
GCM-SIV: Full Nonce Misuse-Resistant Auth-
enticated Encryption at Under One C/B

Shay Gueron1 and Yehuda Lindell2

1 Department of Mathematics, University of Haifa, and Intel Corporation, Israel
Development Center, Israel
shay@math.haifa.ac.il

2 Department of Computer Science, Bar Ilan University, Israel
lindell@biu.ac.il

Abstract. Authenticated encryption schemes guarantee both privacy
and integrity, and have become the default level of encryption in modern
protocols. One of the most popular authenticated encryption schemes
today is AES-GCM due to its impressive speed. The current CAESAR
competition is considering new modes for authenticated encryption that
will improve on existing methods. One property of importance that is
being considered more today is due to the fact that the nonce or IV
repeats, then this can have disastrous effects on security. A (full) nonce
misuse-resistant authenticated encryption scheme has the property that
if the same nonce is used to encrypt the same message twice, then the
same ciphertext is obtained and so the fact that the same message was
encrypted is detected. Otherwise, full security is obtained – even if the
same nonce is used for different messages.
In this paper, we present a new fully nonce misuse-resistant authenti-
cated encryption scheme that is based on carefully combining the GCM
building blocks into the SIV paradigm of Rogaway and Shrimpton. We
provide a full proof of security of our scheme, and an optimized imple-
mentation using the AES-NI and PCLMULQDQ instruction sets. We
compare our performance to the highly optimized OpenSSL 1.0.2 imple-
mentation of GCM and show that our nonce misuse-resistant scheme is
only 14% slower on Haswell architecture and 19% slower on Broadwell
architecture. On Broadwell, GCM-SIV encryption takes only 0.92 cycles
per byte, and GCM-SIV decryption is exactly the same as GCM decryp-
tion taking only 0.77 cycles per byte. Beyond being very fast, our new
mode of operation uses the same building blocks as GCM and so existing
hardware and software can be utilized to easily deploy GCM-SIV. We
conclude that GCM-SIV is a viable alternative to GCM, providing full
nonce misuse-resistance at little cost.

1 Introduction

Authenticated encryption. A symmetric encryption scheme achieves authen-
ticated encryption if it provides both privacy and integrity. Informally, such a
scheme provides the guarantee that no adversary can generate a ciphertext that
decrypts to a valid value, and that encryptions of plaintexts are indistinguish-
able from each other. Classically, authenticated encryption was achieved via the

“encrypt-then-authenticate” paradigm that states that one should first encrypt
and then apply a message authentication code to the obtained ciphertext [3, 9].
This methodology is sound, but is often inefficient. A more general study of com-
position methods, considering multiple different options and security goals, was
carried out in [15]. However, in many cases, dedicated modes of encryption have
been proposed that are optimized for high performance. One of the most popular
such modes used today is GCM, and it has very fast performance on the latest
Intel architectures. For example, it achieves performance of 0.77 cycles per byte
(C/B hereafter) on the architecture codename Broadwell.3 Many authenticated
encryption modes have been proposed, and the CAESAR competition currently
being run aims at standardizing some of them.

IV and nonce misuse resistance. For a long time, authenticated encryption
was considered the highest level of security for symmetric encryption schemes.
Indeed, with respect to adversarial capabilities, this is the case. However, it has
been observed that in many cases, something can go wrong in the encryption
procedure. For example, when random IVs are needed and encryption is carried
out on devices with weak randomness (like mobile phones), the IV may repeat
with high probability. This same problem arises on strong devices, where the
random source is buggy. Likewise, in nonce-based encryption schemes (where
the requirement is just that a unique nonce is used every time), the repetition
of a nonce happens in practice and compromises security.4 In order to see why
repeating IVs or nonces can have disastrous results, consider the case that the
counter is repeated in counter-mode encryption. In this case, all security is lost
(an attacker can easily detect that this is the case, and can just XOR the cipher-
texts in order to obtain the XOR of the plaintexts). In another example, in GCM
encryption, if the initial counter is repeated, then this also completely compro-
mises the integrity property and an attacker who views the two encryptions can
generate as many forgeries as it wishes in the future.

These observations prompted Rogaway and Shrimpton in a breakthrough
work to define the notion of nonce misuse-resistant authenticated encryption [17].
An encryption scheme with this property provides an extraordinarily level of
security. If the same nonce is used to encrypt the same message, then this will
be detected by the adversary (since the same output will be obtained both
times). Otherwise, full security will be obtained. This means that encrypting
different messages with the same nonce will reveal nothing whatsoever (except
for the fact that the messages were different). Such an encryption scheme can
be used comfortably in scenarios where devices cannot be trusted to generate
good quality randomness. Indeed, it is advisable to always use misuse resistant
encryption, since low quality randomness has shown up multiple times due to
software bugs. Unfortunately, nonce misuse-resistant authenticated encryption
is inherently less efficient since it requires two passes over the data.

3
Broadwell (and similarly Haswell) is an Intel Architecture Codename of a very recently announced

micro-architecture. Broadwell is the 5th Generation IntelR© Core Processor, and Haswell is the 4th
Generation IntelR© CoreTM Processor. They can have different congurations in different products.
Hereafter, for short, we refer to them simply as Broadwell and Haswell (or BDW/HSW).

4
In this paper, IVs must be randomly chosen, whereas nonces must simply be non repeating.

2

We remark that a weaker notion of nonce misuse-resistance has been pro-
posed, where some more information is allowed to be revealed in the case of a
nonce repeating. Specifically, if a nonce repeats between two messages that have
a common prefix, then this fact is revealed, along with the length of the com-
mon prefix [4]. This definition allows for achieving support for online encryption,
where the encryptor does not need to hold the entire plaintext at any time (this
is impossible to achieve under the more stringent notion of [17]). In this paper,
we adopt the stronger notion.

Our contributions. In this paper, we present a new fast mode of encryption
that achieves nonce misuse-resistant authenticated encryption. Our mode of en-
cryption is based on the GCM mode of encryption, and a careful combination of
the building blocks used in GCM together with the SIV construction paradigm
of [17]; we call this mode GCM-SIV. Our mode of operation works by first ap-
plying GHASH (the GCM authenticator) to the plaintext and any associated
authenticated data, and then applying a pseudorandom function to the result
XORed with the IV. We show that this is a pseudorandom function over the
nonce, plaintext and associated data, and thus the result can be used as the IV
in CTR mode. Therefore, this is a highly efficient instantiation of the IV misuse
resistance mode proven in [17] (and further abstracted in [15]).

Beyond a full specification of the scheme and proof of security, we provide op-
timized implementations of GCM-SIV and compare their performance to GCM
on the Haswell and Broadwell Intel architectures. We compare our performance
to the highly optimized OpenSSL (v.1.0.2) implementation of GCM on the same
architectures, and provide exact cycle counts. (We argue that such a detailed
study is essential to truly understand the efficiency of new modes of encryp-
tion.)

