Using the SQL MODEL Clause to Define Inter-row Calculations

Using the SQL MODEL Clause to Define Inter-row Calculations

Purpose

In this module you learn how to use the Oracle Database 10 g SQL MODEL clause to perform inter-row calculations.
Topics

This module will discuss the following:

Overview

Prerequisites

Sample Data
Example Syntax

Positional and Symbolic Cell
References

The CV() Function and ANY Wildcard

O 5 [Y

=

@ FORLoops

 Order of Evaluation of Rules

o Reference MODEL s

o Iterative MODEL s

@ Ordered Rules

Overview

Back to List of Topics

Oracle Database 10 g SQL MODEL Clause Overview

With the SQL MODEL clause, you can define a multidimensional array on query results and then apply rules on the array
to calculate new values. The rules can be sophisticated interdependent calculations. By integrating advanced calculations
into the database, performance, scalability and manageability are enhanced significantly compared to external solutions.
Rather than copying data into separate applications or PC spreadsheets, users can keep their data within the Oracle
environment.

The MODEL clause defines a multidimensional array by mapping the columns of a query into three groups: partitioning,
dimension, and measure columns. These elements perform the following tasks:

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sgimodel.htm2 (1 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

@ Partitions define logical blocks of the result set in a way similar to the partitions of the analytical functions (described
in the Data Warehousing Guide Chapter 21, "SQL for Analysis in Data Warehouses"). MODEL rules are applied to the
cells of each partition.

o Dimensions identify each measure cell within a partition. These columns are identifying characteristics such as date,
region and product name.

0 Measures are analogous to the measures of a fact table in a star schema. They typically contain numeric values such
as sales units or cost. Each cell is accessed within its partition by specifying its full combination of dimensions.

To create rules on these multidimensional arrays, you define computation rules expressed in terms of the dimension
values. The rules are flexible and concise, and can use wild cards and FOR loops for maximum expressiveness.
Calculations built with the MODEL clause improve on traditional spreadsheet calculations by integrating analyses into the
database, improving readability with symbolic referencing, and providing scalability and much better manageability.

The figure below gives a conceptual overview of the model feature using a hypothetical sales table. The table has
columns for country, product, year and sales amount. The figure has three parts. The top segment shows the concept of
dividing the table into partitioning, dimension and measure columns. The middle segment shows two hypothetical rules
that forecast sales for Pr od1 and Pr od2 as the calculated value of product sales from the two previous years. Finally, the
third part shows the output of a query applying the rules to such a table with hypothetical data. The black output is data
retrieved from the database, while the blue output shows rows calculated from rules. Note that the rules are applied within
each partition.

Columns mapped to Partition, Dimension and Measure

COUNTRY PRODUCT YEAR SALES
Partition Dimension Dimension Measure
Rules:

sal es(' prodl', 2002)
sal es(' prod2', 2002)

sal es(' prodl', 2000) + sales('prodl', 2001)
sal es(' prod2', 2000) + sales('prod2', 2001)

Output of the MODEL clause:

COUNTRY PRODUCT YEAR SALES
Partition Dimension Dimension Measure
A prodl 2000 10

A prodl 2001 15

A prod2 2000 12

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sgimodel.htm2 (2 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

A prod2 2001 16
B prodl 2000 21
B prodl 2001 23
B prod2 2000 28
B prod2 2001 29
A prodl 2002 25
A pr od2 2002 28
B prodl 2002 44
B prod2 2002 B

Note that the MODEL clause does not update existing data in tables, nor does it insert new data into tables: to change
values in a table, the Model results must be supplied to an INSERT or UPDATE or MERGE statement.

Prerequisites
Back to List
Before starting this module, you should have:

1 Completed the Configuring Linux for the Installation of Oracle Database 10g lesson

]2 Completed the Installing the Oracle Database 10g on Linux lesson

O3 Download and unzip model_clause.zip into your working directory (i.e. /home/oracle/wkdir)

Sample Data

Back to List of Topics

You will use the SH schema to create a view. This view provides annual sums for product sales, in dollars and units, by
country, aggregated across all channels

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sglmodel.htm2 (3 of 51)2/17/2004 6:54:10 AM

javascript:;
javascript:;
file:///D|/my_data/obepdf/obe10gdb/bidw/sqlmodel/files/model_clause.zip

Using the SQL MODEL Clause to Define Inter-row Calculations

1 You will first make sure you have a clean environment. From a terminal window, execute the following command

(s):

cd wkdir
sgl pl us sh/ sh@rcl
@l eanup

The cl eanup. sql script contains the following:

DROP VI EW sal es_vi ew;
DROP TABLE dol | ar _conv;
DROP TABLE growt h_r at e;
DROP TABLE | edger;

& 144,25.8.266-5es5i0n.5TE - TN¥TPlus =10] x|

Session Edit MWiew Commands Script Help

0|2 & @stE] Bl 2@ O = 26 &

ERROE at line 1:
ORA-08942: tabhle aor wiew does not exist

[DROF TAEBLE dollar_conw

r

ERROE at line 1:
OREA-@0947: table or view does not exist
[DROF TAELE growth_rate

r
ERRORE at line 1:
OEA-80942: table or view does not exist
[DROF TAELE ledger

r

ERROE at line 1:
ORA-08942: tabhle aor wiew does not exist

saLe || [

« L

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sglmodel.htm2 (4 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

- Now you can create the SALES_VIEW view. From your SQL*Plus session, execute the following script:

@anpl e_dat a

The sanpl e_dat a. sql script contains the following:

CREATE VI EW sal es_vi ew AS
SELECT country_nane country, prod_nane prod, cal endar_year year,
SUM anount _sol d) sal e, COUNT(anount _sol d) cnt
FROM sales, tines, customers, countries, products

WHERE sales.tine_id

times.tinme_id AND

sal es.prod _id = products.prod_id

AND sal es.cust _id

customers. cust _id
AND custoners.country_id = countries.country_id

GROUP BY country_nane, prod_nane, cal endar_year

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sglmodel.htm2 (5 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

|DRDP TABLE dollar_conv

r

ERROE at line 1:
OREA-@0947: table or view does not exist

[DROF TAELE growth_rate
r
ERRORE at line 1:
OEA-80942: table or view does not exist
[DROF TAELE ledger
r
ERROE at line 1:
ORA-08942: tabhle aor wiew does not exist
SALr @sample_data

Wiew created.

saLe || P

« L

3 Verify the view is created correctly and that 3219 ro ws exist. From your SQL*Plus session, execute the
" following command:

SELECT COUNT(*) FROM sal es_vi ew,

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sglmodel.htm2 (6 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

& 144.25.8.266-5ession.STE - TNWTPlus

Session Edit Wiew Commands Script Help

=10 x|

0| s e] Bl =@ O = a6 &

|DRDP TABLE growth_rate
r
ERROE at line 1:
OREA-@0947: table or view does not exist
[DREOF TAELE ledger
r
ERRORE at line 1:
OEA-80942: table or view does not exist
QL Bsample_data
Wiew created.
SAL> select count(™) from sales wiew;

COUNT (™)

« L

O 4 To maximize performance, your system should already have a materialized view built on the data that is used by
the view above. The materialized view is created during the installation of the sh schema data. Oracle's
summary management system will automatically rewrite any query using the view above so that it takes

advantage of the materialized view.

