
NORX8 and NORX16: Authenticated Encryption for Low-End Systems

Jean-Philippe Aumasson1, Philipp Jovanovic2 and Samuel Neves3

1Kudelski Security, Switzerland
jeanphilippe.aumasson@gmail.com

2University of Passau, Germany
jovanovic@fim.uni-passau.de

3University of Coimbra, Portugal
sneves@dei.uc.pt

Abstract—This paper presents NORX8 and NORX16,
the 8-bit and 16-bit versions of the authenticated ci-
pher NORX, one of the CAESAR candidates. These new
versions are better suited for low-end systems—such as
“internet of things” devices—than the original 32-bit and
64-bit versions: whereas 32-bit NORX requires 64 bytes
of RAM or cache memory, NORX8 and NORX16 require
just 16 and 32 bytes, respectively. Both of the low-end
variants were designed to retain the security properties of
the initial NORX and be fast on small CPUs.

Keywords-authenticated encryption, lightweight, CAE-
SAR

I. INTRODUCTION

NORX [1] is a family of authenticated ciphers: given
a secret key, a nonce, a message, and (optionally)
associated data, a NORX cipher returns an encrypted
message and an authentication tag. NORX was submitted
to the CAESAR competition [2] in 2014, and has been
analysed with respect to its core algorithm as well as to
its mode of operation [3], [4], and is not known to have
cryptographic weaknesses.

The submission to CAESAR included algorithms
based either on 32-bit or on 64-bit word arithmetic,
denoted as NORX32 and NORX64, respectively. This
paper describes two new variants of NORX designed
for low-end systems: NORX8 and NORX16. These are
based on 8-bit and 16-bit words, and require respectively
1/4 and 1/2 the memory as the previously smallest
NORX instance. We designed NORX8 and NORX16
to offer a low-memory, secure, and fast enough authen-
ticated cipher for resource-constrained systems.

II. SPECIFICATION

This section is a succinct specification of the new
NORX instances and although it is basically self-
contained, we refer to the CAESAR submission docu-
ment [1] for detailed documentation and design rationale.

A. Generalities

In this work, we introduce two new classes of the
NORX family:

1) NORX8, with word size w = 8, tag size t ≤ 80,
and number of rounds 1 ≤ l ≤ 63.

2) NORX16, with word size w = 16, tag size t ≤ 96,
and number of rounds 1 ≤ l ≤ 63.

Instances from these new classes are denoted by
NORXw-l-p-t. We assume that the parallelism degree
p is set to 1 (fully serial versions)—although parallel
versions could be constructed, we do not expect relevant
use cases.

1) Encryption Interface: NORX8 and NORX16 en-
cryption take as input keys K of k = 80 and k = 96 bits,
respectively, a nonce N of n = 32 bits, and a datagram
A ‖M ‖ Z where, A is a header, M a message, and Z
a trailer. |A|, |M |, and |Z| are allowed to be 0. NORX
encryption produces a ciphertext C, with |C| = |M |, and
an authentication tag T .

2) Decryption Interface: NORX decryption is similar
to encryption: Besides K and N , it takes as input a
datagram A ‖ C ‖ Z, where A and Z denote header and
trailer, and C the encrypted payload, with |A|, |C|, and
|Z| may be 0. The last input is an authentication tag T .
Decryption either returns failure, upon failed verification
of the tag, or produces a plaintext M of the same size
as C if the tag verification succeeds.

B. Layout Overview

Like the original NORX versions, the new variants
are based on the monkeyDuplex construction [5], [6].
An overview of the layout is given in Figure 1.

The round function F is a permutation of b = r + c
bits, where b is called the width, r the rate (or block
length), and c the capacity. We call F a round and
Fl denotes its l-fold iteration. The internal state S of

mailto:jeanphilippe.aumasson@gmail.com
mailto:jovanovic@fim.uni-passau.de
mailto:sneves@dei.uc.pt

init(K,N,w, l, p, t)

0

0

r

c
Fl Fl Fl Fl Fl Fl Fl Fl Fl

01 01 02 02 04 04 08

A0 Aa−1 M0 Mm−1C0 Cm−1 Z0 Zz−1

T\
r

\
c

\
t

Fig. 1. Layout of NORX.

NORX is viewed as a concatenation of 16 words, i.e.
S = s0 ‖ · · · ‖ s15, which are conceptually arranged in
a 4 × 4 matrix. The so-called rate words are used for
data block injection which are s0, . . . , s4 for NORX8
and s0, . . . , s7 for NORX16. The capacity words on the
other hand are unchanged during data processing and
ensure the security of the scheme. These are s5, . . . , s15
and s8, . . . , s15 for NORX8 and NORX16, respectively.
Proposals for concrete parameters are given in Table I.
We consider NORX8 and NORX16 with l = 4 to be the
default instances.