The advantages of our construction are:

1. Ease of deployment: Our construction uses the same building blocks as
GCM. Therefore, existing code bases (and hardware implementations) can
be used to implement GCM-SIV. This is an important consideration when
adopting new modes of operation. In addition, our construction only uses
AES encryption (and not its inverse).

2. Encryption performance on Intel architectures: Encryption under
GCM-SIV is not far from the performance of GCM. For encryption, GCM-
SIV is only 14% (resp., 19%) slower than GCM on Haswell (resp., Broad-
well). This difference is due to the fact that using the Intel AES-NI and
PCLMULQDQ instructions, the GHASH and AES operations can be run in
parallel in GCM, but must be computed one after the other in GCM-SIV.
Concretely, our implementation runs at 1.17 cycles per byte on the Haswell
architecture, and 0.92 cycles per byte on the recent Broadwell architecture.
Thus, we obtain full nonce misuse-resistance on the latest Intel architecture
with encryption costing less than one cycle per byte!

3. Encryption performance on other architectures: GCM-SIV is fast on
every architecture that has support for AES-NI and carry-less multiplication,
in some form. The current trend is that such support is offered on most (if

3

not all) the new 64-bit architectures. Some examples are AMD (Bulldozer)
and NVidia (Denver), ARM little core (A53) and big core (A57), and Apple
(A7/A8). With this ubiquitous support, AES-GCM (and hence our GCM-
SIV) would enjoy the best performance on most modern platforms.

We remark that on architectures where AES-NI is not available (and a single
thread is used), the cost of GCM-SIV is the same as GCM alone. This is due
to the fact that the operations carried out in GCM-SIV are almost identical
to that of GCM, and on such architectures the computation of GCM cannot
be parallelized with a single thread.

4. Decryption performance: Decryption of GCM-SIV has the exact same
cost as decryption of GCM. This is due to the fact that they have the same
operations and in decryption they can both be parallelized. Both achieve
rates of 0.77 cycles per byte on Broadwell.

5. Encryption of short messages: For short messages (up to 32 bytes),
GCM-SIV is actually more efficient than GCM. Thus, it is preferable for
key wrapping and in settings were many short messages are sent.

In summary, GCM-SIV achieves full nonce misuse-resistant authenticated
encryption at an extremely low cost. It has a proof of security, and a full imple-
mentation to validate its true cost. Finally, it is easily deployable due to existing
hardware support on a wide range of processors.

Comparison to other fulll nonce-misuse resistant schemes. We compare
GCM-SIV to other schemes that provide the same level of nonce-misuse resis-
tance. Clearly, GCM-SIV is much faster than the original SIV of [17] since it
uses CMAC which is not parallelizable. Therefore, on a platform using AES-NI,
the performance is dominated by the latency of the AES-NI (7 cycles on Broad-
well/Haswell), and is 4.44 cycles per byte. Therefore, the performance of the
original SIV scheme would be at least 5 cycles per byte on Broadwell/Haswell.

The HBS and BTM modes of operation [10, 11] have a similar theoretical
complexity to our implementation. However, our scheme is far simpler, on small
messages our mode is faster, and importantly we can reuse GCM software and
hardware which are already widely deployed. Finally, we have a fully optimized
implementation to validate our claims of efficiency, whereas they do not.

Of the CAESAR competition candidates, the only three that achieve full
nonce misuse-resistance are AEZ, Julius and HS1-SIV [1]. On Broadwell, AEZ
can achieve (for long messages) a throughput of 0.7 C/B. This relative perfor-
mance advantage of AEZ over GCM-SIV (that exists for encryption only), comes
at the cost of relying on a nonstandard security assumption; specifically, AEZ
internally uses AES with just 4 rounds. Julius (ECB/CTR) requires 1 AES com-
putation plus 2 field multiplications per block. There seems to be no concrete
optimized software implementation of Julius, but even if such code is optimized
using the techniques reported here, it could not fall below 1.25 cycles per byte for
long messages (on Broadwell). In general, GCM-SIV outperforms Julius because
it requires only 1 AES computation plus 1 field multiplication per block (with
the same parallelization issues).

4

HS1-SIV takes a different approach, and is targeted at achieving good perfor-
mance on platforms that do not have the AES-NI/PCLMULQDQ instructions
(e.g., embedded systems). However, for performance on high end processors, note
that ChaCha20 alone (i.e., only the encryption) consumes 1.4 cycle per byte on
Broadwell. Thus, when AES-NI/PCLMULQDQ are available, GCM-SIV is much
faster.

In addition to the above, [16] recently presented a nonce misuse-resistant
version of OMD. Their scheme requires 2 AES operations per block, and so
would cost at least 1.3 cycles per byte using optimized code and AES-NI.

Organization. We use the notions of CPA-secure IV-based encryption (ivE),
nonce-based authenticated encryption (nAE), and nonce misuse-resistant au-
thenticated encryption (mrAE), as defined in [17, 15]. These definitions are re-
peated in Appendix A for the sake of completeness. In Section 2 we describe
the abstract SIV scheme of Rogaway and Shrimpton [17], and in Section 3 we
present and prove the security of our specific instantiation based on any XOR
universal hash function and any pseudorandom function. Our proof includes a
concrete analysis and bounds. In Section 4, we describe the final concrete scheme
that uses the GHASH universal hash function (from GCM) and AES. Finally,
in Section 5 we provide an in-depth analysis of the performance of our scheme.
Our analysis includes an exact operation count, along with a description of our
empirical results. We provide actual cycle counts for different size messages on
Haswell and Broadwell, and compare them to the actual cycle counts of the
optimized OpenSSL (v.1.0.2) implementation of GCM.

2 The Abstract SIV Encryption Scheme

In [15], a number of constructions for authenticated encryption were considered.
The construction called A4 is a generalisation of the SIV mode of operation [17]
that has been proven to be nonce-misuse resistant. In this section, we describe
this abstraction.

Let FK2
: {0, 1}n → {0, 1}n be a pseudorandom function and let (Enc,Dec)

be a CPA-secure IV-based encryption scheme. For simplicity, we assume that
all keys are of length n. Let k be a parameter such that the maximum message
length is 2k · n bits.

Construction 1

– Key generation: K1,K2 ∈ {0, 1}n chosen uniformly and independently at
random

– Encryption of M with associated data A and nonce N :
1. Compute T = FK1

(N,A,M)
2. Let IV be the n − k most significant bits of T ,5 and compute C =

EncK2(IV,M)
3. Output: (N,A,C, T)

5 This is not necessary in the abstract SIV scheme, but we will use this later on.

5

– Decryption of (N,A,C, T):
1. Let IV be the n− k most significant bits of T .
2. Compute M = DecK2(IV, C)
3. Compute T ′ = FK1

(N,A,M)
4. Output: If T ′ = T then output (A,M); else output ⊥

Security. In [15], the following is proven (this construction is called A4 in [15]).

Theorem 2 (Proven in Section A.3 of [15]). If (Gen,Enc,Dec) is a secure
IV-based encryption scheme and F is a pseudorandom function, then Construc-
tion 1, denoted Π, is a secure nonce-based authenticated encryption scheme.

