Using Partitioned Outer Join to Fill Gapsin Sparse Data

Using Partitioned Outer Join to Fill Gaps in Sparse Data

Purpose

In this module you learn how to use the new SQL Join syntax in the Oracle Database 10 g SQL to fill gaps in sparse data.
Topics

This module will discuss the following:

Overview

Prerequisites

Syntax
Sample of Sparse Data

Filling Gaps in Data
Filling Gaps in Data and Using Analytic SOL Functions

Y £ [Y |

Replacing NULLs with the Nearest Non-NULL Value

B

 Period-to-Period Comparison of One Time Level

1 Example of Period-to-Period Comparison for Multiple Time
Levels

 Example of Creating a Custom Member in a Dimension

Overview

Back to List of Topics

Oracle Database 10 g Partitioned Outer Join Clause Overview

Data is normally stored in sparse form. That is, if no value exists for a given time, no row exists in the fact table. However,
time series calculations can be performed most easily when data is dense along the time dimension. This is because
dense data will fill a consistent number of rows for each period, which in turn makes it simple to use the analytic
windowing functions with physical offsets. Refer to Chapter 21: Data Warehousing Guide for more information.

To overcome the problem of sparsity, you can use a partitioned outer join to fill the gaps in a time series. Such a join
extends the conventional outer join syntax by applying the outer join to each logical partition defined in a query. The
Oracle database logically partitions the rows in your query based on the expression you specify in the PARTI TI ON BY
clause. The result of a partitioned outer join is a UNI ON of the outer joins of each of the groups in the logically partitioned
table with the table on the other side of the join.

Note that you can use this type of join to fill the gaps in any dimension, not just the time dimension. In this module, you

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (1 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

will focus on the time dimension because it is the dimension most frequently used as a basis for comparisons.

Prerequisites

Back to List

Before starting this module, you should have performed the following:

1 Completed the Configuring Linux for the Installation of Oracle Database 10g lesson

]2 Completed the Installing the Oracle Database 10g on Linux lesson

] 3 Download the outer_j.zip into your working directory.

Syntax

Back to List of Topics

The syntax for partitioned outer join extends the ANSI SQL JO N clause with the phrase PARTI TI ON BY followed by an
expression list. The expressions in the list specify the group to which the outer join is applied. The following are the two
forms of syntax normally used for partitioned outer join:

SELECT

sel ect _expression
FROM

tabl e _reference
PARTI TI ON BY (
expr
[!
expr
1...)
RI GHT OQUTER JO N
tabl e reference

file:///D)/my_data/obepdf/obel0gdb/bi dw/outerjoin/outerjoin.htm?2 (2 of 28)2/17/2004 6:47:59 AM

javascript:;
javascript:;
file:///D|/my_data/obepdf/obe10gdb/bidw/outerjoin/files/outer_j.zip

Using Partitioned Outer Join to Fill Gapsin Sparse Data

SELECT

sel ect _expression
FROM

tabl e _reference
LEFT OUTER JO N

tabl e reference
PARTI TI ON BY {
expr
[
expr

1...)

Note that FULL OUTER JO Nis not supported with a partitioned outer join. Refer to the Oracle Database 10 g SQL

Reference for further information regarding syntax and restrictions.

Sample of Sparse Data

Back to List of Topics

A typical situation with a sparse dimension is shown in the following example, which computes the weekly sales and year-

to-date sales for the product 'Bounce’ for weeks 20-30 in 2000 and 2001

SELECT
SUBSTR(p. Prod_Nane, 1, 15) Product Narne,
t. Cal endar _Year Year,
t. Cal endar Week Nunber Week,
SUM Anount _Sol d) Sal es
FROM Sal es s, Times t, Products p
WHERE s. Time_id = t.Time_id AND
s.Prod_id = p.Prod_id AND
p. Prod_name IN (' Bounce') AND
t. Cal endar _Year I N (2000,2001) AND
t. Cal endar _Week Nunber BETWEEN 20 AND 30

GROUP BY p. Prod_Nane, t.Cal endar_Year, t.Cal endar_ Wek Number;

file:///D)/my_data/obepdf/obel0gdb/bi dw/outerjoin/outerjoin.htm?2 (3 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

Bounce

18 rows sel ect ed.

2000

2000

2000

2000

2000

2000

2000

2000

2000

2001

2001

2001

2001

2001

2001

2001

2001

2001

20

21

22

23

24

27

28

29

30

20

21

22

23

24

25

27

29

30

4062

2043.

2731.

4419.

2297.

1443.

1927.

1927

148

4184

2609.

1416.

3149.

2645.

2125.

2467.

2620.

801

. 24

16

14

36

29

13

38

. 38

3.3

.49

19

95

62

98

12

92

17

In this example you would expect 22 rows of data (11 weeks each from 2 years) if the data were dense. However you see
only 18 rows because weeks 25 and 26 are missing in 2000, and weeks 26 and 28 are missing in 2001.

Filling Gaps in Data

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (4 of 28)2/17/2004 6:47:59 AM

Back to List of Topics

Using Partitioned Outer Join to Fill Gapsin Sparse Data

Gaps in time series make calculations such as year-over-year comparisons hard to compute. When there are no gaps,
you can compare data by referring from one row to another row a fixed distance away using the analytic functions LEAD
() and LAQ) . For instance, if you retrieve month level data and would like refer to data from 12 months ago, it is
convenient to access data 12 rows before the current value. You cannot reliably use the LEAD() and LAG() functions
when the number of rows per period (or whatever other dimension used as the divider) is inconsistent.

