


Beginning SQL Server 
2005 for Developers
From Novice to Professional

■ ■ ■

Robin Dewson

Dewson_5882Front.fm  Page i  Thursday, January 12, 2006  2:16 PM



Beginning SQL Server 2005 for Developers

Copyright © 2006 by Robin Dewson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-588-6

ISBN-10 (pbk): 1-59059-588-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence 
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark 
owner, with no intention of infringement of the trademark.

Lead Editors: Matthew Moodie, Tony Davis
Technical Reviewer: Jasper Smith
Additional Material: Cristian Lefter
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan 

Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Susan Glinert
Proofreaders: Lori Bring, Nancy Sixsmith
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or 
visit http://www.springeronline.com. 

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution 
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to 
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly 
by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Dewson_5882Front.fm  Page ii  Thursday, January 12, 2006  2:16 PM



This book is dedicated to my long-suffering family, especially my wife, Julie, who has 
had to put up with my stress and my lack of input to helping with the house, tiredness, 

bad moods, and antisocial lifestyle, and to my three kids: Cameron, a star rugby player 
who for once is first in the list; Ellen (another star rugby player)—I feel sorry for the man 

she marries one day; and Scott, the future Air Force pilot, the big foot of the family. 
Thank you for putting up with everything. 

Up the Blues.
www.fat-belly.com

Dewson_5882Front.fm  Page iii  Thursday, January 12, 2006  2:16 PM



Dewson_5882Front.fm  Page iv  Thursday, January 12, 2006  2:16 PM



v

Contents at a Glance

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

■CHAPTER 1 SQL Server 2005 Overview and Installation . . . . . . . . . . . . . . . . . . . . . 1

■CHAPTER 2 SQL Server Management Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

■CHAPTER 3 Database Design and Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

■CHAPTER 4 Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

■CHAPTER 5 Defining Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

■CHAPTER 6 Creating Indexes and Database Diagramming  . . . . . . . . . . . . . . . . 153

■CHAPTER 7 Database Backups, Recovery, and Maintenance . . . . . . . . . . . . . . 185

■CHAPTER 8 Working with the Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

■CHAPTER 9 Building a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

■CHAPTER 10 Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

■CHAPTER 11 T-SQL Essentials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

■CHAPTER 12 Advanced T-SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

■CHAPTER 13 Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

■CHAPTER 14 SQL Server 2005 Reporting Services . . . . . . . . . . . . . . . . . . . . . . . . . 451

■APPENDIX Glossary of Terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

■INDEX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Dewson_5882Front.fm  Page v  Thursday, January 12, 2006  2:16 PM



Dewson_5882Front.fm  Page vi  Thursday, January 12, 2006  2:16 PM



vii

Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

■CHAPTER 1 SQL Server 2005 Overview and Installation . . . . . . . . . . . . . . . 1

Why SQL Server 2005?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Evolution of SQL Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Hardware Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Hard Disk Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Operating System Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

The Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A Standard Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Preparing to Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Services Accounts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Looking at the Authentication Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 18

The sa Login  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

■CHAPTER 2 SQL Server Management Studio . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Quick Overview of SSMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Examining SSMS’s Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Environment Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Source Control Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Text Editor Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Query Execution Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Query Results Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Contents

Dewson_5882Front.fm  Page vii  Thursday, January 12, 2006  2:16 PM



viii ■C O N T E N T S  

Query Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Surface Area Configuration Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

■CHAPTER 3 Database Design and Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Defining a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Databases Within SQL Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

tempdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

msdb  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

AdventureWorks/AdventureWorksDW  . . . . . . . . . . . . . . . . . . . . . . . . 58

Choosing the Database System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

OLTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

OLAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Example System Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Gathering the Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Determining the Information to Store in the Database . . . . . . . . . . . . . . . 62

Financial Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Customer Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Shares  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

External and Ignored Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Building Relationships  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Using Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Creating Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

More on Foreign Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Normalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Each Entity Should Have a Unique Identifier  . . . . . . . . . . . . . . . . . . . 73

Only Store Information That Directly Relates to That Entity . . . . . . . 73

Avoid Repeating Values or Columns . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Normalization Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Denormalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Creating the Sample Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Creating a Database in SQL Server Management Studio . . . . . . . . . 76

Dropping the Database in SQL Server Management Studio  . . . . . . 89

Creating a Database in a Query Pane . . . . . . . . . . . . . . . . . . . . . . . . . 92

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Dewson_5882Front.fm  Page viii  Thursday, January 12, 2006  2:16 PM



■C O N T E N T S ix

■CHAPTER 4 Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Logins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Server Logins and Database Users . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Fixed Server Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Database Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Application Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Schemas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Before You Can Proceed with Your Solution  . . . . . . . . . . . . . . . . . . . . . . 113

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

■CHAPTER 5 Defining Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

What Is a Table? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Defining a Table: SQL Server Management Studio . . . . . . . . . . . . . . . . . 121

Different Table Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Different Program Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Columns Are More Than Simple Data Repositories  . . . . . . . . . . . . . . . . 126

Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Generating IDENTITY Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

The Use of NULL Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Why Define a Column to Allow NULL?  . . . . . . . . . . . . . . . . . . . . . . . 127

Image and Large Text Storage in SQL Server  . . . . . . . . . . . . . . . . . . . . . 127

Creating a Table in SQL Server Management Studio  . . . . . . . . . . . . . . . 128

Defining a Table Through the Query Editor  . . . . . . . . . . . . . . . . . . . . . . . 134

Defining a Table: Using a Template  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Creating and Altering a Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

The ALTER TABLE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Defining the Remaining Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Setting a Primary Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Creating a Relationship  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Check Existing Data on Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Enforce Foreign Key Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Delete Rule/Update Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Using the ALTER TABLE SQL Statement  . . . . . . . . . . . . . . . . . . . . . . . . . 150

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Dewson_5882Front.fm  Page ix  Thursday, January 12, 2006  2:16 PM



x ■C O N T E N T S  

■CHAPTER 6 Creating Indexes and Database Diagramming . . . . . . . . . . 153

What Is an Index? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Types of Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Uniqueness  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Determining What Makes a Good Index . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Using Low-Maintenance Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Primary and Foreign Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Finding Specific Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Using Covering Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Looking for a Range of Information  . . . . . . . . . . . . . . . . . . . . . . . . . 158

Keeping the Data in Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Determining What Makes a Bad Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Using Unsuitable Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Choosing Unsuitable Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Including Too Many Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Including Too Few Records in the Table  . . . . . . . . . . . . . . . . . . . . . 159

Reviewing Your Indexes for Performance  . . . . . . . . . . . . . . . . . . . . . . . . 160

Creating an Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Creating an Index with the Table Designer  . . . . . . . . . . . . . . . . . . . 161

Indexes and Statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

The CREATE INDEX Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Creating an Index in Query Editor: Template . . . . . . . . . . . . . . . . . . 166

Creating an Index in Query Editor: SQL Code  . . . . . . . . . . . . . . . . . 170

Dropping an Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Altering an Index in Query Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Diagramming the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Database Diagramming Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

The SQL Server Database Diagram Tool  . . . . . . . . . . . . . . . . . . . . . 177

The Default Database Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

The Database Diagram Toolbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

■CHAPTER 7 Database Backups, Recovery, and Maintenance  . . . . . . . 185

Transaction Logs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Backup Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

When Problems May Occur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Taking a Database Offline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Dewson_5882Front.fm  Page x  Thursday, January 12, 2006  2:16 PM



■C O N T E N T S xi

Backing the Data Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Backing Up the Database Using T-SQL  . . . . . . . . . . . . . . . . . . . . . . 196

Transaction Log Backup Using T-SQL  . . . . . . . . . . . . . . . . . . . . . . . 204

Restoring a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Restoring Using SQL Server Management Studio . . . . . . . . . . . . . . 207

Restoring Using T-SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Detaching and Attaching a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Detaching and Attaching Using SQL Server 
Management Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Detaching and Attaching Using T-SQL . . . . . . . . . . . . . . . . . . . . . . . 220

Producing SQL Script for the Database  . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Maintaining Your Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Creating a Database Maintenance Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

■CHAPTER 8 Working with the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

The T-SQL INSERT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

INSERT SQL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Using NULL Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

DBCC CHECKIDENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Column Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

ADD CONSTRAINT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Dealing with Several Records at Once . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Inserting Several Records in a Query Batch  . . . . . . . . . . . . . . . . . . 262

Retrieving Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Using SQL Server Management Studio to Retrieve Data  . . . . . . . . . . . . 264

The SELECT Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Naming the Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

The First Searches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Varying the Output Display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Limiting the Search: The Use of WHERE  . . . . . . . . . . . . . . . . . . . . . . . . . 273

SET ROWCOUNT n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

TOP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

TOP n PERCENT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

String Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Order! Order! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

The LIKE Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Dewson_5882Front.fm  Page xi  Thursday, January 12, 2006  2:16 PM



xii ■C O N T E N T S  

Creating Data: SELECT INTO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Who Can Add, Delete, and Select Data  . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Securables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Updating Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

The UPDATE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Updating Data Within Query Editor . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

BEGIN TRAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

COMMIT TRAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

ROLLBACK TRAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Locking Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Updating Data: Using Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . 299

Nested Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Deleting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

DELETE Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Using the DELETE Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Truncating a Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Dropping a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

■CHAPTER 9 Building a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

What Is a View? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Using Views for Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Encrypting View Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Creating a View: SQL Server Management Studio  . . . . . . . . . . . . . . . . . 312

Creating a View Using a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

CREATE VIEW Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Creating a View: A Query Editor pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Creating a View: SCHEMABINDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Indexing a View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

■CHAPTER 10 Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

What Is a Stored Procedure? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

CREATE PROCEDURE Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Returning a Set of Records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Creating a Stored Procedure: Management Studio . . . . . . . . . . . . . . . . . 339

Dewson_5882Front.fm  Page xii  Thursday, January 12, 2006  2:16 PM



■C O N T E N T S xiii

Different Methods of Executing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

No EXEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

With EXEC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Using RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Controlling the Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

IF...ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

BEGIN...END. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

WHILE...BREAK Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

CASE Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Bringing It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

■CHAPTER 11 T-SQL Essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Using More Than One Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Temporary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

COUNT/COUNT_BIG  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

SUM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

MAX/MIN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

AVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

GROUP BY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

HAVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Distinct Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Date and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

RAISERROR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

@@ERROR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

TRY...CATCH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Dewson_5882Front.fm  Page xiii  Thursday, January 12, 2006  2:16 PM



xiv ■C O N T E N T S  

■CHAPTER 12 Advanced T-SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

IN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

EXISTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

The APPLY Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

CROSS APPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

OUTER APPLY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Common Table Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Recursive CTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Pivoting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

PIVOT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

UNPIVOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Ranking Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

ROW_NUMBER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

RANK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

DENSE_RANK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

NTILE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Using the MAX Data Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Image LOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

■CHAPTER 13 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

What Is a Trigger? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

The DML Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

CREATE TRIGGER Syntax for DML triggers  . . . . . . . . . . . . . . . . . . . . . . . 429

Why Not Use a Constraint?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Deleted and Inserted Logical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Creating a DML FOR Trigger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Checking Specific Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Using UPDATE() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Using COLUMNS_UPDATED()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

DDL Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

DDL_DATABASE_LEVEL_EVENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Dropping a DDL trigger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

EVENTDATA() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Dewson_5882Front.fm  Page xiv  Thursday, January 12, 2006  2:16 PM



■C O N T E N T S xv

■CHAPTER 14 SQL Server 2005 Reporting Services . . . . . . . . . . . . . . . . . . . . 451

What Is Reporting Services?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Reporting Services Architecture from 5000 Feet  . . . . . . . . . . . . . . . . . . 452

Reporting Services Architecture: A Closer Look  . . . . . . . . . . . . . . . . . . . 453

The Application Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

The Server Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

The Data Layer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Building Your First Report Using Report Wizard  . . . . . . . . . . . . . . . . . . . 458

Building a Report from Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Data-Related Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Report Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Reports Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

■APPENDIX Glossary of Terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Dewson_5882Front.fm  Page xv  Thursday, January 12, 2006  2:16 PM



Dewson_5882Front.fm  Page xvi  Thursday, January 12, 2006  2:16 PM



xvii

About the Author

■ROBIN DEWSON has been hooked on programming ever since he bought 
his first computer in 1980, a Sinclair ZX80. His first main application of 
his own was a Visual FoxPro application that could be used to run a 
Fantasy League system. It was at this point he met up with a great help in 
his PC development life, Jon Silver at Step One Technologies, where in 
return for training, he helped Jon with some other Visual FoxPro applica-
tions. From there, realizing that the marketplace for Visual FoxPro was 
limited, he decided to learn Visual Basic and SQL Server.
       Starting out with SQL Server 6.5, Robin soon moved to SQL Server 7 
and Visual Basic 5, and became involved in developing several applications 

for clients both in the UK and in the United States. From there, he moved to SQL Server 2000 and 
now SQL Server 2005, and Visual Basic 6 and now VS .NET, specializing in C# and VB .NET. Robin 
is also the coauthor of Pro SQL Server 2005 Assemblies along with other Apress books, and also 
contributes to ASPToday (www.asptoday.com). Robin can be contacted at robin@fat-belly.com or 
at www.fat-belly.com.

Dewson_5882Front.fm  Page xvii  Thursday, January 12, 2006  2:16 PM



Dewson_5882Front.fm  Page xviii  Thursday, January 12, 2006  2:16 PM



xix

About the Technical Reviewer

■JASPER SMITH is a Microsoft MVP and has been working with SQL Server for seven years. He is 
a frequent speaker at PASS (Professional Association for SQL Server) conferences and also runs 
and authors content for his website, www.sqldbatips.com, including such popular utilities 
as Reporting Services Scripter and SQL 2005 Service Manager. He also spends a lot of time 
answering questions in the Microsoft public newsgroups for SQL Server.

Dewson_5882Front.fm  Page xix  Thursday, January 12, 2006  2:16 PM



Dewson_5882Front.fm  Page xx  Thursday, January 12, 2006  2:16 PM



xxi

Acknowledgments

First of all, my thanks go to “those unsung heros” at Bedford Rugby club (www.bedfordrugby.
co.uk) who over the years have made my Saturdays so special. From the great Colin Jackson, 
whose time as Director of Rugby kept the relegation wolves from the doors in his first season, to 
players who have come and given their all for the club and making our day out at Twickenham 
so, so special. Also to my many friends at the club like Bernie McGee, Lee Smith, Nigel Rudgard, 
Nigel and Sarah Crowe, and Sam Roberts, to name but a few. Also to my fellow coaches at the 
Junior Blues, Alan Grosvenor, Richard Porter, and Rob Robson, who understood when I had to 
take time out to get on with this and other works for Apress.

Then the people whom I work with who have made my life hell with 5 a.m. starts and call outs 
(only joking!), Martin Price, Henry Williams, Bill Cotton, Rakesh Juneja, as well as Jack Mason; but 
it’s to Anthony Jawad who has made the last nine years possible. I cannot thank you enough 
Jock. Oh, and to my long suffering train partners, Andrew Lockwood and Paul Goodwin... 
I promise to have early nights, and lose a bit of weight so I stop keeping you awake on our 
journey to work with my very loud snoring!

When I need to concentrate, music is just brilliant and it doesn’t come much better than 
6Music from the BBC (www.bbc.co.uk/6Music). Especially from the following presenters, who 
daily play excellent music: Phill Jupitus and Phil Wilding on the very funny breakfast show, 
Gideon Coe and his off-kilter humor, and the brilliant Vic McGlynn, who keeps me awake 
during the afternoons.

Also, when I need to relax, thanks to Debbie and Charlie Roberts at Sandy Hills Amusements 
at Sea Palling in Norfolk for providing the best amusements in England! Also to Axis (www.axis.com) 
for building great webcams. And finally to Friends Reunited for allowing me to get in touch with 
my best friend at college, Robert “Toad” McMillan.

To my mother-in-law, Jean. Thanks for Lanzarote through to helping Julie out with so many 
different things with the family and the house. And, of course, to my late father-in-law, David, 
whom we all still miss, and could never thank enough for his invaluable help and guidance.

To my mum and dad, Laura and Scott. From not being able to watch the television as I used 
it for my ZX80, to finding both my colleges for me, without you both throughout my life helping 
me along the way, I wouldn’t have such a lucky and wonderful life. I can never thank you 
enough, and you are both wonderful parents. To my sister, Carol, and her children, Eleanor, 
Erin, and Lucas, hopefully now we can come to Australia.

Many thanks must deservedly go to all at Apress, especially Dan Appleman for doing so 
much in getting so many authors back up and running; also, of course, thanks to Beth 
Christmas, Kylie Johnson, Tina Nielsen, Matt Moodie, Nicole Le Clerc, Ami Knox, Kelly 
Winquist, and the long-suffering Tony Davis, as well as all of those background indexers, etc., 
who provide such an invaluable job in getting the book to press.

Dewson_5882Front.fm  Page xxi  Thursday, January 12, 2006  2:16 PM



xxii ■A C KN O W L E D G M E N T S  

Also thanks to Cristian Lester for his assistance with Chapter 14 of this book. At short 
notice due to time constraints, he kindly stepped in with this chapter.

I cannot thank enough Jasper Smith for technically reviewing this book. It is so easy to 
make a simple omission or error, and someone of Jasper’s ability and knowledge giving invaluable 
input has made this book a great one.

There are no doubt many others I have missed, and I apologize.
Robin Dewson

Dewson_5882Front.fm  Page xxii  Thursday, January 12, 2006  2:16 PM



xxiii

Introduction

Beginning SQL Server 2005 for Developers is for those people who see themselves as becoming 
either developers, database administrators, or a mixture of both but have yet to tread that path 
with SQL Server 2005. Whether you have no knowledge of databases, or have knowledge of 
desktop databases such as MS Access, or even come from a server-based background such as 
Oracle, this book will provide you with the insight to get up and running with SQL Server 2005.

Right from the start, your basic knowledge will be expanded, and you will soon be moving 
from a perceived beginner through to a competent and professional developer. It is the aim of 
this book to cater to a wide range of developers, from those who prefer to use the graphical inter-
face for as much work as possible to those who want to become more adept at using SQL Server 
2005’s programming language, T-SQL. Where practical, each method of using SQL Server 2005 
is demonstrated, explained, and expanded so that you can evaluate what works best in your 
situation.

There are plenty of examples within the book of every action along with details about the 
security of your data. You will also learn the best way to complete a task and even learn how to 
make the correct decision when there are two or more choices that could be made.

Once you reach the end of this book, you will be able to design and create solid and reliable 
database solutions competently and proficiently.

Dewson_5882Front.fm  Page xxiii  Thursday, January 12, 2006  2:16 PM



Dewson_5882Front.fm  Page xxiv  Thursday, January 12, 2006  2:16 PM



1

■ ■ ■

C H A P T E R  1

SQL Server 2005 Overview 
and Installation

Welcome to Beginning SQL Server 2005 for Developers. As you are reading this book, I assume 
that you are interested in learning how to create solutions with Microsoft SQL Server 2005, but 
have no prior knowledge of SQL Server 2005. You may well have had exposure to other data-
bases such as MySQL, Oracle, or Microsoft Access, but SQL Server uses different interfaces and 
has a different way of working compared to much of the competition. The aim of this book is to 
bring you quickly up to a level at which you are developing competently with SQL Server 2005. 
This book is specifically dedicated to beginners, and to those who at this stage wish to use only 
SQL Server 2005. You may find this book useful for understanding the basics of other databases 
in the marketplace, especially when working with T-SQL. Many databases use an ANSI-standard 
SQL, and so moving from SQL Server to Oracle, Sybase, etc., after reading this book will be a 
great deal easier.

This chapter covers the following topics:

• Why SQL Server 2005?

• How do I know if my hardware meets the requirements?

• Can I just confirm that I have the right operating system?

• What can I do with SQL Server 2005?

We will also then look at installing our chosen edition—this section of the chapter covers 
the following:

• Installing SQL Server 2005 on a Windows XP platform

• Options not installed by default

• Where to install SQL Server physically

• Multiple installations on one computer

• How SQL Server runs on a machine

• How security is implemented

• Logon IDs for SQL Server, especially the sa (system administrator) logon

Dewson_5882C01.fm  Page 1  Monday, January 2, 2006  2:57 PM



2 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Why SQL Server 2005?
The following discussion is my point of view, and although it no doubt differs from that of 
others, the basis of the discussion holds true. SQL Server faces competition from other data-
bases, not only from other Microsoft products such as Microsoft Access and Microsoft Visual 
FoxPro, but also from competitors like Oracle, Sybase, DB2, and Informix, to name a few.

Microsoft Access is found on a very large number of PCs. The fact that it is packaged with 
some editions of Office and has been around for a number of years in different versions of 
Office has helped make this database ubiquitous; however, a great number of people actually 
do use the software. Unfortunately, it does have its limitations when it comes to scalability, 
speed, and flexibility, but for many small, in-house systems, these areas of concern are not an 
issue as such systems do not require major database functionality.

Now we come to the serious competition: Oracle and Sybase. Oracle is seen as perhaps the 
market leader in the database community, and has an extremely large user base. There is no 
denying it is a great product to work with, if somewhat more complex to install and administer 
than SQL Server; it fits well with large companies that require large solutions. There are many 
parts to Oracle, which make it a powerful tool, including scalability and performance. It also 
provides flexibility in that you can add on tools as you need them, making Oracle more accom-
modating in that area than SQL Server. For example, SQL Server 2005 forces you to install the 
.NET Framework on your server whether you use the new .NET functionality or not. However, 
Oracle isn’t as user friendly from a developer’s point of view in areas like its ad hoc SQL Query 
tool and its XML and web technology tools, as well as in how you build up a complete database 
solution; other drawbacks include its cost and the complexity involved in installing and running it 
effectively. However, you will find that it is used extensively by web search engines, although 
SQL Server could work just as effectively. With the new functionality in SQL Server 2005, Oracle 
will be under pressure to expand its existing functionality to meet this challenge. SQL Server 
has always been a one-purchase solution, such that (providing you buy the correct version) 
tools that allow you to analyze your data or to copy data from one data source such as Excel 
into SQL Server will all be “in the box.” With Oracle, on the other hand, for every additional 
feature you want, you have to purchase more options.

Then there is Sybase. Yes, it is very much like SQL Server with one major exception: it has 
no GUI front end. Sybase Adaptive Server Anywhere, which is mainly used for small installations, 
does have a front end, but the top-of-the-range Sybase does not. To purists, there is no need for 
one, as GUI front ends are for those who don’t know how to code in the first place—well, that’s 
their argument, of course, but why use 60+ keystrokes when a point, click, and drag is all that is 
required?

Sybase is also mainly found on Unix, although there is a Windows 2000 version around. 
You can get to Sybase on a Unix machine via a Windows 2000/XP machine using tools to connect 
to it, but you still need to use code purely to build your database solution. It is very fast and very 
robust, and it is only rebooted about once, maybe twice, a year. Another thing about Sybase is 
that it isn’t as command-and-feature rich as SQL Server. SQL Server has a more powerful 
programming language and functionality that is more powerful than Sybase.

Each database has its own SQL syntax, although they all will have the same basic SQL syntax, 
known as the ANSI-92 standard. This means that the syntax for retrieving data, and so on, is the 
same from one database to another. However, each database has its own special syntax to 
maintain it, and trying to use a feature from this SQL syntax in one database may not work, or 
work differently, in another.

Dewson_5882C01.fm  Page 2  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 3

So SQL Server seems to be the best choice in the database market place, and in many 
scenarios it is. It can be small enough for a handful of users, or large enough for the largest 
corporations. It doesn’t need to cost as much as Oracle or Sybase, but does have the ability to 
scale up and deal with terabytes of data without many concerns. As you will see, it is easy to 
install, as it comes as one complete package for most of its functionality, with a simple install 
to be performed for the remaining areas if required.

Now that you know the reasons behind choosing SQL Server, you need to know which 
versions of SQL Server are out there to purchase, what market each version is aimed at, and 
which version will be best for you, including which version can run on your machine.

Evolution of SQL Server
SQL Server has evolved over the years into the product it is today. Table 1-1 gives a summary of 
this process.

Table 1-1. The Stages in the Evolution of SQL Server

Year Version Description

1988 SQL Server Joint application built with Sybase for use on OS/2.

1993 SQL Server 4.2
A desktop database

A low-functionality, desktop database, capable of meeting the 
data storage and handling needs of a small department. The 
concept of a database that was integrated with Windows and 
had an easy-to-use interface proved popular.

1994 Microsoft and Sybase 
split

Microsoft split from Sybase.

1995 SQL Server 6.05
A small business 
database

Major rewrite of the core database engine. First “significant” 
release. Improved performance and significant feature enhance-
ments. Still a long way behind in terms of the performance and 
feature set of later versions, but with this version SQL Server 
became capable of handling small e-commerce and intranet 
applications, and was a fraction of the cost of its competitors.

1996 SQL Server 6.5 SQL Server was gaining prominence such that Oracle brought 
out version 7.1 on the NT platform as direct competition.

1998 SQL Server 7.0
A web database

Another significant rewrite to the core database engine. A defining 
release, providing a reasonably powerful and feature-rich data-
base that was a truly viable (and still cheap) alternative for small-
to-medium businesses, between a true desktop database such 
as MS Access and the high-end enterprise capabilities (and price) 
of Oracle and DB2. Gained a good reputation for ease of use and 
for providing crucial business tools (e.g., analysis services, data 
transformation services) out of the box, which were expensive 
add-ons with competing databases.

Dewson_5882C01.fm  Page 3  Monday, January 2, 2006  2:57 PM



4 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Hardware Requirements
Now that you know a bit about SQL Server, the next big question on your list may well be “Do I 
have a powerful enough computer to run my chosen SQL Server edition on? Will this help me 
refine my decision?”

Judging by today’s standards of minimum specification hardware that can be bought, 
even the low-cost solutions, the answer will in most cases be “Yes” to most editions. However, 
you may have older hardware (things move so fast that even hardware bought a couple of 
months ago can quickly be deemed below minimum specification), so let’s take a look at what 
the minimum recommendations are, and how you can check your own computer to ensure 
that you have sufficient resources.

CPU
The minimum recommended CPU that SQL Server will run on is a 500 MHz processor, a 
compatible processor, or similar processing power. However, as with most minimums listed 
here, Microsoft wholly recommends a faster processor, 1 GHz in fact. The faster the processor, 
the better your SQL Server will perform, and from this the fewer bottlenecks that could surface. 
Many of today’s computers start at 2 GHz or above, and 500 MHz has not been the standard 
installation for a couple of years now. If you have a lower-speed processor, try to invest in 
upgrading it. You will find your development time reduced for it.

However, it is not processor alone that speeds up SQL Server. A large part is also down to 
the amount of memory that your computer has.

2000 SQL Server 2000
An enterprise 
database

Vastly improved performance scalability and reliability sees SQL 
Server become a major player in the enterprise database market 
(now supporting the online operations of businesses such as 
NASDAQ, Dell, and Barnes & Noble). A big increase in price 
(although still reckoned to be about half the cost of Oracle) 
slowed initial uptake, but the excellent range of management, 
development, and analysis tools won new customers. In 2001, 
Oracle (with 34% of the market) finally ceded its No. 1 position in 
the Windows database market (worth $2.55 billion in 2001) to 
SQL Server (with 40% of the market). In 2002 the gap had grown, 
with SQL Server at 45% and Oracle slipping to 27%.
Source: Gartner Report 5/21/2003

2005 SQL Server 2005 Many areas of SQL Server have been rewritten, such as the ability 
to load data via a utility called Integration Services, but the greatest 
leap forward is the introduction of the .NET Framework. This will 
allow .NET SQL Server–specific objects to be built, giving SQL 
Server the flexible functionality that Oracle has with its inclusion 
of Java.

Table 1-1. The Stages in the Evolution of SQL Server (Continued)

Year Version Description

Dewson_5882C01.fm  Page 4  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 5

Memory
Now that you know you have a fast enough processor, it is time to check whether you have 
enough memory in the system. All the editions of SQL Server, with the exception of the 
Windows Express and Mobile versions, require a minimum of 512MB of RAM onboard your 
computer. Many of the editions that could be used will run with this, although you shouldn’t 
have too many more applications open and running as they could easily not leave enough 
memory for SQL Server to run fast enough. Microsoft recommends 1GB or above, and really 
double that at least for when you start using your SQL Server in earnest.

The Windows Express and the Mobile versions have a minimum of 128MB of RAM.
Moving the other way, if you wanted to run the Enterprise Edition, then a minimum, and I 

mean a bare minimum, of 1GB really should be installed, especially if you want to use any of 
the more advanced features.

The more memory the better: I really would recommend a minimum of 1GB on any computer 
that a developer is using, with 2GB ideal and sufficient to give good all-around performance. 
If a process can be held in memory, rather than swapped out to hard drive or another area 
while you are running another process, then you are not waiting on SQL Server being loaded 
back into memory to start off where it left off. This is called swapping and the more memory, 
the less swapping could, and should, take place.

Taking CPU speed and memory together as a whole, it is these two items that are crucial 
to the speed that the computer will run, and having sufficient speed will let you develop as fast 
as possible.

Hard Disk Space
You will need lots! But name a major application these days that doesn’t need lots! For SQL 
Server alone, ignoring any data files that you are then going to add on top, you will need over 
1GB of space. Certainly, the installation options that will be used later in the chapter will mean 
you need this amount of space. You can reduce this by opting not to install certain options, for 
example, Books Online; however, even most notebooks these days come with a minimum 
40GB, and 80GB is not uncommon either. Hard disk space is cheap as well, and it is better to 
buy one disk too large for your needs than have one hard drive that suits now, and then have 
|to buy another later, with all the attendant problems of moving information to clear up space 
on the original drive.

Again, you will need spare space on the drive for the expansion of SQL Server and the data-
bases, as well as room for temporary files that you will also need in your development process. 
So think big—big is beautiful!

Operating System Requirements
You will find that SQL Server 2005 will run on Windows 2000 Professional Edition and above 
with Service Pack 4, or all editions of Windows XP Service Pack 2 or above. It will also work on 
the 64-bit operating systems for Windows XP, as well as the 64-bit editions of Windows Server 
2003. So there is plenty of scope for running SQL Server on many operating systems.

Dewson_5882C01.fm  Page 5  Monday, January 2, 2006  2:57 PM



6 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

The Example
In order to demonstrate SQL Server 2005 fully, together we will develop a system for a financial 
company that will have features such as banking, share purchase, and regular buying, such as 
a unit trust savings plan, etc. This is an application that could fit into a large organization, or 
with very minor modifications could be used by a single person to record banking transactions.

The book builds on this idea and develops the example, demonstrating how to take an idea 
and formulate it into a design with the correct architecture. It should be said, though, that the 
example will be the bare minimum to make it run, as I don’t want to detract from SQL Server. 
The book will give you the power and the knowledge to take this example, expand it to suit your 
financial application needs, and give it the specifics and intricacies that are required to make it 
fully useful for yourself.

But before we can get to this point, we need to install SQL Server.

Installation
It is now time to install SQL Server from the CD-ROM or DVD. The examples within this book 
can run on any edition.

This chapter will guide you through the installation process of the Developer Edition, 
although virtually all that you see will be in every edition. Some of the differences will be due to 
the functionality of each edition. This book will cover many of the options and combinations 
that can be completed within an installation. A number of different tools are supplied with SQL 
Server to be included with the installation. We will look at these tools so that a basic under-
standing of what they are will allow us to decide which to install.

Installation covers a great many different areas:

• Security issues

• Different types of installation—whether this is the first installation and instance of SQL 
Server or a subsequent instance, for development, test, or production

• Custom installations

• Installing only some of the products available

Most of these areas will be covered so that by the end of the chapter you can feel confident 
and knowledgeable to complete any subsequent installations that suit your needs.

A Standard Installation
Let’s now take the time to install SQL Server 2005 on our machines. Microsoft offers a 120-day 
trial version at http://www.microsoft.com/sql/evaluation/trial/, which you can use to follow 
along with the examples in this book if you don’t already have SQL Server 2005.

This book uses the Developer Edition because it is most suited to our needs, as developers, 
for it doesn’t have all the operating system requirements of the Enterprise Edition. Insert the 
CD for the Microsoft SQL Server 2005 edition of your choice in your CD-ROM drive and start 
the installation. What the upcoming text covers is a standard installation.

Dewson_5882C01.fm  Page 6  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 7

Preparing to Install
First of all, ensure that you have logged on to your machine with administrative rights so that 
you are allowed to create files and folders on your machine, which is obviously required for 
installation to be successful.

If, when placing the CD-ROM into your computer, the installation process does not auto-
matically start, open up Windows Explorer and double-click autorun.exe, found at the root 
level of the CD-ROM.

You are now presented with the installation screen for the Microsoft SQL Server 2005 edition 
of your choice, as shown in Figure 1-1. After you accept the SQL Server End User Agreement, 
SQL Server then installs some support files prior to set up. These files are part of SQL Server 
that will be included in service packs and form part of the installation process. The main files 
are setup files and the required .NET Framework version if it is not already installed.

Figure 1-1. Beginning the install

.NET is a framework that Microsoft created that allows programs written in VB .NET, C#, 
and other programming languages to have as a common compile set for computers. SQL 
Server 2005 uses .NET for some of its own internal work, but also, as a developer, you can write 
.NET code in any of Microsoft’s .NET languages, and include this within SQL Server.

■Note  Including .NET code is an advanced topic and outside the scope of this book. For more information, 
try Pro SQL Server 2005 Assemblies (Apress,2006).

Dewson_5882C01.fm  Page 7  Monday, January 2, 2006  2:57 PM



8 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

The SQL Server 2005 Installation Wizard then starts with a welcome screen. Click Next.
We then come to the System Configuration check, as you see in Figure 1-2. Its main func-

tion is to check that the PC meets the hardware and software requirements. There are certain 
requirements for certain parts of the installation; for example, SQL Server Reporting Services, 
a tool for producing reports from SQL Server that was an add-on with SQL Server 2000, requires 
Internet Information Services (IIS). IIS is a process that runs on computers that provides the 
ability to run a web server. SQL Server Reporting Services is web based.

Figure 1-2. System configuration tool with warning

You are then required to enter your registration information, as shown in Figure 1-3.

Dewson_5882C01.fm  Page 8  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 9

Figure 1-3. Registration page

Choosing the Components to Install

We now come to the Components to Install screen, where we have to make some decisions. 
As you see in Figure 1-4, this installation will have everything installed, because this will be my 
development instance where developers will be testing every aspect of SQL Server away from 
any development of projects taking place. This is therefore going to be more of a training envi-
ronment. However, you can be selective regarding what parts of the components you want to 
install by clicking Advanced.

Dewson_5882C01.fm  Page 9  Monday, January 2, 2006  2:57 PM



10 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Figure 1-4. Selecting every component to install

Let’s briefly take a look at what each of these components are:

• SQL Server Database Services: This is the main core for SQL Server 2005 and installs the 
main engine, data files, etc., to make SQL Server run.

• Analysis Services: Using this tool, you can take a set of data and dice and slice and analyze 
the information contained.

• Reporting Services: This allows reports to be produced from SQL Server instead of using 
third-party tools like Crystal Reports. We look at this component in more detail in 
Chapter 14.

• Notification Services: This allows notifications such as a message sent to areas like SMS 
or any process that is listening, to “hear” when certain actions occur.

• Integration Services: This component allows importing and exporting data using data 
sources that are not only SQL Server but also Oracle, Excel, etc.

• Workstation Components: These are tools for working on the workstation. This installs 
the GUI we use with SQL Server, and it can also install the help feature, Books Online.

Of these components, Analysis Services, Notification Services, and Integration Services 
fall outside the scope of this book, so this book won’t be discussing them further.

Clicking Advanced in the Components to Install screen brings us to where we can select to 
a more refined level what we wish to install, as shown in Figure 1-5. You will have seen screens 
similar to this with other software installs such as Microsoft Office. Ensure that all options have 
been selected so you know that when a certain feature of SQL Server 2005 is covered within this 
book, you are sure it will be available. Ensure you scroll to the bottom of this screen, as there 
are sample databases to also install.

Dewson_5882C01.fm  Page 10  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 11

■Note  Don’t install the sample databases on any server apart from one that you are using to learn SQL Server.

Figure 1-5. Advanced selection screen where you can refine the install options

Naming the Instance

As you know, SQL Server is installed on a computer. It is possible to install SQL Server more 
than once on one computer. This could happen when you have a powerful server and it has 
enough resources such as memory, processor, etc., to cope with two or three different applica-
tions running. These different applications want to have their own SQL Server. Each install is 
called an instance. We are now at the stage that we can name the instance of the install. Each 
instance must have a unique name attached to it, although “no name,” known as a Default 
Instance, is also classified as a unique name.

Naming instances is important as the first step to organizing your environments. For example, 
you may have an instance for development, another instance for system testing, and finally 
one for user testing.

Default Instance is available, which is what is selected when you are not giving the install 
a specific name; once you come to install SQL Server outside of a learning environment, you 
should avoid this, as it gives you an installation with no name and therefore no hint as to its 
use. As you are still learning, the easiest option to understand is to use the Default Instance, so 
select Default Instance as shown in Figure 1-6 and then click Next.

Dewson_5882C01.fm  Page 11  Monday, January 2, 2006  2:57 PM



12 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Figure 1-6. Naming the install instance

If this is a subsequent install, then you will be notified that items already exist, as you see 
in Figure 1-7. This is really for information purposes.

Figure 1-7. Detailing any components already installed

Dewson_5882C01.fm  Page 12  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 13

Service Accounts

SQL Server and other services, as defined in the Feature Selection screen (shown earlier in 
Figure 1-5), require you to log on to Windows before starting, just as you need to log in to Windows 
before using the system. SQL Server, Reporting Services, etc., can run without you or anyone 
being logged in to the computer the install took place on. They can run just so long as the 
computer has fired up successfully. This is normal when SQL Server is installed on a server that 
is held in a remote location like a server room.

However, nothing can run on Windows without having some sort of login. If you do log in 
to the computer, as you likely will while working through this book because SQL Server will be 
running on a home or local system, then you can use this Windows user ID for SQL Server to 
also use to log in and start its service. This is known as a local system account.

On the other hand, you can create a Windows login that exists purely for SQL Server. This 
could exist for several reasons. For example, your Windows account should be set up so that 
the password expires after so many days after being set, or locks out after a number of incorrect 
password attempts. This is to protect your computer and the network, amongst many other 
areas. However, SQL Server should use a separate account that also has an expiring password 
and the ability to lock the account after a number of successful attempts. This kind of non-
user-specific, “generic” account removes the link between SQL Server and a person within an 
organization.

Where you are installing your SQL Server will have an affect on the decision you make. As 
you are just learning SQL Server 2005, let’s not make it complicated at this point; I assume that 
this install will be for you to use to learn SQL Server. Therefore, just select Use the Built-in 
System Account/Local System as you see in Figure 1-8. You can also define what services start 
when the computer is started up. Keep the defaults at the moment as you can always change 
these later via the Services icon within the Control Panel. Click next.

Figure 1-8. Service account selection

Dewson_5882C01.fm  Page 13  Monday, January 2, 2006  2:57 PM



14 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Authentication Mode

We now come to how we want to enforce security on your SQL Server installation. As Figure 1-9 
shows, there are two choices: Windows authentication mode and mixed mode. You will learn 
more about modes later in the chapter but very, very simply, Windows authentication mode 
denotes that you are going to use Windows security to maintain your SQL Server logins, whereas 
mixed mode uses either Windows security or a SQL Server defined login ID and password. We 
also need to define a password for a special login ID, called sa. Again, you will learn more about 
this in a moment, but for now you must enter a valid password. Use a meaningful and impossible-
to-guess password.

Figure 1-9. Authentication choices

Collation Settings

Collation settings specify how sorting and comparison of rows of data are dealt with within 
SQL Server. For example, a collation setting will inform SQL Server details such as whether the 
system is case sensitive. It is possible to have different collation settings for each type of SQL 
Service, shown in the earlier setup process, so you could sort one way for Analysis Services 
different from that defined for your main SQL Server 2005 installation. It would only be in 
exceptional circumstances that you would do this, as it will cause extra processing complications 
when using the same processing in more than one service. Figure 1-10 shows that Windows 
collation has been chosen.

Dewson_5882C01.fm  Page 14  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 15

Figure 1-10. Choosing the collations

The Reporting Services Database

As we selected Reporting Services to be installed, we need to create a database for the reporting 
server to use. Depending on your requirements and how heavily used your SQL Server instal-
lation is, you may wish your reports to be run out of a separate and purpose-built SQL Server 
installation. For the moment, we will install Reporting Services on the same SQL Server (see 
Figure 1-11).

Dewson_5882C01.fm  Page 15  Monday, January 2, 2006  2:57 PM



16 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Figure 1-11. Installing as default Reporting Services

Error and Usage Report Settings

Within SQL Server, it is possible for any errors to be automatically reported and sent to Microsoft. 
These include fatal errors where SQL Server shut downs unexpectedly. It is recommended that 
you keep the error settings shown in Figure 1-12 enabled. No organizational information will 
be sent, therefore your data will still be secure. This is similar to sending reports when Excel 
crashes, for example. It is better to have this switched to active.

The final screen (see Figure 1-13) is displayed when the setup is complete. You can click 
the Summary Log link to check the install log. There is also a list of recommendations and 
information in a scrollable text box at the bottom of the screen. In between these two areas is a 
link to a new tool for SQL Server, the Surface Area Configuration tool. This tool, which we look 
at in Chapter 2, deals with enabling or disabling features, services, etc. You don’t have to click 
the link now, as we will access this tool from the Start menu later.

Dewson_5882C01.fm  Page 16  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 17

Figure 1-12. Error and usage report settings

Figure 1-13. Setup complete details

And that is it, you are now ready to install.

Dewson_5882C01.fm  Page 17  Monday, January 2, 2006  2:57 PM



18 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Security
To discuss the Service Account dialog box that we came across in the installation properly, we 
need to delve into the area of Windows security.

In this section, we will first examine the concept of Windows services as opposed to 
programs, and then move on to discussing different types of authentication we can choose 
when installing SQL Server.

Services Accounts
SQL Server runs as a Windows service. So what is a service? A good example of a service is any 
antivirus software that runs continuously from when the user restarts a computer to the point 
that the computer shuts down. A program, on the other hand, is either loaded in memory and 
running, or not started. So what is the advantage of running a service? When you have a unit of 
work that can run as a service, Windows can control a great deal more concerning that process. 
A service can be set to start automatically before any user has even logged on; all other programs 
require a user to be logged in to Windows in order for them to start.

A service also has absolutely no user interface. There will be no form to display and no user 
input to deal with at run time. The only interaction with the process runs either through a sepa-
rate user interface, which then links in to the service but is a totally separate unit of work (for 
example, SQL Server Management Studio), or from Windows management of that service 
itself. Any output that comes from the service must go to the Event Log, which is a Windows 
area that stores any notification from the services that Windows runs.

Having no interface means that the whole process can be controlled without human inter-
vention. Providing the service is designed well, Windows can take care of every eventuality 
itself, and can also run the service before anyone has even logged in to the computer.

In most production environments, SQL Server will be running on a remote server, one 
probably locked away in a secure and controlled area, possibly where the only people allowed 
in are hardware engineers. There probably isn’t even a remote access program installed, as this 
could give unauthorized access to these computers. SQL Server will run quite happily and, with 
any luck, never give an error. But what if one day there is an error? If SQL Server was running as 
a program, some sort of decision has to be taken. Even if SQL Server crashed, there at least has 
to be some sort of mechanism to restart it. This means another process needs to be run, a 
monitoring process, which in itself could result in a whole ream of problems. However, as a 
service, SQL Server is under Windows control. If a problem occurs, whether with SQL Server, 
Windows, or any outside influence, Windows is smart enough to deal with it through the services 
process.

It’s time to move on to the options we are given during installation regarding authentica-
tion mode.

Looking at the Authentication Mode
Probably the most crucial information in the whole setup process, and also the biggest decision 
that has to be made, concerns the authentication mode you wish to apply to your server. As we 
saw earlier in the setup process, there are two choices: Windows authentication mode and 
mixed mode.

Dewson_5882C01.fm  Page 18  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 19

Windows Authentication Mode

To log on to a Windows 2000/2003/XP machine, a username must be supplied. There is no way 
around this (unlike in Windows 9x/ME where a username is optional). So, to log on to Windows, 
the username and password have to be validated within Windows before the user can successfully 
log in. When this is done, Windows is actually verifying the user against username credentials 
held within the domain controller, or, if you are running SQL Server on a standalone machine 
at home, the credentials held locally. These credentials check the access group the user belongs to 
(the user rights). The user could be an administrator, who has the ability to alter anything 
within the computer, all the way down to a basic user who has very restricted rights. This then 
gives us a trusted connection; in other words, applications that are started up after logging in 
to Windows can trust that Windows has verified that the account has passed the necessary 
security checks.

Once we have logged in to Windows, SQL Server uses a trusted connection. This means 
that SQL Server is trusting that the username and password have been validated as we just 
mentioned. If, however, the username does not exist, then you won’t be able to log on to that 
machine. Someone else can log on to your machine with their user ID and password, and 
although he or she might be able to get to SQL Server by finding the executable on the C drive, 
SQL Server will first of all check to see whether that user has a valid login within SQL Server. 
If the login isn’t valid, then it will check the Windows group that the user belongs to and check 
its security to see if that group is set up to access SQL Server. If that user has administration 
rights to your computer, then the user may well be able to at least connect to SQL Server.

We are in a bit of a catch-22 situation here. You need to know about security for your install 
process, but to demonstrate it fully means working with SQL Server Management Studio, which 
the next chapter covers. We will keep that area simple, so let’s look at an example involving 
security now.

Try It Out: Windows Authentication Mode

1. Ensure that you are logged on to your machine as an administrator. If you are on a local computer, 
chances are that your login is in fact an administrator ID. If this computer is on a network and you are 
unsure about your access rights, ask your PC support desk to help you out with the ID and password.

2. From Start ➤ Control Panel select User Accounts.

3. When the Users and Passwords dialog box comes up, click Create a New Account.

4. Once the Name the New Account dialog box comes up, enter the user name AJMason, as shown in 
Figure 1-14. When done, click Next.

5. Ensure that the account type specified is Limited (see Figure 1-15). This means that it will not have 
administrator privileges.

Dewson_5882C01.fm  Page 19  Monday, January 2, 2006  2:57 PM

32d088203d70df39442d18a2c1065d0c



20 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

Figure 1-14. Creating a new user account

Figure 1-15. Selecting the new user’s account type

Dewson_5882C01.fm  Page 20  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 21

6. Stay in the User Accounts dialog box, as you want to add a second username. Repeat the preceding 
process using the following details:

User name: VMcGlynn

Account type: Computer Administrator

7. Log off from Windows and then log on using the first ID that you created: AJMason.

8. Once logged in, start up SQL Server Management Studio by selecting Start ➤ All Programs ➤ Microsoft 
SQL Server 2005➤ SQL Server Management Studio.

9. Examine the error message that appears, which should resemble what you see in Figure 1-16. AJMason 
as a login has not been defined within SQL Server specifically and does not belong to a group that allows 
access. The only group at the minute is a user who is in the Administrators Windows group. Recall 
that AJMason is a Limited user.

Figure 1-16. Failed log on to server

10. We will now try out the other user we created. Close down SQL Server, log off Windows, and log on 
using the second ID we created—VMcGlynn. Once logged in, start up SQL Server Management Studio 
and connect to your server. This time the login will work.

We have created two usernames: one that has restricted access (AJMason), the other with administration rights 
(VMcGlynn). However, neither of these specific usernames exist within SQL Server itself: after all, we haven’t 
entered them and they haven’t appeared as if by magic. So why did one succeed and one fail?

The Windows security model has ensured that both IDs are valid. If the ID or password were incorrect, there is no 
way that you could be logged in to Windows. Therefore, when you try to connect to SQL Server, the only check that 
is performed is whether the user has access to SQL Server either via membership of an operating system group or 
through the specific logged-in user account. As you can see in Figure 1-17, neither AJMason nor VMcGlynn exist.

Figure 1-17. Object Explorer for SQL Server

Dewson_5882C01.fm  Page 21  Monday, January 2, 2006  2:57 PM



22 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

However, you can see that there is a Windows group called BUILTIN\Administrators. This means that any 
username that is part of the Administrators group will have the capacity to log on to this SQL Server. Hence 
avoid if possible setting up users as administrators of their own PCs.

In a production environment, it may be advisable to remove this group from the system if you do allow users to be 
administrators. As VMcGlynn is a member of the Administrators group, then this username will also be a 
member of the BUILTIN\Administrators group.

Mixed Mode

If we installed SQL Server with mixed mode, this means we can use either Windows authenti-
cation, as has just been covered, or SQL Server authentication.

How does mixed mode differ from Windows authentication mode? To start with, you need 
to supply a user ID and password to connect rather than Windows taking the ID of the logged 
in account. There is no assumption that the username supplied is a valid ID. Using mixed mode is 
also appropriate in many cases when working with ISPs. To clarify this, if you are working on 
your remote data at a local client machine, the remote machine would need to know the 
credentials of your login, and the easiest method is to use SQL Server authentication.

There is also another argument for mixed mode. We may wish for some reason (for 
example, for auditing purposes) that the user log on to SQL Server using a different username 
from that of his or her Windows account. We could be working on a large SQL Server develop-
ment project that will have developers joining and leaving the team as the need arises. In this 
case, it might be necessary to create temporary usernames, as opposed to permanent IDs 
linked to the developers’ Windows usernames. In SQL Server, we could create usernames of 
Developer1, Developer2, etc. These usernames can have different access rights within SQL 
Server. Another situation would be the case of an Internet-based application where there is just 
no way we could create a username for every visitor to our site. Therefore, we would create 
generic login ID using a specific ID created for the web site. Whatever the reason, there is a 
need to have usernames not linked with the Windows usernames.

You will learn how to add usernames to SQL Server (as opposed to adding Windows users) 
when I talk about security in Chapter 4.

This leaves one area of security left that needs to be discussed here: the sa login.

The sa Login
The sa login is a default login that has full administration rights for SQL Server. We saw during 
the installation process that we would be forced to include a password for this account if we 
were installing with SQL Server Authentication enabled because it is such a powerful login that 
exists in every SQL Server installation. If you logged in to SQL Server as sa, you will have full 
control over any aspect of SQL Server. SQL Server inserts this ID no matter which authentica-
tion mode you install. If you have a Windows account defined as sa, for example, for Steve 
Austin, then this user will be able to log in to the server if you have set the server up as imple-
menting Windows authentication mode without any further intervention on his part. Try to 
avoid login IDs of sa.

In a mixed mode installation, sa will be a valid username and validated as such. As you can 
guess, if any user gets ahold of this username and the password, that user will have full access 
to view and amend or delete any item of data. At worst, the user could corrupt any database, as 

Dewson_5882C01.fm  Page 22  Monday, January 2, 2006  2:57 PM



C H AP T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N ST A LL A T I O N 23

well as corrupt SQL Server itself. He or she could even set up tasks that e-mail data to a remote 
location as it is being processed.

It is essential to set up a strong password on the sa account in the Authentication Mode 
screen if you choose mixed mode. It is a major improvement in SQL Server 2005 that you are 
now forced to enter a password, although it is possible to set up a very easily guessed password. 
Do not use passwords such as password or adminpwd, for example. Always keep the password 
safe, but also make a note of it in a safe place. If you forget the sa password and this is the only 
administration ID that exists, you will need to reinstall SQL Server to get out of this problem. 
A good password is one that mixes numbers and letters, but doesn’t always include letters than 
can be made into numbers and numbers into letters in all cases. For example, pa55word is just 
as easy to guess as password. Or 4pr355 for Apress.

There is also another reason not to log on to SQL Server with the sa username. At times it 
will be essential to know who is running a particular query on a SQL Server database. In a 
production database, someone may be running an update of the data, which is filling up the 
disk space or filling up the transaction log. We need to contact that person to check whether he 
or she can stop the process. If that person logs in as sa, we will have no idea who he or she is. 
However, if that person logged on with an identifiable name, he or she would have an ID in SQL 
Server, which we could track. By restricting the sa login so that people have to use their own 
accounts, we can ensure a much higher degree of system monitoring and integrity.

There will be times that we want mixed mode authentication; it is perfectly acceptable to 
wish this. Internet providers use mixed mode, as many applications may be on one web server. 
If this ISP is a reseller (in other words, many people around the globe use the one computer), 
you will not want these people to have the ability to see your data. We have also decided not to 
have sa as an administration logon at this point. So what do we do? Well, we create a logon ID 
that will have the access privileges we wish; in other words, the ability to just see the data and 
work with the data that we need, and no more. The ISP may require you to supply a user ID and 
password that it uses to create an account on its SQL Server instance. You will encounter more 
about this in Chapter 4.

■Note  Regardless of the authentication mode, it is important you always supply a strong password.

Summary
By this point, you should understand the small differences between each version of SQL Server. 
You should also know how to check your computer to see if it is suitable for a SQL Server 
installation.

By following the steps given earlier, you should have a successful installation of SQL Server 
on your computer. You may even have completed the installation twice so that you have a 
development server installation as well as a test server installation. This is a good idea, and 
something to consider if you have only one installation so far. Whether you are working in a 
large corporation or are a “one-man band,” keeping your production and development code 
separate leads to greatly reduced complications if, when developing, you need to make a 
production fix.

Dewson_5882C01.fm  Page 23  Monday, January 2, 2006  2:57 PM



24 C H A P T E R  1  ■  S Q L  S E R V E R  2 0 0 5  O V E R V I E W  A N D  I N S T A L L A T I O N

This chapter introduced you to security in SQL Server so that you can feel comfortable 
knowing which way you want to implement this and how to deal with different usernames. You 
may not have any data yet, but you want to ensure that when you do, only the right people get 
to look at it!

You are now ready to explore SQL Server 2005. One of the best ways of managing SQL 
Server is by using the SQL Server Workbench, which will be discussed next.

Dewson_5882C01.fm  Page 24  Monday, January 2, 2006  2:57 PM



25

■ ■ ■

C H A P T E R  2

SQL Server 
Management Studio

Now that SQL Server 2005 is successfully installed on your machine, it is time to start exploring 
the various areas that make this an easy and effective product to use. With SQL Server 2005, all 
the administration interfaces now reside in studios, such as SQL Server Management Studio, 
which features tools for working with developing database solutions, and SQL Server Business 
Intelligent Development Studio, designed for analyzing data with Analysis Services. This chapter 
concentrates on the SQL Server Management Studio tool, also known as SSMS, as well as looks 
at the Surface Area Configuration (SAC) tool.

SSMS is the graphical user interface (GUI) you will use to build your database solutions. 
This is an easy-to-use and intuitive tool, and before long, you will feel confident in using it to 
work with SQL Server quickly and efficiently.

SQL Server Management Studio is crucial to your success as a developer. Therefore, by the end 
of this chapter, you will have gained experience with it and be proficient in the following areas:

• The components of SQL Server Management Studio

• How to configure SQL Server Management Studio

• How to secure the surface area of SQL Server from vulnerabilities

Let’s start right away by having a look at SQL Server Management Studio and how it is used 
to work with SQL Server 2005.

A Quick Overview of SSMS
SQL Server runs as a separate Windows process on a suitable Windows-based computer as we 
touched on in Chapter 1, be it on a standalone desktop machine, or on a server or network. If 
you open Task Manager and move to the Processes tab, you will see, among other processes, 
sqlservr.exe. This process or service runs in its own process space, and is isolated from other 
processes on the machine. This that SQL Server should not be affected by any other piece of 
software that does not talk to any SQL Server component. If you have to kill any other compo-
nent’s process, the SQL Server engine should continue to run.

Dewson_5882C02.fm  Page 25  Monday, January 2, 2006  2:55 PM



26 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

SQL Server runs as a service that is controlled and monitored by Windows itself. Windows 
ensures that it is given the right amount of memory, processing power, and time, and that every-
thing is working well. Because SQL Server runs as a service, it has no interface attached to it for 
a user to interact with. As a result, there needs to be at least one separate utility that can pass 
commands and functions from a user through to the SQL Server service, which then passes 
them through to the underlying database. The GUI tool that accomplishes this is SQL Server 
Management Studio.

SSMS can be used to develop and work with several installations of SQL Server in one 
application. These installations can be on one computer, or on many computers connected 
through a local area network (LAN), a wide area network (WAN), or even the Internet. There-
fore, it is possible to deal with your development, system testing, user testing, and production 
instances of SQL Server from one instance of SSMS. SSMS helps you in the development of 
database solutions, including creating and modifying components of a database, amending 
the database itself, and dealing with security issues. Getting to know this tool well is crucial to 
becoming a successful professional SQL Server developer, as well as a database administrator.

One of the tools within SSMS that we will use for completing tasks is Query Editor. This 
tool allows program code to be written and executed, from objects, to commands that manip-
ulate data, and even complete tasks such as backing up the data. This program code is called 
Transact SQL (T-SQL). T-SQL is a Microsoft proprietary language, although it is strongly linked 
with a standard set by the American National Standards Institute, also known as ANSI. The 
current specification Microsoft bases its code on is ANSI-92.