TABLE I
PROPOSED PARAMETER COMBINATIONS OF THE LIGHTWEIGHT

NORX VARIANTS.

w l b r c k n t

8 4 or 6 128 40 88 80 32 80
16 4 or 6 256 128 128 96 32 96

C. The Round Function F

F processes a state S by first transforming its four
columns with

G(s0, s4, s8, s12) G(s1, s5, s9, s13)
G(s2, s6, s10, s14) G(s3, s7, s11, s15)

and then transforming its four diagonals with

G(s0, s5, s10, s15) G(s1, s6, s11, s12)
G(s2, s7, s8, s13) G(s3, s4, s9, s14)

Those two operations are called column step and di-
agonal step, as in BLAKE2 [7] and NORX [1], [8].
The permutation G transforms four words a, b, c, d by
computing (top-down, left-to-right):

1. a ←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
5. a ←− (a⊕ b)⊕

(
(a ∧ b)� 1

)
2. d ←− (a⊕ d) ≫ r0 6. d ←− (a⊕ d) ≫ r2
3. c ←− (c⊕ d)⊕

(
(c ∧ d)� 1

)
7. c ←− (c⊕ d)⊕

(
(c ∧ d)� 1

)
4. b ←− (b⊕ c) ≫ r1 8. b ←− (b⊕ c) ≫ r3

The rotation offsets (r0, r1, r2, r3) are (1, 3, 5, 7) for
NORX8, and (8, 11, 12, 15) for NORX16. They were
chosen such that similar performance and security

goals are achieved as in the case of NORX32 and
NORX64 [1], [8]. In particular, full diffusion is provided
after F2 in both cases.

D. Encryption and Tag Generation

NORX encryption can be divided into three main
phases: initialisation, message processing, and tag gen-
eration. Processing of a datagram A ‖M ‖ Z is done in
up to three steps: header processing, payload processing,
and trailer processing. The number of steps depends on
whether A, M , or Z are empty or not. NORX skips
processing phases of empty message parts. For example,
in the simplest case when |A| = |Z| = 0, |M | > 0,
message processing is done in one step, since only the
payload M needs to be encrypted and authenticated.

Below, we first describe the padding and domain
separation rules, then each of the aforementioned phases.

1) Padding: NORX uses the multi-rate padding [6],
defined by padr : X 7−→ X ‖ 10q1 with bitstrings X
and 10q1, and q = (−|X| − 2) mod r. This extends X
to a multiple of the rate r and guarantees that the last
block of padr(X) differs from the all-zero block 0r.

2) Domain Separation: NORX performs domain sep-
aration by XORing a domain separation constant to the
least significant byte of s15 each time before the state is
transformed by the permutation Fl. Distinct constants are
used for the different phases of message processing and
tag generation. Table II gives the specification of those
constants and Figure 1 illustrates their integration into
the state of NORX.

TABLE II
DOMAIN SEPARATION CONSTANTS.

header payload trailer tag
01 02 04 08

3) Initialisation: This phase processes a secret key K,
a nonce N and the parameters w, l, p, and t. For w = 8,
we have K = k0 ‖ · · · ‖ k9 and N = n0 ‖ · · · ‖ n3 of
sizes 80 and 32 bits, respectively. For w = 16, we have
K = k0 ‖ · · · ‖ k5 and N = n0 ‖ n1 of sizes 96 and 32

bits, respectively. First, the state S = s0 ‖ · · · ‖ s15 is
initialised. For NORX8 this is done by s0 s1 s2 s3

s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 ←−

n0 n1 n2 n3

k0 k1 k2 k3
k4 k5 k6 k7
k8 u13 u14 k9


For NORX16 state initialisation is s0 s1 s2 s3

s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 ←−

 k0 n0 n1 k1
k2 k3 k4 k5
u8 u9 u10 u11

u12 u13 u14 u15


The constants can be computed in both cases through

(u0, . . . , u15)←− F2(0, . . . , 15)

using the respective variants of F2. Note, however that
only a particular subset of the generated constants is
used: u13 and u14 for NORX8 and u8, . . . , u15 for
NORX16. Afterwards, the parameters w, l, p, and t are
integrated into the state S by XORing them to s12, s13,
s14, and s15, respectively. Finally, S is updated with Fl.

