
Using Partitioned Outer Join to Fill Gaps in Sparse Data

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Purpose

In this module you learn how to use the new SQL Join syntax in the Oracle Database 10 g SQL to fill gaps in sparse data.

Topics

This module will discuss the following:

 Overview
 Prerequisites
 Syntax
 Sample of Sparse Data
 Filling Gaps in Data
 Filling Gaps in Data and Using Analytic SQL Functions

 Replacing NULLs with the Nearest Non-NULL Value

 Period-to-Period Comparison of One Time Level

 Example of Period-to-Period Comparison for Multiple Time
Levels

 Example of Creating a Custom Member in a Dimension

Overview

Back to List of Topics

Oracle Database 10 g Partitioned Outer Join Clause Overview

Data is normally stored in sparse form. That is, if no value exists for a given time, no row exists in the fact table. However,
time series calculations can be performed most easily when data is dense along the time dimension. This is because
dense data will fill a consistent number of rows for each period, which in turn makes it simple to use the analytic
windowing functions with physical offsets. Refer to Chapter 21: Data Warehousing Guide for more information.

To overcome the problem of sparsity, you can use a partitioned outer join to fill the gaps in a time series. Such a join
extends the conventional outer join syntax by applying the outer join to each logical partition defined in a query. The
Oracle database logically partitions the rows in your query based on the expression you specify in the PARTITION BY
clause. The result of a partitioned outer join is a UNION of the outer joins of each of the groups in the logically partitioned
table with the table on the other side of the join.

Note that you can use this type of join to fill the gaps in any dimension, not just the time dimension. In this module, you

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (1 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

will focus on the time dimension because it is the dimension most frequently used as a basis for comparisons.

Prerequisites

Back to List

Before starting this module, you should have performed the following:

 1. Completed the Configuring Linux for the Installation of Oracle Database 10g lesson

 2. Completed the Installing the Oracle Database 10g on Linux lesson

 3. Download the outer_j.zip into your working directory.

Syntax

Back to List of Topics

The syntax for partitioned outer join extends the ANSI SQL JOIN clause with the phrase PARTITION BY followed by an
expression list. The expressions in the list specify the group to which the outer join is applied. The following are the two
forms of syntax normally used for partitioned outer join:

SELECT

select_expression
FROM

table_reference
 PARTITION BY (

expr
 [,

expr
]...)
 RIGHT OUTER JOIN

table_reference

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (2 of 28)2/17/2004 6:47:59 AM

javascript:;
javascript:;
file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/files/outer_j.zip

Using Partitioned Outer Join to Fill Gaps in Sparse Data

SELECT

select_expression
FROM

table_reference
 LEFT OUTER JOIN

table_reference
 PARTITION BY {

expr
 [,

expr
]...)

Note that FULL OUTER JOIN is not supported with a partitioned outer join. Refer to the Oracle Database 10 g SQL
Reference for further information regarding syntax and restrictions.

Sample of Sparse Data

Back to List of Topics

A typical situation with a sparse dimension is shown in the following example, which computes the weekly sales and year-
to-date sales for the product 'Bounce' for weeks 20-30 in 2000 and 2001:

SELECT

 SUBSTR(p.Prod_Name,1,15) Product_Name,

 t.Calendar_Year Year,

 t.Calendar_Week_Number Week,

 SUM(Amount_Sold) Sales

FROM Sales s, Times t, Products p

WHERE s.Time_id = t.Time_id AND

 s.Prod_id = p.Prod_id AND

 p.Prod_name IN ('Bounce') AND

 t.Calendar_Year IN (2000,2001) AND

 t.Calendar_Week_Number BETWEEN 20 AND 30

GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number;

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (3 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

PRODUCT_NAME YEAR WEEK SALES

--------------- ---------- ---------- ----------

Bounce 2000 20 801

Bounce 2000 21 4062.24

Bounce 2000 22 2043.16

Bounce 2000 23 2731.14

Bounce 2000 24 4419.36

Bounce 2000 27 2297.29

Bounce 2000 28 1443.13

Bounce 2000 29 1927.38

Bounce 2000 30 1927.38

Bounce 2001 20 1483.3

Bounce 2001 21 4184.49

Bounce 2001 22 2609.19

Bounce 2001 23 1416.95

Bounce 2001 24 3149.62

Bounce 2001 25 2645.98

Bounce 2001 27 2125.12

Bounce 2001 29 2467.92

Bounce 2001 30 2620.17

18 rows selected.