Query Editor is a tool within SSMS that allows us to programmatically build the same 
actions as dragging and dropping or using wizards. However, using T-SQL within Query Editor 
can give developers more control over certain aspects of certain commands. Note that the name 
“Query Editor” comes from the fact that it sends queries to the database using T-SQL. Don’t 
worry if you don’t quite grasp this—all will become clear very soon.

Let’s spend some time taking a look at SSMS in more detail.

Try It Out: Touring SQL Server Management Studio

1. To start up SQL Server SQL Server Management Studio, select Start ➤ Programs ➤ Microsoft SQL 
Server 2005 ➤ SQL Server Management Studio.

2. Click the Options button to bring up a Connect to Server dialog box similar to the one in Figure 2-1. Note 
the following items in this dialog box:

• For the purposes of the examples in this book, leave the server type as Database Engine.

• The second combo box contains a list of SQL Server installations that the Connect to Server dialog box 
can find, or knows about. In the dialog box in Figure 2-1, you will see the name of the computer that 
the local install is on. If you open the Server Name combo box, you can search for more servers locally 
or over a network connection.

Dewson_5882C02.fm  Page 26  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 27

• The final combo box specifies which type of connection you wish to use. We installed SQL Server with 
Windows authentication in Chapter 1, therefore this is the only available option for connecting with 
our local server.

Figure 2-1. SQL Server Management Studio Connect to Server dialog box without 
expanded options

3. Click Options, which will switch you to the Connection Properties tab. Here you will see specific properties for 
this connection, as shown in Figure 2-2:

• The first area to take a look at is the Connect to Database combo box, which provides a list of databases 
based on the server and login details in the Login tab. Clicking the down button for this combo box 
allows you to browse for and select a database on the server to which you wish to connect. Only the 
databases that the Windows Account or SQL Server login can connect to will populate this list. Also, 
any error in the login details will cause an error message to be displayed here instead of listing databases.

• The Network area details how we want this connection to be made with SQL Server. At the moment, 
there is no need to change the current settings.

• The third area, Connection, deals with connection timeouts. The first item, Connection Time-out, 
defines how long the connection should wait before returning an error. For local installs and even 
most network installs, a setting of 15 seconds should be more than enough. The only situation that 
may require you to increase this setting is if you were connecting over a WAN or to a SQL Server 
installation at an ISP. The second option, Execution Time-out, details the timeout value for any T-SQL 
code that you execute. 
A setting of 0 means that there is no timeout; there should be few, if any, occasions when you would 
want to change this setting.

Dewson_5882C02.fm  Page 27  Monday, January 2, 2006  2:55 PM



28 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Figure 2-2. SQL Server Management Studio connection properties

4. Once you are happy with all of the items in the Connection Properties tab, click Connect. This brings you 
to SSMS itself. If you have ever used Visual Studio .NET, you will notice that SSMS has a reasonably 
similar layout. This is deliberate on Microsoft’s part, as the company is bringing SQL Server a tool more 
integrated with .NET. Your layout should look like the one in Figure 2-3, with only minor name changes 
based on the server you have connected to and the connection you have used. This figure shows I have 
connected to XP-PRO SQL Server using the Windows account XP-PRO\rdewson.

Figure 2-3. SQL Server Management Studio

Dewson_5882C02.fm  Page 28  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 29

5. The first area of SSMS we will look at is the Registered Servers Explorer. Access this explorer, shown in 
Figure 2-4, by selecting View ➤ Registered Servers or by pressing Ctrl+Alt+G. This area details all SQL 
Server servers that have been registered by you on this SSMS installation. At present, there will only be 
the server just registered. This explorer will also show registered services for other services such as 
Reporting Services (which is covered in detail in Chapter 14).

Figure 2-4. A list of registered servers

6. If you need to register another server, right-click the Database Engine node and select New ➤ Server 
Registration to bring up a dialog box very similar to the Connect to Server dialog box shown earlier. Go 
ahead and do this now to familiarize yourself with the New Server Registration dialog box, shown in 
Figure 2-5.

Figure 2-5. A new server registration dialog box

Dewson_5882C02.fm  Page 29  Monday, January 2, 2006  2:55 PM



30 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

7. As you can see, the only real difference from the Connect to Server dialog box is that the Server Name 
combo box is empty and there is a new section called Registered Server. In this area, you can give a 
registration a different name, such as Development Server or User Testing Region, and on top of this 
give the registration a description. You don’t have a server to register, so just click Cancel now.

8. Moving back to SSMS’s explorer window below the registered servers, take a look at the Object Explorer, 
which should have been present when you first brought up SSMS. If it isn’t there or if it disappears, you 
can redisplay it by selecting View ➤ Object Explorer or by pressing F8. You will likely use this explorer 
the most, as it details every object, every security item, and many other areas concerning SQL Server. 
You can see that SSMS uses nodes (which you expand by clicking the + signs) to keep much of the 
layout of the Object Explorer (the hierarchy) compact and hidden until needed. Let’s go through each of 
the nodes you see in Figure 2-6 now.

Figure 2-6. Object Explorer nodes

• Databases: Holds the system and user databases within the SQL Server you are connected to.

• Security: Details the list of SQL Server logins that can connect to SQL Server. You will see more on 
this in Chapter 4.

• Server Objects: Details objects such as backup devices and provides a list of linked servers, where 
one server is connected to another remote server.

• Replication: Shows the details involving data replication from a database on this server to another 
database (on this or another server) or vice versa.

• Management: Details maintenance plans, which you will learn more about in Chapter 7, and provides 
a log of informational and error messages that can be very useful when troubleshooting SQL Server.

• Notification Services: Sends out notifications of changes of data or objects to “the outside world” via 
media such as e-mail or SMS. People can subscribe to these notifications, and details of these processes 
are held in this node.

• SQL Server Agent: Builds and runs tasks within SQL Server at certain times, with details of success 
of failures sent to pagers, e-mail, or operators defined within SQL Server. The running of these jobs 
and the notifications of these failures or successes are dealt with by SQL Server Agent, and the details 
are found in this node.

9. Select the topmost node in the Object Explorer to see a summary page similar to the one in Figure 2-7. 
This area is known as the documents area. You don’t have to be on the top node for this page to be of 
use, as it will provide a summary of any node within this explorer. This works a bit like folders within 
Windows Explorer, where you can navigate through each item to get a summary of details of objects 
within the node.

Dewson_5882C02.fm  Page 30  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 31

Figure 2-7. Summary page

10. Moving to the menu bar of SSMS, the first item of interest is the View menu option. The first three options 
on the View menu, shown in Figure 2-8, bring up the two explorer windows, Object Explorer and Registered 
Servers Explorer, and the summary page we encountered previously. Therefore, if you ever need to 
close these items to give yourself more screen space, you can reopen them from the menu or with the 
shortcut keys you see defined. The other options on the View menu are as follows:

• Template Explorer: Provides access to code templates. In the examples in this book, we will be 
building objects using T-SQL. Rather than starting from scratch, we can use code templates that 
contain the basic code to create these objects.

• Solution Explorer: Displays solutions, which are convenient groupings of objects, T-SQL, or special 
programs called stored procedures, among other items.

• Properties Window: Displays the set of properties for each object.

• Bookmark Window: Allows you to create bookmarks, which you place into various locations in your 
code to allow you to jump quickly to those locations. 

• Toolbox: Holds a list of objects that are database maintenance tasks, and where these tasks can be 
altered.

• Web Browser: Brings up a web browser within SQL Server, ideal for searching the web for answers to 
SQL Server problems for which you may require information.

• Other Windows: Allows you to access other windows generated when running T-SQL from Query 
Editor, which may hold error messages or results from queries.

• Toolbars: Brings up toolbars for Query Editor, diagramming the database, and integration with Visual 
SourceSafe for source control all, if they are not opened by default.

• Full Screen: Removes title bars and explorer windows, and then maximizes SSMS to show as much 
of the main pages as possible.

Dewson_5882C02.fm  Page 31  Monday, January 2, 2006  2:55 PM



32 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Figure 2-8. The View menu options

11. SQL Server has two built-in tools as well as the capability to include other tools when they are launched. 
These can be accessed through the Tools menu, shown in Figure 2-9, along with the means to customize 
keyboard commands, show or hide toolbar buttons, etc., as is the case with other Microsoft products 
such as Word. In particular, note the following options:

• SQL Server Profiler: There will come a time when you wish to monitor SQL Server’s performance. This 
tool will monitor and log events, running code, etc., that you have informed it to check when they 
happen within SQL Server.

• Database Engine Tuning Advisor: It is possible to take a workload of data and process it through your 
solution. This advisor can suggest ways to improve the performance of this process.

• Options: This option lets you access different options you can use to set up your SSMS as you like. We 
will take a look at each of these options in the next section.

Figure 2-9. The Tools menu options

12. The final part of SSMS that we will take a look at is the main SSMS toolbar, as you can see in Figure 2-10. 
Some of the icons, such as the Save icon, will be instantly recognizable, but let’s go through each button 
so that it is clear what they all do.

Dewson_5882C02.fm  Page 32  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 33

Figure 2-10. Main toolbar

13. In the next section, you will see how you can write code to add objects, work with data, and so on. Clicking the 
New Query button will open up a new query window, which allows you to do this using the connection 
already made with SQL Server.

14. Similar to the New Query button, the New Database Engine Query button will also create a new query 
window. However, this will give you the option of having a different connection to SQL Server through 
which to run your code. This is a good way of testing code with a different connection to ensure that you 
cannot see data that should be secure, such as wages, via that connection.

15. Data within a specialized database known as an analysis database allows you to interrogate the data 
and analyze the information contained within. The three New Analysis Service Query buttons allow you 
to build different types of analysis queries. I include this information here only for your reference, as 
analysis databases fall outside the scope of this book.

16. SQL Server editions also include an edition called SQL Server Mobile. This allows SQL Server to run on 
devices such as PDAs. If you have this installed, then clicking the SQL Server Mobile Query button will 
allow a SQL Server Mobile query to be run. Again, this book does not cover this particular function further.

17. As with every other Windows-based product, it is possible to open and save files. The Open button (the 
first one shown in the following image) will allow you to search for a T-SQL file. The next two buttons 
change their function depending on what you are doing, but in the main, the Single Save button will give 
you the option to save the details of the window that is active in the main documents area of SSMS. The 
Multiple Save button will give you the option to save all the open tabs in the documents window.

18. The last set of buttons open up explorers and document tabs that we have covered already. From left to 
right in the following image, these buttons access the Registered Servers Explorer, summary page, 
Object Explorer, Template Explorer, and Properties window.

 

Dewson_5882C02.fm  Page 33  Monday, January 2, 2006  2:55 PM



34 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Now that we’ve covered the main areas of SSMS, we’ll next take a closer look at the Options 
area off the Tools menu, as it warrants a more detailed discussion.

Examining SSMS’s Options
As you saw earlier, the Tools menu has an Options menu choice. This allows you to choose 
what options you would like to set as part of the setup for SSMS. We will go through each node 
and option in this area one at a time, except for the options dealing with Analysis Services, 
which are not of interest to us just now.

Environment Node
The first node we’ll look at is the Environment node, which covers the SSMS environment and 
how you would like it to look and feel. This contains the General, Fonts and Colors, Keyboard, 
and Help nodes, which you’ll see next.

General Node

The General node, shown in Figure 2-11, contains the following options:

• At Startup: This controls how SSMS behaves when it is started. You have a choice of four 
options here. It is possible to open Object Explorer after prompting for a connection, 
open a new query window after prompting for a connection, open both of these after a 
connection, or open with an empty SSMS and no connection.

• Hide System Objects: In SQL Server, system objects are hidden. This is a good option to 
have enabled unless you are a database administrator.

• Environment Layout: The layout can either be defined as tabbed documents (a bit like 
Excel) or as MDI (a bit like Word).

• Docked Tool Window—Close Button: If checked, when you click the close button, only 
the active document is closed. Unchecked means that all windows will be closed.

• Docked Tool Window—Auto Hide Button: You can pin toolboxes or unpin explorers to 
hide them. Unpinning windows affects only the currently active document.

• Display NN Files in Recently Used List: This indicates the number of recently opened files 
to place under the File menu option.

Dewson_5882C02.fm  Page 34  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 35

Figure 2-11. Environment area, General options

Fonts and Colors Node

As you might guess, the Fonts and Colors node options, shown in Figure 2-12, affect the fonts 
and colors for different areas of SSMS. The Display Items list box contains a list of all the 
different areas that can be set. By selecting one of these items, you can define the color of the 
foreground and background as well the font type and size.

Figure 2-12. Environment area, Fonts and Colors options

Dewson_5882C02.fm  Page 35  Monday, January 2, 2006  2:55 PM



36 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Keyboard Node

The Keyboard node section, shown in Figure 2-13, allows you to define fast keys for commands 
you run often. Any T-SQL stored procedure can be defined. The examples in this book assume 
you are using the standard keyboard scheme.

■Note  A stored procedure is a set of code that is stored within SQL Server, a bit like a program.

Figure 2-13. Environment area, Keyboard options

Help Node

The help system for SQL Server as a whole has been altered: you now have the ability to use not 
only the help installed on the computer, but also the online help; thus you have access to the 
most up-to-date information. Configure the help system through the Help node options shown 
in Figure 2-14.

Dewson_5882C02.fm  Page 36  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 37

Figure 2-14. Environment area, Help options

Source Control Node
When creating code or objects, you can integrate a source control system with SQL Server so 
that changes are immediately stored for safety. For each source control system, it is possible to 
define a plug-in that will then populate the combo box, as shown in Figure 2-15. You can then 
use this source control along with source control buttons and menu options.

Figure 2-15. Source Control options

Dewson_5882C02.fm  Page 37  Monday, January 2, 2006  2:55 PM



38 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Text Editor Node
The text editor node contains options that affect how you work with text.

File Extensions

Files specific to a particular Microsoft product have their own unique file extension so that they 
are instantly recognizable to users and can then be linked to the relevant product. These prod-
ucts have different filtering when accessing them through Open from the File menu so that you 
will only see files with the relevant extension. This also holds true for SQL Server, but it is possible 
to alter these extensions within the File Extension option, as you see in Figure 2-16, although 
I strongly recommend that you don’t. You’ll come across a few of these extensions throughout 
the book, although the majority are for more advanced work.

Figure 2-16. Text Editor, File Extension defaults

All Languages ➤ General

Taking a look at the second option within the Text Editor node, you can see how different text 
editors’ options can be set. The All Languages node sets the options from both the Plain Text 
and XML nodes below, as shown in Figure 2-17. Of the general options discussed here, the first 
three are for the XML editor:

• Auto List Members: Lists the members, properties, and values available to you when typing.

• Hide Advanced Members: Shows more commonly used items.

• Parameter Information: Displays the parameters for the current procedure.

• Enable Virtual Space: Adds spaces so that comments are placed at a consistent location 
when using a text editor.

• Word Wrap: Specifies text be wrapped to the next line once you type past the end of the 
viewing area.

Dewson_5882C02.fm  Page 38  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 39

• Show Visual Glyphs: Enabled when word wrap is checked. Shows text glyphs when a line 
has been word wrapped. This is a logical character that doesn’t physically exist, and 
therefore will not appear on any printouts.

• Apply Cut or Copy Commands to Blank Lines: If this is checked, and you “copy” a blank 
line, a blank line will be pasted. If this is unchecked, nothing is inserted.

• Line Numbers: Displays line numbers only against the code. This will help when an error 
occurs and is reported back, because the error message will mention the line number.

• Enable Single-Click URL Navigation: When working with data and a URL is displayed, 
then as the cursor moves over it, the cursor will change to a hand to indicate a URL, and 
clicking it will open up a browser.

• Navigation Bar: Displays a navigation bar at the top of the code editor.

Figure 2-17. Text Editor, All Languages, General options

All Languages ➤ Tabs

The Tabs node deals with tabs within editors. As you can see in Figure 2-18, there are only two 
sections:

• Indenting: The first two options are for plain text and XML. When you press Enter, these 
set whether the new line starts at the leftmost point (None) or at the same point as the 
preceding line (Block). The Smart option is for XML only and determines whether the new 
line is tabbed, depending on the context of the XML element.

• Tab: This sets the number of characters for a physical tab (via Tab Size) and the number 
of characters in an intelligent tab, or an indent (via Indent Size). If you want spaces in the 
tabbing or indentation, then click the Insert spaces option; otherwise tabbing will use 
tabulation characters.

Dewson_5882C02.fm  Page 39  Monday, January 2, 2006  2:55 PM



40 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Figure 2-18. Text Editor, All Languages, Tabs options

Query Execution Node
The Query Execution node contains options that affect your T-SQL code. You can change the 
environment in which you write T-SQL and how SSMS interacts with SQL Server when running 
T-SQL.

SQL Server ➤ General

When we come to running T-SQL code within Query Editor, a number of options affect how it 
will run, and these are shown in Figure 2-19. The settings are only for SSMS and don’t apply to 
other connections such as a .NET program connecting to the data.

• SET ROWCOUNT: Defines the maximum number of rows to return before stopping. 
A setting of 0 defines that every row should be returned. This option is more often defined at 
the top of your T-SQL code to reduce the number of rows for that query—for example, if 
you have a large table and you want to see only a few rows as examples.

• SET TEXTSIZE: Sets the maximum size of text data that will be seen in the results editor.

• Execution Time-out: Specifies how long you are prepared for the query to run before 
forcing it to stop. This can be useful especially in a production environment, when you 
don’t wish a query to take up a large amount of processing time.

Dewson_5882C02.fm  Page 40  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 41

• Batch Separator: Separates batches of code by a word or character. At present this is set 
to GO. Although you could change this, it is best not to, because GO is known universally 
as a batch separator.

• By Default, Open New Queries in SQLCMD Mode: Selecting this option will open a command 
prompt utility for creating queries based on SQLCMD code rather than T-SQL code. This 
will allow you to create code that has extensions within it that can then be used to run as 
a batch file via the SQLCMD utility. We don’t look at SQLCMD within this book, but if 
you want to run code as a batch file, then Books Online can show you how.

Figure 2-19. SQL Server Query Execution, General options

SQL Server ➤ Advanced

This area deals with how SQL Server executes T-SQL code within SSMS, and the options avail-
able here are shown in Figure 2-20. We go through those options relevant to someone learning 
SQL Server when creating a database in Chapter 3. The only two options not covered in that 
chapter that you should know are the following:

• Suppress Provider Message Headers: Status messages about the query that is running will 
not show the data provider. Therefore, by selecting this option, you will be suppressing 
the data provider for SQL Server being displayed (.NET SqlClient Data Provider).

• Disconnect After the Query Executes: After your query has completed, disconnect the 
connection. This is ideal for situations where you have a limited number of connections 
or you want to keep the connection count down.

Dewson_5882C02.fm  Page 41  Monday, January 2, 2006  2:55 PM



42 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Figure 2-20. SQL Server Query Execution, Advanced options

SQL Server ➤ ANSI

Like the options for the previous area, the options for the ANSI area are discussed in Chapter 3. 
For now, note the default settings shown in Figure 2-21.

Figure 2-21. SQL Server Query Execution, ANSI standard options

Query Results Node
When you run T-SQL code, the database will return the results to SSMS. The Query Results 
node is where you can modify how these results will look.

Dewson_5882C02.fm  Page 42  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 43

SQL Server ➤ General  

The options in this area, shown in Figure 2-22, detail how results will be displayed and where 
they will be saved.

• Default Destination for Results: This option defines how you would like to see the results 
of a query that returns some data.

• Default Location: This option specifies the default directory for saved results.

• Play the Windows Default Beep: If you wish SQL Server to beep you at the end of a query, 
check this option, and if you run a lot of queries, be prepared to lose a lot of friends. 
I would leave this unchecked unless you are going to be running a long-term query, 
which will allow for notification when the query finishes rather than your having to sit 
and watch it.

Figure 2-22. Query Results, General options

SQL Server ➤ Results to Grid

When we run T-SQL to retrieve data, SSMS can place it within a grid, a bit like in Excel (although 
it will be read-only), or represent it as text, like in Notepad (also read-only). You can also save 
the data to a file, which is based on Results to Text options. The Results to Grid options, shown 
in Figure 2-23, cover how the results will look if we are outputting to a grid.

• Include the Query in the Result Set: The T-SQL used to run the query is placed prior to the 
results.

• Include Column Headers: If you want to copy information from the results, for example, 
to place it within an e-mail, then selecting this option will include the column headers as 
well as the results.

• Discard Results After Execution: Once the query executes, any results displayed will be 
immediately discarded at the end, therefore leaving nothing to display.

Dewson_5882C02.fm  Page 43  Monday, January 2, 2006  2:55 PM



44 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

• Display Results in a Separate Tab: Instead of the results appearing below the query, they 
can instead be in their own tab, giving more space for a larger set of results to be 
displayed.

• Maximum Characters Retrieved: This defines the maximum amount of data to be displayed 
in a single cell for results.

Figure 2-23. Query Results when the results are to grids

SQL Server ➤ Results to Text

The other results options, shown in Figure 2-24, affect how results are displayed when they are 
in text format.

• Output Format: This combo box presents you with five different formatting options: 
Column Aligned, Comma Delimited, Tab Delimited, Space Delimited, and Custom 
Delimiter. These different options allow you to set your output delimiter so that you can 
import your data into other systems.

• Include Column Headers in the Result Set: Uncheck this if you just wish the results. 
Again, this is ideal for when you are passing data on to other systems.

• Include the Query in the Result Set: The T-SQL used to run the query is placed prior to 
the results.

• Scroll As Results Are Received: As rows are returned, if they extend pass the end of the 
page, then the results are scrolled so that the last row of data is displayed.

• Right Align Numeric Values: Any numeric values are aligned to the right instead of the left.

• Discard Results After Query Executes: Once the query executes, any results displayed will 
be immediately discarded at the end, therefore leaving nothing to display.

Dewson_5882C02.fm  Page 44  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 45

• Display Results in a Separate Tab: Instead of the results appearing below the query, they 
can instead be in their own tab, giving more space for a larger set of results to be 
displayed.

• Maximum Number of Characters Displayed in Each Column: This defines the maximum 
amount of data to be displayed in a single cell for results.

Figure 2-24. Query Results when the results are to text

That completes our look at the options that are of relevance to us. The next section 
discusses the Query Editor within the documents area of SSMS.

Query Editor
As we progress through the book, the creation of objects, the manipulation of data, and the 
execution of code will be shown either by using the graphical interface and options that Object 
Explorer provides or by writing code using T-SQL. To write code, we need a free-form text 
editor so that we can type anything we need. Luckily, SSMS provides just such an editor as a 
tabbed screen within the document view on the right-hand side. This is known as a Query 
Editor, and it can be found when you click New Query of the main toolbar or by selecting File ➤ 
New ➤ Database Engine Query.

We discussed some of the options that affect the Query Editor, such as how text is entered 
and how results from running the T-SQL code are displayed, in the preceding section. There is 
not a great deal to say about the editor itself, as it really is a free-form method of entering 
commands and statements for SQL Server to execute. However, the Query Editor has a toolbar 
that is worth covering at this point in time. Figure 2-25 shows this Query Editor toolbar.

Figure 2-25. Query Editor toolbar

Dewson_5882C02.fm  Page 45  Monday, January 2, 2006  2:55 PM



46 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

The first three buttons, as shown in the following image, work with connections to the 
server. The first button requests a connection to the server if one doesn’t currently exist, the 
second disconnects the current server connection, and the third allows you to change the 
connection you are using.

The next item is a combo box that lists all the databases in the server you are currently 
connected to. If you wish a query to run against a different database, you can select it here. The 
database the code will execute against, providing you have permissions, is the database that is 
displayed.

The next buttons are concerned with executing the code entered in the Query Editor. The 
red exclamation mark and the Execute button execute the code. The green tick will parse the 
code, but will not actually run it. Parsing the code will not find every error that could occur but 
will ensure that the syntax is correct. The last option is a grayed-out button that turns red when 
code is executing. If you would like to send a cancel command to SQL Server, then press this 
button. This may not always instantly cancel the query, depending on what is executing and 
whether your server is local or remote. There will be a delay in sending the command and SQL 
Server “pausing” to receive the command.

The next two buttons help you analyze the T-SQL query for optimization. We won’t look at 
this subject within this book.

Rather than typing T-SQL code by hand, we can use a type of wizard that allows a query to 
be built up by selecting tables and columns via check boxes, and so on. Pressing the button 
shown in the following image brings up this wizard, known as the Query Design Editor, which 
you will see in action in Chapter 9.

The following button allows you to work with code templates. Templates feature the basics of 
commands or actions. They have options that act as default values. Pressing this button brings 
up a dialog box to change the values in each of a template’s parameters.

The next set of buttons deals with the query. The first two place details on how your code 
was executed and statistics about the code within the output. The third button runs your code as 
a command prompt as if it were run by SQLCMD, which is a command-line utility for executing 
SQL batches. These options are not covered within this book.

Dewson_5882C02.fm  Page 46  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 47

The first two buttons shown in the following image affect how the results from the query 
are displayed, either as text or as a grid, respectively. The third button sends results to a file.

Finally, we can comment out lines of code by clicking the first button shown in the next 
image, or we can uncomment code by clicking the second button. The third and fourth buttons 
will place or remove indentations of code. All of these buttons work only on currently selected 
lines of code.

Now that we have seen the Query Editor toolbar, let’s turn our attention to a security tool 
you need to know about.

Surface Area Configuration Tool
The last section in this chapter is our first look at locking down security within SQL Server. The 
Surface Area Configuration tool, or SAC, which is new to SQL Server 2005, is not, as the name 
may imply, a tool for configuring what parts of SSMS are displayed on your screen or how. This 
tool is a method for reducing the number of services and components of SQL Server that run to 
help protect SQL Server from a security breach. You can also change how SQL Server runs to 
the same end.

This tool does have a number of areas that can be configured, but we will take a look at 
only four of these services, which will give you good grounding in how to work with the other 
services and components when the need arises. 

Every item within this tool can be dealt with from another means within your computer. 
For example, with services, you can also do the same actions we will be performing from 
Control Panel ➤ Administrative Tools ➤ Services. The benefit of the Surface Area Configuration 
tool, though, is that it offers a unified interface and brings together all the items required to 
keep security of SQL Server at its optimum, in one place.

Try It Out: Using the Surface Area Configuration Tool

1. To start up the Surface Area Configuration tool, select Start ➤ Programs ➤ Microsoft SQL Server 2005 
➤ Configuration Tools ➤ SQL Server Surface Area Configuration. This will bring up the tool, as shown 
in Figure 2-26. You then have two choices on which area you wish to work with. Click the first choice, 
Surface Area Configuration for Services and Connections.

Dewson_5882C02.fm  Page 47  Monday, January 2, 2006  2:55 PM



48 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

Figure 2-26. SAC tool selection

2. This brings you to the dialog box shown in Figure 2-27. Notice in the title bar that there is a suffix of 
localhost. This shows that the tool is working with a local install of SQL Server. If you wish to work with 
a different install, you need to return to the screen shown in Figure 2-26 and select the Change Computer 
option. The first item we’ll discuss, as shown in Figure 2-27, is under Database Engine ➤ Service. Here 
you will see how the SQL Server database engine service is defined on this computer, how it starts, and 
its status:

• Our first area of interest is Startup Type, which could have a setting of Automatic, as you see in 
Figure 2-27, which means that SQL Server will start when your machine reboots; Manual, which 
means that SQL Server will only start when you start the service; and Disabled, which means that the 
service cannot be started.

• The Service Status box shows us what the state of the service is (whether it is running or not). You 
can change the state as required with the four buttons underneath the status box.

3. The Remote Connections node governs client connections. Figure 2-28 shows the default settings. Your 
installation will probably only allow local connections, which means that if your standalone computer is 
switched to being on a network, no other computer on the network will be able to connect to it until you 
select the Local and Remote Connections radio button option. By keeping Local Connections Only selected, 
you know that your SQL Server will be safe from other users on your network who may be defined as 
administrators on your computer, for example, as this would allow them to connect to SQL Server. Once 
you have specified all your options, click Apply or OK, which will then take you back to the screen in 
Figure 2-26.

Dewson_5882C02.fm  Page 48  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 49

Figure 2-27. SAC tool for configuring a component’s services

Figure 2-28. SAC tool for configuring a component’s connections

Dewson_5882C02.fm  Page 49  Monday, January 2, 2006  2:55 PM



50 C H A P T E R  2  ■  S Q L  S E R V E R  M A N A G E M E N T  S T U D I O

4. Now that you are back at the main screen, click Surface Area Configuration for Features. The first option 
we will take a look here at is Ad Hoc Remote Queries, shown in Figure 2-29. It is possible for ad hoc queries 
to execute from SQL Server against other data sources that are not explicitly defined, and return data 
back from functions. By default, this option is disabled and should only be switched on for remote queries.

Figure 2-29. SAC tool for ad hoc queries

5. The last area we will look at is the option that affects the dedicated administrator connection (DAC), 
shown in Figure 2-30. There may be times that SQL Server is under stress or has a problem and you 
cannot connect to it via SSMS. This option allows for a separate unique and specialized connection to 
SQL Server that will allow you to connect and perform administrative functions to help get SQL Server 
working again. If you wish to allow this connection to be enabled from a remote computer, then you can 
switch it on here. However, it should only be enabled if your SQL Server is behind a secure firewall; otherwise, 
it could lead to a connection to your server that is undesired.

Dewson_5882C02.fm  Page 50  Monday, January 2, 2006  2:55 PM



C H A P T E R  2  ■  S Q L  SE R V E R  M A N A G E M E N T  S T U D I O 51

Figure 2-30. SAC tool for DAC

 

■Caution  If you have a network install, then you may wish to consider disabling Analysis Services, Reporting 
Services, etc., if they are not being used.

This concludes our look at the Surface Area Configuration tool.

Summary
SQL Server Management Studio (SSMS) is a tool for working with SQL Server that you will see 
in action throughout this book, whether we work with the graphical interface or use Query 
Editor for writing T-SQL code.  As you learned in this chapter, the main areas of the tool are the 
Registered Servers Explorer, the Object Explorer, and the main documents window that will 
contain graphical representations of objects in the database.

Dewson_5882C02.fm  Page 51  Monday, January 2, 2006  2:55 PM



Dewson_5882C02.fm  Page 52  Monday, January 2, 2006  2:55 PM



53

■ ■ ■

C H A P T E R  3

Database Design and Creation

Now that you’ve installed SQL Server and examined the main tools you’ll use as a SQL Server 
developer or administrator, it’s almost time to start building the ApressFinancial database 
solution. However, you can’t do this yet because you still don’t know what the database will 
hold. At this point in time, all the information you have so far is that you’ll be building a data-
base to hold some financial transactions for a personal or corporate financial tool. You’ll gear 
this database toward a financial tool that a corporation might use, because SQL Server can be 
scaled from one user to thousands of users very easily. The next step is to gather more informa-
tion about the requirements of the solution and about what information is required to be 
stored in the database. Once the information gathering stage is complete, you’ll then be able to 
create the database within SQL Server 2005. 

The design of a database solution is not a simple task; it requires a great deal of work. This 
chapter will provide you with insight into the vast area that is database design. Armed with this 
information, you’ll proceed through arranging the data so that retrieval is as efficient as possible 
(this is referred to as normalizing the data) and ensuring that data duplication is minimal, or 
ideally that no data duplication exists. You’ll also need to know how the system and the data 
within it will be used on a day-to-day basis. Finally, you need to know what type of system is 
being built—for instance, whether it will receive instant data updates or just be used to analyze 
already defined data. Once the design is complete, building a database solution is a much 
smoother process. A good design ensures you’ve gathered all the information you need to build 
the correct tables with the correct information without duplication.

Although the methods and processes involved with the design may not meet the needs of 
every organization and its methods, this chapter presents an overview of the processes involved, 
and also shows how to build up information and ensure that the design is well thought out. 
This chapter covers the following topics:

• What a database is, what it consists of, and where it is stored

• How to define the type of system: transactional or analytical

• How to collect data about the current system and seek out information about the new 
system

• How to create a database through SQL Server Management Studio, a wizard, or a Query 
Editor window, and how to set database options in a Query Editor window

• How to review the database details

• How to remove a database using SQL Server Management Studio and a Query Editor 
window

Dewson_5882C03.fm  Page 53  Monday, January 9, 2006  3:24 PM



54 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

■Note  No specific formal design techniques will be used in this chapter’s exercise, as this is not a book 
specifically on database design. However, the processes—both physical and logical—to get to the final 
design of the database will be the same. 

Defining a Database
A database is a container for objects that not only store data, but also enable data storage and 
retrieval to operate in a secure and safe manner. A SQL Server 2005 database can hold the 
following (although when a database is first created, some of this information has not yet been 
built):

• Table definitions

• Columns within those tables, which make up rows of data

• Programs (either stored procedures or assemblies) used to access or manipulate the data

• Indexes, which are used to speed up the retrieval of data

• Views, which are specialized ways of looking at the actual data

• Functions, which are repetitive tasks that can be applied to rows of data

The preceding list contains a fair number of technical terms, so let’s take a few moments 
to look at their definitions:

• Tables: These are where data is kept within the database. A database must contain at 
least one table to be of use, although you can have a database with no user tables and 
only system tables. System tables are special tables that SQL Server uses to help it work 
with the database. These tables contain information within rows and columns, much 
like in Excel, but they have a great deal more power than cells within Excel. Temporary 
tables, another type of database table, can take several different forms. 

• Columns: These provide a definition of each single item of information that builds up to 
a table definition. A column is made up of cells that all hold data, much like a column in 
Excel. Unlike in Excel, though, where each cell can hold a different type of data, a column 
within a SQL Server table is restricted as to what the data within it relates to, the type of 
data it will hold, and how much information can be stored in it. Each table must have at 
least one column, although the column doesn’t need to contain any information.

• Rows: A row is made up of one cell from every column defined for the table. There can be 
any number of rows in a table; you are limited only by your disk space or the amount of 
disk space that you defined as the maximum in your database creation definition, or the 
amount of disk space on your server. A row will define a single unit of information, such 
as a user’s bank account details or a product on an e-commerce site. Rows are also called 
records.

Dewson_5882C03.fm  Page 54  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 55

• Stored procedures: When it comes to requiring a program to manipulate or work with 
data, or perform the same data-intensive task repeatedly, it’s often better to store this 
code in a stored procedure. Stored procedures contain one or more T-SQL statements, 
which are compiled and ready to be executed when required. Stored procedures are 
permanently stored in the database, ready for use at any time. 

• T-SQL statement: This is program statement that SQL Server can use to work with your 
data.

• Assemblies: These are new to SQL Server 2005. Assemblies are similar to stored proce-
dures, in that they can be used to manipulate or work with data, but they are used more 
for procedural logic, as you might find in a .NET program. An assembly can be more than 
a replacement for a stored procedure and can take on many different guises—for example, 
you can also build data types using an assembly.

• Indexes: These can be regarded as predefined lists of information that can inform the 
database how the data is physically sorted and stored, or they can be used by SQL Server 
to find rows of data quickly using information supplied by a T-SQL query and matching 
this information to data within columns. An index consists of one or more columns from 
the table it is defined for, but it is not possible for an index to cover more than one table. 
An index in SQL Server is very much like the index of a book, which is used to locate a 
piece of information faster than looking through the book page by page.

• Views: These can be thought of as virtual tables. Views can contain information combined 
from several tables and can present a more user-friendly interface to the data. Views can 
also add a great deal of security to an application, but they do give reduced functionality 
over the use of stored procedures or direct access to the tables. Views can also be indexed to 
speed processing of data within.

• Functions: A function is similar to a stored procedure, but it takes information one row 
at a time or produces information one row at a time as you work through the rows of data 
you are processing. For example, you would use a stored procedure to produce output to 
create a statement, but you would use a function to go through each transaction one at 
a time to calculate interest on a daily basis.

Also within every database is a set of system tables that SQL Server uses to maintain that 
database. These tables hold information about every column, information about every user, 
and many other pieces of information (i.e., metadata). Unlike in previous versions of SQL 
Server, system-table security in SQL Server 2005 has been increased and improved, and you 
cannot access these tables directly—only through views. There is no need to investigate system 
tables at this point, as their data can’t be modified and the information they produce is useful 
only for working with advanced functionality.

Databases Within SQL Server
Several databases are installed and displayed when SQL Server is first installed. This section 
explores each of these databases, so that you’ll know what each does and feel comfortable 
when you come across them outside of this book. 

Dewson_5882C03.fm  Page 55  Monday, January 9, 2006  3:24 PM



56 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Let’s first look at the most important database in SQL Server: the master database. We’ll 
then cover the tempdb, model, msdb, and AdventureWorks/AdventureWorksDW databases. 

master 
master is the most important database in SQL Server, so I must start off with a warning:

Directly alter this database at your own peril! 
There should be no reason to go into any of the system views within this database and alter 

the records or column information directly. There are system functions that allow a construc-
tive alteration of any of the data in an orderly fashion, and these are the only approaches you 
should use to alter the master database.

The master database is at the heart of SQL Server, and if it should become corrupted, there 
is a very good chance that SQL Server will not work correctly. The master database contains the 
following crucial information:

• All logins, or roles, that the user IDs belong to

• Every system configuration setting (e.g., data sorting information, security implementation, 
default language)

• The names of and information about the databases within the server

• The location of databases

• How SQL Server is initialized

• Specific system tables holding the following information (this list is not exhaustive):

• How the cache is used

• Which character sets are available

• A list of the available languages

• System error and warning messages

• Special SQL Server objects called assemblies (tables within every database that deal 
with SQL Server objects and therefore are not specific to the master database)

The  master database the security guard of SQL Server, and it uses the preceding information 
to ensure that everything is kept in check.

■Note  It is crucial that you take a regular backup of the master database. Ensure that doing so is part of 
your backup strategy. Backups are covered in more detail in Chapter 7.

tempdb
The tempdb database is—as its name suggests—a temporary database whose lifetime is the 
duration of a SQL Server session; once SQL Server stops, the tempdb database is lost. When SQL 

Dewson_5882C03.fm  Page 56  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 57

Server starts up again, the tempdb database is re-created, fresh and new, and ready for use. 
There is more to this process, but before we delve into that, you first need to know what the 
tempdb database is used for.

As you know, a database can hold data, and that data can be held in many tables. You use 
commands and functions to retrieve and manipulate that data. However, there may be times 
when you wish to temporarily store a certain set of data for processing at a later time—for 
example, when you pass data from one stored procedure to another that is going to run right 
after the first one. One option is to store that data within the tempdb database. Any temporary 
table created within a stored procedure or query will be placed within the tempdb database. 
This is fine, as long as the tempdb database is not refreshed. If it is, then your data will be gone, 
and you will need to rebuild it.

You may be thinking that this is not an ideal solution. After all, wouldn’t it be wonderful if 
temporary information could be stored somewhere outside of the database? Well, that’s not 
really where tempdb would be used. It really should be thought of only as transitional storage 
space.

Another reason tempdb is refreshed is that not only is it available for a developer to use, but 
also SQL Server itself uses tempdb. Actually, SQL Server uses tempdb all the time, and when you 
reinitialize SQL Server, it will want to know that any temporary work it was dealing with is 
cleaned out. After all, there could have been a problem with this temporary work that caused 
you to restart the service in the first place.

Being just like any other database, tempdb has size restrictions and you must ensure that it 
is big enough to cope with your applications and any temporary information stored within it. 
As you read through the next sections, you will see that a database has a minimum and a 
maximum size. tempdb is no exception to this, and you should ensure that its settings provide 
for expansion so it can grow as required.

■Caution  Because tempdb has a limited size, you must take care when you use it that it doesn’t get filled 
with records in tables from rogue procedures that indefinitely create tables with too many records. If this were 
to happen, not only would your process stop working, but also the whole server could stop functioning and 
therefore impact on everyone on that server!

As indicated in the first paragraph of this section, there’s more to say about tempdb’s refresh 
process, which we’ll examine in the next section.

model
Whenever you create a database, as you’ll do shortly in this chapter, it has to be modeled on a 
predefined set of criteria. For example, if you want all your databases to have a specific initial 
size, or to have a specific set of information, you would place this information into the model 
database, which acts as a template database for further databases. If you wanted all databases 
to have a specific table within them, for example, then you would put this table in the model 
database.

Dewson_5882C03.fm  Page 57  Monday, January 9, 2006  3:24 PM



58 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

The model database is used as the basis of the tempdb database. Thus, you need to think 
ahead and take some care if you decide to alter the model database, as any changes will be 
mirrored within the tempdb database.

msdb
msdb is another crucial database within SQL Server, as it provides the necessary information to 
run jobs to SQL Server Agent. 

SQL Server Agent is a Windows service in SQL Server that runs any scheduled jobs that you 
set up (e.g., jobs that contain backup processing). A job is a process defined in SQL Server that 
runs automatically without any manual intervention to start it. 

As with  tempdb and  model, you should not directly amend this database, and there is no 
real need to do so. Many other processes use msdb. For example, when you create a backup or 
perform a restore, msdb is used to store information about these tasks.

AdventureWorks/AdventureWorksDW
AdventureWorks and AdventureWorksDW are the example databases found in SQL Server if you 
selected to install them during setup. These databases are based on a manufacturing company 
that produces bicycles. They exemplify the new features in SQL Server 2005, such as reporting 
services, CLR functionality, and many others, in a simple, easy-to-follow way.

The following excerpt from the Microsoft documentation provides a concise overview of 
what the AdventureWorks databases are about:

Adventure Works Cycles, the fictitious company on which the AdventureWorks sample
databases are based, is a large, multinational manufacturing company. The company
manufactures and sells metal and composite bicycles to North American, European
and Asian commercial markets. While its base operation is located in Bothell, Wash-
ington with 290 employees, several regional sales teams are located throughout their
market base.

The example databases are not meant for novice SQL Server developers, although you’ll 
have no problems with them after you learn the basics of SQL Server. 

Now that you know what databases are in SQL Server, let’s start building one! We’ll start by 
deciding what type of database to create, depending on what we’ll use it for.

Choosing the Database System Type
Before we can design a database, we have to decide whether the system will be an Online 
Transaction Processing (OLTP) system or an Online Analytical Processing (OLAP) system. We 
could find this out prior to our first meeting with the users, or even during the first meeting, but 
the choice of OLTP or OLAP will probably be indicated in the initial proposal.

Before we make the decision, we need to understand these two key types of systems.

OLTP
An OLTP system provides instant updates of data. There is a good chance that an OLTP data-
base system has a separate user front end written in a .NET language such as Visual Basic .NET 

Dewson_5882C03.fm  Page 58  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 59

(VB .NET), C#, or ASP.NET. This user front end calls through to the database and instantly 
updates any changes a user has made to the underlying data.

OLTP systems require many considerations to ensure they’re fast and reliable, and can 
keep the data integrity intact. When you design an OLTP system, it’s crucial that you get not 
only the database structure right, but also where the data physically resides. It’s common to 
find that OLTP systems are normalized to third normal form (more on what this term means 
later in the chapter), although this may not happen in every case. By normalizing your data, 
you will aid the achievement of one of the main goals of an OLTP system: keeping data updates 
as short as possible. When you normalize your data by removing redundant or duplicate 
columns, you should ensure that the data to be written is as compact as possible. In many 
OLTP systems, normalization is king.

Backups

Many OLTP systems are in use 24 hours a day, 7 days a week. The high frequency of changes in 
such a system’s data means that backing up the database is a necessary and mandatory task. 

It is possible to back up a database while SQL Server is in use, although it is best to perform 
a backup when SQL Server is either not in use or when there will be a small amount of activity 
updating the data taking place. The ideal timeframe might be in the middle of the night or even 
during a break period. 

Whenever you decide to perform a backup, it’s crucial that you constantly monitor and 
check it within an OLTP system to see that the system is still performing as desired. You would 
not be the first person to find that what you thought was a valid backup that could be restored 
in a disaster situation was in fact corrupt, incomplete, or just not happening. Therefore, peri-
odically take a backup from production and reload it in to a secure development area just to 
confirm that it works.

Indexes

Speed is essential to a successful OLTP system. You should see a higher number of indexes 
within an OLTP system as compared to an OLAP system, with these indexes used not only to 
help relate data from one table to another, but also to allow fast access to rows within tables 
themselves.

■Note  Chapter 6 covers how to build indexes, how indexes work, and how to manage indexes within 
your solutions. 

OLAP
When considering an OLTP system, you must keep in mind that an update to the database 
could happen at any moment in time, and that update must be reflected within the database 
instantly. It is also crucial that the system performs many updates simultaneously, and that it 
does not corrupt any data when it does so.

An OLAP system is designed with the premise that the data remains fairly static with infre-
quent updates. These updates could be every night, weekly, monthly, or any other time variant 

Dewson_5882C03.fm  Page 59  Monday, January 9, 2006  3:24 PM



60 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

as long as updates aren’t happening on a frequent basis, like in an OLTP system. As the name 
“Online Analytical Processing” suggests, in this system a large amount of the processing 
involves analysis of existing data. There should be little or no updating of that data—ostensibly 
only when the data within the analysis is found to be incorrect or, as mentioned previously, 
when more data is being applied for analysis. Backing up the data will probably take place only 
as a “final action,” after the database has had changes applied to it. There is no need to make it 
a regular occurrence.

Systems designed for OLAP sometimes do not follow any design standards or normaliza-
tion techniques, and most certainly have fewer indexes than an OLTP system. You tend to see 
no normalization in an OLAP system, as it is easier to take data and to slice and dice it without 
having to bring in data from a normalized table. There will be few or no updates taking place in 
an OLAP system, so performing transactions and keeping them compact aren’t concerns. Most 
OLAP systems will contain no normalization. Quite often, you’ll find one or two large flat tables—
rather than several tables related together—and therefore as there are fewer relationships, 
there will be fewer indexes.

■Note  OLAP systems are also known as data warehouses, although data warehousing is only one part 
of the overall OLAP system design. Put simply, a data warehouse is the database that holds the information 
used within the OLAP system.

Example System Choice 
So, when you take into consideration all of the information presented in the preceding sections, 
it is fairly obvious that although the data updates will be relatively infrequent in our example 
system (in other words, only when a financial transaction occurs or a statement is generated), 
there will be updates occurring online with instant results expected. Therefore, our system will 
be an OLTP system. 

Gathering the Data
One of the first things you should do before building a database is find out what information 
the database system has to hold and also how that information should be stored (e.g., numer-
ical or text, length, etc.). To achieve this, you’ll perform a data-gathering exercise, which could 
involve talking with those people who are the owners of the system and those who will be using 
the system.

For larger systems, you would hold several meetings, each of which would pinpoint one 
area of the system to discuss and research. Even then, several meetings may be spent going 
back and discussing each area. You could also conduct interviews, distribute questionnaires, 
or even just observe any existing processes in action, all in an effort to gather as much informa-
tion as possible about the database and how it will be used.

The key indicator of whether or not a database solution is successful is not found so much 
in the building of the system, but rather in the information gathering process before the first 
line of code is actually written. If you’re working off of an incorrect piece of information, or 

Dewson_5882C03.fm  Page 60  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 61

you’re missing an element that might be crucial to the final solution, then already the system is 
flawed. Involving the users as much as possible at the earliest stage and then including them as 
the design progresses should result in a significant reduction of errors and missing parts in the 
final product.

For our example financial program, the first people we want to talk to are the owners of the 
data that will be displayed. These are the people in the banking department who handle checks, 
cash withdrawals, credit card transactions, and so forth, and also those people who handle the 
purchase and sale of stock shares, unit trusts, life insurance policies, and so on. These people 
will know what documentation or statements are sent to which customers, as well as the infor-
mation those statements contain. In addition, these people will likely have a good idea about 
how customers may want to reconcile these statements, and also what data will be allowed to 
be downloaded and inserted into your SQL Server database. 

At the first meeting, we examine all the documentation to see what information is stored 
in the current system. We find out at the meeting that the current system sends out different 
statements, one statement for the customer’s current account and a separate statement for 
each financial product the customer owns. When we examine the statements, we focus on the 
information each contains that we need to capture to produce a similar statement. This could 
be not only customer-related information, but also regulatory statements.

With the information from all the documentation in hand, we can start discussions about 
what is required from the system we are to build. Obviously, a great deal of information will be 
discussed in these meetings, some of it useful and some not. Make sure that the discussions are 
recorded in the order in which the people present make points, and not in “logical” order. This 
simulates meetings where people “remember” items that have to be catered for, where one 
point raised may make someone remember a point elsewhere.

Out of our initial discussions, we note the following points:

1. The software must be able to handle working with more than one product. The main 
product is a current checking account that a bank or a single user might use to hold 
banking details. The system also must be able to manage by-products such as loans, life 
insurance policies, and car insurance policies, and it should be able to record any trading of 
shares on the stock market.

2. Statements are produced on a monthly basis or at any time the customer requests them 
from the system. If a customer requests a statement within the month, there will still be 
a statement produced for that month.

3. Interest accrues daily on accounts that are in credit and is subtracted daily from over-
drawn accounts.

4. Annual, monthly, or single-premium products can be held for a customer or held by a 
customer in a standalone version of the system. We need to know when to start and 
stop collecting payments, and we also need to determine which products we send out 
a reminder for (e.g., a notice to let a customer know her car insurance policy is up 
for renewal).

5. If a collection for a product failed, the system needs to recognize this so the amount can 
be collected the next time a collection is due.

Dewson_5882C03.fm  Page 61  Monday, January 9, 2006  3:24 PM



62 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

6. Each product will have its own statement, but only banking statements will be pro-
duced on request.

7. Trading of stock shares is allowed, so the system needs to record and display the current 
value for a customer’s specific share at any time.

Notice how the information in this list is in no set order, as this is how information tends 
to come out. Also notice that there is also a little bit of duplication of information in points 2 
and 6; if this is not realized and understood, it could cause problems. 

■Note  This is the only data-gathering exercise performed for our example database. The information gath-
ered here should be crosschecked later in the design phase with the users, although this is beyond the scope 
of this book.

Determining the Information to Store 
in the Database
Using the notes we took in the previous section, we’ll now try to find every area each point has 
an interest in. Looking at the list of areas that require information to be recorded and stored 
within our database, it’s clear we need to arrange them in some sort of order. We’re still looking 
at our solution from a logical viewpoint, and we’re not ready to start building anything in SQL 
Server yet. 

First off, let’s scan through the points listed and try to group the information into specific 
related areas. The list items are numbered, so we’ll be able to easily demonstrate the groupings. 
The following list shows some initial groupings and reasons for them:

• Financial products

• 1: We are dealing with more than one product. We need to record each product.

• 2: Statements will be produced for each product, and specific product information for 
those statements would be recorded here, such as the name of the product.

• 4: We need to record what type of premium is associated with this product.

• 5: This point deals with a financial products premium collection.

• 6: This point deals again with statement production.

• Customers 

• 2: Customers can request statements.

• 3: We need to record the amount of interest for a customer.

• 4: A list of the different products associated with each customer is required.

• 7: For each share, we need to keep a current value.

Dewson_5882C03.fm  Page 62  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 63

• Customer addresses 

• 2: We need each customer’s address in order to send a statement.

• 6: As with point 2, we need the customer’s address to send a statement.

• Shares 

• 1: We trade shares on the stock market, therefore we need to record share 
information.

• 7: We need to keep a given share’s value.

• Transactions

• 2: A list of transactions is required for statement production.

• 4: Regular and ad hoc premiums have to be recorded.

• 5: We need to record failed transaction collection.

• 6: Statements will be produced for each product.

These five distinct groups could translate into five distinct tables within our proposed 
database. At this point in the logical design process, we would base our design on these five 
tables. From here, it is then possible to start examining the information that should go into 
these logical tables. There might be duplication of data with columns in the “wrong” table, and 
the potential for multiple columns to hold “similar” information or the same column in more 
than one table. 

Let’s look at the list points in turn in the following sections and examine what information 
should be stored in each “table.” The information listed in the sections that follow is taken 
from the discussion with the users, and a list of the columns is supplied that may initially form 
the basis of the tables. Each column has a description, so when we go back to the users they’ll 
understand the purpose of the columns. Also at this stage, we’ll add columns to hold any iden-
tifiers for finding the records; in the following sections, these are denoted with (K). These are 
potentially our keys, which we’ll cover in more detail later in the “Building Relationships” 
section of this chapter.

Financial Products
The aim of this table is to hold the different products the company sells. From bank accounts 
to life insurance, all products will be held here. This table will be used when producing state-
ments and creating transactions when the user’s balance changes, for example, when buying 
further shares. 

• Financial Product ID (K): This is a unique identifier.

• Financial Product Name: This is the name of the product, such as checking account, 
share, loan, and so forth.

• Frequency of Payment: For each product, this indicates how often payments are 
collected for those products that require it, such as a loan, a regular savings account, 
and so on.

Dewson_5882C03.fm  Page 63  Monday, January 9, 2006  3:24 PM



64 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Customers
This table will hold customer details, such as the customer’s products and balances. To clarify 
and reiterate, there will be items currently within this table that will no longer reside within it 
once we normalize the data. For example, you will see an attribute for “Account Numbers for 
Each Product.” When we proceed through normalization, you will see how attributes such as 
this are “moved.”

• Customer Id (K): This is a unique ID for each customer.

• Financial Product Balance: This is the current balance of each product.

• Title: This is the customer’s title (Mr., Ms., etc.).

• First Name: This is the customer’s first name.

• Last Name: This is the customer’s last name.

• Address: This is the customer’s address.

• Account Numbers for Each Product: This is the account number of the each product the 
customer owns.

• Financial Products Details: This is the details of each financial product the customer 
owns.

Customer Addresses
This table will not exist, as we will get this information from a third-party address database.

Shares
This table holds the details of each stock share, such as its current price and its price history.

• Share Price Id (K): This is a unique ID for each share.

• Share Name: This is the name of the share.

• Current Price: This is the current price of the share.

• Previous Price: This contains previous prices of the share.

• Price Date: This is the date the price was set at this level.

• Stock Market Ticker ID: This is the ID for this share on the stock market.

Transactions
This table holds the details of each financial transaction that takes place for each product.

• Financial Transaction ID (K): This is a unique ID for each financial transaction.

• Customer ID: This is the customer’s unique identifier, as defined in the “Customers” 
section earlier.

Dewson_5882C03.fm  Page 64  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 65

• Date of the Transaction: This is the date the transaction took place.

• Financial Product: This is a link to the financial products table.

• Amount: This is the amount the transaction is for.

• Debit/Credit: This flag denotes whether the transaction is a debit or a credit.

External and Ignored Information
At this point, we have a first draft of the logical tables and attributes, but are there still no rela-
tionships between these tables. There is one more piece of information that we need to know, 
which concerns information not recorded, as it won’t be included within this database.

The example database will not hold every item of information that is required to make the 
system complete. This is to keep the example simple and to avoid having extra tables that will 
not be used within the book’s exercises. However, there may be other times when you may 
wish to implement only some of the tables—for example, when performing a viability study (in 
other words, when you’re building part of a system to prove the viability of an idea). Or perhaps 
there are third-party tools available that can fill in the gaps. 

For example, a system might use an external addressing system, and instead of holding all 
customer addresses within the system, it may use a cross-reference ID. A table could also exist 
to hold all of the financial transactions for products not covered where specialized tables are 
required, such as for company pension plans.

Next, let’s move on to consider relationships between the tables in the database.

Building Relationships
Much like people, databases can be temperamental creatures and need a bit of TLC. Good relation-
ships can provide this kind of care and attention. 

At the moment, the tables in our example database are essentially single, unrelated items. 
Of course, they have columns with the same name in different tables, but there is nothing tying 
them together. This is where defining relationships between the tables comes in. Binding the 
tables together in this way ensures that changes in one table do not cause data in another table 
to become invalid.

Using Keys
A key is a way of identifying a record in a database table. We can use keys to build relationships 
between tables because a key refers to a whole record—a property we can exploit when working 
with columns that, for example, have the same name in different tables. Using a key as a shortcut, 
we can make the link between the two very easily. Keys can also uniquely identify a record in a 
table when that is an important part of the database’s design.

A key can be defined on a single column if that’s enough to identify the record, or it can be 
defined on more than one column if not. The sections that follow introduce the three kinds of 
keys you can use in a database: primary, foreign/referencing, and candidate/alternate. We’ll 
also look at using a SQL Server method called a constraint instead of a primary key.

Dewson_5882C03.fm  Page 65  Monday, January 9, 2006  3:24 PM



66 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Primary Key

The primary key is probably the most important key type. First and foremost, the column (or 
columns) on which the primary key is defined must only contain unique values. A primary key 
cannot be defined on a column, or a sequence of columns, that does not return a single row. To 
this end, it is not possible to define a primary key for any columns that allow  NULL values. A further 
restraint is that a table may have only one primary key.