4) Message Processing: Message processing is the
main phase of NORX encryption or decryption.

a) Header Processing: If |A| = 0, this step is
skipped, otherwise let padr(A) = A0 ‖ · · · ‖ Aa−1
denote the padded header data, with r-bit sized header
blocks Ai = ai,0 ‖ · · · ‖ ai,r/l−1 and 0 ≤ i ≤ a − 1.
Then Ai is processed by:

s15 ←− s15 ⊕ 01
S ←− Fl(S)

sj ←− sj ⊕ ai,j , for 0 ≤ j ≤ r/l − 1

b) Payload Processing: If |M | = 0, this step is
skipped. Otherwise, payload data is padded using the
multi-rate padding and then encrypted. Let padr(M) =
M0 ‖ · · · ‖ Mm−1. To encrypt Mi = mi,0 ‖ · · · ‖
mi,r/l−1 and get a new ciphertext block Ci = ci,0 ‖
· · · ‖ ci,r/l−1 the following steps are executed

s15 ←− s15 ⊕ 02
S ←− Fl(S)

sj ←− sj ⊕mi,j , for 0 ≤ j ≤ r/l − 1

ci,j ←− sj

for 0 ≤ i < m − 1. For i = m − 1, the procedure is
almost the same, but only a truncated ciphertext block is
created such that C has the same length as (unpadded)
M . In other words, padding bits are never written to C.

c) Trailer Processing: Trailer data Z is processed
in a similar way as header data. The only difference is
that the domain separation constant 04 is used instead
of 02, see Table II.

5) Tag Generation: Computation of the authentica-
tion tag T is handled slightly different for NORX8 and
NORX16. Both variants first execute the following steps:

s15 ←− s15 ⊕ 08
S ←− Fl(S)

S ←− Fl(S)

T ←− T ‖ s0 ‖ · · · ‖ sr/l−1

While the tag can be extracted at once for NORX16,
this is not possible for NORX8 in most cases as the rate
only has a size of 40 bits. Thus, NORX8 performs the
following operations for each block required after the
first:

s15 ←− s15 ⊕ 08
S ←− Fl(S)

T ←− T ‖ s0 ‖ · · · ‖ sr/l−1

In summary, 3l rounds are necessary to extract an 80-bit
tag for NORX8.

E. Decryption and Tag Verification

NORX decryption mode is similar to the encryption
mode. The only two differences are described below.

1) Message Processing: Processing header A and
trailer Z of A ‖ C ‖ Z is done in the same way as
for encryption. Decryption of the encrypted payload C
is achieved as follows:

s15 ←− s15 ⊕ 02
S ←− Fl(S)

mi,j ←− sj ⊕ ci,j , for 0 ≤ j ≤ r/l − 1

sj ←− ci,j

Like in encryption, as many bits are extracted and written
to M as unpadded encrypted payload bits.

2) Tag Verification: This step is executed after tag
generation. Let T and T ′ denote the received and the
generated tag. If T = T ′, tag verification succeeds;
otherwise it fails, the decrypted payload is discarded and
an error is returned.

III. HARDWARE REQUIREMENTS

In this section, we present preliminary estimates of the
required gate-equivalents (GE) when realising NORX8
and NORX16 in hardware. We assume that the ciphers
are implemented for a technology that needs 7GE per D-
flip-flop, 3GE per XOR and 2GE per AND. To store the
states of NORX8 and NORX16 a total of 128 and 256 D-
flip-flops are necessary amounting to 7 · 128 = 896GE
and 7 · 256 = 1792GE, respectively. Implementing G
requires 12 XORs, 4 ANDs, and some bit shifts for� 1
and cyclic rotations ≫ r. Bit shifts can be ignored
for GE estimations since they are realised through re-
wiring. The 8- and 16-bit G functions therefore need
(3 ·12+2 ·4) ·8 = 44 ·8 = 352GE and 44 ·16 = 704GE,
respectively. The difference between the column and
diagonal steps is also just a re-wiring of state elements
and therefore requires no additional GE. Absorption of
r-bit data blocks is realised through bitwise XOR. Thus,
an additional number of 3 · 40 = 120GE (NORX8) and
3 ·128 = 384GE (NORX16) are necessary. In summary,
the lower bounds for hardware implementations can be
estimated by 896 + 352 + 120 = 1368GE for NORX8
and 1792 + 704 + 384 = 2880GE for NORX16.