How can you fill in the gaps in the preceding example with a partitioned outer join?

You can take the sparse data of our query above and do a partitioned outer join with a dense set of time data. In the
guery shown below, the original query is aliased as "v" and the data retrieved from the times table is aliased as "t". Here
you see 22 rows because there are no gaps in the series. The four added rows each have 0 as their Sales value setto 0
by using the NVL() function..

SELECT Product_Name, t.Year, t.Week, NVL(Sales,0) dense_sales
FROM
(SELECT
SUBSTR(p.Prod_Name,1,15) Product_Name,
t.Calendar_Year Year,
t.Calendar_Week Number Week,
SUM(Amount_Sold) Sales
FROM Sales s, Times t, Products p
WHERE s.Time_id = t.Time_id AND
s.Prod_id = p.Prod_id AND
p.Prod_name IN ('Bounce') AND
t.Calendar_Year IN (2000,2001) AND
t.Calendar_Week _Number BETWEEN 20 AND 30
GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number

) v

PARTITION BY (v.Product_Name)
RIGHT OUTER JOIN

(SELECT DISTINCT

Calendar_Week Number Week,

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (5 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

Calendar_Year Year
FROM Times
WHERE Calendar_Year in (2000, 2001)
AND Calendar_Week Number BETWEEN 20 AND 30
)t
ON (v.week = t.week AND v.Year = t.Year)

ORDER BY t.year, t.week;

PRODUCT_NAME YEAR WEEK DENSE_SALES

Bounce 2000 20 801
Bounce 2000 21 4062.24
Bounce 2000 22 2043.16
Bounce 2000 23 2731.14
Bounce 2000 24 4419.36
Bounce 2000 25 0
Bounce 2000 26 0
Bounce 2000 27 2297.29
Bounce 2000 28 1443.13
Bounce 2000 29 1927.38
Bounce 2000 30 1927.38
Bounce 2001 20 1483.3
Bounce 2001 21 4184.49
Bounce 2001 22 2609.19
Bounce 2001 23 1416.95
Bounce 2001 24 3149.62
Bounce 2001 25 2645.98

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (6 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

Bounce

Bounce

Bounce

Bounce

Bounce

2001

2001

2001

2001

2001

22 rows selected.

26

27

28

29

30

0

2125.12

0

2467.92

2620.17

Note that in the query above a WHERE condition for weeks between 20 and 30 is placed in the inline view for the time

dimension. This step reduces the number of rows handled by the outer join, saving processing time.

Filling Gaps in Data and Using Analytic SQL Functions

Back to List of Topics

How do you combine this technique with analytic SQL functions to get cumulative sales for the desired weeks?

O 1.

From a terminal window, execute the following command(s):

cd wkdir
sql pl us sh/ sh@rcl
@g

The f g. sql script contains the following:

SELECT Product Nane,

FROM
(SELECT

t. Year,

t. Week, Sal es,

SUBSTR(p. Prod_Nane, 1, 15) Product _Nare,
t. Cal endar _Year Year,
t. Cal endar _Week Nunber Week,
NVL(SUM Amount _Sol d), 0) Sal es,
SUM SUM Anpunt _Sol d)) OVER

(PARTI TI ON BY p. Prod_Nane,

Weekly ytd sal es

t . Cal endar _Year

ORDER BY t. Cal endar _Week_ Nunber) Weekly ytd sal es
FROM Sal es s,

Tinmes t,
WHERE s. Tine_id
s.Prod_id

Products p

=t.Time_id AND

p. Prod_id AND

p. Prod name IN (' Bounce') AND

t. Cal endar _Year

I N (2000, 2001) AND

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (7 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

t. Cal endar _Week Nunber BETWEEN 20 AND 30
GROUP BY p. Prod_Nane, t.Cal endar_Year, t.Cal endar_ Wek Nunber
) Vv
PARTI TI ON BY (v. Product _Nane)
Rl GHT OUTER JO N
(SELECT DI STI NCT
Cal endar _Week Nunber Week,
Cal endar _Year Year
FROM Ti nes
WHERE Cal endar _Year in (2000, 2001)
) t
ON (v.week = t.week AND v. Year = t. Year)
VWHERE t. Week BETWEEN 20 AND 30
ORDER BY 1, 2, 3;

| 144,25.8.266-5es5i0n.5TE - TM¥TPlus - ||:||E|
Session Edit Miew Commands Script Help
o i, ﬁ" I~k = =)
D| 2| J| |5 6] B (@ O] = a8 @

Bounce Z2EEE 25 ﬂ

Eounce SHEE 26

Bounce ZEEE 27 2297 .29 16354 .19

Eounce ZEHEE 28 1443 .12 17797 .32

Eounce ZEHEE 29 1927 .38 19724 .7

Bounce 2R 0] 1927 .38 Z1B52 .03

FEODUCT_MANE YEAR WEEK. SALES WEEKLY_¥TD_SALES

Bounce a1 2 1433 .3 1433 .3

Eounce 20EL 21 4184 .49 S6ET.T9

Eounce 20E L 2 ZBET .19 Az27hE .93

Bounce 2HE1 23 1416 .95 9593 .93

Bounce Z0E1 2d 3149 .62 12843 .55

Eounce 20EL 24a 2645 .98 15459 .53

Eounce iy 26

Bounce a1 27 2lz25.12 17614 &5

Eounce 2oel 2a

Eounce 20E L 29 2467 .92 2HEES . 5T

Bounce A1 0] 22017 ENr A [|

22 rows selected.

saL> —_
% -

| | I Y

In this query, the weekly year-to-date sales are calculated alongside the weekly sales. The NULL values that the
partitioned outer join inserts in making the time series dense are handled in the usual way: the SUMfunction
treats them as 0's.