A primary key can be used to link data from one table to data from another. For instance, 
in our example database we have two tables: one holding customers and another holding 
customer banking transactions. We define a primary key on the customers table on the customer 
ID that is generated uniquely each time a new customer record is inserted. This is then used to 
link to the many records within the banking transactions table, to return all the transactions for 
that customer ID. The link between these two tables is the customer ID, which as previously 
mentioned is defined as a primary key in the customers table. 

Later on, you’ll see how to join tables together and define a relationship between them. 
A join and a relationship essentially mean the same thing: a logical link between two or more 
tables that can be defined through a specific column or set of columns between the tables.

Foreign/Referencing Key

There will be times when you have two or more tables linked together in a relationship, as 
demonstrated in the previous section’s example, where the link between the customers and 
transactions tables is the customer ID column. This column returns a unique row in the customers 
table; hence it is defined as the primary key of the customers table. However, there has to be a 
corresponding foreign (or referencing) key in the transactions table to link back to the customers 
table, which is the customer ID column of the customers table. 

When it comes to creating relationships within our example database, you will later see 
how a foreign key is created that will create a link, or a relationship, between two columns. This 
link is created through a constraint, which is a method SQL Server uses to check the details 
built into the relationship. From the viewpoint of a foreign key, this constraint, or check, will 
ensure that the relationship follows the conditions set with it. We’ll examine foreign keys in 
more depth in the “More on Foreign Keys” section.

Candidate/Alternate Key

As mentioned previously, a table can have only one primary key. However, there may be another 
key that could just as easily be defined as a primary key. This is known as a candidate key, as it 
is a candidate for being the primary key. 

There is no logical difference at all between the definition of a candidate key and a primary 
key. For example, if we have a table that holds spare parts for a General Motors (GM) vehicle, 
we could have an internal GM part number to use when ordering parts at the head office for 
various GM branches. This part number would be unique and would likely be used as the 
primary key. However, a part number is also created by each of the manufacturers, which is 
unique to them. This, too, could be a primary key if we include the supplier identifier in the 
database. We can’t have two primary keys, and we’ve chosen the GM part number as the 
primary key, but we could create a candidate key using the manufacturer identifier and part 
number.

Dewson_5882C03.fm  Page 66  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 67

A Unique Constraint Instead of a Primary Key

This is where having a constraint defined will ensure that unique values can only be entered 
into columns defined within the constraint. This sounds very much like the previous primary 
key definition, but there are differences. 

A unique constraint is not a primary key, but the column or columns defined within the 
constraint could be a primary key. Also, a unique constraint can contain NULL values, but recall 
that a primary key cannot. However, NULL is treated as any other value within a column; there-
fore, the columns used to make a unique constraint must remain unique, including the NULL 
value, when you’re looking to insert or update data. Finally, it is possible to have multiple 
unique constraints, but you can have only one primary key.

Creating Relationships
A relationship in a SQL Server database is a logical link between two tables. It is impossible to 
have a physical link; although, as you will see later, a physical line is drawn between two tables 
when designing the database. To have a physical link would mean the actual data linking the 
two tables would be stored only once in a central location, and that information within the keys 
linking the tables would be stored more than once, which is just not the case.

When defining a logical relationship, we’re informing SQL Server that we’ll be linking a 
primary key from the master table to a foreign key in another table. So already there is a need 
for two keys: one on each table. 

The following sections present specific details about relationships, starting with a look at 
how relationships work with the concept of referential integrity.

Relationships and Referential Integrity

A relationship can be used to enforce data integrity. In other words, if you are expecting data in 
one table because there is data in another, you can place a relationship between these two 
tables to ensure that no SQL command breaks this rule. However, don’t confuse referential 
integrity with other processes that are associated with maintaining data integrity, such as 
placing checks or default values on columns to ensure that values for a specific column are valid. 

Referential integrity revolves around the idea that there are two tables in the database that 
contain the same information, and it requires that the duplicated data elements are kept consis-
tent. For example, if you have a primary key in one table and a foreign key in another table that 
have data that matches exactly, then it is important that both pieces of data either change 
together or don’t change at all. Relationships are not the only way referential integrity can be 
enforced; you can also use triggers to ensure that data remains valid (we’ll examine this further 
in Chapter 13).

For instance, our example banking system includes the customers and transactions tables. 
It is not possible to record customer transactions without a customer record. As a result, we 
have to use referential integrity to enforce data integrity between these two tables, so that a 
customer record can’t be removed from the database while there are customer transaction 
records for that customer. Similarly, this rule should allow the removal of a customer record 
when there are no customer transaction records.

Another result of enforcing referential integrity is that it isn’t possible for a customer trans-
action to be entered using a customer reference number that doesn’t exist within the customers 

Dewson_5882C03.fm  Page 67  Monday, January 9, 2006  3:24 PM



68 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

table. Instead, to enter a customer transaction in this situation, we first have to create the 
customer record, and then we can carry out the transaction.

Finally, if we had a customer record and related customer transaction records, we couldn’t 
alter the customer reference number in the customer record without first altering the customer 
transaction records and checking that the reference we’re altering the customer transaction 
records to already exists.

So, there are a number of rules to follow if we want to maintain the integrity of our data. If 
we so desired, we could use referential integrity to enforce data integrity. However, a flip side 
to all of this to be aware of is that we can keep data integrity within a system and not use refer-
ential integrity. Instead, we can create stored procedures or triggers, which are types of programs 
within SQL Server, to do this task. We’ll look at these topics in Chapters 10 and 13.

Using stored procedures and triggers is a possible but undesirable solution, because it 
leaves our system open to instances where data integrity is not kept, because of holes within 
the design of the system or perhaps because a developer doesn’t have the correct processing 
sequence to ensure that all data is always valid. Not only that, but if someone adds data directly 
to a table, the referential integrity will be lost. That said, having the data integrity checks in an 
application does lead to less traffic flow over the network, as all the validation is done on the 
front end.

There is one more important point about referential integrity before we move on to discuss 
database relationship types: if you want to maintain referential integrity by creating a relation-
ship between two tables, then these two tables must be in the same database. It is not possible 
to have referential integrity between two databases.

Types of Relationships

Three main relationship types can exist in a database:

• One-to-one 

• One-to-many

• Many-to-many

The sections that follow cover each type, so when it comes to creating a relationship, you’ll 
know which one to create, when to create it, and why. We’ll start off by looking at the one-to-
one relationship, which is perhaps the easiest type of relationship to understand, although it is 
one of the least used.

One-to-One

This relationship type isn’t very common within a working database. Typically, there is no real 
reason for one record in one table to match just one record in another. This scenario would 
really only exist, for example, if you were splitting a very large table into two separate tables. 

To illustrate the one-to-one relationship, imagine that in our example bank database there 
is a table that holds PIN numbers for ATM cards, keeping them completely separate from the 
remainder of the customer records (see Figure 3-1). In most cases, there would be one PIN 
number record for each customer record, but there may be exceptions—for instance, a high-
interest deposit account may not have a card, and therefore there would be no associated PIN 
number record.

Dewson_5882C03.fm  Page 68  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 69

Figure 3-1. One-to-one relationship

One-to-Many

Perhaps the most common relationship found in a database is the one-to-many relationship. 
This is where one master record is linked with zero, one, or more records in a child table. 

Using our banking example, say we have a customer master record along with any number 
of associated transaction records. The number of these transaction records could range from 
none, which corresponds to when a customer is new to the bank and hasn’t made a deposit or 
performed a transaction, to one or more, which corresponds to when there has been an initial 
deposit in an account, and then further deposits or withdrawal transactions after that (see 
Figure 3-2). 

Figure 3-2. One-to-many relationship

You’ll see this concept in action again in the customer-to-transactions relationship we’ll 
build for our solution.

Many-to-Many

Many-to-many is the final relationship type that can exist in a database. This relationship 
can happen relatively frequently where there are zero, one, or indeed many records in the 
master table related to zero, one, or many records in a child table. 

An example of a many-to-many relationship might be where a company has several depots 
for dispatching goods, seen as the master table, which then dispatch goods to many stores, seen 
as the child table (see Figure 3-3). The depots could be located and organized so that different 
depots could all supply the same store, and they could be arranged in groups of produce, frozen, 
perishables, and bonded. In order for a store to be supplied with a full complement of goods, 

Dewson_5882C03.fm  Page 69  Monday, January 9, 2006  3:24 PM



70 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

it would need to be supplied by a number of different depots, which would typically be in 
different locations.

Figure 3-3. Many-to-many relationship 

When building relationships within a database, it is necessary to have a foreign key. 
I covered foreign keys briefly earlier in the chapter; let’s take a closer look at them in the 
next section. 

More on Foreign Keys
A foreign key is any key on a child table where a column, or a set of columns, can be directly 
matched with exactly the same number and information from the master table. By using this 
foreign key, you can build up the data to return via a relationship.

However, a foreign key does not have to map to a primary key on a master table. Although 
it is common to see a foreign key mapped to a primary key, as long as the key in the master 
table that is being mapped to is a unique key, you can build a relationship between a master 
table and a child table. 

The whole essence of a foreign key lies in its mapping process and the fact that it is on the 
child table. A foreign key will exist only when a relationship has been created from the child 
table to the parent table. But what exactly are the master table and the child tables? To demon-
strate, let’s refer back to our relationship examples. Take, for example, the one-to-many 
relationship. The master table would be on the left-hand side, or the “one” side of the relationship, 
and the child table would be on the right-hand side, or the “many” side of the relationship (see 
Figure 3-4).

There is one final point to mention concerning foreign keys, relationships, and the master 
and child tables. It is totally possible for the master table and the child table to be the same 
table, and for the foreign key and the unique key to both be defined within the same table. This 
is called a self-join or a reflexive relationship. You don’t tend to see this much within a data-
base, as it is quite an unusual situation, although you could use it to ensure that the data in one 
column exactly matches the information in another column, just as in any other join. 

For example, say you have a table built around customers, and you have two columns, one 
of which is a parent customer ID, which holds an ID for the head office and is used to link all 
the branches. If the head office is also seen as valid branch of the conglomerate, the second 
column could be the specific branch ID, and you could put a link between these two columns 
so that there is still a valid link for the head office as a branch as well (see Figure 3-5). Another 
example is in an employees table where all employees reside, with a self-join from an employee 
back to his or her manager.

Dewson_5882C03.fm  Page 70  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 71

Figure 3-4. Foreign key

Figure 3-5. Foreign keys in same table

Now that we’ve looked at relationships, let’s move on to cover how to normalize the database.

Normalization
Normalizing a database is the science of reducing any duplication of data within tables. You 
can then build multiple tables related to one another through keys or indexes. The removal 
of as much duplication of data will lead to smaller, more compact databases. There will be a 
reduced chance of confusion over which column holding the “same” data is correct or should 

Dewson_5882C03.fm  Page 71  Monday, January 9, 2006  3:24 PM



72 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

be modified, and there will also be less overhead involved in having to keep multiple columns 
of data up to date. 

■Note  Just a reminder that we’re still in the logical phase of building our solution, and we’re not ready to 
start building our database within SQL Server.

A database designer should not normalize with impunity, as this may have an effect on 
speed within the database and the retrieval of data. In good normalization, the removal of the 
duplication of data will provide faster sorting of data and queries that run faster, thereby improving 
performance. Although normalization will produce an efficient database, it is possible to over-
normalize data by creating too many relationships and too many slim, small tables, so that to 
retrieve one piece of information requires access to many tables and many joins between these 
tables. A knowledgeable designer knows when to stop normalizing and does not take things 
just that stage too far, such as having too many relationships. This knowledge comes with 
experience and practice mainly, but in our database example you’ll learn where to “stop.” 

■Tip  When any reference tables return one row of data without further table references to retrieve that 
information, that’s a signal to stop normalization.

In this section of the chapter, we’ll model our example in a method known as logical 
modeling. The purpose of the logical model is to show the data that the application must store 
to satisfy business requirements. It demonstrates how this data is related and explores any 
integration requirements with business areas outside the scope of the development project. 
It is created without any specific computer environment in mind, so no optimization for 
performance, data storage, and so forth is done. 

In logical modeling, the term entity is used to mean a conceptual version of a table. As we’re 
still in the logical modeling stage of designing our database, I’ll use “entity” rather than “table” 
in this discussion, since it is less tied to implementation. Also within logical modeling, a column of 
data is referred to as an attribute. To build our logical model, we’ll take the information gathered 
previously in the chapter and implement attributes in our entities. From that, we’ll see how we 
need to alter our design.

The question remains, what should be contained in an entity? Three principles should 
govern the contents of an entity:

• Each entity should have a unique identifier.

• Only store information that directly relates to that entity.

• Avoid repeating values or columns.

The sections that follow provide more detail about each principle.

Dewson_5882C03.fm  Page 72  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 73

Each Entity Should Have a Unique Identifier
It must be possible to find a unique row in each entity. You can do this through the use of a 
unique identifying attribute or the combination of several attributes. However, no matter 
which method you use, it must be impossible for two rows to contain the same information 
within the unique identifying attribute(s).

Consider the possibility that there is no combination of attributes in an entity that can 
make a row unique, or perhaps you wish to build a single value from a single attribute. SQL 
Server has a special data type, called unique identifier, that can do this, but a more common 
solution is to build a column attribute with an integer data type, and then set this up as an 
identity column. You’ll learn more about this technique when building the tables in Chapter 5.

Only Store Information That Directly Relates to That Entity
It can be very easy in certain situations to have too much information in one entity and there-
fore almost change the reason for the existence of the specific entity. Doing so could reduce 
efficiency in an OLTP system, where duplicate information has to be inserted. It could also lead 
to confusion when an entity that has been designed for one thing actually contains data for 
another.

Avoid Repeating Values or Columns
Having attributes of data where the information is an exact copy of another attribute within 
either the same entity or a related entity is a waste of space and resources. However, what tends 
to happen is that you have repeated values or attributes within two or more tables, and therefore 
the information is duplicated. It is in this scenario that you are expected to avoid the repeating 
values and move them elsewhere.

Normalization Forms
Now that you know what should be contained within an entity, how do you go about normal-
izing the data? The normalization forms addressed within this chapter are as follows:

• First normal form (1NF)

• Second normal form (2NF)

• Third normal form (3NF)

There are a number of other, “higher” normal forms, but they are rarely used outside 
academic institutions, so they will not be covered here.

First Normal Form

To achieve 1NF within a database, it is required that you eliminate any repeating groups of 
information. Any groups of data found to be repeated will be moved to a new table. Looking at 
each table in turn, we find that we have two tables in our example database that potentially 
flout the first requirement of 1NF: customers and shares.

Dewson_5882C03.fm  Page 73  Monday, January 9, 2006  3:24 PM



74 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Customers

There are two columns with possible repeating values in this table: 

• Title: A customer’s title will be Mr., Miss., Ms., or Mrs., all of which you could put in to a 
reference table. Some corporations do this; others don’t. It all depends on whether you 
want to restrict what users can enter. 

• Address: The address should be split out into separate lines, one for each part of the 
address (e.g., street, district, etc.). It is probably well worth having a reference table for 
cities, states, and countries, for example.

Shares

There is one column that will possibly repeat: share name. This is really due to the shares table 
actually doing two jobs: holding details about the share, such as its name and the market ticker, 
which really are unique; and holding a historical list of share prices. This table actually needs 
to be split into Share Details and Share Prices, which we’ll see happening when we discuss 
the 3NF.

Second Normal Form

To achieve 2NF, each column within the table must depend on the whole primary key. This 
means that if you look at any single column within a table, you need to ask if it is possible to get 
to this information using the whole key, or just part of the key. If only part of the key is required, 
then you must look to splitting the tables so that every column does match the whole key. So, 
you would look at each column within the table and ask, “Can I reach the information contained 
within this column just using part of the key?” All of the tables use an ID as the primary key, and 
only one column will define that ID. Therefore, to break 2NF with this is almost impossible. Where 
you are more likely to break 2NF is a scenario in which the primary key uses several columns.

If we look at all the tables within our example, every column within each table does require 
the whole key to find it.

Third Normal Form

To achieve 3NF, you must now have no column that is not defined as a key be dependent on 
any other column within the table. Further, you cannot have any data derived from other data 
within the table.

The Customers table does have data derived from another table, with account numbers for 
each product the customer has bought and financial product details. This means that the 
account number plus details about the product such as the date opened, how much is paid 
with each payment, and the product type do not belong in the Customers table. If such informa-
tion did remain in the table, then Customers would have multiple rows for the same customer. 
Therefore, this table also now needs to be split into customer details such as name and address, 
and customer products, such as a row for each product bought with the customer details about 
that product.

We have now reached full normalization to 3NF of the tables within our database. Let’s 
take a moment to clarify where we are now. Figure 3-6 shows that we’re now moving from a 
logical model to a physical model, where we are physically defining what information is stored 
where.

Dewson_5882C03.fm  Page 74  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 75

Figure 3-6. Physical database model

Denormalization
Despite having normalized our data to be more efficient, there will be times when denormal-
izing the data is a better option. Denormalization is the complete opposite of normalization: it 
is where you introduce data redundancy within a table to reduce the number of table joins and 
potentially speed up data access. Instances of denormalization can be found in production 
systems where the join to a table is slowing down queries, or perhaps where normalization is 
not required (e.g., when working with a system in which the data is not regularly updated). 

Just because others say your data should be totally normalized, this is not necessarily true, 
so don’t feel forced down that route. The drawback of denormalizing your data too far, though, 
is that you’ll be holding duplicate and unnecessary information that could be normalized out 
to another table and then just joined during a query. This will, therefore, create performance 
issues as well as use a larger amount of data storage space. However, the costs of denormaliza-
tion can be justified if queries run faster. That said, data integrity is paramount in a system. It’s 
no use having denormalized data in which there are duplications of data where one area is 
updated when there’s a change, and the other area isn’t updated. 

Denormalization is not the route we want to take in our database example, so now that we 
have all the data to produce the system, it’s time to look at how these tables will link together.

Dewson_5882C03.fm  Page 75  Monday, January 9, 2006  3:24 PM



76 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Creating the Sample Database 
Let’s now begin to create our example database. In this section, we’ll examine two different 
ways to create a database in SQL Server:

• Using the SQL Server Management Studio graphical interface

• Using T-SQL code

Both methods have their own merits and pitfalls for creating databases, as you’ll discover, 
but these two methods are used whenever possible throughout the book, and where you might 
find one method is good for one task, it may not be ideal for another. Neither method is right 
or wrong for every task, and your decision of which to use basically comes down to personal 
preference and what you’re trying to achieve at the time. You may find that using T-SQL code 
for building objects provides the best results, as you will see instantly the different possible 
selections. However, if the syntax for the commands is not familiar to you, you may well choose 
to use a wizard or SQL Server Management Studio. Once you become more comfortable with 
the syntax, then a Query Editor pane might become your favored method.

We’ll also examine how to drop a database in SQL Server Management Studio.

Creating a Database in SQL Server Management Studio
The first method of creating a database we’ll look at is using SQL Server Management Studio, 
which was introduced in Chapter 2.

Try It Out: Creating a Database in SQL Server Management Studio

1. Before creating the database, you’ll need to start up SQL Server Management Studio. To do this, select 
Start ➤ All Programs ➤ Microsoft SQL Server 2005 ➤ SQL Server Management Studio. 

■Tip  Throughout the book examples, I’m working on a server called XP-PRO using the default installed 
instance. Replace your server and instance where appropriate.

2. Ensure that you have registered and connected to your server. If the SQL Server service was not previ-
ously started, it will automatically start as you connect, which may take a few moments.

3. In Object Explorer, expand the Databases node until you see the individual databases you installed earlier in 
the book. You will find nodes for other areas, such as System Databases, which hold the databases 
master, msdb, and so forth. Ensure that the Databases folder is highlighted and ready for the next action, 
as shown in Figure 3-7.

Dewson_5882C03.fm  Page 76  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 77

Figure 3-7. The Database node in Object Explorer

A minimum amount of information is required to create a database:

• The name the database will be given

• How the data will be sorted

• The size of the database

• Where the database will be located 

• The name of the files used to store the information contained within the database

SQL Server Management Studio gathers this information using the New Database menu option.

4. Right-click the Databases folder to bring up a context-sensitive menu with a number of different options. 
Select New Database, as shown in Figure 3-8.

Figure 3-8. Selecting to create a new database 

5. You are now presented with the New Database screen set to the General tab. First enter the name of the 
database you want to create—in this case, ApressFinancial. Notice as you type that the two file names 
in the Database Files list box also populate. This is simply an aid, and the names can be changed (see 
Figure 3-9). However, you should have a very good reason to not take the names that the screen is creating, 
as this is enforcing a standard.

Dewson_5882C03.fm  Page 77  Monday, January 9, 2006  3:24 PM



78 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Figure 3-9. General settings in the New Database dialog

The General dialog within this option collects the first two pieces of information. The first piece of information 
required is the database name. No checks are done at this point as to whether the database exists (this comes when 
you click OK); however, there is some validation in the field so that certain illegal characters will not be allowed.

■Note  Illegal characters for a database name are as follows:

" ' */?:\<> - 

Keep to alphabetic, numeric, underscore, or dash characters. Also, you may want to keep the database name 
short, as the database name has to be entered manually in many parts of SQL Server.

Below the database name is the owner of the database. This can be any login that has the authority to create data-
bases. A server in many—but not all—installations can hold databases that belong to different development groups. Each 
group would have an account that was the database owner and at this point you would assign the specific owner. 
For the moment, let it default to the <default> account, which will be the account currently logged in to SQL 
Server; you’ll learn how to change this later. If you’re using Windows authentication, then your Windows account will 
be your user ID, and if you’re using SQL Server authentication, it will be the ID you used at connection time.

The database owner initially has full administration rights on the database, from creating the database, to modifying 
it or its contents, to even deleting the database. It is normal practice for a database administrator type account to 

Dewson_5882C03.fm  Page 78  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 79

create the database, such as a user that belongs to the Builtin\Administrators group, as this is a member of 
the sysadmin role, which has database creation rights. 

Ignore the check box for full-text indexing. You would select this option if you wanted your database to have columns 
that you could search for a particular word or phrase. For example, search engines could have a column that hold 
a set of phrases from web pages, and full-text searching could be used to find which web pages contain the words 
being searched for.

The File Name entry (off screen to the right in Figure 3-9) is the name of the physical file that will hold the data within 
the database you’re working with. By default, SQL Server takes the name of the database and adds a suffix of 
_Data to create this name.

The database files are stored on your hard drive with an extension of .MDF—for example, 
ApressFinancial_Data.MDF. In this case, .MDF is not something used by DIY enthusiasts, but it actually stands 
for Master Data File and is the name of the primary data file. Every database must have at least one primary data 
file. This file holds not only the data for the database, but also the location of all the other files that make up the 
database.

It is also possible to have secondary data files. These would have the suffix .NDF. Again, you could use whatever 
name you wished, and in fact you could have an entirely different name from the primary data file. However, if you 
did so, the confusion that would abound is not worth thinking about. So do use the same name, and if you needed 
third, fourth, and so on, then add on a numerical suffix.

You would place the file name for a secondary data file in the row below the ApressFinancial_Data entry in the Data 
Files list box, after clicking the Add button. I’ll come back to why you can have a secondary data file when I talk 
about file properties later in this section.

The File Type column shows whether the file is a data file or a log file, as in a file for holding the data or a file for 
holding a record of the actions done to the data.

The next column in the grid is titled Filegroup. This allows you to specify the PRIMARY filegroup and any SECONDARY data 
file groups for your database. Every database must have a Primary filegroup. To designate secondary data files, 
click the Add button to add a new data or log file and then click on the drop-down arrow on the third row. This will 
bring up a dialog box where you can enter SECONDARY into a Name field (see Figure 3-10). You may use any name 
for secondary data files, but it is advisable to choose a name that closely resembles the primary filegroup name. You 
can also make that new name the default filegroup, which will become the filegroup to which further additions of 
data files will be assigned. Also, if you make the new name the default filegroup, it will be in to this area that tables, 
views, and so on will be assigned unless otherwise specified.

Figure 3-10. New filegroup

Dewson_5882C03.fm  Page 79  Monday, January 9, 2006  3:24 PM



80 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

The logic behind secondary data files is relatively straightforward. A primary filegroup will always—and must 
always—contain the system tables that hold the information about the database, the tables, the columns, and so 
on. If you have the Autogrowth file option (covered shortly) switched off, then the primary filegroup is likely to run 
out of space at some point. If this happens, and no secondary data files are specified, then the database will grind 
to a halt until some space is added. However, in most instances, especially when you’re first starting out, you can 
leave the database with only a primary filegroup. Don’t misunderstand filegroups and space, though: filegroups are 
there to help you organize your files within your database storage, and the files that make up the filegroup may span 
several disks for a performance issue. You will move files around filegroups for speed, efficiency, security, backups, 
and a number of other reasons. However, you can still hold all the files in one filegroup—the primary filegroup—
which is what you’ll do throughout this book.

■Note  Remember that the primary filegroup may hold not only data, but also the system tables, so the 
primary filegroup could fill up purely with information about tables, columns, and so forth.

The next item is the Initial Size (MB) column. The initial size of the database is its size when empty. Don’t forget that 
the database won’t be totally empty, and some of the space will be initially taken up with the system tables. It is 
impossible to say, “I’m creating a database, and the initial size must be nnMB”—the database size depends on 
many factors, such as the number of tables, how much static information is stored, to what size you expect the 
database to grow, and so on.

Moving on to the next, and possibly most important, area: Autogrowth. This option indicates whether SQL Server will 
automatically handle the situation that arises if your database reaches the Initial Size limit. If you don’t set this 
option, you will have to monitor your database and expand its size manually, if and when required. Think of the 
overhead in having to monitor the size, let alone having to increase the size! It is much easier and less hassle, and 
much less of a risk, to let SQL Server handle this when starting out.

■Note  In a production environment, or even when you’re developing in the future, it will be more common 
to switch Autogrowth off and fix the size. This prevents your hard drive from filling up and your server from 
being unable to continue. At least when you fix the size, you can keep some hard drive space in reserve to 
enable your SQL Server to continue running while the development team tries to clear out unwanted data.

While SQL Server handles increasing the size of the database for you, it has to know by how much. This is where 
the Autogrowth option comes in. You can let SQL Server increase the database either by a set amount each time in 
megabytes or by a percentage. The default is By Percent, and at this stage it doesn’t really matter. In our example, 
the first increase will be 2MB; the second increase will be 2.2MB. For our example, this is sufficient, as there won’t 
be a great deal of data being entered. However, the percentage option does give uneven increases, and if you like 
order, then By MB the option for you. If you want to change these options by selecting the autogrowth options button 
(the ellipsis) to the right of the current setting, you can disable autogrowth of your database in the dialog that appears. You 
can also, as discussed, alter it to increase by By MB rather than By Percent.

Dewson_5882C03.fm  Page 80  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 81

In the autogrowth dialog, the Maximum File Size option sets a limit on how large the database is allowed to grow. 
The default is “unrestricted growth”—in other words, the only limit is the spare space on the hard drive. This is 
good, as you don’t have to worry about maintaining the database too much. But what if you have a rogue piece of 
code entering an infinite loop of data? This scenario is rare, but not unheard of. It might take a long time to fill up the 
hard drive, but fill up the hard drive it will, and with a full hard drive, purging the data will prove troublesome. When 
it is time to start moving the database to a production environment, the Restrict File Growth (MB) option should be 
set to guard against such problems.

The final column that you will find in the New Database dialog by scrolling to the right is Path. In this column, you 
define where the database files will reside on your hard drive. If SQL Server is installed on your C drive and none of 
the paths for the data were changed, you will find that the default is C:\Program Files\Microsoft SQL 
Server\MSSQL.1\MSSQL\Data. Figure 3-9 shows working on a mapped drive that has been given the drive letter 
C. The command button with the ellipsis (…) to the right of the path brings up an explorer-style dialog that allows 
you to change the location of the database files. For example, if you move to a larger SQL Server installation, moving 
the location of these files to a server relevant to the needs of your database will probably be a necessity.

The line that has a File Type setting of Log includes the same information as a Data File Type setting, with one or two 
minor exceptions. The File Name places a suffix of _Log onto the database name, and there is no ability to change 
the Filegroup column, since the Transaction Log doesn’t actually hold system tables, and so would only fill up 
through the recording of actions. It is possible, however, to define multiple log file locations. Filling the transaction 
log and not being able to process any more information because the log is full will cause your SQL Server to stop 
processing. Specifying more than one log location means that you can avoid this problem. The use of a failover log 
file in larger production systems is advisable.

Let’s now move on to discuss the Options area of the New Database dialog (see Figure 3-11).

The first field in the Options area is labeled Collation. We discussed this option in Chapter 1 when installing SQL 
Server. If you need to alter a collation setting on a database, you can do so, but care is required. Note that altering 
the collation sequence on a server should only be undertaken by the SQL Server system administrator, who will be 
aware of the issues and have the authority to perform specific tasks.

The next setting is Recovery Model. You’ll learn about backing up and restoring your database in Chapter 7, and this 
option forms part of that decision-making process. In development, the best option is to choose the Simple backup 
mode, as you should have your most up-to-date source being developed and saved to your local hard drive. The 
three modes are as follows:

• Full: Allows the database to be restored to where the failure took place. Every transaction is logged; 
therefore, you can restore a database backup and then move forward to the individual point in time 
required using the transaction log.

• Bulk-Logged: Minimally logs bulk operations, so if you’re performing a bulk operation such as bulk 
copying into SQL Server, or if you’re inserting a bulk of rows of data, then only the action is recorded 
and not every row is inserted. This will increase performance during these sorts of operations, but if 
a problem occurs, then recovery can only occur to the end of the last log backup.

• Simple: After each database backup, the transaction log is truncated. This allows restores to be created 
to the last successful data backup only, as no transaction log backups are taken. You should not use 
this mode in a production environment.

Dewson_5882C03.fm  Page 81  Monday, January 9, 2006  3:24 PM



82 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Figure 3-11. Options area of the New Database dialog

The third item in the Options area is Compatibility Level. It is possible to build a database for previous versions of 
SQL Server, provided you are willing to sacrifice the new functionality. This will allow you to connect to a SQL Server 
2000–defined database, for example, from SQL Server 2005.

Among the next set of options, the ones of interest to us at the moment are the first four. We’ll examine the remaining 
options when we build the database using T-SQL.

• Auto Close: If you want the database to shut down when the last user exits, then set this option to 
True. The standard practice is a setting of False, and you should have a good reason to set this option 
to True, especially on a remote server.

• Auto Create Statistics: This option relates to the creation of statistics used when querying data. The 
standard practice is a setting of True; however, in a production environment, especially if you have a 
nightly or weekly process that generates statistics on your data, you would switch this to False. Creating 
and updating statistics while your system is being used does increase processing required on your 
server, and if your server is heavily used for inserting data, then you will find a performance degradation 
with this option set to True. To clarify, though, it is necessary to balance your choice with how much 
your system will have to query data.

Dewson_5882C03.fm  Page 82  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 83

• Auto Shrink: Database and transaction logs grow in size not only with increased data input, but also 
through other actions, which we’ll discuss in more detail in Chapter 7. You can shrink the size of the 
log file through certain actions, some of which can be instigated by T-SQL and some as a by-product 
of actions being performed.

• Auto Update Statistics: This is a more common option to have set to True, even on production servers, 
although there is still a performance degradation. This option will update statistics as data is inserted, 
modified, or deleted for tables for use in indexes, and it will also update statistics for columns within 
a table. We’ll discuss indexes further in Chapter 6.

6. Click the OK button at the bottom of the screen to create the database.

SQL Server will now perform several actions. First, it checks whether the database already exists and, if so, you will 
have to choose another name. Once the database name is validated, SQL Server does a security check to make sure 
that the user has permission to create the database. This is not a concern here, since by following this book, you will 
always be logged on to SQL Server with the proper permissions. Now that you have security clearance, the data files 
are created and placed on the hard drive. Providing there is enough space, these files will be successfully created, 
and it is not until this point that SQL Server is updated with the new database details in the internal system tables.

Once this is done, the database is ready for use. As you can see, this whole process is relatively straightforward, 
and simple to complete. Congratulations!

■Tip  You need not create the database at this point if you don’t want to. There are several other options 
available to you to save the underlying T-SQL to a file, to the clipboard, or to the Query window. The first two 
options are very useful as methods of storing actions you’re creating to keep in your source code repository, 
such as Visual SourceSafe. The third option is ideal if you wish to add more options to your database than you 
have defined within the wizard set up. All of the options enable you to see the underlying code and understand 
what is required to create a database. We’ll look at the code in a moment.

When you return to Object Explorer in SQL Server Management Studio and refresh the 
contents, you will see the new database listed, as shown in Figure 3-12.

Figure 3-12. The new database within Object Explorer

Dewson_5882C03.fm  Page 83  Monday, January 9, 2006  3:24 PM



84 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

SQL Server Management Studio is simply a GUI front end to running T-SQL scripts in the 
background. As we progress through the book, you’ll see the T-SQL generated for each object 
type we’re using, as well as create the objects graphically, as you’ve just seen. There are two 
methods you can use to get the script for this database: 

• Notice that at the top of the database wizard screen is a button that generates the script. 
After you click this button, you can indicate where you would like the script sent to. 

• Once the database has been created, you can right-mouse-click and, as shown in 
Figure 3-13, have the details sent to one of three locations.

Figure 3-13. Scripting the database from SSMS

Whichever method you choose to use, the script will be the same, with the exception of a 
comment line when you create the script in the second option. The script for generating the 
database from this option is listed here so we can go through what is happening.

First of all, SQL Server points itself to a known database, as shown in the following snippet. 
master has to exist; otherwise, SQL Server will not work. The USE statement, which instructs 
SQL Server to alter its connection to default to the database after the USE statement, points 
further statements to the master database. 

USE [master]

GO

Next, the script builds up the CREATE DATABASE T-SQL statement built on the options 
selected. (We’ll walk through the CREATE DATABASE syntax that could be used in the “Creating a 
Database in a Query Pane” section, as this statement doesn’t cover all the possibilities.) Notice 
in the code that follows that the name of the database is surrounded by square brackets: []. 
SQL Server does this as a way of defining that the information between the square brackets is 
to be used similarly to a literal and not as a variable. Also it defines that the information is to be 
treated as one unit. To clarify, if we want to name the database Apress Financial (i.e., with a 
space between “Apress” and “Financial”), then we need to have a method of knowing where 
the name of the database starts and ends. This is where the identifier brackets come in to play.

Dewson_5882C03.fm  Page 84  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 85

■Note  Recall the Quoted Identifier option that we encountered in Chapter 2, with the T-SQL command SET 
QUOTED_IDENTIFIER ON/OFF. Instead of using the square brackets, you can define identifiers by surrounding 
them with double quotation marks using this command. Therefore, anything that has double quotation marks 
around it is seen as an identifier rather than a literal, if this option is set to ON. To get around this requirement, 
you can use single quotation marks, as shown in the example, but then if you do have to enter a single quote 
mark—as in the word “don’t”—you would have to use another single quotation mark. So as you can see, this 
situation can get a bit messy. I prefer to have QUOTED_IDENTIFIER set to OFF, to reduce confusion.

/****** Object:  Database [ApressFinancial]    
Script Date: 05/29/2005 14:14:35 ******/
CREATE DATABASE [ApressFinancial] ON  PRIMARY 
( NAME = N'ApressFinancial', FILENAME = N'C:\Program Files\Microsoft SQL 
Server\MSSQL.1\MSSQL\DATA\ApressFinancial.mdf' , SIZE = 3072KB , MAXSIZE = 
UNLIMITED, FILEGROWTH = 1024KB )
 LOG ON 
( NAME = N'ApressFinancial_log', FILENAME = N'C:\Program Files\Microsoft SQL 
Server\MSSQL.1\MSSQL\DATA\ApressFinancial_log.ldf' , SIZE = 1024KB , MAXSIZE = 
2048GB , FILEGROWTH = 10%)
 COLLATE SQL_Latin1_General_CP1_CI_AS
GO

Have you noticed that every so often there is a GO command statement? This signals to SQL 
Server—or any other SQL Server utility—that this is the end of a batch of T-SQL statements, 
and the utility should send the batch of statements to SQL Server. Certain statements need to 
be in their own batch and cannot be combined with other statements in the same batch. To 
clarify, a GO statement determines that you have come to the end of a batch of statements and that 
SQL Server should process these statements before moving on to the next batch of statements.

■Note  GO statements are used only in ad hoc T-SQL, which is what I’m demonstrating here. Later in the 
book, you’ll build T-SQL into programs called stored procedures. GO statements are not used in stored 
procedures.

Next, we define the new database’s compatibility level. This statement defines that the 
database’s base level is SQL Server 2005. It is possible to define SQL Server to an earlier level, as far 
back as SQL Server version 6.0, by changing the version number in the parameter @new_cmptlevel. 
You’ll learn more about this code in Chapter 10.

EXEC dbo.sp_dbcmptlevel @dbname=N'ApressFinancial', @new_cmptlevel=90
GO

Dewson_5882C03.fm  Page 85  Monday, January 9, 2006  3:24 PM



86 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

We then can define the remaining database options. The statements have a GO statement 
separating them, but in this scenario, the GO statements are superfluous. So why are they included? 
When SQL Server is preparing the wizard, it is safer for it to place GO statements after each state-
ment, as it then doesn’t have to predict what the next statement is, and therefore whether the 
end of the batch of transactions has to be defined.

It is possible to set up a database to allow searching of values within columns of your 
tables. This is a great utility, if you need it, but it does have a processing overhead when 
working with your data.

EXEC [ApressFinancial].[dbo].[sp_fulltext_database] @action = 'enable'
GO

There will be times when columns have no data in them. This is known as a special value 
of NULL. The ANSI standard states that if you are comparing two columns that have this special 
NULL value in them, then the comparison will fail. This is different from columns that do have 
data in them. Setting this value to OFF alters the standard, so when you do compare two NULL 
values, the comparison will pass.

ALTER DATABASE [ApressFinancial] SET ANSI_NULLS OFF 
GO

Still with NULL values, setting ANSI_NULL_DEFAULT to OFF means that a column’s default 
value is NOT NULL. We look at NULL values in Chapter 5 during our table creation discussion. 

ALTER DATABASE [ApressFinancial] SET ANSI_NULL_DEFAULT OFF 
GO

There are columns of characters than can store variable-length data. We’ll come across 
these when we build our table in Chapter 5. If set to ON, this option makes every column of data 
contain the maximum number of characters, whether you sent through just one character or 
many more. It is common to have this set to OFF.

ALTER DATABASE [ApressFinancial] SET ANSI_PADDING OFF 
GO

If an ANSI standard warning or error occurs, such as divide by zero, then switching the 
ANSI_WARNINGS setting to OFF will suppress these. A value of NULL will be returned in any columns 
that have the error.

ALTER DATABASE [ApressFinancial] SET ANSI_WARNINGS OFF 
GO

If the ANSI_WARNINGS setting was ON, and you performed a divide by zero, the query would 
terminate. To change this, we tell SQL Server not to abort when there’s an arithmetic error:

ALTER DATABASE [ApressFinancial] SET ARITHABORT OFF 
GO

Dewson_5882C03.fm  Page 86  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 87

If you have a database that is only “active” when users are logged in, then switching the 
AUTO_CLOSE setting to ON would close down the database. This is unusual, as databases tend to 
stay active 24/7, but closing unwanted databases frees up resources for other databases on the 
server to use if required. One example of when to switch this setting ON is for a database used 
for analyzing data by users through the day (e.g., one in an actuarial department, where death 
rates would be analyzed).

ALTER DATABASE [ApressFinancial] SET AUTO_CLOSE OFF 
GO

SQL Server uses statistics when returning data. If it finds that statistics are missing when 
running a query, having the following option ON will create these statistics.

ALTER DATABASE [ApressFinancial] SET AUTO_CREATE_STATISTICS ON 
GO

If the volume of data within your database reduces (e.g., if you have a daily or weekly 
archive process), you can reduce the size of the database automatically by setting the following 
option ON. It is standard to have the option OFF because the database size will simply increase 
as data is re-added. It would be switched ON only if a reduction in the database is required—due 
to disk space requirements, for example—but it is never a good idea for this option to kick in 
when the database is in use, so really it is best to keep it off.

ALTER DATABASE [ApressFinancial] SET AUTO_SHRINK OFF 
GO

When data is added or modified to SQL Server, statistics are created that are then used 
when querying the data. These statistics can be updated with every modification, or they can 
be completed via a T-SQL set of code at set times. There is a performance reduction as data is 
inserted, modified, or deleted, but this performance is gained back when you want to return 
data. Your application being a pure insertion, pure query, or a mix determines whether you’ll 
want this option on. If you have a pure insertion application, you probably want this option 
switched off, for example, but this is an optimization decision.

ALTER DATABASE [ApressFinancial] SET AUTO_UPDATE_STATISTICS ON 
GO

A cursor is a special type of data repository that exists only while the cursor is defined. It’s 
a temporary memory resident table, in essence. A cursor can exist for the lifetime of a program 
but, if you switch the following setting to ON, when a batch of data is committed or rolled back 
during a transaction, the cursor will be closed.

ALTER DATABASE [ApressFinancial] SET CURSOR_CLOSE_ON_COMMIT OFF 
GO

A cursor can either exist locally or globally. This means that if GLOBAL is selected for this 
option, then any cursor created in a program is available to any subprogram that is called. 
LOCAL, the other option, indicates that the cursor exists only within that program that created it.

Dewson_5882C03.fm  Page 87  Monday, January 9, 2006  3:24 PM



88 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

ALTER DATABASE [ApressFinancial] SET CURSOR_DEFAULT  GLOBAL 
GO

If you’re concatenating character fields and if the following option is ON, then if any of the 
columns has a NULL value, the result is a NULL.

ALTER DATABASE [ApressFinancial] SET CONCAT_NULL_YIELDS_NULL OFF 
GO

When you’re working with some numeric data types, it is possible to lose precision of the 
numerics. This can occur when you move a floating-point value to a specific numeric decimal 
point location, and the value you’re passing has too many significant digits. If the following 
option is set to ON, then an error is generated. OFF means the value is truncated.

ALTER DATABASE [ApressFinancial] SET NUMERIC_ROUNDABORT OFF 
GO

As mentioned earlier, when you’re defining database names, if there is a space in the name 
or the name is a reserved word, it is possible to tell SQL Server to ignore that fact and treat the 
contents of the squared brackets as a literal. You are using quoted identifiers when you use the 
double quotation mark instead of square brackets. We’ll delve into this further when inserting 
data in Chapter 8, as there are a number of details to discuss with this option.

ALTER DATABASE [ApressFinancial] SET QUOTED_IDENTIFIER OFF 
GO

The following option relates to a special type of program called a trigger. A trigger can run 
when data is modified, and one trigger can call another trigger. A setting of  OFF means that this 
cannot take place.

ALTER DATABASE [ApressFinancial] SET RECURSIVE_TRIGGERS OFF 
GO

I mentioned statistics earlier with another option and how they can be updated as data is 
modified. The following option is similar to AUTO_UPDATE_STATISTICS. If this option is set to ON, 
the query that triggers an update of the statistics will not wait for the statistics to be created. 
The statistics update will start, but it will do so in the background asynchronously.

ALTER DATABASE [ApressFinancial] SET AUTO_UPDATE_STATISTICS_ASYNC OFF 
GO

This option governs whether there is a relationship between datetime columns in related 
tables:

ALTER DATABASE [ApressFinancial] SET DATE_CORRELATION_OPTIMIZATION OFF 
GO

Dewson_5882C03.fm  Page 88  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 89

The following option defines how the filegroups are set: READ_WRITE or READ_ONLY. The use 
of READ_ONLY is ideal where you have a backup database that users can use to inspect data. The 
database is an exact mirror of a production database, for example, so it has the security on it set 
to allow updates to it, but by setting this option to READ_ONLY you can be sure that no updates 
can occur.

ALTER DATABASE [ApressFinancial] SET READ_WRITE 
GO

The next option determines how your data can be recovered when a failure such as a 
power outage happens. In other words, the following option defines the recovery model, as 
discussed earlier. We’ll look at this in more detail when we discuss database maintenance in 
Chapter 7.

ALTER DATABASE [ApressFinancial] SET RECOVERY FULL 
GO

The following option defines the user access to the database. MULTI_USER is the norm 
and allows more than one user into the database. The other settings are SINGLE_USER and 
RESTRICTED_USER, where only people who have powerful privileges can connect. You would set 
your database to  RESTRICTED_USER after a media or power failure, for example, when a database 
administrator needs to connect to the database to ensure everything is OK.

ALTER DATABASE [ApressFinancial] SET  MULTI_USER 
GO

When you have an I/O error (e.g., a hard drive might be on its way to breaking down), then 
this option will report an error if checksums don’t match:

ALTER DATABASE [ApressFinancial] SET PAGE_VERIFY CHECKSUM  
GO

Finally, the following line is used for controlling whether permissions checks are required 
when referring to objects in another database:

ALTER DATABASE [ApressFinancial] SET DB_CHAINING OFF

Dropping the Database in SQL Server Management Studio
To follow the next section properly and build the database using code, it is necessary to remove 
the database just created. It is also handy to know how to do this anyway, for those times when 
you have made an error or when you wish to remove a database that is no longer in use. Deleting 
a database is also known as dropping a database.

Dewson_5882C03.fm  Page 89  Monday, January 9, 2006  3:24 PM



90 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Try It Out: Dropping a Database in SQL Server Management Studio

1. If SQL Server Management Studio is not started, then start it up now and expand the nodes until you see 
the database ApressFinancial.

2. Right-click ApressFinancial to bring up the context menu.

3. Click the Delete option, as shown in Figure 3-14.

Figure 3-14. Deleting a database within SSMS

4. The dialog shown in Figure 3-15 will display. Select Close Existing Connections and then click OK.

Figure 3-15. Selecting to delete a database in the Delete Object dialog

The first check box, Delete Backup and Restore History Information for Databases, gives you the option of keeping 
or removing the history information that was generated when completing backups or restores. If you want to keep 
this information for audit purposes, then uncheck the box.

The second check box is very important. If there is a program running against a database, or if you have any design 
windows or query panes open and pointing to the database you want to delete, then this option will close those con-
nections. If you are deleting a database, then there really should be no connections there. This is a good check and 

Dewson_5882C03.fm  Page 90  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 91

will prevent accidents from happening, and it also allows any rogue databases to be removed without having to 
track down who is connected to them.

5. Click OK. The database is now permanently removed.

When you click the OK button, SQL Server actually performs several actions. First, a command is sent to SQL Server 
informing it of the name of the database to remove. SQL Server then checks that nobody is currently connected to 
that database. If someone is connected, through either SQL Server Query Editor or a data access method like 
ADO.NET, then SQL Server will refuse the deletion. Only if you select Close Existing Connections will this process be 
overridden

For SQL Server to refuse the deletion, it does not matter if anyone connected to the database is actually doing any-
thing; all that is important is the existence of the connection. For example, if you selected ApressFinancial in 
Query Editor, and then returned to SQL Server Management Studio and tried to drop the database, you would see the 
error shown in Figure 3-16.

Figure 3-16. Failed database deletion

■Tip  Errors like the one shown in Figure 3-16 provide hyperlinks to documentation that can give you further help.

Once SQL Server has checked that nobody is connected to the database, it then checks that you have permission 
to remove the database. SQL Server will allow you to delete the database if it was your user ID that created it, in 
which case you own this database and SQL Server allows you do what you want with it. However, you are not alone 
in owning the database.

If you recall from Chapter 1, there was mention of the sa account when installing SQL Server. Since it is the most 
powerful ID and has control over everything within SQL Server, there were warnings about leaving the sa account 
without any password and also about using the sa account as any sort of login ID in general. This section also mentioned 
that the sa account was in fact a member of the sysadmin server role. A role is a way of grouping together similar 
users who need similar access to sets of data. Anyone in the sysadmin role has full administrative privileges—and 
this includes rights to remove any database on the server.

So whether you are logged in as yourself or as sysadmin, take care when using SQL Server Management Studio 
to drop a database.

Dewson_5882C03.fm  Page 91  Monday, January 9, 2006  3:24 PM



92 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

Creating a Database in a Query Pane
To use the second method of creating databases, you first need to drop the ApressFinancial 
database as described in the previous section.

Try It Out: Creating a Database in a Query Pane

1. From the standard toolbar of SQL Server Management Studio, select New Query.

2. In the query pane, enter the following T-SQL script:

CREATE DATABASE ApressFinancial ON  PRIMARY 
( NAME = N'ApressFinancial', 
FILENAME = N'C:\Program Files\Microsoft SQL 
Server\MSSQL.1\MSSQL\DATA\ApressFinancial.mdf' , SIZE = 3072KB , 
MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB )
 LOG ON 
( NAME = N'ApressFinancial_log', 
FILENAME = N'C:\Program Files\Microsoft SQL 
Server\MSSQL.1\MSSQL\DATA\ApressFinancial_log.ldf' , 
SIZE = 1024KB , MAXSIZE = 2048GB , FILEGROWTH = 10%)
 COLLATE SQL_Latin1_General_CP1_CI_AS
GO

3. Execute this code by pressing F5 or Ctrl+E, or by clicking the Execute Query toolbar button.

4. Once the code is executed, you should see the following result:

Command(s) completed successfully.

 

How It Works: Creating a Database in Query Editor

The main focus of this section of the chapter is the code listed in the previous exercise: the CREATE DATABASE 
command.

When placing code in the Query Editor, you’re building up a set of instructions for SQL Server to act on. As you 
progress through the book, you will encounter many commands that you can place in Query Editor, all of which build 
up to provide powerful and useful utilities or methods for working with data. An in-depth discussion of Query Editor 
took place in Chapter 2, so if you need to refresh your memory, take a quick look back at the material covered in 
that chapter.

Before we actually looking at the code itself, we need to inspect the syntax of the CREATE DATABASE command:

Dewson_5882C03.fm  Page 92  Monday, January 9, 2006  3:24 PM



C H A P T E R  3  ■  D A T A B A S E  D E S I G N  A N D  C R E A T I O N 93

CREATE DATABASE <database name> 
[ON 
   ( [ NAME = logical_name, ]
       FILENAME = physical_file_name
     [, FILESIZE = size ]
     [, MAXSIZE = maxsize ]
     [, FILEGROWTH = growth_increment] ) ]
[LOG ON
   ( [ NAME = logical_name, ]
       FILENAME = physical_file_name
     [, FILESIZE = size ]
     [, MAXSIZE = maxsize ]
     [, FILEGROWTH = growth_increment] ) ]
[COLLATE collation_name ] 

The parameters are as follows:

• database name: The name of the database that the CREATE DATABASE command will create 
within SQL Server.

• ON: The use of the ON keyword informs SQL Server that the command will specifically mention where 
the data files are to be placed, as well as their name, size, and file growth. With the ON keyword 
comes a further list of comma-separated options:

• NAME: The logical name of the data file that will be used as the reference within SQL Server.

• FILENAME: The physical file name and full path where the data file will reside.

• SIZE: The initial size, in megabytes by default, of the data file specified. This parameter is optional, 
and if omitted it will take the size defined in the model database. You can suffix the size with KB, MB, 
GB, or TB (terabytes).

• FILEGROWTH: The amount that the data file will grow each time it fills up. You can specify either a 
value that indicates by how many megabytes the data file will grow or a percentage, as discussed 
earlier when we created a database with SQL Server Management Studio.

• LOG ON: The use of the LOG ON keyword informs SQL Server that the command will specifically 
mention where the log files will be placed, and their name, size, and file growth:

• NAME: The name of the log file that will be used as the reference within SQL Server.

• FILENAME: The physical file name and full path to where the log file will reside. You must include the 
suffix .LDF. This could be a different name from the FILENAME specified earlier.

• SIZE: The initial size, in megabytes by default, of the log file specified. This parameter is optional, and 
if omitted it will take the size defined in the model database. You can suffix the size with KB, MB, GB, 
or TB.

• FILEGROWTH: The amount by which the log file will grow each time the data file fills up, which has 
the same values as for the data file’s FILEGROWTH.

• COLLATE: The collation used for the database. Collation was discussed earlier in the chapter when 
we created a database with SQL Server Management Studio.

Dewson_5882C03.fm  Page 93  Monday, January 9, 2006  3:24 PM



94 C H A P T E R  3  ■  D AT A B A S E  D E S I G N  A N D  C R E A T I O N

It's now time to inspect the code entered into Query Analyzer that will create the ApressFinancial database.

Commencing with CREATE DATABASE, you are informing SQL Server that the following statements are all param-
eters to be considered for building a new database within SQL Server. Some of the parameters are optional, and SQL 
Server will include default values when these parameters are not entered. But how does SQL Server know what 
values to supply? Recall that at the start of this chapter we discussed the built-in SQL Server databases, specifically 
the model database. SQL Server takes the default options for parameters from this database unless they are oth-
erwise specified. Thus, it is important to consider carefully any modifications to the model database.

The database name is obviously essential, and in this case, ApressFinancial is the chosen name.

The ON parameter provides SQL Server with specifics about the data files to be created, rather than taking the 
defaults. Admittedly in this instance, there is no need to specify these details, as by taking the defaults, SQL Server 
would supply the parameters as listed anyway.

This can also be said for the next set of parameters, which deal with the Transaction Log found with LOG ON. In this 
instance, there is no need to supply these parameters, as again the listed amounts are the SQL Server defaults.

Finally, the collation sequence we specify is actually the default for the server.

Taking all this on board, the command could actually be entered as follows, which would then take all the default 
settings from SQL Server to build the database:

CREATE DATABASE ApressFinancial

We can then set the database options as outlined during the discussion of the script earlier in the chapter.

Similarly, if we want to delete the database using T-SQL code, it’s a simple case of ensuring that we are not 
connected within that particular query pane to ApressFinancial via the USE command. Then we use the 
command DROP followed by the object we want to drop, or delete, and then the name of the object.

USE Master
GO
DROP DATABASE ApressFinancial

 

Summary
In this chapter we looked at designing and building our example database. The steps covered 
are very important on the development front. The database itself requires careful thought 
regarding some of the initial settings, but as time moves on and you have a better idea about 
the volume of data and how people will use the data, you may find you need to alter some of 
these options. As you move to user acceptance testing, keep an eye on the statistic options 
mentioned here. 

In the next chapter, we’ll start adding some meat to the bones of our example database by 
creating tables to hold data.

Dewson_5882C03.fm  Page 94  Monday, January 9, 2006  3:24 PM



95

■ ■ ■

C H A P T E R  4

Security

Security is important—more so, in fact, than design, creation, and performance. If your database 
had no security measures in place, absolutely anyone could come along and steal or corrupt 
the data, causing havoc to you and your company. And not just in one database, but on every 
database in every server.

Security can be enforced in many ways on a SQL Server: by Windows itself through 
Windows authentication; by restricting users’ access to sensitive data through views; or by 
specifically creating users, logins, and roles that have explicit levels of access.

This chapter covers some parts of security, although it is impossible to talk about every 
area of security, mainly because we haven’t seen much of SQL Server’s contents yet! In Chapter 1 
we looked at the difference between Windows authentication and SQL Server authentication, 
so already you know your options with regard to the type of security you might wish to use. 
So what is next?

First of all, you need to understand what users, roles, and logins are.

Logins
The only way anyone can connect to SQL Server is via a login. As discussed in Chapter 1, this 
doesn’t necessarily mean that every user has to have a specific login within SQL Server itself. 
With Windows authentication, if a user belongs to a specific Windows group, just by belonging 
to that group, providing that group is contained within SQL Server, the account will have 
access to SQL Server.

When a database is created, initially only the database owner has any rights to complete 
any task on that database, whether that be to add a table, insert any data, or view any data. This 
was the case when we first created our ApressFinancial database in Chapter 3. It is only when 
the database owner grants permissions to other users that they gain extra access to complete 
tasks.

It is common practice to create a Windows group and place Windows user accounts into 
that group. This is how we wish to work with our ApressFinancial system, and so we will create 
some Windows groups for it. We will group logins depending on which department we are 
dealing with and what we want to allow each group to do. We will allow some groups to add 
new financial products, other groups to add customers, and, finally, a group set up for batch 
processes to add interest and financial transactions. We will create a few of these groups so that 
later in the book we can see security in action.

Dewson_5882C04.fm  Page 95  Monday, January 2, 2006  3:16 PM



96 C H A P T E R  4  ■  S E C U R I T Y

In Chapter 1, I mentioned that you should log in as an administrator account to install SQL 
Server. This would mean that you are in the BUILTIN/Administrators group, which is a group 
defined for the local computer that contains Windows users accounts with administrator 
rights. We can therefore already connect to SQL Server with this login, which includes VMcGlynn. 
AJMason could not log in, though. However, by adding this account to a group we will be 
creating, and then adding that group to SQL Server, we will see how they both can.