Concretely, [15, Section A.3] proves that the nAE advantage of any adversary
A for this construction is:

AdvnAE
Π (A) ≤ Advprf

F (B(A)) + AdvivE
Enc(D(A)) +

qd
2n

with the following parameters. Let n be the output length of the pseudorandom
function. Let A ask qe queries to its encryption oracle, and qd queries to its
decryption oracle, with q = qe + qd. The encryption queries have total length
Le, and the decryption queries have total length Ld, with L = Le + Ld. Let
tA be the running time of A, given this total number and length of queries,
let tF (L) be the running-time to compute the pseudorandom function F on
inputs of length L, and likewise tEnc(L) for the underlying ivE encryption. Then
reduction B has running time at most tA+2tF (L)+tEnc(L), asks at most 2(qe+qd)
queries to its oracle, with total length at most L. Reduction D has running time
tA + tF (L) + tEnc(Le), asks at most qe queries to its oracle, with total length at
most Le.

Theorem 2 considers nonce-based authenticated encryption. However, we
have to prove nonce misuse-resistant authenticated encryption. In order to see
that this holds, note that the security of the nonce-based authenticated encryp-
tion holds as long as the input to the pseudorandom function is different each
time, since this guarantees pseudorandom output each time (up to the proba-
bility of a collision). In the nonce-based encryption setting this is guaranteed
by always using a different nonce. However, since the pseudorandom function
is applied to entire triple (N,A,M) in this construction, it receives a different
input each time as long as the same (N,A,M) is not used twice. However, this
is exactly what happens in the nonce misuse-resistant setting. Thus, we con-
clude that the exact same security and bounds are achieved in this setting. We
conclude:

Corollary 1. If (Gen,Enc,Dec) is a secure IV-based encryption scheme and F
is a pseudorandom function, then Construction 1, denoted Π, is a secure nonce
misuse-resistant authenticated encryption scheme. In addition,

AdvmrAE
Π (A) ≤ Advprf

F (B(A)) + AdvivE
Enc(D(A)) +

qd
2n

where B, D, qd and n are as above.

6

3 The Universal-SIV Instantiation

In this section, we describe our Universal-SIV construction, which is an instan-
tiation of the abstract construction provided in Section 2 as follows:

– The pseudorandom function applied to the data (associated authentication
data as well as plaintext) is constructed by computing a universal hash func-
tion on the data, XORing in the nonce, and then applying a pseudorandom
function to the result.

– The encryption scheme used is CTR mode, where the initial counter is n−k
bits long and the remaining k bits in the block are used for counters for a
message with at most 2k blocks of length n. Note that this method ensures
that as long as the same initial counter is not used twice, no counter in any
block is reused.

3.1 The Universal-SIV Specification

The scheme uses the following primitives:

– An ε-XOR universal hash function HK1 : {0, 1}∗ → {0, 1}n. Formally, a
hash function is ε-XOR universal if for every x, y, z ∈ {0, 1}∗ it holds that
PrK1

[HK1
(x)⊕HK1

(y) = z] ≤ ε(n), where the probability is over the choice
of K1. For simplicity, we assume that the key length is n.

– A pseudorandom function FK2
: {0, 1}n → {0, 1}n; for simplicity, we assume

that the key length is n.
– A parameter k < n, where 2k · n is the maximum message length.

Construction 3 (The Universal-SIV scheme for block length n):

– Key generation: K1,K2,K3 ∈ {0, 1}n chosen uniformly and independently
at random

– Encryption of M with associated data A and n-bit nonce N :
1. Step 1: Compute h = HK1(A‖M)
2. Step 2: Compute T = FK2

(h⊕N)
3. Step 3: Encrypt M with CTR mode using the pseudorandom function F

with key K3. The initial counter is taken to be the n−k most significant
bits of T followed by k zeroes. Denote the initial counter by I1‖I2 where
I1 ∈ {0, 1}n−k and I2 = 0k; stated otherwise, the initial counter equals
I1 ·2n−k+I2. The jth counter is defined to be I ·2n−k+[(I2 + j) mod 2k]
for j = 0, . . . , 2k − 1.
Denote the resulting ciphertext by C

4. Output: (N,A,C, T)
– Decryption of (N,A,C, T):

1. Step 1: Decrypt C with CTR mode using F with key K3, and using the
n−k most significant bits of T as the initial counter; denote the resulting
plaintext by M .

2. Step 2: Compute h = HK1(A‖M)

7

3. Step 3: Compute T = FK2
(h⊕N)

4. Output: If T ′ = T then output (A,M); else output ⊥.6

We remark that for standard nonce-based authenticated encryption, it would
suffice to take T = h ⊕ FK2

(N). However, if T is computed in this way and a
nonce N is repeated for two different messages with hash results h, h′ then it is
possible to XOR the two tags together and obtain h ⊕ h′ (since the mask FK2

disappears). In this case, the adversary obtains two messages and their hash,
and can forge messages (since this suffices to learn the key K1 for H). For this
reason, we compute the tag as T = FK2

(h⊕N). Formally, it is required that T
be computed by applying a pseudorandom function to (N,A,M), as described
in Construction 1.

3.2 Proof of Security of Universal-SIV

Notation. We provide a concrete analysis of security, counting the running
time of the adversaries, the number of oracle queries that they make, and their
advantage. For an adversary A we denote by t(A) its running time, and by q(A)
the number of oracle queries it makes. For the sake of clarity, we differentiate
between different types of oracle queries and denote by qe(A) the number of
oracle queries to the encryption oracle (where such an oracle is given), by qD(A)
the number of oracle queries to the decryption oracle (where such an oracle
is given), and by qf (A) the number of oracle queries to the function oracle (for
adversaries distinguishing a pseudorandom function from a random one). Finally,
for a function F , we denote by tF (L) the time taken to compute F on overall
inputs of length L.

Proof of security. By Corollary 1, in order to prove security we need to show
that

FK1,K2(N‖M)
def
= FK2(HK1(M)⊕N)

is a pseudorandom function from {0, 1}n → {0, 1}n, when H is an ε-XOR uni-
versal hash function from {0, 1}∗ → {0, 1}n. (Note that M here includes both
the associated data and plaintext message used in the encryption process. We
removed the explicit reference to A for clarity.)

Before proving that F is indeed a pseudorandom function, we define security
for pseudorandom functions via the following experiment:

Experiment ExptbA,F

1. If b = 0 then choose K at random and set O = FK .
Else, if b = 1, set O to be a truly random function f : {0, 1}∗ → {0, 1}n.

