
Using Regular Expressions

Using Regular Expressions

Purpose

In this module, you will learn how to use regular expression support. This is a new feature introduced in Oracle Database
10 g .

Topics

This module will discuss the following:

 Overview
 Prerequisites
 Using Regular Expressions in Oracle Database 10
g

 Using Basics Searches

 Using the Multilingual Capabilities

 Regular Expressions and Check Constraints

Overview

Back to List of Topics

In Oracle Database 10 g , you can use both SQL and PL/SQL to implement regular expression support. Regular
expressions are a method of describing both simple and complex patterns for searching and manipulating. String
manipulation and searching contribute to a large percentage of the logic within a web based application. Usage ranges
from the simple: find the word SAN FRANCISCO in a specified text; to the complex extract of all URLs from the text; to
the more complex: find all words whose every second character is a vowel.

Oracle Database 10 g introduces support for Regular expressions. The implementation complies with the Portable
Operating System for UNIX (POSIX) standard, controlled by the Institute of Electrical and Electronics Engineers (IEEE),
for ASCII data matching semantics and syntax. Oracle's multi-lingual capabilities extend the matching capabilities of the
operators beyond the POSIX standard.

When coupled with native SQL, the use of regular expressions allows for very powerful search and manipulation
operations on any data stored in an Oracle database. You can use this feature to easily solve problems that would
otherwise be very complex to program.

Prerequisites

Back to List

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (1 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

Before starting this module, you should have performed the following:

 1. Completed the Configuring Linux for the Installation of Oracle Database 10g lesson

 2. Completed the Installing the Oracle Database 10g on Linux lesson

 3. Download the regexp.zip into your working directory.

Using Regular Expressions in Oracle Database 10 g

Back to List of Topics

Matching Mechanism

If you have a string 'aabcd' and you specify to search for 'a(b|c)d', the search will look for 'a' followed by 'b' or by 'c'
followed by 'd'.

Regular Expression:
'a(b|c)d'

String to Match:
'aabcd'

a a b c d Description Result

* Look for 'a' and succeed Match

 * Look for 'b' and fail No match

 * Look for 'c' and fail, reset, and advance No match

 * Look for 'a' and succeed Match

 * Look for 'b' and succeed, remember 'c' as alternative Match

 * Look for 'd' and fail No match

 *
Look for 'c' as last remembered alternative and fail, reset,
and advance No match

 * Look for 'a' and fail, reset, and advance No match

 * Look for 'a' and fail, reset, and advance No match

 * Look for 'a' and fail, reset, and advance No match

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (2 of 20)2/17/2004 4:01:35 PM

javascript:;
javascript:;
file:///D|/my_data/obepdf/obe10gdb/develop/regexp/files/regexp.zip

Using Regular Expressions

Given the string 'aabcd', 'a(b|c)d' does not match it.

To implement regular expression support in either SQL or PL/SQL, you use a new set of functions. These functions are:

Function Name Description

REGEXP_LIKE Similar to the LIKE operator, but performs regular expression matching instead of
simple pattern matching

REGEXP_INSTR Searches for a given string for a regular expression pattern and returns the
position were the match is found

REGEXP_REPLACE Searches for a regular expression pattern and replaces it with a replacement string

REGEXP_SUBSTR Searches for a regular expression pattern within a given string and returns the
matched substring

Meta Characters

Meta characters are special characters that have a special meaning, such as a wild card character, or a repeating
character, or a non matching character, or a range of characters.

You can use several predefined meta character symbols in the pattern matching with the functions.

Symbol Description

* Matches zero or more occurrences

| Alternation operator for specifying alternative matches

^/$

Matches the start-of-line and end-of-line

[] Bracket expression for a matching list matching any one of the expressions
represented in the list

[^exp] If carrot is inside the bracket, it negates the expression

{m} Matches exactly m times

{m,n} Matches at least m times but no more than n times

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (3 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

[: :] Specifies a character class and matches any character in that class

\ Can have 4 different meanings: 1. Stand for itself. 2. Quote the next character. 3.
Introduce an operator. 4. Do nothing.

+ Matches one or more occurrence

? Matches zero or one occurrence

. Matches any character in the supported character set, except NULL

() Grouping expression, treated as a single subexpression

\n Backreference expression

[==]

Specifies equivalence classes

[..]