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (8 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

Replacing NULLs with the Nearest Non-NULL Value

Back to List of Topics

There are queries in which a partitioned outer join will return rows with NULL values, but you may want those rows to hold
the most recent non-NULL value in the series. That is, if you want to have NULLSs replaced with the first non-NULL value
you see as you scan upward in a column.

Inventory tables, which track quantity of units available for various products, are a common case needing such output.
Inventory tables are sparse: like sales tables, they need only store a row for a product when there is an event. For a sales
table the event is a sale, and for the inventory table, the event is a change in quantity available for a product. If you make
the inventory's time dimension dense, you want to see a quantity value for each day. The value to output is the most
recent non-NULL value. Note that this differs from the prior example with cumulative sales. In that query, the cumulative
sum calculation treats NULLSs as 0s, so it presents correct values. That approach cannot work with inventory and similar
tables, since the value to place in rows with NULLs is not a sum.

Here an example is presented of partitioned outer join with an inventory table. It replaces NULLs with the nearest non-
NULL value.

First, you create a small inventory table with two products, each product having entries for two days. The "bottle" product
has 10 units in stock on April 1, and the "can" product has 15 units in stock on April 1.

11 First you will create a small inventory table with two products, each product having entries for two days. The
" "bottle" product has 10 units in stock on April 1, and the "can" product has 15 units in stock on April 1. Execute
the following SQL*Plus script:

@i

The ci . sql script contains the following:

CREATE TABLE i nventory (

time_id DATE,

product VARCHAR2(10),

gquant NUMBER) ;
I NSERT | NTO i nventory VALUES

(TO_DATE(' 01/04/01', 'DD)MM YY), 'bottle', 10);
| NSERT | NTO i nventory VALUES

(TO _DATE(' 06/04/01', 'DDMM YY), 'bottle', 8);
| NSERT | NTO i nventory VALUES

(TO DATE(' 01/04/01', 'DDy M YY'), 'can', 15);
I NSERT | NTO i nventory VALUES

(TO DATE(' 04/04/01', 'DDFMM YY'), 'can', 11):

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (9 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

& 144.25.8.266-5ession.STE - TNWTPlus

Session Edit Wiew Commands Script Help

=10 x|

0| s e] Bl =@ O = a6 &

Eounce 2ol
Eounce Zrml
Eounce 2EE1
Eounce Eanicy|

22 rows selected.
SEL> @i

Tabhle created.

1 row created.

1 row created.

1 row created.

1 row created.

SUL>

27
28
29
3

£125.12

2467 .92
2B20. 17

17614 .65

2OHEL . 57
227E2. ¥4

[

« L

]2 Now you will use a partitioned outer join to to see the quantity available for each product on each day of the
" range April 1 through April 7. If you use a partitioned outer join to query this table without considering the rows

with NULL values, the results are misleading. Execute the following SQL*Plus script:

@n

The nn. sql script contains the following:

SELECT tinmes.tine_id, product, quant
FROM i nvent ory

PARTI TI ON BY (product)

RI GHT QUTER JO N times
ON (times.tine_id = inventory.tinme_id)

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (10 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

VWHERE times.tinme_id BETWVEEN TO DATE(' 01/04/01', ' DD/ MM YY')
AND TO DATE(' 07/04/01', ' DD MM YY")
ORDER BY 2, 1;

= 144.25.8.266-5ession.STE - TNY¥TPlus - 0] x|

Session Edit MWiew Commands Script Help

D|z|as|cie] 8] @ O = ok &

TIME_ID FRODUCT QUANT
L1-AFR-@1 bottle 16
LZ-AFE-@1 bottle

H3-AFE-@1 bottle

L4 -AFR-@1 bhottle

L5-AFE-@1 bottle

LE-AFE-@1 bottle a
LY -AFE-@1 bottle

L1-AFR-@1 Can 15
L2 -AFK-@1 Can

= -AFE-[1 Can

L4 -AFR-@1 Can 11
TIME_ID FRODUCT QUANT
L5-AFR-@1 Can

HE-AFE-@1 Can

LY -AFE-@1 Can

14 rows selected.

5L I

X

w1

The results above are not what you wanted: you know that the quantities available for bottle and can in the
NULL-value rows were simply the most recent non_NULL value. For instance, on April 2-5 for bottle, you want to
see the quantity 10.

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (11 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

3 To show the desired results, you want to take advantage of a new keyword added to the FIRST_VALUE and
"~ LAST_VALUE functions in Oracle Database 10g. You can specify IGNORE NULLS in the argument list of either
of these functions, and they will return the closest non-NULL value. Execute the following SQL*Plus script:

@n2

The nn2. sqgl script contains the following:

WTH vl AS
(SELECT time_id
FROM ti nes
VWHERE tines.tinme_id BETVEEN
TO _DATE(' 01/04/01', 'DD/ WM YY'")
AND TO DATE(' 07/04/01', 'DD MM YY'))
SELECT product, tine_id, quant quantity,
LAST_VALUE(quant | GNORE NULLS)
OVER (PARTI TI ON BY product ORDER BY tine_id)
repeated_quantity
FROM
(SELECT product, vl1.tinme_id, quant
FROM i nventory PARTI TI ON BY (product)
RI GHT QUTER JO N v1
ON (vl.time_id = inventory.tine_id))
ORDER BY 1, 2;

