Beginning

SQL Server 2005
for Developers

Robin Dewson




Beginning SQL Server
2005 for Developers

From Novice to Professional

Robin Dewson

Apress’



Beginning SQL Server 2005 for Developers
Copyright © 2006 by Robin Dewson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-588-6
ISBN-10 (pbk): 1-59059-588-2
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Matthew Moodie, Tony Davis

Technical Reviewer: Jasper Smith

Additional Material: Cristian Lefter

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan
Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Susan Glinert

Proofreaders: Lori Bring, Nancy Sixsmith

Indexer: Broccoli Information Management

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.



This book is dedicated to my long-suffering family, especially my wife, Julie, who has
had to put up with my stress and my lack of input to helping with the house, tiredness,
bad moods, and antisocial lifestyle, and to my three kids: Cameron, a star rugby player

who for once is first in the list; Ellen (another star rugby player)—I feel sorry for the man
she marries one day; and Scott, the future Air Force pilot, the big foot of the family.
Thank you for putting up with everything.
Up the Blues.
www. fat-belly.com






Contents at a Glance

About the AUTNOT . . ..o e Xvii
About the Technical ReVIeWer . . ... ... e e eee e xix
ACKNOWIBAgMENTS ... i i XXi
INtrodUCHION . . .. e Xxiii
CHAPTER 1 SQL Server 2005 Overview and Installation ..................... 1
CHAPTER2  SQL Server Management Studio .............................. 25
CHAPTER 3  Database Design and Creation ............................... 53
CHAPTER 4  Securily ...........oiiiiii i 95
CHAPTER 5 Defining Tables ... 119
CHAPTER 6  Creating Indexes and Database Diagramming ................ 153
CHAPTER 7 Database Backups, Recovery, and Maintenance .............. 185
CHAPTER8  Working withtheData ............................oooiiiat. 245
CHAPTER 9 BuildingaView ... 309
CHAPTER 10  Stored Procedures................ccoviiiiiiiiiiiinnnnnnnnn. 335
CHAPTER 11  T-SQLEssentials ..................cooiiiiiiiiiiinns. 359
CHAPTER12 Advanced T-SQL........... ...t 403
CHAPTER 13 THigOeIS ...ttt et 427
CHAPTER 14  SQL Server 2005 Reporting Services ......................... 451
APPENDIX Glossary of Terms ...........coiiiiiiii i 473
INDEX ... 485






Contents

About the AUTNOr . . ..o e Xvii
About the Technical REVIBWET . ... ..ottt i e e i Xix
ACKNOWIBAgMENTS ... i i XXi
IMtrOAUCTION .. et e e e e xxiii
CHAPTER 1  SQL Server 2005 Overview and Installation ............... 1
Why SQL Server 20057 ..o e 2

Evolution of SQL Server ... 3

Hardware Requirements ............. ..ot 4

CPU. o e 4

12T 110 5

Hard Disk Space . .......c.cooiii i 5

Operating System Requirements ................cccvvinn.at. 5

The EXample ......oiniii i e e e e 6

Installation ....... ... 6

A Standard Installation .............. ... 6

Preparingtolnstall ............ ... o i 7

SBCUNMY .ottt e 18

Services ACCOUNES ... ..ot e 18

Looking at the Authentication Mode.......................... 18

The saLogin . ..ot e i i i 22

SUMMIAIY oottt i e e e e e 23

CHAPTER 2  SQL Server Management Studio .......................... 25
A Quick Qverview of SSMS ... ... ... 25

Examining SSMS’s Options ... 34

EnvironmentNode ... 34

Source Control Node. . .........ooviii i 37

TextEditorNode . ... 38

Query ExecutionNode ...t 40

QueryResultsNode ..........cccoiviiiii e 42

vii



viii

CONTENTS

CHAPTER 3

Query Editor . .....o e e 45
Surface Area Configuration Tool ............. ..., 47
QUMM .. e i e e e 51
Database Design and Creation ........................... 53
DefiningaDatabase ...........ccoviiiiiiiii i e 54
Databases Within SQL Server ........... ..., 55
1 5 (] 56
tempdb. ... e 56
MOl . e e e 57
MSAD ..ot e 58
AdventureWorks/AdventureWorksDW ........................ 58
Choosing the Database System Type ...t 58
0 I 58
OLAP. e e 59
Example System Choice ..........c.oiviiiiii i 60
Gatheringthe Data ... 60
Determining the Information to Store in the Database ............... 62
Financial Products ... 63
CUSIOMErS . . et e e e 64
Customer AdAresSSes . .....vvvieer i 64
ShareS .. e 64
Transactions .. ... 64
External and Ignored Information ................... ... ..., 65
Building Relationships ...t 65
USiNg KBYS. .o v et e e i e e 65
Creating Relationships. ... 67
More on Foreign Keys ... 70
Normalization ........ ..ot e 71
Each Entity Should Have a Unique Identifier ................... 73
Only Store Information That Directly Relates to That Entity. ...... 73
Avoid Repeating Values or Columns. ................cooven. 73
Normalization Forms ...t 73
Denormalization ...t e 75
Creating the Sample Database .................... .ot 76
Creating a Database in SQL Server Management Studio. ... ..... 76
Dropping the Database in SQL Server Management Studio ...... 89
Creating a Databaseina QueryPane......................... 92

SUMMIAIY .ot i e e e e e 94



CHAPTER 4

CHAPTER 5

CONTENTS

Security ... 95
LOgINS .« ottt e e 95
Server Logins and Database Users.......................... 105
ROIES i 105
Fixed ServerRoleS ...... ..ot 105
Database RoleS.........coviiiii i 107
ApplicationRoles .........c.oiiiiiii e 108
SCNBMAS .t 111
Before You Can Proceed with Your Solution ...................... 113
SUMMIAIY .ttt i e e i i e 117
Defining Tables .......................................... 119
WhatlsaTable? ... e e 120
Defining a Table; SQL Server Management Studio ................. 121
Different Table Data Types ........c.oovvvviiiiii ... 121
Different Program Data Types. ............cooviiineinn... 125
Columns Are More Than Simple Data Repositories ................ 126
Default Values. ........ovv v e 126
Generating IDENTITYValues . ........cccvvvviiiiieennnann.. 126
The Use of NULLValues. ............ccoiiiiiiiiniiniinnn, 127
Why Define a Columnto Allow NULL? ...................ott 127
Image and Large Text Storage in SQL Server ..................... 127
Creating a Table in SQL Server Management Studio ............... 128
Defining a Table Through the Query Editor ....................... 134
Defining a Table: Usinga Template ............................. 136
Creating and Alteringa Template ................... ..ot 139
The ALTER TABLE Command ...........ccviviriiiiininnnannns 141
Defining the Remaining Tables ................cooviiiiieiina... 142
SettingaPrimaryKey ... 143
Creating aRelationship ... 144
Check Existing Data on Creation............................ 148
Enforce Foreign Key Constraints............................ 149
Delete Rule/Update Rule ..........c.covvniiiiiiiinen 149
Using the ALTER TABLE SQL Statement ......................... 150

SUMMAIY .. i e i e i e 151

ix



X

CONTENTS

CHAPTER 6

CHAPTER 7

Creating Indexes and Database Diagramming .......... 153
Whatlsan Index? ...t e e 153
Typesof INAEXES . ....oeiii i i 154
UNiQUBNESS . ..ottt e e 156
Determining What Makes a Good Index ...............ccovvvvnnn. 156
Using Low-Maintenance Columns .......................... 156
Primary and Foreign Keys ... ... 157
Finding Specific Records ..........c.covviiii i 157
Using Covering INdexes . ........ovviieiiiiiii i 157
Looking for a Range of Information ......................... 158
Keepingthe DatainOrder.............oviiiiiiiinn.n, 158
Determining What MakesaBad Index ........................... 159
Using Unsuitable Columns ..........ccovviiiiiiiinneann., 159
Choosing Unsuitable Data ..............c.coovvivvinninnnn,. 159
Including Too Many Columns ...........cccviiiiiieiinnnnn., 159
Including Too Few Recordsinthe Table ..................... 159
Reviewing Your Indexes for Performance ........................ 160
CreatinganiIndex ..........ccoiiiiiiiiiiii i 160
Creating an Index with the Table Designer ................... 161
Indexes and Statistics ................ ... il 163
The CREATE INDEX Syntax ..........ccovvviiiiniinnnnana.s. 164
Creating an Index in Query Editor; Template.................. 166
Creating an Index in Query Editor: SQL Code ................. 170
Droppinganindex . .......ccoiiiiiii e 173
Altering an Index in Query Editor . .............. .. ...l 174
Diagramming the Database ...................ccoiiiiit. 176
Database Diagramming Basics...............ccooiieia.., 176
The SQL Server Database Diagram Tool ..................... 177
The Default Database Diagram............................. 178
The Database Diagram Toolbar. ............................ 180
QUMM ottt i e e e i e 183
Database Backups, Recovery, and Maintenance ....... 185
Transaction Logs ......c.oviiiiiiiii e e e 186
Backup Strategies . ..o e e 188
When Problems May OCCUr .......vvirr it iene e 189

Taking a Database Offline ............cccoiiiiiiiiiii .., 190



CHAPTER 8

CONTENTS

Backingthe DataUp ... e 191
Backing Up the Database Using T-SQL ...................... 196
Transaction Log Backup Using T-SQL . ...................... 204

RestoringaDatabase ..............ccoviiiii it 207
Restoring Using SQL Server Management Studio.............. 207
RestoringUsing T-SQL. . ... 210

Detaching and Attachinga Database ............................ 214
Detaching and Attaching Using SQL Server

Management Studio ............ .. i 215
Detaching and Attaching Using T-SQL....................... 220

Producing SQL Script for the Database .......................... 222

Maintaining Your Database ................ccciiiiiiiiiia. 230

Creating a Database Maintenance Plan .......................... 230

SUMMAIY .. i e i e e 243

Working withtheData ................................... 245

The T-SQL INSERT Command Syntax..................cvennn. 246

INSERT SQL Command ..........c.cviriieii i, 247
Default Values. .......coovvve i i e 249
Using NULLValues ...t i 249

DBCC CHECKIDENT ...ttt e i e 254

Column Constraints ............cviiiiii i 255
ADD CONSTRAINT. . ...t e e 256

Dealing with Several RecordsatOnce .................ccovvvnnn. 262
Inserting Several Records ina Query Batch .................. 262

Retrieving Data .............ccoiiiiiiiii i 263

Using SQL Server Management Studio to Retrieve Data ............ 264

The SELECT Statement ......... ...t 266

Namingthe Columns ........ ...t 268

The FirstSearches ... 269

Varying the Qutput Display ............cciiiiiiiii .. 271

Limiting the Search; The Use of WHERE ......................... 273
SETROWCOUNT N .. e 276
TOP N e 277
TOPNPERCENT ...t e e 278

String Functions ... e 278

Orderl Order! ... .o e e 280

The LIKEQperator . ... i 282

Xi



Xii

CONTENTS

CHAPTER 9

CHAPTER 10

Creating Data: SELECTINTO ........ovvieiie i 284
Who Can Add, Delete, and SelectData .......................... 286
Securables. .. ... e 291
UpdatingData ... e 291
The UPDATECommand ...........ooeiiiiiiiie ... 292
Updating Data Within Query Editor.......................... 293
Transactions ...t e e 296
BEGIN TRAN. ..ottt e e e e i 298
COMMIT TRAN. . .ottt e e e 298
ROLLBACK TRAN. .. ittt i i i it ie i eaee s 298
Locking Data...........coieiiiiii i 299
Updating Data: Using Transactions.......................... 299
Nested Transactions. ... ... 301
DeletingData . .........ccoiiii i e 303
DELETE Syntax ....ovve it e 303
Using the DELETE Statement. ...............ccoiiiiintt 304
TruncatingaTable ... i 306
DroppingaTable ..o e 307
SUMMIAIY .ttt i e e i i e 308
BuildingaView ............................... 309
WhatIsaView? ... e 310
Using Views for Security ... 310
Encrypting View Definitions ............. ..o i 311
Creating a View: SQL Server Management Studio ................. 312
CreatingaViewUsingaView ...........cccoiiiiiiiiiiiiinn.n 318
CREATE VIEW Syntax ........ccoviiiiiii it inennens 324
Creating a View: A Query Editorpane .....................cooolt 326
Creating a View: SCHEMABINDING ...............cciiiiinn., 327
Indexing aView ... e 330
SUMMAIY .. i e i e e 332
Stored Procedures .............................ll. 335
What Is a Stored Procedure? ..., 335
CREATE PROCEDURE Syntax ........oovviriiie i iiieneennnns 336
Returninga Setof Records ...........c.ccovviiiiiiiiiinnnnns. 339

Creating a Stored Procedure: Management Studio ................. 339



CHAPTER 11

CONTENTS

Different Methods of Executing ..., 344
NOEXEG. ... oot et 344
WIth EXEC ... e 344
USINGRETURN . ... e e 344
Controllingthe Flow ......... ..o 348
IF. ELSE. . ... e 349
BEGIN..END. ... e 349
WHILE...BREAK Statement................... ... ...l 350
CASE Statement ... 352
Bringing It All Together ... 355
SUMMAIY .. i e e e i e 357
T-SQLEssentials ................................ii. 359
Using More ThanOne Table ........... ..., 359
Variables ... e e 365
Temporary Tables ... 367
AgOregations ... ...t e 369
COUNT/COUNT BIG . ..o 369
SUM L 370
MAX/MIN .. e e 371
AVG. .. 372
GROUP BY . e 372
HAVING . ..o e e e 374
DistinctValues . ... . cvv v e 375
FUnCtions ... 376
Dateand Time. ... ..ot e 376
SHNG e 380
SystemFunctions............ ..o i 386
RAISERROR ...t e e e e 391
ErrorHandling .........cooo i e 394
@@ERROR ... .ot 395
TRY..CATCH ..o e e e 396

SUMMIAIY ottt e e e i i e 401

xiii



Xiv

CONTENTS

CHAPTER 12

CHAPTER 13

Advanced T-SQL ...................ccooiiiiiiiiiinnn.. 403
SUDQUBIIES .« v vttt e 403
IN 405
EXISTS . 406
The APPLY Operator .......ccvvviie it ciie i ne e 407
CROSS APPLY ... e 407
OUTER APPLY ... e e 408
Common Table EXpressions ..........covieiieiiniininnnnenns 409
Recursive CTE. .....oovi i i 410
Pivoting Data ...........co i e e 412
PIVOT .o e 413
UNPIVOT . . e et 414
Ranking Functions ............cc i e 415
ROW_NUMBER ..... ... i 416
RANK .. e 418
DENSE_RANK . ...\t e 419
NTILE .o e 420
Usingthe MAXDataType ........ccoiiiiiiiii i 421
Image LOB. ... ..o e 424
SUMMANY ..t e e e 426
THGOerS ... 427
What IS a Trigger? ..o ot e aae 427
The DML THgOer .. vvv ittt e e ii e eiea s 428
CREATE TRIGGER Syntax for DML triggers ............ccvvvvvuennn 429
Why Not Use a Constraint? ..., 431
Deleted and Inserted Logical Tables . ..................ccont.. 431
Creating a DML FOR THOQEr ...ovvviit it it ieneens 432
Checking Specific Columns ... 436
USINGUPDATE() . ..o v oot e 436
Using COLUMNS_UPDATED() .. ...vvvieeieeie i aM
DL TrggEIS « ittt ettt e e e i e 444
DDL_DATABASE_LEVEL_EVENTS..........ccoviiiiinann, 445
Dropping a DDLtrigger .......covviiiiiiii i 447
EVENTDATA( « et e e e e e 447

SUMMIAIY .ttt i i e i i e 450



CONTENTS

CHAPTER 14 SQL Server 2005 Reporting Services .................... 451
What Is Reporting Services? ........c.ovviiiiiiiiiiie e, 451

Reporting Services Architecture from 5000 Feet .................. 452

Reporting Services Architecture: A Closer Look ................... 453

The Application Layer............ccoiiiiiii e 454

The Server Layer. ......oovvr it i aaa s 456
TheDatalLayer........ccovviiiiiiiii i 458

Building Your First Report Using Report Wizard ................... 458

Building a Report from Scratch ................ ... .ot 462

Data-Related Elements .............cooiiiiiiiiiiiiinn, 463

Report Hems ... e e 463

Reports Structure ... 464

QUMM ottt i e e e i e 472

APPENDIX  GlossaryofTerms .....................ccoooiiiiiinnnn, 473
INDEX .. i e 485

Xv






About the Author

ROBIN DEWSON has been hooked on programming ever since he bought
his first computer in 1980, a Sinclair ZX80. His first main application of
his own was a Visual FoxPro application that could be used to run a
Fantasy League system. It was at this point he met up with a great help in
his PC development life, Jon Silver at Step One Technologies, where in
return for training, he helped Jon with some other Visual FoxPro applica-
tions. From there, realizing that the marketplace for Visual FoxPro was
limited, he decided to learn Visual Basic and SQL Server.

Starting out with SQL Server 6.5, Robin soon moved to SQL Server 7
and Visual Basic 5, and became involved in developing several applications
for clients both in the UK and in the United States. From there, he moved to SQL Server 2000 and
now SQL Server 2005, and Visual Basic 6 and now VS .NET, specializing in C# and VB .NET. Robin
is also the coauthor of Pro SQL Server 2005 Assemblies along with other Apress books, and also
contributes to ASPToday (www.asptoday.com). Robin can be contacted at robin@fat-belly.com or
at www.fat-belly.com.

Xvii






About the Technical Reviewer

JASPER SMITH is a Microsoft MVP and has been working with SQL Server for seven years. He is
afrequent speaker at PASS (Professional Association for SQL Server) conferences and also runs
and authors content for his website, www.sgldbatips.com, including such popular utilities
as Reporting Services Scripter and SQL 2005 Service Manager. He also spends a lot of time
answering questions in the Microsoft public newsgroups for SQL Server.

Xix






Acknowledgments

Erst of all, my thanks go to “those unsung heros” at Bedford Rugby club (www.bedfordrugby.
co.uk) who over the years have made my Saturdays so special. From the great Colin Jackson,
whose time as Director of Rugby kept the relegation wolves from the doors in his first season, to
players who have come and given their all for the club and making our day out at Twickenham
so, so special. Also to my many friends at the club like Bernie McGee, Lee Smith, Nigel Rudgard,
Nigel and Sarah Crowe, and Sam Roberts, to name but a few. Also to my fellow coaches at the
Junior Blues, Alan Grosvenor, Richard Porter, and Rob Robson, who understood when I had to
take time out to get on with this and other works for Apress.

Then the people whom I work with who have made my life hell with 5 a.m. starts and call outs
(only joking!), Martin Price, Henry Williams, Bill Cotton, Rakesh Juneja, as well as Jack Mason; but
it’s to Anthony Jawad who has made the last nine years possible. I cannot thank you enough
Jock. Oh, and to my long suffering train partners, Andrew Lockwood and Paul Goodwin...

I promise to have early nights, and lose a bit of weight so I stop keeping you awake on our
journey to work with my very loud snoring!

When I need to concentrate, music is just brilliant and it doesn’t come much better than
6Music from the BBC (www.bbc.co.uk/6Music). Especially from the following presenters, who
daily play excellent music: Phill Jupitus and Phil Wilding on the very funny breakfast show,
Gideon Coe and his off-kilter humor, and the brilliant Vic McGlynn, who keeps me awake
during the afternoons.

Also, when I need to relax, thanks to Debbie and Charlie Roberts at Sandy Hills Amusements
at Sea Palling in Norfolk for providing the best amusements in England! Also to Axis (www.axis.com)
for building great webcams. And finally to Friends Reunited for allowing me to get in touch with
my best friend at college, Robert “Toad” McMillan.

To my mother-in-law, Jean. Thanks for Lanzarote through to helping Julie out with so many
different things with the family and the house. And, of course, to my late father-in-law, David,
whom we all still miss, and could never thank enough for his invaluable help and guidance.

To my mum and dad, Laura and Scott. From not being able to watch the television asIused
it for my ZX80, to finding both my colleges for me, without you both throughout my life helping
me along the way, I wouldn’t have such a lucky and wonderful life. I can never thank you
enough, and you are both wonderful parents. To my sister, Carol, and her children, Eleanor,
Erin, and Lucas, hopefully now we can come to Australia.

Many thanks must deservedly go to all at Apress, especially Dan Appleman for doing so
much in getting so many authors back up and running; also, of course, thanks to Beth
Christmas, Kylie Johnson, Tina Nielsen, Matt Moodie, Nicole Le Clerc, Ami Knox, Kelly
Wingquist, and the long-suffering Tony Davis, as well as all of those background indexers, etc.,
who provide such an invaluable job in getting the book to press.

XXi



XXii ACKNOWLEDGMENTS

Also thanks to Cristian Lester for his assistance with Chapter 14 of this book. At short
notice due to time constraints, he kindly stepped in with this chapter.

I cannot thank enough Jasper Smith for technically reviewing this book. It is so easy to
make a simple omission or error, and someone of Jasper’s ability and knowledge giving invaluable
input has made this book a great one.

There are no doubt many others I have missed, and I apologize.

Robin Dewson



Introduction

BeginningSQL Server 2005 for Developers is for those people who see themselves as becoming
either developers, database administrators, or a mixture of both but have yet to tread that path
with SQL Server 2005. Whether you have no knowledge of databases, or have knowledge of
desktop databases such as MS Access, or even come from a server-based background such as
Oracle, this book will provide you with the insight to get up and running with SQL Server 2005.

Right from the start, your basic knowledge will be expanded, and you will soon be moving
from a perceived beginner through to a competent and professional developer. It is the aim of
this book to cater to a wide range of developers, from those who prefer to use the graphical inter-
face for as much work as possible to those who want to become more adept at using SQL Server
2005’s programming language, T-SQL. Where practical, each method of using SQL Server 2005
is demonstrated, explained, and expanded so that you can evaluate what works best in your
situation.

There are plenty of examples within the book of every action along with details about the
security of your data. You will also learn the best way to complete a task and even learn how to
make the correct decision when there are two or more choices that could be made.

Once youreach the end of this book, you will be able to design and create solid and reliable
database solutions competently and proficiently.

XXiii






CHAPTER 1

SQL Server 2005 Qverview
and Installation

Welcome to Beginning SQL Server 2005 for Developers. As you are reading this book, I assume
that you are interested in learning how to create solutions with Microsoft SQL Server 2005, but
have no prior knowledge of SQL Server 2005. You may well have had exposure to other data-
bases such as MySQL, Oracle, or Microsoft Access, but SQL Server uses different interfaces and
has a different way of working compared to much of the competition. The aim of this book is to
bring you quickly up to alevel at which you are developing competently with SQL Server 2005.
This book is specifically dedicated to beginners, and to those who at this stage wish to use only
SQL Server 2005. You may find this book useful for understanding the basics of other databases
in the marketplace, especially when working with T-SQL. Many databases use an ANSI-standard
SQL, and so moving from SQL Server to Oracle, Sybase, etc., after reading this book will be a
great deal easier.
This chapter covers the following topics:

* Why SQL Server 2005?

e How do I know if my hardware meets the requirements?
* CanlIjust confirm that I have the right operating system?
¢ What can I do with SQL Server 2005?

We will also then look at installing our chosen edition—this section of the chapter covers
the following:

* Installing SQL Server 2005 on a Windows XP platform
* Options not installed by default

* Where to install SQL Server physically

e Multiple installations on one computer

¢ How SQL Server runs on a machine

* How security is implemented

* Logon IDs for SQL Server, especially the sa (system administrator) logon



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Why SQL Server 2005?

The following discussion is my point of view, and although it no doubt differs from that of
others, the basis of the discussion holds true. SQL Server faces competition from other data-
bases, not only from other Microsoft products such as Microsoft Access and Microsoft Visual
FoxPro, but also from competitors like Oracle, Sybase, DB2, and Informix, to name a few.

Microsoft Access is found on a very large number of PCs. The fact that it is packaged with
some editions of Office and has been around for a number of years in different versions of
Office has helped make this database ubiquitous; however, a great number of people actually
do use the software. Unfortunately, it does have its limitations when it comes to scalability,
speed, and flexibility, but for many small, in-house systems, these areas of concern are not an
issue as such systems do not require major database functionality.

Now we come to the serious competition: Oracle and Sybase. Oracle is seen as perhaps the
market leader in the database community, and has an extremely large user base. There is no
denying it is a great product to work with, if somewhat more complex to install and administer
than SQL Servers; it fits well with large companies that require large solutions. There are many
parts to Oracle, which make it a powerful tool, including scalability and performance. It also
provides flexibility in that you can add on tools as you need them, making Oracle more accom-
modating in that area than SQL Server. For example, SQL Server 2005 forces you to install the
.NET Framework on your server whether you use the new .NET functionality or not. However,
Oracle isn’t as user friendly from a developer’s point of view in areas like its ad hoc SQL Query
tool and its XML and web technology tools, as well as in how you build up a complete database
solution; other drawbacks include its cost and the complexity involved in installing and running it
effectively. However, you will find that it is used extensively by web search engines, although
SQL Server could work just as effectively. With the new functionality in SQL Server 2005, Oracle
will be under pressure to expand its existing functionality to meet this challenge. SQL Server
has always been a one-purchase solution, such that (providing you buy the correct version)
tools that allow you to analyze your data or to copy data from one data source such as Excel
into SQL Server will all be “in the box.” With Oracle, on the other hand, for every additional
feature you want, you have to purchase more options.

Then there is Sybase. Yes, it is very much like SQL Server with one major exception: it has
no GUI front end. Sybase Adaptive Server Anywhere, which is mainly used for small installations,
does have a front end, but the top-of-the-range Sybase does not. To purists, there is no need for
one, as GUI front ends are for those who don’t know how to code in the first place—well, that’s
their argument, of course, but why use 60+ keystrokes when a point, click, and dragis all thatis
required?

Sybase is also mainly found on Unix, although there is a Windows 2000 version around.
You can get to Sybase on a Unix machine via a Windows 2000/XP machine using tools to connect
toit, but you still need to use code purely to build your database solution. It is very fast and very
robust, and it is only rebooted about once, maybe twice, a year. Another thing about Sybase is
that it isn’t as command-and-feature rich as SQL Server. SQL Server has a more powerful
programming language and functionality that is more powerful than Sybase.

Each database has its own SQL syntax, although they all will have the same basic SQL syntax,
known as the ANSI-92 standard. This means that the syntax for retrieving data, and so on, is the
same from one database to another. However, each database has its own special syntax to
maintain it, and trying to use a feature from this SQL syntax in one database may not work, or
work differently, in another.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

So SQL Server seems to be the best choice in the database market place, and in many
scenarios it is. It can be small enough for a handful of users, or large enough for the largest
corporations. It doesn’t need to cost as much as Oracle or Sybase, but does have the ability to
scale up and deal with terabytes of data without many concerns. As you will see, it is easy to
install, as it comes as one complete package for most of its functionality, with a simple install
to be performed for the remaining areas if required.

Now that you know the reasons behind choosing SQL Server, you need to know which
versions of SQL Server are out there to purchase, what market each version is aimed at, and
which version will be best for you, including which version can run on your machine.

Evolution of SQL Server

SQL Server has evolved over the years into the productitis today. Table 1-1 gives a summary of
this process.

Table 1-1. The Stages in the Evolution of SQL Server

Year Version Description
1988 SQL Server Joint application built with Sybase for use on 0S/2.
1993 SQL Server 4.2 A low-functionality, desktop database, capable of meeting the

A desktop database  data storage and handling needs of a small department. The
concept of a database that was integrated with Windows and
had an easy-to-use interface proved popular.

1994 Microsoft and Sybase Microsoft split from Sybase.

split
1995 SQL Server 6.05 Major rewrite of the core database engine. First “significant”
A small business release. Improved performance and significant feature enhance-
database ments. Still along way behind in terms of the performance and
feature set of later versions, but with this version SQL Server
became capable of handling small e-commerce and intranet
applications, and was a fraction of the cost of its competitors.
1996 SQL Server 6.5 SQL Server was gaining prominence such that Oracle brought
out version 7.1 on the NT platform as direct competition.
1998 SQL Server 7.0 Another significant rewrite to the core database engine. A defining
A web database release, providing a reasonably powerful and feature-rich data-

base that was a truly viable (and still cheap) alternative for small-
to-medium businesses, between a true desktop database such
as MS Access and the high-end enterprise capabilities (and price)
of Oracle and DB2. Gained a good reputation for ease of use and
for providing crucial business tools (e.g., analysis services, data
transformation services) out of the box, which were expensive
add-ons with competing databases.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Table 1-1. The Stages in the Evolution of SQL Server (Continued)

Year Version Description

2000 SQL Server 2000 Vastly improved performance scalability and reliability sees SQL
An enterprise Server become a major player in the enterprise database market
database (now supporting the online operations of businesses such as

NASDAQ, Dell, and Barnes & Noble). A big increase in price
(although still reckoned to be about half the cost of Oracle)
slowed initial uptake, but the excellent range of management,
development, and analysis tools won new customers. In 2001,
Oracle (with 34% of the market) finally ceded its No. 1 position in
the Windows database market (worth $2.55 billion in 2001) to
SQL Server (with 40% of the market). In 2002 the gap had grown,
with SQL Server at 45% and Oracle slipping to 27%.

Source: Gartner Report 5/21/2003

2005 SQL Server 2005 Many areas of SQL Server have been rewritten, such as the ability
to load data via a utility called Integration Services, but the greatest
leap forward is the introduction of the .NET Framework. This will
allow .NET SQL Server-specific objects to be built, giving SQL
Server the flexible functionality that Oracle has with its inclusion
of Java.

Hardware Requirements

Now that you know a bit about SQL Server, the next big question on your list may well be “Do I
have a powerful enough computer to run my chosen SQL Server edition on? Will this help me
refine my decision?”

Judging by today’s standards of minimum specification hardware that can be bought,
even the low-cost solutions, the answer will in most cases be “Yes” to most editions. However,
you may have older hardware (things move so fast that even hardware bought a couple of
months ago can quickly be deemed below minimum specification), so let’s take a look at what
the minimum recommendations are, and how you can check your own computer to ensure
that you have sufficient resources.

CPU

The minimum recommended CPU that SQL Server will run on is a 500 MHz processor, a
compatible processor, or similar processing power. However, as with most minimums listed
here, Microsoft wholly recommends a faster processor, 1 GHz in fact. The faster the processor,
the better your SQL Server will perform, and from this the fewer bottlenecks that could surface.
Many of today’s computers start at 2 GHz or above, and 500 MHz has not been the standard
installation for a couple of years now. If you have a lower-speed processor, try to invest in
upgrading it. You will find your development time reduced for it.

However, it is not processor alone that speeds up SQL Server. A large part is also down to
the amount of memory that your computer has.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Memory

Now that you know you have a fast enough processor, it is time to check whether you have
enough memory in the system. All the editions of SQL Server, with the exception of the
Windows Express and Mobile versions, require a minimum of 512MB of RAM onboard your
computer. Many of the editions that could be used will run with this, although you shouldn’t
have too many more applications open and running as they could easily not leave enough
memory for SQL Server to run fast enough. Microsoft recommends 1GB or above, and really
double that at least for when you start using your SQL Server in earnest.

The Windows Express and the Mobile versions have a minimum of 128MB of RAM.

Moving the other way, if you wanted to run the Enterprise Edition, then a minimum, and I
mean a bare minimum, of 1GB really should be installed, especially if you want to use any of
the more advanced features.

The more memory the better: I really would recommend a minimum of 1GB on any computer
that a developer is using, with 2GB ideal and sufficient to give good all-around performance.
If a process can be held in memory, rather than swapped out to hard drive or another area
while you are running another process, then you are not waiting on SQL Server being loaded
back into memory to start off where it left off. This is called swapping and the more memory,
the less swapping could, and should, take place.

Taking CPU speed and memory together as a whole, it is these two items that are crucial
to the speed that the computer will run, and having sufficient speed will let you develop as fast
as possible.

Hard Disk Space

You will need lots! But name a major application these days that doesn’t need lots! For SQL
Server alone, ignoring any data files that you are then going to add on top, you will need over
1GB of space. Certainly, the installation options that will be used later in the chapter will mean
you need this amount of space. You can reduce this by opting not to install certain options, for
example, Books Online; however, even most notebooks these days come with a minimum
40GB, and 80GB is not uncommon either. Hard disk space is cheap as well, and it is better to
buy one disk too large for your needs than have one hard drive that suits now, and then have
[to buy another later, with all the attendant problems of moving information to clear up space
on the original drive.

Again, you will need spare space on the drive for the expansion of SQL Server and the data-
bases, as well as room for temporary files that you will also need in your development process.
So think big—big is beautiful!

Operating System Requirements

You will find that SQL Server 2005 will run on Windows 2000 Professional Edition and above
with Service Pack 4, or all editions of Windows XP Service Pack 2 or above. It will also work on
the 64-bit operating systems for Windows XP, as well as the 64-bit editions of Windows Server
2003. So there is plenty of scope for running SQL Server on many operating systems.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

The Example

In order to demonstrate SQL Server 2005 fully, together we will develop a system for a financial
company that will have features such as banking, share purchase, and regular buying, such as
a unit trust savings plan, etc. This is an application that could fit into a large organization, or
with very minor modifications could be used by a single person to record banking transactions.

The book builds on this idea and develops the example, demonstrating how to take anidea
and formulate it into a design with the correct architecture. It should be said, though, that the
example will be the bare minimum to make it run, as I don’t want to detract from SQL Server.
The book will give you the power and the knowledge to take this example, expand it to suit your
financial application needs, and give it the specifics and intricacies that are required to make it
fully useful for yourself.

But before we can get to this point, we need to install SQL Server.

Installation

It is now time to install SQL Server from the CD-ROM or DVD. The examples within this book
can run on any edition.

This chapter will guide you through the installation process of the Developer Edition,
although virtually all that you see will be in every edition. Some of the differences will be due to
the functionality of each edition. This book will cover many of the options and combinations
that can be completed within an installation. A number of different tools are supplied with SQL
Server to be included with the installation. We will look at these tools so that a basic under-
standing of what they are will allow us to decide which to install.

Installation covers a great many different areas:

¢ Security issues

* Different types of installation—whether this is the first installation and instance of SQL
Server or a subsequent instance, for development, test, or production

* Custom installations
¢ Installing only some of the products available

Most of these areas will be covered so that by the end of the chapter you can feel confident
and knowledgeable to complete any subsequent installations that suit your needs.

A Standard Installation

Let’s now take the time to install SQL Server 2005 on our machines. Microsoft offers a 120-day
trial version at http://www.microsoft.com/sql/evaluation/trial/, which you can use to follow
along with the examples in this book if you don’t already have SQL Server 2005.

This book uses the Developer Edition because it is most suited to our needs, as developers,
for it doesn’t have all the operating system requirements of the Enterprise Edition. Insert the
CD for the Microsoft SQL Server 2005 edition of your choice in your CD-ROM drive and start
the installation. What the upcoming text covers is a standard installation.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Preparing to Install

First of all, ensure that you have logged on to your machine with administrative rights so that
you are allowed to create files and folders on your machine, which is obviously required for
installation to be successful.

If, when placing the CD-ROM into your computer, the installation process does not auto-
matically start, open up Windows Explorer and double-click autorun.exe, found at the root
level of the CD-ROM.

You are now presented with the installation screen for the Microsoft SQL Server 2005 edition
of your choice, as shown in Figure 1-1. After you accept the SQL Server End User Agreement,
SQL Server then installs some support files prior to set up. These files are part of SQL Server
that will be included in service packs and form part of the installation process. The main files
are setup files and the required .NET Framework version if it is not already installed.

SQL Server 2005 (Disc 1 of 2)

Prepare
Review hardware and software requirerments
Read the release notes

Install QL Server Upgrade Advisor

Install

Server corpponents, tools, Books Online, and
samples ﬁ

Run the SGL Mative Client Installation YWizard

Launch the Installation Wizard to install
server components, management tools,

development tools, Books Online, and Othel' Information
samples, This selection will require both
SCL Server 2005 installation discs, Browse this GO

Yisit the SOL Server wehsite
Microsoft:

SQL Ser\fer'ZODS Read the SCL Server license agreemant

Developer Edition Exit

Figure 1-1. Beginning the install

.NET is a framework that Microsoft created that allows programs written in VB .NET, C#,
and other programming languages to have as a common compile set for computers. SQL
Server 2005 uses .NET for some of its own internal work, but also, as a developer, you can write
.NET code in any of Microsoft’s .NET languages, and include this within SQL Server.

Note Including .NET code is an advanced topic and outside the scope of this book. For more information,
try Pro SQL Server 2005 Assemblies (Apress,2006).




CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

The SQL Server 2005 Installation Wizard then starts with a welcome screen. Click Next.

We then come to the System Configuration check, as you see in Figure 1-2. Its main func-
tion is to check that the PC meets the hardware and software requirements. There are certain
requirements for certain parts of the installation; for example, SQL Server Reporting Services,
atool for producingreports from SQL Server that was an add-on with SQL Server 2000, requires
Internet Information Services (IIS). IIS is a process that runs on computers that provides the
ability to run a web server. SQL Server Reporting Services is web based.

& Microsoft SQL Server 2005 Setup

System Configuration Check

Wait while the system iz checked for potential installation

problems.
[ |
14 Total 0 Error
@ Success 13 Success 1 “Warning
Details:
| Action Statuz Meszage ~
@ SOL Server Edition Operating System .. Success
Minimum Hardware R equirement Warning
115 Feature Requirement Success
Pending Reboot Requirement Success
Performance Monitor Counter Require...  Success

Default Installation Path Permission Re...  Success
Internet Explorer Requirement Success =
COM Pluz Catalog Requirement Success

SO0 00ORE

A5P Meat Wearsinn Renistratinn Plamins Surrase hd

Filer - | Fepott = |
Help Mext »

Figure 1-2. System configuration tool with warning

You are then required to enter your registration information, as shown in Figure 1-3.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

& Microsoft SQL Server, 2005 Setup g|

Registration Information
The Following information will personalize your installation,

The Mame field must be filled in prior to proceeding. The Company field is optional,

Mame:

|R0bin Dewson

Company:
|Fat-Belty. Com Ltd]

l et [ Cancel
L

Figure 1-3. Registration page

Choosing the Components to Install

We now come to the Components to Install screen, where we have to make some decisions.
As you see in Figure 1-4, this installation will have everything installed, because this will be my
development instance where developers will be testing every aspect of SQL Server away from
any development of projects taking place. This is therefore going to be more of a training envi-
ronment. However, you can be selective regarding what parts of the components you want to
install by clicking Advanced.



10

CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

i& Microsoft SQL Server 2005 Setup

Components to Install
Select the components ko install or upgrade.,

SQL Server Database Services

Create a SQL Server Failover cluster
Analysis Services

Create an Analysis Server Failover cluster
Reporting Services
Matification Services
Inkegration Services

‘Warkstation components, Books Online and development tools

For mare options, click Advanced.
e e

Figure 1-4. Selecting every component to install

Let’s briefly take a look at what each of these components are:

e SQL Server Database Services: This is the main core for SQL Server 2005 and installs the
main engine, data files, etc., to make SQL Server run.

* Analysis Services: Using this tool, you can take a set of data and dice and slice and analyze
the information contained.

* Reporting Services: This allows reports to be produced from SQL Server instead of using
third-party tools like Crystal Reports. We look at this component in more detail in
Chapter 14.

* Notification Services: This allows notifications such as a message sent to areas like SMS
or any process that is listening, to “hear” when certain actions occur.

e Integration Services: This component allows importing and exporting data using data
sources that are not only SQL Server but also Oracle, Excel, etc.

* Workstation Components: These are tools for working on the workstation. This installs
the GUI we use with SQL Server, and it can also install the help feature, Books Online.

Of these components, Analysis Services, Notification Services, and Integration Services
fall outside the scope of this book, so this book won’t be discussing them further.

Clicking Advanced in the Components to Install screen brings us to where we can select to
amore refined level what we wish to install, as shown in Figure 1-5. You will have seen screens
similar to this with other software installs such as Microsoft Office. Ensure that all options have
been selected so you know that when a certain feature of SQL Server 2005 is covered within this
book, you are sure it will be available. Ensure you scroll to the bottom of this screen, as there
are sample databases to also install.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Note Don'tinstall the sample databases on any server apart from one that you are using to learn SQL Server.

i& Microsoft SQL Server 2005 Setup

Feature Selection
Select the program Features you want installed,

Click an icon in the Following list ko change how a Feature is installed,

- - Feature description

Analy5|.s Serwcz.es 2| Tnstalls the SGL Server database
Reporting Services engine and tools For managing
Motification Services relational and XML data, Replication,
Inteqration Services and Full-Text Search.

Client Components

Documentation, Samples, and Samg

= v| S0L Server Books Online
& S x| Sampls Datahases This Feature requires 248 ME on your

=3 | Adventuretorks Sar hard drive, It has 4 of 4 subfeatures
- =3 = | AdventureworksDy — | selected, The subfeatures require 129

= v| Adventureiv

. MB on your hard drive.
v

P T TS PR TR (P N P i
< I >
Installation path
C:\Program Files\Microsoft SQL Server),
Disk Cost...
| e | T

Figure 1-5. Advanced selection screen where you can refine the install options

Naming the Instance

As you know, SQL Server is installed on a computer. It is possible to install SQL Server more
than once on one computer. This could happen when you have a powerful server and it has
enough resources such as memory, processor, etc., to cope with two or three different applica-
tions running. These different applications want to have their own SQL Server. Each install is
called an instance. We are now at the stage that we can name the instance of the install. Each
instance must have a unique name attached to it, although “no name,” known as a Default
Instance, is also classified as a unique name.

Naming instances is important as the first step to organizing your environments. For example,
you may have an instance for development, another instance for system testing, and finally
one for user testing.

Default Instance is available, which is what is selected when you are not giving the install
a specific name; once you come to install SQL Server outside of a learning environment, you
should avoid this, as it gives you an installation with no name and therefore no hint as to its
use. As you are still learning, the easiest option to understand is to use the Default Instance, so
select Default Instance as shown in Figure 1-6 and then click Next.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

i& Microsoft SQL Server 2005 Setup

Instance Name

‘fou can install a default instance or you can specify a named
instance.

Provide a name for the instance, For a default installation, click Default instance and click.

Mext, To upgrade an existing default instance, click Default instance. To upgrade an existing
named instance select Mamed instance and specify the instance name.

(® Default instance

(O Named instance

[ < Back ] ek = ] [ Cancel
‘4 =

Figure 1-6. Naming the install instance

If this is a subsequent install, then you will be notified that items already exist, as you see
in Figure 1-7. This is really for information purposes.

i Microsoft SQL Server 2005 CTP Setup

Existing components

Components have been found on the machine, Select upgrade
options below,

The Following components that you chose ko install are already installed on the machine, Ta
wviews a report of available options and alternatives click on Details,

dices 9.00,1116

Data Transformation Sery 2.00,1116

rients, Book

[ < Back ][ Mexk = ][ Cancel ]

Figure 1-7. Detailing any components already installed



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Service Accounts

SQL Server and other services, as defined in the Feature Selection screen (shown earlier in
Figure 1-5), require you to log on to Windows before starting, just as you need to log in to Windows
before using the system. SQL Server, Reporting Services, etc., can run without you or anyone
being logged in to the computer the install took place on. They can run just so long as the
computer has fired up successfully. This is normal when SQL Server is installed on a server that
is held in a remote location like a server room.

However, nothing can run on Windows without having some sort of login. If you do log in
to the computer, as you likely will while working through this book because SQL Server will be
running on a home or local system, then you can use this Windows user ID for SQL Server to
also use to log in and start its service. This is known as a local system account.

On the other hand, you can create a Windows login that exists purely for SQL Server. This
could exist for several reasons. For example, your Windows account should be set up so that
the password expires after so many days after being set, or locks out after anumber of incorrect
password attempts. This is to protect your computer and the network, amongst many other
areas. However, SQL Server should use a separate account that also has an expiring password
and the ability to lock the account after a number of successful attempts. This kind of non-
user-specific, “generic” account removes the link between SQL Server and a person within an
organization.

Where you are installing your SQL Server will have an affect on the decision you make. As
you are just learning SQL Server 2005, let’s not make it complicated at this point; I assume that
this install will be for you to use to learn SQL Server. Therefore, just select Use the Built-in
System Account/Local System as you see in Figure 1-8. You can also define what services start
when the computer is started up. Keep the defaults at the moment as you can always change
these later via the Services icon within the Control Panel. Click next.

i& Microsoft SQL Server 2005 Setup

Service Account
Service accounts define which accounts to log in,

[ Customize For each service account

() Use the builk-in Syskem account |L0cal syskem w

O Use a domain user account

Start services at the end of setup

SOL Server |:| Reporting Services
SOL Server Agent |:| SOL Browser
Analysis Services
[ < Back ] [ Mexk = ] [ Cancel

Figure 1-8. Service account selection

13



14

CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Authentication Mode

We now come to how we want to enforce security on your SQL Server installation. As Figure 1-9
shows, there are two choices: Windows authentication mode and mixed mode. You will learn
more about modes later in the chapter but very, very simply, Windows authentication mode

denotes that you are going to use Windows security to maintain your SQL Server logins, whereas
mixed mode uses either Windows security or a SQL Server defined login ID and password. We
also need to define a password for a special login ID, called sa. Again, you will learn more about

this in a moment, but for now you must enter a valid password. Use a meaningful and impossible-
to-guess password.

i& Microsoft SQL Server 2005 Setup

Authentication Mode

The authentication mode specifies the security used when
connecking ko SQL Server,

Select the authentication mode to use For this installation.

(® Windows Authentication Mode

(O Mixed Mode (Windows Authentication and SQL Server Authentication)

Specify the sa logon password below:

[ < Back ] [ ek = ] [ Cancel

Figure 1-9. Authentication choices

Collation Settings

Collation settings specify how sorting and comparison of rows of data are dealt with within
SQL Server. For example, a collation setting will inform SQL Server details such as whether the
system is case sensitive. It is possible to have different collation settings for each type of SQL
Service, shown in the earlier setup process, so you could sort one way for Analysis Services
different from that defined for your main SQL Server 2005 installation. It would only be in
exceptional circumstances that you would do this, as it will cause extra processing complications

when using the same processing in more than one service. Figure 1-10 shows that Windows
collation has been chosen.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION 15

i& Microsoft SQL Server 2005 Setup

Collation Settings
Collation settings define the sorting behavior For your server,

[ Customize for each service account

_;5 Analysis Services Collation: Latinl_General_CI_AS

(O Collation designator and sort order:

Binary Binary - code poink
Case - sensitive Kana - sensitive
Accent - sensitive ‘Width - sensitive

(®) 501 collations {used For compatibility with previous versions of SOL Server)

Binary order based on code point comparison, For use with the 850 {Multilingual, A
Strick compatibility with version 1.x case-insensitive databases, for use with the —
Dictionary order, case-sensitive, for use with 1252 Characker S T
Dictionary order , fior use with 1 | Z
Tiirtinnare arder race-incencitive 1nnercace nreference For ice with 1767 ~h

[ < Back ] [ ek = ] [ Cancel

Figure 1-10. Choosing the collations

The Reporting Services Database

As we selected Reporting Services to be installed, we need to create a database for the reporting
server to use. Depending on your requirements and how heavily used your SQL Server instal-
lation is, you may wish your reports to be run out of a separate and purpose-built SQL Server
installation. For the moment, we will install Reporting Services on the same SQL Server (see
Figure 1-11).



16 CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

i& Microsoft SQL Server 2005 Setup

Report Server Installation Options
Specify how to install a report server instance,

(®) Install the default configuration

(O Install but do not configure the server

Setup will install the report server and configure it ko use the default values, The
report server is usable as soon as Setup is finished,

A Secure Socket Layer (SSL) certificate is not installed on this computer, Microsoft
recommends that you use S50 in most Reporting Services installations,

[ < Back ] [ ek = ] [ Cancel

Figure 1-11. Installing as default Reporting Services

Error and Usage Report Settings

Within SQL Server, itis possible for any errors to be automatically reported and sent to Microsoft.
These include fatal errors where SQL Server shut downs unexpectedly. It is recommended that
you keep the error settings shown in Figure 1-12 enabled. No organizational information will
be sent, therefore your data will still be secure. This is similar to sending reports when Excel
crashes, for example. It is better to have this switched to active.

The final screen (see Figure 1-13) is displayed when the setup is complete. You can click
the Summary Log link to check the install log. There is also a list of recommendations and
information in a scrollable text box at the bottom of the screen. In between these two areas is a
link to a new tool for SQL Server, the Surface Area Configuration tool. This tool, which we look
at in Chapter 2, deals with enabling or disabling features, services, etc. You don’t have to click
the link now, as we will access this tool from the Start menu later.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION 17

Microsoft SQL Server 2005 Setup

Error and Usage Report Settings

Help Microsoft improve some of the SOL Server 2005 components
and services,

Automatically send Error reports For SQL Server 2005 to Microsoft or your corporate error

reporting server, Error reports include information regarding the condition of SQL Server
2005 when an error occurred, your hardware configuration and other data, Error reports
may unintentionally include personal information, which will not be used by Microsoft,

Automatically send Feature Usage data for SQL Server 2005 to Microsoft, Usage data
includes anonymous information about your hardware configuration and how you use our
software and services.

Far more information on the error reporting feature and the type of information sent, click
Help.

[ < Back ] [ ek = ] [ Cancel

Figure 1-12, Error and usage report settings

icrosoft SQL Server 2005 Setup X

Completing Microsoft 5QL Server 2005 Setup
Setup has finished configuration of Microsoft SQL Server 2005

Refer to the setup error logs For information describing any Failurels) that occurred during
setup, Click Finish to exit the installation wizard,

Sumrary Log

Ta minimize the server surface area of SOL Server 2005, some features and services are
disabled by default For new installations, To configure the surface area of SOL Server, use the

Surface Area Configuration tool.

Analysis Services

+  If Analysiz Services was upgraded from S0OL Server 2000, all cubes,
dimensions, and mining models must be reprocessed using S0OL Server
tfanagement Studio. -

>

Reporting Services

+ The Reporting Services installation options you gpecified in Setup
determine whether further configuration iz required before you can
access the report zerver. If you installed the default configuration, the
report zerver can be used immediately. If you installed justthe program

Elrn imns ek e Han Dlmmmidinn Do Crrdiniiemdine dnnl e Al s

Figure 1-13. Setup complete details

And that is it, you are now ready to install.



18

CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Security

To discuss the Service Account dialog box that we came across in the installation properly, we
need to delve into the area of Windows security.

In this section, we will first examine the concept of Windows services as opposed to
programs, and then move on to discussing different types of authentication we can choose
when installing SQL Server.

Services Accounts

SQL Server runs as a Windows service. So what is a service? A good example of a service is any
antivirus software that runs continuously from when the user restarts a computer to the point
that the computer shuts down. A program, on the other hand, is either loaded in memory and
running, or not started. So what is the advantage of running a service? When you have a unit of
work that can run as a service, Windows can control a great deal more concerning that process.
A service can be set to start automatically before any user has even logged on; all other programs
require a user to be logged in to Windows in order for them to start.

A service also has absolutely no user interface. There will be no form to display and no user
input to deal with at run time. The only interaction with the process runs either through a sepa-
rate user interface, which then links in to the service but is a totally separate unit of work (for
example, SQL Server Management Studio), or from Windows management of that service
itself. Any output that comes from the service must go to the Event Log, which is a Windows
area that stores any notification from the services that Windows runs.

Having no interface means that the whole process can be controlled without human inter-
vention. Providing the service is designed well, Windows can take care of every eventuality
itself, and can also run the service before anyone has even logged in to the computer.

In most production environments, SQL Server will be running on a remote server, one
probably locked away in a secure and controlled area, possibly where the only people allowed
in are hardware engineers. There probably isn’t even a remote access program installed, as this
could give unauthorized access to these computers. SQL Server will run quite happily and, with
any luck, never give an error. But what if one day there is an error? If SQL Server was running as
a program, some sort of decision has to be taken. Even if SQL Server crashed, there at least has
to be some sort of mechanism to restart it. This means another process needs to be run, a
monitoring process, which in itself could result in a whole ream of problems. However, as a
service, SQL Server is under Windows control. If a problem occurs, whether with SQL Server,
Windows, or any outside influence, Windows is smart enough to deal with it through the services
process.

It’s time to move on to the options we are given during installation regarding authentica-
tion mode.

Looking at the Authentication Mode

Probably the most crucial information in the whole setup process, and also the biggest decision
that has to be made, concerns the authentication mode you wish to apply to your server. As we
saw earlier in the setup process, there are two choices: Windows authentication mode and
mixed mode.



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Windows Authentication Mode

Tologon to a Windows 2000/2003/XP machine, a username must be supplied. There is no way
around this (unlike in Windows 9x/ME where a username is optional). So, to log on to Windows,
the username and password have to be validated within Windows before the user can successfully
log in. When this is done, Windows is actually verifying the user against username credentials
held within the domain controller, or, if you are running SQL Server on a standalone machine
athome, the credentials held locally. These credentials check the access group the user belongs to
(the user rights). The user could be an administrator, who has the ability to alter anything
within the computer, all the way down to a basic user who has very restricted rights. This then
gives us a trusted connection; in other words, applications that are started up after logging in
to Windows can trust that Windows has verified that the account has passed the necessary
security checks.

Once we have logged in to Windows, SQL Server uses a trusted connection. This means
that SQL Server is trusting that the username and password have been validated as we just
mentioned. If, however, the username does not exist, then you won'’t be able to log on to that
machine. Someone else can log on to your machine with their user ID and password, and
although he or she might be able to get to SQL Server by finding the executable on the C drive,
SQL Server will first of all check to see whether that user has a valid login within SQL Server.
If the login isn’t valid, then it will check the Windows group that the user belongs to and check
its security to see if that group is set up to access SQL Server. If that user has administration
rights to your computer, then the user may well be able to at least connect to SQL Server.

We are in a bit of a catch-22 situation here. You need to know about security for your install
process, but to demonstrate it fully means working with SQL Server Management Studio, which
the next chapter covers. We will keep that area simple, so let’s look at an example involving
security now.

Try It Out: Windows Authentication Mode

1. Ensure that you are logged on to your machine as an administrator. If you are on a local computer,
chances are that your login is in fact an administrator ID. If this computer is on a network and you are
unsure about your access rights, ask your PC support desk to help you out with the ID and password.

2. From Start » Control Panel select User Accounts.
3. When the Users and Passwords dialog box comes up, click Create a New Account.

4. Once the Name the New Account dialog box comes up, enter the user name AJMason, as shown in
Figure 1-14. When done, click Next.

5. Ensure that the account type specified is Limited (see Figure 1-15). This means that it will not have
administrator privileges.

19



20 CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

2 User Accounts

Name the new account

Type a name for the new account:
[BMasor] |

Figure 1-14. Creating a new user account

2 User Accounts

e Back e ”Home

Learn About

@ User account bypes

Pick an account type

(O Computer administrator (&) Limited

With a limited account, you can:
» Change or remove your password
» Change your picture, theme, and other desktop settings
» iew files you created
* View files in the Shared Documents Folder

Users with limited accounts cannot always install programs, Depending on the program, a user
might: need administrator privileges to install it

Also, programs designed prior to Windows P or Windows 2000 might not work properly with
limited accounts, For best results, choose programs bearing the Designed For Windows 2P loga,
or, ko run older programs, choose the “computer administrator” account bype,

[<Back] [ create Account | [Cancel]

Figure 1-15. Selecting the new user’s account type




10.

CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

Stay in the User Accounts dialog box, as you want to add a second username. Repeat the preceding
process using the following details:

User name: VMcGlynn
Account type: Computer Administrator
Log off from Windows and then log on using the first ID that you created: AJMason.

Once logged in, start up SQL Server Management Studio by selecting Start » All Programs » Microsoft
SQL Server 2005>» SQL Server Management Studio.

Examine the error message that appears, which should resemble what you see in Figure 1-16. AJMason
as a login has not been defined within SQL Server specifically and does not belong to a group that allows
access. The only group at the minute is a user who is in the Administrators Windows group. Recall
that AJMason is a Limited user.

Connect to Server

Q Cannot connect ko ¥P-PRO,
Additional information:

L Login Failed For user 'P-PROYAIMason', (Microsoft SQL Server, Error: 18456)

MR

Figure 1-16. Failed log on to server

We will now try out the other user we created. Close down SQL Server, log off Windows, and log on
using the second ID we created—VMcGlynn. Once logged in, start up SQL Server Management Studio
and connect to your server. This time the login will work.

We have created two usernames: one that has restricted access (AJMason), the other with administration rights
(VMcGlynn). However, neither of these specific usernames exist within SQL Server itself: after all, we haven’'t
entered them and they haven’t appeared as if by magic. So why did one succeed and one fail?

The Windows security model has ensured that both IDs are valid. If the ID or password were incorrect, there is no
way that you could be logged in to Windows. Therefore, when you try to connect to SQL Server, the only check that
is performed is whether the user has access to SQL Server either via membership of an operating system group or
through the specific logged-in user account. As you can see in Figure 1-17, neither AJMason nor VMcGlynn exist.

Object Explarer

Connect~ | @8 wm [4] 7
ENNYF-rro er

3l Databases
= [ Security
= 3 Logins

S S Pl

| BUILTING Administrators

A NT AUTHORITY\SYSTEM

&y sa

A #P-PROVASPNET

#1] 5P-PRO\SQLServer200SMSFTEUser§P-PROSMSSQLSERVER
f9] HP-PRO\SQLServer200SM35QLUser§xP-PROJMSSQLSERYER
f9] HP-PRO\SQLServer200550LAgentUser§P-PROSMSSQLSERVER

Figure 1-17. Object Explorer for SQL Server

21



22

CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

However, you can see that there is a Windows group called BUILTIN\Administrators. This means that any
username that is part of the Administrators group will have the capacity to log on to this SQL Server. Hence
avoid if possible setting up users as administrators of their own PCs.

In a production environment, it may be advisable to remove this group from the system if you do allow users to be
administrators. As VMcGlynn is a member of the Administrators group, then this username will also be a
member of the BUILTIN\Administrators group.

Mixed Mode

If we installed SQL Server with mixed mode, this means we can use either Windows authenti-
cation, as has just been covered, or SQL Server authentication.

How does mixed mode differ from Windows authentication mode? To start with, you need
to supply a user ID and password to connect rather than Windows taking the ID of the logged
in account. There is no assumption that the username supplied is a valid ID. Using mixed mode is
also appropriate in many cases when working with ISPs. To clarify this, if you are working on
your remote data at a local client machine, the remote machine would need to know the
credentials of your login, and the easiest method is to use SQL Server authentication.

There is also another argument for mixed mode. We may wish for some reason (for
example, for auditing purposes) that the user log on to SQL Server using a different username
from that of his or her Windows account. We could be working on a large SQL Server develop-
ment project that will have developers joining and leaving the team as the need arises. In this
case, it might be necessary to create temporary usernames, as opposed to permanent IDs
linked to the developers’ Windows usernames. In SQL Server, we could create usernames of
Developerl, Developer2, etc. These usernames can have different access rights within SQL
Server. Another situation would be the case of an Internet-based application where there is just
no way we could create a username for every visitor to our site. Therefore, we would create
generic login ID using a specific ID created for the web site. Whatever the reason, there is a
need to have usernames not linked with the Windows usernames.

You will learn how to add usernames to SQL Server (as opposed to adding Windows users)
when I talk about security in Chapter 4.

This leaves one area of security left that needs to be discussed here: the sa login.

The sa Login

The salogin is a default login that has full administration rights for SQL Server. We saw during
the installation process that we would be forced to include a password for this account if we
were installing with SQL Server Authentication enabled because it is such a powerful login that
exists in every SQL Server installation. If you logged in to SQL Server as sa, you will have full
control over any aspect of SQL Server. SQL Server inserts this ID no matter which authentica-
tion mode you install. If you have a Windows account defined as sa, for example, for Steve
Austin, then this user will be able to log in to the server if you have set the server up as imple-
menting Windows authentication mode without any further intervention on his part. Try to
avoid login IDs of sa.

In a mixed mode installation, sa will be a valid username and validated as such. As you can
guess, if any user gets ahold of this username and the password, that user will have full access
to view and amend or delete any item of data. At worst, the user could corrupt any database, as



CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION 23

well as corrupt SQL Server itself. He or she could even set up tasks that e-mail data to aremote
location as it is being processed.

It is essential to set up a strong password on the sa account in the Authentication Mode
screen if you choose mixed mode. It is a major improvement in SQL Server 2005 that you are
now forced to enter a password, although it is possible to set up a very easily guessed password.
Do not use passwords such as password or adminpwd, for example. Always keep the password
safe, but also make a note of it in a safe place. If you forget the sa password and this is the only
administration ID that exists, you will need to reinstall SQL Server to get out of this problem.
A good password is one that mixes numbers and letters, but doesn’t always include letters than
can be made into numbers and numbers into letters in all cases. For example, pa55word is just
as easy to guess as password. Or 4pr355 for Apress.

There is also another reason not to log on to SQL Server with the sa username. At times it
will be essential to know who is running a particular query on a SQL Server database. In a
production database, someone may be running an update of the data, which is filling up the
disk space or filling up the transaction log. We need to contact that person to check whether he
or she can stop the process. If that person logs in as sa, we will have no idea who he or she is.
However, if that person logged on with an identifiable name, he or she would have an ID in SQL
Server, which we could track. By restricting the salogin so that people have to use their own
accounts, we can ensure a much higher degree of system monitoring and integrity.

There will be times that we want mixed mode authentication; it is perfectly acceptable to
wish this. Internet providers use mixed mode, as many applications may be on one web server.
If this ISP is a reseller (in other words, many people around the globe use the one computer),
you will not want these people to have the ability to see your data. We have also decided not to
have sa as an administration logon at this point. So what do we do? Well, we create a logon ID
that will have the access privileges we wish; in other words, the ability to just see the data and
work with the data that we need, and no more. The ISP may require you to supply a user ID and
password that it uses to create an account on its SQL Server instance. You will encounter more
about this in Chapter 4.

Note Regardiess of the authentication mode, it is important you always supply a strong password.

Summary

By this point, you should understand the small differences between each version of SQL Server.
You should also know how to check your computer to see if it is suitable for a SQL Server
installation.

By following the steps given earlier, you should have a successful installation of SQL Server
on your computer. You may even have completed the installation twice so that you have a
development server installation as well as a test server installation. This is a good idea, and
something to consider if you have only one installation so far. Whether you are working in a
large corporation or are a “one-man band,” keeping your production and development code
separate leads to greatly reduced complications if, when developing, you need to make a
production fix.



24

CHAPTER 1 SQL SERVER 2005 OVERVIEW AND INSTALLATION

This chapter introduced you to security in SQL Server so that you can feel comfortable
knowing which way you want to implement this and how to deal with different usernames. You
may not have any data yet, but you want to ensure that when you do, only the right people get
to look at it!

You are now ready to explore SQL Server 2005. One of the best ways of managing SQL
Server is by using the SQL Server Workbench, which will be discussed next.



CHAPTER 2

SQL Server
Management Studio

N ow that SQL Server 2005 is successfully installed on your machine, it is time to start exploring
the various areas that make this an easy and effective product to use. With SQL Server 2005, all
the administration interfaces now reside in studios, such as SQL Server Management Studio,
which features tools for working with developing database solutions, and SQL Server Business
Intelligent Development Studio, designed for analyzing data with Analysis Services. This chapter
concentrates on the SQL Server Management Studio tool, also known as SSMS, as well as looks
at the Surface Area Configuration (SAC) tool.

SSMS is the graphical user interface (GUI) you will use to build your database solutions.
This is an easy-to-use and intuitive tool, and before long, you will feel confident in using it to
work with SQL Server quickly and efficiently.

SQL Server Management Studio is crucial to your success as a developer. Therefore, by the end
of this chapter, you will have gained experience with it and be proficient in the following areas:

* The components of SQL Server Management Studio
* How to configure SQL Server Management Studio
e How to secure the surface area of SQL Server from vulnerabilities

Let’s start right away by having a look at SQL Server Management Studio and how itis used
to work with SQL Server 2005.

A Quick Overview of SSMS

SQL Server runs as a separate Windows process on a suitable Windows-based computer as we
touched on in Chapter 1, be it on a standalone desktop machine, or on a server or network. If
you open Task Manager and move to the Processes tab, you will see, among other processes,
sqlservr.exe. This process or service runs in its own process space, and is isolated from other
processes on the machine. This that SQL Server should not be affected by any other piece of
software that does not talk to any SQL Server component. If you have to kill any other compo-
nent’s process, the SQL Server engine should continue to run.

25



26

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

SQL Server runs as a service that is controlled and monitored by Windows itself. Windows
ensures that it is given the right amount of memory, processing power, and time, and that every-
thing is working well. Because SQL Server runs as a service, it has no interface attached to it for
a user to interact with. As a result, there needs to be at least one separate utility that can pass
commands and functions from a user through to the SQL Server service, which then passes
them through to the underlying database. The GUI tool that accomplishes this is SQL Server
Management Studjio.

SSMS can be used to develop and work with several installations of SQL Server in one
application. These installations can be on one computer, or on many computers connected
through a local area network (LAN), a wide area network (WAN), or even the Internet. There-
fore, it is possible to deal with your development, system testing, user testing, and production
instances of SQL Server from one instance of SSMS. SSMS helps you in the development of
database solutions, including creating and modifying components of a database, amending
the database itself, and dealing with security issues. Getting to know this tool well is crucial to
becoming a successful professional SQL Server developer, as well as a database administrator.

One of the tools within SSMS that we will use for completing tasks is Query Editor. This
tool allows program code to be written and executed, from objects, to commands that manip-
ulate data, and even complete tasks such as backing up the data. This program code is called
Transact SQL (T-SQL). T-SQL is a Microsoft proprietary language, although it is strongly linked
with a standard set by the American National Standards Institute, also known as ANSI. The
current specification Microsoft bases its code on is ANSI-92.

Query Editor is a tool within SSMS that allows us to programmatically build the same
actions as dragging and dropping or using wizards. However, using T-SQL within Query Editor
can give developers more control over certain aspects of certain commands. Note that the name
“Query Editor” comes from the fact that it sends queries to the database using T-SQL. Don’t
worry if you don’t quite grasp this—all will become clear very soon.

Let’s spend some time taking a look at SSMS in more detail.