Specifies one collation element, such as a multicharacter element

Using Basic Searches

Back to List of Topics

The following examples demonstrate the use of the regular expression functions. Perform the following steps:

 1. Start SQL*Plus.

Connect to Oracle with the userid and password oe/oe

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (4 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

 2. Examine the syntax of the REGEXP_LIKE function:

 REGEXP_LIKE(srcstr, pattern [,match_option])

Where

srcstr: search value
pattern: regular expression
match_option: option to change default matching, it can include one or more of the following values:
'c' - use case sensitive matching (default)
'i' - use case insensitive matching
'n' - allows match-any-character operator
'm' - treats source string as multiple line

To locate all products with names containing 'SSP/S', 'SSP/V', 'SSS/V', or 'SSS/S' in the PRODUCT_NAME column
from the PRODUCT_INFORMATION table, execute the following script:

@relike.sql

The relike.sql contains the following SQL:

SELECT product_name
 FROM oe.product_information
 WHERE regexp_like (product_name, 'SS[PS]/[VS]');

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (5 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

 3. The REGEXP_INSTR function returns the position of a given pattern within a string. Examine the syntax:

 REGEXP_INSTR(srcstr, pattern [, position [, occurrence
 [, return_option [, match_option]]]])

Where

position : search starting position
occurrence : occurrence to search for
return_option : indicate the start or end position of occurrence
match_option : option to change default matching it can include one or more of the following values:
‘ c ’ - use case sensitive matching (default)
‘ i ’ - use case insensitive matching
‘ n ’ - allows match-any-character operator
‘ m ’ - treats source string as multiple line

To search the product names to find the location of the first non-alphabetic character, regardless of whether it is

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (6 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

in upper or lower case, execute the following script:

@reinstr.sql

The reinstr.sql contains the following SQL:

COLUMN non_alpha FORMAT 9999999999

SELECT product_name, REGEXP_INSTR(product_name, '[^[:alpha:]]') non_alpha

 FROM oe.product_information ;

Note that [^[:<class>:]] implies a character class and matches any character from within that class; [:
alpha:] matches with any alphabetic character. In this case, you are negating this expression by using the ^.

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (7 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

 4. The REGEXP_SUBSTR function returns a given string based on a pattern of occurrence. Examine the syntax:

 REGEXP_SUBSTR(srcstr, pattern [, position
 [, occurrence [, match_option]]])

Where

position : search starting position
occurrence : occurrence to search for
match_option : option to change default matching, it can include one or more of the following values:
‘ c ’ - use case sensitive matching (default)
‘ i ’ - use case insensitive matching
‘ n ’ - allows match-any-character operator
‘ m ’ - treats source string as multiple line

To extract the email names from the CUSTOMERS table. Extract only those email names for customers located in
Switzerland. In order to do this, return the contents in the CUST_EMAIL column that precedes the '@'symbol for
customers with an NLS_TERRITORY of Switzerland. execute the following script:

@resubstr.sql

The resubstr.sql contains the following SQL:

SELECT REGEXP_SUBSTR(cust_email, '[^@]+')

 FROM oe.customers

 WHERE nls_territory = 'SWITZERLAND' ;

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (8 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

Note that in this example, the result will return the first substring that does not have an @ symbol.

 5. The REGEXP_REPLACE function returns a "replaced" substring from a given string. Examine the syntax:

 REGEXP_REPLACE(srcstr, pattern [,replacestr [, position
 [, occurrence [, match_option]]]])

Where

position : search starting position
occurrence : occurrence to search for
replacestr : character string replacing pattern
match_option : option to change default matching, it can include one or more of the following values:
‘ c ’ - use case sensitive matching (default)
‘ i ’ - use case insensitive matching
‘ n ’ - allows match-any-character operator
‘ m ’ - treats source string as multiple line

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (9 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

To return information from the CATALOG_URL column in the PRODUCT_INFORMATION table. Performing a full
scan on the column would result in hundreds of rows being returned as it lists a specific html page location within
a number of catalog domains. However, in this example find only the individual domain names themselves and
not the lower level pages they contain. To find the domain names without all the extraneous information, use the
REGEXP_REPLACE function, execute the following script:

@rereplace.sql

The rereplace.sql contains the following SQL:

SELECT UNIQUE REGEXP_REPLACE (catalog_url, 'http://([^/]+).*', '\1')

 FROM oe.product_information ;

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (10 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

And explanation of how the string was processed is as follows:

http:// The expression starts by looking for this string literal; there are no special metacharacters here.
([^/]+) Then the expression looks for a series of characters as long as they are *not* forward slash (/)

.* The expression finishes up by consuming the rest of the string with this part of the expression.