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (12 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

FEROOUCT TIME_ID AUANTITY REFEATED_AUAWTITY
battle Hl-AFE-m1 1@ 1@
battle HZ-AFE-m1 1
bottle H3-AFE-01 10
battle H4-AFE-B1 10
battle Hs-AFE-m1 1@
baottle HE-AFE-01 a a
bottle 0¥ -AFE-B1 A
Can Hl-AFE-m1 15 15
CAan HZ-AFE-m1 15
Can H3-AFE-01 15
A H4-AFE-B1 11 11
(FEROOUCT TIME_ID AUANTITY REFEATED_AUAWTITY
Can Hs-AFPE-1 11
CAan HE-AFE-m1 11
Can 0¥ -AFE-B1 11
14 rows selected.

saL> | [

« L

Period-to-Period Comparison of One Time Level

Back to List of Topics

In the next task, you will use the outer join feature to compare values across time periods. Specifically, you will calculate a
year-over-year sales comparison at the week level. The query will return on the same row, for each product, the year-to-
date sales for each week of 2001 with that of 2000.

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (13 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

01 To improve readability of the query and focus on the partitioned outer join, use a W TH clause to start the query.
Execute the following SQL*Plus script:

@p

The pp. sql script contains the following:

WTH v AS
(SELECT
p. Prod_Name Product Nane,
t. Cal endar _Year Year,
t. Cal endar _Week Nunber Week,
SUM Amount _Sol d) Sal es
FROM Sales s, Tines t, Products p
WHERE s. Tinme_id = t. Time_id AND
s.Prod_id = p.Prod_id AND
p. Prod_nane in ('Y Box') AND
t. Cal endar _Year in (2000,2001) AND
t. Cal endar _Week Number BETWEEN 30 AND 40
GROUP BY p. Prod_Nane, t.Cal endar_Year, t.Cal endar_Wek Nunber
)
SELECT substr (Product Nane, 1, 12) Prod,
Year ,
Week,
Sal es,
Weekl y_ytd_sal es,
Weekly_ytd_sal es_pri or_year
FROM
(SELECT --Start of year_over_year sales
Product _Nane, Year, Wek, Sales, Wekly ytd sales,
LAG(Weekly_ytd sales, 1) OVER
(PARTI TI ON BY Product Nane, Wek ORDER BY Year)
Weekly ytd sal es_prior_year
FROM
(SELECT - -
Start of dense_sal es
v. Product Nane Product Nane,
t.Year Year,
t. Week Week,
NVL(v. Sal es, 0) Sal es,
SUM NVL(v. Sal es, 0)) OVER

(PARTI TI ON BY v. Product _Nane, t. Year
ORDER BY t.week) weekly_ytd_sal es
FROM v
PARTI TI ON BY (v. Product _Nane)
RI GHT OQUTER JO N
(SELECT DI STI NCT

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (14 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

Cal endar _Week Number Week,
Cal endar _Year Year

FROM Ti nes
WHERE Cal endar _Year I N (2000, 2001)
)t
ON (v.week = t.week AND v. Year = t. Year)
)
dense_sal es
)

year _over_year _sal es
VWHERE Year = 2001 AND

Week BETWEEN 30 AND 40
ORDER BY 1, 2, 3;

22l 144.25.8.266-5ess5io0n.5TE - TN¥TPlus ;IQIEI
Session Edit Miew Commands Script Help

D| | d|e[t 8] B 2@ Of = 2 &

Can BE-AFE-81 11 ﬂ
Can B7-AFE-81 11

14 rows selected.

11 rows selected.

SEL

R

SAL» @pp

[PROD YEAR WEEK SALES WK_Y¥TO_SALES WK_YTOD_SALES_PR_YR
T Box 2@l 3 TAary. 45 TATY .45 1]
T Box Zuml 31 13082 . 46 £1959 .91 1537 .35
Y Box 2Be1 32 11569 .02 32528.93 9531.57
T Box Zu@] 33 FAESEl .97 fuele. 9 39045 .64
T Box Zuml 34 331089 .65 la3vZE. 55 E9lEm. 79
Y Box 2Be1 35 & lB3720.55 71265.35
Y Box 2Be1 36 41E69.3 l1B7589 . 85 8l1156.29
T Box 2@l 37 24616, 85 132586 .7 95433 .09
T Box Zuml 38 37739 .65 170246 .35 107 FZ6 .96
Y Box 2Be1 39 234 .95 178531 .3 115817 .4
T Box Zu@] 410 luE6E . 44 151399.74 120969 .69

s

In the FROMclause of the in-line view DENSE_SALES , a partitioned outer join of aggregate view v and time view
t is used to fill gaps in the sales data along the time dimension. The output of the partitioned outer join is then
OVER to compute the weekly year-to-date sales (the
"weekly ytd sales" column). Thus, the view DENSE SALES computes the year-to-date sales data for each
week, including those missing in the aggregate view s .

processed by the analytic function SUM . . .

The in-line view YEAR _OVER_YEAR_SALES then computes the year ago weekly year-to-date sales using the

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (15 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

LAGfunction. The LAGfunction labeled " weekly_ytd _sal es_pri or _year " specifies a PARTI TI ON BY
clause that pairs rows for the same week of years 2000 and 2001 into a single partition. An offset of 1 is passed
to the LAGfunction to get the weekly year to date sales for the prior year.