Try It Out: Touring SQL Server Management Studio

1. To start up SQL Server SQL Server Management Studio, select Start » Programs » Microsoft SQL
Server 2005 » SQL Server Management Studio.

2. Click the Options button to bring up a Connect to Server dialog box similar to the one in Figure 2-1. Note
the following items in this dialog box:

e For the purposes of the examples in this book, leave the server type as Database Engine.

¢ The second combo box contains a list of SQL Server installations that the Connect to Server dialog box
can find, or knows about. In the dialog box in Figure 2-1, you will see the name of the computer that
the local install is on. If you open the Server Name combo box, you can search for more servers locally
or over a network connection.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 27

e The final combo box specifies which type of connection you wish to use. We installed SQL Server with
Windows authentication in Chapter 1, therefore this is the only available option for connecting with
our local server.

£F Connect to Server

Microsoft A Nindows Server System
SQL Server 2005
Server type: |Database Engire v|
Server name: v |
Authentication: | windows Authentication v |

[ Connect H Cancel H Help H Options »» ]

Figure 2-1. SQL Server Management Studio Connect to Server dialog box without
expanded options

3. Click Options, which will switch you to the Connection Properties tab. Here you will see specific properties for
this connection, as shown in Figure 2-2:

e The first area to take a look at is the Connect to Database combo box, which provides a list of databases
based on the server and login details in the Login tab. Clicking the down button for this combo box
allows you to browse for and select a database on the server to which you wish to connect. Only the
databases that the Windows Account or SQL Server login can connect to will populate this list. Also,
any error in the login details will cause an error message to be displayed here instead of listing databases.

¢ The Network area details how we want this connection to be made with SQL Server. At the moment,
there is no need to change the current settings.

¢ The third area, Connection, deals with connection timeouts. The first item, Connection Time-out,
defines how long the connection should wait before returning an error. For local installs and even
most network installs, a setting of 15 seconds should be more than enough. The only situation that
may require you to increase this setting is if you were connecting over a WAN or to a SQL Server
installation at an ISP. The second option, Execution Time-out, details the timeout value for any T-SQL
code that you execute.
A setting of 0 means that there is no timeout; there should be few, if any, occasions when you would
want to change this setting.



28

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

£F Connect to Server

Microsoft

Login | Connection Properties |

SQL Server 2005

[y Microsoft

A5 Windows Server System

Connect to database:

Metwark.

Type or select the name of the database for the connection.

| <default> v |

Metwark protocol:

Metwork packet size:

| <default> v |

4096 % | butes

Connection
Connection time-out:
Execution time-out:

[] Encrypt connection

% | seconds

Ii

seconds

Reset Al

[ Connect H Cancel H Help ][ Options << _J

Figure 2-2. SQL Server Management Studio connection properties

4. Once you are happy with all of the items in the Connection Properties tab, click Connect. This brings you
to SSMS itself. If you have ever used Visual Studio .NET, you will notice that SSMS has a reasonably
similar layout. This is deliberate on Microsoft’s part, as the company is bringing SQL Server a tool more
integrated with .NET. Your layout should look like the one in Figure 2-3, with only minor name changes
based on the server you have connected to and the connection you have used. This figure shows | have
connected to XP-PRO SQL Server using the Windows account XP-PRO\rdewson.

K Microsoft SQL Server Management Studio

Fle Edt Wew Toos Window Community Help

Drewouen [1y SRR b S @ BEHBRES

Object Explorer -1 X
Comnect~ | 43w [ T

B [ ¥P-PRO(SQL Server 90,1399 - XP-PROrdewson
[ Databases
3 Security
[ Server Objects
[ Replication
(3 Management
[ Motification Services
[ saL server sgent

< | 18

- X

st |~ {glReport

|] XP-PRO (SQL Server 9.0.1399 - XP-PRO\rdewson)

APFRO

7 Ttemis)

[ Security

[ Server Obiects

[ Replication

L3 Management

[ motification Services
[Ths0L Server Agent

=

|

Ready

Figure 2-3. SQL Server Management Studio



CHAPTER 2

SQL SERVER MANAGEMENT STUDIO

5. The first area of SSMS we will look at is the Registered Servers Explorer. Access this explorer, shown in

Figure 2-4, by selecting View » Registered Servers or by pressing Cirl+Alt+G. This area details all SQL
Server servers that have been registered by you on this SSMS installation. At present, there will only be
the server just registered. This explorer will also show registered services for other services such as

Reporting Services (which is covered in detail in Chapter 14).

Figure 2-4. A list of registered servers

. If you need to register another server, right-click the Database Engine node and select New » Server
Registration to bring up a dialog box very similar to the Connect to Server dialog box shown earlier. Go
ahead and do this now to familiarize yourself with the New Server Registration dialog box, shown in

Figure 2-5.

£F New Server Registration

General | Connection Properties|

Login

Tupe the server name, or choose it from the drop-down list.

Server type: [ratabaze Engine
Server name: | v |
Authentication: | windows Authentication v |
Uzer name: HP-PROMdewson
Pazsword: |

Fiemember pazzword

Fegistered server

*f'ou can replace the registered server name with a new name and
optional zerver description.

Fiegistered server name:

Fiegistered server description:

Test Save [ Cancel ][ Help

]

Figure 2-5. A new server registration dialog box

29



30

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

7. Asyou can see, the only real difference from the Connect to Server dialog box is that the Server Name

combo box is empty and there is a new section called Registered Server. In this area, you can give a
registration a different name, such as Development Server or User Testing Region, and on top of this
give the registration a description. You don’t have a server to register, so just click Cancel now.

. Moving back to SSMS’s explorer window below the registered servers, take a look at the Object Explorer,

which should have been present when you first brought up SSMS. If it isn’t there or if it disappears, you
can redisplay it by selecting View » Object Explorer or by pressing F8. You will likely use this explorer
the most, as it details every object, every security item, and many other areas concerning SQL Server.
You can see that SSMS uses nodes (which you expand by clicking the + signs) to keep much of the
layout of the Object Explorer (the hierarchy) compact and hidden until needed. Let’s go through each of
the nodes you see in Figure 2-6 now.

Object Explorer -+ 1 X
Connect = &J = |4

= LB ¥P-PRO (S0L Server 9.0,1399 - ¥P-PROYrdewson
[[d Databases
[ Security
3 Server Objects
3 Replication
[ Management
3 Motification Services
|_% S0L Server Agent

Figure 2-6. Object Explorer nodes
e Databases: Holds the system and user databases within the SQL Server you are connected to.

e Security: Details the list of SQL Server logins that can connect to SQL Server. You will see more on
this in Chapter 4.

e Server Objects: Details objects such as backup devices and provides a list of linked servers, where
one server is connected to another remote server.

* Replication: Shows the details involving data replication from a database on this server to another
database (on this or another server) or vice versa.

o Management. Details maintenance plans, which you will learn more about in Chapter 7, and provides
a log of informational and error messages that can be very useful when troubleshooting SQL Server.

o Notification Services. Sends out notifications of changes of data or objects to “the outside world” via
media such as e-mail or SMS. People can subscribe to these notifications, and details of these processes
are held in this node.

® SQL Server Agent. Builds and runs tasks within SQL Server at certain times, with details of success
of failures sent to pagers, e-mail, or operators defined within SQL Server. The running of these jobs
and the notifications of these failures or successes are dealt with by SQL Server Agent, and the details
are found in this node.

. Select the topmost node in the Object Explorer to see a summary page similar to the one in Figure 2-7.

This area is known as the documents area. You don’t have to be on the top node for this page to be of
use, as it will provide a summary of any node within this explorer. This works a bit like folders within
Windows Explorer, where you can navigate through each item to get a summary of details of objects
within the node.



10.

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

S summary

3 @ & T |5

| ] XP-PRO (SQL Server 9.0.1399 - XP-PRO\rdewson)

KP-PRO

ist |+ Report >

Mame
[ADatabases
[ Security
[ Server Objects
[ Replication
[ Management
A Motification Services
@)SQL Server Agent

Figure 2-7. Summary page

Moving to the menu bar of SSMS, the first item of interest is the View menu option. The first three options
on the View menu, shown in Figure 2-8, bring up the two explorer windows, Object Explorer and Registered
Servers Explorer, and the summary page we encountered previously. Therefore, if you ever need to
close these items to give yourself more screen space, you can reopen them from the menu or with the
shortcut keys you see defined. The other options on the View menu are as follows:

e Template Explorer. Provides access to code templates. In the examples in this book, we will be
building objects using T-SQL. Rather than starting from scratch, we can use code templates that
contain the basic code to create these objects.

e Solution Explorer. Displays solutions, which are convenient groupings of objects, T-SQL, or special
programs called stored procedures, among other items.

 Properties Window. Displays the set of properties for each object.

e Bookmark Window: Allows you to create bookmarks, which you place into various locations in your
code to allow you to jump quickly to those locations.

¢ Toolbox. Holds a list of objects that are database maintenance tasks, and where these tasks can be
altered.

e Web Browser. Brings up a web browser within SQL Server, ideal for searching the web for answers to
SQL Server problems for which you may require information.

e Other Windows: Allows you to access other windows generated when running T-SQL from Query
Editor, which may hold error messages or results from queries.

e Toolbars: Brings up toolbars for Query Editor, diagramming the database, and integration with Visual
SourceSafe for source control all, if they are not opened by default.

o Full Screen. Removes title bars and explorer windows, and then maximizes SSMS to show as much
of the main pages as possible.

31



32

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

11.

12,

Wiew | Tools Window  Community  Help

Object Explorer Fa
Surmary F?

33 Registered Servers Chrl+alk+G

S Template Explorer Chel+alE+T
W Solution Explorer Chrl+alt+L
Properties Window F4

Bookmark Window  ChrlHk, Chrl+w

Toolbax Chrl4+-Alk+x
Web Browser 3
COther Windows 3
Toolbars 3
=l Full screen Shift+alt-+Enter
B4
:E Refresh 3

Figure 2-8. The View menu options

SQL Server has two built-in tools as well as the capability to include other tools when they are launched.
These can be accessed through the Tools menu, shown in Figure 2-9, along with the means to customize
keyboard commands, show or hide toolbar buttons, etc., as is the case with other Microsoft products
such as Word. In particular, note the following options:

® SQL Server Profiler. There will come a time when you wish to monitor SQL Server’s performance. This
tool will monitor and log events, running code, etc., that you have informed it to check when they
happen within SQL Server.

e Database Engine Tuning Advisor: It is possible to take a workload of data and process it through your
solution. This advisor can suggest ways to improve the performance of this process.

e Options: This option lets you access different options you can use to set up your SSMS as you like. We
will take a look at each of these options in the next section.

Tools | Window  Community  Help

U5 S0L Server Profiler

Database Engine Tuning Advisor
Choose Toolbox Ttems. ..
External Toals. ..

Customize. ..

Options. ..

Figure 2-9. The Tools menu options

The final part of SSMS that we will take a look at is the main SSMS toolbar, as you can see in Figure 2-10.
Some of the icons, such as the Save icon, will be instantly recognizable, but let’s go through each button
so that it is clear what they all do.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 33

2 ew Query | [y | 0F o By [ |5 4 & | B (E B P2 @;

Figure 2-10. Main toolbar

13. Inthe next section, you will see how you can write code to add objects, work with data, and so on. Clicking the
New Query button will open up a new query window, which allows you to do this using the connection
already made with SQL Server.

:J_ Mew Query

14. Similar to the New Query button, the New Database Engine Query button will also create a new query
window. However, this will give you the option of having a different connection to SQL Server through
which to run your code. This is a good way of testing code with a different connection to ensure that you
cannot see data that should be secure, such as wages, via that connection.

]

15. Data within a specialized database known as an analysis database allows you to interrogate the data
and analyze the information contained within. The three New Analysis Service Query buttons allow you
to build different types of analysis queries. | include this information here only for your reference, as
analysis databases fall outside the scope of this book.

B i

16. SQL Server editions also include an edition called SQL Server Mobile. This allows SQL Server to run on
devices such as PDAs. If you have this installed, then clicking the SQL Server Mobile Query button will
allow a SQL Server Mobile query to be run. Again, this book does not cover this particular function further.

]

17. As with every other Windows-based product, it is possible to open and save files. The Open button (the
first one shown in the following image) will allow you to search for a T-SQL file. The next two buttons
change their function depending on what you are doing, but in the main, the Single Save button will give
you the option to save the details of the window that is active in the main documents area of SSMS. The
Multiple Save button will give you the option to save all the open tabs in the documents window.

= a

18. The last set of buttons open up explorers and document tabs that we have covered already. From left to
right in the following image, these buttons access the Registered Servers Explorer, summary page,
Object Explorer, Template Explorer, and Properties window.




34

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

Now that we’ve covered the main areas of SSMS, we’ll next take a closer look at the Options
area off the Tools menu, as it warrants a more detailed discussion.

Examining SSMS’s Options

As you saw earlier, the Tools menu has an Options menu choice. This allows you to choose
what options you would like to set as part of the setup for SSMS. We will go through each node
and option in this area one at a time, except for the options dealing with Analysis Services,
which are not of interest to us just now.

Environment Node

The first node we’ll look at is the Environment node, which covers the SSMS environment and
how you would like it to look and feel. This contains the General, Fonts and Colors, Keyboard,
and Help nodes, which you'll see next.

General Node

The General node, shown in Figure 2-11, contains the following options:

e At Startup: This controls how SSMS behaves when it is started. You have a choice of four
options here. It is possible to open Object Explorer after prompting for a connection,
open a new query window after prompting for a connection, open both of these after a
connection, or open with an empty SSMS and no connection.

* Hide System Objects: In SQL Server, system objects are hidden. This is a good option to
have enabled unless you are a database administrator.

* Environment Layout: The layout can either be defined as tabbed documents (a bit like
Excel) or as MDI (a bit like Word).

* Docked Tool Window—Close Button: If checked, when you click the close button, only
the active document is closed. Unchecked means that all windows will be closed.

¢ Docked Tool Window—Auto Hide Button: You can pin toolboxes or unpin explorers to
hide them. Unpinning windows affects only the currently active document.

* Display NN Files in Recently Used List: This indicates the number of recently opened files
to place under the File menu option.



CHAPTER 2

SQL SERVER MANAGEMENT STUDIO

Options

E| El_wironment Ab startup:
. -General
Fonts and Colors

Keyboard

Enviranment Layauk

[] Hide system abjects in Object Explarer

- Help
- Source Conkrol
- Texk Editor
- Query Execution
#- Query Results
-- Designers

effect.

(®) Tabbed documents

O MDI environment
Docked Tool Window Behavior

Display

‘fou must restart the environment For changes to environment layout to take

Close button affects active tab only
[] Auta Hide button affects active tab anly

files in recently used list

[ Ok ] [ Cancel

Figure 2-11. Environment area, General options

Fonts and Colors Node

As you might guess, the Fonts and Colors node options, shown in Figure 2-12, affect the fonts
and colors for different areas of SSMS. The Display Items list box contains a list of all the
different areas that can be set. By selecting one of these items, you can define the color of the
foreground and background as well the font type and size.

Options

Show settings For:

[ Text Editor

v| [ Use Defaults ]

Font {bold type indicates fixed-width Fonts): Size:

[H-Help

| Courier New

v| |10 v|

- Source Control
- Texk Editor

Display items:
- Query Execution
#- Query Results
-- Designers

Seleched Text

Inactive Selected Text

Indicator Margin

Line Murmbers

Wisible White Space

Bookmark.

Brace Matching (Highlight)

Brace Matching (Rectangle)
Breakpoint - Advanced {Disabled)
Breakpoint - Advanced (Enabled)
Breakpoint - Advanced {Warning)
Breakpoint - Mapped {Warning)

v

Item Foreground:
| W D=fault

vH Custom... ]

Item background:
| [ Default

[Eold

Sample:

vH Custom... ]

AaBhCoExYyZiz

[ Ok ] [ Cancel

Figure 2-12. Environment area, Fonts and Colors options

35



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

Keyboard Node

The Keyboard node section, shown in Figure 2-13, allows you to define fast keys for commands
you run often. Any T-SQL stored procedure can be defined. The examples in this book assume
you are using the standard keyboard scheme.

Note A stored procedure is a set of code that is stored within SQL Server, a bit like a program.

Options

= Erevironment

‘fou can select the keyboard schemes from previous versions of SQL
Server tools,

Keyboard scheme:

. Query shorbcuts:
Source Contral

-- Text Editar Shortouks Stored Procedure -~
-- Query Execution
-- Query Results
-- Designers

Chrl+F1

Chrl+1 sp_who |
Chrl+2 sp_lock

Chrl+3

Chrl+4

el LE v

[ Reset to Default ]

[ Ok [ Cancel ]

Figure 2-13. Environment area, Keyboard options

Help Node

The help system for SQL Server as a whole has been altered: you now have the ability to use not
only the help installed on the computer, but also the online help; thus you have access to the

most up-to-date information. Configure the help system through the Help node options shown
in Figure 2-14.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 37

Options

[=- Environment Show Help using:
- General |External Help Yiewer L
Fonts and Colors

Search results per page:

Show topic abstracts
euse kopic window
- Source Control Highlight search terms
- Texk Editor [inchude partial matches in local search results
[#- Query Execution
- Query Resulks Online topic language:
[#- Designers | English N

Also show English topics

Ok ] [ Cancel

Figure 2-14, Environment area, Help options

Source Control Node

When creating code or objects, you can integrate a source control system with SQL Server so
that changes are immediately stored for safety. For each source control system, it is possible to
define a plug-in that will then populate the combo box, as shown in Figure 2-15. You can then
use this source control along with source control buttons and menu options.

Options
[=)- Environment: Plug-In Selection:
- General
Fonts and Colars Specifies the source control plug-in to use with Microsoft SQL Server
Management Studio and allows changes to plug-in specific options,
Current source contral plug-in:
=+ Saurce Contral Mone 7
Plug-
(- Texk Editor
[ Query Execution
- Query Resulks
[ Designers
[_ Ok ] [ Cancel

Figure 2-15. Source Control options



38

CHAPTER 2

Text Editor Node

SQL SERVER MANAGEMENT STUDIO

The text editor node contains options that affect how you work with text.

File Extensions

Files specific to a particular Microsoft product have their own unique file extension so that they
are instantly recognizable to users and can then be linked to the relevant product. These prod-
ucts have different filtering when accessing them through Open from the File menu so that you
will only see files with the relevant extension. This also holds true for SQL Server, but it is possible

to alter these extensions within the File Extension option, as you see in Figure 2-16, although
I strongly recommend that you don’t. You’ll come across a few of these extensions throughout

the book, although the majority are for more advanced work.

Options

[=- Enwvironment:
General
Fonts and Colors
Keyboard
=-Help
General
Cnline
[=- Source Control
Plug-in Selection
[=)- Text Editar
File: Extension
All Languages
Plain Text
“ML
Query Execution
Query Resulks
Designers

Extension:

Editor:

Extension

DM Query Editar A Add

ery Editor
uery Editor with Encoding
MDY Query Editar
MDY Query Editor with Encoding

Source Code {Text) Editor With Encoding
SGL Mobile Query Editar

S0L Mobile Query Editor with Encoding
S0L Query Editor

S0L Query Editor with Encoding

¥ML Editor

¥ML Editor with Encoding

HMLA Query Editar

HMLA Query Editor with Encoding

Remave

[IMap extensionless files to:

Ok

] [ Cancel

Figure 2-16. Text Editor, File Extension defaults

All Languages » General

Taking a look at the second option within the Text Editor node, you can see how different text
editors’ options can be set. The All Languages node sets the options from both the Plain Text
and XML nodes below, as shown in Figure 2-17. Of the general options discussed here, the first

three are for the XML editor:

* Auto List Members: Lists the members, properties, and values available to you when typing.

* Hide Advanced Members: Shows more commonly used items.

* Parameter Information: Displays the parameters for the current procedure.

* Enable Virtual Space: Adds spaces so that comments are placed at a consistent location

when using a text editor.

* Word Wrap: Specifies text be wrapped to the next line once you type past the end of the

viewing area.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 39

* Show Visual Glyphs: Enabled when word wrap is checked. Shows text glyphs when aline
has been word wrapped. This is a logical character that doesn’t physically exist, and
therefore will not appear on any printouts.

» Apply Cut or Copy Commands to Blank Lines: If this is checked, and you “copy” a blank
line, a blank line will be pasted. If this is unchecked, nothing is inserted.

e Line Numbers: Displays line numbers only against the code. This will help when an error
occurs and is reported back, because the error message will mention the line number.

* Enable Single-Click URL Navigation: When working with data and a URL is displayed,
then as the cursor moves over it, the cursor will change to a hand to indicate a URL, and
clicking it will open up a browser.

* Navigation Bar: Displays a navigation bar at the top of the code editor.

Options

[=- Source Contral ~ Statement completion
Plug-in Selection P Auto list members
(=) Texk Editor Hide advanced members
File Extension Parameter information
[=8 Al Languages i
Settings
General
Tabs [Enable virtual space
= Plain Text [word wrap
General Shiow visual glyphs For word wrap
Tabs [=] &pply Cut or Copy commands ko blank lines when there is no selection
= =ML
General Display
;abs i [CLire rumbers
?rma ' Enable single-click URL navigation
Miscellaneous e
Query Execution [navigation bar
Query Results Mote: This page sets options _For all languages. To change options For only
R = one language, select the desired language from the tree on the left,
Designers v
Ok ] [ Cancel

Figure 2-17. Text Editor, All Languages, General options

All Languages » Tabs

The Tabs node deals with tabs within editors. As you can see in Figure 2-18, there are only two
sections:

* Indenting: The first two options are for plain text and XML. When you press Enter, these
set whether the new line starts at the leftmost point (None) or at the same point as the
preceding line (Block). The Smart option is for XML only and determines whether the new
line is tabbed, depending on the context of the XML element.

* Tab: This sets the number of characters for a physical tab (via Tab Size) and the number
of characters in an intelligent tab, or an indent (via Indent Size). If you want spaces in the
tabbing or indentation, then click the Insert spaces option; otherwise tabbing will use
tabulation characters.



40

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

Options

[=- Source Control
Plug-in Selection
[=J- Text Editar
File: Extension
= All Languages
General
[=- Plain Text
General
Tabs
= =ML
General
Tabs
Formatting
Miscellaneous
Query Execution
Query Resulks
Designers

>

(=]

Indenting

O Mone
O Block
O Smark

Tab
Tab size:

Indent size:

O Inserk spaces
(O Keep tabs

The indentation settings For individual text
formats conflict with each other,

[]
[ ]

The tab settings for individual text Formats conflick
with each other,

Mote: This page sets options for all languages. To change options for only
one language, select the desired language from the tree on the left,

Ok ] [ Cancel

Figure 2-18. Text Editor, All Languages, Tabs options

Query Execution Node

The Query Execution node contains options that affect your T-SQL code. You can change the
environment in which you write T-SQL and how SSMS interacts with SQL Server when running

T-SQL.

SQL Server » General

When we come to running T-SQL code within Query Editor, a number of options affect how it
will run, and these are shown in Figure 2-19. The settings are only for SSMS and don’t apply to

other connections such as a .NET program connecting to the data.

e SET ROWCOUNT: Defines the maximum number of rows to return before stopping.
A setting of 0 defines that every row should be returned. This option is more often defined at
the top of your T-SQL code to reduce the number of rows for that query—for example, if
you have a large table and you want to see only a few rows as examples.

e SET TEXTSIZE: Sets the maximum size of text data that will be seen in the results editor.

» Execution Time-out: Specifies how long you are prepared for the query to run before
forcing it to stop. This can be useful especially in a production environment, when you

don’t wish a query to take up a large amount of processing time.




CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 4

* Batch Separator: Separates batches of code by a word or character. At present this is set
to GO. Although you could change this, it is best not to, because GO is known universally
as a batch separator.

* By Default, Open New Queries in SQLCMD Mode: Selecting this option will open a command
prompt utility for creating queries based on SQLCMD code rather than T-SQL code. This
will allow you to create code that has extensions within it that can then be used to run as
a batch file via the SQLCMD utility. We don’t look at SQLCMD within this book, but if
you want to run code as a batch file, then Books Online can show you how.

Options

[=- Text Editor Specify the maximum number of rows to return before the server stops
File Extension ProCessing your query.

= &l Languages SET ROWCOUNT: _

G |
e;era Specify the maximum size of text and ntext data returned from a SELECT
Tabs statement,

Flain Text
= alnGe:>;ral SET TEXTSIZE: 2147483647 |5 | bvtes

Tabs

|

An execution time-out of 0 indicates an unlimited wait {no time-out),

= =ML
General Execution time-out: seconds
Tabs
Formatting Specify a word or character that can be used to separate batches.
Miscellaneous

8 clo]
[=)- Query Execution Bt Sepaliay

[=-5QL Server [y default, open new queties in SQLCMD mode
General b
Advanced [ Reset to Default ]
AMST

£

H Cancel ]

o
=

Figure 2-19. SQL Server Query Execution, General options

SQL Server » Advanced

This area deals with how SQL Server executes T-SQL code within SSMS, and the options avail-
able here are shown in Figure 2-20. We go through those options relevant to someone learning
SQL Server when creating a database in Chapter 3. The only two options not covered in that
chapter that you should know are the following:

* Suppress Provider Message Headers: Status messages about the query that is running will
not show the data provider. Therefore, by selecting this option, you will be suppressing
the data provider for SQL Server being displayed (.NET SqlClient Data Provider).

* Disconnect After the Query Executes: After your query has completed, disconnect the
connection. This is ideal for situations where you have a limited number of connections
or you want to keep the connection count down.



42 CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

Options

Specify the advanced execution settings,

[=)- Text Editar L]

= :i|||eL§:thTgioez []SET HOCOUNT SET ARITHABORT
el []SET MOESEC [CISET SHOWPLAN_TEXT
Tabs []SET PARSEGMLY [CISET STATISTICS TIME

- Plain Text SET COMCAT_MULL_YIELDS_MULL [[J=ET STATISTICS 10
f:l'::ra' SET TRANSACTION ISOLATION LEVEL: READ COMMITTED v

- ¥ML SET DEADLOCK_PRICRITY: Mormal v
?:E:ral SET LOCK, TIMEQUT: -l 3| miliseconds

Farmatting SET QUERY_GOVERNOR_COST_LIMIT:

Miscellaneaus Suppress provider message headers
(= Query Execution

= 5GL Server [ oisconnect after the query executes
General b [ ]

Reset to Default

€

[ Ok H Cancel ]

Figure 2-20. SQL Server Query Execution, Advanced options

SQL Server » ANSI

Like the options for the previous area, the options for the ANSI area are discussed in Chapter 3.
For now, note the default settings shown in Figure 2-21.

Options

= Text Editor A These settings collectively specify some of the SQL-92 standard query

File Extension execution behavior,

= All Languages [E] SET ANSL_DEFALLTS
General
Tahe SET QUOTED_IDENTIFIER SET ANSI_PADDING
- Plain Text SET ANSI_MULL_DFLT_OM SET ANST_WARNINGS
General [C]SET IMPLICIT_TRANSACTIONS SET ANST_MLILLS
Tabs
SR [(]SET CURSGR,_CLOSE_ON_COMMIT
General ( Reset to Default
Tabs
Formatting

Miscellaneous
= Query Execution
= 50L Server
General b
Advanced

1£3

[ Ok ] [ Cancel

Figure 2-21. SQL Server Query Execution, ANSI standard options

Query Results Node

When you run T-SQL code, the database will return the results to SSMS. The Query Results
node is where you can modify how these results will look.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

SQL Server » General

The options in this area, shown in Figure 2-22, detail how results will be displayed and where
they will be saved.

» Default Destination for Results: This option defines how you would like to see the results
of a query that returns some data.

» Default Location: This option specifies the default directory for saved results.

* Play the Windows Default Beep: If you wish SQL Server to beep you at the end of a query,
check this option, and if you run a lot of queries, be prepared to lose a lot of friends.
I would leave this unchecked unless you are going to be running a long-term query,
which will allow for notification when the query finishes rather than your having to sit
and watch it.

Options

General b | S0 Server query results can be displayed in grid or text Format, or redirected ko
Tabs a file.
= =ML
General Default destination for results:
Tabs |Results to grids w |
Formatting . i
Miscellaneous Default location For saving query results:
= Query Execution |C:'|,D0cuments and SettingsirdewsoniMy Documents | E]
= 50L Server
General [] Play the Windows default beep when a query batch completes

Advanced
AMST [
Analysis Server
- Query Results
= 50L Server

Reset to Default ]

Results to Grid
Results to Text

£

Ok ] [ Cancel

Figure 2-22. Query Results, General options

SQL Server » Results to Grid

When we run T-SQL to retrieve data, SSMS can place it within a grid, a bit like in Excel (although
it will be read-only), or represent it as text, like in Notepad (also read-only). You can also save
the data to a file, which is based on Results to Text options. The Results to Grid options, shown
in Figure 2-23, cover how the results will look if we are outputting to a grid.

* Include the Query in the Result Set: The T-SQL used to run the query is placed prior to the
results.

* Include Column Headers: If you want to copy information from the results, for example,
to place it within an e-mail, then selecting this option will include the column headers as
well as the results.

* Discard Results After Execution: Once the query executes, any results displayed will be
immediately discarded at the end, therefore leaving nothing to display.

43



44

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

* Display Results in a Separate Tab: Instead of the results appearing below the query, they

can instead be in their own tab, giving more space for a larger set of results to be
displayed.

* Maximum Characters Retrieved: This defines the maximum amount of data to be displayed

Options

in a single cell for results.

General ~ Specify the options for displaying the result set in grid Format,
Tabs
%ML [Jinclude the query in the result set
Ge;eral [inchude column headers when copying or saving the results
Tabs
Farmatting [ iscard results after execution
Mlscel!aneous [ bisplay results in a separats tab
= Query Execution
= 50L Server Switch to results tab after the query executes
General Maximurn Charackers Retrisved
Advanced
AN Mon %ML data: 69535 =
Analysis Server
- Query Results ML data: 2Me v
= 50L Server
General
Results to Grid B [ Reset to Default ]
Results to Text “

[ Ok H Cancel ]

Figure 2-23. Query Results when the results are to grids

SQL Server > Results to Text

The other results options, shown in Figure 2-24, affect how results are displayed when they are
in text format.

Output Format: This combo box presents you with five different formatting options:
Column Aligned, Comma Delimited, Tab Delimited, Space Delimited, and Custom
Delimiter. These different options allow you to set your output delimiter so that you can
import your data into other systems.

Include Column Headers in the Result Set: Uncheck this if you just wish the results.
Again, this is ideal for when you are passing data on to other systems.

Include the Query in the Result Set: The T-SQL used to run the query is placed prior to
the results.

Scroll As Results Are Received: As rows are returned, if they extend pass the end of the
page, then the results are scrolled so that the last row of data is displayed.

Right Align Numeric Values: Any numeric values are aligned to the right instead of the left.

Discard Results After Query Executes: Once the query executes, any results displayed will
be immediately discarded at the end, therefore leaving nothing to display.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 45

* Display Results in a Separate Tab: Instead of the results appearing below the query, they
can instead be in their own tab, giving more space for a larger set of results to be
displayed.

* Maximum Number of Characters Displayed in Each Column: This defines the maximum
amount of data to be displayed in a single cell for results.

Options
General V. Specify the options For displaying the result set in text Format or redirecting
Tabs b it ko a file,
= ML Qutput Format: |COIumn sligned v|
General sk
Tabs Customn delimiter: | |
Farmatting Include column headers in the result set
Miscellaneous [Jinclude the query in the result set
E: i
= QE|UE;ELXSZC:;?H [J5eroll as results are recsived
General [CIright align numetic values
Advanced [ iscard results after query executes
AMST [Jisplay results in a separate tab
(- Analysis 5
= :uer:;:zljltserver Switch to results tab after the query executes
= 50L Server Maximurn number of characters displaved in each column: 256 B
General
Results to Grid b [ Reset to Default ]
A
[ Ok ] [ Cancel ]

Figure 2-24. Query Results when the results are to text

That completes our look at the options that are of relevance to us. The next section
discusses the Query Editor within the documents area of SSMS.

Query Editor

As we progress through the book, the creation of objects, the manipulation of data, and the
execution of code will be shown either by using the graphical interface and options that Object
Explorer provides or by writing code using T-SQL. To write code, we need a free-form text
editor so that we can type anything we need. Luckily, SSMS provides just such an editor as a
tabbed screen within the document view on the right-hand side. This is known as a Query
Editor, and it can be found when you click New Query of the main toolbar or by selecting File »
New » Database Engine Query.

We discussed some of the options that affect the Query Editor, such as how text is entered
and how results from running the T-SQL code are displayed, in the preceding section. There is
not a great deal to say about the editor itself, as it really is a free-form method of entering
commands and statements for SQL Server to execute. However, the Query Editor has a toolbar
that is worth covering at this point in time. Figure 2-25 shows this Query Editor toolbar.

ik

0 =] B | master - | ¥ Execute o W 30 Wk | w2 | AL | 2T g 5 Qj =_G2

Figure 2-25. Query Editor toolbar



46

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

The first three buttons, as shown in the following image, work with connections to the
server. The first button requests a connection to the server if one doesn’t currently exist, the
second disconnects the current server connection, and the third allows you to change the
connection you are using.

HBE

The next item is a combo box that lists all the databases in the server you are currently
connected to. If you wish a query to run against a different database, you can select it here. The
database the code will execute against, providing you have permissions, is the database that is
displayed.

raster -

The next buttons are concerned with executing the code entered in the Query Editor. The
red exclamation mark and the Execute button execute the code. The green tick will parse the
code, but will not actually run it. Parsing the code will not find every error that could occur but
will ensure that the syntax is correct. The last option is a grayed-out button that turns red when
code is executing. If you would like to send a cancel command to SQL Server, then press this
button. This may not always instantly cancel the query, depending on what is executing and
whether your server is local or remote. There will be a delay in sending the command and SQL
Server “pausing” to receive the command.

¥ Execute o W

The next two buttons help you analyze the T-SQL query for optimization. We won’t look at
this subject within this book.

23

Rather than typing T-SQL code by hand, we can use a type of wizard that allows a query to
be built up by selecting tables and columns via check boxes, and so on. Pressing the button
shown in the following image brings up this wizard, known as the Query Design Editor, which
you will see in action in Chapter 9.

'

The following button allows you to work with code templates. Templates feature the basics of
commands or actions. They have options that act as default values. Pressing this button brings
up a dialog box to change the values in each of a template’s parameters.

The next set of buttons deals with the query. The first two place details on how your code
was executed and statistics about the code within the output. The third button runs your code as
a command prompt as if it were run by SQLCMD, which is a command-line utility for executing
SQL batches. These options are not covered within this book.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

N V=)

The first two buttons shown in the following image affect how the results from the query
are displayed, either as text or as a grid, respectively. The third button sends results to a file.

CE|FH]

Finally, we can comment out lines of code by clicking the first button shown in the next
image, or we can uncomment code by clicking the second button. The third and fourth buttons
will place or remove indentations of code. All of these buttons work only on currently selected
lines of code.

lks]

Now that we have seen the Query Editor toolbar, let’s turn our attention to a security tool
you need to know about.

Surface Area Configuration Tool

The last section in this chapter is our first look at locking down security within SQL Server. The
Surface Area Configuration tool, or SAC, which is new to SQL Server 2005, is not, as the name
may imply, a tool for configuring what parts of SSMS are displayed on your screen or how. This
toolis a method for reducing the number of services and components of SQL Server that run to
help protect SQL Server from a security breach. You can also change how SQL Server runs to
the same end.

This tool does have a number of areas that can be configured, but we will take a look at
only four of these services, which will give you good grounding in how to work with the other
services and components when the need arises.

Every item within this tool can be dealt with from another means within your computer.
For example, with services, you can also do the same actions we will be performing from
Control Panel » Administrative Tools » Services. The benefit of the Surface Area Configuration
tool, though, is that it offers a unified interface and brings together all the items required to
keep security of SQL Server at its optimum, in one place.

Try It Out: Using the Surface Area Configuration Tool

1. To start up the Surface Area Configuration tool, select Start » Programs » Microsoft SQL Server 2005
» Configuration Tools » SQL Server Surface Area Configuration. This will bring up the tool, as shown
in Figure 2-26. You then have two choices on which area you wish to work with. Click the first choice,
Surface Area Configuration for Services and Connections.

47



48

CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

& SQL Server 2005 Surface Area Configuration

Microsoft: /4 Windows Server System
SQL Server 2005

Help Protect Your SQL Server

Minimize SQL Server 2005 Surface Area

S0L Server 2005 improves manageability and security by giving administrators more contral over the surface area of local
and remote instances of SOL Server 2005, With the SOL Server 2005 Surface Area Configuration tools, you can easily:

+ Dizable unuzed services and network. protocols for remote connections.
+ Dizable unused features of SOL Server components.

For new installations, uze these tools to enable required features, services, and network protocols that are disabled by
default. For upgraded instances, use these tools to identify and dizable unused features, services, and protocols.

@ Fiead more about configuring the SOL Server surface area.

Configure Surface Area for localhost [change computer]

@ Surface Area Configuration for Services and Connections

% Surface Area Configuration for Features

Figure 2-26. SAC tool selection

. This brings you to the dialog box shown in Figure 2-27. Notice in the title bar that there is a suffix of

localhost. This shows that the tool is working with a local install of SQL Server. If you wish to work with
a different install, you need to return to the screen shown in Figure 2-26 and select the Change Computer
option. The first item we’ll discuss, as shown in Figure 2-27, is under Database Engine » Service. Here
you will see how the SQL Server database engine service is defined on this computer, how it starts, and
its status:

e Qur first area of interest is Startup Type, which could have a setting of Automatic, as you see in
Figure 2-27, which means that SQL Server will start when your machine reboots; Manual, which
means that SQL Server will only start when you start the service; and Disabled, which means that the
service cannot be started.

e The Service Status box shows us what the state of the service is (whether it is running or not). You
can change the state as required with the four buttons underneath the status box.

. The Remote Connections node governs client connections. Figure 2-28 shows the default settings. Your

installation will probably only allow local connections, which means that if your standalone computer is
switched to being on a network, no other computer on the network will be able to connect to it until you
select the Local and Remote Connections radio button option. By keeping Local Connections Only selected,
you know that your SQL Server will be safe from other users on your network who may be defined as
administrators on your computer, for example, as this would allow them to connect to SQL Server. Once
you have specified all your options, click Apply or OK, which will then take you back to the screen in
Figure 2-26.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 49

“8 Surface Area Configuration for Services and Connections - localhost

). SQL Server 2005 Surface Area Configuration
L/ Help Protect Your SQL Server

Enable only the services and connection types used by wour applications. Dizabling unuzed services and connections helps
protect wour server by reducing the surface area. For default zeftings, see Help.

Select a component and then configure its services and connections:

= ﬂ M3ISOLSERVER Dizable this service unless your applications use it.
= [ J Database Engine
+ Service
Remote Connections Service name: |MSSQLSEF|VEF| |
(@ Analyss Services Display name: [SOL Server [MSSELSERVER) |
Feporting Services
SOL Server Agent Description: Provides storage, processing and controlled access of data
A3, FullTest Search and rapid tranzaction processing.
____ Integration Services
t,i SOL Server Browser Startup type: |Aut0matic w |
Service statug: |F|unning |
[ Stop ] [ FPause
Wiew by Instance | Yiew by Companent
[ Ok, ] [ Cancel ] [ Apply ] [ Help

Figure 2-27. SAC tool for configuring a component’s services

iguration for Services and Connections - localhost

). SQL Server 2005 Surface Area Configuration
L/ Help Protect Your SQL Server

Enable only the zervices and connection types used by wour applications. Dizabling unuzed services and connections helps
protect wour server by reducing the surface area. For default zeftings, see Help.

Select a component and then configure its services and connections:

= ﬂ MSSOLSERVER By default, SAL Server 2005 Express, Evaluation, and Developer editions allow local
=] L‘j Database Engine client c:orjnec:tions onl__l,l. Enterprize, Standard, and W’orkgroup editions alzo listen for
Service remate client connections aver 'I_'EIF'.-"IE'. Usz_e the aptianz below ta c:ha_nge the protocols
> e S on which SOL Server listens for incoming client connections. TCPAP is prefered over
1Eemote Lol el

named pipes because it requires fewer ports to be opened across the firewall.
@ Analysis Services

Feporting Services
[ SOL Server Agent
A% Full-Tewt Search
Integration Services
|.d SOL Server Brovser

(& Local connections only

O Local and remate connections

Wiew by Instance | View by Component

[ QK. ] [ Cancel ] [ Apply ] [ Help

Figure 2-28. SAC tool for configuring a component’s connections



50 CHAPTER 2 SQL SERVER MANAGEMENT STUDIO

4. Now that you are back at the main screen, click Surface Area Configuration for Features. The first option
we will take a look here at is Ad Hoc Remote Queries, shown in Figure 2-29. It is possible for ad hoc queries
to execute from SQL Server against other data sources that are not explicitly defined, and return data
back from functions. By default, this option is disabled and should only be switched on for remote queries.

&3 Surface Area Configuration for, Features - localhost

f:"} SQL Server 2005 Surface Area Configuration
L/ Help Protect Your SQL Server

Enable only the features required by pour applications. Dizabling unuzed features helps protect your server by reducing the
surface area. For default settings, see Help,

Select a component, and then configure its features:

= ﬂ MS50LSERVER The OPENROWSET and OPENDATASOURCE functions support ad hoc connections
=2 L] Database Engine ta remate. dat_a 20UMCEs without linked or remate servers. Enable these functions only if
+ AdHoc Remote Queries| Y247 applications and scripts call them.
CLR Integration
DaC
D atabase Mail

Mative }ML Web Servic) 7] Enable OPENROWSET and DPENDATASOURCE suppart
OLE Automation

Service Broker
SAL Mail
web Assistant
#p_cmdshel
@ Analyzis Services

< | =

Wiew by Instance | Yiew by Companent |

ak. ] [ Cancel ] [ Apply ] [ Help

Figure 2-29. SAC tool for ad hoc queries

5. The last area we will look at is the option that affects the dedicated administrator connection (DAC),
shown in Figure 2-30. There may be times that SQL Server is under stress or has a problem and you
cannot connect to it via SSMS. This option allows for a separate unique and specialized connection to
SQL Server that will allow you to connect and perform administrative functions to help get SQL Server
working again. If you wish to allow this connection to be enabled from a remote computer, then you can
switch it on here. However, it should only be enabled if your SQL Server is behind a secure firewall; otherwise,
it could lead to a connection to your server that is undesired.



CHAPTER 2 SQL SERVER MANAGEMENT STUDIO 51

&3 Surface Area Configuration for, Features - localhost

). SQL Server 2005 Surface Area Configuration
L/ Help Protect Your SQL Server

Enable only the features required by wour applications. Dizabling unuzed features helps protect your server by reducing the
surface area. For default settings, see Help,

Select a component, and then configure its features:

=] ﬂ MSSGELSERVER A dedicated administrator connection [DAC) allows an administrator to connect to a server
= [J Database Engine when the Database Engine will not respond to regular connections. Enable this option

4 Hoc Remote Queries only if you will use DAL from a remate computer.

CLR Integration

D atabase Mail
M ative XML Web Servic [] Enable remote DAC
OLE Automation
Service Broker
SAL Mail
web Assistant
#p_cmdshel

@ Analyzis Services

< | =

Wiew by Instance | Yiew by Component |

ak, ] [ Cancel ] [ Apply ] [ Help

Figure 2-30. SAC rool for DAC

Caution If you have a network install, then you may wish to consider disabling Analysis Services, Reporting
Services, etc., if they are not being used.

This concludes our look at the Surface Area Configuration tool.

Summary

SQL Server Management Studio (SSMS) is a tool for working with SQL Server that you will see
in action throughout this book, whether we work with the graphical interface or use Query
Editor for writing T-SQL code. Asyoulearned in this chapter, the main areas of the tool are the
Registered Servers Explorer, the Object Explorer, and the main documents window that will
contain graphical representations of objects in the database.






CHAPTER 3

Database Design and Creation

N ow that you've installed SQL Server and examined the main tools you'll use as a SQL Server
developer or administrator, it’s almost time to start building the ApressFinancial database
solution. However, you can’t do this yet because you still don’t know what the database will
hold. At this point in time, all the information you have so far is that you'll be building a data-
base to hold some financial transactions for a personal or corporate financial tool. You'll gear
this database toward a financial tool that a corporation might use, because SQL Server can be
scaled from one user to thousands of users very easily. The next step is to gather more informa-
tion about the requirements of the solution and about what information is required to be
stored in the database. Once the information gathering stage is complete, you'll then be able to
create the database within SQL Server 2005.

The design of a database solution is not a simple task; it requires a great deal of work. This
chapter will provide you with insight into the vast area that is database design. Armed with this
information, you'll proceed through arranging the data so that retrieval is as efficient as possible
(this is referred to as normalizing the data) and ensuring that data duplication is minimal, or
ideally that no data duplication exists. You’ll also need to know how the system and the data
within it will be used on a day-to-day basis. Finally, you need to know what type of system is
being built—for instance, whether it will receive instant data updates or just be used to analyze
already defined data. Once the design is complete, building a database solution is a much
smoother process. A good design ensures you've gathered all the information you need to build
the correct tables with the correct information without duplication.

Although the methods and processes involved with the design may not meet the needs of
every organization and its methods, this chapter presents an overview of the processes involved,
and also shows how to build up information and ensure that the design is well thought out.
This chapter covers the following topics:

* What a database is, what it consists of, and where it is stored
* How to define the type of system: transactional or analytical

* How to collect data about the current system and seek out information about the new
system

* How to create a database through SQL Server Management Studio, a wizard, or a Query
Editor window, and how to set database options in a Query Editor window

¢ How to review the database details

* How to remove a database using SQL Server Management Studio and a Query Editor

window
53



54

CHAPTER 3 DATABASE DESIGN AND CREATION

Note No specific formal design techniques will be used in this chapter’s exercise, as this is not a book
specifically on database design. However, the processes—both physical and logical—to get to the final
design of the database will be the same.

Defining a Database

A database is a container for objects that not only store data, but also enable data storage and
retrieval to operate in a secure and safe manner. A SQL Server 2005 database can hold the
following (although when a database is first created, some of this information has not yet been

built):

Table definitions

Columns within those tables, which make up rows of data

Programs (either stored procedures or assemblies) used to access or manipulate the data
Indexes, which are used to speed up the retrieval of data

Views, which are specialized ways of looking at the actual data

Functions, which are repetitive tasks that can be applied to rows of data

The preceding list contains a fair number of technical terms, so let’s take a few moments
to look at their definitions:

Tables: These are where data is kept within the database. A database must contain at
least one table to be of use, although you can have a database with no user tables and
only system tables. System tables are special tables that SQL Server uses to help it work
with the database. These tables contain information within rows and columns, much
like in Excel, but they have a great deal more power than cells within Excel. Temporary
tables, another type of database table, can take several different forms.

Columns: These provide a definition of each single item of information that builds up to
a table definition. A column is made up of cells that all hold data, much like a column in
Excel. Unlike in Excel, though, where each cell can hold a different type of data, a column
within a SQL Server table is restricted as to what the data within it relates to, the type of
data it will hold, and how much information can be stored in it. Each table must have at
least one column, although the column doesn’t need to contain any information.

Rows: Arow is made up of one cell from every column defined for the table. There can be
any number of rows in a table; you are limited only by your disk space or the amount of
disk space that you defined as the maximum in your database creation definition, or the
amount of disk space on your server. A row will define a single unit of information, such
as auser’s bank account details or a product on an e-commerce site. Rows are also called
records.



CHAPTER 3 DATABASE DESIGN AND CREATION

* Stored procedures: When it comes to requiring a program to manipulate or work with
data, or perform the same data-intensive task repeatedly, it’s often better to store this
code in a stored procedure. Stored procedures contain one or more T-SQL statements,
which are compiled and ready to be executed when required. Stored procedures are
permanently stored in the database, ready for use at any time.

* T-SQL statement: This is program statement that SQL Server can use to work with your
data.

o Assemblies: These are new to SQL Server 2005. Assemblies are similar to stored proce-
dures, in that they can be used to manipulate or work with data, but they are used more
for procedural logic, as you might find in a .NET program. An assembly can be more than
areplacement for a stored procedure and can take on many different guises—for example,
you can also build data types using an assembly.

* Indexes: These can be regarded as predefined lists of information that can inform the
database how the data is physically sorted and stored, or they can be used by SQL Server
to find rows of data quickly using information supplied by a T-SQL query and matching
this information to data within columns. An index consists of one or more columns from
the table it is defined for, but it is not possible for an index to cover more than one table.
An index in SQL Server is very much like the index of a book, which is used to locate a
piece of information faster than looking through the book page by page.

» Views: These can be thought of as virtual tables. Views can contain information combined
from several tables and can present a more user-friendly interface to the data. Views can
also add a great deal of security to an application, but they do give reduced functionality
over the use of stored procedures or direct access to the tables. Views can also be indexed to
speed processing of data within.

* Functions: A function is similar to a stored procedure, but it takes information one row
at a time or produces information one row at a time as you work through the rows of data
you are processing. For example, you would use a stored procedure to produce output to
create a statement, but you would use a function to go through each transaction one at
a time to calculate interest on a daily basis.

Also within every database is a set of system tables that SQL Server uses to maintain that
database. These tables hold information about every column, information about every user,
and many other pieces of information (i.e., metadata). Unlike in previous versions of SQL
Server, system-table security in SQL Server 2005 has been increased and improved, and you
cannot access these tables directly—only through views. There is no need to investigate system
tables at this point, as their data can’t be modified and the information they produce is useful
only for working with advanced functionality.

Databases Within SQL Server

Several databases are installed and displayed when SQL Server is first installed. This section
explores each of these databases, so that you'll know what each does and feel comfortable
when you come across them outside of this book.

55



56

CHAPTER 3 DATABASE DESIGN AND CREATION

Let’s first look at the most important database in SQL Server: the master database. We’ll
then cover the tempdb, model, msdb, and AdventureWorks/AdventureWorksDW databases.

master

master is the most important database in SQL Server, so I must start off with a warning:

Directly alter this database at your own peril!

There should be no reason to go into any of the system views within this database and alter
the records or column information directly. There are system functions that allow a construc-
tive alteration of any of the data in an orderly fashion, and these are the only approaches you
should use to alter the master database.

Themaster database is at the heart of SQL Server, and if it should become corrupted, there
is a very good chance that SQL Server will not work correctly. The master database contains the
following crucial information:

» Alllogins, or roles, that the user IDs belong to

» Every system configuration setting (e.g., data sorting information, security implementation,
default language)

* The names of and information about the databases within the server
¢ Thelocation of databases
¢ How SQL Server is initialized
» Specific system tables holding the following information (this list is not exhaustive):
* How the cache is used
* Which character sets are available
* Alist of the available languages
* System error and warning messages

* Special SQL Server objects called assemblies (tables within every database that deal
with SQL Server objects and therefore are not specific to the master database)

The master database the security guard of SQL Server, and it uses the preceding information
to ensure that everything is kept in check.

Note It is crucial that you take a regular backup of the master database. Ensure that doing so is part of
your backup strategy. Backups are covered in more detail in Chapter 7.

tempdb

The tempdb database is—as its name suggests—a temporary database whose lifetime is the
duration of a SQL Server session; once SQL Server stops, the tempdb database is lost. When SQL



CHAPTER 3 DATABASE DESIGN AND CREATION

Server starts up again, the tempdb database is re-created, fresh and new, and ready for use.
There is more to this process, but before we delve into that, you first need to know what the
tempdb database is used for.

As you know, a database can hold data, and that data can be held in many tables. You use
commands and functions to retrieve and manipulate that data. However, there may be times
when you wish to temporarily store a certain set of data for processing at a later time—for
example, when you pass data from one stored procedure to another that is going to run right
after the first one. One option is to store that data within the tempdb database. Any temporary
table created within a stored procedure or query will be placed within the tempdb database.
This is fine, as long as the tempdb database is not refreshed. If it is, then your data will be gone,
and you will need to rebuild it.

You may be thinking that this is not an ideal solution. After all, wouldn’t it be wonderful if
temporary information could be stored somewhere outside of the database? Well, that’s not
really where tempdb would be used. It really should be thought of only as transitional storage
space.

Another reason tempdb is refreshed is that not only is it available for a developer to use, but
also SQL Server itself uses tempdb. Actually, SQL Server uses tempdb all the time, and when you
reinitialize SQL Server, it will want to know that any temporary work it was dealing with is
cleaned out. After all, there could have been a problem with this temporary work that caused
you to restart the service in the first place.

Being just like any other database, tempdb has size restrictions and you must ensure that it
is big enough to cope with your applications and any temporary information stored within it.
As you read through the next sections, you will see that a database has a minimum and a
maximum size. tempdb is no exception to this, and you should ensure that its settings provide
for expansion so it can grow as required.

Caution Because tempdb has a limited size, you must take care when you use it that it doesn’t get filled
with records in tables from rogue procedures that indefinitely create tables with too many records. If this were
to happen, not only would your process stop working, but also the whole server could stop functioning and
therefore impact on everyone on that server!

As indicated in the first paragraph of this section, there’s more to say about tempdb’s refresh
process, which we’ll examine in the next section.

model

Whenever you create a database, as you'll do shortly in this chapter, it has to be modeled on a
predefined set of criteria. For example, if you want all your databases to have a specific initial
size, or to have a specific set of information, you would place this information into the model
database, which acts as a template database for further databases. If you wanted all databases
to have a specific table within them, for example, then you would put this table in the model
database.

57



58

CHAPTER 3 DATABASE DESIGN AND CREATION

The model database is used as the basis of the tempdb database. Thus, you need to think
ahead and take some care if you decide to alter the model database, as any changes will be
mirrored within the tempdb database.

msdb

msdb is another crucial database within SQL Server, as it provides the necessary information to
run jobs to SQL Server Agent.

SQL Server Agent is a Windows service in SQL Server that runs any scheduled jobs that you
set up (e.g., jobs that contain backup processing). A job is a process defined in SQL Server that
runs automatically without any manual intervention to start it.

As with tempdb and model, you should not directly amend this database, and there is no
real need to do so. Many other processes use msdb. For example, when you create a backup or
perform arestore, msdb is used to store information about these tasks.

AdventureWorks/AdventureWorksDW

AdventureWorks and AdventureWorksDW are the example databases found in SQL Server if you
selected to install them during setup. These databases are based on a manufacturing company
that produces bicycles. They exemplify the new features in SQL Server 2005, such as reporting
services, CLR functionality, and many others, in a simple, easy-to-follow way.

The following excerpt from the Microsoft documentation provides a concise overview of
what the AdventurelWorks databases are about:

Adventure Works Cycles, the fictitious company on which the AdventureWorks sample
databases are based, is a large, multinational manufacturing company. The company
manufactures and sells metal and composite bicycles to North American, European
and Asian commercial markets. While its base operation is located in Bothell, Wash-
ington with 290 employees, several regional sales teams are located throughout their
market base.

The example databases are not meant for novice SQL Server developers, although you’ll
have no problems with them after you learn the basics of SQL Server.

Now that you know what databases are in SQL Server, let’s start building one! We’'ll start by
deciding what type of database to create, depending on what we’ll use it for.

Choosing the Database System Type

Before we can design a database, we have to decide whether the system will be an Online
Transaction Processing (OLTP) system or an Online Analytical Processing (OLAP) system. We
could find this out prior to our first meeting with the users, or even during the first meeting, but
the choice of OLTP or OLAP will probably be indicated in the initial proposal.

Before we make the decision, we need to understand these two key types of systems.

OLTP

An OLTP system provides instant updates of data. There is a good chance that an OLTP data-
base system has a separate user front end written in a .NET language such as Visual Basic .NET



CHAPTER 3 DATABASE DESIGN AND CREATION

(VB .NET), C#, or ASP.NET. This user front end calls through to the database and instantly
updates any changes a user has made to the underlying data.

OLTP systems require many considerations to ensure they’re fast and reliable, and can
keep the data integrity intact. When you design an OLTP system, it’s crucial that you get not
only the database structure right, but also where the data physically resides. It’s common to
find that OLTP systems are normalized to third normal form (more on what this term means
later in the chapter), although this may not happen in every case. By normalizing your data,
you will aid the achievement of one of the main goals of an OLTP system: keeping data updates
as short as possible. When you normalize your data by removing redundant or duplicate
columns, you should ensure that the data to be written is as compact as possible. In many
OLTP systems, normalization is king.

Backups

Many OLTP systems are in use 24 hours a day, 7 days a week. The high frequency of changes in
such a system’s data means that backing up the database is a necessary and mandatory task.

Itis possible to back up a database while SQL Server is in use, although it is best to perform
a backup when SQL Server is either not in use or when there will be a small amount of activity
updating the data taking place. The ideal timeframe might be in the middle of the night or even
during a break period.

Whenever you decide to perform a backup, it’s crucial that you constantly monitor and
check it within an OLTP system to see that the system is still performing as desired. You would
not be the first person to find that what you thought was a valid backup that could be restored
in a disaster situation was in fact corrupt, incomplete, or just not happening. Therefore, peri-
odically take a backup from production and reload it in to a secure development area just to
confirm that it works.

Indexes

Speed is essential to a successful OLTP system. You should see a higher number of indexes
within an OLTP system as compared to an OLAP system, with these indexes used not only to
help relate data from one table to another, but also to allow fast access to rows within tables
themselves.

Note Chapter 6 covers how to build indexes, how indexes work, and how to manage indexes within
your solutions.

OLAP

When considering an OLTP system, you must keep in mind that an update to the database
could happen at any moment in time, and that update must be reflected within the database
instantly. It is also crucial that the system performs many updates simultaneously, and that it
does not corrupt any data when it does so.

An OLAP system is designed with the premise that the data remains fairly static with infre-
quent updates. These updates could be every night, weekly, monthly, or any other time variant

59



60

CHAPTER 3 DATABASE DESIGN AND CREATION

as long as updates aren’t happening on a frequent basis, like in an OLTP system. As the name
“Online Analytical Processing” suggests, in this system a large amount of the processing
involves analysis of existing data. There should be little or no updating of that data—ostensibly
only when the data within the analysis is found to be incorrect or, as mentioned previously,
when more data is being applied for analysis. Backing up the data will probably take place only
as a “final action,” after the database has had changes applied to it. There is no need to make it
aregular occurrence.

Systems designed for OLAP sometimes do not follow any design standards or normaliza-
tion techniques, and most certainly have fewer indexes than an OLTP system. You tend to see
no normalization in an OLAP system, as it is easier to take data and to slice and dice it without
having to bring in data from a normalized table. There will be few or no updates taking place in
an OLAP system, so performing transactions and keeping them compact aren’t concerns. Most
OLAP systems will contain no normalization. Quite often, you'll find one or two large flat tables—
rather than several tables related together—and therefore as there are fewer relationships,
there will be fewer indexes.

Note OLAP systems are also known as data warehouses, although data warehousing is only one part
of the overall OLAP system design. Put simply, a data warehouse is the database that holds the information
used within the OLAP system.

Example System Choice

So, when you take into consideration all of the information presented in the preceding sections,
it is fairly obvious that although the data updates will be relatively infrequent in our example
system (in other words, only when a financial transaction occurs or a statement is generated),
there will be updates occurring online with instant results expected. Therefore, our system will
be an OLTP system.

Gathering the Data

One of the first things you should do before building a database is find out what information
the database system has to hold and also how that information should be stored (e.g., numer-
ical or text, length, etc.). To achieve this, you'll perform a data-gathering exercise, which could
involve talking with those people who are the owners of the system and those who will be using
the system.

For larger systems, you would hold several meetings, each of which would pinpoint one
area of the system to discuss and research. Even then, several meetings may be spent going
back and discussing each area. You could also conduct interviews, distribute questionnaires,
or even just observe any existing processes in action, all in an effort to gather as much informa-
tion as possible about the database and how it will be used.

The key indicator of whether or not a database solution is successful is not found so much
in the building of the system, but rather in the information gathering process before the first
line of code is actually written. If you're working off of an incorrect piece of information, or



CHAPTER 3 DATABASE DESIGN AND CREATION

you're missing an element that might be crucial to the final solution, then already the system is
flawed. Involving the users as much as possible at the earliest stage and then including them as
the design progresses should result in a significant reduction of errors and missing parts in the
final product.

For our example financial program, the first people we want to talk to are the owners of the
data that will be displayed. These are the people in the banking department who handle checks,
cash withdrawals, credit card transactions, and so forth, and also those people who handle the
purchase and sale of stock shares, unit trusts, life insurance policies, and so on. These people
will know what documentation or statements are sent to which customers, as well as the infor-
mation those statements contain. In addition, these people will likely have a good idea about
how customers may want to reconcile these statements, and also what data will be allowed to
be downloaded and inserted into your SQL Server database.

At the first meeting, we examine all the documentation to see what information is stored
in the current system. We find out at the meeting that the current system sends out different
statements, one statement for the customer’s current account and a separate statement for
each financial product the customer owns. When we examine the statements, we focus on the
information each contains that we need to capture to produce a similar statement. This could
be not only customer-related information, but also regulatory statements.

With the information from all the documentation in hand, we can start discussions about
what is required from the system we are to build. Obviously, a great deal of information will be
discussed in these meetings, some of it useful and some not. Make sure that the discussions are
recorded in the order in which the people present make points, and not in “logical” order. This
simulates meetings where people “remember” items that have to be catered for, where one
point raised may make someone remember a point elsewhere.

Out of our initial discussions, we note the following points:

1. The software must be able to handle working with more than one product. The main
product is a current checking account that a bank or a single user might use to hold
banking details. The system also must be able to manage by-products such as loans, life
insurance policies, and car insurance policies, and it should be able to record any trading of
shares on the stock market.

2. Statements are produced on a monthly basis or at any time the customer requests them
from the system. If a customer requests a statement within the month, there will still be
a statement produced for that month.

3. Interest accrues daily on accounts that are in credit and is subtracted daily from over-
drawn accounts.

4. Annual, monthly, or single-premium products can be held for a customer or held by a
customer in a standalone version of the system. We need to know when to start and
stop collecting payments, and we also need to determine which products we send out
areminder for (e.g., a notice to let a customer know her car insurance policy is up
for renewal).

5. Ifacollection for a product failed, the system needs to recognize this so the amount can
be collected the next time a collection is due.

61



62

CHAPTER 3 DATABASE DESIGN AND CREATION

6. Each product will have its own statement, but only banking statements will be pro-
duced on request.

7. Trading of stock shares is allowed, so the system needs to record and display the current
value for a customer’s specific share at any time.

Notice how the information in this list is in no set order, as this is how information tends
to come out. Also notice that there is also a little bit of duplication of information in points 2
and 6; if this is not realized and understood, it could cause problems.

Note This is the only data-gathering exercise performed for our example database. The information gath-
ered here should be crosschecked later in the design phase with the users, although this is beyond the scope
of this book.

Determining the Information to Store
in the Database

Using the notes we took in the previous section, we’ll now try to find every area each point has
an interest in. Looking at the list of areas that require information to be recorded and stored
within our database, it’s clear we need to arrange them in some sort of order. We’re still looking
at our solution from a logical viewpoint, and we’re not ready to start building anything in SQL
Server yet.

First off, let’s scan through the points listed and try to group the information into specific
related areas. The list items are numbered, so we’ll be able to easily demonstrate the groupings.
The following list shows some initial groupings and reasons for them:

¢ Financial products
¢ 1: We are dealing with more than one product. We need to record each product.

» 2: Statements will be produced for each product, and specific product information for
those statements would be recorded here, such as the name of the product.

* 4: We need to record what type of premium is associated with this product.
¢ 5: This point deals with a financial products premium collection.
¢ 6: This point deals again with statement production.
* Customers
* 2: Customers can request statements.
* 3: We need to record the amount of interest for a customer.
¢ 4: A list of the different products associated with each customer is required.

¢ 7: For each share, we need to keep a current value.



CHAPTER 3 DATABASE DESIGN AND CREATION

e Customer addresses

¢ 2: We need each customer’s address in order to send a statement.

* 6: As with point 2, we need the customer’s address to send a statement.
e Shares

¢ 1: We trade shares on the stock market, therefore we need to record share
information.

* 7: We need to keep a given share’s value.
» Transactions
* 2: A list of transactions is required for statement production.
* 4: Regular and ad hoc premiums have to be recorded.
* 5: We need to record failed transaction collection.
* 6: Statements will be produced for each product.

These five distinct groups could translate into five distinct tables within our proposed
database. At this point in the logical design process, we would base our design on these five
tables. From here, it is then possible to start examining the information that should go into
these logical tables. There might be duplication of data with columns in the “wrong” table, and
the potential for multiple columns to hold “similar” information or the same column in more
than one table.

Let’s look at the list points in turn in the following sections and examine what information
should be stored in each “table.” The information listed in the sections that follow is taken
from the discussion with the users, and a list of the columns is supplied that may initially form
the basis of the tables. Each column has a description, so when we go back to the users they’ll
understand the purpose of the columns. Also at this stage, we’ll add columns to hold any iden-
tifiers for finding the records; in the following sections, these are denoted with (K). These are
potentially our keys, which we’ll cover in more detail later in the “Building Relationships”
section of this chapter.

Financial Products

The aim of this table is to hold the different products the company sells. From bank accounts
to life insurance, all products will be held here. This table will be used when producing state-
ments and creating transactions when the user’s balance changes, for example, when buying
further shares.

e Financial Product ID (K): This is a unique identifier.

* Financial Product Name: This is the name of the product, such as checking account,
share, loan, and so forth.

* Frequency of Payment: For each product, this indicates how often payments are
collected for those products that require it, such as a loan, a regular savings account,
and so on.

63



64

CHAPTER 3 DATABASE DESIGN AND CREATION

Customers

This table will hold customer details, such as the customer’s products and balances. To clarify
and reiterate, there will be items currently within this table that will no longer reside within it

once we normalize the data. For example, you will see an attribute for “Account Numbers for

Each Product.” When we proceed through normalization, you will see how attributes such as

this are “moved.”

Customer Id (K): This is a unique ID for each customer.

Financial Product Balance: This is the current balance of each product.
Title: This is the customer’s title (Mr., Ms., etc.).

First Name: This is the customer’s first name.

Last Name: This is the customer’s last name.

Address: This is the customer’s address.

Account Numbers for Each Product: This is the account number of the each product the
customer owns.

Financial Products Details: This is the details of each financial product the customer
owns.

Customer Addresses

This table will not exist, as we will get this information from a third-party address database.