■Note  The process we are about to go through would be the same if we were adding a single user.

Try It Out: Creating a Group

1. Navigate to your Control Panel, then select Administrative Tools ➤ Computer Management.

2. This brings up a screen that shows different aspects of your computer management. We are interested 
in selecting Local Users and Groups ➤ Groups. When you do so, you will see that there are already 
several groups within your computer, as shown in Figure 4-1, as well as a large number of groups 
already defined for the use of SQL Server. These groups differ from groups that we will be defining for 
accessing the data.

Figure 4-1. List of groups on the computer

3. AJMason is a product controller and can add new corporate financial products. Right-click Groups and 
select New Group. This will bring up the New Group screen, as shown in Figure 4-2, where we can add 
our grouping for our product controllers. Apress_Product_Controllers is the group we’ll use in 
this chapter.

Dewson_5882C04.fm  Page 96  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 97

Figure 4-2. Adding the first group for our application

4. By clicking Add, we can then add all the Windows user accounts that we wish to be part of this group. 
We can either type AJMason or click Advanced, which brings up a selection dialog box. Clicking the 
Check Names button adds the user to the group.

If AJMason was on your company network, you would have to prefix the name with the domain name. For example, 
if you had a network domain called Apress and AJMason was on that domain (as opposed to your local computer 
and therefore your local domain as is the case for our example), then you would type Apress\AJMason. Figure 4-3 shows 
AJMason is on the XP-PRO local domain.

Figure 4-3. AJMason found, ready to add to our group

Dewson_5882C04.fm  Page 97  Monday, January 2, 2006  3:16 PM



98 C H A P T E R  4  ■  S E C U R I T Y

5. Click OK and then click the Create button on the New Group screen. Once you have created the group, 
you should close the New Group dialog box, as we don’t want to create any more groups at the moment. 
This brings us back to the Computer Management dialog box, where we see our new group added, as 
shown in Figure 4-4.

Figure 4-4. New group added

6. We now need to add this group to SQL Server. Open SQL Server Management Studio and navigate to 
Security/Logins within the Object Explorer. Once there, click New Login, which will bring up the dialog 
box shown in Figure 4-5.

7. Click Search to display the Select User or Group dialog box where we will begin our search for our group, 
as shown in Figure 4-6. This is very similar to the previous search box we saw but has been defined to 
search for a user or built-in security principal. However, by default, the search will not search for groups. 
You need to click Object Types and ensure the Groups option is checked on the screen that comes up.

Dewson_5882C04.fm  Page 98  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 99

Figure 4-5. Creating a new login

Figure 4-6. Searching for groups

8. This will allow you to click Advanced, which will then let you complete the search for the group you 
want. Highlight this group, Apress_Product_Controllers in this case, as shown in Figure 4-7, and 
click OK.

Dewson_5882C04.fm  Page 99  Monday, January 2, 2006  3:16 PM



100 C H A P T E R  4  ■  S E C U R I T Y

Figure 4-7. Finding the Apress_Product_Controllers group

9. This brings us back to the Select User or Group dialog box  where we will see our group has been added, 
as shown in Figure 4-8. We can then click OK.

Figure 4-8. Group found, ready for adding

Dewson_5882C04.fm  Page 100  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 101

■Note  We are now back at the new login screen where the group will be populated. If we clicked OK at this 
point, this would only allow the group to connect to SQL Server and nothing else. Members of this group would 
therefore not be able to do anything.

10. So we need to give this group access to the databases we wish to allow them to use. It is vital that you only 
allow users or groups of users access to the resources they need and don’t use the “allow everything, it’s 
easier” approach that I have seen on my travels. We only want our users to see the ApressFinancial 
database, so we select that database on the Users mapped to this login section of the screen shown in 
Figure 4-9. For the moment, click the Script button. (When you select this option, it doesn’t matter which 
of the three options you choose when selecting where to put the T-SQL.) We will come back to logins in 
the next section when we examine roles.

Figure 4-9. Giving a login access to a database

11. The SQL generated from Figure 4-9 follows. We will look at it in more detail in a moment when we 
examine more closely adding a login.

Dewson_5882C04.fm  Page 101  Monday, January 2, 2006  3:16 PM



102 C H A P T E R  4  ■  S E C U R I T Y

USE [master]
GO
CREATE LOGIN [XP-PRO\Apress_Product_Controllers]
FROM WINDOWS WITH DEFAULT_DATABASE=[master]
GO
USE [ApressFinancial]
GO
CREATE USER [XP-PRO\Apress_Product_Controllers]
FOR LOGIN [XP-PRO\Apress_Product_Controllers]
GO

12. Going back to SQL Server Management Studio, you can see in Figure 4-10 that we have moved to the 
Status page. Here we can grant or deny access to SQL Server for a Windows account, SQL Server login, 
or in our case Windows group. The second set of options is for enabling or disabling SQL Server logins. 
The final set of options, specific to SQL Server authentication, allows an account to be unlocked after it 
has been locked out.

Figure 4-10. Login status

13. We can now click OK to add the group. This will complete the addition to SQL Server.

 

Dewson_5882C04.fm  Page 102  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 103

Now that we have created the new group and placed it within SQL Server, we could now 
switch the user account to AJMason and successfully connect. However, as AJMason, we would 
only be able to explore the ApressFinancial database we created in Chapter 3.

As I mentioned at the start of this discussion, the process would be the same if you wished 
to add a single user.

For SQL Server authentication, each user needs to be added separately. The process is very 
similar to that for adding users with Windows authentication, but you must specify a password 
expiration and enforce password complexity. This will force the Windows password policies 
for expiration and complexity that exist on this account to apply to this login’s password.

So now that we have added a login graphically, the same can be achieved via a query pane 
using T-SQL code. We saw the code generated previously, and we will use it as the basis of our 
next login creation. This is a very straightforward process, so let’s take a look at it next.

Try It Out: Programmatically Working with a Login

1. From SQL Server, select New Query ➤ Database Engine Query. This should bring up an empty query 
pane similar to the one we saw in Chapter 2.

2. We want to add a second login group. We have available two different methods, and which one we use 
depends on whether we are going to use Windows authentication or SQL Server authentication. Our first 
example takes a look at the Windows authentication method. Locate the code from Steps 10 and 11 in 
the previous “Try It Out: Creating a Group” section (it is repeated below for ease of reference).

CREATE LOGIN [XP-PRO\Apress_Product_Controllers]
FROM WINDOWS
WITH DEFAULT_DATABASE=[master],
DEFAULT_LANGUAGE=[us_english]
GO
USE [ApressFinancial]
GO
CREATE USER [XP-PRO\Apress_Product_Controllers]
FOR LOGIN [XP-PRO\Apress_Product_Controllers]
GO

3. We can now alter this to create a group that will be defined for users wishing to view customers and their 
information, probably used in call centers, for example, for the Corporate edition of our software. Also, this 
time we are going to set the database that will be connected to by default, to our ApressFinancial 
database. Before entering the following code, we will of course need to add the new group, 
Apress_Client_Information, within our Computer Management icon found in the Administrative 
tools of the Control Panel first (see the “Try It Out: Creating a Group” section earlier for more on this). 
Once you’ve done this, enter the following code in a new Query Editor window. (Don’t execute it yet.)

CREATE LOGIN [XP-PRO\Apress_Client_Information]
FROM WINDOWS
WITH DEFAULT_DATABASE=[ApressFinancial],
DEFAULT_LANGUAGE=[us_english]
GO

Dewson_5882C04.fm  Page 103  Monday, January 2, 2006  3:16 PM



104 C H A P T E R  4  ■  S E C U R I T Y

The format of this syntax is straightforward. In this case, CREATE LOGIN instructs SQL Server that you want to 
create a new login called XP-PRO\Apress_Client_Information, where XP-PRO is the name of the network 
domain in which the Apress_Client_Information group can be found. You should change the prefix to match 
your own setup. Here the definition appears surrounded with optional square brackets in case of spaces in the name.

Next the keywords FROM WINDOWS inform SQL Server that you are creating a login with Windows authentication. 
After that you define the name of the database that the login will connect to when a connection is made using WITH 
DEFAULT_DATABASE. Finally, the second option specifies the default language the connection will use, although it 
is possible at any time to alter the language using the Set Language option. This will allow this group to connect to 
SQL Server.

4. Once you have placed the code in your query pane, you can execute it by pressing either Ctrl+E or F5, 
or clicking the Execute button on the toolbar. Once it finishes executing, you should see the new login in 
the Security node within the Object Explorer on the left, as shown in Figure 4-11. If you right-click the 
new login and select Properties, you will see the same screen and details as we saw when we created 
the login graphically.

Figure 4-11. Both logins created

5. We can then give the login access to SQL Server or disable it by using the ALTER LOGIN command. 
It is also possible to alter the login’s default database. In our graphical example, if you check back to 
Figure 4-5, you will see that the default database was called master. It would be better for the login to 
connect to the correct database. The following code informs SQL Server that it should connect our login 
to the ApressFinancial database by default, rather than the master database as defined previously. 
Remember to change the prefix as appropriate.

ALTER LOGIN [XP-PRO\Apress_Product_Controllers]
WITH DEFAULT_DATABASE=ApressFinancial

6. The final piece in the jigsaw is to grant the Windows account access to the database, which will then 
allow the login to use the ApressFinancial database. To do this, we need to switch from the master 
database to the ApressFinancial database with the USE keyword followed by the name of the database.

Using CREATE USER, we can then specify the name of the user we want in our database. The standard procedure 
is to use the same name as the login, which makes life so much easier when maintaining the system in general. 
We then use FOR LOGIN to define which server login we want to map to this database user.

USE ApressFinancial
GO
CREATE USER [XP-PRO\Apress_Client_Information]
FOR LOGIN [XP-PRO\Apress_Client_Information]
GO

 

Dewson_5882C04.fm  Page 104  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 105

Server Logins and Database Users
As you now know, there are two steps to complete, whether you want to create a SQL Server 
authentication–based login or a Windows authentication–based login. The first is a server 
login, which was the first part of creating a login that we went through. A server login is one 
that, when used, can connect only to the server itself. It cannot use any of the user databases 
within SQL Server. The second step was creating the database user; in the graphical section 
that we looked at first, this is when we selected the databases we wanted to use.

Within SQL Server, permissions can be granted at multiple levels, including the server and 
database level. Examples of server-level permissions include creating new logins or managing 
server properties. Examples of database permissions include being able to read data from a 
table or being able to create new tables. One server login can be associated with multiple users 
in different databases. Generally, when using Windows authentication, a database username is 
the same as the login name, but this does not have to be the case. It does, however, simplify 
administration. In this book, we will mostly be dealing with database-level permissions, but we 
will briefly examine server roles in the following section.

Roles
Three different types of roles exist within SQL Server: fixed server roles, database roles (which 
refers to the general roles included during installation of SQL Server; component-specific roles 
such as those for Reporting Services that are added when the component is installed; and user-
defined roles), and application roles.

Fixed Server Roles
Within SQL Server, specific predefined roles are set up to allow certain tasks and to restrict 
other tasks. Someone with the right permissions, such as a system administrator, can assign 
these roles to any user ID or group of user IDs within SQL Server.

If you look at the Server Roles node in the Object Explorer, you will see a list of roles as 
shown in Figure 4-12. But what do they mean? You get a little hint if you move to the Server 
Roles node within SQL Server Management Studio.

Figure 4-12. Fixed server roles

■Note  It is not possible to create your own server role.

Dewson_5882C04.fm  Page 105  Monday, January 2, 2006  3:16 PM



106 C H A P T E R  4  ■  S E C U R I T Y

These roles, available for anyone to use across the server, can perform the following tasks:

• bulkadmin: Run BULK INSERT statements.

• dbcreator: Create, alter, or drop databases as well as restore them.

• diskadmin: Administer disk files.

• processadmin: Kill a login running T-SQL code.

• securityadmin: Manage logins including passwords for SQL logins and login 
permissions.

• serveradmin: Administrate the server and carry out tasks such as changing options and 
even starting and shutting down the server.

• setupadmin: Work with more than one server with which they are linked and manage the 
linked server definitions.

• sysadmin: Perform any activity.

Server roles are static objects. They contain groups of actions that operate at the server 
level rather than at the database level. When creating a new login, you could assign these server 
roles to it if you wanted the login to carry out server actions as well as any database-related 
actions, if required.

If your Windows account belongs to the BUILTIN/Administrators group, then it automati-
cally belongs to the sysadmin server role. You can check this yourself by highlighting the 
sysadmin server role, right-clicking it, and selecting Properties to bring up the dialog box shown 
in Figure 4-13. You should see BUILTIN/Administrators listed. As more logins are created, they 
can be added to this role via the Add button.

Although we are not going to alter this for our example database, having Windows XP 
administrators automatically being administrators for SQL Server can be a bit of a security 
issue. Many companies batten down their computers so that no user is an administrator of his 
or her local machine. By doing this, they stop people adding their own software, shareware, 
games, or whatever to a machine that is administrated and looked after by a support team.

This helps keep the machine stable, and throughout your organization everyone will know 
that a piece of software developed on one machine will work on any other. Therefore, users 
won’t have administrator rights on their XP machine and won’t have those rights in SQL Server. 
This is not the case in all organizations. By leaving the Administrators group in the sysadmin 
role, everyone who has administrator rights on their PC will have system administrator rights 
within SQL Server. As the owner of the database, you have now lost control of the security and 
development of your SQL Server database.

■Note  Because this book assumes that we’re using either a standalone PC or a secure set of users, it is 
safe to keep the Administrators group. However, you will find that this group is usually removed from 
database setups to keep the security of the database intact. However, it is worth keeping in mind that before 
removing the login, or removing it from the sysadmin role, that you should set up a new group or user as a 
system administrator to prevent locking yourself out.

Dewson_5882C04.fm  Page 106  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 107

Figure 4-13. Members of the sysadmin role

Database Roles
Database roles deal with actions that are performed at the database level. Actions within SQL 
Server can be grouped into different types of actions.

Following are the existing database roles installed with SQL Server and what they can or 
cannot do:

• dbo/db_owner: Specifies the owner of the database

• db_accessadmin: Can manage access to a database for logins

• db_backupoperator: Can back up the database

• db_datareader: Can read data from all user-defined tables

• db_datawriter: Can perform any write actions to user tables

• db_ddladmin: Can perform Data Definition Language (DDL) actions like creation of 
tables

• db_denydatareader: Cannot read data from user tables

Dewson_5882C04.fm  Page 107  Monday, January 2, 2006  3:16 PM



108 C H A P T E R  4  ■  S E C U R I T Y

• db_denydatawriter: Cannot write data from user tables

• db_securityadmin: Can modify database role membership and manage permissions

• public: Can see any database objects that are created with public, or full rights, access 
(Every user that you create will belong to the public database role.)

Although you will put the existing database roles to use, you’ll find it helpful to create new 
database roles, a common task in SQL Server, when you want to be very specific about permissions 
particular users have. You do this by creating a specific database role, and then adding the 
Windows accounts/Windows groups/SQL Server logins to your role. If you wanted to group 
several groups together, then you might create a new role.

Application Roles
Databases are written for applications. However, not all databases exist for just one application. 
Application roles allow you to define one role for accessing a database based on the application 
that is connecting, rather than having security for different groups of users or single users. Let’s 
look at an example.

Consider a central database that holds client data. This database is in turn accessed from 
the sales order department, which has its own separate database. The client database is also 
accessed from the debt recovery department, which also has its own database.

As a database administrator, you may set up user groups for each application. Say you 
have a Debt Recovery group and a Sales Order Processing group. Debt Recovery would want 
to see information that was hidden from the Sales Order group, such as how in debt a customer 
is. But what if a user, such as AJMason, worked in both the debt recovery and sales order 
departments, in two different part-time jobs, for instance? While working as part of the Sales 
Order group, AJMason could see information that was not pertinent to that group.

You can set up an application role for Sales Order and another for Debt Recovery, thus 
removing the conflict of having two different sets of security settings for the one user. Also, 
when users move departments, you are not wasting time revoking one set of roles to give them 
a new set of roles for their new department.

An application role overrides any user security settings and is created for giving an appli-
cation access to SQL Server. Therefore, the Sales Order Processing application would define 
the access for anybody using it.

An application role has no users; it is used when you wish to define what an application 
can access within your database and what it cannot. We need to create an application role for 
examples shown later in this book, so let’s do this now.

Try It Out: Creating a New Application Role

1. Navigate to the ApressFinancial database, expand the Security node, right-click Roles, and select 
New Application Role. In the dialog box that appears, enter a useful role name and a password as shown 
in Figure 4-14. This role will be for the banking application through which users will want to look at 
checks, cash withdrawals, etc.

Dewson_5882C04.fm  Page 108  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 109

Figure 4-14. Creating a new application role

2. Click Securables in the Object Explorer on the left-hand side, and then click Add Objects. This is how we 
begin to define what objects we want to assign to this role.

3. In the Add Objects dialog box that appears, leave the options as they are shown in Figure 4-15 and click OK.

Figure 4-15. Selecting the type of objects to add

Dewson_5882C04.fm  Page 109  Monday, January 2, 2006  3:16 PM



110 C H A P T E R  4  ■  S E C U R I T Y

4. As we don’t have much within our database that we can give permissions to just now, select Databases, 
as shown in Figure 4-16, and click OK. We are going to give this application authority to access our 
database, but not the ability to do anything (mainly because we don’t have anything it can do yet).

Figure 4-16. Selecting the database

5. We now see a list of all the databases within the server. As shown in Figure 4-17, select ApressFinancial 
as this is the only database this role will access.

Figure 4-17. ApressFinancial database selected

6. This brings us back to the Securables screen where we can allow or deny specific actions, as you see 
in Figure 4-18. Leave everything unchecked for the moment; we will come back to this later in the book 
when we look at stored procedures in Chapter 10.

Dewson_5882C04.fm  Page 110  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 111

Figure 4-18. Application roles explicit permission settings

7. Click OK to finish creating our application role.

 

Schemas
In the following chapters, we will be creating SQL Server objects to hold and work with our 
data. We could create these objects so that each could be seen as its own small part of the 
overall solution. It would make for better organization, though, if objects that could be seen as 
subsets of the whole solution were grouped together. For example, in our example, we could 
group share details and share prices together as share information, or group the financial 
transactions the customer makes using the transactions and transaction types tables together. 
These groupings could then be used as the basis of security to the underlying data for when a 
SQL Server connection tries to access the data. These groupings we have just talked about exist 
in SQL Server 2005 and are called schemas. Therefore, a schema is a method of creating a 
group and placing objects within that group, which can then be used to grant or revoke permis-
sions as a group to SQL Server connections.

Dewson_5882C04.fm  Page 111  Monday, January 2, 2006  3:16 PM



112 C H A P T E R  4  ■  S E C U R I T Y

Prior to SQL Server 2005, each object was owned by a user account. Whenever a user left, 
quite often it would mean moving the ownership of objects for that user’s account to a new 
account. As you can imagine, in a very large system this could take hours or even days to complete. 
Now objects are owned by schemas, and the many objects that exist will be contained within 
one schema in our very large system. Although a schema will still be owned by a SQL Server 
account, as we will see when we take a look at the syntax in a moment, the number of schemas 
should be a fraction of the number of objects, even in very large systems, and therefore moving 
ownership will be easier and faster.

So by having a schema within our solution and assigning objects to that schema, not only 
are we improving security, but we are also grouping logical units of the database together, 
making our solution easier to understand and use.

To create a schema is very simple, and the syntax is defined as follows:

CREATE SCHEMA schema_name AUTHORIZATION owner_name

We can now see this in action.

Try It Out: Creating Schemas and Adding Objects

1. Open up a Query Editor window so we can create our first schema. This schema will be used to keep all 
our transaction details together. Enter the following code:

USE ApressFinancial
GO
CREATE SCHEMA TransactionDetails AUTHORIZATION dbo

2. When we execute this by pressing F5 or Ctrl+E, or clicking the Execute button, we should see it success-
fully complete. This will have created a new schema where the owner of the schema is the dbo user. 
This means that any login with sysadmin privileges will automatically have access to this schema 
because they map to the dbo user in all databases. If you execute the code successfully, you’ll see the 
following message:

Command(s) completed successfully.

3. We can then create further schemas for other groupings, such as one for share details or customer 
details including products. Enter the following code:

CREATE SCHEMA ShareDetails AUTHORIZATION dbo
GO
CREATE SCHEMA CustomerDetails AUTHORIZATION dbo

4. Execute this code, which will add the schemas to the database. If you execute the code successfully, 
you’ll see the following message:

Command(s) completed successfully.

5. If we move to the Object Explorer, we can see our schemas in place, as shown in Figure 4-19.

Dewson_5882C04.fm  Page 112  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 113

Figure 4-19. Schemas applied

 

Before You Can Proceed with Your Solution
You have now created a database and gained an understanding of the different roles in SQL 
Server. Before you can proceed and create objects such as tables, you need to clear a couple of 
obstacles. After the database, the next objects you will create are tables, which you will learn 
about in the next chapter. So what security considerations do you need to check before you can 
do this?

First of all, you must be using a database user account that has the authority to add tables 
to the specific database you are required to, in this case ApressFinancial. This is the next secu-
rity issue we will tackle, and you should keep in mind what you learned in the previous chapter 
about accounts and roles. You also need to have access to that specific database. Let’s look at 
the issue of access to the database if you are using a user ID that did not create the database.

The database was re-created at the very end of the previous chapter under user ID 
XP-PRO\RDewson. The user who created the database is the database owner, also known as dbo. 
So how can you check who created the database if you did not? At the end of the last chapter, 
I asked you to create the database under your own user ID, which, if you followed the instructions 
so far and you are a local administrator of the machine SQL Server is installed on, you should 
have the right privileges within SQL Server to do.

If you are working with SQL Server already installed on an XP/W2K(3) machine, you need 
to ensure that your user ID is set up as an administrator user ID, as demonstrated in Chapter 1, 
or set up specifically as an administrator within SQL Server.

This next section will demonstrate how you check the identity of the database owner.

Dewson_5882C04.fm  Page 113  Monday, January 2, 2006  3:16 PM



114 C H A P T E R  4  ■  S E C U R I T Y

Try It Out: Checking the Database Owner

1. Ensure that SQL Server Management Studio is open.

2. Navigate to the database that you wish to check on, in this case ApressFinancial.

3. Click the ApressFinancial database node in the Object Explorer on the left-hand side of the screen 
once, and then right-click.

4. Select Properties to bring up the Database Properties dialog box shown in Figure 4-20. On the General 
tab, you will see an item named Owner. This is the fully qualified XP/Win2K account preceded by the 
domain or local machine name.

Figure 4-20. Database Properties

5. Click Cancel to close this dialog box.

 

Ownership of tables and other database objects is just as important. If you create a table 
using the same login ID as that which you created the database with, or use a logon ID that is a 

Dewson_5882C04.fm  Page 114  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 115

member of the sysadmin role that is also implicitly mapped to the dbo user in the database, the 
table will have a default schema of dbo. However, if you logged in with a different user ID, the 
table would have that user’s default schema as the prefix to the table name, replacing the dbo 
prefix.

Now that we know who the database owner is, it is up to that user, or another user who has 
system administration rights (in other words, a login that has the sysadmin server role or has the 
db_owner database role), to allow any other specified user the ability to create tables within the 
database. We have a user called AJMason who is not a system administrator, but a developer. 
Recall we created this user in Chapter 1, and that this user could not log in to SQL Server.

The next section will go through a scenario where, as a developer, AJMason has no rights 
to create any new items. However, we will rectify this situation in the next section, where we 
will alter AJMason so that he can connect to SQL Server and create a table.

Try It Out: Allowing a User to Create a Table

1. Log on to SQL Server as a sysadmin. Create a new login by clicking the Logins node on the Server 
Security node. This brings up the new login screen, which we can populate with the login name of the 
user by typing in the details of the login, as shown in Figure 4-21. We are also going to allow this user 
to connect to ApressFinancial by default when he or she logs in.

Figure 4-21. New login

Dewson_5882C04.fm  Page 115  Monday, January 2, 2006  3:16 PM



116 C H A P T E R  4  ■  S E C U R I T Y

2. We are not going to assign this user any server roles, but we are going to assign this user to the 
db_owner role, as you see in Figure 4-22. This will allow the user to create tables as well as create and 
work with other objects and data. We could have selected db_ddladmin, but this would only have 
allowed the user to create objects and not create data.

Figure 4-22. New login with database access

3. We now click OK, which will create not only a server login, but also a database user in ApressFinancial 
for AJMason, as shown in Figure 4-23.

Dewson_5882C04.fm  Page 116  Monday, January 2, 2006  3:16 PM



C H A P T E R  4  ■  S E C U R I T Y 117

Figure 4-23. User login accounts

AJMason is now in a position to log in to SQL Server and create tables in the ApressFinancial database.

Summary
There is a great deal to cover concerning security and its different aspects. I would like to just 
recap everything that we have seen just for one last time to ensure that you understand how 
everything fits together.

Before you can connect to SQL Server, an administrator of the SQL Server installation 
must give you permission to connect. In a Windows authentication setup, the administrator 
would either allow your Windows account or a group that contains your Windows account to 
connect to SQL Server. He or she can do this by either using the GUI and creating a login via the 
Security node or using the CREATE LOGIN ... FROM WINDOWS T-SQL statement. If you are in a SQL 
Server authentication setup, then a user ID and password would be created within SQL Server, 
again either via the Security/Logins node or by using the CREATE LOGIN ... PASSWORD = 'password' 
syntax.

Once a connection has been made, you can create a user login within the database using 
the CREATE USER ... syntax. This will allow either the Windows account or the SQL Server login 
access to the database.

Dewson_5882C04.fm  Page 117  Monday, January 2, 2006  3:16 PM



118 C H A P T E R  4  ■  S E C U R I T Y

It is then possible to place the user into a role: either a predefined role or, more likely, 
a custom role that you create. This role can be used to determine what can and cannot be 
accessed within SQL Server tables, views, stored procedures, and any other object. Therefore, 
a role allows groups of users in one statement to be granted or revoked access to objects within 
SQL Server. Without roles, as new people join and as old people leave, or people move between 
departments, you would need to grant or revoke privileges as required—quite an onerous task.

Finally, when creating objects. as you will see in the next few chapters, these objects are 
owned by schemas. This allows for groups of objects to belong to a specific schema rather than 
a specific user login. This also reduces the overhead of granting privileges and allows the 
grouping of objects that belong together, making your application easier to understanding.

This chapter continued our coverage of security within SQL Server 2005. At this point in 
the book, you now know about SQL Server authentication and Windows authentication, and 
you have discovered how to control access to databases. Even during the installation process, 
the sa login and password enforcement were discussed on that special account. Our discus-
sions on security are by no means finished because there are still several areas that we need to 
explore together, which we will do as we go through the book.

Security is the most important part of ensuring that your organization continues to have 
the ability to work. A security breach could result in lost income and will certainly mean that 
many people will be unable to do their work. It can also lead to unfulfilled orders, backlogs, or 
even fraudulent transactions. Regardless of whether you have the most well-designed database 
or the most poorly performing application ever, if you allow the wrong person into the wrong 
database, the result will be catastrophic.

Dewson_5882C04.fm  Page 118  Monday, January 2, 2006  3:16 PM



119

■ ■ ■

C H A P T E R  5

Defining Tables

Now that we’ve created the database, it obviously needs to have the ability to store information. 
After all, without this, what is the point of a database? The first area that needs to be worked on is 
the table definitions.

To be functional, a database needs at least one table, but it can have many and, depending 
on the solution you are building, the number of tables can become quite large. Therefore, it is 
important that you as a developer know as much about tables, their structures, and their contents 
as possible. The aim of this chapter is to teach just that, so that you have a sound base to work 
from regarding tables, which you can then use for the creation of other objects associated with 
tables.

The design of a table is crucial. Each table needs to contain the correct information for its 
collection of columns to allow the correct relationships to be established. One of the skills of a 
database developer or administrator is to ensure that the final design is the correct solution, 
hence avoiding painful alterations once further development of the system is in progress. For 
example, if we designed a system where the table definitions had some major problems and 
required columns to be moved around, then every aspect of an application would have to be 
revisited. This would mean quite a large redesign. We looked at database design in Chapter 3, 
where we also created the database in which our tables will reside, so we know what tables we 
need and what data they will store.

So that we can successfully create a table, this chapter will cover the following:

• The definition of a table

• The different types of data that can be stored

• How and where a table is stored

• Creating a table using SQL Server Management Studio and Query Editor

• Dealing with more advanced areas of table creation including

• How to make a row unique

• Special data states

• Dealing with pictures and large text data

Dewson_5882C05.fm  Page 119  Monday, January 9, 2006  3:26 PM



120 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

What Is a Table?
A table is a repository for data, with items of data grouped in one or more columns. Tables 
contain zero or more rows of information. An Excel spreadsheet can be thought of as a table, 
albeit a very simple table with few or no rules governing the data. If you look at Figure 5-1, you 
will see that the first three columns contain data that can be assumed to be first name, last 
name, and date of birth, but the fourth column is free-format and varies between a hotel room 
number, a house number, and a flat number. There is no consistency. In fact, in Excel, all the 
columns could in reality contain any data.

Figure 5-1. Excel showing part address details

What sets a table inside SQL Server apart from other potential tables is that a SQL Server 
table will have specific types of data held in each column, and a predetermined type of data 
defined for a column can never change without affecting every row of data within that column 
for that table. If you use Excel, in a specific column you could have a character in one row, a 
number in the next row, a monetary value in the following row, and so on. That cannot happen 
in a database table. You can store all of these different values, but they would all have to be 
stored as a data type that holds strings, which defeats the purpose of using a database in the 
first place.

At the time a table is created, every column will contain a specific data type. Therefore, 
very careful consideration has to be made when defining a table to ensure that the column data 
type is the most appropriate. There is no point in selecting a generic data type (a string, for 
example) to cover all eventualities, as you would have to revisit the design later anyway.

A table’s purpose is to hold specific information. The table requires a meaningful name and 
one or more columns defined, each given a meaningful name and a data type; in some cases, you 
want to set a restriction on the maximum number of characters that the column can hold.

When it comes time to create a table, you do have to be connected to SQL Server with a 
login that belongs to the correct server or database role that can create tables, such as sysadmin 
or db_ddladmin. When you create a table, it has to be owned within the database, and this is 
done via assigning the table to a schema. Recall Chapter 4 discusses a schema for grouping 
objects and as a basis for object security.

Some data types have fixed storage specifications, whereas with other data types you have 
to decide for yourself how many characters the maximum will be. If you had a column defined 
for holding surnames, it would hold character values. There would also be no sense in setting 
the maximum length of this column at 10 characters, as many surnames are longer than this. 
Similarly, there would be little sense in saying the maximum should be 1,000 characters. A sensible 
balance has to be reached.

The rows of data that will be held in a table should be related logically to each other. If a 
table is defined to hold customer information, then this is all it should hold. Under no circum-
stances should you consider putting information that was not about a customer in the table. It 
would be illogical to put, for example, details of customer’s orders within it.

Dewson_5882C05.fm  Page 120  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 121

Defining a Table: SQL Server Management Studio
You have learned a great deal about SQL Server before we even create our first table. However, 
it is essential to know all of this information before creating a table and looking at the ramifica-
tions of it all going horribly wrong. You also now know why you have to be careful with users to 
ensure that the user has enough security privileges to build tables.

Defining a table can be completed either in SQL Server Management Studio or Query 
Editor. We can also create a table through a number of other means using developer tools and 
languages, but these two methods are the ones this book will focus on. We will create the first 
table with SQL Server Management Studio. This is the Customers table, which will hold details 
about each customer. But before we can do this, it is necessary to look at the different types of 
data that can be stored.

Different Table Data Types
SQL Server has many different data types that are available for each column of data. This 
section will explain the different data types and help you down the path of choosing the right 
type for each column.

You will find that several data types may look similar, but keep in mind that each data type 
has a specific use. For example, unless you really need to define characters to be stored as 
Unicode, then don’t use the n prefix data types. Unicode characters use up more space than 
standard characters due to the potentially wide range of characters that SQL Server has to store. 
Also, when looking at numbers, if the largest value you will store in a column is 100, then don’t 
go for the data type that will allow the largest number to be stored. This would be a waste of 
disk space.

Let’s take a look at the data types you can use in a table. Afterwards, you’ll see data types 
you can use in a program.

char

The char data type is fixed in length. If you define a column to be 20 characters long, then 20 
characters will be stored. If you enter less than the number of characters defined, the remaining 
length will be space filled to the right. Therefore, if a column were defined as char (10), “aaa” 
would be stored as “aaa       ”. Use this data type when the column data is to be of fixed length, 
which tends to be the case for customer IDs and bank account IDs.

nchar

The nchar type is exactly the same as char, but will hold characters in Unicode format rather 
than ANSI. The Unicode format has a larger character set range than ANSI. ANSI character sets 
only hold up to 256 characters. However, Unicode character sets hold up to 65,536 different 
characters. Unicode data types do take up more storage in SQL Server; in fact, SQL Server allo-
cates double the space internally, so unless there is a need in your database to hold this type of 
character, it is easier to stick with ANSI.

Dewson_5882C05.fm  Page 121  Monday, January 9, 2006  3:26 PM



122 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

varchar

The varchar data type holds alphanumeric data, just like char. The difference is that each row 
can hold a different number of characters up to the maximum length defined. If a column is 
defined as varchar(50), this means that the data in the column can be up to a maximum of 
50 characters long. However, if you only store a string of 3 characters, then only three storage 
spaces are used up. This definition is perfect for scenarios where there is no specific length of 
data; for example, people’s names or descriptions where the length of the stored item does not 
matter. The maximum size of a varchar column is 8,000 characters. However, if you define the 
column with no size, that is, varchar(), then the length will default to 1.

You can also use another setting that can exceed the 8,000-character limit, by defining the data 
type with the constant max. You would use this when you believe the data to be below 8,000 char-
acters in length but you want to account for instances when the data may exceed this limit. If you 
know that you will exceed the 8,000-character limit in at least one row, then use this option. Finally, 
you should use max for large blocks of text, because it will eventually supersede the text data type.

nvarchar

The nvarchar type is defined in a similar way to varchar, except it uses Unicode and therefore 
doubles the amount of space required to store the data.

text

■Caution  This data type will be removed in a future release of SQL Server, so you should use 
varchar(max) instead.

It is useful to understand this data type in case you come across it in any legacy systems 
that have been upgraded to SQL Server 2005. If you need to hold any character data that will 
always be longer than 8,000 characters, then you should not use varchar(max). This is where 
the text data type comes into play. These data types can hold up to 2 gigabytes of data, and 
could be used to hold notes about customers in a call center, for example. However, text data 
types are usually different from other data types. Because such a large amount of data can be 
stored in this data type, it doesn’t make sense to store this data within each row of SQL Server. If you 
think about it, you would very quickly have a vast database holding very little data. Therefore, 
if you are storing data within this data type, the data itself is held elsewhere. A pointer is held 
within SQL Server in the column defined as a text data type, pointing to where the data is phys-
ically held. However, you can store up to 8,000 characters of physical data, if you wish, within 
this data type within the row; but really, if you have decided to use text as a data type, you are 
expecting large amounts of data, and therefore it would be best to keep the data outside the 
database. Microsoft has stated that keeping this data within a row will cease being supported in 
future versions of SQL Server.

ntext

This data type is very similar to text, with the exception that the data is stored as Unicode, and 
only 1GB of characters can be stored because this data type takes double the amount of space 
to store one character of text. This data type will also be removed in a future version of SQL 
Server, and therefore you should use nvarchar(max) instead.

Dewson_5882C05.fm  Page 122  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 123

image

image is very much like the text data type, except this is for any type of binary data, which 
includes images but could also include movies, music, and so on. Like text, it will also be 
removed in a future version of SQL Server, so you should use varbinary(max) instead.

int

The int, or integer, data type is used for holding numeric values that do not have a decimal 
point (whole numbers). There is a range limit to the value of the numbers held: int will hold 
any number between the values of –2,147,483,648 and 2,147,483,647.

bigint

A bigint, or big integer, data type is very similar to int, except that much larger numbers can 
be held. A range of –9,223,372,036,854,775,808 through to 9,223,372,036,854,775,807 can be 
stored.

smallint

The smallint data type, or small integer, holds small integer numbers in the range of –32,768 
through to 32,767. Do take care when defining columns with this data type and make sure there 
really is no possibility of exceeding these limits. There is always a big danger when creating a 
column with this data type that you have to go back and change the data type, so if in doubt, 
select int.

tinyint

The tinyint, or tiny integer, data type is even smaller than smallint and holds numbers from 0 
through to 255. It could be used to hold a numerical value for each US or Canadian state or 
perhaps every county in the United Kingdom

decimal/numeric

Both of these data types hold the same precision and ranges of data. The range is from –10 
to the power 38 + 1 through to 10 to the power 38 – 1. These are quite large ranges, from 
–0.00000000000000000000000000000000000001 through to 
10,000,000,000,000,000,000,000,000,000. However, do take care with this, as you cannot store 
38 digits to the right and left of the decimal point. You can only store up to and including 
38 digits. So, the greater the precision required to the right of the decimal point, the fewer digits 
are left to represent the whole number.

float

This is used for numbers where the decimal point is not fixed. float data types hold very large 
numbers in the range of –1.79E+308 through 1.79E+308. There is a warning with this data type: 
the values cannot always be seen as 100% accurate, as they can be approximate. The approxi-
mation arises from the way the number is physically stored as binary code. You will have problems 
where a number ends in .3, .6, or .7. The value stored has to be approximated, or rounded, as 
some values can’t be stored accurately, for they may have more decimal places than can be 
catered to. A well-known example is the value of Pi.

Dewson_5882C05.fm  Page 123  Monday, January 9, 2006  3:26 PM



124 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

real

The real data type is very much like float, except that real can store only numbers in the 
range of –3.40E+38 through 3.40E+38. This data type also holds an approximate value.

money

The money data type is used for holding numeric values up to four decimal places. If you need 
to use more than four decimal places, you need to look to another data type, such as decimal. 
This data type doesn’t actually store the currency symbol to signify the monetary type, so you 
should not use this data type for different currencies values, although you can combine a 
column using this data type with a second column defining the currency type. The money data 
type has a range of –922,337,203,685,477.5808 through 922,337,203,685,477.5807. If you need to 
store the currency symbol of the currency that is held here ($ or USD for dollars, £ or GBP for British 
pounds, etc.), then you would need to store this separately, as the money data type does not hold 
the currency symbol. A column defined as money will hold the money to 1/10,000 of a decimal 
unit, which is a bit of a waste if you are storing the values as Turkish Lira.

smallmoney

This data type is similar to money with the exception of the range, which lies between –214,748.3648 
and 214,748.3647.

datetime

This will hold any date and time from January 1, 1753 through to December 31, 9999. However, 
it stores not only a date, but also a time alongside it. If you just populate a column defined as 
datetime with a date, a default time of 12:00:00 will be stored as well.

smalldatetime

This data type is very much like datetime, except the date range is January 1, 1900 through to 
June 6, 2079. The reason for the strange date at the end of the range lies in the binary storage 
representation of this datetime.

timestamp

This is an unusual data type, as it is used for a column for which you would not be expected to 
supply a value. The timestamp data type holds a binary number generated by SQL Server, which 
will be unique for each row within a database. Every time a record is modified, the column with 
this data type in the record will be modified to reflect the time of modification. Therefore, you 
can use columns with this data type in more advanced techniques where you want to keep a 
version history of what has been changed.

uniqueidentifier

This data type holds a Globally Unique Identifier or GUID. This is similar to the timestamp data 
type, in that the identifier is created by a SQL Server command when a record is inserted or 
modified. The identifier is generated from information from the network card on a machine, 
processor ID, and the date and time. If you have no network card, then the uniqueidentifier is 

Dewson_5882C05.fm  Page 124  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 125

generated from information from your own machine information only. These IDs should be 
unique throughout the world.

binary

Data held in this data type is in binary format. This data type is mainly used for data held as 
flags or combinations of flags. For example, perhaps you wanted to hold flags about a customer. 
You need to know whether the customer is active (value = 1), ordered within the last month 
(value = 2), last order was for more than $1,000 (value = 4), or meets loyalty criteria (value = 8). 
This would add up to four columns of data within a database. However, by using binary values, 
if a client had a value of 13 in binary, then they would have values 1 + 4 + 8, which is active, last 
order more than $1,000, and meets the loyalty criteria. When you define the column of a set 
size in binary, all data will be of that size.

varbinary

This data type is very much like binary, except the physical column size per row will differ 
depending on the value stored. varbinary(max) can hold values more than 8,000 characters in 
length and should be used for holding data such as images.

bit

This data type holds a value of 0 or 1. Usually, bit is used to determine true (1) or false (0) values.

xml

XML data can be held in its own special data type rather than in a varchar(max) column. There 
are special query commands that can then be used to query and work with this data. Prior to 
SQL Server 2005, XML data was almost an afterthought with no data type, and earlier versions 
of SQL Server had extremely limited functionality to work with the XML data that did exist.

Different Program Data Types
There are three more data types that can be used within a program, which we will take a look 
at now.

cursor

Data can be held in a memory-resident state called a cursor. It is like a table, as it has rows and 
columns of data, but that’s where the similarity ends. There are no indexes, for example. A cursor 
is used to build up a set of data for processing one row at a time.

table

A table data type has similarities to both a cursor and a table. It holds rows and columns of 
data, but the data cannot be indexed. In this case, you deal with the data a “set at a time,” like 
a normal table. We’ll look at both the cursor and table data types later in the book, as they are 
more advanced topics.

Dewson_5882C05.fm  Page 125  Monday, January 9, 2006  3:26 PM



126 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

sql_variant

It is possible to have a data type that can hold a few different data types. I will be honest, I don’t 
recommend using this data type as it shows that you are unsure of your data and what type of 
data to expect. Before putting data into a data type, I feel you need to be sure what type of data 
you are getting. Although we have sql_variant as a program data type, it can also be used as a 
column data type, but the same arguments apply. We won’t look at this data type any further 
within this book.

Columns Are More Than Simple Data Repositories
Assigning a data type to a column defines what you expect to hold at that point. But column 
definitions have more power than just this. It is possible to fill the column with a seed value, or 
even with no value whatsoever.

Default Values
As a row is added to a table, rather than enforcing developers to add values to columns that 
could be populated by SQL Server, such as a column that details using a date and time when a 
row of data was added, it is possible to place a default value there instead. The default value can 
be any valid value for that data type. A default value can be overwritten and is not “set in stone.”

Generating IDENTITY Values
For those readers who have used MS Access, the IDENTITY keyword option is similar to 
AutoNumber.

When adding a new row to a SQL Server table, you may wish to give this row a unique but 
easily identifiable ID number that can be used to link a row in one table with a row in another. 
Within the ApressFinancial database, there will be a table holding a list of transactions that 
needs to be linked to the customer table. Rather than trying to link on values that cannot guarantee 
a unique link (first name and surname, for example), a unique numeric ID value gives that 
possibility, providing it is used in conjunction with a unique index. If you have a customer with 
an ID of 100 in the Customers table and you have linked to the Transaction table via the ID, you 
could retrieve all the financial transactions for that customer where the foreign key is 100. 
However, this could mean that when you want to insert a new customer, you have to figure out 
which ID is next via some T-SQL code or using a table that just held “next number” identities. 
But fear not, this is where the IDENTITY option within a column definition is invaluable.

By defining a column using the IDENTITY option, what you are informing SQL Server is that

• The column will have a value generated by SQL Server.

• There will be a start point (seed).

• An increment value is given, informing SQL Server by how much each new ID should 
increase.

• SQL server will manage the allocation of IDs.

Dewson_5882C05.fm  Page 126  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 127

• Values cannot be modified, as the column is totally controlled by SQL Server internally.

• Each row will be unique by virtue of the ID being unique.

You would have to perform all of these tasks if SQL Server did not do so. Therefore, by 
using this option in a column definition, you can use the value generated to create a solid, 
reliable, and unique link from one table to another, rather than relying on more imprecise 
selection criteria.

The Use of NULL Values
When building table definitions, there can be columns defined as NULL and columns that have 
NOT NULLs, or, if using the Table Designer, you can check or uncheck the Allow Nulls option. 
These two different statements define whether data must be entered into the column or not. 
A NULL value means that there is absolutely nothing entered in that column—no data at all. 
A column with a NULL value is a special data state, with special meaning. This really means that 
the type of data within the column is unknown.

If a field has a NULL value, no data has been inserted into the column. This also means that 
you have to perform special function statements within any T-SQL code to test for this value. 
Take the example of a column defined to hold characters, but where one of the rows has a NULL 
value within it. If you completed a SQL function that carried out string manipulation, then the 
row with the  NULL value would cause an error or cause the row not to be included in the function 
without any special processing. However, there are times when the use of  NULL is a great advantage.

Why Define a Column to Allow NULL?
So what advantages are there to allowing data columns to hold NULL values? Well, perhaps the 
largest advantage is that if a field has a NULL value, you know for a fact that nothing has been 
entered into it. If you couldn’t define a column as having NULLs, when a column is defined as 
numeric and has a value of 0, you could not be sure if it has no value or if it does have a valid 
value of 0. Using NULL allows you to instantly know that the column has no data and you can 
then work in that knowledge.

Another advantage is the small space that a NULL column takes up. To be precise, it takes 
up no space whatsoever, again unlike a 0 or a single space, which do take up a certain amount 
of space. In this age of inexpensive hard drives, this is less of an issue, but if you extrapolate for 
a database with a million rows and four columns have a space instead of a NULL, that’s 4 million 
bytes (4MB) of space used up unnecessarily. Also, because a NULL takes up no space, then 
including NULL values means it will be a lot faster to get the data from the database to where it 
needs to go to either in a .NET program or back to your T-SQL code for further processing.

There will be more on NULL values in Chapter 8.

Image and Large Text Storage in SQL Server
Storing pictures and large amounts of text is different from storing other kinds of information 
within SQL Server. Pictures can take up large amounts of space. The following also holds true 
for large amounts of text.

Dewson_5882C05.fm  Page 127  Monday, January 9, 2006  3:26 PM



128 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Several scenarios exist where, by holding large amounts of data, SQL Server and the SQL 
Server installation will end up running into problems. I’ll explain why in a minute, but first of 
all you will see what you should do in SQL Server to handle such data.

If you wish to store large numbers of images or large amounts of text (by large, I mean 
more than 8KB or 4KB if you want to store the Unicode version of the text), you should store 
these outside SQL Server on the hard drive somewhere. SQL Server then holds a file location in 
the column to point to where the image or text data is held. From there you can retrieve the 
information and use it as necessary. This gives you as a developer or database administrator 
the ability to store large amounts of data on a different volume from the SQL Server installation, on 
a different server, or even just in a different directory.

However, if you do wish to hold image data within a table, then if you define a column as 
varbinary(max), it is possible to hold up to 2^31 bytes of data, or around 2GB.

Having this control over how you store information can keep your database to a small size. 
Using file pointers, like c:\temp\mypicture.jpg, allows SQL Server to run without taking up vast 
amounts of the database space declared at setup. After all, if you set your database’s initial size 
to 20MB with 5MB extensions, it would not take too many pictures to fill this space up if you 
held the images in a column. Not only that, SQL Server has built-in functionality, called trans-
actions, where a copy of the data can be taken before and after any modification. If that data 
included a 5MB graphic or volume of text, SQL Server would have to keep track of that informa-
tion while the transaction was in progress.

■Note  When executing a transaction, SQL Server takes a copy of the data and then applies your changes. 
If everything looks OK, you can inform SQL Server to save them or, if there are problems, you can inform SQL 
Server to roll back those changes. Therefore, SQL Server needs to keep copies of all the data involved in the 
transaction.

If your application does use images or large amounts of text within a column, then keep a 
close eye on disk space and where the information is stored. By doing so, you can avoid situa-
tions where your SQL Server database stops when the limit of disk space is met on your hard 
drive or it has no growth options left.

In Chapter 12, there will be discussions about manipulating and inserting images into the 
database and how this works. However, just keep in mind the information just given so that 
you can start planning now what solution would be best for your database.

Creating a Table in SQL Server 
Management Studio
This is the first table in our example application. Every organization has to have a set of customers 
and will need to store these details. Within this table, we will hold information such as each 
customer’s name and an ID to an external system where addresses are held. The only product 
that our company has where a customer can have an ongoing cash balance with funds that 
aren’t cleared is a bank account. This means our table will also hold the bank account ID, the 
current balance, and any amount clearing.

Dewson_5882C05.fm  Page 128  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 129

Try It Out: Defining a Table

1. Ensure that SQL Server Management Studio is running.

2. Expand the Object Explorer so that you can see the ApressFinancial database, created in Chapter 3.

3. Expand the ApressFinancial database so that you can see the Tables node, as shown in Figure 5-2.

Figure 5-2. ApressFinancial with no tables

4. Right-click the Tables node and select New Table. This will take you into the Table Designer. Figure 5-3 
shows how the Table Designer looks when you first enter it.

Figure 5-3. Creating our first table with no columns as yet

5. From this screen, you need to enter the details for each column within the table. Enter the first column, 
CustomerId, in the Column Name column. When naming columns, try to avoid using spaces. Either 
keep the column names without spaces, like I have done with CustomerId, or use an underscore (_) 
instead of a space. It is perfectly valid to have column names with spaces. However, to use these columns 
in SQL code, we have to surround the names by square brackets, [], which is very cumbersome.

Dewson_5882C05.fm  Page 129  Monday, January 9, 2006  3:26 PM



130 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

At the moment, notice that Column Properties in the middle of Figure 5-3 is empty. This will fill up when 
you start entering a data type after entering the column name. The Column Properties section is just as 
crucial as the top half of the screen where you enter the column name and data type.

6. The drop-down combo box that lists the data types is one of the first areas provided by SQL Server to 
help us with table creation. This way we don’t have to remember every data type there is within SQL 
Server. By having all the necessary values listed, it is simple enough to just select the most suitable one. 
In this instance we want to select bigint, as shown in Figure 5-4.

Figure 5-4. Selecting our data type

7. The final major item when creating a column within a table is the Allow Nulls check box option. If you 
don’t check the box, some sort of data must be placed in this column. Leaving the check box in the 
default state will allow NULL values in the column, which is not recommended if the data is required 
(name, order number, etc.). You can also allow NULLs for numeric columns, so instead of needing to 
enter a zero, you can just skip over that column when it comes to entering the data. In this instance, we 
want data to be populated within every row, so remove the check mark.

8. The Column Properties section for our column will now look like the screen shown in Figure 5-5. Take 
a moment to peruse this section. We can see the name, whether we are allowing NULLs, and the type 
of data we are storing. There will be changes to what is displayed depending on the data type chosen.

9. We want this column to be an identity column. If you have not already done so, within the Column Properties 
area expand the Identity Specification node, as we need to set the Is Identity property to Yes. This will set 
the Identity Increment to 1 and the Identity Seed to 1 as well, as shown in Figure 5-6.

10. It is now possible to add in a few more columns before we get to the next interesting item as in Figure 
5-7. Go ahead and do so now. Not everybody will have more than a first name and last name, although 
some people may have initials. Therefore, we will allow NULL values for any initials they may have. We 
leave the box checked on the CustomerOtherInitials column, as shown in Figure 5-7. We also 
alter the length of this column to 10 characters, which should be more than enough.

11. We can now define our final columns, which you see in Figure 5-8. The last column will record when the 
account was opened. This can be done by setting the default value of the DateAdded column. The default 
value can be a constant value, the value from a function, or a value bound to a formula defined here. For 
the moment we will use a SQL Server function that returns the current date and time, GETDATE(), as 
shown in Figure 5-8. Then every time a row is added, it is not necessary for a value to be entered for this 
column, as SQL Server will put the date and time in for you.

Dewson_5882C05.fm  Page 130  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 131

Figure 5-5. More in-depth properties for columns

Figure 5-6. Defining a column as having an identity

Figure 5-7. A column that will allow NULL values

■Note  In Chapter 3, when we discussed normalization, we also covered when data should be denormal-
ized. The Customers table is the one place we do need a small amount of denormalization for speed of 
access. To speed up the process when a client goes to a cash point, we will have a column that holds their 
account number so that we send a single row of data to the cash point. We can therefore cross check with 
their card as well as their cleared and uncleared balance for display. This data will also be held within the 
CustomerProducts and Transactions tables. If the account number was stored in the CustomerProducts 
table only, we would have to send two rows of data to the cash machine: one with the account number and 
one with the balances.

Dewson_5882C05.fm  Page 131  Monday, January 9, 2006  3:26 PM



132 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Figure 5-8. The table column definition is now complete.

12. Before we save the table, we need to define some properties for it such as the schema owner. On the 
right, you should see the Table Properties dialog window, as shown in Figure 5-9. If this is not displayed, 
you can press F4 or from the menu select View ➤ Properties Window. First of all, give the table a name, 
Customers, and give the table some sort of description. We then move to the schema owner details. 
When you click the Schema combo box, it presents you with a list of possible schemas the table can 
belong to. In Chapter 4, we built the schema we want to use for this table, CustomerDetails.

Figure 5-9. Table properties

13. Now that we are finished, we can save the table either by clicking the Save toolbar button, which sports 
a floppy disk icon, or by clicking the X (close) button on the Table Designer to close the window, which 
should bring up the Save dialog box, asking if we want to save the changes. By clicking Yes, we get a 
second box asking for the name of the table if we didn’t enter a table name in the Table Properties dialog 

Dewson_5882C05.fm  Page 132  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 133

window as shown in Figure 5-10, or the table is saved using the name specified and we are returned to 
SQL Server Management Studio.

Figure 5-10. Saving a table that was not given a name

14. If you now right-click the table and select Properties, you can see important details about the table, as 
shown in Figure 5-11. The first section details who is currently connected. Then we see the date the 
table was created, its name, and the schema name of the owner of the table.

Figure 5-11. Table properties

Now that a table has been created in SQL Server Management Studio, let’s look at creating a table within the Query pane.

Dewson_5882C05.fm  Page 133  Monday, January 9, 2006  3:26 PM



134 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Defining a Table Through the Query Editor
The next table that needs to be created is the one that will hold the details of the financial trans-
actions that each customer has. These transactions will not just be simple money in and money 
out transactions, but will also be those financial transactions involving shares when a dividend 
is received or a tax credit if the shares are held in a product that is tax free. We know from our 
design that details of which product the transaction relates to will be held in a separate table, 
so we need to create a link between our transaction table and one holding some sort of refer-
ence data. It is also necessary to have a link between this table and our Customers table. Finally, 
if the transaction relates to shares and is not recording the finances involved, then we need to 
record that this is the case. To clarify this last point, when a client buys some shares, there will 
be two records: one for the money leaving the account to buy the shares, and another showing 
the physical number of shares purchased.

Try It Out: Defining a Table Through Query Editor

1. Ensure that you are pointing to the ApressFinancial database in Query Editor, as shown in Figure 5-12.

Figure 5-12. Selecting the database from the toolbar

2. In the Query Editor, enter the following code:

CREATE TABLE TransactionDetails.Transactions
    (TransactionId bigint IDENTITY(1,1) NOT NULL,
    CustomerId bigint NOT NULL,
    TransactionType int NOT NULL,
    DateEntered datetime NOT NULL,
    Amount numeric(18, 5) NOT NULL,
    ReferenceDetails nvarchar(50) NULL,
    Notes nvarchar(max)  NULL,
    RelatedShareId bigint NULL,
    RelatedProductId bigint NOT NULL)

■Note  Notice that when you type this code into the Query Editor, the keywords are colored. For example, 
CREATE TABLE is in blue and NOT NULL is in gray. This helps you to avoid typing mistakes.

3. Execute the code by either pressing Ctrl+E or F5 or clicking the toolbar Execute button.

4. You should now see the following message in the Results pane:

The command(s) completed successfully.

Dewson_5882C05.fm  Page 134  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 135

5. However, you may have received an error message instead. This could be for a number of reasons, from 
a typing mistake through to not having the authority to create tables. I could list every message that you 
could receive at this point, but I would be doing so for many pages. Taking one example here, as you can 
see, the error messages generated are usually self-explanatory. This is informing me that I have a 
typing error on line 5.

Msg 102, Level 15, State 1, Line 5
Incorrect syntax near 'NUL'.

6. Now move to the Object Explorer. If it is already open, you will have to refresh the Details pane (by right-
clicking the Tables node and selecting Refresh). You should then see the TransactionDetails.
Transactions table alongside the CustomerDetails.Customers table created previously.

How It Works: Defining a Table Though the Query Pane

Using the Query pane to define a table works very much like SQL Server Management Studio without the graphical aids. 
Recall that SQL Server Management Studio has prompts for column name, data type, and so on, but here you have to type 
in every detail. All of the code will be discussed in a moment. However, many people prefer to create a table this way. 
Having to switch between cursor and keyboard when using the graphical designer can be slower than keying in the details 
in Query Editor. There is not a lot of time required to create a table this way, and we can build up the table creation as we 
go along. The query can be saved to a file until it is time to run it and build the table in the database.