In this example you would expect 22 rows of data (11 weeks each from 2 years) if the data were dense. However you see
only 18 rows because weeks 25 and 26 are missing in 2000, and weeks 26 and 28 are missing in 2001.

Filling Gaps in Data

Back to List of Topics

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (4 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Gaps in time series make calculations such as year-over-year comparisons hard to compute. When there are no gaps,
you can compare data by referring from one row to another row a fixed distance away using the analytic functions LEAD
() and LAG() . For instance, if you retrieve month level data and would like refer to data from 12 months ago, it is
convenient to access data 12 rows before the current value. You cannot reliably use the LEAD() and LAG() functions
when the number of rows per period (or whatever other dimension used as the divider) is inconsistent.

How can you fill in the gaps in the preceding example with a partitioned outer join?

You can take the sparse data of our query above and do a partitioned outer join with a dense set of time data. In the
query shown below, the original query is aliased as "v" and the data retrieved from the times table is aliased as "t". Here
you see 22 rows because there are no gaps in the series. The four added rows each have 0 as their Sales value set to 0
by using the NVL() function..

SELECT Product_Name, t.Year, t.Week, NVL(Sales,0) dense_sales

FROM

 (SELECT

 SUBSTR(p.Prod_Name,1,15) Product_Name,

 t.Calendar_Year Year,

 t.Calendar_Week_Number Week,

 SUM(Amount_Sold) Sales

 FROM Sales s, Times t, Products p

 WHERE s.Time_id = t.Time_id AND

 s.Prod_id = p.Prod_id AND

 p.Prod_name IN ('Bounce') AND

 t.Calendar_Year IN (2000,2001) AND

 t.Calendar_Week_Number BETWEEN 20 AND 30

 GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number

) v

 PARTITION BY (v.Product_Name)

 RIGHT OUTER JOIN

 (SELECT DISTINCT

 Calendar_Week_Number Week,

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (5 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 Calendar_Year Year

 FROM Times

 WHERE Calendar_Year in (2000, 2001)

 AND Calendar_Week_Number BETWEEN 20 AND 30

) t

 ON (v.week = t.week AND v.Year = t.Year)

ORDER BY t.year, t.week;

PRODUCT_NAME YEAR WEEK DENSE_SALES

--------------- ---------- ---------- -----------

Bounce 2000 20 801

Bounce 2000 21 4062.24

Bounce 2000 22 2043.16

Bounce 2000 23 2731.14

Bounce 2000 24 4419.36

Bounce 2000 25 0

Bounce 2000 26 0

Bounce 2000 27 2297.29

Bounce 2000 28 1443.13

Bounce 2000 29 1927.38

Bounce 2000 30 1927.38

Bounce 2001 20 1483.3

Bounce 2001 21 4184.49

Bounce 2001 22 2609.19

Bounce 2001 23 1416.95

Bounce 2001 24 3149.62

Bounce 2001 25 2645.98

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (6 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Bounce 2001 26 0

Bounce 2001 27 2125.12

Bounce 2001 28 0

Bounce 2001 29 2467.92

Bounce 2001 30 2620.17

22 rows selected.

Note that in the query above a WHERE condition for weeks between 20 and 30 is placed in the inline view for the time
dimension. This step reduces the number of rows handled by the outer join, saving processing time.

Filling Gaps in Data and Using Analytic SQL Functions

Back to List of Topics

How do you combine this technique with analytic SQL functions to get cumulative sales for the desired weeks?

 1. From a terminal window, execute the following command(s):

cd wkdir
sqlplus sh/sh@orcl
@fg

The fg.sql script contains the following:

SELECT Product_Name, t.Year, t.Week, Sales, Weekly_ytd_sales
 FROM
 (SELECT
 SUBSTR(p.Prod_Name,1,15) Product_Name,
 t.Calendar_Year Year,
 t.Calendar_Week_Number Week,
 NVL(SUM(Amount_Sold),0) Sales,
 SUM(SUM(Amount_Sold)) OVER
 (PARTITION BY p.Prod_Name, t.Calendar_Year
 ORDER BY t.Calendar_Week_Number) Weekly_ytd_sales
 FROM Sales s, Times t, Products p
 WHERE s.Time_id = t.Time_id AND
 s.Prod_id = p.Prod_id AND
 p.Prod_name IN ('Bounce') AND
 t.Calendar_Year IN (2000,2001) AND