Example Syntax

As an initial example of models, consider the following statement:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sgimodel.htm2 (7 of 51)2/17/2004 6:54:10 AM

Back to List of Topics

Using the SQL MODEL Clause to Define Inter-row Calculations

FROM sal es_vi ew
WHERE country IN ("Italy',' Japan')

MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Bounce', 2002] = sal es['Bounce', 2001] + sal es['Bounce', 2000],
sales['Y Box', 2002] = sales["'Y Box', 2001],
sales['2 Products', 2002] = sal es['Bounce', 2002] + sales['Y Box', 2002])
ORDER BY country, prod, year;

The results are:

COUNTRY PROD YEAR SALES
Italy 2_Products 2002 90387. 54
Italy Bounce 2002 9179. 99
Italy Y Box 2002 81207. 55
Japan 2_Products 2002 101071. 96
Japan Bounce 2002 11437. 13
Japan Y Box 2002 89634. 83

This statement partitions by country, so the rules are applied to data of one country at a time. Note that the data ends with
2001, so any rules defining values for 2002 or later will insert new cells. The first rule defines the sales of Bounce in 2002
as the sum of sales in 2000 and 2001. The second rule defines the sales for Y Box in 2002 as being the same value as
they were for 2001. The third rule defines a category called 2_Pr oduct s , which is simply the sum of adding the 2002
Bounce and Y Box values together. Note that the values for 2_Pr oduct s are derived from the results of the two prior
rules, so those rules must be executed before the 2_Pr oduct s rule.

Syntax Guidelines

= Note that the " RETURN UPDATED ROWS " clause following the keyword MODEL limits the results to just
those rows that were created or updated in this query. Using this clause is a convenient way to limit result
sets to just the newly calculated values. You will use the RETURN UPDATED ROWS clause throughout the

examples.

= The keyword RULES , shown in the examples at the start of the rules, is optional, but recommended for
easier reading.

= Many of our examples do not require ORDER BY on the COUNTRY column. It is included in the specification in
case you want to modify the examples and add multiple countries.

Technical Details

The following examples move through the major features of the MODEL clause, building from basic cell references to

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sglmodel.htm2 (8 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

reference models and iterative models.
Positional and Symbolic Cell References

Back to List of Topics

This section examines the techniques for symbolic and positional referencing cells in the MODEL statement.

1. You want to view the SALES value for the product Bounce in the year 2000, inltal y , and setitto 10 . To do
S0, use a "positional cell reference”. The value for the cell reference is matched to the appropriate dimension
based on its position in the expression. The DI MENSI ON BY clause of the model determines the position
assigned to each dimension: in this case, the first position is product (" PROD ") and the second position is
YEAR . From your SQL*Plus session, execute the following script:

@os _celll

The pos_cel | 1. sql script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales
FROM sal es_view
VWHERE country='lItaly’
MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Bounce', 2000] = 10)
ORDER BY country, prod, year

/

file:///D)/my_data/obepdf/obel0gdb/bidw/sglmodel/sgimodel.htm2 (9 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help
D| (&5 8] B =@ Of = a6 &

[
|DRDP TABLE ledger
r

ERROE at line 1:
OREA-@0947: table or view does not exist

SGL> @sample_data
Wiew created.
SAL» select count(*) from sales wview;

COUNT (*)

SQL> Bpos celll

[COUNTREY FRODO YEAR SALES

Italy Bounce 2000 le

« L

O You want to create a forecast value of SALES for the product Bounce in the year 2005 ,inltal y , and setitto
20 . Use a rule in the SELECT statement that sets the year value to 2005 and thus create a new cell in the array.
From your SQL*Plus session, execute the following script:

@os_cel | 2

The pos_cel | 2. sqgl script contains the following:

SELECT SUBSTR(country, 1, 20) country,

SUBSTR(prod, 1, 15) prod, year, sales

FROM sal es_vi ew

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (10 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

WHERE country="Italy"
MODEL RETURN UPDATED ROWS

PARTI TI ON BY (country)

DI MENSI ON BY (prod, year)

MEASURES (sal e sal es)

RULES (

sal es[' Bounce', 2005] = 20)

CRDER BY country, prod, year

/

Note: If you want to create new cells, such as values for future years, you must use positional references or FOR
loops (discussed later in this lesson). That is, positional reference permits both updates and inserts into the
array. This is called the UPSERT process.

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

SAL» @sample_data
Wiew created.
SALr select count(*) from sales wview,;
COUMT (%)
SAL> @pos_celll
[COUNTREY FRODO YEAR SALES

QL Bpos cell2

[COUNTRY FraO TEAR SALES
Italy Bounce 2005 20
SAL- %

« L

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (11 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

] 3. You want to update the SALES for the product Bounce in all years after 1999 where the values are recorded for
I'tal y and setthem to 10 . To do so, use a "symbolic cell reference". The value for the cell reference is
matched to the appropriate dimension using Boolean conditions. You can use all the normal operators such as
<, >, N, and BETVEEN. In this case the query looks for product value equal to Bounce and any year value
greater than 1999 . This shows how a single rule can access multiple cells. From your SQL*Plus session,
execute the following script:

@ymcelll
The sym cel | 1. sql script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales
FROM sal es_vi ew
WHERE country="Italy'
MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[prod=' Bounce', year>1999] = 10)
CRDER BY country, prod, year

/

Note: Symbolic references are very powerful, but they are solely for updating existing cells: they cannot create
new cells such as sales projections in future years.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (12 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNYTPlus Si=E{

Session Edit Wiew Commands Script Help

O & st 8] Bl =l O = 2 &
COUNT (") -]

SAL> @pos_celll
[COUNTREY FROD YEAR SALES
QL Bpos cell2

[COUNTREY FRODO YEAR SALES

SALr Bsym_celll

[COUNTEY FrOD TEAER SALES
Italy Bounce 2E60 la
Italy Bounce 2661 le

« L

] a. You want a single query to update the sales for several products in several years for multiple countries, and you
also want it to insert new cells. By placing several rules into one query, processing is more efficient since it
reduces the number of times needed to access the data. It also allows for more concise SQL, supporting higher
developer productivity. From your SQL*Plus session, execute the following script:

@os_sym

The pos_sym sql script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sal es

FROM sales view WHERE country IN ('ltaly',' Japan')

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (13 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

MODEL RETURN UPDATED ROWNS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Bounce', 2002] = sal es[' Bounce', year = 2001] ,
--positional notation: can insert new cell
sales['Y Box', year>2000] = sales['Y Box', 1999],
--synbolic notation: can update existing cell
sal es[' 2_Products', 2005] =
sal es[' Bounce', 2001] + sales['Y Box', 2000])
--positional notation: permts insert of newcells
--for new product
ORDER BY country, prod, year

/

The example data has no values beyond the year 2001, so any rule involving the year 2002 or later requires
insertion of a new cell. The same applies to any new product name defined here. In the third rule' 2_Pr oduct s
"is defined as a product with sales in 2005 which equal the sum of Bounce in 2001 and Y Box in 2000 .