IV. SECURITY GOALS

NORX8 and NORX16 follow the same security
paradigms like their bigger siblings NORX32 and
NORX64, i.e. it is assumed that adversaries are nonce-
respecting and that nothing but an error is returned on
a tag verification failure. The security of the schemes is
limited by key and tag sizes of k = t = 80 bits (NORX8)
and of k = t = 96 bits (NORX16) for our proposed
instances, see Table I. We set the usage exponent e to 24
(NORX8) and 32 (NORX16) which limits the number of
initialisations to 2e before a given key has to be changed.
According to the results for keyed sponge constructions
presented in [9], NORX8 and NORX16 are expected to
indeed achieve the generic security bounds of 80 and 96
bits, respectively.

V. PRELIMINARY CRYPTANALYSIS

We conducted a preliminary analysis of certain prop-
erties of NORX with w ∈ {8, 16}, and used similar
techniques as presented in [3] for w ∈ {32, 64}. The
rotation offsets (1, 3, 5, 7), for w = 8, and (8, 11, 12, 15),
for w = 16, of the round function were chosen such
that F2 provides full diffusion, as already mentioned
in Section II-C. Additionally, the above rotation offsets
ensure that the function G has no fixed points, which
are values that satisfy G(a, b, c, d) = (a, b, c, d), except

for the trivial one G(0, 0, 0, 0) = (0, 0, 0, 0). As a
consequence, Fl also has no fixed points except for the
all-zero point. Our SMT/SAT-solver-based differential
cryptanalysis of F2 showed that the probabilities of
differential characteristics are upper-bounded by 2−29

(w = 8) and 2−37 (w = 16). Moreover, the differen-
tial probabilities for F during initialisation are upper-
bounded by 2−31 (w = 8) and 2−53 (w = 16) for the
case where only the nonce words can be modified. In
this scenario, 7 rounds of initialisation can be roughly
upper-bounded by 2−31+3·(−29) = 2−118 (NORX8) and
2−53+3·(−37) = 2−164 (NORX16), respectively.

VI. CONCLUSION

In this work, we presented NORX8 and NORX16, the
two latest members of the NORX family of authenticated
encryption schemes targeted at low-end systems. The
reference source code for both new variants of NORX
will be released on the official NORX website [10]. The
NORX family of authenticated encryption algorithms
is free for everyone to use and we have neither filed
nor have we planned to file a patent application for the
algorithm.

REFERENCES

[1] J.-P. Aumasson, P. Jovanovic, and S. Neves, “NORX,” in
CAESAR Proposal, 2014.

[2] “CAESAR — Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness,” 2014, http://competitions.
cr.yp.to/caesar.html.

[3] J.-P. Aumasson, P. Jovanovic, and S. Neves, “Analysis of
NORX,” in LATINCRYPT 2014, 2014, to appear.

[4] P. Jovanovic, A. Luykx, and B. Mennink, “Beyond 2c/2 Se-
curity in Sponge-Based Authenticated Encryption Modes,” in
Advances in Cryptology — ASIACRYPT 2014, ser. Lecture
Notes in Computer Science, T. Iwata and P. Sarkar, Eds., vol.
8873. Springer, 2014, pp. 85–104.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche,
“Permutation-based Encryption, Authentication and Authenti-
cated Encryption,” presented at DIAC 2012, 05–06 July 2012,
Stockholm, Sweden.

[6] ——, “Duplexing the Sponge: Single-Pass Authenticated En-
cryption and Other Applications,” in SAC 2011, ser. LNCS,
A. Miri and S. Vaudenay, Eds., vol. 7118. Springer, 2011, pp.
320–337.

[7] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Win-
nerlein, “BLAKE2: Simpler, Smaller, Fast as MD5,” in ACNS
2013, ser. LNCS, M. Jacobson, M. Locasto, P. Mohassel, and
R. Safavi-Naini, Eds., vol. 7954. Springer, 2013, pp. 119–135.

[8] J.-P. Aumasson, P. Jovanovic, and S. Neves, “NORX: Parallel
and Scalable AEAD,” in ESORICS 2014, ser. LNCS, M. Kuty-
lowski and J. Vaidya, Eds., vol. 8713. Springer, 2014, pp.
19–36.

[9] E. Andreeva, J. Daemen, B. Mennink, and G. V. Assche,
“Security of Keyed Sponge Constructions Using a Modular
Proof Approach,” in FSE 2015, to appear.

[10] “Official website of NORX,” 2014, https://www.norx.io.

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://www.norx.io

	Introduction
	Specification
	Generalities
	Encryption Interface
	Decryption Interface

	Layout Overview
	The Round Function F
	Encryption and Tag Generation
	Padding
	Domain Separation
	Initialisation
	Message Processing
	Tag Generation

	Decryption and Tag Verification
	Message Processing
	Tag Verification

	Hardware Requirements
	Security Goals
	Preliminary Cryptanalysis
	Conclusion
	References