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (7 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 t.Calendar_Week_Number BETWEEN 20 AND 30
 GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number
) v
 PARTITION BY (v.Product_Name)
 RIGHT OUTER JOIN
 (SELECT DISTINCT
 Calendar_Week_Number Week,
 Calendar_Year Year
 FROM Times
 WHERE Calendar_Year in (2000, 2001)
) t
 ON (v.week = t.week AND v.Year = t.Year)
WHERE t.Week BETWEEN 20 AND 30
ORDER BY 1, 2, 3;

In this query, the weekly year-to-date sales are calculated alongside the weekly sales. The NULL values that the
partitioned outer join inserts in making the time series dense are handled in the usual way: the SUM function
treats them as 0's.

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (8 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Replacing NULLs with the Nearest Non-NULL Value

Back to List of Topics

There are queries in which a partitioned outer join will return rows with NULL values, but you may want those rows to hold
the most recent non-NULL value in the series. That is, if you want to have NULLs replaced with the first non-NULL value
you see as you scan upward in a column.

Inventory tables, which track quantity of units available for various products, are a common case needing such output.
Inventory tables are sparse: like sales tables, they need only store a row for a product when there is an event. For a sales
table the event is a sale, and for the inventory table, the event is a change in quantity available for a product. If you make
the inventory's time dimension dense, you want to see a quantity value for each day. The value to output is the most
recent non-NULL value. Note that this differs from the prior example with cumulative sales. In that query, the cumulative
sum calculation treats NULLs as 0s, so it presents correct values. That approach cannot work with inventory and similar
tables, since the value to place in rows with NULLs is not a sum.

Here an example is presented of partitioned outer join with an inventory table. It replaces NULLs with the nearest non-
NULL value.

First, you create a small inventory table with two products, each product having entries for two days. The "bottle" product
has 10 units in stock on April 1, and the "can" product has 15 units in stock on April 1.

 1. First you will create a small inventory table with two products, each product having entries for two days. The
"bottle" product has 10 units in stock on April 1, and the "can" product has 15 units in stock on April 1. Execute
the following SQL*Plus script:

@ci

The ci.sql script contains the following:

CREATE TABLE inventory (
 time_id DATE,
 product VARCHAR2(10),
 quant NUMBER);
INSERT INTO inventory VALUES
 (TO_DATE('01/04/01', 'DD/MM/YY'), 'bottle', 10);
INSERT INTO inventory VALUES
 (TO_DATE('06/04/01', 'DD/MM/YY'), 'bottle', 8);
INSERT INTO inventory VALUES
 (TO_DATE('01/04/01', 'DD/MM/YY'), 'can', 15);
INSERT INTO inventory VALUES
 (TO_DATE('04/04/01', 'DD/MM/YY'), 'can', 11);

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (9 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 2. Now you will use a partitioned outer join to to see the quantity available for each product on each day of the
range April 1 through April 7. If you use a partitioned outer join to query this table without considering the rows
with NULL values, the results are misleading. Execute the following SQL*Plus script:

@nn

The nn.sql script contains the following:

SELECT times.time_id, product, quant
FROM inventory

PARTITION BY (product)
 RIGHT OUTER JOIN times
 ON (times.time_id = inventory.time_id)

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (10 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

WHERE times.time_id BETWEEN TO_DATE('01/04/01', 'DD/MM/YY')
 AND TO_DATE('07/04/01', 'DD/MM/YY')
ORDER BY 2,1;

The results above are not what you wanted: you know that the quantities available for bottle and can in the
NULL-value rows were simply the most recent non_NULL value. For instance, on April 2-5 for bottle, you want to
see the quantity 10.

