless)
Seepage $=00001$
DOCUMENT: Rate of loss of saturated water 10 deep aquifers $\{/ / d\rangle$
Transp_rate $=0.005$
DOCUNENT: The amount of water that plants can remove from soil by the sucking action of ineir roots ( m of water $/ \mathrm{kg}$ bromass* $\mathrm{m}^{2} /$ day)
Unsat_Deita = DELAY(Unsat_Depth,DT)-Unsat_Deoth
DOCUMENT: Increment in water table height (m) over one DT.
Unsat_Depth = Elevation-Sat_Water/Porosity
DOCUMENT. Depth of unsaturated zone (m), defined as Elevation - amount of saturated water * porosity Note that sat water is the water "squeezed" out of the ground, by multiplying it by porosity we get the actual height of saturated layer
NPP = GRAPH (DayJul)
$(0.00,0.00),(33.2,0.00),(664,0.00),(99.5,0.04),(133,04),(166,0.925),(199.0 .975),(232$, $0.995),(265,0985),(299,0.855),(332,0.105),(365,0.00)$
DOCUMENT: An estimate of plant growth over the year $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
Precipitation $=$ GRAPH (DayJul)
(1.00, 002 ), (200, 034), (300, 0.00), (400, 007), (500, 0.00), (6.00, 0 18). (700, 046), 1800 , $0.22),(900,008),(100,000),(110,000),(120,0.38),(130,0.11,, 140,0.00)$,
$(354,0.00),(355,0.00),(356,000),(357,0.00),(358,0.00),(359,0.00),(360,002),(361,0.00)$, (362, 0 00), (363, 000 ), , 364, 000 ), \{365, 000$\}$
DOCUMENT Rainfall from Beltsville. MD 1969 ( $\mathrm{in} / \mathrm{d}\}$

We consider the amount of water in the saturited zone, as if it were squeezed our of the ground. The acrual height of the saturated layer will then be Sat_Water/ Porosity, where porosity is the proportion of pores in the ground. The depth of the unsaturated layer Unsat_Depth is now calculated as the difference berween the elevation and the height of the sacurated layer.

Norice the use of the DELAY function in this model. The Unsar_Delta is calculated as the difference between the unsaturated depth before and the depth now. If Unsar_Delta is positive, it means that there was a deeper unsaturated layer before than there is now. This can only be the case if the water table is rising, so we need ro move sume water that prevously was in the unsaturared storage inco the saturated








 , lixner buriotren mineron ytati








## Exarcise 6.5






### 6.2 Unit model





adopted so far. It makes sense to keep a record of chose, since many cumes a modeler can get carried away with the process and forget abour some of the simplifications that were made at one of the earher stages. It also adds credibility to the model if you can always explain all the assumptions to the model users.

The major processes and assumptions we made to create a model are as follows:

- Precipitation comes with rainfall and snowfall. It the temperature is below $0^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right)$, the precipitation is channeled into the snow/ice vartable. Otherwise part of it infiltrates into the unsaturated water and the rest goes into the surface water.
- We assume that rainfall infiltrates iminedrately inco the unsaturated layer and only accumulates as surface water if the unsaturated layer becomes sacuraced or if the dally

> Always be clear and honest about all the assumptions and simplifications that were made when model was built. infilcration rate is exceeded.

- Surface water may be present in rivers, creeks, streams or ponds. Surface water is removed by overland flows and by evaporation.
- Surface water flow rates are a function of dynamically varying plant biomass, density, and morphology in addition to surface and water elevation. Huwever, at chis point we ignore details of surface water flow.
- Water from the unsaturated layer is forced by gravity to percolate down cowards the saturated layer. As it accumulates, the level of the saturated water goes up while the amount of water in the unsaturated layer decreases.
- Transpiration is the process of water removal from soil by the sucking acton of roots. Transpiration fluxes depend on plant growth, vegetation rype and relative humidity.
- Saturated groundwater can reach the surface and feed into the flow of surface water. This process is what feeds the streams and rivers between the rainfall events the so-called baseflow.

After looking at individual processes and variables, we can pur together the whole model for the hydrologic cycle, assuming that we can sungle out an area that is more or less independent of the adjacent regıons. We assume that we are looking at an area of less than $1 \mathrm{~km}^{2}$, located in relatively flat terrain that is not soo much affected by horizontal fluxes of groundwater. There is a cercain gradient of elevation that is suffcient to remove all the excess suiface water that did not get a chance to infiltrate into the ground over one time-step. The groundwater table is rather stable and tends to be at equilibrium at the initial conditions. The clımatic data that we have are at a daily time-srep, and cherefore there is no reason to assume a finer tume-stef in the model. Thus, we can agree chat our cime-step is 1 day and our spatial resolution is $1 \mathrm{~km}^{2}$.

The model diagram in Figure 6.25 is quite complex, but you will certainly recognize some of the modules and subinodels previously considered.

The Globals sector (Figure 6.26) contains clımatic data that are input

> Keep your model diagram and code tidy and logical. Explain things wherever possuble. Avoid long connections. Try to put the model into submodels or modules. as graphs and the empirical model for solar radiation. Here, we also detine the elevation of the area considered. This might not be very important for the unit model, but it will become crucial if we decide to combine the unit models into a spatial simulation.



Figure 6.26 Forcing functions for the hydrologic model collected in a separate submodel called Globals.


Inputioutput section for the hydrologic model.
Note that it is easier to manipulate parameters if they are collected in ore place using the "ghost" feature in Stella.










## Exercise 6.6


 fied andion descimad in more ile:ta!?


 yeas'
 several yeats that destadizes ine syeter?


 1 ?






 I- .



$$
2-\frac{18-1.204}{11-\cos 5}
$$






Here we need to use some caution and remember one of the commandments above: mind the untrs. As for any product coming from a US Federal Agency, TR. 55 is designed in imperial unts - in this case, inches. US Federal Agencies do not acknowledge that the rest of the world has adopred metric standards, which causes a lot of confusion and errors. So take care whenever dealing with a product that comes from there! In the case of the equations above, the units did nor matter until we arrived at the relationship between $S$ (measured in units of lengrh) and $C N$ (a dumensionless empirical curve number). The curve numbers CN are designed to produce S in inches. So in order to stay withun the universally accepted metric convencoons, a conversion is needed:

$$
S(\mathrm{~cm})=\frac{2540}{C N}-25.4
$$

All the complexitues of the hydrologic cycle that we have explored become embedded in this magical empirical parameter. If there is no retentoon capacity of the watershed, $C N=100, S=0$ and $Q=P$, all rainfall becomes runoff. The larger the retention capacity, the smaller the curve number, the less runoff is seen. Curve numbers are produced from empirical studies for varıous land covers and soil types. A sample of curve numbers is presenced in Table 6.1.

Table 6.1 A sample of runoff curve numbers for urban areas. Similar tables exist for agricultural and lother types of land uses. See the full TR-55 publication

| Cover description |  | Hydrologic soil group |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cover type and hydrologic condition | Average percent impervious area | A | B | C | D |
| Open space (lawns, parks, golf courses, cemeteries, etc.) |  |  |  |  |  |
| Poor condition (grass cover < 50\%) |  | 68 | 79 | 86 | 89 |
| Farr condition (grass cover 50-75\%) |  | 49 | 69 | 79 | 84 |
| Good condition (grass cover $>75 \%$ ) |  | 39 | 61 | 74 | 80 |
| Impervious areas. |  |  |  |  |  |
| Paved parking lots, roofs, driveways, etc. (excluding right-of-way) |  | 98 | 98 | 98 | 98 |
| Streets ano road's: |  |  |  |  |  |
| Paved; curbs and storm sewers (excluding right-of-wey) |  | 98 | 98 | 38 | 98 |
| Paved; open ditches (including right-ot-way) |  | 83 | 89 | 92 | 93 |
| (Continued) |  |  |  |  |  |


| Table 6.1 IContinued) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cover description |  | Hydrologic soil group |  |  |  |
| Cover type and hydrologic condition | Average percent impervious area |  | B | c | D |
| Gravel lincluding right-ot-wayi |  | 76 | 85 | 89 | 91 |
| Dirt (including right-ot-way) |  | 72 | 82 | 87 | 89 |
| Uiban districts |  |  |  |  |  |
| Commercial and business | 85 | 89 | 92 | 94 | 95 |
| Industrial | 72 | 81 | 88 | 91 | 93 |
| Fesidental distructs by average lot size |  |  |  |  |  |
| 1/8 acre or less hown hoisest | 65 | 77 | 85 | 90 | 92 |
| 1/4 acre | 38 | 61 | 75 | 83 | 37 |
| 1,3 acre | 30 | 57 | 72 | 81 | B6 |

Infilcration rates of soils vary widely, and are affected by suhsurface permeability as well as surface intake rates. Soils are classified into four Hydrologic Soil Groups (HSO) - $A, B, C$ and $D$ - according to their minimum infltration rate, which is obtanned for bare soil after prolonged wetting. Roughly, the HSG soll texrures are as follows: A - sand, loamy sand, or sandy loam, B - silt loam or loam; C - sandy clay loam; and D - clay kam, silev clay loam, sandy clay, silty clay, or clay.

Comparing the two models, the process-hased Stella model and the empirical TR55. the simplicity of the latter can be appreciated Note, however, how litele the empirical model tells us about the actual processes - abour how various forcing functions (temperature, wind, etc.) affect the system. While it is certanly a useful tool tor some particular applications, especially where quick estimates are requited, it is unlikely of advance our understanding of how the system works. On the other hand, it is quite easy to hecome buried in all the complexities of the process-lased approach, especially if we consider all the parameters we will need to higure our to make it run, and all the data for forcing functions that we will need to find. In some cases, a bicycle is all you need to get there, in other cases, a Boeing 777 would be a better choice. Note, houever, that in most situations when a bicycle is a good solution, a Boeing would be a ridiculus or even impossilile option. The same applies with different kinds of monels.

Also note that both models have quite limited application, since they assume a very small watershed and no horizontal movement of water. If we want to cover larger watersheds, we need to explore how water gets routed and what sparial algorithins ine needed to make the models work.

### 6.3 Spatial model

In reality, hydrologic processes are very much spatial and their desctiption within the framework of a spatially uniform unt model is guite limited. Water, both on the




























defined ly horizontal hydraulic conductivity. This rate $s$ very much dependent on the sonl type, and can vary ty several orders of magnitude.

As with surface water transport, groundwater flow is certainly spatial. It is driven hy spatial gradients and the spatial characteristics of soil. In tact, of the four major vartables in the unit model considered above, only two (unsaturated water and snow, ice) are atrached to a certain area and can be moteled locally. For the other two mafor actors (surface water and saturated water!, we need some representation of spatial dynamics.

As we saw in Conprer 5. Stella is certainiy not a proper cool to buikt spatial models that may become very complex and are likely to require direct links to maps and Geographic Information Systems (GIS). There are two basic appromehes used for modeling spatial hydrology (Figure 6.29):

1. Lumpect or nerwork-based hydrologic units. Here, the space is represented as a number of hydrologically homogeneous areas that are linked rogether by a linear netwosk, representing the flow of water in streams.
2. Grid-based units. Here, the space is represented as a untorm or non-structured grid of square, criangular or other cells.

Each o: the two approaches has its advantages and disadvantages.

## Lumped models

When using network-basest segments, the number of individual hydrologic units that are considered spatially may le quite small. The whole area is subdivided into regions, tased un cerran hydrolugic criteria. These may be subwatersheds of cerrain size. hill slopes, areas with similar soil and habitat properties, ete. In most cases it is uf to the researcher to dentify the ranges wichin which factors are aggregared.


Lumped network approach and the grid approach. Each subwatershed or hydrologic unit is presented as a combination of cells.
and therefore decide on the number of spatial units that are to be considered in the model

This decision is made based on:

- The goals of the model - how much spatial detail do wo need about the system, and what are the manor processes we want to analyze and understand within the framework of the morlel?
- The avalable computer resources - how much memory there is to handle the spatial arrays, and how fast is the CPU to run the full model?
- The available data - how much do we know about the study area, and what is the spatial resolution of the data?

Once the spatial units have been chosen, they are assumed to be homogeneous, and the geometry of the area is hixed. This is also the major disadvantage of the lumped or the unstructured grid approach. If for some reason we need to reconsider the geomery of the watershed and switch to other hydrologic units, it may require a considerable effort to develop a new grid or routing stheme.

Once the routing network is dehined, the prucedure is more or less the same. Certain empirical or process-based equations are derived to defne the amounts of water and constituents that each hydrologic unit may generate. These quantities are then fed into a network model that represents the transport along the river and its tributaries. The network mudel links togerher the individual models for the spatial units,

One of the classic examples of this approach is the HSPF (Hydrological Simulation Irogram Fortran), which is availahle for download from a variery of sites (hutp//water.usgs gov/sotware/hspf.html) The nodel was tleveloped in the early 1960 s as the Stanford Watershed Model. In the 1970s, water-quality processes were added. HSPF can cover extended periods of tune with ume-steps ranging from I minute to 1 day. It has been used to model various spatial areas, from small sub-catchments of several hundred square meters th the 166.534 km Chesapeake Bay watershed. The model simulates the hydrologic and associated water-quality processes on pervious and impervious land surfaces, and in streans and well-mixed mpoundments. It uses standard meteorological records to calculate stream tlow hydrographs and pollutographs. The liss of processes that are covered by various versions of HSPF is long and impressive: interception, soil monsture. surface runoff, interflow, base flow, snowpack depth and water content, snowmelt, evapotranspiration, groundwater recharge, dissolved oxygen, biochemical oxygen demand ( BOD ), remperature, gesticides, conservatives. fecal coliforms, sediment detachment and transport, sedment routing by particle size, channel routing, reservoir routing, constituent rouring, pH , ammonia, nitrite-nitrate, organic nitrogen, orthophosphace, organic phosphorus, phytoplankton and rooplankton.

Probably one of the hest-elaborated versions of HSPF twecame part of the BASINS suite developed at the US Environmental Protection Agency (EPA) (http://www. epagov/OST/BASINS/). A major improvement is the user-friendly incerface, which allows users to build a project for a watershed that they are interested in. At this site there may even be data sets that are needed for a model for almost any watershed in the USA. The latest version of BASINS also includes the SWAT model - Soil and Water Assessment Tool (htrp://www brc.tamus.edu/swat/index.html) - another wellknown spatial hydrology model that is also based on the same lumped subwatershed paradigm. Both models are generally able to simulate stream flow, sediment, and nutrienes loadung. According to some reports, HSPF simulates hydrology and water-quality components more accurately than SWAT; however, HSPF is less user-friendly than

SWAT, owing to there being even more parameters to control. HSPF is an extremely data-intensive and owerparametened moklel, and requires a large amount of site infurmation. SWAT is sume what simpler; it estimates the sufface runoti from daily rainfill using the cun we number method we discussed above, and iedment yeld is calculated with the Modifed Universal Soil Loss Equation (MUSLE)

Yet another two models that are worth mentioning are

1. TOPMODEL - a classical model that has been used for a vatecy of rivers and watersheds (see http //www es lancs.ac.uk/higg/freeware/hidg_treeware_tophtm)
2. RHESSys - the Regional Hydro-Ecological Simulation Sysem, whech is a GIS. hased, hydro-eologecal modelong frimework designed to smolate carlom, witer and nutrient tuxes. RHESSys combines a set of physically-based process models and a methodology for partitioning and paramererizing the landscape (see http:/h geographysdsu.edu/Research/Pojects/RidESSYSi)

Describing any of these models in any decent amount of derall can take as mach space as this whole book. However, the basic concept is quite simple and can be illustrated by the same TR. 55 model considered above. As we have seen, we can calculate the anownt of runoff from a certain drainage area for each rainall event. By definition, this runoff dees not stay in place - it runs. Now we need to look at the horizontal dimension and figure out the factors that can impact this run, since once it starts running it stares to accumulate water from various areas, and that is what configures the flow hydrograph, or the pattern ol flow in a stream or river. TR- 55 has been developed to estimate the poak flow that an area can generate in response to varums rantall events. It takes the runoff, calculared above, as the potential amount of water that the area can produce, and then takes intonaccomet varoms spatial characteristics of the watershed (such as slope, chamelization, surtace characteristics, etc.) and the temporal characteristics of rainfall (duration) to estomate the maximal now flyal shomilil be expected from this area

One crucial indicator is the tome of concentratom ( $T_{c}$ ), which is the time for runuft to travel from the hydraulically mose distant point of the watershed to a point of interest within the watershed. $T_{c}$ is computed by summing all the travel tumes for consecutive components of the drainage conveqance system. Travel time $\left(T_{1}\right)$ is the time it takes water to travel trom one location to another in a watershed.

Travel sime is affected hy several tactors, such as surface roughness, channel shape, and slope of surface. For example, inuleveloped vegerared areas will hive athigh degree of roughness and very slow and shallow overland flow. Ab flow is delivered to streets, gutters and storn sewers, runoff downstream becomes far more rapict. Urbaization will generally signticantly decrease the travel time through a watershed. The slope will tend to mereast when channels are sraightened, and decrease when ovea land flow is directed through storm sewers, street gutcens and tiversions. The ume of concentration ( $T_{c}$ ) is the sum of $T_{1}$ values for the marious consecutive llow segments:

$$
T_{1}=T_{11}+T_{12}+\cdots+T_{\mathrm{un}}
$$

Travel time (in hours) is the rato of how length to now velocity. Warer mowes through a watershed as sheet flow, shallow concentrated flow, open channel fow, or some combinatum of these. Sheet llow is the liow over plane surfaces, and usually wecurs in the headwater of streams. With sheet flow, the friction value (Blannme's n) is an effective noughness coefficient that meludes the effect of raindrop mpact. drag
over the plane surface; obstacles such as lizter, crop ridges and iocks; and erosion and eransportation of sediment.

Manning's kinemaric solution, which works for travel time over 100 m or less, is

$$
T_{1}=\frac{0.007(n \mathrm{l})^{0.8}}{\frac{P^{05}}{S^{04}}}
$$

where $n=$ Mannıng's roughness coefficient (Table 6.2), $L=$ flow lengch ( $f t$ ), $P=$ 2 -year, 24 -hour rainfall (in), s slope of hydraulic grade line (land slope, fe/ft). Note again the confusion with units here.

Afrer a maximum of 100 m , sheer flow usually becomes shallow concentrated flow. It is driven by slope, so for concentration time we have

$$
T_{i}=\frac{\mathrm{L}}{3600 \mathrm{~V}}
$$

where: $L=$ flow length ( m ), $V=$ average velocity ( $\mathrm{m} / \mathrm{s}$ ) and $3600=$ conversion factor from seconds to hours. For slopes less than 0.005 and unpaved conditions,

| Table 6.2 |  |
| :--- | :--- |
| Roughness coefficients (Manning's n) for sheet flow |  |
| Surface description | $n$ |
| Smooth surfaces iconcrete, asphalt, <br> gravel, or bare soll | 0011 |
| Fallow (no residue) | 005 |
| Cultrvated soils: |  |
| Residue cover $<20 \%$ | 0.06 |
| Residue cover $>20 \%$ | 017 |
| Grass: | 015 |
| Short grass prairie | 0.24 |
| Dense grasses | 041 |
| Bermudagrass | 0.13 |
| Range inatural) |  |
| Woods | 0.40 |
| Light underbrush | 080 |
| Dense underbrush |  |

$V=16.1345 \mathrm{~s}^{15}$. for paved conditions, $V-20.3282 s^{0.5}$ where $s=$ slope of hydrate. lic grade line (watercourse stope, $\mathrm{m} / \mathrm{m}$ ). For steeper slopes the equations ate similar. but the coefricients will be different.

When flow tecomes channelized the equation is dititerent:

$$
V=\frac{1.49 \mathrm{r}^{2 / 3} s^{1 / 2}}{n}
$$

So why does 149 appear in front of the Manning's equation? What a strange way to write an equation Why not include the 1.49 in the emprical coefficient $n$. which is also there? What's so special about 1.49 ?

Well. your guess is probably correct. Of course, it is the unit conversion. The real Manning's equation is

$$
\mathrm{V}=\frac{r^{2 / 3} \mathrm{~s}^{1 / 2}}{\mathrm{n}}
$$

where $r$ is measured in meters and $s$. the slope, is measured in mim While $n$ is an emprical coefficient and is usually presented as dimensionless, in lact it has units if we want to have $V$ in $\mathrm{m} / \mathrm{s}$, we need to have $n$ in $\operatorname{sim} m^{1 / 3}$ - very werd unuts indeed. But now it is clear that it we wish to use the same empirical values for $n$, but get the result in ft/s. we'll need some tweaking Indeed. $\left.\operatorname{si} / \mathrm{m}^{1 / 3}=s / 3.281 / 3 \mathrm{t}^{1 / 3}\right)=\mathrm{s}\left(1.49 \mathrm{H}^{1 / 3} \mid\right.$ And there is our 1.49 !

The botton ine is, it you really need to use imperial units, brace yourself for a lot of fun.

Here, $r$ is the hydraulic radius ( ft ) and is equal to a $\mathrm{m}_{\mathrm{u}}$, a is the cross sectional flow area ( $\mathrm{ft}^{-}$), $p_{w}$ is the wetted permeter ( ft ), $s$ is the slope of the hydraulic grade line (channel slogk. feitt), and $n$ is the Manning's roughness coefficient for open channel flow. This is also known as the Manning's equation

Finally, the peak discharge ( $\mathrm{ft}^{3}$ /s) equatoon is:

$$
q_{p}=q_{1} A_{m} Q F_{n}
$$

where: $a_{4}=$ unit peak discharge ( $c s m ; i n$ ), $A_{m}=$ drainage area ( $\mathrm{mm}^{-}$),$Q=$ runoff (in), and $F_{p}=$ pond and swamr adjustment tactor. Here we know $A_{m}$ and how to calculate $Q$ from she unit model. $F_{p}$ is just an adjustmenr tactor if the pond and swamp areas are spread throughout the watershed and are nor considered in the $T_{c}$ computation. The unit peak discharge $q_{n}$ is what requires must effort to work our. It takes into account $T_{\text {e }}$, the 24 -hour rainfall ( $m$ ), and once agan the curve number, CN . Stepping through a series of rables and graphics, TR- 55 finally gets the answer.

There is a Stella implemencation of TR- 55 developed by Evan Fitzgerald that can he downloaded from the trok website or from the "Reitesigning the American Neighturhood" project website (http://wwwumedu; ran/ranitesearchers'ran55. php). In this simplified version, the standard rantall-runotf relationships and equations used in TR- 55 moxtels have teen writren into the Stella model to produce nearidentical results to the NRCS mundels. These relationships include the curve number approach as well as the raintall curve used for the northeast. The tume concentration varable was excluded in this version, since the mendel did not appeat to the sensitive ro it. A comparative analysis between TR. 55 and Stella model results was performed for the cime of concentration variable at the fixed scale of 10 acres, and ir was determined
that the effect of not includeng this variable in the Scella model was negligible for peak flow rate calibration.

The model also provides a good example of the use of the modeling incerface that comes with Stella. In this case, the gial was to explore various alternanive management pracrices for stormwater in a sinall Vermont neighborhood. There are all sorrs of switches and sliders, knobs and graphics that allow the user to define easily the varous scenarios and management solutions to compare results in search of a hetrer understanding of the system and an optimal design of management practices.

It is also interesting to note that we have solved a spatial problem by a fairly local Stella model, although we have actually simplified it to the greatest extent possible. In reality, what makes a system really spatially distributed are the variations in data and processes. So far, we are still assuming that all the landscape characteristics (soil and landuse, expressed in the curve number, slope, raintall pattern, etc.) are sparially uniform. We have provided for some sparial proxies by describing how warer gets routed and temoved from the unit area, but that is nor really spatial.

What the models like those listed above (HSPF, SWAT, RHESSys) and orhers do is rephicate a version of local TR-55 or our Stella Unit Hydrology model for a series of nodes. They then use similar delivery algorithms like the Manning's equation over the nerwork of channels that connects rhose nodes. This takes care of the delivery mechanism over a large and spatially hererogeneous watershed

## Grid-based models

In grid-based models, the homogeneous spatial units are defined mechanistically, by representing the study area as a grid of cells. The major decision in this case is the size and form of the cell. The size defines the spatial grain -- the resolution of the model. ideally, the smaller the cells, the finer the resolution and the more detail regarding the landscape can be accounted for. However, the reverse side is agan the model complexity and the cune needed to run the model. The decision abour the size and configuration of cells is usually tased on pretty sumilar principles to those above:

- The goals of the study - what is the sparial resolution needed to meet those goals?
- The available computer iesources - how much memory is there to handle the spa. tial arrays, and how fast is the CPU to run the full model?
- The avalable data - how much do we know about the study area, and what is the spatial resolution of the data?

There is yet one more consideration that may be important. Grid-hased models generate huge arrays of outpuc information. They may be quite useless unless there are good daca processing and visualization tools that can help to interpret this ourpur. Imagine a model of, say, 10 variables running over a grid of, say, 5,000 cells. And suppose we are running this model for 1 year at a daily tume-step. This is probably an average complexity for spatial hydrology models. As an outpur we will be generating time serres of maps, one for each state variable, every day. So potentially we will be obraining some 3,650 maps for state varables in each of the 5,000 cells, plus as many more as we may want for intermediate varables. What do we do with all this information? Keep in mind that merhod's of spatial statistics and analysis are quite rudimen. tary. We also need to remember that it is hardly possitle to expect to have anything close to that in terms of experimental data to compare our results and calibrate our model. So chances are that much of the spatial grain that we will be producing will be
left tanused, and must likely we will he generating some indices and spatially averaged indicators ro actually use in our study:

Nevertheless, it is good to have the potential to perfirm this kind of analysis, and perhaps with the advance of remote sensing techniques and more abundant spatial data we will have more opportunties ro test spatial models and improve our understandung of spatial proc-

> Cotorful spatial output can be a powerfiel tool to drive thancugement and planesinta, decisions. Make sure you are not mususing or musinterpreting the results that you get trom your model. Be clear aboul your assumptions and the uncertauntics involved. esses. Moreover, spatial ourpur looks so nice in presentations and reports - people like to see colorful maps or animation. Just make sure such output is not being misused or misimterprered!

In Chapter 5 we visted with the Spatial Modeling Environment - SVE - and showed how is caa be used to extend lexal Seella models over in spatial doman. Here, we will take a quick look at a real-life application of this approach to watershed mowcling. The Patuxent Landscape Model (PLM - http:ligiee.umm.edu/PLM1) is a grid. hased spatial landscape model that was built upon the SME paradigm. The model uses an ecosystem-level "unte" model huilt in Srella that is replicated in each of the untr cells representung the landscape (Figure 6.30). For each different habutat type the model is driven hy a different set of parameter values (e.g. percolation rate, intiltration rate, etc. are diffient for a forest es an agricultural held ws a residental hot) (Figure 6.3!) Actually, it is not only one model in Stella tuit a whole series of them. SME supports modularity un such a way tha you can take several Stella moxels, each representing a certain subsystem, and run them in concert, exchanging information between the different motules.

As a companion tool to SME, the Lihrary of Hydro-Ecological Modules (LHEM http:iglee uvmedu; LHEM) has been developed to represent most of the processes mportant for watershed dynamics and management (Figure 6.32). What is most remarkable with this approach is that it lends ultimate transparency to the model Unlike the watershed models described above, where the code may not be easily available or indeed available at all (as in some propretary models), and all the intormatum about the model intestines has to be ether figured out from rhe documentation provided or guessed using common sense, here we have the actual model at our fingertips. We can explore each module, run it as a separate Stella application, understand the dependencies and assumptions, or even make changes if we have better ideas regarding how to present certain processes.

The lecal hydrology model in LHEM is similar to rhe unit model in Figure 6.25. In addition tu that, there are modules for nutrient cycling, dead nryanic materal, plant growth. eve. Further, there are also spatial algorithms that can he used to move water and constituents between cells. There is a choice of algorithms of spatial Illuxing that link the cells together (Figure 6.33). In effect, they are somewhat similar to the procedures discussed ahove when we were moving water over the network between nordes. Here too we need to decikle how far and how fast the water will travel, except, as in the case of PLM, the network is degenerated to a simple case of cell-cocell pipug.

The methods used in LHEM are greatly simplifed in order to handle large areas and complex ecological inodels. They may he consudered as an empirical approach to surface-water routing. They are very much hased on empirical assumptions and common sense. In a landscape-moleling framework, hytrology is only a part of a much more complex and sophisticated model strecture. Thereforc we have to rry to keep


Figure 6.30 Spatial organization of a grid based model.
the time-step as large as possible in order to be able to run the models for sufficiently long simulation perikets. The methods sugeested certamly sacufice some of the precision, especiallv in che transfer prucesses, bur they represent the quast-equilibrium state well and substantially gain in model efficiency in terms of the CPU time requred. In









 ellintaluar


















 HF= ال1 HIM $n$






## GIS-based models














Figure 6.34 A standard retention pond such as is built in most new developments to comply with the stormwater regulation. It requires huge investment, and needs to be maintained properly.
far more sufface runofi during storm events. Rivers and streams become raging torrents. causing erosion and flooding over vast areas. At the same cime, there is less flow in between the stoms. The so-called baseflow dries out, sonce all the water has been already drained and there is not much stored in the ground and wetlands to feed the streams.

The high flows result in highly incised landscapes, with streams digging deeper into the ground, taking out lots of sediment and dumping it into the rivers and lakes. The water quality also dramarically deteriorates. The sediments themselves are a nusance tor adule fish, and can descroy spawning grounds. They also carry large amonnts of nutrients. Nutrients also come from fertilzers used to improve residential lawns. The lawns are also treated with chemicals - herbicides and pesticides - which all end up in estuaries and lakes.

The botom line is that residental neighborhoods have a strong impact on stormwater quantity and quality, and need to start taking care of their runoff. So far, most of the solutions have been quite centralized. In one, the water is captured in large retention ponds, where it is held for a while, losing sed. ments and partially intilerating into the soils (Figure 6.34). This solution is gute expensive both

The river network is developed by the landscape. However. It is not just the geology and height that matter, land cover is also a factor If we have lorests, they can absorb most of the rainfall. so there is not much lett for runotf If forests are replaced by impervious or less pervious surfaces, then there is more surface runoft and obviously more streams and rivers are required to conduct all that water. Besides. the more water is channeled through these streams, the wider and deeper they become it is interesting to realize that perhaps most of the existing river network, especially the smaller streams and invers, have been developed as a result of our land cover changing activities.


## Figure 6.35 A rain barrel

This is a simple device to capture water collected from rooftops. It intercepts only the first tew centimeters of a rainfall event /depending upon the area al the roof and the size of the barrell. However, it may be quite useful in improving water quality. since it is usually the first flash of runoft that contains most of the constituents, and the more of it we can retain, the better. Check our hnt $\rho / / \mathrm{www}$ likbez com/AV/barrel/ tor how to make your own rain barrel
to install and to maintain. These super-ponds can be built diring the construction phase, when there are clear regulations and conerols with which the developers need to comply. Itowewer, they are prohibutively expensive to install later on, when the neighborhood is already in place and the homeowners are expected to ahoorh all the additional costs of redesign.

An alternative solution that is more distributed and does nos requme huge uptront investment starts right at the duor. For example, homeowners can install socalled rain harrels (Figure 6.35), which are simple containers thar capture the dramage off the house roots However, these can intercept only low-and mid-size storm events, and they can be dimaged in winter, when temperatures are below freeing.

Another solution for larger volumes of raintall are the so-called rain gardens These are arrificial and natural depressums which are planted with vegetatom that removes water through transpiration. The concept is not familiar tor most homeowiners, and it is sometimes hard to persuade them to consider this as an option. A simple spatial model can help in doing that. For example, it might be uce co show what the flows of suriace water look like. where they go. how water is accumulated, and where the ran gardens are must likely to work hest. This can be accomplished with (ilS modeling, provuded that we have significantly high-resolution elevation data.

The latest LIDAR (Light Detection and Ranging) pornt data offer exactly that oppontunity. For example, for the whole Chitenden County in Vermont, there are high-resolution data sets. They are collected with arrerate-mounted lasers capable of recording elevation measurements at a sate of 2,000 to 5.000 pulses per second, and have a vertical precision of 15 centimeters. This intormation can he pulled into a


Figure 6.36 The drainage nework as generated by ArcGIS
The red line is the main stem of the stream, the yellow lines are engineered dranage pipes. The blue lines are the surface flows. We can see individual houses, and how surface flow is channeled from each property

Geographic Information System (CIS), such as ArcGiS, which has some gutce elab. orate hydulogic modeling tools embedded in it.

First, we can build a Digital Elevaton Model (DEM) using the Inverse Distance Weghted (ID)W) interpolation tool from the ArcGis 9.2 Toolkox. Another ArcGIS tool an be used to calculate the stream network and subwatershed delineation on the masis of these DEMs (Figure 6.36). Resulte of analysis show that the modeled wate drainage network follows the stombater pipelines and street curves - even depressions along the property lines. If we further decrease the threshold, we will generate a micro-drainage network that gives us even more detal ahout the routing of surface water (Figure 6.37). This kind of inlormation help's us to visualise the fate of stirmwater on individual properties and in the neighborhood. ant can also serve as a commumation tow to help several neighters to agree on where it will be inowt efficient and cost-effective to locate the theatment area In most cases, a bigger shared rain garden will be much cheaper than several sinaller gardens on different poperties.

It's said that "a pricture's worth a hundred words." Indeed, when they look at these images the homeowners can acturilly recognue their houses and properties and sce how the water flows over their land. It is also clear where the rain gardens can be located in order to be most efficient. These madels ate powerful tools for deliberation and deci-ston-making. In fact, in the "Redesigning the American Neighlorthored" project - an attempt to find stormwater management solutions at the sale of simall towns. cities and developments in Vermont - such visuals developed by Helena Vladich worked very well in directing the attention of homeowners in two snall neightorhwods coward the distributed altermatue engmeering solutions. After seemg how the rain-garden method could be implemenced, and comparing costs with the super-pond optron, the citizens agreed that the staall-scale destributed approach would be more promising and decieled to pursue that cechangue.

Models do not need whe dynanic if we are mostly interested in the spatial context. The ©IS framework uffers numerous tools for spatial modeling that are quite simple to implement, and shoukd cercainly be considered when the cemporal domain is not important or is not supmired by any data or information.


 sense if nore oidangarsor
6.4 Conclusions
 isech to the Chosepedeb ber trom errounting cosed and nural countes have led to eutrophi-

 reated br onme sewege aromes evsiems tseptic syslems Almost at of the nitogen pollu con ma enversiocil waters hom Cabert County comes from rompoint sowices. ol whidi the

 of nerocon the enters Sownong Habcor. on eatury on Che sapeake Bay Despite high popula. won deviles aniy ismal portion of the worersteo is serviced by sowers thoce The question




 De the second mosi importane dactor tand, dapanang on ansurned lentilet unepe. could sur oges atmearimicic polutionl Nevarimass. isoatial modal was tual which, nol surpisingly. showed the ive meres ingua tion septic tanks wat the owest among at the anthrooogenic nleogen sodres in addition. the digetharge in maoned info groundwatar which allects gur lace watar quatiy in the long term. Tha large butlaitig capeciay of groundwane mearis the
 waler qualily. The housing dafaly the tolal number ai homes in the wenthed is ils mos: importent enienori to consicse when deveriocing seatc-awhed polces. The ditututare or

 once on regtoreal bodin Mareginc septic bady at mopl fameibly motarnaxted at the lozal
 that amargad irmmeatately, avan without any sophigitaied modaling aftars

The resulis wewe ceriainly nol wrial Calvern County Govemmant was aspacing. and would probably have teen a hatd sall it the proect had nal beger conducied as a traticipetory
 communicme the alkarnaive strategres 10 ithe arciston-matare.



























# 7. Adding Socio-Economics 

7.1 Demographics<br>7.2 Dynamics on the market<br>7.3 Corporate rule<br>7.4 Sustainability<br>7.5 The end of cheap oil<br>7.6 The World

## SUMMARY

What models can we build to descrite social and econonic systems? Economics has developed trs own models, and has become one of the most mathematized branches of science. However, mosr of those models do not take into account the natural side, the ecology. Can we apply some of the models and methods that work good in the natural world to describe economic processes? Would these models then work for ecological economics? In many cases, the answer is yes. We can use population models to describe the dynamics of human populations. We can try to mimic some of the well-known properties of the market economy; such as the dynamics of supply, demand and price. However, we immediarely realize that the trans:tion regimes are quite difficult to reproduce. Whereas classic economics operates in the margin, we start considering some substantial changes in the system. This turns out to be somewhat hard to model. Some simple qualitative models can help us to understand processes embedded in our socio-economic and political systems. For example, we can explore how lobbying works to promote big corporations, and how this can allow such corporations to "rule the world." We can even combine some of the processes from the socio-econome feld with natural capital and try to consider scenarios of sustainable development. Analyzing these integrated ecological and economic systems, we find a new meaning in the model time-step. It can be relared to the etfciency of the decision-making process, since thes is the time over which the system reacts to change, the time over which processes are updated in the model. If the rates of processes in the systern grow, it is ensential that the time-step decreases - otherwise the growing system is likely to crash. Similarly, simple analysis of the peak oil phenomenon gives us some insight into the possible future of the end of cheap oil. It seems likely that in the global scale, where we do not have easily available substitutes, the trajectory of oil extraction may extend somewhat further than the peak at one-hali of extracted resource. However, the following crash will be steeper and
harsher: This could the avouded if sutficient investment were piped inro alrernative energy resources early enough, while fossil resources are still abundant. Finally, we will look at a different class of models; those that are used to study rhe dynamics in rhe global scale. These models contain much information about different processes, and should he rreared as knowledge bases of a kind Some scenarius of furures and applications to econystem services are also described here.

## Keywords

Population dynamics, natality, mortality, migration, Canada, Malthus, age cohorts, population pyramid, populanion senescence, Social Security crisis, supply and demand, price, corporations, comperition, subsidies, carryng capacity, TerraCycle, MıracleGro, lobbying. lipuid coal, sustanable development, investment, production, chaos, fossil fuel, non-renewable, bıofuel, cheap oll, Hubbert curve. Critical Narural Capital, Energy Return on Energy Invested, alternative energy, conservation, global dynamics, ecosystern services, scenario, futures.

### 7.1 Demographics

We have already considered several population models earlier in this book. Modeling a human population may be quite sımilar to modeling a population of woozles, as long as we have the same information about the factors that affect the population dynamics. In most cases, what we need to consider are piinarily the growth due to births (natality), the decline due to deachs (mortality), and change due to in- and out-migration.

Consider, for example the data that are available at the Statistics Canada web page (see Table 7.1). This table presents the dynamics of the population of Canada over the past cenrury (in thousands). Based on those data, we have estimared and added to the rable the per capita natalisy and mortality zates.

A simple Stella model can be put together based on this data. Let us assume first that there is no mgracon, and formulate the model of exponential growth with varying burch and death coefficients:

$$
\frac{d x}{d t}=(b(t)-m(t)) x
$$

where $x$ is the population size, $b(t)$ is the birth rate and $m(t)$ is rhe death rate. Using the "To Graph" option in Scella, it should be easy to insert the data regarding the time-dependent birth and death factors inco the Stella model and run it. (Actually, it is nor as easy as it should be. Because of a bug in some versions of Stella, it is impossible to copy and paste the numbers from the Excel file column into the Graph descriprion in Srella. For some reason this operation supports only three digits, and all the numbers that are larger than that will be split into rwo lines. It is important to be aware of this, since it may occur on a line that is not vistble in the opened window and therefore all the graph data may be shifted and treated incorrecrly. It seems to be much easier to do ir in Madonna - so maybe that is how we will do to next time.)

We can either pur tougther the model ourselves, or download it from the book website.

Figure 7.1 gives a comparison of a model run with the data for the total population numbers. The model seems to perform quite nicely for the first 11 decades, but then it consistently underestimates the population growth. If we look at the ditierence between in- and out magration in the table, we can see that it has a pronounced

| le 7. Dynamics of the population of Canada over the last century |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Period | Census at end | Total growth | Births | Deaths | Immigration | Emigration | Births/ ind./ year | Deaths/ ind./ year |
| 1851-1831 | 3.230 | 793 | 1,281 | 670 | 352 | 170 | 0.04 | 0021 |
| 1861-18/1 | 3,689 | 459 | 1,370 | 760 | 260 | 410 | 0.037 | 0021 |
| 1871-1881 | 4.325 | 636 | 1,480 | 790 | 350 | 404 | 0.034 | 0.018 |
| 1881-1891 | 4.833 | 508 | 1,524 | 370 | 680 | 826 | 0.032 | 0018 |
| 1891-1901 | 5,371 | 538 | 1,548 | 880 | 250 | 380 | 0.029 | 0.016 |
| 1901-1911 | 7.207 | 1.836 | 1,925 | 900 | 1.550 | 740 | 0.027 | 0.012 |
| 1911-1921 | 8.788 | 1,581 | 2,340 | 1.070 | 1.400 | 1.089 | 0.027 | 0012 |
| 1921-1931 | 10.377 | 1,589 | 2,415 | 1,055 | 1,200 | 970 | 0.023 | 001 |
| 1931-1941 | 11.507 | 1,130 | 2,294 | 1.072 | 149 | 241 | 0.02 | 0009 |
| 1941-1951 | 13,648 | 2.141 | 3.180 | 1.2:4 | 548 | 379 | 0.023 | 0.009 |
| 1951-1961 | 18.238 | 4.590 | 4,468 | 1.320 | 1,543 | 463 | 0.024 | 0.007 |
| 1961-1971 | 21.568 | 3,330 | 4.105 | 1.497 | 1,429 | 707 | 0019 | 0007 |
| 1971-1981 | 24.820 | 3,253 | 3,575 | 1,667 | 1,824 | 636 | 0.014 | 0007 |
| 1981-1991 | 28.031 | 3,210 | 3,805 | 1.831 | 1,876 | 491 | 0.014 | 0007 |



Figure 7.1 Modeling population dynamics with no migration.


Figure 7.2 Net inigration or cifference between immigration and emigration rates in Canada There is a substantial increase of immigration in the second half of the twentieth century, which explains why it is hard to match the data without taking migration into account.


Figure 7.3 Modeling population with migration included.
Actually there is an error in this model. Can you figure out what it is?
growth trend over the years (Figure 7.2). It becomes especially large over the past five decades, which quire clearly marches the period when our model started to fail.

Ir seem. to make perfect sense to bring the migratory processes into the pacture and include them in the model. The simplest way is just to add the incom!ng populaton and subrract the number of people leaving:

$$
\frac{d x}{d t}=\langle b(t)-m(t)) x+\ln (t)-O u t(t)
$$

where $\ln (t)$ is the number of inmigrants and $\operatorname{Out}(t)$ is the number of emigrants. However, if we run the nodel now, the results turn out to be even less satisfying. First we underestimated the population size, and then we overestimated it guite considerably (Figure 7.3).

We may begn to speculate that perhaps migrants are affecting natalicy and mortality in a different way than the aborigines. This may be either because of a specific age structure of the migrant population (perhaps they are arriving later in their teproductwe life and therefore giving birth to fewer children, or maybe exactly the opposite they are having more babies in order to grow deeper roots in the country), or perhaps because there is a flow-through of migrants who stay in the counrry unly tor a short
















## Exercise 7.1













 rin minaly wlos ne ha.r

Band
















## Exercise 7.2



 results

Some very bearc experime onty with the populaton moder immedielely show uS what exponontial growif: w. and how populations tavid to take thal trayctory. As lang as the birth rate is haghe than the death rate. the population grovi- . and growl quite duraly Thrs is whal made Makturs wotty as edily 4 1780. when the wrote "The powar ol population is so supe-xit to the pover of the eerth to produce subgigrance tol man, that premanre death musi in some shape or other viatt the muman lecis" The world'e cuirant population growih. ale abow 1.14 porcant, representing a doubling lima of til yeara We can expect the wotid's population of 6.5 billion to become 13 billion by 2007 if cutrent growith contan ues the workds goanrate pesked in the 1960s at 2 percent. with a doubling ime of 35 yeass Most Europear countries hare low growth tatee in the United Kingdom, the -a'e a 0.2 percent: in Germany il's 0.0 betcent, and in france if's 04 pescent. Germew's awo rate ol gowith matides a natura eceosse of -0.2 peicent Wilhoul iminigialio'. Germeny's popularme would be givining. es
 ales Aighanision ties a current growih rave al 4.8 ourcent regreserting a denulang toma of 145 yearal















 sal iesoures．creating emil untegt and refugee problams Eventually papulation growth will
 reloceman



 －
 dーロッ

T－E， ＇心人



101


11 Millean


However, as tirne goes by the distribution graph becomes quite distorted, representing the arrival of the baby-boomers in the 1950s and clearly showing the trend towards a predominantly older pooulation.