\1 The matching expression is replaced with backreference 1 which is whatever was matched between
the first set of parentheses.

Using the Multilingual Capabilities

Back to List of Topics

Regular expression functions support multilingual capabilities. Regular expressions can be used in locale sensitive
applications. In this example you will combine the use of regular expressions with Oracle's NLS Language feature.
Perform the following:

 1. You will seek the Product Description in the Portuguese language by executing the following script:

@multiport.sql

The multiport.sql contains the following SQL:

SELECT regexp_substr(to_char(translated_name), '^[a-z]+')
FROM oe.product_descriptions
WHERE language_id = 'PT'
AND translated_name like 'G%' ;

Note that the data is not displayed.

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (11 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

Note the ^ is outside the bracket, there we are searching for any strings or substrings that start with any
character from a to z.

 2. Perform the same query, but this time use the case insensitive "i" switched on. Execute the following script:

@multiport2.sql

The multiport2.sql contains the following SQL:

SELECT regexp_substr(to_char(translated_name), '^[a-z]+', 1, 1, 'i')
FROM oe.product_descriptions
WHERE language_id = 'PT'
AND translated_name like 'G%' ;

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (12 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

 3. The results are still incomplete as the returned strings are being trimmed as soon as a non-English character is
encountered. This is because the range [a-z] is sensitive to NLS_LANGUAGE . Hence, you need to set the
NLS_LANGUAGE parameter appropriately to return the complete results. Execute the following query:

@multiport3.sql

The multiport3.sql contains the following SQL:

ALTER SESSION SET NLS_LANGUAGE=PORTUGUESE
;
SELECT regexp_substr(to_char(translated_name), '^[a-z]+', 1, 1, 'i')

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (13 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

FROM oe.product_descriptions
WHERE language_id = 'PT'
AND translated_name like 'G%' ;

 4. The final step is to see the results in both English as well as Portuguese to ensure that the translation has taken
place. Execute the following script:

@multiport4.sql

The multiport4.sql contains the following SQL:

SELECT REGEXP_SUBSTR(i.product_name, '^[a-z]+', 1, 1, 'i') || ' = '

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (14 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

 || regexp_substr(to_char(d.translated_name), '^[a-z]+', 1, 1, 'i')

FROM oe.product_descriptions d, oe.product_information i

WHERE d.language_id = 'PT'

AND d.translated_name like 'G%'

AND i.product_id = d.product_id ;

ALTER SESSION SET NLS_LANGUAGE=AMERICAN;

Regular Expressions and Check Constraints

Back to List of Topics

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (15 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

Regular expressions can also be used in check constraints. Perform the following:

 1. You will add a check constraint on the CUST_EMAIL column of the CUSTOMERS table. This will ensure that only
strings containing an "@" symbol will be accepted. Execute the following script:

@chkemail.sql

The chkemail.sql contains the following SQL:

INSERT INTO customers VALUES
 (9999,'Christian','Patel',
 cust_address_typ ('1003 Canyon Road','87501',

'Santa Fe','NM','US'),
 phone_list_typ ('+1 505 243 4144'),'us','AMERICA','100',
 'ChrisP+creme.com', 149, null, null, null, null, null) ;

Because there was no validation being performed, an email address not containing an ' @ ' was accepted.
Perform a rollback before commencing the next step.

ROLLBACK ;

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (16 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

 2. Implement the constraint by executing the following script:

@chkemail2.sql

The chkemail2.sql contains the following SQL:

ALTER TABLE customers
 ADD CONSTRAINT cust_email_addr
 CHECK(REGEXP_LIKE(cust_email,'@'))NOVALIDATE ;

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (17 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

 3. Test the constraint by executing @chkemail.sql again.

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (18 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

The check constraint is violated because the email address does not contain the required symbol. The clause '
NOVALIDATE ' ensures that existing data is not checked.

 4. Remove the constraint by executing the following script:

@chkemail3.sql

The chkemail3.sql contains the following SQL:

ALTER TABLE customers DROP CONSTRAINT cust_email_addr ;

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (19 of 20)2/17/2004 4:01:35 PM

Using Regular Expressions

file:///D|/my_data/obepdf/obe10gdb/develop/regexp/regexp.htm2 (20 of 20)2/17/2004 4:01:35 PM

	NALGONIPJNKJFFFAMKGIPJCMLFLCGEBJ:
	form1:
	x:
	f1: Off
	f2: Off
	f3: Off
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off
	f11: Off
	f12: Off
	f13: Off
	f14: Off
	f15: Off
	f16: Off