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (11 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 3. To show the desired results, you want to take advantage of a new keyword added to the FIRST_VALUE and
LAST_VALUE functions in Oracle Database 10g. You can specify IGNORE NULLS in the argument list of either
of these functions, and they will return the closest non-NULL value. Execute the following SQL*Plus script:

@nn2

The nn2.sql script contains the following:

WITH v1 AS
(SELECT time_id
 FROM times
 WHERE times.time_id BETWEEN
 TO_DATE('01/04/01', 'DD/MM/YY')
 AND TO_DATE('07/04/01', 'DD/MM/YY'))
 SELECT product, time_id, quant quantity,
 LAST_VALUE(quant IGNORE NULLS)
 OVER (PARTITION BY product ORDER BY time_id)
 repeated_quantity
 FROM
 (SELECT product, v1.time_id, quant
 FROM inventory PARTITION BY (product)
 RIGHT OUTER JOIN v1
 ON (v1.time_id = inventory.time_id))
ORDER BY 1, 2;

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (12 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Period-to-Period Comparison of One Time Level

Back to List of Topics

In the next task, you will use the outer join feature to compare values across time periods. Specifically, you will calculate a
year-over-year sales comparison at the week level. The query will return on the same row, for each product, the year-to-
date sales for each week of 2001 with that of 2000.

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (13 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 1. To improve readability of the query and focus on the partitioned outer join, use a WITH clause to start the query.
Execute the following SQL*Plus script:

@pp

The pp.sql script contains the following:

WITH v AS
 (SELECT
 p.Prod_Name Product_Name,
 t.Calendar_Year Year,
 t.Calendar_Week_Number Week,
 SUM(Amount_Sold) Sales
 FROM Sales s, Times t, Products p
 WHERE s.Time_id = t.Time_id AND
 s.Prod_id = p.Prod_id AND
 p.Prod_name in ('Y Box') AND
 t.Calendar_Year in (2000,2001) AND
 t.Calendar_Week_Number BETWEEN 30 AND 40
 GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number
)
SELECT substr(Product_Name,1,12) Prod,
 Year,
 Week,
 Sales,
 Weekly_ytd_sales,
 Weekly_ytd_sales_prior_year
FROM
 (SELECT --Start of year_over_year sales
 Product_Name, Year, Week, Sales, Weekly_ytd_sales,
 LAG(Weekly_ytd_sales, 1) OVER
 (PARTITION BY Product_Name, Week ORDER BY Year)
 Weekly_ytd_sales_prior_year
 FROM
 (SELECT --
Start of dense_sales
 v.Product_Name Product_Name,
 t.Year Year,
 t.Week Week,
 NVL(v.Sales,0) Sales,
 SUM(NVL(v.Sales,0)) OVER

(PARTITION BY v.Product_Name, t.Year
 ORDER BY t.week) weekly_ytd_sales
 FROM v
 PARTITION BY (v.Product_Name)
 RIGHT OUTER JOIN
 (SELECT DISTINCT

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (14 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 Calendar_Week_Number Week,
 Calendar_Year Year
 FROM Times
 WHERE Calendar_Year IN (2000, 2001)
) t
 ON (v.week = t.week AND v.Year = t.Year)
)
dense_sales
)
year_over_year_sales
WHERE Year = 2001 AND
 Week BETWEEN 30 AND 40
ORDER BY 1, 2, 3;

In the FROM clause of the in-line view DENSE_SALES , a partitioned outer join of aggregate view v and time view
t is used to fill gaps in the sales data along the time dimension. The output of the partitioned outer join is then
processed by the analytic function SUM ... OVER to compute the weekly year-to-date sales (the
"weekly_ytd_sales" column). Thus, the view DENSE_SALES computes the year-to-date sales data for each
week, including those missing in the aggregate view s .

The in-line view YEAR_OVER_YEAR_SALES then computes the year ago weekly year-to-date sales using the

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (15 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

LAG function. The LAG function labeled " weekly_ytd_sales_prior_year " specifies a PARTITION BY
clause that pairs rows for the same week of years 2000 and 2001 into a single partition. An offset of 1 is passed
to the LAG function to get the weekly year to date sales for the prior year.

The outermost query block selects data from YEAR_OVER_YEAR_SALES with the condition yr = 2001 , and
thus the query returns, for each product, its weekly year-to-date sales in the specified weeks of years 2001 and
2000.

Example of Period-to-Period Comparison for Multiple Time Levels

Back to List of Topics

While the prior example showed you a way to create comparisons for a single time level, it is even more useful to handle
multiple time levels in a single query. For instance, you can compare sales versus the prior period at the year, quarter,
month and day levels.

For the next task, you will create a query which performs a year-over-year comparison of year-to-date sales for all levels
of our time hierarchy.