The outermost query block selects data from YEAR_OVER _YEAR_ SALES with the condition yr = 2001, and
thus the query returns, for each product, its weekly year-to-date sales in the specified weeks of years 2001 and
2000.

Example of Period-to-Period Comparison for Multiple Time Levels

Back to List of Topics

While the prior example showed you a way to create comparisons for a single time level, it is even more useful to handle
multiple time levels in a single query. For instance, you can compare sales versus the prior period at the year, quarter,
month and day levels.

For the next task, you will create a query which performs a year-over-year comparison of year-to-date sales for all levels
of our time hierarchy.

Several steps are needed to perform this task. The goal is a single query with comparisons at the day, week, month,
guarter, and year level. You will use a materialized view MV_PROD_TI ME which holds a hierarchical cube of sales
aggregated across Tl MES and PRODUCTS . Along with the materialized view, you will create a view on top of it. Also, you
will create a view of the time dimension to use as an edge of the cube. The time edge will be partition outer joined to the
sparse data in the materialized view.

For more information regarding hierarchical cubes, see the Data Warehousing Reference Guide , Chapter 19, "SQL for
Aggregation in Data Warehouses".

11 You will create the materialized view. Note that the query is limited to just two products to keep processing time
" short. Execute the following SQL*Plus script:

@ml

The cnll. sgl script contains the following:

CREATE MATERI ALI ZED VI EW nv_prod_ti ne
REFRESH COVPLETE ON DEMAND
AS
SELECT
(CASE
WHEN ((GROUPI N& cal endar _year) =0)
AND (GROUPI N& cal endar _quarter _desc)=1))

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (16 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

THEN (TO CHAR(cal endar _year) || '_0")
VWHEN ((GROUPI N& cal endar _quarter _desc)=0)
AND (GROUPI NG cal endar _nont h_desc) =1))
THEN (TO_CHAR(cal endar _quarter_desc) || '_1")
WHEN ((GROUPI N& cal endar _nont h_desc) =0)
AND (GROUPING(t.tine_id)=1))
THEN (TO_CHAR(cal endar _nonth_desc) || '_2")

ELSE (TO CHAR(t.tinme_id) || '_3'") END) Hierarchical _Tine,

cal endar _year year,

cal endar _quarter_desc quarter
cal endar _nont h_desc nont h,
t.time_id day,

prod_cat egory cat,
prod_subcat egory subcat,
p.prod_id prod,

GROUPI NG_I D(prod_cat egory, prod_subcategory, p.prod_id,

cal endar _year, cal endar_quarter_desc,
cal endar _nont h_desc,t.tine_id) gid,

GROUPI NG_| D(prod_cat egory, prod_subcategory, p.prod_id)
GROUPI NG_I D(cal endar _year, cal endar_quarter_desc,

cal endar _nonth_desc, t.time_id) gid_t,

SUM anount _sol d) s_sol d,
COUNT(anmount _sol d) c¢_sol d,
COUNT(*) cnt

FROM SALES s, TIMES t, PRODUCTS p

WHERE s.tinme id = t.time_id AND
p. prod_nane in ('Bounce', 'Y Box') AND
s.prod_id = p.prod_id

GROUP BY
RCOLLUP(cal endar _year, cal endar_quarter_desc,

cal endar _nont h_desc, t.tinme_id),

RCOLLUP(prod_cat egory, prod_subcategory, p.prod_id);

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (17 of 28)2/17/2004 6:47:59 AM

gi d_p,

Using Partitioned Outer Join to Fill Gapsin Sparse Data

& 144.25.8.266-5ession.STE - TNWTPlus

Session Edit

Wiew Commands

Script Help

=10 x|

0| s e] Bl =@ O = a6 &

SHL» @pp

[FROD TEAR WEEK SALES WE_YTD_SALES WE_YTOD_SALES_FE_YE
T Box 2BE1 36 FETT 45 TarT . 45 1]
T Box 2BE1 31 12082 .46 20959 .91 1537 .35
T Box 2001 32 11563 . 082 32528 .93 9531.57
T Box 20E1 33 IEAEL .87 TEELE. 3 39045 .69
T Box 2BE1 34 32189 .65 l1az7208. 55 galow.¥a
T Box 20E1 35 1] 1Az2720.55 Tl265.35
T Box 2001 36 4169.3 1A73E89. 85 al136.249
T Box 2BE1 a7 24616 .85 122306 .7 95433 .09
T Box 2BE1 33 3773965 170246 25 lB7726 .96
T Box 2001 34 284 .95 17E531.3 118817 .4
T Box 20E1 4 10365 . 44 151399.74 12M3969 619

11 rows selected.
SOLr dcml

Materialized view created.

SAL» [

« L

Since the materialized view is limited to two products, it has just over 2200 rows. Note that the column

Hi er ar chi cal _Ti me contains string representations of time from all levels of the time hierarchy. The CASE
expression used for the Hi er ar chi cal _Ti ne column appends a marker (_0, _1,...) to each date string to
denote the time level of the value. A _0 represents the year level, _1 is quarters, _2 is months, and _3 is day.
Note that the GROUP BY clause is a concatenated ROLLUP which specifies the rollup hierarchy for the time and
product dimensions. The GROUP BY clause is what determines the hierarchical cube contents.

