
Analyzing Query Rewrites of Materialized Views

Analyzing Query Rewrites of Materialized Views

Purpose

This module shows you how to use execution plans to make query rewrites with materialized views easier to interpret and
use REWRITE_OR_ERROR hint to make query rewrite debugging easier.

Topics

This module will discuss the following topics:

 Overview
 Prerequisites
 Generating Explain Plans and Interpreting the
Results

 Using the REWRITE_ON_ERROR hint

 Place the cursor on this icon to display all screenshots. You can also place the cursor on each icon to see
only the screenshot associated with it.

Overview

Back to List

Using Explain Plans to Analyze Query Rewrites

Prior to Oracle Database 10g, external tables were read-only. In Oracle Database 10g, external tables can also be written
to. Although neither data manipulation language (DML) operations nor index creation are allowed on an external table, it
is possible to use the CREATE TABLE AS SELECT command to populate an external table composed of proprietary
format (Direct Path API) flat files that are operating system independent.

In the context of external tables, loading data refers to the act of data being read from an external table and loaded into a
table in the database. Unloading data refers to the act of reading data from a table in the database and inserting it into an
external table. Both these operations can be used with external tables using the new Data Pump access driver.

REWRITE_OR_ERROR Hint

There may be situations where you want to stop the query from executing if it did not rewrite. One such situation can be
when you expect the un-rewritten query to take an unacceptably long time to execute. In order to support this
requirement, Oracle Database 10G provides a new hint called REWRITE_OR_ERROR. This is a query block level hint.
For example, if the SELECT statement is not rewritten, the error message shown is thrown. This feature allows you to run
DBMS_MVIEW.EXPLAIN_REWRITE() on the query, resolve the problems that caused rewrite to fail, and run the query
again.

Prerequisites

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (1 of 14)2/17/2004 6:47:04 AM

javascript:;

Analyzing Query Rewrites of Materialized Views

Back to List

Before starting this module, you should have:

 1. Completed the Configuring Linux for the Installation of Oracle Database 10g lesson

 2. Completed the Installing the Oracle Database 10g on Linux lesson

 3. Completed the Postinstallation Tasks lesson.

 4. Download and unzip mvplans.zip into your working directory (i.e. /home/oracle/wkdir)

Generating Explain Plans and Interpreting the Results

Back to Topic List

It is common practice to use naming conventions for MVs; for example, to distinguish MVs from regular tables in
execution plans. Oracle Database 10g improves this situation by providing better information in the PLAN_TABLE and in
the V$SQL_PLAN view; they show MATERIALIZED VIEW instead of TABLE. Moreover, they show the difference
between MV usage as a result of query rewrite and direct MV access. Perform the following steps:

 1. You need to create the materialized view and gather statistics on the materialized view and its underlying tables.
From your terminal window, execute the following commands:

cd wkdir
sqlplus sh/sh
@mvsetup

The query in the mvsetup.sql script is as follows:

drop materialized view sales_prod;

create materialized view sales_prod

 build immediate

 enable query rewrite

as

SELECT s.prod_id

, t.fiscal_month_number

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (2 of 14)2/17/2004 6:47:04 AM

javascript:;
javascript:;
javascript:;
file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/files/mvplans.zip

Analyzing Query Rewrites of Materialized Views

, sum(s.amount_sold) AS sum_amount

FROM sales s, times t

WHERE s.time_id = t.time_id

AND t.fiscal_year = 2000

GROUP BY s.prod_id, t.fiscal_month_number;

execute dbms_stats.gather_table_stats('SH','SALES_PROD');

execute dbms_stats.gather_table_stats('SH','SALES');

execute dbms_stats.gather_table_stats('SH','TIMES');

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (3 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

 2. Now you can generate an execution plan for a query that will be rewritten. Execute the following script from your
terminal window:

@execplan01

The query in the execplan01.sql script is as follows:

EXPLAIN PLAN FOR

SELECT s.prod_id

, t.fiscal_month_number

, sum(s.amount_sold) AS sum_amount

FROM sales s, times t

WHERE s.time_id = t.time_id

AND t.fiscal_year = 2000

GROUP BY s.prod_id, t.fiscal_month_number

ORDER BY s.prod_id, t.fiscal_month_number;

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (4 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

 3. Now that the execution plan is generated, you can use the DBMS_XPLAN package to display the execution
plan. From your terminal window, execute the following command:

SELECT * FROM table(dbms_xplan.display);

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (5 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

Note the execution plan explicitly shows materialized view usage and the purpose (REWRITE).