Shares

This table holds the details of each stock share, such as its current price and its price history.

Share Price Id (K): This is a unique ID for each share.
Share Name: This is the name of the share.

Current Price: This is the current price of the share.
Previous Price: This contains previous prices of the share.
Price Date: This is the date the price was set at this level.

Stock Market Ticker ID: This is the ID for this share on the stock market.

Transactions

This table holds the details of each financial transaction that takes place for each product.

Financial Transaction ID (K): This is a unique ID for each financial transaction.

Customer ID: This is the customer’s unique identifier, as defined in the “Customers”
section earlier.



CHAPTER 3 DATABASE DESIGN AND CREATION

* Date of the Transaction: This is the date the transaction took place.
* Financial Product: This is a link to the financial products table.

e Amount: This is the amount the transaction is for.

Debit/Credit: This flag denotes whether the transaction is a debit or a credit.

External and Ignored Information

At this point, we have a first draft of the logical tables and attributes, but are there still no rela-
tionships between these tables. There is one more piece of information that we need to know,
which concerns information not recorded, as it won’t be included within this database.

The example database will not hold every item of information that is required to make the
system complete. This is to keep the example simple and to avoid having extra tables that will
not be used within the book’s exercises. However, there may be other times when you may
wish to implement only some of the tables—for example, when performing a viability study (in
other words, when you're building part of a system to prove the viability of an idea). Or perhaps
there are third-party tools available that can fill in the gaps.

For example, a system might use an external addressing system, and instead of holding all
customer addresses within the system, it may use a cross-reference ID. A table could also exist
to hold all of the financial transactions for products not covered where specialized tables are
required, such as for company pension plans.

Next, let’s move on to consider relationships between the tables in the database.

Building Relationships

Much like people, databases can be temperamental creatures and need a bit of TLC. Good relation-
ships can provide this kind of care and attention.

At the moment, the tables in our example database are essentially single, unrelated items.
Of course, they have columns with the same name in different tables, but there is nothing tying
them together. This is where defining relationships between the tables comes in. Binding the
tables together in this way ensures that changes in one table do not cause data in another table
to become invalid.

Using Keys

Akeyis away of identifying a record in a database table. We can use keys to build relationships
between tables because a key refers to a whole record—a property we can exploit when working
with columns that, for example, have the same name in different tables. Using a key as a shortcut,
we can make the link between the two very easily. Keys can also uniquely identify a record in a
table when that is an important part of the database’s design.

Akey can be defined on a single column if that’s enough to identify the record, or it can be
defined on more than one column if not. The sections that follow introduce the three kinds of
keys you can use in a database: primary, foreign/referencing, and candidate/alternate. We’ll
also look at using a SQL Server method called a constraint instead of a primary key.

65



66

CHAPTER 3 DATABASE DESIGN AND CREATION

Primary Key

The primary key is probably the most important key type. First and foremost, the column (or
columns) on which the primary key is defined must only contain unique values. A primary key
cannot be defined on a column, or a sequence of columns, that does not return a single row. To
this end, it is not possible to define a primary key for any columns that allow NULL values. A further
restraint is that a table may have only one primary key.

A primary key can be used to link data from one table to data from another. For instance,
in our example database we have two tables: one holding customers and another holding
customer banking transactions. We define a primary key on the customers table on the customer
ID that is generated uniquely each time a new customer record is inserted. This is then used to
link to the many records within the banking transactions table, to return all the transactions for
that customer ID. The link between these two tables is the customer ID, which as previously
mentioned is defined as a primary key in the customers table.

Later on, you'll see how to join tables together and define a relationship between them.
Ajoin and a relationship essentially mean the same thing: a logical link between two or more
tables that can be defined through a specific column or set of columns between the tables.

Foreign/Referencing Key

There will be times when you have two or more tables linked together in a relationship, as
demonstrated in the previous section’s example, where the link between the customers and
transactions tables is the customer ID column. This column returns a unique row in the customers
table; hence it is defined as the primary key of the customers table. However, there has to be a
corresponding foreign (or referencing) key in the transactions table to link back to the customers
table, which is the customer ID column of the customers table.

When it comes to creating relationships within our example database, you will later see
how a foreign key is created that will create a link, or a relationship, between two columns. This
link is created through a constraint, which is a method SQL Server uses to check the details
built into the relationship. From the viewpoint of a foreign key, this constraint, or check, will
ensure that the relationship follows the conditions set with it. We’ll examine foreign keys in
more depth in the “More on Foreign Keys” section.

Candidate/Alternate Key

As mentioned previously, a table can have only one primary key. However, there may be another
key that could just as easily be defined as a primary key. This is known as a candidate key, as it
is a candidate for being the primary key.

There is no logical difference at all between the definition of a candidate key and a primary
key. For example, if we have a table that holds spare parts for a General Motors (GM) vehicle,
we could have an internal GM part number to use when ordering parts at the head office for
various GM branches. This part number would be unique and would likely be used as the
primary key. However, a part number is also created by each of the manufacturers, which is
unique to them. This, too, could be a primary key if we include the supplier identifier in the
database. We can’t have two primary keys, and we’ve chosen the GM part number as the
primary key, but we could create a candidate key using the manufacturer identifier and part
number.



CHAPTER 3 DATABASE DESIGN AND CREATION

A Unique Constraint Instead of a Primary Key

This is where having a constraint defined will ensure that unique values can only be entered
into columns defined within the constraint. This sounds very much like the previous primary
key definition, but there are differences.

A unique constraint is not a primary key, but the column or columns defined within the
constraint could be a primary key. Also, a unique constraint can contain NULL values, but recall
that a primary key cannot. However, NULL is treated as any other value within a column; there-
fore, the columns used to make a unique constraint must remain unique, including the NULL
value, when you're looking to insert or update data. Finally, it is possible to have multiple
unique constraints, but you can have only one primary key.

Creating Relationships

A relationship in a SQL Server database is a logical link between two tables. It is impossible to
have a physical link; although, as you will see later, a physical line is drawn between two tables
when designing the database. To have a physical link would mean the actual data linking the
two tables would be stored only once in a central location, and that information within the keys
linking the tables would be stored more than once, which is just not the case.

When defining a logical relationship, we’re informing SQL Server that we’ll be linking a
primary key from the master table to a foreign key in another table. So already there is a need
for two keys: one on each table.

The following sections present specific details about relationships, starting with a look at
how relationships work with the concept of referential integrity.

Relationships and Referential Integrity

Arelationship can be used to enforce data integrity. In other words, if you are expecting data in
one table because there is data in another, you can place a relationship between these two
tables to ensure that no SQL command breaks this rule. However, don’t confuse referential
integrity with other processes that are associated with maintaining data integrity, such as
placing checks or default values on columns to ensure that values for a specific column are valid.

Referential integrity revolves around the idea that there are two tables in the database that
contain the same information, and it requires that the duplicated data elements are kept consis-
tent. For example, if you have a primary key in one table and a foreign key in another table that
have data that matches exactly, then it is important that both pieces of data either change
together or don’t change at all. Relationships are not the only way referential integrity can be
enforced; you can also use triggers to ensure that data remains valid (we’ll examine this further
in Chapter 13).

For instance, our example banking system includes the customers and transactions tables.
It is not possible to record customer transactions without a customer record. As a result, we
have to use referential integrity to enforce data integrity between these two tables, so that a
customer record can’t be removed from the database while there are customer transaction
records for that customer. Similarly, this rule should allow the removal of a customer record
when there are no customer transaction records.

Another result of enforcing referential integrity is that it isn’t possible for a customer trans-
action to be entered using a customer reference number that doesn’t exist within the customers

67



68

CHAPTER 3 DATABASE DESIGN AND CREATION

table. Instead, to enter a customer transaction in this situation, we first have to create the
customer record, and then we can carry out the transaction.

Finally, if we had a customer record and related customer transaction records, we couldn’t
alter the customer reference number in the customer record without first altering the customer
transaction records and checking that the reference we’re altering the customer transaction
records to already exists.

So, there are a number of rules to follow if we want to maintain the integrity of our data. If
we so desired, we could use referential integrity to enforce data integrity. However, a flip side
to all of this to be aware of is that we can keep data integrity within a system and not use refer-
ential integrity. Instead, we can create stored procedures or triggers, which are types of programs
within SQL Server, to do this task. We’ll look at these topics in Chapters 10 and 13.

Using stored procedures and triggers is a possible but undesirable solution, because it
leaves our system open to instances where data integrity is not kept, because of holes within
the design of the system or perhaps because a developer doesn’t have the correct processing
sequence to ensure that all data is always valid. Not only that, but if someone adds data directly
to a table, the referential integrity will be lost. That said, having the data integrity checks in an
application does lead to less traffic flow over the network, as all the validation is done on the
front end.

There is one more important point about referential integrity before we move on to discuss
database relationship types: if you want to maintain referential integrity by creating a relation-
ship between two tables, then these two tables must be in the same database. It is not possible
to have referential integrity between two databases.

Types of Relationships

Three main relationship types can exist in a database:
¢ One-to-one
¢ One-to-many
¢ Many-to-many

The sections that follow cover each type, so when it comes to creating a relationship, you’ll
know which one to create, when to create it, and why. We'll start off by looking at the one-to-
one relationship, which is perhaps the easiest type of relationship to understand, although it is
one of the least used.

One-to-One

This relationship type isn’t very common within a working database. Typically, there is no real
reason for one record in one table to match just one record in another. This scenario would
really only exist, for example, if you were splitting a very large table into two separate tables.

To illustrate the one-to-one relationship, imagine that in our example bank database there
is a table that holds PIN numbers for ATM cards, keeping them completely separate from the
remainder of the customer records (see Figure 3-1). In most cases, there would be one PIN
number record for each customer record, but there may be exceptions—for instance, a high-
interest deposit account may not have a card, and therefore there would be no associated PIN
number record.



CHAPTER 3 DATABASE DESIGN AND CREATION

Customer’s Bank Account
Primary Key = Customer
Number and Account Type
(e.g., Current, Deposit)

Customer’s Card PIN Number
Primary Key = Customer
Number and Account Type

Figure 3-1. One-to-one relationship

One-to-Many

Perhaps the most common relationship found in a database is the one-to-many relationship.
This is where one master record is linked with zero, one, or more records in a child table.

Using our banking example, say we have a customer master record along with any number
of associated transaction records. The number of these transaction records could range from
none, which corresponds to when a customer is new to the bank and hasn’t made a deposit or
performed a transaction, to one or more, which corresponds to when there has been an initial
deposit in an account, and then further deposits or withdrawal transactions after that (see
Figure 3-2).

Account Transactions
Primary Key = Customer ID
and Order Number

Customers
Primary Key = Customer ID

Figure 3-2. One-to-many relationship

You'll see this concept in action again in the customer-to-transactions relationship we’ll
build for our solution.

Many-to-Many

Many-to-many is the final relationship type that can exist in a database. This relationship
can happen relatively frequently where there are zero, one, or indeed many records in the
master table related to zero, one, or many records in a child table.

An example of a many-to-many relationship might be where a company has several depots
for dispatching goods, seen as the master table, which then dispatch goods to many stores, seen
as the child table (see Figure 3-3). The depots could be located and organized so that different
depots could all supply the same store, and they could be arranged in groups of produce, frozen,
perishables, and bonded. In order for a store to be supplied with a full complement of goods,

69



70

CHAPTER 3 DATABASE DESIGN AND CREATION

it would need to be supplied by a number of different depots, which would typically be in
different locations.

Stores
Primary Key = Store ID

Depots
Primary Key = Depot ID

Figure 3-3. Many-to-many relationship

When building relationships within a database, it is necessary to have a foreign key.
I covered foreign keys briefly earlier in the chapter; let’s take a closer look at them in the
next section.

More on Foreign Keys

A foreign key is any key on a child table where a column, or a set of columns, can be directly
matched with exactly the same number and information from the master table. By using this
foreign key, you can build up the data to return via a relationship.

However, a foreign key does not have to map to a primary key on a master table. Although
itis common to see a foreign key mapped to a primary key, as long as the key in the master
table that is being mapped to is a unique key, you can build a relationship between a master
table and a child table.

The whole essence of a foreign key lies in its mapping process and the fact that it is on the
child table. A foreign key will exist only when a relationship has been created from the child
table to the parent table. But what exactly are the master table and the child tables? To demon-
strate, let’s refer back to our relationship examples. Take, for example, the one-to-many
relationship. The master table would be on the left-hand side, or the “one” side of the relationship,
and the child table would be on the right-hand side, or the “many” side of the relationship (see
Figure 3-4).

There is one final point to mention concerning foreign keys, relationships, and the master
and child tables. It is totally possible for the master table and the child table to be the same
table, and for the foreign key and the unique key to both be defined within the same table. This
is called a self-join or a reflexive relationship. You don’t tend to see this much within a data-
base, as it is quite an unusual situation, although you could use it to ensure that the data in one
column exactly matches the information in another column, just as in any other join.

For example, say you have a table built around customers, and you have two columns, one
of which is a parent customer ID, which holds an ID for the head office and is used to link all
the branches. If the head office is also seen as valid branch of the conglomerate, the second
column could be the specific branch ID, and you could put a link between these two columns
so that there is still a valid link for the head office as a branch as well (see Figure 3-5). Another
example is in an employees table where all employees reside, with a self-join from an employee
back to his or her manager.



Master Table
Primary Key
One Record

Figure 3-4. Foreign key

CHAPTER 3 DATABASE DESIGN AND CREATION

Child Table
Foreign Key
Many Records

Head Office London
(Parent ID 1) (Parent ID 1)
(Branch ID 1) (Branch ID 2)

Washington
(Parent ID 1)
(Branch ID 3)

Figure 3-5. Foreign keys in same table

Now that we’ve looked at relationships, let’s move on to cover how to normalize the database.

Normalization

Normalizing a database is the science of reducing any duplication of data within tables. You
can then build multiple tables related to one another through keys or indexes. The removal
of as much duplication of data will lead to smaller, more compact databases. There will be a
reduced chance of confusion over which column holding the “same” data is correct or should

|



72

CHAPTER 3 DATABASE DESIGN AND CREATION

be modified, and there will also be less overhead involved in having to keep multiple columns
of data up to date.

Note Just a reminder that we’re still in the logical phase of building our solution, and we’re not ready to
start building our database within SQL Server.

A database designer should not normalize with impunity, as this may have an effect on
speed within the database and the retrieval of data. In good normalization, the removal of the
duplication of data will provide faster sorting of data and queries that run faster, thereby improving
performance. Although normalization will produce an efficient database, it is possible to over-
normalize data by creating too many relationships and too many slim, small tables, so that to
retrieve one piece of information requires access to many tables and many joins between these
tables. A knowledgeable designer knows when to stop normalizing and does not take things
just that stage too far, such as having too many relationships. This knowledge comes with
experience and practice mainly, but in our database example you'll learn where to “stop.”

Tip When any reference tables return one row of data without further table references to retrieve that
information, that’s a signal to stop normalization.

In this section of the chapter, we’ll model our example in a method known as logical
modeling. The purpose of the logical model is to show the data that the application must store
to satisfy business requirements. It demonstrates how this data is related and explores any
integration requirements with business areas outside the scope of the development project.
It is created without any specific computer environment in mind, so no optimization for
performance, data storage, and so forth is done.

In logical modeling, the term entity is used to mean a conceptual version of a table. As we're
stillin the logical modeling stage of designing our database, I'll use “entity” rather than “table”
in this discussion, since it is less tied to implementation. Also within logical modeling, a column of
data is referred to as an attribute. To build our logical model, we’ll take the information gathered
previously in the chapter and implement attributes in our entities. From that, we’ll see how we
need to alter our design.

The question remains, what should be contained in an entity? Three principles should
govern the contents of an entity:

¢ Each entity should have a unique identifier.
* Only store information that directly relates to that entity.
¢ Avoid repeating values or columns.

The sections that follow provide more detail about each principle.



CHAPTER 3 DATABASE DESIGN AND CREATION

Each Entity Should Have a Unique Identifier

It must be possible to find a unique row in each entity. You can do this through the use of a
unique identifying attribute or the combination of several attributes. However, no matter
which method you use, it must be impossible for two rows to contain the same information
within the unique identifying attribute(s).

Consider the possibility that there is no combination of attributes in an entity that can
make a row unique, or perhaps you wish to build a single value from a single attribute. SQL
Server has a special data type, called unique identifier, that can do this, but a more common
solution is to build a column attribute with an integer data type, and then set this up as an
identity column. You'll learn more about this technique when building the tables in Chapter 5.

Only Store Information That Directly Relates to That Entity

It can be very easy in certain situations to have too much information in one entity and there-
fore almost change the reason for the existence of the specific entity. Doing so could reduce
efficiency in an OLTP system, where duplicate information has to be inserted. It could also lead
to confusion when an entity that has been designed for one thing actually contains data for
another.

Avoid Repeating Values or Columns

Having attributes of data where the information is an exact copy of another attribute within
either the same entity or arelated entity is a waste of space and resources. However, what tends
to happen is that you have repeated values or attributes within two or more tables, and therefore
the information is duplicated. It is in this scenario that you are expected to avoid the repeating
values and move them elsewhere.

Normalization Forms

Now that you know what should be contained within an entity, how do you go about normal-
izing the data? The normalization forms addressed within this chapter are as follows:

¢ First normal form (INF)
¢ Second normal form (2NF)
¢ Third normal form (3NF)

There are a number of other, “higher” normal forms, but they are rarely used outside
academic institutions, so they will not be covered here.

First Normal Form

To achieve 1NF within a database, it is required that you eliminate any repeating groups of
information. Any groups of data found to be repeated will be moved to a new table. Looking at
each table in turn, we find that we have two tables in our example database that potentially
flout the first requirement of 1NF: customers and shares.

73



74

CHAPTER 3 DATABASE DESIGN AND CREATION

Customers

There are two columns with possible repeating values in this table:

¢ Title: A customer’s title will be Mr., Miss., Ms., or Mrs., all of which you could putin to a
reference table. Some corporations do this; others don’t. It all depends on whether you
want to restrict what users can enter.

¢ Address: The address should be split out into separate lines, one for each part of the
address (e.g., street, district, etc.). It is probably well worth having a reference table for
cities, states, and countries, for example.

Shares

There is one column that will possibly repeat: share name. This is really due to the shares table
actually doing two jobs: holding details about the share, such as its name and the market ticker,
which really are unique; and holding a historical list of share prices. This table actually needs
to be split into Share Details and Share Prices, which we’ll see happening when we discuss
the 3NF.

Second Normal Form

To achieve 2NF, each column within the table must depend on the whole primary key. This
means that if you look at any single column within a table, you need to ask if it is possible to get
to this information using the whole key, or just part of the key. If only part of the key is required,
then you must look to splitting the tables so that every column does match the whole key. So,
you would look at each column within the table and ask, “Can I reach the information contained
within this column just using part of the key?” All of the tables use an ID as the primary key, and
only one column will define that ID. Therefore, to break 2NF with this is almost impossible. Where
you are more likely to break 2NF is a scenario in which the primary key uses several columns.

If welook at all the tables within our example, every column within each table does require
the whole key to find it.

Third Normal Form

To achieve 3NF, you must now have no column that is not defined as a key be dependent on
any other column within the table. Further, you cannot have any data derived from other data
within the table.

The Customers table does have data derived from another table, with account numbers for
each product the customer has bought and financial product details. This means that the
account number plus details about the product such as the date opened, how much is paid
with each payment, and the product type do not belong in the Customers table. If such informa-
tion did remain in the table, then Customers would have multiple rows for the same customer.
Therefore, this table also now needs to be splitinto customer details such as name and address,
and customer products, such as a row for each product bought with the customer details about
that product.

We have now reached full normalization to 3NF of the tables within our database. Let’s
take a moment to clarify where we are now. Figure 3-6 shows that we’'re now moving from a
logical model to a physical model, where we are physically defining what information is stored
where.



CHAPTER 3 DATABASE DESIGN AND CREATION

TransactionTypes Transactions FinancialProducts
§ TranzactionTypeld §  TranzactionId F ProductId
TransactionCescription Custarnetld ProductMame
CreditType TransactionType
AffectCashBalance DrateEntered
Arnount
ReferenceDetails
Motes
RelatedShareId
RelatedProductId
Customers

9 CustornerId
CustomnerTitleId

CustornerFirstMame

CustomerProducts
§ CustornerFinancialProductId

CustomnerOtherTnitials
CustornerLastMame

AddressId CustornerId

AccountMurnber FinancialProductId

AccountTypeld ArnountToCollect

Frequency

LastCollected

ClearedBalance
UnclearedBalance

Datesdded LastCollection

Renewable

Shares SharePrices
G Shareld ¥ SharePriceld
ShareDresc Shareld
ShareTickerId Price
CutrentPrice PriceDrate

Figure 3-6. Physical database model

Denormalization

Despite having normalized our data to be more efficient, there will be times when denormal-
izing the data is a better option. Denormalization is the complete opposite of normalization: it
is where you introduce data redundancy within a table to reduce the number of table joins and
potentially speed up data access. Instances of denormalization can be found in production
systems where the join to a table is slowing down queries, or perhaps where normalization is
not required (e.g., when working with a system in which the data is not regularly updated).

Just because others say your data should be totally normalized, this is not necessarily true,
so don’tfeel forced down that route. The drawback of denormalizing your data too far, though,
is that you’ll be holding duplicate and unnecessary information that could be normalized out
to another table and then just joined during a query. This will, therefore, create performance
issues as well as use a larger amount of data storage space. However, the costs of denormaliza-
tion can be justified if queries run faster. That said, data integrity is paramount in a system. It’s
no use having denormalized data in which there are duplications of data where one area is
updated when there’s a change, and the other area isn’t updated.

Denormalization is not the route we want to take in our database example, so now that we
have all the data to produce the system, it’s time to look at how these tables will link together.

75



76

CHAPTER 3 DATABASE DESIGN AND CREATION

Creating the Sample Database

Let’s now begin to create our example database. In this section, we’ll examine two different
ways to create a database in SQL Server:

* Using the SQL Server Management Studio graphical interface
e Using T-SQL code

Both methods have their own merits and pitfalls for creating databases, as you'll discover,
but these two methods are used whenever possible throughout the book, and where you might
find one method is good for one task, it may not be ideal for another. Neither method is right
or wrong for every task, and your decision of which to use basically comes down to personal
preference and what you're trying to achieve at the time. You may find that using T-SQL code
for building objects provides the best results, as you will see instantly the different possible
selections. However, if the syntax for the commands is not familiar to you, you may well choose
to use a wizard or SQL Server Management Studio. Once you become more comfortable with
the syntax, then a Query Editor pane might become your favored method.

We’ll also examine how to drop a database in SQL Server Management Studio.

Creating a Database in SQL Server Management Studio

The first method of creating a database we’ll look at is using SQL Server Management Studio,
which was introduced in Chapter 2.

Try It Out: Creating a Database in SQL Server Management Studio

1. Before creating the database, you'll need to start up SQL Server Management Studio. To do this, select
Start » All Programs » Microsoft SQL Server 2005 » SQL Server Management Studio.

Tip Throughout the book examples, I’'m working on a server called XP-PRO using the default installed
instance. Replace your server and instance where appropriate.

2. Ensure that you have registered and connected to your server. If the SQL Server service was not previ-
ously started, it will automatically start as you connect, which may take a few moments.

3. In Object Explorer, expand the Databases node until you see the individual databases you installed earlier in
the book. You will find nodes for other areas, such as System Databases, which hold the databases
master, msdb, and so forth. Ensure that the Databases folder is highlighted and ready for the next action,
as shown in Figure 3-7.



CHAPTER 3 DATABASE DESIGN AND CREATION 7

ck Explorer

Connect = 4 i

= [ ¥P-PRO (SQL Server 9,0.1116 - ¥P-PROrdewson)

Sy Databases
Database Snapshots
| Adventuretiorks

| AdventuretorksDwy
| ReportServer

| | ReportServerTempDE
Security

[ DTS 2000 Packages

[l Motification Services

# [ Replication

1 [ Management

| [l Support Services

I_% SOL Server Agent

F F

]

Figure 3-7. The Database node in Object Explorer

A minimum amount of information is required to create a database:

¢ The name the database will be given

* How the data will be sorted

* The size of the database

 Where the database will be located

¢ The name of the files used to store the information contained within the database
SQL Server Management Studio gathers this information using the New Database menu option.

4. Right-click the Databases folder to bring up a context-sensitive menu with a number of different options.
Select New Database, as shown in Figure 3-8.

= LB ¥P-PRO (SOL Server 9.0,1116 - ¥P-PROVdewson)

—J = Generate Scripts... tg

A Ds

| Ac
| Ao
| Re
| Re
Securil
DTS 20

Attach...

Back Up...

Restore Database. ..

Restore Files and Filegroups. ..

Copy Database. .,

Matific
Replice.....
Managernent
Support Services
[+ ‘_ﬁ) SOL Server Agent

Refresh

Figure 3-8. Selecting to create a new database

5. You are now presented with the New Database screen set to the General tab. First enter the name of the
database you want to create—in this case, ApressFinancial. Notice as you type that the two file names
in the Database Files list box also populate. This is simply an aid, and the names can be changed (see
Figure 3-9). However, you should have a very good reason to not take the names that the screen is creating,

as this is enforcing a standard.



78

CHAPTER 3 DATABASE DESIGN AND CREATION

F New Database

=® I
: 1 Script > {53 Hel
eral &= 2H U f
Optionz
_"‘7‘ Filegroups Databaze name EApressF\namclal ]
DOwner: [<defaul> I =
[] Use Rulktest indexing
D atabase files:
| Logical Mame | File Type  Filegroup Iritial Size [ME] | Autogrowth Path |
ApressFinan..  Data PRIMARY 3 % | By 1 ME, urrestricted growth E] C:\Pragiam Files\Microsaft SQL
ApressFinan...  Log Mot Applicable 1 By 10 percent, unrestricted growth E] C:\Program Files\Microsaft SO
Server
HP-PRO
Connectian
HP-PRONdewson
¢ View connection properties
Fieady [ — 5 )
Add

Figure 3-9. General settings in the New Database dialog

The General dialog within this option collects the first two pieces of information. The first piece of information
required is the database name. No checks are done at this point as to whether the database exists (this comes when
you click OK); however, there is some validation in the field so that certain illegal characters will not be allowed.

Note lllegal characters for a database name are as follows:
UK\ -

Keep to alphabetic, numeric, underscore, or dash characters. Also, you may want to keep the database name
short, as the database name has to be entered manually in many parts of SQL Server.

Below the database name is the owner of the database. This can be any login that has the authority to create data-
bases. A server in many—but not all—installations can hold databases that belong to different development groups. Each
group would have an account that was the database owner and at this point you would assign the specific owner.
For the moment, let it default to the <default> account, which will be the account currently logged in to SQL
Server; you'll learn how to change this later. If you’re using Windows authentication, then your Windows account will
be your user ID, and if you're using SQL Server authentication, it will be the ID you used at connection time.

The database owner initially has full administration rights on the database, from creating the database, to modifying
it or its contents, to even deleting the database. It is normal practice for a database administrator type account to



CHAPTER 3 DATABASE DESIGN AND CREATION

create the database, such as a user that belongs to the Builtin\Administratoxrs group, as this is a member of
the sysadmin role, which has database creation rights.

Ignore the check box for full-text indexing. You would select this option if you wanted your database to have columns
that you could search for a particular word or phrase. For example, search engines could have a column that hold
a set of phrases from web pages, and full-text searching could be used to find which web pages contain the words
being searched for.

The File Name entry (off screen to the right in Figure 3-9) is the name of the physical file that will hold the data within
the database you’re working with. By default, SQL Server takes the name of the database and adds a suffix of
_Data to create this name.

The database files are stored on your hard drive with an extension of . MDF—for example,
ApressFinancial Data.MDF. Inthis case, . MDF is not something used by DIY enthusiasts, but it actually stands
for Master Data File and is the name of the primary data file. Every database must have at least one primary data
file. This file holds not only the data for the database, but also the location of all the other files that make up the
database.

It is also possible to have secondary data files. These would have the suffix . NDF. Again, you could use whatever
name you wished, and in fact you could have an entirely different name from the primary data file. However, if you
did so, the confusion that would abound is not worth thinking about. So do use the same name, and if you needed
third, fourth, and so on, then add on a numerical suffix.

You would place the file name for a secondary data file in the row below the ApressFinancial_Data entry in the Data
Files list box, after clicking the Add button. I'll come back to why you can have a secondary data file when | talk
about file properties later in this section.

The File Type column shows whether the file is a data file or a log file, as in a file for holding the data or a file for
holding a record of the actions done to the data.

The next column in the grid is titled Filegroup. This allows you to specify the PRIMARY filegroup and any SECONDARY data
file groups for your database. Every database must have a Primary filegroup. To designate secondary data files,
click the Add button to add a new data or log file and then click on the drop-down arrow on the third row. This will
bring up a dialog box where you can enter SECONDARY into a Name field (see Figure 3-10). You may use any name
for secondary data files, but it is advisable to choose a name that closely resembles the primary filegroup name. You
can also make that new name the default filegroup, which will become the filegroup to which further additions of
data files will be assigned. Also, if you make the new name the default filegroup, it will be in to this area that tables,
views, and so on will be assigned unless otherwise specified.

F New Filegroup for APressFinancial @

Narme: [SECONDARY

Options:
[[] Read-anly
[] Default

Current default filegroup: PRIMARY

Figure 3-10. New filegroup

79



80

CHAPTER 3 DATABASE DESIGN AND CREATION

The logic behind secondary data files is relatively straightforward. A primary filegroup will always—and must
always—contain the system tables that hold the information about the database, the tables, the columns, and so
on. If you have the Autogrowth file option (covered shortly) switched off, then the primary filegroup is likely to run
out of space at some point. If this happens, and no secondary data files are specified, then the database will grind
to a halt until some space is added. However, in most instances, especially when you're first starting out, you can
leave the database with only a primary filegroup. Don’t misunderstand filegroups and space, though: filegroups are
there to help you organize your files within your database storage, and the files that make up the filegroup may span
several disks for a performance issue. You will move files around filegroups for speed, efficiency, security, backups,
and a number of other reasons. However, you can still hold all the files in one filegroup—the primary filegroup—
which is what you’ll do throughout this book.

Note Remember that the primary filegroup may hold not only data, but also the system tables, so the
primary filegroup could fill up purely with information about tables, columns, and so forth.

The next item is the Initial Size (MB) column. The initial size of the database is its size when empty. Don’t forget that
the database won't be totally empty, and some of the space will be initially taken up with the system tables. It is
impossible to say, “I'm creating a database, and the initial size must be nnVB”—the database size depends on
many factors, such as the number of tables, how much static information is stored, to what size you expect the
database to grow, and so on.

Moving on to the next, and possibly most important, area: Autogrowth. This option indicates whether SQL Server will
automatically handle the situation that arises if your database reaches the Initial Size limit. If you don’t set this
option, you will have to monitor your database and expand its size manually, if and when required. Think of the
overhead in having to monitor the size, let alone having to increase the size! It is much easier and less hassle, and
much less of a risk, to let SQL Server handle this when starting out.

Note In a production environment, or even when you’re developing in the future, it will be more common
to switch Autogrowth off and fix the size. This prevents your hard drive from filling up and your server from
being unable to continue. At least when you fix the size, you can keep some hard drive space in reserve to
enable your SQL Server to continue running while the development team tries to clear out unwanted data.

While SQL Server handles increasing the size of the database for you, it has to know by how much. This is where
the Autogrowth option comes in. You can let SQL Server increase the database either by a set amount each time in
megabytes or by a percentage. The default is By Percent, and at this stage it doesn’t really matter. In our example,
the first increase will be 2MB; the second increase will be 2.2MB. For our example, this is sufficient, as there won’t
be a great deal of data being entered. However, the percentage option does give uneven increases, and if you like
order, then By MB the option for you. If you want to change these options by selecting the autogrowth options button
(the ellipsis) to the right of the current setting, you can disable autogrowth of your database in the dialog that appears. You
can also, as discussed, alter it to increase by By MB rather than By Percent.



CHAPTER 3 DATABASE DESIGN AND CREATION

In the autogrowth dialog, the Maximum File Size option sets a limit on how large the database is allowed to grow.
The default is “unrestricted growth”—in other words, the only limit is the spare space on the hard drive. This is
good, as you don’t have to worry about maintaining the database too much. But what if you have a rogue piece of
code entering an infinite loop of data? This scenario is rare, but not unheard of. It might take a long time to fill up the
hard drive, but fill up the hard drive it will, and with a full hard drive, purging the data will prove troublesome. When
it is time to start moving the database to a production environment, the Restrict File Growth (MB) option should be
set to guard against such problems.

The final column that you will find in the New Database dialog by scrolling to the right is Path. In this column, you
define where the database files will reside on your hard drive. If SQL Server is installed on your C drive and none of
the paths for the data were changed, you will find that the default is C: \Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data. Figure 3-9 shows working on a mapped drive that has been given the drive letter
C. The command button with the ellipsis (...) to the right of the path brings up an explorer-style dialog that allows
you to change the location of the database files. For example, if you move to a larger SQL Server installation, moving
the location of these files to a server relevant to the needs of your database will probably be a necessity.

The line that has a File Type setting of Log includes the same information as a Data File Type setting, with one or two
minor exceptions. The File Name places a suffix of _Log onto the database name, and there is no ability to change
the Filegroup column, since the Transaction Log doesn’t actually hold system tables, and so would only fill up
through the recording of actions. It is possible, however, to define multiple log file locations. Filling the transaction
log and not being able to process any more information because the log is full will cause your SQL Server to stop
processing. Specifying more than one log location means that you can avoid this problem. The use of a failover log
file in larger production systems is advisable.

Let’s now move on to discuss the Options area of the New Database dialog (see Figure 3-11).

The first field in the Options area is labeled Collation. We discussed this option in Chapter 1 when installing SQL
Server. If you need to alter a collation setting on a database, you can do so, but care is required. Note that altering
the collation sequence on a server should only be undertaken by the SQL Server system administrator, who will be
aware of the issues and have the authority to perform specific tasks.

The next setting is Recovery Model. You'll learn about backing up and restoring your database in Chapter 7, and this
option forms part of that decision-making process. In development, the best option is to choose the Simple backup
mode, as you should have your most up-to-date source being developed and saved to your local hard drive. The
three modes are as follows:

o Full: Allows the database to be restored to where the failure took place. Every transaction is logged,;
therefore, you can restore a database backup and then move forward to the individual point in time
required using the transaction log.

¢ Bulk-Logged: Minimally logs bulk operations, so if you’re performing a bulk operation such as bulk
copying into SQL Server, or if you're inserting a bulk of rows of data, then only the action is recorded
and not every row is inserted. This will increase performance during these sorts of operations, but if
a problem occurs, then recovery can only occur to the end of the last log backup.

¢ Simple: After each database backup, the transaction log is truncated. This allows restores to be created
to the last successful data backup only, as no transaction log backups are taken. You should not use
this mode in a production environment.

81



82

CHAPTER 3

JE<gt U ptions
f Filegroups
# Estended Properties

4] Refresh (5 Schedule

DATABASE DESIGN AND CREATION

5 Script ~ Lj Help

Callstion:
Recovery model:

Compatibility level:

<server defaulty
Full
SOL Server 2005 (30

Other options:

=
Auto Close False
Auto Create Statistics True
Auta Shiink False
Auto Update Statigtics True
=
Cloze Curzor an Commit Enabled False
Drefault Cursor Glaobal
= C :
ANSINULL Default False
ANEI NULLS Enabled False
ANS| Padding Enabled False
ANS| Warnings Enabled False
Adithrnetic Abart Enabled False
Concatenate Mull Yields Mull False
Mumeric Round-Sbart False
(uoted |dentifiers Enabled False
Recursive Triggers Enabled False
Sarven g .
wp-pro = Page Verify Checksum
ggngsgi\org;wson D atzhase Read-Only False:
2 View connection properties Restrict Access Multiple

ANSI NULL Default
Feady

Figure 3-11. Options area of the New Database dialog

The third item in the Options area is Compatibility Level. It is possible to build a database for previous versions of
SQL Server, provided you are willing to sacrifice the new functionality. This will allow you to connect to a SQL Server
2000-defined database, for example, from SQL Server 2005.

Among the next set of options, the ones of interest to us at the moment are the first four. We’ll examine the remaining
options when we build the database using T-SQL.

e Auto Close: If you want the database to shut down when the last user exits, then set this option to
True. The standard practice is a setting of False, and you should have a good reason to set this option
to True, especially on a remote server.

o Auto Create Statistics: This option relates to the creation of statistics used when querying data. The
standard practice is a setting of True; however, in a production environment, especially if you have a
nightly or weekly process that generates statistics on your data, you would switch this to False. Creating
and updating statistics while your system is being used does increase processing required on your
server, and if your server is heavily used for inserting data, then you will find a performance degradation
with this option set to True. To clarify, though, it is necessary to balance your choice with how much
your system will have to query data.



CHAPTER 3 DATABASE DESIGN AND CREATION 83

o Auto Shrink: Database and transaction logs grow in size not only with increased data input, but also
through other actions, which we’ll discuss in more detail in Chapter 7. You can shrink the size of the
log file through certain actions, some of which can be instigated by T-SQL and some as a by-product
of actions being performed.

o Auto Update Statistics: This is a more common option to have set to True, even on production servers,
although there is still a performance degradation. This option will update statistics as data is inserted,
modified, or deleted for tables for use in indexes, and it will also update statistics for columns within
a table. We’ll discuss indexes further in Chapter 6.

6. Click the OK button at the bottom of the screen to create the database.

SQL Server will now perform several actions. First, it checks whether the database already exists and, if so, you will
have to choose another name. Once the database name is validated, SQL Server does a security check to make sure
that the user has permission to create the database. This is not a concern here, since by following this book, you will
always be logged on to SQL Server with the proper permissions. Now that you have security clearance, the data files
are created and placed on the hard drive. Providing there is enough space, these files will be successfully created,
and it is not until this point that SQL Server is updated with the new database details in the internal system tables.

Once this is done, the database is ready for use. As you can see, this whole process is relatively straightforward,
and simple to complete. Congratulations!

Tip You need not create the database at this point if you don’t want to. There are several other options
available to you to save the underlying T-SQL to a file, to the clipboard, or to the Query window. The first two
options are very useful as methods of storing actions you're creating to keep in your source code repository,
such as Visual SourceSafe. The third option is ideal if you wish to add more options to your database than you
have defined within the wizard set up. All of the options enable you to see the underlying code and understand
what is required to create a database. We’ll look at the code in a moment.

When you return to Object Explorer in SQL Server Management Studio and refresh the
contents, you will see the new database listed, as shown in Figure 3-12.

Connect = 4 £

= []j WP-PRO (SQL Server 9.0,1116 - ¥P-PROVrdewson)
= 1 Databases
[# [ System Databases
[# 4 Database Snapshats
| | Adventuretorks
| | AdventuretorksDwy
® | | ApressFinancial
® | | Fat-Belly.Com
® | | ReportServer
# | 1 ReportServerTempDE

Figure 3-12. The new database within Object Explorer



84

CHAPTER 3 DATABASE DESIGN AND CREATION

SQL Server Management Studio is simply a GUI front end to running T-SQL scripts in the
background. As we progress through the book, you'll see the T-SQL generated for each object
type we're using, as well as create the objects graphically, as you've just seen. There are two
methods you can use to get the script for this database:

¢ Notice that at the top of the database wizard screen is a button that generates the script.
After you click this button, you can indicate where you would like the script sent to.

¢ Once the database has been created, you can right-mouse-click and, as shown in
Figure 3-13, have the details sent to one of three locations.

=] [jj xp-pro (SOL Server 9.0,1116 - ¥P-PROVrdewson)
= [ Databases

[ System Databases

[ Database Snapshats

| Adventuretorks

| AdventuretorksDi

[§ ] ~0ressFinancial
| ] Fat-Belly.Com Mew Database. .,
| | ReportServer Mew Query

8 LG ETar]  Soript Datshase as #|  CREATETo  #|  Mew Query Editor Window
# [ Security .
@ [ DTS 2000 Packages| 155K M opropTo  »| Pl

Clipboard

# [ Motification Services  pename

Figure 3-13. Scripting the database from SSMS

Whichever method you choose to use, the script will be the same, with the exception of a
comment line when you create the script in the second option. The script for generating the
database from this option is listed here so we can go through what is happening.

First of all, SQL Server points itself to a known database, as shown in the following snippet.
master has to exist; otherwise, SQL Server will not work. The USE statement, which instructs
SQL Server to alter its connection to default to the database after the USE statement, points
further statements to the master database.

USE [master]

GO

Next, the script builds up the CREATE DATABASE T-SQL statement built on the options
selected. (We’ll walk through the CREATE DATABASE syntax that could be used in the “Creating a
Database in a Query Pane” section, as this statement doesn’t cover all the possibilities.) Notice
in the code that follows that the name of the database is surrounded by square brackets: [ ].
SQL Server does this as a way of defining that the information between the square brackets is
to be used similarly to a literal and not as a variable. Also it defines that the information is to be
treated as one unit. To clarify, if we want to name the database Apress Financial (i.e., with a
space between “Apress” and “Financial”), then we need to have a method of knowing where
the name of the database starts and ends. This is where the identifier brackets come in to play.



CHAPTER 3 DATABASE DESIGN AND CREATION

Note Recall the Quoted Identifier option that we encountered in Chapter 2, with the T-SQL command SET
QUOTED_IDENTIFIER ON/OFF.Instead of using the square brackets, you can define identifiers by surrounding
them with double quotation marks using this command. Therefore, anything that has double quotation marks
around it is seen as an identifier rather than a literal, if this option is set to ON. To get around this requirement,
you can use single quotation marks, as shown in the example, but then if you do have to enter a single quote
mark—as in the word “don’t”—you would have to use another single quotation mark. So as you can see, this
situation can get a bit messy. | prefer to have QUOTED IDENTIFIER setto OFF, to reduce confusion.

/¥¥xk%% Ohject: Database [ApressFinancial]
Script Date: 05/29/2005 14:14:35 *¥*¥**/
CREATE DATABASE [ApressFinancial] ON PRIMARY

( NAME = N'ApressFinancial', FILENAME = N'C:\Program Files\Microsoft SOL
Server\MSSQL.1\MSSQL\DATA\ApressFinancial.mdf' , SIZE = 3072KB , MAXSIZE =
UNLIMITED, FILEGROWTH = 1024KB )

LOG ON

( NAME = N'ApressFinancial log', FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\ApressFinancial_log.ldf' , SIZE = 1024KB , MAXSIZE =
2048GB , FILEGROWTH = 10%)

COLLATE SOL_Latini_General CP1 CI AS
GO

Have you noticed that every so often there is a GO command statement? This signals to SQL
Server—or any other SQL Server utility—that this is the end of a batch of T-SQL statements,
and the utility should send the batch of statements to SQL Server. Certain statements need to
be in their own batch and cannot be combined with other statements in the same batch. To
clarify, a GO statement determines that you have come to the end of a batch of statements and that
SQL Server should process these statements before moving on to the next batch of statements.

Note GO statements are used only in ad hoc T-SQL, which is what I’'m demonstrating here. Later in the
book, you'll build T-SQL into programs called stored procedures. GO statements are not used in stored
procedures.

Next, we define the new database’s compatibility level. This statement defines that the
database’s base level is SQL Server 2005. It is possible to define SQL Server to an earlier level, as far
back as SQL Server version 6.0, by changing the version number in the parameter @new_cmptlevel.
You'll learn more about this code in Chapter 10.

EXEC dbo.sp_dbcmptlevel @dbname=N'ApressFinancial', @new_cmptlevel=90
GO

85



86

CHAPTER 3 DATABASE DESIGN AND CREATION

We then can define the remaining database options. The statements have a GO statement
separating them, but in this scenario, the GO statements are superfluous. So why are they included?
When SQL Server is preparing the wizard, it is safer for it to place GO statements after each state-
ment, as it then doesn’t have to predict what the next statement is, and therefore whether the
end of the batch of transactions has to be defined.

It is possible to set up a database to allow searching of values within columns of your
tables. This is a great utility, if you need it, but it does have a processing overhead when
working with your data.

EXEC [ApressFinancial].[dbo].[sp_fulltext_database] @action = 'enable’
GO

There will be times when columns have no data in them. This is known as a special value
of NULL. The ANSI standard states that if you are comparing two columns that have this special
NULL value in them, then the comparison will fail. This is different from columns that do have
data in them. Setting this value to OFF alters the standard, so when you do compare two NULL
values, the comparison will pass.

ALTER DATABASE [ApressFinancial] SET ANSI_NULLS OFF
GO

Still with NULL values, setting ANSI_NULL_DEFAULT to OFF means that a column’s default
value is NOT NULL. We look at NULL values in Chapter 5 during our table creation discussion.

ALTER DATABASE [ApressFinancial] SET ANSI_NULL_DEFAULT OFF
GO

There are columns of characters than can store variable-length data. We’'ll come across
these when we build our table in Chapter 5. If set to ON, this option makes every column of data
contain the maximum number of characters, whether you sent through just one character or
many more. It is common to have this set to OFF.

ALTER DATABASE [ApressFinancial] SET ANSI_PADDING OFF
GO

If an ANSI standard warning or error occurs, such as divide by zero, then switching the
ANST_WARNINGS setting to OFF will suppress these. A value of NULL will be returned in any columns
that have the error.

ALTER DATABASE [ApressFinancial] SET ANSI_WARNINGS OFF
GO

If the ANSI_WARNINGS setting was ON, and you performed a divide by zero, the query would
terminate. To change this, we tell SQL Server not to abort when there’s an arithmetic error:

ALTER DATABASE [ApressFinancial] SET ARITHABORT OFF
GO



CHAPTER 3 DATABASE DESIGN AND CREATION

If you have a database that is only “active” when users are logged in, then switching the
AUTO_CLOSE setting to ON would close down the database. This is unusual, as databases tend to
stay active 24/7, but closing unwanted databases frees up resources for other databases on the
server to use if required. One example of when to switch this setting ON is for a database used
for analyzing data by users through the day (e.g., one in an actuarial department, where death
rates would be analyzed).

ALTER DATABASE [ApressFinancial] SET AUTO_CLOSE OFF
GO

SQL Server uses statistics when returning data. If it finds that statistics are missing when
running a query, having the following option ON will create these statistics.

ALTER DATABASE [ApressFinancial] SET AUTO_CREATE_STATISTICS ON
GO

If the volume of data within your database reduces (e.g., if you have a daily or weekly
archive process), you can reduce the size of the database automatically by setting the following
option ON. It is standard to have the option OFF because the database size will simply increase
as dataisre-added. It would be switched ON only if a reduction in the database is required—due
to disk space requirements, for example—but it is never a good idea for this option to kick in
when the database is in use, so really it is best to keep it off.

ALTER DATABASE [ApressFinancial] SET AUTO_SHRINK OFF
GO

When data is added or modified to SQL Server, statistics are created that are then used
when querying the data. These statistics can be updated with every modification, or they can
be completed via a T-SQL set of code at set times. There is a performance reduction as data is
inserted, modified, or deleted, but this performance is gained back when you want to return
data. Your application being a pure insertion, pure query, or a mix determines whether you'll
want this option on. If you have a pure insertion application, you probably want this option
switched off, for example, but this is an optimization decision.

ALTER DATABASE [ApressFinancial] SET AUTO_UPDATE_STATISTICS ON
GO

A cursor is a special type of data repository that exists only while the cursor is defined. It’s
a temporary memory resident table, in essence. A cursor can exist for the lifetime of a program
but, if you switch the following setting to ON, when a batch of data is committed or rolled back
during a transaction, the cursor will be closed.

ALTER DATABASE [ApressFinancial] SET CURSOR_CLOSE_ON_COMMIT OFF
GO

A cursor can either exist locally or globally. This means that if GLOBAL is selected for this
option, then any cursor created in a program is available to any subprogram that is called.
LOCAL, the other option, indicates that the cursor exists only within that program that created it.

87



88

CHAPTER 3 DATABASE DESIGN AND CREATION

ALTER DATABASE [ApressFinancial] SET CURSOR_DEFAULT GLOBAL
GO

If you're concatenating character fields and if the following option is ON, then if any of the
columns has a NULL value, the result is a NULL.

ALTER DATABASE [ApressFinancial] SET CONCAT_NULL_YIELDS NULL OFF
GO

When you’re working with some numeric data types, it is possible to lose precision of the
numerics. This can occur when you move a floating-point value to a specific numeric decimal
point location, and the value you're passing has too many significant digits. If the following
option is set to ON, then an error is generated. OFF means the value is truncated.

ALTER DATABASE [ApressFinancial] SET NUMERIC_ROUNDABORT OFF
GO

As mentioned earlier, when you're defining database names, if there is a space in the name
or the name is a reserved word, it is possible to tell SQL Server to ignore that fact and treat the
contents of the squared brackets as a literal. You are using quoted identifiers when you use the
double quotation mark instead of square brackets. We'll delve into this further when inserting
data in Chapter 8, as there are a number of details to discuss with this option.

ALTER DATABASE [ApressFinancial] SET QUOTED_IDENTIFIER OFF
GO

The following option relates to a special type of program called a trigger. A trigger can run
when data is modified, and one trigger can call another trigger. A setting of OFF means that this
cannot take place.

ALTER DATABASE [ApressFinancial] SET RECURSIVE_TRIGGERS OFF
GO

I mentioned statistics earlier with another option and how they can be updated as data is
modified. The following option is similar to AUTO_UPDATE_STATISTICS. If this option is set to ON,
the query that triggers an update of the statistics will not wait for the statistics to be created.
The statistics update will start, but it will do so in the background asynchronously.

ALTER DATABASE [ApressFinancial] SET AUTO_UPDATE_STATISTICS_ASYNC OFF
GO

This option governs whether there is a relationship between datetime columns in related
tables:

ALTER DATABASE [ApressFinancial] SET DATE_CORRELATION_OPTIMIZATION OFF
GO



CHAPTER 3 DATABASE DESIGN AND CREATION

The following option defines how the filegroups are set: READ_WRITE or READ ONLY. The use
of READ_ONLY is ideal where you have a backup database that users can use to inspect data. The
database is an exact mirror of a production database, for example, so it has the security on it set
to allow updates to it, but by setting this option to READ_ONLY you can be sure that no updates
can occur.

ALTER DATABASE [ApressFinancial] SET READ_WRITE
GO

The next option determines how your data can be recovered when a failure such as a
power outage happens. In other words, the following option defines the recovery model, as
discussed earlier. We’ll look at this in more detail when we discuss database maintenance in
Chapter 7.

ALTER DATABASE [ApressFinancial] SET RECOVERY FULL
GO

The following option defines the user access to the database. MULTI_USER is the norm
and allows more than one user into the database. The other settings are SINGLE_USER and
RESTRICTED USER, where only people who have powerful privileges can connect. You would set
your database to RESTRICTED USER after a media or power failure, for example, when a database
administrator needs to connect to the database to ensure everything is OK.

ALTER DATABASE [ApressFinancial] SET MULTI_USER
GO

When you have an I/O error (e.g., a hard drive might be on its way to breaking down), then
this option will report an error if checksums don’t match:

ALTER DATABASE [ApressFinancial] SET PAGE_VERIFY CHECKSUM
GO

Finally, the following line is used for controlling whether permissions checks are required
when referring to objects in another database:

ALTER DATABASE [ApressFinancial] SET DB_CHAINING OFF

Dropping the Database in SQL Server Management Studio

To follow the next section properly and build the database using code, it is necessary to remove
the database just created. It is also handy to know how to do this anyway, for those times when
you have made an error or when you wish to remove a database that is no longer in use. Deleting
a database is also known as dropping a database.

89



90 CHAPTER 3 DATABASE DESIGN AND CREATION

Try It Out: Dropping a Database in SQL Server Management Studio

1. If SQL Server Management Studio is not started, then start it up now and expand the nodes until you see
the database ApressFinancial.

2. Right-click ApressFinancial to bring up the context menu.

3. Click the Delete option, as shown in Figure 3-14.

= ih *p-pro (S0L Server 9.0,1116 - XP-PROVrdewson)
= [ Databases

| [ System Databases

[ Database Snapshots

| Adventuretiorks

| AdventuretiorksDwy

MNew Database...
| RepartServer Mew Query

] _j ReportServerTe  Script Database as »
# [ Security
# [ DTS 2000 Packages
# [ Motification Service:  Rename
[ [ Replication m
# [ Management 4
# [ Support Services Refresh
& 3 5L Server Agent Properties

Tasks 3

Figure 3-14. Deleting a database within SSMS

4. The dialog shown in Figure 3-15 will display. Select Close Existing Connections and then click OK.

Delete Object

Select apage - T ' A
f iy ] Refresh \‘) Schedule ; Script Lj Help
Object to be deleted
Server - -
“p-pro Object Mame | Object Type | Cwrier | Status Meszage
Coirading ApressFinancial Databaze HP-P.
HP-PROdewson
2 View connection properties
< ¥
Ready Delete backup and restore history information for databases
Cloge existing connections
[ Ok, ] [ Cancel

Figure 3-15. Selecting to delete a database in the Delete Object dialog

The first check box, Delete Backup and Restore History Information for Databases, gives you the option of keeping
or removing the history information that was generated when completing backups or restores. If you want to keep
this information for audit purposes, then uncheck the box.

The second check box is very important. If there is a program running against a database, or if you have any design
windows or query panes open and pointing to the database you want to delete, then this option will close those con-
nections. If you are deleting a database, then there really should be no connections there. This is a good check and



CHAPTER 3 DATABASE DESIGN AND CREATION

will prevent accidents from happening, and it also allows any rogue databases to be removed without having to
track down who is connected to them.

5. Click OK. The database is now permanently removed.

When you click the OK button, SQL Server actually performs several actions. First, a command is sent to SQL Server
informing it of the name of the database to remove. SQL Server then checks that nobody is currently connected to
that database. If someone is connected, through either SQL Server Query Editor or a data access method like
ADO.NET, then SQL Server will refuse the deletion. Only if you select Close Existing Connections will this process be
overridden

For SQL Server to refuse the deletion, it does not matter if anyone connected to the database is actually doing any-
thing; all that is important is the existence of the connection. For example, if you selected ApressFinancial in
Query Editor, and then returned to SQL Server Management Studio and tried to drop the database, you would see the
error shown in Figure 3-16.

Delete Object

ctapage T ( 3

#] Refresh Schedule Script — Hel
= General £l \‘) ;3 ? Lj i
Connection

Object to be deleted

Server. -
*p-pro Object Name | Obiject Type: ‘ Owrer ‘ Status | Message
Eeradtion: 9 ApressFinancial Database ¥P-P... Emor Drop failed for Database ‘SpressFinancial’, [Microsolt. SglServer. S mol
#P-PRO%rdewson
2 Wiew connection properties
Progress P >
@ Error occurred Delete backup and restore history information for databases

[] Close existing connections

Figure 3-16. Failed database deletion

Tip Errors like the one shown in Figure 3-16 provide hyperlinks to documentation that can give you further help.

Once SQL Server has checked that nobody is connected to the database, it then checks that you have permission
to remove the database. SQL Server will allow you to delete the database if it was your user ID that created it, in
which case you own this database and SQL Server allows you do what you want with it. However, you are not alone
in owning the database.

If you recall from Chapter 1, there was mention of the sa account when installing SQL Server. Since it is the most
powerful ID and has control over everything within SQL Server, there were warnings about leaving the sa account
without any password and also about using the sa account as any sort of login ID in general. This section also mentioned
that the sa account was in fact a member of the sysadmin server role. A role is a way of grouping together similar
users who need similar access to sets of data. Anyone in the sysadmin role has full administrative privileges—and
this includes rights to remove any database on the server.

So whether you are logged in as yourself or as sysadmin, take care when using SQL Server Management Studio
to drop a database.

91



CHAPTER 3 DATABASE DESIGN AND CREATION

Creating a Database in a Query Pane

To use the second method of creating databases, you first need to drop the ApressFinancial
database as described in the previous section.

Try It Out: Creating a Database in a Query Pane

1. From the standard toolbar of SQL Server Management Studio, select New Query.
2. In the query pane, enter the following T-SQL script:

CREATE DATABASE ApressFinancial ON PRIMARY

( NAME = N'ApressFinancial',
FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSOL.1\MSSQL\DATA\ApressFinancial.mdf' , SIZE = 3072KB ,
MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB )

LOG ON

( NAME = N'ApressFinancial _log',
FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\ApressFinancial_log.ldf' ,
SIZE = 1024KB , MAXSIZE = 2048GB , FILEGROWTH = 10%)
COLLATE SQL_Latini_General CP1 CI_AS
GO

3. Execute this code by pressing F5 or Ctrl+E, or by clicking the Execute Query toolbar button.

4. Once the code is executed, you should see the following result:

Command(s) completed successfully.

How It Works: Creating a Database in Query Editor

The main focus of this section of the chapter is the code listed in the previous exercise: the CREATE DATABASE
command.

When placing code in the Query Editor, you're building up a set of instructions for SQL Server to act on. As you
progress through the book, you will encounter many commands that you can place in Query Editor, all of which build
up to provide powerful and useful utilities or methods for working with data. An in-depth discussion of Query Editor
took place in Chapter 2, so if you need to refresh your memory, take a quick look back at the material covered in
that chapter.

Before we actually looking at the code itself, we need to inspect the syntax of the CREATE DATABASE command:



CHAPTER 3 DATABASE DESIGN AND CREATION 93

CREATE DATABASE <database name>
[ON
( [ NAME = logical name, ]
FILENAME = physical file name
[, FILESIZE = size ]
[, MAXSIZE = maxsize ]
[, FILEGROWTH = growth increment] ) ]
[LOG ON
( [ NAME = logical name, ]
FILENAME = physical file name
[, FILESIZE = size ]
[, MAXSIZE = maxsize ]
[, FILEGROWTH = growth increment] ) ]
[COLLATE collation name ]

The parameters are as follows:

e database name: The name of the database that the CREATE DATABASE command will create
within SQL Server.

® ON: The use of the ON keyword informs SQL Server that the command will specifically mention where
the data files are to be placed, as well as their name, size, and file growth. With the ON keyword
comes a further list of comma-separated options:

* NAME: The logical name of the data file that will be used as the reference within SQL Server.
e FILENAME: The physical file name and full path where the data file will reside.

e SIZE: The initial size, in megabytes by default, of the data file specified. This parameter is optional,
and if omitted it will take the size defined in the model database. You can suffix the size with KB, MB,
GB, or TB (terabytes).

e FILEGROWTH: The amount that the data file will grow each time it fills up. You can specify either a
value that indicates by how many megabytes the data file will grow or a percentage, as discussed
earlier when we created a database with SQL Server Management Studio.

® LOG ON: The use of the LOG ON keyword informs SQL Server that the command will specifically
mention where the log files will be placed, and their name, size, and file growth:

e NAME: The name of the log file that will be used as the reference within SQL Server.

e FILENAME: The physical file name and full path to where the log file will reside. You must include the
suffix . LDF. This could be a different name from the FILENAME specified earlier.

e SIZE:Theinitial size, in megabytes by default, of the log file specified. This parameter is optional, and
if omitted it will take the size defined in the model database. You can suffix the size with KB, MB, GB,
or TB.

e FILEGROWTH: The amount by which the log file will grow each time the data file fills up, which has
the same values as for the data file’s FILEGROWTH.

e COLLATE: The collation used for the database. Collation was discussed earlier in the chapter when
we created a database with SQL Server Management Studio.



94

CHAPTER 3 DATABASE DESIGN AND CREATION

It's now time to inspect the code entered into Query Analyzer that will create the ApressFinancial database.

Commencing with CREATE DATABASE, you are informing SQL Server that the following statements are all param-
eters to be considered for building a new database within SQL Server. Some of the parameters are optional, and SQL
Server will include default values when these parameters are not entered. But how does SQL Server know what
values to supply? Recall that at the start of this chapter we discussed the built-in SQL Server databases, specifically
the model database. SQL Server takes the default options for parameters from this database unless they are oth-
erwise specified. Thus, it is important to consider carefully any modifications to the model database.

The database name is obviously essential, and in this case, ApressFinancial is the chosen name.

The ON parameter provides SQL Server with specifics about the data files to be created, rather than taking the
defaults. Admittedly in this instance, there is no need to specify these details, as by taking the defaults, SQL Server
would supply the parameters as listed anyway.

This can also be said for the next set of parameters, which deal with the Transaction Log found with LOG ON. In this
instance, there is no need to supply these parameters, as again the listed amounts are the SQL Server defaults.

Finally, the collation sequence we specify is actually the default for the server.
Taking all this on board, the command could actually be entered as follows, which would then take all the default
settings from SQL Server to build the database:

CREATE DATABASE ApressFinancial

We can then set the database options as outlined during the discussion of the script earlier in the chapter.

Similarly, if we want to delete the database using T-SQL code, it’s a simple case of ensuring that we are not
connected within that particular query pane to ApressFinancial via the USE command. Then we use the
command DROP followed by the object we want to drop, or delete, and then the name of the object.

USE Master
GO
DROP DATABASE ApressFinancial

Summary

In this chapter we looked at designing and building our example database. The steps covered
are very important on the development front. The database itself requires careful thought
regarding some of the initial settings, but as time moves on and you have a better idea about
the volume of data and how people will use the data, you may find you need to alter some of
these options. As you move to user acceptance testing, keep an eye on the statistic options
mentioned here.

In the next chapter, we’ll start adding some meat to the bones of our example database by
creating tables to hold data.



CHAPTER 4

Security

Security isimportant—more so, in fact, than design, creation, and performance. If your database
had no security measures in place, absolutely anyone could come along and steal or corrupt
the data, causing havoc to you and your company. And not just in one database, but on every
database in every server.

Security can be enforced in many ways on a SQL Server: by Windows itself through
Windows authentication; by restricting users’ access to sensitive data through views; or by
specifically creating users, logins, and roles that have explicit levels of access.

This chapter covers some parts of security, although it is impossible to talk about every
area of security, mainly because we haven'’t seen much of SQL Server’s contents yet! In Chapter 1
we looked at the difference between Windows authentication and SQL Server authentication,
so already you know your options with regard to the type of security you might wish to use.
So what is next?

First of all, you need to understand what users, roles, and logins are.

Logins

The only way anyone can connect to SQL Server is via a login. As discussed in Chapter 1, this
doesn’t necessarily mean that every user has to have a specific login within SQL Server itself.
With Windows authentication, if a user belongs to a specific Windows group, just by belonging
to that group, providing that group is contained within SQL Server, the account will have
access to SQL Server.

When a database is created, initially only the database owner has any rights to complete
any task on that database, whether that be to add a table, insert any data, or view any data. This
was the case when we first created our ApressFinancial database in Chapter 3. It is only when
the database owner grants permissions to other users that they gain extra access to complete
tasks.

It is common practice to create a Windows group and place Windows user accounts into
that group. This is how we wish to work with our ApressFinancial system, and so we will create
some Windows groups for it. We will group logins depending on which department we are
dealing with and what we want to allow each group to do. We will allow some groups to add
new financial products, other groups to add customers, and, finally, a group set up for batch
processes to add interest and financial transactions. We will create a few of these groups so that
later in the book we can see security in action.

95



96

CHAPTER 4 SECURITY

In Chapter 1, I mentioned that you should log in as an administrator account to install SQL
Server. This would mean that you are in the BUILTIN/Administrators group, which is a group
defined for the local computer that contains Windows users accounts with administrator
rights. We can therefore already connect to SQL Server with this login, which includes VMcGlynn.
AJMason could not log in, though. However, by adding this account to a group we will be
creating, and then adding that group to SQL Server, we will see how they both can.

Note The process we are about to go through would be the same if we were adding a single user.

Try It Qut: Creating a Group

1. Navigate to your Control Panel, then select Administrative Tools » Computer Management.

2. This brings up a screen that shows different aspects of your computer management. We are interested
in selecting Local Users and Groups » Groups. When you do so, you will see that there are already
several groups within your computer, as shown in Figure 4-1, as well as a large number of groups
already defined for the use of SQL Server. These groups differ from groups that we will be defining for
accessing the data.

LI Computer Management EHEHE\
=] i Action_ View  Window _Help | =12
« = | B[ @2

=) Computer Management (Localy
=, Svstem Todls
[ Event Wiewer

Hame | Description [
5 Administratars
85 Backup Operators

Administrators have complete and unrestricted access to the computer
Backup Operators can override security restrictions For the sole purp...

& E Sedtolre, 0 uests (Guests have the same access 2 members of the Users group by def...
5t SEU JSersancl Grage 2 Nietwork Configuration Operators Wembers in this group can have some administrative privieges to ma. .
= G::I”Jsps Powser Lisers Power Users possess most administrative powers with some restricti...

1 &) Performance Logs and Alerts €5 Remote Desktop Lisers Members in this gm:pF are qrakri\tad thedrlqht‘tn lecen Tamﬂlte\y .
2, Device Mansger Users Users are prevented from making accidental or inkentional system-ui. .

518 Storage 5 HelpServicesGroup Group For the Help and Support Center

@ Removable Storage 85 501 Server 20050TSUser §4P-PRO Mernbers in the graup have the required access and priviegss ta be ...
Disk Defragmenter 5 5L Server2005MSFTEUsers<P-PROFMSSQLSERYER Mernbers in the graup have the required access and privieges ta be ...
Disk Management @SQLServer2005MSFTEUser$¥P-PRO$USERTESTING Membets in the group have the required access and privileges to be ..,

5 50l Server2005MSOLAPLser §XP-PROSMSSOLSERVER
gSQLServerZUUSMSSQLServerADHe\perUserﬂ;XPrPRO
5 501 Server200SMES0LUserfiP-PROSMESOLEERVER

] Sp Services and Applications IMembers in the group have the required access and privileges ko be ..
Membets in the group have the required access and privileges to be ...

Members in the group have the required access and privileges to be ...

W S0 Server Z00SMSSQLUser§XP-PROJUSER TESTING
@5 5L Server 205Nt ficationSer vicesUser §4P-PRO

5 5L Server Z00SReportServerUser§iP-PROJMSSOLSERVER
5 501 ServerZD0S30L AgentUser§1P-PROJMSSGLSERVER
5 S0 Server 2005301 AgentUser 4P-PROJUSER TESTING

95 5L Server 2005501 Browser UserfP-PRO

|~
)

45 5L Server 200SReportingServicesiebServicelserfrP-PRO. .