Several steps are needed to perform this task. The goal is a single query with comparisons at the day, week, month,
quarter, and year level. You will use a materialized view MV_PROD_TIME which holds a hierarchical cube of sales
aggregated across TIMES and PRODUCTS . Along with the materialized view, you will create a view on top of it. Also, you
will create a view of the time dimension to use as an edge of the cube. The time edge will be partition outer joined to the
sparse data in the materialized view.

For more information regarding hierarchical cubes, see the Data Warehousing Reference Guide , Chapter 19, "SQL for
Aggregation in Data Warehouses".

 1. You will create the materialized view. Note that the query is limited to just two products to keep processing time
short. Execute the following SQL*Plus script:

@cm1

The cm1.sql script contains the following:

CREATE MATERIALIZED VIEW mv_prod_time
REFRESH COMPLETE ON DEMAND
AS
SELECT
 (CASE
 WHEN ((GROUPING(calendar_year)=0)
 AND (GROUPING(calendar_quarter_desc)=1))

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (16 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 THEN (TO_CHAR(calendar_year) || '_0')
 WHEN ((GROUPING(calendar_quarter_desc)=0)
 AND (GROUPING(calendar_month_desc)=1))
 THEN (TO_CHAR(calendar_quarter_desc) || '_1')
 WHEN ((GROUPING(calendar_month_desc)=0)
 AND (GROUPING(t.time_id)=1))
 THEN (TO_CHAR(calendar_month_desc) || '_2')
 ELSE (TO_CHAR(t.time_id) || '_3') END) Hierarchical_Time,
 calendar_year year,
 calendar_quarter_desc quarter,
 calendar_month_desc month,
 t.time_id day,
 prod_category cat,
 prod_subcategory subcat,
 p.prod_id prod,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id,
 calendar_year, calendar_quarter_desc,
 calendar_month_desc,t.time_id) gid,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id) gid_p,
 GROUPING_ID(calendar_year, calendar_quarter_desc,
 calendar_month_desc, t.time_id) gid_t,
 SUM(amount_sold) s_sold,
 COUNT(amount_sold) c_sold,
 COUNT(*) cnt
FROM SALES s, TIMES t, PRODUCTS p
WHERE s.time_id = t.time_id AND
 p.prod_name in ('Bounce', 'Y Box') AND
 s.prod_id = p.prod_id
GROUP BY
 ROLLUP(calendar_year, calendar_quarter_desc,
 calendar_month_desc, t.time_id),
 ROLLUP(prod_category, prod_subcategory, p.prod_id);

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (17 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Since the materialized view is limited to two products, it has just over 2200 rows. Note that the column
Hierarchical_Time contains string representations of time from all levels of the time hierarchy. The CASE
expression used for the Hierarchical_Time column appends a marker (_0 , _1 , ...) to each date string to
denote the time level of the value. A _0 represents the year level, _1 is quarters, _2 is months, and _3 is day.
Note that the GROUP BY clause is a concatenated ROLLUP which specifies the rollup hierarchy for the time and
product dimensions. The GROUP BY clause is what determines the hierarchical cube contents.

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (18 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 2. Create a view CUBE_PROD_TIME with the same definition as the materialized view MV_PROD_TIME . Execute
the following SQL*Plus script:

@cv1

The cv1.sql script contains the following:

CREATE OR REPLACE VIEW cube_prod_time
 AS
 SELECT
 (CASE
 WHEN ((GROUPING(calendar_year)=0)
 AND (GROUPING(calendar_quarter_desc)=1))
 THEN (TO_CHAR(calendar_year) || '_0')
 WHEN ((GROUPING(calendar_quarter_desc)=0)
 AND (GROUPING(calendar_month_desc)=1))
 THEN (TO_CHAR(calendar_quarter_desc) || '_1')
 WHEN ((GROUPING(calendar_month_desc)=0)
 AND (GROUPING(t.time_id)=1))
 THEN (TO_CHAR(calendar_month_desc) || '_2')
 ELSE (TO_CHAR(t.time_id) || '_3') END) Hierarchical_Time,
 calendar_year year,
 calendar_quarter_desc quarter,
 calendar_month_desc month,
 t.time_id day,
 prod_category cat,
 prod_subcategory subcat,
 p.prod_id prod,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id,
 calendar_year, calendar_quarter_desc, calendar_month_desc,
 t.time_id) gid,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id) gid_p,
 GROUPING_ID(calendar_year, calendar_quarter_desc,
 calendar_month_desc, t.time_id) gid_t,
 SUM(amount_sold) s_sold,
 COUNT(amount_sold) c_sold,
 COUNT(*) cnt