Let’s now take a look at the T-SQL code that we used to create the table. This code does not include all the options 
available for creating a table, as there are a large number not used within this book. If you need to use more options or 
discover what they are, then check in Books Online. When it comes to putting a database solution into a production envi-
ronment, you should consider these options, although some of them will be for larger enterprise production solutions.

The basic syntax for creating a table is as follows:

CREATE TABLE [database_name].[schema_name].table_name
   (column_name data_type [length] [IDENTITY(seed, increment)] [NULL/NOT NULL])

There are a greater number of possible options, but for the moment let’s just concentrate on the ones mentioned 
previously. You should be able to create most tables using this syntax.

The items listed in square brackets in the CREATE TABLE syntax are optional; however, there are times when we 
will require them. Let me explain. Take the first option, database_name: if you are in the master database and you 
wish to create a table in the ApressFinancial database, you would have to either switch to that database with 
the USE command or use the database_name option. Usually you will be in the database where you want to create 
the table, but this option is ideal when creating code that will be executed unattended. It will ensure that the table 
is built for the correct database rather than trusting that you are in the right area.

The schema_name option allows us to assign the table to the correct and relevant schema, rather than in the default 
schema of the user connected.

Next we define the columns. Column name and data type are mandatory. However, depending on the data type, the 
length is optional. You must prefix the first column with an opening parenthesis (and once you have defined the last 
column, close the list with a closing parenthesis). Each column should be separated from the previous column by 
a comma. There is a limit of 1,024 columns for a table. If you get anywhere close to that number, you should sit 
back and reevaluate your table design, because chances are the design needs to be revised.

Dewson_5882C05.fm  Page 135  Monday, January 9, 2006  3:26 PM



136 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Defining a Table: Using a Template
SQL Server has a third method of building tables, although this is my least favored method. 
A large number of templates are built into SQL Server Management Studio for everyday tasks. 
It is also possible to build your own template for repetitive tasks, which is where I can see more 
power for developers in this area.

Templates can be found in their own explorer window. Selecting View ➤ Template Explorer 
or pressing Ctrl+Alt+T brings up the Template Explorer window, displayed initially on the 
right-hand side of SQL Server Management Studio.

Try It Out: Creating a Table Using a Template

1. Expand the Table node on the Template Explorer. About halfway down you will see a template called 
Create Table, as shown in Figure 5-13. Double-click this to open up a new Query Editor pane with the 
template for creating a table.

Figure 5-13. List of templates

Dewson_5882C05.fm  Page 136  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 137

2. Take a close look at the following, which is the listing from the template. A template includes a number 
of parameters. These are enclosed by angle brackets (<>).

-- =========================================
-- Create table template
-- =========================================
USE <database, sysname, AdventureWorks>
GO

IF OBJECT_ID('<schema_name, sysname, dbo>.<table_name,
             sysname, sample_table>', 'U') IS NOT NULL
  DROP TABLE <schema_name, sysname, dbo>.<table_name, sysname,➥

sample_table>
GO

CREATE TABLE
  <schema_name, sysname, dbo>.<table_name, sysname, sample_table>(
  <column1_name, sysname, c1> <column1_datatype, , int>
  <column1_nullability,, NOT NULL>,
  <column2_name, sysname, c2> <column2_datatype, , char(10)>
  <column2_nullability,, NULL>,
  <column3_name, sysname, c3> <column3_datatype, , datetime>
  <column3_nullability,, NULL>,
  CONSTRAINT <contraint_name, sysname, PK_sample_table>
    PRIMARY KEY (<columns_in_primary_key, , c1>)
)
GO

3. By pressing Ctrl+Shift+M, you can alter these parameters to make a set of meaningful code. Do this now, so 
that the parameters can be altered. Figure 5-14 shows most of our third table, TransactionDetails.
TransactionTypes. The reason I say most is that our template code only deals with three columns, 
and our table has four columns. Before choosing to display this screen, you could have altered the code 
to include the fourth column, or you could modify the base template if you think that three columns are 
not enough. When you scroll down, you will see a parameter called CONSTRAINT. You can either leave 
the details as they are or blank them out; it doesn’t matter, as we will be removing that code in a moment.

Dewson_5882C05.fm  Page 137  Monday, January 9, 2006  3:26 PM



138 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Figure 5-14. Template parameters for TransactionTypes

4. After clicking OK, the code is as follows. The main point of interest is the IF statement after switching 
to the ApressFinancial database. This code queries SQL Server’s system tables to check for a 
TransactionTypes table within the dbo schema. If it does exist, then the DROP TABLE statement is 
executed. This statement will delete the table defined from SQL Server, if possible. An error message 
may be displayed if the table has links with other tables or if someone has a lock on it, thus preventing 
the deletion. We talk about locks in Chapter 8.

-- =========================================
-- Create table template
-- =========================================
USE ApressFinancial
GO

IF OBJECT_ID('dbo.TransactionTypes', 'U') IS NOT NULL
  DROP TABLE dbo.TransactionTypes
GO

CREATE TABLE dbo.TransactionTypes(
    TransactionTypeId int NOT NULL,
    TransactionDescription nvarchar(30) NOT NULL,
    CreditType bit NOT NULL,
    CONSTRAINT  PRIMARY KEY ()
)
GO

5. The full code for the TransactionTypes table follows. Once you have entered it, you can execute it. 
Note that there are three changes here. First of all, we change the schema name from dbo to the correct 
schema, TransactionDetails, then we put in the IDENTITY details for the TransactionTypeId 
column, but we are not going to place the fourth column in at this time. We will add it when we take a 
look at how to alter a table in the section “The ALTER TABLE Command” later in this chapter. Finally, 
we remove the CONSTRAINT statement, as we are not creating a key at this time.

-- =========================================

Dewson_5882C05.fm  Page 138  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 139

-- Create table template
-- =========================================
USE ApressFinancial
GO

IF OBJECT_ID('TransactionDetails.TransactionTypes', 'U') IS NOT NULL
  DROP TABLE TransactionDetails.TransactionTypes
GO

CREATE TABLE TransactionDetails.TransactionTypes(
    TransactionTypeId int IDENTITY(1,1) NOT NULL,
    TransactionDescription nvarchar(30) NOT NULL,
    CreditType bit NOT NULL
)
GO

Now that we have our third table, we can look at altering the template of the CREATE TEMPLATE, as it would be 
better to have the IDENTITY parameter there as well as four or five columns.

Creating and Altering a Template
The processes for creating and altering a template follow the same steps. All templates are 
stored in a central location and are available for every connection to SQL Server on that 
computer, therefore templates are not database or server restricted. The path to where they 
reside is

C:\Program Files\Microsoft SQL Server\
90\Tools\Binn\VSShell\Common7\IDE\sqlworkbenchnewitems\Sql

It is also possible to create a new node for templates from within the Template Explorer by 
right clicking and selecting New ➤ Folder.

■Note  Don’t create the folder directly in the Sql folder, as this is not picked up by SQL Server Management 
Studio until you exit and reenter the SQL Server Management Studio.

You could create different formats of templates for slightly different actions on tables. We 
saw the CREATE TABLE template previously, but what if we wanted a template that included a 
CREATE TABLE specification with an IDENTITY column? This is possible by taking a current template 
and upgrading it for a new template.

Dewson_5882C05.fm  Page 139  Monday, January 9, 2006  3:26 PM



140 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Try It Out: Creating a Template from an Existing Template

1. From the Template Explorer, find the CREATE TABLE template, right-click it, and select Edit. This will 
display the template that we saw earlier. Change the comment and then we can start altering the code.

2. The first change is to add that the first column is an IDENTITY column. We know where this is located 
from our code earlier: it comes directly after the data type. To add a new parameter, input a set of angle 
brackets, then create the name of the parameter as the first option. The second option is the type of 
parameter this is, for example, sysname, defining that the parameter is a system name, which is just an 
alias for nvarchar(256). The third option is the value for the parameter; in this case we will be including the 
value of IDENTITY(1,1). The final set of code follows, where you can also see a fourth column has 
been defined with a bit data type.

■Tip  You can check the alias by running the sp_help_sysname T-SQL command.

-- =========================================
-- Create table template with IDENTITY
-- =========================================
USE <database, sysname, AdventureWorks>
GO

IF OBJECT_ID('<schema_name, sysname, dbo>.<table_name, sysname,➥

sample_table>', 'U') IS NOT NULL
  DROP TABLE
    <schema_name, sysname, dbo>.<table_name, sysname, sample_table>
GO

CREATE TABLE
  <schema_name, sysname, dbo>.<table_name, sysname, sample_table>(
  <column1_name, sysname, c1> <column1_datatype, , int> ➥

<identity,,IDENTITY (1,1)>
  <column1_nullability,, NOT NULL>,
  <column2_name, sysname, c2> <column2_datatype, , char(10)>
  <column2_nullability,, NULL>,
  <column3_name, sysname, c3> <column3_datatype, , datetime>
  <column3_nullability,, NULL>,
  <column4_name, sysname, c4> <column4_datatype, , bit>
  <column4_nullability,, NOT NULL>,
  CONSTRAINT <contraint_name, sysname, PK_sample_table>
    PRIMARY KEY (<columns_in_primary_key, , c1>)
)
GO

Dewson_5882C05.fm  Page 140  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 141

3. Now the code is built, but before we test it, we shall save this as a new template called CREATE TABLE 
with IDENTITY. From the menu, select File ➤ Save CREATE TABLE.sql As, and from the Save File As 
dialog box, save this as CREATE TABLE with IDENTITY.sql. This should update your Template Explorer, 
but if it doesn’t, try exiting and reentering SQL Server Management Studio, after which it will be avail-
able to use.

 

The ALTER TABLE Command
If, when using the original template, we had created the table with only three columns, we 
would have an error to correct. One solution is to delete the table with DROP TABLE, but if we had 
placed some test data in the table before we realized we had missed the column, this would not 
be ideal. There is an alternative: the ALTER TABLE statement, which allows restrictive alterations 
to a table layout but keeps the contents. SQL Server Management Studio uses this statement 
when altering a table graphically, but here I will show you how to use it to add the missing 
fourth column for our TransactionTypes table.

Columns can be added, removed, or modified using the ALTER TABLE command. Removing 
a column will simply remove the data within that column, but careful thought has to take place 
before adding or altering a column.

There are two scenarios when adding a new column to a table: should it contain NULL values for 
all the existing rows, or should there be a default value instead? Any new columns created using 
the ALTER TABLE statement where a value is expected (or defined as NOT NULL) will take time to 
implement. This is because any existing data will have NULL values for the new column; after all, 
SQL Server has no way of knowing what value to enter. When altering a table and using NOT 
NULL, you need to complete a number of complex processes, which include moving data to an 
interim table and then moving it back. The easiest solution is to alter the table and define the 
column to allow NULLs, add in the default data values using the UPDATE T-SQL command, and 
alter the column to NOT NULL.

■Note  It is common practice when creating columns to allow NULL values, as the default value may not be 
valid in some rows.

Try It Out: Adding a Column

1. First of all, open up the Query Editor and ensure that you are pointing to the ApressFinancial data-
base. Then write the code to alter the TransactionDetails.TransactionTypes table to add the 
new column. The format is very simple. We specify the table prefixed by the schema name we want to 
alter after the ALTER TABLE command. Next we use a comma-delimited list of the columns we wish 
to add. We define the name, the data type, the length if required, and finally whether we allow NULLs 
or not. As we don’t want the existing data to have any default values, we will have to define the column 
to allow NULL values.

Dewson_5882C05.fm  Page 141  Monday, January 9, 2006  3:26 PM



142 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

ALTER TABLE TransactionDetails.TransactionTypes
ADD AffectCashBalance bit NULL
GO

2. Once we’ve altered the data as required, we then want to remove the ability for further rows of data to 
have a NULL value. This new column will take a value of 0 or 1. Again, we use the ALTER TABLE command, 
but this time we’ll add the ALTER COLUMN statement with the name of the column we wish to alter. 
After this statement are the alterations we wish to make. Although we are not altering the data type, it 
is a mandatory requirement to redefine the data type and data length. After this, we can inform SQL 
Server that the column will not allow NULL values.

ALTER TABLE TransactionDetails.TransactionTypes
ALTER COLUMN AffectCashBalance bit NOT NULL
GO

3. Execute the preceding code to make the TransactionDetails.TransactionTypes table correct.

Defining the Remaining Tables
Now that three of the tables have been created, we need to create the remaining four tables. We 
will do this as code placed in Query Editor. There is nothing specifically new to cover in this 
next section, and therefore only the code is listed. Enter the following code and then execute it 
as before. You can then move into SQL Server Management Studio and refresh it, after which 
you should be able to see the new tables.

USE ApressFinancial
GO
CREATE TABLE CustomerDetails.CustomerProducts(
             CustomerFinancialProductId bigint NOT NULL,
             CustomerId bigint NOT NULL,
             FinancialProductId bigint NOT NULL,
             AmountToCollect money NOT NULL,
             Frequency smallint NOT NULL,
             LastCollected datetime NOT NULL,
             LastCollection datetime NOT NULL,
             Renewable bit NOT NULL
)
ON [PRIMARY]
GO
CREATE TABLE CustomerDetails.FinancialProducts(
             ProductId bigint NOT NULL,
             ProductName nvarchar(50) NOT NULL
) ON [PRIMARY]

Dewson_5882C05.fm  Page 142  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 143

GO
CREATE TABLE ShareDetails.SharePrices(
             SharePriceId bigint IDENTITY(1,1) NOT NULL,
             ShareId bigint NOT NULL,
             Price numeric(18, 5) NOT NULL,
             PriceDate datetime NOT NULL
) ON [PRIMARY]

GO
CREATE TABLE ShareDetails.Shares(
             ShareId bigint IDENTITY(1,1) NOT NULL,
             ShareDesc nvarchar(50) NOT NULL,
             ShareTickerId nvarchar(50) NULL,
             CurrentPrice numeric(18, 5) NOT NULL
) ON [PRIMARY]

GO

Setting a Primary Key
Setting a primary key can be completed in SQL Server Management Studio with just a couple 
of mouse clicks. This section will demonstrate how easy this actually is. For more on keys, see 
Chapter 3.

Try It Out: Setting a Primary Key

1. Ensure that SQL Server Management Studio is running and that you have navigated to the 
ApressFinancial database. Find the ShareDetails.Shares table, and right-click and select 
Modify. Once in the Table Designer, select the ShareId column. This will be the column we are setting 
the primary key for. Right-click to bring up the pop-up menu shown in Figure 5-15.

Figure 5-15. Defining a primary key

Dewson_5882C05.fm  Page 143  Monday, January 9, 2006  3:26 PM



144 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

2. Select the Set Primary Key option from the pop-up menu. This will then change the display to place a 
small key in the leftmost column details. Only one column has been defined as the primary key, as you 
see in Figure 5-16.

Figure 5-16. Primary key defined

3. However, this is not all that happens, as you will see. Save the table modifications by clicking the Save 
button. Click the Manage Indexes/Keys button on the toolbar. This brings up the dialog box shown in 
Figure 5-17. Look at the Type, the third option down in the General section. It says Primary Key. Notice 
that a key definition has been created for you, with a name and the selected column, informing you that 
the index is unique and clustered (more on indexes and their relation to primary keys in Chapter 6).

Figure 5-17. Indexes/Keys dialog box

That’s all there is to creating and setting a primary key. A primary key has now been set up on the 
ShareDetails.Shares table. In this instance, any record added to this table will ensure that the data will be kept 
in ShareId ascending order (this is to do with the index, which you will see in Chapter 6), and it is impossible to 
insert a duplicate row of data. This key can then be used to link to other tables within the database at a later stage.

Creating a Relationship
We covered relationships in Chapter 3, but we’ve not created any. Now we will. The first relation-
ship that we create will be between the customer and customer transactions tables. This will be 

Dewson_5882C05.fm  Page 144  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 145

a one-to-many relationship where there is one customer record to many transaction records. 
Keep in mind that although a customer may have several customer records, one for each 
product he or she has bought, the relationship is a combination of customer and product to 
transactions because a new CustomerId will be generated for each product the customer buys. 
We will now build that first relationship.

Try It Out: Building a Relationship

1. Ensure that SQL Server Management Studio is running, and that ApressFinancial database is 
selected and expanded. We need to add a primary key to CustomerDetails.Customers. Enter the 
code that follows and then execute it:

ALTER TABLE CustomerDetails.Customers
ADD CONSTRAINT
    PK_Customers PRIMARY KEY NONCLUSTERED
    (
    CustomerId
    )
WITH( STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

2. Find and select the TransactionDetails.Transactions table, and then right-click. Select Design 
Table to invoke the Table Designer.

3. Once in the Table Designer, right-click and select Relationships from the pop-up menu shown in Figure 5-18. 
Or click the Relationships button on the Table Designer toolbar.

Figure 5-18. Building a relationship

4. This brings up the relationship designer. As it’s empty, you need to click Add. This will then populate the 
screen as shown in Figure 5-19.

Dewson_5882C05.fm  Page 145  Monday, January 9, 2006  3:26 PM



146 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Figure 5-19. Foreign Key Relationships dialog box

5. Expand the Tables and Columns Specified node, which will allow the relationship to be built. Notice that 
there is now an ellipse button on the right, as shown in Figure 5-20. To create the relationship, click the 
ellipse.

Figure 5-20. Adding tables and columns

6. The first requirement is to change the name to make it more meaningful. Quite often you will find that 
naming the key FK_ParentTable_ChildTable is the best method, so in this case change it to 
FK_Customers_Transactions as the CustomerDetails.Customers table will be the master 
table for this foreign key. We also need to define the column in each table that is the link. We are linking 
every one customer record to many transaction records and we can do so via the CustomerId. So 
select that column for both tables, as shown in Figure 5-21. Now click OK.

Dewson_5882C05.fm  Page 146  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 147

Figure 5-21. Columns selection

■Note  In this instance, both columns have the same name, but this is not mandatory. The only requirement 
is that the information in the two columns be the same.

7. This brings us back to the Foreign Key Relationships definition screen, shown in Figure 5-22. Notice that 
at the top of the list items in the grayed-out area you can see the details of the foreign key we just 
defined. Within the Identity section there is now also a description of the foreign key. Ignore the option 
Enforce for Replication.

Figure 5-22. Foreign key with description

Dewson_5882C05.fm  Page 147  Monday, January 9, 2006  3:26 PM



148 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

8. There are three other options we are interested in that are displayed at the bottom of the dialog box, as 
shown in Figure 5-23. Leave the options at the defaults.

Figure 5-23. Insert and update specification

9. Closing this dialog box does not save the changes. Not until you close the Table Designer will the 
changes be applied. When you do so, you should see the dialog box in Figure 5-24 notifying you that 
two tables are to be changed. Click Yes to save the changes.

Figure 5-24. Saving changes

The relationship is now built, but what about those options we left alone? Let’s go through those now.

Check Existing Data on Creation
If there is data within either of the tables, by setting this option to Yes we instruct SQL Server 
that when the time comes to physically add the relationship, the data within the tables is to be 
checked. If the data meets the definition of the relationship, then the relationship is success-
fully inserted into the table. However, if any data fails the relationship test, then the relationship is 
not applied to the database. An example of this would be when it is necessary to ensure that 
there is a customer record for all transactions, but there are customer transactions records that 
don’t have a corresponding customer record, which would cause the relationship to fail. Obviously, 
if you come across this, you have a decision to make. Either correct the data by adding master 
records or altering the old records, and then reapply the relationship, or revisit the relationship 
to ensure it is what you want.

Dewson_5882C05.fm  Page 148  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 149

By creating the relationship, you want the data within the relationship to work, therefore 
you would select No if you were going to go back and fix the data after the additions. What if 
you still miss rows? Would this be a problem? In preceding our scenario, there should be no 
transaction records without customer records. But you may still wish to add the relationship to 
stop further anomalies going forward.

Enforce Foreign Key Constraints
Once the relationship has been created and placed in the database, it is possible to prevent the 
relationship from being broken. If you set Check Existing Data on Creation from higher up in 
the dialog box to Yes, then you are more than likely hoping to keep the integrity of the data 
intact. That option will only check the existing data. It does nothing for further additions, dele-
tions, etc. on the data. However, by setting the Enforce Foreign Key Constraints option to Yes, 
we will ensure that any addition, modification, or deletion of the data will not break the relation-
ship. It doesn’t stop changing or removing data providing that the integrity of the database is 
kept in sync. For example, it would be possible to change the customer number of transactions, 
providing that the new customer number also exists with the CustomerDetails.Customers table.

Delete Rule/Update Rule
If a deletion or an update is performed, it is possible for one of four actions to then occur on the 
related data, based on the following options:

• No Action

• Cascade: If you delete a customer, then all of the transaction rows for that customer will 
also be deleted.

• Set Null: If you delete a customer, then if the CustomerId column in the TransactionDetails.
Transactions table could accept NULL as a value, the value would be set to NULL. In the 
customers/transactions scenario, we have specified the column cannot accept NULL 
values. The danger with this is that you are leaving “unlinked” rows behind, a scenario 
that can be valid, but do take care.

• Set Default: When defining the table, the column could be defined so that a default value 
is placed in it. On setting the option to this value, you are saying that the column will 
revert to this default value. Again a dangerous setting, but potentially a less dangerous 
option than SET NULL as at least there is a meaningful value within the column.

■Note  If at any point you do decide to implement cascade deletion, then please do take the greatest of care, 
as it can result in deletions that you may regret. If you implemented this on the CustomerDetails.
Customers table, when you delete a customer, then all the transactions are gone. This is ideal for use if you 
have an archive database to which all rows are archived. To keep your current and online system lean and 
fast, you could use delete cascades to quickly and cleanly remove customers who have closed their accounts.

Dewson_5882C05.fm  Page 149  Monday, January 9, 2006  3:26 PM



150 C H A P T E R  5  ■  D E F I N I N G  T A B L E S

Using the ALTER TABLE SQL Statement
It is also possible to build a relationship, or constraint, through a T-SQL statement. This would 
be done using an ALTER TABLE SQL command. This time, a relationship will be created between 
the Transactions table and the Shares table. Let’s now take a few moments to check the syntax 
for building a constraint within T-SQL code.

ALTER TABLE child_table_name
WITH NOCHECK|CHECK
ADD CONSTRAINT [Constraint_Name]
FOREIGN KEY (child_column_name, ...,)
REFERENCES [master_table_name]([master_column_name, ...,])

We have to use an ALTER TABLE command to achieve the goal of inserting a constraint to 
build the relationship. After naming the child table in the ALTER TABLE command, we then 
decide whether we want the foreign key to check the existing data or not when it is being created. 
This is similar to the Check Existing Data on Creation option you saw earlier.

Now we move on to building the constraint. To do this, we must first of all instruct SQL 
Server that this is what we are intending to complete, and so we will need the ADD CONSTRAINT 
command.

Next, we name the constraint we are building. Again, I tend to use underscores instead of 
spaces. However, if you do wish to use spaces, which I wholeheartedly do not recommend, 
then you’ll have to surround the name of the key using the [ ] brackets. I know I mentioned this 
before, but it’s crucial to realize the impact of having spaces in a column, table, or constraint 
name. Every time you wish to deal with an object that has a name separated by spaces, then 
you will also need to surround it with square brackets. Why make extra work for yourself?

Now that the name of the constraint has been defined, the next stage is to inform SQL 
Server that a FOREIGN KEY is being defined next. Recall that a constraint can also be used for 
other functionality, such as creating a default value to be inserted into a column.

When defining the foreign key, ensure that all column names are separated by a comma 
and surrounded by parentheses. The final stage of building a relationship in code is to specify 
the master table of the constraint and the columns involved.

The rule here is that there must be a one-to-one match on columns on the child table and 
the master table, and that all corresponding columns must match on data type.

It is as simple as that. When building relationships, you may wish to use SQL Server Manage-
ment Studio, as there is a lot less typing involved and you can also instantly see the exact 
correspondence between the columns and whether they match in the same order. However, with 
T-SQL you can save the code and its ready for deployment to production servers when required.

Try It Out: Using SQL to Build a Relationship

1. In a Query Editor pane, enter the following T-SQL command and execute it by pressing Ctrl+E or F5 or 
clicking the Execute button:

Dewson_5882C05.fm  Page 150  Monday, January 9, 2006  3:26 PM



C H A P T E R  5  ■  D E F I N I N G  T A B L E S 151

USE ApressFinancial
GO
ALTER TABLE TransactionDetails.Transactions
WITH NOCHECK
ADD CONSTRAINT FK_Transactions_Shares
FOREIGN KEY(RelatedShareId)
REFERENCES ShareDetails.Shares(ShareId)

2. You should then see that the command has been executed successfully.

    The command(s) completed successfully.

That’s it. The relationship is created in the second batch of T-SQL code, the first batch ensuring that we are pointing 
to the right database. Once the index is built, it is possible to alter the table to add the relationship.

With our code, although we are executing an ALTER TABLE command, no columns are being altered, but a 
constraint is being added. A relationship is a special type of constraint, and it is through a constraint that a rela-
tionship is built.

A constraint is, in essence, a checking mechanism, checking data modifications within SQL Server and the table(s) 
that it is associated with.

Summary
So, now you know how to create a table. This chapter has covered several options for doing so, 
but there is one point that you should keep in mind when building a table, whether you are 
creating or modifying it. When creating a table in SQL Server Management Studio, you should 
always save the table first by clicking the Save toolbar button. If you have made a mistake when 
defining the table and you close the table, and in doing so save in one action, you will get an 
error message informing you that an error has occurred, and all your changes will be lost. You 
will then have to go back in to the Table Designer and reapply any changes made.

Try also to get used to using both SQL Server Management Studio and the Query pane, as 
you may find that the Query pane gives you a more comfortable feel to the way you want to 
work. Also, you will find that in the Query pane, you can save your work to a file on your hard 
drive as you go along. You can also do this within SQL Server Management Studio; however, 
the changes are saved to a text file as a set of SQL commands, which then need to be run 
through the Query pane anyway.

Dewson_5882C05.fm  Page 151  Monday, January 9, 2006  3:26 PM



Dewson_5882C05.fm  Page 152  Monday, January 9, 2006  3:26 PM



153

■ ■ ■

C H A P T E R  6

Creating Indexes and 
Database Diagramming

Now that we’ve created the tables, we could stop at this point and just work with our data 
from here. However, this would not be a good decision. As soon as any table contained a 
reasonable amount of information, and we wished to find a particular record, it would take 
SQL Server a fair amount of time to locate it. Performance would suffer and our users would 
soon get annoyed with the slowdown in speed. 

In this scenario, the database is like a large filing cabinet in which we have to find one 
piece of paper, but there’s no clear filing system or form of indexing. If we had some sort of 
cross-reference facility, then it would likely be easier to find the information we need. And if 
that cross-reference facility were in fact an index, then this would be even better, as we might 
be able to find the piece of paper in our filing cabinet almost instantly. It is this theory that we 
need to put into practice in our SQL Server database tables. Generally, indexing is a conscious 
decision by a developer who favors faster conditional selection of records over modification or 
insertion of records.

In this chapter, you’ll learn the basics of indexing and how you can start implementing an 
indexing solution. This chapter covers the following topics:

• What an index is

• Different types of indexes 

• Size restrictions on indexes

• Qualities of a good index and a bad index

• How to build an index in code as well as graphically

• How to alter an index

Let’s begin by looking at what an index is and how it stores data.

What Is an Index?
In the previous chapter, you learned about tables, which are, in essence, repositories that hold 
data and information about data—what it looks like and where it is held. However, a table defini-
tion is not a great deal of use in getting to the data quickly. For this, some sort of cross-reference 

Dewson_5882C06.fm  Page 153  Monday, January 2, 2006  3:21 PM



154 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

facility is required, where for certain columns of information within a table it should be possible to 
get to the whole record of information quickly. 

If you think of this book, for example, as a table, the cross-reference you would use to find 
information quickly is the index at the back of the book. You look in the book index for a piece 
of information, or key. When you find the listing for that information in the index, you’ll find 
it’s associated with a page number, or a pointer, which directs you to where you can find the 
data you’re looking for. This is where an index within your SQL Server database comes in. 

You define an index in SQL Server so that it can locate the rows it requires to satisfy data-
base queries faster. If an index does not exist to help find the necessary rows, SQL Server has no 
other option but to look at every row in a table to see if it contains the information required by 
the query. This is called a table scan, which by its very nature adds considerable overhead to 
data-retrieval operations. 

■Note  There will be times when a table scan is the preferred option over an index. For example, if SQL 
Server needs to process a reasonable proportion of rows within a table, sometimes estimated to be around 
10 percent or more of the data, then it may find that using a table scan is better than using an index. This is 
all to say that a table scan isn’t wholly a bad thing.

When searching a table using the index, SQL Server does not go through all the data stored 
in the table; rather, it focuses on a much smaller subset of that data, as it will be looking at the 
columns defined within the index, which is faster. Once the record is found in the index, a 
pointer states where the data for that row can be found in the relevant table.

There are different types of indexes you can build onto a table. An index can be created on 
one column, called a simple index, or on more than one column, called a compound index. 
The circumstances of the column or columns you select and the data that will be held within 
these columns determine which type of index you use.

Types of Indexes 
Although SQL Server has three types of indexes—clustered, nonclustered, and primary and 
secondary XML indexes—we will concentrate only on clustered and nonclustered in this book, 
as XML and XML indexes are quite an advanced topic. 

The index type refers to the way the index and the physical rows of data are stored internally by 
SQL Server. The differences between the index types are important to understand, so we’ll 
delve into them in the sections that follow.

Clustered

A clustered index defines the physical order of the data in the table. If you have more than one 
column defined in a clustered index, the data will be stored in sequential order according to 
columns: the first column, then the next column, and so on. Only one clustered index can be 
defined per table. It would be impossible to store the data in two different physical orders. 

Going back to our earlier book analogy, if you examine a telephone book, you’ll see that the 
data is presented in alphabetical order with surnames appearing first, then first names, and then 

Dewson_5882C06.fm  Page 154  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 155

any middle-name initial(s). Therefore, when you search the index and find the key, you are 
already at the point in the data from which you want to retrieve the information, such as the 
telephone number. In other words, you don’t have to turn to another page as indicated by the 
key, because the data is right there. This is a clustered index of surname, first name, initials.

As data is inserted, SQL Server will take the data within the index key values you have 
passed in and insert the row at the appropriate point. It will then move the data along so that it 
remains in the same order. You can think of this data as being like books on a bookshelf. When 
a librarian gets a new book, he will find the correct alphabetical point and try to insert the book 
at that point. All the books will then be moved within the shelf. If there is no room as the books 
are moved, the books at the end of the shelf will be moved to the next shelf down, and so on, 
until a shelf with enough room is found. Although this analogy puts the process in simple terms, 
this is exactly what SQL Server does.

Do not place a clustered index on columns that will have a lot of updates performed on 
them, as this means SQL Server will have to constantly alter the physical order of the data and 
so use up a great deal of processing power. 

As a clustered index contains the table data itself, SQL Server would perform fewer I/O 
operations to retrieve the data using the clustered index than it would using a nonclustered 
index. Therefore, if you only have one index on a table, try to make sure it is a clustered index.

Nonclustered

Unlike a clustered index, a nonclustered index does not store the table data itself. Instead, 
a nonclustered index stores pointers to the table data as part of the index keys; therefore, many 
nonclustered indexes can exist on a single table at one time.

As a nonclustered index is stored in a separate structure—in fact, it is really held as a table 
with a clustered index hidden from your view—to the base table it is possible to create the 
nonclustered index on a different file group from the base table. If the file groups are located on 
separate disks, data retrieval can be enhanced for your queries as SQL Server can use parallel I/O 
operations to retrieve the data from the index and base tables concurrently.

When you are retrieving information from a table that has a nonclustered index, SQL Server 
finds the relevant row in the index. If the information you want doesn’t form part of the data in 
the index, SQL Server then uses the information in the index pointer to retrieve the relevant 
row in the data. As you can see, this involves at least two I/O actions—and possibly more, 
depending on the optimization of the index.

When a nonclustered index is created, the information used to build the index is placed in 
a separate location to the table and therefore can be stored on a different physical disk if required. 

■Caution  The more indexes you have, the more times SQL Server has to perform index modifications 
when inserting or updating data in columns that are within an index.

Primary and Secondary XML

If you wish to index XML data, which I cover only briefly later in the book, then it would be best 
to read Books Online, as this topic is beyond the scope of this book.

Dewson_5882C06.fm  Page 155  Monday, January 2, 2006  3:21 PM



156 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Uniqueness
An index can be defined as either unique or nonunique. A unique index ensures that the values 
contained within the unique index columns will appear only once within the table, including a 
value of NULL.

SQL Server automatically enforces the uniqueness of the columns contained within a 
unique index. If an attempt is made to insert a value that already exists in the table, an error will 
be generated and the attempt to insert or modify the data will fail.

A nonunique index is perfectly valid. However, as there can be duplicated values, a nonunique 
index has more overhead than a unique index when retrieving data. SQL Server will need to 
check if there are multiple entries to return, compared with a unique index where SQL Server 
knows to stop searching after finding the first row. 

Unique indexes are commonly implemented to support constraints such as the primary key. 
Nonunique indexes are commonly implemented to support locating rows using a nonkey column.

Determining What Makes a Good Index
To create an index on a table, you have to specify which columns are contained within the 
index. Columns in an index do not have to all be of the same data type. You should be aware 
that there is a limit of 16 columns on an index, and the total amount of data for the index 
columns within a row cannot be more than 900 bytes. To be honest, if you get to an index that 
contains more than four or five columns, you should stand back and re-evaluate the index defi-
nition. Sometimes you’ll have more than five columns, but you really should double-check.

It is possible to get around this restriction and have an index that does include columns 
that are not part of the key: the columns are tagged onto the end of the index. This will mean 
that the index takes up more space, but if it means that SQL Server can retrieve all of the data 
from an index search, then it will be faster. However, to reiterate, if you are going down this 
route for indexes, then perhaps you need to look at your design.

In the sections that follow, we’ll examine some of factors that can determine if an index 
is good:

• Using “low-maintenance” columns

• Using primary and foreign keys

• Being able to find a specific record

• Using covering indexes

• Looking for a range of information

• Keeping the data in order

Using Low-Maintenance Columns
As I’ve indicated, for nonclustered indexes the actual index data is separate from the table data, 
although both can be stored in the same area or in different areas (e.g., on different hard drives). 
To reiterate, this means that when you insert a record into a table, the information from the 
columns included in the index is copied and inserted into the index area. So, if you alter data in 
a column within a table, and that column has been defined as making up an index, SQL Server 

Dewson_5882C06.fm  Page 156  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 157

also has to alter the data in the index. Instead of only one update being completed, two will be 
completed. If the table has more than one index, and in more than one of those indexes is a 
column that is to be updated a great deal, then there may be several disk writes to perform 
when updating just one record. While this will result in a performance reduction for data-
modification operations, appropriate indexing will balance this out by greatly increasing the 
performance of data-retrieval operations.

Therefore, data that is low maintenance—namely, columns that are not heavily updated—
could become an index and would make a good index. The fewer disk writes that SQL Server 
has to do, the faster the database will be, as well as every other database within that SQL Server 
instance. Don’t let this statement put you off. If you feel that data within a table is retrieved 
more often than it is modified, or if the performance of the retrieval is more critical than the 
performance of the modification, then do look at including the column within the index.

In the example application we’re building, each month we need to update a customer’s 
bank balance with any interest gained or charged. However, we have a nightly job that wants to 
check for clients who have between $10,000 and $50,000, as the bank can get a higher rate of 
deposit with the Federal Reserve on those sorts of amounts. A client’s bank balance will be 
constantly updated, but an index on this sort of column could speed up the overnight deposit 
check program. Before the index in this example is created, we need to determine if the slight 
performance degradation in the updating of the balances is justified by the improvement of 
performance of the deposit check program. 

Primary and Foreign Keys
One important use of indexes is on referential constraints within a table. If you recall from 
Chapter 3, a referential constraint is where you’ve indicated that through the use of a key, 
certain actions are constrained depending on what data exists. To give a quick example of a 
referential constraint, say you have a customer who owns banking products. A referential 
constraint would prevent the customer’s record from being deleted while those products existed. 

SQL Server does not automatically create indexes on your foreign keys. However, as the 
foreign key column values need to be identified by SQL Server when joining to the parent table, 
it is almost always recommended that an index be created on the columns of the foreign key.

Finding Specific Records
Ideal candidates for indexes are columns that allow SQL Server to quickly identify the appro-
priate rows. In Chapter 8, we’ll meet the WHERE clause of a query. This clause lists certain columns in 
your table and is used to limit the number of rows returned from a query. The columns used in 
the WHERE clause of your most common queries make excellent choices for an index. So, for 
example, if you wanted to find a customer’s order for a specific order number, an index based 
on customer_id and order_number would be perfect, as all the information needed to locate a 
requested row in the table would be contained in the index. 

If finding specific records is going to make up part of the way the application works, then 
do look at this scenario as an area for an index to be created.

Using Covering Indexes
As mentioned earlier, when you insert or update a record, any data in a column that is included 
in an index is stored not only in the table, but also in the indexes for nonclustered indexes. 

Dewson_5882C06.fm  Page 157  Monday, January 2, 2006  3:21 PM



158 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

From finding an entry in an index, SQL Server then moves to the table to locate and retrieve the 
record. However, if the necessary information is held within the index, then there is no need to 
go to the table and retrieve the record, providing much speedier data access. 

For example, consider the ShareDetails.Shares table in the ApressFinancial database. 
Suppose that you wanted to find out the description, current price, and ticker ID of a share. 
If an index was placed on the ShareId column, knowing that this is an identifier column and 
therefore unique, you would ask SQL Server to find a record using the ID supplied. It would 
then take the details from the index of where the data is located and move to that data area. 
If, however, there was an index with all of the columns defined, then SQL Server will be able to 
retrieve the description ticker and price details in the index action. It will not be necessary to 
move to the data area. This is called a covered index, since the index covers every column in the 
table for data retrieval.

Looking for a Range of Information
An index can be just as useful for finding one record as it can be for searching for a range of 
records. For example, say you wish to find a list of cities in Florida with names between 
Orlando and St. Petersburg in alphabetical order. You could put an index on the city name, and 
SQL Server would go to the index location of Orlando and then read forward from there an 
index row at a time, until it reached the item after St. Petersburg, where it would then stop. 
Because SQL Server knows that an index is on this column and that the data will be sorted by 
city name, this makes it ideal for building an index on a city name column.

It should be noted that SQL Server indexes are not useful when attempting to search for 
characters embedded in a body of text. For example, suppose you want to find every author in 
a publisher’s database whose last name contains the letters “ab”. This type of query does not 
provide a means of determining where in the index tree to start and stop searching for appro-
priate values. The only way SQL Server can determine which rows are valid for this query is to 
examine every row within the table. Depending on the amount of data within the table, this can 
be a very slow process. If you have a requirement to perform this sort of wildcard text searching, 
you should take a look at the SQL Server full-text feature, as this will provide better performance for 
such queries. 

Keeping the Data in Order
As previously stated, a clustered index actually keeps the data in the table in a specific order. 
When you specify a column (or multiple columns) as a clustered index, on inserting a record 
SQL Server will place that record in a physical position to keep the records in the correct ascending 
or descending order that corresponds to the order defined in the index. To explain this a bit 
further, if you have a clustered index on customer numbers, and the data currently has customer 
numbers 10, 6, 4, 7, 2, and 5, then SQL Server will physically store the data in the following order: 
2, 4, 5, 6, 7, 10. If a process then adds in a customer number 9, it will be physically inserted 
between 7 and 10, which may mean that the record for customer number 10 needs to move 
physically. Therefore, if you have defined a clustered index on a column or a set of columns 
where data insertions cause the clustered index to be reordered, this is going to greatly affect 
your insert performance. SQL Server does provide a way to reduce the reordering impact by 
allowing a fill factor to be specified when an index is created. 

Dewson_5882C06.fm  Page 158  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 159

Determining What Makes a Bad Index
Now that you know what makes a good index, let’s investigate what makes a bad index. There 
are several “gotchas” to be aware of:

• Using unsuitable columns

• Choosing unsuitable data

• Including too many columns

• Including too few records in the table 

Using Unsuitable Columns 
If a column isn’t used by a query to locate a row within a table, then there is a good chance that 
the column does not need to be indexed, unless it is combined with another column to create 
a covering index, as described earlier. If this is the case, the index will still add overhead to 
the data-modification operations but will not produce and performance benefit to the data-
retrieval operations.

Choosing Unsuitable Data
Indexes work best when the data contained in the index columns is highly selective between 
rows. The optimal index is one created on a column that has a unique value for every row 
within a table, such as a primary key. If a query requests a row based on a value within this 
column, SQL Server can quickly navigate the index structure and identify the single row that 
matches the query predicate.

However, if the selectivity of the data in the index columns is poor, the effectiveness of the 
index is reduced. For example, if an index is created on a column that contains only three 
distinct values, the index would be able to reduce the number of rows to just a third of the total 
before applying other methods to identify the exact row. In this instance, SQL Server would 
probably ignore the index anyway and find that reading the data table instead would be faster. 
Therefore, when deciding on appropriate index columns, you should examine the data selec-
tivity to estimate the effectiveness of the index.

Including Too Many Columns
The more columns there are in an index, the more data writing has to take place when a process 
completes an update or an insertion of data. Although in SQL Server 2005 these updates to the 
index data take a very short amount of time, it can add up. Therefore, each index that is added 
to a table will incur extra processing overhead, so it is recommended that you create the minimum 
number of indexes needed to give your data-retrieval operations acceptable performance. 

Including Too Few Records in the Table
There is also absolutely no need to place an index on a table that has only one row. SQL Server 
will find the record at the first request, without the need of an index. 

Dewson_5882C06.fm  Page 159  Monday, January 2, 2006  3:21 PM



160 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

This statement also holds true when a table has only a handful of records. Again, there is 
no reason to place an index on these tables. The reason for this is that SQL Server would go to 
the index, use its engine to make several reads of the data to find the correct record, and then 
move directly to that record using the record pointer from the index to retrieve the information. 
Several actions are involved in this process, as well as passing data between different compo-
nents within SQL Server. When you execute a query, SQL Server will determine whether it’s 
more efficient to use the indexes defined for the table to locate the necessary rows or to simply 
perform a table scan and look at every row within the table.

Reviewing Your Indexes for Performance
Every so often, it’s necessary for you as an administrator or a developer to review the indexes 
built on your table to ensure that yesterday’s good index is not today’s bad index. When a solution 
is built, what is perceived to be a good index in development may not be so good in production—
for example, the users may be performing one task more times than expected. Therefore, it is 
highly advisable that you set up tasks that constantly review your indexes and how they are 
performing. This can be completed within SQL Server via its index-tuning tool, the Database 
Tuning Advisor (DTA). 

The DTA looks at your database and a workload file holding a representative amount of 
information that will be processed, and uses the information it gleans from these to figure out 
what indexes to place within the database and where improvements can be made. At this point 
in the book, I haven’t actually covered working with data, so going through the use of this tool 
will just lead to confusion. This powerful and advanced tool should be used only by experienced 
SQL Server 2005 developers or database administrators.

Getting the indexes right is crucial to your SQL Server database running in an optimal 
fashion. Spend time thinking about the indexes, try to get them right, and then review them at 
regular intervals. Review clustering, uniqueness, and especially the columns contained within 
indexes so that you ensure the data is retrieved as fast as possible. Finally, also ensure that the 
order of the columns within the index will reduce the number of reads that SQL Server has to 
do to find the data. An index where the columns defined are FirstName, LastName, and Department 
might be better defined as Department, FirstName, and LastName if the greatest number of 
queries is based on finding someone within a specific department or listing employees of a 
department. The difference between these two indexes is that in the first, SQL Server would 
probably need to perform a table scan to find the relevant records. Compare that with the 
second example, where SQL Server would search the index until it found the right department, 
and then just continue to return rows from the index until the department changed. As you can 
see, the second involves much less work.

Creating an Index
Now that you know what an index is and you have an understanding of the various types of indexes, 
let’s proceed to create some in SQL Server. There are many different ways to create indexes within 
SQL Server, as you might expect. Those various methods are the focus of this section of the chapter, 
starting with how to use the table designer in SQL Server Management Studio. 

The first index we’ll place into the database will be on the CustomerId field within the 
CustomerDetails.Customers table. 

Dewson_5882C06.fm  Page 160  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 161

Creating an Index with the Table Designer
As you may recall from the previous chapter, when the CustomerId column was set up, SQL 
Server automatically generated the data within this field whenever a new record was inserted 
into this table. This data will never alter, as it uses the IDENTITY function for the column. Thus, 
the CustomerId column will be updated automatically whenever a customer is added. An appli-
cation written in, for example, C# could be used as the user front-end for updating the remaining 
areas of the customer’s data, and it could also display specific customer details, but it would 
not know that the CustomerId requires incrementing for each new record, and it would not 
know the value to start from. 

The first index created will be used to find the record to update with a customer’s informa-
tion. The application will have found the customer using a combination of name and address, 
but it is still possible to have multiple records with the same details. For example, you may have 
John J. Doe and his son, John J. Doe, who are both living at the same address. Once you have 
those details displayed on the screen, how will the computer program know which John J. Doe 
to use when it comes to completing an update?

Instead of looking for the customer by first name, last name, and address, the application 
will know the CustomerId and use this to find the record within SQL Server. When completing 
the initial search, the CustomerId is returned as part of the set of values, so when the user selects 
the appropriate John J. Doe, the application knows the appropriate CustomerId. SQL Server will 
use this value to specifically locate the record to update. In the following exercise, we’ll add this 
index to the Customers table.

Try It Out: Creating an Index Graphically

1. Ensure that SQL Server Management Studio is running and that you have expanded the nodes in the tree 
view so that you can see the Tables node within the ApressFinancial database.

2. Find the first table that the index is to be added to (i.e., the CustomerDetails.Customers table). 
Right-click and select Modify. This will bring you into the table designer. Right-click and select Manage 
Indexes and Keys (see Figure 6-1).

Figure 6-1. The Manage Indexes and Keys button

3. The index-creation screen will appear. Click the Add button to select the index’s properties. The screen 
will look similar to Figure 6-2.

The fields in this dialog box are prepopulated, but you are able to change the necessary fields and 
options that you might wish to use. However, no matter what indexes have been created already, the 
initial column chosen for the index will always be the first column defined in the table. 

Dewson_5882C06.fm  Page 161  Monday, January 2, 2006  3:21 PM



162 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Figure 6-2. The Indexes/Keys dialog

4. The first area to change is the name of the index. Notice that in the (Name) text box, SQL Server has 
created a possible value for you. The name is prefixed with IX_, which is a good naming system to use. 
It is also good to keep the name of the table and then a useful suffix, such as the name of the column. 
In this case, the index will be called IX_Customers_CustomerId. It might also be good to place 
something in the description. However, index names should be self-explanatory, so there really shouldn’t 
be a need for a description.

5. SQL Server has, in this instance, correctly selected CustomerId as the column that will make up the 
index. Also, it has selected that the index will be ascending. For this example, the default sort order is 
appropriate. The sort order of the index column is useful when creating an index on the columns that 
will be used in an ORDER BY clause of a query when there are multiple columns with differing sort 
orders. If the sort order of the columns within the index matches the sort order of those columns specified in 
the ORDER BY clause, SQL Server may be able to avoid performing an internal sort, resulting in improved 
query performance. 

■Tip  If an index is only one column, SQL Server can read the index just as fast in a forward direction as it 
can backward.

6. As indicated earlier, SQL Server generates the value of the CustomerId column to be the next number 
in a sequence when a record is added, as this column uses the IDENTITY functionality. This value can’t 
be altered within the table, and so taking these two items of information and putting them together, you 
should be able to deduce that this value will be unique. Therefore, change the Is Unique option to Yes.

7. The final part of creating the index is to change the Create As Clustered option to No (Figure 6-3). The 
order of the records inserted into SQL Server won’t change. And if you scroll down the screen, the 
Re-compute Statistics for This Index option should remain No.

Dewson_5882C06.fm  Page 162  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 163

Figure 6-3. The clustering option in the Indexes/Keys dialog

8. Click Close and then close the table modification, answering Yes when you are asked if you wish to save 
the changes. This will add the index to the database.

Building an index in Management Studio is a straightforward procedure, as you have just seen. Although this is the 
first index that you have created yourself, it took only a few moments, and there were just a couple of areas where 
you had to do any reasonable amount of decision making. We will cover those areas now.

Choosing the name of the index and the columns to include is easy and is not worth dwelling on. You should know 
which columns to include from the discussions at the start of the chapter, where we examined the basics of building 
indexes.

The first major decision you need to make is determining whether a column carries unique values. The column 
chosen for our first index is an identity column which, if you recall, is a column that cannot have data entered into 
it by any SQL command, as the data entered in to this column is completed automatically by SQL Server itself. Also, 
in an identity column, by default no two rows can have the same value. However, there is no automation to stop any 
attempt to create duplicate keys. Therefore, there is still a need to inform SQL Server that the index will be unique. 

Moving on to the Create As Clustered setting, the data in this table would be best held in CustomerId order. This 
is because each record that is inserted will have a higher CustomerId number than the previous record. Therefore, 
each time a record is added, it will be added to the end of the table, removing the need for a clustered index. As with 
the Is Unique option, the Create As Clustered option doesn’t need to be selected.

Finally, the Re-compute Statistics option defines whether SQL Server automatically recomputes the statistics on the 
index when data is modified. Take care with this option, as the dialog can cause confusion. For example, setting 
Re-compute Statistics to On actually switches the updating of statistics to Off.

Indexes and Statistics
When retrieving data, SQL Server obviously has to make some decisions as to the best way to 
get to that data and return it to the query requesting it. Even if an index has been created on 

Dewson_5882C06.fm  Page 163  Monday, January 2, 2006  3:21 PM



164 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

a set of columns, SQL Server may determine that it is better and faster to use another method 
to retrieve the data—through a table scan, perhaps. Or maybe there are a couple of indexes that 
could be chosen to retrieve the same data. No matter what the scenario, SQL Server has to have 
some basis of information on which to make sensible and accurate choices. This is where 
statistics come in.

SQL Server keeps statistics on each column contained within an index. These statistics are 
updated over a period of time and over a number of inserts or modifications. The specifics of 
how all of this works in the background, and how SQL Server keeps the statistics up to date, is 
an advanced topic. What you need to know is that if you alter or build an index on a table that 
has data in it, and you don’t let SQL Server update the statistics on the table, then SQL Server 
could be using inaccurate information when it is trying to decide how to retrieve the data. It 
could even mean that the index change you thought would improve performance has in fact 
made the performance much slower. 

That said, it is not always prudent to let SQL Server recompute statistics automatically. 
SQL Server will do the updates when it feels they are required. This may happen at a busy time 
of processing; you have no control over when it will happen. However, if SQL Server does update 
the statistics, the query that caused the update to start is not impacted, as the statistics are 
updated asynchronously. 

It may be more efficient to manually update the statistics via a scheduled job. This is what 
you quite often see within production environments that have a number of inserts and modi-
fications to the data.

The CREATE INDEX Syntax
Creating an index using T-SQL is a lot easier than creating a table. In this section, we’ll look 
only at indexes on tables, although there is an object within SQL Server called a view that can 
also be indexed. 

The full syntax for creating an index is not listed here, although you can find it within Books 
Online once you progress in your SQL Server knowledge. A reduced version will be sufficient 
while you are learning SQL Server 2005. Most of your indexes will use the following version:

CREATE [UNIQUE] [CLUSTERED|NONCLUSTERED] 
INDEX index_name 
ON table (column [ASC|DESC] [ ,...n ] )
[WITH {IGNORE_DUP_KEY|DROP_EXISTING|SORT_IN_TEMPDB}] 
[ON filegroup ]

Let’s go through each point one by one so that the options in this cut-down version are clear:

• CREATE: Required. This keyword informs SQL Server that you will be building a new object.

• UNIQUE: Optional. If used, this option will inform SQL Server that the columns listed in 
the index will bring back a single unique row. This is enforced by SQL Server when 
attempting to insert a duplicate row, as an error message will be returned.

• CLUSTERED or NONCLUSTERED: Optional. If neither CLUSTERED nor NONCLUSTERED is explicitly 
listed, the index is created as NONCLUSTERED.

• INDEX: Required. This informs SQL Server that the new object will be an index.

Dewson_5882C06.fm  Page 164  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 165

• index_name: Required. This is the name of the index being built. This name must be 
unique for the table, and it is advisable to keep this name unique for the database, using 
the naming method of IX_table_column discussed earlier.

• ON table: Required. This is the name of the table with which the index is associated. Only 
one table can be named.

• column: Required. This is the name of the column(s) in the table that we wish to include 
in the index. This is a comma-separated list.

• ASC: Optional (default). If neither ASC nor DESC is mentioned, then ASC is assumed. ASC 
informs SQL Server that it should store the column named in ascending sequence.

• DESC: Optional. This informs SQL Server that the column is to be stored in descending 
order.

• WITH: Optional. It is, however, required if any of the following options have to be used:

• IGNORE_DUP_KEY: This option is only available when the index is defined as UNIQUE. 
If this option has not been used earlier, then it is not available to you. I’ll explain this 
further in a moment.

• DROP_EXISTING: This option is used if there is an existing index of the same name 
within the database. It will then drop the index before re-creating it. This is useful for 
performance if you are not actually changing any columns within the index. More on 
this in a moment.

• SORT_IN_TEMPDB: When building an index where there is already data within the table, 
it may be advisable, if the table is a large table, to get the data sorted for the index 
within the temporary database, tempdb, as mentioned in Chapter 3. Use this option if 
you have a large table, or if tempdb is on a different hard disk from your database. This 
option may speed up the building of the index, as SQL Server can simultaneously read 
from the disk device where the table is located and write to the disk device where 
tempdb is located.

• ON: Optional. This option is, however, required if you are going to specify a file group. It 
is not required if you wish the index to be built on the PRIMARY file group.

• filegroup: This is the name of the file group on which the index should be stored. At the 
moment, there is only one file group set up, PRIMARY. PRIMARY is a reserved word and is 
required to be surrounded by square brackets, [ ], if used.

Two options need further clarification: IGNORE_DUP_KEY and DROP_EXISTING. We’ll look at 
both in the sections that follow.

IGNORE_DUP_KEY

If you have an index defined as UNIQUE, then no matter how hard you try, you cannot add a new 
row whose values in the index columns match the values of any current row. However, there 
are two actions that you can perform, depending on this setting within an index.

When performing multirow inserts, if the IGNORE_DUP_KEY option is specified, then no error 
is generated within SQL Server if some of the rows being inserted violate the unique index. 

Dewson_5882C06.fm  Page 165  Monday, January 2, 2006  3:21 PM



166 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Only a warning message is issued. The rows that violated the unique index are not inserted, 
although all other rows are inserted successfully. 

When performing multirow inserts, if the IGNORE_DUP_KEY option is omitted, then an error 
message is generated within SQL Server if some of the rows violate the unique index. The batch 
is rolled back, and no rows are inserted into the table. 

■Caution  The system variable called @@ERROR can be tested after every SQL Server action to see if there has 
been an error in any item of work or through another error handling command called Try/Catch. If there 
has been an error, some sort of error handling within the batch will usually be performed. If you have 
IGNORE_DUP_KEY, then no error will be produced when there is an attempt to insert a duplicate row, and the 
batch will run as if everything had been inserted. So, be warned: it may look like everything has worked, but 
in fact some rows were not inserted!

DROP_EXISTING

When data is being inserted and modified, there will be times when an index bloats to a less 
than ideal state. Just as an Access database may need to be compacted, indexes within SQL 
Server also need to be compacted sometimes. Compacting the index will speed up performance 
and reclaim disk space by removing fragmentation of the index. To compact an index, you re-
create the index without actually modifying the columns or, in fact, starting from scratch and 
having to rebuild the whole index and visiting every row within the table. 

The DROP_EXISTING clause provides enhanced performance when rebuilding a clustered 
index compared to a DROP INDEX command followed by a CREATE INDEX command. Nonclustered 
indexes are rebuilt every time the clustered index for a table is rebuilt. So, if you drop a clustered 
index and then re-create it, the existing nonclustered indexes are rebuilt twice: once from the 
drop and once from the creation.

DROP_EXISTING also allows an existing index to be rebuilt without explicitly dropping and 
re-creating the index. This is particularly useful for rebuilding primary key indexes. As other 
tables may reference a primary key, it may be necessary to drop all foreign keys in these other 
tables prior to dropping the primary key. By specifying the DROP_EXISTING clause, SQL Server 
will rebuild the index without affecting the primary key constraint.