Members in the group have the required access and privileges to be ...
Members in the group hawe the required access and privileges to be ..
Members in the group have the required access to be assigned as th...
Members in the group hawe the required access and privileges to be ...
Members in the group have the required access and privileges to be ...
Members in the group have the required access and privileges to be ...
Members in the group hawe the required access snd privileges ta be ...

Figure 4-1. List of groups on the computer

3. AJMason is a product controller and can add new corporate financial products. Right-click Groups and
select New Group. This will bring up the New Group screen, as shown in Figure 4-2, where we can add
our grouping for our product controllers. Apress Product Controllers is the group we’ll use in
this chapter.



CHAPTER 4 SECURITY

Group name: |Apress_F'roduct_EontroIIers |
Description: |Allows the adding of Financial Products |
Members:
Add... Remove
[ Create ] [ Close ]

Figure 4-2. Adding the first group for our application

4. By clicking Add, we can then add all the Windows user accounts that we wish to be part of this group.
We can either type AJMason or click Advanced, which brings up a selection dialog box. Clicking the
Check Names button adds the user to the group.

If AJMason was on your company network, you would have to prefix the name with the domain name. For example,
if you had a network domain called Apress and AJMason was on that domain (as opposed to your local computer
and therefore your local domain as is the case for our example), then you would type Apress\AJMason. Figure 4-3 shows
AJMason is on the XP-PRO local domain.

Select Users

Select this object type:

|Users or Built-in zecurity principals | [ Object Types... ]
From this location:

|><F"F'F‘D | [ Lacations... ]
Enter the object names to select [examples]:

HP-PROMAIMaz0n Check Mames
ok J( caes ]

Figure 4-3. AJMason found, ready to add to our group

97



98 CHAPTER 4 SECURITY

5. Click OK and then click the Create button on the New Group screen. Once you have created the group,
you should close the New Group dialog box, as we don’t want to create any more groups at the moment.
This brings us back to the Computer Management dialog box, where we see our new group added, as
shown in Figure 4-4.

Marme Description
gndministrators Administrators have complete and u...
Backup Operatars Backup Operators can override secu. .,
gGuests Guests have the same access as me...
gNetwork Configuration Operators Members in this group can have som. ..
Power Users Power Users possess most administr, ..
gRemote Desktop Users Members in this group are granted £...
gUsers Users are prevented from making ac...
gApress_Product_ControIIers Allows the adding of Financial Products
gHeIpServicesGroup Group for the Help and Support Center
gSQLServerZDDSDTSUser$XP-PRO Members in the group have the requ...

gSQLServerZDDSMSFTEUser$XP-PRO$MSSQLS. .. Members in the group have the requ...
gSQLServer2DDSMSFTEUser$XP-PRO$USERTE. .. Members in the group have the requ...
gSQLServerZDDSMSOLAPUser$XP-PRO$MSSQ. .. Members in the group have the requ...
gSQLServer2DD5MSSQLServerADHeIperUser$. .. Members in the group have the requ...
gSQLServerZDDSMSSQLUser$XP-PRO$MSSQL. .. Members in the group have the requ...
gSQLServerZDDSMSSQLUser$XP-PRO$USERTE. .. Members in the group have the requ...
gSQLServer2DD5NotiFicationServicesUser$XP-. .. Members in the group have the requ...
gSQLServer2DD5ReportingServicesWebServic. .. Members in the group have the requ...
% 50LServer2005RepartServerLiserfxP-PROS...  Members in the aroup have the redu...

Figure 4-4. New group added

6. We now need to add this group to SQL Server. Open SQL Server Management Studio and navigate to
Security/Logins within the Object Explorer. Once there, click New Login, which will bring up the dialog
box shown in Figure 4-5.

7. Click Search to display the Select User or Group dialog box where we will begin our search for our group,
as shown in Figure 4-6. This is very similar to the previous search box we saw but has been defined to
search for a user or built-in security principal. However, by default, the search will not search for groups.
You need to click Object Types and ensure the Groups option is checked on the screen that comes up.



E Login - New

CHAPTER 4 SECURITY

Select apage

& General

# Server Roles

5 Database Access
127 Permissions

Connection

Server
®P-PRO

Connection:
HP-PROMdewson

_‘!_'f “igw connection properties

Progress

Feady

1#] Refresh (B Schedule S Script - E Help

Authentication

& Windows authentication

Login name:

Server access:

() Grant server access

() Diery server access

) SOL Server authentication

| Search...

Defaults
D atabase: | master » |
Language: | <default> w |

Ok, _] [ Cancel

Figure 4-5. Creating a new login

Select User or Group

Select this object type:

| User or Built-in zecurity principal

| [ Object Types... ]

From this location:

|><F'-PF|D

|[ Locations... ]

Enter the object name to select [examples):

oK

Check Mames

Cancel

Figure 4-6. Searching for groups

8. This will allow you to click Advanced, which will then let you complete the search for the group you
want. Highlight this group, Apress_Product_Controllers in this case, as shown in Figure 4-7, and

click OK.

99



100 CHAPTER 4 SECURITY

Select User or Group

Select this object type:

|User, Group, or Built-in zecurity principal | [ Object Types... ]

From this location:
|><F"F'F‘D H Locations... ]

Common Queries

N ame:

| | Columriz...

| |

Stop

Dizabled accounts

Mon expinng password

ak. ] [ Cancel ]

M ame [ROM] In Faolder ~
€7 Administrator %P-PRO |
@Administrators *P-PRO =
€ sMason HP-PRO |
@ANDNYMDUS LOGON

{ulgli
€ ASPNET
@Authenticated Uszers
!ﬁ Backup Operators wP-PRO
€TEATCH
€7 CREATOR GROUP

E:

T CREATOR OWNER

Figure 4-7. Finding the Apress_Product_Controllers group

9. This brings us back to the Select User or Group dialog box where we will see our group has been added,
as shown in Figure 4-8. We can then click OK.

Select User or Group

Select this object type:

|User, Group, or Built-in security principal | [ Object Types. . ]

From this location:
|><F"F'F‘D |[ Lacations... ]

Enter the object name to select [examples):
#P-PROMADress Product Controllers Check Mames

T

Figure 4-8. Group found, ready for adding



CHAPTER 4 SECURITY 101

Note We are now back at the new login screen where the group will be populated. If we clicked OK at this
point, this would only allow the group to connect to SQL Server and nothing else. Members of this group would
therefore not be able to do anything.

10. So we need to give this group access to the databases we wish to allow them to use. It is vital that you only
allow users or groups of users access to the resources they need and don’t use the “allow everything, it's
easier” approach that | have seen on my travels. We only want our users to see the ApressFinancial
database, so we select that database on the Users mapped to this login section of the screen shown in
Figure 4-9. For the moment, click the Script button. (When you select this option, it doesn’t matter which
of the three options you choose when selecting where to put the T-SQL.) We will come back to logins in
the next section when we examine roles.

‘S Script - Help

General
Server Roles

Uszer Mapping Uszers mapped to this login:
Securables Map [ratabase User Default Schema ]
L5 Status [] : Adventuresiorks

[0 AdventureiworksDiw

ApressFinancial #“P-PROMApress_Produ... E]
[0 master =
[0 model

[0 madb

[0  ReportServer

.| ReportServerT empDB
[0 tempdb

O

Testing b

Connection

Server
®P-PRO

Connection:
HP-PROMdewson

1!_‘# “igw connection properties

r—

Feady

Ok ] [ Cancel

Figure 4-9. Giving a login access to a database

11. The SQL generated from Figure 4-9 follows. We will look at it in more detail in a moment when we
examine more closely adding a login.



102

CHAPTER 4 SECURITY

USE [master]

GO

CREATE LOGIN [XP-PRO\Apress Product Controllers]
FROM WINDOWS WITH DEFAULT DATABASE=[master]

GO

USE [ApressFinancial]

GO

CREATE USER [XP-PRO\Apress Product Controllers]
FOR LOGIN [XP-PRO\Apress Product Controllers]

GO

12. Going back to SQL Server Management Studio, you can see in Figure 4-10 that we have moved to the

Status page. Here we can grant or deny access to SQL Server for a Windows account, SQL Server login,
or in our case Windows group. The second set of options is for enabling or disabling SQL Server logins.
The final set of options, specific to SQL Server authentication, allows an account to be unlocked after it
has been locked out.

E Login - New
Select.

2B ‘=5 Script - Help
|27 General ; E
# Server Roles
g“ Uszer Mapping Settings

1 Securables
T Permizzion to connect to database engine;

(&) Grant

O Dery
Logir:

(%) Enabled

() Dizabled

==

Status

SOL Server authenticatior:

Connection

Server
®P-FRO

Connection:
HP-PROMdewson

27 Wiew connection properties

> Scripting completed
@ successiully.

Ok ] [ Cancel

Figure 4-10. Login status

13. We can now click OK to add the group. This will complete the addition to SQL Server.




CHAPTER 4 SECURITY 103

Now that we have created the new group and placed it within SQL Server, we could now
switch the user account to AJMason and successfully connect. However, as AJMason, we would
only be able to explore the ApressFinancial database we created in Chapter 3.

As Imentioned at the start of this discussion, the process would be the same if you wished
to add a single user.

For SQL Server authentication, each user needs to be added separately. The process is very
similar to that for adding users with Windows authentication, but you must specify a password
expiration and enforce password complexity. This will force the Windows password policies
for expiration and complexity that exist on this account to apply to this login’s password.

So now that we have added a login graphically, the same can be achieved via a query pane
using T-SQL code. We saw the code generated previously, and we will use it as the basis of our
next login creation. This is a very straightforward process, so let’s take a look at it next.

Try It Out: Programmatically Working with a Login

1. From SQL Server, select New Query » Database Engine Query. This should bring up an empty query
pane similar to the one we saw in Chapter 2.

2. We want to add a second login group. We have available two different methods, and which one we use
depends on whether we are going to use Windows authentication or SQL Server authentication. Our first
example takes a look at the Windows authentication method. Locate the code from Steps 10 and 11 in
the previous “Try It Out: Creating a Group” section (it is repeated below for ease of reference).

CREATE LOGIN [XP-PRO\Apress Product Controllers]
FROM WINDOWS

WITH DEFAULT DATABASE=[master],

DEFAULT LANGUAGE=[us_english]

Go

USE [ApressFinancial]

G0

CREATE USER [XP-PRO\Apress Product Controllers]
FOR LOGIN [XP-PRO\Apress Product Controllers]
G0

3. We can now alter this to create a group that will be defined for users wishing to view customers and their
information, probably used in call centers, for example, for the Corporate edition of our software. Also, this
time we are going to set the database that will be connected to by default, to our ApressFinancial
database. Before entering the following code, we will of course need to add the new group,

Apress Client Information, within our Computer Management icon found in the Administrative
tools of the Control Panel first (see the “Try It Out: Creating a Group” section earlier for more on this).
Once you’ve done this, enter the following code in a new Query Editor window. (Don’t execute it yet.)

CREATE LOGIN [XP-PRO\Apress Client Information]
FROM WINDOWS

WITH DEFAULT DATABASE=[ApressFinancial],
DEFAULT LANGUAGE=[us_english]

Go



104

CHAPTER 4 SECURITY

The format of this syntax is straightforward. In this case, CREATE LOGIN instructs SQL Server that you want to
create a new login called XP-PRO\Apress _Client Information, where XP-PRO is the name of the network
domain in which the Apress_Client Information group can be found. You should change the prefix to match
your own setup. Here the definition appears surrounded with optional square brackets in case of spaces in the name.

Next the keywords FROM WINDOWS inform SQL Server that you are creating a login with Windows authentication.
After that you define the name of the database that the login will connect to when a connection is made using WITH
DEFAULT_DATABASE. Finally, the second option specifies the default language the connection will use, although it
is possible at any time to alter the language using the Set Language option. This will allow this group to connect to
SQL Server.

4. Once you have placed the code in your query pane, you can execute it by pressing either Ctrl+E or F5,
or clicking the Execute button on the toolbar. Once it finishes executing, you should see the new login in
the Security node within the Object Explorer on the left, as shown in Figure 4-11. If you right-click the
new login and select Properties, you will see the same screen and details as we saw when we created
the login graphically.

= 3 Logins
B8 BUILTIN|Administrators
A NT AUTHORITY\SYSTEM
&8y sa
ke SFiP-PROVADress. Client_Information
By ¥P-PROVApress_Product_Controllers
A #P-PROVASPMET
Q,ﬂ ¥P-PROVSOLServer 2005MSFTEUserdy)
Q,ﬂ ¥P-PROVSOLServer 2005MSS0LUserdx
:M ¥P-PROVSOLServer 2005501 Agent Use,

Figure 4-11. Both logins created

5. We can then give the login access to SQL Server or disable it by using the ALTER LOGIN command.
It is also possible to alter the login’s default database. In our graphical example, if you check back to
Figure 4-5, you will see that the default database was called master. It would be better for the login to
connect to the correct database. The following code informs SQL Server that it should connect our login
tothe ApressFinancial database by default, rather than the master database as defined previously.
Remember to change the prefix as appropriate.

ALTER LOGIN [XP-PRO\Apress Product Controllers]
WITH DEFAULT DATABASE=ApressFinancial

6. The final piece in the jigsaw is to grant the Windows account access to the database, which will then
allow the login to use the ApressFinancial database. To do this, we need to switch from the master
database to the ApressFinancial database with the USE keyword followed by the name of the database.

Using CREATE USER, we can then specify the name of the user we want in our database. The standard procedure
is to use the same name as the login, which makes life so much easier when maintaining the system in general.
We then use FOR LOGIN to define which server login we want to map to this database user.

USE ApressFinancial

Go

CREATE USER [XP-PRO\Apress Client Information]
FOR LOGIN [XP-PRO\Apress Client Information]
Go



CHAPTER 4 SECURITY

Server Logins and Database Users

As you now know, there are two steps to complete, whether you want to create a SQL Server
authentication-based login or a Windows authentication-based login. The first is a server
login, which was the first part of creating a login that we went through. A server login is one
that, when used, can connect only to the server itself. It cannot use any of the user databases
within SQL Server. The second step was creating the database user; in the graphical section
that we looked at first, this is when we selected the databases we wanted to use.

Within SQL Server, permissions can be granted at multiple levels, including the server and
database level. Examples of server-level permissions include creating new logins or managing
server properties. Examples of database permissions include being able to read data from a
table or being able to create new tables. One server login can be associated with multiple users
in different databases. Generally, when using Windows authentication, a database username is
the same as the login name, but this does not have to be the case. It does, however, simplify
administration. In this book, we will mostly be dealing with database-level permissions, but we
will briefly examine server roles in the following section.

Roles

Three different types of roles exist within SQL Server: fixed server roles, database roles (which
refers to the general roles included during installation of SQL Server; component-specific roles
such as those for Reporting Services that are added when the component is installed; and user-
defined roles), and application roles.

Fixed Server Roles

Within SQL Server, specific predefined roles are set up to allow certain tasks and to restrict
other tasks. Someone with the right permissions, such as a system administrator, can assign
these roles to any user ID or group of user IDs within SQL Server.

If you look at the Server Roles node in the Object Explorer, you will see a list of roles as
shown in Figure 4-12. But what do they mean? You get a little hint if you move to the Server
Roles node within SQL Server Management Studio.

[= @ Server Roles
?‘ bulkadmin
?‘ dbcreator
'g“ diskadmin
?“ processadmin
?‘ securityadmin
?‘ serveradmin
?“ setupadmin
?“ sysadmin

ey

Figure 4-12. Fixed server roles

Note It is not possible to create your own server role.

105



106 CHAPTER 4 SECURITY

These roles, available for anyone to use across the server, can perform the following tasks:
e bulkadmin: Run BULK INSERT statements.

¢ dbcreator: Create, alter, or drop databases as well as restore them.

¢ diskadmin: Administer disk files.

* processadmin: Kill alogin running T-SQL code.

¢ securityadmin: Manage logins including passwords for SQL logins and login
permissions.

¢ serveradmin: Administrate the server and carry out tasks such as changing options and
even starting and shutting down the server.

¢ setupadmin: Work with more than one server with which they are linked and manage the
linked server definitions.

¢ sysadmin: Perform any activity.

Server roles are static objects. They contain groups of actions that operate at the server
level rather than at the database level. When creating a new login, you could assign these server
roles to it if you wanted the login to carry out server actions as well as any database-related
actions, if required.

If your Windows account belongs to the BUILTIN/Administrators group, then it automati-
cally belongs to the sysadmin server role. You can check this yourself by highlighting the
sysadmin server role, right-clicking it, and selecting Properties to bring up the dialog box shown
in Figure 4-13. You should see BUILTIN/Administrators listed. As more logins are created, they
can be added to this role via the Add button.

Although we are not going to alter this for our example database, having Windows XP
administrators automatically being administrators for SQL Server can be a bit of a security
issue. Many companies batten down their computers so that no user is an administrator of his
or her local machine. By doing this, they stop people adding their own software, shareware,
games, or whatever to a machine that is administrated and looked after by a support team.

This helps keep the machine stable, and throughout your organization everyone will know
that a piece of software developed on one machine will work on any other. Therefore, users
won’thave administrator rights on their XP machine and won’t have those rights in SQL Server.
This is not the case in all organizations. By leaving the Administrators group in the sysadmin
role, everyone who has administrator rights on their PC will have system administrator rights
within SQL Server. As the owner of the database, you have now lost control of the security and
development of your SQL Server database.

Note Because this book assumes that we’re using either a standalone PC or a secure set of users, it is
safe to keep the Administrators group. However, you will find that this group is usually removed from
database setups to keep the security of the database intact. However, it is worth keeping in mind that before
removing the login, or removing it from the sysadmin role, that you should set up a new group or user as a
system administrator to prevent locking yourself out.




F Server Role Properties - sysadmin

Ge,a| e D S Script - Help

CHAPTER 4

Connection

Server
®P-FRO

Connection:
HP-PROMdewson

1!_‘# “igw connection properties

Server role name:

Server role membership:

Fole Members

sa

BUILTIM Administrators

MNT AUTHORITYASYSTEM

HP-PROMSOLS erver2005MS 50LUserfP-PRO$MS SALSERVER
HP-PROMSOLS erver20055 0LAgentU serfeP-PROSMS SALSERVER

4
4
A
A

Feady
[ Add... ][ Remove ]
[, Ok ][ Cancel ] |

Figure 4-13. Members of the sysadmin role

Database Roles

SECURITY

Database roles deal with actions that are performed at the database level. Actions within SQL

Server can be grouped

into different types of actions.

Following are the existing database roles installed with SQL Server and what they can or

cannot do:

* dbo/db_owner: Specifies the owner of the database

e db_accessadmin:

Can manage access to a database for logins

* db_backupoperator: Can back up the database

* db_datareader: Can read data from all user-defined tables

* db_datawriter: Can perform any write actions to user tables

e db_ddladmin: Can perform Data Definition Language (DDL) actions like creation of

tables

* db_denydatareader: Cannot read data from user tables

107



108

CHAPTER 4 SECURITY

e db_denydatawriter: Cannot write data from user tables
e db securityadmin: Can modify database role membership and manage permissions

* public: Can see any database objects that are created with public, or full rights, access
(Every user that you create will belong to the public database role.)

Although you will put the existing database roles to use, you'll find it helpful to create new
database roles, a common task in SQL Server, when you want to be very specific about permissions
particular users have. You do this by creating a specific database role, and then adding the
Windows accounts/Windows groups/SQL Server logins to your role. If you wanted to group
several groups together, then you might create a new role.

Application Roles

Databases are written for applications. However, not all databases exist for just one application.
Application roles allow you to define one role for accessing a database based on the application
thatis connecting, rather than having security for different groups of users or single users. Let’s
look at an example.

Consider a central database that holds client data. This database is in turn accessed from
the sales order department, which has its own separate database. The client database is also
accessed from the debt recovery department, which also has its own database.

As a database administrator, you may set up user groups for each application. Say you
have aDebt Recovery group and a Sales Order Processing group.Debt Recovery would want
to see information that was hidden from the Sales Order group, such as how in debt a customer
is. But what if a user, such as AJMason, worked in both the debt recovery and sales order
departments, in two different part-time jobs, for instance? While working as part of the Sales
Order group, AJMason could see information that was not pertinent to that group.

You can set up an application role for Sales Order and another for Debt Recovery, thus
removing the conflict of having two different sets of security settings for the one user. Also,
when users move departments, you are not wasting time revoking one set of roles to give them
anew set of roles for their new department.

An application role overrides any user security settings and is created for giving an appli-
cation access to SQL Server. Therefore, the Sales Order Processing application would define
the access for anybody using it.

An application role has no users; it is used when you wish to define what an application
can access within your database and what it cannot. We need to create an application role for
examples shown later in this book, so let’s do this now.

Try It Out: Creating a New Application Role

1. Navigate to the ApressFinancial database, expand the Security node, right-click Roles, and select
New Application Role. In the dialog box that appears, enter a useful role name and a password as shown
in Figure 4-14. This role will be for the banking application through which users will want to look at
checks, cash withdrawals, etc.



CHAPTER 4 SECURITY 109

‘S Script - Help

Securables
%4 Evtended Propertiss

Role name: | Barking Tranzactions |

Diefault schema: | | D

Password:

Confirm password:

Schemas owned by thiz role:

Owned Schemas

db_acceszadmin

[] db_backupoperator
[ db_datareader
[ db_datawriter
[ db_ddiadmin
[ db_denydatareader
[ db_denydatawriter
0 oowe
5 [ db_securityadmin
Erver
*P-FRO [ dbo
Connection: W] [-guest
#P-PROMdewson [] INFORMATIOM_SCHEMA
_‘!j “igw connection properties O ws
Feady

L Ok ] [ Cancel

Figure 4-14. Creating a new application role

2. Click Securables in the Object Explorer on the left-hand side, and then click Add Objects. This is how we
begin to define what objects we want to assign to this role.

3. In the Add Objects dialog box that appears, leave the options as they are shown in Figure 4-15 and click OK.

9. Add Objects

‘what objects do you wish to add?

(&) Specific objects...
(O &l objects of the types...
(O &l objects belonging to the schema...

Schema name; db & A

riry

L 0k, _..] [ Cancel ] [ Help ] )

Figure 4-15, Selecting the type of objects to add



110 CHAPTER 4 SECURITY

4, Aswe don’t have much within our database that we can give permissions to just now, select Databases,
as shown in Figure 4-16, and click OK. We are going to give this application authority to access our
database, but not the ability to do anything (mainly because we don’t have anything it can do yet).

. Select Object Types

Select the types of objects to find:

Object Type

&

Databases

Stored procedures
Tables

Wigws

Inline functions
Scalar functions

el el E O

Table-valued functions

&

Aggregate functions

B il o

]
|%

B ooooan

| &

[ il ][ Cancel ][ Help

Figure 4-16. Selecting the database

5. We now see a list of all the databases within the server. As shown in Figure 4-17, select ApressFinancial
as this is the only database this role will access.

9 Browse for Objects E]

10 objects were found matching the twpes vou selected.

Matching objects:

1 i M ame Type A
[ [:] [&dventuretsforks] [Databasze
& :j [&dventuretsforksDia] [atabasze
j [AprezzFinancial] [atabasze
[ [:j [Fat-Belly.Com] Datahase
[ L_; [master] Databasze
[ [:j [model] Databasze »
= [ R} [ e

[ il ][ Cancel H Help

Figure 4-17. ApressFinancial database selected

6. This brings us back to the Securables screen where we can allow or deny specific actions, as you see
in Figure 4-18. Leave everything unchecked for the moment; we will come back to this later in the book
when we look at stored procedures in Chapter 10.



CHAPTER 4 SECURITY

lication Role - New

‘S Script - E‘] Help

Bl

% Securables
27 Extended Properties Application rale name: |Banking Transactions
Securables:
Schema Mame Type
AprezsFinancial [atabasze
Effective Pa L Add... J [ Remove ]

Explicit permizzions for ApressFinancial:

Connection = Permizsion Grartor Grant 'Wwith Grant | Diery -
Server Alter any application role dbo |l : Fl ]
HP-FRO Alter any assembly dbo O O O
Connection: Alter any asymmetric key  dbo || | O
HP-PROMdewson Alter any certifizate dbo F L] F
27 Wiew connection properties Alter any contract dbo O O il

Alter any database DD dbo O | O
' Alter any database eve..  dbo || F M
Feady 4 - . |~ :
Column Pemizsions:
(] 8 ] [ Cancel ]

Figure 4-18. Application roles explicit permission settings

7. Click OK to finish creating our application role.

Schemas

In the following chapters, we will be creating SQL Server objects to hold and work with our
data. We could create these objects so that each could be seen as its own small part of the
overall solution. It would make for better organization, though, if objects that could be seen as
subsets of the whole solution were grouped together. For example, in our example, we could
group share details and share prices together as share information, or group the financial
transactions the customer makes using the transactions and transaction types tables together.
These groupings could then be used as the basis of security to the underlying data for when a
SQL Server connection tries to access the data. These groupings we have just talked about exist
in SQL Server 2005 and are called schemas. Therefore, a schema is a method of creating a
group and placing objects within that group, which can then be used to grant or revoke permis-
sions as a group to SQL Server connections.

1



112

CHAPTER 4 SECURITY

Prior to SQL Server 2005, each object was owned by a user account. Whenever a user left,
quite often it would mean moving the ownership of objects for that user’s account to a new
account. As you can imagine, in a very large system this could take hours or even days to complete.
Now objects are owned by schemas, and the many objects that exist will be contained within
one schema in our very large system. Although a schema will still be owned by a SQL Server
account, as we will see when we take a look at the syntax in a moment, the number of schemas
should be a fraction of the number of objects, even in very large systems, and therefore moving
ownership will be easier and faster.

So by having a schema within our solution and assigning objects to that schema, not only
are we improving security, but we are also grouping logical units of the database together,
making our solution easier to understand and use.

To create a schema is very simple, and the syntax is defined as follows:

CREATE SCHEMA schema_name AUTHORIZATION owner name

We can now see this in action.

Try It Out: Creating Schemas and Adding Objects

1. Open up a Query Editor window so we can create our first schema. This schema will be used to keep all
our transaction details together. Enter the following code:

USE ApressFinancial
GO
CREATE SCHEMA TransactionDetails AUTHORIZATION dbo

2. When we execute this by pressing F5 or Ctrl+E, or clicking the Execute button, we should see it success-
fully complete. This will have created a new schema where the owner of the schema is the dbo user.
This means that any login with sysadmin privileges will automatically have access to this schema
because they map to the dbo user in all databases. If you execute the code successfully, you'll see the
following message:

Command(s) completed successfully.

3. We can then create further schemas for other groupings, such as one for share details or customer
details including products. Enter the following code:

CREATE SCHEMA ShareDetails AUTHORIZATION dbo
GO
CREATE SCHEMA CustomerDetails AUTHORIZATION dbo

4. Execute this code, which will add the schemas to the database. If you execute the code successfully,
you'll see the following message:

Command(s) completed successfully.

5. If we move to the Object Explorer, we can see our schemas in place, as shown in Figure 4-19.



CHAPTER 4 SECURITY

= [3 ApressFinancial
# [ Database Diagrams
# 3 Tables
& 3 Views
3 synonyms
# 3 Programmability
& 3 Service Broker
# 3 Storage
= [ Security
1l Users
4 Roles

& CustomerDetails
|# db_accessadmin
|# db_backupoperatar
|# db_datareader

|#] db_datawriter

& db_ddladmin

|# db_derydatareader
|# db_derydatavriter
& db_owner

& db_securityadmin
|#] dbo

& gquest

@ INFORMATION_SCHEMA
|# ShareDetails

] sys

|# TranactionDetails

Figure 4-19. Schemas applied

Before You Gan Proceed with Your Solution

You have now created a database and gained an understanding of the different roles in SQL
Server. Before you can proceed and create objects such as tables, you need to clear a couple of
obstacles. After the database, the next objects you will create are tables, which you will learn
aboutin the next chapter. So what security considerations do you need to check before you can
do this?

First of all, you must be using a database user account that has the authority to add tables
to the specific database you are required to, in this case ApressFinancial. This is the next secu-
rity issue we will tackle, and you should keep in mind what you learned in the previous chapter
about accounts and roles. You also need to have access to that specific database. Let’s look at
the issue of access to the database if you are using a user ID that did not create the database.

The database was re-created at the very end of the previous chapter under user ID
XP-PRO\RDewson. The user who created the database is the database owner, also known as dbo.
So how can you check who created the database if you did not? At the end of the last chapter,
I asked you to create the database under your own user ID, which, if you followed the instructions
so far and you are a local administrator of the machine SQL Server is installed on, you should
have the right privileges within SQL Server to do.

If you are working with SQL Server already installed on an XP/W2K(3) machine, you need
to ensure that your user ID is set up as an administrator user ID, as demonstrated in Chapter 1,
or set up specifically as an administrator within SQL Server.

This next section will demonstrate how you check the identity of the database owner.

113



114 CHAPTER 4 SECURITY

Try It Out: Checking the Database Owner

1. Ensure that SQL Server Management Studio is open.
2. Navigate to the database that you wish to check on, in this case ApressFinancial.

3. Click the ApressFinancial database node in the Object Explorer on the left-hand side of the screen
once, and then right-click.

4. Select Properties to bring up the Database Properties dialog box shown in Figure 4-20. On the General
tab, you will see an item named Owner. This is the fully qualified XP/Win2K account preceded by the
domain or local machine name.

Selectapa r . =
e = Script - Help
A4 General ‘5 I"j
iles s
ilegroups 8;2 | {} l =
2 Optons ;.Backup

1 Pemmigzions
# Etended Propertiss

128 Mirroring E Database

128 Trarsaction Log Shipping

E Maintenance

Connection

Server
®P-PRO

Connection:
HP-PROMdewson

Qj “igw connection properties

Progress :’
Name
Ready The name of the database.

Ok ] [ Cancel

Figure 4-20. Database Properties

5. Click Cancel to close this dialog box.

Ownership of tables and other database objects is just as important. If you create a table
using the same login ID as that which you created the database with, or use alogon ID thatis a



CHAPTER 4 SECURITY

member of the sysadmin role that is also implicitly mapped to the dbo user in the database, the
table will have a default schema of dbo. However, if you logged in with a different user ID, the
table would have that user’s default schema as the prefix to the table name, replacing the dbo
prefix.

Now that we know who the database owner is, it is up to that user, or another user who has
system administration rights (in other words, a login that has the sysadmin server role or has the
db_owner database role), to allow any other specified user the ability to create tables within the
database. We have a user called AJMason who is not a system administrator, but a developer.
Recall we created this user in Chapter 1, and that this user could not log in to SQL Server.

The next section will go through a scenario where, as a developer, AJMason has no rights
to create any new items. However, we will rectify this situation in the next section, where we
will alter AJMason so that he can connect to SQL Server and create a table.

Try It Out: Allowing a User to Create a Table

1. Log on to SQL Server as a sysadmin. Create a new login by clicking the Logins node on the Server
Security node. This brings up the new login screen, which we can populate with the login name of the
user by typing in the details of the login, as shown in Figure 4-21. We are also going to allow this user
to connect to ApressFinancial by default when he or she logs in.

H Login - New

General ‘;s LT B Help

f Semver Foles

27! User Mapping Login name: [¥P-PROAIMason | s ]
4 Securables

f Status (®) Windows authentication

(1 50U Server authentication

Cerlific:ate narne: ‘ |

Ky narne: ‘ |
Server
KP-PRO
Diefault database:
Connection: 1
#PPROdewson Default language: ‘ <default> el

3 View connection properties

Ready

Figure 4-21. New login

115



116 CHAPTER 4 SECURITY

2. We are not going to assign this user any server roles, but we are going to assign this user to the
db_owner role, as you see in Figure 4-22. This will allow the user to create tables as well as create and
work with other objects and data. We could have selected db_ddladmin, but this would only have
allowed the user to create objects and not create data.

Selectapage ] l : e
L — Serpt =l Hel
General ; E 2

Server Roles
Uszer Mapping Uszers mapped to this login:
4 Securables

& Status

Map [ratabase Usger Defau!t Schema
Adventureiworks

Adventureiw/orksDin

ApressFinancial #“P-PROMAIM azon [B
master

|

model

mzdb

FeportServer
FeportServerTempDE
tempdb

Testing b

Guest account-enabled for; SpressFinancial

[atabaze role membership for: ApressFinancial

— nnection. ) |
ST = [] db_accessadmin
Server [] db_backupoperatar
#P-FRO [] db_datareader
i db_datawriter
Connection: [ db_s i
HP-PROYdewson [] db_ddladmin

[] db_denydatareader
2 View connection properties [] db_denydatawriter

db_owner
] o
. 1 |[#] public
Ready

L Ok ] [ Cancel

Figure 4-22. New login with database access

3. We now click OK, which will create not only a server login, but also a database user in ApressFinancial
for AdMason, as shown in Figure 4-23.



CHAPTER 4 SECURITY

Cor
| Copnect~ | @3 m [ F
=] LB #P-PRO (SOL Server 9.0.1116 - XP-PRO\rdewson)
= 3 Databases

@ (3 System Databases

# [ Database Snapshats

=] |J Adventureworks

=] |J AdventureiWorksDi

= L] ApressFinancial

# [ Database Diagrams

= 3 Tables
@ [ System Tables
3 views
3 synonyms
[C3 Programmahility
[ Service Broker
3 Storage
] 3 Security

SErs

m

ODEHEHBEB

l& guesk

|8 INFORMATION_SCHEMA
l,_& sYs

[ %P-PROVAIMasan

Figure 4-23. User login accounts

AJMason is now in a position to log in to SQL Server and create tables in the ApressFinancial database.

Summary

There is a great deal to cover concerning security and its different aspects. I would like to just
recap everything that we have seen just for one last time to ensure that you understand how
everything fits together.

Before you can connect to SQL Server, an administrator of the SQL Server installation
must give you permission to connect. In a Windows authentication setup, the administrator
would either allow your Windows account or a group that contains your Windows account to
connect to SQL Server. He or she can do this by either using the GUI and creating a login via the
Security node or using the CREATE LOGIN ... FROM WINDOWS T-SQL statement. If you are in a SQL
Server authentication setup, then a user ID and password would be created within SQL Server,
again either via the Security/Logins node or by using the CREATE LOGIN ... PASSWORD = 'password’
syntax.

Once a connection has been made, you can create a user login within the database using
the CREATE USER ... syntax. This will allow either the Windows account or the SQL Server login
access to the database.

117



118

CHAPTER 4 SECURITY

It is then possible to place the user into a role: either a predefined role or, more likely,

a custom role that you create. This role can be used to determine what can and cannot be
accessed within SQL Server tables, views, stored procedures, and any other object. Therefore,
arole allows groups of users in one statement to be granted or revoked access to objects within
SQL Server. Without roles, as new people join and as old people leave, or people move between
departments, you would need to grant or revoke privileges as required—quite an onerous task.

Finally, when creating objects. as you will see in the next few chapters, these objects are
owned by schemas. This allows for groups of objects to belong to a specific schema rather than
a specific user login. This also reduces the overhead of granting privileges and allows the
grouping of objects that belong together, making your application easier to understanding.

This chapter continued our coverage of security within SQL Server 2005. At this point in
the book, you now know about SQL Server authentication and Windows authentication, and
you have discovered how to control access to databases. Even during the installation process,
the salogin and password enforcement were discussed on that special account. Our discus-
sions on security are by no means finished because there are still several areas that we need to
explore together, which we will do as we go through the book.

Security is the most important part of ensuring that your organization continues to have
the ability to work. A security breach could result in lost income and will certainly mean that
many people will be unable to do their work. It can also lead to unfulfilled orders, backlogs, or
even fraudulent transactions. Regardless of whether you have the most well-designed database
or the most poorly performing application ever, if you allow the wrong person into the wrong
database, the result will be catastrophic.



CHAPTER 5

Defining Tables

N ow that we've created the database, it obviously needs to have the ability to store information.
After all, without this, what is the point of a database? The first area that needs to be worked on is
the table definitions.

To be functional, a database needs at least one table, but it can have many and, depending
on the solution you are building, the number of tables can become quite large. Therefore, it is
important that you as a developer know as much about tables, their structures, and their contents
as possible. The aim of this chapter is to teach just that, so that you have a sound base to work
from regarding tables, which you can then use for the creation of other objects associated with
tables.

The design of a table is crucial. Each table needs to contain the correct information for its
collection of columns to allow the correct relationships to be established. One of the skills of a
database developer or administrator is to ensure that the final design is the correct solution,
hence avoiding painful alterations once further development of the system is in progress. For
example, if we designed a system where the table definitions had some major problems and
required columns to be moved around, then every aspect of an application would have to be
revisited. This would mean quite a large redesign. We looked at database design in Chapter 3,
where we also created the database in which our tables will reside, so we know what tables we
need and what data they will store.

So that we can successfully create a table, this chapter will cover the following:

* The definition of a table
» The different types of data that can be stored
* How and where a table is stored
* Creating a table using SQL Server Management Studio and Query Editor
* Dealing with more advanced areas of table creation including
* How to make a row unique
e Special data states

» Dealing with pictures and large text data

119



120

CHAPTER 5 DEFINING TABLES

What Is a Table?

A table is a repository for data, with items of data grouped in one or more columns. Tables
contain zero or more rows of information. An Excel spreadsheet can be thought of as a table,
albeit a very simple table with few or no rules governing the data. If you look at Figure 5-1, you
will see that the first three columns contain data that can be assumed to be first name, last
name, and date of birth, but the fourth column is free-format and varies between a hotel room
number, a house number, and a flat number. There is no consistency. In fact, in Excel, all the
columns could in reality contain any data.

[ A | B8 | ¢ |b| E |F]|
Robin  Dewson  24/03/1964 80 Fat-Belly Dr UK
Bernie  McGee 1511041955 121b | The Crescent UK
Anthony Jawad | 31/12/1969 Flat 7 Bank Street UK

Figure 5-1. Excel showing part address details

What sets a table inside SQL Server apart from other potential tables is that a SQL Server
table will have specific types of data held in each column, and a predetermined type of data
defined for a column can never change without affecting every row of data within that column
for that table. If you use Excel, in a specific column you could have a character in one row, a
number in the next row, a monetary value in the following row, and so on. That cannot happen
in a database table. You can store all of these different values, but they would all have to be
stored as a data type that holds strings, which defeats the purpose of using a database in the
first place.

At the time a table is created, every column will contain a specific data type. Therefore,
very careful consideration has to be made when defining a table to ensure that the column data
type is the most appropriate. There is no point in selecting a generic data type (a string, for
example) to cover all eventualities, as you would have to revisit the design later anyway.

A table’s purpose is to hold specific information. The table requires a meaningful name and
one or more columns defined, each given a meaningful name and a data type; in some cases, you
want to set a restriction on the maximum number of characters that the column can hold.

When it comes time to create a table, you do have to be connected to SQL Server with a
login that belongs to the correct server or database role that can create tables, such as sysadmin
or db_ddladmin. When you create a table, it has to be owned within the database, and this is
done via assigning the table to a schema. Recall Chapter 4 discusses a schema for grouping
objects and as a basis for object security.

Some data types have fixed storage specifications, whereas with other data types you have
to decide for yourself how many characters the maximum will be. If you had a column defined
for holding surnames, it would hold character values. There would also be no sense in setting
the maximum length of this column at 10 characters, as many surnames are longer than this.
Similarly, there would be little sense in saying the maximum should be 1,000 characters. A sensible
balance has to be reached.

The rows of data that will be held in a table should be related logically to each other. If a
table is defined to hold customer information, then this is all it should hold. Under no circum-
stances should you consider putting information that was not about a customer in the table. It
would be illogical to put, for example, details of customer’s orders within it.



CHAPTER 5 DEFINING TABLES 121

Defining a Table: SQL Server Management Studio

You have learned a great deal about SQL Server before we even create our first table. However,
itis essential to know all of this information before creating a table and looking at the ramifica-
tions of it all going horribly wrong. You also now know why you have to be careful with users to
ensure that the user has enough security privileges to build tables.

Defining a table can be completed either in SQL Server Management Studio or Query
Editor. We can also create a table through a number of other means using developer tools and
languages, but these two methods are the ones this book will focus on. We will create the first
table with SQL Server Management Studio. This is the Customers table, which will hold details
about each customer. But before we can do this, it is necessary to look at the different types of
data that can be stored.

Different Table Data Types

SQL Server has many different data types that are available for each column of data. This
section will explain the different data types and help you down the path of choosing the right
type for each column.

You will find that several data types may look similar, but keep in mind that each data type
has a specific use. For example, unless you really need to define characters to be stored as
Unicode, then don’t use the n prefix data types. Unicode characters use up more space than
standard characters due to the potentially wide range of characters that SQL Server has to store.
Also, when looking at numbers, if the largest value you will store in a column is 100, then don’t
go for the data type that will allow the largest number to be stored. This would be a waste of
disk space.

Let’s take a look at the data types you can use in a table. Afterwards, you’ll see data types
you can use in a program.

char

The char data type is fixed in length. If you define a column to be 20 characters long, then 20
characters will be stored. If you enter less than the number of characters defined, the remaining
length will be space filled to the right. Therefore, if a column were defined as char (10), “aaa”
would be stored as “aaa  ”. Use this data type when the column data is to be of fixed length,
which tends to be the case for customer IDs and bank account IDs.

nchar

The nchar type is exactly the same as char, but will hold characters in Unicode format rather
than ANSI. The Unicode format has a larger character set range than ANSI. ANSI character sets
only hold up to 256 characters. However, Unicode character sets hold up to 65,536 different
characters. Unicode data types do take up more storage in SQL Server; in fact, SQL Server allo-
cates double the space internally, so unless there is a need in your database to hold this type of
character, it is easier to stick with ANSI.



122

CHAPTER 5 DEFINING TABLES

varchar

The varchar data type holds alphanumeric data, just like char. The difference is that each row
can hold a different number of characters up to the maximum length defined. If a column is
defined as varchar(50), this means that the data in the column can be up to a maximum of
50 characters long. However, if you only store a string of 3 characters, then only three storage
spaces are used up. This definition is perfect for scenarios where there is no specific length of
data; for example, people’s names or descriptions where the length of the stored item does not
matter. The maximum size of a varchar column is 8,000 characters. However, if you define the
column with no size, that is, varchar (), then the length will default to 1.

You can also use another setting that can exceed the 8,000-character limit, by defining the data
type with the constant max. You would use this when you believe the data to be below 8,000 char-
acters in length but you want to account for instances when the data may exceed this limit. If you
know that you will exceed the 8,000-character limit in atleast one row, then use this option. Finally,
you should use max for large blocks of text, because it will eventually supersede the text data type.

nvarchar

The nvarchar type is defined in a similar way to varchar, except it uses Unicode and therefore
doubles the amount of space required to store the data.

text

Caution This data type will be removed in a future release of SQL Server, so you should use
varchar(max) instead.

It is useful to understand this data type in case you come across it in any legacy systems
that have been upgraded to SQL Server 2005. If you need to hold any character data that will
always be longer than 8,000 characters, then you should not use varchar(max). This is where
the text data type comes into play. These data types can hold up to 2 gigabytes of data, and
could be used to hold notes about customers in a call center, for example. However, text data
types are usually different from other data types. Because such a large amount of data can be
stored in this data type, it doesn’t make sense to store this data within each row of SQL Server. If you
think about it, you would very quickly have a vast database holding very little data. Therefore,
if you are storing data within this data type, the data itself is held elsewhere. A pointer is held
within SQL Server in the column defined as a text data type, pointing to where the data is phys-
ically held. However, you can store up to 8,000 characters of physical data, if you wish, within
this data type within the row; but really, if you have decided to use text as a data type, you are
expecting large amounts of data, and therefore it would be best to keep the data outside the
database. Microsoft has stated that keeping this data within a row will cease being supported in
future versions of SQL Server.

ntext

This data type is very similar to text, with the exception that the data is stored as Unicode, and
only 1GB of characters can be stored because this data type takes double the amount of space
to store one character of text. This data type will also be removed in a future version of SQL
Server, and therefore you should use nvarchar (max) instead.



CHAPTER 5 DEFINING TABLES

image

image is very much like the text data type, except this is for any type of binary data, which
includes images but could also include movies, music, and so on. Like text, it will also be
removed in a future version of SQL Server, so you should use varbinary(max) instead.

int
The int, or integer, data type is used for holding numeric values that do not have a decimal

point (whole numbers). There is a range limit to the value of the numbers held: int will hold
any number between the values of -2,147,483,648 and 2,147,483,647.

bigint
A bigint, or big integer, data type is very similar to int, except that much larger numbers can

be held. A range of -9,223,372,036,854,775,808 through to 9,223,372,036,854,775,807 can be
stored.

smallint

The smallint data type, or small integer, holds small integer numbers in the range of -32,768
through to 32,767. Do take care when defining columns with this data type and make sure there
really is no possibility of exceeding these limits. There is always a big danger when creating a
column with this data type that you have to go back and change the data type, so if in doubt,
select int.

tinyint
The tinyint, or tiny integer, data type is even smaller than smallint and holds numbers from 0

through to 255. It could be used to hold a numerical value for each US or Canadian state or
perhaps every county in the United Kingdom

decimal/numeric

Both of these data types hold the same precision and ranges of data. The range is from -10

to the power 38 + 1 through to 10 to the power 38 — 1. These are quite large ranges, from
—-0.00000000000000000000000000000000000001 through to
10,000,000,000,000,000,000,000,000,000. However, do take care with this, as you cannot store
38 digits to the right and left of the decimal point. You can only store up to and including

38 digits. So, the greater the precision required to the right of the decimal point, the fewer digits
are left to represent the whole number.

float

This is used for numbers where the decimal point is not fixed. float data types hold very large
numbers in the range of -1.79E+308 through 1.79E+308. There is a warning with this data type:
the values cannot always be seen as 100% accurate, as they can be approximate. The approxi-
mation arises from the way the number is physically stored as binary code. You will have problems
where a number ends in .3, .6, or .7. The value stored has to be approximated, or rounded, as
some values can’t be stored accurately, for they may have more decimal places than can be
catered to. A well-known example is the value of Pi.

123



124

CHAPTER 5 DEFINING TABLES

real

The real data type is very much like float, except that real can store only numbers in the
range of -3.40E+38 through 3.40E+38. This data type also holds an approximate value.

money

The money data type is used for holding numeric values up to four decimal places. If you need
to use more than four decimal places, you need to look to another data type, such as decimal.
This data type doesn’t actually store the currency symbol to signify the monetary type, so you
should not use this data type for different currencies values, although you can combine a
column using this data type with a second column defining the currency type. The money data
type has arange 0f-922,337,203,685,477.5808 through 922,337,203,685,477.5807. If you need to
store the currency symbol of the currency that is held here ($ or USD for dollars, £ or GBP for British
pounds, etc.), then you would need to store this separately, as the money data type does not hold
the currency symbol. A column defined as money will hold the money to 1/10,000 of a decimal
unit, which is a bit of a waste if you are storing the values as Turkish Lira.

smallmoney

This data type is similar to money with the exception of the range, which lies between —214,748.3648
and 214,748.3647.

datetime

This will hold any date and time from January 1, 1753 through to December 31, 9999. However,
it stores not only a date, but also a time alongside it. If you just populate a column defined as
datetime with a date, a default time of 12:00:00 will be stored as well.

smalldatetime

This data type is very much like datetime, except the date range is January 1, 1900 through to
June 6, 2079. The reason for the strange date at the end of the range lies in the binary storage
representation of this datetime.

timestamp

This is an unusual data type, as it is used for a column for which you would not be expected to
supply avalue. The timestamp data type holds a binary number generated by SQL Server, which
will be unique for each row within a database. Every time a record is modified, the column with
this data type in the record will be modified to reflect the time of modification. Therefore, you
can use columns with this data type in more advanced techniques where you want to keep a
version history of what has been changed.

uniqueidentifier

This data type holds a Globally Unique Identifier or GUID. This is similar to the timestamp data
type, in that the identifier is created by a SQL Server command when a record is inserted or
modified. The identifier is generated from information from the network card on a machine,
processor ID, and the date and time. If you have no network card, then the uniqueidentifier is



CHAPTER 5 DEFINING TABLES

generated from information from your own machine information only. These IDs should be
unique throughout the world.

binary

Data held in this data type is in binary format. This data type is mainly used for data held as
flags or combinations of flags. For example, perhaps you wanted to hold flags about a customer.
You need to know whether the customer is active (value = 1), ordered within the last month
(value = 2), last order was for more than $1,000 (value = 4), or meets loyalty criteria (value = 8).
This would add up to four columns of data within a database. However, by using binary values,
if a client had a value of 13 in binary, then they would have values 1 + 4 + 8, which is active, last
order more than $1,000, and meets the loyalty criteria. When you define the column of a set
size in binary, all data will be of that size.

varbinary

This data type is very much like binary, except the physical column size per row will differ
depending on the value stored. varbinary(max) can hold values more than 8,000 characters in
length and should be used for holding data such as images.

bit

This data type holds a value of 0 or 1. Usually, bit is used to determine true (1) or false (0) values.

xml

XML data can be held in its own special data type rather than in a varchar (max) column. There
are special query commands that can then be used to query and work with this data. Prior to
SQL Server 2005, XML data was almost an afterthought with no data type, and earlier versions
of SQL Server had extremely limited functionality to work with the XML data that did exist.

Different Program Data Types

There are three more data types that can be used within a program, which we will take a look
at now.

cursor

Data can be held in a memory-resident state called a cursor. It is like a table, as it has rows and
columns of data, but that’s where the similarity ends. There are no indexes, for example. A cursor
is used to build up a set of data for processing one row at a time.

table

A table data type has similarities to both a cursor and a table. It holds rows and columns of
data, but the data cannot be indexed. In this case, you deal with the data a “set at a time,” like
anormal table. We’ll look at both the cursor and table data types later in the book, as they are
more advanced topics.

125



126

CHAPTER 5 DEFINING TABLES

sql_variant

Itis possible to have a data type that can hold a few different data types. I will be honest, I don’t
recommend using this data type as it shows that you are unsure of your data and what type of
data to expect. Before putting data into a data type, I feel you need to be sure what type of data
you are getting. Although we have sql_variant as a program data type, it can also be used as a
column data type, but the same arguments apply. We won'’t look at this data type any further
within this book.

Columns Are More Than Simple Data Repositories

Assigning a data type to a column defines what you expect to hold at that point. But column
definitions have more power than just this. It is possible to fill the column with a seed value, or
even with no value whatsoever.

Default Values

As arow is added to a table, rather than enforcing developers to add values to columns that

could be populated by SQL Server, such as a column that details using a date and time when a
row of data was added, it is possible to place a default value there instead. The default value can
be any valid value for that data type. A default value can be overwritten and is not “set in stone.”

Generating IDENTITY Values

For those readers who have used MS Access, the IDENTITY keyword option is similar to
AutoNumber.

When adding a new row to a SQL Server table, you may wish to give this row a unique but
easily identifiable ID number that can be used to link a row in one table with a row in another.
Within the ApressFinancial database, there will be a table holding a list of transactions that
needs to be linked to the customer table. Rather than trying to link on values that cannot guarantee
a unique link (first name and surname, for example), a unique numeric ID value gives that
possibility, providing it is used in conjunction with a unique index. If you have a customer with
an ID of 100 in the Customers table and you have linked to the Transaction table via the ID, you
could retrieve all the financial transactions for that customer where the foreign key is 100.
However, this could mean that when you want to insert a new customer, you have to figure out
which ID is next via some T-SQL code or using a table that just held “next number” identities.
But fear not, this is where the IDENTITY option within a column definition is invaluable.

By defining a column using the IDENTITY option, what you are informing SQL Server is that

¢ The column will have a value generated by SQL Server.
¢ There will be a start point (seed).

* Anincrement value is given, informing SQL Server by how much each new ID should
increase.

* SQL server will manage the allocation of IDs.



CHAPTER 5 DEFINING TABLES

* Values cannot be modified, as the column is totally controlled by SQL Server internally.
e Each row will be unique by virtue of the ID being unique.

You would have to perform all of these tasks if SQL Server did not do so. Therefore, by
using this option in a column definition, you can use the value generated to create a solid,
reliable, and unique link from one table to another, rather than relying on more imprecise
selection criteria.

The Use of NULL Values

When building table definitions, there can be columns defined as NULL and columns that have
NOT NULLs, or, if using the Table Designer, you can check or uncheck the Allow Nulls option.
These two different statements define whether data must be entered into the column or not.
ANULL value means that there is absolutely nothing entered in that column—no data at all.

A column with a NULL value is a special data state, with special meaning. This really means that
the type of data within the column is unknown.

If a field has a NULL value, no data has been inserted into the column. This also means that
you have to perform special function statements within any T-SQL code to test for this value.
Take the example of a column defined to hold characters, but where one of the rows has a NULL
value within it. If you completed a SQL function that carried out string manipulation, then the
row with the NULL value would cause an error or cause the row not to be included in the function

without any special processing. However, there are times when the use of NULL is a great advantage.

Why Define a Column to Allow NULL?

So what advantages are there to allowing data columns to hold NULL values? Well, perhaps the
largest advantage is that if a field has a NULL value, you know for a fact that nothing has been
entered into it. If you couldn’t define a column as having NULLs, when a column is defined as
numeric and has a value of 0, you could not be sure if it has no value or if it does have a valid
value of 0. Using NULL allows you to instantly know that the column has no data and you can
then work in that knowledge.

Another advantage is the small space that a NULL column takes up. To be precise, it takes
up no space whatsoever, again unlike a 0 or a single space, which do take up a certain amount
of space. In this age of inexpensive hard drives, this is less of an issue, but if you extrapolate for
a database with a million rows and four columns have a space instead of a NULL, that’s 4 million
bytes (4MB) of space used up unnecessarily. Also, because a NULL takes up no space, then
including NULL values means it will be a lot faster to get the data from the database to where it
needs to go to either in a .NET program or back to your T-SQL code for further processing.

There will be more on NULL values in Chapter 8.

Image and Large Text Storage in SQL Server

Storing pictures and large amounts of text is different from storing other kinds of information
within SQL Server. Pictures can take up large amounts of space. The following also holds true
for large amounts of text.

127



128

CHAPTER 5 DEFINING TABLES

Several scenarios exist where, by holding large amounts of data, SQL Server and the SQL
Server installation will end up running into problems. I'll explain why in a minute, but first of
all you will see what you should do in SQL Server to handle such data.

If you wish to store large numbers of images or large amounts of text (by large, I mean
more than 8KB or 4KB if you want to store the Unicode version of the text), you should store
these outside SQL Server on the hard drive somewhere. SQL Server then holds a file location in
the column to point to where the image or text data is held. From there you can retrieve the
information and use it as necessary. This gives you as a developer or database administrator
the ability to store large amounts of data on a different volume from the SQL Server installation, on
a different server, or even just in a different directory.

However, if you do wish to hold image data within a table, then if you define a column as
varbinary(max), it is possible to hold up to 2231 bytes of data, or around 2GB.

Having this control over how you store information can keep your database to a small size.
Using file pointers, like c:\temp\mypicture.jpg, allows SQL Server to run without taking up vast
amounts of the database space declared at setup. After all, if you set your database’s initial size
to 20MB with 5MB extensions, it would not take too many pictures to fill this space up if you
held the images in a column. Not only that, SQL Server has built-in functionality, called trans-
actions, where a copy of the data can be taken before and after any modification. If that data
included a 5MB graphic or volume of text, SQL Server would have to keep track of that informa-
tion while the transaction was in progress.

Note When executing a transaction, SQL Server takes a copy of the data and then applies your changes.
If everything looks OK, you can inform SQL Server to save them or, if there are problems, you can inform SQL
Server to roll back those changes. Therefore, SQL Server needs to keep copies of all the data involved in the
transaction.

If your application does use images or large amounts of text within a column, then keep a
close eye on disk space and where the information is stored. By doing so, you can avoid situa-
tions where your SQL Server database stops when the limit of disk space is met on your hard
drive or it has no growth options left.

In Chapter 12, there will be discussions about manipulating and inserting images into the
database and how this works. However, just keep in mind the information just given so that
you can start planning now what solution would be best for your database.

Creating a Table in SQL Server
Management Studio

This is the first table in our example application. Every organization has to have a set of customers
and will need to store these details. Within this table, we will hold information such as each
customer’s name and an ID to an external system where addresses are held. The only product
that our company has where a customer can have an ongoing cash balance with funds that
aren’t cleared is a bank account. This means our table will also hold the bank account ID, the
current balance, and any amount clearing.



CHAPTER 5 DEFINING TABLES

Try It Out: Defining a Table

1.
2,

4.

Ensure that SQL Server Management Studio is running.
Expand the Object Explorer so that you can see the ApressFinancial database, created in Chapter 3.

Expand the ApressFinancial database so that you can see the Tables node, as shown in Figure 5-2.

Object Explarer

Connect = 4 il

server 9.0,1399 - sP-PROYrdewson;)

= [ Databases
# [ System Databases
+ [ Database Snapshots
# | | Adventuretorks
# | | AdventuretorksDi
= | | ApressFinancial
# [ Database Diagrams
= [ Tables
# [ Svystem Tables
+ [ Yiews
+ | Synonyms
# [ Programmability
# [ Service Broker
+ | Storage
+ | Security

Figure 5-2. ApressFinancial with no tables

Right-click the Tables node and select New Table. This will take you into the Table Designer. Figure 5-3
shows how the Table Designer looks when you first enter it.

Table - dbo.Table_1 | Summary
Colurmn Mame Data Type Allove Mulls

>l |

Column Properties

Y

Figure 5-3. Creating our first table with no columns as yet

From this screen, you need to enter the details for each column within the table. Enter the first column,
CustomerId, in the Column Name column. When naming columns, try to avoid using spaces. Either
keep the column names without spaces, like | have done with CustomexId, or use an underscore ()
instead of a space. It is perfectly valid to have column names with spaces. However, to use these columns
in SQL code, we have to surround the names by square brackets, [ ], which is very cumbersome.

129



130

CHAPTER 5 DEFINING TABLES

10.

11.

At the moment, notice that Column Properties in the middle of Figure 5-3 is empty. This will fill up when
you start entering a data type after entering the column name. The Column Properties section is just as
crucial as the top half of the screen where you enter the column name and data type.

. The drop-down combo box that lists the data types is one of the first areas provided by SQL Server to

help us with table creation. This way we don’t have to remember every data type there is within SQL
Server. By having all the necessary values listed, it is simple enough to just select the most suitable one.
In this instance we want to select bigint, as shown in Figure 5-4.

Table - dbo.Table_1%|" Summary
Colurmn Mame Data Type Allove Mulls
P CustomerId Liniqueidentifier

|

binary(50)
bit

Figure 5-4. Selecting our data type

. The final major item when creating a column within a table is the Allow Nulls check box option. If you

don’t check the box, some sort of data must be placed in this column. Leaving the check box in the
default state will allow NULL values in the column, which is not recommended if the data is required
(name, order number, etc.). You can also allow NULLSs for numeric columns, so instead of needing to
enter a zero, you can just skip over that column when it comes to entering the data. In this instance, we
want data to be populated within every row, so remove the check mark.

. The Column Properties section for our column will now look like the screen shown in Figure 5-5. Take

a moment to peruse this section. We can see the name, whether we are allowing NULLS, and the type
of data we are storing. There will be changes to what is displayed depending on the data type chosen.

. We want this column to be an identity column. If you have not already done so, within the Column Properties

area expand the Identity Specification node, as we need to set the Is Identity property to Yes. This will set
the Identity Increment to 1 and the Identity Seed to 1 as well, as shown in Figure 5-6.

It is now possible to add in a few more columns before we get to the next interesting item as in Figure
5-7. Go ahead and do so now. Not everybody will have more than a first name and last name, although
some people may have initials. Therefore, we will allow NULL values for any initials they may have. We
leave the box checked on the CustomerOtherInitials column, as shown in Figure 5-7. We also
alter the length of this column to 10 characters, which should be more than enough.

We can now define our final columns, which you see in Figure 5-8. The last column will record when the
account was opened. This can be done by setting the default value of the DateAdded column. The default
value can be a constant value, the value from a function, or a value bound to a formula defined here. For
the moment we will use a SQL Server function that returns the current date and time, GETDATE(), as
shown in Figure 5-8. Then every time a row is added, it is not necessary for a value to be entered for this
column, as SQL Server will put the date and time in for you.



CHAPTER 5 DEFINING TABLES 131

Column Properties

@ |Z
E {General)

({Mame) CustomerId
Allavs Mulls Mo
Data Type bigint:

Default Yalue or Binding
E Table Designer

Computed Column Specification

Condensed Data Type bigint:
Description
Full-text Specification Mo

y cification
(Is Identity) Mo

Figure 5-5. More in-depth properties for columns

= Identity Specification es

(Is Identity)
Identity Increment 1
Identity Seed 1

Figure 5-6. Defining a column as having an identity

Table - dbo.Table_1%|" Summary

Colurmn Mame Data Type Allove Mulls
CustamerId bigint O
CustomerTitlsId int O
CustomerFirsthame rvarchar{50) O
CustomerOtherInitials rvarchar{50)

>l O

Figure 5-7. A column that will allow NULL values

Note In Chapter 3, when we discussed normalization, we also covered when data should be denormal-
ized. The Customers table is the one place we do need a small amount of denormalization for speed of
access. To speed up the process when a client goes to a cash point, we will have a column that holds their
account number so that we send a single row of data to the cash point. We can therefore cross check with
their card as well as their cleared and uncleared balance for display. This data will also be held within the
CustomerProducts and Transactions tables. If the account number was stored in the CustomerProducts
table only, we would have to send two rows of data to the cash machine: one with the account number and
one with the balances.




132 CHAPTER 5 DEFINING TABLES

12

13.

Table - dbo.Table_1%|" Summary

Colurmn Mame Data Type Allove Mulls
CustamerId bigint O
CustomerTitlsId int O
CustomerFirsthame rvarchar{50) O
CustomerOtherInitials rvarchar{50)
Addressid bigint O
AccountMurnber rvarchar{15) O
AccountTypeld int O
ClearedBalance money O
UnclearedBalance money

p Dateddded datetime
O
Column Properties
E {General)
({Mame) Dateddded
Allavs Mulls Yes

Data Type datetime
Default Yalue or Binding GETDATE()

Figure 5-8. The table column definition is now complete.

Before we save the table, we need to define some properties for it such as the schema owner. On the
right, you should see the Table Properties dialog window, as shown in Figure 5-9. If this is not displayed,
you can press F4 or from the menu select View » Properties Window. First of all, give the table a name,
Customers, and give the table some sort of description. We then move to the schema owner details.
When you click the Schema combo box, it presents you with a list of possible schemas the table can
belong to. In Chapter 4, we built the schema we want to use for this table, CustomerDetails.

E (Identity)
({Mame) Customers

Description This kable will hold the details of custon
Schema CustomerDetails R

E Table Designer
Identity Colurn CustomerId

Regular Data Space Specification  PRIMARY

TextiImage Filegroup PRIMARY

Figure 5-9. Table properties

Now that we are finished, we can save the table either by clicking the Save toolbar button, which sports
a floppy disk icon, or by clicking the X (close) button on the Table Designer to close the window, which
should bring up the Save dialog box, asking if we want to save the changes. By clicking Yes, we get a
second box asking for the name of the table if we didn’t enter a table name in the Table Properties dialog



CHAPTER 5 DEFINING TABLES 133

window as shown in Figure 5-10, or the table is saved using the name specified and we are returned to
SQL Server Management Studio.

Choose Name

Enter a name For the table:

| Customers| |

[ Ok _][ Cancel ]

Figure 5-10. Saving a table that was not given a name

14. If you now right-click the table and select Properties, you can see important details about the table, as
shown in Figure 5-11. The first section details who is currently connected. Then we see the date the
table was created, its name, and the schema name of the owner of the table.

B Table Properties - Customers

Selec r . ;
o Script - Help
A General ‘3 Lj
A Pemmigzions -
# Ewtended Propertiss gzwl

E Current connection parameters

E Description

= Options

E Replication

= Storage

Con

Server
®P-PRO

Connection:
HP-PROMdewson

2 View connection properties

Name
Feady The name of the table.

Ok ] [ Cancel

Figure 5-11. Table properties

Now that a table has been created in SQL Server Management Studio, let’s look at creating a table within the Query pane.



134 CHAPTER 5 DEFINING TABLES

Defining a Table Through the Query Editor

The next table that needs to be created is the one that will hold the details of the financial trans-
actions that each customer has. These transactions will not just be simple money in and money
out transactions, but will also be those financial transactions involving shares when a dividend
is received or a tax credit if the shares are held in a product that is tax free. We know from our
design that details of which product the transaction relates to will be held in a separate table,
so we need to create a link between our transaction table and one holding some sort of refer-
ence data. Itis also necessary to have alink between this table and our Customers table. Finally,
if the transaction relates to shares and is not recording the finances involved, then we need to
record that this is the case. To clarify this last point, when a client buys some shares, there will
be two records: one for the money leaving the account to buy the shares, and another showing
the physical number of shares purchased.

Try It Out: Defining a Table Through Query Editor

1. Ensure that you are pointing to the ApressFinancial database in Query Editor, as shown in Figure 5-12.

2 17 ApressFinancial + ¥ Execute o

Figure 5-12. Selecting the database from the toolbar

2. In the Query Editor, enter the following code:

CREATE TABLE TransactionDetails.Transactions
(TransactionId bigint IDENTITY(1,1) NOT NULL,
CustomerId bigint NOT NULL,

TransactionType int NOT NULL,
DateEntered datetime NOT NULL,
Amount numeric(18, 5) NOT NULL,
ReferenceDetails nvarchar(50) NULL,
Notes nvarchar(max) NULL,
RelatedShareId bigint NULL,
RelatedProductId bigint NOT NULL)

Note Notice that when you type this code into the Query Editor, the keywords are colored. For example,
CREATE TABLE is in blue and NOT NULL is in gray. This helps you to avoid typing mistakes.

3. Execute the code by either pressing Ctrl+E or F5 or clicking the toolbar Execute button.
4. You should now see the following message in the Results pane:

The command(s) completed successfully.



CHAPTER 5 DEFINING TABLES

5. However, you may have received an error message instead. This could be for a number of reasons, from
a typing mistake through to not having the authority to create tables. I could list every message that you
could receive at this point, but | would be doing so for many pages. Taking one example here, as you can
see, the error messages generated are usually self-explanatory. This is informing me that | have a
typing error on line 5.

Msg 102, Level 15, State 1, Line 5
Incorrect syntax near 'NUL'.