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (18 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

Create a view CUBE_PRCD_TI ME with the same definition as the materialized view W_PROD_TI ME . Execute
the following SQL*Plus script:

@vl

The cvl. sqgl script contains the following:

CREATE OR REPLACE VI EW cube _prod_tine
AS
SELECT
(CASE
VWHEN ((GROUPI NG cal endar _year) =0)
AND (GROUPI N& cal endar _quarter_desc)=1))
THEN (TO_CHAR(cal endar _year) || '_0")
WHEN ((GROUPI N& cal endar _quarter _desc)=0)
AND (GROUPI N& cal endar _nonth_desc) =1))
THEN (TO_CHAR(cal endar _quarter_desc) || '_1")
WHEN ((GROUPI N& cal endar _nont h_desc) =0)
AND (GROUPING(t.tinme_id)=1))
THEN (TO _CHAR(cal endar _nonth_desc) || '_2")
ELSE (TO CHAR(t.time_id) || '_3") END) Hierarchical _Time,
cal endar _year year,
cal endar _quarter_desc quarter,
cal endar _nont h_desc nont h,
t.time_id day,
prod_cat egory cat,
prod_subcat egory subcat,
p. prod_id prod,
GROUPI NG_| D(prod_cat egory, prod_subcategory, p.prod_id,
cal endar _year, cal endar_quarter_desc, cal endar_nonth_desc,
t.tine_id) gid,
GROUPI NG | D(prod_cat egory, prod_subcategory, p.prod_id) gid p,
GROUPI NG | D(cal endar _year, cal endar_quarter_desc,
cal endar_nonth _desc, t.tine_id) gidt,
SUM anount _sol d) s_sol d,
COUNT(amount _sol d) c_sol d,
COUNT(*) cnt

FROM SALES s, TIMES t, PRODUCTS p
WHERE s.tinme_id = t.time_id AND

p. prod_name IN ('Bounce', 'Y Box') AND

s.prod _id = p.prod_id
GROUP BY
ROLLUP(cal endar _year, cal endar_quarter_desc,

cal endar_nonth_desc, t.tine_id),

ROLLUP(pr od_cat egory, prod_subcategory, p.prod_id);

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (19 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (20 of 28)2/17/2004 6:47:59 AM

| 144 25 8.266-%es5i0n.5TE - TN¥TPlus
Session Edit

Wiew Commands

acripk

Help

0| s e] Bl =@ O = a6 &

S A e
m
[m}
H

11 rows selected.

SELx Ecml

SOLr dcwl

Wiew created.

SUL>

5

Materialized view created.

24616 .85
37739.85

£a4 .95
10365 . 44

TATY .45
20959 .91
32528.93
Tuele. g
183720 .55
183720 .55
lu¥asE9. 85

132586 .7
178246, 35

17@531 .3
151399.74

1537 .35

9531 .57
39045 .69
BIlaE. Y3
v1265.35
all5e. 29
95433 .89
107726 .96
118817 .4
1203969619

« L

@v?

(CASE

The cv2. sgl script contains the following:

CREATE OR REPLACE VI EW edge_ti nme
AS
SELECT

VWHEN ((GROUPI N& cal endar _year) =0)

You will create a view EDGE_TI ME which is a complete set of date values. EDGE_TI ME is the source for filling
time gaps with a partitioned outer join. The column H ERARCHI CAL_TI ME in EDGE_TI ME will be used in a
partitioned join with the HI ERARCHI CAL_TI ME column in the view CUBE_PRCD_TI ME .Execute the following
SQL*Plus script:

Using Partitioned Outer Join to Fill Gapsin Sparse Data

AND (GROUPI NG cal endar _quarter _desc)=1))
THEN (TO CHAR(cal endar _year) || '_0")
VWHEN ((GROUPI N& cal endar _quarter _desc)=0)
AND (GROUPI NG cal endar _nont h_desc) =1))
THEN (TO_CHAR(cal endar _quarter_desc) || '_1")
WHEN ((GROUPI N& cal endar _nont h_desc) =0)
AND (GROUPING(time_id)=1))
THEN (TO_CHAR(cal endar _nonth_desc) || '_2")
ELSE (TO CHAR(tine_id) || '"_3") END) Hierarchical _Tine,
cal endar _year yr,
cal endar _quarter_nunber qtr_num
cal endar _quarter_desc qtr,
cal endar _nmont h_nunber non_num
cal endar _nont h_desc non,
time_id - TRUNC(tine_id, 'YEAR) + 1 day_num
tinme_id day,
GROUPI NG_I D(cal endar _year, cal endar_quarter_desc,
cal endar _nonth_desc, tine_id) gid_t
FROM TI MES
GROUP BY ROLLUP
(cal endar _year,
(cal endar _quarter_desc, cal endar_quarter_nunber),
(cal endar _nont h_desc, cal endar_nonth_nunber), tinme_id);

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (21 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (22 of 28)2/17/2004 6:47:59 AM

& 144.25.8.266-5ession.STE - TNWTPlus

Session Edit

Wiew Commands

acripk

Help

=10 x|

0| s e] Bl =@ O = a6 &

Box
Box
Box
Box
Box
Box
Box
Box

S i

2@l
Zuml
20e1
Zu@]
2@l
20e1
20e1
Zu@]

11 rows selected.

SEL> dcml

SELx Ecyl

SOLr Acw?

saLe ||

Materialized view created.

Wiew created.

Wiew created.