2. b′ ← AO(·)

3. Output 1 if and only if b′ = b

6 A constant-time comparison function must be used here.

8

Definition 1. A family of functions F is a (t, qf , δ)-pseudorandom function if
for every adversary A running in time at most t and asking at most qf queries
to its oracle it holds that,

Advprf
F (A)

def
=
∣∣Pr[Expt0A,F = 1]− Pr[Expt1A,F = 1]

∣∣ ≤ δ.
Recall that tH(L) denotes the time to compute the universal hash function

H on overall input of length L, that t(A) denotes the running time of algorithm
A, and that qf (A) denotes the number of queries made by A to its function
oracle. We use the following lemma:

Lemma 1. Let F be a family of pseudorandom functions from {0, 1}n to {0, 1}n,
and let H be a family of ε-XOR universal hash functions from {0, 1}∗ to {0, 1}n.
Define FK1,K2

(N‖M) = FK2
(HK1

(M)⊕N). Then, F is a family of pseudoran-
dom functions from {0, 1}∗ to {0, 1}n, and there exists an adversary A1 such
that for every adversary A:

Advprf
F (A) ≤ Advprf

F (A1) + ε ·
(
qf (A)

2

)
where t(A1) = t(A) + tH(L) · qf (A), qf (A1) = qf (A), and the overall length of
message sent by A to its oracle is L.

Proof: Before beginning the proof, we rewrite the pseudorandom function
experiment using our specific scheme:

Experiment ExptbA,F (1n)

1. If b = 0 then choose K1,K2 ← {0, 1}n, and set O = FK2
◦HK1

.
Else, if b = 1, set O to be a truly random function f : {0, 1}∗ → {0, 1}n.

2. b′ ← AO(·)(1n)
3. Output 1 if and only if b′ = b

We first change the experiment to ExptA,f,H(1n) where K1 is chosen as above,
but a truly random function f : {0, 1}n → {0, 1}n is used instead of FK2

in the
case of b = 0 (and so O = f ◦HK1 when b = 0). A straightforward reduction to
the pseudorandomness of F yields that for every adversary A1,∣∣Pr[Expt0A,F = 1]− Pr[ExptA,f,H = 1]

∣∣ ≤ Advprf
F (A1). (1)

The adversary A1 attacking the underlying pseudorandom function invokes A,
chooses K1 itself and answers every oracle query M‖N of A by first comput-
ing HK1(M) ⊕ N and then sending the result to its oracle. If A1 received a
truly random function as an oracle, then this perfectly simulates ExptA,f,H ; in
contrast, if A1 received the pseudorandom function F as its oracle, then this
perfectly simulates Expt0A,F . The running time of A1 is exactly that of A plus
qf computations of H, and the number of queries made by A1 to its oracle is
exactly the same number made by A. Thus, t(A1) = t(A) + tH(L) · qf (A), and
qf (A1) = qf (A).

9

Next, we prove that for every adversary A making qf queries to its oracle,

∣∣Pr[ExptA,f,H(1n) = 1]− Pr[Expt1A,F (1n) = 1]
∣∣ ≤ ε · (qf (A)

2

)
. (2)

In order to see this, consider first the event coll which equals 1 if and only if
there exist two queries M‖N,M ′‖N ′ with M‖N 6= M ′‖N ′ made by A to its
oracle such that HK1

(M)⊕N = HK1
(M ′)⊕N ′. Then, it holds that

Pr[ExptA,f,H(1n) = 1 | ¬coll] = Pr[Expt1A,F (1n) = 1].

This is due to the fact that when HK1(M)⊕N 6= HK1(M ′)⊕N ′ for every pair
of distinct M‖N,M ′‖N ′ queried by A to the oracle, the inputs to f in Expt are
all distinct. Thus, the output distribution over f(HK1

(M) ⊕ N) in Expt is the
same as the output distribution over f(M‖N) in Expt1. Since

Pr[ExptA,f,H(1n) = 1] = Pr[ExptA,f,H(1n) = 1 | ¬coll] · Pr[¬coll]
+ Pr[ExptA,f,H(1n) = 1 | coll] · Pr[coll]

≤ Pr[ExptA,f,H(1n) = 1 | ¬coll] + Pr[coll]

it remains to prove that

Pr[coll] ≤ ε ·
(
qf
2

)
.

In order to see this, observe that A never receives HK1(M) ⊕ N , but rather
receives f(HK1

(M) ⊕ N) where f is a truly random function. Thus, A learns
nothing about K1. Intuitively, this means that there will be a collision on the
queries made by A with the same probability that there will be a collision if all
the queries are first made and then K1 is chosen at random. In order to prove
this formally, we modify ExptA,f,H(1n) so that in the ith query, the output f(i)
is given (we assume without loss of generality that A never makes the same
query twice to the oracle.) Then, at the end of the experiment, K1 is chosen at
random and HK1

(M) ⊕ N is computed on all the values M‖N queried to the
oracle. As long as no collision takes place, the distribution over the outputs that
A receives is identical in both experiments. Furthermore, if a collision occurs,
then it has already occurred and it makes no difference what happens to A’s
view afterwards (since a collision already occurred and we are only interested in
the question of whether collisions occur). Thus, the collision probability in both
experiments is identical.

In this latter experiment, for a series of qf distinct queriesM1‖N1, . . . ,Mqf ‖Nqf
to the oracle, we have that

Pr[coll] = Pr [∃i, j ∈ [qf] : HK1(Mi)⊕Ni = HK1(Mj)⊕Nj]

=

qf−1∑
i=1

qf∑
j=i+1

Pr[HK1
(Mi)⊕HK1

(Mj) = Ni ⊕Nj]

=
(
qf
2

)
· ε.

10

where the probability is taken over the choice of K1 (that specifies the concrete
hash function H). Note that the last equality is obtained since H is an ε-XOR
universal hash function.

Combining Equations (1) and (2), we have that

Advprf
F (A) =

∣∣Pr[Expt0A,F = 1]− Pr[Expt1A,F = 1]
∣∣

≤
∣∣Pr[Expt0A,F = 1]− Pr[ExptA,f,H = 1]

∣∣
+
∣∣Pr[ExptA,f,H = 1]− Pr[Expt1A,F = 1]

∣∣
≤ Advprf

F (A1) + ε ·
(
qf (A)

2

)
and this completes the proof.

The security of counter mode based on a pseudorandom function is well
known. Here we provide the bounds for encryption of messages with at most
2k − 1 blocks, and where the initial counter is of length n− k bits. This ensures
that as long as the initial counters are all different, then the pseudorandom
function is applied to a different input each time. Since we consider the case of
random initial counters, it follows that the probability that a counter repeats

is at most qe(A)2

2n−k , where qe(A) is the number of queries made by adversary A
to the encryption oracle. The reduction to security is very straightforward, with
the adversary for the pseudorandom function just querying all the appropriate
counters to its oracle. We have:

Lemma 2. Let F be a pseudorandom function from {0, 1}n to {0, 1}n. Then,
there exists an adversary A2 making such that for every adversary A:

AdvivE
Enc(A) ≤ Advprf

F (A2) +
qe(A)2

2n−k
.

where t(A2) = t(A) + Le(A) and qf (A2) = Le(A)
n , with qe being the number

of queries made by A to its encryption oracle, Le(A) being the total length of
all plaintexts queried by A to its encryption oracle, and qf being the number of
queries made by A2 to its function oracle.