Creating an Index in Query Editor: Template
Not surprisingly, there is a template within Query Editor that you can use as a basis for creating 
an index. We’ll look at this process first, before we build an index natively in Query Editor, as 
this creates the basis of the SQL syntax for the creation of the index. 

Try It Out: Using a Query Editor Template to Build an Index

1. Ensure that Template Explorer is open (press Ctrl+Alt+T or select View ➤ Template Explorer). Navigate 
to the Index node and expand it. Select the Create Index Basic node and double-click (see Figure 6-4).

Dewson_5882C06.fm  Page 166  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 167

Figure 6-4. Selecting the Create Index Basic node

2. A new editor will open with the following code in it. The template that is installed is based on the 
AdventureWorks example. As you saw in the previous chapter, you can create new templates or 
modify this one.

-- =============================================
-- Create index basic template
-- =============================================
USE <database_name, sysname, AdventureWorks>
GO

CREATE INDEX <index_name, sysname, ind_test>
ON <schema_name, sysname, Person>.<table_name, sysname, Address> 
(
    <column_name1, sysname, PostalCode>
)
GO

3. Alter the template by either changing the code or using the Specify Values for Template Parameters 
option, which will make the index creating easier. The button should be on the SQL Editor toolbar (see 
Figure 6-5).

Figure 6-5. The Specify Values for Template Parameters button

4. Change the database to the example database, name the index (in this case, it has been named after the 
table), set schema_name to CustomerDetails, table_name to CustomerProducts, and column_name1 to 
CustomerId (see Figure 6-6). Then click OK.

Dewson_5882C06.fm  Page 167  Monday, January 2, 2006  3:21 PM



168 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Figure 6-6. The Specify Values for Template Parameters dialog

5. The code now looks as follows:

USE ApressFinancial
GO

CREATE INDEX IX_CustomerProducts
ON CustomerDetails.CustomerProducts 
(
    CustomerId
)
GO

6. Execute the code by pressing F5 or Ctrl+E, or clicking the Execute toolbar button. You should then see 
the following success message:

Command(s) completed successfully.

7. Now that you’ve completed the process, you’ll want to check that the index has actually been created 
as expected. From within Object Explorer, click the Refresh button on the Object Explorer toolbar or 
select the Refresh option from the right-click context menu. Navigate to the CustomerDetails.
CustomerProducts table and expand the Indexes node. This provides you with instant, but limited, 
information about this index. You can see its name and that it is neither unique nor clustered (see Figure 6-7).

Figure 6-7. Index for CustomerProducts

8. You can see a different perspective of the index if you highlight the index, right-click, and select Properties. 
Figure 6-8 shows you a layout that offers not only a graphical version of the index, but also a list of many 
other potential options.

Dewson_5882C06.fm  Page 168  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 169

Figure 6-8. The Index Properties dialog

9. The most interesting tab to view once you have data within the table or once you are in production is the 
Fragmentation tab. As data is modified, indexes are also modified. Similar to a hard drive, an index will 
also suffer from fragmentation of the data within the index. This will slow down your index, and, as 
mentioned earlier in this chapter, it is important that you continue to check on your indexes to ensure 
their best possible speed and performance. A great advancement with SQL Server 2005 is that it is 
possible to correct the fragmentation while users are still using the system. High availability of SQL 
Server has been a priority with this release. 

There is no data within the Fragmentation tab at the moment, but if you select the Reorganize Index 
check box and then click OK, SQL Server will reduce fragmentation as it reorganizes the index.

Dewson_5882C06.fm  Page 169  Monday, January 2, 2006  3:21 PM



170 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Figure 6-9. Examining index fragmentation

The final way to create an index is by coding the whole index by hand in a Query Editor window, which we will look 
at in the next section.

Creating an Index in Query Editor: SQL Code
In the following exercise, we will create two indexes and a primary key within a Query Editor 
pane. This will allow us in the next section to build a foreign key between the two tables, 
TransactionDetails.Transactions and TransactionDetails.TransactionTypes. The code will 
also demonstrate how to build T-SQL defining options for the index presented during the 
CREATE INDEX syntax discussion earlier.

■Note  The code discussion in the following exercise is broken out into three parts before the code execution, 
in order to make it simpler to follow.

Dewson_5882C06.fm  Page 170  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 171

Try It Out: Creating an Index with Query Editor

1. Enter the following code into an empty pane of Query Editor. The first index you will be creating in this 
section is a uniquely clustered index on the TransactionDetails.TransactionTypes table:

USE ApressFinancial
GO
CREATE UNIQUE CLUSTERED INDEX IX_TransactionTypes 
ON TransactionDetails.TransactionTypes 
(
    TransactionTypeId ASC ) 
WITH (STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF,
 DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
 ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = OFF) 
ON [PRIMARY] 
GO

2. The second index you’ll create is a nonclustered index on the TransactionDetails.Transactions 
table based on the TransactionType column. You won’t make this index clustered, as it would be 
better to consider either CustomerId or DateEntered as clustered columns.

CREATE NONCLUSTERED INDEX IX_Transactions_TType 
ON TransactionDetails.Transactions 
(
    TransactionType ASC) 
WITH (STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = OFF) 
ON [PRIMARY]
GO

3. The final action is to add a primary key to the TransactionDetails.TransactionTypes table. You 
do this through an ALTER TABLE statement:

ALTER TABLE TransactionDetails.TransactionTypes 
ADD CONSTRAINT
    PK_TransactionTypes PRIMARY KEY NONCLUSTERED 
    (
    TransactionTypeId
    ) 
WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) 
ON [PRIMARY]
GO

Dewson_5882C06.fm  Page 171  Monday, January 2, 2006  3:21 PM



172 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

4. You can now execute the preceding code by pressing F5 or Ctrl+E, or clicking the Execute toolbar 
button. You should then see the following success message:

The command(s) completed successfully.

As noted, two different indexes created are in this example. The first one is a unique clustered index, based on the 
identity column of the TransactionDetails.TransactionTypes table. This column was chosen because we 
will be linking to this table using the TransactionType column. Rarely, if ever, will we link on any other column 
within this table. The overhead is microscopic, though, due to the few records we will be entering, and it is therefore 
not really a concern. It also allows us to see where to place the keyword within the example. 

The second index, built on the TransactionDetails.Transactions table, cannot be a unique index; there will 
be multiple entries of the same value because there are multiple transactions for the same type. However, it is still 
possible to make this index clustered. Changing the transaction type on a transaction will be rare, or, if we had a full 
audit trail built within our system, we may “ban” such an action. The only way to change a transaction type around 
this ban would be to cancel the entry, record the cancel action, and create a new entry. However, a clustered index 
on transaction types will not give us much of a gain in performance, as there will be few queries of data based on 
transaction type alone. As mentioned earlier, there are better choices for clustering.

What is interesting about this example is that two indexes are created in one execution—albeit in two batch trans-
actions—whereas in the previous examples, only one index was created at a time. Notice the keyword GO between 
the two CREATE statements creating the index; each index creation has to be completed on its own, without any 
other SQL statements included. If you need to create more than one index, but you would prefer to build them at the 
same time, then this may be the solution you need. (Please see Chapter 8 for details on transactions.)

An area we have not yet covered is what happens if you try to create an index twice using the same index name. The 
preceding indexes have already been created, but if you run the query again, SQL Server will produce error messages 
informing you that the index already exists. You should see messages like the following:

Msg 1913, Level 16, State 1, Line 1
The operation failed because an index or statistics with name 
'IX_TransactionTypes' 
already exists on table 'TransactionDetails.TransactionTypes'.
Msg 1913, Level 16, State 1, Line 1
The operation failed because an index or statistics with name 
'IX_Transactions_TType' already exists on table 
'TransactionDetails.Transactions'.
Msg 1779, Level 16, State 0, Line 1
Table 'TransactionDetails.TransactionTypes' already has a primary key 
defined on it.
Msg 1750, Level 16, State 0, Line 1
Could not create constraint. See previous errors.

Dewson_5882C06.fm  Page 172  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 173

Even if you alter the contents of the index and include different columns, but still used the same name, it is not possible 
to create another index with the same name as an existing one.

In the last part of the example, we altered the table so that we could add a primary key. There are different types of 
CONSTRAINTS that can be defined for a table: column constraints are used for default values, as you saw in the 
previous chapter, but constraints are also used for primary and foreign keys. 

Once again, a couple of new areas were covered in this section, but you now have the 
information you need to be able to create the most common indexes. Indexes need a lot less 
coding than tables and can be created quickly and easily. However, if you are adding a new 
index to an existing table that has a substantial amount of information, adding this new index 
could take a few minutes to complete, depending on the scenario. It is possible to add indexes 
while the system is being used and the table or clustered indexes are being updated. This is new 
to SQL Server 2005 and is available in SQL Server Enterprise Edition, by specifying the index 
action with REBUILD WITH (ONLINE = ON) option. Take care when doing this, because if anybody 
tries to access the relevant table while the index is being built, SQL Server will not recognize the 
index until it has been built, and when working out the best way to access the data, it will ignore 
this index. If you are creating the index after removing it for rebuilding statistics, this is when 
problems may arise if you don’t use the ONLINE = ON option. Therefore, if you do need to rebuild 
an index while keeping the database online for user access, use the REBUILD option. 

Dropping an Index
There will be times when an index is redundant and should be removed (i.e., dropped) from a 
table. Dropping an index is simply a case of executing the DROP INDEX statement, followed by 
the table name and the index name. 

■Note  If the index is used by a primary key or unique constraint, you cannot drop it directly. In this case, 
you must use the DROP CONSTRAINT command. The removal of this constraint will also remove the index 
from the table.

Try It Out: Dropping an Index in Query Editor

1. If you want to drop the index created in the last section, all you need to do is execute the following code. 
This will remove the index from SQL Server and also remove any statistics associated with it.

USE ApressFinancial
GO
DROP INDEX IX_TransactionTypes ON TransactionDetails.TransactionTypes

2. After execution, you should see that everything executed correctly:

Dewson_5882C06.fm  Page 173  Monday, January 2, 2006  3:21 PM



174 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Command(s) completed successfully.

3. Don’t forget to re-create the index by running the following code:

CREATE UNIQUE CLUSTERED INDEX IX_TransactionTypes 
ON TransactionDetails.TransactionTypes 
(
    TransactionTypeId ASC
) WITH (STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = OFF) 
ON [PRIMARY]
GO

 

In the next section, we’ll examine what’s needed to alter an index. 

Altering an Index in Query Editor
Unlike with a table, it is not possible to use an ALTER command to change the columns contained 
in an index. To do this, you first have to drop the index and then re-create it. The DROP command 
will physically remove the index from the table; therefore, you should ensure that you know 
what the contents of the index are before you drop the index, if you want to re-create a 
similar index. 

■Note  In Management Studio, you can add and remove columns from an index’s definition without dropping and 
re-creating the index, as this is all done for you behind the scenes.

This next exercise demonstrates the steps you need to take to remove an index and then 
re-create it. You’ll learn how to do all of this in two steps, rather than the expected three steps.

Try It Out: Altering an Index in Query Editor

1. First, you want to create an index to retrieve the price of a specific share at a set point in time. The 
following index will do just that, as you are querying the data using the share ID and the date you want 
the price for:

USE ApressFinancial
GO
CREATE UNIQUE CLUSTERED INDEX IX_SharePrices 
ON ShareDetails.SharePrices 

Dewson_5882C06.fm  Page 174  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 175

(
    ShareId ASC,
    PriceDate ASC
) WITH (STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = OFF) 
ON [PRIMARY]
GO

2. However, it would be better to have the PriceDate descending, so that the latest price is at the top, 
because asking for this information is a query. By including this column, SQL Server would read only one 
row rather than an increasing number as more prices were created. It would also be advantageous 
to include the Price itself to avoid a second read to retrieve that column of information from the 
clustered index.

■Note  Remember, clustered indexes hold the data, and not pointers to the data. However, in this instance, 
without the Price column, a second read would be performed.

CREATE UNIQUE CLUSTERED INDEX IX_SharePrices 
ON ShareDetails.SharePrices 
(
    ShareId ASC,
    PriceDate DESC,
    Price
) WITH (STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF,
DROP_EXISTING = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = 
OFF, DROP_EXISTING = OFF) ON [PRIMARY]

■Note  If you did accidentally run the first set of code, change to DROP_EXISTING = ON.

3. Now execute the code using your chosen method, and you should see the following results:

The command(s) completed successfully.

By using the DROP_EXISTING clause of the CREATE INDEX command, you can then perform the modification in 
one execution rather than two. This will drop the index and re-create it.

Dewson_5882C06.fm  Page 175  Monday, January 2, 2006  3:21 PM



176 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

■Note  Take care when building indexes. It is possible to use the same columns in the same order more 
than once, thus creating the same index twice, but under two different index names. This is a waste of time 
and will place unnecessary overhead on SQL Server. However, when including key column(s) from a clustered 
index in a nonclustered index, because the row pointer is actually the clustered index key, SQL is smart 
enough not to store the information twice in the nonclustered index, and you can explicitly define the order of 
the clustered index keys as they are used in the nonclustered index.

There are more indexes to build, but we’ll take a look at these later.

Diagramming the Database
Now that the database has been built, the tables have been created, the indexes have been 
inserted, and relationships link some of the tables, it’s time to start documenting. To help with 
this, SQL Server offers us the database diagram tool, which is the topic of this section.

One of the worst things about documentation is documenting tables and showing how 
they relate to one another in a diagram. The database diagram tool can do all of this very 
quickly and simply, with one caveat: if more than one person is using the database diagram 
tool on the same database, and there are two sets of changes to be applied to the same table, 
the person who saves his or her changes last will be the person who creates the final table 
layout. In other words, the people who save before the last person will lose their changes. 

As you developed tables within your database, hopefully you will have commented the 
columns and tables as you have gone along to say what each column and table is. This is a 
major part of documentation anyway, and providing that you comment columns and tables at 
the start, then it is less of a chore to add in further comments when you add new columns. If 
you do have comments on each of your columns within a table, then this will help overall with 
the documentation shown within the diagram.

This said, SQL Server’s database diagram feature is more than just a documentation aid. 
This tool provides us with the ability to develop and maintain database solutions. It is perhaps 
not always the quickest method of building a solution, but it is one that allows the entire solution 
to be completed in one place. Alternatively, you can use it to build up sections of a database into 
separate diagrams, breaking the whole solution into more manageable parts, rather than 
switching between nodes in Management Studio.

Database Diagramming Basics
In the book so far, with the creation of databases, tables, indexes, and relationships, as much 
documentation as SQL Server will allow has so far been maintained. However, there is no 
documentation demonstrating how the tables relate to one another within the database. This 
is where the database diagram comes in.

A database diagram is a useful and easy tool to build simple but effective documentation 
on these aspects. You build the diagram yourself, and you control what you want to see within 
the diagram. When you get to a large database solution, you may want diagrams for sections of 
the database that deal with specific aspects of the system, or perhaps you want to build a diagram 

Dewson_5882C06.fm  Page 176  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 177

showing information about process flows. Although there are other external tools to do this, 
none is built into SQL Server that can allow diagrams to be kept instantly up to date. 

A diagram will only show tables, columns within those tables, and the relationships between 
tables in a bare form. You will also see a yellow “key,” which denotes a primary key on the table 
where one has been defined, but that is all the information displayed. It is possible to define the 
information that is to be displayed about the columns in the table, whether it is just the column 
name or more in-depth information, such as a column’s data type and length, comments, and 
so on. However, to display more than just the bare essentials, a little bit of work is required.

Although the diagram shows the physical and logical attributes of the database that is 
being built or has been built, it also allows developers and administrators to see exactly what is 
included with the database at a glance and how the database fits together.

In the next section, we’ll delve a bit deeper into what the SQL Server database diagram is 
all about. 

The SQL Server Database Diagram Tool
Management Studio’s database diagram tool aids in the building of diagrams that detail aspects of 
the database that a developer wishes to see. Although it is a simple and straightforward tool, 
and it’s not as powerful as some other tools on the market for building database diagrams, it is 
perfect for SQL Server. 

For example, one of the market leaders in database design tools is a product called ERWin. 
ERWin is a powerful database utility that not only builds diagrams of databases, but also provides 
data dictionary language output, which can be used to build database solutions. Through links 
such as OLE DB data providers, these tools can interact directly with databases and so can be 
used as a front end for creating databases. They can also, at the same time, keep the created 
source in alignment and under control from a change control perspective, not only ensuring 
that the code exists within the database, but also issuing a command to create a new database 
quickly, if necessary. An example of where this might be useful is when you’re creating a new 
test database. If you want to go further than the SQL Server database diagram tool provides 
(you’ll learn the tool’s boundaries in this chapter), then you should be looking at more powerful 
tools, which can cost a great deal of money.

SQL Server’s database diagram utility offers more than just the ability to create diagrams. 
As mentioned earlier, it can also be used as a front end for building database solutions. Through 
this utility, SQL Server allows you to add and modify tables, build relationships, add indexes, 
and do much more. Any changes built in the tool are held in memory until they are committed 
using a save command within the tool. However, there are limitations to its overall usefulness.

First of all, the biggest restriction of any diagram-based database tool comes down to the 
amount of screen space available to view the diagram. As soon as your database solution consists 
of more than a handful of tables, you will find yourself scrolling around the diagram, trying to 
find the table you are looking for.

Second, you cannot add stored procedures, schemas, users, views, or any object that is not 
a table. Other products allow you to include these objects, or they may even build some of 
them for you.

Finally, for the moment, when altering any of the information you can change within this 
tool, you are usually using the same dialogs and screens as you would in Management Studio.

As you will see as you go through the chapter, the database diagram tool is quite powerful 
in what it can achieve, but there are some areas of concern that you have to be aware of when 

Dewson_5882C06.fm  Page 177  Monday, January 2, 2006  3:21 PM



178 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

working with diagrams. Keep in mind that the database diagram tool is holding all the changes 
in memory until you actually save the diagram.

For example, if you have a database diagram open, and a table within that diagram is 
deleted outside of the diagram, perhaps in Query Editor or Management Studio by yourself or 
another valid user ID, then one of two things can happen. First, if you have unsaved changes to 
the deleted table, saving your diagram will re-create the table, but don’t forget that through the 
earlier deletion all the data will be removed. If, however, you have no changes pending to that 
table, then the table will not be re-created. When you come to reopen the diagram, the table 
will have been removed. 

With several developers working on the database at once, any changes made from the 
diagramming tool of your Management Studio will not be reflected in any other developer’s 
diagram until their changes are saved and their diagrams are refreshed. If you have multiple 
diagrams open, and you alter a table and insert or remove a column, then this will reflect 
immediately in all the open diagrams within your own Management Studio only. Don’t forget 
this is an in-memory process, so this process can’t reflect on anyone else’s diagrams until the 
changes are saved and the diagrams are refreshed.

Also, if you remove an object in your diagram, when you then save the diagram, the object 
will be removed and any changes completed by others will be lost. Effectively, the last person 
who closes his or her diagram wins!

To summarize, if you use the database diagram tool, use it with care. Because many of the 
processes are in memory, you could inadvertently cause problems.

The Default Database Diagram
Although it’s not mandatory, I do feel every SQL Server database solution should have a default 
database diagram built into it so that any developer—new or experienced—can instantly see 
how the database being inspected fits together.

A default database diagram should include every table and every relationship that is held 
for that database. Unlike other diagrams that may take a more sectionalized view of things, the 
default database diagram should be all-encompassing.

As mentioned earlier, it is imperative that you keep this diagram up to date. You will notice 
this statement repeated a few times in this chapter. Don’t use the default diagram as the source 
of development for your database solution. The default diagram includes all the tables, which 
means that if you’re using the database diagram tool for development, you are potentially logi-
cally locking out all other users from touching any other table as part of their development, in 
case their changes are lost. Only update the diagram with tables and relationships once they 
have been inserted in the database. We’ll look at this in more detail later when we discuss the 
dangers of using the database diagram tool as a source of development. 

Now that you know what diagrams are and what the tool is, it’s time to create the first 
diagram for this database.

Try It Out: Creating a Database Diagram

1. Ensure that SQL Server Management Studio is running and that the ApressFinancial database is 
expanded so that you see the Database Diagrams and Tables nodes. Select the Database Diagrams 
node and then right-click. Choose New Database Diagram (see Figure 6-10).

Dewson_5882C06.fm  Page 178  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 179

Figure 6-10. Creating a new database diagram

2. If this is the first diagram you are creating for the database, you’ll need to install support objects. Without 
them, you cannot create the diagram, so click Yes at the next dialog prompt (see Figure 6-11).

Figure 6-11. Installing diagramming support

3. The first screen you’ll see when creating the diagram is the Add Table dialog (see Figure 6-12). Select 
all of the tables listed, as you want to use all the tables in your diagram, and then click Add. This will 
“empty” the screen. Click Close.

Figure 6-12. Selecting tables

4. After a few moments, you will be returned to Management Studio, but with the database diagram now 
built. The diagram will not show all the tables at this point and will be very large. You can reduce the size 
through the Size combo box in the diagramming toolbar, as shown in Figure 6-13.

Figure 6-13. The Size combo box

5. You’ll then see a diagram similar to that shown in Figure 6-14. (Don’t be surprised if the layout is 
different, though.)

Dewson_5882C06.fm  Page 179  Monday, January 2, 2006  3:21 PM



180 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Figure 6-14. Tables with relationships built so far

That’s all there is to building a basic diagram. 

The Database Diagram Toolbar
Let’s next take a look at the toolbar and how each of the buttons works within the diagram. The 
whole toolbar is shown in Figure 6-15.

Figure 6-15. Database diagram toolbar

The first button is the New Table button, as shown in the following image. You click this 
button to create a new table within the database designer, which is a similar process to that 
shown in Chapter 5. The difference is that you need to use the Properties window for each 
column rather than having the properties at the bottom of the table designer.

When building the diagram, you selected every table. If you hadn’t done so and you wanted 
to add a table added since you created the diagram, clicking the Add Table button (see the 
following image) would bring up the Add Table dialog shown earlier to add in any missing tables.

Dewson_5882C06.fm  Page 180  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 181

The Add Related Tables button, shown next, adds tables related to the selected table in 
the designer.

It is also possible to delete a table from a database from the designer using the following 
button.

If you just wish to remove the database from the diagram rather than the database, then 
you can use the next button to accomplish this. You would use this button, for example, if a 
table no longer formed part of the “view” the database diagram was built for.

Any changes made to the database within the designer can be saved as a script. Use the 
following Generate Change Script button to accomplish this.

If you wish to set a column to be the primary key, select the relevant column within a table 
and click the Set Primary Key button (shown next).

It is possible to create a place within the diagram to put ad-hoc text. Use the following New 
Text Annotation button to do this.

Each table displayed is set to a standard layout. It is possible to change this to a different 
predefined layout or to create your own custom view. The following Table View button enables 
you to change the layout or create your own custom version.

Dewson_5882C06.fm  Page 181  Monday, January 2, 2006  3:21 PM



182 C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R AM M I N G

Relationships that exist between tables will, by default, show as a line. However, it is 
possible to show the name of the relationship as a label by clicking the following button.

Diagrams are ideal methods of documenting the database. Diagrams can be printed for 
meetings, discussions about future development, and so on. The following button shows the 
line breaks in pages that will be printed.

Page breaks in diagrams remain as they were first set up until they are recalculated. You 
are able to view the page breaks, arrange your tables accordingly, and then recalculate the page 
breaks based on the new layout. Clicking the following button will do this recalculation for you.

Tables can be expanded or shrunk manually, but when you select one or more tables using 
the Ctrl button, click the relevant tables, and then click the following button, you can resize the 
tables to a uniform size.

It is possible, by clicking the following button, to rearrange tables that have been selected 
and let SQL Server make the arrangement choices.

It is possible to rearrange the tables shown in the diagram. SQL Server will do its best to get 
the best layout for the tables and relationships when you click the following button.

In Chapter 5, you saw how to build a relationship between two tables. The button you use 
to do this appears next. This button will bring up the same dialog as you saw in that chapter.

You can also manage the indexes and keys using the dialog you saw in Figure 6-2 by clicking 
the following button. 

It is possible to create an index on a table or column called a full-text index. This index 
allows for searching on text data a bit like Google. For example, Google would hold the web 
pages within a text data type and using a full-text index would allow for full searching on that 
page. Although I don’t cover this type of index within this book, clicking the following button 
will manage these indexes.

Dewson_5882C06.fm  Page 182  Monday, January 2, 2006  3:21 PM



C H A P T E R  6  ■  C R E A T I N G  I N D E X E S  A N D  D A T A B A S E  D I A G R A M M I N G 183

If you have indexes placed on any XML data types, clicking the next button will allow you 
to manage these indexes.

In Chapter 5, you learned how to build constraints for tables. Clicking the following 
Manage Check Constraints button brings up the same dialog you saw then.

Summary
We’ve covered yet another major building block in creating a SQL Server solution. The last few 
chapters have shown you how to store data, and in this chapter you’ve learned about indexes 
and how to use them to quickly and efficiently retrieve the data stored in the table. 

There are many types of indexes, and choosing the right one at the right time to complete 
the right job is quite an art. This chapter has taken you through the steps to decide which 
columns will make an efficient index, and then build those columns in the right type of index 
to make the most of the information. 

This chapter also covered database diagramming. Database diagrams should initially be 
thought of as a form of documentation. Keep in mind, though, that the database diagram tool 
may expand in future versions of SQL Server to become much more sophisticated and powerful 
than it is now—although even now it is quite a powerful utility. 

Don’t be caught out by the fact that changes in the diagram are not applied until the diagram 
is saved, and that your changes could overwrite another’s changes. If you’re using the database 
diagram tool for development in any sort of multiuser environment, take the greatest of care 
when completing updates (in fact, try to avoid them altogether). Unless you split your database 
solution into multiple diagrams, with any table being found in at most one diagram, don’t use 
the database designer as a development tool. 

■Tip  Remember, those who save last, save the changes.

Dewson_5882C06.fm  Page 183  Monday, January 2, 2006  3:21 PM



Dewson_5882C06.fm  Page 184  Monday, January 2, 2006  3:21 PM



185

■ ■ ■

C H A P T E R  7

Database Backups, Recovery, 
and Maintenance

Now that we have created a major part of the database in the previous chapters, and before 
moving on to inserting and manipulating the data, this is a good point to take a moment to 
back up the database, just so that if things go wrong, it is possible to recover back to a stable point.

What is abundantly clear when working with any sort of system where data is held is that 
there must be a comprehensible and workable backup and recovery strategy in place for when 
things go wrong. The recovery may also be required to cater to problems from a hardware 
failure up to an act of God. In any of these instances, we may move to an offsite location, which 
is a building a safe distance away from our current building housing the computing equip-
ment. That is quite a dramatic step and is a decision that would be taken at a higher level of 
authority than we probably have; however, we must create a backup of our system and store it 
according to the recommendations of our board of directors, whether they are for in-house or 
offsite storage. Companies have gone bust because a good and secure backup storage wasn’t in 
place when their building burned down, for example. This is of course a worst-case scenario, 
and there will be times that moving out of the current building to a second secure location is 
not necessary.

This chapter looks at different backup strategies that can be implemented by you as a 
developer or an administrator, and how they would be implemented. I also show you scenarios 
where the database is in use 24 hours a day, 7 days a week, and how a backup strategy needs to 
be formed around such scenarios. From there, you will see how to perform an ad-hoc backup 
of the database as well as scheduled transaction log backups. It will be made clear in this chapter 
when you would perform both of these types of backups and when they would be useful. Of course, 
after the backup, you will have to test that the backup can be restored. Generally, this backup 
will be restored onto a nonproduction system. Some companies have complete environments 
established to test their disaster-recovery scenarios.

What you have to realize, and what will be demonstrated, is that there are different methods 
of taking backups depending on what you are trying to achieve. The most common scenarios 
are discussed and demonstrated in this chapter, but you will also get to look at database main-
tenance plans.

It is imperative that you get the correct backup strategy in place, and that it works. This 
point will be repeated throughout the chapter.

Dewson_5882C07.fm  Page 185  Monday, January 9, 2006  3:27 PM



186 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

So, in this chapter you will learn

• Backup strategies

• When a problem might occur during the backup and restore process

• How to take a database offline, and then bring it back online

• How to create a backup

• Different media for building a backup: what needs to be considered

• About the transaction log and how to back it up

• When to back up the data, and when to back up the transaction log

• Scheduling backups, and what happens if the server isn’t running at the scheduled time

• Restoring a database

• Detaching and attaching a database

• How to work with users still attached to the database when you need them not to be 
connected

• How to build SQL statements for backing up the database structure, and when it is useful 
to have them

• Building a maintenance plan and knowing when to use it

Transaction Logs
Data within the database is stored, of course, on your hard drive, or on a hard drive on a server. 
Imagine the work involved on the disk controller, and imagine the work SQL Server has to do every 
time data is added, amended, or removed. Writing data is a slow process so, inevitably, every time 
data is written, SQL Server slows down. A good comparison is to think how long it takes you to 
insert, modify, or erase a sentence, even using MS Word, compared to how long it takes you to read 
a sentence. What if part of the way through writing the data, there was a power outage and you 
had no uninterruptible power supply (UPS) in place? What a mess you would be in, not knowing 
what had been written to disk and therefore your tables within your database, and what hadn’t!

It is also possible in SQL Server to update several tables at once. How would you work around 
the fact that some of the tables had been updated, but when it came to updating a specific 
table, the update failed? Well, this is where transaction logs come into play. Transactions them-
selves are covered in Chapter 8, but very simply, a transaction is a single unit of work that can 
contain one or more table modifications that are either all successful and committed to the 
database or, if some are unsuccessful, all the modifications are discarded. It is also possible to 
roll back a transaction so that no changes are made to the database, which can either be invoked by 
SQL Server or by issuing a specific T-SQL command. But you must be wondering what all this 
has to do with a transaction log and even wondering what a transaction log is. Before we move 
on there is one last area of background information we need to discuss first.

Dewson_5882C07.fm  Page 186  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 187

The first item to note is that every database within a SQL Server instance has its own trans-
action log. Every time SQL Server is requested to do any data modifications—whether these are 
additions, deletions, or modifications—a record is kept of the action. These recorded actions 
are kept in a place called a transaction log. There are several reasons for this.

First of all, a piece of code could in fact do several different updates at once, either to different 
rows of data or rows of data in different tables or even databases. If one of the updates fails, for 
example, you are attempting to place ASCII characters into a column that only allows numerics, 
then you may wish to return the values in all the updated fields to their original value. This is 
called rolling back a transaction. SQL Server achieves this, in part, by looking at the data held 
in the transaction log. However, any successful action where all the updates are valid could be 
permanently stored on file, a process called committing a transaction.

As more and more actions are placed in the transaction log, it will become full. Some of 
these actions will still be within a transaction, and others may form part of a completed trans-
action ready to be committed to the database. At certain points, SQL Server will want to remove all 
the actions it can to relieve some space in the transaction log for further actions. One point could be 
when the transaction log reached 70 percent full. SQL Server would then issue a checkpoint. The 
use of a checkpoint ensures that any data modifications are actually committed to the database 
and not held in any buffers, so that if a problem occurs, such as a power failure, there is a 
specific point that you can start from. Therefore, at the end of a checkpoint transaction, you 
know the database is in a consistent and valid state. As SQL Server knows that at a checkpoint 
all is well within the database, there is no need to keep the completed transactions recorded in 
the transaction log stored up to the checkpoint. SQL Server will therefore issue a truncation 
of the transaction log to remove these records, minimizing the size of the log on the computer. 
This is known as truncating the transaction log. It is thus necessary to ensure that you have a 
large enough transaction log defined to hold the largest valid uncommitted transaction, as 
these transactions obviously will not be truncated. A transaction log can become full with 
a rogue query as well, one that is incorrectly coded and just keeps adding more and more 
uncommitted transactions. When the transaction log reaches 70 percent, there is nothing to 
checkpoint and eventually the transaction log will fill up and your SQL Server will stop. This is 
where you will need the help of an experienced database administrator.

If you had a power failure, you might have to “replay” all the work completed since the last 
backup, and the transaction log could also be used to do this, in certain scenarios. When a data 
modification is completed via a T-SQL command, the details are recorded first of all in the 
transaction log. These changes are flushed to disk, and therefore no longer in memory, before 
SQL Server starts to make changes to the tables that you are affecting. SQL Server doesn’t write 
data immediately to disk. It is kept in a buffer cache until this cache is full or SQL Server issues 
a checkpoint, and then the data is written out. If a power failure occurs while the cache is still 
filling up, then that data is lost. Once the power comes back, though, SQL Server would start 
from its last checkpoint state, and from the transaction log, any updates after the last check-
point that were logged as successful transactions will be performed.

■Note  A disk cache is a space in the system where changes to the tables within the database are held. By 
doing so, a whole block of data can be written at once, saving on the slow process of disk head movement.

Dewson_5882C07.fm  Page 187  Monday, January 9, 2006  3:27 PM



188 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Transaction logs are best kept, if at all possible, on a hard drive separate from that holding 
the data. The reason for this is that, when data is written to a transaction log, it is written seri-
ally. Therefore, if there is nothing else on the hard drive except the transaction log, the disk 
heads will be in the right place to continue writing each time. A minor overhead, but if perfor-
mance is an issue, this is worth considering.

Backup Strategies
Backing up a database, no matter how large or small, should form part of your database solu-
tion. Even if a backup is only taken once a week, or even once a month, it is crucial that you sit 
down and decide which backup strategy is right for you. Much of this decision lies in the hands 
of the product owners for your company, since they must weigh the risk they’re willing to take 
against the cost of minimizing that risk. There are also many different strategies that can be 
adopted within your overall main backup strategy, depending on days of the week, or perhaps 
period within the month.

Based on the strategy that you choose, you will have to decide what type of backup you 
will need. Full database backups take a complete snapshot of a database at any given point. 
A differential backup will back up only the data that has changed since the last full backup. 
Finally, a transaction log backup only backs up the data in the transaction log, which consists 
of transactions that were recently committed to the database. All of these types of backups can 
be done while your SQL Server is online and while users are actively hitting your database. 
To be able to restore a database to any point in time, you will have to use a combination of 
these backup types.

The first place to start with the backup strategy is to look at your application and ask your-
self the following questions:

• How much of the data can be lost, if any, at any point of failure? In other words, how 
crucial is it that no data is lost?

• How often is the data updated? Do you need regular backups from a performance view-
point as well as a recovery viewpoint? For historical databases that only periodically 
have their data modified, you would, at most, complete a backup postpopulation.

• Do you need to back up all the data all of the time, or can you do this periodically, and 
then only back up the data that has altered in the meanwhile?

• How much data needs to be backed up and how long do you need to keep the copies of 
the backups?

• In the event of catastrophic failure, how long will it take to completely rebuild the data-
base, if it’s even possible?

There are many more questions that can be asked, but for the moment, these are the most 
crucial questions that need answers. If you can afford to allow data updates to be lost, then this 
is a straightforward periodic database backup; for example, backup the whole database once 
a week. This is simple and easy to complete and requires little thought. This is a rare scenario 
and found usually in data warehousing systems or those with a large amount of static data that 
can be rebuilt.

Dewson_5882C07.fm  Page 188  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 189

Looking at the next question, if a large number of updates are taking place, then a more 
complex solution is required. For every data modification, a record is kept in the transaction 
log file, which has a limited amount of space. This amount of space was defined when you set 
up the database as a fixed maximum size or, if you are allowing it to grow unrestrictedly, equals 
the amount of hard drive there is. If you backed up and cleared the transaction log file, this 
would free up the space logically and also aid performance. The smaller the active part of the 
transaction log file, the better. The more transactions there are in the transaction log file, the 
longer it will take to recover from a corrupt database. This is due to the fact that a restore will 
have to restore the data, and then every transaction log backup to the point of failure. That is, 
each transaction log will have to be restored to update the database, not just the latest log file. 
If you have multiple small files and they are held on media that has to be mounted each time, 
such as a tape, then you will have to take mounting time into consideration as well.

The third question, though, covers the real crux of the problems. If you need to back up all 
the data each time, how often does that need to take place? This could well be every night, and 
many production systems do just this. By completing a full data backup every night, you are 
allowing yourself to be in a state where only one or two restores may need to occur to get back 
to a working state in a disaster scenario. This would be the data backup, followed by the single 
transaction log backup, if one was taken in the meantime, to be restored. Much better than 
having one data backup to be restored, and then a log file for every day since the data file backup. 
What happens if the failure is on a Friday lunchtime and you completed your last whole data-
base backup on a Saturday evening? That would take one data file and six transaction log file 
restores to complete.

Therefore sit down and take stock. As often as you can, take a full database backup, then 
from there take a differential backup, followed by transaction log backups. However, you have 
to weigh this against the time that a full backup takes over a differential backup or a transaction 
log; how much processing time you have to complete these backups; and the risk level on having 
to complete, for example, six transaction log restores.

The problem is, there is no universally right answer. Each situation is different, and it is 
only through experience, which comes from testing your solution thoroughly, that you find out 
what is best for that situation.

Whatever your backup strategy, the best possible scenario is to complete a backup when 
nobody is working within the database. If there are times when you can make the database 
unavailable, then this is an ideal opportunity to take the backup. Although SQL Server can 
perform full backups while the database is online and active, you will gain performance bene-
fits by having an inactive database. The first example, shortly, demonstrates one method of 
doing this.

When Problems May Occur
Obviously, when taking a backup, it must work; otherwise you have wasted your time, but, 
crucially, you are leaving your database and organization in a vulnerable position if the backup 
has failed. If you have time within your backup window to verify that a backup has been 
successful, then you must do it. As you will see, SQL Server 2005 gives you different options on 
how to do this. It cannot be stressed strongly enough that verifying a backup is just as crucial as 
taking the backup in the first place. There have been situations where a backup has been taken 
every night; however, no one has noticed that the backup has failed and then there has been a 
hardware failure, and so there’s no backup to use as a restore on a new machine. In one case 

Dewson_5882C07.fm  Page 189  Monday, January 9, 2006  3:27 PM



190 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

I know of, almost a week’s worth of data was lost. Luckily, the weekend backups had succeeded; 
otherwise, the company would have been in a major data loss situation. The cause was that the 
tapes being inserted for the backup were not large enough to hold the backup being performed. 
Therefore the tape became full, and so the backup failed. Obviously, this was a case of a company 
that failed not only to verify the backup, but also to have processes in place to check that its 
backup strategy was still working after a period of implementation. The only sure and positive 
way of ensuring a backup has succeeded is to restore the database to a specific restore test 
location and check the data. Although you will see SQL Server does have a method of checking 
a backup, this still isn’t a guarantee that the backup worked. Do take time to complete regular 
restores to a location to test that everything is okay.

You should always review your backup strategy on a regular basis. Even better, put in place 
jobs that run each day, giving some sort of space report so that it is possible to instantly see that a 
potential problem is looming. SQL Server Reporting Services is a new tool that would be ideal for 
producing and distributing space reports to database administrators and developer owners alike.

Taking a Database Offline
SQL Server does not have to be offline to perform a backup, as you will see as we go through the 
book and work through creating SQL Server–defined backups using wizards and T-SQL. In most 
environments, you will not have the luxury of taking a database offline before backing it up, 
because users are constantly making data changes. Backing up a database can take a long time, 
and the longer it takes, the longer users cannot be working with the data while it is offline.

By taking your database offline, you do not have to use SQL Server to perform the backup. 
This strategy is one where you take a disk backup, which means the hard drive is backed up, rather 
than a specific database within a server. However, don’t forget that by taking your database offline, 
it means you will have to take a backup of the directory using some sort of drive backup.

If you have your database on a server, no doubt some sort of server backup strategy is in 
place, and so your database would be backed up fully and successfully through this method; 
if you can take your database “out of service” in time for those backups, then you should do so. 
This does allow you to think about your SQL Server deployment strategy. If you have several 
databases that can be taken offline as part of the backup, then it is worth considering whether 
they can all reside on the same physical server and set your server backup times accordingly. 
However, this is a rare scenario, and even rarer within a production environment. Taking the 
database offline means taking your database out of service. Nobody can update or access the 
data, and nobody can modify table structures, etc. In this next section, we will take ApressFinancial 
offline, allowing a physical backup to be taken. Just to reiterate and clarify: this is being demon-
strated only to complete your knowledge of backups, and it will be rare that you perform this 
action in a live scenario.

Try It Out: Taking a Database Offline

1. Open SQL Server Management Studio and open a Query Editor pane. Enter and execute the following code:

USE master
GO
ALTER DATABASE ApressFinancial
SET OFFLINE

Dewson_5882C07.fm  Page 190  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 191

2. Try to click some of the nodes for the ApressFinancial database, for example, the Tables node; 
We will be reminded that the database is offline, and therefore cannot be viewed or modified, as shown 
in Figure 7-1. We will also not be able to access the database through any application such as Query Editor.

Figure 7-1. Database is offline and therefore unable to be opened.

To take a database offline, SQL Server must be able to gain exclusive access to the database. This means that no 
user can be in the database when we issue the command. If users are connected, then the query will continue to 
execute until all users are disconnected.

As said earlier, that’s all there is to it. Our database is now no longer available for any updates of data, or modifica-
tions, and so can be backed up using any backup utility that takes files from a hard drive.

If you have to restore from a backup completed this way, don’t forget to take the database offline first, then restore 
from the backup, and then bring the database back online, ready for use:

USE master
go
ALTER DATABASE ApressFinancial
SET ONLINE

There is one area to note when using backup strategies that employ these methods. If you have a server backup that 
runs, for example, at 0200 hours, do you fancy getting up every night, just before 2 a.m., taking the database offline, 
and then bringing the server back up once the backup is complete? No—not many people would. Of course, there 
are installations where people are working through the night, so this is less of a problem, but what if they are busy? 
Or forget? Then your whole backup will fail because the files are in use, and therefore the server will not backup 
these files.

So let’s now look at a more friendly method of backing up the data by using SQL Server instead.

Backing the Data Up
Using SQL Server to back up the database will be the method used by the majority of readers. 
By using SQL Server, we are keeping the backup of the database under the control of an auto-
mated process that can control its own destiny, and as you will find out later, it can also control 
the system when things go wrong.

The backup will be split into two parts. The first part, which will be covered here, will be 
when we perform the backup manually each time. Obviously this means we have to be avail-
able to perform the backup, but this can be rectified quite easily. Once this has been covered, 

Dewson_5882C07.fm  Page 191  Monday, January 9, 2006  3:27 PM



192 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

the next section will schedule a backup to run at a specific time, which will relieve us of needing 
to be available to complete a backup at the specified time.

Let’s start by looking at the manual backup.

Try It Out: Backing Up the Data

1. Ensure SQL Server Management Studio is running. Find our database, right-click, select Tasks, and 
then click Back Up.

2. This then brings up the SQL Server Back Up Database dialog box. Take a moment to peruse this dialog 
box. As Figure 7-2 shows, a lot appears on this screen, which will be dealt with a section at a time.

Figure 7-2. Backing up a database (full recovery model)

Although we have chosen our own database to back up, we could alter which database by changing the value in 
the combo box. Next is the backup type, of which we have three options to choose from: Full, Differential, and 
Transaction Log.

The first possibility, full backup, is straightforward. Selecting the Full option will ensure that the whole database will 
be backed up. All the tables, the data, and so on are backed up if we use this option. We also back up enough of the 
transaction log (transactions committed via code, but not physically applied to the relevant tables at the point of backup).

Dewson_5882C07.fm  Page 192  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 193

The second possibility is the differential backup, also known as an incremental backup. Use the Differential backup 
option when the circumstances are such that a full backup is either not required or not possible. This just performs 
a backup on data changed since the last backup. For example, we may take a full backup at the weekend, and then 
a differential backup every night. Then when it comes to restoring, we would restore the weekend full backup, and 
then add to that the latest differential backup taken from that point. A word of warning here: if you do take a week’s 
worth of differential back ups, and you back up to magnetic tape rather than a hard drive, do keep at least enough 
different tapes for each differential backup. Therefore, use a complete backup when necessary and then in the 
interim use a differential backup.

The last possibility, the transaction log backup, should be used as the most frequent method of backup providing 
that the database is not in simple recovery. As data is modified, details of the modifications are stored in the transaction 
log. These remain in place until an action “truncates” the transaction log, which means that the transaction log will 
increase constantly in size if not in Simple recovery. When you issue a transaction log backup, you are just backing up the 
transaction log, which will issue a checkpoint, and all committed transactions will be stored onto the backup. This means 
that if a system failure occurs, you would restore from a full backup, then from your differential backups for the week, and 
finally from any transaction log backups after that point.

So you are probably wondering why not just use differential backups? Transaction logs can fill up during the working 
day, or perhaps you have set differential backups to happen weekly because there is so little data modification. 
However, you do need to account for when a transaction log may fill up before you reach the next differential backup. 
By taking a backup of the transaction log, this is a great deal faster than the other two methods. Certainly in heavily 
used databases you may have several transaction log backups in the day. You see how to do this using T-SQL after 
we take our first full backup. At least one backup must exist before we can take a transaction log backup, as we 
need a point at which the transaction log can roll committed transactions forward from.

■Note  If we were backing up the master database, then the only option that would be available to us 
would be a complete database backup via the Full option.

A name and description of your backup are always useful. You will create different backups through time, so a good 
description is always something that will help at a later date. I recommend that you use some sort of date and time 
as part of the description, as this will make it easier to find, and which mode of backup you have chosen.

Different types of backups will have different expiry dates. This means that after the defined date, the media you 
have stored your backup on will allow the data to be overwritten if using SQL Server (you can't delete the file man-
ually!). For example, you might have a weekly full backup that you want to keep three instances of, and then the first 
full backup of the month you may wish to keep for six months, or even longer if it is a database that you must keep 
for government legislation. In this option, you can retain the backup for a set number of days (for example, 21 days) 
or for a set period of time (a specific date covers for uneven days in a month, or a year, for example).

A default destination is defined, which might be more than acceptable. It will be on our hard drive, in a location 
below where our data is. It is best to have a directory set aside for backups so that they are easy to find, perhaps 
with a name such as SQL Server Backups. However, in production this is not recommended. What if the hard drive 
fails? We can gain a substantial performance improvement by backing up the database to a separate disk or to a 
RAID 1 drive if one is available. This is because data is written to the backup file in a sequential manner. It is also 
advisable to give the backup file a meaningful name. In this instance, it has been given the name of the database, 
ApressFinancial.

Dewson_5882C07.fm  Page 193  Monday, January 9, 2006  3:27 PM



194 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

3. Move to the Options tab, as shown in Figure 7-3, where we can define what options we want to happen 
as part of this backup.

Figure 7-3. Database backup options

The first section of this dialog box deals with what you want to happen on second and subsequent backups. The first 
time the backup is run, it will create the backup files, but when you run subsequent backups, do you want to append 
to the current data or overwrite it? If this was a full backup, then you may overwrite, as you should be placing this 
full backup over an old unrequired backup. However, if this was a differential backup, where it is perhaps the second 
or third of the week, then you would append to the existing backup set. This would be after the previous differential 
backups and would mean that if you needed to do a restore, all the backups would be one after another and therefore 
would provide the fastest retrieval.

The option Check Media Set Name forces the backup to check that where the data is going to be backed up to is still 
a valid name and, if appending, that the data set has not expired.

You would use the option Back Up to a New Media Set, and Erase All Existing Backup Sets option when any previous 
backups were no longer required. This is ideal when moving the database from development to either user testing 
or even production and you did not want to be able to restore from an incorrect backup. There is no point in wishing 
to restore a production server from a development backup after all.

The second section deals with the reliability of the backup. It is possible to simply back up the data and trust that 
everything worked perfectly, meaning no data transmission errors occurred between your SQL Server and the 

Dewson_5882C07.fm  Page 194  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 195

backup device, or that no errors occurred when writing the data. A situation such as this is unusual, but there will 
be times that it does happen. Do you trust that those times will occur when you will not need a backup? I suggest 
this is something you just cannot and should not rely on. Therefore, although it will increase the amount of time the 
backup takes, it is good to choose one of the two options in this section. The two options are to allow a verification 
of the backup where SQL Server compares what has been backed up with what it expects to have been backed up, 
and the second option allows for checksum processing whereby SQL Server performs a mathematical calculation 
on the data to back up, which will generate a checksum that can then be compared once the data has been trans-
mitted from SQL Server to the backup device. If you select the second option, you can also specify whether to 
continue if you get a checksum error.

If you are doing a transaction log backup, the next area of the dialog box would be enabled. You can logically shrink 
the transaction log by removing all entries that have just been backed up by selecting the first option, Truncate the 
Transaction Log. To save processing time, the physical transaction log is not shrunk. The second option, Back Up the 
Tail of the Log, is used when there has been some sort of database corruption. If you wish to back up transaction log 
records that have not been backed up prior to performing a restore to correct the corruption, then you would use this 
option. To clarify, a database becomes corrupt, and you need to be able to restore up to the last backup, then add 
all the transactions that have occurred since the last backup. By executing a backup of the tail of the log, you can 
restore the database and then use this tail log backup to add the missing transactions.

The final area of the dialog box is available if you are using tapes as your backup medium. You can eject the tape 
once the backup has finished. This is a useful option as the computer operators would know to remove the tape for 
dispatch to the safe backup area. The second option, which specifies a rewind, is useful for full backups. On differ-
ential backups, however, SQL Server would be halted when running the next backup while the tape device got to the 
right place on the tape to continue the backup. Clicking OK will then start the backup.

Once the backup is finished you should see the dialog box shown in Figure 7-4.

Figure 7-4. A successful backup

The first backup of the ApressFinancial database has now taken place and should have been successful. If we 
now move to the directory on the hard drive where the backup took place, then we will see the ApressFinancial file.

Recall that it was mentioned earlier that a company lost a week’s worth of data. It had set up the option to append 
to media, the tape had become full, and the administrator had not set up the proper scenario to alert someone when 
a problem occurred. So there was not just one failure in the system, but two; however, it still highlights that if you 
are using append to media, you must check that enough room is available on the medium that you are appending 
to for the backup to succeed.

Creating a backup of your database and the data is the most crucial action in building a database solution. Get it 
wrong and you may as well go home. Well not quite, but if (or when) things go wrong, and you don’t have a valid or 
recent enough backup that is acceptable to the users of your database, it will take a long time for you as a developer 
to recover from that situation and get back to the excellent working relationship you had beforehand.

The backup taken in the preceding example is the simplest backup to perform. It is a complete backup of our par-
ticular SQL Server database, which happens while we are watching. If it goes wrong, we will instantly see and be 

Dewson_5882C07.fm  Page 195  Monday, January 9, 2006  3:27 PM



196 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

able to deal with it. However, most backups do not happen when you are there and will happen through the night. 
In the next section, you will see more about scheduling jobs and how to schedule a task to run through the night. 
However, it doesn’t cover what to do when things go wrong. This is a difficult area to discuss and should be integrated with 
our database maintenance plan, which is covered later in this chapter in the section “Creating a Database Mainte-
nance Plan.” This example demonstrates how to complete a backup manually rather than as an automated process.

Before moving on, there are a couple more points concerning backups that you must keep in mind, and it is recom-
mended strongly that these directions be followed. First of all, keep a regular and up-to-date backup of the master 
and msdb system databases. SQL Server very rarely becomes corrupted, but it can happen for any number of 
reasons, from a hard drive failure to a developer altering the database in error. It really doesn’t matter, but if you 
don’t have a backup of the master database, you could find yourself in trouble. However, be warned. Restoring the 
master database should not be performed unless you really have to, and only if you are experienced with SQL Server. 
Restoring the master database is not like restoring other databases, and has to be completed outside SQL Server Man-
agement Studio. This book quite deliberately does not cover having to restore the master database, since it is a 
very advanced topic. If you wish to know more, then take a look at Books Online for more details.

When it comes to the msdb database and when to back it up, it could be that a daily backup is required. If you recall, 
this database holds job schedules and other information pertinent to the SQL Server Agent for scheduling. If you 
have jobs that run each day, and you need to keep information about when jobs were run, a daily backup may be 
required. However, if you only wish to keep a backup of jobs, etc. that are set up and there is no need to know when 
certain jobs ran and whether they were successful or not, then perhaps look at backing up this database weekly.

The model database should be backed up if any details within the model database have been altered. This should 
be pretty infrequent, and therefore backing up this database need not be as regular as any other database; once a 
week is probably frequent enough.

Backing up tempdb is not necessary, as this should be seen as a transient database, which has no set state.

■Note  When SQL Server is restarted, tempdb is dropped and is re-created as part of the startup process.

As you can see, it is not just your own databases that need to be considered and remembered when it comes to 
dealing with your backup strategy. A database within SQL Server is not an insular arrangement and affects the 
system databases just as much.

If in doubt, back it up more frequently than is required!

Backing Up the Database Using T-SQL
Now that we have backed up the database using the wizard, it is useful to demonstrate performing 
a backup with T-SQL. These commands and statements can be used within a stored procedure 
that can be scheduled to run at required intervals as part of an overnight task.

Dewson_5882C07.fm  Page 196  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 197

There are two different types of backups. It is possible to either back up the database or 
specific file groups or files that are part of the database. The code for the database backup 
follows. The highlighted code will demonstrate which of the two possible options is the optional 
default used when neither option is specified.

BACKUP DATABASE { database_name | @database_name_var }
TO < backup_device > [ ,...n ]
[ [ MIRROR TO < backup_device > [ ,...n ] ] [ ...next-mirror ] ]
[ WITH
     [ BLOCKSIZE = { blocksize | @blocksize_variable } ]
     [ [ , ] { CHECKSUM | NO_CHECKSUM } ]
     [ [ , ] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR } ]
     [ [ , ] DESCRIPTION = { 'text' | @text_variable } ]
     [ [ , ] DIFFERENTIAL ]
     [ [ , ] EXPIREDATE = { date | @date_var }
     | RETAINDAYS = { days | @days_var } ]
     [ [ , ] PASSWORD = { password | @password_variable } ]
     [ [ , ] { FORMAT | NOFORMAT } ]
     [ [ , ] { INIT | NOINIT } ]
     [ [ , ] { NOSKIP | SKIP } ]
     [ [ , ] MEDIADESCRIPTION = { 'text' | @text_variable } ]
     [ [ , ] MEDIANAME = { media_name | @media_name_variable } ]
     [ [ , ] MEDIAPASSWORD = { mediapassword | @mediapassword_variable } ]
     [ [ , ] NAME = { backup_set_name | @backup_set_name_var } ]
     [ [ , ] { NOREWIND | REWIND } ]
     [ [ , ] { NOUNLOAD | UNLOAD } ]
     [ [ , ] STATS [ = percentage ] ]
     [ [ , ] COPY_ONLY ]
]

If instead you just wish to back up specific files or file groups, the difference in the code is 
highlighted in the BACKUP DATABASE statement shown here:

BACKUP DATABASE { database_name | @database_name_var }
     <file_or_filegroup> [ ,...f ]
TO <backup_device> [ ,...n ]
[ [ MIRROR TO <backup_device> [ ,...n ] ] [ ...next-mirror ] ]
[ WITH
     [ BLOCKSIZE = { blocksize | @blocksize_variable } ]
     [ [ , ] { CHECKSUM | NO_CHECKSUM } ]
     [ [ , ] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR } ]
     [ [ , ] DESCRIPTION = { 'text' | @text_variable } ]
     [ [ , ] DIFFERENTIAL ]
     [ [ , ] EXPIREDATE = { date | @date_var }

Dewson_5882C07.fm  Page 197  Monday, January 9, 2006  3:27 PM



198 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

    | RETAINDAYS = { days | @days_var } ]
     [ [ , ] PASSWORD = { password | @password_variable } ]
     [ [ , ] { FORMAT | NOFORMAT } ]
     [ [ , ] { INIT | NOINIT } ]
     [ [ , ] { NOSKIP | SKIP } ]
     [ [ , ] MEDIADESCRIPTION = { 'text' | @text_variable } ]
     [ [ , ] MEDIANAME = { media_name | @media_name_variable } ]
     [ [ , ] MEDIAPASSWORD = { mediapassword | @mediapassword_variable } ]
     [ [ , ] NAME = { backup_set_name | @backup_set_name_var } ]
     [ [ , ] { NOREWIND | REWIND } ]
     [ [ , ] { NOUNLOAD | UNLOAD } ]
     [ [ , ] STATS [ = percentage ] ]
     [ [ , ] COPY_ONLY ]

I can now give a brief description of all the options that are available. We looked at some of 
these options previously with the Back Up Database dialog box. This will allow you to compare 
options within T-SQL and within the backup dialog boxes.

• database_name | @database_name_var: Either the name of a database or a local variable 
that gives the name of the database to back up.

• file_or_filegroup: The name of the file or file group to back up.

• backup_device: The name of the logical or physical backup device to use.

• MIRROR TO: The backup file is mirrored to two to four different file locations.