2001


30 Million


Consuder tour age groups: childen (aged $0-15$ years), adulis $1(16-40$ years), adults? $141-65$ years) and recired adults (over 66 years of age). The goal of look. ing at these age groups is two fold First, we want we separate the childbeaning group (adultsl); secondly, we wish to disnmgush between the working adults (atults) + adults2) and the rest the non-wrorking population). In some cases we may need to consider more age groups (also called cohors), but usually it makes sense to differentiace only berween the ones that have different functoons. After all, why make the model more complex!

The Stella diagram for shis mudel can be seen in Figure 7.5. We have four state variables with tansfe: functions, rl, 2 and $\mathbf{3}$. Each transfer functoon should


Figure 7.5 An age-structured model, with four state variables representing lour age groups or cohorts.
be designed in such a way that ir moves all the individuals in one age group to the next over the time period that an individual stays in the age group. For example, if a baby is born and put in the Age $0-15$ group it will stay in this group for the next 15 years and then be transferred to the next group, Age 16-40. This means that every year one-fifreench of the number of individuals in this age group will be moved to the next group. Theretore, $\mathrm{r} 1=($ Age $0-15) / 15$. Simularly, $\mathrm{r} 2=($ Age $16-40) / 25$, and $r 3=($ Age $41-65) / 25$. Individuals stay longer in these groups, and cherefore only one-twenty-fifth of the group is transferred to the next group annually.

The orher processes are simular to those in the standard population model considered above, except that the birch flow is proportional only to the number of individuals in the second childbearing age group, Agel6-40, and nor the coral population, as we saw betore. If we want to use the birch rate trom the dara set that we have, we need ri) add a scaling factor that will rescale the birth rate for the whole population to the bitth rate controlled only by the Age 16-40 age class. Similarly, we need to figure out how the cocal deaths will be distributed among the different age groups.

Common sense dictates that death rates in the younger age groups should be smaller than the population wide average. The death rate in the Age $41-65$ group should be close to the average, while the death rate in the Age 66 ahove group should be considerably hıgher than the average. Assumscions should also be made to distribure the overall migration dara ( $=$ immigration - emigration) among the various age classes.

Overall, we end up with the tollowing set of equations. Definitions of the four age groups are almust idenrical:
[transter from the younger age groupl - [death] + [ner inigration]

In addition, there is birth in the first age group.

```
[Age0to15(t) = Age0to15(t - dt) }~(b1+m1-d1-t1)*d
INIT Age0to15 = 600
INFLOWS:
b1 = cb1*bb*Age16t)40
m1 = mm1
OUTFLOWS:
d1 = cd1*AgeOto15
t1 = AgeOto15/15
Age 16to40(t)=Age 16tu40(t - dt) + (t) +m2-d2 - t2)* dt
INIT Age 16to40 = 2100
INFLOWS:
t1 = Age0to15/15
m2 = mm2
OUTFLOWS
d2 = cd2*Age 16to40
t2 = Age 16to40/25
Age41to65(t) = Age41t065(t -dt) + (t2 + m3 - d3 - t3) * dt
INIT Age41to65 = 300
INFLOWS:
t2 = Age 16to40/25
m3 = mm3
```

```
OUTFLOWS
d3 = cd3*Age41 to65
13 = Age41to65/25
Age66aboveit; - Age56above(t - dtj + (t3 + m4 - d4)* dt
INIT Age66above = 130
INFLOWG
13 = Aged 1to65:25
m4 = mm4
OUTFLOWS:
d4 = cd4*Age66above
bb = Totav/Age 16to40
```

The follow.ing is the distribution of dealis among differen: age groups
$\mathrm{cdt}=\mathrm{cod} 1{ }^{\circ} \mathrm{C}_{\mathrm{m}}$ mon
$\mathrm{cd} 2=\mathrm{cdd} 2^{*} \mathrm{C}_{-}$mort
cd3 $=$ cdd $3^{*}$ C_mort
$\mathrm{cd} 4=\mathrm{cdd4}{ }^{*} \mathrm{C}_{\mathrm{m}}$ mort
cdd1 - 04
$\operatorname{cod} 2=075$
cod $3-1.2$
$\operatorname{cdd} 4=1.9$

Similarly net migration is distributed among age groups
$M=(\ln$-Out $) / 10$
$\mathrm{mm} 1-\mathrm{cml} \cdot \mathrm{M}$
$\mathrm{mm} 2-\mathrm{cm} 2^{*} \mathrm{M}$
$\mathrm{mm} 3=\mathrm{cm} 3^{*} \mathrm{M}$
$\mathrm{mm} 4=(\mathrm{M}-\mathrm{mm})-\mathrm{mm} 2-\mathrm{mm} 3)$
$\mathrm{cm} 1=0.1$
$\mathrm{cm} 2=0.5$
$\mathrm{cm} 3-0.2$
Some totals and more data for calibration purposes
Total - Age0to15 + Age16to40 + Age41to65 + Age66above
Total_died $=\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4$
births_p_v = Births/10
deaths_p_y $=$ Death/10
Birth, death rate as we las immigration and ernigration numbers are defined as graphic functions based on the data in Table 7.1.
$\mathrm{cb} 1=$ GRAPH (TIME)
C_mort $=$ GRAPH $\{T / \mathrm{ME}$
$\mathrm{in}=\mathrm{GRAPH}$ (TIME)
OUT = GRAPH (TIME;
By rweaking the pameters of death rates in differen age groups, we can get the model to elosely represent our data. Figure 7.6 represents the dymamies of the rotal population. Also we can display the dynamics of indwadual age groups (Figure 7.7). Contrary to our expectations, the distribution of migration among age groups does not play a major role in the system. As long as the total numbers of migrants is correct, we get almost similar results.


Figure 7.6 Model results for total population in the age structured model after calibration of birthand death-rate parameters


Figure 7.7 Dynamics of different age cohorts in the age-structured model. Towards the end of the simulation, the numbers in the elderly classes start to grow more rapidy than in other cohors A time bomb for a generational storm is set, unless some drastic measures are taken.

What we can do next with this model is explore the daunting problem of population senescence that is currently looming over most of the socieries in developed countries. With the growith of affluence and education, people are less inclined to have children. As a result hirrh rates are decreasing, while the advances in medicine and health care are decreasing the morality rate. These changes may not affect rhe total population numbers (after all, we are decreasing both the inflow and rhe sutflow for the stack of the population number), but they will have a substa:tial effect on the shape of the age distribution. The number of old and retired people keeps growing, causing an increasing burden on the welfare system. Ar the same nime, the number of people of working age becomes relarively smatler, so there are fewer people contributing so the support of the retirees in the system

In our Canadian model we already have the decline of birth and death rates, and we can already see that numbers in the eldest age group, Age66above, are seadily incleasing, making this age group dominant in the poplation. Let us add the social security system into our model. This can easily be performed by introducing another stock in the model that will have an inflow generated by payments from the

Agel 6 to 40 and Aye 4 len 65 groups, while the outfow will be in proporton to the size of the Agectuabove group (Figure 7.8).

```
SS_tundit) = SS_tundtr - dt + (taxes - pensionsi * dt
INIT SS_tund = 100
INFLOW'S:
taxes = pay*(Age 16to40 + Age411o65)
OU-FLOWS:
pensums - pp-Age66abbove
```

The "pay" is the amount that individuals ceneribute to the Social Security fund while they ate working, and "pp" is the size of the pensun that retired people receive. We can immediately see that if we keep "pay" and "pp" constant, the "SS_fund" will go bankrupt some time in the near future (Figure 7.9). In this model we have assumed that the social securty system has been in place since the beginniag of our data set in 1861, that the payments to and from the fund have been constant over these years, and that the age of retrement has also remained constant. This is cercainly nor realistic, and for a berter moxiel we should include all these historical dara in our consideration. However, this is unlikely to change the overall trend because, again, qualitatively it is quite clear that as the elder population grouf grows in size we will need more resuurces to support it. The model is an excellent tool wo quantify some of these qualitative nomons.


Figure 7.8 A simple submodel of a social security lund


Sate , Dy people who work and more people who receive pensions.









 atit morn people rabing now; while the nurnter of dredime coming of age and pong tre wort.

 demogrighic storm. Bedt in 1950. the number of worcers per Ssod Seartity berdicery mils
 employment laxes then they pay in income iaxes, as emplownert iar mae inwold Tha raget


Geiveren now and 2030 weill have the last big surge the reliremant of ila boom its By than. wo li be close to having anly iwo covered workers per benetiodit instend of hav ong 16 wotere chipping in to supporl each senior chizen. inate will ontik ba 2 Whara wa had
 vears. ine dependency catuo the ratio of those nged ouel 88 to those aned 20-da - will lise from 211 oorcent to 355 percent

Ancorang io kotiliofl, the situmion it sa scary thal he heeps teloning to bowel life expec. rancy estrrates as "oplimestic' What used to be out goal of inereaned tongevity has suddanty become a huge danger tor the socioty. Iniereatingy wat have bepen geltax dillim amily

 exactly the same scenama that kothoty portiays

## Exercise 7.3








Here, $x_{1}=$ AgeOto15, $x_{2}=$ Age16to40, $x_{3}=$ Age4lto65 and $x_{4}=$ Age66above; $b$ is the birth rate, $t_{1}$ are the transfer coefficients, and $d$, are the mortality rates - just as in the Srella model above. When running Stella, we did have some problems identifying the correct values for the coefficients. Sometimes the variables were growing too fast, or alternatively they were dimınishing to zero. Are there any relationships that we should keep in mind when looking for suitable combinarions of paramerers?

First, ler us check for an equillbrıum. Making the left-hand side of the equations equal to zero, we get a system of algebraic equations:

$$
\begin{aligned}
& 0=b x_{2}-t_{1} x_{1}-d_{1} x_{1} \\
& 0=t_{1} x_{1}-t_{2} x_{2}-d_{2} x_{3} \\
& 0=t_{2} x_{2}-t_{3} x_{3}-d_{3} x_{3} \\
& 0=t_{3} x_{3}-d_{4} x_{4}
\end{aligned}
$$

The first equation yields: $x_{1}=b x_{2} /\left(t_{1}+d_{1}\right)$. Substituting this into the second equation, we get $\left(b t_{1} /\left(t_{1}+d_{1}\right)-\left(t_{2}+d_{7}\right)\right) \cdot x_{2}=0$. This means that we get an equilibnum only if $x_{2}=0$, which then automatically makes all the other variables equal to zero. Or if $\left(b t_{1} /\left(t_{1}+d_{1}\right)-\left(t_{2}+d_{2}\right)\right)=0$, in which case $x_{2}$ can be any, and

$$
\begin{equation*}
x_{1}=\frac{b x_{2}}{t_{1}+d_{1}}, \quad x_{3}=\frac{t_{2} x_{2}}{t_{3}+d_{3}}, \quad \text { and } \quad x_{1}=\frac{t_{3} x_{3}}{d_{4}} \tag{7.1}
\end{equation*}
$$

Nerther of these states is interesting, since the first is trivial, when there is no population, and the second is extremely unlikely because it requires that there is an exact relationshp between model paramerers. Equality-type relationships are unrealistic for any real-world situations, where there will always be some uncerranty about model paramerers and it is unpossible to guarantee they will be exactly equal to some combinarion between ocher parameters, as we require in this case by asking that $b u_{1} /\left(t_{1}+d_{1}\right)-\left\langle\iota_{2}+d_{2}\right\rangle=0$.

However, this analysis is not without merit. What we can see is that when this condition does not hold and, say, $b t_{1} /\left(t_{1}+d_{1}\right)>t_{2}+d_{2}$, then $d x_{2} / d t>0$. This means that in this case $x_{2}$ will be growing. Keeping in mind (7.1), we can see that all the other variables will also be growing. If. orherwise, $b t_{1} /\left(t_{1}+d_{1}\right)<t_{2}+d_{2}$, all the model variables will be declining. So we have tound a simple condition that quickly tells us when the population becomes extuncr and when it survives. Interestingly, none of the parameters from the third or fourth equarions in the model are involved. Not supprisingly, this means thar, for survival of the population, only the first two age groups matter. The remaining two are a tail that can be cut to any length. The population still persists, as long as the childbearing group is in place. Once it gives birth to progeny, it can disappear.

This simple analysis is quite helptul when looking for the right combination of parameters to make the model tun. Instead of the trial-and-error method, we can identify certan parameter domans where the model behaves as we would want it to.

If we bring in migration, we ger a slightly modified system of equations:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=b x_{2}-t_{1} x_{1}-d_{i} x_{i}+m_{1} \\
& \frac{d x_{2}}{d t}=t_{1} x_{1}-t_{2} x_{2}-d_{2} x_{2}+m_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x_{3}}{d t}=t_{2} x_{2}-t_{3} x_{3}-d_{3} x_{3}+m_{3} \\
& \frac{d x_{4}}{\dot{d}}=t_{3} x_{3}-\dot{d}_{4} x_{4}+m_{4}
\end{aligned}
$$

Here, $m_{1}$ are the net migration rates into che four age groups. They can be positive or negative. The orher parameters are always postive. This time, we can see that there exists an equilibrium in the model: substrtuang $x_{1}=\left(b x_{2}+m_{1}\right) /\left(c_{1}+d_{1}\right)$, which comes from the equilibrium in the first equation ( $d x_{1} / d t=0$ ), inco the second equation as equilitrium, we immediarely get a solution for $x_{2}$ :

$$
\begin{equation*}
x_{2}=\frac{m_{1} t_{1}+m_{2}\left(t_{1}+d_{1}\right)}{\left(t_{2}+d_{2}\right)\left(t_{1}+d_{1}\right)-b t_{1}} \tag{7.2}
\end{equation*}
$$

This can be then substituted back into the equation for $x_{1}$, to produce

$$
\begin{equation*}
x_{1}-\frac{b m_{2}+m_{1}\left(t_{2}+d_{2}\right)}{\left(t_{2}+d_{2}\right)\left(t_{1}+d_{1}\right)-b c_{1}} \tag{7.3}
\end{equation*}
$$

Substituting $x_{2}$ into the thud equation, we can calculate

$$
x_{3}=\frac{t_{2} x_{2}+m_{3}}{t_{3}+d_{3}}
$$

Then, simularly, this value for $x^{\prime}$, can be used to calculate

$$
x_{4}=\frac{t_{3} x_{3}+m_{4}}{d_{4}}
$$

which follows from che fourth equation.
Obviously, these equilibria have to be positive. If the migration coefficients $m_{1}$ and $m_{2}$ are positive, it follows from (7.2) and (7.3) that when

$$
\begin{equation*}
b<\frac{\left(t_{2}+d_{2}\right)\left(t_{1}+d_{1}\right)}{t_{1}} \tag{7.4}
\end{equation*}
$$

we have all the equilibria in the positive doman; orherwise we move into the negative domain. If this condition holds, the other two equilibraa for $x_{3}$ and $x_{4}$ will also be posirive.

If we now run the Stella model under these conditions, it appears that the equilibrium is stable: we can start modifying the initial conditions, and still will converge to the values that we have identitied above. However, If the equilibrium moves into the negative doman, eithet when (7.4) no longer holds or when migration becomes negative, we get exponential growth or exponential Jecline patcerns. Though analyacal analysis can become quite cumbersome, without it it may be hard to figure out that the model can produce all three types of dynamics: exponential growth, exponential decline, or stable steady state. It all depends upon the parameters we chonse.

We may once again conclude that looking at the equations can be quite helpful. Unfortunately, the algebra becomes rather turesome even when we have only four equations and some farly simple interactions. However, when we have many more
equations and parameters, it is still important to run and rerun the model for as many combinations of parameter values and imtial conditions as we can afford. This is the only way to attain contidence and widerstanding of the results we are producing.

Befure we connnue with some lunked models of demography and economics, let us consider a few examples of simple economic and socio-economic models.

### 7.2 Dynamics on the market

Lee us see if dynamic modeling in an approprate tool to model some economic systems. Consider the basic demand-supply-price theory that is discussed in most classical books on microeconomics, and at a varety of web; pages (e.g. hetp://hadm.sph sc.edu/COURSES'ECON:SD!'SD himl or hif://vcollege lansing.cc mi.usiecon2:01/ unit C3ilss03l.h(m).

In essence, we are looking at a system of two state variables, one representing the quantity of a given commodity ( $G$ ) and the other one representung its price ( $P$ ). In a matket economy, the two are supposed to be determined by the relationship between supply and demand. Let us look at Figure 7.10 to see how we derive the relationship hetween price and the amounc of commodity on the market. Suppose that the proce of the commodity is set at $p_{1}$. In Figure 7.10A, we will graph the relationship between price and the anount of the commodity on the market; in Figure $7.10 B$, we will show the change in price over time. Let us first draw the graph of Supply. The Law of Supply states that the higher the price tor a commodity, the moie products will be offered by the producer on the market. So $S$ should be an increasing function of $P$. (Niore that. mathematically, this is somewhat dubious, since we have just replaced the independent varable in the graph. Nevertheless, this in the way economists do it.)

On the graph. we see that the quantity $g_{1}$ corresponds to the price $p_{1}$. This projects the hrst price point in Figure 7.10 B . However, there is also the Law of Demand that sates that the price of a commodity is inversely related to the amount de:nanded pe: tume period In our case. the Demand curve stipulares rhar at a guantiry na the commodity can be sold only at a price as low as $p_{2}$ (the second point in Figure 7.10B). With such high supply there is simply not enough demand to keep the price up, so competition among producers uncreases and they have oo push the price down to sell all the $g_{1}$ stock that was produced. However, at price $p_{2}$ the Supply curve tells

us that producers will anly be willing to produce and ship to the market $g_{2}$ commodi. tues. Produsing these goods at such a price is not that proitable and lucrative for the producen, su only a few will reman and they wall produce much less.

Once again, projecting the amount $g_{2}$ to the Demand curve we realize that now the demand for the commodity is so high (there is an excess demand on the market) that at can selt at a price as high as $p$. For such a price the producer is once agilin eager ro produce more and, according to the Supply curve. wath deliver more commodities to the market. We continue this process, ohserving that the price and the amount of commodity gradually converge to a certain equilibrium state, when the price will be just right for the aviilable quantity supplied, and the quintity sup. pled will match the amount demanded. This is what is called "market equitibrimm." Economic theory consders thit markets come to equilbrium in one shot - te. when both producers and consumers know exactly the equalibrium price and amount of a marker good which will he mold on thas market. However. in the real word it always takes some time for supply to atapt to demand and aice wersa.

How can we describe this process in a dynama model: Consider a system with two variatles: $P$ and $Q$. According to the Supply Law, the production of the commodity G is in proportion to its price. Acconding to the Demand Law, the consumption of the commodity is in reverse proportion to the frice. Therefore, we can assume the equation for gools in the following form:

$$
\begin{equation*}
\frac{d G}{d t}=c_{y!} P-\frac{1}{c_{y 2} P} \tag{7.5}
\end{equation*}
$$

Based on sim:lar considerations, we assume that the price increases in reverse proportion to the amount of the commodiry available for consumprion and decreases in direst proportion to this amount:

$$
\begin{equation*}
\frac{d P}{d t}=\frac{c_{n}!}{G}-c_{p 2} G \tag{7.6}
\end{equation*}
$$

We can hind the equilibrimm for this model by assuming that there are no changes in the system, so

$$
\begin{aligned}
& 0=c_{p 1} P-\frac{1}{c_{-2} P} \\
& 0=\frac{1}{c_{p 1} G}-c_{p 2} \mathrm{C}
\end{aligned}
$$

 we now put these equations into a Stella model and run it, we hat that the equilahrium point is mot stahle. Instead, it we start anywhere away from the equilibrium point we generate an economic cycle that is quate similar to that seen in the price-commodity oscillations above, except that these oxcillations do not dampen out (Figure 7.11).

For any initial conditions and any combination of patmeters (extept the ones that ciash the model, taking the trapectores to the nequave quadrangles), the trajectory continues to cycle around an ellipsobl, with no indication ol convergence to the stable state. It is roor quite clear how to modify the model in such a way that the trajectories lead to equilibrium Apparently the supply/demand curves that we are choosing (see 7.5 and 7.6 ) are symmerrical, so we keep cycling around the equilibrum


Figure 7.11 Cycles in the Commodity-Price model. Dynamics in the phase plane (P,G).


Figure 7.12 Converging cycies in the modified Commodity-Price model Dynamics in the phase plane (P,G).
without approaching it. One possible merdificanon of the model that scems to make it converge is of we describe the commodity dynamics as:

$$
\frac{d G}{d t}=ध_{k} P^{15}-\frac{1}{c_{82} p^{05}}
$$

In this model, with $c_{p 1}=001, c_{\mathrm{k}:}=0.02, c_{n 1}=0.0055, c_{p}=0.05$, we can generate a slowly converging trajectery. Note that it took 6,000 iterations to generate the curve shown in Figure 7 12. Besides, this converging model appears wo be struccurally unstable, since even slight modifications in the formulas used or in the parameter set result in non-convergence or a crash

## Exercise 7.4

Put together the Price-Goods model in Stelia, or download it from the book website Try to find another function or set of parameters that would make it converge faster.

Let us consider another formulation for the same system. Instead of looking at pust the price and commodity. let us consider three variables. price $(P)$.

$$
\begin{aligned}
& \text { If changing parameters doesn't hetp, change the } \\
& \text { equations. Perhapes there was sometrina wrong } \\
& \text { it the assumphions }
\end{aligned}
$$

supply ( $S$ ) and demand (D). The
supply is assumed to be somewhat dentical to the amount of commodity considered earlier. The demand will be treated as the reverse of supply. The Stella equations can then be as follows:

Demandtt $=$ Dernandt $1-d t)^{+}\left(D_{\text {_ }} u p-D_{-} d o w n\right)^{*} d t$
INIT Demand $=90$
INFLOWS:
D_up = 1/C_d1/Price
Just as in the previous model the higher the price of the commodity gets. the slower the demand grows.

## OUTFLOWS

D_down = C_d2*Price
The higher the price the faster the demand will actually decrease
Priceit $)$ - Pricelt $-d t)+\left(P_{2} \text { change }\right)^{\cdot}$ tt
INIT Price $=100$
INFLOWS
P.-change - C_p ${ }^{\cdot}$ (Demand-Supply)

If the demand exceeds supply, then the commodity lyecomes scarce and the price goes up. It goes down it more of the commodity is supplied than is demanded.

```
Supply(t) = Supplylt - dt + (S_up - S_down) • dt
INIT Supply - 110
INFLOWS
S_up = C_s1 * Price
There is more incentive to produce a commodity if its price is high
OUTFLOWS:
S_down = 1/C_s2/Frice
If the price is high the commodity is less likely to be consumed
C_di =0008
C_d2 = 0 01
C_p =0.01
C_s1 = 0.0!
C_s2 = 0.008
```

When $\mathrm{C}_{\mathrm{s}} \mathrm{s} 1=\mathrm{C}_{-} \mathrm{d} 2 ; \mathrm{C}_{-} 22=\mathrm{C}_{\mathrm{d}} \mathrm{d} 1$ we ger dynamics, which are identical to those previous: stable oscillations for all initial conditions. However, if these conditions do net hold then the dynamics are different. While price is still displaying stable oscillations.


Figure 7. $1 \leqslant$ Osciliating and growing (or declining) dynamics in the $\{D, S\}$ phase plane.

Supply and Demand start to oscillate along an increasing (if C_dl < C_s2 or C..
 This is a very crude analysis of the system; however, it already shows that by adding another variable to the system we have modthed the behavior gute signincantly and generated some new previously unavailable trajectories. We can now represent a situation when both the demand and supply change in a similar way, either growing or decreasing. The price dynamics, however. remain unchanged. Wherher this corresponds to reality or not is yer to be figured out. We still cannor make the system converge to an equilibrium state.

Let us further modify the system assuming that Supply and Demand can also interact directly, not necessarily only by means of Price. For the outflow part in the dynamics of $S$ and D we will use the same assumption as above - that is, that the price $P$ will define their value. However, we will now assume that the growth of supply $S$ is decided directly from the knowledge regarding the demand $D$ for the commodity, withour the price dynamics being involved. Similarly, the growth of demand D will be directly decermined by the supply of the commodity. and will be in reverse proportion to this supply. As a result, we will get the following system of equations:

$$
\begin{aligned}
& \frac{d D}{d t}=\frac{1}{c_{d 1} S}-c_{d 2} P \\
& \frac{d P}{d t}=c_{p}(D-S) \\
& \frac{d S}{d t}=c_{31} D-\frac{1}{c_{s 2} P}
\end{aligned}
$$

for the model with direct effects berween Supply and Demand.
We can either put together this model ourselves, or download it from the book website.


Figure 7.14 Dynamics in the ( $D, S$ ) phase plane for the model with d rect effects between
Supply and Demand.

By just playing with the Stella model it would he hard to find the equilibrium in this model; however, some simple calculations with the equations will show that if $c_{31} c_{s i}=c_{d 1} c_{d 2}$, then there is an equilibrium for any $S-1 /\left(c_{d \mid} c_{d 1} P\right)$ and $D=S$

However, the equilibrium is unstable, if the initial conditions are displaced even slightly, we embark on a spiraling trajectory like the one in Figure 7.14. This eventually brings one of the variables to sero and crashes the model. Some other interesting regimes can be obtained by playing with the parameters and inittal conditions. For instance, there is a trajectory (Figure 7.15) that starts on a growing trend hut then for some reason reverses and hrings the system back downwards towards an inevitable crash. it is yet to be figured out whether this kind of behavior may be tound in any real-life economic systems. Most likely, this is quite irrelevant to a real economy.

We still cannet get any closer to the type of dynamics that the economic theory assumes for our system. We have already generated several models that seem to comply quite well with our assumpuons alout the system; they have produced a wide variety of dynamics, but we still cannot get on the converging path that we are trying to model. Let us give it another try and huild yet another model.

Let us further shoren the information links and connect Supply and Demand directly, with Price gencrated only as a product of the relationship between the two. Suppose there is some direct interaction between Supply and Demand that is not mediated by price. Indeed, we know that if we are offered one glass of water it may have a very high (perhaps even infinite) value for us and will be in very high demand When we get the second glass, we will probably also take it with thanks. After the fourth, lifth and sixth glasses, our interest will quickly decrease and even become negative. We will no longer want any more water; our demand will become negative (we may even want to throw up that water). This is what economists call diminishing marginal utility. Perhaps we can assume something similar


Figure 7.15 Non-equilibrium dynamics in the ID.Si phase plane for the model with direct effects between Supply and Demand. For particular combinations of parameters and intial conditions we may get some weird trajectories. Here $S=D=\rho=120: C_{\_} d 1=0008 . C_{-} d 2=0.01, C_{\_} p=0.1, C_{-} s 1=0.01$, C_s2 $=0.01$.
for the whole market scale, and tormulate a Stella model with the following set of equations:

```
Demand \((t)=\) Dernand(t -dt\()+(\) Ogrowth \()\) * dt
INIT Demand \(=120\)
INFLOWS
Dgrowth \(=1 /\) C_d \(_{\text {d }} /\) Supply-C_d2*Supply
Price(t) \(=\) Pricelt \(-d t)+(\) Pgrowth \()\) * \(d t\)
INIT Price \(=100\)
INFLOWS:
Pgrowth \(=\) C_p \(^{*}\) (Demand-Supply)
Supoly \((t)=\) Supply \((t-d t)-\) Sgrowth \()^{*} d t\)
INIT Supply \(=90\)
INFLOWS
Sgrowth - C_s1*Demand*(1-Supply/Demand;
C_d1 \(=0009\)
C_d2 \(=0.02\)
C_p \(=0.01\)
C_s \(1=0.01\)
```

As you may see, we have Demand growing in reverse proportion to Supply, and decreasing in proportion to Supply. Wie also assume that Surply grows in proportion to Demand as long as Supply is less than Demand. When Supply overshoors and becomes larger than Demand, it starts to decrease. For Plice, we assumed that it grows if Demand is larger than Supply and vice versa.

A quick analysis of the model equations shows that there is an equilibrium $S=$ $1 / \sqrt{ } c_{d 1} c_{d}: D=S . P$ will also stabilize, but it is hard to say where. Runnong the Stellin


## Figure 7.16 Stable focus in the Demand-Supply model.

Dynamics in the ( $\mathrm{D}-\mathrm{S}$ ) phase plane


Figure 7.17 Dynamics in the Demand-Price phase plane.
The equilibrium for demand and supply is independent of initial conditions: hnweve: the price equilibrium is decided by the initial conditions for price.
implementation, we see that we get a stable focus (Figure 7.16); after a number of oscillations the trajectories equilitrate at une point in the (S.D) plane. The equilibrium is stable; no mater how we modify the mitial conditions, we still arrive at the same point in the ( $S, D$ ) plane or return to the same line in the (D,P) plane (Figure 7.17). This is still not quite a perfect solution, since the equilibrium price denends upon the initial conditions that we chose for the price.

Such dynamics should probably be expecred, since we have built in two stabilizing formulations in the model equations. One is in the Price equation, which always tends to return price to the value that is acheved for $S=D$. The other is in the Supply equation, which looks somewhat similar to the carrying capacity formalization we saw earler. Here again, the equation works in such a way that $S$ is always driven back to $S=D$.

We have finally succeeded in reproducing the dynamics assumed in the system that we are analyzing. It has been quite a long process, trying numerous descriptions, model structures and parameter sets. We still do not have a lot of understanding of the system, and there seems to be a lot that still needs to be checked and explored with the models that we have built. We may, however, conclude that:

- Economic systems can be also modeled with the stock-and-flow formalism used in Stella. However, it may be a pretty tiresome process. Most of conventional economics is constructed around the assumption of equilibrium. The economic system is thought to be at equilibrium, and whatever happens to it is "at the margin," that is, we consider small perturbations from the equilibrium. In contrast, most dynamic models consider transfer processes that analyze how to reach equlibrium, or how to jump from one equilibrium state to another.
- The systems dynamics language is not very well suited for conventional economic analysis. The language of economics may be somewhat difficult to translate into the stock-and-flow formalism, especially when we are dealing with qualitative theorerical systems without any particular data sets at hand. However, this is probably the case when modeling any qualitative systems, not only economic ones.
- A careful analysis of model dynamics may shed some light on che system operation and its pecularities. For example, our analysis showed evidence of price by itself not being able to bring the production system to equilibrium. We needed some additional stabilizing mechanisms to be included.
- It is important to consider a variety of structures, parameters and initial conditions to understand the system dynamics behavior. Performing just a few model runs is insufficient to understand how the system works.


### 7.3 Corporate rule

Let us consider another economic system with some flavor of social policy in it. Suppose we are looking at the dynamics of large corporations vs small businesses. These will be the cwo major players (variables) in our system. The main difference in how they operate is that there is hardly any competition between the corporations, which manage to divide their spheres of incerests without employing market forces. The small businesses compete with each other and with the corporations. They also try to limit the growth of corporations by legislative means, which is also a non-market mechanism. However, corporations also compete with the small businesses for influence upon the legislators. Let us see how such a system can develop in dynamic terms.

The variables of our system are the corporations (we refer to them as Bigs, B) and the small businesses (Smalls, S). We suppose that $B$ and $S$ are measured in their total value (say, in billions of dollars). Borh B and $S$ are assumed to grow exponentially, so that the larger their suze the more their absolute growth will be. The Sinalls are concrolled by self-competition. We think that their total growth in value is mostly
because of the growth in their numbers. Therefore, che larger the number, the higher the compericion will be. Besides, the Smalls are suppressed by the Bigs: the larger the size of the Bigs, the more they limit the Smalls

$$
\frac{d S}{d t}=b S-d B-c S^{2}
$$

where $b$ is the growth rate, $c$ is the self-limitation coefficient and $d$ is the rate of compection with rhe Bigs. The equation for the Bigs will he:

$$
\frac{d B}{d t}=a B\left(\frac{1-B}{M M}\right) .
$$

Here, $a$ is the Bigs growth rate and MM is a certain carrying capacity, sone maxunal limit ser for the toral size of the Bigs. In such a system with unfair comperition the only result is gradual elimination of the Smalls while the Bigs reach their carrying capacicy. If the carrying capacity $\mathrm{M} M$ is set at a high level, the Smalls are entirely wiped out. If MM is small, then coexistence is possitle. This leads to a possible way to concrol the Bigs in a democratic society. The MM should be set at such a level that allows the Smalls to exist and develop. This should be done ourside of the economic system, by a specific political process. The allowed size of the Bigs' development then derermines the size of borh the Bigs' and the Smalls' development.

Note that the so-called self-competition, in mathematical terms, is actually identical to carrying capacity. We can rewrite the equation for Smalls as:

$$
\frac{d S}{d t}=b S-d B-c S^{2}=b S\left(1-\frac{S}{b / c}\right)-d B
$$

Here, we have carrying capacity equal to b/c. Similarly, rearranging the equation for the Bigs, we can have:

$$
\frac{d B}{d t}=a B-\left(\frac{\partial}{M M}\right) B^{2}
$$

So the whole asymmetry of the system is in the fact that the Smalls are impacted by the Bigs (the $-d$ ' term), while the Bigs feel no pressure from the Smalls.

This may be just about the right time to put these equations into Stella and start experimenting with the model. Just to make sure that we are on the same page, let us compare our Stella equations:

```
Blgs(t) = Bigs(t - dt) - iB_n - B_out} * dt
|NIT Bigs = 100
INFLOWS
B_in = a*BIgs
OUTFLOWS:
B_out = a*Bigs*Bigs*m
Smalls(t) = Smalls(t - dt) + (S_in - S_out) * dt
|NIT Smalls = 300
```

INFLONS:
S_in = b* Smalls
OUTFLOWS:
S_out $=$ d*Bigs $+c^{*}$ Smals*Simalls
$a=0.2$
$b=02$
$c=00003$
$a=0001$
$\mathrm{m}=1 \mathrm{MM}$
$\mathrm{MM}=30000$
The dynamics become much casien to understand if we check out the equilibria. kesolving the equibrium equations, we get

$$
\begin{gathered}
B=M M \\
S_{1,2}=\frac{b \pm \sqrt{y^{2}-4 d c M M}}{2 c}
\end{gathered}
$$

There are two points, and one of them seems to be stable. There could be a coexistence of the two, but note that the equtibrium tor the Sumals can exst onty if the expression under the square root is non-negative:

$$
M M<\frac{\dot{b}^{2}}{4 d c}
$$

We can see that for the Smalls to exist, they have to make sure that MM is sutficiently small (Figure 7.18). The decisions about such external conmerols are made in a polatical process, which may be assumed to be democratic. In this case, since the number of Smalls is always larger than the number of Bigs: we may hope that the control over MM will be successtul. However, in reality the "democratic" process is largely influenced by lobbeving, which in turn is denined by the amount of moneys spent to mfluence the politicians. Let us add the lobhying process into the model.


Suppose thar borh the Bigs and the Smalls spend a certain portion of their wealth on lobhying (e and $f$, respectively). The size of MM will be then determined by who spends mure.

The equation for Smalls will now he:

$$
\frac{d S}{d i}=b S-f S-d B-c S^{2}
$$

For Biss, we have:

$$
\frac{d B}{d t}=u B\left(1-\frac{B}{M M} \frac{f S}{c B}\right)-c B
$$

Here, we have added the loss of wealth for lathying ( $S S$ and $\mathrm{C} B$ ) and modined the caryyng capacity, assuming that is is now a function of $B S$ - it grows when $B>$ i $S$ and declines otherwise. The model dynamics seem to te more complex now. By simply running the Stella model, it may he hard to huge out what is going on. If we have not put ugether the moxtel ourselves, we can download it trom the book website. Playing with the montel, we find that there does not seem to be a state of coexistence any longer. if the Smalls prevail. in most cases ty increasing their spending on lobbying, the Bigs can turn around the dyamise and wipe out the Smalls entirely, as in Figure 7.19

A small company called TerraCycle has stated to produce fertilzers from worm droppings Organic waste is fed to worms and the worm poop compost tea is bottied as ready-to-use plant fertilizer, using soda botiles collected by schools and other charities. Starred by college students. after five years in business TerraCycle was expecting to reach $\$ 6$ million in sales in 2007 . finally making some profit. This did not look good to the $\$ 2.2$ billion giant Scotts Miracle-Gro Company which has 59 percent of the plant food market.

Scotis claims that the two companies' products look similar and wwill confuse customers. because some TerraCycle plant toods have a green-and-yellow label with a circle and a picture of flowers and vegetables on it Scots also objects that TerraCycle says its plant food is as good or thetter than "a leading synthetic plant tood"

Clearly, the expectation is that a small company will not be able to survive a major lawsult and will go out of business. The Bigs compete with the Smalls



11-11.












 A-te Sly - $\boldsymbol{\sim}$




 a oerson in born, he or she st protected by the oowar as the Conalitution and hea humin fights Thia s ithe wity to anotect the wesk from the powerlul the same idna was applied io bueraneme then atso regured protection thom ina grwartu when a corporition boin, it hoo is assighed









 potentmi opprescos


 1 dopr crime had been carrrreted

 equil protaction under ina tan

 under sha meninges of biology:
(Thom mertrarn. 2009]


.



 11. inder




















 repleca 10 parcent ai Amarlcen gasaline conaumpion









 potentially thuge profas Gregory H Boven Dhel Exearve of Peabody Energy. based in Si

 ne conl in the form of moud fuels




 The inoustry iper se mivion on ware beopng in 2006 and 2000 - these times what in apani each vala liom 2000 through 2004 mocoidng to cakimeione by Politicalmonoylint

 bader from 1989 to 1505 and a onderite for the Democracic oresedertiol nomalion in 1969 and 2000 10 Mep mime at cese $n$ Congrese

Do vou thenk if will mort? theu bot
Baned on formurd $L$ Andems 'Lanmmers Pust for Big Sibaides 'or Coal Processs.' The Now Hort Timex. Ney 29.2007

### 7.4 Sustainability



...n•

 and incognilion of tive ar ufs maening bang imoled. tuat like biodivergily, Iusiainablify nas









 char then good





 It soout ma-ienance. susienanca, continuity of a cer!ain rasourte. sysiem. condion and
 decse. This a also how Google's dofinition icod datanes sustenabilay: as a stath or proceas that
 a meanar thal salustias cement nacoe whila allowng tham to cerses in the iong iesm

No wondal susiainability hea cocome wercoma concegi in the Whasiern apatacen woild. Paeple 10 quite hapey with whal ithovive got end its a swedt die to more oul hom
 a sell in devaloping countree. whate geopla sia much more ratereased in goown of inee econ

 growth pa-acgm

```
Juan in
```


















C_cap_gr is the rate coefficient, which tells how much investment capital the economy can generate. The capital wall he spent for two purposes. One is to fund further economic growth, C_dev; the orher is to restore the resources, C_env. The equation co spend capital will be:

$$
\text { C out }=\frac{\text { C_cap_sp*Capital }}{D T}
$$

C_cap_sp is the proportion of capital spent. If C_cap_sp $=1$, all capıtal is reinvested. Note the division by $\mathrm{DT}^{\top}$ that makes sure that this is independent on the tumestep. C_out is divided between C_dev and $\mathrm{C}_{-}$env according to the control parameter $F_{-}$dev, $0 \leq F_{-}$dev $\leq 1$.
$F_{-}$env $=1-F_{-}$dev indicates that whatever is left from the economic investments is spent on environmental restoration. The amount of resources will then grow in proportion to the restoration efforts:

R_in = C_restor*C_env + C_self* Resources, where C_restor is the efficiency of restoration and $\mathrm{C}_{-}$self*Resources is the process of self-rehabilitation, self-restoration. The resources are used for economic growth at a rate of

$$
\text { R_out }=\text { C_env_des*D_growth. }
$$

Of course this is a very simplistic model, very much along the lines of neoclassical economic theory. We assume that icsources can be always regenerated or substituted. However, for the moment let us assume that this is indeed possible and see what behavior such a system can display.

We have already considered some preliminary dynamics in this model, when discussing the different integration methods (Chapter 3). We have observed dynamics that do not seem very sustainable: after an intrial rise in development, the resource base is quickly depleted and the economy crashes. The population continues to grow, which is obviously unrealistic and begs for some inprovement.

There are many obvious additions that can and should be made to the model, but before we go inco any further details ler us analyze the model that we have already put together. First, let us play with some of the parameters. We assume that the model has been put together in Stella or another modeling package, or downloaded from the book website.

First, if the resources crash, how can we sustain them? In the model we have the parameter $F_{-} d e v$, which defines what fraction of the capital is spent for development. What is left is spent on restoration. We had $\mathrm{F}_{-}$dev $=0.9$. If we decrease the coeffictent to $F$ dev $=0.6$ we will get a perfect growth pattern, where development is generating enough revenue to provide for resources recovery - a world viston of a technologic opromist (Figure 7.20).

However, note that the growth crajectories are in place because of a very high efficiency of our restoration procedures ( $C$ _restor $=0.5$ ). If we decrease it to. say, 0.1 , we will be back to the rise-and-crash scenario. There seem to be only two ways the system can possibly develop: one is runaway growth, where all the elements grow to intinity; che other is rise and crash, where after a period of initial fast developmene the system variables decline to zero.

Since rhere is no feedback at this time from the other system variables to Population, let us single it out and see how the system behaves if population is assumed constant and as equalibrium. Now we find that the infinte growth behavior becomes


## Figure 7.20 A technologic optimist world view

very rotust. Even if there is no restoration available, $\mathrm{C}_{\text {_ }}$ restor $=0$., and almost everything is remvested in development, $\mathrm{F}_{\mathrm{a}}$ dev $=0.8$, we still have the system evolving along the growth curve. It does crash when $F_{\text {d }}$ dev $=0 . \%$. One curious conclusion already emerges from this: Apparently the human component is extremely important when analyzing sustainahility. W'ith a small and fixed number of people, the development growth is controlled only by Capital and Resources. This allows development to grow gradually, based on the self-recovery of resources. Sustanability is possible when development is based only on the existing resource base. It is really the growing human iniluence in producton that destabilizes the spstem.

It the Porulation is so important, let us bring it back into consideration and also lowok at some of the ohvious teedbacks that the rest of the system should have with respect to the population. One thing that seemed quite strange in the original model was that Population continued to grow ad infntam even when all the resources were gone and the economic system had crashed. Actually it was this intnite growth of Population that broke up the model, both for the Euler and the Runge-Kutta methods.

Let us assume that when resources are depleted, mortality increases (this can be (lue to. say, a decrease in air and water quality):

$$
C_{-} \text {mortality }=C_{-} \text {mortality }+\frac{1}{1+C_{-} \text {mor_env*Resources }} .
$$

C_mor_env is the rate of environmental effects on mortality. Note we wrote $1+\mathrm{C}_{-}$ mor_env*Resources to make sure that we do not get a division hy zero in case Resources become very small. If Resturces ate plentiful, this equatom returns a value almost equal to the original mortality coettictent However. as Resources decrease, mortality rate starts to grow. As a result we get the uscillatus "grow-and-crash" type of dy namics, where all the elements of the system initially display rapid growth. tollowed by an equally rapid decline as resources become scaree (Figure 7.21)

It we further increase the development by allocating more capital to economic growth, the pattern becomes somewhat chaotic, with sublen outbursts of development fullowed by even steeper declines (Figure 7.22).


Figure 7.21 The grow and crash pattern of dynamics, $\mathrm{F}_{-}$dev $=0.6$.


Figure 7.22 The grow and ciash pattern of dynamics, $F$ dev $=0.9$.
In any case, this is definitely not the rype of dynamics we would call sustainable. Let us try to introduce some self limitations into the system that could potentially dampen the oscillations. We will make the decision about the investments based on the current availahlity of Resources. I! Resources are plentiful, $\mathrm{F}_{\mathrm{F}}$ dev is unchangeid. When Resources decline, F_dev decreases, so that F_enw $^{(1)} 1-F_{-}$dev can increase and more will be remvested in restoration. The $s$-shaped function, discussed among orher functions, seems to be a perfect choice to provide this rype of behavior:

$$
F_{\text {dev }}=\frac{0.7: \text { Resources }^{2}}{C \text { half }{ }^{2}+\text { Resources }^{2}}
$$

where C_half - is the hall saturatoon parameter. which in this casc is the amount of resources at which $F_{\text {_ dev }}$ is to te half of the origund. This is some sort of an adaptwe management that is embeddel into the system. We are rying to make the system react to the changing conditions and adapt accordingly. As a result, we get a


## Figure 7.23 "Sustainability" in a model with "adaptive management," F_dev = 0.6.



Figure 7.24 Changes in morta' ty and investments that stablize the system
hehavior of the system that may he called sustainalle. After an inutial peak me economic develepment, the system returns wa non-sero condition which persists. The resource are not depleted, the popylatom is not too large, and the comomic deve.opment is such that it sustains the populatom and the regeneration of rexurces (Figure 7.23).