 4. To see what would happen if the materialized view was explicitly accessed in the FROM component of a query,
execute the following command:

EXPLAIN PLAN FOR SELECT * FROM sales_prod;

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (6 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

 5. Now you can display the execution plan again to see the difference. From your terminal window, execute the
following command:

SELECT * FROM table(dbms_xplan.display);

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (7 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

Note the execution plan still shows MAT_VIEW access (as opposed to TABLE access) but the REWRITE is
gone.

Using the REWRITE_OR_ERROR Hint

Back to Topic List

There may be situations where you want to stop a query from executing if it did not rewrite. One such situation is when
you expect the un-rewritten query to take an unacceptably long time to execute. To support this requirement, Oracle
Database 10g provides a new hint called REWRITE_OR_ERROR. If a query is not rewritten, error ORA-30393 is thrown.
This feature allows you to run dbms_mview.EXPLAIN_REWRITE() on the query, resolve the problems that caused
rewrite to fail, and run the query again. To obtain EXPLAIN_REWRITE output into a table, you must run the utlxrw.sql
script before calling EXPLAIN_REWRITE. This script creates a table named REWRITE_TABLE in the current schema.
Perform the following steps:

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (8 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

 1. Before you begin you need to recreate your rewrite table. The utlxrw.sql script creates the REWRITE table. You
need this table to capture the output of the EXPLAIN_REWRITE procedure. From your terminal window, execute
the following command:

crewrt01

The command in the crewrt01 .sql script is as follows:

drop table rewrite_table;

@$ORACLE_HOME/rdbms/admin/utlxrw

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (9 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

 2. Normally when a query rewrite fails, the Oracle Database executes the statement against the underlying base
tables. The REWRITE_OR_ERROR hint changes the behavior, and generates an error message when query
rewrite fails. To use a hint in a query, execute the following command from your terminal window:

@hint01

The command in the hint01.sql script is as follows:

SELECT /*+ REWRITE_OR_ERROR */

 s.prod_id

, sum(s.quantity_sold)

FROM sales s

GROUP BY s.prod_id;

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (10 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

Note that an error message was generated.

 3. You can use the EXPLAIN_REWRITE procedure to find the reason why query rewrite failed. The results will be
captured in the REWRITE_TABLE you created previously. Execute the following script:

@exprewrt01

The command in the exprewrt 01.sql script is as follows:

execute dbms_mview.EXPLAIN_REWRITE -

(query => 'SELECT s.prod_id -

 , sum(s.quantity_sold) -

 FROM sales s -

 GROUP BY s.prod_id' -

, mv => 'SH.SALES_PROD' -

, statement_id => 'EXPLAIN_REWRITE demo' -

);

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (11 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

 4. Now you can query the REWRITE_TABLE to query the results. Execute the following script:

@shresult01

The command in the shresult 01.sql script is as follows:

SELECT message

FROM rewrite_table

WHERE statement_id = 'EXPLAIN_REWRITE demo';

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (12 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

Note that there are three issues with the query.

 5. To see where the issues are, you need to look at the materialized view definition you created at the beginning of
this lesson as follows:

CREATE

 MATERIALIZED VIEW sales_prod
 build immediate
 enable query rewrite
 as
 SELECT s.prod_id
 , t.fiscal_month_number
 , sum(s.amount_sold) AS sum_amount
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.fiscal_year = 2000
 GROUP BY s.prod_id, t.fiscal_month_number;

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (13 of 14)2/17/2004 6:47:04 AM

Analyzing Query Rewrites of Materialized Views

Then you need to look at the query you executed as follows:

SELECT s.prod_id

 , sum(s.quantity_sold)
FROM sales s
GROUP BY s.prod_id;

As you can see, the materialized view utilizes the TIMES dimension which is not used in the query, and the
materialized view aggregates AMOUNT_SOLD while the query is aggregating QUANTITY_SOLD. Therefore
query rewrite is impossible.

 Place the cursor on this icon to hide all screenshots.

file:///D|/my_data/obepdf/obe10gdb/bidw/mvplans/mvplans.htm2 (14 of 14)2/17/2004 6:47:04 AM

javascript:;

	Local Disk
	Analyzing Query Rewrites of Materialized Views

	BBNPJLEMCHDJPOHJNNMJBPNNKEGMHHCB:
	form1:
	x:
	f1: Off
	f2: Off
	f3: Off
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off
	f11: Off
	f12: Off
	f13: Off
	f14: Off