• BLOCKSIZE: The block size to use, for example, if backing up to CD-ROM, then you would 
set a block size of 2048.

• CHECKSUM | NO_CHECKSUM: Specifies whether to perform checksum calculations to ensure 
the transmission of data or not.

• STOP_ON_ERROR | CONTINUE_AFTER_ERROR: Specifies whether to stop on a checksum error 
or not.

• DESCRIPTION: A description of the backup.

• DIFFERENTIAL: If this is a differential backup, then specify this option. Without this option, 
a full backup is taken.

• EXPIREDATE: The date the backup expires and is therefore available to be overwritten.

• RETAINDAYS: The number of days the backup will be kept before the system will allow it to 
be overwritten.

• PASSWORD: The password associated with the backup. This must be supplied when inter-
rogating the backup for any restore operation. There is no strong encryption on this 
option, so there is the potential that it could be easily broken.

• FORMAT | NOFORMAT: Specifies whether to format the storage medium or not.

Dewson_5882C07.fm  Page 198  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 199

• INIT | NOINIT: Keeps the media header created with the format but erases the contents.

• NOSKIP | SKIP: If you want to skip the checking of expiredate or retaindays when using 
the media set, then select the SKIP option. Otherwise, expiredate and retaindays will 
be checked.

■Note  A media set is an ordered set of backups on the same disk or tape.

• MEDIADESCRIPTION: Gives a description to the media set.

• MEDIANAME: Names the media set.

• MEDIAPASSWORD: Gives the media set its password.

• NAME: Names the backup set.

• NOREWIND | REWIND: Specifies whether to rewind a tape or not.

• NOUNLOAD | UNLOAD: Specifies whether the tape is unloaded or kept on the tape drive.

• STATS [ = percentage ]: SQL Server will provide a message at this percentage interval 
telling you how much of the approximate backup has completed. Useful for gauging 
progress of long-running backups.

• COPY_ONLY: Tells SQL Server that this is a copy of the data. It cannot be used as a full 
backup point for differential backups, as the differential backups will be in line with the 
last “pure” full backup. This option is ideal if you take weekly backups for dumping the 
data to a user test region, as it will not affect the production backup process.

The only remaining option is for files or file groups where you can name the file or file 
group that the backup is for. The preceding options do not change for files or file groups.

Try It Out: Backing Up the Database Using T-SQL for a FULL and DIFFERENTIAL Backup

1. Open up a fresh Query Editor window. It doesn’t matter which database it is pointing to as the BACKUP 
DATABASE statement defines the database we will be working with.

2. The T-SQL that we need for our full backup follows. Enter the code (keeping the name of where the 
backup is located via the TO DISK option and the WITH NAME option all on one line). Notice that there 
are no options defined for several of the options as we are taking the default.

BACKUP DATABASE ApressFinancial
TO DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak'
WITH NAME = 'ApressFinancial-Full Database Backup',
SKIP,
NOUNLOAD,
STATS = 10

Dewson_5882C07.fm  Page 199  Monday, January 9, 2006  3:27 PM



200 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

3. Execute the code and you will see results similar to those that follow. The main points to notice are the 
stats messages that come out in approximations of 10 percentage points. It then lists the number of 
data pages backed up and the number of log pages backed up. The on file part of the message 
details which file within the media set the backup now is. In this case, this is the third backup. You will 
possibly see on file 2 unless, like I did, a second backup has been taken in the meantime. The final 
message is the one of greatest interest, as it shows that the backup was successful and the amount of 
time taken.

12 percent processed.
21 percent processed.
30 percent processed.
43 percent processed.
51 percent processed.
60 percent processed.
73 percent processed.
82 percent processed.
90 percent processed.
Processed 184 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 3.
100 percent processed.
Processed 1 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 3.
BACKUP DATABASE successfully processed 185 pages
in 1.113 seconds (1.361 MB/sec).

4. Although useful to see, not many of the options were used. However, Figures 7-5 and 7-6 show the next 
backup of the database to be taken, which is a differential backup. We will not allow this backup to 
expire until 60 days have elapsed, as shown in Figure 7-5. We will also be adding this differential backup 
to the full backup.

Dewson_5882C07.fm  Page 200  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 201

Figure 7-5. Backing up a database (differential)

5. Figure 7-6 shows that we are appending to the same media set as the full backup and that we have 
included some reliability checking. Make sure your version matches the figure.

Dewson_5882C07.fm  Page 201  Monday, January 9, 2006  3:27 PM



202 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-6. Backing up a database (differential) options

6. The code that would be the equivalent of these two figures has been split in two. The first part is the 
differential backup. Again, ensure that the TO DISK, DESCRIPTION, and NAME options are all on the 
same line of the Query Editor window pane.

BACKUP DATABASE ApressFinancial
TO DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak'
WITH  DIFFERENTIAL ,
DESCRIPTION = 'This is a differential backup',
RETAINDAYS = 60,
NAME = 'ApressFinancial-Differential Database Backup',
STATS = 10,
CHECKSUM,
CONTINUE_AFTER_ERROR
GO

Dewson_5882C07.fm  Page 202  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 203

7. The second part is where the reliability checking takes place. This is more complex T-SQL than we have 
covered, so for the moment just trust that it works and that it does what it is supposed to. You will 
encounter this code once more when looking at more complex T-SQL later in the book in Chapter 11. 
However, the basis of the code is that a check is made in the msdb database to retrieve the last backup 
set that was taken, and we do a “restore” of the database as verification only, without actually restoring 
any data, and that the restore can complete successfully. If it can’t verify the backup set or the restore 
is okay, then you will get an error message.

DECLARE @BackupSet AS INT
SELECT @BackupSet = position
  FROM msdb..backupset
 WHERE database_name='ApressFinancial'
   AND backup_set_id=
                        (SELECT MAX(backup_set_id)
                        FROM msdb..backupset
                       WHERE database_name='ApressFinancial' )
IF @BackupSet IS NULL
BEGIN
    RAISERROR('Verify failed. Backup information for database
''ApressFinancial'' not found.', 16, 1)
END
RESTORE VERIFYONLY
FROM DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak'
WITH FILE = @BackupSet,
NOUNLOAD,
NOREWIND

8. When the code is executed, you will see something like the results that follow. Again, they contain 
details of the amount of data backed up as well as which file number on the media set the backup is.

19 percent processed.
39 percent processed.
58 percent processed.
78 percent processed.
97 percent processed.
Processed 40 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 4.
100 percent processed.
Processed 1 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 4.
BACKUP DATABASE WITH DIFFERENTIAL successfully processed 41 pages
in 0.433 seconds (0.774 MB/sec).
The backup set on file 4 is valid.

Dewson_5882C07.fm  Page 203  Monday, January 9, 2006  3:27 PM



204 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Transaction Log Backup Using T-SQL
You can back up not only the data, but also, and just as importantly, the transaction log for the 
database. Just to recap, the transaction log is a file used by databases to log every transaction, 
including DML actions such as rebuilding indexes. In other words, every data modification 
that has taken place on any table within the database will be recorded within the transaction 
log. The transaction log is then used in many different scenarios within a database solution, 
but where it is most useful, from a database recovery point of view, is when a database crashes. 
In this case, the transaction log can be used to move forward from the last data backup, using 
the transactions listed within the transaction log.

If a database crash occurs, then the full and differential backups will only take you to the 
last valid backup. For data entered since that point, the only way to restore the information is 
to then “replay” the transactions that were committed and recorded as committed in the transac-
tion log. Any actions that were in progress at the time of the failure that were within a transaction 
that was still in progress would have to be rerun from the start.

So, to clarify, if you were in the process of deleting data within a table and the power was 
switched off, you would use your full and differential backups to restore the data. You would 
then use the information within the transaction log to replay all successful transactions, but 
because the delete had not been successful, the table would have all the data still within it.

Backing up the transaction log is a good strategy to employ when a large number of updates 
occur to the data through the day. A transaction log backup should take place at set times 
throughout the day depending on how large the transaction log has grown and how crucial it 
was to get your system back up and running after any unexpected outage. When a transaction 
log is backed up, the transaction log itself is logically shrunk in size so that the transaction log 
is kept small. It also gives you point-in-time recoverability; this means that you can quickly 
restore to any time in the past where the transaction was backed up.

Backing up a transaction log is similar to backing up a database. The full syntax is as follows 
and really only differs from a database backup by using the LOG keyword instead of DATABASE 
and the options NO_TRUNCATE and NORECOVERY/STANDBY:

BACKUP LOG { database_name | @database_name_var }
{
     TO <backup_device> [ ,...n ]
[ [ MIRROR TO <backup_device> [ ,...n ] ] [ ...next-mirror ] ]
     [ WITH
     [ BLOCKSIZE = { blocksize | @blocksize_variable } ]
     [ [ , ] { CHECKSUM | NO_CHECKSUM } ]
     [ [ , ] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR } ]
     [ [ , ] DESCRIPTION = { 'text' | @text_variable } ]
     [ [ ,] EXPIREDATE = { date | @date_var }
     | RETAINDAYS = { days | @days_var } ]
     [ [ , ] PASSWORD = { password | @password_variable } ]
     [ [ , ] { FORMAT | NOFORMAT } ]
     [ [ , ] { INIT | NOINIT } ]
     [ [ , ] { NOSKIP | SKIP } ]
     [ [ , ] MEDIADESCRIPTION = { 'text' | @text_variable } ]
     [ [ , ] MEDIANAME = { media_name | @media_name_variable } ]
     [ [ , ] MEDIAPASSWORD = { mediapassword | @mediapassword_variable } ]

Dewson_5882C07.fm  Page 204  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 205

     [ [ , ] NAME = { backup_set_name | @backup_set_name_var } ]
     [ [ , ] NO_TRUNCATE ]
     [ [ , ] { NORECOVERY | STANDBY = undo_file_name } ]
     [ [ , ] { NOREWIND | REWIND } ]
     [ [ , ] { NOUNLOAD | UNLOAD } ]
     [ [ , ] STATS [ = percentage ] ]
     [ [ , ] COPY_ONLY ]
     ]
}

To detail the options not covered when looking at backing up the database earlier, let’s 
look at them now:

• LOG: Determines that we wish to produce a backup of the transaction log rather than a 
backup of a database or files/file groups.

• NO_TRUNCATE: Will not truncate the log after the backup. If the database is corrupt, using 
this option will allow the backup to be attempted at least. Without this option, you will 
get an error message.

• NORECOVERY | STANDBY: Means that after the backup, the database will be in a state whereby 
it looks to anyone trying to connect as if it is still being restored.

■Note  The LOG options NO_TRUNCATE and NORECOVER | STANDBY are used when the database is corrupt 
and you wish to back up the transaction log prior to performing a restore.

Try It Out: Backing Up the Transaction Log Using T-SQL

1. In a Query Editor pane, enter the following T-SQL code. This will back up the transaction log to the same 
media set as the full and differential backups. While developing and learning SQL Server, this is a valid 
scenario, and in some production setups you may want to back up to the same place as your daily full 
backup. However, the downside is that if you take several transaction log backups between each differ-
ential backup and full backup, then SQL Server will have to “skip” these if they were not required as 
part of the restore operation. On a tape drive, this could cause significant overhead. In this scenario, you 
would be better to save the transaction log files to a different media set.

BACKUP LOG ApressFinancial
TO DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak'
WITH NAME = 'ApressFinancial-Transaction Log Backup',
SKIP,
NOUNLOAD,
STATS = 10

2. This code replicates the Truncate the Transaction Log option, as shown in Figure 7-7. Execute the code.

Dewson_5882C07.fm  Page 205  Monday, January 9, 2006  3:27 PM



206 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-7. Backing up a transaction log

3. After execution, you should see output similar to the following where the transaction log has been 
successfully backed up and placed on file 5.

10 percent processed.
20 percent processed.
30 percent processed.
40 percent processed.
50 percent processed.
60 percent processed.
70 percent processed.
80 percent processed.
90 percent processed.
100 percent processed.
Processed 159 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 5.
BACKUP LOG successfully processed 159 pages
in 0.468 seconds (2.772 MB/sec).

Dewson_5882C07.fm  Page 206  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 207

Restoring a Database
Now that the data has been backed up, what if you needed to complete a restore? As has been 
mentioned, there are two scenarios where a restore could be required: restoring from a backup 
or restoring when there is a media failure. The second type of restore is not one you wish to 
perform, but could be set up by creating a long-running transaction, and then simply switching 
your computer off—not one of life’s greatest ideas to do deliberately! This book therefore will 
not be demonstrating this option, and it is not really for a beginner to attempt. However, I will 
discuss the concept within this section of the chapter. The first option, a simple restore, is easy 
to replicate and perform, and this will be the option we will be looking at.

You can choose between two means to restore the database: SQL Server Management 
Studio and T-SQL. This is a scenario that you hope you will never perform in a production envi-
ronment, but it will happen. If you just need a restore within the development environment to 
remove test data and get back to a stable predefined set of data to complete the testing, then 
this next section should help you. It might also be that you do a weekly refresh of your user test 
region. Before completing the restore, let’s first modify the ApressFinancial database to prove 
that the restore works, as there is no data within the database yet to prove the restore has worked 
by that method. Keep in mind, however, that a restore will restore not only the data structures, 
but also the data, the permissions, and other areas of the database not yet covered in the book, 
for example, views, stored procedures, and so on.

Restoring Using SQL Server Management Studio
The restore demonstrated in the following example will be a complete database restore of our 
ApressFinancial database. In other words, it will restore all the full and differential backups taken.

Try It Out: Restoring a Database

1. Add a new column to the ShareDetails.Shares table using the following code in a Query Editor pane:

USE ApressFinancial
GO
ALTER TABLE ShareDetails.Shares
ADD DummyColumn varchar(30)

2. We can now restore the database, which will remove the changes we have just completed, using the 
backup we finished earlier. From the Object Explorer window, select the ApressFinancial database, 
right-click, and select Tasks ➤ Restore ➤ Database. This will bring up the dialog box shown in Figure 
7-8. It is possible to change the database you wish to restore by changing the name in the To Database 
combo box or by simply overwriting the name that is there. The second option, To a Point in Time, is 
used if you are restoring the database as well as rolling forward changes recorded in the transaction log. 
This situation is similar to the scenario mentioned earlier about a power failure or hard drive failure. As 
we are not doing this here, leave this option as it is. When taking a backup, details are stored in msdb, 
but it is possible to restore a database from a backup that is not in msdb. For example, if you are rebuilding a 
server due to corruption, and msdb was one of the databases corrupted, it is necessary to have the 
option of finding a backup file and restoring from that instead. Or perhaps the last full backup taken is 

Dewson_5882C07.fm  Page 207  Monday, January 9, 2006  3:27 PM



208 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

not the backup you wish to restore. This might occur in a development scenario where you wish to 
restore to a backup before major changes were done that you wish to remove. There would be no trans-
action log involved or required to be involved, therefore restoring to a point in time would not be a valid 
scenario. This is where the From Device option could be used. By selecting this option and clicking the 
ellipse to the right, you can navigate to any old backup files. Finally, you can click which of the items in 
the backup you wish to restore. The default is all files to be selected, as you can see in Figure 7-8. The 
settings shown will give us a backup that is as fresh as possible (the Most Recent Possible value for the 
To a Point in Time setting).

Figure 7-8. Restoring a database—General tab

3. Moving to the Options page, shown in Figure 7-9, there are a number of points to consider

• Overwrite the Existing Database: This is the most likely option to be enabled for a normal restore. 
You would disable it if you wished to create a restore on the same server but where the restore 
would alter the name of the database.

• Preserve the Replication Settings: A more advanced option for when a database is sending changes 
to another database. For the time being, you will be leaving this option disabled.

• Prompt Before Restoring Each Backup: If you wish a prompt message before each restore file is acti-
vated, then select this. Ideal if you need to swap media over.

Dewson_5882C07.fm  Page 208  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 209

• Restrict Access to the Restored Database: After a restore, you may wish to check out the database 
to ensure the restore is what you wish, or in a production environment to run further checks on the 
database integrity.

• Restore the Database Files As: If you wish to move or rename the MDF and LDF files, then this grid 
will allow you to do this.

• Leave the Database Ready to Use: This option will define whether users can immediately connect 
and work with the data after the restore. If there was a transaction in progress, such as deleting rows 
within a table, then connection could occur once the deletion had been rolled back and the table is 
back in its “original” state.

• Leave the Database Non-operational: With this option you are indicating that the database has been 
partially restored and you are unsure if you need to perform additional actions. If there was a trans-
action in progress, like deleting a table, then whatever had been deleted will still be deleted and has 
not rolled back.

• Leave the Database in Read-only Mode: A combination of the first two options. If there was a trans-
action in progress, such as deleting rows in a table, then connection could occur once the deletion 
had been rolled back. However, the changes are also kept in a separate file so that any of these 
actions that have been rolled back can be reapplied. This might happen if there are several actions 
within a transaction and some can be reapplied.

Figure 7-9. Restoring a database—Options tab

Dewson_5882C07.fm  Page 209  Monday, January 9, 2006  3:27 PM



210 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

4. Once you have the option settings you require, a quick click of OK will perform the restore, and you 
should see the message in Figure 7-10. If you then move back to the database after clicking OK, you 
will see that the column we just added has been “removed.”

Figure 7-10. Restore successful

  

Restoring Using T-SQL
Using the wizard is a pretty fast way to restore a database, and when under pressure may even 
be the best way forward. However, it is not the most flexible way of performing a restore, as 
some options that are available via T-SQL are not in this wizard. Some of these options were 
covered when we performed a backup, such as performing checksums when transferring data 
from the media device back to the database or unloading media at the end of the restore. If 
there is also a password on the backup medium, this option is not available within the wizard, 
but with the T-SQL you can use passwords. So being comfortable building a restore via T-SQL 
is important in becoming a more proficient and professional developer or administrator.

The syntax for restoring a database is similar to that for database backups. After looking at 
the syntax, we will then go through the options you will not be familiar with.

RESTORE DATABASE { database_name | @database_name_var }
[ FROM <backup_device> [ ,...n ] ]
[ WITH
   [ { CHECKSUM | NO_CHECKSUM } ]
   [ [ , ] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR } ]
   [ [ , ] FILE = { file_number | @file_number } ]
   [ [ , ] KEEP_REPLICATION ]
   [ [ , ] MEDIANAME = { media_name | @media_name_variable } ]
   [ [ , ] MEDIAPASSWORD = { mediapassword |
                    @mediapassword_variable } ]
   [ [ , ] MOVE 'logical_file_name' TO 'operating_system_file_name' ]
                [ ,...n ]
   [ [ , ] PASSWORD = { password | @password_variable } ]
   [ [ , ] { RECOVERY | NORECOVERY | STANDBY =
          {standby_file_name | @standby_file_name_var }
   } ]
   [ [ , ] REPLACE ]
   [ [ , ] RESTART ]
   [ [ , ] RESTRICTED_USER ]
   [ [ , ] { REWIND | NOREWIND } ]

Dewson_5882C07.fm  Page 210  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 211

   [ [ , ] STATS [ = percentage ] ]
   [ [ , ] { STOPAT = { date_time | @date_time_var }
    |  STOPATMARK = { 'mark_name' | 'lsn:lsn_number' }
              [ AFTER datetime ]
    |  STOPBEFOREMARK = { 'mark_name' | 'lsn:lsn_number' }
             [ AFTER datetime ]
   } ]
   [ [ , ] { UNLOAD | NOUNLOAD } ]
]

The options we have not yet covered are as follows:

• KEEP_REPLICATION: When working with replication, consider using this option.

• MOVE: When completing a restore, the MDF and LDF files that are being restored have to be 
placed where they were backed up from. However, by using this option, you can change 
that location.

• RECOVERY | NORECOVERY | STANDBY: These three options are the same, and in the same order, 
as their counterparts (in parentheses) in the wizard:

• RECOVERY (Leave the Database Ready to Use): This option will define that after the 
restore is finished, users can immediately connect and work with the data. If there was 
a transaction in progress, such as updating rows in a table, then not until the updates 
have been rolled back and therefore the table is back in its “original” state will connec-
tions to the database be allowed.

• NORECOVERY (Leave the Database Nonoperational): With this option, you are indicating 
that the database has been partially restored, and you are unsure whether you need to 
perform additional actions. If there was a transaction in progress, like inserting rows 
in a table, then the insertions would not be rolled back. This allows addition restores 
to get to a specific point in time.

• STANDBY (Leave the Database in Read-only Mode): A combination of the first two 
options. If there was a transaction in progress, like deleting rows in a table, then the 
deletion is rolled back. However, the changes are also in a separate file, so that any of 
these actions that have been rolled back can be reapplied. This might happen if several 
actions occurred within a transaction and some can be reapplied.

• REPLACE: This works the same as the wizard option Overwrite The Existing Database.

• RESTART: If a restore is stopped partway through, then using this option will restart the 
restore at the point it was stopped.

• RESTRICTED_USER: Use this with the RECOVERY option to only allow users in specific restricted 
groups to access the database. This would be used to allow further checking by a data-
base owner, or by the dbowner, dbcreator, or sysadmin roles.

• STOPAT | STOPATMARK | STOPBEFOREMARK: Used to specify a specific date and time at which to 
stop the restore.

Dewson_5882C07.fm  Page 211  Monday, January 9, 2006  3:27 PM



212 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

The syntax for restoring the transaction log is exactly the same, with the only difference 
being the definition: you are completing a LOG rather than a DATABASE restore.

RESTORE LOG { database_name | @database_name_var }
     <file_or_filegroup_or_pages> [ ,...f ]
[ FROM <backup_device> [ ,...n ] ]
[ WITH
   [ { CHECKSUM | NO_CHECKSUM } ]
   [ [ , ] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR } ]
   [ [ , ] FILE = { file_number | @file_number } ]
   [ [ , ] KEEP_REPLICATION ]
   [ [ , ] MEDIANAME = { media_name | @media_name_variable } ]
   [ [ , ] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }      ]
   [ [ , ] MOVE 'logical_file_name' TO 'operating_system_file_name' ]
                [ ,...n ]
   [ [ , ] PASSWORD = { password | @password_variable } ]
   [ [ , ] { RECOVERY | NORECOVERY | STANDBY =
          {standby_file_name | @standby_file_name_var } }
   ]
   [ [ , ] REPLACE ]
   [ [ , ] RESTART ]
   [ [ , ] RESTRICTED_USER ]
   [ [ , ] { REWIND | NOREWIND } ]
   [ [ , ] STATS [=percentage ] ]
   [ [ , ] { STOPAT = { date_time | @date_time_var }
    |  STOPATMARK = { 'mark_name' | 'lsn:lsn_number' }
              [ AFTER datetime ]
    |  STOPBEFOREMARK = { 'mark_name' | 'lsn:lsn_number' }
             [ AFTER datetime ]
   } ]
   [ [ , ] { UNLOAD | NOUNLOAD } ]
]

Try It Out: Restoring Using T-SQL

1. Open up an empty Query Editor pane and enter the following code. This will add the column that we 
want to see “removed” after a restore.

USE ApressFinancial
GO
ALTER TABLE ShareDetails.Shares
ADD DummyColumn varchar(30)

2. Now replace this code with the restore code that follows. Don’t execute any of the code just yet, as this 
piece of code is the first part only. Recall that when performing the backups, FILE 3 was the FULL backup 
taken. This is what the first restore will do.

Dewson_5882C07.fm  Page 212  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 213

■Note  Ensure that the FROM DISK option is all on one line. Also recall that FILE = 3 may be FILE = 2 
depending on the backups taken, and this may be the case of different file numbers as you progress.

USE Master
GO
RESTORE DATABASE [ApressFinancial]
FROM  DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak' WITH  FILE = 3,
NORECOVERY,  NOUNLOAD,  REPLACE,  STATS = 10
GO

3. Continue the code with the second part of the restore, which will be the differential backup restore. 
This uses FILE 4 from the backup set.

RESTORE DATABASE [ApressFinancial]
FROM  DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak' WITH  FILE = 4,
NORECOVERY,  NOUNLOAD,  REPLACE,  STATS = 10
GO

4. The final part of the restore operation is to restore the transaction log file. Once all this code is in, you 
can run all of the code.

RESTORE LOG [ApressFinancial]
FROM  DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial.bak' WITH  FILE = 5,
NOUNLOAD,  STATS = 10

5. Once the code has fully executed, the results you should see are similar to those listed here:

12 percent processed.
21 percent processed.
30 percent processed.
43 percent processed.
51 percent processed.
60 percent processed.
73 percent processed.
82 percent processed.
90 percent processed.
100 percent processed.
Processed 184 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 3.
Processed 1 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 3.
RESTORE DATABASE successfully processed 185 pages
in 0.310 seconds (4.888 MB/sec).

Dewson_5882C07.fm  Page 213  Monday, January 9, 2006  3:27 PM



214 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

19 percent processed.
39 percent processed.
58 percent processed.
78 percent processed.
97 percent processed.
100 percent processed.
Processed 40 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 4.
Processed 1 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 4.
RESTORE DATABASE successfully processed 41 pages
in 0.088 seconds (3.810 MB/sec).
10 percent processed.
22 percent processed.
31 percent processed.
41 percent processed.
51 percent processed.
62 percent processed.
71 percent processed.
81 percent processed.
90 percent processed.
100 percent processed.
Processed 0 pages for database 'ApressFinancial',
file 'ApressFinancial' on file 5.
Processed 159 pages for database 'ApressFinancial',
file 'ApressFinancial_log' on file 5.
RESTORE LOG successfully processed 159 pages
in 0.361 seconds (3.593 MB/sec).

We can now move back to the ShareDetails.Shares table and check that the column added has now been 
removed. You may have to perform a refresh within the Object Explorer first to see the changes.

Restoring a database in production will in most instances take place under pressure, as the database will have 
become corrupt, or been inadvertently damaged. The production system is obviously down and not working, and we 
have irate users wanting to know how long before the system will be up. This is hopefully the worst-case scenario, 
but it is that sort of level of pressure that we will be working under when we have to restore the database. Therefore, 
having the correct backup strategy for your organization based on full, differential, and transaction log backups is 
crucial. Full database backups for a system that requires high availability so that the restore takes the least amount 
of time may be what you need.

Detaching and Attaching a Database
Now that we can back up and restore a database, we have available other methods of dealing 
with the database. There may be a time in the life of our SQL Server database when we have to 
move it from one server to another, or in fact just from one hard drive to another. For example, 

Dewson_5882C07.fm  Page 214  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 215

we currently have ApressFinancial on our C drive, and this is getting full, so we would like to 
move our database to another hard drive. Or perhaps we are moving from an old slower server 
to a new faster server or a server on a better network. By detaching and reattaching the data-
base, we can do this simply and easily.

I would like to make a couple of points here; they may seem straightforward and really 
obvious, but better to mention them than cause problems at a later stage. First of all, no updates 
can be occurring, no jobs can be running, and no users can be attached. Secondly, just in case, 
take a full backup before moving the database. This may add time to the process, but it is better 
to be safe than sorry. Ensure that where you are moving the database to has enough disk space, 
not only for the move, but also for expected future growth; otherwise you will be moving your 
database twice. You should not attach your database to a server without immediately 
completing a backup on the new server afterwards; this way, you can ensure that the databases 
are protected in their new state.

Detaching a database physically removes the details from the SQL Server master and msdb 
databases, but does not remove the files from the disk that it resides on. However, detaching 
the database from SQL Server will then allow you to safely move, copy, or delete the files that 
make up the database, if you so desired. This is the only way that a database should be physically 
removed from a server for moving it.

Detaching and Attaching Using SQL Server Management Studio
We’ll start by using SSMS to detach and attach a database.

Try It Out: Detaching a Database

1. First of all, it is necessary to ensure that nobody is logged in to the database, and even if there is, that 
the user is not doing any updates. For the moment, I want you to ignore this and to have a connection. 
Ensure that SQL Server Management Studio is running and that there is a Query Editor pane with a 
connection to the ApressFinancial database. Find the ApressFinancial database in the Object 
Explorer and ensure that is selected. Right-click and select Tasks ➤ Detach.

2. This then brings up the Detach Database dialog box for the ApressFinancial database, as shown in 
Figure 7-11. We haven’t removed all the users connected, so you can do this by selecting the Drop 
Connections check box. The second option, Update Statistics, means that the SQL Server statistics for 
indexes, etc. will be updated before the database is detached. The third option, Keep Full Text Catalogs, is 
when you have set up specialized indexing on text data columns known as Full Text. The information 
is stored separately from the other data files in SQL Server, so selecting this option will ensure that 
when the database is detached that they are not lost and therefore would need re-creating. The status 
is Not Ready due to the message indicating that there is still “1 Active connection(s).”

3. Click the message and the dialog box in Figure 7-12 is displayed. This is a powerful tool within SQL 
Server that shows all the processes that there are with connections to your server. This list has already 
been filtered by SQL Server because of the message we saw (using the Filter option on the top line) for 
the ApressFinancial database. Only one row is listed, which is the one connection in the Query 
Editor pane we opened a moment ago.

Dewson_5882C07.fm  Page 215  Monday, January 9, 2006  3:27 PM



216 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-11. Detaching a database

Figure 7-12. Detaching a database Activity Monitor

4. It is possible to see more information about what the connection is doing by scrolling right and left. 
To kill the process, right-click the item and select Kill Process. If we were running T-SQL code at the 
time, it would stop that process immediately. Therefore, if the process is running any data modifica-
tions, you have to be sure that this is what you want to do.

■Note  If you are running updates that are within a transaction, when you issue a kill, SQL Server will roll 
back the updates. Therefore, it may still take a long time to remove the connection. Kill is a powerful command 
with large ramifications in this scenario, so do use it as a last resort.

Dewson_5882C07.fm  Page 216  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 217

5. Once the process has been killed, you can close the Activity Monitor, which takes you back to the 
Detach Database dialog box. If the dialog box hasn’t automatically updated, then click the Refresh 
button, which should then allow you to see no error messages. You can then click OK to finish detaching 
the database.

That’s it. The database is detached, is no longer part of SQL Server, and is ready to be removed or even deleted. If 
you check the Object Explorer in SQL Server Management Studio, you will see that the database is no longer listed.

Detaching a database, although seemingly a simple and innocuous operation, has the potential to be fraught with 
problems and worries. As the example demonstrated, ensuring that there are no users attached to the database at 
the time of detaching is not as easy as it first may seem. Setting up the database options to eliminate connections 
or to stop updates is only possible once everyone has been removed from connections to the database. There is no 
easy way of removing connections safely, as you never know what an application with a connection to the database 
is doing. You could remove a connection that is in the middle of processing. If you are going down the route of 
detaching the server, though, there is an obvious reason to do this, such as moving servers, removing the database, 
and therefore you would have a plan of action to do this. Users would have been notified days or weeks in advance, 
and the database owner would have coordinated a date and time when nobody should be connected. Also, the 
database owner would be around if there were any problems, and he or she could make the decision to kill any con-
nections left hanging around.

Detaching the database is a process that removes entries within the SQL Server system tables to inform SQL Server 
that this database is no longer within this instance of SQL Server and therefore cannot be used. It is as simple as 
that. If you are removing the database completely, then you will need to delete the files from the directory they were 
created in.

It is possible to detach the database using a system stored procedure, although this does not let you kill the 
connections. This has to be done via a T-SQL command.

We need to reattach the database before being able to demonstrate this, so let’s do that now. This would occur on 
our new SQL Server instances after physically moving the files.

Try It Out: Attaching a Database

1. Within Object Explorer, highlight the Databases node, right-click, and select Attach.

2. This brings up the Attach Databases dialog box, shown in Figure 7-13. To add a database, click Add.

3. This brings up the Locate Database Files Explorer, shown in Figure 7-14. You can use this like other 
Windows Explorers to locate where your database MDF files are. Once you find the database you want 
to reattach, highlight it and then click OK.

Dewson_5882C07.fm  Page 217  Monday, January 9, 2006  3:27 PM



218 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-13. Options for attaching a database

Figure 7-14. Locating the database to attach

Dewson_5882C07.fm  Page 218  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 219

4. This will bring you back to the Attach Databases dialog box with the details filled in, as you see in Figure 7-15. 
Take a moment to look over the information in this dialog box. Any problems will be detailed in the 
Messages column. It is possible to attach more than one database, but it is best to do databases one 
at a time.

Figure 7-15. Database located, preparing to attach

5. This then leaves us to click OK to reattach the database. Moving to Object Explorer, you should see your 
database at the bottom of the list, where it will remain until the explorer is refreshed.

Attaching a database involves informing SQL Server of the name and the location of the data files and the trans-
action log files. This data can be placed anywhere on a computer, but it is recommended you place the data in a 
sensible location. For example, the folders tempfiles or tobedeleted sport extreme names, but do demonstrate the 
unsuitability that should be avoided.

When moving the data from one physical server to another, the data does not need to be in a subdirectory of 
Microsoft SQL Server installation found under Program Files. In fact, in production environments, this is the last 
place you would locate the data. You would generally want to keep these files away from any program files or the 
pagefile.sys file, because SQL Server’s performance can be maximized when these files are separated. However, for 
the purpose of this book, placing the data in the DATA directory under the instance of SQL Server is perfectly valid 
and acceptable.

Once the two data files have been copied, it is a simple process of using a couple of mouse clicks to attach these 
files into the instance. What happens in the background, very basically, is that SQL Server takes the name of the 
database and the location of the data files and places them into internal tables that are used to store information 
about databases. It then scans the data files to retrieve information, such as the names of the tables, to populate the 
system tables where necessary.

Dewson_5882C07.fm  Page 219  Monday, January 9, 2006  3:27 PM



220 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

The main point to keep in mind is the database owner (see Chapters 1, 2, and 5 ). It is just as important to use a 
valid database owner and not the sa login when attaching a database as it is when creating a database. The data-
base, when it is attached, will be given the owner of the login attaching the database.

Detaching and Attaching Using T-SQL
Detaching and attaching a database is an ideal way to move a database from one server to 
another as part of an overall solution. It’s clean and simple and ideal if you are rolling out a 
“base” database to many client sites, but it’s not the only way of doing it. Detaching a database 
is simply removing it logically from a server, but keeping the physical files. This then allows 
these files to be moved to anywhere, from another hard drive to a DVD, for further copying to 
a client computer if need be, and then reattaching the database at the other end.

Detaching a database removes entries from the master and msdb database, and therefore 
the backup history will also be lost. The physical backup files will still be there, so if you do need 
to complete a restore after a detach and reattach, then you can use the From Device option in 
the restore wizard to define the full location in the RESTORE T-SQL command to get to those files.

■Note  Detaching a database can only be done by a member of the db_owner role.

sp_detach_db [ @dbname= ] 'dbname'
    [ , [ @skipchecks= ] 'skipchecks' ]
    [ , [ @KeepFulltextIndexFile= ] 'KeepFulltextIndexFile' ]

The options are straightforward, with each being optional. If they are not supplied, then 
the default value is mentioned within the following bulleted list:

• dbname: The name of the database to detach. If this option is missed, then no database 
will be detached.

• skipchecks: NULL (the default) will update statistics. true will skip the updating of 
statistics.

• KeepFulltextIndexFile: true (the default) will keep all the full text index files that have 
been generated with this database.

■Note  Full text index files are special files that hold information about data set up for full-text searching, 
which is an area outside of the scope of this book. But basically, full-text searching gives the ability to search 
on all text in a column or multiple columns of data, and is also functionality used by search engines.

Dewson_5882C07.fm  Page 220  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 221

You might be expecting that to reattach the database you would use a stored procedure 
called sp_attach_db. This command does exist, but it will be made obsolete in future versions 
of SQL Server. The correct syntax is a “specialized” CREATE DATABASE command:

CREATE DATABASE database_name
    ON <filespec> [ ,...n ]
    FOR { ATTACH [ WITH <service_broker_option> ]
        | ATTACH_REBUILD_LOG }

The syntax is easy to follow. The first option, ON, will specify the name of the primary data-
base file to attach, which will have the mdf suffix. The second option, <service_broker_option>, 
we will be ignoring, as this is for a more advanced database.

The third option, ATTACH_REBUILD_LOG, is for situations where you wish to attach a database 
but at least one transaction log file is missing. Specifying this option will rebuild the transaction 
log. No database can be attached when SQL Server believes that there are missing files. If you 
do use this option, then you will lose the full, differential, and transaction log backup chains 
that exist on SQL Server, so complete a full backup after attaching to reestablish the backup 
baseline. This option will tend to be used when you deliberately wish to lose the transaction log 
file, such as a read-only version of the database for reporting purposes.

■Note  If you receive any error messages, then reattach all files associated with the database, not just the 
main primary file.

We can now detach and reattach ApressFinancial.

Try It Out: Detaching and Reattaching a Database

1. The first test we will do is to try and detach ApressFinancial while there are still active connections 
so that we can see what happens. Open up a Query Editor pane and point it to ApressFinancial 
database. Then open a second pane and enter the sp_detach_db code as follows. Once you have 
done so, execute the code. Take note that we are explicitly moving this connection to a “safe” system 
database, away from the database we wish to detach.

USE master
GO
sp_detach_db 'ApressFinancial'

2. The results you will see will be similar to the following:

Msg 3703, Level 16, State 2, Line 1
Cannot detach the database 'ApressFinancial' because it is currently in use

Dewson_5882C07.fm  Page 221  Monday, January 9, 2006  3:27 PM



222 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

3. Close the Query Editor pane opened earlier and any other Query Editor panes that have connections 
pointing to ApressFinancial and then try rerunning the code again. This time you should see the 
following message:

Command(s) completed successfully.

4. Now that the database has been detached, we need to reattach it, simulating a move to a new server. 
Enter in the same Query Editor pane the following code. Replace the FILENAME parameters with the 
path to where your database is located and ensure that the path is all on one line.

CREATE DATABASE ApressFinancial
ON (FILENAME='C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\
Data\ApressFinancial.MDF')
FOR ATTACH

5. After executing the code, you should see the following message:

Command(s) completed successfully.

You have now successfully detached and reattached the database.

Producing SQL Script for the Database
The next section demonstrates a different method of backing up the structure of the database 
and the tables and indexes contained within it by using T-SQL commands to complete this.

■Note  It is only the structure that will be generated as T-SQL commands; no data will be backed up—only 
the schema that is needed to re-create the actual database can be scripted here.

The usefulness of this procedure is limited and is really only helpful for keeping structure 
backups or producing an empty database, but it is useful to know rather than going through 
the process of copying the database with all the data when the data is not required.

This method tends to be used to keep the structure within a source repository like Visual 
SourceSafe. It is also very useful for setting up empty databases when moving from development to 
test, or into production.

Dewson_5882C07.fm  Page 222  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 223

Try It Out: Producing the Database SQL

1. Ensure that SQL Server Management Studio is running and that you have expanded the server so that 
you can see the ApressFinancial database. Right-click, select Tasks ➤ SQL Script. This brings up 
the wizard shown in Figure 7-16 that allows the database to be scripted. Every attached database will 
be listed. Select ApressFinancial and click Next.

■Note  You can select the check box at the bottom of the screen, which will script all the objects if you wish. 
This will enable the Finish button so that you can go straight to the end.

Figure 7-16. Scripting—selecting the database

2. On the second screen are a number of options about the scripting as well as what objects you wish to 
script. Take a moment to look it over. Most of these options should be clear to you from the setup options 
we have covered in setting up the database so far. However, at the end of the example there will be a 
bulleted list clarifying the options for you. Figure 7-17 shows the default settings.

3. In Figure 7-18, a number of options have been altered so that much of the database is scripted, even if 
there is an error producing the script file. Errors could be as varied as the login not having permissions 
to see all the objects for example. Once you have the options you wish to script, then click Next.

Dewson_5882C07.fm  Page 223  Monday, January 9, 2006  3:27 PM



224 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-17. Options for the script

■Note  The Script Statistics option will significantly increase the time taken to generate the script. Leave 
this option off in most cases; it is really only useful when moving from a user test environment that is very 
similar to how the system will work in production.

Figure 7-18. Options selected for scripting

Dewson_5882C07.fm  Page 224  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 225

4. You are now presented with the screen shown in Figure 7-19 that will allow you specify how the script 
should be saved. There are three possibilities. Choose to script to a new Query Editor and then select 
Next.

Figure 7-19. Where to store the script

5. This will bring you to a summary screen, shown in Figure 7-20, where you can expand what has been 
selected. You may find that this screen is not of much use, as there are so few screens within this wizard. 
However, you can use it for categorizing what objects are to be scripted. Take a moment to investigate 
this screen.

Figure 7-20. Script summary

Dewson_5882C07.fm  Page 225  Monday, January 9, 2006  3:27 PM



226 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

6. Click Finish. The wizard will start to generate the script. At the end you will see a summary of how the script 
production went. Any errors will be within the Message column on the right, as shown in Figure 7-21.

Figure 7-21. Generating the script

CREATE DATABASE [ApressFinancial] ON  PRIMARY
( NAME = N'ApressFinancial', FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\
ApressFinancial.MDF' , SIZE = 2048KB , MAXSIZE = UNLIMITED,
FILEGROWTH = 1024KB )

 LOG ON
( NAME = N'ApressFinancial_log', FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\
DATA\ApressFinancial_log.ldf' , SIZE = 1536KB ,
MAXSIZE = 2048GB , FILEGROWTH = 10%)
 COLLATE SQL_Latin1_General_CP1_CI_AS
GO
EXEC dbo.sp_dbcmptlevel @dbname=N'ApressFinancial', @new_cmptlevel=90
GO
EXEC [ApressFinancial].[dbo].[sp_fulltext_database] @action = 'disable'
GO
ALTER DATABASE [ApressFinancial] SET ANSI_NULL_DEFAULT OFF
GO
ALTER DATABASE [ApressFinancial] SET ANSI_NULLS OFF
GO
ALTER DATABASE [ApressFinancial] SET ANSI_PADDING OFF
...
...

Dewson_5882C07.fm  Page 226  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 227

USE [ApressFinancial]
GO
/****** Object:  Table [ShareDetails].[SharePrices]
Script Date: 08/25/2005 18:47:47 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
IF NOT EXISTS (SELECT * FROM dbo.sysobjects
  WHERE id = OBJECT_ID(N'[ShareDetails].[SharePrices]')
AND OBJECTPROPERTY(id, N'IsUserTable') = 1)
BEGIN
CREATE TABLE [ShareDetails].[SharePrices](
     [SharePriceId] [bigint] IDENTITY(1,1) NOT NULL,
     [ShareId] [bigint] NOT NULL,
     [Price] [numeric](18, 5) NOT NULL,
     [PriceDate] [datetime] NOT NULL
) ON [PRIMARY]
END
GO
SET ANSI_NULLS OFF
GO
SET QUOTED_IDENTIFIER OFF
GO

IF NOT EXISTS (SELECT * FROM sys.indexes
WHERE object_id =
OBJECT_ID(N'[ShareDetails].[SharePrices]')
AND name = N'IX_SharePrices')
CREATE UNIQUE CLUSTERED INDEX [IX_SharePrices]
ON [ShareDetails].[SharePrices] (
    [ShareId] ASC,
    [PriceDate] DESC,
    [Price] ASC
) ON [PRIMARY]
GO
...
...
/****** Object:  Table [TransactionDetails].[Transactions]
Script Date: 08/25/2005 18:47:47 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
IF NOT EXISTS (SELECT * FROM dbo.sysobjects
  WHERE id = OBJECT_ID(N'[TransactionDetails].[Transactions]')
AND OBJECTPROPERTY(id, N'IsUserTable') = 1)

Dewson_5882C07.fm  Page 227  Monday, January 9, 2006  3:27 PM



228 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

BEGIN
CREATE TABLE [TransactionDetails].[Transactions](
    [TransactionId] [bigint] IDENTITY(1,1) NOT NULL,
    [CustomerId] [bigint] NOT NULL,
    [TransactionType] [int] NOT NULL,
    [DateEntered] [datetime] NOT NULL,
    [Amount] [numeric](18, 5) NOT NULL,
    [ReferenceDetails] [nvarchar](50)
COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
    [Notes] [text] COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
    [RelatedShareId] [bigint] NULL,
    [RelatedProductId] [bigint] NOT NULL
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]
END
GO
SET ANSI_NULLS OFF
GO
SET QUOTED_IDENTIFIER OFF
GO
IF NOT EXISTS (SELECT * FROM sys.indexes
  WHERE object_id = OBJECT_ID(N'[TransactionDetails].[Transactions]')
AND name = N'IX_Transactions_TType')
CREATE NONCLUSTERED INDEX
[IX_Transactions_TType] ON [TransactionDetails].[Transactions]
(
  [TransactionType] ASC
) ON [PRIMARY]
GO

The options that were available to you within the wizard are detailed here:

• Append to File: If you set this to true, then SQL Server will append the script to the file selected instead 
of overwriting it.

• Continue Scripting on Error: If there are any problems in producing the script, you can decide if you wish 
to continue scripting or not.

• Convert UDDTs to Base Types: As part of SQL Server, you can change the base data types, such as int, 
to your own named type, so you could name a “copy” of int as “myint”. This is a bit more advanced, but 
if you do this, then selecting true will convert “myint” back to “int”.

• Generate Script for Dependant Objects: A very useful option. If there are any dependencies on what you 
are wanting to script and you haven’t selected that object to script, then there will be problems 
rebuilding the object later. Selecting true means that these dependant objects will also be scripted.

• Include Descriptive Headers: This will include a date-time stamp as well as a short descriptive header 
of each object as it is reached within the script.

Dewson_5882C07.fm  Page 228  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 229

• Include If NOT EXISTS: If you select all the objects to be scripted and set this to true, SQL Server will put 
a test around each object so that if that object already is in the database when the script is run, it won’t 
be created. There will be no test for specific columns when scripting a table, but there will be a test for 
the table itself.

• Script Behavior: You can generate a script for creating items or dropping items.

• Script Collation: If you wish the SQL Server collation to be scripted, enable this option. Useful if you are 
unsure of the collation the script will then be run against.

• Script Database Create: This specifies whether you wish a CREATE DATABASE statement to be scripted 
or not.

• Script Defaults: We have some default values that will be set on columns when rows are added. Setting 
this to true will set these defaults.

• Script Extended Properties: Extra properties can be placed on every SQL Server object. These will be 
scripted if you select true.

• Script Logins: This scripts all Windows and SQL Server authentication logins.

• Script Object-Level Permissions: Each object will have permissions on who can do what. For example, 
on a table, permissions on who can add, delete, or select the data can be set up. This option will include 
these options.

• Script Owner: This scripts the owner of the database if specified.

• Script Statistics: This specifies whether to script the SQL Server column and index statistics. It avoids 
rebuilding them when re-creating the database using the script; however, it will increase the time taken 
to build the script as well as the size of the script.

• Script USE DATABASE: Between each object, this specifies whether to script a USE database statement 
or not. Ideal if used with scripting-dependent objects.

• Script Check Constraints: This will script check constraints.

• Script Foreign Keys: Any foreign keys will be scripted.

• Script Full-Text Indexes: If you have any full-text indexes, this indicates whether you want to script them 
or not.

• Script Indexes: This specifies whether to script table and view indexes.

• Script Primary Keys: This dictates whether to script primary keys or not.

• Script Triggers: For any trigger, this specifies whether you wish these to be within the script.

• Script Unique Keys: Any unique keys will be scripted.

This concludes our look at the different methods of backing up, restoring, moving, and scripting databases. While 
this covers every way of ensuring your database structure and data should never be lost, you still need to maintain 
the database on a regular basis. This is what we will take a look at in the next section of this chapter.

Dewson_5882C07.fm  Page 229  Monday, January 9, 2006  3:27 PM



230 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Maintaining Your Database
At this point, we have now created a backup and performed a restore of the example database. 
We have also covered the different methods to back up and restore the database. However, we 
have no real plan for regular maintenance and detection of problems in our database strategy. 
Any jobs for backup of the database or transaction log that we have demonstrated so far are 
held as single units of work called steps. Not only that, there is nothing in place that will look 
after the data and indexes held within the database to ensure that they are still functioning 
correctly and that the data is still stored in the optimal fashion. Without a process that runs 
regularly, we would need to perform all of this by hand, regularly. What a waste of time, and 
boring to boot!

This section will demonstrate building a plan and then checking on the plan after it has 
run to ensure that all has gone well with it. This plan will perform regular backups and checks 
on the database, and keep it in optimum health.

To do this, we will use the Database Maintenance Wizard, which will monitor corruption 
within the database, optimize how the data is stored, and back up both the database and trans-
action logs. Finally, the wizard will schedule all of this to occur at regular intervals. Some areas 
of this chapter, like the backup screens, are straightforward as they were covered earlier in the 
chapter; however, this now brings the whole maintenance of the database into one wizard.

Creating a Database Maintenance Plan
Now that the database is up and built and the tables are there, it really is time to start consid-
ering a whole database maintenance plan before data is entered. This will cover database 
corruption through to inadvertent errors in development. Even though corruption is rare in 
SQL Server, it can be caused when the SQL Server loses power abruptly, for example, or through 
hardware issues such as motherboard failure or someone removing the network cable.

There are many areas to building a maintenance plan, and this section covers a lot of them. 
One or two areas are only touched on as they are quite advanced and will not be covered in this 
book. You will still need a little background so that you can see how crucial this area is, and we 
can move on to those more advanced areas a bit later on.

A single maintenance plan can be built for one database or several databases. A single plan 
can be set up for system databases and all user databases by selecting those options at the start 
of the Database Maintenance Wizard. However, it is recommended that you create a plan for 
all system databases, but have a separate maintenance plan for each separate user database. 
The logic behind this is that each user database will have its own needs, its own overnight 
routines, and even its own people for callout when things go wrong. Even if you are a one-man 
band, each user database should still have a maintenance plan. Therefore, in keeping with this, 
only the ApressFinancial database will be selected.

Dewson_5882C07.fm  Page 230  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 231

Once the plan has been built, it will be stored within SQL Server, but will have been built 
as a SQL Server Integration Services (SSIS) job. This is a technique within SQL Server for running 
several tasks in sequence with conditions, which also has the ability to work with errors that occur. 
SSIS could take up a whole book in itself, but building the plan and seeing what is generated 
will demonstrate the very basics of what it can achieve.

Try It Out: Creating a Database Maintenance Plan

1. From the Object Explorer, find the Management Node and expand it, and you should find Maintenance 
Plans as the top item. Right-click and select the second option, Maintenance Plan Wizard. This will start 
the wizard.

2. Figure 7-22 shows the first screen of the wizard. Once you have read it, click Next.

Figure 7-22. Maintenance Plan Wizard, first screen

3. Enter a suitable name and description for the maintenance plan. You can then choose the server that the 
maintenance plan is on. This covers instances when your Management Studio is connected to more than one 
server. For example, if you have a connection to your ISP that you have a SQL Server installation on, you 
would change the server to that location. The server you are connected to will be the default. Select the 
authentication method you wish the plan to connect to the server as, as shown in Figure 7-23.

Dewson_5882C07.fm  Page 231  Monday, January 9, 2006  3:27 PM



232 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-23. Selecting the server for the maintenance plan

4. The next screen brings you to a set of choices of actions that you wish the plan to perform. In our plan, 
we will be performing every action with the exception of cleaning up the history of the database. We will 
add this option later when showing how to modify a plan. Select the options in the as shown in Figure 
7-24, and click next. Each of the options are briefly described here:

• Check Database Integrity: This executes SQL Server database integrity checks on the data and 
structure of the database both physical and logical.

• Shrink Database: The transaction log is truncated and logically shrunk. The database is also shrunk.

• Reorganize Index: As data is inserted and deleted, fragmentation of indexes can take place. This will 
reorganize the index a bit like completing a disk defrag.

• Rebuild Index: Instead of just reorganizing the indexes, it is possible to drop and re-create them.

• Update Statistics: Statistics are kept to aid the execution of queries. These can get out of date if you 
don’t have the option set on to keep these up to date, and this option can update them at this point.

• Clean Up History: This removes historical information such as job history, for a set period of time

• Execute SQL Server Agent Job: This executes a predefined SQL Server agent job. Figure 7-24 has 
this selected just so you can see the screen it displays later in the example. However, as I don’t cover 
jobs within this book, when doing this yourself, leave this unchecked.

• Back Up Database (Full): As discussed earlier, this will back up the full database.

• Back Up Database (Differential): As discussed earlier, this will back up the changes since the last 
full backup.

• Back Up Database (Transaction Log): As discussed earlier, this will back up just the transaction log.

Dewson_5882C07.fm  Page 232  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 233

Figure 7-24. Options for the maintenance plan

5. This then brings us to a summary of the options that have been selected. It is now possible to move the 
options to a different order if you wish. As you can see in Figure 7-25, the Back Up Database (Full) option 
has been moved up to the start. This is in case any of the following options fail and cause corruption. 
This is a decision that you have to make as any restore may require a rerun of the commands after the 
full backup. Once you have the order you want, click Next.

Figure 7-25. Options order for the maintenance plan

Dewson_5882C07.fm  Page 233  Monday, January 9, 2006  3:27 PM



234 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

6. The wizard then moves on and takes each task one at a time and gives you a dialog box containing 
options available for that task. The first option we had was a full backup, as shown in Figure 7-26. Most 
of this is very similar to the backup we completed earlier. However, it is possible to select specific data-
bases or all databases as part of this plan. Select the Specific Databases option to be taken to a second 
screen where you can define them.

Figure 7-26. Defining the database backup

7. When you choose to back up specific databases, Figure 7-27 appears. Here you can select—only for 
this task within the plan—which database or set of databases you want to work with. You will get this 
screen for every task option, so I will only show it this once. It is best to have separate maintenance 
plans for the user databases and one separate maintenance plan for the system databases. This splits 
up the workload not only into sizable, useful, and easy-to-understand units of work, but also into logical 
components as each database may have a different maintenance plan. You will also have different 
requirements for the system databases from for the user-defined databases. It is preferable not to select 
the All User Databases option because SQL Server will automatically begin running the maintenance 
plan on databases that may have been added without your knowledge, and may not be under your 
“ownership.” For our example, select the ApressFinancial database after clicking the These Data-
bases radio button. Click OK. The full list of choices is as follows:

Dewson_5882C07.fm  Page 234  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 235

• All Databases: Specifies all system and user databases

• All System Databases: Ignores all user databases, such as ApressFinancial

• All User Databases: Ignores any system defined database, such as master, model, etc.

• These Databases: Allows you to select which system and user databases you wish to use

Figure 7-27. Selecting the database to use

8. By clicking Next in the subsequent screen, which you see in Figure 7-28, we move on to the next task 
in the list where SQL Server will perform a special SQL Server command that will check the integrity of 
the database to see that everything is in a stable and noncorrupt state.

Figure 7-28. Database integrity check

Dewson_5882C07.fm  Page 235  Monday, January 9, 2006  3:27 PM



236 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

9. Moving on, we can define when to reduce the logical or physical size of our database through the screen 
shown in Figure 7-29. This can be thought of like a defrag of your hard drive. The Remove Unused Space from 
Database Files option will shrink the database if it has space it is not fully using. After you select this 
option, you will be given the opportunity to still leave a given percentage of space free for database 
growth. Do not fully shrink the database to 0% of free space or your performance will be worse, as the 
database will have to automatically grow.

■Tip  The preceding isn’t the best process to perform or be encouraged. You should have autogrow kicking 
in, but you should try to size the database adequately to cope with normal operation. Performance will be 
better with unused space rather than autogrow kicking in as well.

Figure 7-29. Shrinking the database

10. Click Next to bring up the Define Reorganize Index Tag screen, shown in Figure 7-30. As data is added, 
modified, and deleted, indexes, like tables, can also require reorganizing, which you can do through this 
screen. Again, this is like a hard drive defrag where there are gaps or data out of order, and by reorga-
nizing indexes you will ensure that SQL Server will be able to access the data as fast as possible. This 
option, which should be completed at least weekly for a high data modification system, will only move 
index pages.

Dewson_5882C07.fm  Page 236  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 237

Figure 7-30. Reorganizing the database

11. Click Next to bring up the screen shown in Figure 7-31. This next screen will deal with individual rows 
of indexes. Indexes will exist on tables and views and will become more defragmented than whole 
pages of data on a high data modification system. Like the previous option, rebuilding indexes should be 
completed on a very regular basis, probably weekly; although if your batch window allows you to perform this 
more frequently, then look to do so. When rebuilding indexes, you can define with a certain amount of 
free space to allow for increases and mid index insertions on each index page. This is a bit like inserting 
lines of text in a book. If you think you are going to do this, then leaving gaps at the end of the page will 
allow for these rows to be added. Failure to leave enough means shuffling data from that page through 
to the end of the book.