The first rule, for Bounce in 2002 , inserts new cells since it is positional notation. The second rule, for Y Box ,
uses symbolic notation, but since there are already values for' Y Box 'in the year 2001 , it updates those
values. The third rule, for* 2_Product s 'in 2005, is positional, so it can insert new cells, and you will see
them in the output.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (14 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

Italy Bounce 2005 20

SAL> Bsym celll

[COUNTRY FraO TEAR SALES
Italy Bounce 2000 le
Italy Bounce z2E01 1@

SLUL> Bpos sym

[COUNTRY FROD TEAK SALES
Italy 2 Products 2005 324169.19
Italy Bounce 2002 4346 .3
Italy Y Box 2B 1 15215, 16
Japan 2 Products 2MES 519594 2k
Japan Bounce 20EE BILI .6
Japan Y Box 20E] 22161 .91

|6 rows selected.

SaLs 5

« L

Multi-Cell References on the Right Side of a Rule

Back to List of Topics

The earlier examples had multi-cell references only on the left side of the rules. If you want to refer to multiple cells on the
right side of a rule, you can use multi-cell references on the right side of rules in which case an aggregate function needs
to be applied on them to convert them to a single value. All existing aggregate functions including OLAP aggregates
(inverse distribution functions, hypothetical rank and distribution functions etc.) and statistical aggregates, and user-
defined aggregate functions can be used.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (15 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

1 You want to forecast the sales of Bounce in | t al y for the year 2005 to be 100 more than the maximum sales
in the period 1999 to 2001 . To do so, you need to use the BETVEEEN clause to specify multiple cells on the right
side of the rule, and these are aggregated to a single value with the MAX() function. From your SQL*Plus
session, execute the following script:

@ulti_c

Thermul ti _c. sql script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales
FROM sal es_vi ew
VWHERE country="Italy’
MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Bounce', 2005] =
100 + max(sal es)[' Bounce', year BETWEEN 1998 AND 2002])
ORDER BY country, prod, year

/

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (16 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

Italy Bounce 2000 1@
Italy Bounce 2Ee1 1@

SULr Bpos_sym

[COUNTRY FRODO TEAK SALES
Italy 2 Products 2O05 34169.19
Italy Bounce 2002 4846 .3
Italy Y Box 2BE1 15215.16
Japan 2 Products 205 51994 . 26
Japan Bounce 20EE BIE3 .6
Japan Y Box 201 22161.91

|6 rows selected.

SAL> Bmulti ¢

[COUNTRY FraO TEAR SALES
Italy Bounce 2005 4946 .3
SAL- [}E

« L

Note that aggregate functions can appear only on the right side of rules. Arguments to the aggregate function
can be constants, bind variables, measures of the MODEL clause, or expressions involving them.

The CV() Function and ANY Wildcard

Back to List of Topics

The CV() function is a very powerful tool that makes rule creation highly productive. CV() is used on the right side of
rules to copy the current value of a dimension specified on the left side. It is helpful wherever the left side specifications
refers to multiple cells. In terms of relational database concepts, it acts like a join operation.

CV() allows for very flexible expressions. For instance, by subtracting from the CV(year) value you can refer to other
rows in the data set. If you have the expression' CV(year) -2 'in a cell reference, you can access data from two years
earlier. CV() functions are most commonly used as part of a cell reference, but they can also be used outside a cell
reference as freestanding elements of an expression.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (17 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

1 You want to update the sales values for Bounce in | t al y for multiple years, using a rule where each year's
sales is the sum of Mouse Pad sales for that year plus 20% of the ' Y Box ' sales for that year. From your
SQL*Plus session, execute the following script:

@vfl

The cvf 1. sql script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales
FROM sal es_vi ew
WHERE country="Italy'
MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Bounce', year BETWEEN 1995 AND 2002] =
sal es[' Mobuse Pad', cv(year)] +
0.2 * sales['Y Box', cv(year)])
ORDER BY country, prod, year

/

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (18 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

Italy Bounce Z@El 10 -]

SULy Bpos_sym

[COUNTRY FrOD TEAR SALES
Italy 2 _Products 2O@ES5 34169.19
Italy Bounce 2002 4846 .3
Italy Y Box 2@01 1521516
Japan 2 Products 205 519394 .26
Japan Bounce 2ME2 B3@3. B
Japan T Box 20l £2161.91

|6 rows selected.

SHLr Acufl

[COUNTRY FrOD TEAR SALES
Italy Bounce 13919 TIEGE . 272
Italy Bounce 2OEE 9527 . 403
Italy Bounce 2001 L0989 .41

« L

Note that in the above results you see values for just years 1999-2001 although any year in the range 1995 to
2002 is accepted. This is because the table has data for only those years. The CV() function provides the
current value of a DI MENSI ON BY key of the cell currently referenced on the left side. When the left side of the
rule above references the cell' Bounce 'and 1999 , the right side expression would resolve to:

sal es[' Mbuse Pad', 1999] + 0.2 * sales['Y Box', 1999]

Similarly, when the left side references the cell* Bounce 'and 2000 , the right side expression evaluates to:

sal es[' Mbuse Pad', 2000] + 0.2 * sales['Y Box', 2000]

CV() function takes a dimension key as its argument. It is also possible to use CV() without any argument as in
cv() and in which case, positional referencing is implied. The above rule can also be written as:

s[' Bounce', year BETWEEN 1995 AND 2002] =
s[' Mouse Pad', cv()] + 0.2 * s["Y Box', cv()]

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (19 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

CV() functions can be used only in right side cell references.

- You want to calculate the year over year percent growth in sales for products' Y Box ',' Bounce 'and"
Mouse Pad'inltaly . From your SQL*Plus session, execute the following script:

@vf2

The cvf 2. sqgl script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales, growh
FROM sal es_vi ew
VWHERE country='lItaly’
MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sales, 0 growth)
RULES (
growt h[prod in ('Bounce','Y Box','Muse Pad'), year between 1998 and 2001]
100* (sales[cv(prod), cv(year)] -
sal es[cv(prod), cv(year) -1]) /
sal es[cv(prod), cv(year) -1])
ORDER BY country, prod, year

/

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (20 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|
Session Edit Wiew Commands Script Help
= i, ﬁ" 1~k = =
D= E s8] B8] =@ O = 86 &

[COUNTRY FROD YEAR SALES -]

Italy Bounce 13919 TIEGE . 272

Italy Bounce 2HEH 9527 . 405

Italy Bounce 20l £0989.41

SHL- Bewfz

[COUNTREY FrODO TEAR SALES GEOWTH

Italy Bounce 194949 2474 .73

Italy Bounce 2EEn 4333.69 ¥5.1141516

Italy Bounce 2oel 48346.3 11 .828483

Italy Mouse Pad 1993 3E55.649

Italy Mouse Fad 193919 4BE3 . 24 52 . BEE4125

Italy Mouse Fad 2EEn IBEZ .83 -Z21.45311

Italy Mouse Pad 2oel 4747 .9 29.6238155

Italy Y Box 193919 15215, 16

Italy Y Box 2EEn £9322 .88 92.7215356

Italy Y Box 2oel dlz287 .55 176.942518

1B rows selected.

saLx —
% -

| IR 4

Note that the blank cells in the results are NULLs. The rule results in a null if there is no value for the product two
years earlier. None of the products have a value for 1998, so in each case the 1999 growth calculation is NULL.