6. Now move to the Object Explorer. If it is already open, you will have to refresh the Details pane (by right-
clicking the Tables node and selecting Refresh). You should then see the TransactionDetails.
Transactions table alongside the CustomerDetails.Customers table created previously.

How It Works: Defining a Table Though the Query Pane

Using the Query pane to define a table works very much like SQL Server Management Studio without the graphical aids.
Recall that SQL Server Management Studio has prompts for column name, data type, and so on, but here you have to type
in every detail. All of the code will be discussed in a moment. However, many people prefer to create a table this way.
Having to switch between cursor and keyboard when using the graphical designer can be slower than keying in the details
in Query Editor. There is not a lot of time required to create a table this way, and we can build up the table creation as we
go along. The query can be saved to a file until it is time to run it and build the table in the database.

Let’s now take a look at the T-SQL code that we used to create the table. This code does not include all the options
available for creating a table, as there are a large number not used within this book. If you need to use more options or
discover what they are, then check in Books Online. When it comes to putting a database solution into a production envi-
ronment, you should consider these options, although some of them will be for larger enterprise production solutions.

The basic syntax for creating a table is as follows:

CREATE TABLE [database name].[schema name].table name
(column_name data type [length] [IDENTITY(seed, increment)] [NULL/NOT NULL])

There are a greater number of possible options, but for the moment let’s just concentrate on the ones mentioned
previously. You should be able to create most tables using this syntax.

The items listed in square brackets in the CREATE TABLE syntax are optional; however, there are times when we
will require them. Let me explain. Take the first option, database_name: if you are in the mas ter database and you
wish to create a table in the ApressFinancial database, you would have to either switch to that database with
the USE command or use the database_name option. Usually you will be in the database where you want to create
the table, but this option is ideal when creating code that will be executed unattended. It will ensure that the table
is built for the correct database rather than trusting that you are in the right area.

The schema_name option allows us to assign the table to the correct and relevant schema, rather than in the default
schema of the user connected.

Next we define the columns. Column name and data type are mandatory. However, depending on the data type, the
length is optional. You must prefix the first column with an opening parenthesis (and once you have defined the last
column, close the list with a closing parenthesis). Each column should be separated from the previous column by
a comma. There is a limit of 1,024 columns for a table. If you get anywhere close to that number, you should sit
back and reevaluate your table design, because chances are the design needs to be revised.

135



136 CHAPTER 5 DEFINING TABLES

Defining a Table: Using a Template

SQL Server has a third method of building tables, although this is my least favored method.
Alarge number of templates are built into SQL Server Management Studio for everyday tasks.
Itis also possible to build your own template for repetitive tasks, which is where I can see more
power for developers in this area.

Templates can be found in their own explorer window. Selecting View » Template Explorer
or pressing Ctrl+Alt+T brings up the Template Explorer window, displayed initially on the
right-hand side of SQL Server Management Studio.

Try It Out: Creating a Table Using a Template

1. Expand the Table node on the Template Explorer. About halfway down you will see a template called
Create Table, as shown in Figure 5-13. Double-click this to open up a new Query Editor pane with the
template for creating a table.

Template

[U]@ 8

[ Certificate ~
[ Database
[ Database Mail
[ Database Trigger
[ Default
[ Earlier Yersions
1 Endpaint
[ Event Motification
[ Extended Property
[ Full-text
| Function
[ Index
[ Linked Server
| Login
[ Motification Services
| Partition Function
[ Partition Scheme
| Recursive Queries
|1 Restare
[ Role
[ Rule
[ Service Broker
[ 5L Trace
|l Statistics
[ Stored Procedure
[ Synonym
[ Table
[y add column
[y add constraint
[y add key
=

T e e e e e e = S

[y drap columin

[y drop constraint

|_=-“J drop key

[Zy drop tatle W

Recently Used Templates

b" Template Explorer ﬁ“Properties

Figure 5-13. List of templates



CHAPTER 5 DEFINING TABLES 137

2. Take a close look at the following, which is the listing from the template. A template includes a number
of parameters. These are enclosed by angle brackets (<>).

USE <database, sysname, AdventureWorks>
GO

IF OBJECT ID('<schema_name, sysname, dbo>.<table name,
sysname, sample table>', 'U') IS NOT NULL
DROP TABLE <schema_name, sysname, dbo>.<table name, sysname,w
sample_table>
GO

CREATE TABLE
<schema_name, sysname, dbo>.<table name, sysname, sample table>(
<columni_name, sysname, c1> <columnl datatype, , int>
<columni nullability,, NOT NULL>,
<column2_name, sysname, c2> <column2_datatype, , char(10)>
<column2_nullability,, NULL>,
<column3_name, sysname, c3> <column3_datatype, , datetime>
<column3 nullability,, NULL>,
CONSTRAINT <contraint name, sysname, PK sample table>
PRIMARY KEY (<columns_in primary key, , c1>)

)
GO

3. By pressing Cirl+Shift+M, you can alter these parameters to make a set of meaningful code. Do this now, so
that the parameters can be altered. Figure 5-14 shows most of our third table, TransactionDetails.
TransactionTypes. The reason | say most is that our template code only deals with three columns,
and our table has four columns. Before choosing to display this screen, you could have altered the code
to include the fourth column, or you could modify the base template if you think that three columns are
not enough. When you scroll down, you will see a parameter called CONSTRAINT. You can either leave
the details as they are or blank them out; it doesn’t matter, as we will be removing that code in a moment.



138

CHAPTER 5

DEFINING TABLES

Specify Values for Template Parameters g|
Parameter Type Walue -~
database Iyzname ApressFinancial
zchema_name Iyzname TranzactionD etails
table_name Iyzname TranzactionT ypes
columns_in_primary_k... TranzactionT ypeld
column_datatype int
column_rullability MOT MULL
columnZ_name Iyzname TranzactionD escription
columnZ_datatype rwarchar(30]
columnZ_rullability MOT MULL
column3_name Iyzname CreditType
N PTG I PN e amk v

[ QK ] [ Cancel ] [ Help ]

Figure 5-14. Template parameters for TransactionTypes

. After clicking OK, the code is as follows. The main point of interest is the IF statement after switching

to the ApressFinancial database. This code queries SQL Server’s system tables to check for a
TransactionTypes table within the dbo schema. If it does exist, then the DROP TABLE statement is
executed. This statement will delete the table defined from SQL Server, if possible. An error message
may be displayed if the table has links with other tables or if someone has a lock on it, thus preventing
the deletion. We talk about locks in Chapter 8.

USE ApressFinancial
GO

IF OBJECT ID('dbo.TransactionTypes', 'U') IS NOT NULL
DROP TABLE dbo.TransactionTypes
GO

CREATE TABLE dbo.TransactionTypes(
TransactionTypeId int NOT NULL,
TransactionDescription nvarchar(30) NOT NULL,
CreditType bit NOT NULL,

CONSTRAINT PRIMARY KEY ()

)
GO

. The full code for the TransactionTypes table follows. Once you have entered it, you can execute it.

Note that there are three changes here. First of all, we change the schema name from dbo to the correct
schema, TransactionDetails, then we putin the IDENTITY details for the TransactionTypeld
column, but we are not going to place the fourth column in at this time. We will add it when we take a
look at how to alter a table in the section “The ALTER TABLE Command” later in this chapter. Finally,
we remove the CONSTRAINT statement, as we are not creating a key at this time.



CHAPTER 5 DEFINING TABLES

-- Create table template

USE ApressFinancial
GO

IF OBJECT ID('TransactionDetails.TransactionTypes', 'U') IS NOT NULL
DROP TABLE TransactionDetails.TransactionTypes
GO

CREATE TABLE TransactionDetails.TransactionTypes(
TransactionTypeId int IDENTITY(1,1) NOT NULL,
TransactionDescription nvarchar(30) NOT NULL,
CreditType bit NOT NULL

)
GO

Now that we have our third table, we can look at altering the template of the CREATE TEMPLATE, as it would be
better to have the IDENTITY parameter there as well as four or five columns.

Creating and Altering a Template

The processes for creating and altering a template follow the same steps. All templates are
stored in a central location and are available for every connection to SQL Server on that
computer, therefore templates are not database or server restricted. The path to where they
reside is

C:\Program Files\Microsoft SOL Server\
90\Tools\Binn\VSShell\Common7\IDE\sqlworkbenchnewitems\Sql

Itis also possible to create a new node for templates from within the Template Explorer by
right clicking and selecting New » Folder.

Note Don’t create the folder directly in the Sql folder, as this is not picked up by SQL Server Management
Studio until you exit and reenter the SQL Server Management Studio.

You could create different formats of templates for slightly different actions on tables. We
saw the CREATE TABLE template previously, but what if we wanted a template that included a
CREATE TABLE specification with an IDENTITY column? This is possible by taking a current template
and upgrading it for a new template.

139



140

CHAPTER 5 DEFINING TABLES

Try It Out: Creating a Template from an Existing Template

1. From the Template Explorer, find the CREATE TABLE template, right-click it, and select Edit. This will
display the template that we saw earlier. Change the comment and then we can start altering the code.

2. The first change is to add that the first column is an IDENTITY column. We know where this is located
from our code earlier: it comes directly after the data type. To add a new parameter, input a set of angle
brackets, then create the name of the parameter as the first option. The second option is the type of
parameter this is, for example, sysname, defining that the parameter is a system name, which is just an
alias for nvarchar (256 ). The third option is the value for the parameter; in this case we will be including the
value of IDENTITY(1,1). The final set of code follows, where you can also see a fourth column has
been defined with a bit data type.

Tip You can check the alias by running the sp_help_sysname T-SQL command.

USE <database, sysname, AdventureWorks>
GO

IF OBJECT_ID('<schema_name, sysname, dbo>.<table name, sysname,'w
sample table>', 'U') IS NOT NULL
DROP TABLE
<schema_name, sysname, dbo>.<table name, sysname, sample table>
GO

CREATE TABLE
<schema_name, sysname, dbo>.<table name, sysname, sample table>(
<column1l_name, sysname, c1> <columni_datatype, , int> w=»
<identity,,IDENTITY (1,1)>
<columni_nullability,, NOT NULL>,
<column2_name, sysname, c2> <column2_datatype, , char(10)>
<column2_nullability,, NULL>,
<column3_name, sysname, c3> <column3_datatype, , datetime>
<column3_nullability,, NULL>,
<column4_name, sysname, c4> <column4 datatype, , bit>
<column4 nullability,, NOT NULL>,
CONSTRAINT <contraint _name, sysname, PK sample table>
PRIMARY KEY (<columns_in primary key, , c1>)



CHAPTER 5 DEFINING TABLES

3. Now the code is built, but before we test it, we shall save this as a new template called CREATE TABLE
with IDENTITY. From the menu, select File » Save CREATE TABLE.sql As, and from the Save File As
dialog box, save this as CREATE TABLE with IDENTITY.sgl. This should update your Template Explorer,
but if it doesn’t, try exiting and reentering SQL Server Management Studio, after which it will be avail-
able to use.

The ALTER TABLE Command

If, when using the original template, we had created the table with only three columns, we
would have an error to correct. One solution is to delete the table with DROP TABLE, but if we had
placed some test data in the table before we realized we had missed the column, this would not
beideal. There is an alternative: the ALTER TABLE statement, which allows restrictive alterations
to a table layout but keeps the contents. SQL Server Management Studio uses this statement
when altering a table graphically, but here I will show you how to use it to add the missing
fourth column for our TransactionTypes table.

Columns can be added, removed, or modified using the ALTER TABLE command. Removing
a column will simply remove the data within that column, but careful thought has to take place
before adding or altering a column.

There are two scenarios when adding a new column to a table: should it contain NULL values for
all the existing rows, or should there be a default value instead? Any new columns created using
the ALTER TABLE statement where a value is expected (or defined as NOT NULL) will take time to
implement. This is because any existing data will have NULL values for the new column; after all,
SQL Server has no way of knowing what value to enter. When altering a table and using NOT
NULL, you need to complete a number of complex processes, which include moving data to an
interim table and then moving it back. The easiest solution is to alter the table and define the
column to allow NULLs, add in the default data values using the UPDATE T-SQL command, and
alter the column to NOT NULL.

Note Itis common practice when creating columns to allow NULL values, as the default value may not be
valid in some rows.

Try It Out: Adding a Column

1. First of all, open up the Query Editor and ensure that you are pointing to the ApressFinancial data-
base. Then write the code to alter the TransactionDetails.TransactionTypes table to add the
new column. The format is very simple. We specify the table prefixed by the schema name we want to
alter after the ALTER TABLE command. Next we use a comma-delimited list of the columns we wish
to add. We define the name, the data type, the length if required, and finally whether we allow NULLs
or not. As we don’t want the existing data to have any default values, we will have to define the column
to allow NULL values.

141



142

CHAPTER 5 DEFINING TABLES

ALTER TABLE TransactionDetails.TransactionTypes
ADD AffectCashBalance bit NULL
GO

2. Once we've altered the data as required, we then want to remove the ability for further rows of data to
have a NULL value. This new column will take a value of 0 or 1. Again, we use the ALTER TABLE command,
but this time we’ll add the ALTER COLUMN statement with the name of the column we wish to alter.
After this statement are the alterations we wish to make. Although we are not altering the data type, it
is @ mandatory requirement to redefine the data type and data length. After this, we can inform SQL
Server that the column will not allow NULL values.

ALTER TABLE TransactionDetails.TransactionTypes
ALTER COLUMN AffectCashBalance bit NOT NULL
GO

3. Execute the preceding code to make the TransactionDetails.TransactionTypes table correct.

Defining the Remaining Tables

Now that three of the tables have been created, we need to create the remaining four tables. We
will do this as code placed in Query Editor. There is nothing specifically new to cover in this
next section, and therefore only the code is listed. Enter the following code and then execute it
as before. You can then move into SQL Server Management Studio and refresh it, after which
you should be able to see the new tables.

USE ApressFinancial

GO

CREATE TABLE CustomerDetails.CustomerProducts(
CustomerFinancialProductId bigint NOT NULL,
CustomerId bigint NOT NULL,
FinancialProductId bigint NOT NULL,
AmountToCollect money NOT NULL,
Frequency smallint NOT NULL,
LastCollected datetime NOT NULL,
LastCollection datetime NOT NULL,
Renewable bit NOT NULL

)

ON [PRIMARY]

GO

CREATE TABLE CustomerDetails.FinancialProducts(
ProductId bigint NOT NULL,
ProductName nvarchar(50) NOT NULL

) ON [PRIMARY]



CHAPTER 5 DEFINING TABLES

GO
CREATE TABLE ShareDetails.SharePrices(
SharePriceId bigint IDENTITY(1,1) NOT NULL,
ShareId bigint NOT NULL,
Price numeric(18, 5) NOT NULL,
PriceDate datetime NOT NULL
) ON [PRIMARY]

G0

CREATE TABLE ShareDetails.Shares(
ShareId bigint IDENTITY(1,1) NOT NULL,
ShareDesc nvarchar(50) NOT NULL,
ShareTickerId nvarchar(50) NULL,
CurrentPrice numeric(18, 5) NOT NULL

) ON [PRIMARY]

GO

Setting a Primary Key

Setting a primary key can be completed in SQL Server Management Studio with just a couple
of mouse clicks. This section will demonstrate how easy this actually is. For more on keys, see
Chapter 3.

Try It Out: Setting a Primary Key

1. Ensure that SQL Server Management Studio is running and that you have navigated to the
ApressFinancial database. Find the ShareDetails.Shares table, and right-click and select
Modify. Once in the Table Designer, select the ShareId column. This will be the column we are setting
the primary key for. Right-click to bring up the pop-up menu shown in Figure 5-15.

Table - ShareDetails.Shares| Summary

Column Mame Data Type Allove Mul

hareld ___ bigint A |

ShareDesc | @ Set Primary Key |:
ShareTickerld T Insert Column
CurrentPrice —,;-l Delete Column

a3 Relationships...

IndexesfKeys. ..

Fulleest Indes. ..

“'gﬁ“]ﬁ_;'ll

#ML Indexes...

i

Check Constraints. ..

@

Figure 5-15. Defining a primary key

143



144

CHAPTER 5 DEFINING TABLES

2. Select the Set Primary Key option from the pop-up menu. This will then change the display to place a
small key in the leftmost column details. Only one column has been defined as the primary key, as you
see in Figure 5-16.

Column Mare Data Type Allove Mulls

hareld bigint 1
ShareDesc rvarchar{S0) O
ShareTickerld nevarchar{S0)

Figure 5-16. Primary key defined

3. However, this is not all that happens, as you will see. Save the table modifications by clicking the Save
button. Click the Manage Indexes/Keys button on the toolbar. This brings up the dialog box shown in
Figure 5-17. Look at the Type, the third option down in the General section. It says Primary Key. Notice
that a key definition has been created for you, with a name and the selected column, informing you that
the index is unique and clustered (more on indexes and their relation to primary keys in Chapter 6).

Indexes/Keys
Selected Primary/Unique Key or Indesx:
| | Editing properties for existing primary funigue key or indesx.
= -
Colurns Shareld (ASC)
=]
({Mame) PK_Shares
Description
=]
Create As Clustered Yes
Data Space Specification PRIMARY
| J Fill Specification ot
(oot ) (o ]

Figure 5-17. Indexes/Keys dialog box

That’s all there is to creating and setting a primary key. A primary key has now been set up on the
ShareDetails.Shares table. In this instance, any record added to this table will ensure that the data will be kept
in ShareId ascending order (this is to do with the index, which you will see in Chapter 6), and it is impossible to
insert a duplicate row of data. This key can then be used to link to other tables within the database at a later stage.

Creating a Relationship

We covered relationships in Chapter 3, but we’ve not created any. Now we will. The first relation-
ship that we create will be between the customer and customer transactions tables. This will be



CHAPTER 5 DEFINING TABLES

a one-to-many relationship where there is one customer record to many transaction records.
Keep in mind that although a customer may have several customer records, one for each
product he or she has bought, the relationship is a combination of customer and product to
transactions because a new CustomerId will be generated for each product the customer buys.
We will now build that first relationship.

Try It Out: Building a Relationship

1. Ensure that SQL Server Management Studio is running, and that ApressFinancial database is
selected and expanded. We need to add a primary key to CustomerDetails.Customers. Enter the
code that follows and then execute it:

ALTER TABLE CustomerDetails.Customers
ADD CONSTRAINT
PK_Customers PRIMARY KEY NONCLUSTERED

(

CustomerId
)
WITH( STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF,
ALLOW ROW_LOCKS = ON, ALLOW PAGE_LOCKS = ON)
ON [PRIMARY]
GO

2. Find and select the TransactionDetails.Transactions table, and then right-click. Select Design
Table to invoke the Table Designer.

3. Once in the Table Designer, right-click and select Relationships from the pop-up menu shown in Figure 5-18.
Or click the Relationships button on the Table Designer toolbar.

Remove Primary Key

|
il

Insert Colurmn

Delete Column

of

=1
\
o

Relationships. ..

IndexesiKeys. ..

ihﬁﬁ 5

Fulleest Indes. ..

F
£

| #ML Indexes...
i Check Constraints. ..
i

Figure 5-18. Building a relationship

4. This brings up the relationship designer. As it’s empty, you need to click Add. This will then populate the
screen as shown in Figure 5-19.

145



146

CHAPTER 5 DEFINING TABLES

Foreign Key Relationships EJE|

Selected Relationship:

Transacti.ons_TransactiDns" iE:I-iting propetties For new rela.aﬂ.ship. The s And Colurns
! Specification’ property needs ko be filled in before the new relationship
i will be accepted,

Check Existing Data On Crea Yes
| Tables and Columns Specifice

& 1c
({Mame) FK_Transactions_Transactions
Description

El:Ta :
Enfaorce For Replication es

Enforce Foreign Key Constra Yes
: IMSERT And UPDATE Specific

£

2

[ Add ] [ Delete

Close

Figure 5-19. Foreign Key Relationships dialog box

5. Expand the Tables and Columns Specified node, which will allow the relationship to be built. Notice that
there is now an ellipse button on the right, as shown in Figure 5-20. To create the relationship, click the
ellipse.

Foreign Key Relationships EJE|

Selected Relationship:

“|_=T<__.'i'_ransac-Ei.ons_Transactions" iE:I-iting propetties For new rela.aﬂ.ship. The Tables And Colurns
! Specification’ property needs ko be filled in before the new relationship
i will be accepted,

B {General) -
Check Existing Data On Cres Yes |
12l Tables And Colurmn :

& Identity i
{Mame) FK_Transactions_Transactions
Description
2| |E Table Designer |
]

Close

Figure 5-20. Adding tables and columns

6. The first requirement is to change the name to make it more meaningful. Quite often you will find that
naming the key FK_ParentTable ChildTable is the best method, so in this case change it to
FK_Customers Transactions as the CustomerDetails.Customers table will be the master
table for this foreign key. We also need to define the column in each table that is the link. We are linking
every one customer record to many transaction records and we can do so via the CustomerId. So
select that column for both tables, as shown in Figure 5-21. Now click OK.



Tables and Columns

CHAPTER 5

Relationship name:

Primary key table:

Foreign key table:

| Customers {CustomerDetails)

v | | Transactions {TransactionDetails) |

CustomerId

CustomerId

oK Cancel

Figure 5-21. Columns selection

DEFINING TABLES

Note In this instance, both columns have the same name, but this is not mandatory. The only requirement
is that the information in the two columns be the same.

7. This brings us back to the Foreign Key Relationships definition screen, shown in Figure 5-22. Notice that
at the top of the list items in the grayed-out area you can see the details of the foreign key we just
defined. Within the Identity section there is now also a description of the foreign key. Ignore the option

Enforce for Replication.

Foreign Key Relationships

Selected Relationship:

FK_Customers_Transactions*

[ Add ] [ Delete

]

Editing properties for new relationship, The 'Tables And Columns
Specification’ property needs ko be filled in before the new relationship
will be accepted,

B {General) |
Check Existing Data On Cres Yes

& Identity T
{Mame) FK_Customers_Transactions
Description |
|El Table Designer o]

Figure 5-22. Foreign key with description

147



148

CHAPTER 5 DEFINING TABLES

8. There are three other options we are interested in that are displayed at the bottom of the dialog box, as
shown in Figure 5-23. Leave the options at the defaults.

Enforce Foreign Key Constra Yes

IS} INSERT And UPDATE Specific
Delete Rule Mo Action
Update Rule Mo Action

Figure 5-23. Insert and update specification
9. Closing this dialog box does not save the changes. Not until you close the Table Designer will the

changes be applied. When you do so, you should see the dialog box in Figure 5-24 notifying you that
two tables are to be changed. Click Yes to save the changes.

!

t The following tables will be saved ko vour database. Do you want to continue?
L

| Custamers {CustomerDetails)
Transactions {TransactionDetails)

Warn about Tables Affected

[ Yes ] [ Mo ] [ Save Text File

Figure 5-24. Saving changes

The relationship is now built, but what about those options we left alone? Let’s go through those now.

Check Existing Data on Creation

If there is data within either of the tables, by setting this option to Yes we instruct SQL Server
that when the time comes to physically add the relationship, the data within the tables is to be
checked. If the data meets the definition of the relationship, then the relationship is success-
fully inserted into the table. However, if any data fails the relationship test, then the relationship is
not applied to the database. An example of this would be when it is necessary to ensure that
there is a customer record for all transactions, but there are customer transactions records that
don’thave a corresponding customer record, which would cause the relationship to fail. Obviously,
if you come across this, you have a decision to make. Either correct the data by adding master
records or altering the old records, and then reapply the relationship, or revisit the relationship
to ensure it is what you want.



CHAPTER 5 DEFINING TABLES

By creating the relationship, you want the data within the relationship to work, therefore
you would select No if you were going to go back and fix the data after the additions. What if
you still miss rows? Would this be a problem? In preceding our scenario, there should be no
transaction records without customer records. But you may still wish to add the relationship to
stop further anomalies going forward.

Enforce Foreign Key Constraints

Once the relationship has been created and placed in the database, it is possible to prevent the
relationship from being broken. If you set Check Existing Data on Creation from higher up in
the dialog box to Yes, then you are more than likely hoping to keep the integrity of the data
intact. That option will only check the existing data. It does nothing for further additions, dele-
tions, etc. on the data. However, by setting the Enforce Foreign Key Constraints option to Yes,
we will ensure that any addition, modification, or deletion of the data will not break the relation-
ship. It doesn’t stop changing or removing data providing that the integrity of the database is
keptin sync. For example, it would be possible to change the customer number of transactions,
providing that the new customer number also exists with the CustomerDetails.Customers table.

Delete Rule/Update Rule

If a deletion or an update is performed, it is possible for one of four actions to then occur on the
related data, based on the following options:

e No Action

* Cascade: If you delete a customer, then all of the transaction rows for that customer will
also be deleted.

* Set Null: If you delete a customer, then if the CustomerId column in the TransactionDetails.
Transactions table could accept NULL as a value, the value would be set to NULL. In the
customers/transactions scenario, we have specified the column cannot accept NULL
values. The danger with this is that you are leaving “unlinked” rows behind, a scenario
that can be valid, but do take care.

* Set Default: When defining the table, the column could be defined so that a default value
is placed in it. On setting the option to this value, you are saying that the column will
revert to this default value. Again a dangerous setting, but potentially a less dangerous
option than SET NULL as at least there is a meaningful value within the column.

Note If atany point you do decide to implement cascade deletion, then please do take the greatest of care,
as it can result in deletions that you may regret. If you implemented this on the CustomerDetails.
Customers table, when you delete a customer, then all the transactions are gone. This is ideal for use if you
have an archive database to which all rows are archived. To keep your current and online system lean and
fast, you could use delete cascades to quickly and cleanly remove customers who have closed their accounts.

149



150

CHAPTER 5 DEFINING TABLES

Using the ALTER TABLE SQL Statement

Itis also possible to build a relationship, or constraint, through a T-SQL statement. This would
be done using an ALTER TABLE SQL command. This time, a relationship will be created between
the Transactions table and the Shares table. Let’s now take a few moments to check the syntax
for building a constraint within T-SQL code.

ALTER TABLE child table name

WITH NOCHECK | CHECK

ADD CONSTRAINT [Constraint Name]

FOREIGN KEY (child column_name, ...,)

REFERENCES [master table name]([master_column_name, ...,])

We have to use an ALTER TABLE command to achieve the goal of inserting a constraint to
build the relationship. After naming the child table in the ALTER TABLE command, we then
decide whether we want the foreign key to check the existing data or not when it is being created.
This is similar to the Check Existing Data on Creation option you saw earlier.

Now we move on to building the constraint. To do this, we must first of all instruct SQL
Server that this is what we are intending to complete, and so we will need the ADD CONSTRAINT
command.

Next, we name the constraint we are building. Again, I tend to use underscores instead of
spaces. However, if you do wish to use spaces, which I wholeheartedly do not recommend,
then you’ll have to surround the name of the key using the [ ] brackets. I know I mentioned this
before, but it’s crucial to realize the impact of having spaces in a column, table, or constraint
name. Every time you wish to deal with an object that has a name separated by spaces, then
you will also need to surround it with square brackets. Why make extra work for yourself?

Now that the name of the constraint has been defined, the next stage is to inform SQL
Server that a FOREIGN KEY is being defined next. Recall that a constraint can also be used for
other functionality, such as creating a default value to be inserted into a column.

When defining the foreign key, ensure that all column names are separated by a comma
and surrounded by parentheses. The final stage of building a relationship in code is to specify
the master table of the constraint and the columns involved.

The rule here is that there must be a one-to-one match on columns on the child table and
the master table, and that all corresponding columns must match on data type.

It is as simple as that. When building relationships, you may wish to use SQL Server Manage-
ment Studio, as there is a lot less typing involved and you can also instantly see the exact
correspondence between the columns and whether they match in the same order. However, with
T-SQL you can save the code and its ready for deployment to production servers when required.

Try It Out: Using SQL to Build a Relationship

1. Ina Query Editor pane, enter the following T-SQL command and execute it by pressing Ctrl+E or F5 or
clicking the Execute button:



CHAPTER 5 DEFINING TABLES

USE ApressFinancial

GO

ALTER TABLE TransactionDetails.Transactions
WITH NOCHECK

ADD CONSTRAINT FK Transactions Shares
FOREIGN KEY(RelatedShareId)

REFERENCES ShareDetails.Shares(Shareld)

2. You should then see that the command has been executed successfully.

The command(s) completed successfully.

That's it. The relationship is created in the second batch of T-SQL code, the first batch ensuring that we are pointing
to the right database. Once the index is built, it is possible to alter the table to add the relationship.

With our code, although we are executing an ALTER TABLE command, no columns are being altered, but a
constraint is being added. A relationship is a special type of constraint, and it is through a constraint that a rela-
tionship is built.

A constraint is, in essence, a checking mechanism, checking data modifications within SQL Server and the table(s)
that it is associated with.

Summary

So, now you know how to create a table. This chapter has covered several options for doing so,
but there is one point that you should keep in mind when building a table, whether you are
creating or modifying it. When creating a table in SQL Server Management Studio, you should
always save the table first by clicking the Save toolbar button. If you have made a mistake when
defining the table and you close the table, and in doing so save in one action, you will get an
error message informing you that an error has occurred, and all your changes will be lost. You
will then have to go back in to the Table Designer and reapply any changes made.

Try also to get used to using both SQL Server Management Studio and the Query pane, as
you may find that the Query pane gives you a more comfortable feel to the way you want to
work. Also, you will find that in the Query pane, you can save your work to a file on your hard
drive as you go along. You can also do this within SQL Server Management Studio; however,
the changes are saved to a text file as a set of SQL commands, which then need to be run
through the Query pane anyway.

151






CHAPTER 6

Creating Indexes and
Database Diagramming

Now that we’ve created the tables, we could stop at this point and just work with our data
from here. However, this would not be a good decision. As soon as any table contained a
reasonable amount of information, and we wished to find a particular record, it would take
SQL Server a fair amount of time to locate it. Performance would suffer and our users would
soon get annoyed with the slowdown in speed.

In this scenario, the database is like a large filing cabinet in which we have to find one
piece of paper, but there’s no clear filing system or form of indexing. If we had some sort of
cross-reference facility, then it would likely be easier to find the information we need. And if
that cross-reference facility were in fact an index, then this would be even better, as we might
be able to find the piece of paper in our filing cabinet almost instantly. It is this theory that we
need to put into practice in our SQL Server database tables. Generally, indexing is a conscious
decision by a developer who favors faster conditional selection of records over modification or
insertion of records.

In this chapter, you'll learn the basics of indexing and how you can start implementing an
indexing solution. This chapter covers the following topics:

e What an index is

 Different types of indexes

* Size restrictions on indexes

* Qualities of a good index and a bad index

e How to build an index in code as well as graphically
e How to alter an index

Let’s begin by looking at what an index is and how it stores data.

What Is an Index?

In the previous chapter, you learned about tables, which are, in essence, repositories that hold
data and information about data—what it looks like and where it is held. However, a table defini-
tionis not a great deal of use in getting to the data quickly. For this, some sort of cross-reference

153



154

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

facility is required, where for certain columns of information within a table it should be possible to
get to the whole record of information quickly.

If you think of this book, for example, as a table, the cross-reference you would use to find
information quickly is the index at the back of the book. You look in the book index for a piece
of information, or key. When you find the listing for that information in the index, you'll find
it’s associated with a page number, or a pointer, which directs you to where you can find the
data you're looking for. This is where an index within your SQL Server database comes in.

You define an index in SQL Server so that it can locate the rows it requires to satisfy data-
base queries faster. If an index does not exist to help find the necessary rows, SQL Server has no
other option but to look at every row in a table to see if it contains the information required by
the query. This is called a table scan, which by its very nature adds considerable overhead to
data-retrieval operations.

Note There will be times when a table scan is the preferred option over an index. For example, if SQL
Server needs to process a reasonable proportion of rows within a table, sometimes estimated to be around
10 percent or more of the data, then it may find that using a table scan is better than using an index. This is
all to say that a table scan isn’t wholly a bad thing.

When searching a table using the index, SQL Server does not go through all the data stored
in the table; rather, it focuses on a much smaller subset of that data, as it will be looking at the
columns defined within the index, which is faster. Once the record is found in the index, a
pointer states where the data for that row can be found in the relevant table.

There are different types of indexes you can build onto a table. An index can be created on
one column, called a simple index, or on more than one column, called a compound index.
The circumstances of the column or columns you select and the data that will be held within
these columns determine which type of index you use.

Types of Indexes

Although SQL Server has three types of indexes—clustered, nonclustered, and primary and
secondary XML indexes—we will concentrate only on clustered and nonclustered in this book,
as XML and XML indexes are quite an advanced topic.

The index type refers to the way the index and the physical rows of data are stored internally by
SQL Server. The differences between the index types are important to understand, so we’ll
delve into them in the sections that follow.

Clustered

A clustered index defines the physical order of the data in the table. If you have more than one
column defined in a clustered index, the data will be stored in sequential order according to
columns: the first column, then the next column, and so on. Only one clustered index can be
defined per table. It would be impossible to store the data in two different physical orders.
Going back to our earlier book analogy, if you examine a telephone book, you'll see that the
data is presented in alphabetical order with surnames appearing first, then first names, and then



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

any middle-name initial(s). Therefore, when you search the index and find the key, you are
already at the point in the data from which you want to retrieve the information, such as the
telephone number. In other words, you don’t have to turn to another page as indicated by the
key, because the data is right there. This is a clustered index of surname, first name, initials.

As data is inserted, SQL Server will take the data within the index key values you have
passed in and insert the row at the appropriate point. It will then move the data along so that it
remains in the same order. You can think of this data as being like books on a bookshelf. When
alibrarian gets a new book, he will find the correct alphabetical point and try to insert the book
at that point. All the books will then be moved within the shelf. If there is no room as the books
are moved, the books at the end of the shelf will be moved to the next shelf down, and so on,
until a shelf with enough room is found. Although this analogy puts the process in simple terms,
this is exactly what SQL Server does.

Do not place a clustered index on columns that will have a lot of updates performed on
them, as this means SQL Server will have to constantly alter the physical order of the data and
so use up a great deal of processing power.

As a clustered index contains the table data itself, SQL Server would perform fewer I/O
operations to retrieve the data using the clustered index than it would using a nonclustered
index. Therefore, if you only have one index on a table, try to make sure it is a clustered index.

Nonclustered

Unlike a clustered index, a nonclustered index does not store the table data itself. Instead,
anonclustered index stores pointers to the table data as part of the index keys; therefore, many
nonclustered indexes can exist on a single table at one time.

As anonclustered index is stored in a separate structure—in fact, it is really held as a table
with a clustered index hidden from your view—to the base table it is possible to create the
nonclustered index on a different file group from the base table. If the file groups are located on
separate disks, data retrieval can be enhanced for your queries as SQL Server can use parallel I/0
operations to retrieve the data from the index and base tables concurrently.

When you are retrieving information from a table that has a nonclustered index, SQL Server
finds the relevant row in the index. If the information you want doesn’t form part of the data in
the index, SQL Server then uses the information in the index pointer to retrieve the relevant
row in the data. As you can see, this involves at least two I/O actions—and possibly more,
depending on the optimization of the index.

When a nonclustered index is created, the information used to build the index is placed in
a separate location to the table and therefore can be stored on a different physical disk if required.

Caution The more indexes you have, the more times SQL Server has to perform index modifications
when inserting or updating data in columns that are within an index.

Primary and Secondary XML

If you wish to index XML data, which I cover only briefly later in the book, then it would be best
to read Books Online, as this topic is beyond the scope of this book.

155



156

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Uniqueness

An index can be defined as either unique or nonunique. A unique index ensures that the values
contained within the unique index columns will appear only once within the table, including a
value of NULL.

SQL Server automatically enforces the uniqueness of the columns contained within a
unique index. If an attempt is made to insert a value that already exists in the table, an error will
be generated and the attempt to insert or modify the data will fail.

Anonunique index is perfectly valid. However, as there can be duplicated values, a nonunique
index has more overhead than a unique index when retrieving data. SQL Server will need to
check if there are multiple entries to return, compared with a unique index where SQL Server
knows to stop searching after finding the first row.

Unique indexes are commonly implemented to support constraints such as the primary key.
Nonunique indexes are commonly implemented to supportlocating rows using a nonkey column.

Determining What Makes a Good Index

To create an index on a table, you have to specify which columns are contained within the
index. Columns in an index do not have to all be of the same data type. You should be aware
that there is a limit of 16 columns on an index, and the total amount of data for the index
columns within a row cannot be more than 900 bytes. To be honest, if you get to an index that
contains more than four or five columns, you should stand back and re-evaluate the index defi-
nition. Sometimes you’ll have more than five columns, but you really should double-check.

It is possible to get around this restriction and have an index that does include columns
that are not part of the key: the columns are tagged onto the end of the index. This will mean
that the index takes up more space, but if it means that SQL Server can retrieve all of the data
from an index search, then it will be faster. However, to reiterate, if you are going down this
route for indexes, then perhaps you need to look at your design.

In the sections that follow, we’ll examine some of factors that can determine if an index
is good:

* Using “low-maintenance” columns
* Using primary and foreign keys

¢ Being able to find a specific record
* Using covering indexes

¢ Looking for a range of information

¢ Keeping the data in order

Using Low-Maintenance Columns

AsT'veindicated, for nonclustered indexes the actual index data is separate from the table data,
although both can be stored in the same area or in different areas (e.g., on different hard drives).
To reiterate, this means that when you insert a record into a table, the information from the

columns included in the index is copied and inserted into the index area. So, if you alter data in
a column within a table, and that column has been defined as making up an index, SQL Server



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

also has to alter the data in the index. Instead of only one update being completed, two will be
completed. If the table has more than one index, and in more than one of those indexes is a
column that is to be updated a great deal, then there may be several disk writes to perform
when updating just one record. While this will result in a performance reduction for data-
modification operations, appropriate indexing will balance this out by greatly increasing the
performance of data-retrieval operations.

Therefore, data that is low maintenance—namely, columns that are not heavily updated—
could become an index and would make a good index. The fewer disk writes that SQL Server
has to do, the faster the database will be, as well as every other database within that SQL Server
instance. Don’t let this statement put you off. If you feel that data within a table is retrieved
more often than it is modified, or if the performance of the retrieval is more critical than the
performance of the modification, then do look at including the column within the index.

In the example application we’re building, each month we need to update a customer’s
bank balance with any interest gained or charged. However, we have a nightly job that wants to
check for clients who have between $10,000 and $50,000, as the bank can get a higher rate of
deposit with the Federal Reserve on those sorts of amounts. A client’s bank balance will be
constantly updated, but an index on this sort of column could speed up the overnight deposit
check program. Before the index in this example is created, we need to determine if the slight
performance degradation in the updating of the balances is justified by the improvement of
performance of the deposit check program.

Primary and Foreign Keys

One important use of indexes is on referential constraints within a table. If you recall from
Chapter 3, a referential constraint is where you've indicated that through the use of a key,
certain actions are constrained depending on what data exists. To give a quick example of a
referential constraint, say you have a customer who owns banking products. A referential
constraint would prevent the customer’s record from being deleted while those products existed.
SQL Server does not automatically create indexes on your foreign keys. However, as the
foreign key column values need to be identified by SQL Server when joining to the parent table,
itis almost always recommended that an index be created on the columns of the foreign key.

Finding Specific Records

Ideal candidates for indexes are columns that allow SQL Server to quickly identify the appro-
priate rows. In Chapter 8, we’ll meet the WHERE clause of a query. This clause lists certain columns in
your table and is used to limit the number of rows returned from a query. The columns used in
the WHERE clause of your most common queries make excellent choices for an index. So, for
example, if you wanted to find a customer’s order for a specific order number, an index based
on customer_id and order number would be perfect, as all the information needed to locate a
requested row in the table would be contained in the index.

If finding specific records is going to make up part of the way the application works, then
do look at this scenario as an area for an index to be created.

Using Covering Indexes

As mentioned earlier, when you insert or update arecord, any data in a column that is included
in an index is stored not only in the table, but also in the indexes for nonclustered indexes.

157



158

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

From finding an entry in an index, SQL Server then moves to the table to locate and retrieve the
record. However, if the necessary information is held within the index, then there is no need to
go to the table and retrieve the record, providing much speedier data access.

For example, consider the ShareDetails.Shares table in the ApressFinancial database.
Suppose that you wanted to find out the description, current price, and ticker ID of a share.
If an index was placed on the ShareId column, knowing that this is an identifier column and
therefore unique, you would ask SQL Server to find a record using the ID supplied. It would
then take the details from the index of where the data is located and move to that data area.
If, however, there was an index with all of the columns defined, then SQL Server will be able to
retrieve the description ticker and price details in the index action. It will not be necessary to
move to the data area. This is called a covered index, since the index covers every column in the
table for data retrieval.

Looking for a Range of Information

An index can be just as useful for finding one record as it can be for searching for a range of
records. For example, say you wish to find a list of cities in Florida with names between
Orlando and St. Petersburg in alphabetical order. You could put an index on the city name, and
SQL Server would go to the index location of Orlando and then read forward from there an
index row at a time, until it reached the item after St. Petersburg, where it would then stop.
Because SQL Server knows that an index is on this column and that the data will be sorted by
city name, this makes it ideal for building an index on a city name column.

It should be noted that SQL Server indexes are not useful when attempting to search for
characters embedded in a body of text. For example, suppose you want to find every author in
a publisher’s database whose last name contains the letters “ab”. This type of query does not
provide a means of determining where in the index tree to start and stop searching for appro-
priate values. The only way SQL Server can determine which rows are valid for this query is to
examine every row within the table. Depending on the amount of data within the table, this can
be a very slow process. If you have a requirement to perform this sort of wildcard text searching,
you should take alook at the SQL Server full-text feature, as this will provide better performance for
such queries.

Keeping the Data in Order

As previously stated, a clustered index actually keeps the data in the table in a specific order.
When you specify a column (or multiple columns) as a clustered index, on inserting a record
SQL Server will place that record in a physical position to keep the records in the correct ascending
or descending order that corresponds to the order defined in the index. To explain this a bit
further, if you have a clustered index on customer numbers, and the data currently has customer
numbers 10, 6, 4, 7, 2, and 5, then SQL Server will physically store the data in the following order:
2,4,5,6,7,10. If a process then adds in a customer number 9, it will be physically inserted
between 7 and 10, which may mean that the record for customer number 10 needs to move
physically. Therefore, if you have defined a clustered index on a column or a set of columns
where data insertions cause the clustered index to be reordered, this is going to greatly affect
your insert performance. SQL Server does provide a way to reduce the reordering impact by
allowing a fill factor to be specified when an index is created.



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Determining What Makes a Bad Index

Now that you know what makes a good index, let’s investigate what makes a bad index. There
are several “gotchas” to be aware of:

* Using unsuitable columns
* Choosing unsuitable data
* Including too many columns

* Including too few records in the table

Using Unsuitable Columns

Ifa column isn’t used by a query to locate a row within a table, then there is a good chance that
the column does not need to be indexed, unless it is combined with another column to create
a covering index, as described earlier. If this is the case, the index will still add overhead to
the data-modification operations but will not produce and performance benefit to the data-
retrieval operations.

Choosing Unsuitable Data

Indexes work best when the data contained in the index columns is highly selective between
rows. The optimal index is one created on a column that has a unique value for every row
within a table, such as a primary key. If a query requests a row based on a value within this
column, SQL Server can quickly navigate the index structure and identify the single row that
matches the query predicate.

However, if the selectivity of the data in the index columns is poor, the effectiveness of the
index is reduced. For example, if an index is created on a column that contains only three
distinct values, the index would be able to reduce the number of rows to just a third of the total
before applying other methods to identify the exact row. In this instance, SQL Server would
probably ignore the index anyway and find that reading the data table instead would be faster.
Therefore, when deciding on appropriate index columns, you should examine the data selec-
tivity to estimate the effectiveness of the index.

Including Too Many Columns

The more columns there are in an index, the more data writing has to take place when a process
completes an update or an insertion of data. Although in SQL Server 2005 these updates to the
index data take a very short amount of time, it can add up. Therefore, each index that is added
to a table will incur extra processing overhead, so it is recommended that you create the minimum
number of indexes needed to give your data-retrieval operations acceptable performance.

Including Too Few Records in the Table

There is also absolutely no need to place an index on a table that has only one row. SQL Server
will find the record at the first request, without the need of an index.

159



160

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

This statement also holds true when a table has only a handful of records. Again, there is
no reason to place an index on these tables. The reason for this is that SQL Server would go to
the index, use its engine to make several reads of the data to find the correct record, and then
move directly to that record using the record pointer from the index to retrieve the information.
Several actions are involved in this process, as well as passing data between different compo-
nents within SQL Server. When you execute a query, SQL Server will determine whether it’s
more efficient to use the indexes defined for the table to locate the necessary rows or to simply
perform a table scan and look at every row within the table.

Reviewing Your Indexes for Performance

Every so often, it’s necessary for you as an administrator or a developer to review the indexes
built on your table to ensure that yesterday’s good index is not today’s bad index. When a solution
is built, what is perceived to be a good index in development may not be so good in production—
for example, the users may be performing one task more times than expected. Therefore, it is
highly advisable that you set up tasks that constantly review your indexes and how they are
performing. This can be completed within SQL Server via its index-tuning tool, the Database
Tuning Advisor (DTA).

The DTA looks at your database and a workload file holding a representative amount of
information that will be processed, and uses the information it gleans from these to figure out
what indexes to place within the database and where improvements can be made. At this point
in the book, I haven’t actually covered working with data, so going through the use of this tool
will justlead to confusion. This powerful and advanced tool should be used only by experienced
SQL Server 2005 developers or database administrators.

Getting the indexes right is crucial to your SQL Server database running in an optimal
fashion. Spend time thinking about the indexes, try to get them right, and then review them at
regular intervals. Review clustering, uniqueness, and especially the columns contained within
indexes so that you ensure the data is retrieved as fast as possible. Finally, also ensure that the
order of the columns within the index will reduce the number of reads that SQL Server has to
do to find the data. An index where the columns defined are FirstName, LastName, and Department
might be better defined as Department, FirstName, and LastName if the greatest number of
queries is based on finding someone within a specific department or listing employees of a
department. The difference between these two indexes is that in the first, SQL Server would
probably need to perform a table scan to find the relevant records. Compare that with the
second example, where SQL Server would search the index until it found the right department,
and then just continue to return rows from the index until the department changed. As you can
see, the second involves much less work.

Creating an Index

Now that you know what an index is and you have an understanding of the various types of indexes,
let’s proceed to create some in SQL Server. There are many different ways to create indexes within
SQL Server, as you might expect. Those various methods are the focus of this section of the chapter,
starting with how to use the table designer in SQL Server Management Studio.

The first index we’ll place into the database will be on the CustomerId field within the
CustomerDetails.Customers table.



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Creating an Index with the Table Designer

As you may recall from the previous chapter, when the CustomerId column was set up, SQL
Server automatically generated the data within this field whenever a new record was inserted
into this table. This data will never alter, as it uses the IDENTITY function for the column. Thus,
the CustomerId column will be updated automatically whenever a customer is added. An appli-
cation written in, for example, C# could be used as the user front-end for updating the remaining
areas of the customer’s data, and it could also display specific customer details, but it would
not know that the CustomerId requires incrementing for each new record, and it would not
know the value to start from.

The first index created will be used to find the record to update with a customer’s informa-
tion. The application will have found the customer using a combination of name and address,
but it is still possible to have multiple records with the same details. For example, you may have
John J. Doe and his son, John J. Doe, who are both living at the same address. Once you have
those details displayed on the screen, how will the computer program know which John J. Doe
to use when it comes to completing an update?

Instead of looking for the customer by first name, last name, and address, the application
will know the CustomerId and use this to find the record within SQL Server. When completing
the initial search, the CustomerId isreturned as part of the set of values, so when the user selects
the appropriate JohnJ. Doe, the application knows the appropriate CustomerId. SQL Server will
use this value to specifically locate the record to update. In the following exercise, we’ll add this
index to the Customers table.

Try It Out: Creating an Index Graphically

1. Ensure that SQL Server Management Studio is running and that you have expanded the nodes in the tree
view so that you can see the Tables node within the ApressFinancial database.

2. Find the first table that the index is to be added to (i.e., the CustomerDetails.Customers table).
Right-click and select Modify. This will bring you into the table designer. Right-click and select Manage
Indexes and Keys (see Figure 6-1).

Figure 6-1. The Manage Indexes and Keys button

3. The index-creation screen will appear. Click the Add button to select the index’s properties. The screen
will look similar to Figure 6-2.

The fields in this dialog box are prepopulated, but you are able to change the necessary fields and
options that you might wish to use. However, no matter what indexes have been created already, the
initial column chosen for the index will always be the first column defined in the table.

161



162

CHAPTER 6

CREATING INDEXES AND DATABASE DIAGRAMMING

Selected Primary/Unique Key or Indesx:

[ ik_c.ustomers*

=
Columns
Is Unique
Type
=]
({Mame)
Description
[E]
Create As Clustered
Data Space Specification

| .Ec.liting propertie§ Fﬁr new unique .l;ey ar ina.ex.

CustomerId (ASC)
Mo
Indes

Ix_Customers

Mo
PRIMARY

2|

Fill Specification ot

Close

T

Figure 6-2. The Indexes/Keys dialog

. The first area to change is the name of the index. Notice that in the (Name) text box, SQL Server has

created a possible value for you. The name is prefixed with IX_, which is a good naming system to use.
It is also good to keep the name of the table and then a useful suffix, such as the name of the column.
In this case, the index will be called IX Customers CustomerId. It might also be good to place
something in the description. However, index names should be self-explanatory, so there really shouldn’t
be a need for a description.

. SQL Server has, in this instance, correctly selected CustomerId as the column that will make up the

index. Also, it has selected that the index will be ascending. For this example, the default sort order is
appropriate. The sort order of the index column is useful when creating an index on the columns that
will be used in an ORDER BY clause of a query when there are multiple columns with differing sort
orders. If the sort order of the columns within the index matches the sort order of those columns specified in
the ORDER BY clause, SQL Server may be able to avoid performing an internal sort, resulting in improved
query performance.

Tip If an index is only one column, SQL Server can read the index just as fast in a forward direction as it
can backward.

6. Asindicated earlier, SQL Server generates the value of the CustomerId column to be the next number

in a sequence when a record is added, as this column uses the IDENTITY functionality. This value can’t
be altered within the table, and so taking these two items of information and putting them together, you
should be able to deduce that this value will be unique. Therefore, change the Is Unique option to Yes.

. The final part of creating the index is to change the Create As Clustered option to No (Figure 6-3). The

order of the records inserted into SQL Server won’t change. And if you scroll down the screen, the
Re-compute Statistics for This Index option should remain No.



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Selected Primary/Unique Key or Indesx:

I¥_Customers_CustomerId Editing properties for existing primary funigue key or indesx.
E {General) -~
Colurns CustomerId (ASC)
Is Unique Mo
Type Index
E Identity
({Mame) I¥_Customers_CustomerId

Description
E Table Designer

Create As Clustered Yes v
Data Space Specification PRIMARY
Fill Specification b
(oot ) (oo ]

Figure 6-3. The clustering option in the Indexes/Keys dialog

8. Click Close and then close the table modification, answering Yes when you are asked if you wish to save
the changes. This will add the index to the database.

Building an index in Management Studio is a straightforward procedure, as you have just seen. Although this is the
first index that you have created yourself, it took only a few moments, and there were just a couple of areas where
you had to do any reasonable amount of decision making. We will cover those areas now.

Choosing the name of the index and the columns to include is easy and is not worth dwelling on. You should know
which columns to include from the discussions at the start of the chapter, where we examined the basics of building
indexes.

The first major decision you need to make is determining whether a column carries unique values. The column

chosen for our first index is an identity column which, if you recall, is a column that cannot have data entered into
it by any SQL command, as the data entered in to this column is completed automatically by SQL Server itself. Also,
in an identity column, by default no two rows can have the same value. However, there is no automation to stop any
attempt to create duplicate keys. Therefore, there is still a need to inform SQL Server that the index will be unique.

Moving on to the Create As Clustered setting, the data in this table would be best held in CustomerId order. This
is because each record that is inserted will have a higher Customex Id number than the previous record. Therefore,
each time a record is added, it will be added to the end of the table, removing the need for a clustered index. As with
the Is Unique option, the Create As Clustered option doesn’t need to be selected.

Finally, the Re-compute Statistics option defines whether SQL Server automatically recomputes the statistics on the
index when data is modified. Take care with this option, as the dialog can cause confusion. For example, setting
Re-compute Statistics to On actually switches the updating of statistics to Off.

Indexes and Statistics

When retrieving data, SQL Server obviously has to make some decisions as to the best way to
get to that data and return it to the query requesting it. Even if an index has been created on

163



164

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

a set of columns, SQL Server may determine that it is better and faster to use another method
toretrieve the data—through a table scan, perhaps. Or maybe there are a couple of indexes that
could be chosen to retrieve the same data. No matter what the scenario, SQL Server has to have
some basis of information on which to make sensible and accurate choices. This is where
statistics come in.

SQL Server keeps statistics on each column contained within an index. These statistics are
updated over a period of time and over a number of inserts or modifications. The specifics of
how all of this works in the background, and how SQL Server keeps the statistics up to date, is
an advanced topic. What you need to know is that if you alter or build an index on a table that
has data in it, and you don’t let SQL Server update the statistics on the table, then SQL Server
could be using inaccurate information when it is trying to decide how to retrieve the data. It
could even mean that the index change you thought would improve performance has in fact
made the performance much slower.

That said, it is not always prudent to let SQL Server recompute statistics automatically.
SQL Server will do the updates when it feels they are required. This may happen at a busy time
of processing; you have no control over when it will happen. However, if SQL Server does update
the statistics, the query that caused the update to start is not impacted, as the statistics are
updated asynchronously.

It may be more efficient to manually update the statistics via a scheduled job. This is what
you quite often see within production environments that have a number of inserts and modi-
fications to the data.

The CREATE INDEX Syntax

Creating an index using T-SQL is a lot easier than creating a table. In this section, we’ll look
only at indexes on tables, although there is an object within SQL Server called a view that can
also be indexed.

The full syntax for creating an index is not listed here, although you can find it within Books
Online once you progress in your SQL Server knowledge. A reduced version will be sufficient
while you are learning SQL Server 2005. Most of your indexes will use the following version:

CREATE [UNIQUE] [CLUSTERED|NONCLUSTERED]

INDEX index_name

ON table (column [ASC|DESC] [ ,...n ])

[WITH {IGNORE_DUP_KEY|DROP_EXISTING|SORT_IN_TEMPDB}]
[ON filegroup ]

Let’s go through each point one by one so that the options in this cut-down version are clear:

* CREATE: Required. This keyword informs SQL Server that you will be building a new object.

¢ UNIQUE: Optional. If used, this option will inform SQL Server that the columns listed in
the index will bring back a single unique row. This is enforced by SQL Server when
attempting to insert a duplicate row, as an error message will be returned.

e CLUSTERED or NONCLUSTERED: Optional. If neither CLUSTERED nor NONCLUSTERED is explicitly
listed, the index is created as NONCLUSTERED.

e INDEX: Required. This informs SQL Server that the new object will be an index.



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING 165

e index_name: Required. This is the name of the index being built. This name must be
unique for the table, and it is advisable to keep this name unique for the database, using
the naming method of IX table column discussed earlier.

* ON table:Required. Thisis the name of the table with which the index is associated. Only
one table can be named.

e column: Required. This is the name of the column(s) in the table that we wish to include
in the index. This is a comma-separated list.

e ASC: Optional (default). If neither ASC nor DESC is mentioned, then ASC is assumed. ASC
informs SQL Server that it should store the column named in ascending sequence.

* DESC: Optional. This informs SQL Server that the column is to be stored in descending
order.

* WITH: Optional. It is, however, required if any of the following options have to be used:

* IGNORE_DUP_KEY: This option is only available when the index is defined as UNIQUE.
If this option has not been used earlier, then it is not available to you. I'll explain this
further in a moment.

* DROP_EXISTING: This option is used if there is an existing index of the same name
within the database. It will then drop the index before re-creating it. This is useful for
performance if you are not actually changing any columns within the index. More on
this in a moment.

* SORT_IN TEMPDB: When building an index where there is already data within the table,
it may be advisable, if the table is a large table, to get the data sorted for the index
within the temporary database, tempdb, as mentioned in Chapter 3. Use this option if
you have a large table, or if tempdb is on a different hard disk from your database. This
option may speed up the building of the index, as SQL Server can simultaneously read
from the disk device where the table is located and write to the disk device where
tempdb is located.

* ON: Optional. This option is, however, required if you are going to specify a file group. It
is not required if you wish the index to be built on the PRIMARY file group.

e filegroup: This is the name of the file group on which the index should be stored. At the
moment, there is only one file group set up, PRIMARY. PRIMARY is a reserved word and is
required to be surrounded by square brackets, [ ], if used.

Two options need further clarification: IGNORE_DUP_KEY and DROP_EXISTING. We'll look at
both in the sections that follow.

IGNORE_DUP_KEY

If you have an index defined as UNIQUE, then no matter how hard you try, you cannot add a new
row whose values in the index columns match the values of any current row. However, there
are two actions that you can perform, depending on this setting within an index.

When performing multirow inserts, if the IGNORE_DUP_KEY option is specified, then no error
is generated within SQL Server if some of the rows being inserted violate the unique index.



166

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Only a warning message is issued. The rows that violated the unique index are not inserted,
although all other rows are inserted successfully.

When performing multirow inserts, if the IGNORE_DUP_KEY option is omitted, then an error
message is generated within SQL Server if some of the rows violate the unique index. The batch
is rolled back, and no rows are inserted into the table.

Caution The system variable called @ERROR can be tested after every SQL Server action to see if there has
been an error in any item of work or through another error handling command called Try/Catch. If there
has been an error, some sort of error handling within the batch will usually be performed. If you have
IGNORE_DUP_KEY, then no error will be produced when there is an attempt to insert a duplicate row, and the
batch will run as if everything had been inserted. So, be warned: it may look like everything has worked, but
in fact some rows were not inserted!

DROP_EXISTING

When data is being inserted and modified, there will be times when an index bloats to a less
than ideal state. Just as an Access database may need to be compacted, indexes within SQL
Server also need to be compacted sometimes. Compacting the index will speed up performance
and reclaim disk space by removing fragmentation of the index. To compact an index, you re-
create the index without actually modifying the columns or, in fact, starting from scratch and
having to rebuild the whole index and visiting every row within the table.

The DROP_EXISTING clause provides enhanced performance when rebuilding a clustered
index compared to a DROP INDEX command followed by a CREATE INDEX command. Nonclustered
indexes are rebuilt every time the clustered index for a table is rebuilt. So, if you drop a clustered
index and then re-create it, the existing nonclustered indexes are rebuilt twice: once from the
drop and once from the creation.

DROP_EXISTING also allows an existing index to be rebuilt without explicitly dropping and
re-creating the index. This is particularly useful for rebuilding primary key indexes. As other
tables may reference a primary key, it may be necessary to drop all foreign keys in these other
tables prior to dropping the primary key. By specifying the DROP_EXISTING clause, SQL Server
will rebuild the index without affecting the primary key constraint.

Creating an Index in Query Editor: Template

Not surprisingly, there is a template within Query Editor that you can use as a basis for creating
an index. We’ll look at this process first, before we build an index natively in Query Editor, as
this creates the basis of the SQL syntax for the creation of the index.

Try It Out: Using a Query Editor Template to Build an Index

1. Ensure that Template Explorer is open (press Cirl+Alt+T or select View » Template Explorer). Navigate
to the Index node and expand it. Select the Create Index Basic node and double-click (see Figure 6-4).



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING 167

= [ SQL Server Templates ~

# [ Aggregate

1 Certificate
1 Database
1 Database Trigger
1 Default
1 Earlier Yersions
1 Endpaint
| Event Motification
1 Extended Property
3 Full-text
| Function
= 4 Index
[Bpl Create Index Basic
[2y Create Unique Monclusterd Index

# [ Linked Server

# [ Login e
< | &

'éécently Used Templates
Figure 6-4. Selecting the Create Index Basic node
. A new editor will open with the following code in it. The template that is installed is based on the

AdventureWorks example. As you saw in the previous chapter, you can create new templates or
modify this one.

-- Create index basic template

USE <database_name, sysname, AdventurelWorks>
GO

CREATE INDEX <index_name, sysname, ind_test>
ON <schema_name, sysname, Person>.<table name, sysname, Address>

(

)
Go

<column_name1, sysname, PostalCode>

. Alter the template by either changing the code or using the Specify Values for Template Parameters
option, which will make the index creating easier. The button should be on the SQL Editor toolbar (see
Figure 6-5).

A
|

Figure 6-5. The Specify Values for Template Parameters button
. Change the database to the example database, name the index (in this case, it has been named after the

table), set schema_name to CustomerDetails, table_name to CustomerProducts, and column_name1 to
Customerld (see Figure 6-6). Then click OK.



168 CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Specify Values for Template Parameters E|
Farameter | Type ] Walue |
databaze_name Tyzname ApressFinancial
index_name Tyzname I¥_CustomerProducts
zchema_name zyzname dbo
table_name zyzname
column_namel zyzname

[ 0k, ] [ Cancel ] [ Help ]

Figure 6-6. The Specify Values for Template Parameters dialog

5. The code now looks as follows:

USE ApressFinancial
GO

CREATE INDEX IX CustomerProducts
ON CustomerDetails.CustomerProducts

(

)
GO

CustomerId

6. Execute the code by pressing F5 or Ctrl+E, or clicking the Execute toolbar button. You should then see
the following success message:

Command(s) completed successfully.

7. Now that you’ve completed the process, you’ll want to check that the index has actually been created
as expected. From within Object Explorer, click the Refresh button on the Object Explorer toolbar or
select the Refresh option from the right-click context menu. Navigate to the CustomerDetails.
CustomerProducts table and expand the Indexes node. This provides you with instant, but limited,
information about this index. You can see its name and that it is neither unique nor clustered (see Figure 6-7).

= [ Indexes
P57l 1 CustomerProducts (Non-Unique, Mon-Clustered|

Figure 6-7. Index for CustomerProducts

8. You can see a different perspective of the index if you highlight the index, right-click, and select Properties.
Figure 6-8 shows you a layout that offers not only a graphical version of the index, but also a list of many
other potential options.



Index Properties - IX_CustomerProducts

General
Options
Included Columris
Storage
Fragmentation

_‘@ Extended Properties

Server
®P-PRO

Connection:
HP-PROMdewson

2 View connection properties

Feady

CHAPTER 6

1] Refresh  (5) Schedule

CREATING INDEXES AND DATABASE DIAGRAMMING

FEX
S Script - L’ﬂ Help

Table name:

Index name:

Index type:
[] Unique

Index key columns:

M ame

Sart Order Drata Type 1 Size Add...

Customerld

Aszcending bigint 8

Ok ] [ Cancel

Figure 6-8. The Index Properties dialog

. The most interesting tab to view once you have data within the table or once you are in production is the
Fragmentation tab. As data is modified, indexes are also modified. Similar to a hard drive, an index will
also suffer from fragmentation of the data within the index. This will slow down your index, and, as
mentioned earlier in this chapter, it is important that you continue to check on your indexes to ensure
their best possible speed and performance. A great advancement with SQL Server 2005 is that it is
possible to correct the fragmentation while users are still using the system. High availability of SQL

Server has been a priority with this release.

There is no data within the Fragmentation tab at the moment, but if you select the Reorganize Index
check box and then click OK, SQL Server will reduce fragmentation as it reorganizes the index.

169



170

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Index Properties - IX_CustomerProducts

1] Refresh  (5) Schedule

S Script - L’ﬁ Help

General
147 Options
A Included Colurnns

Wiew the index fragmentation data to determine if you need to reorganize the indesx.

Server
®P-PRO

Connection:
HP-PROMdewson

2 View connection properties

Average row size
| The average leaf-level row size.

[] Reorganize index

Ok ] [ Cancel

Figure 6-9. Examining index fragmentation

The final way to create an index is by coding the whole index by hand in a Query Editor window, which we will look
at in the next section.

Creating an Index in Query Editor: SQL Code

In the following exercise, we will create two indexes and a primary key within a Query Editor
pane. This will allow us in the next section to build a foreign key between the two tables,
TransactionDetails.Transactions and TransactionDetails.TransactionTypes. The code will
also demonstrate how to build T-SQL defining options for the index presented during the
CREATE INDEX syntax discussion earlier.

Note The code discussion in the following exercise is broken out into three parts before the code execution,
in order to make it simpler to follow.




CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING 171

Try It Out: Creating an Index with Query Editor

1. Enter the following code into an empty pane of Query Editor. The first index you will be creating in this
section is a uniquely clustered index on the TransactionDetails.TransactionTypes table:

USE ApressFinancial

GO

CREATE UNIQUE CLUSTERED INDEX IX_TransactionTypes
ON TransactionDetails.TransactionTypes

(

TransactionTypeld ASC )

WITH (STATISTICS NORECOMPUTE = OFF, SORT_IN TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF)

ON [PRIMARY]

Go

2. The second index you'll create is a nonclustered index on the TransactionDetails.Transactions
table based on the TransactionType column. You won’t make this index clustered, as it would be
better to consider either CustomerId or DateEntered as clustered columns.

CREATE NONCLUSTERED INDEX IX_Transactions_TType
ON TransactionDetails.Transactions

(

TransactionType ASC)
WITH (STATISTICS NORECOMPUTE = OFF, SORT_IN TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF)
ON [PRIMARY]
Go

3. Thefinal action is to add a primary key to the TransactionDetails.TransactionTypes table. You
do this through an ALTER TABLE statement:

ALTER TABLE TransactionDetails.TransactionTypes
ADD CONSTRAINT
PK_TransactionTypes PRIMARY KEY NONCLUSTERED
(

TransactionTypeld
)
WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO



172

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

4. You can now execute the preceding code by pressing F5 or Cirl+E, or clicking the Execute toolbar
button. You should then see the following success message:

The command(s) completed successfully.

As noted, two different indexes created are in this example. The first one is a unique clustered index, based on the
identity column of the TransactionDetails.TransactionTypes table. This column was chosen because we
will be linking to this table using the TransactionType column. Rarely, if ever, will we link on any other column
within this table. The overhead is microscopic, though, due to the few records we will be entering, and it is therefore
not really a concern. It also allows us to see where to place the keyword within the example.