 FROM SALES s, TIMES t, PRODUCTS p
 WHERE s.time_id = t.time_id AND
 p.prod_name IN ('Bounce', 'Y Box') AND
 s.prod_id = p.prod_id
 GROUP BY
 ROLLUP(calendar_year, calendar_quarter_desc,
 calendar_month_desc, t.time_id),
 ROLLUP(prod_category, prod_subcategory, p.prod_id);

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (19 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 3. You will create a view EDGE_TIME which is a complete set of date values. EDGE_TIME is the source for filling
time gaps with a partitioned outer join. The column HIERARCHICAL_TIME in EDGE_TIME will be used in a
partitioned join with the HIERARCHICAL_TIME column in the view CUBE_PROD_TIME .Execute the following
SQL*Plus script:

@cv2

The cv2.sql script contains the following:

CREATE OR REPLACE VIEW edge_time
AS
SELECT
 (CASE
 WHEN ((GROUPING(calendar_year)=0)

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (20 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 AND (GROUPING(calendar_quarter_desc)=1))
 THEN (TO_CHAR(calendar_year) || '_0')
 WHEN ((GROUPING(calendar_quarter_desc)=0)
 AND (GROUPING(calendar_month_desc)=1))
 THEN (TO_CHAR(calendar_quarter_desc) || '_1')
 WHEN ((GROUPING(calendar_month_desc)=0)
 AND (GROUPING(time_id)=1))
 THEN (TO_CHAR(calendar_month_desc) || '_2')
 ELSE (TO_CHAR(time_id) || '_3') END) Hierarchical_Time,
 calendar_year yr,
 calendar_quarter_number qtr_num,
 calendar_quarter_desc qtr,
 calendar_month_number mon_num,
 calendar_month_desc mon,
 time_id - TRUNC(time_id, 'YEAR') + 1 day_num,
 time_id day,
 GROUPING_ID(calendar_year, calendar_quarter_desc,
 calendar_month_desc, time_id) gid_t
FROM TIMES
GROUP BY ROLLUP
(calendar_year,
(calendar_quarter_desc, calendar_quarter_number),
(calendar_month_desc, calendar_month_number), time_id);

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (21 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 4. You now have the required elements for the comparison query. You can obtain period-to-period comparison
calculations at all time levels. It requires applying analytic functions to ahierarchical cube with dense data along
the time dimension. Some of the calculations we can achieve for each time level are:

● sum of sales for prior period at all levels of time
● variance in sales over prior period
● sum of sales in the same period a year ago at all levels of time
● variance in sales over the same period last year

The following example performs all four of these calculations. It uses a partitioned outer join of the views
CUBE_PROD_TIME and EDGE_TIME to create an in-line view of dense data called DENSE_CUBE_PROD_TIME .
The query then uses the LAG function in the same way as the prior single-level example. The outer WHERE
clause specifies time at three levels: the days of August 2001, the entire month, and the entire third quarter of
2001. Note that the last two rows of the results contain the month level and quarter level aggregations.

Execute the following SQL*Plus script:

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (22 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

@mt

The mt.sql script contains the following:

SELECT
 substr(prod,1,4) prod, substr(Hierarchical_Time,1,12) ht,
 sales,
 sales_prior_period,
 sales - sales_prior_period variance_prior_period,
 sales_same_period_prior_year,
 sales - sales_same_period_prior_year variance_same_period_p_year
FROM
 (SELECT cat, subcat, prod, gid_p, gid_t, Hierarchical_Time,
 yr, qtr, mon, day, sales,
 LAG(sales, 1) OVER (PARTITION BY gid_p, cat, subcat, prod,
 gid_t ORDER BY yr, qtr, mon, day)
 sales_prior_period,
 LAG(sales, 1) OVER (PARTITION BY gid_p, cat, subcat, prod,
 gid_t, qtr_num, mon_num, day_num ORDER BY yr)
 sales_same_period_prior_year
 FROM
 (SELECT c.gid, c.cat, c.subcat, c.prod, c.gid_p,
 t.gid_t, t.yr, t.qtr, t.qtr_num, t.mon, t.mon_num,
 t.day, t.day_num, t.Hierarchical_Time, NVL(s_sold,0) sales
 FROM cube_prod_time c
 PARTITION BY (gid_p, cat, subcat, prod)
 RIGHT OUTER JOIN edge_time t
 ON (c.gid_t = t.gid_t AND c.Hierarchical_Time = t.Hierarchical_Time)
) dense_cube_prod_time
) -- side by side current,prior and prior year sales
WHERE prod IN (139) AND gid_p=0 AND -- 1 product and product level data
 ((mon IN ('2001-08') AND gid_t IN (0, 1)) OR -- day and month data
 (qtr IN ('2001-03') AND gid_t IN (3))) -- quarter level data
ORDER BY day;