3 A wild card operator is very useful for cell specification, and you can use the ANY keyword for this purpose. You
" can use it with the prior example to replace the specification ' year between 1998 and 2001 ' as shown
below.

ANY can be used in cell references to include all dimension values including nulls. In symbolic reference
notation, use the phrase' I S ANY '. Note that the ANY wildcard prevents cell insertion when used with either
positional or symbolic notation.

From your SQL*Plus session, execute the following script:

@ny

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (21 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

The any. sql script contains the following:

SELECT SUBSTR(country, 1, 20) country,
SUBSTR(prod, 1, 15) prod, year, sales, growh
FROM sal es_view
WHERE country="'Italy'
MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sales, 0 growth)
RULES (
growm h[prod in ('Bounce','Y Box',' Muwuse Pad'), ANY] =
100* (sal es[cv(prod), cv(year)] -
sal es[cv(prod), cv(year) -1]) /
sal es[cv(prod), cv(year) -1])
ORDER BY country, prod, year

/

This query gives the same results as the prior query because the full data set ranges from 1998 to 2001, and
that is the range specified in the prior query.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (22 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

Italy T Box 19949 15215, 16 ‘:J
Italy T Box ooyl £9327 89 97.7215356
Italy Y Box 20E] Bl207 .55 176 . 942513

18 rows selected.

SOLy Fany

[COUNTRY FROD TEAK SALES GROWTH
Italy Bounce 194949 2474 .73

Italy Bounce 2EEn 4333 .69 75.1141516
Italy Baounce 2Bl 4346.3 11.3:25433
Italy Mouse Pad 1993 3E55.649

Italy Mouse Pad 1999 4663 .24 52 .B084125
Italy Mouse Pad ZEEn 3662.83 -21.45311
Italy Mouse Pad 2Bl 4747 .9 29 6238155
Italy Y Box 1999 15215.16

Italy Y Box ZBEn 29322.89 92.7Z215336
Italy Y Box 2Bl d1207 .55 176.942518

180 rows selected.

SUL>

« L

FOR Loops - A Concise Way to Specify New Cells

Back to List of Topics

The MODEL clause provides a FOR construct which can be used inside rules to express computations more concisely. The
FOR construct is allowed on both sides of rules. For example, consider the following rules that estimate the sales of
several products for year 2005 to be 30% higher than their sales for year 2001:

RULES

(
sal es[' Mouse Pad', 2005] = 1.3 * sal es[' Mouse Pad', 2001],

sal es[' Bounce', 2005] = 1.3 * sal es[' Bounce', 2001],
sales['Y Box', 2005] = 1.3 * sales['Y Box', 2001]

)

By using positional notation on the left side of the rules, you ensure that cells for these products in the year 2005 will get

file:///D)/my_data/obepdf/obel0gdb/bi dw/sqlmodel/sglmodel.htm?2 (23 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

inserted if they are not previously present in the array. This is rather bulky as you may have to have as many rules as
there are products. If you work with dozens of products, it becomes an unwieldy approach.

You can reword this computation so it is concise and has exactly the same behavior:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales

FROM sal es_vi ew

VWHERE country='Iltaly'

MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sales[FOR prod in (' Mouse Pad', 'Bounce', 'Y Box'), 2005] =
1.3 * sales[cv(prod), 2001])
ORDER BY country, prod, year;

This results in:

COUNTRY PROD YEAR SALES
Italy Bounce 2005 6407. 245
Italy Mouse Pad 2005 6402. 63
Italy Y Box 2005 108308. 304

If you write a specification similar to the above one, but without the FOR keyword, only cells which already exist would be
updated, and no new cells would be inserted. In the SH data, that would mean no rows are returned. Here is that query:

SELECT SUBSTR(country, 1,20) country, SUBSTR(prod, 1,15) prod, year, sales
FROM sal es_vi ew
WHERE country='Italy’

MODEL RETURN UPDATED ROWNS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sales[prod in (' Muuse Pad', 'Bounce', 'Y Box'), 2005] =
1.3 * sales[cv(prod), 2001])
ORDER BY country, prod, year;

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (24 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

no rows sel ected

You can view the FOR construct as generating multiple rules with positional references from a single rule, thus enabling
creation of new cells (UPSERT behavior).

Note that the MODEL clause has a limit of 10,000 rules, and the virtual rules generated by FOR constructs are
counted toward that limit. It is important to consider the total number of rules potentially generated by FOR constructs to
avoid exceeding the rule limit.

In situations where FOR constructs would generate over 10,000 rules, the limit can be avoided in two ways. First, it may
be possible to move dimensions into the PARTITION BY clause. This reduces the number of rules the FOR construct will
generate, and the 10,000 rule maximum counts only the rules within one partition at a time. The second approach is to
provide the MODEL clause a set of rows that includes all the needed cells. The MODEL clause then does not need to
create cells, but just updates them, and this can be done without using FOR constructs. To generate the full set of rows
needed, it is helpful to use the Partitioned Outer Join feature added in Oracle Database 10g. Partitioned Outer Join
makes it easy to specify fully populated data sets. For more information, see the Oracle by Example lesson Using
Partitioned Outer Join to Fill Gaps in Sparse Data .

If you know that the needed dimension values come from a sequence with regular intervals, you can use another form of
the FOR construct:

FOR di nensi on FROM val uel TO val ue2 [INCREMENT | DECREMENT] val ue3

This specification results in values between val uel and val ue2 by starting from val uel and incrementing (or
decrementing) by val ue3 .

11 You want to specify projection sales values Mouse Pad for the years 2005 to 2012 so that they are equal to
120% of the value in 2001 . From your SQL*Plus session, execute the following script:

@ or

The f or. sgl script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales

FROM sal es_view

WHERE country='Italy’

MODEL RETURN UPDATED ROWS

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (25 of 51)2/17/2004 6:54:10 AM

http://otn.oracle.com/obe/obe10gdb/bidw/outerjoin/outerjoin.htm
http://otn.oracle.com/obe/obe10gdb/bidw/outerjoin/outerjoin.htm

Using the SQL MODEL Clause to Define Inter-row Calculations

PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Mouse Pad', FOR year FROM 2005 TO 2012 | NCREMENT 1] =
1.2 * sales[cv(prod), 2001])
CRDER BY country, prod, year

/

This kind of FOR construct can be used for dimensions of numeric, date and datetime datatypes. The increment/
decrement expression val ue3 should be numeric for numeric dimensions and can be numeric or interval for
dimensions of date or datetime types. There are other methods to use the FOR construct, and they are described
in detail in the Data Warehousing Guide . The most important of these other methods is to use a SQL subquery
as the argument for an | N operator. When using FOR constructs with subqueries, it is essential to examine the
total number of rules that the FOR construct may generate and make sure they will not exceed the 10,000 rule
limit.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (26 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