The second index, built on the TransactionDetails.Transactions table, cannot be a unique index; there will
be multiple entries of the same value because there are multiple transactions for the same type. However, it is still
possible to make this index clustered. Changing the transaction type on a transaction will be rare, or, if we had a full
audit trail built within our system, we may “ban” such an action. The only way to change a transaction type around
this ban would be to cancel the entry, record the cancel action, and create a new entry. However, a clustered index
on transaction types will not give us much of a gain in performance, as there will be few queries of data based on
transaction type alone. As mentioned earlier, there are better choices for clustering.

What is interesting about this example is that two indexes are created in one execution—albeit in two batch trans-
actions—whereas in the previous examples, only one index was created at a time. Notice the keyword GO between
the two CREATE statements creating the index; each index creation has to be completed on its own, without any
other SQL statements included. If you need to create more than one index, but you would prefer to build them at the
same time, then this may be the solution you need. (Please see Chapter 8 for details on transactions.)

An area we have not yet covered is what happens if you try to create an index twice using the same index name. The
preceding indexes have already been created, but if you run the query again, SQL Server will produce error messages
informing you that the index already exists. You should see messages like the following:

Msg 1913, Level 16, State 1, Line 1

The operation failed because an index or statistics with name
'IX TransactionTypes'

already exists on table 'TransactionDetails.TransactionTypes'.
Msg 1913, Level 16, State 1, Line 1

The operation failed because an index or statistics with name
'IX Transactions TType' already exists on table
'TransactionDetails.Transactions'.

Msg 1779, Level 16, State 0, Line 1

Table 'TransactionDetails.TransactionTypes' already has a primary key
defined on it.

Msg 1750, Level 16, State 0, Line 1

Could not create constraint. See previous errors.




CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Even if you alter the contents of the index and include different columns, but still used the same name, it is not possible
to create another index with the same name as an existing one.

In the last part of the example, we altered the table so that we could add a primary key. There are different types of
CONSTRAINTS that can be defined for a table: column constraints are used for default values, as you saw in the
previous chapter, but constraints are also used for primary and foreign keys.

Once again, a couple of new areas were covered in this section, but you now have the
information you need to be able to create the most common indexes. Indexes need a lot less
coding than tables and can be created quickly and easily. However, if you are adding a new
index to an existing table that has a substantial amount of information, adding this new index
could take a few minutes to complete, depending on the scenario. It is possible to add indexes
while the system is being used and the table or clustered indexes are being updated. This is new
to SQL Server 2005 and is available in SQL Server Enterprise Edition, by specifying the index
action with REBUILD WITH (ONLINE = ON) option. Take care when doing this, because if anybody
tries to access the relevant table while the index is being built, SQL Server will not recognize the
index until it has been built, and when working out the best way to access the data, it will ignore
this index. If you are creating the index after removing it for rebuilding statistics, this is when
problems may arise if you don’t use the ONLINE = ON option. Therefore, if you do need to rebuild
an index while keeping the database online for user access, use the REBUILD option.

Dropping an Index

There will be times when an index is redundant and should be removed (i.e., dropped) from a
table. Dropping an index is simply a case of executing the DROP INDEX statement, followed by
the table name and the index name.

Note If the index is used by a primary key or unique constraint, you cannot drop it directly. In this case,
you must use the DROP CONSTRAINT command. The removal of this constraint will also remove the index
from the table.

Try It Out: Dropping an Index in Query Editor

1. Ifyou want to drop the index created in the last section, all you need to do is execute the following code.
This will remove the index from SQL Server and also remove any statistics associated with it.

USE ApressFinancial
GO
DROP INDEX IX TransactionTypes ON TransactionDetails.TransactionTypes

2. After execution, you should see that everything executed correctly:

173



174

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Command(s) completed successfully.

3. Don't forget to re-create the index by running the following code:

CREATE UNIQUE CLUSTERED INDEX IX_TransactionTypes
ON TransactionDetails.TransactionTypes

(

TransactionTypeld ASC
) WITH (STATISTICS NORECOMPUTE = OFF, SORT IN_TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF)
ON [PRIMARY]
GO

In the next section, we’ll examine what’s needed to alter an index.

Altering an Index in Query Editor

Unlike with a table, it is not possible to use an ALTER command to change the columns contained
in an index. To do this, you first have to drop the index and then re-create it. The DROP command
will physically remove the index from the table; therefore, you should ensure that you know
what the contents of the index are before you drop the index, if you want to re-create a
similar index

Note In Management Studio, you can add and remove columns from an index’s definition without dropping and
re-creating the index, as this is all done for you behind the scenes.

This next exercise demonstrates the steps you need to take to remove an index and then
re-create it. You'll learn how to do all of this in two steps, rather than the expected three steps.

Try It Out: Altering an Index in Query Editor

1. First, you want to create an index to retrieve the price of a specific share at a set point in time. The
following index will do just that, as you are querying the data using the share ID and the date you want
the price for.

USE ApressFinancial

GO0

CREATE UNIQUE CLUSTERED INDEX IX_SharePrices
ON ShareDetails.SharePrices



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

ShareId ASC,

PriceDate ASC
) WITH (STATISTICS NORECOMPUTE = OFF, SORT_IN TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW ROW_LOCKS = ON, ALLOW PAGE_LOCKS = OFF)
ON [PRIMARY]
GO

2. However, it would be better to have the PriceDate descending, so that the latest price is at the top,
because asking for this information is a query. By including this column, SQL Server would read only one
row rather than an increasing number as more prices were created. It would also be advantageous
toinclude the Price itself to avoid a second read to retrieve that column of information from the
clustered index.

Note Remember, clustered indexes hold the data, and not pointers to the data. However, in this instance,
without the Price column, a second read would be performed.

CREATE UNIQUE CLUSTERED INDEX IX_SharePrices
ON ShareDetails.SharePrices
(
SharelId ASC,
PriceDate DESC,
Price
) WITH (STATISTICS NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS =
OFF, DROP_EXISTING = OFF) ON [PRIMARY]

Note If you did accidentally run the first set of code, change to DROP_EXISTING = ON.

3. Now execute the code using your chosen method, and you should see the following results:

The command(s) completed successfully.

By using the DROP_EXISTING clause of the CREATE INDEX command, you can then perform the modification in
one execution rather than two. This will drop the index and re-create it.

175



176

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Note Take care when building indexes. It is possible to use the same columns in the same order more
than once, thus creating the same index twice, but under two different index names. This is a waste of time
and will place unnecessary overhead on SQL Server. However, when including key column(s) from a clustered
index in a nonclustered index, because the row pointer is actually the clustered index key, SQL is smart
enough not to store the information twice in the nonclustered index, and you can explicitly define the order of
the clustered index keys as they are used in the nonclustered index.

There are more indexes to build, but we’ll take a look at these later.

Diagramming the Database

Now that the database has been built, the tables have been created, the indexes have been
inserted, and relationships link some of the tables, it’s time to start documenting. To help with
this, SQL Server offers us the database diagram tool, which is the topic of this section.

One of the worst things about documentation is documenting tables and showing how
they relate to one another in a diagram. The database diagram tool can do all of this very
quickly and simply, with one caveat: if more than one person is using the database diagram
tool on the same database, and there are two sets of changes to be applied to the same table,
the person who saves his or her changes last will be the person who creates the final table
layout. In other words, the people who save before the last person will lose their changes.

As you developed tables within your database, hopefully you will have commented the
columns and tables as you have gone along to say what each column and table is. This is a
major part of documentation anyway, and providing that you comment columns and tables at
the start, then it is less of a chore to add in further comments when you add new columns. If
you do have comments on each of your columns within a table, then this will help overall with
the documentation shown within the diagram.

This said, SQL Server’s database diagram feature is more than just a documentation aid.
This tool provides us with the ability to develop and maintain database solutions. It is perhaps
not always the quickest method of building a solution, but it is one that allows the entire solution
to be completed in one place. Alternatively, you can use it to build up sections of a database into
separate diagrams, breaking the whole solution into more manageable parts, rather than
switching between nodes in Management Studjio.

Database Diagramming Basics

In the book so far, with the creation of databases, tables, indexes, and relationships, as much
documentation as SQL Server will allow has so far been maintained. However, there is no
documentation demonstrating how the tables relate to one another within the database. This
is where the database diagram comes in.

A database diagram is a useful and easy tool to build simple but effective documentation
on these aspects. You build the diagram yourself, and you control what you want to see within
the diagram. When you get to a large database solution, you may want diagrams for sections of
the database that deal with specific aspects of the system, or perhaps you want to build a diagram



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

showing information about process flows. Although there are other external tools to do this,
none is built into SQL Server that can allow diagrams to be kept instantly up to date.

A diagram will only show tables, columns within those tables, and the relationships between
tables in a bare form. You will also see a yellow “key,” which denotes a primary key on the table
where one has been defined, but that is all the information displayed. Itis possible to define the
information that is to be displayed about the columns in the table, whether it is just the column
name or more in-depth information, such as a column’s data type and length, comments, and
so on. However, to display more than just the bare essentials, a little bit of work is required.

Although the diagram shows the physical and logical attributes of the database that is
being built or has been built, it also allows developers and administrators to see exactly what is
included with the database at a glance and how the database fits together.

In the next section, we’ll delve a bit deeper into what the SQL Server database diagram is
all about.

The SQL Server Database Diagram Tool

Management Studio’s database diagram tool aids in the building of diagrams that detail aspects of
the database that a developer wishes to see. Although it is a simple and straightforward tool,
and it’s not as powerful as some other tools on the market for building database diagrams, it is
perfect for SQL Server.

For example, one of the market leaders in database design tools is a product called ERWin.
ERWin is a powerful database utility that not only builds diagrams of databases, but also provides
data dictionary language output, which can be used to build database solutions. Through links
such as OLE DB data providers, these tools can interact directly with databases and so can be
used as a front end for creating databases. They can also, at the same time, keep the created
source in alignment and under control from a change control perspective, not only ensuring
that the code exists within the database, but also issuing a command to create a new database
quickly, if necessary. An example of where this might be useful is when you're creating a new
test database. If you want to go further than the SQL Server database diagram tool provides
(you'll learn the tool’s boundaries in this chapter), then you should be looking at more powerful
tools, which can cost a great deal of money.

SQL Server’s database diagram utility offers more than just the ability to create diagrams.
As mentioned earlier, it can also be used as a front end for building database solutions. Through
this utility, SQL Server allows you to add and modify tables, build relationships, add indexes,
and do much more. Any changes built in the tool are held in memory until they are committed
using a save command within the tool. However, there are limitations to its overall usefulness.

First of all, the biggest restriction of any diagram-based database tool comes down to the
amount of screen space available to view the diagram. As soon as your database solution consists
of more than a handful of tables, you will find yourself scrolling around the diagram, trying to
find the table you are looking for.

Second, you cannot add stored procedures, schemas, users, views, or any object thatis not
a table. Other products allow you to include these objects, or they may even build some of
them for you.

Finally, for the moment, when altering any of the information you can change within this
tool, you are usually using the same dialogs and screens as you would in Management Studio.

As you will see as you go through the chapter, the database diagram tool is quite powerful
in what it can achieve, but there are some areas of concern that you have to be aware of when

177



178

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

working with diagrams. Keep in mind that the database diagram tool is holding all the changes
in memory until you actually save the diagram.

For example, if you have a database diagram open, and a table within that diagram is
deleted outside of the diagram, perhaps in Query Editor or Management Studio by yourself or
another valid user ID, then one of two things can happen. First, if you have unsaved changes to
the deleted table, saving your diagram will re-create the table, but don’t forget that through the
earlier deletion all the data will be removed. If, however, you have no changes pending to that
table, then the table will not be re-created. When you come to reopen the diagram, the table
will have been removed.

With several developers working on the database at once, any changes made from the
diagramming tool of your Management Studio will not be reflected in any other developer’s
diagram until their changes are saved and their diagrams are refreshed. If you have multiple
diagrams open, and you alter a table and insert or remove a column, then this will reflect
immediately in all the open diagrams within your own Management Studio only. Don’t forget
this is an in-memory process, so this process can’t reflect on anyone else’s diagrams until the
changes are saved and the diagrams are refreshed.

Also, if you remove an object in your diagram, when you then save the diagram, the object
will be removed and any changes completed by others will be lost. Effectively, the last person
who closes his or her diagram wins!

To summarize, if you use the database diagram tool, use it with care. Because many of the
processes are in memory, you could inadvertently cause problems.

The Default Database Diagram

Although it’s not mandatory, I do feel every SQL Server database solution should have a default
database diagram built into it so that any developer—new or experienced—can instantly see
how the database being inspected fits together.

A default database diagram should include every table and every relationship that is held
for that database. Unlike other diagrams that may take a more sectionalized view of things, the
default database diagram should be all-encompassing.

As mentioned earlier, it is imperative that you keep this diagram up to date. You will notice
this statement repeated a few times in this chapter. Don’t use the default diagram as the source
of development for your database solution. The default diagram includes all the tables, which
means that if you're using the database diagram tool for development, you are potentially logi-
cally locking out all other users from touching any other table as part of their development, in
case their changes are lost. Only update the diagram with tables and relationships once they
have been inserted in the database. We'll look at this in more detail later when we discuss the
dangers of using the database diagram tool as a source of development.

Now that you know what diagrams are and what the tool is, it’s time to create the first
diagram for this database.

Try It Out: Creating a Database Diagram

1. Ensure that SQL Server Management Studio is running and that the ApressFinancial database is
expanded so that you see the Database Diagrams and Tables nodes. Select the Database Diagrams
node and then right-click. Choose New Database Diagram (see Figure 6-10).



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

3 | _j ApressFlnanuaI

=3 Tables I'Jr-l W Database Ell:u:lr =]

Figure 6-10. Creating a new database diagram

. If this is the first diagram you are creating for the database, you'll need to install support objects. Without
them, you cannot create the diagram, so click Yes at the next dialog prompt (see Figure 6-11).

Microsoft SQL Server Management Studio

\ This database does not have one or more of the support objects required to use database diagramming,
' Do you wish to create them?

Figure 6-11. Installing diagramming support
. The first screen you’ll see when creating the diagram is the Add Table dialog (see Figure 6-12). Select

all of the tables listed, as you want to use all the tables in your diagram, and then click Add. This will
“empty” the screen. Click Close.

Add Table

[ Refresh ] [ Add ] [ Close

Figure 6-12. Selecting tables

. After a few moments, you will be returned to Management Studio, but with the database diagram now
built. The diagram will not show all the tables at this point and will be very large. You can reduce the size
through the Size combo box in the diagramming toolbar, as shown in Figure 6-13.

S0% -

Figure 6-13. The Size combo box

. You'll then see a diagram similar to that shown in Figure 6-14. (Don’t be surprised if the layout is
different, though.)

179



180 CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

SharePrices CustTemp FinancialProducts CustomerProducts
|| sranere e e g [ Frecns - | ] cmemtraraab |y
| s | et < S | e
e | ki [ | rrerbrancss
| Fristain ¥ | et
f o
| e
J LastCrlection. By

5 O Y Y-

e

| i

Figure 6-14. Tables with relationships built so far

That’s all there is to building a basic diagram.

The Database Diagram Toolbar

Let’s next take alook at the toolbar and how each of the buttons works within the diagram. The
whole toolbar is shown in Figure 6-15.

e P . alb | Tableview- |G A2 i 73 | 100% 2l = = v

Figure 6-15. Database diagram toolbar

The first button is the New Table button, as shown in the following image. You click this
button to create a new table within the database designer, which is a similar process to that
shown in Chapter 5. The difference is that you need to use the Properties window for each
column rather than having the properties at the bottom of the table designer.

alb
When building the diagram, you selected every table. If you hadn’t done so and you wanted

to add a table added since you created the diagram, clicking the Add Table button (see the
following image) would bring up the Add Table dialog shown eatlier to add in any missing tables.



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

=

The Add Related Tables button, shown next, adds tables related to the selected table in
the designer.

It is also possible to delete a table from a database from the designer using the following
button.

R

If you just wish to remove the database from the diagram rather than the database, then
you can use the next button to accomplish this. You would use this button, for example, if a
table no longer formed part of the “view” the database diagram was built for.

=

Any changes made to the database within the designer can be saved as a script. Use the
following Generate Change Script button to accomplish this.

If you wish to set a column to be the primary key, select the relevant column within a table
and click the Set Primary Key button (shown next).

Itis possible to create a place within the diagram to put ad-hoc text. Use the following New
Text Annotation button to do this.

alb

Each table displayed is set to a standard layout. It is possible to change this to a different
predefined layout or to create your own custom view. The following Table View button enables
you to change the layout or create your own custom version.

Table View = | A E_Q-E_ =1
1 sStandard I

=] Column Names
_Z Keys
_____ Mame Only

Custom

;Z Modify Custom ...

181



182

CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

Relationships that exist between tables will, by default, show as a line. However, it is
possible to show the name of the relationship as a label by clicking the following button.

Aa

Diagrams are ideal methods of documenting the database. Diagrams can be printed for
meetings, discussions about future development, and so on. The following button shows the
line breaks in pages that will be printed.

=

Page breaks in diagrams remain as they were first set up until they are recalculated. You
are able to view the page breaks, arrange your tables accordingly, and then recalculate the page
breaks based on the new layout. Clicking the following button will do this recalculation for you.

]

Tables can be expanded or shrunk manually, but when you select one or more tables using
the Ctrl button, click the relevant tables, and then click the following button, you can resize the
tables to a uniform size.

It is possible, by clicking the following button, to rearrange tables that have been selected
and let SQL Server make the arrangement choices.

Itis possible to rearrange the tables shown in the diagram. SQL Server will do its best to get
the best layout for the tables and relationships when you click the following button.

In Chapter 5, you saw how to build a relationship between two tables. The button you use
to do this appears next. This button will bring up the same dialog as you saw in that chapter.
a

3

You can also manage the indexes and keys using the dialog you saw in Figure 6-2 by clicking
the following button.

Tl

It is possible to create an index on a table or column called a full-text index. This index
allows for searching on text data a bit like Google. For example, Google would hold the web
pages within a text data type and using a full-text index would allow for full searching on that
page. Although I don’t cover this type of index within this book, clicking the following button
will manage these indexes.



CHAPTER 6 CREATING INDEXES AND DATABASE DIAGRAMMING

i

If you have indexes placed on any XML data types, clicking the next button will allow you
to manage these indexes.

T

In Chapter 5, you learned how to build constraints for tables. Clicking the following
Manage Check Constraints button brings up the same dialog you saw then.

Summary

We've covered yet another major building block in creating a SQL Server solution. The last few
chapters have shown you how to store data, and in this chapter you've learned about indexes
and how to use them to quickly and efficiently retrieve the data stored in the table.

There are many types of indexes, and choosing the right one at the right time to complete
the right job is quite an art. This chapter has taken you through the steps to decide which
columns will make an efficient index, and then build those columns in the right type of index
to make the most of the information.

This chapter also covered database diagramming. Database diagrams should initially be
thought of as a form of documentation. Keep in mind, though, that the database diagram tool
may expand in future versions of SQL Server to become much more sophisticated and powerful
than it is now—although even now it is quite a powerful utility.

Don’t be caught out by the fact that changes in the diagram are not applied until the diagram
is saved, and that your changes could overwrite another’s changes. If you're using the database
diagram tool for development in any sort of multiuser environment, take the greatest of care
when completing updates (in fact, try to avoid them altogether). Unless you split your database
solution into multiple diagrams, with any table being found in at most one diagram, don’t use
the database designer as a development tool.

Tip Remember, those who save last, save the changes.

183






CHAPTER 7

Database Backups, Recovery,
and Maintenance

N ow that we have created a major part of the database in the previous chapters, and before
moving on to inserting and manipulating the data, this is a good point to take a moment to
back up the database, just so that if things go wrong, it is possible to recover back to a stable point.

What is abundantly clear when working with any sort of system where data is held is that
there must be a comprehensible and workable backup and recovery strategy in place for when
things go wrong. The recovery may also be required to cater to problems from a hardware
failure up to an act of God. In any of these instances, we may move to an offsitelocation, which
is a building a safe distance away from our current building housing the computing equip-
ment. That is quite a dramatic step and is a decision that would be taken at a higher level of
authority than we probably have; however, we must create a backup of our system and store it
according to the recommendations of our board of directors, whether they are for in-house or
offsite storage. Companies have gone bust because a good and secure backup storage wasn’t in
place when their building burned down, for example. This is of course a worst-case scenario,
and there will be times that moving out of the current building to a second secure location is
not necessary.

This chapter looks at different backup strategies that can be implemented by you as a
developer or an administrator, and how they would be implemented. I also show you scenarios
where the database is in use 24 hours a day, 7 days a week, and how a backup strategy needs to
be formed around such scenarios. From there, you will see how to perform an ad-hoc backup
of the database as well as scheduled transaction log backups. It will be made clear in this chapter
when you would perform both of these types of backups and when they would be useful. Of course,
after the backup, you will have to test that the backup can be restored. Generally, this backup
will be restored onto a nonproduction system. Some companies have complete environments
established to test their disaster-recovery scenarios.

What you have to realize, and what will be demonstrated, is that there are different methods
of taking backups depending on what you are trying to achieve. The most common scenarios
are discussed and demonstrated in this chapter, but you will also get to look at database main-
tenance plans.

It is imperative that you get the correct backup strategy in place, and that it works. This
point will be repeated throughout the chapter.

185



186 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

So, in this chapter you will learn

¢ Backup strategies

¢ When a problem might occur during the backup and restore process
¢ How to take a database offline, and then bring it back online

¢ How to create a backup

¢ Different media for building a backup: what needs to be considered
¢ About the transaction log and how to back it up

¢ When to back up the data, and when to back up the transaction log
* Scheduling backups, and what happens if the server isn’t running at the scheduled time
¢ Restoring a database

¢ Detaching and attaching a database

¢ How to work with users still attached to the database when you need them not to be
connected

* Howto build SQL statements for backing up the database structure, and when it is useful
to have them

¢ Building a maintenance plan and knowing when to use it

Transaction Logs

Data within the database is stored, of course, on your hard drive, or on a hard drive on a server.
Imagine the work involved on the disk controller, and imagine the work SQL Server has to do every
time data is added, amended, or removed. Writing data is a slow process so, inevitably, every time
data is written, SQL Server slows down. A good comparison is to think how long it takes you to
insert, modify, or erase a sentence, even using MS Word, compared to how long it takes you to read
asentence. What if part of the way through writing the data, there was a power outage and you
had no uninterruptible power supply (UPS) in place? What a mess you would be in, not knowing
what had been written to disk and therefore your tables within your database, and what hadn’t!

It is also possible in SQL Server to update several tables at once. How would you work around
the fact that some of the tables had been updated, but when it came to updating a specific
table, the update failed? Well, this is where transaction logs come into play. Transactions them-
selves are covered in Chapter 8, but very simply, a transaction is a single unit of work that can
contain one or more table modifications that are either all successful and committed to the
database or, if some are unsuccessful, all the modifications are discarded. It is also possible to
roll back a transaction so that no changes are made to the database, which can either be invoked by
SQL Server or by issuing a specific T-SQL command. But you must be wondering what all this
has to do with a transaction log and even wondering what a transaction log is. Before we move
on there is one last area of background information we need to discuss first.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

The first item to note is that every database within a SQL Server instance has its own trans-
action log. Every time SQL Server is requested to do any data modifications—whether these are
additions, deletions, or modifications—a record is kept of the action. These recorded actions
are kept in a place called a transaction log. There are several reasons for this.

First of all, a piece of code could in fact do several different updates at once, either to different
rows of data or rows of data in different tables or even databases. If one of the updates fails, for
example, you are attempting to place ASCII characters into a column that only allows numerics,
then you may wish to return the values in all the updated fields to their original value. This is
called rolling back a transaction. SQL Server achieves this, in part, by looking at the data held
in the transaction log. However, any successful action where all the updates are valid could be
permanently stored on file, a process called committing a transaction.

As more and more actions are placed in the transaction log, it will become full. Some of
these actions will still be within a transaction, and others may form part of a completed trans-
action ready to be committed to the database. At certain points, SQL Server will want to remove all
the actions it can to relieve some space in the transaction log for further actions. One point could be
when the transaction log reached 70 percent full. SQL Server would then issue a checkpoint. The
use of a checkpoint ensures that any data modifications are actually committed to the database
and not held in any buffers, so that if a problem occurs, such as a power failure, there is a
specific point that you can start from. Therefore, at the end of a checkpoint transaction, you
know the database is in a consistent and valid state. As SQL Server knows that at a checkpoint
all is well within the database, there is no need to keep the completed transactions recorded in
the transaction log stored up to the checkpoint. SQL Server will therefore issue a truncation
of the transaction log to remove these records, minimizing the size of the log on the computer.
This is known as truncating the transaction log. It is thus necessary to ensure that you have a
large enough transaction log defined to hold the largest valid uncommitted transaction, as
these transactions obviously will not be truncated. A transaction log can become full with
arogue query as well, one that is incorrectly coded and just keeps adding more and more
uncommitted transactions. When the transaction log reaches 70 percent, there is nothing to
checkpoint and eventually the transaction log will fill up and your SQL Server will stop. This is
where you will need the help of an experienced database administrator.

If you had a power failure, you might have to “replay” all the work completed since the last
backup, and the transaction log could also be used to do this, in certain scenarios. When a data
modification is completed via a T-SQL command, the details are recorded first of all in the
transaction log. These changes are flushed to disk, and therefore no longer in memory, before
SQL Server starts to make changes to the tables that you are affecting. SQL Server doesn’t write
data immediately to disk. It is kept in a buffer cache until this cache is full or SQL Server issues
a checkpoint, and then the data is written out. If a power failure occurs while the cache is still
filling up, then that data is lost. Once the power comes back, though, SQL Server would start
from its last checkpoint state, and from the transaction log, any updates after the last check-
point that were logged as successful transactions will be performed.

Note A disk cache is a space in the system where changes to the tables within the database are held. By
doing so, a whole block of data can be written at once, saving on the slow process of disk head movement.

187



188

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

Transaction logs are best kept, if at all possible, on a hard drive separate from that holding
the data. The reason for this is that, when data is written to a transaction log, it is written seri-
ally. Therefore, if there is nothing else on the hard drive except the transaction log, the disk
heads will be in the right place to continue writing each time. A minor overhead, but if perfor-
mance is an issue, this is worth considering.

Backup Strategies

Backing up a database, no matter how large or small, should form part of your database solu-
tion. Even if a backup is only taken once a week, or even once a month, it is crucial that you sit
down and decide which backup strategy is right for you. Much of this decision lies in the hands
of the product owners for your company, since they must weigh the risk they’re willing to take
against the cost of minimizing that risk. There are also many different strategies that can be
adopted within your overall main backup strategy, depending on days of the week, or perhaps
period within the month.

Based on the strategy that you choose, you will have to decide what type of backup you
will need. Full database backups take a complete snapshot of a database at any given point.
A differential backup will back up only the data that has changed since the last full backup.
Finally, a transaction log backup only backs up the data in the transaction log, which consists
of transactions that were recently committed to the database. All of these types of backups can
be done while your SQL Server is online and while users are actively hitting your database.

To be able to restore a database to any point in time, you will have to use a combination of
these backup types.

The first place to start with the backup strategy is to look at your application and ask your-
self the following questions:

¢ How much of the data can be lost, if any, at any point of failure? In other words, how
crucial is it that no data is lost?

* How often is the data updated? Do you need regular backups from a performance view-
point as well as a recovery viewpoint? For historical databases that only periodically
have their data modified, you would, at most, complete a backup postpopulation.

* Do you need to back up all the data all of the time, or can you do this periodically, and
then only back up the data that has altered in the meanwhile?

¢ How much data needs to be backed up and how long do you need to keep the copies of
the backups?

¢ In the event of catastrophic failure, how long will it take to completely rebuild the data-
base, if it's even possible?

There are many more questions that can be asked, but for the moment, these are the most
crucial questions that need answers. If you can afford to allow data updates to be lost, then this
is a straightforward periodic database backup; for example, backup the whole database once
a week. This is simple and easy to complete and requires little thought. This is a rare scenario
and found usually in data warehousing systems or those with a large amount of static data that
can be rebuilt.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 189

Looking at the next question, if a large number of updates are taking place, then a more
complex solution is required. For every data modification, a record is kept in the transaction
log file, which has a limited amount of space. This amount of space was defined when you set
up the database as a fixed maximum size or, if you are allowing it to grow unrestrictedly, equals
the amount of hard drive there is. If you backed up and cleared the transaction log file, this
would free up the space logically and also aid performance. The smaller the active part of the
transaction log file, the better. The more transactions there are in the transaction log file, the
longer it will take to recover from a corrupt database. This is due to the fact that a restore will
have to restore the data, and then every transaction log backup to the point of failure. That is,
each transaction log will have to be restored to update the database, not just the latest log file.
If you have multiple small files and they are held on media that has to be mounted each time,
such as a tape, then you will have to take mounting time into consideration as well.

The third question, though, covers the real crux of the problems. If you need to back up all
the data each time, how often does that need to take place? This could well be every night, and
many production systems do just this. By completing a full data backup every night, you are
allowing yourself to be in a state where only one or two restores may need to occur to get back
to a working state in a disaster scenario. This would be the data backup, followed by the single
transaction log backup, if one was taken in the meantime, to be restored. Much better than
having one data backup to be restored, and then a log file for every day since the data file backup.
What happens if the failure is on a Friday lunchtime and you completed your last whole data-
base backup on a Saturday evening? That would take one data file and six transaction log file
restores to complete.

Therefore sit down and take stock. As often as you can, take a full database backup, then
from there take a differential backup, followed by transaction log backups. However, you have
to weigh this against the time that a full backup takes over a differential backup or a transaction
log; how much processing time you have to complete these backups; and the risk level on having
to complete, for example, six transaction log restores.

The problem is, there is no universally right answer. Each situation is different, and it is
only through experience, which comes from testing your solution thoroughly, that you find out
what is best for that situation.

Whatever your backup strategy, the best possible scenario is to complete a backup when
nobody is working within the database. If there are times when you can make the database
unavailable, then this is an ideal opportunity to take the backup. Although SQL Server can
perform full backups while the database is online and active, you will gain performance bene-
fits by having an inactive database. The first example, shortly, demonstrates one method of
doing this.

When Problems May Occur

Obviously, when taking a backup, it must work; otherwise you have wasted your time, but,
crucially, you are leaving your database and organization in a vulnerable position if the backup
has failed. If you have time within your backup window to verify that a backup has been
successful, then you must do it. As you will see, SQL Server 2005 gives you different options on
how to do this. It cannot be stressed strongly enough that verifying a backup is just as crucial as
taking the backup in the first place. There have been situations where a backup has been taken
every night; however, no one has noticed that the backup has failed and then there has been a
hardware failure, and so there’s no backup to use as a restore on a new machine. In one case



190

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

I know of, almost a week’s worth of data was lost. Luckily, the weekend backups had succeeded;
otherwise, the company would have been in a major data loss situation. The cause was that the
tapes being inserted for the backup were not large enough to hold the backup being performed.
Therefore the tape became full, and so the backup failed. Obviously, this was a case of a company
that failed not only to verify the backup, but also to have processes in place to check that its
backup strategy was still working after a period of implementation. The only sure and positive
way of ensuring a backup has succeeded is to restore the database to a specific restore test
location and check the data. Although you will see SQL Server does have a method of checking
a backup, this still isn’t a guarantee that the backup worked. Do take time to complete regular
restores to a location to test that everything is okay.

You should always review your backup strategy on a regular basis. Even better, put in place
jobs that run each day, giving some sort of space report so that it is possible to instantly see that a
potential problem is looming. SQL Server Reporting Services is a new tool that would be ideal for
producing and distributing space reports to database administrators and developer owners alike.

Taking a Database Offline

SQL Server does not have to be offline to perform a backup, as you will see as we go through the
book and work through creating SQL Server—defined backups using wizards and T-SQL. In most
environments, you will not have the luxury of taking a database offline before backing it up,
because users are constantly making data changes. Backing up a database can take a long time,
and the longer it takes, the longer users cannot be working with the data while it is offline.

By taking your database offline, you do not have to use SQL Server to perform the backup.
This strategy is one where you take a disk backup, which means the hard drive is backed up, rather
than a specific database within a server. However, don’t forget that by taking your database offline,
it means you will have to take a backup of the directory using some sort of drive backup.

If you have your database on a server, no doubt some sort of server backup strategy is in
place, and so your database would be backed up fully and successfully through this method;
ifyou can take your database “out of service” in time for those backups, then you should do so.
This does allow you to think about your SQL Server deployment strategy. If you have several
databases that can be taken offline as part of the backup, then it is worth considering whether
they can all reside on the same physical server and set your server backup times accordingly.
However, this is a rare scenario, and even rarer within a production environment. Taking the
database offline means taking your database out of service. Nobody can update or access the
data, and nobody can modify table structures, etc. In this next section, we will take ApressFinancial
offline, allowing a physical backup to be taken. Just to reiterate and clarify: this is being demon-
strated only to complete your knowledge of backups, and it will be rare that you perform this
action in a live scenario.

Try It Out: Taking a Database Offline

1. Open SQL Server Management Studio and open a Query Editor pane. Enter and execute the following code:

USE master

GO

ALTER DATABASE ApressFinancial
SET OFFLINE



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

2. Try to click some of the nodes for the ApressFinancial database, for example, the Tables node;
We will be reminded that the database is offline, and therefore cannot be viewed or modified, as shown
in Figure 7-1. We will also not be able to access the database through any application such as Query Editor.

Microsoft SQL Server Management Studio gj

@ Failed to retrieve data fFor this request, (Microsoft, SqlServer, SmoEnum])
Additional information:

s An exception occurred while executing a Transack-SQL statement or batch,
{Microsoft. SglServer . ConnectionInfa)

L4 Database 'ApressFinancial' cannot be opened because it is offline, {Microsoft SQL Server, Error:
942)

0 Y

Figure 7-1. Database is offline and therefore unable to be opened.

To take a database offline, SQL Server must be able to gain exclusive access to the database. This means that no
user can be in the database when we issue the command. If users are connected, then the query will continue to
execute until all users are disconnected.

As said earlier, that’s all there is to it. Our database is now no longer available for any updates of data, or modifica-
tions, and so can be backed up using any backup utility that takes files from a hard drive.

If you have to restore from a backup completed this way, don’t forget to take the database offline first, then restore
from the backup, and then bring the database back online, ready for use:

USE master

go

ALTER DATABASE ApressFinancial
SET ONLINE

There is one area to note when using backup strategies that employ these methods. If you have a server backup that
runs, for example, at 0200 hours, do you fancy getting up every night, just before 2 a.m., taking the database offline,
and then bringing the server back up once the backup is complete? No—not many people would. Of course, there
are installations where people are working through the night, so this is less of a problem, but what if they are busy?
Or forget? Then your whole backup will fail because the files are in use, and therefore the server will not backup
these files.

So let's now look at a more friendly method of backing up the data by using SQL Server instead.

Backing the Data Up

Using SQL Server to back up the database will be the method used by the majority of readers.
By using SQL Server, we are keeping the backup of the database under the control of an auto-
mated process that can control its own destiny, and as you will find out later, it can also control
the system when things go wrong.

The backup will be split into two parts. The first part, which will be covered here, will be
when we perform the backup manually each time. Obviously this means we have to be avail-
able to perform the backup, but this can be rectified quite easily. Once this has been covered,

191



192 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

the next section will schedule a backup to run at a specific time, which will relieve us of needing
to be available to complete a backup at the specified time.
Let’s start by looking at the manual backup.

Try It Out: Backing Up the Data

1. Ensure SQL Server Management Studio is running. Find our database, right-click, select Tasks, and
then click Back Up.

2. This then brings up the SQL Server Back Up Database dialog box. Take a moment to peruse this dialog
box. As Figure 7-2 shows, a lot appears on this screen, which will be dealt with a section at a time.

£ Back Up Database - ApressFinancial

Geﬁen-a.l | 2] Refresh \D Schedule ; Script - Lj Help
& Options
Source
D atabase:
Recovery model:
Backup type: Full w .'
Backup component:
(*) Database
) Files and filegroups:
Backup set
Narme: ApressFinancialFul Database Back.p
Drescription: [
Backup zet will expire:
(&) After: :U 3 daps
O On: |
Server Destination
®P-PRO .
Connection: Bac:k B @ e
XP-PROdewson | L Se L ILBa | Add...
2 View connection properties
Feady
< b
Ok ] [ Cancel

Figure 7-2. Backing up a database (full recovery model)

Although we have chosen our own database to back up, we could alter which database by changing the value in
the combo box. Next is the backup type, of which we have three options to choose from: Full, Differential, and
Transaction Log.

The first possibility, full backup, is straightforward. Selecting the Full option will ensure that the whole database will
be backed up. All the tables, the data, and so on are backed up if we use this option. We also back up enough of the
transaction log (transactions committed via code, but not physically applied to the relevant tables at the point of backup).



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

The second possibility is the differential backup, also known as an incremental backup. Use the Differential backup
option when the circumstances are such that a full backup is either not required or not possible. This just performs
a backup on data changed since the last backup. For example, we may take a full backup at the weekend, and then
a differential backup every night. Then when it comes to restoring, we would restore the weekend full backup, and
then add to that the latest differential backup taken from that point. A word of warning here: if you do take a week’s
worth of differential back ups, and you back up to magnetic tape rather than a hard drive, do keep at least enough
different tapes for each differential backup. Therefore, use a complete backup when necessary and then in the
interim use a differential backup.

The last possibility, the transaction log backup, should be used as the most frequent method of backup providing
that the database is not in simple recovery. As data is modified, details of the modifications are stored in the transaction
log. These remain in place until an action “truncates” the transaction log, which means that the transaction log will
increase constantly in size if not in Simple recovery. When you issue a transaction log backup, you are just backing up the
transaction log, which will issue a checkpoint, and all committed transactions will be stored onto the backup. This means
that if a system failure occurs, you would restore from a full backup, then from your differential backups for the week, and
finally from any transaction log backups after that point.

So you are probably wondering why not just use differential backups? Transaction logs can fill up during the working
day, or perhaps you have set differential backups to happen weekly because there is so little data modification.
However, you do need to account for when a transaction log may fill up before you reach the next differential backup.

By taking a backup of the transaction log, this is a great deal faster than the other two methods. Certainly in heavily
used databases you may have several transaction log backups in the day. You see how to do this using T-SQL after
we take our first full backup. At least one backup must exist before we can take a transaction log backup, as we
need a point at which the transaction log can roll committed transactions forward from.

Note If we were backing up the master database, then the only option that would be available to us
would be a complete database backup via the Full option.

A name and description of your backup are always useful. You will create different backups through time, so a good
description is always something that will help at a later date. | recommend that you use some sort of date and time
as part of the description, as this will make it easier to find, and which mode of backup you have chosen.

Different types of backups will have different expiry dates. This means that after the defined date, the media you
have stored your backup on will allow the data to be overwritten if using SQL Server (you can't delete the file man-
ually!). For example, you might have a weekly full backup that you want to keep three instances of, and then the first
full backup of the month you may wish to keep for six months, or even longer if it is a database that you must keep
for government legislation. In this option, you can retain the backup for a set number of days (for example, 21 days)
or for a set period of time (a specific date covers for uneven days in a month, or a year, for example).

A default destination is defined, which might be more than acceptable. It will be on our hard drive, in a location
below where our data is. It is best to have a directory set aside for backups so that they are easy to find, perhaps
with a name such as SQL Server Backups. However, in production this is not recommended. What if the hard drive
fails? We can gain a substantial performance improvement by backing up the database to a separate disk or to a
RAID 1 drive if one is available. This is because data is written to the backup file in a sequential manner. It is also
advisable to give the backup file a meaningful name. In this instance, it has been given the name of the database,
ApressFinancial.

193



194

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

3. Move to the Options tab, as shown in Figure 7-3, where we can define what options we want to happen
as part of this backup.

£ Back Up Database - ApressFinancial
b | 2] Refresh \‘9 Schedule ; Script - Lj Help

Ovenwrite media

(%) Back up to the existing media set
(%) Append to the existing backup sst

() Ovenwite all existing backup sets
[[] Check media set name and backup set expiration
Media set name:

() Back up to a new media set, and erase all existing backup sets

Mew media set name:

Mew media zet description:

Fieliability
[] Werify backup when finished

[[] Perfarm checksum before wiiting to media

Server
#P-PRO Tranzaction log

Connection:
HP-PROMdewson

2 View connection properties

| Tape dive

Feady

Ok ] [ Cancel

Figure 7-3. Database backup options

The first section of this dialog box deals with what you want to happen on second and subsequent backups. The first
time the backup is run, it will create the backup files, but when you run subsequent backups, do you want to append
to the current data or overwrite it? If this was a full backup, then you may overwrite, as you should be placing this
full backup over an old unrequired backup. However, if this was a differential backup, where it is perhaps the second
or third of the week, then you would append to the existing backup set. This would be after the previous differential
backups and would mean that if you needed to do a restore, all the backups would be one after another and therefore
would provide the fastest retrieval.

The option Check Media Set Name forces the backup to check that where the data is going to be backed up to is still
a valid name and, if appending, that the data set has not expired.

You would use the option Back Up to a New Media Set, and Erase All Existing Backup Sets option when any previous
backups were no longer required. This is ideal when moving the database from development to either user testing
or even production and you did not want to be able to restore from an incorrect backup. There is no point in wishing
to restore a production server from a development backup after all.

The second section deals with the reliability of the backup. It is possible to simply back up the data and trust that
everything worked perfectly, meaning no data transmission errors occurred between your SQL Server and the



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

backup device, or that no errors occurred when writing the data. A situation such as this is unusual, but there will
be times that it does happen. Do you trust that those times will occur when you will not need a backup? | suggest
this is something you just cannot and should not rely on. Therefore, although it will increase the amount of time the
backup takes, it is good to choose one of the two options in this section. The two options are to allow a verification
of the backup where SQL Server compares what has been backed up with what it expects to have been backed up,
and the second option allows for checksum processing whereby SQL Server performs a mathematical calculation
on the data to back up, which will generate a checksum that can then be compared once the data has been trans-
mitted from SQL Server to the backup device. If you select the second option, you can also specify whether to
continue if you get a checksum error.

If you are doing a transaction log backup, the next area of the dialog box would be enabled. You can logically shrink
the transaction log by removing all entries that have just been backed up by selecting the first option, Truncate the
Transaction Log. To save processing time, the physical transaction log is not shrunk. The second option, Back Up the
Tail of the Log, is used when there has been some sort of database corruption. If you wish to back up transaction log
records that have not been backed up prior to performing a restore to correct the corruption, then you would use this
option. To clarify, a database becomes corrupt, and you need to be able to restore up to the last backup, then add
all the transactions that have occurred since the last backup. By executing a backup of the tail of the log, you can
restore the database and then use this tail log backup to add the missing transactions.

The final area of the dialog box is available if you are using tapes as your backup medium. You can eject the tape
once the backup has finished. This is a useful option as the computer operators would know to remove the tape for
dispatch to the safe backup area. The second option, which specifies a rewind, is useful for full backups. On differ-
ential backups, however, SQL Server would be halted when running the next backup while the tape device got to the
right place on the tape to continue the backup. Clicking OK will then start the backup.

Once the backup is finished you should see the dialog box shown in Figure 7-4.

Microsoft SQL Server Management Studio

\-‘i") The backup of database ‘ApressFinancial' completed successfully,

Figure 7-4. A successful backup

The first backup of the ApressFinancial database has now taken place and should have been successful. If we
now move to the directory on the hard drive where the backup took place, then we will see the ApressFinancial file.

Recall that it was mentioned earlier that a company lost a week’s worth of data. It had set up the option to append
to media, the tape had become full, and the administrator had not set up the proper scenario to alert someone when
a problem occurred. So there was not just one failure in the system, but two; however, it still highlights that if you
are using append to media, you must check that enough room is available on the medium that you are appending
to for the backup to succeed.

Creating a backup of your database and the data is the most crucial action in building a database solution. Get it
wrong and you may as well go home. Well not quite, but if (or when) things go wrong, and you don’t have a valid or
recent enough backup that is acceptable to the users of your database, it will take a long time for you as a developer
to recover from that situation and get back to the excellent working relationship you had beforehand.

The backup taken in the preceding example is the simplest backup to perform. It is a complete backup of our par-
ticular SQL Server database, which happens while we are watching. If it goes wrong, we will instantly see and be

195



196

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

able to deal with it. However, most backups do not happen when you are there and will happen through the night.
In the next section, you will see more about scheduling jobs and how to schedule a task to run through the night.

However, it doesn’t cover what to do when things go wrong. This is a difficult area to discuss and should be integrated with
our database maintenance plan, which is covered later in this chapter in the section “Creating a Database Mainte-
nance Plan.” This example demonstrates how to complete a backup manually rather than as an automated process.

Before moving on, there are a couple more points concerning backups that you must keep in mind, and it is recom-
mended strongly that these directions be followed. First of all, keep a regular and up-to-date backup of the master
and msdb system databases. SQL Server very rarely becomes corrupted, but it can happen for any number of
reasons, from a hard drive failure to a developer altering the database in error. It really doesn’t matter, but if you
don’t have a backup of the master database, you could find yourself in trouble. However, be warned. Restoring the
master database should not be performed unless you really have to, and only if you are experienced with SQL Server.
Restoring the master database is not like restoring other databases, and has to be completed outside SQL Server Man-
agement Studio. This book quite deliberately does not cover having to restore the master database, since it is a
very advanced topic. If you wish to know more, then take a look at Books Online for more details.

When it comes to the msdb database and when to back it up, it could be that a daily backup is required. If you recall,
this database holds job schedules and other information pertinent to the SQL Server Agent for scheduling. If you
have jobs that run each day, and you need to keep information about when jobs were run, a daily backup may be
required. However, if you only wish to keep a backup of jobs, etc. that are set up and there is no need to know when
certain jobs ran and whether they were successful or not, then perhaps look at backing up this database weekly.

The model database should be backed up if any details within the model database have been altered. This should
be pretty infrequent, and therefore backing up this database need not be as regular as any other database; once a
week is probably frequent enough.

Backing up tempdb is not necessary, as this should be seen as a transient database, which has no set state.

Note When SQL Server is restarted, tempdb is dropped and is re-created as part of the startup process.

As you can see, it is not just your own databases that need to be considered and remembered when it comes to
dealing with your backup strategy. A database within SQL Server is not an insular arrangement and affects the
system databases just as much.

If in doubt, back it up more frequently than is required!

Backing Up the Database Using T-SQL

Now that we have backed up the database using the wizard, it is useful to demonstrate performing
abackup with T-SQL. These commands and statements can be used within a stored procedure
that can be scheduled to run at required intervals as part of an overnight task.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

There are two different types of backups. It is possible to either back up the database or
specific file groups or files that are part of the database. The code for the database backup
follows. The highlighted code will demonstrate which of the two possible options is the optional
default used when neither option is specified.

BACKUP DATABASE { database name | @database name var }

TO < backup device > [ ,...n ]

[ [ MIRROR TO < backup device > [ ,...n ] ] [ ...next-mirror ] ]
[ WITH

BLOCKSIZE = { blocksize | @blocksize variable } ]

, ] { CHECKSUM | NO_CHECKSUM } ]

, ] { STOP_ON_ERROR | CONTINUE AFTER ERROR } ]
DESCRIPTION = { 'text' | @text variable } ]
DIFFERENTIAL ]

EXPIREDATE = { date | @date var }
NDAYS = { days | @days var } ]

PASSWORD = { password | @password variable } ]

{ FORMAT | NOFORMAT } ]

{ INIT | NOINIT } ]

{ NOSKIP | SKIP } ]

MEDIADESCRIPTION = { 'text' | @text variable } ]
MEDIANAME = { media_name | @media_name variable } ]
MEDIAPASSWORD = { mediapassword | @mediapassword variable } ]
NAME = { backup_set name | @backup set name var } ]
{ NOREWIND | REWIND } ]

{ NOUNLOAD | UNLOAD } ]

STATS [ = percentage ] ]

COPY ONLY ]

)

)
)
ETA

)

-

[
[
[
[
[
R
[
[
[
[
[
[
[
[
[
[
[
[

e e — e
-
[N S S N N ST S T SN ST N S S S —"

If instead you just wish to back up specific files or file groups, the difference in the code is
highlighted in the BACKUP DATABASE statement shown here:

BACKUP DATABASE { database name | @database name var }
<file or filegroup> [ ,...f ]

TO <backup device> [ ,...n ]

[ [ MIRROR TO <backup device> [ ,...n ] ] [ ...next-mirror ] ]

[ WITH

LOCKSIZE = { blocksize | @blocksize variable } ]

, ] { CHECKSUM | NO_CHECKSUM } ]

{ STOP_ON ERROR | CONTINUE AFTER ERROR } ]

DESCRIPTION = { 'text' | @text variable } ]

DIFFERENTIAL ]

EXPIREDATE = { date | @date var }

)

)

[ B
([
([,
([
([
([

— e

)

197



198 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

| RETAINDAYS = { days | @days var } ]

[ , ] PASSWORD = { password | @password variable } ]

] { FORMAT | NOFORMAT } ]

] { INIT | NOINIT } ]

] { NOSKIP | SKIP } ]

] MEDIADESCRIPTION = { 'text' | @text variable } ]

] MEDIANAME = { media_name | @media name variable } ]
] MEDIAPASSWORD = { mediapassword | @mediapassword variable } ]
] NAME = { backup_set name | @backup_set name var } ]
] { NOREWIND | REWIND } ]

] { NOUNLOAD | UNLOAD } ]

] STATS [ = percentage ] ]

] COPY ONLY ]

-

L R B T e B e T e B e B e B e B T e B |
e R W B W e W e B e W W e M W |
-

)

I can now give a brief description of all the options that are available. We looked at some of
these options previously with the Back Up Database dialog box. This will allow you to compare
options within T-SQL and within the backup dialog boxes.

database _name | @database_name_var: Either the name of a database or a local variable
that gives the name of the database to back up.

file or filegroup: The name of the file or file group to back up.
backup_device: The name of the logical or physical backup device to use.
MIRROR TO: The backup file is mirrored to two to four different file locations.

BLOCKSIZE: The block size to use, for example, if backing up to CD-ROM, then you would
set a block size of 2048.

CHECKSUM | NO_CHECKSUM: Specifies whether to perform checksum calculations to ensure
the transmission of data or not.

STOP_ON_ERROR | CONTINUE_AFTER_ERROR: Specifies whether to stop on a checksum error
or not.

DESCRIPTION: A description of the backup.

DIFFERENTIAL: If this is a differential backup, then specify this option. Without this option,
a full backup is taken.

EXPIREDATE: The date the backup expires and is therefore available to be overwritten.

RETAINDAYS: The number of days the backup will be kept before the system will allow it to
be overwritten.

PASSWORD: The password associated with the backup. This must be supplied when inter-
rogating the backup for any restore operation. There is no strong encryption on this
option, so there is the potential that it could be easily broken.

FORMAT | NOFORMAT: Specifies whether to format the storage medium or not.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 199

e INIT|NOINIT: Keeps the media header created with the format but erases the contents.

e NOSKIP | SKIP: If you want to skip the checking of expiredate or retaindays when using
the media set, then select the SKIP option. Otherwise, expiredate and retaindays will
be checked.

Note A media set is an ordered set of backups on the same disk or tape.

e MEDIADESCRIPTION: Gives a description to the media set.

e MEDIANAME: Names the media set.

e MEDIAPASSWORD: Gives the media set its password.

e NAME: Names the backup set.

* NOREWIND | REWIND: Specifies whether to rewind a tape or not.

* NOUNLOAD | UNLOAD: Specifies whether the tape is unloaded or kept on the tape drive.

e STATS [ = percentage ]:SQL Server will provide a message at this percentage interval
telling you how much of the approximate backup has completed. Useful for gauging
progress of long-running backups.

e COPY_ONLY: Tells SQL Server that this is a copy of the data. It cannot be used as a full
backup point for differential backups, as the differential backups will be in line with the
last “pure” full backup. This option is ideal if you take weekly backups for dumping the
data to a user test region, as it will not affect the production backup process.

The only remaining option is for files or file groups where you can name the file or file
group that the backup is for. The preceding options do not change for files or file groups.

Try It Out: Backing Up the Database Using T-SQL for a FULL and DIFFERENTIAL Backup

1. Open up a fresh Query Editor window. It doesn’'t matter which database it is pointing to as the BACKUP
DATABASE statement defines the database we will be working with.

2. The T-SQL that we need for our full backup follows. Enter the code (keeping the name of where the
backup is located via the TO DISK option and the WITH NAME option all on one line). Notice that there
are no options defined for several of the options as we are taking the default.

BACKUP DATABASE ApressFinancial

TO DISK = 'C:\Program Files\Microsoft SQL Server\MSSOQL.1\MSSQL\Backup\
ApressFinancial.bak'

WITH NAME = 'ApressFinancial-Full Database Backup',

SKIP,

NOUNLOAD,

STATS = 10



200 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

3. Execute the code and you will see results similar to those that follow. The main points to notice are the
stats messages that come out in approximations of 10 percentage points. It then lists the number of
data pages backed up and the number of log pages backed up. The on file part of the message
details which file within the media set the backup now is. In this case, this is the third backup. You will
possibly see on file 2 unless, like | did, a second backup has been taken in the meantime. The final
message is the one of greatest interest, as it shows that the backup was successful and the amount of
time taken.

12 percent processed.

21 percent processed.

30 percent processed.

43 percent processed.

51 percent processed.

60 percent processed.

73 percent processed.

82 percent processed.

90 percent processed.

Processed 184 pages for database 'ApressFinancial’,
file 'ApressFinancial' on file 3.

100 percent processed.

Processed 1 pages for database 'ApressFinancial’,
file 'ApressFinancial log' on file 3.

BACKUP DATABASE successfully processed 185 pages
in 1.113 seconds (1.361 MB/sec).

4. Although useful to see, not many of the options were used. However, Figures 7-5 and 7-6 show the next
backup of the database to be taken, which is a differential backup. We will not allow this backup to
expire until 60 days have elapsed, as shown in Figure 7-5. We will also be adding this differential backup
to the full backup.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 201

£ Back Up Database - ApressFinancial

1] Refresh  (5) Schedule

S Script - m Help

Source

Database: | ApressFinancial e |

Recovery model: | FLILL |

Backup type: | Differential W |

Backup component:

(%) Database
) Files and filegroups: | |
Backup set
Marne; |ApressFinanciaI-Differential [atabasze Backup |
Drescription: |This iz a differential backup |

Backup zet will expire:

© After: |60 5| days
O On: |.?‘; I3 |
Destination
Server Back up to: ® Disk
HP-FRO e
y Add...
Connection:

HP-PROMdewson
27 Wiew connection properties
 Progress ——

> Scripting completed
@ successiully.

|~
2

Ok ] [ Cancel

Figure 7-5. Backing up a database (differential)

5. Figure 7-6 shows that we are appending to the same media set as the full backup and that we have
included some reliability checking. Make sure your version matches the figure.



202 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

¥ back Up Database - ApressFinancial

] Refiesh () Schedule

5 Script - u Help

Ovenwrite media

(%) Back up ta the existing media set
(%) Append to the existing backup sst

() Ovenwrite all existing backup sets

Check media zet name and backup et expiration

Media set name: |

() Back up to a new media set, and erase all existing backup sets

Mew media sat name: ‘

|
Mew media set description: | |
|

Fieliability
Werify backup when finizhed
Perfarm checksum before witing to media
Continue on checksum error

Server
“P-PRO R e e S o

Tranzaction log

Connection:
#P-PROMdewson

34 View connection properties

= Scripting completed
@ successhully.

Tape diive

Ok ] [ Cancel

Figure 7-6. Backing up a database (differential) options

6. The code that would be the equivalent of these two figures has been split in two. The first part is the
differential backup. Again, ensure that the TO DISK, DESCRIPTION, and NAME options are all on the
same line of the Query Editor window pane.

BACKUP DATABASE ApressFinancial

TO DISK = 'C:\Program Files\Microsoft SQL Server\MSSOQL.1\MSSQL\Backup\
ApressFinancial.bak'

WITH DIFFERENTIAL ,

DESCRIPTION = 'This is a differential backup',
RETAINDAYS = 60,

NAME = 'ApressFinancial-Differential Database Backup',
STATS = 10,

CHECKSUM,

CONTINUE_AFTER_ERROR

GO



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 203

7. The second part is where the reliability checking takes place. This is more complex T-SQL than we have
covered, so for the moment just trust that it works and that it does what it is supposed to. You will
encounter this code once more when looking at more complex T-SQL later in the book in Chapter 11.
However, the basis of the code is that a check is made in the msdb database to retrieve the last backup
set that was taken, and we do a “restore” of the database as verification only, without actually restoring
any data, and that the restore can complete successfully. If it can’t verify the backup set or the restore
is okay, then you will get an error message.

DECLARE @BackupSet AS INT
SELECT @BackupSet = position
FROM msdb. .backupset
WHERE database name='ApressFinancial'
AND backup_set id=
(SELECT MAX(backup_set id)
FROM msdb. .backupset
WHERE database name='ApressFinancial' )
IF @BackupSet IS NULL
BEGIN
RAISERROR('Verify failed. Backup information for database
"'ApressFinancial'' not found.', 16, 1)
END
RESTORE VERIFYONLY
FROM DISK = 'C:\Program Files\Microsoft SOL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak'
WITH FILE = @BackupSet,
NOUNLOAD,
NOREWIND

8. When the code is executed, you will see something like the results that follow. Again, they contain
details of the amount of data backed up as well as which file number on the media set the backup is.

19 percent processed.

39 percent processed.

58 percent processed.

78 percent processed.

97 percent processed.

Processed 40 pages for database 'ApressFinancial’,
file 'ApressFinancial’ on file 4.

100 percent processed.

Processed 1 pages for database 'ApressFinancial’,
file 'ApressFinancial log' on file 4.

BACKUP DATABASE WITH DIFFERENTIAL successfully processed 41 pages
in 0.433 seconds (0.774 MB/sec).

The backup set on file 4 is valid.




204

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

Transaction Log Backup Using T-SQL

You can back up not only the data, but also, and just as importantly, the transaction log for the
database. Just to recap, the transaction log is a file used by databases to log every transaction,
including DML actions such as rebuilding indexes. In other words, every data modification
that has taken place on any table within the database will be recorded within the transaction
log. The transaction log is then used in many different scenarios within a database solution,
but where it is most useful, from a database recovery point of view, is when a database crashes.
In this case, the transaction log can be used to move forward from the last data backup, using
the transactions listed within the transaction log.

If a database crash occurs, then the full and differential backups will only take you to the
last valid backup. For data entered since that point, the only way to restore the information is
to then “replay” the transactions that were committed and recorded as committed in the transac-
tion log. Any actions that were in progress at the time of the failure that were within a transaction
that was still in progress would have to be rerun from the start.

So, to clarify, if you were in the process of deleting data within a table and the power was
switched off, you would use your full and differential backups to restore the data. You would
then use the information within the transaction log to replay all successful transactions, but
because the delete had not been successful, the table would have all the data still within it.

Backing up the transaction log is a good strategy to employ when a large number of updates
occur to the data through the day. A transaction log backup should take place at set times
throughout the day depending on how large the transaction log has grown and how crucial it
was to get your system back up and running after any unexpected outage. When a transaction
log is backed up, the transaction log itself is logically shrunk in size so that the transaction log
is kept small. It also gives you point-in-time recoverability; this means that you can quickly
restore to any time in the past where the transaction was backed up.

Backing up a transaction log is similar to backing up a database. The full syntax is as follows
and really only differs from a database backup by using the LOG keyword instead of DATABASE
and the options NO_TRUNCATE and NORECOVERY/STANDBY:

BACKUP LOG { database name | @database name var }
{
TO <backup_device> [ ,...n ]
[ [ MIRROR TO <backup_device> [ ,...n ] ] [ ...next-mirror ] ]
[ WITH
[ BLOCKSIZE = { blocksize | @blocksize variable } ]
[ [, ] {CHECKSUM | NO_CHECKSUM } ]
[ [, ] {STOP ON ERROR | CONTINUE AFTER ERROR } ]
[ [, ] DESCRIPTION = { 'text' | @text variable } ]
[ [ ,] EXPIREDATE = { date | @date var }
| RETAINDAYS = { days | @days var } ]
[ [, ] PASSWORD = { password | @password variable } ]
[ [, ] { FORMAT | NOFORMAT } ]
[ { INIT | NOINIT } ]
[ { NOSKIP | SKIP } ]
[ MEDIADESCRIPTION = { 'text' | @text variable } ]
[ MEDIANAME = { media_name | @media_name variable } ]
[ MEDIAPASSWORD = { mediapassword | @mediapassword variable } ]

J)

J)

J)

J)

— e e,
A T S T By S Gy S—}

J)



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 205

NAME = { backup_set name | @backup set name var } ]
NO_TRUNCATE ]

{ NORECOVERY | STANDBY = undo_file name } ]

{ NOREWIND | REWIND } ]

{ NOUNLOAD | UNLOAD } ]
S
C

]
> ]
> ]
> ]
» ]

] STATS [ = percentage ] ]

] COPY ONLY ]

L e W W e N W B |

)

— e e e e T W W |

To detail the options not covered when looking at backing up the database earlier, let’s
look at them now:

e LOG: Determines that we wish to produce a backup of the transaction log rather than a
backup of a database or files/file groups.

e NO_TRUNCATE: Will not truncate the log after the backup. If the database is corrupt, using
this option will allow the backup to be attempted at least. Without this option, you will
get an error message.

» NORECOVERY | STANDBY: Means that after the backup, the database will be in a state whereby
it looks to anyone trying to connect as if it is still being restored.

Note The LOG options NO_TRUNCATE and NORECOVER | STANDBY are used when the database is corrupt
and you wish to back up the transaction log prior to performing a restore.

Try It Out: Backing Up the Transaction Log Using T-SQL

1. Ina Query Editor pane, enter the following T-SQL code. This will back up the transaction log to the same
media set as the full and differential backups. While developing and learning SQL Server, this is a valid
scenario, and in some production setups you may want to back up to the same place as your daily full
backup. However, the downside is that if you take several transaction log backups between each differ-
ential backup and full backup, then SQL Server will have to “skip” these if they were not required as
part of the restore operation. On a tape drive, this could cause significant overhead. In this scenario, you
would be better to save the transaction log files to a different media set.

BACKUP LOG ApressFinancial

TO DISK = 'C:\Program Files\Microsoft SOL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak'

WITH NAME = 'ApressFinancial-Transaction Log Backup',

SKIP,
NOUNLOAD,
STATS = 10

2. This code replicates the Truncate the Transaction Log option, as shown in Figure 7-7. Execute the code.



206 CHAPTER 7

DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

¥ Back Up Database - ApressFinancial

Server
#P-FRO

Connection
HP-PROdewson

# o Scripting completed
@ successiully.

%] Refresh E)Sc:hedule

5 Script - L’j Help

24 View connection properties

Ovenarite media

(%3 Back up o the existing media set
(%) Append to the existing backup set

() Ovenwrite all existing backup sets

[] Check media set name and backup set expiration

Media set name: |

() Back up to a new media set, and eraze all existing backup sets

Mew media set name: ‘

Mew media st description: |

Fieliability
[] Werify backup when finished

[] Perfarm checksum before writing ta media

Tranzaction log
(%) Truncate the ransaction lag by removing inactive enties
() Back up the tail of the log, and leave the database in the restoring state

Tape drive

0K

] [ Cancel

Figure 7-7. Backing up a transaction log

3. After execution, you should see output similar to the following where the transaction log has been
successfully backed up and placed on file 5.

10
20
30
40
50
60
70
80
90

percent
percent
percent
percent
percent
percent
percent
percent
percent

processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.

100 percent processed.

Processed 159 pages for database 'ApressFinancial’,

file 'ApressFinancial log' on file 5.
BACKUP LOG successfully processed 159 pages
in 0.468 seconds (2.772 MB/sec).




CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

Restoring a Database

Now that the data has been backed up, what if you needed to complete a restore? As has been
mentioned, there are two scenarios where arestore could be required: restoring from a backup
or restoring when there is a media failure. The second type of restore is not one you wish to
perform, but could be set up by creating a long-running transaction, and then simply switching
your computer off—not one of life’s greatest ideas to do deliberately! This book therefore will
not be demonstrating this option, and it is not really for a beginner to attempt. However, I will
discuss the concept within this section of the chapter. The first option, a simple restore, is easy
to replicate and perform, and this will be the option we will be looking at.

You can choose between two means to restore the database: SQL Server Management
Studio and T-SQL. This is a scenario that you hope you will never perform in a production envi-
ronment, but it will happen. If you just need a restore within the development environment to
remove test data and get back to a stable predefined set of data to complete the testing, then
this next section should help you. It might also be that you do a weekly refresh of your user test
region. Before completing the restore, let’s first modify the ApressFinancial database to prove
that the restore works, as there is no data within the database yet to prove the restore has worked
by that method. Keep in mind, however, that a restore will restore not only the data structures,
but also the data, the permissions, and other areas of the database not yet covered in the book,
for example, views, stored procedures, and so on.

Restoring Using SQL Server Management Studio

The restore demonstrated in the following example will be a complete database restore of our
ApressFinancial database. In other words, it will restore all the full and differential backups taken.

Try It Out: Restoring a Database

1. Add a new column to the ShareDetails.Shares table using the following code in a Query Editor pane:

USE ApressFinancial

GO

ALTER TABLE ShareDetails.Shares
ADD DummyColumn varchar(30)

2. We can now restore the database, which will remove the changes we have just completed, using the
backup we finished earlier. From the Object Explorer window, select the ApressFinancial database,
right-click, and select Tasks » Restore » Database. This will bring up the dialog box shown in Figure
7-8. It is possible to change the database you wish to restore by changing the name in the To Database
combo box or by simply overwriting the name that is there. The second option, To a Point in Time, is
used if you are restoring the database as well as rolling forward changes recorded in the transaction log.
This situation is similar to the scenario mentioned earlier about a power failure or hard drive failure. As
we are not doing this here, leave this option as it is. When taking a backup, details are stored in msdb,
but it is possible to restore a database from a backup that is not in msdb. For example, if you are rebuilding a
server due to corruption, and msdb was one of the databases corrupted, it is necessary to have the
option of finding a backup file and restoring from that instead. Or perhaps the last full backup taken is

207



208

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

not the backup you wish to restore. This might occur in a development scenario where you wish to
restore to a backup before major changes were done that you wish to remove. There would be no trans-
action log involved or required to be involved, therefore restoring to a point in time would not be a valid
scenario. This is where the From Device option could be used. By selecting this option and clicking the
ellipse to the right, you can navigate to any old backup files. Finally, you can click which of the items in
the backup you wish to restore. The default is all files to be selected, as you can see in Figure 7-8. The
settings shown will give us a backup that is as fresh as possible (the Most Recent Possible value for the
To a Point in Time setting).