The adaptation is provided by changes in the mortality rate and in the mevestment strategy, as shown in Figure 7.24. Is this the scenario humans might follow, where adaptations and adfustments are made only when it is tow late and the Resourees have declined to a relatively low level'

We could clante that we have built a model of a sustamable system. if it were not for the tace that the model turns out to be seructurally suite unstable. If we start from $\rightarrow$ different intial investment strategy and make F_dev $=0.8$, we put the system into scable osciliations, as dssflayed in Figure 7.25.

If we further increase the intial investment into development, the system uscillations become chasric. Figure 7.26 presents the cycles in the phase plane for Rescurces


Figure 7.25 System dynamics and adaptacions with $\mathrm{F}_{\mathbf{\prime}} \mathrm{dev}=0.8$.
and Topulation. Development and Capital display similar chaotic oscillations. It is not quite clear what the future of this system will be. It instead we decrease F_dev and make it equal ro 05 , we get yet another enturely new hehavior: steady growth of the economic subsystem with a verv low resource base (Figure 7.27). Apparently all the resources are very efficiently being used tor economic developinent, with the population entirely care less about the state of the environment as long as development is ensured.

If F_dev is further decreased, the growth becomes so rapid that the system quickly falls into discontinuous jumps and falls, clearly indicating the insuftıciency of the numerical accuracy of the computer calculations. In reality, it is simply hecause numbers hecome too large for the computer to handle properly.

This numerical insufficiency deserves some furcher considerarion. In Figure 7.28 we present the model trajectortes achieved when, instead of the quadratic switching function for $\mathrm{F}_{-}$der, we use a function of the Michaelis-Menten cype:

$$
F_{-} \text {dev }=\frac{0.7 * \text { Resources }}{\text { C_halt }+ \text { Resources }}
$$



Figure 7.26 Chaotic cycles of Population and Resources when F_dev $=09$


Figure 7.27 Changes in mortality and investments that stabilize the system.


Figure 7.28 Model crashes caused by computation error.
On one hand, if we look at the averages. we get some sort of system persistence Population keeps growing in spite of sharp drops every now and then, the economy also grows. Resources are restored after heing depleted. Some might call this sustainability. In theory, if the computation stef was made infinitesumally small then these crashes could be renoved. However, in real life adaptations are not made instantaneously: there is always a time lag berween the cause and the effect, and it always takes ume to make decisions. Thetefore, it may he argued that the real-life system is also discrece, with a certain time-step, and thus such "crashing" suscems are probably inevitable when growth becomes ton last to track and to master.

Some of the conclusions from this study are as follows:

- The behavior of an ecological-economic system is quite complex and hard to control. We may create some behavior which might resemble sustainable devel. opment: however, it seems to he very much dependent upon the particular parameterization of the model.
- Ir is important ro rest the model with a variety of parameters and formalizations to make sure that we have really captured the essence of the syseem dynamics. It is wrong to jump to conclusions about syssem behavior based upon only one model realizarion.
- The neo-classical paradigm quite often results in system behavior that is focused on economic development, where ecological resources are used only to provide for furcher economic groweth. This may be well in conflice with orher human prioritues, such as environmental quality and human healch.


### 7.5 The end of cheap oil


#### Abstract

And we ought not at least to delay dispersing a set of plausible fallacies about the economy of fuel, and the discovery of substitutes for coal, which at present obscure the critical nature of the question, and are eagerly passed about among those who like to believe that we have an indefinite period of prosperity before us.


W.S. Jevons, 1865

Water and energy are the two tenewable resources that ate essential ior human liveluhood. Whereas we have been mostly concerned wirh non-renewable resources as the human population grows in size and in terms of the impact that it has on the bosphere, renewable resources become equally important. Renewable resources may become lumiting if the rate of their renewal is not fast enough. Renewal of water is dependent on energy. Production of energy, espectally of renewable energy (biofuel and hydro), is dependenc on water. In borh cases, for energy and water, we compensate the lack of flow by digging into the stocks. The fossil fuels are the non-renewable reserves that we are quickly deplering. It is actually the stocks that have allowed humans co develop inco a geological force (Vernadskii, 1986) which may very well bring itself to extmotion, unless we find alternative development goals and paradigms. As with energy, we are compensating for a lack of water by extracting from fossil groundwater reserves. In both cases this is an unsustainable practice that leaves fucure generations dry, with no safery net wo rely upon.

We looked at water in some decail in Chapter 6. Let us now focus on energy. There has been much discussions lately about the so-called "peak oul." Back in the 1950s, a USGS geologist, King Hubkerr, was observing the dynamics of output from individual oll wells and noticed that they seemed to follow a pretty sumilar patcern. Ar first their productivicy was low, then ir gradually grew, unoul it peaked and then followed a pactern of steady decline. He has generalized chese observations over muluple oil wells in various regions, and for the contiguous US he came up with a projection that said that orl production across the whole councry will peak. He even estimated when ir woulds happen - in the early 1970s. It turned out that his projection was remarkably close to whar happened in reality (Figure 7.29). The next obvious step was to apply this same methodology to world oul production. According to those projections, the peak is supposed to happen some time really soon - by some estumates, it has actually already happened.

Why is peak oul such a big issue? Primarily because the demand for oil concunues to grow exponentially, which means that as soon as oil production peaks there will be an increasing gap berween demand and supply. For such an essentual resource as energy, this gap may result in catastrophic outcomes.


Figure 7.29 US oil producticn 1850-2050, as predicted by the peak oil theory of King Hubbert and in reality. The dashed line is Hubbert's prediction. The solid line is the actual extraction. Note that the timing of the peak was predicted almosi exactly

Both energy and water belong to the so-called Critical Natura, Capital category, which means ihat they are essential ior human survival. As they become scarce, they exhibit high priceinelasticity of dernand, so that a sinall reduction ol quantity leads to a huge increase in price

A small decrease in suppy will lead to an enormous increase $n$ price. so that total value (price $\times$ quantity) paradoxically increases as toial quantity declines. This is true for any resource that is essential and non-substitutable. As there s ess water or energy available, the price quickly increases towards infinity. This creates havoc with markets and pretty much puts the whole system out ol control - as we saw during the energy crisis of the 1970 s While energy and water are abundant, their value is low, it may seem that we have an infinite supply, and there is nothing to worry about. However, as depletion accelerates, even smali perturbations due to unforeseen climatic events or technical malfunction may result in disproportionate changes in price.


As pointed out in Chapter 6 , as long as we rely upon purely renewable energy and water, they are non-rival and non-excludable Honvever as we need to dip into reserves of lossil water or energy, or even into the temporary reserves llakes, reservoirs, or forest and crop biomass!, immediately the resources become excludable and rival. As resources become sca:cer we easily create conflict situations iwater and energy we:s one of which we are waging right now)
iFarley and Gaddis 200\%

While most official scources have heen quite reluctant to discuss this issue, in 2007 several publications appeared indicating that there is a growing concern even in circles closely related to governments. In July 2007 the International Energy Agency (IEA), an arm of the Organiation for Economic Cuoperation and Development (OECD), pullished the "Medium-Term Oil Market Report." The report predicts that world economic activity will grow by an average of 4.5 percent per year during the next several years. Jriven largely by strong growth in China. India, and other Asian countries. Global vil demand will, as a result, rise by about 2.2 percent per year, pushing world oil consumption from an estimated 86.1 million barrels per day un 2007 to 958 million harrels by 2012 . If there are ao catastrophes and there is ample new investment, the global oil industry may he able to increase output suthiciently to satisfy this higher level of demand - but if so, barely. Beyond 2012, the production outlook appears far grimmer. And remember that this is the best-case scenario.

Let us see what we can find out about the tuture of ol supplies using seme sumple dynamic mudeling. Suppose we have a stuck of oil. Since it is a aon-renewable resource, it is safe to assume that it is limited. There will aluays be oil in the ground, but it is quite clear that eventually we will run out of the energencally profitable resource. So wath this stuck comes just an untiow, which we will call Extraction. Let us assume that Extraction is driven by Demand. Demand is exponentially growing. just as it has been over the past years:

$$
\begin{aligned}
\text { Demand }(t) & =\text { Demand }(t-d t)+(\text { Growth }) * d t \\
\text { Growth } & =\text { C_grow }^{*} \text { Demand }
\end{aligned}
$$

Besides satisfying Demand. Extraction should also produce enough to power Extraction itself. This is what is known as the EROEI (Energy Rerum on Energy lnvested) index. If $\mathrm{c}_{\text {mis }}$ is the amount of energy produced and $\mathrm{e}_{\text {in }}$ is the amount of energy used in production, then EROEI, $e=e_{\text {suth }} / e_{i n}$. In some cises the net EROEI index is used, which is the amount of energy we need to produce to deliver a unit of net energy to the user: $e^{\prime}-e_{\text {inut }}\left(e_{\text {int }}-e_{\text {in }}\right)$. Or $e^{\prime}=e /(e-1)$.

To account for EROFI, we put:

$$
\begin{aligned}
& \text { Reserves }(t)=\text { Reservesit }-d t)+i-\text { Exrraction }) * d t \\
& \text { Extraction }=\text { Demana } *\left|1+\frac{1}{\text { erceit }}\right|
\end{aligned}
$$

It also makes sense to assume that EROEI is not constant. In fact, at some point we had oll fountaining out of the ground, so we fust needed to collect and deliver


Figure 7.30 The parabolic dependency between the EROEI index and the amount oi reserves still available. The fewer reserves are let, the more we need to invest in production.
it; now we need to drill kilometers deep mono the ground and pump the oil out, then pump water or $\mathrm{CO}_{2}$ in to push some more oil out, and so on. The energy return has decked from over 100:1 in the 1930s to $30: 1$ in the 1970 s to around $10: 1$ in 2000. FROE I is a bate between technology and depletion, and depletion is winnog. In the future, more energy meatmen: will be needed, taking energy out of a nom-energy society.

Let us assume that EROEI drops with Reserves decreasing, according to the parabulic function shewn in Figure 7.30. Then

$$
\text { erose }=\mathrm{e} \mathrm{mi} *\left(\frac{\text { Reserves }}{\mathrm{rmi}}\right)^{2}
$$

assuming that e_mi -100 is the ordinal EROEI and that mini $=1000000000$ is the original stock of oil in the Reserves.

Il we run this motel, we will get an expected result: the growing demand will cenvainly deplete the resources (Figure 7.31). What is noteworthy about this graphic is the power of exponential growth. While we have very slow. almost negligible change over a long initial period of tire, things start to accelerate tremendously thy the end of the season. Most oi the change is compressed into a rather short period of time, when action is really needed, hut there is very limited time th do something. Also, note how much faster we need to pump out our reserves to supply the demand as reserves become depleted

It is also noteworthy that the values of the parameters that we used In this model do nos really mater. The exponential growth or decline has a vivid trace that shows through any modifications in parameters.

You can increase your confidence in model results it the model is structurally state. It is hard to prove structural stability, tue it is always good to search for models that have a good deal of robustness to structural modifications. We can even try another function


Figure 7.31 System dynamics shows very slow dynamics at first, fol owed by a period of very high growth rate and eventual crash of the system due to depletion of resources


## Figure 7.32 The s-shaped EROEI function praduces very similar results.

We may argue that the model is structuraly quite stable. With qualitatively similar assumpt ons about the driving forces and processes, the exact formulations and parameter value do not matter that much.
for the FROEI. Suppose we choose an s-shaped one (rememher that which we discussed in Figure 2.20?):

$$
\text { eruei }=\frac{\text { e_min}^{*} \text { Reserves? }}{\left(\frac{r_{-} \text {ini }}{2}\right)^{2}+\text { Reserves? }}
$$

For this function we also get a similar pattern, with very slight changes in the trajectories (Figure 7.32). Once agam, the last drop of oil is extracted at an excced. ingly high rate

However, it could serminly be argued that there is other energy out there, sud there is really no reason to expect that we are so ignorant not to realize the imminent crash and not to start exploning alternatives. Lee us add alternative sources of energy to our model. Let us assume that the infrastructure for altermative energy is
bemg produced at a certain slow rate (a_g_c.) with no big success until the EROEI for oul falls below a cerrain recognized threshold value (eroel_t). After that we start rapidly investing in alternatives, making them grow at a rate of a_g:

$$
\begin{aligned}
& \text { Alternatives }(\mathrm{t})=\text { Alternatives }(\mathrm{t}-\mathrm{dt})+(\text { Alt_gr }) * \mathrm{dt} \\
& \text { Alt_gt }- \text { if eroei }<\text { eroei_t then a_g * Alternatives else a_g_c }
\end{aligned}
$$

The assumption here is that once we change our atritude to Alternatives we can get them built up really fast by creating a positive feedback from their growth. This seems to be quite feasible if we agree that as the new technologies get developed they create synergies for their further development.

There is also the EROEI for Alternatives, eroes_a. In this case it will mostly likely grow as new alternative infrastructure is put in place. Suppose we use a monodtype function with saturation:

$$
\text { eroei_a }=\text { e_a_min }+\frac{e_{-} a_{-} m a x *}{\text { Alternatıves }+e_{-} a_{-} h s}
$$

where e_a_min is the minimal starting eroei_a, when new technologies are only starting to be deployed. It makes sense inirially to have it at even less than 1 , reflecting the fact that at frst we need to invest a great deal with very little return. e_a_max is the maximal eroei_a and e_a_hs is the half-saturation coefficient that cells us at which level of development of alternative energy (Alcernatives stock) we get eroei_a equal to half of the maximal.

We also want to modify the equation for Extractoon.

$$
\begin{aligned}
\text { Extraction }= & \text { if Demand }>\text { Alternatıves then Demand * }\left(1+\frac{1}{\text { eroei }}\right) \\
& - \text { a eff*Alternatives* }\left(1-\frac{1}{\text { eroet_a }}\right), \text { else } 0
\end{aligned}
$$

The logic here is that if all the demand can be covered by alternative energy (Demand < Alternatives), then there is no need to continue extraction of fossil energy, and Extraction $=0$. Otherwise, we need to extract enough to cover the demand. The alternative infrastructure chips in with the efficiency a_eff (a negative rerm in the Extraction equation), but to produce this alternative energy we need to invest 1/eroei_a (a positive term in the Extraction equation). The higher the eroei_a, the less we need to run the alternative infrastructure.

Let us run the mudel with the following paramerer values:

$$
\begin{aligned}
& \text { a_eff }=10, a \_g=0.2, \text { a_g_c }=100, c_{\text {_ grow }}=0.03 \\
& \text { eroet_r }=20, \text { e_a_hs }=500000, \text { e_a_max }=10, \text { e_a_mm }=0.5 \\
& e_{-} \text {ini }=120, r_{-} \text {inı }=1000000000
\end{aligned}
$$

We will mostly be concerned with general qualitative behavior, and will not try to tigure out what the real values for these parameters are (which is also a very worth. while effort). For now, let us explore what the overall system dynamics are. With the


Figure $\mathbf{7 . 3 3}$ If we start investing in Alternatives too lare, we only accelerate the crash of the system.


Figure 7.34 Early investment in Alcernatives, while there is still ample supply ol conventional energy, allows for a smooth cransition to renewable energy.
values ahove, Alternatives make almost no change to the system (Figure 7.33). On the conrrary, investing in the alternative sector when we are already pumping out the second half of our reserves only accelerates the crash. Changing different parameters related to Alternarives efficiency does not seem to help. The system still crashes

What does help is changing parameters related to the timing of the switch to alternatives. If we start developing alternarives when the ER(OEI of tratitional energy is still as high as ahout 60 or more (eroei_t $>58$ ), we ger a completely differ. ene picture (Figure 7.34 ) The same opportunity exists if we have been slowly developing alternatives since the very beginning ( $a_{2} e_{c}=1000$ ). In these cases we have a pretty smooth transition from fossil-hased energy to alternative energy, with extrac tion going down to zero while there is still plenty of oil left in the ground.

Ohviously other tacturs will kick in, such as limited land resources, so it is a major simplification to think that indeed we will be always able to provide for the exponentially growing demand. However, in terms of energy we can do it (or, more likely, could have done it). That is il we hat started the transitton early enough to provide for the new alternative infrastructure. To hind out more exactly how late we are arriving at the show, we will need to find some more realistic values for the paramerers. In this case. there are several parameters that do matcer. However, puall. ratively it seems that the half depletion threshold is an important factor in these dynamics. If we start the transition to the alternatives well before we have half depleted the resource, there is enough to tund rhe development of the new alternative infrastructure If we procrastinate any longer, the crash is imminent.

It is becoming moreangig clast that, in the long run, humanisy can turvive ond livng withe me limits of resources that if has. In this context. tossil luals apoear as winwing a totary
 soy. we neve only the rieedr nuoply of enaigy euming from the sun. The mindial of thion

 dread fosst fuals evitel wo wall be let wath an the lang reers to follow when they will be no


One cheat mamon ler cation if the revy dsturteng starstics in bograptet of boiary wnners too atten they and up in bereneoky. powny or made 50 mimmanity hes tean iming

 orevous two ceniufiat



 that niay utimataly sep fie atinty of humans and others to survwe on mat planel

Whalensenr, 2003


























have supply, and to a level that can be sustained. Ironically, in many places we have exacely the reverse: populaton is growing must rapadly where wate and energy are least avalable. Conveying energy creates more losses: cumemely up to two-thirds of electric energy is lose in transinission. Conveyng water requires much energy, and also resules in signiticant losises due to evaporation and seepage.
There is a clear correlation becween energy consampron and econumic developneme (Figure 7.35). At the satue time, there is no dowous correlation hetween GDF and sach indicators as ble satistaction or life expectancy (Figure 7.36). We can see that with no sacritice to life guality iadices we can at least halve the per capita GDF; and therefore energy consumption. It is really a matter of choice, social atracciseress, and cultural prouritus. These can be changed only with a strone leadership that should he adtanced and promuted by the iederal government.

Decreasing comsumpron: may be an unpopular meatoure that makes federal involvement especially important. So far, most of the advertising industry is working wwads increasing consumprion, buying things that we to not need, wasting more energy and water Only federal action can stop that and help to shite awareness of the population cowards conservation and efficiency. Increasing ethciency in all areas industial, residential and agricultural - is ancther clear locus begging for action.


Figure 7.35 $\quad$ Energy consumption trom all sources and GDP in USA IEIA, 2006i.
 data for 184 countries (http:/devdata.worldbank org/query/default.htm). B. GNP and Lite Satisfaction Index for 2000 (Veenhoven, 2004; another great source of this kind of information is http://www.gapminder.org/worid/!

Compare productivity per capita in the USA and Japan. They are at a comparable level, and are actually the best in the would. Yer Japan needs only halr of the energy that the USA needs! lapan emis 95 ons CO , per capua, whereas rhe USA emits 19.7 tons CO ? per capta - roughly proportional to the energy consumption rario of the two councries. That shows an obvious way to cut GHG emissions.

### 7.6 The World

So far we have been rying to focus on some very simple models, the dynamics of which we can cirefully explore to, reveal some ol the emergent properties and surprises in systems' behavior. These mudels easily tend to become more and more complex. As we find more connections, processes, factors and parmeters that seem wo be important for the overall sysem's dynamiss, the enticement is very strong to add them to the model, hecause, mdeed, they seem mportanc and the mudel would nor look relevant withour rhem. Sometimes we promse ourselves that we will try to simflify the modet later on, after rummen semitivity rmalysis, and finding parameters and processes that are not really making much of a ditterence. Quite often we forget about that, espectally if we are happy with the results that we are gerting, and we tend to care less about the more elaborate model anaivsis thar would be nice to pertorm it the model were simpler

As a result we tend to buiki models that may be classified as knowledge bases, since they contain a huge amount of intormation, and probably present the best state-of-rhe att knowledge about particular systems. They are certainly way more advanced than simpty databases, since in these models we have data sets lonked ruger her: there are casual links that indicate how one process atfecrs anwether one, what the feedhacks in the system are, and how one data set is connected to another one. This abundance of intomation that is embodied in the model comes ar a price: we can no longer dig into the details of systems dynamics and we have so keep the processes quite simple, otherwise we will not be able to ran the motel. And we still need to be able to run these models, at least to make sure that the iaformation they contain is consistenc, that the logic of the links and relationship works, and that we get a meaningiul, coherent picture of the modeled system.

Most of the models that have been developed to deacribe rhe dynamics in the global scale belong to this category. One of the first and probably best-known models of the world is the World 3 model by Donella and Dennis Meadows and their colleagues (Meadows et al, 1979). (World2 was built carlier by Jay Forrester.) The model brought cogether information about several man subsystems:

- The food syscem. dealing with agricilture and food production
- The industrial system
- The population system
- The non-renewable resources system
- The pollution system.

The non-renewable resources have probably caused the most controversy and detate, since in the motel there is a hance limit to the amount of non-renewable resources thar can be extracted. Besides, all non-renewable resources have been lumped into one. This allowed immedate and costless substitution of ane nom-renewable resource (coal) for another (say, gas), but excludes the substitetion by other resources through new technology that science and engneering are yet to discover

[^3]Williem Statiay Jovers, a Bitigh econornixi. nasicad a strange phamomenon while stidvano the coall industiy in Englund as more aticient technology is devalooed, overall cursurns
 is the secret of the econorny of the sleam-ongine. It is ine loumain of iss power, and the edopted medsule of is offocts. Whatever, theratore. conduces to morease the efficency of coal. and to dimnigh the cost of the use, directy ients 10 euqment the value of the stem. angine. and to anderge the tiatd of its operdiung" NC W Wimams 11841). The Combursion
 consumption, alnce it was more effioent ithen the Neswcomen engine. and thcretore it was pul into maie widesprosd use and ond combustion mcyeased we see this happenrey all the time. As cass became choaper and mote elhoent, we got moie cals As electicity and consifuction becmme cheaper and more atficient. We got bigger houses. Even now, when a now super energrailicient ielrigarator is instisled in our kitchen. The old one is moved to the yarsja. to we have tind refrigeratorg, with the consequani higner anergy consurnpticn


Figure 7.37 A typical output from the World3 model. The system crasnes wher non-renewable resources are consumed

The main result of this model was that it stumulated much discussion on several global problems, such as population growith. deplecom of natural capital, pollution, etc. According to some estimates, the number of lines of text concributed to these debares has exceeded the size of "The Limites on Growech" by two or more ordess of magnitude. The marketing of the World3 model has drawn much attention to applications of models in politics and policy making. The unfortunate outcome is that nothing or very little has been actually accomplished to solve or mitigate the problems that were brought to light by the mistel.

A more recent reincarnation of a world systems dynamics model is the Global Unithed Meramodel of the Biosphere ( CLMBO ), developed by Roelof Boumans and other scientists at the Gund Institute for Ecological Economics to simulate the integrated Earth system with the implicit goral ol assessing the dynamics and values of ecosysem services. The model is presented as a synchesis and simplificarion of several existing dynamic glotal models in tooth the natural and social sciences, and claims to aim for the intermediate level of complexity. With 234 state variables, 930 variables in total, and 1715 parameters, this may be a bit ol a strerch. We are certainly dealing with a beast of a differenc kind than that we have seen in other chapters of this book. If somebody thought that some of those models were complex - think again. However, indeed, there are certanly more complex models available

GUMBO) is the firs global model (w include the dynamic feedtbacks among human technology, economic production and welfare, and ecosystem goods and services within the dynamic earth system. ©UMBO includes modules to simulare carbon, water, and nurrient fluxes through the Atnosphere, Lithosphere, Hydrosphere, and Boosphere of the global system. Sucial and economic dynamics are simulated within the Anthroposphere (Figure 7.38). GUMBO links these five spheres across


Figure 7.38 Overall structure of the GUMBO model. Using the Stella array functionality, all the man "spheres" are replicated over the 11 biomes assumed in the model.
eleven biomes (Open ocean, Coastal ocean, Forests. Grasslands, Weetlands, Lakes/ Rivers, Deserts, Tuadra. Iccirock, Croplands, and Urban), which tugether cover the entire surface of the planet.

The Stella version of the model can be downloaded from http:/iecoinformatics. uvmedu/GOMBO/(;)JMBO.zip. Perhaps it would be most useful to download the model and do some clicking on the diagram ro understand what ir looks like and whar it is doing.

The dynamics of 11 major ecosystem goods and services for each of the biomes are simulared and evaluared. Historical calibrations trom 1900102000 for 14 key variables for which quantuatuve time-series dara were available produced an average $\mathrm{R}^{2}$ or 0.922. For a model of this level of complexity, this level of conrelation with data is very unusual and quite astounding. The only possible explanation is that we are workiing at a very aggregated level and there is not much variability in the dara (Figure 7.39). As we can see, most of the dynamics are really still in the future, so it will take at least a couple of decades to tind our wherher the inodel projections are right or wrong.

However, it needs to be stressed that, for these knowledge-base type models, forecast precision and accuracy of the results are really not the point. They are nor built to reproduce the exacr day of collapse. What we are looking lor are the rrends, the understanding of how the overall system performs. This seems to be very well captured by the model, which was used to analyze the four scenarios of future human development proposed by Robert Costanza in 2000.


Figure 7.39 Calibration results for GUMB0, and runs of future development scenarios

Costanza described these four possible futures in Costanza $\vdots 2000$ ). Briefly here is what they are about.

## 1. Star Trek. The Default Technological Optimist Vision

"Varm fusion" was discovered and powered humanity to the stars. By 2012, natural resources were very strained. The warm fusion allowed a rapid reduction of global fossil fuel burning, with eventual reversal of the greenhouse ettect The arr pollution problem was essentially eliminated over the per:od from about 2015 to 2050 . Electricity came increasingly from warm fusion, nuclear fission reactors wele decommissioned and some hycropower stations were eliminated. The world was still gerting pretty crowded. The solution was space colonies, bult with materials taken fiom the moon and asteroas and energy from the new warm fusion reactors. Sirice iood production and manufacturing are mainly automated and powered by cheap waim fusion energy, orly about one tenth oi the population actually needs to work for a living. Most are free to pursue whatever interests them. Often the biggest technological and social breakthroughs have come from this huge population of "lessure thinkers." F'eople also have plenty of time to spend with family and friends, and the four-child family is the norm.

## 2. Mad Max:The Skeptic's Nightmare

The turning point came in 2012, when the world's oil production finally peaked, and the long slide down started. There were no cheaper alternatives for oil, only more expensive ones. Oll was so important in the economy that the price of everything else was tiea to it and the alternatives $\boldsymbol{j}$ ust kept getting more expensive at the same rate. The greenhouse effect was really kick:ng in and the earth's climate and ecological systems were in a complete shambles. The pollution crisis came next. Rising sea level inundated all low-lying coastal areas by about 2050.

The financial subble really burst Both the physical infrastructure and the social infrastructure have been gradually deteriorating, along with the natural environment. The human population was declining since the global epidemic killed almost 25 percent in 2025-2026. The population was already weakened by tegional famines and wars over water and other natural resources Since then death rates have exceeded birth rates almos! everywhere, and the current population of 4 billion is still decreasing by about 2 percent per year Natoonal governments have become weak. almost symbolic, relics. Transnational corporations run the world making the distribution of wealth even more skewed. Those who work for glocal corporations lead comfortable and protected lives in highly fortified enclaves. These people work 9 ()- or 100 -hour weeks with no vacation. The rest of the population survives in abandoneo buildings or makeshift shelters built from scraps There is no school. liftle food, and a constant struggle just to survive The almost constant social upheavals and revolutions are put down with brutal efficiency by the corporate security forces igovernments are too broke to maintain armies anymore:

## 3. Big Government: Reagan's Worst Nightmare

The turning point came in 2012, when the corporate charter of General Mlotors was revoked by the US Federal Government for failing to pursue the public interesi. Even though "warm fusion" had been discovered in 2015. strict government regulations had kept its development slow while the safety issues were being fully explored.

Wiarm fusion's slowness in coming on line was balanced with high taxes on fossil energy to counteract the greenhouse effect and stimulate renewable energy technologies. $\mathrm{Global}^{\mathrm{CO}} \mathrm{C}_{2}$ emissions were brought to 1990 leve's by 2005, and kept there through 2030 with concerted government effort and high taxes, after which the new fusion reactors eliminated the need fo: fossil fuels. The worst predicted climate-change effects were thus averted. Government population policies that emphasized female education, universal access to contraception, and family planning managed to stabilize the global human population at around 8 billo:, where it remainea.

The income distribution has become much more equitable worldwide Governments have explicitly advocated slow or no-growth policies, preferring to concentrate instead on assuring ecologıcal sustanability and more equitable distribution of wealth Stable human population also took much of the pressure off other species.

## 4. Ecotopia: The Low Consumption Sustainable Vision

The turning point came in 2012, when ecological tax reform finally was enacted almost simultaneously in the US, the EU, Japan and Australia. Coincidentaliy, it was the same year that Herman Daly won the Nobel Prize for Human Stewardship (formerly the prize for Economics) People realized that governments had to take the initiative back from transnational corporations and redefine the basic rules of the game. The public had formed a powerful judgment against the consumer lifestyle and for a sustainable lifestyle A coalition of Hollywood celebrites and producers got behind the idea and began making a series of movies and TV sit-coms that embodied the "sustanable vision." It suddenly became "cool" to be sustainable, and un-cooi to continue to pursue the materialistic, consumer lifestyle

All depletion of natural capital was taxed at the best estimate of the full social cost of that depletion, with additional assurance bonds to cover the uncertainty about social costs. Taxes on labor and income were reduced for middle- and lower-income people, with a "negative income tax" or basic life support for those below the poverty level The OLI (Ouality of Life Index) came to replace the GNF as the primary measure of national performance Fossil fuels became much more expensive, and this both limited travel and transport of goods and encouraged the use of renewable alternative energies. Mass transit, bıcycles and car-sharing became the norm. Human habitation came to be structured around small villages of roughly 200 people The village provided most of the necessities of life, including schools, clinics and shopping, all within easy walking distance People recognized that GNP was really the "gross national cost," which needed to be minımized while the OLI was being maxımized. By 2050 the workweek had shortened in most countries to 20 hours or less, and most "full-time" jobs became shared between two or three people. People could devote much more of their time to leisure, but iather than consumptive vacations taken far from home, they began to pursue more community activities isuch as participatory music and sports) and public service (such as day care and elder care) Unemployment became an almost obsolete term, as did the distinction between work and leisure The distribution of income became an almost unnecessary statistic, since income was not equated with welfare or power, and the quality of almost everyone's life was relatively high. With electronic communications, the truly global community could be maintained without the use of consumptive physical travel.

GUMBO could handle these scenarios to produce the results in Figures 7.39 and 7.40. Again, the exact numbers on those graphs are hardly important, and may be difficult to justify. What really matters is that the model rook into account much of the existing knowledge abour global processes and cranslated that knowledge into meaningful trends that can be discussed, compared and evaluated.

The further development of the model was for valuation of ecosystem services. Ecosuscem services in GUMBO are aggregated to 10 major types. These are: gas regulation, climate regularion, disturbance regulation, water use, soll formation, nutrient cycling, waste treatment, food production, raw materials, and recreation/cultural. These 10 services together represent the contribution of natural capital to the economic production process. They comibine with renewable and non-renewable fuels, bult capical, human capital (labor and knowledge), and sncial capital to produce economic goods

## Landuse changes



## Figure 7.40

 Change in landuse composition: under various future development scenariosand services. They also contribute ditectly to human welfare. Several different methods to value ecosystem services are implemented in the model, allowing users to observe all of them and compare the resuls. Historical data manduse, CO , concentration in the atinosphere, glohal mean temperature, economic production. population and several wher variables are used to calibate the model

With special tocus on ecosystem services, GUMBO has recently morphed anto the Multi-scale Integrated Models of Ecosystem Services (MIMES). It has been
 dounloads.hmal. The mojel has not become any smpler; actually, more and more components and processes have been added to it. The promise is to be able to go to an merface like GoogleEarth, choose an area anywhere on the globe, and immediacely euther get an estimate of ecosystem services for that area, or downluad a model that can be used to make these estimates.

Another somewhas similar effort in modeling and quantifying ecosystem services is the Natural Capital Project that is curnently underway at Sianiord Unversity; with collaboration with the The Nature Conservancy and World Wildlife Fund. The project also ains at developing a full suite of tools chat will allow landuse decision mak. ers and investors to weigh the full value of ecosystem services that nature provides for human lite (hop //wwwenturaleapitalprojectorgi). Their t(x)llow is called InVEST - Integrated Valuation of Ecosystem Services and Tradeoffs - and is supposed to model and map the delivery, distribution and economac value of lite-support systems (ecosystem services) well into the future. The life-support systems that will be analysed and the coosysem services they provide include carbun sequestration, drinking water, irrigation water, hydropouer, flood mitigation, native pollination, agricultural crop production, commercial timber production, non-timber forest products, real-estate value, recreation and tourism, and cultural and esthetic values. It is yet to be seen how these models will work cogether, and how complex a knowledge base mudel will come nut of this eftor.


#### Abstract

For vears, ecological economics has been distinguishing itself from environmental economics by denying monetary evaluation as an ulimate means for making decisions. With the ecosystem services concept it seems to cave in. at least to a certan extent. The dollar value still appears io be a very powerful communication tcol, and in many cases it seems helpful to be able to show that the ecosystems around us do deiver some crucial life-supporting services, which we normally take as granted but which actually may cost a lot This is probably OK as long as we remember that all the ecosystem services monetary estimates are on the very low siae. and that actualiy in many cases we shou d realize that we are dealing with infinie values which it is impossible to compare and meaningfully quantify. For example, as we have seen on page 2883, the value of critical natural capital increases asymptotically to infunty as the suppiy of this capital approaches critical values What is the "price" of the bottle of water if it is a matter of survival? Similarly, what is the "value" of a species that is becoming extinct, if we do not know what benefits it can potentally provide, and, say. how many people may be cured with drugs extracted from the tissue of that species?

It makes sense to put a dollar value on anundant natural capital when 11 is used for lesure and recreation, when nobody is at risk of irreversible transitions.


## Further reading

Ehrlich, P.R. (2000) Populatuon Bomb. Random House. 202 pf - First Jublished in 1909, the book gnes an excelient accurnt of thase eyponentiad growth of population mearss for this planet. A later book by Elvich P.R and Anne H Ehrlich. 1991. The Pupulazam Explesion. Touchstone Books. 320 pr - Digs deeper meo causes and sonsequences of ropulation growth
Kustikoff, L.!. and Burns, S. (2005) The Coming Cencratonal Som: What You Need to Knou aboul America's Economic Future. The MIT Press. 302 pp . - Gives a curd accomint of the current arends in LiS population, explowes the future of a country with on increasingly odder popiatation orad with a relfare and social secunty system on the werge of coliapse

For scrupulvus mathematical analysis of poputation models, including models with age struture see Logoter D(). (1993). Matrices and Craphs: Subuthy Problems in Mathemantical Ecology, (RR: Press. For even more on matrix medeling of population dynamics see Caswell, H. 2001. Mutrix popuintion moriels: construction, analysis, and interpretation, 2nd ed. Sinauer, Sunderland, MA, 722 FP .
Harmann, T. (2094). Unegeal Procectiom: The Fise of Corporate Dominance and the Theft of Human Rights. Rodale Buoks. 360 pp. - A hustory of comporate takeover in the USA and now. giobally Ii shows how very smail, insignificame events m the pusi (like a cletral etror) can resuls in tremendous conseguences for all See hup ifwwwienacyclenet/ and hrif:isuedbyscorts.enm; for more infomation abour the TerraC. ycie siory. Another very uell known book on thes subject is Davd Konten. 2001 . When Corporations Rule the World. Berrect-Koehler Publeshers, 385 pr .
Much of the sustamabilies talk surted after the famous report of the Bruniand Commission: WCED (World Commission on Environment and Development), 1987. Our Common Future. Oxford University Press, Oxford, $4 \times 0$ fp. Fer tarume defmitems of sustutindility and the relevant scales and herarchies, see Vornor: A., 2007. Undersmanding and communicaring sustainahility: glesal versus regional perspectives. Enturon. Deu and Sustan. (hup:/www.springerlink.comicontent' c $77377661 p 8,27866^{\prime}$ ). The defintons quoted here are taken from: Wimberly, R. C., 1993. Policy perspectives on social, agricultural and rusal sustanability. Rural Sociology 58: 1-29: Custanza. R 1992 Toward an operational defintion oi coosystem health. In: Costanza, R., Haskell B D. Norton B.O.. (Editors). Ecosystem Heald: new poals for emvironmenwil management. lsland Press, Washongton, D., pp. 239 256; Costanza, R.. Daly.H.E. 1992. Natural capiral and sustainathe development. Combervauon B:ology. 6, 37-46: Solew, R. M., 1991 Susumabhay an econemest's perspective. Manne 「'olicy Center, W'HOI, Wiods Hole, Massachusetts. USA. For further analysis of sustuinabiuty and its various economic mphicatums see Neumaver. E.. 1999. Weak versus Sorong Sustainabiliry. Edward Elgar, Cheltenham, Uk', 294 pp
Our observauon on management problems whth rapudly grouing and complex socio-economic systems echous wuth a book by loseph Tanter, 1990. The Collapse of Complex Sociecies (New Seudies in Archaeologyl. Cambridge University Press, 260 pp .
Viadimir Vernadskii is a Russian scternast of great importance, who unfortunately is still very litte knoum in the Wiest. One of his major findings was the theory of the noostinere, the new state of the biosphere charactenzed bo she domanance of intellectad and moral jowers of humans. Vernadshiti. V1, 1986. Biosphere. Synergetic Press, 86 pp . - This is a reprint of the 1929 pajer that contains some of these ideas.
There are several clessic broiks on the Peal OIl issue that could be recommended, such as Kenneth Deffeyes. 2001. Hubbert's Peak: The Impending World Oil Shomage, Princeron Unversity Press, $224 \mathrm{pp} ;$ Reluard Heinberg, 2005. The Pary's Over, Temple Lodge. 320 pp; Divid Goudstein. 2005. Out of Gas: The End of the Age of Oll, Wi Whiton \& Company: 148 pp .
Paul, Robert (2005). The End of Oil: On the Edge of a Parilous New Wirld. Mariner Brouks. 416 pl
Perhaps the best latest actount of the stuation wich oll and hou for we are from trs "peak" can be found on The OAl Dhum blog at hotp:iwwwitheoildrum comp/.
Tiee "Medium-Term Oil Market Report" from the Intermational Energy Agency (IEA) can be purchased at hetp://ompublic rea.srgimenmr.htm.
For an interesang discussion on hou humans make decisions, and why there is a disjoint between ecological and econimic reasoning see Wallersecio. I. 2003. The Ecolegy and the Economy: What is Rational' Paper delivered ar Keynote Session of Conference, Work System: History and Clobal Enaronmencal Change, Lund, Sweden, 19-22 Seprember 2003, hut 1 :/wwwhinghamsoneduj fbetiwecorath hem
The Critical Natural Capioal concept is discussed by Farley. J. and E. Girdtes, 2007 An ecolugical economic assessment of restotstion. In J. Aronson, S. Milton and J. Blignatu (Eds) Reseormg Natural Capital: Sciemce, Business and Practice. Island Press: Washington, DC The perject metanatiy
ni essemad gaxis and serater when they become mavasingly saare is analyed in Daly, H., Farley. J. 2004 Ecological Eicumamics. Island Piess (p 197)
The World 3 mode! is described in Donella H. Meadows. Dennis L. Meadows, Jorgen Rarders. Willam W. Behrens III, 1979. The Limirs to (irath Maemillan, 208 pp. For a more recen: analvsis of the model and the varions stasoussomis and controtersie's that followed, see Donellat H Meadows, lorgen Randers, Dennis L. Meadows, 2004 Simuts to Growrh: The 30 Year Update. Chelsea Green. 368 pp. (For World2 mode! see: Jay W. Forrester, 1972. Word Dynamics. Cambridge, MA: Wrughr Allen Press, Inc.)
The Jevon's poradon is well presented in the visionary book by $W \mathbf{S}$ lewons, The Couil Quesuon; An Inquiry Concernung the Progress of the Natim, and the Probuble Exhasustion of Oar Conalmine's,
 probubly not be that remarhable if it was nor uritten aimos: 150 years ago. Whar do you think abruut this quate in the concat of the recem Hydregen Economy hype: "The fallacious notions aflout on the subpect of dectricity espocially are uncomapuable. Electricity, in shore. is to the present age what the perpetual motron was to an age nor jar removed. People are so astunshed at the siebrle manifestations af electric poser that they iniok the more maracutous effects they anticipate from the move projomid the apprectation of its nature they show. But then they generally take that one step soo mich whath the contrieses of the perpeizal motion iovk - they treai dectricit? not un!y as a marwethous mode of diseribuang power, the'y reac 11 as a sounce of self-creating prover."
The GLMBO model is described in R. Boumani, R. Cosransa, J. Farley, M. A. Wilion. R. Portela, J. Rucmans, F Villa and M Grasso, 2002 Mohtelung the dynamics of the incegrated earth system and the value of global ecosysrem services using the GLMBO motel. Fecoligncal Fionamics, Volume 41, Jwue 3. p 529-560
To kearn more abost the value of ecosystem services. see the spectal isswe of Ecolugical Economes, Volume 25, !ssue 1, April 1998. In paricuicir, the famous paper by R Coscana, R. d'Arge, R. de Grom. S. Farber, M Grasso, B. Hannon, K. Lmburg, S. Naeem, R, V. O'Neill, J. Parucho, et al. The wate of the norid's ecosystem scrvices and natwol captal p. 3-15.
For more analysis, madudug philosophoai and ecmomic issues of valuation see: (3. Daily (EJ.). 1997 Natares Services. Societal Dependence on Natuial Ecosystems !sland Press, 412 pp. For more case studies see G Dall. K. Ellison, 2002. The Netu Ecomomy of Nature. The Quest at Make Cunservaron Piofiuable Island Press, 250 FF

## 8. Optimization

### 8.1 Introduction

8.2 Resource management
8.3 Fishpond
8.4 Landscape optimization
8.5 Optimality principles

## SUMMARY

Running a model, we get a glimpse of the system hehavior for a given set of parameters and forcing functoms. This set is called a scenario. We sun a scenario and learn how the system may tehave under certain conditums. Suppose we know how we want the system to lehave. Can we make the computer sort out through various scenarios to find the one that would bring the system as close as possible to the destred behavor? That is exactly what optimizaton does for us. It we have some parameters that we can conerol, the computer will lowk at various combinations of values that can make the result as cluse as pusitite to the desired one.

The sotware that can help us do it is Madonna. We will look at a couple of simple mudels tu learn huw optimization can he pertormed. For more complex systems, especially if they are spatially explicit, simple methods do nor work. We will need (i) invent some iricks to solve the uptimization tasks. Furthermore, in some systems it seems as though the spstem itself moolves an uptmiation process that is drivng the syisem, as it the system ts seeking a certain tehavior that is optumal, in a sense. When modeling such systems, it makes sense to embed this opumization process in the model.

## Keywords

Objective tunction, control parameter, constraints, Madonna software, global and local optimum, Monte Carlo method. opsimaliry principle.

### 8.1 Introduction

In many cases, we want to do more than understand how a system works. We want to nigure out how to improve us performance, or, deally. find the hest way it can possibly perform. In these cases we will be talking about optimization. We hitetly came across this concept in Chapter 4, when we were exploring model calihration. Remember, in that case we also wanted the model to behave in a certan way. There were the data






























 affornicic shatown tradtimems as the low od coolent water diminiahed. the powir oulput

 peourany of that desion chend a dremenc power aurga











Using models of real systems to hnd opthal regimes makes a lor of sense. It we have a good model of a system, we can dethe all surts of sets of controls and subject the system to all sorts of experiments at no risk. We just need to make sure that the model is still adequate within the whole domain of changing control tactors

An optimizanon task in a general form can be formulared as follows.
Suppose we have a model of a spstem:

$$
\begin{equation*}
X_{i+1}=F\left(X_{1}, P, t\right) \tag{8.1}
\end{equation*}
$$

where $X_{1}=\left(x_{1}(t), \ldots(t), \ldots\right)$ is the vector of state vartables of the syscem as time $t_{1}$ and $P=\left(p_{\mathrm{i}}, p_{2}, \ldots\right)$ is the vecon of paramesers We assume a dynamic motel that describes the system in time. Therefore, we defne euch next state of the system, $X_{r+1}$, es a function, $F$, of its previous state, $X_{p}$, a vector of parameters, $P$, and time, $t$.