& 144.25.8.266-5ession.STE - TNWTPlus

=10 x|

Session Edit Wiew Commands Script Help
= i, ﬁ" 1~k = =
D= E s8] B8] =@ O = 86 &
Italy Mouse Fad 2EEn IBEZ .83 -Z21.45311 ;I
Italy Mouse Fad 2eml 4747 .9 29 6238155
Italy Y Box 1399 15215 .16
Italy Y Box 2E00 29322 .88 92.7215356
Italy Y Box 2eml Alz207 .55 17V6.942514%
18 rows selected.
SALx @far
[COUNTREY FrOO YEAR SALES
Italy Mouse Pad 2005 5697 .48
Italy Mouse Pad 2E06 56497 .43
Italy Mouse Pad 2007 5697 .43
Italy Mouse Pad 2003 5697 .43
Italy Mouse Pad 2009 5697 .48
Italy Mouse Pad 2010 5697 .45
Italy Mouse Pad 2011 5697 .43
Italy Mouse Pad 2012 5697 .48
8 rows selected. %
SHL»

« L

Order of Evaluation of Rules

By default, rules are evaluated in the order they appear in the MODEL clause. An optional keyword ' SEQUENTI AL ORDER

Back to List of Topics

' can be specified in the MODEL clause to make such an evaluation order explicit. SQL MODEL s with sequential rule order

of evaluation are called 'Sequential Order' models.

To have models calculated so that all rule dependencies are considered and processed in correct order, use the

AUTOMATI C ORDER keywords. When a model has a large number of rules it may be more efficient to use the

AUTOVATI C ORDER option than to manually check that the rules are listed in a logically correct sequence. This enables
more productive development and maintenance of models.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (27 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

01 You can have a model with many rules which creates new product values based on other products. To ensure
that the rules will be executed in correct sequence so that no dependencies are missed use the AUTOVATI C
ORDER keywords. The example below contains three rules to illustrate the concept. From your SQL*Plus
session, execute the following script:

@_o

The s_o0. sgl script contains the following:

SELECT SUBSTR(country, 1, 20) country,
SUBSTR(prod, 1, 15) prod, year, sales
FROM sal es_vi ew
WHERE country IN ('lItaly',"'Japan')
MODEL RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES SEQUENTI AL ORDER (
sal es[' 2 Products', 2002] = sal es['Bounce', 2002] + sales['Y Box', 2002],
sal es[' Bounce', 2002] = sal es[' Bounce', 2001] + sal es[' Bounce', 2000],
sal es['Y Box', 2002] = sales['Y Box', 2001])
ORDER BY country, prod, year

/

This query returns the results for the newly created ' 2_Pr oduct s ' product and calculates the values for
Bounce and Y Box before 2_Products :

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (28 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

Italy Mouse Pad 2006 5697 .43 _:J
Italy Mouse Pad 2007 5697 .43
Italy Mouse Pad 2003 5697 .48
Italy Mouse Pad 2069 5697 .45
Italy Mouse Pad 2010 5697 .43
Italy Mouse Pad 2011 5697 .48
Italy Mouse Pad 2012 56497 .43

B rows selected.

SLUL> @3 0

[COUNTRY FROD TEAR SALES
Italy 2 Products 2002

Italy Bounce 20EE 91793.93
Italy Y Box 2oB2 B1207 .55
Japan 2 Products 20682

Japan Bounce 20EE 11437 .13
Japan Y Box 20EE 33634 . 83

|6 rows selected.

saL | [y

« L

This query should not calculate the values for Bounce and Y Box before 2_Products,and 2_Products is
assigned null values.

NULL Measures and Missing Cells

Back to List of Topics

Applications using SQL MODEL s would not only have to deal with non-deterministic values for a cell measure in the form
of stored NULL entries, but also with non-determinism in the form of missing cells. A cell, referenced by a single cell
reference, that is missing in the query's data is called a missing cell. The MODEL clause provides a default treatment for
nulls and missing cells and also provides options that applications can use to treat non-deterministic values as per their
business logic. By default, NULL cell measure values are treated the same way as nulls are treated elsewhere in SQL.
Missing cells are treated as cells with NULL measure values. For example, the following query yields a NULL for sales
because the dataset does not include 2004 values:

SELECT SUBSTR(country, 1,20) country, SUBSTR(prod, 1, 15) prod, year, sales

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (29 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

FROM sal es_vi ew

WHERE country='Iltaly'

MODEL RETURN UPDATED ROW\S
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Mbuse Pad', 2005] =
sal es[' Mouse Pad', 1999] + sal es[' Mouse Pad', 2004])

ORDER BY country, prod, year;

Italy Mouse Pad 2005

Since NULL values cause many rules to return nulls, it may be more useful for you to treat nulls and missing values as 0
values. In this way, nulls will not be propagated through a set of calculations. You can use the | GNORE NAV option (NAV
stands for Non-Available Values) to default nulls and missing cells to the following values:

@ O for numeric data

1 Empty string for character/string data

o 01-JAN-2001 for date type data

o NULL for all other data types

Note that the default behavior is KEEP NAV which treats Nulls in the standard manner and treats missing values as nulls.
For more details, see the SQL MODEL chapter in the Data Warehousing Guide .

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (30 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

01 Convert the query shown above to return a numeric value for sales even though the value for 2004 is missing.
" From your SQL*Plus session, execute the following script:

@_n
The i _n. sqgl script contains the following:

SELECT SUBSTR(country, 1,20) country,
SUBSTR(prod, 1, 15) prod, year, sales
FROM sal es_view
VWHERE country="Italy’
MODEL | GNORE NAV RETURN UPDATED ROWS
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e sal es)
RULES (
sal es[' Mouse Pad', 2005] =
sal es[' Mouse Pad', 1999] + sal es[' Mouse Pad', 2004])
ORDER BY country, prod, year

/

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (31 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

Italy Mouse Pad 2012 5697 .43 _:J

B rows selected.

SULr @5 o

[COUNTRY FRODO TEAK SALES
Italy 2 Products 2002

Italy Bounce 20EE 9173.93
Italy Y Box 2B@z2 F1207.55
Japan 2 Products 2002

Japan Bounce 20EE 11437 .13
Japan Y Box 20E2 29634 . 83

|6 rows selected.