33
34
35
36
37
33
39
410

IAAFL .97
331089 .65
1]

4169 .3
24616, 85
37739.85
234 .95
lUE6E . 44

Tuele. g
la3vZE. 55
183720 .55
lu¥asE9. 85

132586 .7
178246, 35
178531 .3
151399.74

39045 .69
E9lEm. 79
7126535
all5e. 249
95433 .09
107726 .96
118317 .4
120969 .69

« L

. sum of sales for prior period at all levels of time
. Vvariance in sales over prior period
. sum of sales in the same period a year ago at all levels of time
. Vvariance in sales over the same period last year

Execute the following SQL*Plus script:

You now have the required elements for the comparison query. You can obtain period-to-period comparison
calculations at all time levels. It requires applying analytic functions to ahierarchical cube with dense data along
the time dimension. Some of the calculations we can achieve for each time level are:

The following example performs all four of these calculations. It uses a partitioned outer join of the views
CUBE_PROD_TI ME and EDGE_TI ME to create an in-line view of dense data called DENSE_CUBE_PROD_TI ME .
The query then uses the LAGfunction in the same way as the prior single-level example. The outer WHERE
clause specifies time at three levels: the days of August 2001, the entire month, and the entire third quarter of
2001. Note that the last two rows of the results contain the month level and quarter level aggregations.

Using Partitioned Outer Join to Fill Gapsin Sparse Data

@t

The nt . sql script contains the following:

SELECT

substr(prod, 1,4) prod, substr(Hi erarchical

sal es,
sal es_prior_period,

Tine, 1, 12) ht,

sales - sales _prior_period variance_prior_period,

sal es_sane_period_prior_year

sal es - sal es_sanme_period_prior_year variance_sane_period_p_year

FROM
(SELECT cat, subcat, prod, gid_p, gid_t, Hi
yr, qtr, non, day, sales,
LAG(sal es, 1) OVER (PARTITION BY gid_p,
gid t ORDER BY yr, qtr, non, day)
sal es_prior_period,
LAG sal es, 1) OVER (PARTITION BY gid p

erar chi cal _Ti ne,

cat, subcat, prod,

cat, subcat, prod,

gid t, gtr_num non_num day_num ORDER BY yr)

sal es_same_period_prior_year
FROM

(SELECT c.gid, c.cat, c.subcat, c.prod, c.gid_p,

t.gid_t, t.yr, t.qtr, t.qtr_num t.non,

t . nmon_num

t.day, t.day_num t.Hierarchical _Time, NVL(s_sold,0) sales

FROM cube_prod_tinme c
PARTI TION BY (gid_p, cat, subcat, prod)
Rl GHT OUTER JO N edge tine t
ON(c.gidt =t.gid t AND c. Hi erarchica
) dense_cube_prod tine
) -- side by side current, prior

_Time = t.Hierarchical _Tine)

and prior year sales

WHERE prod IN (139) AND gid p=0 AND -- 1 product and product |evel data

((mon IN ('2001-08") AND gid t IN (0, 1)
(qtr IN('2001-03") AND gid_t IN(3)))
ORDER BY day;

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (23 of 28)2/17/2004 6:47:59 AM

) OR -- day and nonth data
-- quarter level data

Using Partitioned Outer Join to Fill Gapsin Sparse Data

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|
Session Edit Wiew Commands Script Help
= i, ﬁ" 1~k = =
D|=|@@| s8] B =@ O = 25 &
139 13-AUG-81_3 @ 2467 .54 -2467 .54 127 . 03 -127 . 03 _:J
139 £0-AUG-A1_3 @ 0] 0] 0] @
135 21-AUG-81_3 1] 1] 1] 1] 1]
139 22-AlUL-B1 3 @ [1] 1] @
139 £3-AUG-81_3 1371 .43 1] 1371.43 1] 1371.43
135 24-AUG-81_3 153 .96 1371.43 -1217 .47 2091 .3 -1937 .34
1339 25-AUG-81_3 1] 153 .96 -153 .96 1] 1]
139 ZB-AUG-B1_3 @ [1] 1] @
139 £7-AUG-81_3 1235 43 0] 1235 43 0] 1235 43
wariance sales same waAriance
sales_prior _prior _period_prior _same_period
[PROD HT SALES _period _period _year _prior_year
139 £E-AUG-B1_3 172.3 1235. 43 -lueZ . 13 2075 .64 -1982 . 34
139 £9-AUG-81_3 @ 173.3 -173.3 0] @
135 30-AUG-81_3 1] 1] 1] 1] 1]
139 F1-AUG-81 3 @ [1] 1] @
139 2081 -A3_2 8347 .43 7213 .21 1134 .22 A368.93 -21.55
135 2OE1-23_1 24356 .3 23862 .14 -4505. 34 24168.93 187 .41
33 rows selected.
SHL»

« L

Example of Creating a Custom Member in a Dimension

Back to List of Topics

In many OLAP tasks, it is helpful to define custom members in a dimension. For instance, you might define a specialized
time period for analyses. You can use a partitioned outer join to temporarily add a member to a dimension. Note that the
new SQL MODEL clause introduced in Oracle Database 10 g is suitable for creating more complex scenarios involving
new members in dimensions. See the Data Warehousing Reference Guide Chapter 22, "SQL for Modeling" for more
information on this topic.

In this exercise, you will define a new member for the Tl ME dimension. You will create a 13th member of the Month level
in the TI ME dimension. This 13th month is defined as the summation of the sales for each product in the first month of
each quarter of year 2001. You will build this solution using the views and tables created in the prior example.

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (24 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

O 1.