Suppose we have identified a gat or an objecter function, which tells us where we want the syssem to be. The objective function is formulated as a tunction of model paramecers and state variables. It is tormulated in such a way that we can then try to monimize or maximae it

For example, we can be studying an agricultural system that produces grass, $x_{1}(t)$ and sheep, $x_{2}(t)$ Our goal could be to maximize the output of goods froduced by the sysem. The objective tunction would then he hased upon the sum of hiomasses ol sheep and grass, $x_{1}(t)+x_{2}(t)$. However, a sum of these two variables does not give us a value to maximize. We should either decide thin we want to track rhe total hiumass over the whole time period [0.T]:

$$
\theta=\int_{i=0}^{T}\left(x_{1}(t)+x_{1}(t)\right)_{i}
$$

or agree that it is only the final biomass that we are interested in, because that is when we take the products to the marker:

$$
\mathrm{G}=x_{1}(T)+x_{2}(T)
$$

It sheep are the only froduct we are concerned with, we may nor care about grass, let sheef ear as much grass as they wish and maximize only the hismass of sheep. Then

$$
\mathrm{G}=x,(\mathrm{~T})
$$

Alsernatively, if we are maximizing tor the farm pronts, we may be getung more revenue from grass than from sheep and we thus want to include both, bur with weights that will represent the market values of buth goods at the time we sell them

$$
G=p \cdot x_{1}(T)+p_{1} x_{2}(T)
$$

where $p_{1}$ and $p_{2}$ ate the prices of grass and sheef, respectuely. Clearly, detning the right objective tunction is a very mportant part of the oftimization task. If we do not do a good job describing what we want to optimize, the results will be useless.

In Chapter 4, as you may remember, the objective function was the difference between model trajectones and the observed dynamics given in the data available. We were chen trying to minmize this function by choosing the right set of parameters. Sumilarly, with sheep and grass, the total bromass produced is a function of clunatic conditions, soll properties, fertilizers applied, grazıng strategies, etc. Some of these parameters can be changed while orhers cannot. For instance, we will nor be able to change clumatic conditions; however, we can change the amount of fertilizers used. The parameters thar are at our disposal, that we can change, are called concrol factors. Those are the ones that we can control when crying to maximize (or minimize) the objective function.

Agaın, in Chapter 4 we had certain parameters that were measured in experiments and we knew their values quite well. We did not want to change those when tweaking the model output. There were other parameters that were only estumated, and those were our control factors - those we could change anywhere within reasonable domans to bring the objective function to a minimum.

Let us put some more formalism into these descriptions. We have a model (8.1), and define an objective function $G(X, P)$, where $X$ is the vector of state variables $X=\left(x_{1}, \ldots, x_{n}\right)$, and $P$ is the vector of parameters, $P=\left(p_{1}, \ldots, p_{k}\right)$. For this objective function we then find a

$$
\begin{equation*}
\min _{R \in P} G(X, P) \tag{8.2}
\end{equation*}
$$

subject to $S(X, P)=0$, and $Q(X, P) \geqslant 0$. This should be read as follows: we minimize the objective function $G(X, P)$ over a subset $R=\left(p_{k}, \ldots, p_{k}, \ldots\right)$ of parameters $P$, which are the control parameters, provided that the constrames (or restrictions) on $X$ hold.

If the controls are scalars and constant, they are also called decision variables. If they are functions and allowed to change in time, they are known as control variables. As we will see below, in many cases we may want to describe our control variable in terms of some analytical function with parameters - say, a polynomial or a trigonometric function. Then your time-dependent control variable becomes formulated in terms of constant parameters, and we can say that a control variable is expressed in terms of several decision variables.

The constrames bound the space where the model variables can change. There may be two types of constraints: equality type $(S(X, P)=0)$ and mecuality type $(Q(X, P) \geqslant 0)$.

Note that it really does not matter whether we are minimuzing or maximizing the objective function. If we have an objective function $G$, which we need to maximize, we can always substitute it with a functoon $G^{*}=1 / G$, or $G^{* *}=-G$, which you can now safely minimize ro get the same result.

Since the model trajectories are a result of tunning the model (8.1), the model becomes part of the optimization task (8.2). Here is how it works.

First, we choose an objective function, which is tormulated in terms of a certam model trajectory. We identify the parameters that we can control to optimize our system. For a combination of these control parameters, we run the model and figure out a trajectory. For this trajectory we calculate the objective function, then we choose another combination of control parameters, calculate a new value for the objective function, and compare it with the previous one. If it is smaller, then we are on the right track, and can try to figure out the next combination of parameters such that it will take us further down the minumization path.



$$
\begin{aligned}
& d_{1}-i_{1} d_{1} \ldots \\
& 1 \\
& \frac{d}{d}= \\
& d_{1}
\end{aligned}
$$





 * 3 CH








## Exercise 8.1




 the coritim and tie reatictory




















Figure 8.1 The optimization process.
When solving an optimization task, we normally go through all these steps. The real challenge that is solved by optimization mechods is where to make the next step, how to find the next combination of control parameters.

If $F(x)$ is a linear function (Figure $8.2 A$ ), obviously we get a minımum on one of the ends of the $[a, b]$ interval. Either $x=a$, or $x=b$ delivers a minimum to the function. When generalızed to several independent variables, we find ourselves in the realm of a special branch of optimmzarion called linear programming. Since for linear funcrions the minimum is always on the boundary, that is where the linear programming methods search. They are designed in such a way that they go over all the possibly complex boundaries of the function domain in the multivariate space.

If $F(x)$ is non-linear but nice and smooth (Figure 8.2B), the most common minimization technique is the so-called gradient method, or the "steepest descent" merhod. In our case of one independent variable, we can choose a point, $x_{1}$, calculate the value $F\left(x_{1}\right)$, and then choose the next point, $x_{2}$, such thac $F\left(x_{2}\right)<F\left(x_{1}\right)$. We may need to cry several directions before we find such a pount. If we have several varlables, we will move in the direction of the variable that delivers the lowest value to the function in the vicinity of $x_{1}$. We then move to this next point, $x_{2}$, and repear the same procedure to find $x_{3}$. And so on, uncil we realize that, whichever direction we go, we are only increasing the value of the function.

This algorithin works really well unless the function we are dealing with has several local minima, like the function in Figure 8.2C, which has a minimum on the


## Figure 8.2 Searching the minimum in some simple functions.

We can see that a local minimum can be quite different from the global one.
houndary, of the function in Figure 8.2D, which has two local minima inside the domain tor $x$. If we follow the algorithm above, chances are that we will find the other minimum and will stay there, never realizing that there is yet another minimum which is even smaller. The solution in this case could be to try several starting points for the gradient search algonithm and see where we end up going downhill. Then we cin compare the values we get and choose the mmimal one.

As the tunction $F(x)$ becomes more poorly; behaved, with strong non-linearitics as in Figure 8.2E, rhe gradient search becomes almost impussible. The chances that we will hit the global minimum are becoming very low. In this case we might as well do a random search across the whole interval $[a, b]$, picking a value for $x, x$, linding the value of $F\left(x_{1}\right)$, then packing the next value $x_{1,1}$ again at random and comparing $F(x$.


Figure 8.3
Objective functions may have very unusual forms, which makes it only harder to find good methods for optimization It is especially rard to do global optimization, yet that is the kind of optimization which is usually most desired
and $F\left(x_{i+1}\right)$, keepung the luwest walue for fuither comparixins. If we are lucky playng thas game of roulerre, ne may eventually get pretty ches to the real global minumum tor our function. Like other mechonts baxed on ramdem search this methed is known as the Monte Carlo methent of optimazaon, after the famous catson cuwn in Europe. lust as when playng roulere we din nor know what the result will be (except that mose likely we will lose!!, here rex) we keep randomly picking a ser of conerel paramerers from their doman of change, huping thar eventually we will im some where close enough to rhe ghobal minimum. It also may be helpful ro combine the randrom walk alyorithon with the gradient search, when for each randomly chnsen value of $x$ we also make a few steps in the direction of the steepest decent. In this wive we avoid the unpleasant possibility of teing lacky enough tu pack a pont somewhere really close rio the glablal minimum and then moving amy from it, omly hecalse we were not close enongh.

The gradmen search is entirely mappoptiate for pecewise linear or catcgorical tunctien. like the one in Figure 8.2F. In this case we cannote even detine the direetoon of the secepest decent by exploring the vicinty of a point of our choice - we.
get the same resulte tor $F(x)$ unless we jump over to the next segment Fou such tunctions, it is only the random walk or some vatations of te that are appreputate.

There are numerons other opomiatom methoxs available these days Among them are the Genetic Algorithmen and other evolution strategy methonis that ery ti) mumic the way genes mutate in search tor an opermal configuration. There is the Sitalated Annealing algorithon, which, by analogy with the physical process of amealing in metallurgy, so each step replaces the current solution by a random "nearby" solution, chosen with a cortain probabilicy. The optionization problem is not an easy one; the objectwe function can become very complex, espectally when it involves multiple variables, and it becomes quite hard to tind the minimum in tunctoms like the unes shown in Figure S.3. It takes a lot of mathematical creativity and computer power to hnd these opuma. Still. in manv cases this kind of computer simulation is a much safer and cheaper alcernative than many other kinds of opermation.

### 8.2 Resource management

Lee us consider a simple example of a syscem where optimization can help us find the best way to manage it. Suppose there is a natural resource that we with to mine to sell the product to generate revenue. The resource is limited; there is moly a certain amount of this resource that the mine has heen estmated $w$ contain. How do we extract the resource in order to generate the most proft? There are alse it few economic considerations that we need to take into accuont First. clearly our profits will te in direct proportion on the amount of resource sold. But then ablen soir coste of production will be proportonal to the amount produced and inversely proportional on the amount of resource left. That is, the more we mine and the less resource is lett. the harder and more expensive it will be to get the resource. In addition, we should realize that the price we charge for the product can go down if we dump tou much of is on the market. The law of demand tells us that the more goods are produced and offered, the less will be the price that we can sell these grods fion.

Since we know that we will he duing aptumization, let us use Maklonna to put the model toxecher. Jusi like Stella, Madomat uses a ser of icons in its intertace to tormetare the inodel. The model as outhed atweve is presented in Figure 8.4. For anvome familiar with Stella, it should be guite e:asy to understand this diagaam. The cyllinder tanks are the reservoirs, with flows caking material in and our. The halls are she paramerers and the interme tiate variables. It is almost like Stella, hut drawn in 31). Even the clouds that repwasent the exterior of the system in Stella are now replaced hy the unnuty sists $x$. which lowk almose like cloods. As in Sella, if we doutle click on any of the acons, we open up a diallogue trex that allows us wo specify the tormulas or parameter values to use. For example, for the price variable vou get:

As you draw the did. gram you put together the equations of the model. Below are the Madonna equations generated for this monjel with com. ments added in brackers


〔Top modell
[Peservors)
didt $/$ Resource $:=-$ mining
INIT Resource $=10000$
d/dt (Protit) $=-$ to_profit
INIT Profit - 0
|Flows)
mining - if lqQ < = 0 it then 0 else if : Resource > aql then qq else Rescurce
\{We are checking that there is enough resource to extract\}
to_prolit = price*mining-costs
\{Proceeds from sales of products minus costs of operations\}
iFunctions)
$q 9=d^{-}$TIME^2 $2+e^{*}$ TIME $-f$
\{This is the amount extracted. We define it as a function of time to be able to find the optimal extraction strategy. as explaned below\}
$\mathrm{e}=0.1$
$\mathrm{f}=20$
$d=10$
\{Parameters of the extraction function\}
price $=a / / 1+$ murnig $)+b$
\{Price of goods modified by the amounts of goods produced Price can
increase substantially if there is very little supply. minirg is small
costs $=\mathrm{cc} *$ miningiResource
\{Costs of mining are in proportion to the volumes extrected Cosis grow as the resource becomes scarcer;


[^4] however there is much more power "under the hood" in a Madonna implementation.
$a=100$
b-10
$c c=0.3$
In addicion to the equations, Madonna assembles the paiamecers window, which is convenient to manage all the paramerers un the model:

This wanduw conmins all rhe parameter values from the equations. as well as the initial conditions and the simulation control parameters: STARTTINE - when wo stare the model run, STOPTIME - when wo srop; DTT - the time-step for the numerical method, and DTOUT - the timestep for outpute. In thes window we can also chown the numerical method to solve the equarons. The (STOPTMESTARTTINE) in our model actually tells us what the lifecime is for che mone chat we have 10 mind - that is, for how long we plan co operate it.

Once the mondel is detmed we can sec up a couple of graphocs for wutpur and tun the model. Nore that the pats.
 tern of extracton is definct by a pardbolic tancuon described an

$$
\begin{equation*}
\mathrm{qa}=d^{*} \operatorname{TlMEA} 2+\mathrm{e}^{*} \operatorname{TM} \mathrm{ME}+f \tag{8.3}
\end{equation*}
$$

If $\mathrm{d}=\mathrm{e}=\mathrm{C}$, we get constant race of extraction chroughour che litenme of the mine. By changing $f$, we can specify how fast we wish to extract the resource. By changug $d$ and $e$, we can conthare the rate of extractron ber time, making it differenc at differenc times. We can set up some sliders and stare our opmonzation by manually charging the walues for the parameters.


As noted above, ewery time we move a sider, Madonna will calculate a new set at trajectories, so we can get some dea of how changes m parameter values impact the modeldynamics. Figure 8.5 gives a sample of model output tor the paramerer wal ues defined in this slader window. Nuce the sple of price around year 5 , when mining was very low and supply or the resource plammeted. The Profic at the end of the smulation is around $\$ 103.817$, which is quite high, as we can easily see by trying to adjust the parameters in the slider window. The question is, can we further increase it hy hading the very best cumbination of contrel paramerers?


Frivirin A model for a combinaton of parameters defined in the slider window. Maconna will redraw the graph once a parameter is changed on any of the sliders.

The reason we chose Madonna for this analvisis is because it can mun optumzatom aigouthms autumatically: Indeed, in the "Parameters" menu let us choose the "Optimae" optur:


Another dialogue hox opens ur, where we are advised to choose the paramerers that are allowed to change (eontrol parameters), and to specify the function that is to be mulimiad (the objective function):


In our case, the control parameters w.ll be the $d, e$ and $f$ in ( 8.3 ); these detine the pattern of resource extraction over time. Madonna can only minimize, so our previous consideration of maximization as the reverse of minumation comes in
 since nur gatal is oo maximize Protit. Obvinusly, minimizing Profit is the same as maximizing Proft. This is ane of the uays we can convert a maximazation task into a minimization one. Note that Madona, when doing the optimizatom, conveniendy uses the conding values of the varables in the ohjective tunction. So in sur case we will be indect optimizing for the profit at the end of che simulation, and hot at some intermediate sepps.

For each of the comerol parameters we are asked we set the limits of their allow. able change. The smaller the intervals we choose, the easier and quacker it will be for the algortiom to find a solution. On the wher hand, we need to keep the rangen broad chough to account for a variety of difterenc scenarios of resurce extraction.

When chensing these restrictions an paramemers, it is essental to take into account the ecolsyical meaning of the parameters wee specity. For example, it some of
 mass or other stocks, it would be clear that they need whe clamped to te positive. There is nu need to search fur optomal solutons that would inklude negative grawth rates of propulations. These concrols are not pussithe. su thete is no need to consider them anoptions

In the case of (8.3) there are no ohvious ewogical anditions for $d$, e and $i$, except that we do want to make sure that the resulting senario will produce a posirive how of tesiurce, 4y $\geq 0$, for $0<T \mathrm{TME}<50$. We may rake a closer lomk at $(8,3)$ and owne uf with some relationships hetween parameres hat wobld keep $49 \geqslant 0$, or we mighe play with the sliders in Madoma and see what combinations of farameters make qa hecome negative and then try to exclude them from the oprimization. However, in our case this may not be so importanc, hecause we have huilr the condituen uis of treng positive into the model fermulation.

Inded, when describing the flow for "mining" we have put:

$$
\text { muing }=\text { if }(04<=0) \text { then } 0
$$

Etrectuely, we have implemented a constrant that is usally pare of a gencral optimization task (see the definition in section 8.1 ), but which has no spectal place in the opermation prixedure in Madonna. In our particular model it means that we do not necessarty have to limit the contol parameters to such values that would guarantee that gi $=0$. This will te taken care of hy the model.

Anysary, we stild want ou set some limits to these parameters, making sure that the rate of extraction is mot werly high. For d we cherose $-2<d<4$ This is hecause larger values of do canse very big differences in the extraction rate ower the lifetime of the mine - something we probably want to arod. For e, we choose the incerval $-20<e<30$. The qy is not very sensitive to changes in e, as we can sec from playing with the slides. For $f$, let us choose a larger ineerval of $0<f<300$. This is $(0)$ a liow high emmgh rates of extraction it the alguithe chonses a conseant rate.

Next, of run optimization we are required on specity a comple of "guessed" values for each parameter. Remember, when discussing huw must oprimizatom algorthons work, we mentioned that in most cases we solve the equaturns for a couple of fixed parameter values and then compare which of the solutwns brings a lower value to the olvective function. That helps us to determine in whech way to go in search of the optimum. Whale we do not know how exactly the optimization algorithon works in Madonna, most likely it alsor needs sume values ro minaliee the process, and probathy those are the guesses that we need to specify. Certainly the puesses need to be withon the parameter domans that is, larger than the Minmum value and less than the Maximum). They should also be defferent. Other than that, they can really be
quite arbitrarily set. However, it may help to rerun the optimmation with a set of different guesses. This may help us step away from a local minimum and find a better solution and a ditterent combination of control parameters.

Finally, we can press the "OK" button, sit back and watch the optimization magic happen. The model will be rerun multiple times with different combinations of parameters in search for the one that will make the objective function the smallest. While uptimizang, a lxox will appear reporting how many model runs have been made and what the current value of the objective function is:


We will also sce that apparently there are several algorithms molved in the optumation process and a combination of them is used.

Running optimization with the chosen setrings returns a set of control parameters, $d=-2.26029 \mathrm{e}-6, \mathrm{e}=1.14093 \mathrm{e}-4, \mathrm{f}-214.536$, with which the ending profit is \$104918 It we try other combinations of parameter values, we do not seem to get anywhere better than that. We can round up these paramerer values to $d=0, e=0$ and $i=214.54$, and see that we are talking about a constant exiraction rate as an oprimal strategy of mining (Figure 8.6).

Note that there is yet another parameter in the Optimize dialogue box, which is called "Tolerance." This specifies the accuracy of the optimizatom. telling us when to stop lewking for a better combination of parameter values. By default Tolerance is set to 0.001 , and that was the value we used in cur computations above. If we try

to make Tolerance large enough, say O.I, we will notice that it takes less tume to run the optimization, fewer model runs will be required, hut the results will become way more sensitive to the intial guesses that we made for the patameters. Suppose we take parameter $\mathrm{d},-2<\mathrm{d}<4$, and use the following twe guesses, $\mathrm{d}_{1}=-1$, and $\mathrm{d}_{2}=4$. It we now hir the OK button, we will ger back the following values for the control patametes: $d-0.27, \mathrm{c}--6.69,1=180.53$. The resulting pattern or the resource extraction (Figure 8.7) liooks quite different than whar we had above, while the Pronit with these paramecers is almost the same as before: Proht $=\$ 104918$.

Now, with the same tolerance, let us make another guess tor parameter $d$ $d_{1}=-1$, and $d_{2}=3$. Now the solution to the optimation process comes with control paramerers: $d=-0.12, \mathrm{e}=6.17, \mathrm{f}=155.08$. Again there is yet another different pattern for extrattion (Figure 8.8), and what is most surprising the Profit is again $\$ 104918$, which is the same as with a constant extraction rate. So what is going on?

Apparently there are several local minima that are quite close to the global one. To stop the optimization process Madonna calculates the deviation of the objective function between different model iuns, and once the change becomes less than the Tolerance it stops. When the tolerance is large enough it is more likely to stop at a lucal minmum, instead of continuing to search for a betrer solution clsewhere. That is how we get into the Figure 8.7 or Figure 8.8 solutions. The Figure 8.8 solution is probably still a little worse than what we generated when running the model with the smaller toleance (Figure 8.6), but we cannot see it because protit is reported with no decimals. In any case the difference is prohahly negligible, but it is good to know that the very best solution is very simple: just keep mining at a constant rate, and the model can tell us what that rate should he. However, if the constant extraction is not an acceprable solution for sume other reasons, we can still come up with alternative strateges (Figures 8.7 and 8.8 ) which will produce results quite identical to the optimal strategy: Actually, if we compare the pattern of resource depletion for all these strateges, it is clear that the differences are quite small.



Figure $\mathbf{8 . 8}$ Yet another quasi-optimal strategy produced from a differentititial guess of parameters.

Let is now slightly modify our system and meroduce a discounting rate inco our calculations. The wav the economic swsrem works today is that $\$ 1$ today is worth more than $\$ 1$ tomorrow. When we have a growing econony, the idea is that if we have this $\$ 1$ today we can always invest in into something rhat will have a positive return and therefore tomomow we will have $\$ 1+\Delta$. As a result, in bur economic cialculations we have to take this discounting in account when we calculate our future prolts: the inoney that will he coming in later on will he worth less. This can be easily taken into account if we add a sinall modification to our model:

$$
\text { to_profit }=(\text { price**ining } \cdot \operatorname{cosrs})^{*}(1-\text { disc })^{\wedge} \text { TIME }
$$

where dise is the discount race usinally varying between 1 and 10 percent. Hence $0.01<$ disc $<0.1$. How will this small change affect the optumal strategy of resource consumprion in our system?

Let us assume that dise $=5$ preccent and run the optimisation algorithm. The results we get for the control parameters are $d=3.999, \mathrm{c}-29.656, f=299.998$, and rhe optimal strategy comes uut quite different from that which we had before (Figure 8.9). If we take a close: look ar the values of control parameters, we may notice that they are at the upper boundary chosen for their change Let us move this boundary furcher up and set $d_{\text {max }}=20$ and $f_{\max }=400$. When we run the optimization, once agan we get the values lor the control parameters at the upper lxundary. Ar the same tume, the proft jumps from $\$ 67000.1$ in the previous run ro $\$ 93774$. So it would be reasonable to assume that if we further increase the maximal allowed values, the opt1mum will move there.

Going hack to our mine, this momply means that we need we extract as fast as we possibly can. Never mind that we will be selling the resource at a lower price since we will be saturating the market - srill just mine it as fast as prossitle and sell. Quite a strategy! The sad news is that in many cases that is exactly how conventonal economics deals with narural resources. The economic theory tells us to mine them



While discounting is a mapor pert of the ascibons at cormentiona modeun economics it is clear that there ere qume a low poobiems assocised with it An obviout jualificalico for du


 Conversety. a ifm sheuid coum sila in ro veari a worth onky $\$ 1$ coovy lan messior will presumably be dead - 70 verss, and rrioh' count $\$ 114$ dolims al that lime as nothing todiry

 con ofter ithems groler then the growth rate of the economy, or alse ine pati must bicome
 grows an 2 percare in a yeer. The medready cheating liz than it there it a steady state econorry. or a decking teonorry. then the discount rate should be zero or negalival
 low ones. treal cataztopnic evants thal occur far enough in the future wasential met-
 decoumt the fulure ar rales as nigh as 6 percent IIPCC. 1995) Al auch ities we woud fal -aund $\$ 2.500$ today to privent a $\$ 20$ trillion dollat losg the eqproximata gross global produet



 - IE parcant or hgher? Howeved, whibe aconomigis use auch endence to peaty andonent a

 suggaste that pecole daccouml at a taity high rale ovar a mon lire horeod bue a a bover




 Tho itony ig that. more othen thet not. tectrilogy teems to orvilot new usees for resources
 ative arscaunt raln OA ig a csie in point.

Whis arcouning maker eanae for puret, economic or finthinad propects tone parson



 sery at prasent Moreover. It the eupaly ot non-enewable lesoureas decreasas while wis all

 scarce rmoukes froge' the mond isfues, pute ecanomic lagc shoukd sty that irn fulule
 steceree of the growing orce per unt of menource)






 hundreds or even mousands of veara sorme of which rave saber saveral generations to tixuid

## Exercise 8.2






### 8.3 Fishpond













pond that is entisely driven by artificial feed. A Madonna model can he put cogether as in Figure 8.10 . "Feed" is a variable char presents the accumblation of are ficial feed in the pond. "Fish" is the bromass of tish. Note that there is yet another stare vartable, "Derritus" An imporrant condition of fish survival is that there is a sutticient level of dissolved oxygen in the pond. Oxygen is consumed for fish respitation, but is also, very importands, utilized for decomposition of dead organic material - derritus. Detritus is fomed from the products of hish metaholism, excreted ty fish, as well as from the remains of the feed thar are not urilized by fish and stay m the pond.

Detritus is an mportant tactur in the pund ecosystem because as is. concentration grows, anoxia or anaerobic conditions are most likely. As the concentration of oxygen talls below a certan threshold, fish die off. If we assume that the oxygen consumption increases as derritus concentration grows, then perhars we may ger away without an additonal variahle to track oxygen and simply assume that the fish dieoff is criggered by high derricus concentrations. All these processes are described by the following equatoons in Midonna:
\{Reservors\}
didt (Fishl $=+$ Growth - Murtally
INIT Fish $=0 . T$
didt (Feed) $=-$ Growth + Feeding - Loss
INIT Feed $=0$
d/dt (Detritus) $=+$ Accumi - Decomp
INIT Desitus $=0.1$
IFlows
Growth $=$ if Feed $>0$ then C_growth* Feed*Fish/\{Feed $+\mathrm{C}_{2}$ Hs) else 0
We use the Mono function with saturation for lish growth)
Feeding $=$ if $\left(C_{-}\right.$feed $\left.>0\right)$ then $C_{-}$feed else 0
IThere may be many ways we plan to feed the tish - 'et us make sure that the scenario never goes to negative values;
Mortality $=1 C_{-}$mort + Detntus ${ }^{\wedge} / / / C_{-}$mort_ $d^{\wedge} 4+$ Detritus $\left.{ }^{\wedge} 4 /\right)^{*}$ Fish
iMortality is made of two parrs: first is the loss ol bromass due to metabolism and respiration, second is des off due to anoxia describee by a step function that kick in when concentration of detitus becomes more than a certam threshold
Loss $=$ C_hass $^{*}$ Feed + Growth ${ }^{*} 0$
IA part of feed that is not consumed by fish turns into detritus. A trick to make
sure that this llow is calculated AFTER fish Growth is taken care of In order to
calculate this flow we enforce thal tish growth should be already calculated
Accum - Loss + Mortality
Decomp $=$ C_decomp $^{*}$ Detritus
[Natural decomposition of detritus due to bacterial and chemical processes\}
[Functions)
C_growith - 02
$c_{\text {cmort }}=002$
$C_{-} \operatorname{loss}=0.6$
$\mathrm{C}_{-}$feed $=\mathrm{A}^{*}(\mathrm{~T} \mid \mathrm{ME}+\mathrm{B})^{\wedge} 2+\mathrm{C}$
C_mortad $=20$
C_decomp $=0.1$
$A=0007$
$B=-20$
C-0.1
$\mathrm{C}_{-} \mathrm{Hs}=0.3$


Figure 8.10 A fishpond model formulated in Madonna.

Note thar in a way similar to the previous model, we have described the scenario of feeding as a second-order polynomial - except that this time we have formulated the polynomial in a somewhat different way. Instead of $A * T^{*}+B^{*} T+C$, we use the formula $A *(T+B)^{-}+C$. By rearranging the coefficients, we get a much better handle on how we control the form of the feeding curve (Figure 8.11 ). While in the onginal form of the polynomial the role of parameters $A$ and $B$ was somewhat unclear, in the new formula they have a disunct impact on what kind of teeding strategy we generate. This is one of the examples of how by using the right approximation we get a better contril of the changes that we try to introduce to our system.

Of course, we could always use the graphic function to mpur the feeding scenario. Like Stella, Madonna allows mput of a graphic of an indepeadent variable (Figure 8.12). We !ust draw the line by dragging the curson or by inserting values into the table. This will certamly give the ultimate flexibility in terms of the form of the function we can create; however, every ume we wish to modify this function, we will need to do it manually. This involves opening the graphic, changing rhe function, closing the graphic, rummeng rhe model, seeing the results - then repeating the whole thung again. This is nice for manual operations, but there will be no clance to use any of the optimization algorithms available. By describing the input in a mathematical form as a function, we have several parameters char concrol the form of the inper, and that can be changed automatically when ruming oprimizanon. This is clearly an advantage, which comes at a cost we will need to stay within a class of cunves that will be allowed as input to the model. For example, no matter how we


## Figure 8.11 Changes in the feeding strategy resulting from variations of the three parameters in the

 equation. The role of each coefficient is clearly seen: A makes the curve either convex or concave, B shits the graphic either horizontally.: : the right or left, C shifts it vertically, up or down.

Figure 8.12 The graphic tool in Madonna - it looks a little rugged, but functions as well as in Stella
change the parameters in Figure 811 we will nom be able to generate the mput as in Figure 8.12. This does not mean that there are no other functions sut there that can be used to reproduce the surve in Figure B.I2. For example, by geing wa poly nomal of higher order - say. three or above - we will he able to gee pretty close to the form of the mput that is in Figure 8.12 . However, this will now come at a cost of more parameters, more complexiry, lunger computation times. etc. There are always trade offs.

So let us hrst choose some feeding strategy and make the model produce some reasonable results. With $A=0.001, B=-10, C=0.2$, and the rest of the parameters defined ahove in the equations, we get the feeding scenario and the fish dynamics



Figure 8.13 A leeding scenario and the system dynamics that it produces Beware of the population crash that occurs at low oxygen concentrations.
as shown in Figure 8.13. We see that the fish pupulation gradually grows until a certain point where the amount of detritus that is excreted and produced by the decomposition of feed exceeds a rhreshold and causes nassive die-off of fish. The fish population crashes, furcher adding to the detritus pool. Clearly, this is a condation we want to avoid. So we should use caution when supplying the teed into the pond: there $s$ always a risk of a fish-kill if we let it grow too fast. With the existing scenario we can see that there is no huge accumulation of unused feed while the fish are still present, so we can conclude that in this case the fisth-kill is really caused by products of fish metaholism, not overfeeding.


Figure 8.14 The economic part of the model that calculares the profits from fish sales and the expenses of fish feeding

It the growth coetticient for fish were smaller, more feed would be channeled to detritus and its accumulation could occur even faster. The feeding process is clearly an important factor in this ecosystem performance. If we were in optimize this system we would seek a teeding scenario that would produce the highest thish biomass at a certain poine, so that hsh could be harvested at that time and sold for a protit. However, it could be a litrle more complex than that, since teed is also not cheap and has to be purchased at a cost. So it is more likely that we would be optimizing for the net profit rather than fust rhe cotal tish biomass.

Let us build an economic submodel thar will take care of all these additional processes and flows of money. The Madonna diagram is shown in Figure 8.14. Note that in addition to the ghost state varable for fish, we have two state variables: one to track the number of fish in the pond and the orher one to calculate the total profit from the pond operation. The number of fish is needed to keep track of the average weight of the fish. We want to take into account the fact that larger hsh with higher weight are more likely to cost more on the market. A nother important parameter that we can introduce and use as a control is the Time_of_sale parameter, which tells us when exactly we will harvest the fish and sell them. The new Madonna equations are:

## \{Reservoirs\}

did (Total_protit) $=+$ Protit
INIT Total_profit $=0$
didt (Number) $=-\mathrm{J} 3$
INIT Number $=100$
[Flows)
Profit $=$ Revenue-Cost
$J 3=$ if Weight $>0$ then MortatityNMe:ght else Number/DT
LLoss in number of tish when they diel

```
\{Functions\}
Fish_Price \(=10+0.2 *\) Weight
Feed_price = 2
Revenue - if Time > Time_ot_sale AND Time < Time_of_sale +2 then Fish_
Price*Fish else 0
Time_of_sale - 100
Weight \(=\) if Number \(>1\) then Fish/Number else 0
Cost - Feed_price*Feeding
```

By introducing the Time_ot_sale paramerer, we have also modited rwo earlier equations co describe che harvest of hish and to stop teedng atter all the fish is harvested:

```
Feeding - it (Time < Time_of_sale and C_feed >0) then C_feed else 0
Mortality = f{TIME > Time_ol_sale + il then Fish/DT else
    (C_mort - Detritus^4/(C_mort_d^4 + Derrilus^4/|PFIsh
```

Nuw we are ready to ser up the optimeation process. In addition to the three coefficients in the feeding scenario ( $\mathrm{A}, \mathrm{B}$, and C ), let us als, use the Time_nf_sale parameter as a control. We have already realied that adding much teed is hardly a good strategy, so probably $A$ is not going on be large - otherwise wer the 100 -day time perod we may get quite high concentrations of feed, which will be damaging to the system. Let us set the limits for A as $0<\mathrm{A}<0.001$. Negative numbers are also excluded. stnce we already understand that it makes l:trle sense to add more teed at firs, when the hash bionass is how, than later on, when there is more fish to consume the feed. So most likely the wanning strategy will start low and then increase to match the demands of the growing fish. Let us leave some room for B : $-30<B<20$. As we remember, B places the minimum point on the curve relative to TINE $=0$. We do not need a very large intervil tor $C$, which designates the minimal value (if A is positive) or the maximum (orherwise). Let us set $0<\mathrm{C}<4$.

Now, by choosing the guess values somewhere within these ranges, setting the goal function to be minimized to -Total_pront, and pressing the OK button, we can stare the optimization algorithm. This will return a value of Total_potit $=246542$ after some 405 iterations of the model. The optimized control parameter values are Time_of_sale $=80.2895, A=0.001, B=-26.5$, and $C=0.122$. The dynamics of Tutal_mront is are shown in Figue 8.15. We see that at frst we get a loss, because we only spend money on feed purchases, but then at the end, when we finally sell the fish, we end up with a pront of 264. Using sliders, we can explore the vichity of the optumed control parameters and see that apparently, indeed, the values identified are delivering a minimum to the objective function, so there is no reason to expect that we can find a better solution.

In some cases it is worth while exploring some very different areas of the control domain, just to make sure that the optimum we are dealing with is indeed a global and not a local one. It does look, tor thes given combination of parameters, like the oprimum described above is global.

Let us check out how the weight factor in hish proce afferts the optimization results. Will we get significantly different results if there is a huge preference for really hig fish and the price of such fish is consideratly larger than the price for small hish:


Figure 8.15 Dynamics of Total_profit for optimized model parameters with Time of_sale as a control parameter

Clearly there is some difference. let us change the impact that weight has on price, using the tormula: Fish_Price $=10+2 *$ Weight. Here we have increased the effect of Weeght by an order of magnowde, changing it from 0.2 wo 2. The oprimized parameters are somewhat different: $A=0.0607, B=-30, C=1.075$, and Time_ of_sale $=67$. The Total_proft with these parameters is 579 (Figures 8.16A. 8.16B). Nure, however, that the optimal value repurted for $B$ is on the lower lume chosen for this control parameter. This should cause some concern, since very likely it means that the algorithm would rather use a yet smaller value for $B$, hut was not allowed to go there. let us release this constraint and set $B$ : $-50<B<20$.

Rerunning the optimization procedure, we find a ditterent set of controls: $A=0.000347, B=\cdots 44, C-1$, and Time_of_sale $=83$. The Total_profic with these parameters is 1537.77 - an almost threefold increase in comparisin with the previous experiment (Figure 8.16C)

If we compare the performance of this system with what we can get from a system where Fish_Price $=10+0.2 *$ Weight, we will see that indeed the new feeding strategy results in fish that are fewer but larger, so we can take advantage of the higher market prices for begger hish. Also nore that if we rerun that 0.2 * Weight model with the larger parameter interval for $B$,

> If the optimum is found at the boundary of a paraumeters domean or close to it, make sure that thes constraint is real and unportant. You may be abte to releuse it and find a muct better optimal solution $-50<B<20$, we will generate a slightly higher Total_profit $=246.574$. The control parameters we end up with will be $A=0.001, B=-27, C=0.12$, and Time_of_sale $=81$. The differences are small, hut noteworthy. Apparently the value of $B=-26.5$ was still a little wos close to the houndary for the algorithm to move further below to -27 , which gives a becter resilt.


A


EJom


B


C

Frgure 8.i6 Experiments with the fish weight as a factor in the fish price and therefore the total profit.
A. Optimized results ‘or low importance of weight in fish pricing Fish_Price $=10-0.2^{+}$Weight; B. Results for a higher preference for larger fish Fish_Price $=10+2$ * Weight. For optimal results we get higher fish weight, while total biomass is actually lower The optimization process hits a constraint for B . which is set to $B>-30 ;$ C Removing the constraint aliows a better optimal solution. We get a smaller number of fish but with much higher weight, which is rewarded by the objective furiction.

So hy releasing the constrants we can end up with $B=-27$ aad shyhtly different values for the other parameters, with an overall gatn in the objective function Total protit.

All this would make sense. assuming shat the model is correct. Unfortunately, If we take a closer look at the way we presented the hish numbers and weight in this model, we may very well start wondering. The number of fish should be an integer; oherwise it does not make sense, A fish is enther alive or dead; we cannor have 85.6 fish in the pond. So far we have ignored that. At the same time, the weight is calculated as the total fish biomass divided by the number of fish. Tins makes sense ar the heginning, when we are stocking the pond, but later on as one fish thes it certainly does not mean thar the rest of the fish are gaining weight. The fact that the number of fish decreases does nor imply shat the remaining fish grow tatter' Dows this mean that the whole model should be crashed, or some parts of it ar least can be salvaged!

First, we should realize that actually if the number of fish decreases rhere is still some potential for weight increase, because there will be less comperition for teed and therefore each individual tish will he eating more and growing taster. One quick fix that we can incorporate into the model equations is to make sure that Nutithers are integers. This can be achieved by usug a built-in function INT. INT(x) returns the largest integer that is less or equal than $x$. So it we write

$$
\mathrm{J} 3=\text { if Weight }>0 \text { then INT } \begin{gathered}
\text { Morrality } \\
\text { Weight }
\end{gathered} \text { else } \frac{\text { Number }}{\text { DT }}
$$

we will be really subtracting something from the variable Number only when (Mortality/Weight) is larger than 1 , and in this case we will be subtracting I. It it is larger than 2, we will be subtratting 2 - and so on. Making ihis change we do not see a very big difference in model performance, bur ar least we can feel good that we do not have any half-fishes swimming around in our pond.

Second, we may also note that actually things are not so had with the weghtnumber controversy. Indeed, the numbers in our model decline only when the toal fish homass also declines Mortality is calculated as an outflow tor the Fish variable. So the situation described above, when Weight is to increase with Number decreasing, is hardly possible: Fish will have to decline first, so the remaining Fish will be divided by the semaining Number, produciag the same reasonable estimate for Weight. The only problem is when the fish population is losing weight bue not dying. This situation is not tracked by mor model, and can cause us some trouble. Indeed, decreasing weight of the population, say due to malnutrition, in our formal. ism will result in the decline of the Number instead of Weight.

Let us take a closer look at the results of the recent optimization. One of the reasons that $B$ needed to be made smaller and smaller was to push rhe beeding curve further to the right, so thar at first we had a pretty long period with almost no feed added to the pond and the fish population gradually starving and, under the chosen formalism, decreasing in numbers. If we plor the Number we will see thar over the first 50 days or so it was gradually decreasing from 100 to about 50 . Only atter that teeding was started. So apparently the optumal strategy that was found was relying on a smaller number of fish in the pond. Let us test this directly and add the imitial fish number INIT Number to the list of control variables thar we optimize for. Now we will be optumizing for the number of fish that we stock in the pond (INIT Number), the feeding strategy ( $A, B$, and $C$ ) and the time of harvest (Time_of_sale).

The more conrol parameters we have. the longer the algonthm runs. However, ir scill converges with a somewhat asconishing result: INIT Number $=1$. If we kewp only one fish in the pond, beaning in mind the extremely high value that we atribute ro hsh weight, we will he growing thes one indwiduai to some gigantic stees and reaping a huge pront of 2420 .

We have certainly learned some things alom the system and about optumization We have also identifed some areas where the model can use some improvemencs There is a porential pollem whith how we modet fish weght. If we want a more real istic model of this system, we probably need to do is on an individual basis, descriting rhe lilecycle of an individual fist and then looking at the whole pond as an agoregate of chese modividuals. Otherwise, when tocal fish tiomass goes down to will be always diticult to attribure this either to the death of one or more individials in the suck (in which case the weight of other individuals does not changel or to a gradual leaning of the whole population (when otwionsly the average weight of all individuals dechnes)

The smplest way to fix the model will he w use the Fish variable as the mean weight of fish in the pond, and then to have the Number variable represencing the rocal number of fish. Then we will be doing the reverse calculation to get the toral fish biomass: we will take rhe Fish and muluply it by Number. Since now some of the variables will te defined in unts different than concentrations, we also need to make certan assumptions about the size of the pond Suppose we are dealing with $10 \mathrm{~m} \times$ 10 m pond, I in deep, so the total volume is $100 \mathrm{in}^{3}$. Let us see what the mudel will luok like in this case.

The new model ejuations with omments are as follows:
\{Reservors\}
d/dt |Fish_W) = -Growth - Metabolism
(Fish_W is now the biomass of an individual tish in kg )
INIT FISn_W $=0.01$
We stock the pond with fishes, 10 g each.\}
d/dt Feedl $=-$ Growth - Feeding - Loss
The Feed is the concentration of feed in the pond $\mathrm{kg}_{\mathrm{m}}{ }^{3}$ ?
INIT Feed - 0
d/dt (Detritus $=+$ Accurm - Decomp
[Detritus is also the total concentration in the pond, $\mathrm{kg} / \mathrm{m}^{3}$ \}
INIT Detritus - 0.01
LLet us assume ihat at first the pond is realiy clean, so we have only 10 g of detritus in each mis
d/dt Total_profill - - Profit
INITTotal_profir = 0
$\mathrm{d} / \mathrm{dt}$ (Numoer) $=-$ Mort
Number is the number of tish stocked in the pond As fish may die their number may decrease. We assume that dead tish are picked up and do not add to the Deiritus pool?
${ }^{\text {NIT }}$ Number $=100$
(Flows)
Growth $=$ if Number $>0.5$ then (1-Fish_W/10)*C_growth*Feed*Fish_W/Feed C_Hsi else 0
There is a limit to how big a fish can grow. We assume that this species dues nor ger bigger than 10 kg . The condition on Number is to make sure that it all fish died at least they do not continue to grow in size. 1

```
Feeding \(=\) if (Time \(<\) Time_of_sale and C_feed \(>0\) ) then C_feed else 0
    \{Same clamping on the feeding scenario to make sure it never starts to extract
    feed from pond)
Methabolism = C_mort*Fish_w
Loss \(=\) C loss*Feed + Growh \({ }^{*} 0\)
Accurn - Loss + Metaholism*Number; 100
    \{The fish metabolism produces detritus. There are "Number" of fish, so we
    multiply by Number The size of the pond is 100 m 3 , so we divide by 100 to get
    concentration.\}
Decomp = C_de:comp*Detritus
Profit \(=\) Revenue-Cost
Mort \(=\) INTiff TIM \(E>\) Time_ol_sale +11 then Number; DT else
(Detntus^4i/C_mort_d^4 + Detritus^4i)*Number)
\{Functions)
C_growth \(=0.5\)
\(C_{-} m=0.02\)
C_loss \(=01\)
C_leed \(=A^{*}\) TIME + B) \({ }^{\wedge} 2+C\)
C_mort_d - 2
C_decomp \(=0.2\)
Fish_Price \(=10 \cdot 2^{*}\) Fish_W
Feed_price = 2
Revenue \(=\) if Time \(>\) Time_of_sale AND Time \(<\) Time_of_sale \(+\hat{z}\) then Fish_
Price *Number else 0
Time_of_sale \(=100\)
\(\mathrm{A}=0\)
\(B=0.04\)
\(\mathrm{C}=-1\)
\(\mathrm{C}_{2} \mathrm{Hs}=\mathrm{C} .3\)
Cost \(=\) Feed_price \(*\) Feeding
```

Actually; this model turns out to be much better behaved and seems to produce even more reasonable results. You may notice in the future, when building many more models of your own, that the better your model gets, the more reasunable belavior it produces. In a way, the first indicator that most likely there is sumeching wrong either with the logic or the formalism in your model is when you start getting something totally unexpected and hard to interpret.