SQL> @i _n
[COUNTRY FROD YEAR SALES
ealy mouse Pad 2005 486324
saLs [%

« L

Reference MODEL s

Back to List of Topics

In addition to the multidimensional array on which rules operate, which is called the Main SQL MODEL , one or more read-
only multidimensional arrays, called Reference MODEL s, can be created and referenced in the MODEL clause to act as
look-up tables. Using Reference MODEL s, you can relate objects of different dimensionality. Like a Main SQL MODEL , a
Reference MODEL is defined over a query block and has the DI MENSI ON BY and MEASURE clauses to indicate its
dimensions and measures respectively. A Reference MODEL is created by the following subclause of the MODEL clause:

REFERENCE model_name ON (query) DIMENSION BY (cols) MEASURES (cols) [reference options]

Reference models can be used only in the right side of rules and the PARTI TI ON clause is not available in reference
models.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (32 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

1 Convert projected sales figures of different countries, each in their own currency, into US currency and show
" Dboth figures. You need to create a table with conversion ratios of local currencies to the US dollar. From your
SQL*Plus session, execute the following script:

@re_dc

The cre_dc. sql script contains the following:

CREATE TABLE dol | ar_conv(country VARCHAR2(30), exchange_rate NUVBER)

/

) 144,25.8.266-5ession.5TE - TN¥TPlus =10| x|

Session Edit Miew Commands Script Help

D@58 B =@ O = 8 &

SQLy @s o]
[COUNTRY FrOD TEAR SALES

Italy 2 _Products 20682

Italy Bounce 20 9179.5939

Italy Y Box] O dlz67 .55

Japan 2 Products 2002

Japan Bounce 2ME2 11437 .13

Japan T Box 20EE #3634 . 83

|6 rows selected.

SOl @i n
[COUNTREY FrOO YEAR SALES
Italy Mouse Pad 2005 4BE3 .24

SAL» Bcre_dc

Tabhle created.

saL> %

w1

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (33 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

O - Insert two rows into the DOLLAR_CONV table. From your SQL*Plus session, execute the following script:

@ns_dc

The i ns_dc. sql script contains the following:

I NSERT | NTO dol | ar _conv VALUES(' Canada', 0.75)
/
I NSERT | NTO dol | ar _conv VALUES(' Brazil', 0.14)

/

1l 1 44.25.8.266-Session.STE - TNY¥TPlus =10| x|

Seszion Edit Wiew Commands Script Help

D|=|Q|@| 58 8] (e O = 2B &

Japan Z Products ZEEZ -]
Japan Bounce 20E2 11437 .13
Japan T Box 202 #9634 . 83

I8 rows selected.

SOL> @i _n
[COUNTRY FrROO TEAR SALES
Italy Mouse Pad 2005 4663 .24

SAL> Bcre dc
Tabhle created.
SHL> Bins_dc

1 row created.

1 row created.

saL: | %

~ L

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (34 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

3 Base the sales on the 2001 figures and project market growth by 2005 to be 22% in Canada and 34% in Brazil.

To convert the projected sales of Canada and Brazil for year 2005 to US dollars, you can use a Reference
MODEL . From your SQL*Plus session, execute the following script:

@m

The r m sql script contains the following:

SELECT SUBSTR(country, 1,20) country, year, |ocal sales, dollarsales
FROM sal es_vi ew
WHERE country IN ('Canada', 'Brazil')
GROUP BY country, year
MODEL RETURN UPDATED ROWS
REFERENCE conv_ref nodel ON (
SELECT country, exchange_rate AS er FROM dol | ar _conv)
DI MENSI ON BY (country) MEASURES (er) | GNORE NAV
MAI N mai n_nodel
DI MENSI ON BY (country, year)
MEASURES (SUM sal e) sales, 0 |localsales, 0 dollarsales) | GNORE NAV
RULES (
/* assuming that sales in Canada grow by 22% */
| ocal sal es[' Canada', 2005] = sales[cv(country), 2001] * 1.22,
dol | arsal es[' Canada', 2005] = sales[cv(country), 2001] * 1.22 *
conv_refnodel . er[' Canada'],
/* assum ng that econony in Brazil grows by 34% */
| ocal sal es[' Brazil', 2005] = sales[cv(country), 2001] * 1.34,

dol | arsal es[" Brazil', 2005] = sales['Brazil', 2001] * 1.34 * er['Brazil']

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (35 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

/
Note the following:

. A one dimensional reference model named CONV_REFMODEL is created on rows from the DOLLAR_CONV

table and that its measure EXCHANGE RATE named ER has been referenced in the rules of the main
model.

. The main model has the optional keyword MAI N at the start of its specification, giving it the alias
MAI N_MODEL '. The keyword MAI N makes it easier to note the start of the main model specification.

MAI N_MODEL has two dimensions, COUNTRY and YEAR , whereas the reference model DOLLAR _CONV
has one dimension country .

« You can use different styles of accessing the EXCHANGE RATE measure of the reference model: for
Canada it is explicit with model_name.measure_name notation CONV_REFMODEL . ER whereas for Brazil,
it is a simple measure_name reference ' ER'. The former notation needs to be used to resolve any
ambiguities in column names across main and reference models.

« Use the placeholder value of 0 when specifying the new measures LOCALSALES and DOLLARSALES .
Other numbers would also work as placeholder value

2 144.25.8.266-5ession.STE - TN¥TPlus o [=] |
Session Edit Miew Commands Script Help

D/ Q@i 8 B8] =@ O = as &

s
||ZIIIL|r--I'I'R‘rr FRODO YEAR SALES J

Italy Mouse Pad 2005 4663 .24
SHLr Becre_dc

Table created.

SQL> Bins_dc

1 row created.

1 row created.

SEL* Erm
[COUNTRY YEAR. LOCALSALES DOLLARSALES
grazil. 2885 69651726 975124164
Canada 2E05 1048246 .22 YAGBLE4 BEZ
SOL -

X

L

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (36 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

Growth rates in this example are hard coded in the rules: growth rate for Canada is 22% and that of Brazil is
34%. Your rules would be much more flexible if they could work with growth values looked up from a separate
table of growth rates. Such a table could cover many years and countries.

] 4 Use both exchange rate and growth rate reference models to find the projected sales in local currency and U.S.
" dollars for 2002. Create a table that stores the percentage growth by country and year. From your SQL*Plus
session, execute the following script:

@re_gr

The cre_gr. sql script contains the following:

CREATE TABLE growt h_rate(country VARCHAR2(30) ,
year NUMBER,

growt h_rate NUMBER)

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (37 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

& 144.25.8.266-5ession.STE - TNWTPlus

Session Edit Wiew Commands Script Help

=10 x|

0| s e] Bl =@ O = a6 &

SAL» Bcre_dc
Tahle created.
SALr @ins_dc

1 row created.

1 row created.

SOLx @rm

ICOUMTEY YEARE LOCALSALES DOLLARESALES
Erazil ZE05 G695 .17VZ2EB 975.124164
Canada 2O05 148246 . 22 TABLIAEL BRZ

SAL¥ Bcre_gr

Tahle created.

saLe || N

« L

Os Insert rows into the GROAMTH_RATE table. From your SQL*Plus session, execute the following script:

@ns_gr
Theins_gr. sql script contains the following:

| NSERT | NTO growm h_rate VALUES(' Brazil', 2002, 2.5)

/

| NSERT | NTO growt h_rate VALUES(' Brazil', 2003, 5)

/

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (38 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

| NSERT | NTO growt h_rate VALUES(' Canada', 2002, 3)

/

| NSERT | NTO growth_rate VALUES(' Canada', 2003, 2.5)

/

Z 144.25.8.266-5Session.STE - TN¥TPlus

Session Edit Wiew Commands Script Help

=10l x|

0| @ st e] Bl =@ O = a6 &

e
||.'_I:IL|r--I'I'I?‘.‘rr YEAR LOCALSALES DOLLARSALES _I
EBrazil 20US BARS.1VEE 975 .124164
Canada 2OAS 1@43246. 272 TEG1E4 .66

SULr Bore_qr
Table created.
SUL> Bins_qgr

1 row created.
1 row created.
1 row created.