We are now ready to state the main theorem that provides the security
bounds for our construction (we use Π to denote Construction 3):

Theorem 4. Let F be a pseudorandom function, and let H be an ε-XOR uni-
versal hash function. Then, Construction 3 is a nonce misuse-resistant authen-
ticated encryption scheme, and there exists an adversary A′ for F such that for
every A attacking Construction 3:

AdvmrAE
Π (A) ≤ 2 ·Advprf

F (A′) + ε ·
(
qe(A)

2

)
+
qe(A)2

2n−k
+
qd(A)

2n
.

(The running time and oracle query complexity of A′ is given in the proof.)

11

Proof: By Corollary 1, we have that:

AdvmrAE
Π (A) ≤ Advprf

F (B(A)) + AdvivE
Enc(D(A)) +

qd(A)

2n

where F is the pseudorandom function used that combines the universal hash
and underlying pseudorandom function F . By Lemma 1 we have that there exists
an adversary A1 such that

Advprf
F (A) ≤ Advprf

F (A1) + ε ·
(
qf (A)

2

)
and by Lemma 2 we have that there exists an adversary A2 such that

AdvivE
Enc(A) ≤ Advprf

F (A2) +
qe(A)2

2n−k
.

Now, adversary B(A) is a PRF adversary who runs it time at most t(A) +
2tF (L) + tEnc(L) (where L is the total length of the values queried to oracles
by A) and asks at most 2(qe(A) + qd(A)) queries to its oracle, and A1(B(A))
runs in time t(B(A)) + tH(L) · qf (B(A)) and asks qf (B(A)) queries to its oracle.
Thus, A1 is an adversary for the pseudorandom function who runs in time t(A)+
2tF (L) + tEnc(L) + tH(L) · 2(qe(A) + qd(A)) and asks qf (A1) = 2(qe(A) + qd(A))
queries to its oracle.

Furthermore, adversary D(A) is an ivE encryption adversary who runs in
time t(A) + tF (L) + tEnc(L) and asks at most qe(A) queries to its oracle. Thus,
A2 is an adversary for the pseudorandom function who runs in time t(A) +
tF (L) + tEnc(L) + Le(A) ≈ t(A) + tF (L) + tEnc(L) (we can ignore the Le(A)
factor since it is just the length of the plaintext, whereas tEnc(L) is the actual

cost of encryption which is greater), and asks qf (A2) = Le(A)
n < L

n queries to its
oracle.

Take A′ to be the adversary that incorporates A1 and A2. Then, we have
that there exists an adversary A′ for the underlying pseudorandom function so
that for every adversary A for the mrAE setting:

– A′ runs in time

[t(A) + 2tF (L) + tEnc(L) + tH(L) · 2(qe(A) + qd(A))] + [t(A) + tF (L) + tEnc(L)]

= 2 ·
(
t(A) + tF (L) + tEnc(L) + tH(L) · (qe(A) + qd(A))

)
.

Observe that the running time of A′ is essentially linear in the running time
of A (under the very reasonable assumption that the cost of applying the
pseudorandom function to the plaintexts queried by A and encrypting them,
is not more than the running time of A itself). It is reasonable to therefore
writhe that t(A′) ≤ 6 · t(A).

– The number of queries made by A′ to its function oracle is at most 2qe(A)+
2qd(A) + L

n

12

– The advantage of A in the mrAE setting, when reducing to the underlying
pseudorandom function F , is

AdvmrAE
Π (A) ≤ Advprf

F (A′) + Advprf
F (A′) + ε ·

(
qe(A)

2

)
+
qe(A)2

2n−k
+
qd(A)

2n
. (3)

This completes the proof.

4 The GCM-SIV Instantiation

In this section, we describe our concrete instantiation of the universal-SIV con-
struction that uses GHASH, which is a part of the GCM specification. Thus,
this construction uses the exact same components as GCM in a slightly different
way, with the result being nonce misuse resistance. Throughout this section, we
use the following lemma, that states the GHASH is indeed a XOR universal hash
function:

Lemma 3 (Lemma 2 in [14]). The GHASH function is an ε-XOR universal
hash function with ε = dLn + 1e · 2−t, where L is an upper bound on the length of
the input, n is the length of the block, and t is the length of the output.

4.1 Theoretical 3-Key Instantiation

In this instantiation, we simply use the GHASH universal hash function in Con-
struction 3. This hash function works by first concatenating zeroes to each of A
and M to make them of length that is a multiple of the block length n. Then,
an additional block that contains the lengths of both A and M is concatenated
(where the length of A is given in the first n/2 bits of the block, and the length
of M in the last n/2 bits). Finally, a polynomial is evaluated over this result.

Observe that GHASH requires a key, the pseudorandom function applied to
the output of GHASH requires a key, and finally the pseudorandom function used
in counter mode requires a key. Thus, this instantiation requires three separate
keys. Although this is a perfectly reasonable instantiation, 3 keys would typically
be considered too much for real world usages; we therefore refer to this as a
“theoretical instantiation”. Later, we present 2-key and 1-key instantiations.

When plugging GHASH directly into Construction 3, all that is required is
to plug in the value of ε given in Lemma 3 into the bounds of Theorem 4.

Theorem 5 (3-Key GCM-SIV). Consider Construction 3 with the pseudo-
random function F and the hash function GHASH. Then, the result is a nonce
misuse-resistant authenticated encryption scheme, and there exists an adversary
A′ for F such that for every A attacking Construction 3 making qe encryption
queries and qd decryption queries of overall length L:

AdvmrAE
Π (A) < 2 ·Advprf

F (A′) +

(
dLn e+ 1

)
· qe(A)2 + qd(A)

2n
+
qe(A)2

2n−k
.

where t(A′) ≤ 6 · t(A) and qf (A′) ≤ 2qe(A) + 2qd(A) + L
n .

13

Proof: We take t = n in Lemma 3 and so obtain ε = dLn + 1e · 2−n. Plugging
this into Eq. (3) in the proof of Theorem 4, we obtain:

AdvmrAE
Π (A) ≤ 2 ·Advprf

F (A′) + ε ·
(
qe(A)

2

)
+
qe(A)2

2n−k
+
qd(A)

2n

≤ 2 ·Advprf
F (A′) +

dLn + 1e
2n

·
(
qe(A)

2

)
+
qe(A)2

2n−k
+
qd(A)

2n

< 2 ·Advprf
F (A′) +

(
dLn e+ 1

)
· qe(A)2 + qd(A)

2n
+
qe(A)2

2n−k
.

The running time and number of oracle queries are taken directly from the proof
of Theorem 4.

In the specific AES instantiation with n = 128 and k = 32, we conclude:

AdvmrAE
Π (A) < 2 ·Advprf

F (A′) +

(
d L128e+ 1

)
· qe(A)2 + qd(A)

2128
+
qe(A)2

296
.