Restore Database - ApressFinancial

] Gener;l - | 2] Refresh \‘E) Schedule ; Script - u Help
E‘ Optiors I
Destination for restare
Select or type the name of & new or existing database for your restore operation.
To database: | |
To a paint in time: _“Most recent possible | E]
Source for restore
Specify the zource and location of backup sets to restore,
(%) From database: ;ApressFinanciaI v'
() From device:
Select the backup sets to restore:
Restore 1 Mame Component | Type Server [atabase Position
v AprezsFina..  Database Full *P-PRO ApressFina.. 3
L | v AprezsFina..  Database Differential ~ *P-PRO ApressFina.. 4
Server v AprezsFina... Tranzaction... *P-PRO ApressFina.. &
®P-PRO
Connection:
HP-PROMdewson
2 View connection properties
Feady
< >
Ok ] [ Cancel

Figure 7-8. Restoring a database—General tab

3. Moving to the Options page, shown in Figure 7-9, there are a number of points to consider

e Qverwrite the Existing Database: This is the most likely option to be enabled for a normal restore.
You would disable it if you wished to create a restore on the same server but where the restore
would alter the name of the database.

* Preserve the Replication Settings: A more advanced option for when a database is sending changes
to another database. For the time being, you will be leaving this option disabled.

*  Prompt Before Restoring Each Backup: If you wish a prompt message before each restore file is acti-
vated, then select this. Ideal if you need to swap media over.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

Restrict Access to the Restored Database: After a restore, you may wish to check out the database
to ensure the restore is what you wish, or in a production environment to run further checks on the
database integrity.

Restore the Database Files As: If you wish to move or rename the MDF and LDF files, then this grid
will allow you to do this.

Leave the Database Ready to Use: This option will define whether users can immediately connect
and work with the data after the restore. If there was a transaction in progress, such as deleting rows
within a table, then connection could occur once the deletion had been rolled back and the table is
back in its “original” state.

Leave the Database Non-operational: With this option you are indicating that the database has been
partially restored and you are unsure if you need to perform additional actions. If there was a trans-
action in progress, like deleting a table, then whatever had been deleted will still be deleted and has
not rolled back.

Leave the Database in Read-only Mode: A combination of the first two options. If there was a trans-
action in progress, such as deleting rows in a table, then connection could occur once the deletion
had been rolled back. However, the changes are also kept in a separate file so that any of these
actions that have been rolled back can be reapplied. This might happen if there are several actions
within a transaction and some can be reapplied.

Restore Database - ApressFinancial

| 2] Refresh \B Schedule ; Script - LjHeIp

[heiy eral
A Dptions

Fiestore oplions

Owenwrite the existing database
[] Preserve the replication sattings
[ Prompt before restoring each backup

[] Restrict access to the restored database

Fiestore the database filez as

Original File Mame Festore &z | ‘
C:AProgram FilesiMicrosoft SOL ServeriiS. .. C:A\Program FilesiMicrosoft SOL Server\MS... J
C:A\Program FilesiMicrosoft SOL ServerMS...  C:AProgram Files\Microsoft SOL ServersMS... J

Recovery state

i - oy Leave the database ready bo use by rolling back uncommitted transactions. Additional transaction
Server " logs cannot be restored [RESTORE WITH RECOVERY)

*P-PRO
Connection: Leave the database non-operational, and do not rall back uncommitted transactions. Additional
#P-PROdewson = tranzaction logs can be restored [RESTORE 'WITH MNORECOVERY)

A Wiew connection properies

@) Leave the database in read-only mode. Undo uncommitted transactions, but zave the undo
actions in a standby file o that recovery effects can be reversed [RESTORE 'WITH STAMDEY)]

Ready

oK ] [ Cancel

Figure 7-9. Restoring a database—Options tab

209



210 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

4. Once you have the option settings you require, a quick click of OK will perform the restore, and you
should see the message in Figure 7-10. If you then move back to the database after clicking OK, you
will see that the column we just added has been “removed.”

Microsoft SQL Server Management Studio

The restore of database ‘ApressFinancial' completed successfully,

i

Figure 7-10. Restore successful

Restoring Using T-SQL

Using the wizard is a pretty fast way to restore a database, and when under pressure may even
be the best way forward. However, it is not the most flexible way of performing a restore, as
some options that are available via T-SQL are not in this wizard. Some of these options were
covered when we performed a backup, such as performing checksums when transferring data
from the media device back to the database or unloading media at the end of the restore. If
there is also a password on the backup medium, this option is not available within the wizard,
but with the T-SQL you can use passwords. So being comfortable building a restore via T-SQL
is important in becoming a more proficient and professional developer or administrator.

The syntax for restoring a database is similar to that for database backups. After looking at
the syntax, we will then go through the options you will not be familiar with.

RESTORE DATABASE { database name | @database name var }
[ FROM <backup_device> [ ,...n ] ]
[ WITH

[ { CHECKSUM | NO_CHECKSUM } ]

[ [, ] { CONTINUE_AFTER ERROR | STOP_ON_ERROR } ]
FILE = { file number | @file number } ]
KEEP_REPLICATION ]
MEDIANAME = { media_name | @media_name_variable } ]
MEDIAPASSWORD = { mediapassword |

@mediapassword variable } ]
[ [, ] MOVE 'logical file name' TO 'operating system file name' ]
[ ,...n]

[ [, ] PASSWORD = { password | @password variable } ]
] { RECOVERY | NORECOVERY | STANDBY =
{standby file name | @standby file name var }

—r———

—r———
-

[

—
—
-

REPLACE ]

RESTART ]

RESTRICTED USER ]

{ REWIND | NOREWIND } ]

— e
— e e
-

]
]
]
]



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

[ [, ] STATS [ = percentage ] ]
[ [, ]{STOPAT = { date time | @date time var }

| STOPATMARK = { 'mark name' | 'lsn:lsn _number' }

[ AFTER datetime ]
| STOPBEFOREMARK = { 'mark name' | 'lsn:1sn number' }
[ AFTER datetime ]

]
[ [, ] {UNLOAD | NOUNLOAD } ]

The options we have not yet covered are as follows:
e KEEP_REPLICATION: When working with replication, consider using this option.

e MOVE: When completing a restore, the MDF and LDF files that are being restored have to be
placed where they were backed up from. However, by using this option, you can change
that location.

e RECOVERY | NORECOVERY | STANDBY: These three options are the same, and in the same order,
as their counterparts (in parentheses) in the wizard:

e RECOVERY (Leave the Database Ready to Use): This option will define that after the
restore is finished, users can immediately connect and work with the data. If there was
a transaction in progress, such as updating rows in a table, then not until the updates
have been rolled back and therefore the table is back in its “original” state will connec-
tions to the database be allowed.

* NORECOVERY (Leave the Database Nonoperational): With this option, you are indicating
that the database has been partially restored, and you are unsure whether you need to
perform additional actions. If there was a transaction in progress, like inserting rows
in a table, then the insertions would not be rolled back. This allows addition restores
to get to a specific point in time.

e STANDBY (Leave the Database in Read-only Mode): A combination of the first two
options. If there was a transaction in progress, like deleting rows in a table, then the
deletion is rolled back. However, the changes are also in a separate file, so that any of
these actions that have been rolled back can be reapplied. This might happen if several
actions occurred within a transaction and some can be reapplied.

* REPLACE: This works the same as the wizard option Overwrite The Existing Database.

* RESTART: If a restore is stopped partway through, then using this option will restart the
restore at the point it was stopped.

* RESTRICTED USER: Use this with the RECOVERY option to only allow users in specific restricted
groups to access the database. This would be used to allow further checking by a data-
base owner, or by the dbowner, dbcreator, or sysadmin roles.

» STOPAT | STOPATMARK | STOPBEFOREMARK: Used to specify a specific date and time at which to
stop the restore.

211



212 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

The syntax for restoring the transaction log is exactly the same, with the only difference
being the definition: you are completing a LOG rather than a DATABASE restore.

RESTORE LOG { database name | @database name var }
<file or filegroup or pages> [ ,...f ]
[ FROM <backup device> [ ,...n ] ]
[ WITH
[ { CHECKSUM | NO CHECKSUM } ]
, ] { CONTINUE_AFTER ERROR | STOP ON_ERROR } ]
] FILE = { file number | @file number } ]
] KEEP_REPLICATION ]
] MEDIANAME = { media_name | @media_name variable } ]
]
]

—
—

MEDIAPASSWORD = { mediapassword | @mediapassword variable } ]
MOVE 'logical file name' TO 'operating system file name' ]
[ ,...n]
[ [, ] PASSWORD = { password | @password variable } ]
[ [, ] { RECOVERY | NORECOVERY | STANDBY =
{standby file name | @standby file name var } }

— e, —
— e e
-

] REPLACE ]
] RESTART ]
] RESTRICTED USER ]
] { REWIND | NOREWIND } ]
, ] STATS [=percentage ] ]
, ] { STOPAT = { date time | @date time var }
| STOPATMARK = { 'mark name' | 'lsn:lsn number' }
[ AFTER datetime ]
| STOPBEFOREMARK = { 'mark name' | 'lsn:lsn number' }
[ AFTER datetime ]

)

— e e
L R W W W W |
-

[, ] { UNLOAD | NOUNLOAD } ]

Try It Out: Restoring Using T-SQL

1. Open up an empty Query Editor pane and enter the following code. This will add the column that we
want to see “removed” after a restore.

USE ApressFinancial

GO

ALTER TABLE ShareDetails.Shares
ADD DummyColumn varchar(30)

2. Now replace this code with the restore code that follows. Don’t execute any of the code just yet, as this
piece of code is the first part only. Recall that when performing the backups, FILE 3 was the FULL backup
taken. This is what the first restore will do.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 213

Note Ensure that the FROM DISK option is all on one line. Also recall that FILE = 3 may be FILE = 2
depending on the backups taken, and this may be the case of different file numbers as you progress.

USE Master

GO

RESTORE DATABASE [ApressFinancial]

FROM DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak' WITH FILE = 3,

NORECOVERY, NOUNLOAD, REPLACE, STATS = 10

GO

3. Continue the code with the second part of the restore, which will be the differential backup restore.
This uses FILE 4 from the backup set.

RESTORE DATABASE [ApressFinancial]

FROM DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak' WITH FILE = 4,

NORECOVERY, NOUNLOAD, REPLACE, STATS = 10

G0

4. The final part of the restore operation is to restore the transaction log file. Once all this code is in, you
can run all of the code.

RESTORE LOG [ApressFinancial]

FROM DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak' WITH FILE = 5,

NOUNLOAD, STATS = 10

5. Once the code has fully executed, the results you should see are similar to those listed here:

12 percent processed.

21 percent processed.

30 percent processed.

43 percent processed.

51 percent processed.

60 percent processed.

73 percent processed.

82 percent processed.

90 percent processed.

100 percent processed.

Processed 184 pages for database 'ApressFinancial’,
file 'ApressFinancial’ on file 3.

Processed 1 pages for database 'ApressFinancial’,
file 'ApressFinancial log' on file 3.

RESTORE DATABASE successfully processed 185 pages
in 0.310 seconds (4.888 MB/sec).



214 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

19 percent processed.

39 percent processed.

58 percent processed.

78 percent processed.

97 percent processed.

100 percent processed.

Processed 40 pages for database 'ApressFinancial’,
file 'ApressFinancial' on file 4.

Processed 1 pages for database 'ApressFinancial’,
file 'ApressFinancial log' on file 4.

RESTORE DATABASE successfully processed 41 pages
in 0.088 seconds (3.810 MB/sec).

10 percent processed.

22 percent processed.

31 percent processed.

41 percent processed.

51 percent processed.

62 percent processed.

71 percent processed.

81 percent processed.

90 percent processed.

100 percent processed.

Processed 0 pages for database 'ApressFinancial’,
file 'ApressFinancial' on file 5.

Processed 159 pages for database 'ApressFinancial’,
file 'ApressFinancial log' on file 5.

RESTORE LOG successfully processed 159 pages

in 0.361 seconds (3.593 MB/sec).

We can now move back to the ShareDetails.Shares table and check that the column added has now been
removed. You may have to perform a refresh within the Object Explorer first to see the changes.

Restoring a database in production will in most instances take place under pressure, as the database will have
become corrupt, or been inadvertently damaged. The production system is obviously down and not working, and we
have irate users wanting to know how long before the system will be up. This is hopefully the worst-case scenario,
but it is that sort of level of pressure that we will be working under when we have to restore the database. Therefore,
having the correct backup strategy for your organization based on full, differential, and transaction log backups is
crucial. Full database backups for a system that requires high availability so that the restore takes the least amount
of time may be what you need.

Detaching and Attaching a Database

Now that we can back up and restore a database, we have available other methods of dealing
with the database. There may be a time in the life of our SQL Server database when we have to
move it from one server to another, or in fact just from one hard drive to another. For example,



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

we currently have ApressFinancial on our C drive, and this is getting full, so we would like to
move our database to another hard drive. Or perhaps we are moving from an old slower server
to a new faster server or a server on a better network. By detaching and reattaching the data-
base, we can do this simply and easily.

I would like to make a couple of points here; they may seem straightforward and really
obvious, but better to mention them than cause problems at a later stage. First of all, no updates
can be occurring, no jobs can be running, and no users can be attached. Secondly, justin case,
take a full backup before moving the database. This may add time to the process, but it is better
to be safe than sorry. Ensure that where you are moving the database to has enough disk space,
not only for the move, but also for expected future growth; otherwise you will be moving your
database twice. You should not attach your database to a server without immediately
completing a backup on the new server afterwards; this way, you can ensure that the databases
are protected in their new state.

Detaching a database physically removes the details from the SQL Server master and msdb
databases, but does not remove the files from the disk that it resides on. However, detaching
the database from SQL Server will then allow you to safely move, copy, or delete the files that
make up the database, if you so desired. This is the only way that a database should be physically
removed from a server for moving it.

Detaching and Attaching Using SQL Server Management Studio
We'll start by using SSMS to detach and attach a database.

Try It Out: Detaching a Database

1. First of all, it is necessary to ensure that nobody is logged in to the database, and even if there is, that
the user is not doing any updates. For the moment, | want you to ignore this and to have a connection.
Ensure that SQL Server Management Studio is running and that there is a Query Editor pane with a
connection to the ApressFinancial database. Find the ApressFinancial database in the Object
Explorer and ensure that is selected. Right-click and select Tasks » Detach.

2. This then brings up the Detach Database dialog box for the ApressFinancial database, as shown in
Figure 7-11. We haven’t removed all the users connected, so you can do this by selecting the Drop
Connections check box. The second option, Update Statistics, means that the SQL Server statistics for
indexes, etc. will be updated before the database is detached. The third option, Keep Full Text Catalogs, is
when you have set up specialized indexing on text data columns known as Full Text. The information
is stored separately from the other data files in SQL Server, so selecting this option will ensure that
when the database is detached that they are not lost and therefore would need re-creating. The status
is Not Ready due to the message indicating that there is still “1 Active connection(s).”

3. Click the message and the dialog box in Figure 7-12 is displayed. This is a powerful tool within SQL
Server that shows all the processes that there are with connections to your server. This list has already
been filtered by SQL Server because of the message we saw (using the Filter option on the top line) for
the ApressFinancial database. Only one row is listed, which is the one connection in the Query
Editor pane we opened a moment ago.

215



216 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

| Refresh (D) Schedule 55 Seript = [ Help

Databases to detach:

;;r;;rn Database Name | Drop Connections | Update Statistics | Keep Full Text Catalogs | Status | Message

* bpressFinancial = N ~ Mot ready 1 Active connections|

Cornection:
P-PROMdewson

3 View connection piopertiss

Feady

=

>

Figure 7-11. Detaching a database

*& Activity Monitor - XP-PRO

Selectapage 14 Retiesh T Fiter.. (4 Help
€

Lacks by Process
% Looks by Dbiect Displayed 1 items from a total of 30 tems.

Info

Process 1D /| System Process | User Databsse | Ststus | Open Transactions | Command Application [ wiait Time | wiait Type | Fesol
o o HPPRONdewson ApressFinanciel slesping 0 AWAITING COMMAND  Microsoft SOL Server Management Studio - Query 0

Last Refresh:
02/07/200516:21.29
Newt Refresh:

Manual

18] View refresh setings
Filter: Applisd

W Miew fiter settings

Server. XPPRO
Connectior: XP-PROVdenzon

%3 View conneclion piopeties

@ Done

I
|~

Figure 7-12. Detaching a database Activity Monitor

4. ltis possible to see more information about what the connection is doing by scrolling right and left.
To kill the process, right-click the item and select Kill Process. If we were running T-SQL code at the
time, it would stop that process immediately. Therefore, if the process is running any data modifica-
tions, you have to be sure that this is what you want to do.

Note If you are running updates that are within a transaction, when you issue a kill, SQL Server will roll
back the updates. Therefore, it may still take a long time to remove the connection. Kill is a powerful command
with large ramifications in this scenario, so do use it as a last resort.




CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

5. Once the process has been killed, you can close the Activity Monitor, which takes you back to the
Detach Database dialog box. If the dialog box hasn’t automatically updated, then click the Refresh
button, which should then allow you to see no error messages. You can then click OK to finish detaching
the database.

That’s it. The database is detached, is no longer part of SQL Server, and is ready to be removed or even deleted. If
you check the Object Explorer in SQL Server Management Studio, you will see that the database is no longer listed.

Detaching a database, although seemingly a simple and innocuous operation, has the potential to be fraught with
problems and worries. As the example demonstrated, ensuring that there are no users attached to the database at
the time of detaching is not as easy as it first may seem. Setting up the database options to eliminate connections
or to stop updates is only possible once everyone has been removed from connections to the database. There is no
easy way of removing connections safely, as you never know what an application with a connection to the database
is doing. You could remove a connection that is in the middle of processing. If you are going down the route of
detaching the server, though, there is an obvious reason to do this, such as moving servers, removing the database,
and therefore you would have a plan of action to do this. Users would have been notified days or weeks in advance,
and the database owner would have coordinated a date and time when nobody should be connected. Also, the
database owner would be around if there were any problems, and he or she could make the decision to kill any con-
nections left hanging around.

Detaching the database is a process that removes entries within the SQL Server system tables to inform SQL Server
that this database is no longer within this instance of SQL Server and therefore cannot be used. It is as simple as
that. If you are removing the database completely, then you will need to delete the files from the directory they were
created in.

It is possible to detach the database using a system stored procedure, although this does not let you kill the
connections. This has to be done via a T-SQL command.

We need to reattach the database before being able to demonstrate this, so let’s do that now. This would occur on
our new SQL Server instances after physically moving the files.

Try It Out: Attaching a Database

1. Within Object Explorer, highlight the Databases node, right-click, and select Attach.
2. This brings up the Attach Databases dialog box, shown in Figure 7-13. To add a database, click Add.

3. This brings up the Locate Database Files Explorer, shown in Figure 7-14. You can use this like other
Windows Explorers to locate where your database MDF files are. Once you find the database you want
to reattach, highlight it and then click OK.

217



218 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

' Attach Databases
&

1] Refresh  (5) Schedule

S Script - &E‘j Help

General

Databases to attach:

J MDF File Location J [ratabaze N] Attach Az Cwrier Status Meszzage J
Server
®P-PRO
Connection: D atabase details:
PR Original File Mame File Type Current File Path Meszage J
27 Wiew connection properties
Progress
Feady
(] 8 ] [ Cancel ]

Figure 7-13. Options for attaching a database

Locate Database Files - XP-PRO

Select the file:
*-[3 Messenger
@[ Microsoft ActiveSync
E!f_j microsoft frontpage
@[3 Microsaft Office
=3 Microsoft SAL Server
30
w3 90
-3 MSS0L
=3 MSS0L1
=3 Mss0L
3 Backup
4 Binn
=3 Data
: 1 Adventureiwiorks_Data mdi
] AdventurehworksDiw_D ata.mdf
hancial. mdf
diztrndl. rmdf
Fat-Belly. Com.mdf
master.rmdf
model. mdf
mzdbdata. rmdf
mesglaystemresource. mdf
FeportServer. mdf
FeportServerTempDB. mdf
: ; i tempdb. rmdf
. | .7 FThata 3
L[ b2l

|

e e | | | ] | e e e e

Selected path: | C:A\Program Files'Microsoft SOL ServerMSSEL 1WMSS |

Filez of type: | [ratabase Files(".mdf) w |

File name: |ApressFinanciaI.mdf |

Figure 7-14. Locating the database to attach



CHAPTER 7

DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

4. This will bring you back to the Attach Databases dialog box with the details filled in, as you see in Figure 7-15.

Take a moment to look over the information in this dialog box. Any problems will be detailed in the

Messages column. It is possible to attach more than one database, but it is best to do databases one

at a time.

Attach Databases

.:I | 2] Refresh \‘E) Schedule ; Script - Lj Help
enera
Databases to attach:

] MDF File Location [atabaze N| Attach Az Owrier Status Meszage

C:\Program Files\Mic... ] ApressFina..  ApressFina.. =P-PRO..
Server :
“P-PRO Add. | [ Bemove ]
Connection: “ApressFinancial’ database details:
PR Original File Mame File Type Current File Path Meszage ]
24 Yiew connection properties ApressFinancialmdf  © Data C:\Program FilestMicrosaf... .. |
AprezsFinancial_log.ldf Log C:\Program Files'\Microsof... ...

Feady
(] 8 ] [ Cancel

Figure 7-15. Database located, preparing to attach

5. This then leaves us to click OK to reattach the database. Moving to Object Explorer, you should see your
database at the bottom of the list, where it will remain until the explorer is refreshed.

Attaching a database involves informing SQL Server of the name and the location of the data files and the trans-
action log files. This data can be placed anywhere on a computer, but it is recommended you place the data in a
sensible location. For example, the folders tempfiles or tobedeleted sport extreme names, but do demonstrate the
unsuitability that should be avoided.

When moving the data from one physical server to another, the data does not need to be in a subdirectory of
Microsoft SQL Server installation found under Program Files. In fact, in production environments, this is the last
place you would locate the data. You would generally want to keep these files away from any program files or the
pagefile.sys file, because SQL Server’s performance can be maximized when these files are separated. However, for
the purpose of this book, placing the data in the DATA directory under the instance of SQL Server is perfectly valid
and acceptable.

Once the two data files have been copied, it is a simple process of using a couple of mouse clicks to attach these
files into the instance. What happens in the background, very basically, is that SQL Server takes the name of the
database and the location of the data files and places them into internal tables that are used to store information
about databases. It then scans the data files to retrieve information, such as the names of the tables, to populate the
system tables where necessary.

219



220

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

The main point to keep in mind is the database owner (see Chapters 1, 2, and 5 ). It is just as important to use a
valid database owner and not the sa login when attaching a database as it is when creating a database. The data-
base, when it is attached, will be given the owner of the login attaching the database.

Detaching and Attaching Using T-SQL

Detaching and attaching a database is an ideal way to move a database from one server to
another as part of an overall solution. It’s clean and simple and ideal if you are rolling out a
“base” database to many client sites, but it’s not the only way of doing it. Detaching a database
is simply removing it logically from a server, but keeping the physical files. This then allows
these files to be moved to anywhere, from another hard drive to a DVD, for further copying to
a client computer if need be, and then reattaching the database at the other end.

Detaching a database removes entries from the master and msdb database, and therefore
the backup history will also be lost. The physical backup files will still be there, so if you do need
to complete a restore after a detach and reattach, then you can use the From Device option in
the restore wizard to define the full location in the RESTORE T-SQL command to get to those files.

Note Detaching a database can only be done by a member of the db_owner role.

sp_detach _db [ @dbname= ] 'dbname’
[ , [ @skipchecks= ] 'skipchecks" ]
[ , [ @KeepFulltextIndexFile= ] 'KeepFulltextIndexFile' ]

The options are straightforward, with each being optional. If they are not supplied, then
the default value is mentioned within the following bulleted list:

¢ dbname: The name of the database to detach. If this option is missed, then no database
will be detached.

* skipchecks: NULL (the default) will update statistics. true will skip the updating of
statistics.

* KeepFulltextIndexFile: true (the default) will keep all the full text index files that have
been generated with this database.

Note Full text index files are special files that hold information about data set up for full-text searching,
which is an area outside of the scope of this book. But basically, full-text searching gives the ability to search
on all text in a column or multiple columns of data, and is also functionality used by search engines.




CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

You might be expecting that to reattach the database you would use a stored procedure
called sp_attach_db. This command does exist, but it will be made obsolete in future versions
of SQL Server. The correct syntax is a “specialized” CREATE DATABASE command:

CREATE DATABASE database _name
ON <filespec> [ ,...n ]
FOR { ATTACH [ WITH <service broker option> ]
| ATTACH REBUILD LOG }

The syntax is easy to follow. The first option, ON, will specify the name of the primary data-
base file to attach, which will have the mdf suffix. The second option, <service broker option>,
we will be ignoring, as this is for a more advanced database.

The third option, ATTACH_REBUILD LOG, is for situations where you wish to attach a database
but at least one transaction log file is missing. Specifying this option will rebuild the transaction
log. No database can be attached when SQL Server believes that there are missing files. If you
do use this option, then you will lose the full, differential, and transaction log backup chains
that exist on SQL Server, so complete a full backup after attaching to reestablish the backup
baseline. This option will tend to be used when you deliberately wish to lose the transaction log
file, such as a read-only version of the database for reporting purposes.

Note If you receive any error messages, then reattach all files associated with the database, not just the
main primary file.

We can now detach and reattach ApressFinancial.

Try It Out: Detaching and Reattaching a Database

1. The first test we will do is to try and detach ApressFinancial while there are still active connections
so that we can see what happens. Open up a Query Editor pane and point it to ApressFinancial
database. Then open a second pane and enter the sp_detach_db code as follows. Once you have
done so, execute the code. Take note that we are explicitly moving this connection to a “safe” system
database, away from the database we wish to detach.

USE master
GO
sp_detach_db 'ApressFinancial’

2. The results you will see will be similar to the following:

Msg 3703, Level 16, State 2, Line 1
Cannot detach the database 'ApressFinancial' because it is currently in use

221



222 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

3. Close the Query Editor pane opened earlier and any other Query Editor panes that have connections
pointing to ApressFinancial and then try rerunning the code again. This time you should see the
following message:

Command(s) completed successfully.

4. Now that the database has been detached, we need to reattach it, simulating a move to a new server.
Enter in the same Query Editor pane the following code. Replace the FILENAME parameters with the
path to where your database is located and ensure that the path is all on one line.

CREATE DATABASE ApressFinancial

ON (FILENAME='C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\
Data\ApressFinancial.MDF")

FOR ATTACH

5. After executing the code, you should see the following message:

Command(s) completed successfully.

You have now successfully detached and reattached the database.

Producing SQL Script for the Database

The next section demonstrates a different method of backing up the structure of the database
and the tables and indexes contained within it by using T-SQL commands to complete this.

Note It is only the structure that will be generated as T-SQL commands; no data will be backed up—only
the schema that is needed to re-create the actual database can be scripted here.

The usefulness of this procedure is limited and is really only helpful for keeping structure
backups or producing an empty database, but it is useful to know rather than going through
the process of copying the database with all the data when the data is not required.

This method tends to be used to keep the structure within a source repository like Visual
SourceSafe. It is also very useful for setting up empty databases when moving from development to
test, or into production.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

Try It Out: Producing the Database SQL

1. Ensure that SQL Server Management Studio is running and that you have expanded the server so that
you can see the ApressFinancial database. Right-click, select Tasks » SQL Script. This brings up
the wizard shown in Figure 7-16 that allows the database to be scripted. Every attached database will
be listed. Select ApressFinancial and click Next.

Note You can select the check box at the bottom of the screen, which will script all the objects if you wish.
This will enable the Finish button so that you can go straight to the end.

F Script Wizard - XP-PRO

Select Database
Select the database pou want to zcript.

Select a database:
Adventureworks
| Adventureiw/orks0ia
AprezsFinancial
| Fat-Belly. Com
master
model
mzdb
ReportServer
FeportServerTempDE
tempdb

[] Script all abjects in the selected database

[ Help ] [ < Back ” Mext » ] @J

Figure 7-16. Scripting—selecting the database

2. On the second screen are a number of options about the scripting as well as what objects you wish to
script. Take a moment to look it over. Most of these options should be clear to you from the setup options
we have covered in setting up the database so far. However, at the end of the example there will be a
bulleted list clarifying the options for you. Figure 7-17 shows the default settings.

3. InFigure 7-18, a number of options have been altered so that much of the database is scripted, even if
there is an error producing the script file. Errors could be as varied as the login not having permissions
to see all the objects for example. Once you have the options you wish to script, then click Next.

223



224 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

False v
Continue Scripting on Error False
Convert UDDT = to Base Types Falze
Generate Script for Dependent Objects  False
Include Descriptive Headers Falze
Include If HOT EXISTS True
Script Behavior soriptCreatelnly
Script Collation Falze
Script Databaze Create Falze
Script Defaults True
Script Extended Properties True
Script Loging Falze
Script Object-Level Permissions Falze
Script Owner True
Script Statistics Falze
Script USE DATABASE False
=
Script Check Congtraints True
Script Foreign Keys True
Script Full-Test Indexes Falze
Script Indexes Falze
Script Primary Keys True
Script Triggers True
Script Unique Keys True

Figure 7-17. Options for the script

Note The Script Statistics option will significantly increase the time taken to generate the script. Leave
this option off in most cases; it is really only useful when moving from a user test environment that is very
similar to how the system will work in production.

=
Append to File False
Continue Scripting on Error True
Convert UDDT = to Base Types Falze
Generate Script for Dependent Objects True
Include Descriptive Headers True
Include If HOT EXISTS True
Script Behavior soriptCreatelnly
Script Collation True
Script Databaze Create True
Script Defaults True
Script Extended Properties True
Script Loging Falze
Script Object-Level Permissions True
Script Owner True
Script Statistics Falze
Script USE DATABASE True
Script Check Congtraints True
Script Foreign Keys True
Script Full-Test Indexes True
Script Indexes True
Script Primary Keys True
Script Triggers True
Script Unique Keys True

Figure 7-18. Options selected for scripting



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 225

4. You are now presented with the screen shown in Figure 7-19 that will allow you specify how the script
should be saved. There are three possibilities. Choose to script to a new Query Editor and then select
Next.

Script mode
) Script to file

File: name:

Save ast

) Script to Cliphoard
(%) Script to Query Editor

Figure 7-19. Where to store the script

5. This will bring you to a summary screen, shown in Figure 7-20, where you can expand what has been
selected. You may find that this screen is not of much use, as there are so few screens within this wizard.
However, you can use it for categorizing what objects are to be scripted. Take a moment to investigate
this screen.

F Script Wizard - XP-PRO

Script Wizard Summary
Fieview your selections for the wizard.

Fieview pour selections

| & Script Wizard summary
[ Server
[+ Database
=I- Optionz
- General
[#- TableAfiew Options
(= Objects
Script all objects
(= Output options
Senpt to Query Editor

Figure 7-20. Script summary



226 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

6. Click Finish. The wizard will start to generate the script. At the end you will see a summary of how the script
production went. Any errors will be within the Message column on the right, as shown in Figure 7-21.

F Script Wizard - XP-PRO EER
Generate Script Progress v
Click Stop to interrupt the operation.
. . 8 Tatal 0Emar
* 0 Remaining 8 Success 0% arning
Details:
] Action Status Meszage
@ ApressFinancial Success
@ dboFinancialProducts Success
@ dbo.SharePrices Success
@ dboShares Success
@ dbo Customers Success
@ dbo.Transactions Success
@ dbo.TranzactionT ypes Success
% dbo CustomerProducts Success

Figure 7-21. Generating the script

CREATE DATABASE [ApressFinancial] ON PRIMARY

( NAME = N'ApressFinancial', FILENAME =

N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\
ApressFinancial .MDF' , SIZE = 2048KB , MAXSIZE = UNLIMITED,
FILEGROWTH = 1024KB )

LOG ON
( NAME = N'ApressFinancial log', FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\
DATA\ApressFinancial log.ldf' , SIZE = 1536KB ,
MAXSIZE = 2048GB , FILEGROWTH = 10%)
COLLATE SQL Latinil General CP1 CI AS
GO
EXEC dbo.sp_dbcmptlevel @dbname=N'ApressFinancial', @new cmptlevel=90
GO
EXEC [ApressFinancial].[dbo].[sp fulltext database] @action = 'disable’
GO
ALTER DATABASE [ApressFinancial] SET ANSI NULL DEFAULT OFF
GO
ALTER DATABASE [ApressFinancial] SET ANSI NULLS OFF
GO
ALTER DATABASE [ApressFinancial] SET ANSI PADDING OFF



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

USE [ApressFinancial]

(0]

/¥¥*¥k% Object: Table [ShareDetails].[SharePrices]

Script Date: 08/25/2005 18:47:47 *¥kkk*/

SET ANSI_NULLS ON

G0

SET QUOTED IDENTIFIER ON

G0

IF NOT EXISTS (SELECT * FROM dbo.sysobjects

WHERE id = OBJECT ID(N'[ShareDetails].[SharePrices]")

AND OBJECTPROPERTY(id, N'IsUserTable') = 1)

BEGIN

CREATE TABLE [ShareDetails].[SharePrices](
[SharePriceId] [bigint] IDENTITY(1,1) NOT NULL,

ShareId] [bigint] NOT NULL,

Price] [numeric](18, 5) NOT NULL,

PriceDate] [datetime] NOT NULL

PRIMARY]

— e, e,

) ON
END
GO
SET ANSI NULLS OFF

GO

SET QUOTED IDENTIFIER OFF
GO

IF NOT EXISTS (SELECT * FROM sys.indexes
WHERE object id =
OBJECT ID(N'[ShareDetails].[SharePrices]")
AND name = N'IX SharePrices')
CREATE UNIQUE CLUSTERED INDEX [IX SharePrices]
ON [ShareDetails].[SharePrices] (
[ShareId] ASC,
[PriceDate] DESC,
[Price] ASC
) ON [PRIMARY]
G0

/¥¥*¥k% Object: Table [TransactionDetails].[Transactions]
Script Date: 08/25/2005 18:47:47 *¥*¥¥¥/
SET ANSI NULLS ON
G0
SET QUOTED IDENTIFIER ON
G0
IF NOT EXISTS (SELECT * FROM dbo.sysobjects
WHERE id = OBJECT ID(N'[TransactionDetails].[Transactions]")
AND OBJECTPROPERTY(id, N'IsUserTable') = 1)

227



228

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

BEGIN
CREATE TABLE [TransactionDetails].[Transactions](
[TransactionId] [bigint] IDENTITY(1,1) NOT NULL,
CustomerId] [bigint] NOT NULL,
TransactionType] [int] NOT NULL,
DateEntered] [datetime] NOT NULL,
Amount] [numeric](18, 5) NOT NULL,
[ReferenceDetails] [nvarchar](50)
COLLATE SQL Latinl General CP1 CI AS NULL,
[Notes] [text] COLLATE SQL Latini General CP1 CI AS NULL,
[RelatedShareId] [bigint] NULL,
[RelatedProductId] [bigint] NOT NULL
) ON [PRIMARY] TEXTIMAGE ON [PRIMARY]
END
GO
SET ANSI NULLS OFF
(0]
SET QUOTED_IDENTIFIER OFF
(0]
IF NOT EXISTS (SELECT * FROM sys.indexes
WHERE object id = OBJECT ID(N'[TransactionDetails].[Transactions]")
AND name = N'IX Transactions TType')
CREATE NONCLUSTERED INDEX
[IX Transactions TType] ON [TransactionDetails].[Transactions]
(
[TransactionType] ASC
) ON [PRIMARY]
GO

— e e

The options that were available to you within the wizard are detailed here:

Append to File: If you set this to true, then SQL Server will append the script to the file selected instead
of overwriting it.

Continue Scripting on Error: If there are any problems in producing the script, you can decide if you wish
to continue scripting or not.

Convert UDDTs to Base Types: As part of SQL Server, you can change the base data types, such as int,
to your own named type, so you could name a “copy” of int as “myint”. This is a bit more advanced, but
if you do this, then selecting true will convert “myint” back to “int”.

Generate Script for Dependant Objects: A very useful option. If there are any dependencies on what you
are wanting to script and you haven’t selected that object to script, then there will be problems
rebuilding the object later. Selecting true means that these dependant objects will also be scripted.

Include Descriptive Headers: This will include a date-time stamp as well as a short descriptive header
of each object as it is reached within the script.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

e Include If NOT EXISTS: If you select all the objects to be scripted and set this to true, SQL Server will put
a test around each object so that if that object already is in the database when the script is run, it won’t
be created. There will be no test for specific columns when scripting a table, but there will be a test for
the table itself.

e Script Behavior: You can generate a script for creating items or dropping items.

e Script Collation: If you wish the SQL Server collation to be scripted, enable this option. Useful if you are
unsure of the collation the script will then be run against.

e Script Database Create: This specifies whether you wish a CREATE DATABASE statement to be scripted
or not.

e Script Defaults: We have some default values that will be set on columns when rows are added. Setting
this to true will set these defaults.

e Script Extended Properties. Extra properties can be placed on every SQL Server object. These will be
scripted if you select true.

e Script Logins: This scripts all Windows and SQL Server authentication logins.

e Script Object-Level Permissions: Each object will have permissions on who can do what. For example,
on a table, permissions on who can add, delete, or select the data can be set up. This option will include
these options.

e Script Owner. This scripts the owner of the database if specified.

e Script Statistics: This specifies whether to script the SQL Server column and index statistics. It avoids
rebuilding them when re-creating the database using the script; however, it will increase the time taken
to build the script as well as the size of the script.

e Script USE DATABASE: Between each object, this specifies whether to script a USE database statement
or not. Ideal if used with scripting-dependent objects.

e Script Check Constraints: This will script check constraints.
e Script Foreign Keys: Any foreign keys will be scripted.

e Script Full-Text Indexes: If you have any full-text indexes, this indicates whether you want to script them
or not.

e Script Indexes: This specifies whether to script table and view indexes.

e Script Primary Keys: This dictates whether to script primary keys or not.

e Script Triggers: For any trigger, this specifies whether you wish these to be within the script.
e Script Unique Keys: Any unique keys will be scripted.

This concludes our look at the different methods of backing up, restoring, moving, and scripting databases. While
this covers every way of ensuring your database structure and data should never be lost, you still need to maintain
the database on a regular basis. This is what we will take a look at in the next section of this chapter.

229



230

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

Maintaining Your Database

At this point, we have now created a backup and performed a restore of the example database.
We have also covered the different methods to back up and restore the database. However, we
have no real plan for regular maintenance and detection of problems in our database strategy.
Any jobs for backup of the database or transaction log that we have demonstrated so far are
held as single units of work called steps. Not only that, there is nothing in place that will look
after the data and indexes held within the database to ensure that they are still functioning
correctly and that the data is still stored in the optimal fashion. Without a process that runs
regularly, we would need to perform all of this by hand, regularly. What a waste of time, and
boring to boot!

This section will demonstrate building a plan and then checking on the plan after it has
run to ensure that all has gone well with it. This plan will perform regular backups and checks
on the database, and keep it in optimum health.

To do this, we will use the Database Maintenance Wizard, which will monitor corruption
within the database, optimize how the data is stored, and back up both the database and trans-
action logs. Finally, the wizard will schedule all of this to occur at regular intervals. Some areas
of this chapter, like the backup screens, are straightforward as they were covered earlier in the
chapter; however, this now brings the whole maintenance of the database into one wizard.

Creating a Database Maintenance Plan

Now that the database is up and built and the tables are there, it really is time to start consid-
ering a whole database maintenance plan before data is entered. This will cover database
corruption through to inadvertent errors in development. Even though corruption is rare in
SQL Server, it can be caused when the SQL Server loses power abruptly, for example, or through
hardware issues such as motherboard failure or someone removing the network cable.

There are many areas to building a maintenance plan, and this section covers a lot of them.
One or two areas are only touched on as they are quite advanced and will not be covered in this
book. You will still need a little background so that you can see how crucial this area is, and we
can move on to those more advanced areas a bit later on.

A single maintenance plan can be built for one database or several databases. A single plan
can be set up for system databases and all user databases by selecting those options at the start
of the Database Maintenance Wizard. However, it is recommended that you create a plan for
all system databases, but have a separate maintenance plan for each separate user database.
The logic behind this is that each user database will have its own needs, its own overnight
routines, and even its own people for callout when things go wrong. Even if you are a one-man
band, each user database should still have a maintenance plan. Therefore, in keeping with this,
only the ApressFinancial database will be selected.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

Once the plan has been built, it will be stored within SQL Server, but will have been built
as a SQL Server Integration Services (SSIS) job. This is a technique within SQL Server for running
several tasks in sequence with conditions, which also has the ability to work with errors that occur.
SSIS could take up a whole book in itself, but building the plan and seeing what is generated
will demonstrate the very basics of what it can achieve.

Try It Out: Creating a Database Maintenance Plan

1. From the Object Explorer, find the Management Node and expand it, and you should find Maintenance
Plans as the top item. Right-click and select the second option, Maintenance Plan Wizard. This will start
the wizard.

2. Figure 7-22 shows the first screen of the wizard. Once you have read it, click Next.

Eﬂ" Maintenance Plan Wizard

» SQL Server Maintenance Plan
Wizard

Thiz wizard helpz you create a maintenance plan that SGEL
Server Agent can run on a regular basiz. With this wizard you
can perform routine database adminiztration tasks such as:

» Check databaze integrity
g ® Perform index maintenance
| » Update databaze statistics
» Perform databaze backups

Thiz wizard will create maintenance plans that can be edited
in SGL Server Management Studio. Edit maintenance plans
to add new tasks or define workflow among the tasks.

[[] Da nat shaw this starting page again.

Help Cancel

Figure 7-22. Maintenance Plan Wizard, first screen

3. Entera suitable name and description for the maintenance plan. You can then choose the server that the
maintenance plan is on. This covers instances when your Management Studio is connected to more than one
server. For example, if you have a connection to your ISP that you have a SQL Server installation on, you
would change the server to that location. The server you are connected to will be the default. Select the
authentication method you wish the plan to connect to the server as, as shown in Figure 7-23.

231



232

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE
I Maintenance Plan Wizard E]@
Select a Target Server
On which server do you want to perform maintenance tasks? 'S .
MNarme: ;_.tﬁ_fp_re_s_s_l_:!rjan_ci‘_a!M ain_tF'I_an_
Description: | Thig i the database maintenance plan for the

| spressFinancial database

Server :_><F'.-.F.'F|.D. C]
(&) Use Windows Authentication
() Use SOL Server Authentication

Uszer name: [

Password:

[

Help ] [ < Back ” Mext » ]

Figure 7-23. Selecting the server for the maintenance plan

4. The next screen brings you to a set of choices of actions that you wish the plan to perform. In our plan,
we will be performing every action with the exception of cleaning up the history of the database. We will
add this option later when showing how to modify a plan. Select the options in the as shown in Figure
7-24, and click next. Each of the options are briefly described here:

Check Database Integrity: This executes SQL Server database integrity checks on the data and
structure of the database both physical and logical.

Shrink Database: The transaction log is truncated and logically shrunk. The database is also shrunk.

Reorganize Index: As data is inserted and deleted, fragmentation of indexes can take place. This will
reorganize the index a bit like completing a disk defrag.

Rebuild Index: Instead of just reorganizing the indexes, it is possible to drop and re-create them.

Update Statistics: Statistics are kept to aid the execution of queries. These can get out of date if you
don’t have the option set on to keep these up to date, and this option can update them at this point.

Clean Up History: This removes historical information such as job history, for a set period of time

Execute SQL Server Agent Job: This executes a predefined SQL Server agent job. Figure 7-24 has
this selected just so you can see the screen it displays later in the example. However, as | don’t cover
jobs within this book, when doing this yourself, leave this unchecked.

Back Up Database (Full). As discussed earlier, this will back up the full database.

Back Up Database (Differential): As discussed earlier, this will back up the changes since the last
full backup.

Back Up Database (Transaction Log): As discussed earlier, this will back up just the transaction log.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

I Maintenance Plan Wizard - XP-PRO

Select Maintenance Tasks
‘which tasks should this plan perform?

Select one or more maintenance tasks:

Check Database Integrity
Shiink [ atabasze

Reorganize Index

Rebuild Index

Update Statistics

[] Clean Up Histary

Execute SOL Server Agent Job
Up D: (Full

[[] Back Up Database (Differential)
[[] Back Up Database (Transaction Lag)

j") The Back Up Databaze [Full] tazk allows you to specify the source databazes, destination
files or tapes, and overwrite options for a full backup.

[ Help ] [ < Back ” Mext » ] i

Figure 7-24. Options for the maintenance plan

. This then brings us to a summary of the options that have been selected. It is now possible to move the
options to a different order if you wish. As you can see in Figure 7-25, the Back Up Database (Full) option
has been moved up to the start. This is in case any of the following options fail and cause corruption.

This is a decision that you have to make as any restore may require a rerun of the commands after the

full backup. Once you have the order you want, click Next.

I Maintenance Plan Wizard - XP-PRO

Select Maintenance Task Order
In which order should these tasks be performed?

Select the order for the tasks to execute:

B ack Up Diatabase [Full]

| Check Database Integrity

| Shirink Database

| Rearganize Index

| Rebuild Index

| Update Statistics

| Execute SOL Server &gent Job

Move Dowr..

j") The Back Up Databaze [Full] tazk allows you to specify the source databazes, destination
files or tapes, and overwrite options for a full backup.

Help [ < Back H Mext » ] Finish

Figure 7-25. Options order for the maintenance plan

233



234 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

6. The wizard then moves on and takes each task one at a time and gives you a dialog box containing
options available for that task. The first option we had was a full backup, as shown in Figure 7-26. Most
of this is very similar to the backup we completed earlier. However, it is possible to select specific data-
bases or all databases as part of this plan. Select the Specific Databases option to be taken to a second
screen where you can define them.

I Maintenance Plan Wizard - XP-PRO

Define Back Up Database (Full) Task

Configure the maintenance task. 'S

Databazes: Specific databases LJ
Backup type:
Backup component
(%) Database
) Files and filegroups:
Destination

Back up to: @) Disk ) Tape

() Back up databases across one or more files:

(%) Create a backup file for every database
Create a sub-directory for each database
Falder: ;.E.I:"\F.'rog_ram I.:.iies\.m.icroso.ft"édi_.Server\.l\"iéS.Q“L..1.\.i\‘1"8.8-dl._.\.l3.;a.c:i<gp D
Backup file extension: bak. [

Werify backup integrity

[ Help ] [ < Back ][ Mext » ]

Figure 7-26. Defining the database backup

7. When you choose to back up specific databases, Figure 7-27 appears. Here you can select—only for
this task within the plan—which database or set of databases you want to work with. You will get this
screen for every task option, so | will only show it this once. It is best to have separate maintenance
plans for the user databases and one separate maintenance plan for the system databases. This splits
up the workload not only into sizable, useful, and easy-to-understand units of work, but also into logical
components as each database may have a different maintenance plan. You will also have different
requirements for the system databases from for the user-defined databases. Itis preferable not to select
the All User Databases option because SQL Server will automatically begin running the maintenance
plan on databases that may have been added without your knowledge, and may not be under your
“ownership.” For our example, select the ApressFinancial database after clicking the These Data-
bases radio button. Click OK. The full list of choices is as follows:



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

e All Databases: Specifies all system and user databases

¢ All System Databases: Ignores all user databases, such as ApressFinancial

e These Databases: Allows you to select which system and user databases you wish to use

() Al databases

() &l spstem databazes [master, msdb, model]

() &l user databases [excluding master, model, medb, tempdh)

() These databases:

[] Fat-Belly.Cam _ |
[] master |
[ model Sl

[] Adventureiarks |

[ Ok, ][ Cancel ]

Figure 7-27. Selecting the database to use

8. By clicking Next in the subsequent screen, which you see in Figure 7-28, we move on to the next task
in the list where SQL Server will perform a special SQL Server command that will check the integrity of
the database to see that everything is in a stable and noncorrupt state.

I Maintenance Plan Wizard - XP-PRO

Define Database Check Integrity Task
Configure the maintenance task.

Databases: Specific datab

Include indexes

[ Help ] [ < Back ” Mext » ]

All User Databases: Ignores any system defined database, such as master, model, etc.

Cancel

Figure 7-28. Database integrity check

235



236 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

9. Moving on, we can define when to reduce the logical or physical size of our database through the screen
shown in Figure 7-29. This can be thought of like a defrag of your hard drive. The Remove Unused Space from
Database Files option will shrink the database if it has space it is not fully using. After you select this
option, you will be given the opportunity to still leave a given percentage of space free for database
growth. Do not fully shrink the database to 0% of free space or your performance will be worse, as the
database will have to automatically grow.

Tip The preceding isn’t the best process to perform or be encouraged. You should have autogrow kicking
in, but you should try to size the database adequately to cope with normal operation. Performance will be
better with unused space rather than autogrow kicking in as well.

I Maintenance Plan Wizard - XP-PRO

Define Shrink Database Task

Configure the maintenance task. 'S

Databases: Specific databases

Shrink. database when it grows beyond: 50 ME

Amount of free space to remain after shrink: ‘I 0 =4

() Retain freed space in database files

(5) Retum freed space to operating system

[ Help ] [ < Back ” Mext » ] %

Figure 7-29. Shrinking the database

10. Click Next to bring up the Define Reorganize Index Tag screen, shown in Figure 7-30. As data is added,
modified, and deleted, indexes, like tables, can also require reorganizing, which you can do through this
screen. Again, this is like a hard drive defrag where there are gaps or data out of order, and by reorga-
nizing indexes you will ensure that SQL Server will be able to access the data as fast as possible. This
option, which should be completed at least weekly for a high data modification system, will only move
index pages.



1.

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

I Maintenance Plan Wizard - XP-PRO

Define Reorganize Index Task
Configure the maintenance task. 'S

D atabases:

Object: ?-Tables and.views v
Selectior: J

Compact large objects

[ Help ] [ < Back ” Mext » ]

Figure 7-30. Reorganizing the database

Click Next to bring up the screen shown in Figure 7-31. This next screen will deal with individual rows
of indexes. Indexes will exist on tables and views and will become more defragmented than whole
pages of data on a high data modification system. Like the previous option, rebuilding indexes should be
completed on a very regular basis, probably weekly; although if your batch window allows you to perform this
more frequently, then look to do so. When rebuilding indexes, you can define with a certain amount of
free space to allow for increases and mid index insertions on each index page. This is a bit like inserting
lines of text in a book. If you think you are going to do this, then leaving gaps at the end of the page will
allow for these rows to be added. Failure to leave enough means shuffling data from that page through
to the end of the book.

Within the advanced options, the main option of interest to you while you are learning SQL Server is Sort
Results in tempdb. You could be low on disk space because when you built your database you set it to
grow no larger than a specific size. Couple this with a situation where your indexes are so fragmented
they take up more space than they will postdefragmentation. This could be because you have a large
number of gaps due to deletions of rows within the index or modifications on a clustered index causing
rows to be moved. When rebuilding indexes, this would by default be completed within the database the
rebuild is for. The “old” indexes are kept until the new indexes are built. If there is not enough space to
store them, it would not be possible to rebuild the index unless you physically increased the size of the
database. This is not a simple process. Therefore, by using the option to rebuild the new indexes within
tempdb, you do not need to increase your database size. Also, the tempdb will not be used as intensively.
Therefore it might also be faster to rebuild your indexes within that database. This is an option you may
use a great deal.

237



238

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

I Maintenance Plan Wizard - XP-PRO
Define Rebuild Index Task

Configure the maintenance task. 1 \\
Databazes: |Specific databazes LJ
Object: Tables anci.\u'-i-ews ;i
Selectior: | _J

Free space options

(%) Reorganize pages with the default amount of free space

i

() Change free space per page percentage to: | |

Advanced options
[[] Pad index
Sort results in tempdb
[] lanare duplicate keys

[] Keep index anline whils reindexing

[ e I rons

Figure 7-31. The options for rebuilding an index

12. Move on to the Define Update Statistics Task screen, shown in Figure 7-32, by clicking Next. As has
been mentioned before, as data is created, modified, and deleted, SQL Server keeps statistics on that
data to aid data retrieval. These can become out of date because you have either set up your database
not to keep statistics automatically updated, or the statistics will still naturally become out of date.
Therefore we can re-create those statistics with the plan.

Tip The Auto Update Statistics database option will normally be on; although this does mean more
processing for SQL Server, the increase will be minimal and rarely will you notice any impact.

We are getting close to the end of the wizard and have selected all the options available to us. However, this may not
cover every eventually. There may be additional tasks we want to perform, which can be anything from database
reporting tasks or auditing requirements. We would create these as separate tasks and jobs outside of the plan.
These also reside in msdb, and it is via this next screen, shown in Figure 7-33, that we can add them to our schedule.

Note Recall earlier we didn’t select this option, but if you had, Figure 7-33 is what you would have seen.




CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 239

I Maintenance Plan Wizard - XP-PRO

Define Update Statistics Task
Configure the maintenance task. Y \‘

D atabases:

Object: ! Tables and views

Selectior: _J

Update:

() All existing statistics
) Colum statistics only

() Index statistics only

[ Help ] [ < Back ” Mext » ]

Figure 7-32. Updating the database statistics

I Maintenance Plan Wizard - XP-PRO

Define Execute SAQL Server Agent Job Task
Configure the maintenance task. L] \‘
Available SGL Server Agent jobs:
Select | Job name Drescription
H Testing Mo description available.
Lo ) Lom Il oo [

Figure 7-33. SQL Server Agent job scheduling

13. Now that we have all the tasks, we can either have this whole plan run manually when we demand it to
or, by clicking the Change button as shown in Figure 7-34, we can set up a schedule for it to run at specific
times. Click Change, which brings up the screen that deals with job scheduling, as shown in Figure 7-34.



240

CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

14.

15.

I Maintenance Plan Wizard - XP-PRO

Select Plan Properties
[refine maintenance plan properties., 'S .
Define a schedule for the maintenance plan.
Schedule:
ENot zcheduled [On Demand] .
(o] (o=

Figure 7-34. Selecting a schedule for the maintenance plan

The scheduling of the data optimization should be at a quiet time, and unless the database is updated
heavily, this maintenance plan choice will not be required frequently. Running a maintenance plan
can be quite intense for the server and should only be done during low usage hours. For the sake of
ApressFinancial, it could be as infrequent as monthly; however, in the initial setup of the database,
while the input of data might be heavy, set this up as a weekly task for now, as shown in Figure 7-35.
It can easily be altered later.

We can also get the plan to write a report each time it runs, detailing what happens, via the screen
shown in Figure 7-36. It is also possible to e-mail the report if you have mailing set up within SQL
Server. At this point we don’t, so just get it to write to a folder. This is a very important feature, as it
records what is happening within SQL Server without any manual intervention, and therefore it allows
you as a DBA or developer to see what has happened, especially when things have gone wrong and you
need to determine where to get back to. Don’t treat the reporting of the maintenance plan as immaterial,
because it is not. Some companies have not kept reports for any length of time, and when something
goes wrong for them it is impossible to know what has happened from day to day. The backup directory
is generally the best place to store the reports, and it is best to keep, at the barest minimum, one month’s
worth of information. However, it would be good if people were notified of success or failure of the plan,
so once mail is set up, change this option.



Schedule type:

CHAPTER 7

DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

iApressFinanciaI\:\u"eekl}lM aintPlan

T ;
| Recuring

v i Enabled

Frequency
Ocours: R i
Fecurs eveny: week(s] on
[] Wednesday [ Friday Saturday
[] Tuesday [ Thursday [ Sunday
Draily frequency
(&) Dccus once at:
O Occurs eveny: Starting at:
Ending at:
Diuration
Start date: Dgx’@?x’gﬂ_ﬂﬁ_\'i ) End date:
(®) Moend date
Summary
Description: Ocours every week on Saturday at 02:00:00. Schedule will be uzed starting on 13/07 /2005,

[ u] ][ Cancel H Help

Figure 7-35. Defining the schedule for the maintenance plan

I Maintenance Plan Wizard - XP-PRO

Select Report Options
Select options for zaving or distributing a report of the maintenance plan actions. \‘
“Wwiite a report ta 3 text file
Folder location: | C:\Program Files'Microsoft SHL ServertM3SGLIY [ ... ]
[] E-mail repart
T
(] (o) ]

Figure 7-36. Maintenance plan reporting options



242 CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE

16.

17.

18.
19.

Similar to when we produced a script for the database, clicking next brings up a summary of what will
be performed within the plan (see Figure 7-37). Here you can review what will be completed, and with
the number of different options that will be performed, it is a good place to complete a double check.
Clicking Finish will produce the maintenance plan itself.

E_ﬂ" Maintenance Plan Wizard - XP-PRO

Complete the Wizard
Werify the choices made in the wizard, and then click Finish.

Sy

Click Finizh to perform the following actions:

= Maintenance Plan ‘Wizard

Create Maintenance Plan ‘ApressFinancialtd aintFlan’ on =P-FRO
Define Back Up Database [Full] Task
Define D atabase Check Integrity Task
Defing Shrink Database Task

Define Reorganize Index T ask

Define Rebuild Index Task

Define Update Statistics Task

Define Execute SOL Server Agent Job Task
[Drefine maintenance plan properties.,
Selected reporting options

[ e e e e S e e

Figure 7-37. Completing the plan

It is possible to execute the plan outside of the maintenance plan schedule. The maintenance plan
created previously can now be found under the Management/Maintenance Plan nodes in the Object
Explorer. Right-click the nodes to bring up the pop-up menu shown in Figure 7-38. Selecting Execute
will start the plan immediately. Do so now.

Mew Maintenance Flan. ..
Maintenance Plan Wizard

View Hiskary
Modify
Execute

Rename
Delete

Refresh

Figure 7-38. Maintenance plan pop-up menu

While the plan is executing, the dialog box shown in Figure 7-39 will be displayed.

Once the plan is executed along with any additional plans, a log is kept to allow you to check how they
progressed. In Figure 7-40, you see that there is a circle with a cross in it, which should appear red on
your screen, denoting that the plan had an error. By clicking that particular plan, it is possible to see
what the error was.



CHAPTER 7 DATABASE BACKUPS, RECOVERY, AND MAINTENANCE 243

" Execute Maintenance Plan

Fa o 1 Total 0 Ermor
. 1 Remaining 0 Success 0 ‘Warning
Details:

Action Statuz Meszage
(¥} Evecute mairntenance plan. ApressFinan.. |n progress...

Figure 7-39. Maintenance plan executing

g File Viewer - XP-PRO

(7 LoadLog & Ewpott 4] Refiesh 7 Fiter. & Seach. 3 Delete. [Hek

Log fle summany: No fiter applied

Date Plan Name Task Name. Duration | Log Type. LogSource.

@ [l Agert 5103 06172005 200850 ApressFianciaaintlan 000230 Maintenance Plans _ ApressFinanciabainPan
v 06/11/2005 20:08:50 Update Statistics (<xP-PRO) 00:00:00  Maintenance Plans  ApressFinancialM aintPlan
v osrm2005 200816 Rebuld Ines (XP-PRO) 00001 Maintenance Plans  ApressFinanciabainPlan
Q08172005 06741 | Rootgarze Indes (RO 00001 Maintenance Plans  ApressFinanciabiPan
v 0B/11/2005 200656 Shrink Databass (<P-PRO) 00:00:00  Maintenance Plans  ApressFinancialM aintPlan
v 06/11/2005 20.06:46 Check Database Integrity [ ] oooc03 pr
v 06/11/2008 20:06:23 Back UpD: 00:00:14 o

Selected row detals:

Maintensnce plan descriptior:

- pressF database
LastRefesh
08/11/2005 200325 Server [xPPAO
Task detl Rectgarize ndes on Targat servercomnection
Fiter: None Aeorgarize index on Targel i

Databases: ApressFinancial
[ Object: Tables and views
iew fiter settins

Bt o7
F— Evonmessage: | Execuing the cumry ALTER INDEX X SharePices) ON (ShareDet e e Prices] FECFBANIZE WiT (LGS COMPACTION - ON " aed it ol e "Th e ShaePrices” aton 1) ant
o (1 reoars) - e e — e S Bjrey T

&) Transact-50L commanct ViewT-50L

Figure 7-40. Maintenance plan log

Summary

You have seen a great deal in this chapter that is crucial to ensuring that your database is
always secure if there are any unforeseen problems. As a manager drummed into me, the unex-
pected will always happen, but you must always be able to recover from it, no matter what.
Therefore, regular backups that are known to work and even the occasional “disaster recovery
test” should be done to ensure that you can restore when something unexpected happens. No
matter what your managing director says, it is the data of a company that is its most important
asset, not the people. Without the data, a company cannot function. If you cannot ensure that
the data will be there, then the company is in a very dangerous position.






CHAPTER 8

Working with the Data

We have now built our tables, set up the relationships, and backed up our solution, so we
are ready to start inserting our data. The many tables within the database cover a number of
different types of data that can be stored, ranging from characters and numbers through to
images and XML. This chapter will show you how to insert data into columns defined with all
of these data types.

Not all the tables will be populated with data at this point. We will insert data in other
tables later on in the book when different functionality of SQL Server is being demonstrated.
Although data is being inserted, the database is still at the stage of being set up, as we are
inserting static information at this point in the examples we are building together. To clarify,
static data is data that will not change once it has been set up, although there may be further
additions to this data at periodic intervals such as when a new share is created.

Not everyone who is allowed to access our database may, or should, be allowed to insert
data directly into all of the tables. Therefore, you need to know how to set up the security to
grant permission to specific user logins for inserting the data. The only people who really ought
to be adding data directly to tables rather than using controlled methods such as stored proce-
dures in production, for example, are special accounts like dbo accounts. In development, any
developer should be able to insert data, but any login who would be testing out the application
would not have that authority. You will see the reasons for this when we look at the security of
adding data later in this chapter, and you will learn about alternative and more secure methods
when we look at stored procedures and views.

Once we have set up users correctly, it is time to demonstrate inserting data into SQL Server.
It is possible to insert data using SQL commands through Query Editor or through SQL Server
Management Studio. Although both of these tools will have the same final effect on the database,
each works in its own unique way.

When inserting data, you don’t have to insert data into every column necessarily. We take
alook at when it is mandatory and when it is not. There are many different ways to avoid inserting
data into every column. This chapter will demonstrate the various different methods you can
use to avoid having to use NULL values and default values. By using these methods, you are
reducing the amount of information it is necessary to include with a record insertion. This
method of inserting data uses special commands within SQL Server called constraints. You will
see how to build a column constraint through T-SQL in Query Editor as well as in SQL Server
Management Studio.

245



246

CHAPTER 8 " WORKING WITH THE DATA

The T-SQL INSERT Command Syntax

Before it is possible to insert data using T-SQL code, you need to be familiar with the INSERT
command and its structure.

The INSERT command is very simple and straightforward in its most minimal form, which
is all that is required to insert a record.

INSERT [INTO]
{table_name|view_name}
[{(column_name,column name,...)}]
{VALUES (expression, expression, ...)}

Obviously, we are required to start the command with the type of action we are trying to
perform, for example, insert data. The next part of the command, INTO, is optional. It serves no
purpose, but you will find some do use it to ensure their command is more readable. The next
part of the statement deals with naming the table or the view that the insertion has to place the
data into. If the name of the table or view is the same as that of a reserved word or contains spaces,
we have to surround that name with square brackets or double quotation marks. However, it is
better to use square brackets, because there will be times you wish to set a value such as Acme’s
Rockets to a column data, which can be added easily by surrounding it by double quotation
marks, as covered in the discussion of SET QUOTED_IDENTIFIER OFF earlier in the book.

I cannot stress enough that really, there is nothing to be gained by using reserved words for
table, views, or column names. Deciding on easy-to-use and unambiguous object names is
part of a good design.

Column names are optional, but it is best practice to list them to help to have reliable code,
as this ensures that data is only inserted into the columns into which you want it to be inserted.
Therefore, it will be necessary to place the column names in a comma-delimited list. The list of
column names must be surrounded by parentheses, (). The only time that column names are
notrequired is when the INSERT statement is inserting data into every column that is within the
table in the same order as they are laid out in the table. However, this is a potentially dangerous
scenario. If you build an INSERT command which you then saved and used later, you expect the
columns to be in a specific order because that is the way they have always been. If someone
then comes along and adds a new column, or perhaps alters the order, your query or stored
procedure will either not work or give erroneous results, as values will be added to the wrong
columns. Therefore, I recommend that you always name every column in anything buta
query, which is built, run once, and thrown away.

The VALUES keyword, which precedes the actual values to be entered, is mandatory. SQL
Server needs to know that the following list is a list of values, and not a list of columns. There-
fore, you have to use the VALUES keyword, especially if you omit the list of columns as explained
previously.

Finally, you will have a comma-separated list surrounded by parentheses covering the
values of data to insert. There has to be a column name for every value to be entered. To clarify,
if there are ten columns listed for data to be entered, then there must be ten values to enter.

Now that the INSERT command is clear, time to move on and use it.



CHAPTER 8 " WORKING WITH THE DATA

INSERT SQL Command

The first method of inserting data is to use the INSERT SQL command as described previously.
This example will insert one record into the ShareDetails.Shares table using Query Editor.
When inserting the data, the record will be inserted immediately without any opportunity to
roll back changes. This command does not use any transaction processing to allow any changes to
take place. You will also see with this example how Query Editor can aid you as a developer in
building the SQL command for inserting a record. Let’s dive straight in and create the record.

Try It Out: Query Editor Scripting

1. Ensure that you have a Query Editor window open, connected to our ApressFinancial database, and
that you are logged in with an account that has insert permissions on the ShareDetails.Shares
table (this will be any member of the administrator’s or database owner’s role).

2. Right-click against the ShareDetails.Shares table, select Script Table As » INSERT To » New
Query Editor Window.

3. This will bring up the following code. SQL Server covers itself concerning the use of reserved words,
spaces in names, etc., by surrounding every object name with square brackets. It also fully qualifies the
table name with the database name and schema owner, in this case, ShareDetails. Moving to the
values, you can see the column name repeated so that when altering the values, if the table has a large
number of columns, you know which column you are working with. The final part in the jigsaw is an
indication to the data type and length to aid you as well.