1 row created.

SUL> EE

« L

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (39 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

e Write a query that calculates sales for Brazil and Canada, applying the 2002 growth figures and converting the
" values to dollars. Use the reference model shown below in your query. From your SQL*Plus session, execute
the following script:

@ ne

The rn2. sgl script contains the following:

SELECT SUBSTR(country, 1,20) country, year, |ocal sales, dollarsales
FROM sal es_vi ew
VWHERE country IN (' Canada','Brazil')
GROUP BY country, year
MODEL RETURN UPDATED ROWS
REFERENCE conv_refnodel ON (
SELECT country, exchange_rate FROM dol | ar _conv)
DI MENSI ON BY (country c)
MEASURES (exchange rate er) | GNORE NAV
REFERENCE growt h_r ef nrodel ON (
SELECT country, year, growmh_rate FROM growth_rate)
DI MENSI ON BY (country c, year y)
MEASURES (growth_rate gr) | GNORE NAV
MAI N mai n_nodel
DI MENSI ON BY (country, year)
MEASURES (SUM sal e) sales, O localsales, 0 dollarsales) | GNORE NAV
RULES (
| ocal sal es[FOR country IN ('Brazil', 'Canada'), 2002] =
sal es[cv(country), 2001] *

(100 + gr[cv(country), cv(year)])/100

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (40 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

dol I arsal es[FOR country IN (' Brazil"',

sal es[cv(country), 2001] *

(100 + gr[cv(country), cv(year)])/100 *

er[cv(country)]

Z 144.25.8.266-5ession.STE - TNWTPlus

Seszion Edit Wiew Commands Script Help

' Canada'), 2002]

=10l %]

|| Q@ si 8 8] =(a O = 25 &

Table created.
SULx @ins_qgr

1 row created.

1 row created.

1 row created.

1 row created.
SQL> drm2

[COUNTREY

Canada
Brazil

saL>

YEAR LOCALSALES DOLLARSALES

2002 /354994 756 BRIT46.0GY
2R 5327 83725 745 8397715

R

~ L

Note the following:

. This query shows the capability of the MODEL clause in dealing with objects of different dimensionality.

The Reference model CONV_REFMODEL has one dimension whereas the Reference MODEL
GROW'H_REFMODEL and the Main SQL MODEL have two dimensions.

. Dimensions in the single cell references on Reference MODEL s are specified using the CV() function,
thus relating the cells in Main SQL MODEL with the Reference MODEL . This specification, in effect, is

performing a relational join between Main and Reference MODEL s.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (41 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

. By using the FOR construct, each rule can work with multiple countries, reducing the amount of coding.

. If you added the FOR construct to the YEAR dimension on the left side of the rules and CV(year)
expressions to the right side, you could generalize the rule to multiple years.

lterative MODEL s

Back to List of Topics

Using | TERATE option of the MODEL clause, you can evaluate rules iteratively a specified number of times. The number of
iterations is specified as an argument to the | TERATE clause. | TERATE can be specified only for SEQUENTI AL ORDER
models. Use iterative models to calculate models where the rules are interdependent.

The syntax of the | TERATE clause is:

| TERATE (nunber _of iterations) [UNTIL (condition)]

The nunber _of _i t erati ons argument to | TERATE clause is a positive integer constant. Optionally, you can specify
an early termination condition to stop rule evaluation before reaching the maximum iteration. This condition is specified in
the UNTI L subclause of | TERATE and is checked at the end of an iteration. So, you will always have at least one iteration
when | TERATE is specified.

Iterative evaluation will stop either after finishing the specified number of iterations or when the termination condition
evaluates to TRUE, whichever comes first. In some cases you may want the termination condition to be based on the
change, across iterations, in value of a cell. Oracle Database 10 g provides a mechanism to specify such conditions by
allowing you to access cell values as they existed before and after the current iteration in the UNTI L condition. Use the
PREVI QUS function which takes a single cell reference as argument and returns the measure value of the cell as it existed
after the previous iteration. You can also access the current iteration number by using the system variable

| TERATI ON_NUMBER . | TERATI ON_NUMBER starts at value 0 and is incremented after each iteration. By using

PREVI QUS and | TERATI ON_NUMBER, you can construct complex termination conditions.

[]1 Youwantto do financial planning for a person who earns a salary of $100,000 and has a capital gain of
$15,000. His net income will be calculated as salary minus interest payments minus taxes. He pays tax-
deductible interest on a loan. He also pays taxes at two rates: 28% for the salary income after interest expense
is deducted, and 38% on capital gains. This person would like his interest expense to represent exactly 30% of
his income. How can you calculate the taxes, interest expense and net income that will result?

All values of this scenario are stored in a table called LEDGER . The table holds the labels for a financial item in
one column and the value of the item in another. From your SQL*Plus session, execute the following script:

@re_|led

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (42 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

The cre_| ed. sqgl script contains the following:

CREATE TABLE |edger (account VARCHAR2(20), bal ance NUMBER(10, 2))
/

| 144.25.8.266-Session.STE - TNY¥TPlus =10] x|

Session Edit Miew Commands Script Help

D| (@< 8] B =@ Of = 2 o

1 row created.

1 row created.

1 row created.

1 row created.

S0Lr Brm2

[COUNTRY YEAE LOCALSALES DOLLARSALES
Canada ZEOEZ BR4994 756 EBRITVLE . OET
Brazil ZOAZ 5327 . "/3775 745, 897215

SQLr Bcre_led
Tahle created.

SLL-

~

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (43 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

- Insert rows into the LEDGER table. From your SQL*Plus session, execute the following script:

@ns_led

The i ns_| ed. sql script contains the following:

I NSERT | NTO | edger VALUES (' Salary', 100000)

/

| NSERT | NTO | edger VALUES (' Capital _gains', 15000)
/

I NSERT | NTO | edger VALUES (' Net', 0)

/

I NSERT | NTO | edger VALUES (' Tax', 0)

/

| NSERT | NTO | edger VALUES ('lInterest’', 0)

/

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (44 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

2 144.25.8.266-Session.STE - TN¥TPlus -0l x|

Session Edit Miew Commands Script Help

O @ e Bl 2@ O = 2 &

|l:.ar1.a|:|.a ZOAZ 824994 756 EEIT46.067 :|
Erazil ZOEZ 5327 BITZS T45 BA7Z1S

SQL> Bcre led
Table created.
SALr Bins_led

1 row created.
1 row created.
1 row created.
1 row created.