Running optimization in this model produces the maximum Total_profit $=$ 2572 with $\mathrm{A}=0.00032, \mathrm{~B}=-19.43, \mathrm{C}=$ 0.00034 , and Time_of_sale $=67$ (see Figure 8.17). The time of harvest is picked carefully to catch the moment when detritus approaches the threshold and starts to put the fish population at risk of extinction.

The better the model yot isuild, the more reasonatle behavisr you will find in it Many weird itynamics occur simply because the ruodet is not quite correct. A possible gain of a few grams en tash body weight is ofiset by more and more fish dying, and the size of the stock rapidly decreasing.

The feeding scenario is cuite sensitive to the metabolism rate used in the model, the $\mathrm{C}_{2} \mathrm{~m}$ parameter. If we change $\mathrm{C}_{-}$m from 0.02 to 0.01 , the optimization results

change quite dramatically (Figure 8.18). Now, with a lower rate of metabolic loss. the accumulation of detritus occurs more slowly and it never reaches the critical conditions that may cause a fish die-off. Therefore, the optimization works only to try to get the tish weight to as high a value as possible, spending the least on leed. Notice that the feeding strategy now is sunthicantly different from what we have been getting betore. We end up with a higher Total_profit $=2947$ with $\mathrm{A}=-0.000064, \mathrm{~B}=$ $-32.4, C=0.248$, and Time_of_sale $=74$.

Certainly, it we were to afply these modeling and optimization tools to some reallife system we would be constrained by actual monitoring data, and the model parameters would be measured in some experiments. The main purpose of this exercise


Figure 8.18 A very different feeding stralegy works beller when the metabolic rate is low. The optimum is reached when we get the fish weight to as high a value as possible, spending the least on feed.
has been to show how optimization works and how it can be used to derive possibly the best strategies for manaying systems. There is hardly any other way in whach, by means of reasoning or experiment, we could match the efficiency of the optimization magic, when in a matter of seconds or minutes hundreds and thousands of scenarios are compared and the best ones are chosen. We have also seen that there are always cavears and uncertames that need ro be carefuliy analyzed and realized when making the real management decisions.

## Exercise 8.3








 rols in this syriem"

### 8.4 Landscape optimization





 .






3. - 1 . '





 artecrive enter jualits














## Figure 8.19 Nitrogen loading and concentration of nitrogen in the Patuxent River under different

 scerarios ol landuse.The different paterns of landuse result in difterent loading factors for nitrogen and, as a result, produce different leve's of dissolved nitrogen in the estuary
cell to make the change' It is is gust ane cell that we modity, where should this cell be located?

Besides, while parameters can be changed contonuusly, maps - espectally landuse maps - are catequrical. It means that numbers on a landuse map stand for different landuse types - for example, 1 is toresc, 2 :s com, 3 is wheat, ets. Bur it could be alsu any other way round - 3 is forest, 1 is com, 2 is wheat, ete. It really dees not matrer how we code the different landuse cypes. Therefore, a "lictle" change on the map does not mean much. We can change 1 w 2 or to 3 or to 99 , bue in effect we will be changing only one landuse type on the map. Instead ot contenuous dranges, we ger discrete variacions of uur conerol map.

There are ma good oprimization methoch for this kind of task. Iee us bouk at the example of a molel built for the Hunting Creek watershed, which is located wethin Calvert Canney in Maryland, USA. The $22.5 \cdot \mathrm{~km}$ watershed belongs to the drainage basin of the Paruxent River $\left(2,356 \mathrm{~km}^{-}\right.$), whath ss one of the majiar tritutaries ol Chesmeake Bay. Son types are well drained, mustly severely aroded soils that have a dominanty sandy-clay luam co fine sandy loam subsoil. The annual rainfall varies between 400 and 600 mm . Man tanduses of the waterihed are forest and agriculcural haticats. Raput population growth. derelopment and change in landuse and land cover have heome obvious features of the tandscape.

The ecosystem model we will look at is an implementation of the Patuxent model (PLM) for the smaller subwatershed. It covers the hydrologic processes (above ground, in the unsaturated soil zone and in groundwater), plant growth and nutrent cycling. An important feature of the model is that it is grid-based. Many regional models assume spatial aggregation to larger units, called elementary landscapes, elementary watersheds, elementary areas of pollucion or hill-slopes. These units are considered to he homogeneous, and form the basis for the hydrologic flow network. If we are to consider scenarios of landuse change, generated by che economic considerations, which were not envisioned in the design of the elementary spatial units, this approach may be inappropriate. The boundaries between spatial units are fixed and cannot be modified during the course of the sumulation, which may be somewhat restrictive.

In the model we use, the landscape is partitioned into a spatial grid of square unit cells. The landscape is described as a grid of relatively small homogeneous cells, and simulations are run for each cell with relatively simple rules for marerial fluxing becween the cells. This approach requires extensive spatial data sets and high computatıonal capability in terms of both storage and speed. However, the approach allows quası-continuous modifications of the landscape, where habitar boundaries may change in response to socio-economic transformations. This is one of the prerequisites for spatal optımization analysis, since it allows modification of the spatial arrangement of the model endogenously, on the fly, during the simulation procedures.

As described in Chapter 6, with the SME approach the model is designed to simulate a variety of ecosystem rypes using a fixed model structure for each habitar type. The model caprures the response of plant communites to nutrient concentrations, water and environmental inpucs. Ic explicitly incorporates ecological processes that determine water levels or the content of surface water and the saturated and unsaturated soil zone, plant production, nutrient cycling associated with organie matter decomposition, and consumer dynamics. Therefore, the simulation model for a habitat consists of a system of coupled non-linear ordinary differential equarions, solved with a 1 -day time-step.

Let us now formulate the optimization task. The study area can be described as a set of discrete grid points $R=\left\{(i, j), 0<n_{i}<i<N_{1}<N ; 0<m,<j<M_{;}<M\right\}$ (Figure 8.20). $N$ is the number of cells in the row, and $M$ is the number of cells in the column. Not all of these cells are in the study area. A cell that belongs co the srudy area is denoted by $z \in R$. Six different landuse cypes are encountered in the study area: soybeans, winter wheat, corn. fallow, forest, and residential. We will assume that the residential areas are fixed, but orherwise landowners are free to decide what type of crop to grow in a cell, or whether to keep it forested or in fallow. Let $c(z)$ be the landuse (or habitat cype) in cell $z$. The concrol parameters in our case are the landuse types that are chusen for each cell. The set of landuse types will be $L=\{$ soybcans, winter wheat, corn, fallow, foresc\}. Then $R_{c}=\{z \in R \mid c(z) \in L\}$ stands tor the set of grid points that can be controlled with controls chosen from L. Let $H(c, z)$ be the yield of crop $c$ (if any) harvested from cell $z$ and $N(z, t)$ be the amount of nitrogen that escapes from cell $z$ at time $t$. The other control decison that tarmers can make is the amount of fercilizer to apply: let $F(c, c)$ be the amount of fertilzer applied for the habıtar type $c$ at time $c$. The cime of fertilizer application could be another imporant control parameter, but let us not further complicare the problem, and assume that ferulizers are timed according to the existing best management practices and the only factor we can concrol is the total amount appled.

Qualitatively, our goal is to find the oprimum landuse allocation and fertilizer application to reduce nutrient outflow our of the watershed while increasing toral


Figure 8.20 The study area for the Hunting Creek model
Only the cells that are on the map will take part in the optimization. The cells in the water category will not change and therelore can also be exclisded.
yeld. So the objective function (performance criterion) will need to account for crop yield, fertilizer applicatoon and nutient outlow. The hrst two factors are easier to compare, since we can operate in terms of prices. The revenue from the yield over the whole study area is

$$
A=\sum_{i \in R} p_{H}(c) H(c, z)
$$

where $p_{H}(c)$ is the current matat price of crop $c$. The price of tertizers applied is then

$$
B=P F \sum_{i \in R} \sum_{1<i<T} F(z, i)
$$

where $P_{F}$ is the unit price of nurogen fertilizer. Otviously, $A$ is to be maximized while $B$ is to be minimized, which means that $(A-B)$ is to be maximized. $A-B$ is the "economical" part of the goal function.

There are different ways of modeling the "ecological" part of the performance criterion. One possibility is to take into account the total amount of nerrients generated by all the cells in the study area,

$$
\mathbb{C}=\sum_{z \in \mathbb{Z}} \sum_{\mid \lll<T} N(z, t)
$$

This is the distributed nutrient leaching. More realistic, and comparable with measurements at gauging stations, is the amount of nitogen in the sutle cell of the
watershed $z_{6}$. This takes into account the compensation mechanisms of uptake along the pathways of morogen while it travels acruss the watershed and estmates the actual water quality in the river estuary:

$$
C=\sum_{i<i<T} N\left(z_{0}, t\right)
$$

In borh cases, C is to be minumzed. The crucial problem is to mitegrace the "ecological" part C and the economic part $\mathrm{A}-\mathrm{B}$ into a scalar objective function. For this purpose, $C$ has to be expressed in units that can be compared with the dollar measure that we have in $A-B$. Let us assume that there is a weighting coefficient $\lambda$, which can convert our $C$ measured in $\mathrm{gN} / \mathrm{m}^{2}$ into dollars, which we use to measure the profit $A-B$. Then we can formulate the goal function as

$$
\begin{equation*}
J=A-B-1 C \tag{8.4}
\end{equation*}
$$

The optumization cask is: Find maps $c^{*}$ and $F^{*}$ which maximize $J \rightarrow$ max. As noticed above, the real problem for the optimization algonthm is to figure out how to find every next better combination of paramecers to furcher improve our result. When we were dealing with numbers there were several methods, the most obvious of which is to continue the crend. That is, if we start to change a parameter in a certain direction (say decrease or increase its value) we should scay on this course as long as the results continue to impore. Or we could follow she gradient. Thar is, check a parameter change in one direction (increase), then the other (decrease) and see where the objective tunction performs betcer (say; has the minumal value). That will be the parameter value that we take as our next approximation.

Bue how do we do that in case of maps, especially categoncal maps? If we changed from 1 to 2 going from soybeans to wnter wheat, we could continue co 3 , which is corn. But chat would have litcle sense, sunce 3 may have also been forest or fallow. We just chose chat value of 3 to represent corn. There is no real reason that a 3 and not a 4 should represent corn. There is no such ching as an increase or decrease of a caregory value: we are switching to a different landuse only, the number itself has no meanng. We may have easily used letters instead of numbers on the map.

We end up with a so-called combinacorial optimization problem. To get to the solution, we really need to sort chrough all the possible combinatons of the five possible lancluse types over the study area. The number of possible combinations for the cask in (8.4) depends on the size of the study area. For example, too the Hunting Creek watershed, which is represented by $\left|R_{c}\right|=1681$ controllable cells of $200 \times$ $200 \mathrm{~m}^{2}$ wich five possible landuse types, we get $I_{1}=5^{1651}$ different patterns of landuse allocation. Remember that for each of chese landuse maps we will need to run our model for at least 550 days to cover the vegetation season, including winter to accommodate for winter whear, which is planted in the fall but grows in the spring. On a high-end workstation, the model takes about 3 minutes to run. On top of that we also want to test for various fertilizer applicatoon rates, but even without that it is clearly much longer than the cime required to finish reading this book. Actually, the age of Earth is abouc 4.5 $10^{9}$ years, and we are asking for something around $6 \cdot 10^{1153}$ years. Even the best supercomputer will nor help us. There should be a better way to solve the problem.

Generally, when mathematicians end up with a problem that they cannot solve they start sumplifying ic by making certain additional assumptions abour the system. Let us do the same for our system by taking into account the following considerations.

Afrer all, the landscape operates as a combination of grid cells, and perhaps we can assume that the connections beeween these cells are not rhat mportant. This means that perhaps we gan get somethong if we solve the optimiation problem for each indivedual cell, and then produce the overall landscape by combining the landuses thar we nud oprimal for these cells.

In this case we will need to define a local objective function for each grid cell. This is structurally different, lecause it ams to map the regional goal function onto the procemes in a grud cell. The basic idea is to tiy to split our glowal opromeation problem, which is spatial, and which has cells spatially comected, into a combination of local mpmiation problems, ignoring the spatal connectivity berween the cells

For every grid cell, $z$, we deflase the ohjective function as a functum of $z$. Ler $A(z)=p_{1}(c): A(c, z)$ be the local profir from crop yield; $B(z)=p_{F} Z F(z, c)$ be the local cosr of fertilizess applied, and $C(z)=\Sigma N(z, d)$ be the amount of nitrogen leached locally. $A(z), B(z)$ and $C(z)$ are now calculated for a specific cell. They do not require integration over the entire study area. Based on this, the local goal tunction tor every cell is then:

$$
\begin{equation*}
J(z)=A(z)-B(z)-i C(z) \tag{8.5}
\end{equation*}
$$

and the opumaztion task is: For each cell $z \in R_{z}$ find $c^{*}(z) \in L$ and $F^{*}(z)$ which maximue $j \rightarrow$ ( $s$ ) max. Once we find the landuse and the fertilize applicatom that is oprimal for each indoviual cell, we can then produce the global solution as a map make of these lacal uptimal solutions (actually two maps: one for landuse, the other one for fertilizer dpfication).

The problem is now reduced to optmization of landuse and lertilzer applicatom for every grid cell - but now this hecomes feasitle lndeed, assuming homogeneous landuse and several discrete stages of posmble reral fertilizer infut, say six scages $F \in \mathcal{O}$. $25,50,75,100,150 \mathrm{~kg} / \mathrm{ha}\}$, our task $i_{2}<|F||L|-36$ combinations. Consudering
 Yes, this approach negleces any neightorhood effects. We have also mplicitly introduced another assumption - that is, that the eftect ot fertilizer is snoorh and continuons, with no significant thresholds. Otherwise it would be incorrect tu use the six-step scale of fertizer applicarion that we described aluove. But makung thesc assumprions we reduced the rask to somerhing we can easily solve. Indeed we need to ton the model only 26 times and then produce the glotal solution by simply chessing the oprumal landuse and terrilizer rate tor each cell.

Actually, the local task gives us a worst-case scenario. In terms of nurient sutflow. the plowal approach could take into account rhe recention capabilicy of the landscape, when the next cell downstream capcures nutrents leached tram one cell The luxal aproach no longer allows that, and therefore gives us a worst-case upper estimate of the net nutrient outflow.

The solution of the local task performs a gral search through the entire control space, assuming a homogeneous landuse and identical fertilizer amounts for each cell. So what we need is to run the Hunting Creek amblel assuming that the whole area is covered by one of the agncultural crops, and do it six times for each crom changing the fercilizer apyiticatom rate. That will be 4 (landuses) $\times 6$ (fertilizer races) $=24$ model rums. Then, in addition, we run the model using an all-forested and all-fallow landuse. These are nor fertilized. Those are the 26 model runs estmated ahove These rims are sufficient tugive is the $\mathrm{A}(z), \mathrm{B}(x), \mathrm{C}(\mathrm{z})$ of the lical ohjective functwon as maps. Using these, we cin calculate $f(2)$ for all cells and choose the maxmal walue for each cell. This solution corresponds to a certain landuse and ferrilizer rate in each cell. Putting these


Figure 8.21 Distribution of landuse in the optimal pattern as a function of the environinental awareness parameter $\lambda$.
We start with a fully ploughed watershed all covered by soybeans, the most profitable crop. As \& grows, there are lewer crops and more forest in the watershed.
into anocher map, we get a solution to the glelaal task. This par of maps can be then fed into a spatial simmation to calculare the value of the glubal performance criterion.

The estimation of local optimum landuse maps does not require any computational effort. Once we have all possitle combinations in the maps $A(z), B(z)$ and $C(z)$, we can study how weighong paramerer $\lambda$ affects the resuls. As you may recall, this $\%$ parameter represents the relative importance or weight of the environmental concerns, in our case measured in terms of nitrogen content in the estuary. Figure 8.21 shows the results of a parameter study for the Hunting Creek watershed plotting the number of different landuse cypes as a function of i. The corresponding results for the total fertilizer application are presented in Figure 8.22. As we can see, while the rate of ferrilizer application quickly drops as environnental awareness grows, there is also a significant change in the composition of landuse in the watershed These graphs do not tell us much about the spatial distribution of landuse. Lee us take a look at some of the spatial ourput.

Figure 823 shows maps of optimum land for several i. values. We start with a zero value for $i$, which is the "why would I care abour the environment!" scenario. In this case, we ger the monoculture solution: plant the most valuable crop (in this case soybeans) in the entire sudy area, wherever possible. The only other cells that remain are the residental and open-water ones. since those are non-controllatle cells. As we start increasing $i$, some forest appears. The more we get concerned with nutrient outflow (and push i up), the more forest will appear in the study area. At the same turne, agucultural cells change to crops with a betrer nutrient-uptake/yield efficiency. This succession of crops also depends on the market prices of the crop. If we were to run these calculations coday the results wruld most likely be different. because of the jump in price of corn, instigated by growing demand for corn-based echanol.


Application of fertilizers plummets as environmental concerns about water quality start to dominate.

What is also remarkable is that we can actually see how, with growing 2 , forests nist appear along the stream network and then gradually spread out. There is nothing in the objective function that would be directly responsible for that, yet there is a clear pattern. Could we interpret this as yet another evidence of the important role of forest buffers? Clearly, we get the most "bang for bucks" when forests are located along the streams.

Of course, once the global solution is produced, tased on the local one, it makes sense to check whecher it is really optimal in the global sense. The most ohvions way to do this is to disturb the solution and see if the results we get are consistently "worse" than what the optimal result delivers. We can use the Monte Cark method and randomly choose some cells and randomly change the landuse in chem. Then we can ton this new doturbed map through the model and check if the cesult gets any better than that found above. In the case of the objective function that uses water quality as an indicator of environmental unality, we do not find any hetter solutions than that identifed by the local algorithm. Apparently for this task our model simplification was not damaging in any way, and we acheve a solution to the global optimization task. For nutrient content, the neighborhuod connections seem to be negligible.

Unfortunarely, the local merhod does nor work so well in all cases. For exam. ple, another way to account for environmental conditions is to look at watershed hydrology. As we have seen, changing landuse types also changes the infiltration and evaporation patterns, which in tusn affect how much water ends up in surface runoff. Very often as a result of deforestation we see an merease in peak flow (the maximum flows atter ramfalls are elevated), while the baseflow plammets (the flow between rainfalls under dry condtions). If we try to incorporate this concern into our objective function by, say, maximizing the baseflow, we get another optimizatom task. If wee try to apply the same set of assumptions, and hind an optimum using the local algorithm, we may be quite disappointed to find that the corresponding global solution does not seem to he optimal. Runnong some Monte Carlo tests, we easily


Figure 8.23
Change in landuse pattern as a function of \&.
find that the local solution can be unproved by changing some cell categories on the map. So the method is not universal and does rot work for all systems and objective functions. Howevel, when it does work, it produces a very fast and efficient way to find the optima. For example, in the same system if we were rooptimize for $\lambda$ NP (net promary production - another mportant proxy used in ecosysem services analysis). we would find the method working very nicely.

## Exercise 8.4




 function?





### 8.5 Optimality principles







 .


 -




















grow roots to get more water from the ground. They may even shed some leaves to cut on evapotranspiration. When cond!tions are tavorable, plants will grow leaves. If there is not enough light, they will try to grow the trunk and the branches, to get higher up towards the sunshine. All these mechanisms can be pretty hard to describe and model. Racsko and Svirezhev came up with an interesting idea to model this based on optimality principles (Racsko, 1978).

Suppose the plant has a goal, which is to grow as much as possible under the existing conditions. If that is the case, then on each time-step the new fuel should be distributed among the different parts of plant in a way that will ensure maximal production of new fuel over the next time-step. This means that for every time-step we will solve an oprumization problem:

$$
\max _{D} F(t, c, q)
$$

where F is the newly produced fuel at nome $t$ that is to be discribured among leaves, branches and roots according to the proportions $p=\left(p_{1}, p_{2}, p_{3}\right)$, respectively, $p_{1}+b_{2}+p_{3}=1 . c=\left(c_{1}, c_{2}, \ldots\right)$ is the vector of ambient conditions (temperature, sonl moisture, ecc.), and $q$ is the vector of model parameters (photosynthetic rate, respration rate, etc.). So at each tune-step we assume that the ambient conditions will be the same as during the previous time-step, and then optimize for the best distribution of the fuel avalable to produce the most fuel Juring the next time-step.

Noce that by making this assumprion about some optımality principle involved in rhe process of plant growth, we have elmunated a lor of unknown parameters that onherwise would have to be either measured or calibrated. The only problem is that in most cases we do not really know wherher these optimality principles really exisr and we are reproducing some real process (plants deciding what to do depending on environmental conditions!), or wherher the uptimality that seems to be in place is just an artifact of a combination of many other processes such as the ones brought by the evolutionary process and natural selection in living systems, many of which we do not really know or understand. Here is another example.

Above, we have seen how different levels of environmental awareness result in different patterns of landuse distribution. Each value of the awareness coefficient $\lambda$ crates a landuse distribution that is optimal in a certain sense. That is, depending upon how high we value environmental quality in comparison with economic profit, we get difterent patterns of landuse (Figure 8.23). This begs for a reverse problem statement. We know what the existing landuse distribution is. Is there a $\lambda$ that will describe it? Or, in other words, can we judge the environmental awareness by the landuse pattern observed in an area?

To answer this question, we will need to compare maps from the set generated during our optimization process with a map of landuse for, say, 1990, which is avanlable. We know how to compare numbers. We can figure out how to compare many numbers at che same time. That is what we are doing when calibrating a model and using an error model. This error model is our way of wrapping up several numbers into one to make the comparisons needed. However, in the case of map comparisons the task becomes more complicated. It is not just the rotal number of cells in different caregories that we are interested in, it is also cheir spatial arrangement.

For example, in Figure 8.24 we see that the map on the left has the same number of black cells as the map on the right. The number of gray cells is also the same. However, the maps obviously look very different. On the orher hand, maps in Figure 8.25 also have the same number of cells in different categories and do look alike,


Figure 8.24 While the number of cells in different categories can be the same, the maps will look quite difterent.


Figure 8.25 In other cases the number of cells in ditterent categories can be the same, but there will be no single cell that exactly matches the corresponding cell in the other map - yet the maps will look similar
even though not a single pair of corresponding cells on the two mapi has matching colors. So it is not just the total ntimber of cells that maters, bit also the pattem, the spatal arrangement, of the cells.

The human eye is a prety powerful tool for spatial map comparisons. We are qute gend at distinguishing patterns and finding similar maps, as long as we have an agreement on a criterion for comparisims. Figure 8.26 shows sume mags that were offered as part of a survey to compate sume machme algorithms with human identitication. Mosr of the atgorithms of map comparison that try to decome for fattern are based on the idea of a moving window where, in additon to a cell hy-cell compatisom, we start looking at an increasingly expanding sicintry of cells and seareh for smatiaties in these neighborhoods, not just at the cell-by-cell comparimon (Figure 8.27). Some of these methods get quite close to visual comparisons, and can be used for objective automated map comparisens.

1



2


3


4


5


6


8
7


9


10



## Figure 8.27

How a moving window algorithm works
We start with a cell-by-cell comparison. Then we stant including the vicinity of a cell and see if there are any matches in the neighborhood. Then we can gradually expand the window to see if there are more matches. The matches in the wider windows get a lower ranking in the overall comparison index. Do you think you were doing something like this when you where visually comparing the maps in Figure 8.26?

This is exactly what we need to solve the problem: find an optimum landscape that will match a real landuse map. Using the local method described above, we can easily generate the whole series of maps for the various values of $\%$. Before we get into the complex methods of map comparison, let us first find the $\lambda$. for which the number of cells in different categortes of the optumal solution match those of the 1990 landuse map.

That is where a surprise is waiting for us. As we change che value of $i$, we can see how the number of forested cells gradually increases. At $\lambda=350$, we find that the numbers of cells in all categories (forest and aggregared agriculture - we did nor have any information about the actual crop allocations) in hoth the opumal map and the landuse data match. What is realiy surprising, is that, looking at the map that corresponds to this $i=350$, we find that it is not just the number of cells that we have matching; it is also the pattern that looks amazingly alike. See for yourself, looking at the two maps in Figure 8.28. Even without any map comparison algorithms, it is pretty clear that the maps have a lot in common.

Does this mean that we have inadvertently found another optimality principle that, in this case, governs landuse change? Are the landuse patterns that we currently have indeed resulcs of some optunization? It is clearly too premature to jump to this kind of conclusion. Many more case studies should be considered and a variety of objective functions should be tested to find out if there is really somerhing meaningful in this result. However, it does make sense to assume thar indeed humans apply


## Figure 8.28

Comparison of the real 1990 landuse map with the result of optimal landuse allocation with $:=350$. The patterns seem to be remarkably cluse Dues this mean that the existing landuse is a result of some optimization process? If we find this process, would it help us figure out what can be the future lanouse maps?
some urtumality proncples in therr landuse allucation decisions. As a matter of tact, it should not be surprising at all that agriculcural land is aliocated in areas where the yields and prufits are maximized. What is surprising is that the i. factor actually does play a role. But again, chances are that it is not the environmental concerns chat stup further expansion of agriculture but something entirely different, and it is just that the agriculture stays in areas where it is must proftrable while other cells ger cransferred to orher landuse.

Still, this comparison gives us a numeric value tor ; that suddenly becomes a meaningful index that cim be used wiolue certan ecosystem services. As noted above. the units for $i$ are $\$\left(g \mathrm{~N} / \mathrm{m}^{\top}\right)$, so every $\mathrm{g} \mathrm{N} / \mathrm{m}^{\prime}$ that is allowed to escape from the land and ravel to the estuary of the watershed has this dollar value ( $\$ 350$ ! under current landuse conditions We can now run the model with no torest, compare the amount of nitrogen that will be released in that case to what we have now. and derive the value of the nitrogen-retention service provided by the forest ecosys. tem on this watershed. Sonne tack-ot-therenvelope calculations can tell us that it. according to Figure 8.19 , the difierence in nitrogen runsiff between an all-forested watershed in 1650 and an all-agricultural watershed can be an order of magnicude or more, then each square meter of torest will he producing $\$ 3,500$ worth of ecosystem service. If we mulciply that by the cotal area of forest in Hunting Creek watershed. we will get ... well, a lot of dolliars.

Anyway, oprimization is an exciting tool to explore It can helf us to understand many of the features of the systems that we are studyms. By running the mocklel so
many times under various conditions, it reveals behavioral patterns that orherwise would remain obscure and unexplored.

## Further reading

A good primer on opamization is a book by Diwckar, U. (2003). Introduction to Applied Opumization. Kluwer, 333 pp .
For more decats on the Chernobyl accident see the Nuclear Energy Agency webrite at http://uww. nea.fr:hcml/rp/chernobyl/allchernobyl.htul, where you can dounload the report "Chemobyl: Assessment of Radological and Health Impacts. 2002 Update of Chernobyl. Ten Years On". A grood bref account is given at htrp://www.uic.com.au/mp22.htm. More links can be found ar hitp.//www. chernobyllegacy.com/.
There is a large body of herature on discounting. A brief analyses of discounurg and how it applies to sustamabitiry. can be found in Voinov, A. and Farley, I. (2007). Reconciling Suscanability, Sysrems Theory and Discounting. Ecological Economics, 63:104-113. Another interesting paper is Sumaila, U., Walters, C. (2005). Intergenerational discounting: a new mumue approach. Ecol Econ. 52, 135-142.
The IPCC - The Intergovermmental Panel on Clmake Change - is probably one of the most respected bodies on global uarming and the future of clomate on this planct (hrrp/hwww pece ch/). Despute all the crincism that it gets from the cilmare change nay-stryers, they have urxiuced a series of reports that present che extsteng consensis among a wast majorty of sctentists. There arie cairently four reperts avalable, in which the climaue change forecast has been getung uncreasingly grim and alarmang, white move effions were requested from dhe govermments and international organiza. toris. The "IPCC Second Assessment Cimate Change 1995" is mailhble at hatp://unvw.ipcc. ch/pdifclimate-changes-1095/ipcc-ind-assesstnenti2nd-assessment-en.pdf.
A model of a frithpond that can be considered as a more complex verston of the one presented here appears in Swirehev. Yu. W!, Krysanova, V.P., Vonnov. A.A. (1984) Marhematical mockielling of a lish pond ecosyscen. Ecol.Modelling, 21:315-337.
A general descripton of the Patuxent model that we used here can be found in Cossranza, R., Vousov, A., Boumans, R., Naxwell, T., Villa, F., Vonov, H. and Wanger, L. (2002). Intcgrated cenlogical econome modeling of the Paruxent river watershed, Maryland. Ecological Monoorvaphs, 72 (2): 203-231. For more decaits on the processes and model structure see Voinov, A., Fitz, C., Bounans, R.. Costanza, R. (2004) Modular ecosystem medelng. Envurommental Modeling and Software 19, 3: pp. 285-304.
The spatial optimization techinque was developed in Seppelt R., Vornov, A., 2002. Oprimization Methodology for Land Use Parterns Using Sparial Explicir Landscape Models. Ecolugical Moxteing, 151/2-3 pp. 125-142. Furcher denails are in Seppelt R., Vontov, A.. 2003. Optumzation Methodology for Land Use Patterns - Evaluation hased on Multuscalc Halurat Pattern Comparison. Ecologutal Modeling, vol 168(3): 217-231.
The applicauon of opumalty principles for modeling plome growth was the topic of the PhD dissertation of Peter Racisko, with Yurı Svirezhev as his advisor. The PhD thesis is avatable only in Russidn Racsho, P (1979). Imıracionnaja model dereva kak elementa lesnogo biogenocenoza (Simularion model of the tree growth, as the element of the forest biogeocenosis). Vopi. Kibern, 52, USSR Academy of Sciences, Moscow, pp. 73-110 (In Russian with English sum. mary), and was never published in any mtemational joumals. The principie was further applted to agriculural crops and modified to include the reproduciste organs (seeds) that plants grow and that afler a certam brological tume become the man and only recipient of the newly produced materal in the plant This is described in Racsko, P. and Semenov, M. (1989). Analysis of Marhematical Principle's in Crup Growrh Simulation Mojels, Ecologral Modelling, 47: 291-302.
A good vevew of model comparison cechn!gues is offered by Kuhnerr, M., Voinow. A. Seppelt. R. (2006). Comparing Raster Map Comparison Algorithms for Spacual Modeling and Analysis. Phoogrammeevic Engneering $\mathcal{Z}$ Remou Sensing, Vol. 71, No. 8: 975-984.

# 9. The Practice of Modeling 

9.1 Why models don't work<br>9.2 Participatory and adaptive modeling<br>9.3 Open-source, web technologies and decision support<br>9.4 Conclusions

## SUMMARY

There are no formulas and almost no figures in this chaper, and this is because now we are figurng out what happens in mexdels when they are brought sut for human use and action. This is when we need to speak, interact and commonicate more to explain why and how we hult our models and what use they are. We will look at a brief history of global climate-change modeling as a tercible example of fallure ro communcte the scientinc results in a tumely fashion, to make people understand the poossible disasters and make them act accordingly. Participatory modeling will be then considered as one possible $($ osl of stakeholder memeraction that has the putential of uvercoming these discomects beween the montelers and the society a large Participatory modeling uses rhe modeling process as a way of joint leaning and understanding to build consensus and help make better decisions. The open-source paradigm offers a promising framework to suppont participatory modeling and other open and shared decision support tools.

## Keywords

Global climate change, failures of governance, uncertainties, IPCC. Kyoto Protocol, Shared Vision Planning, mediated modeling, Companon modeling, stakeholders, scenarios, model transparency, modularity, open-source software, Linux, General Public License, gift economy, weh tools, intellectual property, collahorative research, community modeling, open data, open access puhlication, watershed management.

### 9.1 Why models don't work

So now we know how to build a model, how to make it run, how in analyze it and produce results. Does this mean that we are ready for success stories? Untortunately. there is still one element missing. How do we make people listen and act according to the findings from our model? After all, in inost cases we were huilding the model to find out something and to make the right decisions based on our findings. The
gist of modeling is to simplify the reality to mprove the understanding of real-world processes. But we do it for a purpose: we want to find solutons for the real world problems and to make hetter decisions to improve life and avoid disaster. Otherwise, why bother modeling!

> The thoughtless and selfish, indeed, who fear any interference with the enjoyment of the present, will be apt to stigmatize all reasoning about the future as absurd and chimerical. But the opinions of such are closely guided by their wishes.
W.S. Jevons, 1865

In most cases, people have preconceived notions about the protlem. They come to the table with some ideas atour the solution. In many cases, they are so entrenched in their opinions that at becomes almost impossitle to ind a common ground. We all build models. But out models are differme.

In engineeriag or physics, after all, we have the "hard" science, the experiment and, ultimately, the system that will either work or not If we want to model a bridge, we know that there will be the ultimate test that will tell us whether the model was right or wrong. If the hidge collapses. then the model was wrong - and no one wants that to happen. If we model weather and forecast a rainfall, we will soon know whecher we were right or wrong; we can then adijust our model and, most importancly, again the society ar large wants our model to be conrect.

In ecology or ecological economics, things get messy. First, there is the additional uncertainty that comes from humans being part ol the system. Human loehavior may be very complex, unpredictable and hererogencous. There is no single law (like Newton's law or the law of gravity in physics) that can be directly applied to every human and will hold. The science of psychology is trying to come up with some general rules of human behavior, but we are clearly nor there yer. Different people have different preferences for goods and services, have different goals and aspiratoms, and different levels of ecological awareness. All these factors cause dip. ferent paterns of human behavior in an ecological-economic system, and will steer the system to different outcomes. Economics has ried wexplan economic behavor. Sume 20 years ago, the assumption thas individuals are purely rational, tully intormed maximizers (they maximize either their utility or proft) was a shared understanding among cconomists. However, the evidence from experimental economics thas altered these views. Apparently, people are sometrmes irrational, do not possess all the information to make a decision in a complex ecolugical-economic envitonmenr, have different levels of risk awareness, and so on. This actually means that people may respond differently to the state of an ecological-economic system and exhibit different strategies of resource consumption. For example, some American Indians certainly had very different views on natural resources (remember the seventh-generation principle we mentioned in Chapter 2. page 34) than the white people who cane to their land. Which behavior model should we choose, if we go treyond one individual and need ro model the ecomomic behavoro for a whole regon or country? If the rational maximizing undividual model is not valid, then which one is? Now, economists talk about heterogeneous consumer models, thut those are far more
complicated, with many more uncertainties Thus, although in "hard" science we know for sure that water will thew downhill for that an object with a certan mass will fall down to the ground with a certain speed), we can never he 100 percent sure about human behavior. It is as if we are modeling a bridec, not knowing for sure whecher the right amount of concrete will be poured or whether the bridge will he actually used for travel or for a rock- 'n'toll concert.

Second, humans are also users of the mexdel. They may have the desire and power to ignore, rwist and distort the results of the model They have their curn priorities and vested interests, and may "like" some results and "dislike" others. There are likely to be parties that do not want our model to produce certan results. For example, if you are predicting rainfall and I make a living bettong on drousht and selling sunglasses, I will want your model to be wrong - or at least to make sure that nobody believes in your forecast.


#### Abstract

There was a well-known dispute detween Paul Ehrlich and Julian Simon. Ehrlich, an ecologist and pirfessor of population studies. firecast that some of the main resources would gan in brice over the next several years. Simon, a nainstream economist, claimed that their price would drop. His theory was that it is not the natural resources that may be a limiting tactor. but rather the number of human brains that are there 10 solve problems. So the higher the world pooulation, the nerrier it will be Eventually, Simon bet that the price of any set of raw materials would be lower 10 years from now than it is today Ehrlich and his supporters took up the challenge and, in Octioder 1980. chose five :retals: chrome, coppet, nickel, tin and turgsten. Simon won the bel as, by October 1990. the composite price index of these five mietals had tallen by more than 40 percent. Note, however, that this was not a fair game. since actually Ehrlich tas weil as other environmentalists) was working hard during those years lo try to lower demand for natural resources. So actually he was betting against himself

This is just to illustrate that it makes little sense to predict the behavior of open systems. where humans themselves are likely to change those systems. It you think that global warming is happening you are more likely to do something about it. So don't bet on it. since it is like'y. thanks to the efforts of yourself and people who think your way, that the process may be slowed down. You may be betting against yourself. Instead, keep on with the good work


The recent global climate change saga provides a spectaculat example of how this happens. It dates back almost 200 years, to when Edrac Mariorte, Horace Benedict de Saussure, Fourier and Poullier did therr experments, collected data and laid the foundation for some theoretcal generalizations. By the 1850s, Tyndall was measurng various gases' absorpion-emission behavior. Arihenius wrapped is all up in his 1895 talk to the Suredsh Roysal Academy and in a subsequent April 1896 paper, "On the lntluence of Carbonic Acid in the Air upon the Temperature of the Ground" (The London, Edmburgh, and Dublun Philosophical Magazine and Joumal of Sciencel. Thar $\mathrm{CO}_{2}$ can change the absorption right in the moddle of Earth's outgong blackberty spectrum has been undersuod fur a long tame.

In 1938. Guy Stewart Callendar discovered that global warning could be brought about by increases in the concentration of atmospheric carton dioxide due to human activities, primarily through burning fossil fuels. This is the untold story, just recently discovered by a historian, James Fleming, of the remarkatle scientist who established the carbon dioxide theory of climate change. These findings were based on some simplified theoretical modets. Then, during the twenterth century,
these models were consistently improved, incorporatung more detail and mechanısms, culminating in a dozen or more Global Circulation Models (GCMs) designed to understand global climate in as much details as possible and to predict its possible future. Currently, there are ar least some 20 models used for climare prediction around the world, with the same acronym, they are now called Global Climatic Models.

By the 1990s, scientists had started to raise red flags and blow all sores of whistles and horns, trying to focus the attention of the public on the simple fact that increased $\mathrm{CO}_{2}$ and other GHG concentrations leads to global warning, and that we are rapidly increasing the amount of $\mathrm{CO}_{2}$ in the armosphere by burning huge amounts of fossil fuels. It seems simple - but there is one importanc caveat. If this is indeed a problem, then the most obvious solution is that we need to buin less fossil fuels; however, this also means that we will need to consume less gasoline, drive less and, consequently, most likely deliver less proft to the orl corporations. We have already seen in Chapter 7 how corporations and their lobbyists can rule the world. Apparencly, this is exactly what is happening. The Bush Adminiscration, which is notorious for its links with Big Oil, has diligently been doing its job of slandering climare change research and preventing any meaningtul mitıgation efforts. This might be compared with an ostrich sticking ses head into the sand just to ignore the fact that there is inminent danger except now we know that actually no oscrich would really do that. When ostriches feed, they somerimes do lay their heads flar on the ground to swallow sand and pebbles, which helps them to grind the food that they eat; although from a distance it may indeed look as though the bird is burying its head in che sand, it is clearly smart enough not to do that when there is something dangerous coming up. What about the politicians?

The official US stance for the past 6 years has been that scientific findings are "unconvincing," and "too uncertain" to call for any action. There was always something missing from the models. That is nor surprisung. As we know, models are always designed to simplify, in explain. The clımatic system is so complex that there will always be certain things that the models will not cover. Besides, as Marıka Holland, of the National Center for Acmospheric Research, says, there are some processes that "are juse not well understood, and because of that have not been incorporated inco chmare models" (hctp://www.cgd ucar.edu/oce/mholland/). However, it does not mean that with those processes included the results will turn around. In fact, according to Dr Holland, che sea ice is melting faster than models have predicted. There are many reasons for the underestumates. For example, models do not fully capture heat transport between ocean and armosphere, or faster warming as reflective ice gives way to darker, heat-absorbing waters. Acrually, it has been consistently observed that modelers tend to be conservative in their predictions, filtering out models that clearly overestimace the changes seen so far, but accepting the results where everything is too well-behaved and stable.

For any modeler, it is obvious that there is somerhing nor included in the model, and that chere is always uncertainty in the results. Does this mean that models are useless? Certainly not! If several models, especially built independently, point in the same direction, then that is a huge reason for concern. If chese models are scrupulously rested by chird parties, and if there is a scientific consensus that the models are correct, then we had becter start to act. However, that is where we find a gap between modeling and real hife. It turns our char no matter how good a model is, wherher it will be used for che betterment of humaniry or not may be decided by forces that have norhing to do with science or modeling.

## Twenty years of denial: a brief history of climate research

June 73 I.9as Jamss Hansen (NASAl lestites to the Senate commiree about the green. house slfect He says he is 99 percent sute thel the greenhouss eifeci tas veen delected. and it is changing our chmale now*

Companies and indugtry assaciations reorcsentiry petroleum, steel. autos and ulimes farm lotbying groupa wath names late the Global Climate Coelinon (GCCI and the Informaion Council on the Emvironment (ICE). The gcal is io "tapasition global warming at ineory raine: then tact:" and to sow doubi about climate "esearch" 'CE ads eak, 'Il the Earth is geat:ing warmer, why is Minnespodis lor Kenluct's, or gorne orther sitel geting colder?"

1992 Tha United Nations "Earth Summit" is held in Rio ce Janeiro, with climate chonge high on the agenda. The ICE and GCC lobby haid against a global iteaty to curb preenho.rese gases, and are ganec by the George C. Marshall Institute a congervative thmikiant unsi belore Rio, it releases a study concluding that mocels of the greentouse etlect hase "substaniully exogaorsied its imcottance ${ }^{-}$The amall amoum of giobal waiming is because the Sun is outing out more energy.

US Prescsent George H.W. Bush is undecided The Heed of his Envitonmentst Protection igency IEPAI, Wedsm Reilly. supports bulding cuts an greenhouse emigsions. Polincal aovisers insist on nothuy more than voluntary curs. 7:e Rio treaty cells for coumties voluntarily to stabilize thev greenhouse emssions by 'eturring them 101990 levels by 2000 . IAs it luins oul US emigsions in 2000 are 14 cercent hather than in 1990 . Awoiding mandatory cuts is a tixge viciory for molssiry.

The press does not taro sides; it qualifies fevery mention of human antuence on climare change with some scientsis believe'." In fact. the vast majonty ol scienilic opinion already accepts that humancaused GHG emissons ate contributing 10 warming. Talk tacio host fiush Limbaigh iells listeneis "more carbon dionide in ithe almosphere is not intely to signricants
 percent say the oress "exaggerates the thiceat of climate change.

1996 Wiliam O'Keele, Vice Piasident of the American Patrodeum Insilute and Leade: of the GCC, suggests that there is 100 much "saentific uncerianty" 10 justily curbs on green house emisgions. The "Luiprg Deciotation on Glotal Climate Change" is relgased, whete ower 100 scentists and others. mcluding TV weatherrenen say they "cannot subscrice :0 the politically inspirad word view that envisuges dimate calastrophes* Few of the Leqzig sigrors had aclually cerned out cimare research

1997: Kvolo. vacan, owet 100 natwons negotiate a treaty on making Rio's voluntary and langely ignored greenhouge curbs mancatory The worned coal and ail indusiries ismp to their mesazge that theie 2100 much saentific unceriainty 10 ןustify any such cuts

Tho Intergovernmental Panel on Climate Change liPCC - the international body that pesiodically assesses climete research - igsues ins second teport its 2.500 scientists con clude that allhough both ralural swings and changes in the Sun's output might be contilib:iing to cymate change, "the balance of avidenco suggesis a discernible human influence on climate

US Presedent Clinton, while a strong sucporter $0^{i}$ GHG culs. Does not oven tiy to ge: the Senate to ratity the Kyoto realy tho Hepublean Party fiag a majority in both houses and $s$ in denla! Gepublicang have also received gignificantity more campaign cash from the greeroy and olher indusines that dspute climate science

Apni 1998 a coren people liom tha Marshall Institite Fed Smagrs gaxpo and Exvon meet at ine Amarican Febtoleum Institure's Washengton headquatiers They procose a $\$ 5$ million
 and umomenty


 much greater then in the gati

 quration The line wate nevar soid

The IPCC raloates ine turd ascasamen: of the siudes of chrie:e ohange lis condu-

 meal tecords In i'e summet al 2003. a Mealwave in Eutage kills tens ol thousands ol people Consultent fienk Lunta wites ;ou need to ionlinue to make the laze of scentific cerimity a
 Hove How"

 nower
 - a how soewh. He decures the anth of scentric consensus on chrnate dhenge Deapite






 make sure thal every repoll and speech cast chmaiesonce as dodgy uneerien coriova-




2007 The Democrals rate the Congreas end tre Senmer Al Gore leatithes 10 both orm
 greenhouse culs

 of the ohservad incresse in ghobaty ereraged iempenamien since the mid-20h century"

In the Newsweak Pall. 38 peicent of thate survered dentify cmole enange at the nelionis gravast omaronmental threat - ihree inres the number m 2000 truonlidolal it
 duang wefy quastionstide dete on climate chenge Sentior day Rockaleler erye the company ren to cul bact ite suppori for suth groups
 goel ol outhang greenhoust errussions

The Nowsweek Poll inds left than half in lavel of reaning high-mila age cers oi enempr eflicment appinnos and buiding: While majorities in turope end jagen reconoiza a broed

 onrcent down trom 64 percent lagi vearl say there is "a ler of deagreernent emong divere sciantiats ${ }^{-}$on the bosic quastion ol whether the poandi a waming. 82 percent sty thera a 4 Iot ol disgoreameril that human activitias ale a mexior ceuse of efobal merimat Onh th geve cent any the greanhouse eliect bly beng tat todry



 uccepl ing lacis about clentite otange.