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (23 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Example of Creating a Custom Member in a Dimension

Back to List of Topics

In many OLAP tasks, it is helpful to define custom members in a dimension. For instance, you might define a specialized
time period for analyses. You can use a partitioned outer join to temporarily add a member to a dimension. Note that the
new SQL MODEL clause introduced in Oracle Database 10 g is suitable for creating more complex scenarios involving
new members in dimensions. See the Data Warehousing Reference Guide Chapter 22, "SQL for Modeling" for more
information on this topic.

In this exercise, you will define a new member for the TIME dimension. You will create a 13th member of the Month level
in the TIME dimension. This 13th month is defined as the summation of the sales for each product in the first month of
each quarter of year 2001. You will build this solution using the views and tables created in the prior example.

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (24 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 1. Create a view with the new member added to the appropriate dimension. The view uses a UNION ALL
operation to add the new member. To query using the custom member, use a CASE expression and a partitioned
outer join. Execute the following SQL*Plus script:

@cv3

The cv3.sql script contains the following:

CREATE OR REPLACE VIEW time_c AS
 (SELECT *
 FROM edge_time
 UNION ALL
 SELECT '2001-13_2', 2001, 5, '2001-05', 13, '2001-13', null, null,
 8 -- <gid_of_mon>
 FROM DUAL);

In the statement shown, the view TIME_C is defined by performing a UNION ALL of the EDGE_TIME view
(defined in the prior example) and the user-defined 13th month. The UNION ALL specifies the attributes for a
13th month member by doing a SELECT from the DUAL table. Note that the grouping id , column gid_t , is set
to 8, and the quarter number is set to 5 .

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (25 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 2. The in-line view of the query shown below performs a partitioned outer join of CUBE_PROD_TIME with TIME_C .
This step creates sales data for the 13th month at each level of product aggregation. In the main query, the
analytic function SUM is used with a CASE expression to compute the 13th month, which is defined as the
summation of the first month's sales of each quarter. Execute the following SQL*Plus script:

@cv4

The cv4.sql script contains the following:

SELECT * from
(
SELECT substr(cat,1,12) cat, substr(subcat,1,12) subcat,
 substr(prod,1,9) prod, mon, mon_num,
 SUM(CASE WHEN mon_num IN (1, 4, 7, 10)

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (26 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

 THEN s_sold
 ELSE NULL
 END)
 OVER (PARTITION BY gid_p, prod, subcat, cat, yr) sales_month_13
FROM
 (SELECT c.gid, c.prod, c.subcat, c.cat, gid_p,
 t.gid_t , t.day, t.mon, t.mon_num,
 t.qtr, t.yr, NVL(s_sold,0) s_sold
 FROM cube_prod_time c
 PARTITION BY (gid_p, prod, subcat, cat)
 RIGHT OUTER JOIN time_c t ON
 (c.gid_t = t.gid_t AND c.Hierarchical_Time = t.Hierarchical_Time)
)
)
WHERE mon_num=13;

The SUM function used in generating these results had a CASE statement to limit the data to months 1 , 4 , 7 and
10 within each year. Due to the tiny data set, with just 2 products, the rollup values of the results are necessarily
repetitions of lower level aggregations. For a more realistic set of rollup values, you can include more products
from the "Game Console" and "Y Box Games" subcategories in the underlying materialized view.

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (27 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gaps in Sparse Data

file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/outerjoin.htm2 (28 of 28)2/17/2004 6:47:59 AM

	Local Disk
	Using Partitioned Outer Join to Fill Gaps in Sparse Data

	JLBEEAEFPEKAAFJBDHCNOABGDENPJLMJ:
	form1:
	x:
	f1: Off
	f2: Off
	f3: Off
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off
	f11: Off
	f12: Off
	f13: Off
	f14: Off