4.2 Two-Key GCM-SIV

In this instantiation, the same key is used for the pseudorandom function applied
to the output of GHASH and for the counter mode encryption (i.e., we take K2 =
K3). There are two possible ways of doing this. The first is to simply bound the
probability that the output of GHASH collides with a possible counter. However,
this will result in an additional birthday degradation. The other possibility is to
force the output from GHASH to always be different from the counters used in
the encryption. This is achieved by truncating the output of GHASH to n − 1
bits and using an n− 1-bit nonce. Then, the most significant bit of the input to
the pseudorandom function in order to generate T is always zero. Furthermore,
the initial counter is taken to be the n−k−1 most significant bits of T followed
by k zeroes, and the most significant bit is set to 1. This ensures that the counter
never overlaps with the input to the pseudorandom function for generating T .
From a security perspective, this means that the same key can be reused with
no affect on security at all (a single reduction for the pseudorandom function
suffices).

This variant yields the following bounds (obtained as in the 3-key case while
changing the exact parameters due to the single bit):

Theorem 6 (2-Key GCM-SIV). Consider the above variant of Construc-
tion 3 with one key for the pseudorandom function F and one key for the hash
function GHASH. Then, the result is a nonce misuse-resistant authenticated en-
cryption scheme, and there exists an adversary A′ for F such that for every A
attacking Construction 3 making qe encryption queries and qd decryption queries
of overall length L:

AdvmrAE
Π (A) < 2 ·Advprf

F (A′) +

(
dLn e+ 1

)
· qe(A)2 + qd(A)

2n−1
+
qe(A)2

2n−k−1
.

where t(A′) ≤ 6 · t(A) and qf (A′) ≤ 2qe(A) + 2qd(A) + L
n .

14

4.3 Single-Key GCM-SIV

In this final instantiation, we take a single key K0 and derive two keys K1

and K2 by computing K1 = AESK0
(0128) and K2 = AESK0

(0127‖1). We then
proceed as in the two-key case. The bounds for here almost identical (with an
additional reduction for a single query to the pseudorandom function, which is
not significant here).

5 The Performance of GCM-SIV

In this section, we provide a detailed performance analysis of our GCM-SIV con-
struction together with experimental results of an optimized software implemen-
tation, measured on the latest high end processors with architecture codenames
Haswell (HSW) and Broadwell (BDW). The performance of GCM-SIV depends
on the message length. We measure the length of the message |M | and the length
of the associated data |A| in bytes.

5.1 Encryption Operations

The computational cost of computing GCM-SIV is the following sum:

GCM-SIV Encryption = Key Derivation + GHASH + Tag Generation

+ CTR INPUT Generation + CTR ENCRYPTION

We discuss each component separately.

Key Derivation: Derivation is required only with the one-key GCM-SIV vari-
ant (to derive K1, K2 from the input key K0). This derivation requires expanding
one AES key and using it to encrypt 2 blocks.

GHASH: This requires a field multiplication in GF (2128) for every 16-byte
block or part thereof (in the plaintext message M and associated data A), plus
a block containing the data length. Thus, the number of field multiplications

equals ` =
⌈
|M |+|A|

16

⌉
+ 1.

Tag Generation: Generating the authentication tag from the output of GHASH
involves executing AES key expansion with K2, and using it to encrypt a single
block (the cost of XORing with IV , and forcing the top bit to 1, is negligible).

CTR INPUT Generation: This involves preparing the input blocks to AES
in the counter-mode encryption. The cost of forcing the top bit to 0, and incre-
menting the 32-bit counters (in the least significant quarter of the counter block)
is negligible.

CTR ENCRYPTION This is the cost of
⌈
|M |
16

⌉
AES operations on prepre-

pared input. (Note that the key used has already been expanded when preparing
the tag.)

15

5.2 Implementation Optimizations

Software implementations on high end Intel processors use the AES-NI and the
PCLMULQDQ instructions. There exist optimizations that improve the perfor-
mance significantly, compared to straightforward implementations. We briefly
describe these optimizations.

1. The key derivation (required only for one-key GCM-SIV) can be reduced by a
new software optimization that pipelines the instructions efficiently. We were
able to execute this derivation in 84 cycles (on HSW/BDW architectures).

2. When the message includes more than 8 blocks, GHASH can be optimized
by: (1) Preparing a lookup table with “powers” of H, (2) Interleaving the
polynomial multiplications, and (3) Deferring the reduction modulo Q(x)
(the field polynomial) to take place only once per 8 blocks [7, 8].
Effectively, this reduces the cost of GHASH to ` polynomial multiplications
+ 1

8` reductions, instead of ` field multiplications. We were able to compute
GHASH using this method at the asymptotic performance of 0.56 and 0.3
cycles per byte (C/B) on HSW and BDW, respectively (for an 8KB message).

3. For long enough messages, the encryption can operate on 8 blocks in parallel,
interleaving AESENC/AESENCLAST instructions [5, 6]). We were able to
encrypt at the asymptotic performance of 0.63 C/B on both HSW and BDW.

Remark 1. For long messages the setup cost is small, and the differences between
one key and two keys become negligible. From the above data, we can predict
the performance (for long messages) to be the sum of GHASH and encryption,
which is 1.19 C/B for HSW, and 0.93 C/B for BDW.

5.3 Theoretical Comparison to AES-GCM

AES-GCM uses CTR mode for encryption, and GHASH for the authentica-
tion. It uses a single key, and involves a derivation step: H = AESK(0128) and
MASK = AESK(·).7

When counting the number of operations, GCM and GCM-SIV have roughly
the same performance. In fact, GCM-SIV is slightly cheaper due to a sim-
pler counter incrementing. However, for encryption, the main difference between
GCM and GCM-SIV is in the possible order of operations. By definition, GCM-
SIV can start AES-CTR encryption only after the authentication tag has been
computed. By contrast, GCM can interleave the AES and GHASH computations
(for the message; not for the AAD). This enables GCM encryption to be faster
than GCM-SIV.

Note, however, that for decryption GCM-SIV can also interleave the AES
and GHASH computations, and so its performance is identical to that of GCM.

7 The mask is XOR-ed with the GHASH result, to make it a MAC tag. Here, · denotes
the first counter block used in AES-GCM.

16

5.4 Experimental Results

For our study, we prepared an optimized software implementation of GCM-SIV,
and measured it on the Haswell and Broadwell (HSW/BDW) architectures. The
results are summarized in Table 1. The table provides the cycles count for GCM-
SIV for various message lengths, to illustrate the performance characteristics.
They are compared to the optimized AES-GCM implementation of OpenSSL
(1.0.2). We note that the cost of the “Init” step in OpenSSL is approximately
1,100 cycles. This includes, among other operations the preparation of a lookup
table, keys setup, and more. Therefore, to facilitate a more detailed comparison,
Table 1 also shows the AES-GCM performance without the Init step, as well as
GCM-SIV without the initialization (this neutralises the fact that OpenSSL car-
ries out more operations in its Init than we do in our implementation). Needless
to say, the two-key and one-key variants are identical after Init, as can be seen
in the table.