 1-2


 TرT:
 (










-. Ifan mill - I. .
 صر


(though unpopular) decisions quickly and has the means to cnforce them. (For example, the one chald family planning regulaton has managed to curb population growth; another example is the recent decision ol the Chinese Government to stop all further conversion of agricultural lands for biofuel production. While the USA continues to subsidize hiofuel, unable to overcome the lobhying power of agricultuzal corporations, China has made some very swift and timely decisions in this regard.) Certamly, this type ol decisun-making may be efficient - decistons are mate and implemented quickly However, the downside is that, as mentioned above, we are berting on one Wise King. Everything may work well as long as he is moleed wise - but if he gres crazy, we have little power to replace him Also note that centralized decisions that are unpopular are hard to unplement, require much enforcement, and usually fail.

Alternatively, we need to invest heavily in educating the public and in cteatmig means and methods for puthic participation in the decision-making process. Recognizing the need to reinforce the process with local knowledge and irerative participatory meractions in order to derive pulitically feastibe and scientifically sound solutions, governments and international organizations have embraced concepts of public involvement, and devolution of decision making to lower and lower levels. For example, the Shared vision Planning process that has been develoged in the Army Cops over the past 30 years is a promising way to fand understanding and acceptance among the various stakeholders that may be interested in the outcomes of a project and knowledge proluced by models. The new web technologies and services provide new means of interaction and dissemination of data and knowledge.

As human domination over the envirament grows and as the complexity of natioral systems is lurther elevated by the complex human socio-economic systems tuilt on them, deciston-making processes tecome more constramed by feasible options ansl time hurizons. while the consequences of wrong decisions become more dramatic and affect larger geographic areas. Under such circumstances, standard scientific activities are inadequate if we wish to contmue on the democratic path of development. They must be remfioced with local knoseledge and terative pirticipatory interactions in order to derive solurions which are well understerd, politically feasible and scientitically sound. We need new ways to understand and embrace the inconventent truths of coday.

### 9.2 Participatory and adaptive modeling

## (This section was urtten in collaboration with Erica Broun Gaddis.)

As argued be Oreskes et al (1994), and as we discussed in Chapter 4, moxdels do not tell us the "truth" about the system. They should be rather vewed as a process of striving towards the truch. The hest model is a process in which we learn about the system and understand how best to manipulate and manage it As we stant administering this management, or as something starts to change in the environment, the system also changes and the molel is no longer valid We can succeed only it the model is viewed as a process that is designed to accommodate these changes and adapt to them. A good model should evolve with the system; it should be able to change both quantitatively and yualitatively as the system changes and as our understanding about the system improves.

In recent years, there has been a shift from top down presermutue management of ecological resources wowards policy-making and planning processes that require ongoing active engagement and collaturation between stakeholders, scientists and
decision-makers. Particpatury modeling ( PM ) is the process of incorporatine stake. hoiders (often including the public) and decision-makers into an otherwise purely anaIytic modeling proces tosupport decisions involving complex ecological questions. It is recognized as an important means by which non-scientiste ate engaged in the scientitic prucess, and is becoming an important part of envirommental planning, restoration and management. Previously science was cenducted outside of the folley-making process, allowing scicontists to develop coologeal models derived from malysis and olservation of the natural world, thereby contributing an objective opimon to the policy-making process without arcountung for the values, knowledge or prionites of the human system that affects and is affected by ecological sysrems. The shift towards more open and integrited planning proxesses has required the adaptation of the scientific modeling process to mocorporate community knowledge, Ferspective and values.

Participatory modeling is particularly compatible with the rising focus on ecosys-tem-based management, integrated water resources management and adaptive management, all of which :ncorpurate systems theory and am to protect and improve ecological resources while considering economic and social concerns in the community. These approaches have been adopted by, anong others, the Wacer Framework Drective of the European Commosion, and supported hy the Natomal Research Comncil in the Unired Staces. The latter recommends that the processes ol analysis and deliheration be mtegrated it such a way that systematic analysis is combned with community values cratical to decision-making. PM provides a platom for incegratug scientific knowlelge with local knowledge and. when executed, provides an objective, value-neutral place for a diverse group of stakeholders to contribute information regarding an ecosystem of interest. Recognition that effective envirommental management requires input from boch scientihe and social processes is key to developing effective partnerships herween stentists and stakeholders that live and work withun an ecosystem.

PM (of which clones are also known as "mediated troleling", "companion mors. elong" or "shated vision mobleling") draws on the theory of post normal science, which dictates that in problems characteristic of highly complex systems, there is no one correct, value-nentral solution. Stakeholder participation in environmental research and management has been justified tor multiple reasons. PM supports democritic principles, is educational, integrates social and narural processcs, can legit. intze a bocal decision-making process, and can lead participants to be instrumental in pushing forward an igreed agenda. The extent on which the putlic or representative stakeholder group can effectively paticipate an ecological research and management is determned by the methods employed in engaging stakcholders, the inclusion of diverse groups, group size, incorporation of locail knowlodge and expertise, and the tune available for the process to develop. The development of unipue, practical and atioriable solutions we cological problems is atten hest accomplished by engaging stakeholders and decision makers in the research process.

The ided stems from the iceling that any modeler develops while workmg on the model. Yom may have experienced it yourselt when working with sone of the models earlier presenced in this trok. The feeling is that as you go through all the essential steps of model building you get a really good unterstanding of all the processes and interactions involved and develop a certain intimacy with the system, learning what is more impotant and what can be approximated, getting a hande on the mputs and understanding how they may affect the outputs. You alse learn to appreciate the uncertanties embedded in the system, and realize that even with these uncertainties there is certain level of confudence, or a comfort zone, that may he large enough to
make a decision. And thar decision will probably be the best-mformed one for the current state of knowledge.

It seems as shough you start chinking that if only everyone could share your enderstanding of what is going on in the system, then ir should not he a problem to communicate the resuits and make the right decisions. So that is exacely what you do when you open up the modeling process and invite everybody porentially interested in the systern and the decisions to participate in thas collaborative group study. If it is recognized that during the modeling process che modeler gains much understanding about the system workings, about what is most essential and what controls the system behavior, then this rich and exciting experience that comes from the modeling process should be shared, and the whole decision-making process designed around the modeling process. The modeling process itself becomes the deciston-making tool, and the decision-making becomes part of the modeling process.

Models are used to formalize conceprs of ecological and socio-economic processes and, as such, explore existing dynamics and characteristics. Models can also be predictive or used to compare proposed management plans and explore their effects on orher processes. Modeling tools are especially useful in communicating complex processes, spatial patterns and data in a visual format that is clear and compelling and, when appropriately applied, can empower stakeholders to move forward with concerted effors to address an environmental or socio-economic problem. Borh monitoring and modeling are scientific rools that can support good decision-making in ecosystem-based management, and are often most powertul when used together. Monitoring dara collected at varying scales can be used as mpurs to models, to calıbrate and validare the accuracy of a model, or to address specific research questions using stacistical models. Development of ecological models often inclicates the types of information that are important in understanding dynamics bur for which no data are avalable. Whereas selective moniroring can give a good descripton of patterns and linkages within a system, it may be more ditficult and expensive to derermine che driving forces of these patterns. Simulation models help to derermine the mechanisins and underlying driving forces of pateerns orherwise described statisucally. In many cases, the monitoring efforts thar go along with modeling can serve as a good vehicle to engage the local stakeholders in the process. When stakeholders see how samples are caken or, ideally, take part in sume of the monitoring programs, they bond with the researchers and become better partners in the future decistion support efforts.

The modeling of physical, biological and socio-economic dynamics in a syscem requires attention to borh remporal dynamics and spatial relationships. There are many modeling tools that focus on one or the other. To be useful in a participatory framework, models need to be transparent and flexible enough to change in response to the needs of the group. Simulation (process) models may be formalized in software such as Stella, Simile or Madonna, which we have cunsidered in this book. These and other software packages have user-friendly Graphic User Interfaces (GUI) which make them especially helpful when models are demonstrated to stakeholders or when they are forinulated in their presence and with their mput. In this context, complex simulation models or programiming directly in $\mathrm{C}++$ or orher languages may be less effective, no matter how powerful the resulting models are. In some cases, tools as generic and simple as Excel curn out to be even more useful in engaging the stakeholders in a meaningful collaborative work than the far more powerful and accurate complex models.

Tu make these stare-of-the-art complex models useful for the decision-making process, addinonal efforts are essential to build interfaces or wrappers that will allow them to be presented to the stakeholders, or embedded into other models (modularity). In general, process models may be very helpful to explan and understand
the syssems to be analyzed; however, they are not practical for exploring the role of the spatail stracture of an ecosystem. Alcernatuely, Ceographic Information Systems (ClS) explicetly model the spatial connecowity and landscape paterns present in a watershed, hut are weak in therr ability to simulate a spstem's behaven over tume. Ecosystem-hased management demands the coupling of these approaches such that ${ }_{5 p a t i a l}$ relationshops, lankages and temporal dynamues can be captured simultaneously. There are many specific models developed to analyze the spato-temporal dynamics of specific systems or processes. So far, there are not many generic wols that conhine temporal and spatal modeling. Ont is the Spatial Modeling Enwironment (SME), which we have seen alowe. Simile, wo, ofters some powertul linkages io spatial data and processing. There are also modules programmed as components of Cl Ss, say using the scripting language or Avenue in ArcINFO.

Agent-based models provide vet another modeling technigue that in useful in participatory workshops. They offer some powertul technigues to engage the stakehulders in a dialogue, with sume role-playing games leading to more clearly dehned rules of hehavior for agents. Again, for the participatoy context a CUi is essential. NetLogo or Starlopo are two modeling frameworks that offer very user-fiendly interfaces and have a relatively simple learning curve. NetLogo also has a module called Hubivet (see, tor example, http/lecl northwestern e fu/nerlogo/nodels/CumpHubNetTragedyotheCommonsHubNer), which allows several people to work on the model while sitting hehind different computers at different places This can te an excellent enviromment th work on paricipatory modelng prosects.

## Forms of participation

Stakeholder pattipants engage in the decasion making process in the form on motel selection and develupmenc, data collection and integation. scenario development, interpretation of results, and development of policy altematives. It is generally recognized that engaging participants in as many of chese phases as pussitle and is early as possible, beginnong with setting the goals for the project, drastically improves the value of the resulting model in terms of iss usefulness to decision-makers, its educational potential tor the pulbic, and its credithlity within the community

## Model selection and development

Selecting the correct mudeling cool is one of the most importanc phases of a PM exercise, and should he derermined tased on the goals of the participants, the avalability of data, the project deadlines and funding limitations, lather than beeng derermined by sciencists' preferred modeling platiorm and methodology

In terms of model development, stakeholders are very helpful in identifyng whether there are processes or cological phenomma that have been regleced in the modeling process. Stakeholders can also he called upon to verify hasic assumptoons alxout the dynamics, history and patterns of the ecosystem. In addition, community stakeholders can frequently validate assumptoms abou typical human hehavor m the system. This often anecdoral evidence may he the only source of model assumprions abour human lehavor in a system. W'hen combund with rechnical knowledge of ecological frocesses, such evidence may be key to identifying new and more appropriate management solutions. The PM approach is hased on the assumpton that those who live and work in a system may he well intomed ahour its processes and perhaps have observed phenomena that would not he captured hy scientists. This iwo-way fow of information is a key charecteristic of successful P'M.

## Data collection and availability

Stakeholders ofren play a key role in research activities by contributing existing dara to a research process or by actively particıpating in the collection of new data. Some stakeholders, particularly from governmental agencies, may have access to data that are ocherwise unavailable due to privacy restrictions or confidentiality agreements. These data can often be provided to researchers if aggregared to protect privacy concerns, or if permission is granted from privare citizens. In addition, some stakeholders are aware of dara sources thar are more specific to a particular ecosystem or locale, such as clunatic dara and biological surveys.

Stakeholders can also engage in ecological sampling and monitoring. This can be a particularly effective entry point to a community that is ready to "act" on a perceived problem and is not satisfied with more meetings and discussions of a problem. Monitoring by citizen stakeholders, in particular, provides orher benefits to the research process. In many cases, they live close to montoring sites or have access to privare property such that more frequent and/or more complete monitoring can take place at significantly less cost than one individual researcher could complete independently. Citizens also gan benefirs by becoming more famıliar with their ecosysiem - an educational opportunity that may be shared with other community members.

## Scenario development

Stakeholders are best placed ro pose solurion scenarios to a problem. Many of rhem have decision-making power and/or influence in the communiry, and understand the relative teasthility and cost-effectuveness of proposed solutions. In addition, engaging local decision-makers in the scenario-modeling stage of the research process can lead to development of more innovative solurions.

## Interpreting results and developing policy alternatives

A primary goal of a PM exercise is to resolve the difference between perceived and actual sources of an ecological problem. Whereas srakeholders might have proposed scenarios based on their perception of the prublem or system, they may be particularly adept at proposing new policy alternatives tollowing initial model results from a sce-nario-modeling exercise. The PM process can further facilitate development of new policies through development of a collaborative network berween stakeholders and their respective agencies or constutuents throughout the research process. Stakeholders are imporrant communication agents to deliver the findings and the decision alternatives to the decision-makers in the federal, state or local governments. They are the more likely to be listened to than the scientists, who may be perceived as foreign to the problem or the locality. Governments certanly have a better ear for the electorate.

## Criteria for Successful Participatory Modeling

PM is a relatively new acrivity, and as such che field is just beginnmg to define itself and the cruteria that qualify a project as a good or successful PM exercise. Below are some of the key criteria rhat may be useful.

1. Representative involvement, openness. Regardiess of the method used to solicit stakeholder involvement, every artempr should be made to involve a diverse group of stakeholders that represent a variety of incerests regarding the question at hand.

While key stakeholders should the carctully identifed and invited to the process, there should be also an open invitation to all interested parties w jou. This will adul to the public acceptance of and respect for the remalts of the andysis. If a pucese is petceived to be exclusive, key members of the stakchalder and decisionmakang community may reicer model resuls.
2. Scientific eredibilty. Although PM incorporates values. the scientific components of the model must adhere to standard scientitic practice and obyectivity. This criteront is essential in orior for the model to maintan credtility amone dec-sion-makers. scientists, stakehokers and the public. Thus, while farticipants may determune die quesuons that the mordel should answer and may supply key model pameters, the structure or the model must he scoentifally somit It thes not mean shat the model should he all cocompassing and complex; to the contrarv, it should the as simple as possitile. In is crucial, however, to be excremely clarar and hunest atout all the assumpens: and simplificatoms made
3. Objectivy. Fachleators of a PM propece must be trusted hy the sakehohler commonity as being otyective and mpartal, and therefore should nos themselves be direcs stakeholders. In chas regand, facilitan ty university researehers or outside consultanms often reduces the momporation of stakeholder hiases into the scientific compenents of the model. On che other hand, it is essential that stakeholders trust the facilitaters and solentists, and a certain track recond in the local arean ind perhaps even recognition of researchers hy the local stakeholders, hased on passed reserech or involvemert, can be belpul.
4. Transporency. Key wo effective stakeholder engagement in $P M$ is a process that is transparent. Transparency is not unly crimal to gaimong trust atmong stakeholders and establishing model credhilaty with decistumakers, but also key to the educational goals often assuciated with PM.
5. Understanding uncertamy. Many ecological and socio-economic questions regure anitusis of complex systems. As problem complexicy increases, model results become less certain. Understandug scoenotio uncertainty is crucally lunked to the expectations of real-worla results asswciated with decisions made as a result of the moleling process. This issue is hest communcated thromgh dieect participatwo in the modelng process itself.
6. Flexibitioy. The modeling process should he flextle and ablustable to accumandate the new knowledge and understanding that cones from the staketholder workshops. Stakeholders might cume ur with ideas and tactors that modelers had not anticipated, bur modelers should be ready to incomprate these into the moulel.
7. Model aubiptability. The model developed shouth he relarively easy to usc and update after the researchers have moved on. This requres excellent ducutentation and a good user interlace. If non-scientists cannor understand ur wise the model, it will not he applied hy local decision-makers wo solve real problems.
8. Incorporatom of stakeholder knowledge Key wo success with any partuciputory approach is that the community paticipating in the research the consulted from che initiation of the project, and helf to sec the goals for the project and the specificionsues to the stulied.
9. Influence on decision-making. Resules from the modeling exercise should have an effeci, through some mechanism, on decisions made ahout the system under stuly.

Is there anything special atout models that would be most appropriate for PM? lindeed, there ale certain features thar would make a model better suted for use with stakeholulers.

## Choosing a tool

The problem of choosing an appropriare rool is difficult, because learning each one requires some time and effort, which can be quite considerable. Therefore, it is often the case that once modelers have mastered a particular modeling language or system, they arc inclined to use the same acquired skills next tume rhey need to analyze a different system - even when this other sysrem is quite unlike the first one, and even when the modeling goals are different. As Bernard Baruch (or, according to alternative sources, Abraham Maslow') is supposed to have said, "If all you have is a hammer. everyching looks like a nall." Anyway, it is quire natural for people to try to do what they already know how co do. As a result, modelers who are equally proficient in a variety of modeling rechnıques are quite rare, and $g(x)$ ) comparisons of modeling tools are also hard to find.

In choosing a tool, the following should be considered:

1. Inclusiveness. PM cannot rely on several particular models. The modeling engine supporting PM should be able to incorporate a variety of models, presented as modules. These modules should be interchangeable co serve particular needs of a project, and co present state-of-che-art modeling and dara analysis. The modeling intertace serving these needs should operare as a middleware product, or coupler, that can take various modules and make them work in concert. Modules in this context presen borh software objects for simulation and data objects. The challenge is to make these modules talk to each other and perform across a variety of temporal and spatial scales and resolutions.
2. Modularity. In the modular approach, we do not incend to design a unique general model. Instead, the goal is to offer a framework that can be easily extended and is flexible regarding modutication. A module that performs best in one case may nor be adequare in anoher. The goals and scale of a particular study may require a completely different set of modules that will be invoked and furrher translared inro a working model. There is a certain disparity berween the software developer's and the researcher's views upon models and modules. For a software developer, a module is an enticy, a black box, which should be as independent as possible, and as easy as possible co combine with other modules. This is espectally crue for the federation approach to modular modeling, and is well demonstrated by web. based modeling systems. The urilicy of such applications may be marginal from the research viewpoint.
For a researcher, a model is predominantly a cool for understanding the system. By plugging together a number of black boxes, for which specifics and behavior is obscure and hardly undersrood, we do not significantly increase our knowledge about the system. The resulss generated are difficult to interpret when there is not enough understanding of che plocesses that are acrually modeled. The decomposirion of such systems requires careful analysis of spatial and remporal scales of processes considered, and is very closely relared ruspecific goals of the model built.

In this context, the modular approach can be useful if the focus is shifred from reusability and "plug-and-play" to transparency, analysis and hierarchical description of various processes and system components. With the modules being transparent and open for experıment and analysis, the researcher can better understand the specifics of the model formalism that is inherited. It is then easier to decide wherher a module is suitable, or wherher ts should be modtined and tuned to the specific goals of a particular study.
3. Transparency. In PM, the models are used to explain rather than to predict. It is important therefore to he able to dive inco the model structure and be clear athour the processes that are included and the assumptions made. This mmediarely adds value to simpler models and modeling tools. In wome cases, the henetits of guming stakeholder "huy-in" into the model and process by working cogecher on simple motels that they understand outweigh the lack of deail and lower accuracy that we get from such models in comparison with the nore sophisticited hut less comprehensible models. A simple model that can be well communicated and explaned may he more usetul than a complex molel that may be raking more features into account but with narrow applicability, high costs of model and data, and much uncertantes.
It is also importane to make sure that we clearly draw the houndaries of the system that is researched and modeled, and realize that we are not supposed to be modeling the whole world in all its complexities. For example, if a study is concerned with scenarios driven by global warming, it should nor be our goal to reproduce, understand and defend the extremely complex Global Circulation Models that are used to generate future clamates. We will be much better oft clearly descrihing the output from those models, with the associated range of predicted change, as a forcing funcrion that ts ont of the scope of our analysis and should le used as at given for our purposes. Otherwise, we are at risk of getting ourselves involved in the highly contentious debate about the "rruths" of climate change instead ot andlyzing the risks and outcones that we face within our system.
4. Visualuation. Models should be impressive on the output side; they must present resultes in an appealing and easy-on-understand form. Interfaces must allow inulteple levels of complexity and interactivity to serve different stakeholder groups.
5. Affondabinty. The models used in the PM process should be affordalle lor the stakeholders in different levels of governance. This means that etther the modeling cools should be made avalable over the web and ion on the server side, so thar users will nor need to purchase expensive licenses, or the models themselves should le freeware or shareware.
6. Flexibility. extendibility When something is missing in models, there should the a way to add it to the exisring structure rather than rehulding the whole medel again from scratch sumply hecause one element is missing. This is especially cructal in the PM process, when models should be developed quickly in response to the concerns and new information coming from the stakeholders.

[^5]Some of these considerations clearly point us in the direction of open-source (OS) development. The OS paradigm delivers ultimate rransparency and flexibility in the products developed. These products are also free for the user: It only makes sense that taxpayers' money be spent on products that will be avarlable for the taxpayers, stakeholders, at no additional cost. Federal agencies should promote and support open-source software for a variecy of reasons, such as transparency, extendibility, security, luw cost, etc.

There are numerous implementations of the merhod that vary in their level of success and achievement. Let us mention a few.

## Solomons Harbor Watershed, Maryland

Excessive nutrent loads to the Chesapeake Bay from surrounding cities and rural councies has led ro eurrophication, especially in small harbors and inlets. The Marỵland Tributary Strategies, Chesapeake Bay 2000 Agreement and Calvert County Comprehensive Plan call for reductions in nutrients encering the Bay in order to reduce impacts on aquaric natural resources. Though the goal sec for phosphorus appears to be achievable, reductions in nurrogen lag well behund the target. Mosr sewage in rural residencial areas of Maryland, such as Calvert Councy, is treated by on-site sewage disposal systems (septic systems). Almost all of che nitrogen pollution that enters local waters from Calvert Councy comes from non-point sources, of which the Maryland Department of Planning estumates 25 percent comes from septic systems. In chis project we initated a PM effort to focus on the most densely populated watershed in Calvert Councy chat drains to Solomons Harbor. Despite high popularion densities, only a small portion of the watershed is serviced by sewer. There are no major point sources of mutrogen in the watershed.

Two different modeling cools were used to analyze and visualize the fare of nitrogen from three anthropogenic sources: septic tanks, atmospheric deposition, and fercilizer. The first is a simple dynamıc model of a sepric tank and leach- field system using Stella ${ }^{\text {rim }}$ software, which allows che user to evaluate alternative septic technologies. The second modeling cool is the sparially explicit Landscape Modeling Framework (LMF), developed by the Gund Institute for Ecological Economics and discussed in Chapter 6.

Participarion in the study was solicited from communicy stakeholders who were instrumental in underscanding how models could be applied to local decisionmaking, in making appropriate model assumprions and in developing politically teasible scenarios. The model results found that septic tanks may be a less significant contributor to surface water nitrogen pollution in the short term, whereas fertilizer used at the home scale is a more signuficant source than previously thought. Stakeholders used the model results to develop recommendations for the Calvert County Board of Commıssioners. Recommendations include mandaring nitrogen removal sepric tanks for some homes, bur primarly focus on intensive citizen education about fertilizer usage, local regulation of ferilizer sales, reducrion in automobile traffic, and cooperation with regional regulatory agencies working to reduce regional NOx emissions.

## St Albans Bay Watershed, Vermont

Lake Champlam has received excess nuerrent runoff for the past 50 years due to changes in agricultural practices and rapıd development of open space for residential use. The effect of excess nutrients has been most dramarically witnessed in bays such
as St Albans Bay, which exhibits eutrophic algal bloums every Aupust. The waternhed fetding St Albans Bay is dominated by agriculcure ar the same time that the urban area is growing. In the 1980s. urban point sources of pollution were ieduced by upgrading the St Althans sewage treatment plant. Ar the same time, agricultural non-point sources were addressed through the implementation of "Best Management Practices" (BMPs) on 60 percent of the farms in the watershed, at a cost of $\$ 2.2$ millic:n (USD)A, 1991). Despite the considerable amount of money and attention paid to phospherus loading in St Allan Bay, it remans a problem tiday. The fucus has remamed promarily on agricultural landuses in the watershed, and as a resule has caused considerable tension between farmers, city dwellers, and landowners with lake fromt property

Recencly, the Lake Champlain TMDL allocared a phosphorus load to the St Altans Bay watershed that would require a 33 percent reductoon of total phespharus ro rhe bay. We mitested a PM effent to apportion the total load of phosphorus from all sources. including diffuse transport pathways. and identify the most conredfective interventions to achieve targer reductions

A group of stakeholders was invited to participate in the 2 -year research process and tnembers were engages in the research at multiple levels, including water quality monitoring, soil phosphorus sampling, model development, scenaricu analysis, and future policy development. Statistical, mass-halance and dynamic landscape simulation models were used to assess the state of the watershed and the long-term accumulation of phosphorus in it, and to describe che distrituition of the average annual phosphorus luad wo streams in terms of space, time and transport process. Watershed interventions, matched to the most significant phosphorus sources and transport processes, were develuped with stakcholders and evaluated using the iramework.

Modelang results sugqest that the St Albans Bay watershed has a long-term net accumulation of phosphotus, most of which accumulates in agricultural soils. Dissolved phosphorus in surface runoft from the agricultural landscape, driven by high soil phosphorus concencrations, accounts for 41 percent of the total liad to watershed streams. Direct discharge from farmsteads and scormwater luads, primarily from road sand washoft, were also tound to be significant sources.

The PM approach emploved in this study led to identification of different sulutuons than sakehulders had previously assumed would be required to reduce the phosphorus load to receiving waters. The approach led wo greater communty accept. ance and utility of mosiel results, as evidenced by local decision-makers now moving forward to implement the solutions identified to be most cost-effective.

## Redesigning the American Neighborhood, South Burlington, Vermont

Uiban sprawl and its associated often poorly-treated stormwater have a big impact on water quality and quantity in Vemonc. Converting agrictiltural and forested land to residential and commercial use has significandy changed the capaciry of the watersheds to retain water and assimilate nutrients and other materals. Currenty, as some studies suggest, storm discharges may be 200 to 400 comes grearer than histurical levels (Apfelhaum. 1995).

As mentioned in Chapter 6, Redesigning the American . ${ }^{\text {eighborhoxal (RAN) }}$ is a project conducted by the Universtey of Vermont to find cose- effective solutions to the existing residential stormwater problems at the scale of small, high-density tesidential neighhorhouds (htop:,/wwwuvmedu; ~ran'ran). The project is fixusing on a case study of the Butler Farms/Oak Ceek Village communities in South Burlingron,

VT, to address the issue of targeting and prioritzing best thanagement practices (BMPs). The idea was to engage local homeowners in a participatory study that would show them how they concribute to the stormwaser problen and ineroduce them to existigallemative methouls ot stormwater matigation through low-mpact distrobured structurat and nom-structural technieques.

The project started slowly, with only a few homeowners willing to parricpace in the process. Howeves, sown the neighborhom learned that them homes were sulhect to long-expired State sommater discharge permits, and that their neightorhool's stommater system did not meer stringent new standards. As is often the case, problems with home sales, trustration with localied flooding, and confusion about the relationshop between the City's stormwater unlity and the State permit impasse led to trustration and even outright anger on the part of residents. The tension mereased alrer the homeowners realizel that in order for the City to take over the extorng derention ponds and other stormwater structures, they had to be upgraded to currently acture 2002 standards. Sunce then, the interest and involvement of residents in Stormuater Study Grour has been heightened, hut stakeholder meetmes hive become forums for conflict between homeowners and local municipalitues.

The modeling component was mosely hased on spatial analysis using the ESRI AreGIS 9.2 capabilities for hydrologere modeling As high-resolution LIDAR dara became available, of became pomsible to generate clear visualization and substancial understanding about the mowement of water through the neighborhoods, and to develop new approaches to resolve che stomwater management conndrum. The Micro Stomwater Nerwork lia, helped ro visuatize rain flowparhs ar a scale where resident, have been ahle to make the connecton with processes in their tackpatd. The Maro Stormwater Dranage Density (MSDD) index was instrumental in optimising the location of BMPs of small and mid-scale management practices, and haul an important elucat onal and trust-building value.

Ar present, the homeowners seem to prefer decentralized medium and smallscale merventions (such is tan gatidens) to centralized alternatives such as lange detencion ponds

## Cutler Reservoir TMDL process, Utah

Cutler Reservor, in the Cache Valley of Northern Utah, his impoundel the Bear, L.ogan and Litte Bear Rivers stmee 1927. Cutler Dam is operated by PacifCorp-Utah Powet and Leght to provite water for agricultural use and power generanom. Curler Reservors suppores recreational uses and a warm uater fishery while proviling a habitat for waterfowl and a water supply for agricultural uses. Cutler Reservoir has been identified as water-qualiry limifed due to kow dissolved oxygen and excess phosphorus loading. The Utah Divisom of Water Qualicy mitiated the process of develeping a Total Maximum Daly Load (TMDD) for the Cutler Reservoir in 2004, with the goal of testuring and mantaning water quality to a level that protects the beneticual unes deccribe labuve.

Participation from lucal stakeholders is encouraged chroughout the J MDL , process, ant has heen formalized in the development of the Bear River;Cutler Reservair Advisuty Commitee, which has representation from all the major seccors and interests of the local communty The advisory commitee has been meeting monthly sunce Auguse 2005 , and has mbormed the TMDL process hy contributing dara and knowledge of physical and social processes in the watershed, and idenafying solucions an help reduce pollation sources.

Warershed-loading models and a reservoir-response model (Bathrub) are in preliminary development stages at the rtme of writing, and will benefir from feedback from the advisory committee. It is expected that commuttee memhers will continue to provide feedback to the TMDL process while working with their respective constituents to piovide direction to UDEQ in developing and implementing a watershed management plan. They will also be helpful in identifying funding needs and sources of support for specific projects that may be implemented.

## James River Shared Vision Planning, Virginia

The lames River in Virgina will pocentially face significant water supply development pressures over the next several years due to growing population and development pressure. The Corps' Norfolk District has already received one application for a Clean W'ater Act Section 404 permit for Cobb Creek Reservorr, and inttial incpuries by the Virgina Department of Envirommenral Quality indicate the potential for more applications in the near future. USEPA Region III has formally requested that Norfolk District prepare a basin-wide assessment that considers all the proposed water supply projects on the James River and make permitting decisions based on a cumularive impacts analysis.

These factors point to the need for a comprehensive planning process, involving all the key agencies and stakeholders, in order to identify broadly acceprable and sustainable solutions for water management within the basin. Due to historic water conflicts in the state, the Shared Vision Planning (SVP) process (htrp://www. sharedvisionplannung.us) has been proposed as the method for conducting this comprehensive process. The Army Corps of Engmeers has pioneered particıpatory decı-ston-making since the 1970s (Wagner and Orcolando, 1975, 1976). The Shared Vision Planning process is a PM approach in which stakeholders are involved in creating a motel of the system that can be used woun scenarios and find upumal solutions to a prohlem Shared Vision Planning relies on a structured planning process fromly rooted in the federal Principles and Guidelines, and in the circles of influence approach to structuring participarion (Palmer es al., 2007).

The James River Study (JRS) began with a general workshop in the winter of 2006, entroled "Finding and Creating Common Ground in Warer Managemenc." The purpose of this open meeting was to start a contmung dialogue among the various stakeholders involved, including those with divergent interests. A major objective of the workshop was to describe and incroduce the use of collaborative modelong to facilirate learning and decision-making across varous governmental and non-governmental groups. While there was good participation in the workshop, the process stalled when working groups were to be formed. Only a few stakeholders signed up to continue with the PM effort, and during the following months the process almost stopped. It took sone time to realize that in fact the project got stuck amidst some major controversy between two key stakeholders. In addition, there was some internal opposition to the project wrthon the Army Corps. Under these conditoons, not surprisingly, stakeholders who knew about these conflicts were skeprical about the project and reluctant to parucipate. As of coday, a consensus seems to be emerging between the stakeholders regarding the goals of the project, and a fresh start is planned in the near future.

To a certain extent, these and other PM projects cend to follow the flow chart for a generic. PM process presented in Figure 9.1. Note that there may be a lot of variations of and deviations from this rather idealized scquence. When dealing with


Tirovrect A flow chart for a generic PM process.
Note that each particular projecr will most likely develop in its own way, driven by the stakeholders involved That is perfectly fine; however, it is good to keep some of the keystones in mind.
people, we have to be ready for surprises and need to adapt the whole proces. to speafic needs of particular projects and stakehokider groups. However, this diagram may be somerhong to keep in mund when plannuma a PM process.

## Some lessons learned, or a guide to success

## 1. Identify a clear problem and lead stakeholders

Although most watershed management decisoms benefit lrom stakeholder input and unvolvement, some issues mighs not raise the incerest of a wide group of stakeholders. If the problem is nur undersosod or considered to be mportans by stakeholders, then it will be very difficule to sulecit involvement in a participarory exercise. For example, the Virginia project had a very difficult startup becane there was clear disagreement herween scakeholders regarding the importance of the study. While in was quire clear to all that there would he growing problems with water supply in the area, the sutuation did nor look bad enough to get loral poople really involved, while agencies had their own ayendas and were nom exactly clear on the purposes of the study

Education of the community ahout water reseuree issues and the impact of decisions on the community is ofter a guext tirst step. This can often he accomplished though the moda, town hall meetmgs, or volunteer and community-oriented programs.

In some cases, it is helptul whon there is a strung governmental lead in the proc. ess. The Calvert group spouted from an open meeting where all citizens residiag in the watersheil were invitel to comment on proposed regulation of sepue systems hy the Councy Planning and Zoning commission. The possibility of new regulatom caught the attention or the publec, and interested parties were willing to parcucipate in the study. In other cases, incerest from some sakeholders may only arise after a policy change that directly inpacs them. The RAN project started with several stakeholder workshops, where homeowners were addressed about the looming prohlems associated with untreated stormwarer. The reception was lukewarm, with very low atcendance. Things changed quite dramatically when the ciry of Suuth Buslingen approved legribation that created a stomwater utility, which would take wer stomwater creatment from the homeowners, but only after they brought their runoff up to certain standads. It curned tut that their cites were no longer vali3, since all their permirs related to stomwater had expired a while ago. The interest m the RA.N pruject mmeditely jumped, bur even then for some homeowners the involvement of unversicy researchers was seen as an impedment.

Never underestmate the "luck factor." Working with people, it cakes jus one or two stakeholders who chouse to take an ohstructions position to damege the proess. Similarly, one stakeholder that "gets it" and :s interested and actively participating can signincantly enhance the effort.

## 2. Engage stakeholders as early and often as possible

Establishment of a community hased monitoring effort can be a particularly effective entry point to a communty that is ready tu "ret" on a perceived problem and is not satished with more meetings and discussion. Monitoring by citzens, in particulir, prowides other benefits to the research process. In many cases, they live close oo momitong sites or have access to private property such that mere frequent and/or more complete mentoring cin take place at signiticandy less cost than one individ. ual researcher could complete independenty. Cituens also gam benefits by hecoming more familiar wish their watershed - an efucational opportunety that may he shared
with uther communty members. When stakeholders see how samples are taken or, weally, take gate in wome of the monnomp programs, they bond with the resuachers and become herter partners in future research and decision-support efforts.

In the St Albans Bay watershed, there wis a lack of recent data regarding the general state ot the watershed, uncluding water quality, discharge, and soil phosphu, rus concencrations. At the same time, there was a highly motivatell group of citisens organaed through the St Alhans Area Watershed Associatom eager to begin "doing" sumeching in the watershed immediately. lu partacrship with this group and the Vermont Agency of Natural Resources, a cotizens' volunteer monitoring frogram was established with 25 montoring sites around the St Albans Bay watershed. Most of the $500+$ water-quality samples and atage height data were collected by a group of 15 volunteets dtawn from the communty over 2 years. The resulting data wonid not have teen available ortherwise, and the procens engaged a group of local cinzens in the research process. This early engagement proved valuable during the latter srages of che propect, when a stakeholder group was assembled tor the PM exercise. The partnership rhat grew from the nonitong effort also built trust between the rentarchers and watershed acturst:, working in the commumy.

A key to success with any patucipatory aproach is that the communney par. acmanne in the reseach be consulted tron the mutaten of the propect and help to set the goals tor the project and specific issues to be studied (Beircle and Cayford, 2002). Stakeholder particupants engage on the decision-making process in the form of modet selecton and developuene, data collection and integration, scenario developnent, interpretation of results, and develorment of policy alternatives. It ss generally recognzed that engaging pancocipants in as many of these phases as possitle and as early as possible, hegmong wich setung the goals tor the propect, drasrically improves the value of the tesulting roudel in cerms of its usefulness to decisionmakers, its educational porential tor the public, and ats credibility within the community (Korfmacher, 2001 )

## 3. Create an appropriately representative working group

Partictpatury modeling may be intiacud by local decision-makers, governmental budies, cutizen activists or scemtife researchers. In the Lniced Stares, most PM activites are initiated by govertunental bodies (Duram and Brown, 1999). Depending upon the type of participation and the goals ind time restrictions of the pooject, stakeholders maty be enlisted to participate in a vaniery of ways. In some projects stakeloolders ate sought out for their known "stake" in a problem or decision, and ase invired to join a working group. In other cases, iavolvement in the working group may be open to any member of the public.

Regatless of the merhod used to solicit sakeholder involvement, every attempt should be made to incolse a diverse group of stakeholders that represent a wariery of interests regarding the question at hand. When less well-organzed stakeholder groups do ant actively participate, waresshed mamagers can obtain information about their opunions through, other means such as puthlic meetings, educatoon, or surveps (Korfmacher, 2001).

In this sense, the St Albans Ray warershed modeling process may have failed somewhat in that the stakehoder group, turmed rather organically from those that cursenty work un issues or are directy attected by watershed management, including lucal, state and federal natural resources, planong and agroultural agencies, at well as farmers and watershed activists. A deliberate atcempt was made to involve members
of the business and residenetal communicy withour success, due to a lack of incerest in the process - Ferthaps because they perceived thenselves to have no stake to the vutcome.

## 4. Gain trust and establish neutrality as a scientist

Thes can be achieved by athering to the second and thed criteria on sciennfic coedihility and objectivity, as fresented ahove It is helpful when we can reter to past examplen and success stories, or refer to exseng models that are known to stakeholters and perhaps puhlished in peer-reviewed licerature. Howerer, it is even more mportint to keep the model clear to all participars, to have a good hand on all assumptions and formaliariuns used in the model. For example, the motels developed for use in the St Allans Bay and Solomons Hartor watersheds have been pecireviewed and accepted by the scienotic community ( O wdis, 2007; Gaddis et ai., 2007). Mudel develupment is sull underway for the lames River and Cutler Rescrusir.

## 5. Know the stakeholders and acknowledge conflict

In some cases, stakcholders may have historical disagreements with one another: One purpuse of the PM method is to provile a neural platform upon which disputing partes can contribute and gatn informaton. However, it is important to watch for such hiscorte contlicts and external issues that may overshadew the whole process. In addition, we have found that when the outcome of a modeling exercise is himbing. such as in rhe development of a TMDL, parties may he both more engaged but also defensive if they perceive that the process will resuit manegative impact on then on their consuments. For example, pont- comere pulluters may lionk for ways to hold up a TMDL process in order to prolong a loald refuction decision. These sources bf con . tention may he masked as scientite dissent when they are actually political. When conflict withon the group becomes minanagealite, it is important to set out sules for discussion and, in some cascs, of hire a professional tatilawor.

In the lames River project, there had heen a leng history of tension hetween some stakeholders on issues of water planning. The Shared Vision Planming process got caughe in this controversy, and coutd move nowhere furcher unt:! some consensus was reached hetween stakehulders. In theory, the modelney prexess was supposed os be open to all stakeholders, shoud tee cruly democratic and transparent, and should not depend upon lucal nisunderstanding herween some srakeholders. In practice, the historic nerwork of connectons (both profesiomal and gersmal) heween stakehold. ers is evident and can come to doninate the participatory process.

## 6. Select appropriate modeling tools to answer questions that are clearly identified

A critical step early in the PM protess is the developuent of research çuestums and goals of the process. The guestions identifed should be answeratle, given the time and fundag avalable to the process In addition, it is imporant that all stakeholders agree on the goals of the process such that a clear researth direction is embraced by the entite group hefore decailed modeling hegms.

Selectung the correct modeling twol is one of the most mportant phases of a ['M exercise, and should be feremmed tased on the goals of the partionants, the availahility of data, the project deadlines and funding hmotaons, rather than heme determined hy stientists' preterred unkleling platform and methodelogy. Models are
used co formalize conceprs of watershed, stream and receiving-warer processes, and as such explore existing dynamics and characteristics. Models can also be prediccive, or used to compare proposed management plans and explore therr effects on orher processes. Modeling tools can be especially useful in communicanng complex processes, spanal parterns and dara in a visual formar that is clear and compelling and, when appropriarely applied, can empower stakeholders co move forward with concerred efforts co address an ecological probiem.

It is mportant to maintan "model neutraliry." It is common for modeleis ro turn to the models and modeling platforms that are most famıliar ro them. It is umportant, however, always to survey the available tools and select one that is most approprate to the points of interest of the stakeholders. The Solomons Harbor watershed project was initally geared towards a fairly sophiscicaced sparial modeling effort based on our experience in incegratıng dynamic spatial models. While this modeling was srill being performed, the projecr focus turned ro some farly simple balance calculations that helped move the decision-making process in the right diection.

To be useful in a participatory framework, models need to be cransparenc and flexible enough to change in response to the needs of the group. As we noted above, in some cases rools as simple as Excel can be the righr choice. Major benefirs of Excel are that it is readily available in most cases, and many stakeholders are aiready intimately familiar wirh it. Simulation (process) models help determıne the mechanisms and underlying driving forces of parcerns ocherwise described sratistically; however, they are nor practical tor exploring the role of the spatial strucrure of an ecosystem. Alcernatively, Geographic Information Systems (GIS) explicitly model the sparial connectivity and landscape patterns present in a warershed, but are weak in their abiliry ro simulare a system's behavior over time. Model complexity musr be dicrated by the questions posed by rhe stakeholder group. Models that are too simple are less precise and explanatory; however, a model that is too complex can lose transparency among the stakeholder group. In many cases, a simple model thar can be well communicared and explaned is more useful than a complex model that has narrow applicability, high costs of data, and much uncertaincy.

In addition to a Stella implementation of the simple TR-55 rourung model, the RAN project has been using GIS analysis. The spatial visualization of streanflow's at the fine scale thar was allowed by the LIDAR dara was a turning point in the discussions, when stakeholders could acrually see how therr local decisions could make a difference.

## 7. Incorporate all forms of stakeholder knowledge

The knowledge, data and priorities of stakeholders should have a real, not just cursory, impacr on mosel Jevelopment. boch in retms of selecting a modeling platform and in setting model assumprions and paramerers. Stakeholders ofren contribure exisring dara to a research process or actively participate in the collection of new dara. Some stakeholders, particularly from governmental agencies, may have access to data that are otherwtse unavailable ro the public due to privacy restrictions or confidentiality agreements. These data can often be provided to researchers if aggregated to protect privacy concerns, or if permossion is granted from private citizens. In addurion, some stakcholders are aware of data sources that are more specitic to the watershed, such as locally collected climatic data.