Create a view with the new member added to the appropriate dimension. The view uses a UNI ON ALL
operation to add the new member. To query using the custom member, use a CASE expression and a partitioned
outer join. Execute the following SQL*Plus script:

@v3

The cv3. sgl script contains the following:

CREATE OR REPLACE VIEWtime_c AS

(SELECT *
FROM edge _tine
UNI ON ALL
SELECT ' 2001-13_2', 2001, 5, '2001-05', 13, '2001-13', null, null,
8 -- <gid_of non>
FROM DUAL) ;

In the statement shown, the view TI ME_C s defined by performing a UNI ON ALL of the EDGE_TI ME view
(defined in the prior example) and the user-defined 13th month. The UNI ON ALL specifies the attributes for a
13th month member by doing a SELECT from the DUAL table. Note that the grouping i d , column gi d_t , is set
to 8, and the quarter number is setto 5 .

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (25 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

2 144.25.8.266-Session.STE - TNWTPlus - 1O x|

Session Edit Wiew Commands Script Help

0| s e] Bl =@ O = a6 &

1239 £3-AUG-81_3 1371 .43 1] 1371 .43 1] 1371 .43 ;I
139 £4-AUG-81_3 153 .36 1371 .43 -1217 .47 2091 .3 -1937 .34
135 25-AUG-81_3 1] 153 .96 -153 .96 1] 1]
1239 ZB-AUL-B1 3 [1] 1] 1] [
1239 £7-AUG-81_3 1235 43 1] 1235 43 1] 1235 43
wariance sales_same wariance
sales_prior _prior _period_prior _same_period
[PROD HT SALES _period _period _year _prior_year
1239 Za-AlUL-81 3 173.3 1235 43 -loeZ .14 2U75 B4 -190:2 . 34
1239 £9-AUG-81_3 @ 173.3 -173.3 1] @
135 30-AUG-81_3 1] 1] 1] 1] 1]
1339 31-AUG-81_3 1] 1] 1] 1] 1]
1239 2081 -08_2 a347 .43 7213, 21 1134 .22 A365 .93 -21.55
139 £OE1-a3_1 £4356 .8 £A86Z .14 -d5605 . 34 4168 .99 187 .81
33 rows selected.
SHLy Acy3
View created.
saLx %

« L

2. The in-line view of the query shown below performs a partitioned outer join of CUBE_PROD_TI ME with TI VE_C.
This step creates sales data for the 13th month at each level of product aggregation. In the main query, the
analytic function SUMis used with a CASE expression to compute the 13th month, which is defined as the
summation of the first month's sales of each quarter. Execute the following SQL*Plus script:

@v4

The cv4. sgl script contains the following:

SELECT * from

(
SELECT substr(cat, 1, 12) cat, substr(subcat, 1, 12) subcat,

substr(prod, 1,9) prod, non, non_num
SUM CASE WHEN non_num IN (1, 4, 7, 10)

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (26 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

THEN s _sol d
ELSE NULL
END)
OVER (PARTITION BY gid_p, prod, subcat, cat, yr) sales nonth_ 13
FROM
(SELECT c.gid, c.prod, c.subcat, c.cat, gid_p,
t.gid t , t.day, t.non, t.non_num
t.qtr, t.yr, NVL(s_sold,0) s_sold
FROM cube_prod_tinme c
PARTITION BY (gid_p, prod, subcat, cat)
RIGHT QUTER JON tine_c t ON
(c.gidt =t.gidt AND c.H erarchical _Tine = t. H erarchical _Tine)
)

)
VWHERE non_nume13;

| 144.25.8.266-5es5i0n.5TE - TN¥TPlus =10] x|

Session Edit Miew Commands Script Help

D| | W[t 8| Bl =@ O = 2k &

1339 31-AUG-81_3 1] 1] 1] 1] (IS
1239 2001 -08_2 a347 .43 7213, 21 1134 .22 A365 .93 -21.55
139 £OE1-a3_1 £4356 .8 £A86Z .14 -d5605 . 34 4168 .99 187 .81

33 rows selected.
SOLr Acw3

Wiew created.

SOLr Acwd

ICAT SUBCAT FEOO MOM MOM_NUM SALES_MONTH_13
Electronics Game Console 1A 2E01-13 13 TEZ2334 .34
Electronics ¥ Box Games 139 SOEl-1= 1= TagsM. 22
Electronics Game Console ZEEl1-13 13 TEZ334 .34
Electronics ¥ Box Games Z2AOH1-13 1= TabRan . 22
Electronics 2E01-13 13 B37984 .56

2OA1-13 13 A37934 .56

|6 rows selected.

saLs | DE

s

The SUMfunction used in generating these results had a CASE statement to limit the data to months 1 , 4, 7 and
10 within each year. Due to the tiny data set, with just 2 products, the rollup values of the results are necessarily
repetitions of lower level aggregations. For a more realistic set of rollup values, you can include more products
from the "Game Console" and "Y Box Games" subcategories in the underlying materialized view.

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (27 of 28)2/17/2004 6:47:59 AM

Using Partitioned Outer Join to Fill Gapsin Sparse Data

file:///D)/my_data/obepdf/obel0gdb/bidw/outerjoin/outerjoin.htm?2 (28 of 28)2/17/2004 6:47:59 AM

	Local Disk
	Using Partitioned Outer Join to Fill Gaps in Sparse Data

	JLBEEAEFPEKAAFJBDHCNOABGDENPJLMJ:
	form1:
	x:
	f1: Off
	f2: Off
	f3: Off
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off
	f11: Off
	f12: Off
	f13: Off
	f14: Off