The last row of the table shows the performance in C/B, for a long message.
Note that the measured performance matches the predictions of Remark 1.

The methodology used for carrying out these measurements is as follows (and
is the same for GCM-SIV and AES-GCM). The following process was repeated 30
times: compute the operation 500 times for a ”warmup” (e.g., to place code/data
in the caches). Then, compute and clock the operation 500 times, and take the
average result. The output appearing in the table is the minimum value over the
30 runs. The reason that we take the minimum is to neutralize noise caused by
interrupts to the operating system.

All the runs were carried out on a system where the Intel R© Turbo Boost
Technology, the Intel R© Hyper-Threading Technology, and the Enhanced Intel
Speedstep R© Technology, were disabled.

The results show that up to 32 bytes (including), GCM-SIV with 2 keys is
faster even than GCM without Init. Therefore, for key wrap, GCM-SIV is an
excellent choice. It is also very efficient for scenarios that encrypt many short
messages with the same key (since the key derivation is carried out only once
here and so the cost is like without Init).

For long messages, as expected, we see only a very small difference between
the 2-key and 1-key versions of GCM-SIV, in the “full” implementation. This
allows for choosing the more cost effective variant (i.e., 1 key) from the network
traffic viewpoint. We observe that on the latest Broadwell architecture, the cost
of GCM-SIV encryption falls below 1 cycle per byte.

For encryption, Table 1 shows that GCM-SIV is 14% slower than AES-GCM
on Haswell, and 19% slower than AES-GCM on Broadwell. The reason for this
difference is that the optimized AES-GCM software is able to interleave AES
and GHASH computations, while GCM-SIV cannot. Recall that nonce misuse-
resistance provably requires two passes, and thus there is an inevitable cost
incurred. However, we point out that for decryption, optimized AES-GCM and
GCM-SIV would have the same performance because the AES and GHASH
operations can be interleaved.

17

Full No Init
Cycles Cycles

HSW/BDW GCM-SIV GCM-SIV AES-GCM GCM-SIV GCM-SIV AES-GCM
bytes Two keys One key Two keys One key

16 149 / 136 297 / 241 1289 / 1263 133 / 121 133 / 121 178 / 172
32 198 / 171 318 / 284 1277 / 1318 178 / 153 178 / 153 219 / 217
64 322 / 281 444 / 417 1292 / 1335 319 / 278 319 / 278 236 / 238
128 516 / 440 645 / 568 1415 / 1371 282 / 262 282 / 262 293 / 266
256 674 / 566 800 / 694 1558 / 1417 426 / 401 426 / 401 421 / 385
512 966 / 796 1093 / 930 1808 / 1730 722 / 626 722 / 626 760 / 651

1,024 1566 / 1252 1695 / 1385 2312 / 2108 1315 / 1085 1315 / 1085 1252 / 989
1,536 2159 / 1713 2274 / 1843 2816 / 2416 1907 / 1544 1907 / 1544 1714 / 1305
2,048 2751 / 2171 2869 / 2300 3372 / 2842 2498 / 1996 2498 / 1996 2287 / 1765
4,096 5118 / 4005 5244 / 4136 5332 / 4354 4867 / 3837 4867 / 3837 4296 / 3243
8,192 9862 / 7666 9994 / 7782 9521 / 7388 9611 / 7498 9611 / 7498 8399 / 6289

C/B C/B
8,192 1.2/0.94 1.22/0.95 1.16/0.9 1.17/0.92 1.17/0.92 1.03/0.77

Table 1. GCM-SIV encryption performance for different message lengths, on the Haswell and
Broadwell (HSW/BDW) architectures. Comparison to the performance of AES-GCM (OpenSSL
1.0.2) is provided. The numbers are in cycles, except for the last row which reports the performance
in C/B.

We comment about the performance of GCM-SIV without initialization for
64 and 128 bytes messages. Our optimized GHASH code prepares a lookup table
to aggregate 8 block multiplications before the reduction step. Of course, this
becomes relevant only when the message length is at least 128 bytes. If the cost
of the setup is not (including the preparation of the table), then this leads to
the seeming anomaly in Table 1 where 128-byte GCM-SIV takes less time than
64-byte GCM-SIV.

References

1. F. Abed, C. Forler and S. Lucks. Classification of the CAESAR Candidates.
Cryptology ePrint Archive, 2014/792. http://eprint.iacr.org/2014/792.pdf.

2. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser and K. Ya-
suda. AES-COPA v.1. CAESAR competition submission.

3. M. Bellare, and C. Namprempre. Authenticated Encryption: Relations among
Notions and Analysis of the Generic Composition Paradigm. In ASIACRYPT
2000, Springer (LNCS 1976), pages 531-545, 2000.

4. E. Fleischmann, C. Forler and S. Lucks. McOE: A Family of Almost Foolproof
On-Line Authenticated Encryption Schemes. In FSE 2012, Springer (LNCS
7549), pages 196–215, 2012.

5. S. Gueron. Intel Advanced Encryption Standard (AES) Instructions Set, Rev
3.01. Intel Software Network. (2012) https://software.intel.com/en-us/

articles/intel-advanced-encryption-standard-aes-instructions-set

6. S. Gueron. Intel’s New AES Instructions for Enhanced Performance and Secu-
rity. 16th FSE (FSE 2009), Springer (LNCS 5665), pages 51–66, 2009.

18

7. S. Gueron, M. E. Kounavis. Intel Carry-Less Multiplication and Its Us-
age for Computing The GCM Mode, Rev 2.01. Intel Software Net-
work. http://software.intel.com/sites/default/files/article/165685/

clmul-wp-rev-2.01-2012-09-21.pdf

8. S. Gueron, M. E. Kounavis. Efficient Implementation of the Galois Counter
Mode Using a Carry-less Multiplier and a Fast Reduction Algorithm. Informa-
tion Processing Letters 110:549–553, 2010.

9. H. Krawczyk. The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure Is SSL?). In CRYPTO 2001, Springer (LNCS
2139), pages 310–331, 2001.

10. T. Iwata and K. Yasuda. HBS: A Single-Key Mode of Operation for Deter-
ministic Authenticated Encryption. In FSE 2009, Springer (LNCS 5665), pages
394–415, 2009.

11. T. Iwata and K. Yasuda. BTM: A Single-Key, Inverse-Cipher-Free Mode for De-
terministic Authenticated Encryption. In Selected Areas in Cryptography 2009,
Springer (LNCS 5867), pages 313–330, 2009.

12. T. Iwata, K. Ohashi and K. Minematsu. Breaking and Repairing GCM Security
Proofs. In CRYPTO 2012, Springer, pages 31–49, 2012.

13. J. Mason, K. Watkins, J. Eisner and A. Stubblefield. A Natural Language Ap-
proach To Automated Cryptanalysis Of Two-Time Pads. In the ACM Confer-
ence on Computer and Communications Security 2006, pages 235–244, 2006.