The PM approach is based on the assumption that those who live and work in a sysren may be well informed about its processes and may have observed phenomena
that would not he captured hy seientists. Stakeholders can also he very helpiul in identitying whether there are hydrologic, ecological or humandommared processes that have been neglected in the model structure. Stakehokiers can also verify basic assumpans about the dyannics, hestory and patterns of hoth the natural and socioeconomic systems. Farmers and homeowners possess important local and lay knowledge about the biophysical and soctoreconomic systern being researched. Anecdotal evidence may be the only source ol assumptions ahout human behavior in a watershed, many of which ate imporant mpurs to a simulation model (i.e., frequency of tertheer application). This type of kinwledge, when combined with technical krowl. edge of watershed processes, is key to identifyng new anst more appopriate solutions to environmental problems.

The modeling process should the flexitle and adjustalle to accommodate the new knowledge and understanding that comes from stakeholder workshops. This requires that models be modular, mobst and hierarchical to make sure that changes in compenencs do not crash the whole system.

## 8. Gain acceptance of modeling methodology before presenting model results

Givng stakeholders the opportunnty to contribute to and challenge moselel inssumptims before results are reported also crates a sense of ownership of the proeess that makes it more difficule to reject resules in the future. This can only wocur, however, If the models developed are cransplatent and well understood by the public or stakeholiter group (Kortmacher, 2601). In some cases, it an reduce conflicr between stakeholders in the watershed. situce movel assumptions are often less controversal than model results.

The development of the modeling tools used in the St Albans Bay watershed was very ramsparent. Stakehokters were repeatedly given the opportunity to comment on model assumptions and parameters selected. and were even consulted on alternative modelong frameworks when approprate. However, the model is not "user friendly" due co the archicecture of modeling framework selected.

## 9. Engage stakeholders in conversations regarding uncertainty

Stakeholders that have participated in all the stages of the model buildung activities develop trust in the model and are less likely to curatom the reliablity of the results. Primarily, this is hecause they know all the model assumprions, the extent of model relabiltry, and that the mokel incorporated the best available knowledge and data; they also understand that there will always be some uncertainty in the model restils.

## 10. Develop scenarios that are both feasible and ideal

Stakehulders are in a better position to jutge what the more realistic and effective interventions are, and what the most feasible decisoms might be (Cant and Halvorsen, 2001).

In the Solomons Harlor watershed, Maryland, an interesting question emerged from the discussion of scenarios that could reduce nitrugen to Solomms Hartor Given limited rescutces for modeling is it better to focus on the scenarios that the research team suspect will have the greatest impact on water quality, or those that are easiest and therefore likely to be implemented politically? Scenarios are very different
for each perspective. A consensus was reached here through discussion to test borh sers of scenarins. By testing feasible scenarios, we ger a sense of what can reasonably be achieved in the short term, given current funding and political realities. Ideal scenarios push stakehoiders to think beyond conventional solutions and to recognize the boundaries and time lag involved with what they am to accomplish. Besides, another most cost-efficient and productive scenario emerged from the partucipatory facttinding exercise: to focus on reducnon of residenctal tertalizer application and ocher airtorne sources of nitrogen in the area.

## 11. Interpret results in conjunction with stakeholder group; facilitate development of new policy and management ideas that arise from modeling results

Stakeholders can help to meterpret the results and present them in the way that will he better understood by decision-makers at various levels of governance. They can advise on hou best to visualize the results in order to deliver a compelling and clear message.

In the St Albans Bay watershed, many of the modeling results were not expected by the stakcholder group. Some of the most important sources and parhways of phosphorus movement to receiving waters (dissolved phosphorus from agricultural tields, road-sand washoff and rile drainage) were nor addressed by most of the proposed sce, narios. Some processes had prevıously been considered significant by the stakeholder group. However, several stakeholders have indicated that they intend to use the informarion gleaned from the project to direct existing funding sources and adapr policies to the extent possible to address the most signiticant phosphorus transport processes and sources in the watershed. The municipalities in the watershed have agreed to investigate alcernatives to road sand for winter dercing of roads

The TMDL process currently underway for Cutler Reservoir, Utah, requires that the results of the PiM study be included in the preseribed management changes included in the TMDL document submucted for approval to the USEPA. These decisoons include required nutrient-load reductions according to load allocanons for vartous point and non-point sources throughout the watershed, as well as a Project Implementation Plan designed to achieve these reductions.

In the Solomons Harbor watershed, Maryland, unexpected results led the working group to adape management goals and policies for Calvert County. Fercilizer and atmosphetic deposition were found to have a signiticantly larger effect than the community had thought on nitrogen loads in Solomons Harbor, although none of the proposed septic management scenarios are likely to have a real effect on the trophic starus of the harbor in the short-term. Nonetheless, upgrading sepric ranks is still a good environmental decision, since it will umprove groundwater quality and, in the long term, affect sufface-water quality. Furthermore, it is the only regulation that can be easily and immediarely umplemented ar the local level. The model resules were first presented to the smaller working group over two meetings and were a severe rest of parricipant confidence, since new results were somewhat contrary to previsus estimates. The working group took a very positive and constructive approach. While acknowletging the inheient uncertanties in the modeling process, they began to explore new solurions and policy recommendations. Rather than abandoning the proposed policies to teduce nitrogen from sepric tanks, the workmg group chose to expand its policy recommendations to include all sources of nitrogen to the watershed. The research tean found this to be a distinctly positive outcome of the PM
exercise. The working group came up with the following conclusions alout the types of policy optoms that are realistic and avalable to the Solomons Harthor communty:

- Atmospheric denosition cannot be direcily influenced by local cinzens, except through reduction of lexal traffic and lohbying regional officials to reduce NOx emissions from coal-hred power plants
- Fersilizer usage can be most easily influenced through etucational intiatives, since policy changes will require involvement of other givemmental ind ciluzen greups heyond the Deparment of Planning and Zoning, which is currently leading the initiative to reduce nitrogen to the harbor.


## 12. Involve members of the stakeholder group in presenting results to decision-makers, the public and the press

An important tinal step in the PM method is the ,hissemination of results and conclusions to the wider community. Presencations to larger stakeholder groups, decision makers, and the press should be male by a member of the stakeholder workme grow. This solidifies the acceptance of the model resuls and cooperation hetween stakeholders that were estahished dumg the PM exercise In additon, members of the community are ofren more respected and have a better handle on the impace of policy decisoms on the local communty's isisues.
in the Solomons Harbor watershed, wo nembers of the working group presented their recummendations to the larger stakcholder group following a presencation of the modeling results by one member of aur resarch team. During thas meeting, the Drector of Planning and Zoning for Calvert Councy solicited teellhack on proposed policy recommendations and later refined thein for a presentation of the Calvert County Board of Commissioners. We emphasize here that the role of the research team in this process was tu suppore the dise ussion rather than to recommend our numpolicy ideas.

In the St Albans Bay watershed, several stakeholiters participated in the presentation of model resules to the local press and general public in May 2006 . Several interagency partnerships appear to have been strengthened and crust developed in previnusly opposing groups as a result of the CM exercises.

## 13. Treat the model as a process

There are always concems about the fure of participatory efforts. What happens when the researchers go away? If we look at how collahorative mortel projects are developed, there is a cicar similarity with the open-source paraligin, where softame is a product of joint efforts ot a distributel group of players. Ideally, the process should live on the web and continue beyond a particular project. It is a valuable asset for luture decision-making and conflier resoluion. It can be kept alive with meremental funding or even donations, with stakcholders able to chip in ther experrise and knowledge to keep at going between peaks of activity when bigger profects surface There are examples of web and modeling towils that can provide this kind of functuonality and interopetability, so there is real promise that this might actually happen.

This last lesson brings up a whole new issue of how to use and reuse models. Where and how do models "live," and how can we make che most of them? It appenrs that the new weh rechnologies and the new dispersed way of collective thinking, research and development have the porential to become rhe new standard of modeling and decision-making.

### 9.3 Open-source, web technologies and decision support

(Parts of thes section stem from discussions at the International Enerronmental Modeling and Software Soctety workshop on Collaborative Modeling, and the resulting position paper with Raleigh Hood, John Daues, Hamed Assaf and Robert Stuart.)

Computer programming in the 1960s and 1970s was domunated by the free exchange of software (Levy, 1984). This started co change in the 1980s, when the Massachusetts Institute of Technology (MIT) licensed some of the code created by its employees to a commercial firm and also when software companies began to impose copyrights (and lacer software patents) to protect their software from being copied (Drahos and Braithwaire, 2002).

Probably in protest aganst these developments, the open-source concept started to gain ground in the 1980s. The growing dommance of Windows and the annoyingly secretive poltcies of Microsoft certainly added fuel to the fire. The open-source concepe stems from the so-called hacker culture. Hackers are not what we usually think they are - software piraces, victous producers of viruses, worms and orher nusances for our computers. Hackers will insist that chose people should be called "crackers." Hackers are the real computer gurus, who are addicted to problem-solving and building things They believe in freedom and voluntary mutual help. it is almost a moral Juty for them to share information, solve problems, and then give the solutions away just so other hackers can solve new problems instead of having to re-address old ones. Boredom and drudgery are not just unpleasant but actually evil. Hackers have an instinctive hosulity to censorship, secrecy, and the use of force or deception.

The idea of software source code shared for free is probably best known in connection with the Linux operating system. After Limus Torvalds developed irs core and released ic co softwatc developers worldwide, Linux became a product of joint efforts of many people, who conrribured code, bug reports, fixes, enhancements and plug-ins. The idea really took off when Nerscape released the source code of its Navigator, the popular Interner browser program, in 1998. That is when the term "open source" was coined and when the open-source definition was derived Borh Linux and Navigator (the latter now developed as the Firefox browser under mozilla. org) have sunce developed into major software products with worldwide distribution, applications and inpur from software developers.

> The basic idea behind open source is very simple: when a programmer can read, redistribute, and modify the source code for a piece of software, the software evolves. People improve it, people adapt it, people fix bugs. And this can happen at a speed that, if one is used to the slow pace of conventional software development, seems astonishing.

Raymond, 2000a

Motrvaced by the spirit of traditional scientific collaboration, Richard Stallman, rhen a programiner ar MIT's Artificial Inrelligence Laboracory, founded the Free Soltware Foundation (FSF) in 1985 (hetp://www.fsf.org/). The FSF is dedicated to

Promotung computer users' rights to use, study, copy, mondify and redstrohute computer programs. Bruce Perens and Eric Raymond created the Open Source Detinition in 1998 (Perens, 1yy8). The Gencral Public License (GPL), Richard Stallman's innovation, is somerimes kawin as "coppleft" - a form ol copyright protection achieved through contract law. As Stallinan deseriles it:

> To copyleft a program, first we copyright it; then we add distribution terms, which are a legal instrument that gives everyone the rights to use, modify, and redistribute the program's code or any program derived from it, but only if the distribution terms are unchanged.

The GPI. creates a commens in software development "to which anyone may add, but from which no one may suteract."

One of the crucial parts of the open-source license is that it allows modifications and derwative works, but all of them must be then distributed under the same terms as the lieense of the original sotware. Thercfore, unlike simply free code, thar can be borrowed and then used in copyrighted, commercial diseribuatons. the upen-source definition and licensing effectively makes sure that the derivatives stay in the opensource domain, extending and entancing it. The GPL prevents enclisure of the free sotware commons, and creates a legally porected space for it to flourish. Because no one can seaze the surplus value created within the commons, software developers are willing to contribute their tme and energy to improving it. The commons is protected and stays protected.

The GCL is the cheef reason that Lmax and dozens of ather programs have been able to flourish without heing privatized. The Open Source Software (OSS) paradeun can produce innovative, high-quality sotitware that meets the needs of rescarch scientists with respect to performance, scalability, security, and total cost of ownership (TCO). OSS dominates the Internet, with software such as Sendmail, BIND (DNS), PHI, OpenSSI., TCPIIP, and HTTP/HTML. Many excellent applications also exist, meluding Apache web server, Moalla Fireines web hrowser and Thunderhird email client, the OpenOffice suite, and many others.

OSS users have tundamental control and tlexibility advantages. For example, if we were to write a model using ANSI standard $C-+$ (as upposed Muroxitt $C-+$ ), we could easily move the conde from one platform to ansther. This may be convenient for a number of reasons - irom simply a preference for one developer to another, to moving from a desktof PC environment to a high-performance computing environment. Open Standards. which ate publicly available spectications, offer control and flexibility as well. Examples in science include Environmental Markup Language (EML) and Virtual Reality Markup Language (VRML). If these were proprietary, use would be likely limited to one propricty application to interface with one proprietary format or numerous applications, each with its own format. We need only imag. ine the lumitatoons on innowation if commonly used protoculs like ASCII, HTTT or HTMI. were proprietary. To organze this growing community, the Open Source Development Network (OSION) (htrp://wwwosdncom) was created. Like many previous open-soutce spin-offs, it is hased on the laternet and provides the teams of software developers distributed around the world with a virtual workspace where they
can discuss their ideds and progress, any hags, share updites and new releases. The open-source paradigm has become the only viable altenarive to the copyrighted, closed and restricted corporate software

What underlies the OSS appruach is the su-called "gitt culture" and "gift economy" that is based on this culture. Under gift culture, you gan sratus and reputation wirhin in not by dominating other people or by being special or by possesemg things other people want, but mather by giving things away - specificaliy, by giving away your time, creativity, and the results of your skill. We can find this in some of the prim:tive hunter-gatherer socterles, where in hunter's status was not determined by how much of the kill he are, but by what he brought back for uthers. One example of a gitr economy is the polatch, which is part of the pre-European culture of the Pacific Northwest of Norrh Amenica. In the por!atch ceremony, the host demonstrates his wealth and prominence by giving away pussessons, which: promprs paricipanss to reciprocate when they hold ther awn porlatch. There are many other examples of this phenomenon. What is characteristic of mosi is thar they are hased on abundance economes. There is usually a surflus of something thar ts is easter to share than to keep for yourself. There is also the understanding of reciprocity - that by doing this, perple can lower thear individual risks and increase ther survival (Raymond, 2000 ).

In hunter-gatherer societies, freshly killed game called for a gift economy because it was perishable and there was too much for any one person to ear. Information also loses value over rime and has the capacity to satisty more than one. In many cases, information gains rather than loses value through sharing. Unlike material or energy, there are ne conserwation laus tor infomarion. On the contrary, when divided and shared, the value of information only grows - the teacher does nor know less when he shares his knowledge with his students. While the exchange economy may have heen appropriate tur the industrial age, the gift economy is coming back in we enter the mformatum age.

Ir should be nored that rhe community of scientists, in a way. follows the rules of a gif! economy. The scientiss with hughest status are nor those whe possess the mose knowledge, they are the ones who have contributed the most to their helds. A scientise of great knowleige but with no students and tollowers is almost a loser - his or her career is seen as a waste of talent However, in science the gith culture has not yet fully penetrated to the level of data and source-code sharing. This culture has been inhuluted by an antipuated academic model for promenton and tenure that is still prevalent today. This culture encourages delaying rhe release of data and source corle to ensure that credit and recognition are bestowed upon the scientist who collected the dara andior developed the corte. This model (which was developed when data were much more difficult to collect and analyze, and long betore computers and programming existed) no longer applies in the modern scientific work, where new sensor technologies and observing systems generase massive volumes of data, and where computer programs and numerical models have hecome so complex that they cannor be fully analyzed or comprehended by one sciennst or even small teams.

## Knowledge-sharing and intellectual property rights

For centuries, nohody cared about "owning knowledge." Fither people freely shared ndeas, or they were kept secret. The idea of giving knowledge our yer reraining some sort of conmecton to it, ughts for it, was hard to comprehend. Actually, it is still a fretty fluid concept, regardless of the numerous law's and theories that have treen
creared since the Burish Statute of Anne, from 1710, which was the first copyright act in the world. Victor Hugo scruggled with the concept back in 1870:

> Before the publication, the author has an undeniable and unlimited right. Think of a man like Dante, Moliëre, Shakespeare. Imagine him at the time when he has just finished a great work. His manuscript is there, in front of him; suppose that he gets the idea to throw it into the fire; nobody can stop him. Shakespeare can destroy Hamlet, Moliere Tartufe, Dante the Hell.

> But as soon as the work is published, the author is not any more the master. It is then that other persons seize it: call them what you will: human spirit, public domain, society. It is such persons who say: I am here; I take this work, I do with it what I believe I have to do, [..] | possess it, it is with me from now on....

An Act for the Encouragement of Learning, by Vesting the Copies of Printed Books in the Authors or Purchasers of such Copies, during the Times therein mentioned.

Whereas Pinters, Booksellers, and other Persons, have of late frequently taken the Liberty of Printing, Reprinting, and Publishing without the Consent of the Authors or Proprietors of such Books and Writings, to their very great Detriment, and too often to the Ruin of them and their Familes For Preventing therefore such Practices for the future, and for the Encouragement of Learned Men to Compose and Write useful Books; May it please Your Majesty, that it may be Enacted, .. That from and after the Tenth Day of April, One thousand seven hundred and ten, the Author of any Book or Books already Printed, . . or . other Person or Persons, who hath or have Purchased or Acquired the Copy or Copies of any Book or Books, in order to Print or Reprint the same, shall have the sole Right and Liberty of Printing such Book and Books for the Term of One and twenty Years, to Commence from the sald Tenth Day of April, and no longer. (http.//www.copyrighthistory.com/anne.html)

Formally, an intellectual property (IP) is a knowledge product, whach might be an idea, a concept, a method, an insight or a fact, that is manifested explicttly in a patent, copyrighted material or some orher form, where ownership can be defined, documenced, and assigned to an individual or corporate entity (Howard, 2005). It turried out that in most cases it was the corporations, companies, producers and publishers who ended up owning the intellectual property rights and beng way more concerned about them than authors, even though originally the idea was for the "Encouragement of Learned Men to Compose and Write useful Books."

Although the concept of public domain was inplicitly considered by the Statute of Anne, it was clearly atticulared by Denis Dideror, who was retained by the Paris Book Guild to draft a treatise on literary mghts. In his Encyclopedie, Diderot advocared the systemic presentation and publication of knowledge of all the mechanical arts and manufacturing secrers for the purpose of reaching the public at large, promorion of research, and weakening the grip of craft guild on knowledge (Tuomi, 2004). With these pioneering ideas, Diderot ser the stage for the evolvement of public domain, which includes non-exclusive IP that is freely, openly available and accessible to any member of the society.

At che same tume, Diderot was part of a debare with anorher French Enlighrenmenr prominent mathematictan, philosopher, and political thinker, the Marquis de Condorcer ( 174 j-1794), who was voicing even more radical ideas about intellectual property rights. Dideror argued that ideas sprang directly from the individual mind, and chus were a unique crearion in and or themselves. Indeed, they were, in his words, "the very substance of a man" and "the most precious part of himself." Ideas had nothing to do with the physical, narural world; they were subjective, indwidual and unicuely consticuted, and thus were the most inviolable form of property. For Dideros, purtung ideas in public domain did not encroach on the property rights for these ideas. For him, copyright should be recognzed as a perperual property righr, bestowed upon an author and inherited by his or her offspring.

Condorcet went much further. In sharp contrast to Dideros, he argued that ideas did not spring directly from the mind but onginated in nature, and were thus open to all. Condorcet saw literary works as the expression of ideas that already existed. The form of a work might be unkue, but the ideas were objective and parcicular, and could nor be clamed as the properry of anyone. Unlike land, which could only be settled by an individual or a family, and passed down by lineage to offspring, ideas could be discovered, used and cultivated by an infinire number of people at the same time.

For Condorcer, individuals could nor claim any special right or privilege to ideas. In fact, his ideal world would contain no aurhors at all. Instead, people would manipulate and disseminate deas freely for the common good and the benefir of all. Copyright would not exist, sunce no individual or instrution could claim to have a monopoly on an idea. There go our parents!

Public doman and exclusive IP rights represent the two exrremes in IP regimes. with the former providing a free sharing of knowledge and the latrer emphasizng the rights of owners in limiting access to their knowledge products. Since the inception of the concept of intellectual property rights, it has been argued that protecting these righers provides adequate compensations for owners and encourages mnovations and rechnological developmenr. However, hisrorical evidence and published research do not support these claims, and pornt to lack of concrete evidence that confirms them ( N ational Academy of Engineering, 2003). Also, and increasingly, many technolug)cal innovations are the result of collaborative efforts in an environment that promotes non-exclusive intellectual rights. Although most of these efforts are in the software development domain (e.g. development of Linux), it is inceresting to note that the tremendous growth and development in the semi-conducror industry are manly atrributed to the highly dynamic and connected social networks of the Silicon Valley in the 1960s, which was regarded as a public doman region, since informarion and know how were freely shared among its members.

In the world of business, preservaton of exclusive IP rights is seen as a necessity to maintain compectrive edge and protect expensively obrained rechnology. Patents that were designed to stimulare mnovatoon are now having the opposite effect, especially in the software industry. As Perens describes: "Plagued by an exponential growth in software patents, many of which ate not valict, software vendors and developers must navigate a potential munefeld to avoid parent infringement and fucure lawsuirs" (Perens, 2006a). The big corporations seem to solve the problem by operating in a détente mode: by accumulating huge numbers of patents rhemselves, they become invulnerable to claims from rivals - competitors don'c sue out of fear of reciprociry. However, now we see that whole companies are created with the sole purpose of generating profit from patents. These "patent parasites" make no products, and derive
all of their income from patent litigation. Since they make no products, the parantes themselves are invulaerable to patent infringement lawsuits, and can attack even very large companics without any iear that those companies will retaliate. One of the most excreme and ugly methods is known as patent fauming - influencing a standards organsation to use a particular principle covered by a patent. In the worst and mest deceptive form of patent farming, the patent holder encourages the standards orgameat ion to make use of a principle without revealing the existence of a patent covering that priaciple. Then, later on, the patent holder demands royalties from all implementers of the standard (Perens, 2006b).

Cercainly, these patent games are detrimental for small husmesses. Accordug to the American Intellectual Property Law Associarion, software parent lawsuits come with a defense cost of abour $\$ 5$ million per anaum. A single patent suit could bankrupt a typical small or medium-sized applications developer (let älone an open-source developer) ceven before the case were fully heard (NewsCom, 2005). The smaller patent holder simply cannot suscain the expense of defense, even when justified, and is forced to setrle and license patents to the larger company. The open-source community is also constantly under the threat of major attacks from large corporations. There is good reason to expect that Microoolt will soon be launching a patent-kased legal offensive agaust Linux and ocher free software projects (NewsForge, 2004).

Unfortunately, universities are increasingly secking to capitalize on knowledge in the form of IP rights. However, only a few of these universities are generating sig. nticant revenues from licensing such rights (Howard, 2005). This applies equaliy to modividual researchers who may seek to protect and protte from their findings.

## Software development and collaborative research

lust as puthlic doman and exclusive IP righes represent the two extiemes in IP regimes, the softwate development process can occur in one of two ways - either the "cathedral" or the "bazaar" (Raymond, 2000a). The approach of most producers of commercial, proprierary software is thar of the cathedral, carefully crafted ty a small number ot people working in isolation. This is the tradtional approach we also find in scientife research. Diametrically opposed to this is the bazaar, the approach taken by open. source projects. Open snurce encourages people to tinker treely with the code, thus permitting new ideas to be easily introduced and exchanged. As the best of those new ideas gain acceptance, it essentially establishes a cycle of huilding upon and improwing the work of the original conlers (frequently in ways they dutn't ancicipate). The release process can be descrited as release early and often, delegate everyithing you can, te open. Leadership is essential tri the OSS world - ie., most projects have a lea.d thas has the final word on what gues in and what does not For example, Linus Tonvalds has the final say on what is included in the kernel of Linux. In the cathedral-builder view of programming, hugs and development problems are tricky, insidious, deep phenomena. It takes months to weed them all out - thus the long release intervals, and the disappointment when long-awated releases are not perfect. In the bazaar view, mose bugs become shallow when exposed to a thousand co-developers. Accordingly. frequent release leads tu inore corrections, and, as a beneficial side-effect, you have less to lose if a bug gets through the door.

It is clear that the bazal approach can work in general scientitic projects, and in modeling applications in prarticular. Numerous successtul examples, especially in Earth system modeling, attest to this fact. However, we must also recugnize that there
is a difference between sotware developmenc and science, and that software engneers and scientuss have different athtudes regarding software development. For a software engineer, the exponental growth of computer performance offers unlimited resources for the developuent of new modeling systems. Models are therefore vewed by engineers as juse pleces of sofrware that can be huile from hiecks or objects, almose auromatically, and then connected over the wet and discributed over a network of compaters. It is simply a matter of chowing the right archutecture and witiong the appropriate code. The code is either correct or not, either it works or it crashes. Not w with a scienritic model. Rather, most scientists conomer that a mexdel is useful only as an eloquent sumplification of reality that needs profound understanding of the system to be built. A model should tell us more about the system than simply the data available. Even the best motel cin be wrong and yet still cuite useful if it enhances our understanding of the system. Moreover, it often rakes a long time to develop and test a scientific model.

As a result of this difterence in point of view and approach, we tend to see much more rapid development of new languages, software development tools and opentode and information-itharing approaches among software engineers. In contrast, we see relatively slow adoption of these tools and approaches by the research modeling communty. This is in spite of the fact that they will undoubedly catalyze more rapud sciencific advancements. As web services empower researchers, it is becoming clear that the biggest ohstacle to fulfilling this vision of free and open exchange among scientists is cultural. Competitiveness and conservative approaches will always be with us, but developing ways co give meaningful credit to those who share their data and their code will be essential in order to clange arritudes and encourage the diversity of means by which researchers can concrituce to the global academy (Nature, 2005) It is clear that a new academic model that promotes open exchange of data, software and information is needed Forcunarely, the success of the open-source approach in software development has encouraged researchets to start considering similar shared open approaches in scienufic research. Numerous collaborative restarch projects are now based on Internet communicarions, and are led simultaneously ar several institurions working on parts of a larger endeavor (Schweik et al., 2005). Sometimes, such projects are open and allow new researchers to participate in the work. Results and credit are ustally shared among all the participaats. This trend is being fueled by the general trend of increasing funding for large collaborative research projects, particularly in the Earth stiences.

## Open-source software vs community modeling

The recent emergence of open-source model development approaches in a variety of different Earth science modeling efforts (which we refer to here as community modeling) is in encouraging development. Although the basic approach is the same, we can also : dentify several aspects of research orented community modeling that distinguish it from an open-source software development. For example, there have been a number of successful community monteling efforts (Table 9.1). However, unlike most open-source software development propects, these have heen blessed hy substantial grant and contract support (usually from federal sources), and exist largely as umbrella projects for existing ongoing research. It is probahly also fair to say that


|  | Website and playus | Scosea | P-opects |
| :---: | :---: | :---: | :---: |
| ( Mres: <br>  <br> PAr.man. IU <br> 4.1.t.s.: <br> *n+m• |  <br>  <br>  <br>  <br>  'froce m. | Ddan liedra <br>  <br>  |  <br>  <br>  <br>  <br>  <br>  <br>  <br> 19• <br> " <br>  <br> دr. $\downarrow \boldsymbol{N}$ <br>  <br> - ${ }^{1} 10 \cdot 4: i$ |
| $\mathrm{I} \cdot \mathrm{NA} \cdot \mathrm{I} \text { an }$ $\qquad$ <br> 4, (0) <br>  |  1-1. |  <br>  <br>  <br> Wmeria medrar <br>  <br>  |  |


| 1: 54 |  | - Tremsr. <ter |  |
| :---: | :---: | :---: | :---: |
|  |  | -, |  |
| cumst Sosm |  | 1"\% ruse ...st- |  |
| - ${ }^{\text {a }}$, |  |  |  |
|  |  |  |  |
|  |  |  |  |
| 1, jles 4b | - hosumutistue m |  |  |
|  |  |  |  |
| 3marer | ¢5\%-an- rincont. |  | 'V200 |
| 91460゙1 | runde mer |  |  |
| P.anta' |  | +** |  |
| : |  |  |  |
| . 'bimy | 71.7 -14ctas | - ¢** | - 2 mm - $\mathrm{m}^{\text {a }} 9 . \mathrm{V}$ |
| --miv | \#nua - 「rrarac | +. - - - - |  |
| 4**** |  | $\rightarrow$ - -acrect f.ter |  |
|  |  |  |  <br>  |


| Table 9.1 (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| Name | Website and players | Scope | Projects |
| WATer and <br> Environmental <br> Research <br> Systems <br> (WATERS) <br> Network | hitp:///www cuahsi org/ hitp $/ / /$ leaner ncsa.uluc edu/home/ | Hydrologic sctences, complex. large-scale environmental systems, education, outreach, and technology transfer | CUAHSI Consortum <br> ol Universties for the Advancement of Hydrologic <br> Sclence. CLEANER <br> Collaborative Large-scale <br> Engineering Analysis Network for Environmental Research |

most of the existung Earth science communny models are not truly "open source" - i.e. access to the codes and rules governing modification and redistribution are usually more restrictuve than, for example, those under GPL.

In general, in community modeling there is usually a much smaller number of participants because the research community is much smaller and more spectalized than the broad field of software development. Because the pool is smaller, is may be harder ro find the right people, booth in rerms of thens skills and their willingness to collaborare within an open modeling paradigm Similarly, there is generally a much smaller number of users of open-source research-oriented models, which may be very specialized and usually require specific skills to use. This is mostly because scientific models are very often focused on simulating a specific phenomenon or addressing a specific scientific question or hyporhesis, and also because the screntific communiry is very small compared with the public at large. Along these same lines, research-oriented models are generally more sophisticated and difficult to use than soltware products that are developed for the putlic. It is cerrainly much harder to run a meaningtul scenario with a hydrodynamic simulation model than to aim a virtual gun ar a virtual vicrim and press che "shoor" button in a compurer game (chough it might be argued that to a large extent this difference in ditficulty of use has more to do with the primutive state of the user interface of most scientific codes). It is also generally true that scientific codes require more sophisticared documentation and a steeper learning curve. Documenting scientific models is a real problem - ir is nor what researchers normally enjoy doing, and the need for doing it is rarely appreciared and funded. On the orher hand, documentacion is a crucial part of the process if we anticipare orhers using and raking fart im the development of our models.

Open research modeling is also much more than open programming. As mencioned above, software development has a clear goal, an outcome. The product specifications can be well established and designed. In contrast, research modeling is trerative and interactive. The goal often gets modifed while the project evolves. It is much more a process than a product. It is usually harder to agree on the desired outcomes and the features of the product. In some respecrs, modeling is more like an arr chan a science. Following chis analogy, how do you get several artists together to paint one picture? This is particularly true in ecological modeling, where chere is no overarching cheory in guide inodel strucrure and where a variety of different formulations can be used to represent a particular process. These aspects of scientific modeling actually make it higtily amenable to open programming approaches, which naturally allow a high degree of flexibility.

A sightant impehtuent to developing open researeh models is the lack of infrastructure - chere are still very few good software tools to support community research and nowleling propects. Once agmon, there ss an obvious gap bet ween software and application. There is sotrware that potentially offers some exciting appoaches and new paradgens ro support modularity, data-shating, web access or ilexible organazation - all the major cmmonents required for successful molel integration and development. The mose recent trends in sotware design are compared with the Lego constructor wer the wels (Matkoft, 2006) - exactly what we need for modular models. However, this is yot to be developed and applied to the modeling process, and embedded into the madeling lexicon and practice. Yet another difference is that most restach modeling profocts takes years to develop. This is in contrast to wome of the soltware hacks that can be invented and implemented in a matter of hours, fuckly waining recogritoon and rexpect in the solrware development community. Research is a much slower and redtous process, where small incremental ideas and successes may be very important, but are much hader to document, dissemmate and appreciace.

Finally, returning to the central problem, we seally need to change the traditional culsure and attitudes of research scientists - that is, promote a shitt in the mindset and paychology that drives scientific reseach. Historically, most science has been drwen hy individual effors and talent. The talent and ingenuity of individuals will atways be critical in scientic exploration, but with the growing amount ol data, knowledge and mformaton, most of the hreakthough achievements are now produced by reall efforts, where teams and teamwork rather than mdinduals are kty. This remd is being driven to a large exsent by the increding emphasts in scienutic research on large projects aimed at solving complex merdisciplinary problems. such as sumulating and predicting the Eatio system response to glohal wanmeng. It is becoming increasingly dificult to identify the sule indurdual who cries "Eurek!" and solves the prothem. Even when this does vecur, very ofren the recognition is biased hy past success, hieratchy, and persunalities. There is an ohvonus need for new award and credir systems that will stmbulate shating and teamwork rather than dnect personal gain, credit and fame

By shating the dara and concepts over the wel, potental users are mvited to jom in collahorarive research and analusis of the turure trends of watershed developinens. Their feedthack is solicited for furber dissemmation and improvencon of knowledge about the watershed system. The management and decsion making are disclosed to the puhtic, offering a boad spectrum of vews and values. and mvitug stikehulders tw hecome participants in a cruly democratic process of decision-inaking

Beyond separate projects involving $[$ ' M , we can envinon them coming together in an integrated eftort to support whole ecosysem and warershod management. which is a holisuc and integral way of research, amatysis and decisen-making at a watershed scale In the 1990 and even earlier, there was much hope for this approach. In certainly imples more than pust the equional scale ol analysis. The inechud stresses the need to integrate not unly physical and holngical factors, but also political and socu-ecomomic ones. The major iupetus for wateshed management stemmed foom the undestanding that science needs to be linked to planning, and that decisionmaking should he based on hroad cicizen involvement. Thus it is impmetant that the information is shared hetween the stakeholders and that it is processed into a fiontat readily perceised by wide and diverse groups, msnotutuns and individuals. Morcover, the waterahed delineates a physical toundary and not a poltical one, creating the need for methemp that will allow matagenent and communication berweon many
administrative entitues such as towns, counties and stares. One of the problems rhat watershed management immedately encountered was the mismatch between the existing adnunistrative herarchies and the physical and societal boundaries and groupings thar represented the watershed dynamics. Appropriate institutions are required that can operate in a flexible manner over alternative regional divistons.

The fact that ecosystem management seeks alternative mechanisms to putely marker forces lyased on the existing policy equibrium seems to be very borhersome to traditonal economists (Fitzsimmons, 1994) They argue that the ecosystem concept is inappropriate for use as a geographic guide for public policies. Mostly, though, rhey are concerned that the ecosystem approach will signiticantly expand federal and other non-marker control of the use of privately-owned land, and lead to increased restricrions on rhe use of public lands for economic purposes.

Lackey (1998) identified five general characteristics for ecosystem managernent problems.

1. Public and privare values and priorities are in dispute, resulting in mutually exclusive decision alternarives
2. There is political pressure to make rapid and significant changes in public policy
3. Private and public stakes are high, with substannat costs and risks (some urrevers(ble) to some groups
4. The cechnical, ecological and sociolngical facts are highly uncertain
5. Policy decisions will have effects outside the scope of the problem.

These seem like exactly the rype of difficultues that can be resolved with PM. He concludes that "solving these kinds of problems in a democracy has been likened to asking a pack of four hungry wolves and a sheep to apply democratic principles to deciding what to eat for lunch" (Lackey, 1998: 22). The outcome may seem quire obvious, except that with people there is always less certaincy about how problems are resolved, and in the long run there is still a chance for che sheep to persuade the wolves to become vegerarians. The success of this endeavor becomes very much dependent on how efficiently the new technology is developed and used, since it is our scientific, culcural and social development that makes Homo Sapiens spectal and leaves certain space for optimism. In this context we do not view rechnology as a panacea that can cure all the problems of environmental degradation and resource depletion, but racher as a means of understanding, educating, and resolving conflice.

Regıonal management implies a close interaction and linkage between the numerous agents acting in the region. The efficacy of this interaction is a function of the information that is shared among and used by all the stakeholders. In many cases, it depends not so much on the quality and amount of the information available (what science has been mostly concerned with all this tume) but rather on how well the information is dissemınated, shared and used. And that is exactly the function that the PM technıques can offer, especially if they are enhanced by the Web rechnologies.

As with the advent of any new technology, it has taken some tume to realize all the benefits and advantages that the Internet can deliver. Unoll 1992 it was the realin of a relatively small concingent of scientists and engmeers, who were using it to communicate data among themselves, and both the sender and the recipient of information were usually personally detined. The Web opened a new page in the
use and development of the Intemet. Infomation was no longer personally tirgeted; once posed on the net it became open to any user who had the interest and tume to view it. Basically, the Web to the lntemet is the same as the radio is to postal services. Instead of maling a letter to a dehnite addressee, information could be now ared as if being broadcast over a radio or television network, with che sender no longer knowing who the recipient is to he. In this way, the adiences expanded dramatically and are still growing rapidly. A major advantage of the Weh. compared with other mass media, is that it is relatively cheap. As a result, in addition to the husinesses that are eager to employ another opportanty for advertisement and sales, the Web offers a whole new way of outreach and communication to governmental. academic and non-proht organizatoms. Even individuals can afford to establish their presence in this mass media.

Another advintinge of the Wet is that it provides for direct feedback from the recipient, who can now inceract with the informaton displayed. Instead of just passively viewing information, website visiturs can change and mudify it remorely Lisers are offered search engines that can direct them to the most relevant informatom as ailatle; they can revist sites and refer others to them. Unlike other mass media, the Web is more stable and persistent in the sense that, unlike other mass media such as ridu, where once information has been aired it is no longer retract. able, on the Web the information stays where it was and can be eas!!y referenced and downloaded.

In spite of these novel features, moss of the use of the Interner does now seem to be much different from that of the traditional mass media or archived information (libraries, data sets, etc.). Business is driving a vast majority of web applications tuwards advertisement and sales in a way very simalar to that which may be observed on radio and TV, and in unsolicited mat and catalogs. There are just a few examples when the Web is used in an innovative way that employs some of its unique teatures.

The consensus building power of the "informational superhighway" created on the Weh has not been used to "full speed." We argue that there are a numher of teatures that make the Web an exceptumally important tool for watershed management in particular, and for decision support and management in general. The Wet is:

- Open. The lnternet is one of the most readily available and telable media, providing information across geographical, administrative, sucial and ennomic buundaries. It is relatively cheap, and can he accessed by all the stakeholders in a watershed and outside of it. The fact that it requires a computer (or advanced TV set - "Web-TV") and an Internet connection is becoming less and less rescrictive as mure Internet Service Providers (1SP) enter the market For those who do not have Web access at home or at work, there are public providers (librantes, "webcafes," etc.) that also have become more avalable. This direct access to all the necessary iniomation and, reciprocally, the ability to dissemmate the facts that are of concern to particular stakeholders is an importane pretegusite of watershed management.
- Interactive. It is most unportant for management purpuses that the user has the option of interacting with the provider of information and with other stakeholders. With the lnternet, this can he accomplished either via e-mail or directly through forms, wikis or blogs that can be part of web pages and transmitred to
the server. These contributions can be further manually or automatically processed and posted back on the Web. In this case, information is not only passively perceived, as in case of the traditonal media (radoo, press, newslecter, etc.); It also stimulates direct fecdback. Moreover, users can modify the content and format of the existing pages by ordering excerpts from data bases or providing scenarios for model runs, and thus crearing their own output to be immedrately viewed on the Web. They may also provide additional information to the Web in response to the published requests or as a representation of their own findings and concerns.
- Fast. Communtations via the Internet are probably the fastest and the most economic, since they do not require any intermediate carriers (as in ordinary mail) and materials (paper). Once the information is updated on the server, in becomes immediately available for further use and processing. The feedback in many cases can be handled automatically and directly channeled to the appropriate web link or interest group.
- Spatally discributed. Invernce access is offered over telephone lines and therefore covers almost the entire planet. The various nodes on the Internet can correspond and represent the spatially distributed data of different stakeholders in the watershed and ourside it. The web tools allow information to be linked together; search engines are created to find the necessary information and data. In this way, concerns and awareness can be shared across different geographic localities. This gives a broader picture of the system at stake within the framework of external systems and concerns.
- Hierurchical. The hierarchical structure supporred by che Web design allows organization of the data in logical and efficient ways when various branches on the Web may present specific fields, domans and interest groups. The links on web pages can stitch the whole structure together, offering cross-reterences and alternative views whenever necessary. For example, the warershed hierarchy of subwatersheds and sub-subwatersheds can be easily mirrored on the Weh, wirla specific groups of pages representıng each particular level. The hierarchical structurc also offers levels of protection for the intormation, allowing certan domains to be completely open to all users, others only read-permuted, and still others accessible only to limiced users and interest groups, providing the necessary extent of privacy and discretion.
- Flexble. Additional benefits that are offered by the interactrve features allow the data to he processed by users according to their own goals and interests. This is especiaily important for modeling tools, because by employing the Web they can he made directly accessible to the user, and sufficiently flexible and user-friendiy to be used meaningfully and efficiently. Currently, web applications are being used at the high-school level to reach science and ecology. The scope of porential uses ranges from running partıcular scenarios, which stakeholders can formulate based on their concerns, to adjustments in scale and structural detail of the model in response to special needs and projects.

All the important features and rools to angment and improve decision support and management seem to be present, and it then becomes a matrer of using them efficiently. This is really handy for supporting the PM process and making it evolutionary and adaptive over the welh, such thar it can remain an ongong activity even when the current project has reached its goals and a certain decision has been made.

No matter how gond and appropriate a decision, an open system tends whange and evolve, and decisions will eventually need to he reassessed and adapred to new developments and new bata. The web presence of sakehalders and then prevous effors as part of a PM propect together wath modeling tools and data that have been developed and researched, should reman available tor furure applications. Future pojects will then not need to start from scratch, as there will be access to all the previously collected intormation, and, even more importancly, the social captait of soctial networks and links developel as part of the previous PM adventure.

A PM project becomes a kind of open-source propect with varous stakehollers concributing to it in variens roles. Some will be administering the procesc and guiding its progress, others will be conuributng lits of data and knowledge, others will te developing models and analytical tools, while yet otners will be writing documentation and disseminating results tur uther interested parties. This is very similar to the structure of many open-source sofrware projects. thousands of which are adiningstered by SourceForge at hutp://www sorrecforge.net - a gowershop tor open sotware development

### 9.4 Conclusions

Much human creativity is geared towards moving energy and materials father than mformation, even though information has become another crucial component of hurnan welfare and livelhood. Information, unlike energy and materials, is not subject to conservation laws. By copying intormation trom sources and distrituting it to new destinations, we do nor luse anfurmation at the source. This is what is known ats mon-rival goods in ecological economics (Daly and Farley, 2004). As with gravity, by using intormation we do not decrease the ahility of others to use it. Nevertheless, exchange of information is restruted by patent law, as well as by institutional, cultural and traditional hurdles that create procective bartiers hindering the free How of this valuable commolity. In this way we ate making it exclutable. It is not surprising that private companies are often relucrant to share data and software, hecause it can impact their prohts in a competitive marker. Unfortunately, hartiers to mbormation exchange are also signitheans in the academe community, where the long-standing emphasis on publication and (perhaps unwarranted) fear of misuse of released data and sotware have inhibiced free and open exchange. Fromotion and tenure at academic mstitutums ss still largely dependent upun the wolume of peer-reviewed fublications and suceess in securing grant and antract funds. As a result, academic scientists have litrle or no incentive to spend the time and effort that is required to document and disseminate their data andion their models and cole for the greater gool of the reseach communicy. This problem is exacerbated by the fact that grant and concract fundrig for research rately prowides diect support for documentation and dissemination activities. The issue is particularly acute when it comes to sharing the source code of models and bata analysis software - even if a sctentist or engineer is amenable to sharmg the cole, che effort requred to provile documentation to make it useful is often viewed as an insurmouncable otstacle.

Funding agenctes worldwide seem to recognize clearly the pressing need to enhance communication and pronote open exchange of data and information among scientists and hetween acalemic and private institutions via the Internet.