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
ShareDesc]
ShareTickerId]

CurrentPrice])

(

J)

J)

VALUES
(<ShareDesc, nvarchar(50),>
,<ShareTickerId, nvarchar(50),>
,<CurrentPrice, numeric,>)

— o, —

4. We need to place a modification at the top of this code, just to ensure that Query Editor has a setting to
allow double quotes to be used to surround strings. This was covered in Chapter 5 when discussing
database options. To cover yourself though, you can always place the following code at the start of
queries where quotation marks will be used. There is one hidden downfall that will be covered at the
end. Notice as well that a GO command is included at the end of the SET command. This is because this
command must take place in its own transaction.

SET QUOTED_IDENTIFIER OFF
GO

5. By altering the code within the Query Editor pane, you will see that the next section of code actually
inserts the data into the ShareDetails.Shares table. Notice that no GO statement is included at the
end of this code. It is not necessary because there is only one INSERT and no other commands that
need to form part of this same transaction.

247



248

CHAPTER 8 " WORKING WITH THE DATA

SET QUOTED_IDENTIFIER OFF
GO

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
[ShareDesc]

[ShareTickerId]

[

,[CurrentPrice])

(

)

VALUES
("ACME'S HOMEBAKE COOKIES INC",
"AHCI',
2.34125)
6. Now that all the information has been entered into the Query Editor pane, it is time to execute the code.

Press F5 or Cirl+E, or click the execute button on the toolbar. You should then see the following result,
which indicates that there has been one row of data inserted into the table.

(1 row(s) affected)

This now sees the first record of information placed into the database in the ShareDetails.Shares table. Itis
simple and straightforward. All the columns have been listed and a value has been inserted. Because the name had
a single quotation mark within it, it is simpler to surround the name with double quotation marks. However, to make
sure that this string was not seen as an identifier, we have to switch that option off.

SQL Server Management Studio has the ability to create template scripts for several T-SQL commands. Templates,
which you saw earlier in the book, hold parameter placeholders that require modification to build up the whole
command. Template scripts differ from actual templates, as the information created within Query Editor for these
templates is for one command only. Therefore, what you are actually seeing is the template for a one-line script.

When using the scripting options within Query Editor, it is possible to build the script as you have just seen for
inserting a record into the ShareDetails.Shares table, and save the T-SQL within a new Query Editor pane, to
afile, or even to a clipboard. This would then allow the data to be reinserted instantaneously should the table be
deleted. To an extent, scripting to files or a clipboard is not as useful as scripting to a Query Editor pane. By scripting
to files or a clipboard, you would need to move back into these files to make the necessary changes for data insertion.
As you saw, when the script is placed in the Query Editor pane, the table and the columns are listed, but obviously
the values need to be altered. This would have to be completed in a file or a clipboard by reopening these contents
and making modifications after the event.

The scripting template does build the whole INSERT command and lists all the columns as well as—in the VALUES
section of the command—the name of the column and its data type definition. From there, it is easier to know what
value is expected within the INSERT command line.

The example mentions that using SET QUOTED IDENTIFIER OFF does have one hidden downfall: In many cases,
when using T-SQL commands, it is possible to surround reserved words with double quotation marks, rather than
square brackets; however, with the QUOTED IDENTIFIER set to OFF, you will only be able to surround reserved
words with square brackets. If you had QUOTED IDENTIFIER setto ON, then you could not have put ACME'S in the
name; the code would have to have been written with two single quotation marks. Therefore, the code would have
had to look like the following:



CHAPTER 8 " WORKING WITH THE DATA

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
ShareDesc]
ShareTickerId]

CurrentPrice])

(

)

— e

)

VALUES
('ACME''S HOMEBAKE COOKIES INC',
"AHCI',
2.34125)

Now that you know how to construct an INSERT statement, it is time to look at how you need not define all the
columns within a table.

Itis not always necessary to define columns with a value when inserting rows of data. This
next section looks at two of these methods: the use of default values and allowing a NULL value.
As you have just seen in our first examples, we specified every column in the table within the
INSERT statement. You are now probably wondering whether you have to specify every column
every time a record is inserted into a table. The answer is no. However, there are a few areas to
be aware of.

Default Values

The first method for avoiding having to enter a value is to set a column or a set of columns with
a default value. We set up the CustomerDetails.Customers table to have a default value when
creating the tables in Chapter 5. Default values are used when a large number of INSERTs for a
column would have the same value entered each time. Why have the overhead of passing this
information, which would be the column name plus the value, through to SQL Server, when SQL
Server can perform the task quickly and simply for you? Network traffic would be reduced and
accuracy ensured as the column information would be completed directly by SQL Server.

Although it has been indicated that default values are best for alarge number of INSERTS, it
can also be argued that this need not be the case. Some people feel that all that is required is a
significant number of rows to be affected from a default value setting for the use of default
values to be an advantage. It does come down to personal preference as to when you think setting
a default value will be of benefit. However, if there are times when you wish a column to have
an initial value when a row is inserted with a specific value, then it is best to use a default value.

The example in next section, where we build up our next set of INSERT statements, I will
demonstrate how a default value will populate specific columns. When creating the
CustomerDetails.Customers table, we created a column that is set up to be populated with a
default value: the DateAdded column. In this column, we call a SQL Server reserved function,
GETDATE (). This function gets the date and time from the operating system and returns it to SQL
Server. By having this within a column default value, it is then inserted into a record when a
row is added.

Using NULL Values

The next method for avoiding having to fill in data for every column is to allow NULL values
in the columns. We did this for some columns when defining the tables. Ensuring that each

249



250

CHAPTER 8 " WORKING WITH THE DATA

column’s Allow Nulls option is checked can ensure this is true for all our columns. If you take a
look at Figure 8-1, one of the columns in the ShareDetails.Shares table, ShareTickerId, does
allow a NULL value to be entered into the column.

I Table - ShareDetails.Shares| not connected - S0LQueryl.sq

Colurnn Mame Data Type Allove Mulls
Wi Shareld | bigint O
] ShareDesc j rvarchar{50) O
ShareTickerld nevarchar{S0)
CurrentPrice numerici 18, 5) O
O

Figure 8-1. NULLSs selected on a column

Therefore, the previous example could have placed data only in the ShareDesc and
CurrentPrice fields if we’d wanted, as ShareIdis an IDENTITY column and is auto-filled. If the
ShareDetails.Shares record had only been inserted with those two columns, the command
would have looked like the following T-SQL:

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
([ShareDesc]
,[CurrentPrice])
VALUES
("ACME'S HOMEBAKE COOKIES INC",
2.34125)

Figure 8-2 shows what the data would have looked like had we used the preceding T-SQL
instead of the code in the previous section.

[ [ Results _‘_1 Messages

Shareld |ShareDesc ]ShareTickerId CurrentPrice
[[1 1 | ACME'S HOMEBAKE COOKIES INC - MULL 234128

Figure 8-2. Insert with NULL

To see the same result as in Figure 8-2, you would view this table in SQL Server Management
Studio. This is covered shortly, as unfortunately we are in the chicken-and-egg scenario of
showing an area before it has been discussed. As you can see, the columns that had no data
entered have a setting of NULL. ANULL setting is a special setting for a column. The value of NULL
requires special handling within SQL Server or applications that will be viewing this data. What
this value actually means is that the information within the column is unknown; it is not a
numeric or an alphanumeric value. Therefore, because you don’t know if it is numeric or
alphanumeric, you cannot compare the value of a column that has a setting of NULL to the value
of any other column, and this includes another NULL column.

Note One major rule involving NULL values: a primary key cannot contain any NULL values.




CHAPTER 8 " WORKING WITH THE DATA 251

Try It Out: NULL Values and SQL Server Management Studio Compared to T-SQL

1. Ensure that SQL Server Management Studio is running and that you are logged in with an account that
allows the insertion of records. Any of our users can do this.

2. Expand the ApressFinancial node in the Object Explorer so you can see the
CustomerDetails.Customers table. Right-click this table and select Open Table.

3. In the main pane on the right, you should now see a grid similar to Figure 8-3. This grid would usually
show all the rows of data that are within the table, but as this table contains no data, the grid is empty
and ready for the first record to be entered. Notice that on the far left-hand side appears a star. It will
change to an arrow shortly. This is the record marker and denotes which record the grid is actually
pointing to and working with for insertion. The arrow denotes which record you are viewing, and when
the marker changes to a pencil, it denotes that you are writing data in that row, ready for updating the
table. Perhaps not so relevant this instance, but very useful when several records are displayed.

Table - Custom..tails.Customers| %P-PRO.Apress...SQLQueryl sal* | Summary -3
CustomerId iZuskomer TitleId CustomerFirsth.., = CustomerOther,., | CustomerlastM,..  AddressId Accounthumber Account Typeld
* ALAL ALLL ALLL ALLE AL ALLL ALLE AL

Figure 8-3. No data held within the table

4. ltis a simple process to enter the information into the necessary columns as required. However, if you
don’t enter the data into the correct columns, or leave a column empty when in fact it should have data,
you will receive an error message. The first column, CustomerId, is protected, as this is an IDENTITY
column, but if you enter Mr into the CustomerTitleId column, then you will see something similar to
the message shown in Figure 8-4 when moving to another cell. This message is informing you that
CustomerTitleld is expecting an integer data type and that what was entered was not of that type.

..'Tahle—l:usI:l'J'm'..'.I:a'i'Is.l:us'tome'rs': ?<_P-PRO.Apress...SQLQueryl.sqI* | Summary |

CustomerId Customer TitleId CustomerFirstM... | CustomerOther... | Custon
F e M NLEL NLEL ML

* MULL MULL MULL MULL MULL

Microsoft SQL Server Management Studio

2

Irvvalid value For cell {row 1, column 2).

The changed value in this cell was not recognized as valid,
.Met Framework Data Type: Ink32

Error Message: Input string was not in & correct format,

Type a value appropriate for the data bype or press ESC to cancel the change,

Figure 8-4. Invalid data type

5. Now press the down arrow, after altering CustomerTitleId to the correct data type, to indicate that you
have finished creating this customer and wish to create the next. This of course means that some columns
that have to be populated aren’t, and SQL Server tells me so, as you see in Figure 8-5. | wanted to create
a row that was full of NULL values, but | can’t. The error message indicates that CustomerFirstName
has not been set up to allow a NULL value, and we need to put some data in there.



252

CHAPTER 8 " WORKING WITH THE DATA

rlox Table - Custom...tails.Customers | *P-PRO.Apress.. SOLQueryL.sqf | Summary -
ZustomerId Zustomer TitleId CustomerFirstM, ., | CustomerCther..,  CustomerlLastM... AddressId AccountMumber AccountTypeld
£t 1 O nedt AL AL AL AEL ALEL
* MULL MULL MULL MULL MULL MULL MULL MULL
Microsoft SOL Server Management Studio ? @

s Mo row was updated,
i i

The data in row 1 was not commitked,

Error Source: \Met SqlClient Data Prowider.

Errar Message: Cannot insert the walue MULL into column 'CustomerFirsthame’, table 'ApressFinancial, CustomerDetails, Customers'; column daes nat allow nulls.
INSERT Fails,

The statement has been terminated.

Catrect the errors and retry or press ESC to cancel the change(s).

Figure 8-5. Trying to insert a row with NULL when NULLs are not allowed

. Clicking OK allows you back into the grid where the whole row can be populated with correct information.

Notice that we can miss out placing any data in the CustomerOtherInitials column. After popu-
lating our grid, click the down arrow, and our grid should resemble Figure 8-6. The thing to notice is that
although this is the first record entered, the CustomerId is set to 2. Whether insertion of a record is
successful or not, an identity value is generated. Therefore, CustomerId 1 was generated when we
received the second error as we were trying to move on to a new row. This can and will cause gaps
within your numbering system. You can see how valuable using defaults as initial values for columns
can be. Where the real benefit of using default values comes is in ensuring that specific columns are
populated with the correct default values. As soon as we move off from the new row, the default values
are inserted and ready to be modified. There is now a record of when the record was added, ideal for
auditing. After we look at inserting a row with T-SQL, we will see what we might be able do about this.

~“Table - Custom...tails.Customers I %P-PRO. Apress. .. SQLGUeryl sqf* Summary
[ CustomerTd CustomerTitleId CustomerFirsth, ., Custumar‘Other. i CLlstDmerLastN. o | Addressid Accounthumber Account”
2 1 Wic ALLL MeGlynn 111 87612311 1
AL AL ALEL ALEL ALEL AL AL

Figure 8-6. The populated grid

Note By having an IDENTITY column, every time a record is entered or an attempt is made to enter a
record and all the data enteredis of valid data types—whether this is through SQL Server Management Studio
or an INSERT statement—the column value within the table will be incremented by the Identity Increment

7. Now open up a Query Editor window and enter the following code. This code will replicate the first part

of this example in which we entered the wrong data type.

USE ApressFinancial
0]
INSERT INTO CustomerDetails.Customers (CustomerTitleId) VALUES ('Mr')



CHAPTER 8 " WORKING WITH THE DATA

Now execute this by pressing Ctrl+E or F5, or clicking the execute button on the toolbar. This code will
generate an error because, once again, this is the wrong data type.

Msg 245, Level 16, State 1, Line 1
Conversion failed when converting the varchar value 'Mr' to data type int.

10.

Change the code to replicate our second attempt at entering a row where the data type for the title is
now correct but we are still missing other values:

USE ApressFinancial
G0
INSERT INTO CustomerDetails.Customers (CustomerTitleId) VALUES (1)

Now execute this by pressing Ctrl+E or F5, or clicking the execute button on the toolbar. This code will
generate a different error, informing us this time that we didn’t allow a NULL into the CustomerFirstName
column, and therefore we have to supply a value.

Msg 515, Level 16, State 2, Line 1

Cannot insert the value NULL into column 'CustomerFirstName', table
'ApressFinancial.CustomerDetails.Customers'; column does not allow nulls.
INSERT fails.

The statement has been terminated.

1.

12.

This final example will work successfully. However, note that the CustomerLastName is before that of
the CustomerFirstName column. This demonstrates that it is not necessary to name the columns
within the insertion in the same order as they are defined within the table. It is possible to place the
columns in any order you desire.

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerLastName,CustomerFirstName,
CustomerOtherInitials,AddressId,AccountNumber,AccountTypeld,
ClearedBalance,UnclearedBalance)

VALUES (3, 'Mason', 'Jack',NULL,145,53431993,1,437.97,-10.56)

This time when you execute the code, you should see the following results, indicating the record has
been inserted successfully:

(1 row(s) affected)

13.

Now let’s go back and view the data to see what has been entered. Find the CustomerDetails.
Customers table in the Object Explorer again. Right-click the table and select Open Table. The table
now has two rows with two gaps in what we want our ideal ascending sequence, as you see in Figure 8-7.

253



254

CHAPTER 8 " WORKING WITH THE DATA

Table - Custom...tails.Customers | ¥P-PRO.Apress... SQLQueryl sql* Summary -
CustamerId CustamerTitleId CustomerFirstM, .. | CustomerCther... | CustomerLastM... AddressId AccountMurmber Account Typeld
» q 1 Wic MAL MeGlynn 111 87612311 1
4 3 Jack ALEL Mason 145 53431993 1
* AL ALLL AMAL AAL AL ALLL ALEL AL

Figure 8-7. Second customer inserted

That is all there is to it. Just as simple as using SQL Server Management Studio, but you did get more informative
error messages. We now have a slight problem in that already there are two gaps in the table. This can be remedied
easily within Query Editor, which we’ll do in the next section.

DBCC CHECKIDENT

The DBCC commands can be used for many different operations, such as working with IDENTITY
columns. If you find that when testing out IDENTITY columns you receive a number of errors,
and the identity number has jumped up further than you wished, it is possible to reset the seed
of the IDENTITY column so that Query Editor starts again from a known point. The syntax for
this command is very simple:

DBCC CHECKIDENT ('table name'[,{NORESEED |{RESEED[,new reseed value]}}])
The following elaborates on the three areas of the syntax that may need explanation:

¢ The name of the table that you wish to reset the identity value for is placed in single
quotation marks.

* You can then use NORESEED to return back what SQL Server believes the current identity
value should be, in other words, what the current maximum identity value is within the
IDENTITY column.

» The final option is the one we are interested in. You can either reseed a table automatically
by simply specifying the RESEED option with no value. This will look at the table defined
and will reset the value to the current maximum value within the table. Or optionally, you
can set the column of the table to a specific value by separating the value and the option
RESEED by a comma.

If you use RESEED and there are currently no records in the table, but there had been in the
past, then the value will still be set to the last value entered, so take care.

Resetting the seed for an IDENTITY column though does have a danger, which you need to
be aware of. If you reset the point to start inserting values for the IDENTITY column back past
the greatest number on the given table, you will find that there is the potential of an error being
produced. When a value that already exists is generated from an INSERT after resetting the
IDENTITY column value, then you will receive an error message informing you the value already
exists. To give an example, you have a table with the values 1,2,5,6,7,8 and you reset the IDENTITY
value back to 2. You insert the next record, which will correctly get the value 3, and the insertion
will work. This will still work the same with the next insertion, which will receive the value 4.
However, come to the next record, and there will be an attempt to insert the value 5, but that



CHAPTER 8 " WORKING WITH THE DATA

value already exists; therefore, an error will be produced. However, if you had reset the value to 8,
the last value successfully entered, then everything would be OK.

As we do not have the value 1 for the first row in the Customers table, it would be nice to
correct this. It also gives a good excuse to demonstrate CHECKIDENT in action. The code that
follows will remove the erroneous record entry and reset the seed of the IDENTITY column back
to 0, to a value indicating that no records have been entered. We will then via T-SQL reenter the
customer information. Enter the following code, place the code into Query Editor, and execute it.
The first line removes the record from Customers and the second line resets the identity. Don’t
worry too much about the record deletion part, as deleting records is covered in detail later in
the chapter in the “Deleting Data” section.

DELETE FROM CustomerDetails.Customers

DBCC CHECKIDENT('CustomerDetails.Customers',RESEED,0)

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeld,
ClearedBalance,UnclearedBalance)

VALUES (1, 'Vic',NULL, "McGlynn',111,87612311,1,4311.22,213.11)
INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerLastName,CustomerFirstName,
CustomerOtherInitials,AddressId,AccountNumber,AccountTypeld,
ClearedBalance,UnclearedBalance)

VALUES (3, 'Mason', 'Jack"',NULL,145,53431993,1,437.97,-10.56)

When the code is run, you should see the following information output to the query results pane:

(2 row(s) affected)

Checking identity information: current identity value '4', current column value '0'.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

(1 row(s) affected)

(1 row(s) affected)

Column Constraints

A constraint is essentially a check that SQL Server places on a column to ensure that the data
to be entered in the column meets specific conditions. This will keep out data that is erroneous,
and therefore avoid data inconsistencies. Constraints are used to keep database integrity by
ensuring that a column only receives data within certain parameters.

We have already built a constraint on the CustomerDetails.Customers table for the default
value for the column DateAdded. If you go to Object Explorer, right-click, select Script Table As »
Create To, and put the output in a new query window, you would see the following line from
that output. So a constraint is used for setting a default value.

255



256

CHAPTER 8 " WORKING WITH THE DATA

[DateAdded] [datetime] NULL CONSTRAINT
[DF _Customers DateAdded] DEFAULT (getdate()),

Constraints are used to not only insert default values, but also validate data as well as
primary keys. However, when using constraints within SQL Server, you do have to look at the
whole picture, which is the user graphical system with the SQL Server database in the back-
ground. If you are using a constraint for data validation, some people will argue that perhaps it
is better to check the values inserted within the user front-end application rather than in SQL
Server. This has some merit, but what also has to be kept in mind is that you may have several
points of entry to your database. This could be from the user application, a web-based solution, or
other applications if you are building a central database. Many people will say that all valida-
tion, no matter what the overall picture is, should always be placed in one central place, which
is the SQL Server database. Then there is only one set of code to alter if anything changes. It is
a difficult choice and one that you need to look at carefully.

This part of the chapter will demonstrate how to add a constraint, specifically for data vali-
dation, through code in Query Editor. First of all, it is necessary to look at the code that is used
to build the constraint.

ADD CONSTRAINT

You have two ways to add a constraint to a table. You saw the first when creating a default value
as we built a table via SQL Server Management Studio in Chapter 5.

To build a constraint via code, you need to use the ALTER TABLE command, no matter what
type of constraint this is. The ALTER TABLE command can cover many different alterations to a
table, but in this instance, the example just concentrates on adding a constraint. This makes
the ALTER TABLE statement easy, as the only real meat to the clause comes with the ADD CONSTRAINT
syntax. The next example will work with the CustomerDetails.CustomerProducts table, and you
will see three different types of constraints added, all of which will affect insertion of records.
It is worth reiterating the adding of a default value constraint again, as this will differ from the
DateAdded column on the Customers table. Once the constraints have been added, you will see
them all in action, and how errors are generated from erroneous data input.

Try It Out: Altering a Table for a Default Value in Query Editor

1. Ensure that Query Editor is running. Although all the examples deal with the CustomerDetails.
CustomerProducts table, each constraint being added to the table will be created one at a time,
which will allow a discussion for each point to take place. In the Query Editor pane, enter the following
code, which will add a primary key to the CustomerProducts table. This will place the
CustomerFinancialProductId column within the key, which will be clustered.

USE ApressFinancial

(€]

ALTER TABLE CustomerDetails.CustomerProducts
ADD CONSTRAINT PK_CustomerProducts

PRIMARY KEY CLUSTERED
(CustomerFinancialProductId) ON [PRIMARY]
(0]



CHAPTER 8 " WORKING WITH THE DATA 257

2. Next we add a CHECK constraint on the AmountToCollect column. The CustomerDetails.
CustomerProducts table is once again altered, and a new constraint added called
CK_CustProds_AmtCheck. This constraint will ensure that for all records inserted into the
CustomerDetails.CustomerProducts table from this point on, the score must be greater than 0.
Notice as well that the NOCHECK option is mentioned, detailing that any records already inserted will not
be checked for this constraint. If they have invalid data, which they don’t, then the constraint would
ignore them and still be added.

ALTER TABLE CustomerDetails.CustomerProducts
WITH NOCHECK

ADD CONSTRAINT CK CustProds AmtCheck

CHECK ((AmountToCollect > 0))

GO

3. Moving on to the third constraint to add to the CustomerDetails.CustomerProducts table, we
have a DEFAULT value constraint. In other words, this will insert a value of 0 to the Renewable column
if no value is entered specifically into this column. This signifies that the premium collected is a one-off
collection.

ALTER TABLE CustomerDetails.CustomerProducts WITH NOCHECK
ADD CONSTRAINT DF_CustProd Renewable
DEFAULT (0)
FOR Renewable

4. Execute the three batches of work by pressing F5 or Cirl+E, or clicking the execute button on the toolbar.
You should then see the following result:

The command(s) completed successfully.

5. There are two methods to check that the code has worked before adding in any data. Move to the Object
Explorer in Query Editor. This isn’t refreshed automatically, so you do need to refresh it. You should then
see the three new constraints added, two under the Constraints node and one under the Keys node, as
well as a display change in the Columns node, as shown in Figure 8-8.

= [ Tables
[ [ System Tables
= & CustomerDetails, CustomerProducts
= 3 Columns
'f CustomerFinancialProductId (PK, big
=] CustomerId (bigint, not nuly
=] FinancialProductId (higink, not null)
=] amountToCollect {maney, not nul)
=| Frequency {smallint, not null)
=] LastCollected (daketime, not null)
=] LastCollection (datetime, not nul)
[Z] Renewable (bit, not null)
= 3 Keys
f PK_CustomerProducts
= 4 Constraints
[ ck_custrrods_amtCheck
#Z] DF_CustProd_Renewable
E 3@ Triggers
[ [ Indexes
[# [J Statistics

Figure 8-8. CustomerDetails. CustomerProducts table details



258 CHAPTER 8 " WORKING WITH THE DATA

6. Another method is to move to SQL Server Management Studio, find the CustomerDetails.
CustomerProducts table, right-click it, and select Modify. This brings us into the Table Designer,
where we can navigate to the necessary column to check out the default value, in this case Renewable.
Also notice the yellow key against the CustomerFinancialProductId signifying that this is now a
primary key, as shown in Figure 8-9.

Taﬁie—Eusto...tomerProHucts'_ XP-PRO.A_press...SQ_L_Queryl.sqI* | Summary |

Colurnn Mame Data Type Allov Mulls
¥ CustomerFinancialProd...  bigint |
CustomerId bigint Bl
FinancialProductld bigint |
AmountToColleck money Bl
Frequency smallint |
LastCallected datetime Bl
LastCallection datetime |
b | Renewable bit Bl
O
Colurnn Propert.ies
5l
= ("Gener.al)
{Mame) Renewable
Allavs Mulls Mo
Data Type bit
Default Yalue or Binding (o

Figure 8-9. Default value constraint on column Renewable

7. Move to the Table Designer toolbar and click the Manage Check Constraints button, shown here:

8. This will display the Check Constraints dialog box, shown in Figure 8-10, where we will see the
AmountToCollect column constraint displayed. We can add a further constraint by clicking the Add
button. Do so now.

9. This will alter the Check Constraints dialog box to allow a new check constraint to be added, as you see
in Figure 8-11. This check will ensure that the LastCollection date is greater than the value entered
in another column. Here we want to ensure that the LastCollection date is equal to or after the
LastCollected date. Recall that LastCollection defines when we last took the payment, and
LastCollected defines when the last payment should be taken.



CHAPTER 8 " WORKING WITH THE DATA

Check Constraints EI[E

heck C

Editing properties For existing check constraint,

Check Existing Data On Crea No
Enforce For INSERTs And P Yes
Enforce For Replication es

[ Add ][ Delete ]

=] )
Expression ([amountToCollect]=(0))
({Mame) CK_CustProds_aAmtCheck
Description

IE

Close

Figure 8-10. Check Constraints dialog box

Check Constraints

Selected Check Constraint:

_C.li-_CustomerProducts*
CK_CustProds_aAmtCheck

iE:I-iting properties For new check constraint. The 'Expression’ property
| needs to be filled in before the new check constraint will be accepted.

Expression

=)

Description
|{El Table Designe
Check Existing Data On Crea Yes
Enforce For INSERTs And P Yes
Enforce For Replication es

[ Add ][ Delete ]

({Mame) CK_CustomerProducts

Close

Figure 8-11. Adding a new constraint in the Check Constraints dialog box

10. The expression we want to add, which is the test the constraint is to perform, is not a value nor a system

function like GETDATE (), but a test between two columns from a table, albeit the same table we are
working with. This is as simple as naming the columns and the test you wish to perform. Also at the
same time, change the name of the constraint to something meaningful. Your check constraint should
look something like what appears in Figure 8-12. Afterwards, click Close, which will add the constraint
to the list, although it has not yet been added to the table. It is not until the table is closed that this will

happen, so do that now.

259



260

CHAPTER 8 " WORKING WITH THE DATA

11.

12.

Check Constraints EJE|

Selected Check Constraint:

'E:I-iting properties For existing check constraint,
CK_CustProds_aAmtCheck

p ({[LastCollection] ==[LastCollected])
IE1 Tdentity
({Mame) CK_CustProd_LastColl
Description

(5 o s
Check Existing Data On Crea No
Enforce For INSERTs And P Yes
Enforce For Replication es

(] (oo ]

Figure 8-12. LastColl constraint in the Check Constraints dialog box

Now it’s time to test the constraints to ensure that they work. First of all, we want to check the
AmountToCollect constraint. Enter the following code, which will fail as the amount to collect is a
negative amount.

INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,AmountToCollect,Frequency,
LastCollected, LastCollection,Renewable)

VALUES (1,1,-100,0,'24 Aug 2005",'24 Aug 2005',0)

When you execute the code in Query Editor, you will see the following result. Instantly you can see that
the constraint check (CK_CustProds_AmtCheck) has cut in and the record has not been inserted.

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint
"CK_CustProds AmtCheck". The conflict occurred in database
"ApressFinancial", table "CustomerDetails.CustomerProducts",
column 'AmountToCollect'.

The statement has been terminated.

13.

We alter this now to have a positive amount, but change the LastCollection so that we break the
CK_CustProd_LastColl constraint. Enter the following code:

INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,AmountToCollect,Frequency,
LastCollected, LastCollection)

VALUES (1,1,100,0,'24 Aug 2005','23 Aug 2005")



CHAPTER 8 " WORKING WITH THE DATA

14. When the preceding code is executed, you will see the following error message:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint
"CK_CustProd LastColl". The conflict occurred in database
"ApressFinancial", table "CustomerDetails.CustomerProducts".
The statement has been terminated.

Adding a constraint occurs through the ALTER TABLE statement as has just been demonstrated. However, the ADD
CONSTRAINT command is quite a flexible command and can achieve a number of different goals.

The preceding example uses the ADD CONSTRAINT to insert a primary key, which can be made up of one or more
columns (none of which can contain a NULL value), and also to insert a validity check and a set of default values.
The only option not covered in the example is the addition of a foreign key, but this is very similar to the addition of
a primary key.

The first constraint added is the primary key, which we saw in Chapter 5. The second constraint definition builds a
column check to ensure that the data entered is valid:

ADD CONSTRAINT constraint name CHECK (constraint check syntax)

The syntax for a CHECK constraint is a simple true or false test. When adding in a constraint for checking the data,
the information to be inserted is valid (true) or invalid (false) when the test is applied. As you will see, using mathe-
matical operators to test a column against a single value or a range of values will determine whether the data can
be inserted.

Notice in the example that the ADD CONSTRAINT command is preceded with a WITH NOCHECK option on the
ALTER TABLE statement. This informs SQL Server that any existing data in the table will not be validated when it
adds the table alteration with the constraint, and that only data modified or inserted after the addition of the con-
straint will be checked. If you do wish the existing rows to be checked, then you would use the WITH CHECK option.
The advantage of this is that the existing data is validated against that constraint, and if the constraint was added
to the table successfully, then you know your data is valid. If any error was generated, then you know that there was
erroneous data, and that you need to fix that data before being able to add the constraint. This is just another
method of ensuring that your data is valid.

Finally, for adding a default value, the ADD CONSTRAINT syntax is very simple.

ADD CONSTRAINT constraint name
DEFAULT default value
FOR column_to receive the value

The only part of the preceding syntax that requires further explanation is the default valuearea.default valuecan
be a string, a numeric, NULL, or a system function (for example, GETDATE (), which would insert the current date
and time). So the default value does not have to be fixed; it can be dynamic.

261



262

CHAPTER 8 " WORKING WITH THE DATA

Dealing with Several Records at Once

Itis now necessary to enter a few more customers so that a reasonable amount of data is contained
within the CustomerDetails.Customers table to work with later in the book. We need to do

the same with several other tables as well, such as TransactionDetails.TransactionTypes,
CustomerDetails.CustomerTransactions, etc. This section will prove that no extra or specialized
processing is required when inserting several records. When working with data, there may be
many times that several records of data are inserted at the same time. This could be to initially
populate a table, or when testing. In this sort of situation where you are repopulating a table, it
is possible to save your query to a text file, which can then be reopened in Query Editor and
executed without having to reenter the code. This is demonstrated at the end of the upcoming
example.

Inserting Several Records in a Query Batch

This next example will demonstrate inserting several records. The work will be completed in
batches. There is no transaction processing surrounding these INSERTs, and therefore each
insertion will be treated as a single unit of work, which either completes or fails.

Note A transaction allows a number of INSERTs or modifications to be treated as one unit, and if any
insertion failed within the transaction, all the units would be returned back to their original value, and no inser-
tions would take place. Transactions will be discussed in more detail in the upcoming “Transactions” section.

Try It Out: Insert Several Records At Once

1. Ensure that SQL Server Query Editor is up and running. In the Query Editor window, enter the following
code. Notice there are two GO commands within this set of INSERTS. Although each INSERT is its own
self-contained unit of work, a GO command also determines the end of a batch, or unit, of work. Therefore,
the GO statements are superfluous if any error occurs with any of the INSERT statements.

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeld,
ClearedBalance,UnclearedBalance)

VALUES (3, 'Bernie','I", 'McGee',314,65368765,1,6653.11,0.00)
GO0

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeld,
ClearedBalance,UnclearedBalance)

VALUES (2, 'Julie’,'A', 'Dewson',2134,81625422,1,53.32,-12.21)
GO0



CHAPTER 8 " WORKING WITH THE DATA

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeld,
ClearedBalance,UnclearedBalance)

VALUES (1, 'Kirsty',NULL, 'Hull',4312,96565334,1,1266.00,10.32)

2. Now just execute the code in the usual way. You will see the following output in the results pane. This
indicates that three rows of information have been inserted into the database, one at a time.

(1 row(s) affected)
(1 row(s) affected)

(1 row(s) affected)

Retrieving Data

This section of the chapter will demonstrate how to view the data that has been placed in the
tables so far. Many ways of achieving this are available, from using SQL Server Management
Studio through to T-SQL commands, and as you would expect, they will all be covered here.

The aim of retrieving data is to get the data back from SQL Server using the fastest retrieval
manner possible. We can retrieve data from one or more tables through joining tables together
within our query syntax; all of these methods will be demonstrated.

The simplest method of retrieving data is using SQL Server Management Studio, and we
look at this method first. With this method, you don’t need to know any query syntax: it is all
done for you. However, this leaves you with a limited scope for further work.

You can alter the query built up within SQL Server Management Studio to cater to work
that is more complex, but you would then need to know the SELECT T-SQL syntax; again, this
will be explained and demonstrated. This can become very powerful very quickly, especially
when it comes to selecting specific rows to return.

The results of the data can also be displayed and even stored in different media, like a file.
It is possible to store results from a query and send these to a set of users, if so desired.

Initially, the data returned will be in the arbitrary order stored within SQL Server. This is
not always suitable, so another aim of this chapter is to demonstrate how to return data in the
order that you desire for the results. Ordering the data is quite an important part of retrieving
meaningful results, and this alone can aid the understanding of query results from raw data.

Retrieving images is not as straightforward as retrieving normal rows of data, so I'll cover
this in Chapter 12 along with other advanced T-SQL techniques.

Starting with the simplest of methods, let’s look at SQL Server Management Studio and
how easy it is for us to retrieve records. We have partially covered this earlier when inserting rows.

263



264

CHAPTER 8 " WORKING WITH THE DATA

Using SQL Server Management Studio
to Retrieve Data

The first area that will be demonstrated is the simplest form of data retrieval, but it is also the
least effective. Retrieving data using SQL Server Management Studio is a very straightforward
process, with no knowledge of SQL required in the initial stages. Whether it has to return all
rows, or even when you want to return specific rows, using SQL Server Management Studio
makes this whole task very easy. This first example will demonstrate how flexible SQL Server
Management Studio is in retrieving all the data from the CustomerDetails.Customers table.

Try It Out: Retrieving Data Within SQL Server Management Studio

1. Ensure that SQL Server Management Studio is running. Navigate to the ApressFinancial database
and click the Tables node; this should then list all the tables in the right-hand pane. Find the Customers
table, right-click it to bring up the pop-up menu we have seen a number of times before, and select
Open Table. This instantly opens up a new Query Editor window pane like the one in Figure 8-13, which
shows all the rows that are in the CustomerDetail.Customers table. But how did SQL Server get
this data? Let’s find out.

Table - Custom...tails.Customers | XP-PRO.Apress, ., SQLQueryl s | Summary -

CustomerId CustomerTitleId CustomerFirsth...  CustomerOther...  CustomerlastM...  AddressId AccountMurmber AccountTypeld
» i Wic AL McGlynn 111 &7612511 1

2 3 Jack ALEL Mason 145 3431993 1

3 3 Bernie I MoGes 314 65368765 1

4 2 Julie A Dewson 2134 B1625422 1

5 1 Kirsky AL Hull 4312 96565554 1
#* ALLL ALEL ALEL ALEL ALEL ALL ALEL ALEL

Figure 8-13. CustomerDetails.Customers table retrieving data

2. On the toolbar, you will see a button that, when pressed, will show the SQL code that was built to create
this query:

51|

3. Clicking the button alters the screen to that shown in Figure 8-14. This is the SQL syntax generated by
SQL Server Management Studio to provide the information requested.

4. On the right you might see a window called the Properties window. If you don’t see the screen as shown
in Figure 8-15, then you can open this up by pressing F4 or by clicking the View menu item. The point
of interest at the moment is the section you see highlighted in Figure 2-21, Top Specification. Here
we can enter the maximum number of records that we wish to return.



CHAPTER 8 " WORKING WITH THE DATA

4 Table - Euéfom...ils.tusiomers*'j HP-PRO.ARrEss. . SOLQUery L, sql* SUMMary -
SELECT *
FROM CustomerDetails. Customers
Customerld CustomerTitleld CustormerFirsth... | CustomerOther...  CustomerLastM,.. | AddressId AccountMurnber AccountTypeld
3 1] 1 Wi AL MeGlynn 111 g7612311 1
Z 3 Jack AL Mason 145 53431993 1
3 3 Bernie I McGee 314 65368765 1
4 2 Julie: A Dewson 2134 gl625422 1
5 1 Kirsky AL Hull 4312 96565334 1
* ALEL ALLL AL ALLL ALLL ALLE ALLE ALEL

Figure 8-14. Output displayed via SQL Window

[Qry] Query =

=

E {Identity)

|\E]l Query besigner
Distinct. Values Mo
Output All Colurmns es
SQL.Comment

=] Top Specification
(Tap} Mo

Figure 8-15. Top Specification selected

. The order of the records returned will be determined by the clustered index created on the table. However, if
the table has no clustered index, then the order the records are returned in is arbitrary and there is no
guarantee that the order will be the same when running the same query repeatedly. Changing Top
Specification/(Top) to Yes will change the Properties window to as shown in Figure 8-16.

= Top Specification es
(Top) es v
Expression 10
Percent Mo

Figure 8-16. Top Specification required

. We can enter any number we choose in the Expression property, but for this first time at least, enter 3 in the
Expression box. This will return a maximum of three rows. If we entered a value of 100, we would only
get five rows returned, as that is the maximum number of rows in the table at this moment in time. You
would use this perhaps when you don’t know the number of records within a table, but you are only
interested in a maximum number of 100 if there are more. This would be when you want to look at just
a small selection of content in columns within a table. Now notice in the top-left hand corner of the
results grid the following icon here. This indicates that you have changed a property of the query and
you need to do a refresh.

265



266 CHAPTER 8 " WORKING WITH THE DATA

W

7. Right-click a blank area of the results grid and you will see the pop-up menu shown in Figure 8-17.

¥ Execute sgL

53 Copy

Pane 3

.:j Clear Results

Figure 8-17. Results grid pop-up menu

8. Click Execute SQL to change the results grid to return just three rows of data, as shown in Figure 8-18.

Table - Custom...ils.Customers* | ¥P-PRO.Apress,  SOLQueryl.sgl* Summary

SELECT TOP(3)*
FROM CustomerDetails, Customers

CustomerId CustomerTitleId CustomerFirstN,., | CustomerCther,,. | CustomerLastM... | Addressid Accounthumber Account]
» 1 Wi ARLAL McGlynn 111 87612311 1

2 3 Jack ALLL Masan 145 53431993 1

3 3 Bernie I McGes 314 69368765 1
* MLEL AL ALLL AL ALLL AL ML MLEL

Figure 8-18. Three rows returned

9. Again, by clicking the SQL button on the toolbar, the SQL code is exposed. Notice how this differs from
the previous example in that TOP (3) has been placed after the SELECT statement.

SELECT TOP (3) *
FROM CustomerDetails.Customers

So now that you know how to return data from SQL Server Management Studio, let’s look at using T-SQL and probably the
T-SQL statement you will use most often: the SELECT.

The SELECT Statement

If we wish to retrieve data for viewing from SQL Server using T-SQL commands, then the SELECT
statement is the command we need to use. This is quite a powerful command, as it can retrieve
data in any order, from any number of columns, from any table that we have the authority to
retrieve data from, perform calculations on that data during data retrieval, and even include
data from other tables! If the user does not have the authority to retrieve data from a table, then
you will receive an error message similar to that which you saw earlier in the chapter informing
the user that permission is denied. SELECT has alot more power than even the functions mentioned
so far, but for the moment, let’s concentrate on the fundamentals.



CHAPTER 8 " WORKING WITH THE DATA

Let’s take some time to inspect the simple syntax for a SELECT statement.

SELECT [ ALL | DISTINCT ]

[ TOP
{

}

expression [ PERCENT ] [ WITH TIES ] ]

*
| { table name | view name | alias name }.*

| { column name | [ ] expression | $IDENTITY | $ROWGUID }
[ [ AS ] column alias ]

| column_alias = expression

[ ,...n]

FROM table name | view name alias name

WHERE

filter criteria

ORDER BY ordering criteria

The following list breaks down the SELECT syntax, explaining each option. More explana-
tion will be given throughout the chapter as well.

SELECT: Required—this informs SQL Server that a SELECT instruction is being performed;
in other words, we just want to return a set of columns and rows to view.

ALL | DISTINCT: Optional—we want to return either all of the rows or only distinct, or
unique, rows. Normally, you do not specify either of these options.

TOP expression/PERCENT/WITH TIES: Optional—you can return the top number of rows
as defined by either the order of the data in the clustered index or, if the result is ordered
by an ORDER BY clause, the top number from that order sequence. If there is no clustered
index or no ordering, then the rows will be returned in an arbitrary order. You can also
add the word PERCENT to the end: this will mean that the top n percent of records will be
returned. If PERCENT is not specified, all the records will be returned (unless specific
column names are given). WITH TIES can only be used with an ORDER BY. If you specify
you want to return TOP 10 rows, and the 11th row has the same value as the 10th row on
those columns that have been defined in the ORDER BY, then the 11th row will also be
returned. Same for subsequent rows, until you get to the point that the values differ.

*: Optional—by using the asterisk, you are instructing SQL Server to return all the
columns from all the tables included in the query. This is not an option that should be
used on large amounts of data or over a network, especially if it is busy. By using this, we
are bringing back more information than is required. Wherever possible we should
name the columns instead.

table name.*|view_name.* |alias_name.*: Optional—similar to *, but you are defining
which table, if the SELECT is working on more than one table. When working with more
than one table, this is known as a JOIN, and this option will be demonstrated in Chapter 11
when we take a look at joins.

column_name: Optional but recommended; not required if * is used—this option is where
we name the columns that we wish to return from a table. When naming the columns, it
is always a good idea to prefix the column names with their corresponding table name.
This becomes mandatory when we are using more than one table in our SELECT state-
ment and instances where there may be columns within different tables that share the
same name.

267



268

CHAPTER 8 " WORKING WITH THE DATA

* expression: Optional—we don’t have to return columns of rows within a SELECT. We can
return a value, a variable, or an expression.

$IDENTITY: Optional—will return the value from the IDENTITY column.

$ROWGUID: Optional—will return the value from the ROWGUID column.

* AS: Optional—we can change the column header name when displaying the results by
using the AS option.

FROM table_name | view name: Required—we have to inform SQL Server where the infor-
mation is coming from.

e WHERE filter clause: Optional—if we want to retrieve rows that meet specific criteria,
we need to have a WHERE clause specifying the criteria to use to return the data. The WHERE
clause tends to contain the name of a column on the left-hand side of a comparison
operator, like =, <, >, and either another column within the same table, or another table,
avariable, or a static value. There are other options that the WHERE statement can contain,
where more advanced searching is required, but on the whole these comparison operators
will be the main constituents of the clause.

* ORDER BY ordering criteria: Optional—the data will be returned arbitrarily from the
table if no ORDER BY clause is specified, which if you have a clustered index built on the
table, will be that order; otherwise, it will be in the order in which they were inserted.
However, you can alter the ordering by using the ORDER BY clause, which will determine
the order of the rows returned, and you can specify whether each column is returned in
ascending or descending order. Ascending, ASC, or descending, DESC, is defined for each
column, not defined just once for all the columns within the ORDER BY. Sorting is completed
once the data has been retrieved from SQL Server but before any command like TOP.

Keep in mind that when building a SELECT statement, you do not have to name all the
columns. In fact, you should only retrieve the columns that you do wish to see; this will reduce
the amount of information sent over the network. There is no need to return information that
will not be used.

Naming the Columns

When building a SELECT statement, it is not necessary to name every column if you don’t want
to see every column. You should only return the columns that you need. It is very easy to slip
into using * to return every column, even when running one-time-only queries. Try to avoid
this at all costs; typing out every column name takes time, but when you start dealing with
more complex queries and a larger number of rows, the few extra seconds is worth it.

Now that you know not to name every column unless required, and to avoid using *, what
other areas do you need to be aware of? First of all, it is not necessary to name columns in the
same order that they appear in the table—it is quite acceptable to name columns in any order
that you wish. There is no performance hit or gain from altering the order of the columns, but
we may find that a different order of the columns might be better for any future processing of
the data.



CHAPTER 8 " WORKING WITH THE DATA

When building a SELECT statement and including the columns, if the final output is to be
sent to a set of users, the column names within the database may not be acceptable. For example,
ifyou are sending the output to the users via a file, then they will see the raw result set. Or if you
are using a tool such as Crystal Reports to display data from a SELECT statement within a SQL
Server stored procedure, then naming the columns would help there as well. The column
names are less user friendly, and some column names will also be confusing for users; there-
fore, it would be ideal to be able to alter the names of the column headings. Replacing the SQL
Server column headings with the new alias column headings desired, in either quotation
marks or square bracket delimiters, is easily accomplished with the AS keyword. There is more
on this in the next section.

Now that you know about naming the columns, let’s take a look at how the SQL command
can return data.

The First Searches

This example will revolve around the CustomerDetails.Customers table, making it possible to
demonstrate how all of the different areas mentioned previously can affect the results displayed.

Try It Out: The First Set of Searches

1. Ensure that Query Editor is running and that you are within the ApressFinancial database. In the
Query Editor pane, enter the following SQL code:

SELECT * FROM CustomerDetails.Customers
2. Execute the code using Ctrl+E, F5, or the execute button on the toolbar. You should then see something

like the results shown in Figure 8-19.

[ Results | [y Messages |

Customerld |Eust0merTitIeId CustomerFirstdame | CustomerOtherlnitials | CustomerlastMame | Addressld | AccountMumber | Account

1B E 1 Yic HULL MeGlynn m 8761231 1
2_2 ............................. : 7 i e e e -
ERRE 3 Bemie | McGes 314 E5368765 1
4 |4 2 Julie A Dewszon 2134 81625422 1
5 19 1 Kirsty HULL Hull 4312 96565334 1
b3 *

Figure 8-19. Customers listing

3. Thisis asimple SELECT command returning all the columns and all the rows from the CustomerDetails.
Customers table. Let’'s now take it to the next stage where specific column names will be defined in
the query, which is a much cleaner solution. In this instance from the CustomerDetails.Customers
table, we would like to return a customer’s first name, last name, and the current account balances.
This would mean naming CustomerFirstName, CustomerLastName, and ClearedBalance asthe
column names in the query. The code will read as follows:

SELECT CustomerFirstName,CustomerLastName,ClearedBalance
FROM CustomerDetails.Customers

269



270 CHAPTER 8 " WORKING WITH THE DATA

4. Now execute this code, which will return the results shown in Figure 8-20. As you can see, not every
column is returned.

1 Results 13 Messages|

CustomerFirstdame | CustomerlastMame | ClearedB alance
1 [vic : MoGilynn 4311.22
2 ] Mason 43797
3 | Bemie McGee BE53.11
4 | dulie Dewson 53.32
5 |Kisty Hull 1266.00

Figure 8-20. Specific columns returned

5. As you have seen from the examples so far, the column names, although well named from a design
viewpoint, are not exactly suitable if we had to give this to a set of users. Using the same query as
before, a couple of minor modifications are required to give the columns aliases. The first alias name is
in quotes as it contains a space. Notice the last column also does not have AS specified because this
keyword is optional.

SELECT CustomerFirstName As 'First Name',
CustomerLastName AS 'Surname',
ClearedBalance Balance

FROM CustomerDetails.Customers

6. Execute this and the displayed output changes—much more friendly column names, as you see in
Figure 8-21.

| [ Resuls _'_1 Messages

First Marne | Surharme ] Balance |
i {McGlynn  4311.22
Mason 437.97

3 Bermie McGee  BES3T11
4 Julie Dewson 5332
b Kirsty Hull 1266.00

Figure 8-21. Friendly column names

The first SELECT statement demonstrates the fact that in most SQL Server instances, whether we use upper- or
lowercase doesn’t matter to our queries; however, some language installations are case sensitive. When installing
SQL Server, if we chose a SQL collation sequence that was case sensitive, as denoted by CS within the suffix of the
collation name, SOL_Latin1_General Cp437_CS_AS, for instance, then the first SELECT query would generate
an error. The collation sequence for SQL Server was chosen in Chapter 1 when we installed the application.
Changing a collation sequence within SQL Server is a very difficult task that requires rebuilding parts of SQL Server,
so this book won’t move into that area.

Tip Itis strongly recommended, and considered best practice, that you use the correct casing when using
queries. Not only does this avoid confusion, but it also means that if you do switch to a case-sensitive installation,
then it will not be necessary to alter the query.




CHAPTER 8 " WORKING WITH THE DATA

Moving back to the first query, this query will select all columns and all rows from the CustomerDetails.
Customers table, ordered according to how the database sees it—as you can see in Figure 8-21, it has quite
plainly done this.

Looking at the second and third query examples, the columns returned have been reduced to just three columns:
the customer’s first and last names and the cleared balance amounts. All the rows are still being returned. In the last
example, notice that after two of the three columns, there is an AS keyword. This signifies that the following literal
is to be used as the column heading; note that if we wish to use two words separated by spaces, we must surround
these words by identifiers, whether they be quotation marks, as in our example, or square brackets.

Now that the basics of the SELECT statement have been covered, we will next look at the methods within Query
Editor to display output in different manners.

Varying the Output Display

There are different ways of displaying the output: from a grid, as we have seen; from a straight
text file; still within a Query Editor pane; or as pure text, just like a tabulated Word file. You may
have found the results in the previous exercise laid out in a different format than shown previ-
ously, depending on how you initially set up Query Editor. In the results so far, you have seen
the data as a grid. This next section will demonstrate tabular text output, otherwise known as
Results in Text, as well as outputting the data to a file. Let’s get right on with the first option,
Results in Text.

Try It Out: Putting the Results in Text and a File

1. You should still be in Query Editor. From the Query menu option, select Results To » Results in Text, or
press Ctrl+T. Figure 8-22 shows the other options available from the Results To menu.

Query | Tools  Window  Help

Connection 3 : &l L

Open Server in Object Explorer Alt+F3 i'&:’B ;:“" m'_z j @;;] .:;j =
'&:’B Specify Yalues for Template Parameters,.,  Cerl+Shift+M gi.sdl—...pressl':inancial I 5qLOuery.

\f Execute ES | -

" Parse Chrl4+FS
2‘3 Display Estimated Execution Plan Chrl+L
7, Design Query in Editar... Chrl+Shift+Q
% Include Actual Execution Plan Chrl+M
"f.'g Include Client Statistics Shift+alk+3

Reset Client Statistics

= SOLCMD Mode

Results Ta * |r;,_1 Results to Text Chr+T
Query Options. .. Results to Grid Chrl+D
| & ResulstoFile  Chrl+sShife+F

-0 "“_]

Figure 8-22. Sending the results to different places

2n



272

CHAPTER 8 " WORKING WITH THE DATA

2. If we run the same query as earlier (the code is detailed again here), we will be able to see the difference.

Once the code is entered, execute it.

SELECT CustomerFirstName As 'First Name',
CustomerLastName AS 'Surname',
ClearedBalance Balance

FROM CustomerDetails.Customers

. Examine the output, which should resemble Figure 8-23. As you can see, the output has changed a

great deal. No longer is the output in a nice grid where the columns have been shrunk to a more man-
ageable size, but each column’s data takes up, and is displayed to, the maximum number of characters
that each column could contain. This obviously stretches out the display, but from here we can see
easily how large each column is supposed to be.

4 Results

First Name Surnane Balance

vie MeGlynn 4311.22
Tack Mason 437.97
Bernie HcGee 6653.11
Tulie Dewson £2.32

| Rirstw Hall 1766 NN

Figure 8-23. Results as text

. There will be times, though, when users require output to be sent to them. For example, they may wish
to know specific details from a set of records, and so you build a query and save the results to a file to
send to them. Or perhaps they want output to perform some analysis of data within a Microsoft Excel
spreadsheet. Again, this can be achieved from the Query menu by selecting Results To » Results to
File, or Ctrl+Shift+F. Specify sending results to a file and rerun the code. Once the code has been exe-
cuted, a Save Results dialog box like the one in Figure 8-24 will appear: this could show any folder
location initially—in this case, it shows the My Documents folder.

Save Results

Save in:

Desktop

My Documents

v Received Files

My Yideos

’J Snaglt Catalog

My Projecks | L) 5QL Server Management Studio

| visual Studio 2005
9
My Computer

File: name: | v |

Figure 8-24. Locating where to save the results



CHAPTER 8 " WORKING WITH THE DATA

5. So now that you know how to save to different locations, move back to displaying the output to a grid
by pressing Ctrl+D.

You now know how to return data, but what happens if you don’t want every row and you want to select which rows
to display? We look at that next.

Limiting the Search: The Use of WHERE

You have a number of different ways to limit the search of records within a query. Some of the
most basic revolve around the three basic relational operators: <, >, and = (less than, greater
than, and equal to). There is also the use of the keyword NOT, which could be included with
these three operators; however, NOT does not work as in other programming languages that you
may have come across: this will be demonstrated within the example in this section so you
know how to use the NOT operator successfully.

All of these operators can be found in the WHERE clause of the SELECT statement used to
reduce the number of records returned within a query.

Note You may come across some legacy code where you will find that the WHERE statement is used to
join two tables together to make the results look as if they came from one table. For some databases, this is
the “standard” way to join two tables; however, with SQL Server, the WHERE statement is purely used as a
filter method.

Try It Out: The WHERE Statement

1. Firstof all to use a different table, let’s enter some more rows in to the Shares table. Enter and execute
the following code:

INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('FAT-BELLY.COM','FBC',45.20)
INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('NetRadio Inc','NRI',29.79)
INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('Texas 0il Industries','TOI',0.455)
INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('London Bridge Club','LBC',1.46)

273



274

CHAPTER 8 " WORKING WITH THE DATA

2. The requirement for this section is to find the current share price for FAT-BELLY.COM. We restrict the

SELECT statement so that only the specific record comes back by using the WHERE statement, as can
be seen in the following code:

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE ShareDesc = 'FAT-BELLY.COM'

. Execute this code, and you will see that the single record for FAT-BELLY.COM s returned, as shown in

Figure 8-25.

& Resus | [y Messages|

ShareDesc |EunentF’rice ]
1 [ FAT-BELLY.COM  45.20000

Figure 8-25. The results of limiting the search

. To prove that we are working within an installation that is not case sensitive from a data perspective

(unless you installed a different collation sequence to that described in Chapter 1), if you perform the
following query, you will get the same results as displayed in Figure 8-25.

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE ShareDesc = 'FAT-BELLY.COm'

Note As you can see, this may not always be what you want, because you may want your data to be case
sensitive. If you do, then query code will also become case sensitive.

5. You have seen the WHERE in action using the equals sign; it is also possible to use the other relational

operations in the WHERE statement. The next query demonstrates how SQL Server takes the WHERE
condition and starts returning records after the given point. This query provides an interesting set of
results. Enter the code as detailed here:

SELECT ShareDesc,CurrentPrice

FROM ShareDetails.Shares

WHERE ShareDesc > 'FAT-BELLY.COM'

AND ShareDesc < 'TEXAS OIL INDUSTRIES'

. Once done, execute the code and check the results, which should resemble Figure 8-26.

3 Results |y Messages|

ShareDesc ] CurrentPrice
1 | MetRadio Inc : 29.79000

2 r Bridge Club  1.46000

Figure 8-26. Shares output



CHAPTER 8 " WORKING WITH THE DATA

7. Let’s now bring in another option in the WHERE statement that allows us to avoid returning specific rows.
This can be achieved in one of two ways: the first is by using the less than and greater than signs;
the second is by using the NOT operator. Enter the following code, which will return all rows except
FAT-BELLY.COM. Run both sets of code at once. This will return two sets of output, known as multiple
result sets.

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE ShareDesc <> 'FAT-BELLY.COM'

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE NOT ShareDesc = 'FAT-BELLY.COM'

8. Executing this code will produce the output shown in Figure 8-27. Notice how in neither sets of output
FAT-BELLY.COM has been listed.

[ Results 3 Messages|

ShareDesc CurrentPrice
1 | ACME'S HOMEBAKE COOKIES INC 234125
2 | NetRadio Inc 29.79000
& Texas Oil Industries 0.45500
4 London Bridge Club 1.46000
ShareDesc CurrentPrice
1 [ ACME'S HOMEBAKE CODKIES INC 234125
2 | NetRadio Inc 29.79000
3| Texas Oil Industries 0.45500
4_ London Bridge Club 1.46000

Figure 8-27. Multiple output

As you have seen, it is possible to limit the number of records to be returned via the WHERE clause; we can return
records up to a certain point, after a certain point, or even between two points with the use of an AND statement. It
is also possible to exclude rows that are not equal to a specific value or range of values by using the NOT statement
or the <> operator.

When the SQL Server data engine executes the T-SQL SELECT statement, it is the WHERE statement that is dealt
with before any ordering of the data, or any limitation placed on it concerning the number of rows to return. The data
is inspected, where possible using an index, to determine whether a row stored in the relevant table matches the
selection criteria within the WHERE statement, and if it does, to return it. If an index cannot be used, then a full table
scan will be performed to find the relevant information.

Table scans can present a large performance problem within your system, and you will find that if a query has to
perform a table scan, then data retrieval could be very slow, depending on the size of the table being scanned. If the
table is small with only a small number of records, then a table scan is likely to retrieve data more quickly than the
use of an index. However, table scanning and the speed of data retrieval will be the biggest challenge you will face
as a SQL Server developer. With data retrieval, it is important to bear in mind that whenever possible, if you are
using a WHERE clause to limit the records returned, you should try to specify the columns from an index definition
in this WHERE clause. By doing this, you will be giving the query the best chance for optimum performance.

275



276

CHAPTER 8 " WORKING WITH THE DATA

As discussed in Chapter 7, getting the index right is crucial to fast data manipulation and retrieval. If you find you are
forever placing the same columns in a WHERE clause, but those columns do not form part of an index, perhaps this
is something that should be revisited to see whether any gain can come from having the columns be part of an index.

For any table, ensuring that the WHERE clause is correct is important. As has been indicated from a speed perspective,
using an index will ensure a fast response of data. This gains greater importance with each table added, and even
more importance as the size of each table grows.

Finally, by ensuring the WHERE statement filters out the correct rows, you will ensure that the required data is
returned, the right results are displayed, and less data is sent across the network, as the processing is done on the
server and not the client. Also, having the appropriate indexing strategy helps with this as well.

It is also possible to return a specific number of rows, or a specific percentage of the number of rows, as you saw
when displaying rows in SQL Server Management Studio. These statements are discussed next, with a short code
example demonstrating each in action. First of all, we will look at a statement that does not actually form part of the
SELECT command itself.

SET ROWCOUNT n

SET ROWCOUNT n is a totally separate command from the SELECT statement and can in fact be
used with other statements within T-SQL. What this command will do is limit or reset the
number of records that will be processed for the session that the command is executed in.

Note Caution should be exercised if you have any statements that also use a TOP command, described in
a moment.

The SET ROWCOUNT n function stops the processing of the SELECT command, or even UPDATE
and DELETE commands, described in the “Updating Data” and “Deleting Data” sections
respectively, once the number of rows defined has been reached. The difference between SET
ROWCOUNT and SELECT TOP n is that the latter will perform one more internal instruction to that
of the former. Processing halts immediately when the number of records processed through
SET ROWCOUNT is reached. However, by using the TOP command, all the rows are returned inter-
nally, the TOP nrows are selected from that group internally, and these are then passed for display.
Returning a limited number of records is useful when you want to look at a handful of data to
see what values could be included, or perhaps you wish to return a few rows for sampling the data.

You can set the number of rows to be affected by altering the number, n, at the end of the
SET ROWCOUNT function. This setting will remain in force only within the query window in which
the command is executed, or within the stored procedure in which the command is executed.

To reset the session so that all rows are taken into consideration, you would set the ROWCOUNT
number to 0.



CHAPTER 8 " WORKING WITH THE DATA

Try It Out: SET ROWCOUNT

1. In Query Editor, enter the following code into a new Query Editor pane; once entered, execute it.

SET ROWCOUNT 3
SELECT * FROM ShareDetails.Shares
SET ROWCOUNT 0
SELECT * FROM ShareDetails.Shares

2. You should see two result sets, as shown in Figure 8-28. The first will return three rows from the
ShareDetails.Shares table. The second result set will return all rows from ShareDetails.Shares.

[ Fesults 3 Messages

Shareld |ShareDesc ShareTickerld | CurrentPrice
1 |1 | ACME'S HOMEBAKE COOKIES INC - AHCI 2341258
2 |2 FAT-BELLY.COM FEC 45.20000
3 |3 MetRadio Inc MRl 29.79000

Shareld | ShareDesc ShareTickerld | CurrentPrice
1 |1 | ACME'S HOMEBAKE COOKIES INC - AHCI 234125
22 FAT-BELLY.COM FEC 4520000
3 |3 MetRadio Inc MRl 29.79000
bl 63 Texas Oil Industries Tol 0.45500
5 5 London Bridge Club LBC 1.46000

Figure 8-28. Limiting the output via rowcount

TOP n

This option, found within the SELECT statement itself, will return a specific number of rows from the
SELECT statement, and is very much like the SET ROWCOUNT function for that reason. In fact, the
TOP n option is the preferred option to use when returning a set number of rows, as opposed to
the SET ROWCOUNT function. The reason behind this is that TOP n only applies to that query
command; however, by using SET ROWCOUNT n, you are altering all commands until you reset
SQL Server to act on all rows through SET ROWCOUNT 0.

Caution Although it is possible to use TOP n without any ORDER BY statement, it is usual to combine
TOP with ORDER BY. When no order is specified, the rows returned are arbitrary, and if you want consistent
results, then ordering will provide this. If you are not concerned about which rows are returned, then you can
avoid using ORDER BY.

Any WHERE statements and ORDER BY statements within the SELECT statement are dealt with
first, and then, from the resultant records, the TOP n function comes into effect. This will be
demonstrated with the following example.

277



278

CHAPTER 8 " WORKING WITH THE DATA

Try It Out: TOP n

1. In Query Editor, enter the following code into a new Query Editor pane; once entered, execute it.

SELECT TOP 3 * FROM ShareDetails.Shares
SET ROWCOUNT 3
SELECT TOP 2 * FROM ShareDetails.Shares
SET ROWCOUNT 2

*

SELECT TOP 3 * FROM ShareDetails.Shares

2. The code returns three result sets, as shown in Figure 8-29. Take a moment to peruse these result sets.
The first set is just the top three records that are taken from an arbitrary order SQL Server has chosen.
The second will only return two records, even though the ROWCOUNT is set to 3. The third result set
takes into account the ROWCOUNT setting, as this is the lesser value this time. Therefore, again, only two
records are returned.

[ Results L3 Messages

Shareld |ShareDesc ShareTickerld | CurrentPrice
1_1 | ACME'S HOMEBAKE COOKIES INC  AHCI 2341258
2 (27 FAT-BELLY.COM FEC 45.20000
3 |3 MetRadio Inc MRl 29.79000

Shareld | ShareDesc ShareTickerld | CurrentPrice
1_1 | ACME'S HOMEBAKE COOKIES INC - AHCI 2341258
2z |27 FAT-BELLY.COM FEC 45.20000

Shareld | ShareDesc ShareTickerld | CurrentFrice
1_1 | ACME'S HOMEBAKE COOKIES INC - AHCI 234128

Ilz_1z FAT-BELLY.COM FEC 45.20000

Figure 8-29. A mixture of TOP and rowcount

TOP n PERCENT

TOP n PERCENT is very similar to the TOP n clause with the exception that instead of working with
a precise number of records, it is a percentage of the number of records that will be returned.
Keep this in mind, as it is not a percentage of the number of records within the table. Also, the
number of records is rounded up; therefore, as soon as the percentage moves over to include
another record, then SQL Server will include this extra record.

You see more of this option in Chapter 9, which discusses the building of views.

String Functions

Alarge number of system functions are available for manipulating data. This section looks
purely at the string functions available for use within a T-SQL command; later in the book, we
will look at some more functions that are available to us. Following are the functions that are
used in the next example:



CHAPTER 8 " WORKING WITH THE DATA

e LTRIM/RTRIM: These perform similar functionality. If you have a string with leading
spaces, and you wish to remove those leading spaces, you would use LTRIM so that the
returned varchar value would have a nonspace character as its first value. If you have
trailing spaces, you would use RTRIM. You can only use this function with a data type of
varchar, nvarchar, or a data type that can be implicitly converted to these two data types,
or with a data type converted to varchar or nvarchar using the CAST SQL Server function.

e (AST: A specialized function that will convert one data type to another data type. I don’t
cover this within the book. If you wish to convert data types, check on the command in
Books Online, which can be found by selecting Help in Query Editor.

e LEFT/RIGHT: This function will return the leftmost or rightmost characters from a string.
Passing in a second parameter to the function will determine the number of characters
to return from whichever side of the string. The LEFT and RIGHT functions accept any data
type except text or ntext expressions to perform the string manipulation, implicitly
converting any noncharacter data type or varchar or nvarchar, and returning a varchar

or nvarchar data type as a result.

Try It Out: String Functions

1. Enter the code that follows into an empty Query Editor window. Alter the output to text format, by
pressing Ctrl+T. Notice the use of the + operator within the SELECT query. This will concatenate the

strings defined within the query into one single string value.

Note Unlike with some programming languages, you cannot use the & character, as this has a totally

different meaning in SQL Server.

SELECT CustomerFirstName + ' ' + CustomerLastName AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers

2. Execute this code, which produces the output in Figure 8-30.

U3 Results

Hame

EBalance

Vic MeGlynn
Tack Mason

Bernie MoCee
Tulie De