14. D.A. McGrew and J. Viega. The Security and Performance of the Ga-
lois/Counter Mode (GCM) of Operation. In INDOCRYPT 2004, Springer
(LNCS 3348), pages 343–355, 2004.

15. C. Namprempre, P. Rogaway and T. Shrimpton. Reconsidering Generic Com-
position. In EUROCRYPT 2014.

16. R. Reyhanitabar, S. Vaudenay and D. Vizár. Misuse-Resistant Variants of the
OMD Authenticated Encryption Mode. In ProvSec 2014, Springer (LNCS 8782),
pages 55–70, 2014.

17. P. Rogaway and T. Shrimpton. Deterministic Authenticated Encryption: A
Provable-Security Treatment of the Key-Wrap Problem. In EUROCRYPT 2006,
Springer (LNCS 4004), pages 373–390, 2006.

A Definitions

We use the following definitions taken from [17, 15]. We begin by defining CPA-
secure IV-based encryption and nonce-based authenticated-encryption. The dif-
ference between IV-based and nonce-based encryption is that in the former a
random IV is used, whereas in the latter a unique nonce is provided as input in
every encryption. The guarantee of nonce-based encryption is security is main-
tained as long as the nonce used is different each time. Beyond that, we consider
CPA security for IV-based encryption and authenticated encryption for nonce-
based encryption. We do this since this is what we need for our construction.
We adopt the definition of authenticated encryption from [17, 15] who replace
the encryption oracle with a random function, and mandate that the decryption
oracle always outputs ⊥. Observe that this means that the adversary – who is
given oracle access to either the pair of oracles EncK ,DecK or a random func-
tion and ⊥ – is not allowed to query the output of an “encryption” query to

19

its “decryption” oracle. This is because when given EncK ,DecK the decryption
query will return the plaintext queries to EncK , whereas when given a random
function and ⊥ the decryption query will return ⊥. Thus, it will be trivial to
distinguish. Nevertheless, this restriction is without loss of generality since any
adversary who makes such queries can be converted to an adversary who does
not make such queries and succeeds with exactly the same probability (if such
a query is asked, just return the plaintext it was generated from).

CPA-secure IV-based encryption (ivE). Let Π = (Gen,Enc,Dec) be an IV-
based encryption scheme. We denote the space of IVs by IV. Encryption involves
choosing IV ← IV uniformly at random, and then computing the deterministic
function EncK(IV,M). Consider the following oracles:

– Oracle EncK : upon input M ∈ {0, 1}∗, it chooses IV ← IV at random and
computes C = EncK(IV,M). The output is IV ‖C.

– Oracle $K : upon inputM ∈ {0, 1}∗, it chooses IV ← IV at random and com-
putes C = EncK(IV,M). The output is a random string of length |IV ‖C|.

The advantage of an adversary A against an IV-based encryption scheme is
defined to be:

AdvivE
Π (A) =

∣∣∣PrK

[
AEncK(·) = 1

]
− PrK

[
A$K(·) = 1

]∣∣∣
We say thatΠ is a CPA-secure IV-based encryption scheme if for every probabilistic-
polynomial time adversary A there exists a negligible function µ such that
AdvivE

Π (A) ≤ µ(n).

Secure nonce-based authenticated encryption (nAE). Let Π = (Gen,
Enc,Dec) be a nonce-based encryption scheme. Encryption is a deterministic
function receiving a keyK, nonceN , associated dataA and plaintext messageM ,
and is denoted C = EncK(N,A,M). We denote decryption by DecK(N,A,C).
Consider the following oracles:

– Oracle $K : upon input (N,A,M), it computes C = EncK(N,A,M). If C =
⊥ then the output is ⊥; otherwise, the output is a random string of length
|C|.

– Oracle ⊥: upon any input, returns ⊥.

The advantage of an adversary A against a nonce-based authenticated encryp-
tion scheme is defined to be:

AdvnAE
Π (A) =

∣∣∣PrK

[
AEncK(·,·,·),DecK(·,·,·) = 1

]
− PrK

[
A$K(·,·,·),⊥(·,·,·) = 1

]∣∣∣
where A may not make two queries (N,M,C), (N,M ′, C ′) to Enc with the same
first component (nonce), and may not make any decryption query for a value
(N,A,C) that was obtained as output from some query to Enc. We say that Π
is a secure nonce-based authenticated encryption scheme if for every probabilistic-
polynomial time adversary A there exists a negligible function µ such that
AdvnAE

Π (A) ≤ µ(n).

20

Secure nonce misuse-resistant authenticated encryption (mrAE). We
define a notion of misuse resistance for nonce-based encryption. Specifically, we
define nonce misuse-resistance where full security is guaranteed to hold as long
as the same nonce is not used for the same message and associated data. Since
nonce-based encryption is deterministic, when the same nonce is used for the
same message and associated data, the same ciphertext is obtained. Thus, the
only information revealed to the adversary is that the same message was en-
crypted. It is immediate that nonce-based misuse-resistant encryption implies
IV misuse-resistant encryption by simply using a random IV (and noting that
for q encryptions the probability that an IV repeats is q2/2` where ` is length of
the IV).

Let Π = (Gen,Enc,Dec) be a nonce-based encryption scheme. Encryption
is a deterministic function receiving a key K, nonce N , associated data A and
plaintext message M , and is denoted C = EncK(N,A,M). We denote decryption
by DecK(N,A,C). Consider the following oracles:

– Oracle $K : upon input (N,A,M), it computes C = EncK(N,A,M). If C =
⊥ then the output is⊥; otherwise, the output is a random string of length |C|.

– Oracle ⊥: upon any input, returns ⊥.

The advantage of an adversary A against a nonce-based authenticated encryp-
tion scheme is defined to be:

AdvmrAE
Π (A) =

∣∣∣PrK

[
AEncK(·,·,·),DecK(·,·,·) = 1

]
− PrK

[
A$K(·,·,·),⊥(·,·,·) = 1

]∣∣∣
where A may not make two identical queries to Enc (with the same nonce,
associated data and message), and may not make any decryption query for a
value (N,A,C) that was obtained as output from some query to Enc. We say
that Π is a secure nonce misuse-resistant authenticated encryption scheme if for
every probabilistic-polynomial time adversaryA there exists a negligible function
µ such that AdvnAE

Π (A) ≤ µ(n).
Note that nonce misuse-resistant authenticated encryption is the same as

nonce-based authenticated encryption with the exception that if a nonce is reused
then the only damage is that an adversary can know if the associated data and
plaintext message in two messages with the same nonce are the same or different,
but nothing more. This is because Enc is deterministic and so a nonce reused
with exactly the same associated data and plaintext message will give the same
ciphertext, whereas by the definition above whenever either the nonce or the
associated data or the plaintext message is different, the result is completely
different (and indistinguishable from random). We do not allow A to make two
identical queries since the $ oracle always returns a fresh random string and so
this is a trivial (but meaningless) distinguisher.8

8 Alternatively, we could have defined $ so that the same string is returned whenever
the same inputs are received. This is equivalent.

21