The Namat Science Foundam, for example. has intiazed several new major research intiatives that are aimed at developing andfor explucitly requing this enhanced communcation. These intiatives include NEON (National Ecological Ohservatury Network), ClEANER (Collahoratuve Large-Scale Engineering Analysis Network tor Environmenta! Research), CUAHSI (Consortum of Universtres for the Advancement of Hydrological Science Inc.) and ORION (Ocean Research Interactive Observatory Network), to name just a lew. The European Union has tunded such open-source projects as Harmon-IT and Seamless. All of these minatives emhrace the idea that developing the infrastructure needed to allow tree and open exchange of large volumes of data and intormation will be crucial for making rapod scienufic adancements th the future. For example, the success of current efferts to develop Earth observatories in borh terresrral (e.g. NEON) and marine (e.g. ORION) environinents will be critically dependent upon the successfil development of this infrastructure, hecause these ohservatories will have to collect, protess and disseminate large vohumes of data and assimilate them inom models in a timely manner

Ihe challenges we tane in creating a new research paradign are many. Suhstantial improvemencs in hardware (e.g. nework and computing infrastructure) and software (e.g. database manipulation sotware and data-assimilating numerical modets), and a much higher level of standardization of data formats, will he required. New means for carrying out real-time data processing and auromared dara qualiry conrrol will also have to be developed. However, we helieve that one of the greatest challenges we face in this endeavor is bulding the community-modeling and intomation-shaning cultare that will he regured for success. How do we get engineers and sciencosts to put aside their craditional modes of doing business? How do we provide the mcentives that will he requireل to make these changes happen? How do we get our colleagues to see that rhe benehts of sharing resources far ourweigh the costs ${ }^{7}$ Timely shanng of data and inturmation is in the best interests not only of the research communty, but also of che scientust who is doing the sharing - substantial addumal henefits will he derwed through new concacts, collatorations and acknowledgenent that are fostered hy open exchange. Numerous examples attest to this fact. The real challenge we tace is getcing unt colleagues to recognte the potential benefits that can be derived from adopting a community-modeling and whormarion shang culure. In oddtom, we need ro dispel the tinwaranted fears that many scientists and engineers harber: that they will he "scooped" if they release their data con soon or hlamed it there is a hug in their code. Finally, we need to accept the fact that releasing undocumenced or puorly documented software is preferatle to not releasing it ar all.

## Further reading

The end of human antipations is anatyed by Dinmint, ]. (2005), m Collapse: Hune Societues Choose to Faul or Suacted, Pengum, 592 pp.
There is a growng body of literaure on humari behawior. You can read morr about omplex econome behater in W.R. Arthur. 5 N . Duthat, and D. Lane. 1997. The economy as an evolving complex system 11 Sunta Fe Instime Studias bu the Science of Complexty, Vol XXVIL: Addson-Wesley; K.L. Juid, and 1.. Tethasum. 2006. Handheek of Compuational Economics Volume If: Agent-Kased Compurational Economics. Elscyier B.V. Kurman, A.P, Whom or what does the representative iadivalual represent' Joumal of Econome Perspectues, 1992.

6(2) pef 117-136. There is a whole Jourmal of Ecomomac Behator $\boldsymbol{E}$ Organization prabished by Springt.
 (2006). Ameratan Mamia: Wheri More Is Noit Fnough. W. W. Nombn, 352 fp,

To read more about clinate change you can start uth the pages from the Unom of Comeemed Scientists at hrepi/wwwucsusa orgglobal_wamangl. Here you will find all the basic daut. Fom

 prublerris and issum.
The herory of climate change research is described by James Fleming, 2007. Imomate Unversality: Local and Olobat Themes in the History of Weathet and Clmate. Eience Fhstory Foblectams. 284 pp.
 B.S. Melneosh, C. Guppont, A.A. Vonow, C. Smuls, K.B. Matrhews, M. Montcimo. MI]. Kolkman, $N$ Cioseman, $M$ van Itrersum, D. Hase, A Hase, J. Mysak, J.C..] Grimm, S. Seber, P. Verweig, N. Qumn, P. Wacger, N. Gabor, D. Hepring, H. Scholtent A Sulisu, H van Delden, E. Gaddis, H. Assat. 2008. Bridging the gaps berween design and use: wevelop. ing rools to support envemonental mambement and policy tr lakentan, A. Chen. S., A
 Elsevier (in fress)
The abmoss elassic descriprion of what post-nomal setence mears for as and hew it changes some of (iat paradigms, can be foud in Funtowice, $S$ and Raver, J.R. (1993). Science for the post-normal age Futwes 25 (7), 739-755.
Kasemur, [3. lager, ]. lacger. C.C. and Gardner. N.T. (eds.) (2003) Publis purkifmon in sustarabilicy scence: A handlomik Cambridege Universty Press, Cambridge. 316 pp. - This 15 an imporam collectum of papers on partuipatory rescarch Theye is nes very inach about maxietms
 participaam.
For more details athat HubNet - the patucipatory mexleting component of Neduge ser herp:ifacl.
 progers that use this tool hetpi/cel northwestern celu/purtsmas heml
Othe redevint pupers un puraciputony modeling are: Korfmacher, K. S., 2001. The politus of pas. micipation in warershed inoleling. Fnvirmmental Mandememi 27(2), 161-176.
Berrele, T.C: and Caytod, I (2002). Democricy in pracrice: Publie participation in envirunmenral dectsions Resources for the Future, Washingron, D.C.
Carr, DS and Halvorsen. K. (2001) An evaluition of rhrce demacratic, communtr-bised
 community dinners. Sociecy and Nathal Resemace, 14:107-126.
Durami, L.A. and Brown, K.C. (1999). Assessing puthic parriciparon in U.S. watershed initatives. Suctery and Nancal Resinters, 12: 455-467.
Gough, C.E. and Darier, (2003) Contexts of cirizen pamerarmen Public parricip.rion in custarnability scuence. In: B. Kasernu, C.C. Jueger. l. Jager and N-T. Gardener (eds), Public parmapatom in suswinabiliry science: A handbow Cambridge Unversity Press, Cantoridge. P. 316

The Selomoris Hathor project is descrobed in Gablis, E. 1.. Vadich, H., and Voinov, A (2007) Participatory modeling and the dilemina of dittuse mirogen management in a residental warershed Emarom. Misdel. Sofiutire. 22. 5, 619-629.
Fon mare mivomaun about the Si Albans pmient see USD)A (1991). Sr. Albus Bay Rural Clean Water Program. United States Department ol Agriculrure. Vormont Warer Resources Research Center: Hyde, K., Kamman, N, Smelter, E. (1994). History of phosphorus loadmy to Sr. Albans Bay, 1850-1990. Lake Chamadin Basin Progiam Techical Repart No. 7B; Brawn
 mixed use watershed in vermone (in preparation).
Aptellyumn Si. (1995). Rale of Lantsrapes in Stormwater Mimagement In: Neumal
 County and Swat Letels. Chicago, Illmois. EPA/625/R.95/003

Shared Vision Planmizg (SVP) adeas have betr advotated inside the Army Corps of Engmeers. but

 (1976). Tesming an rerative, open proces for water resources plimning. Fort Belwor, Va.: L.S. Amy Engucer lnsturuce lor Water Resources 66 pg . (IWR contract report mo, $76-2$ ): Wagher T.R., Ormando L. (1975). Analysis of New Techniques for Pulshe Involvenent in Water Plannong. Water Resources Bulletm, VII, N 2, pp.329-344. An important retent paper on SVP - Pamen, R.A. Canweil, FIE., Lorte, M.A., Werick, W, (2008). Disciplined Planneng structured Partiepatom, and Collaboratoe Modeling - Applyng Shased Vison llanang to Wher Resorees Deciswon Miking, ASCE J Warer Resources Management and Planning, is
 A., W.E. Cox, and H. E. Catdwell 12007). Pilot Collaborative Modeling Study tor Regulatory Issues an the James River Word Enemonmenal and Water Remources Congres 200n: Reskomg Our Naturill Fatbitat. ASCE

 Explonatons; 2001 - The Visual Dispioy of Quontiathe Infomatorn; 2006-Beana/ul Eviderce. Graphics l'ress.

Some key unters on open souce and general public trense deas are Bruee Penens, Refard Stallomin ind Enc Raymond. Auch of then work tan be found on the aveb.

Perens, B, 2006a. Software Patencs w. Fiec Solimate hetpolherensom/AreiclesiPatents. hime
 PatcntFarmung. Itati-2
 doal-haradrihacker history/udex.hrml
 arthedral-tazaar/homestedingt
There satso abook by Erac Raymond, 1999. The Carhedral and the Bayacy OReilly, 268 pp.
Levy. S., 1984. Hackers. Anchur/Dophlecias, New Yark - Thus digs onto the histhy of the phenomenon of hackers and what they are For more about mfomation and property righs see: Drahos, P.
 The New Press.
The histhry of copyright and the Dederot-Gondorce controwers is descroed by Waiker. D. (2000). Hers of the Entuhtenment Coproght Durne the Fremeh Reveluthon and Information Revolution hegr:/gursebox.qumtesentar/pipemailedi-formm2002-December/000054.hmal
For mote about thes sec loss, Robent Eiltor, 1991. Lou and the Onder of Cuiture. Berkeley: Unversity of Califomia Press, hatp//ark.rallib.orghark:/13030/f902nb693j
Other rekemr publimans are: Tumm, Ilkha, 2004, Knowiedge shanna and the udea of the publit
 Centre, Instutute for l'rapective Technological Studies. Senul. Korea, National Academy al Engmeering, 2003. The mphict of arodemue research on mdustrial performance. Nan onal Academics Press, Washungen

Or patents see: Howard. J. 2005 . The emergmg themess of krowhedge bansfor: creating value from mellecual prodicts and iertues. Canberra: Austraham Govemment Department of Education, Science and Traming.
Newseom, 2005. The open-source patent comundrum. hatp:/news.con.com? 2102•1071_ 3.5557340 hm magest.unil punt

Newslorge, 2004. HP memo forecasts MS patent attacks on free soltware herp:/www. newsforge cormarticle.pl'sid $=04 / 07 / 1912315200$

## To Conclude

Our ignorance is not so vast as our failure to use what we know.
M. King Hubbert

There was once a cume when humans were few, weak and vulnerable, on a large, hostile planet. They endeavored not to succumb, not to adape to the environment, but instead to tiy someching different on the evolutionary trail. They began to change the environment. The clear and obvious goal was to grow, to gain power, to take control. In the beginning, this was a batte with no clear winners. Somerimes humans succeeded, and would develop into mighty civilizations, and their numbers grew along with their power to hamess the environment But then something would go wrong, civilizations would collapse. human power wisuld diminish, and they would have co start again somewhere else. In aggregate, it was a more or less equal batte unol something really remarkable changed the world.

Humans learned to harness fossil energy. Suddenly they became inasters of past worlds, of the energy that had accumulated over millemma in the past and was stured there, waiting for the right moment to come. Suddenly, the new evolutionary path became really fueled. Humans achieved the power and the luxury to allow some ol their hest minds just to think; they no longer needed to hunt, or to sow, or to build. With the power of concentrated old energy it was no problem to provide these minds with all they needed in cerms of food, cluching or shelter. They could spend their entire lives thinking, inventing. designing, coming up with new, hetter solutions for the new alternative human evolution. That is when human evolurion, advance. ment' really took off, and population hegan to advance in huge leaps. Local pockets of civilization became united on a glohal scale inco one technocratic civilizanon, and the goal sull remained the same - to expand, grow, empower.

And so the human population grew, hoch in terms of its numbers and in terms of its rates of consumption. Currently we really are at a terring point: a paradigm shite is badly needed. There are three reasuns for this:

- Climate Change:
- Resource depletion and peak oil;
- Globalizatuon.

Climate change is happening alrcady and its change is likely to accelerate. We find numerous evidences for that A recent study has shown rhar 150 vears of records show trends toward fewer days of ice cover. Trends in ice duration in 65 waterbuties across the Great Lakes region (Minnesota, Wisconsun, Michugan, Ontaru) and New York) during a pertod of rapid climate warmung (19752004) show that average ice duratoon decreased by 5.3 days per decate. Average temperatures tronn fall through spring in this region increased by 0.7 degrees Celsus. The average number of days with snow decreased by 5.0 days per decade, and the average snow depth on those days decreased by 1.7 centimeters per decode.

There is mounting evidence of rapidly shrinking glaciers. These processes are oecurring faster in the Polar Regions. The Arcte is expected to become a new permanene sea route from the Arlantic to the Pacific. Ice in Creenland is disappearing

A cropical vinus has caused an eprdemic in Italy, when several hundreds of cases of chikungunya, a form of dengue fever normally found in the Indian Ocean regm, have been regiseted in Castiglione di Cervia in Northern Italy: In this case the discaxe was spread ty insects: tiger mosquitores, who can now thrive in a warmang Europe. Tiger mosquitces are now tound across southern Europe and even in France and Switzerlind.

The drought conditions in south-eastern Australia seem to be permanent now. For


> Figure C. 1 The Shrinking Ice Cover in Greenland eleven years in a row temperatures have been above normal. Sydney's nights are its warmest since records were first kept 149 years ago Sydney had ats wettest year since 1998. receiving 1499 millimeters, well atove the long-tern average of 1215 . Much of it was coastal, rain that tell at the wrong time tor farmers, soaked into drought-parched soils or evaporated durng scorching days. Sydney had its stormest year since 1963. with 33 thunderstorms, historic average 28.

[^6]The list of these changes can be continued. Coral reets are hleached and are degrading. Hurricanes have become more powerlul and frequent. Flosds and droughts are becuming more severe. Most disturbing are the numerous positive leedback effects involved in the atove, and that drive the climatic machine of this planet.

According to the International Panel on Clinate Change (IPCC) it is "very unlikely" that we will avond the coming era of "dangerous clinate change". Most likely we should expect water shorrages, crop talures, disease, damages from exreme weather events, collapsing infrastrutures, and breakdowns in the democratic process. Our first experience of re-engineering the planet seems to be producing quite ugly restuls. Unmentionally we may have rnggered too many positive teedbacks that tend to get out of control. If we can't stop it - we will need wadapt to it. Any adaptation will requite additional rescurces.

Unfortunately the resource base also does not liok very promising. As we have already seen there is mounting evidence that oil reserves ate approaching the threshold when extraction will consume almost as much energy as energy produced. It becomes meaningless to produce oil as an energy source after that. At the same time there is growing demand, especially in Sruth-East Asia.


Figure C. 2 The growing price of oil. This time there seems to be no other reason except that supply cannot catch up with demand.

In the twenty-first century oil prices have gene up over $800 \%$. There was a previous price spike in the 1970s, but at that time it was a deliberate decistion of OFEC to decrease oil exports to get a price hike There is no such policy pursued moday, yet prices are steadily growing. Why is that? We have entered the era where supply can no longer keep pace with demand. Supply is sragnating, while demand continues to grow.





 porlo! ؛













##  



 L. .A.
interdependent system. The top 15 World oil producers delwer over 63 million barrels of oil per day. At the same time the rop 15 oil exporters shif more than 39 milIon barrels of ol per day, meaning that almost $2 ; 3$ of all oil produced is destined to some other location, in many cases traveling many males across the oceans. Most of the developed councries are dependent on foreign energy supplies.

Almost all countries depend on tood imports. Sometimes as much as $70 \%$ of food supply has to be delivered. While in developed conntries foreign mupurts are largely for exutic and luxury items, in some of the Middle East and African countries they are a necessity.

Even for many conventional items we see that trade flows circle the Earth in many cases going in looth directions, as is the case with. say. oranges.

Financial flows further connecr the Wiorld An estimated 150 million migrants worldwide have sent some ( $\$ \$ \$ 300$ hillon to their tamilies in developing councries during 2006 through more than 1.5 billion separate fnancial transactions.


Figure C. 4 Flows of imports and exports of many food tems go in both directions.

At this point we are not looking at positeve and negative impacts of globalization What is important is to realize that this system is in place, and that as a result, the world is completely interconnected. Local crises will spread around swittly; overionsumprion in the develeped countries will not be contamed only to the areas of those cou:arries. Just like depletion of oil reserves in, say, the 48 states of the USA will nor stop oil consumption in the country, climate change triggered by greenhouse gas emissions is not going to he limited only to the locations where these gases are emitred.

The environments that we have created are tacing consideralle risks, and the safery net once provided by the favorable naturat env:ronment on planet Earth seems to be eroding. Since humans have taken control, to shape the environment to our own use rather than adape to what was offered, we now have a tuductary responsibility for the results of our cfforts. In many cases the natural envitunments that were there tu provide humans with resources needed and to ahsorh the waste and pollution that humans created, are no longer in place. Furthermore, they could never provide the carrying capacity needed to maintain the current size of the human population at the comfort levels that it has hecome accustomed to.

The paradigm shift, if it comes, needs to he based on an understanding of how ssstems work, of how we got here, and what the indirect and delayed responses of the system can be. The one resource that dows not seem to have any limits is inforination. Moreover, by sharme information, we do not subtract from ir. If 1 have a bucket of popcorn and want to share 11 with iny neighbors, I will have to give them some at the poprorn from the bucket. As a result, there will be less leff for me. This
is not the case with information. If I share with you what 1 know, I do not then know less, prohably more, hecause while communicating I might understand my informaton hetter. If it is in our generic heritage to grow, to consume more, to expand, then protably the only area where we can do it safely - is with information

The planet is fimited: there is only that much of land, oil, water, tim, copper and gold. No matter how efficiently we use it. if there are more and more users, we will eventually run out of the goods. Information is limiliess. We can explure, research. study, learn as much as we wish. Vernadskit dreamn of a syscem he called "nowsphere" a hoosphere diven by human mellect, spirituality, krowledge, and understanding.

Modets are an important pat of this underscanding. They are building blocks of our warldvew. The models cin he simple or complex, conceptual or numerical, formal or verbal, bur tor models to be good they need wo be based on a culture of modeling on good modeling practice. That is what we cried to learn in this book. It we have common scandards for our models, it will be easier for us w commuricate our understanding, to find commen ground, to avoid conflict and make the righe dec isions.

The modeling process can work as our shared fact-finding and underscanding experience that leads us tiward a stared vision on the past, present and furure. Any dispute can be created as a clash of different models. Sâkeholders concribucing to a dispuce resolution exercise come to the tahle with their differenc models, qualitarive and quantitative, of the system ar stake. The dispute evolves because of the inconsmencies and controversies hetween the different models. I hypothesize that by harmonizing the models for use ma common framework, much of the conflict can be resolved. In a way particpatory modelnge is a mechanism of pone face froding and underseanding when data and knowledge are shared among stakeholders in attemprs whild a common model. When rhe participants mutually educate each other about the models they use, and arrive ar a shared model of a syscem there remains less reasen lor contlice and dispute.

As the book goes to print, we are winessing a burst of the housing bulble in the USA and a shde of the US economy towards recession. Far a systems screntist this actually may be a posicive crend. The economy is well overdue co slow down, giving people fause to reconsider some of our promities. However, unstead, another stimulus package is going to be passed by the US governmenc, simply putang more money in the hands ol people to ensure that they spend more to fuel turiher growth The syscem is further forced into overdrive cowards a collapse. Instead of invescing in education, in recraning, in research, in the fucure, again we are choosing to invest in consumprion, for the presens. If we could only share our models and reach a common understanding...

## Index

Activity diagrams, 46-7
Adams meehod. 84
Adaptive modeling, 362-5
Advectom, $100.102-4$
Age groups (cohorrs), 255-60
Agent-based moxdels, 24, 365
rools, 57-9
Alle do, II
Alrernative eneryy, 291-3
Analvisis. see Mostel analysis
Analvitic nodels, 24
ArcGIS, 243
ArcINF(), 39, 365
Arrays, in Stella, 161-2, 165
ASSEMBLER (computer language), 50
Australia, climare change. 402
Australiean cajeput, 217
Aremie computer language, 365
BALSECT, 50
Bank account matel, 94-5,98
BASIC (compurer langudge), 50
BASINS, 50.232
Bi.flows, 210. 211
Biofuel, 28 ?
Biofucl producton. 362
Biologecal time. 34
Bupolar see-saw effect. 132
Black too mojels. 24. 40-1, 60, 118-19
Rlue srats. 151
Bomminis paradox. 43.136
Bonurdaries, 18
Box models, 23,99

Brundiand Commission, 15
Bulirsch-Sreer method, 89
$\mathrm{C} / \mathrm{C}++$ (compurer languages), 45.50, 364
Calibration
Jefinition. 126
empirical us prucess-based model, 123-4 of inodel, 115-29. 1 30
Cimada, population dynamos, 250-4
Carbon dioxide theory of clamate change, 3578
Carrying capactr: 146. 273
CCMP (Chesapeake Community Mixdel Program), 389
CCSM (Communny Climare System Model), 389
CERCLA (Comprehensive Environmental Response. Compensation and Lablalicy Acr of 1980), 33
Chaos, 281-5
Cheap oil, 287-96
Chernohyl, 308
Chesapeake Bay, ware: quality, 244-5
Chesapeake Community Model Program (COMP). 389
China, decision-makıng, 361-2
CLEANER (Collaborative Lange-Scale Enymeering Analysis Nerwork tor Environmenral Rescarch). 50.395
Climate change. 402
Australia, 402
carbon-dioxide thenry, 357-8
global, 11-12. 294, 357
global warming, 323, 357-8
Intergovernmental banel (II'C.C), 359, 360
Letprig Declatation, 359

Chmate rescarch, history, 359-61
CLIMBER model, 131-2
CMAS (Community Modeline and Analysis System), 389
Cosal-co-liqual proxtucrion, 277-6
Cobh Douglas prostuction functom, 14
Ciexistence srate, 146, 147
Collabotative Large Sxale Engineering Analysis Network for Environtmental Research (CLEANER), 50, 395
Combinatorial uptumizatiun problem, 342
Community Climate Sysem Mokiel (CCSM), 389
Communiey mokeling, 396
ongoing projects, $389-90$
vs open-sousce suftuare, 388-95
Communicy Modeling and Analysis Sysrem (CMAS), 389
Community models, 25
Companion modeling, 363
Comparison
quanctarive marhemancal, 117
visual, 110
Compartmental mordels, 99-101
Competition, 272-3
Complexity, 3
Comprehensive Envirunmental Response, Compensation and Liabiliry Arı of 1980 (CERCLA). 33

Compurer languages, 50
Sce aiso Modeling sotrware; and mdivulual languages
Computer models, 24
Cunceptual models, 18-21.22,30-49
diagrammatic. 22
formalism in diagrams, 43-4
sparial domain, 34-40
structural domain, 40-8
system components, 18-19
temporal tomain, 31-4
verbal/descriptive, 21-2
Condorecr, Marquis de, 386
Conductiviry, hydraulic (pescolation), 213.214-15, 215-16
Conservation, 295
Consortium of Unaversities for the Advanement of Hydrological Sciences, Inc. (CUAHSJ), 395
Constrames, 310,311
Continuous models, 84-5, 101
Control facrors. 310
Contral tunctions, 19
Control parameters, 310,311
Control vanables, 310
Copuleft, 383
Copyright, 383,385-6
Comma, 5C. 58

Corpurate rule. 272-8
Corporamons, 272-8. 358
Credthilisy of model, definution, 135-6
Critical Natural Capesal: 288-9
CSMP, 50
CSTM (Narnonal Communir Sedimenr Transport Model), 389
CUAHS (Consortium of Unversiries for the Advancement of Hydrological Scrences. Inc.). 395
Curveftung, 126
Curve numbers. 227-9
Cuter Reservoi, Total Maximum Daily Load (TMDL.) process, 372-3,377,380

Da1sy World model, 25
Dansgarts-Oeschger ( L -O) events, $131-2$
Data assimulation, 132
Dara models (expeutuenral models), I 16 - 18
Daylul variable, 203-4
Decision support, Wieh fearures, 393-4
Decision variables, 310
Decision making
complexiry of, 361-2
publec patteipation m, 362
DELAY̌ function, 222
DEM (Lhgital Elevation Model). 243
Demand-supply-price therory, 264-72
Demographics, 250-64
Demonstration. models for, 25
DeVries solar cyeles, 132
Dagrammatic models, see Conceptuaí models
Dideror, Denis, 385-6
Difference equation. 86
Differential equations, 84, 86
Difision: $100-1,104-5$
Digital Elevation Model (DEM), 243
Diminishog marginal utility. 269-70
Discounting. 323-4
Documentation, 211
sctentific models, 390
softwate, 395, 396
Domain ontologies. 48
Drought, in Australta, 402
Drugs, side-effects. 8-9
Duration, 3
Dynamic modeling, 264-72
DYNAMO. 50
Earth Summit, Unired Natoons, 359
Earth system, ecological-economic-somial hierarshy, 14-15
Earth System Motelong Framework (ESMF), 389
Ecological cconomiss, 249, 279-87
(vs) environmental economics, 304

Etolusical modeling, 300
Economics
ecological: 249, 279-87
ecological ws environmentral, 304
See atso Socio-economios
Ecosustem managemens, 391,392
polvem chasacteristics. 392
Ecosysem models, 25
Ecosptem services, 299, 302-4
Integated Valuanon of Finsvicem Setvices and Trideoffs (in VEST), 304
Educithed-guess approaih, 124
Educarom, mokels for, 25
Efficiency, mereasing. 295
Elemencs
rela innships berween, 9-12
system as combination of, 7-8
Emerpent functions, 12
Emerpent properties, $\bar{i}, 12$
EML i Envirwmental Markup Laguage), 383
Empurcal moctels. 24, 40, 76, 77, 118-20, 127
calibration, 123
vs proces-besed models, 24, 40
Energy, 287-96
altematwe energs. 291-1
consumprion and economic development, 295
curturg the demand, 294-5
production, 287
sources, 277-8
Energy diagrams, 44
Energy' Recurn on Energy Invested (EROEI). 26-7
Energ: Reaurn to Energy Invesced (ERCEI) index, 259-93
Envirnomental economics vs ecrlogcal economig, 304
Environmental Markup Language (EML), 383
Environmencal Protection Agency (EPA), 232, 246. 369
Environments, software packapes, 50.57
EPA (US Envarmantal Protection Agency), 232, 246,369
EPICA (Europlean Project for lee Coring in Ancare tha), 132
Equilibrium
in predator-prey system, 142, 153, 155-6, 158
trivial/non treval, 141-2, 161
Equilubrium staces, stablefunstablefocutral, 95-7
EROEl (Energy Return in Energy lnvesred) index. 289-93
Errer model, 116-18
qualicarivedquatitative, 116 . 17
ESMF (Earth System Modeling Frameworki, 399
Fuler methoud, 86. 87, 88
Eumpean Imoject for lae Conng in Antarctica (EPCA), 132

Eurogean Unon, upen-sturce projects, 395
Evaporat ion, 204, 205-9
gopdness of fit, 207
Everflades model, 240
Exuel, 50, 55, 69, 364, 378
starisucal trools, 120
Expeimental models (ulata models), 116-18. 119
Expenential growth, mpopularons, $254-5,200$
Exponential growth model 69, 81-3,98-9, 108
Extend, 45, 50, 54
Extendable modeling systums 49-50
Expendatir modeis, 49-50, 51-2
"Evehalling", IIG
Feasibulicy condicion, 146
Feethack
negative. 11
positive, 11-12
Fiélé caçaciry. 21 )
Field-related dassitication of moblel, 24-5
Fish popmarnons, 41-2
Fishponed model, 135
conceprual model, 41
optimesthon, 324-38
Flows
of informatron, 9,10
material, 9-10
positiveinegative, $210-11$
See atso Inllow;outlow motel; Stock-and-lluw models, Sook and flow representaton
Flush tank model. 92-4
Fiod import dependency: 404, 405
Forcing lunctions, $18-19$
Formalism for conceprual dagrams, 43-4
Eorrescer, Jay, 25-6, 296
formalism for conccotual dagrams, 43-4
FORTRAN (Compurer language), 50
Hodrolugical Srmulation Program ( HSPF ), 212
Fossil energy 4 Cl
Fossi! tuels, 287
Free Sotrware Foundation (FSF), 382-3
"Frecse" llow, 210
FSF (Free Software Foundarion), 382-3
Funcrion of system, 12
Functions
control funcramis, 19
emergent, 12
Forcing. 18-19
Futures, 301-4
lambuse changes, 303
narural resourecs, 324
GCC (Gitobal Climate Coalimon), 359
GCMs (Glabal Circulation Models), 358

Modeling
adaptive, 362-5
atr of, $29-78$
chonsing it rual, 368-70
communiry, see Communiry modeling
companen. 363
conclusiens, 395
dyname, 264-72
ecological, 390
gudelines for success. 375-81
mediared. 363
open reseach. $390-3$
paticupatory, see Participatony modehns (PM)
practuce of, 355-99
scientific, 390-1
shared vision. 363
summary, 355
Modeling languages 49, 50. 55-9
Mode line process, 16-21
an terative process $16-17,30.49$. 135
simple version, 48-9
Modeling solcware, 4-B, 49-70
helaticliy of, 50
libraices, 50, 55
open-suurce, 60
Modeling systems, 50, 52-5
extenct.tble, 49-50
ModelMaker. 50, 53.60
Models
affordability, 369
agent-bised, see Agent based models
analute $v ;$ computer. 24
classificarions, 21-5
commen standads, 406
comparson, 116
complexity, 125
conceptual. see Conceprual models
continuolis, $84-5,101$
defintion. 1
documentation, see Decumentation
emprical, see Empirical nodels
extendable, 49-50, 51-2
extenditulta, 369
flexihiliry, 369
form of presentation, 21-2
formal, 23
melusiveness, 368
indurdual-based models. 24
mathemanical, upe mathematical models
mechanistic, 40
methert of formulation. 24
modularity, 368
phystical, 3-4, 22-3
pount modelis, 23
pucess-based, see puene-based models
purpuse of, 25
rigid. 106
shate vs complex. 24
simples then realety, $1-2,5$
simularion, see simulition models
soic 106
ranspatency, 369
visual, 2
visualization, 369
why they don"t work, 355-62
Biatified Universal Sol Loss Equation (MLSLE). 233
Mossture contentent soil, ils
Monod (Muchaclis-Menten) function, 73, 75, 148
Mone Carlo morhod, 314, 345, 345-6
Morratery, 250.254
MSDD (Micro Sturimwater Drainage Density) index, 373
Multi-Agent Simulator of Neeghborhoods ( $\mathrm{N} / \mathrm{ASON}$ ). 50,58
Multi-scale lntegrated Models of Ecosystem Services (MIMES), 25, 3C4
MUSLE (Modified Universal Soll Loss Equarion): 233

Natalicy. 250,254
National Academy ol Sctences, 360
National Climatic Dara Center (NCDC), 201.205

National Commumey Sediment-Transpor Model (CSTND), 389
Naconal Ecological Observacory Newwork (NEON). 395, 396
National Remeral) Councal, 363
Narional Science Foundanon, research intatives, 395
Natural Captal Project. 304
Namal Resoumes Consetsaton Service NRCSI. 227
Nature Conservancy and World Wildife Fund, 304
Nawigator, 382
NCDC. (National Climatuc Data Center), 201.205

Negarive feedback, 11
NEON (Natomal Ecological Ohservatory Network), 395, 396
Neptune. 5
NerLngo. 50. 59, 365
Non-lincar systems, 139, 194
Non-rival goods, 395
"Vrosshere", 406

NRCS (Natural Resourses Conservanon Servce), 227
Numer cal methods of solving equations, 86
OASIS 4 Operational Analysis and Simulation of Integrated Spstems), 50, 51-2
Otecrue funcron: (goal functions). 124. 309-10. 310-11
Ocean Research Interactive Olwervatory Newnork (ORION), 396
OCl. (Operation Contral Language), 51-2
Ol
cheap oll, 287-96
Meditan Tem Oil Market Report, 289
peak wil, 277, 287, 294, 403
prices and world evencs, 403
reserves, 403
Open reseath mondeling. 390-3
Open Seurce Defation, 383
Opren Source Developmen Nerwork (OSDN), $3 \times 3-4$
Open Sranctards, 383
Open systems, $130-1$
Qpen-xource wotware (OSS). 60
vs comumnicy modelinn, 388-95
Open-sourte sitwate (OSS) parallgm, 355, 370, 3824
Interner sotware, 383-4
CuenMI, 50, 57
CpenOffice, 50,55
OpenScailuge 59
Operation Comtrol Langrage (OCL), S-2
Operarional Analysis and Simulaton of Interated Systems (OASIS), 50.51-2
Optimality principles, 347-52
Optimbarion, 124, 125.307-53
aleworthoms, 311-15,347
combanaraial problem, 342
controls, 308
fishemed model 324-38
goal (obective), 308
incroduction, 307-15
iandscape, $338 \times 47$
Monte Carlo merhod, 314
numental, algotithm of $34 \bar{i}$
objective function. 124, 309-10, 310-11
optinality pronciples, 347-52
proces5, 311,312
of real-life systems, 308-9
resnurce management, $315-24$
summary, 307
ORION (Ocem Research Inreractive Observatory Network), 395, 396
OSDN (Open Source Development Nerwork), 383-4

OSS see Open-source sotware entres
OWI., 48

PAR (photoactive radation), 206, 207-8
Parabolic functien, 76
Para:ligm shife, 405
Paradigns, in modeling packages, 61
Paramelers, 18-19, 112
cuital values, 114
determinatom of. $19-2 \mathrm{C}$
Iree, I 24
Parcalataterential equations, 105
Participatom
dara collecrion and avalabilisy. 366
developing policy alcernatives, 366
torms of, 36 3-6
interpreting results, 366
model selection and development, 365
scenario development, 366
Fartsipatory modelong (PM1, 355, 362-5, 392, 394-5.406
Aow chart for 374
suecesstul, criteria tor, 366-7
Parrale seconds, 102
Patenr farming, 387
Putents. 386-7
Pacuxeni Landscare Motel (PLM), 237, 239. 33840
Peak oil, 277, 287, 294, 403
Pearsen unonent protuct correlacion coetficient, 117
Petcolation (hydraulic conductivity), 213,214-15. 215-16
Perwonkle mails, I5l
Plase platic, 143
Phase foltrais, 106,107
Thusphorus, St Alhans Bay Warershed, 371
Photoactive radation (PAR), 206, 207-8
Physal models, 3 4, 22-3
Plant growth, 347-8
PLM (Patuxent Landeane Madel), 237, 239 318-40
Pluco, 5
PM, see Partocpatory modelong
Point models, 23
Pollution assumlation, 404
Pollunen reductom/dilitum, 198
Population dynamics, Canada, 250-4
Population growich, 10-11, 4C2
exponenctal, 254-5.290
Population moidels, 24, 88
Pupulation pyrameds, 255
Population senescence, 259
Porsiry of and, 215,222
Posilive feedsack. 11-12

Potlarch, 384
Powersm, 45,50.53
Precipitation, 201
Predaror-prey mudel, 70, 88
Predator-prey sporem. 139-95
classic model, 140-6
classic moselel modifications, 146-50
conclusems. 194
equilibrium $1 n_{1} 142,153,155-6.158$
sensionviry analysis, 145
Simile moslel, 166 - 80
SME model, 180-94
spattal medel, L61-94
summary, | 39-40
Prediche molels, 25
Predurnmententor methods, 89
Price, 264-72
Process (simulanon) motels, 364,378
Process-lyaserl models, 24, 40-1, 74-7, 120-7
calthatuon, 123-4
wsemprical models. 24, 40
Psychology. 356
Public Jomain, 385-6
Python (computer language), 45
$\mathrm{R}^{2}$ value, 117,120
Radiation, solar (phochactue), 206, 207-8
Rambarrels, 242
Rain gardens, 242
Rainfall, 198-9
RAN (Redesigning the Amercan Nerghborhond) project, 235, 243, 371-2, 375,378
Rates, 43
REcursive Powns Agent Simulation Toolkit (Repast), $50,58,59$
Retesigning the American Ne ughborthoud (RA.N) project, 235,243,371-2,375,376
Redtictionism. 8
Regional Hydro-Ecologaul Sumulation System (RHESSys), 233.236
Register of Ecological Morels (REM), 51
REM (Register of Ecologeal Models), 5 .
Repast (REsursive Pornus Agent Sumularian Toulkit), 50, 58, 59
Researeth scientists, teamwork, 391
Resolution, 3, 31-2
compurer display, 35-6
grain size and torm. 35-40
photographs, 35
sparial, 3-40
spatial vs temporal. 35
Resource management, optimbation, 315-24
Resources
deplerion, 403
excludable and rival. 198.289
nün-renewable, 404
populatuen growitr and, 281-7
renewathe'nom-renewahle, 287
subsututabilicy. 297
Retertion. 227
Recention ponds, 241-2
RHESSy, (Regronal Hydo-Ecological Simulation Syscem), 233,236
Rigid models, 106
Ruver network, 241
Runge-Kucta methud, 57, 88-9,91
S-shaped function. 75
Sr Atbans Bay Wacershed, 370-1, 376, 376-7, 379. 380,381
SAMT (Spaual Analysus Modelang Toul), 50, 57
Scales
spatial, 3
remporal, 3
Scaling issues, 5
Scenario analysis, 21
Scenanos, 133-4,307
Scientific mokluling, 390-i
Scoping model, 200
Scotts Mitacle Cito, 275
Seatice. 358
Seamless. 395
Self-competition, 272-3
Senescence, of population. 259
Sensitivity analyses, 20-1,111, 112-15
predator-prey molel, 145
Shared vison modeling, 363
Shared Viswn Planning: 362, 373, 377
Sheet flow, 233-4
Silicon Valley. 386
SimCiry compurer game. 50, 51
Simile, 45, 50, 53, 304, 364, 365
predatorprey system model. $166-30$
SIMSAB, 50
Simulated Anneahag algorethm, 315
Simulatun models, 116, 126, 129, 364, 378
Simulink, 45, 50.55
SME (Spatial Modeling Environtuent), 50, 57, 59. 237. 365
predator-prey system, 180-94
Snow, see ler and Snow
Soctal Security funds. 260-1
Socio-ccumomics, 249-306
amatraphics, 250-64
sumumary. 249-50
Solt montels, 100
Software 364
collalomeative research, 387-8
dcrelopment, 387-8
documentarion, 395, 396
foi modeling, 26
open-source projects, 395
systems dynamics soltware, 45
See also Modeling software; Open-source sotrware (OSS) paradıgm; and individual software names
Sorl
clasutication, 229
freld capaciry, 215
Hydrologic Soil Groups (HSG), 229
infiltation in, 213
Modificd Universal Soi Loss Equarion (MUSIE), 233
moisture content, 215
poresity, 215,222
Soil and Water Assessmenc Tool (SWAT) model. 2.32-3, 236

Solar (phornactive) radiation, 206, 207-8
Solomons Harbour Warershed, 370, 377. 378, 379-80, 380-1, 381
SONCHES, 50
SourceForge, 305
Space, 17, 23-4
in mathenatical terms, 99-105
Space (sparial) scales, 101-2
Spatial Analysis Modeling Tool (SANTT), 50. 57
Spatial model, predator-prey sycerm, 161-94
Sparíal Modeling Environment (SME), 50, 57, 59, 237, 365
predator--prey: system, 180-94
Spatial models, 23
Spratial scales, 3
Spreadsheers, 50, 55-6,69
Stakeholders, 363-7, 375-81
See ako Participanton
Scanfurd Wacershed Model. 232
StarLogo, 50, 365
Steel íunction. 76
Srella, 26, 44-5, 50, 52, 60, 61, 364
arravs, 162
building blocks in, 62
equations in, 80-!
introduction to, 61-78
Srock-and-How models, 24
Stock-and-flow representation, 46,61
Stormwater, 240-1
Structural scability, 106-7
Strucrure
in marhematical rerms, 105-8
of system, 12, 17-18, 24
Student, as example of a system, 13
Sublimation, 210, 212
Subsidies, for coal-co-liquid producton, 278

Subsystems
deach of. 15
See also Hieratchies in systems
Superfund, 33
Supersystems, see Hierarchies in systems
Supply and demand, 264-72
Surface roughness, 230, 233-4
Sustainahility, 278-87
Sustamabulity of syscems, 15, 16
SVP (Shared Viston Planning), 362, 373, 377
Swarm, 50, 58, 59)
SWAT (Soil and Warer Assessimenc Tool) madel. 232-3, 236
SYSL., 50
Systems, 6-12
componenc renewal, 15
definitıon, 6
essential fearures, 6
example of student as, 13
hierarchies in, 12-16
main dimensons, 17,29
as a whole, 7, 8
Systems duagrams, 54-5
Systems dynanucs
models, 24, 26
software, 45
tools, 52-4
Systems thinking, 25-7
Temporal scales. 3
TerraCycle, 275
Thalidomide, 9
Theil's measure of forecast qualicy, 117
"Think globally - Act locally", 15-16
Tiger mosquiroes, 402
Time, 17, 23, 31
ditferent in different systems, 33
in marhematical terms, 81-99
Time (cemporal) scales, 101-2
Time-steps, 81-3. 85-7, 89, 9l, 144
TMDI (Toral Maximum Daily Load) process, Cutler Reservorr, 372-3, 377,380
Tolerance, 320-1
TOPMODEL, 233
Tocal Maxımum Daly Load (TMDI.) process, Curler Reservorr, 372-3,377.380
TR-55 (Hydrology of Small Watershed's), 227, 229, 233, 235-6
Transpiration, 213-14, 217, 219, 242
Trendlines, 118-19
Trial-and-error method, 124
Trophic chams, 139, 150-61, 162
Trophic functions, 141, 147-8
Trophic levels, even/odd, 151-3

LML (Cinwersal Modeling Languige). 45-7
Uncertainties, 126- $\bar{i}, 136$
Inderstanding, models for. 25
Cimed Natoms, Earth Summor, 359
Unversal hell function, 76
Universal Modeling Language ( CML ) . 45-7
Universutics. intellectual property rights, 387
US Federal Agencies, 228
US Ceolognal Survey (USCS), 115
watershed classification system, 246
Validation (verification), 131,132,133,137
Valudat:on process, 2 !
Varıables, 18
Vensinn. 45, 50. 53, 297
Verification (validation), 131,132,133,137
Virtual Reality Markup Language (VRML), 383
Visual comparison, 116
Visual models, 2
Visual Paradigm, 47
Volterra incotel, 139-40
VRML (Virtual Reality Markup Language). 383
Water, 197-247
conclusions, 244-6
groundwater, 199.223, 224, 230-1, 245
honzontal water flow, 205,219
importance of, 197-8
molecules, 7
runolt, 233
in the saturated layer, 199, 219-23
summary. 197.8
surlace water, 199, 200-9
in the unsaturated layer, 199.212-18, 221-3
vertical water flow, 212,214-15, 219-21
See also Hịdrologic moxdels; Watersheds

WATer and Environmental Research Systems (WATERS) Nerwork, 390
Water Evaluation and Planning swsem (WEAP), 50.51

Water Framewerk Directive. European Commission. 363
WATERS (WATer and Environmental Research Systems) Network. 300
Watershed management, 245-6, 391-2
Web features, 393-4
Warersheds
Hunting Creek optumization model, 339--41, 342-4
Hydrological Unit Clasitication (HUC) system, 246
Hyúrology oi Smali Watersheds (TR.55), 227. 229.233.235-6
sheer flew, 233-4
ipatial characteristics. 233
surface roughuess. 230, 233-4
rime of concentration, 233, 234-5
travel tune, 233
WEAP (Water Evaluatuon and Planning system). 50.51

Weh, 392-3
access $\mathbf{t o}, 393$
features, 393-4
vis lnternet, 393
See aiso Lntenen
Werland areas, 204, 217-18
White bux models, 40
"The Whole is mure than the sum of parts". 15
Wind tunnels. 3
Wolves, in Yellowstone National Park, 162
Wrid3 model, 296, 298
Yellowstone National Park. wolves in. 162


[^0]:    IF.. Growth: (A) Constant growth; (B) Exponential growth, (C) Growth with saturation; (D) Growth with peaking; (E) Delayed response

[^1]:     Wи 1 :
    
    
    
    
    
    
    

[^2]:    Spatal dynamics with migration towards the cells with higher density of Grass. Clusters of high density are formed when Rabbits from several cells jump into a cell with higher Grass abundance. A. Grass (max. 1490, min 0.5), B. Rabbits (max. 1.142, min. 0.861

[^3]:    
    
    
    
    
    
    
    
    
    

[^4]:    -1 I A model built in Madonna. The similarites with the Stella interface are quite clear;

[^5]:    It is really important to be inventive on the visualization side. For examp'e, one very popular way to present the level of a certain moact is to use a color code ranging from green (safe and good; to yellow (moderate but bearablel and then to red load. unsafe and unheathy). This curor code is wide'y adopted in some of the EPA reports and web pages isee. for example, http://www epa gov/ieg3artd/arquality/airquality him )

    Chris Jordan, a graphic designer and photographic artist, uses an ingenious way to show the scale of various process and stocks. He starts to picture simply certan items isay, plastic bottles or aluminum cans! and then zooms out, getting more and more items into the picture. Showing. say, 25 million plastic bottles. which is how many are used in the US every hour, creates a poweritul message Or the 11.000 el trals, equal to the number of commercal flights in the US every 8 hours, or the 23 million folded prison unitorms, equal to the number of Americans incarcerated in 2005. See htp //www chirsjordan.com/current_set 2 . php. or check out the PBS weasite at http://www.pbs org/movers/ournal/O9212007/orofile4 html.

[^6]:    