1 row created. [%

SQL-

L

O 3. To perform the calculations, use the | TERATE option to have the calculations repeated as many times as
desired. The first pass will insert the values stored in the LEDGER table into the right side of the rules and create
a new set of values for NET , TAX and | NTEREST . The second pass will calculate a new set of values for NET ,
TAX, and | NTEREST using the TAX and | NTEREST values calculated in the prior pass. This cycle will be
repeated a total of 100 times. From your SQL*Plus session, execute the following script:

@tl

Theitl. sqgl script contains the following:

SELECT b, account

FROM | edger

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (45 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

MODEL | GNORE NAV

DI MENSI ON BY (account)

MEASURES (bal ance b)

RULES | TERATE (100) (

b[' Net']

b[' Tax']

b['Salary'] - b['Interest']

(b['Salary'] - b['Interest'])

b[' Capital gains'] *0.28,

b['Interest'] = b['"Net'] * 0.30

& 144.25.8.266-5ession.STE - TNWTPlus

Session Edit

Wigws Commands Script Help

b[' Tax'],

* 0.38 +

=10 x|

0| s e] Bl =@ O = a6 &

SQLr @itl

luaeme
 R=ajo)l
48735, 2445
ZEE44 . 1521
l4G20.5734

saLe ||

1 row created.

1 row created.

1 row created.

1 row created.

ACCOUNT
Salary
Capital_gains
Met

Tax

Interest

« L

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (46 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

] 4 Write a query to avoid unnecessary processing time in the prior example. Monitor the results after each loop is
"~ complete. If the value of certain results have stopped changing by a significant amount you can stop the cycles
at that point. From your SQL*Plus session, execute the following script:

@t2

Theit 2. sqgl script contains the following:

SELECT b, account
FROM | edger
MODEL | GNORE NAV
DI MENSI ON BY (account)
MEASURES (bal ance b)
RULES | TERATE (100)
UNTIL (ABS((PREVIOUS(b['Net']) - b['Net'])) < 0.01) (

b[' Net"]

b['Salary'] - b['Interest'] - b['Tax'],

b[' Tax']

(b['Salary'] - b['Interest']) * 0.38 +
b[' Capital _gains'] *0.28,
b["Interest'] = b["Net'] * 0.30,

b['Iteration Count']= | TERATI ON_ NUMBER + 1

-- the "+1' is needed because the | TERATI ON NUMBER starts at O

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (47 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

| 144 25 8.266-%es5i0n.5TE - TN¥TPlus
Session Edit

Wiews Commands Scripk

Help

=10 x|

0| s e] Bl =@ O = a6 &

SALx @itl

lugae
15ama
48735, 2445
36644 15871
14620 5734

SOLr @itz

luaeme
15@60
48735, 2411
36G44 1514
14620 .5723
26

ACCOUNT

Salary
Capital_gains
Met

Tax

Interest

ACCOUNT

Salary
Capital_gains
Net

Tax

Interest
Iteration Count

|6 rows selected.

saLx %

« L

Note that:

. The ABS() function is used as part of the UNTI L clause. This ensures that the difference between the
previous and current value can be either positive or negative as long as it is smaller than the condition.

« Withtherules['Iteration Count']= | TERATI ON_ NUVBER+1 , a new row called I t erati on
Count is defined. It is assigned the value of the variable | TERATI ON_NUMBER, thus tracking number of
loops performed.

. In this example you see that only 26 loops were needed to get the example close to a steady state. By
stopping here, an extra 74 iterations were avoided.
Ordered Rules

Back to List of Topics

An ordered rule is one that has ORDER BY specified on the left side. It accesses cells in the order prescribed by ORDER
BY and applies the right side computation. This is an important issue because, when you have positional ANY and/or

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (48 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

symbolic references on the left side of a rule, you might receive an error saying that the rule's results depend on the order
in which cells are accessed and hence are non-deterministic. Consider the MODEL below:

SELECT year, sales
FROM sal es_view
VWHERE country="Italy' AND prod=' Bounce'
MODEL
DI MENSI ON BY (year)
MEASURES (sal e sal es)
RULES SEQUENTI AL ORDER (
sal es[ANY] = sal es[CV(year)-1]
)
CORDER BY year;

This query returns an error message because the results are indeterminate: the values depend on the order of cell
access. The query attempts to set, for all years, the sales value for a year to the sales value of the prior year.
Unfortunately, the result of this rule depend on the order in which the cells are accessed. If cells are accessed in the
ascending order of year, the result would be as shown in the third column of the table below. There is no 1998 value, so
1999 would have a NULL assigned to it. This NULL would be carried forward into all following assignments. If the cells
are accessed in descending year order, the results would be as shown in the fourth column. 2000 has a valid value which
can be assigned to 2001, and the same is true for 2000 and 2001. Therefore only 1999 is assigned a NULL (because
there is no value for 1998) when access is in descending year order.

Current Yr Prior Yr Sales
Year Sal es i f ascending i f descendi ng
1999 2472. 13 NUL L NUL L
2000 4370. 43 NUL L 2472. 13
2001 NUL L 4370. 43

1 Based on the above information, write a query that ensures the cells in this query are accessed in descending
" year order and returns non-NULL results. You will need to add the ORDER BY clause to the rule. From your
SQL*Plus session, execute the following script:

@f

The of . sql script contains the following:

SELECT year, sales
FROM sal es_vi ew
VWHERE country="Italy' AND prod='Bounce'

MODEL

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (49 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

DI MENSI ON BY (year)
MEASURES (sale sales)
RULES SEQUENTI AL ORDER (
sal es[ANY] ORDER BY year DESC= sal es[cv(year)-1]
)
ORDER BY year

/

& 144.25.8.266-5es5ion.STE - TNY¥TPlus = EI

Session Edit Miew Commands Script Help

D@58 B =@ O = 8 &

14620 .5734 Interest ﬂ

SALx @itz

B ACCOUNT

loEeed Salary
15008 Capital_gains
da¥35.2411 Met
6644 .1814 Tax
14620 .5723 Interest
26 Iteration Count

|6 rows selected.

SHL> Bof

2OEE 2474 .73
patioy! 4333 .69

saL> %

w1

In general, you can use any ORDER BY specification as long as it produces a unique order among cells that
qualify the left side cell reference. Expressions in the ORDER BY of a rule can involve constants, measures and
dimension keys, and you can specify the ordering options [ASC | DESC] [NULLS FI RST | NULLS LAST]
to get the order you want.

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (50 of 51)2/17/2004 6:54:10 AM

Using the SQL MODEL Clause to Define Inter-row Calculations

file:///D)/my_data/obepdf/obel0gdb/bidw/sqlmodel/sglmodel.htm?2 (51 of 51)2/17/2004 6:54:10 AM

	JJKBIMMACEJDLJEGKJEJMKGNKMEJDAOG:
	form1:
	x:
	f1: Off
	f2: Off
	f3: Off
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off
	f11: Off
	f12: Off
	f13: Off
	f14: Off
	f15: Off
	f16: Off
	f17: Off
	f18: Off
	f19: Off
	f20: Off
	f21: Off
	f22: Off
	f23: Off
	f24: Off
	f25: Off
	f26: Off
	f27: Off
	f28: Off
	f29: Off