Within the advanced options, the main option of interest to you while you are learning SQL Server is Sort 
Results in tempdb. You could be low on disk space because when you built your database you set it to 
grow no larger than a specific size. Couple this with a situation where your indexes are so fragmented 
they take up more space than they will postdefragmentation. This could be because you have a large 
number of gaps due to deletions of rows within the index or modifications on a clustered index causing 
rows to be moved. When rebuilding indexes, this would by default be completed within the database the 
rebuild is for. The “old” indexes are kept until the new indexes are built. If there is not enough space to 
store them, it would not be possible to rebuild the index unless you physically increased the size of the 
database. This is not a simple process. Therefore, by using the option to rebuild the new indexes within 
tempdb, you do not need to increase your database size. Also, the tempdb will not be used as intensively. 
Therefore it might also be faster to rebuild your indexes within that database. This is an option you may 
use a great deal.

Dewson_5882C07.fm  Page 237  Monday, January 9, 2006  3:27 PM



238 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-31. The options for rebuilding an index

12. Move on to the Define Update Statistics Task screen, shown in Figure 7-32, by clicking Next. As has 
been mentioned before, as data is created, modified, and deleted, SQL Server keeps statistics on that 
data to aid data retrieval. These can become out of date because you have either set up your database 
not to keep statistics automatically updated, or the statistics will still naturally become out of date. 
Therefore we can re-create those statistics with the plan.

■Tip  The Auto Update Statistics database option will normally be on; although this does mean more 
processing for SQL Server, the increase will be minimal and rarely will you notice any impact.

We are getting close to the end of the wizard and have selected all the options available to us. However, this may not 
cover every eventually. There may be additional tasks we want to perform, which can be anything from database 
reporting tasks or auditing requirements. We would create these as separate tasks and jobs outside of the plan. 
These also reside in msdb, and it is via this next screen, shown in Figure 7-33, that we can add them to our schedule.

■Note  Recall earlier we didn’t select this option, but if you had, Figure 7-33 is what you would have seen.

Dewson_5882C07.fm  Page 238  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 239

Figure 7-32. Updating the database statistics

Figure 7-33. SQL Server Agent job scheduling

13. Now that we have all the tasks, we can either have this whole plan run manually when we demand it to 
or, by clicking the Change button as shown in Figure 7-34, we can set up a schedule for it to run at specific 
times. Click Change, which brings up the screen that deals with job scheduling, as shown in Figure 7-34.

Dewson_5882C07.fm  Page 239  Monday, January 9, 2006  3:27 PM



240 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

Figure 7-34. Selecting a schedule for the maintenance plan

14. The scheduling of the data optimization should be at a quiet time, and unless the database is updated 
heavily, this maintenance plan choice will not be required frequently. Running a maintenance plan 
can be quite intense for the server and should only be done during low usage hours. For the sake of 
ApressFinancial, it could be as infrequent as monthly; however, in the initial setup of the database, 
while the input of data might be heavy, set this up as a weekly task for now, as shown in Figure 7-35. 
It can easily be altered later.

15. We can also get the plan to write a report each time it runs, detailing what happens, via the screen 
shown in Figure 7-36. It is also possible to e-mail the report if you have mailing set up within SQL 
Server. At this point we don’t, so just get it to write to a folder. This is a very important feature, as it 
records what is happening within SQL Server without any manual intervention, and therefore it allows 
you as a DBA or developer to see what has happened, especially when things have gone wrong and you 
need to determine where to get back to. Don’t treat the reporting of the maintenance plan as immaterial, 
because it is not. Some companies have not kept reports for any length of time, and when something 
goes wrong for them it is impossible to know what has happened from day to day. The backup directory 
is generally the best place to store the reports, and it is best to keep, at the barest minimum, one month’s 
worth of information. However, it would be good if people were notified of success or failure of the plan, 
so once mail is set up, change this option.

Dewson_5882C07.fm  Page 240  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 241

Figure 7-35. Defining the schedule for the maintenance plan

Figure 7-36. Maintenance plan reporting options

Dewson_5882C07.fm  Page 241  Monday, January 9, 2006  3:27 PM



242 C H A P T E R  7  ■  D AT A B A S E  B A C K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N AN C E

16. Similar to when we produced a script for the database, clicking next brings up a summary of what will 
be performed within the plan (see Figure 7-37). Here you can review what will be completed, and with 
the number of different options that will be performed, it is a good place to complete a double check. 
Clicking Finish will produce the maintenance plan itself.

Figure 7-37. Completing the plan

17. It is possible to execute the plan outside of the maintenance plan schedule. The maintenance plan 
created previously can now be found under the Management/Maintenance Plan nodes in the Object 
Explorer. Right-click the nodes to bring up the pop-up menu shown in Figure 7-38. Selecting Execute 
will start the plan immediately. Do so now.

Figure 7-38. Maintenance plan pop-up menu

18. While the plan is executing, the dialog box shown in Figure 7-39 will be displayed.

19. Once the plan is executed along with any additional plans, a log is kept to allow you to check how they 
progressed. In Figure 7-40, you see that there is a circle with a cross in it, which should appear red on 
your screen, denoting that the plan had an error. By clicking that particular plan, it is possible to see 
what the error was.

Dewson_5882C07.fm  Page 242  Monday, January 9, 2006  3:27 PM



C H A P T E R  7  ■  D A T A B A S E  B AC K U P S ,  R E C O V E R Y ,  A N D  M A I N T E N A N C E 243

Figure 7-39. Maintenance plan executing

Figure 7-40. Maintenance plan log

Summary
You have seen a great deal in this chapter that is crucial to ensuring that your database is 
always secure if there are any unforeseen problems. As a manager drummed into me, the unex-
pected will always happen, but you must always be able to recover from it, no matter what. 
Therefore, regular backups that are known to work and even the occasional “disaster recovery 
test” should be done to ensure that you can restore when something unexpected happens. No 
matter what your managing director says, it is the data of a company that is its most important 
asset, not the people. Without the data, a company cannot function. If you cannot ensure that 
the data will be there, then the company is in a very dangerous position.

Dewson_5882C07.fm  Page 243  Monday, January 9, 2006  3:27 PM



Dewson_5882C07.fm  Page 244  Monday, January 9, 2006  3:27 PM



245

■ ■ ■

C H A P T E R  8

Working with the Data

We have now built our tables, set up the relationships, and backed up our solution, so we 
are ready to start inserting our data. The many tables within the database cover a number of 
different types of data that can be stored, ranging from characters and numbers through to 
images and XML. This chapter will show you how to insert data into columns defined with all 
of these data types.

Not all the tables will be populated with data at this point. We will insert data in other 
tables later on in the book when different functionality of SQL Server is being demonstrated. 
Although data is being inserted, the database is still at the stage of being set up, as we are 
inserting static information at this point in the examples we are building together. To clarify, 
static data is data that will not change once it has been set up, although there may be further 
additions to this data at periodic intervals such as when a new share is created.

Not everyone who is allowed to access our database may, or should, be allowed to insert 
data directly into all of the tables. Therefore, you need to know how to set up the security to 
grant permission to specific user logins for inserting the data. The only people who really ought 
to be adding data directly to tables rather than using controlled methods such as stored proce-
dures in production, for example, are special accounts like dbo accounts. In development, any 
developer should be able to insert data, but any login who would be testing out the application 
would not have that authority. You will see the reasons for this when we look at the security of 
adding data later in this chapter, and you will learn about alternative and more secure methods 
when we look at stored procedures and views.

Once we have set up users correctly, it is time to demonstrate inserting data into SQL Server. 
It is possible to insert data using SQL commands through Query Editor or through SQL Server 
Management Studio. Although both of these tools will have the same final effect on the database, 
each works in its own unique way.

When inserting data, you don’t have to insert data into every column necessarily. We take 
a look at when it is mandatory and when it is not. There are many different ways to avoid inserting 
data into every column. This chapter will demonstrate the various different methods you can 
use to avoid having to use NULL values and default values. By using these methods, you are 
reducing the amount of information it is necessary to include with a record insertion. This 
method of inserting data uses special commands within SQL Server called constraints. You will 
see how to build a column constraint through T-SQL in Query Editor as well as in SQL Server 
Management Studio.

Dewson_5882C08.fm  Page 245  Wednesday, January 4, 2006  3:43 PM



246 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

The T-SQL INSERT Command Syntax
Before it is possible to insert data using T-SQL code, you need to be familiar with the INSERT 
command and its structure.

The INSERT command is very simple and straightforward in its most minimal form, which 
is all that is required to insert a record.

INSERT [INTO]
   {table_name|view_name}
   [{(column_name,column_name,...)}]
   {VALUES (expression, expression, ...)}

Obviously, we are required to start the command with the type of action we are trying to 
perform, for example, insert data. The next part of the command, INTO, is optional. It serves no 
purpose, but you will find some do use it to ensure their command is more readable. The next 
part of the statement deals with naming the table or the view that the insertion has to place the 
data into. If the name of the table or view is the same as that of a reserved word or contains spaces, 
we have to surround that name with square brackets or double quotation marks. However, it is 
better to use square brackets, because there will be times you wish to set a value such as Acme’s 
Rockets to a column data, which can be added easily by surrounding it by double quotation 
marks, as covered in the discussion of SET QUOTED_IDENTIFIER OFF earlier in the book.

I cannot stress enough that really, there is nothing to be gained by using reserved words for 
table, views, or column names. Deciding on easy-to-use and unambiguous object names is 
part of a good design.

Column names are optional, but it is best practice to list them to help to have reliable code, 
as this ensures that data is only inserted into the columns into which you want it to be inserted. 
Therefore, it will be necessary to place the column names in a comma-delimited list. The list of 
column names must be surrounded by parentheses, (). The only time that column names are 
not required is when the INSERT statement is inserting data into every column that is within the 
table in the same order as they are laid out in the table. However, this is a potentially dangerous 
scenario. If you build an INSERT command which you then saved and used later, you expect the 
columns to be in a specific order because that is the way they have always been. If someone 
then comes along and adds a new column, or perhaps alters the order, your query or stored 
procedure will either not work or give erroneous results, as values will be added to the wrong 
columns. Therefore, I recommend that you always name every column in anything but a 
query, which is built, run once, and thrown away.

The VALUES keyword, which precedes the actual values to be entered, is mandatory. SQL 
Server needs to know that the following list is a list of values, and not a list of columns. There-
fore, you have to use the VALUES keyword, especially if you omit the list of columns as explained 
previously.

Finally, you will have a comma-separated list surrounded by parentheses covering the 
values of data to insert. There has to be a column name for every value to be entered. To clarify, 
if there are ten columns listed for data to be entered, then there must be ten values to enter.

Now that the INSERT command is clear, time to move on and use it.

Dewson_5882C08.fm  Page 246  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 247

INSERT SQL Command
The first method of inserting data is to use the INSERT SQL command as described previously. 
This example will insert one record into the ShareDetails.Shares table using Query Editor. 
When inserting the data, the record will be inserted immediately without any opportunity to 
roll back changes. This command does not use any transaction processing to allow any changes to 
take place. You will also see with this example how Query Editor can aid you as a developer in 
building the SQL command for inserting a record. Let’s dive straight in and create the record.

 Try It Out: Query Editor Scripting

1. Ensure that you have a Query Editor window open, connected to our ApressFinancial database, and 
that you are logged in with an account that has insert permissions on the ShareDetails.Shares 
table (this will be any member of the administrator’s or database owner’s role).

2. Right-click against the ShareDetails.Shares table, select Script Table As ➤ INSERT To ➤ New 
Query Editor Window.

3. This will bring up the following code. SQL Server covers itself concerning the use of reserved words, 
spaces in names, etc., by surrounding every object name with square brackets. It also fully qualifies the 
table name with the database name and schema owner, in this case, ShareDetails. Moving to the 
values, you can see the column name repeated so that when altering the values, if the table has a large 
number of columns, you know which column you are working with. The final part in the jigsaw is an 
indication to the data type and length to aid you as well.

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
           ([ShareDesc]
           ,[ShareTickerId]
           ,[CurrentPrice])
     VALUES
           (<ShareDesc, nvarchar(50),>
           ,<ShareTickerId, nvarchar(50),>
           ,<CurrentPrice, numeric,>)

4. We need to place a modification at the top of this code, just to ensure that Query Editor has a setting to 
allow double quotes to be used to surround strings. This was covered in Chapter 5 when discussing 
database options. To cover yourself though, you can always place the following code at the start of 
queries where quotation marks will be used. There is one hidden downfall that will be covered at the 
end. Notice as well that a GO command is included at the end of the SET command. This is because this 
command must take place in its own transaction.

SET QUOTED_IDENTIFIER OFF
GO

5. By altering the code within the Query Editor pane, you will see that the next section of code actually 
inserts the data into the ShareDetails.Shares table. Notice that no GO statement is included at the 
end of this code. It is not necessary because there is only one INSERT and no other commands that 
need to form part of this same transaction.

Dewson_5882C08.fm  Page 247  Wednesday, January 4, 2006  3:43 PM



248 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

SET QUOTED_IDENTIFIER OFF
GO
INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
           ([ShareDesc]
           ,[ShareTickerId]
           ,[CurrentPrice])
     VALUES
           ("ACME'S HOMEBAKE COOKIES INC",
            'AHCI',
            2.34125)

6. Now that all the information has been entered into the Query Editor pane, it is time to execute the code. 
Press F5 or Ctrl+E, or click the execute button on the toolbar. You should then see the following result, 
which indicates that there has been one row of data inserted into the table.

 (1 row(s) affected)

This now sees the first record of information placed into the database in the ShareDetails.Shares table. It is 
simple and straightforward. All the columns have been listed and a value has been inserted. Because the name had 
a single quotation mark within it, it is simpler to surround the name with double quotation marks. However, to make 
sure that this string was not seen as an identifier, we have to switch that option off.

SQL Server Management Studio has the ability to create template scripts for several T-SQL commands. Templates, 
which you saw earlier in the book, hold parameter placeholders that require modification to build up the whole 
command. Template scripts differ from actual templates, as the information created within Query Editor for these 
templates is for one command only. Therefore, what you are actually seeing is the template for a one-line script.

When using the scripting options within Query Editor, it is possible to build the script as you have just seen for 
inserting a record into the ShareDetails.Shares table, and save the T-SQL within a new Query Editor pane, to 
a file, or even to a clipboard. This would then allow the data to be reinserted instantaneously should the table be 
deleted. To an extent, scripting to files or a clipboard is not as useful as scripting to a Query Editor pane. By scripting 
to files or a clipboard, you would need to move back into these files to make the necessary changes for data insertion. 
As you saw, when the script is placed in the Query Editor pane, the table and the columns are listed, but obviously 
the values need to be altered. This would have to be completed in a file or a clipboard by reopening these contents 
and making modifications after the event.

The scripting template does build the whole INSERT command and lists all the columns as well as—in the VALUES 
section of the command—the name of the column and its data type definition. From there, it is easier to know what 
value is expected within the INSERT command line.

The example mentions that using SET QUOTED_IDENTIFIER OFF does have one hidden downfall: In many cases, 
when using T-SQL commands, it is possible to surround reserved words with double quotation marks, rather than 
square brackets; however, with the QUOTED_IDENTIFIER set to OFF, you will only be able to surround reserved 
words with square brackets. If you had QUOTED_IDENTIFIER set to ON, then you could not have put ACME'S in the 
name; the code would have to have been written with two single quotation marks. Therefore, the code would have 
had to look like the following:

Dewson_5882C08.fm  Page 248  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 249

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
           ([ShareDesc]
           ,[ShareTickerId]
           ,[CurrentPrice])
     VALUES
           ('ACME''S HOMEBAKE COOKIES INC',
            'AHCI',
            2.34125)

Now that you know how to construct an INSERT statement, it is time to look at how you need not define all the 
columns within a table.

It is not always necessary to define columns with a value when inserting rows of data. This 
next section looks at two of these methods: the use of default values and allowing a NULL value. 
As you have just seen in our first examples, we specified every column in the table within the 
INSERT statement. You are now probably wondering whether you have to specify every column 
every time a record is inserted into a table. The answer is no. However, there are a few areas to 
be aware of.

Default Values
The first method for avoiding having to enter a value is to set a column or a set of columns with 
a default value. We set up the CustomerDetails.Customers table to have a default value when 
creating the tables in Chapter 5. Default values are used when a large number of INSERTs for a 
column would have the same value entered each time. Why have the overhead of passing this 
information, which would be the column name plus the value, through to SQL Server, when SQL 
Server can perform the task quickly and simply for you? Network traffic would be reduced and 
accuracy ensured as the column information would be completed directly by SQL Server.

Although it has been indicated that default values are best for a large number of INSERTs, it 
can also be argued that this need not be the case. Some people feel that all that is required is a 
significant number of rows to be affected from a default value setting for the use of default 
values to be an advantage. It does come down to personal preference as to when you think setting 
a default value will be of benefit. However, if there are times when you wish a column to have 
an initial value when a row is inserted with a specific value, then it is best to use a default value.

The example in next section, where we build up our next set of INSERT statements, I will 
demonstrate how a default value will populate specific columns. When creating the 
CustomerDetails.Customers table, we created a column that is set up to be populated with a 
default value: the DateAdded column. In this column, we call a SQL Server reserved function, 
GETDATE(). This function gets the date and time from the operating system and returns it to SQL 
Server. By having this within a column default value, it is then inserted into a record when a 
row is added.

Using NULL Values
The next method for avoiding having to fill in data for every column is to allow NULL values 
in the columns. We did this for some columns when defining the tables. Ensuring that each 

Dewson_5882C08.fm  Page 249  Wednesday, January 4, 2006  3:43 PM



250 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

column’s Allow Nulls option is checked can ensure this is true for all our columns. If you take a 
look at Figure 8-1, one of the columns in the ShareDetails.Shares table, ShareTickerId, does 
allow a NULL value to be entered into the column.

Figure 8-1. NULLs selected on a column

Therefore, the previous example could have placed data only in the ShareDesc and 
CurrentPrice fields if we’d wanted, as ShareId is an IDENTITY column and is auto-filled. If the 
ShareDetails.Shares record had only been inserted with those two columns, the command 
would have looked like the following T-SQL:

INSERT INTO [ApressFinancial].[ShareDetails].[Shares]
           ([ShareDesc]
           ,[CurrentPrice])
     VALUES
           ("ACME'S HOMEBAKE COOKIES INC",
            2.34125)

Figure 8-2 shows what the data would have looked like had we used the preceding T-SQL 
instead of the code in the previous section.

Figure 8-2. Insert with NULL

To see the same result as in Figure 8-2, you would view this table in SQL Server Management 
Studio. This is covered shortly, as unfortunately we are in the chicken-and-egg scenario of 
showing an area before it has been discussed. As you can see, the columns that had no data 
entered have a setting of NULL. A NULL setting is a special setting for a column. The value of NULL 
requires special handling within SQL Server or applications that will be viewing this data. What 
this value actually means is that the information within the column is unknown; it is not a 
numeric or an alphanumeric value. Therefore, because you don’t know if it is numeric or 
alphanumeric, you cannot compare the value of a column that has a setting of NULL to the value 
of any other column, and this includes another NULL column.

■Note  One major rule involving NULL values: a primary key cannot contain any NULL values.

Dewson_5882C08.fm  Page 250  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 251

Try It Out: NULL Values and SQL Server Management Studio Compared to T-SQL

1. Ensure that SQL Server Management Studio is running and that you are logged in with an account that 
allows the insertion of records. Any of our users can do this.

2. Expand the ApressFinancial node in the Object Explorer so you can see the 
CustomerDetails.Customers table. Right-click this table and select Open Table.

3. In the main pane on the right, you should now see a grid similar to Figure 8-3. This grid would usually 
show all the rows of data that are within the table, but as this table contains no data, the grid is empty 
and ready for the first record to be entered. Notice that on the far left-hand side appears a star. It will 
change to an arrow shortly. This is the record marker and denotes which record the grid is actually 
pointing to and working with for insertion. The arrow denotes which record you are viewing, and when 
the marker changes to a pencil, it denotes that you are writing data in that row, ready for updating the 
table. Perhaps not so relevant this instance, but very useful when several records are displayed.

Figure 8-3. No data held within the table

4. It is a simple process to enter the information into the necessary columns as required. However, if you 
don’t enter the data into the correct columns, or leave a column empty when in fact it should have data, 
you will receive an error message. The first column, CustomerId, is protected, as this is an IDENTITY 
column, but if you enter Mr into the CustomerTitleId column, then you will see something similar to 
the message shown in Figure 8-4 when moving to another cell. This message is informing you that 
CustomerTitleId is expecting an integer data type and that what was entered was not of that type.

Figure 8-4. Invalid data type

5. Now press the down arrow, after altering CustomerTitleId to the correct data type, to indicate that you 
have finished creating this customer and wish to create the next. This of course means that some columns 
that have to be populated aren’t, and SQL Server tells me so, as you see in Figure 8-5. I wanted to create 
a row that was full of NULL values, but I can’t. The error message indicates that CustomerFirstName 
has not been set up to allow a NULL value, and we need to put some data in there.

Dewson_5882C08.fm  Page 251  Wednesday, January 4, 2006  3:43 PM



252 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Figure 8-5. Trying to insert a row with NULL when NULLs are not allowed

6. Clicking OK allows you back into the grid where the whole row can be populated with correct information. 
Notice that we can miss out placing any data in the CustomerOtherInitials column. After popu-
lating our grid, click the down arrow, and our grid should resemble Figure 8-6. The thing to notice is that 
although this is the first record entered, the CustomerId is set to 2. Whether insertion of a record is 
successful or not, an identity value is generated. Therefore, CustomerId 1 was generated when we 
received the second error as we were trying to move on to a new row. This can and will cause gaps 
within your numbering system. You can see how valuable using defaults as initial values for columns 
can be. Where the real benefit of using default values comes is in ensuring that specific columns are 
populated with the correct default values. As soon as we move off from the new row, the default values 
are inserted and ready to be modified. There is now a record of when the record was added, ideal for 
auditing. After we look at inserting a row with T-SQL, we will see what we might be able do about this.

Figure 8-6. The populated grid

■Note  By having an IDENTITY column, every time a record is entered or an attempt is made to enter a 
record and all the data entered is of valid data types—whether this is through SQL Server Management Studio 
or an INSERT statement—the column value within the table will be incremented by the Identity Increment 
amount.

7. Now open up a Query Editor window and enter the following code. This code will replicate the first part 
of this example in which we entered the wrong data type.

USE ApressFinancial
GO
INSERT INTO CustomerDetails.Customers (CustomerTitleId) VALUES ('Mr')

Dewson_5882C08.fm  Page 252  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 253

8. Now execute this by pressing Ctrl+E or F5, or clicking the execute button on the toolbar. This code will 
generate an error because, once again, this is the wrong data type.

Msg 245, Level 16, State 1, Line 1
Conversion failed when converting the varchar value 'Mr' to data type int.

9. Change the code to replicate our second attempt at entering a row where the data type for the title is 
now correct but we are still missing other values:

USE ApressFinancial
GO
INSERT INTO CustomerDetails.Customers (CustomerTitleId) VALUES (1)

10. Now execute this by pressing Ctrl+E or F5, or clicking the execute button on the toolbar. This code will 
generate a different error, informing us this time that we didn’t allow a NULL into the CustomerFirstName 
column, and therefore we have to supply a value.

Msg 515, Level 16, State 2, Line 1
Cannot insert the value NULL into column 'CustomerFirstName', table
'ApressFinancial.CustomerDetails.Customers'; column does not allow nulls.
INSERT fails.
The statement has been terminated.

11. This final example will work successfully. However, note that the CustomerLastName is before that of 
the CustomerFirstName column. This demonstrates that it is not necessary to name the columns 
within the insertion in the same order as they are defined within the table. It is possible to place the 
columns in any order you desire.

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerLastName,CustomerFirstName,
CustomerOtherInitials,AddressId,AccountNumber,AccountTypeId,
ClearedBalance,UnclearedBalance)
VALUES (3,'Mason','Jack',NULL,145,53431993,1,437.97,-10.56)

12. This time when you execute the code, you should see the following results, indicating the record has 
been inserted successfully:

 (1 row(s) affected)

13. Now let’s go back and view the data to see what has been entered. Find the CustomerDetails.
Customers table in the Object Explorer again. Right-click the table and select Open Table. The table 
now has two rows with two gaps in what we want our ideal ascending sequence, as you see in Figure 8-7.

Dewson_5882C08.fm  Page 253  Wednesday, January 4, 2006  3:43 PM



254 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Figure 8-7. Second customer inserted

That is all there is to it. Just as simple as using SQL Server Management Studio, but you did get more informative 
error messages. We now have a slight problem in that already there are two gaps in the table. This can be remedied 
easily within Query Editor, which we’ll do in the next section.

DBCC CHECKIDENT
The DBCC commands can be used for many different operations, such as working with IDENTITY 
columns. If you find that when testing out IDENTITY columns you receive a number of errors, 
and the identity number has jumped up further than you wished, it is possible to reset the seed 
of the IDENTITY column so that Query Editor starts again from a known point. The syntax for 
this command is very simple:

DBCC CHECKIDENT ('table_name'[,{NORESEED |{RESEED[,new_reseed_value]}}])

The following elaborates on the three areas of the syntax that may need explanation:

• The name of the table that you wish to reset the identity value for is placed in single 
quotation marks.

• You can then use NORESEED to return back what SQL Server believes the current identity 
value should be, in other words, what the current maximum identity value is within the 
IDENTITY column.

• The final option is the one we are interested in. You can either reseed a table automatically 
by simply specifying the RESEED option with no value. This will look at the table defined 
and will reset the value to the current maximum value within the table. Or optionally, you 
can set the column of the table to a specific value by separating the value and the option 
RESEED by a comma.

If you use RESEED and there are currently no records in the table, but there had been in the 
past, then the value will still be set to the last value entered, so take care.

Resetting the seed for an IDENTITY column though does have a danger, which you need to 
be aware of. If you reset the point to start inserting values for the IDENTITY column back past 
the greatest number on the given table, you will find that there is the potential of an error being 
produced. When a value that already exists is generated from an INSERT after resetting the 
IDENTITY column value, then you will receive an error message informing you the value already 
exists. To give an example, you have a table with the values 1,2,5,6,7,8 and you reset the IDENTITY 
value back to 2. You insert the next record, which will correctly get the value 3, and the insertion 
will work. This will still work the same with the next insertion, which will receive the value 4. 
However, come to the next record, and there will be an attempt to insert the value 5, but that 

Dewson_5882C08.fm  Page 254  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 255

value already exists; therefore, an error will be produced. However, if you had reset the value to 8, 
the last value successfully entered, then everything would be OK.

As we do not have the value 1 for the first row in the Customers table, it would be nice to 
correct this. It also gives a good excuse to demonstrate CHECKIDENT in action. The code that 
follows will remove the erroneous record entry and reset the seed of the IDENTITY column back 
to 0, to a value indicating that no records have been entered. We will then via T-SQL reenter the 
customer information. Enter the following code, place the code into Query Editor, and execute it. 
The first line removes the record from Customers and the second line resets the identity. Don’t 
worry too much about the record deletion part, as deleting records is covered in detail later in 
the chapter in the “Deleting Data” section.

DELETE FROM CustomerDetails.Customers
DBCC CHECKIDENT('CustomerDetails.Customers',RESEED,0)
INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeId,
ClearedBalance,UnclearedBalance)
VALUES (1,'Vic',NULL,'McGlynn',111,87612311,1,4311.22,213.11)
INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerLastName,CustomerFirstName,
CustomerOtherInitials,AddressId,AccountNumber,AccountTypeId,
ClearedBalance,UnclearedBalance)
VALUES (3,'Mason','Jack',NULL,145,53431993,1,437.97,-10.56)

When the code is run, you should see the following information output to the query results pane:

(2 row(s) affected)
Checking identity information: current identity value '4', current column value '0'.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

(1 row(s) affected)

(1 row(s) affected)

Column Constraints
A constraint is essentially a check that SQL Server places on a column to ensure that the data 
to be entered in the column meets specific conditions. This will keep out data that is erroneous, 
and therefore avoid data inconsistencies. Constraints are used to keep database integrity by 
ensuring that a column only receives data within certain parameters.

We have already built a constraint on the CustomerDetails.Customers table for the default 
value for the column DateAdded. If you go to Object Explorer, right-click, select Script Table As ➤ 
Create To, and put the output in a new query window, you would see the following line from 
that output. So a constraint is used for setting a default value.

Dewson_5882C08.fm  Page 255  Wednesday, January 4, 2006  3:43 PM



256 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

[DateAdded] [datetime] NULL CONSTRAINT
[DF_Customers_DateAdded]  DEFAULT (getdate()),

Constraints are used to not only insert default values, but also validate data as well as 
primary keys. However, when using constraints within SQL Server, you do have to look at the 
whole picture, which is the user graphical system with the SQL Server database in the back-
ground. If you are using a constraint for data validation, some people will argue that perhaps it 
is better to check the values inserted within the user front-end application rather than in SQL 
Server. This has some merit, but what also has to be kept in mind is that you may have several 
points of entry to your database. This could be from the user application, a web-based solution, or 
other applications if you are building a central database. Many people will say that all valida-
tion, no matter what the overall picture is, should always be placed in one central place, which 
is the SQL Server database. Then there is only one set of code to alter if anything changes. It is 
a difficult choice and one that you need to look at carefully.

This part of the chapter will demonstrate how to add a constraint, specifically for data vali-
dation, through code in Query Editor. First of all, it is necessary to look at the code that is used 
to build the constraint.

ADD CONSTRAINT
You have two ways to add a constraint to a table. You saw the first when creating a default value 
as we built a table via SQL Server Management Studio in Chapter 5.

To build a constraint via code, you need to use the ALTER TABLE command, no matter what 
type of constraint this is. The ALTER TABLE command can cover many different alterations to a 
table, but in this instance, the example just concentrates on adding a constraint. This makes 
the ALTER TABLE statement easy, as the only real meat to the clause comes with the ADD CONSTRAINT 
syntax. The next example will work with the CustomerDetails.CustomerProducts table, and you 
will see three different types of constraints added, all of which will affect insertion of records. 
It is worth reiterating the adding of a default value constraint again, as this will differ from the 
DateAdded column on the Customers table. Once the constraints have been added, you will see 
them all in action, and how errors are generated from erroneous data input.

Try It Out: Altering a Table for a Default Value in Query Editor

1. Ensure that Query Editor is running. Although all the examples deal with the CustomerDetails.
CustomerProducts table, each constraint being added to the table will be created one at a time, 
which will allow a discussion for each point to take place. In the Query Editor pane, enter the following 
code, which will add a primary key to the CustomerProducts table. This will place the 
CustomerFinancialProductId column within the key, which will be clustered.

USE ApressFinancial
GO
ALTER TABLE CustomerDetails.CustomerProducts
ADD CONSTRAINT PK_CustomerProducts
PRIMARY KEY CLUSTERED
(CustomerFinancialProductId) ON [PRIMARY]
GO

Dewson_5882C08.fm  Page 256  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 257

2. Next we add a CHECK constraint on the AmountToCollect column. The CustomerDetails.
CustomerProducts table is once again altered, and a new constraint added called 
CK_CustProds_AmtCheck. This constraint will ensure that for all records inserted into the 
CustomerDetails.CustomerProducts table from this point on, the score must be greater than 0. 
Notice as well that the NOCHECK option is mentioned, detailing that any records already inserted will not 
be checked for this constraint. If they have invalid data, which they don’t, then the constraint would 
ignore them and still be added.

ALTER TABLE CustomerDetails.CustomerProducts
WITH NOCHECK
ADD CONSTRAINT CK_CustProds_AmtCheck
CHECK ((AmountToCollect > 0))
GO

3. Moving on to the third constraint to add to the CustomerDetails.CustomerProducts table, we 
have a DEFAULT value constraint. In other words, this will insert a value of 0 to the Renewable column 
if no value is entered specifically into this column. This signifies that the premium collected is a one-off 
collection.

ALTER TABLE CustomerDetails.CustomerProducts WITH NOCHECK
   ADD CONSTRAINT DF_CustProd_Renewable
   DEFAULT (0)
   FOR Renewable

4. Execute the three batches of work by pressing F5 or Ctrl+E, or clicking the execute button on the toolbar. 
You should then see the following result:

The command(s) completed successfully.

5. There are two methods to check that the code has worked before adding in any data. Move to the Object 
Explorer in Query Editor. This isn’t refreshed automatically, so you do need to refresh it. You should then 
see the three new constraints added, two under the Constraints node and one under the Keys node, as 
well as a display change in the Columns node, as shown in Figure 8-8.

Figure 8-8. CustomerDetails.CustomerProducts table details

Dewson_5882C08.fm  Page 257  Wednesday, January 4, 2006  3:43 PM



258 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

6. Another method is to move to SQL Server Management Studio, find the CustomerDetails.
CustomerProducts table, right-click it, and select Modify. This brings us into the Table Designer, 
where we can navigate to the necessary column to check out the default value, in this case Renewable. 
Also notice the yellow key against the CustomerFinancialProductId signifying that this is now a 
primary key, as shown in Figure 8-9.

Figure 8-9. Default value constraint on column Renewable

7. Move to the Table Designer toolbar and click the Manage Check Constraints button, shown here:

8. This will display the Check Constraints dialog box, shown in Figure 8-10, where we will see the 
AmountToCollect column constraint displayed. We can add a further constraint by clicking the Add 
button. Do so now.

9. This will alter the Check Constraints dialog box to allow a new check constraint to be added, as you see 
in Figure 8-11. This check will ensure that the LastCollection date is greater than the value entered 
in another column. Here we want to ensure that the LastCollection date is equal to or after the 
LastCollected date. Recall that LastCollection defines when we last took the payment, and 
LastCollected defines when the last payment should be taken.

Dewson_5882C08.fm  Page 258  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 259

Figure 8-10. Check Constraints dialog box

Figure 8-11. Adding a new constraint in the Check Constraints dialog box

10. The expression we want to add, which is the test the constraint is to perform, is not a value nor a system 
function like GETDATE(), but a test between two columns from a table, albeit the same table we are 
working with. This is as simple as naming the columns and the test you wish to perform. Also at the 
same time, change the name of the constraint to something meaningful. Your check constraint should 
look something like what appears in Figure 8-12. Afterwards, click Close, which will add the constraint 
to the list, although it has not yet been added to the table. It is not until the table is closed that this will 
happen, so do that now.

Dewson_5882C08.fm  Page 259  Wednesday, January 4, 2006  3:43 PM



260 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Figure 8-12. LastColl constraint in the Check Constraints dialog box

11. Now it’s time to test the constraints to ensure that they work. First of all, we want to check the 
AmountToCollect constraint. Enter the following code, which will fail as the amount to collect is a 
negative amount.

INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,AmountToCollect,Frequency,
LastCollected,LastCollection,Renewable)
VALUES (1,1,-100,0,'24 Aug 2005','24 Aug 2005',0)

12. When you execute the code in Query Editor, you will see the following result. Instantly you can see that 
the constraint check (CK_CustProds_AmtCheck) has cut in and the record has not been inserted.

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint
"CK_CustProds_AmtCheck". The conflict occurred in database
"ApressFinancial", table "CustomerDetails.CustomerProducts",
column 'AmountToCollect'.
The statement has been terminated.

13. We alter this now to have a positive amount, but change the LastCollection so that we break the 
CK_CustProd_LastColl constraint. Enter the following code:

INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,AmountToCollect,Frequency,
LastCollected,LastCollection)
VALUES (1,1,100,0,'24 Aug 2005','23 Aug 2005')

Dewson_5882C08.fm  Page 260  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 261

14. When the preceding code is executed, you will see the following error message:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint
"CK_CustProd_LastColl". The conflict occurred in database
"ApressFinancial", table "CustomerDetails.CustomerProducts".
The statement has been terminated.

Adding a constraint occurs through the ALTER TABLE statement as has just been demonstrated. However, the ADD 
CONSTRAINT command is quite a flexible command and can achieve a number of different goals.

The preceding example uses the ADD CONSTRAINT to insert a primary key, which can be made up of one or more 
columns (none of which can contain a NULL value), and also to insert a validity check and a set of default values. 
The only option not covered in the example is the addition of a foreign key, but this is very similar to the addition of 
a primary key.

The first constraint added is the primary key, which we saw in Chapter 5. The second constraint definition builds a 
column check to ensure that the data entered is valid:

ADD CONSTRAINT constraint_name CHECK (constraint_check_syntax)

The syntax for a CHECK constraint is a simple true or false test. When adding in a constraint for checking the data, 
the information to be inserted is valid (true) or invalid (false) when the test is applied. As you will see, using mathe-
matical operators to test a column against a single value or a range of values will determine whether the data can 
be inserted.

Notice in the example that the ADD CONSTRAINT command is preceded with a WITH NOCHECK option on the 
ALTER TABLE statement. This informs SQL Server that any existing data in the table will not be validated when it 
adds the table alteration with the constraint, and that only data modified or inserted after the addition of the con-
straint will be checked. If you do wish the existing rows to be checked, then you would use the WITH CHECK option. 
The advantage of this is that the existing data is validated against that constraint, and if the constraint was added 
to the table successfully, then you know your data is valid. If any error was generated, then you know that there was 
erroneous data, and that you need to fix that data before being able to add the constraint. This is just another 
method of ensuring that your data is valid.

Finally, for adding a default value, the ADD CONSTRAINT syntax is very simple.

ADD CONSTRAINT constraint_name
DEFAULT default_value
FOR column_to_receive_the_value

The only part of the preceding syntax that requires further explanation is the default_value area. default_value can 
be a string, a numeric, NULL, or a system function (for example, GETDATE(), which would insert the current date 
and time). So the default value does not have to be fixed; it can be dynamic.

Dewson_5882C08.fm  Page 261  Wednesday, January 4, 2006  3:43 PM



262 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Dealing with Several Records at Once
It is now necessary to enter a few more customers so that a reasonable amount of data is contained 
within the CustomerDetails.Customers table to work with later in the book. We need to do 
the same with several other tables as well, such as TransactionDetails.TransactionTypes, 
CustomerDetails.CustomerTransactions, etc. This section will prove that no extra or specialized 
processing is required when inserting several records. When working with data, there may be 
many times that several records of data are inserted at the same time. This could be to initially 
populate a table, or when testing. In this sort of situation where you are repopulating a table, it 
is possible to save your query to a text file, which can then be reopened in Query Editor and 
executed without having to reenter the code. This is demonstrated at the end of the upcoming 
example.

Inserting Several Records in a Query Batch
This next example will demonstrate inserting several records. The work will be completed in 
batches. There is no transaction processing surrounding these INSERTs, and therefore each 
insertion will be treated as a single unit of work, which either completes or fails.

■Note  A transaction allows a number of INSERTs or modifications to be treated as one unit, and if any 
insertion failed within the transaction, all the units would be returned back to their original value, and no inser-
tions would take place. Transactions will be discussed in more detail in the upcoming “Transactions” section.

Try It Out: Insert Several Records At Once

1. Ensure that SQL Server Query Editor is up and running. In the Query Editor window, enter the following 
code. Notice there are two GO commands within this set of INSERTs. Although each INSERT is its own 
self-contained unit of work, a GO command also determines the end of a batch, or unit, of work. Therefore, 
the GO statements are superfluous if any error occurs with any of the INSERT statements.

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeId,
ClearedBalance,UnclearedBalance)
VALUES (3,'Bernie','I','McGee',314,65368765,1,6653.11,0.00)
GO
INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeId,
ClearedBalance,UnclearedBalance)
VALUES (2,'Julie','A','Dewson',2134,81625422,1,53.32,-12.21)
GO

Dewson_5882C08.fm  Page 262  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 263

INSERT INTO CustomerDetails.Customers
(CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
CustomerLastName,AddressId,AccountNumber,AccountTypeId,
ClearedBalance,UnclearedBalance)
VALUES (1,'Kirsty',NULL,'Hull',4312,96565334,1,1266.00,10.32)

2. Now just execute the code in the usual way. You will see the following output in the results pane. This 
indicates that three rows of information have been inserted into the database, one at a time.

(1 row(s) affected)

(1 row(s) affected)

(1 row(s) affected)

Retrieving Data
This section of the chapter will demonstrate how to view the data that has been placed in the 
tables so far. Many ways of achieving this are available, from using SQL Server Management 
Studio through to T-SQL commands, and as you would expect, they will all be covered here.

The aim of retrieving data is to get the data back from SQL Server using the fastest retrieval 
manner possible. We can retrieve data from one or more tables through joining tables together 
within our query syntax; all of these methods will be demonstrated.

The simplest method of retrieving data is using SQL Server Management Studio, and we 
look at this method first. With this method, you don’t need to know any query syntax: it is all 
done for you. However, this leaves you with a limited scope for further work.

You can alter the query built up within SQL Server Management Studio to cater to work 
that is more complex, but you would then need to know the SELECT T-SQL syntax; again, this 
will be explained and demonstrated. This can become very powerful very quickly, especially 
when it comes to selecting specific rows to return.

The results of the data can also be displayed and even stored in different media, like a file. 
It is possible to store results from a query and send these to a set of users, if so desired.

Initially, the data returned will be in the arbitrary order stored within SQL Server. This is 
not always suitable, so another aim of this chapter is to demonstrate how to return data in the 
order that you desire for the results. Ordering the data is quite an important part of retrieving 
meaningful results, and this alone can aid the understanding of query results from raw data.

Retrieving images is not as straightforward as retrieving normal rows of data, so I’ll cover 
this in Chapter 12 along with other advanced T-SQL techniques.

Starting with the simplest of methods, let’s look at SQL Server Management Studio and 
how easy it is for us to retrieve records. We have partially covered this earlier when inserting rows.

Dewson_5882C08.fm  Page 263  Wednesday, January 4, 2006  3:43 PM



264 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Using SQL Server Management Studio 
to Retrieve Data
The first area that will be demonstrated is the simplest form of data retrieval, but it is also the 
least effective. Retrieving data using SQL Server Management Studio is a very straightforward 
process, with no knowledge of SQL required in the initial stages. Whether it has to return all 
rows, or even when you want to return specific rows, using SQL Server Management Studio 
makes this whole task very easy. This first example will demonstrate how flexible SQL Server 
Management Studio is in retrieving all the data from the CustomerDetails.Customers table.

Try It Out: Retrieving Data Within SQL Server Management Studio

1. Ensure that SQL Server Management Studio is running. Navigate to the ApressFinancial database 
and click the Tables node; this should then list all the tables in the right-hand pane. Find the Customers 
table, right-click it to bring up the pop-up menu we have seen a number of times before, and select 
Open Table. This instantly opens up a new Query Editor window pane like the one in Figure 8-13, which 
shows all the rows that are in the CustomerDetail.Customers table. But how did SQL Server get 
this data? Let’s find out.

Figure 8-13. CustomerDetails.Customers table retrieving data

2. On the toolbar, you will see a button that, when pressed, will show the SQL code that was built to create 
this query:

3. Clicking the button alters the screen to that shown in Figure 8-14. This is the SQL syntax generated by 
SQL Server Management Studio to provide the information requested.

4. On the right you might see a window called the Properties window. If you don’t see the screen as shown 
in Figure 8-15, then you can open this up by pressing F4 or by clicking the View menu item. The point 
of interest at the moment is the section you see highlighted in Figure 2-21, Top Specification. Here 
we can enter the maximum number of records that we wish to return.

Dewson_5882C08.fm  Page 264  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 265

Figure 8-14. Output displayed via SQL Window

Figure 8-15. Top Specification selected

5. The order of the records returned will be determined by the clustered index created on the table. However, if 
the table has no clustered index, then the order the records are returned in is arbitrary and there is no 
guarantee that the order will be the same when running the same query repeatedly. Changing Top 
Specification/(Top) to Yes will change the Properties window to as shown in Figure 8-16.

Figure 8-16. Top Specification required

6. We can enter any number we choose in the Expression property, but for this first time at least, enter 3 in the 
Expression box. This will return a maximum of three rows. If we entered a value of 100, we would only 
get five rows returned, as that is the maximum number of rows in the table at this moment in time. You 
would use this perhaps when you don’t know the number of records within a table, but you are only 
interested in a maximum number of 100 if there are more. This would be when you want to look at just 
a small selection of content in columns within a table. Now notice in the top-left hand corner of the 
results grid the following icon here. This indicates that you have changed a property of the query and 
you need to do a refresh.

Dewson_5882C08.fm  Page 265  Wednesday, January 4, 2006  3:43 PM



266 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

7. Right-click a blank area of the results grid and you will see the pop-up menu shown in Figure 8-17.

Figure 8-17. Results grid pop-up menu

8. Click Execute SQL to change the results grid to return just three rows of data, as shown in Figure 8-18.

Figure 8-18. Three rows returned

9. Again, by clicking the SQL button on the toolbar, the SQL code is exposed. Notice how this differs from 
the previous example in that TOP (3) has been placed after the SELECT statement.

SELECT     TOP (3) *
FROM         CustomerDetails.Customers

So now that you know how to return data from SQL Server Management Studio, let’s look at using T-SQL and probably the 
T-SQL statement you will use most often: the SELECT.

The SELECT Statement
If we wish to retrieve data for viewing from SQL Server using T-SQL commands, then the SELECT 
statement is the command we need to use. This is quite a powerful command, as it can retrieve 
data in any order, from any number of columns, from any table that we have the authority to 
retrieve data from, perform calculations on that data during data retrieval, and even include 
data from other tables! If the user does not have the authority to retrieve data from a table, then 
you will receive an error message similar to that which you saw earlier in the chapter informing 
the user that permission is denied. SELECT has a lot more power than even the functions mentioned 
so far, but for the moment, let’s concentrate on the fundamentals.

Dewson_5882C08.fm  Page 266  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 267

Let’s take some time to inspect the simple syntax for a SELECT statement.

SELECT [ ALL | DISTINCT ]
[ TOP expression [ PERCENT ] [ WITH TIES ] ]
    {
                *
      | { table_name | view_name | alias_name }.*
      | { column_name | [ ] expression | $IDENTITY | $ROWGUID }
      [ [ AS ] column_alias ]
      | column_alias = expression
    } [ ,...n ]
FROM table_name | view_name alias_name
WHERE filter_criteria
ORDER BY ordering_criteria

The following list breaks down the SELECT syntax, explaining each option. More explana-
tion will be given throughout the chapter as well.

• SELECT: Required—this informs SQL Server that a SELECT instruction is being performed; 
in other words, we just want to return a set of columns and rows to view.

• ALL | DISTINCT: Optional—we want to return either all of the rows or only distinct, or 
unique, rows. Normally, you do not specify either of these options.

• TOP expression/PERCENT/WITH TIES: Optional—you can return the top number of rows 
as defined by either the order of the data in the clustered index or, if the result is ordered 
by an ORDER BY clause, the top number from that order sequence. If there is no clustered 
index or no ordering, then the rows will be returned in an arbitrary order. You can also 
add the word PERCENT to the end: this will mean that the top n percent of records will be 
returned. If PERCENT is not specified, all the records will be returned (unless specific 
column names are given). WITH TIES can only be used with an ORDER BY. If you specify 
you want to return TOP 10 rows, and the 11th row has the same value as the 10th row on 
those columns that have been defined in the ORDER BY, then the 11th row will also be 
returned. Same for subsequent rows, until you get to the point that the values differ.

• *: Optional—by using the asterisk, you are instructing SQL Server to return all the 
columns from all the tables included in the query. This is not an option that should be 
used on large amounts of data or over a network, especially if it is busy. By using this, we 
are bringing back more information than is required. Wherever possible we should 
name the columns instead.

• table_name.* | view_name.* | alias_name.*: Optional—similar to *, but you are defining 
which table, if the SELECT is working on more than one table. When working with more 
than one table, this is known as a JOIN, and this option will be demonstrated in Chapter 11 
when we take a look at joins.

• column_name: Optional but recommended; not required if * is used—this option is where 
we name the columns that we wish to return from a table. When naming the columns, it 
is always a good idea to prefix the column names with their corresponding table name. 
This becomes mandatory when we are using more than one table in our SELECT state-
ment and instances where there may be columns within different tables that share the 
same name.

Dewson_5882C08.fm  Page 267  Wednesday, January 4, 2006  3:43 PM



268 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

• expression: Optional—we don’t have to return columns of rows within a SELECT. We can 
return a value, a variable, or an expression.

• $IDENTITY: Optional—will return the value from the IDENTITY column.

• $ROWGUID: Optional—will return the value from the ROWGUID column.

• AS: Optional—we can change the column header name when displaying the results by 
using the AS option.

• FROM table_name | view_name: Required—we have to inform SQL Server where the infor-
mation is coming from.

• WHERE filter_clause: Optional—if we want to retrieve rows that meet specific criteria, 
we need to have a WHERE clause specifying the criteria to use to return the data. The WHERE 
clause tends to contain the name of a column on the left-hand side of a comparison 
operator, like =, <, >, and either another column within the same table, or another table, 
a variable, or a static value. There are other options that the WHERE statement can contain, 
where more advanced searching is required, but on the whole these comparison operators 
will be the main constituents of the clause.

• ORDER BY ordering_criteria: Optional—the data will be returned arbitrarily from the 
table if no ORDER BY clause is specified, which if you have a clustered index built on the 
table, will be that order; otherwise, it will be in the order in which they were inserted. 
However, you can alter the ordering by using the ORDER BY clause, which will determine 
the order of the rows returned, and you can specify whether each column is returned in 
ascending or descending order. Ascending, ASC, or descending, DESC, is defined for each 
column, not defined just once for all the columns within the ORDER BY. Sorting is completed 
once the data has been retrieved from SQL Server but before any command like TOP.

Keep in mind that when building a SELECT statement, you do not have to name all the 
columns. In fact, you should only retrieve the columns that you do wish to see; this will reduce 
the amount of information sent over the network. There is no need to return information that 
will not be used.

Naming the Columns
When building a SELECT statement, it is not necessary to name every column if you don’t want 
to see every column. You should only return the columns that you need. It is very easy to slip 
into using * to return every column, even when running one-time-only queries. Try to avoid 
this at all costs; typing out every column name takes time, but when you start dealing with 
more complex queries and a larger number of rows, the few extra seconds is worth it.

Now that you know not to name every column unless required, and to avoid using *, what 
other areas do you need to be aware of? First of all, it is not necessary to name columns in the 
same order that they appear in the table—it is quite acceptable to name columns in any order 
that you wish. There is no performance hit or gain from altering the order of the columns, but 
we may find that a different order of the columns might be better for any future processing of 
the data.

Dewson_5882C08.fm  Page 268  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 269

When building a SELECT statement and including the columns, if the final output is to be 
sent to a set of users, the column names within the database may not be acceptable. For example, 
if you are sending the output to the users via a file, then they will see the raw result set. Or if you 
are using a tool such as Crystal Reports to display data from a SELECT statement within a SQL 
Server stored procedure, then naming the columns would help there as well. The column 
names are less user friendly, and some column names will also be confusing for users; there-
fore, it would be ideal to be able to alter the names of the column headings. Replacing the SQL 
Server column headings with the new alias column headings desired, in either quotation 
marks or square bracket delimiters, is easily accomplished with the AS keyword. There is more 
on this in the next section.

Now that you know about naming the columns, let’s take a look at how the SQL command 
can return data.

The First Searches
This example will revolve around the CustomerDetails.Customers table, making it possible to 
demonstrate how all of the different areas mentioned previously can affect the results displayed.

Try It Out: The First Set of Searches

1. Ensure that Query Editor is running and that you are within the ApressFinancial database. In the 
Query Editor pane, enter the following SQL code:

SELECT * FROM CustomerDetails.Customers

2. Execute the code using Ctrl+E, F5, or the execute button on the toolbar. You should then see something 
like the results shown in Figure 8-19.

Figure 8-19. Customers listing

3. This is a simple SELECT command returning all the columns and all the rows from the CustomerDetails.
Customers table. Let’s now take it to the next stage where specific column names will be defined in 
the query, which is a much cleaner solution. In this instance from the CustomerDetails.Customers 
table, we would like to return a customer’s first name, last name, and the current account balances. 
This would mean naming CustomerFirstName, CustomerLastName, and ClearedBalance as the 
column names in the query. The code will read as follows:

SELECT CustomerFirstName,CustomerLastName,ClearedBalance
FROM CustomerDetails.Customers

Dewson_5882C08.fm  Page 269  Wednesday, January 4, 2006  3:43 PM



270 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

4. Now execute this code, which will return the results shown in Figure 8-20. As you can see, not every 
column is returned.

Figure 8-20. Specific columns returned

5. As you have seen from the examples so far, the column names, although well named from a design 
viewpoint, are not exactly suitable if we had to give this to a set of users. Using the same query as 
before, a couple of minor modifications are required to give the columns aliases. The first alias name is 
in quotes as it contains a space. Notice the last column also does not have AS specified because this 
keyword is optional.

SELECT CustomerFirstName As 'First Name',
CustomerLastName AS 'Surname',
ClearedBalance Balance
FROM CustomerDetails.Customers

6. Execute this and the displayed output changes—much more friendly column names, as you see in 
Figure 8-21.

Figure 8-21. Friendly column names

The first SELECT statement demonstrates the fact that in most SQL Server instances, whether we use upper- or 
lowercase doesn’t matter to our queries; however, some language installations are case sensitive. When installing 
SQL Server, if we chose a SQL collation sequence that was case sensitive, as denoted by CS within the suffix of the 
collation name, SQL_Latin1_General_Cp437_CS_AS, for instance, then the first SELECT query would generate 
an error. The collation sequence for SQL Server was chosen in Chapter 1 when we installed the application. 
Changing a collation sequence within SQL Server is a very difficult task that requires rebuilding parts of SQL Server, 
so this book won’t move into that area.

■Tip  It is strongly recommended, and considered best practice, that you use the correct casing when using 
queries. Not only does this avoid confusion, but it also means that if you do switch to a case-sensitive installation, 
then it will not be necessary to alter the query.

Dewson_5882C08.fm  Page 270  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 271

Moving back to the first query, this query will select all columns and all rows from the CustomerDetails.
Customers table, ordered according to how the database sees it—as you can see in Figure 8-21, it has quite 
plainly done this.

Looking at the second and third query examples, the columns returned have been reduced to just three columns: 
the customer’s first and last names and the cleared balance amounts. All the rows are still being returned. In the last 
example, notice that after two of the three columns, there is an AS keyword. This signifies that the following literal 
is to be used as the column heading; note that if we wish to use two words separated by spaces, we must surround 
these words by identifiers, whether they be quotation marks, as in our example, or square brackets.

Now that the basics of the SELECT statement have been covered, we will next look at the methods within Query 
Editor to display output in different manners.

Varying the Output Display
There are different ways of displaying the output: from a grid, as we have seen; from a straight 
text file; still within a Query Editor pane; or as pure text, just like a tabulated Word file. You may 
have found the results in the previous exercise laid out in a different format than shown previ-
ously, depending on how you initially set up Query Editor. In the results so far, you have seen 
the data as a grid. This next section will demonstrate tabular text output, otherwise known as 
Results in Text, as well as outputting the data to a file. Let’s get right on with the first option, 
Results in Text.

Try It Out: Putting the Results in Text and a File

1. You should still be in Query Editor. From the Query menu option, select Results To ➤ Results in Text, or 
press Ctrl+T. Figure 8-22 shows the other options available from the Results To menu.

Figure 8-22. Sending the results to different places

Dewson_5882C08.fm  Page 271  Wednesday, January 4, 2006  3:43 PM



272 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

2. If we run the same query as earlier (the code is detailed again here), we will be able to see the difference. 
Once the code is entered, execute it.

SELECT CustomerFirstName As 'First Name',
CustomerLastName AS 'Surname',
ClearedBalance Balance
FROM CustomerDetails.Customers

3. Examine the output, which should resemble Figure 8-23. As you can see, the output has changed a 
great deal. No longer is the output in a nice grid where the columns have been shrunk to a more man-
ageable size, but each column’s data takes up, and is displayed to, the maximum number of characters 
that each column could contain. This obviously stretches out the display, but from here we can see 
easily how large each column is supposed to be.

Figure 8-23. Results as text

4. There will be times, though, when users require output to be sent to them. For example, they may wish 
to know specific details from a set of records, and so you build a query and save the results to a file to 
send to them. Or perhaps they want output to perform some analysis of data within a Microsoft Excel 
spreadsheet. Again, this can be achieved from the Query menu by selecting Results To ➤ Results to 
File, or Ctrl+Shift+F. Specify sending results to a file and rerun the code. Once the code has been exe-
cuted, a Save Results dialog box like the one in Figure 8-24 will appear: this could show any folder 
location initially—in this case, it shows the My Documents folder.

Figure 8-24. Locating where to save the results

Dewson_5882C08.fm  Page 272  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 273

5. So now that you know how to save to different locations, move back to displaying the output to a grid 
by pressing Ctrl+D.

You now know how to return data, but what happens if you don’t want every row and you want to select which rows 
to display? We look at that next.

Limiting the Search: The Use of WHERE
You have a number of different ways to limit the search of records within a query. Some of the 
most basic revolve around the three basic relational operators: <, >, and = (less than, greater 
than, and equal to). There is also the use of the keyword NOT, which could be included with 
these three operators; however, NOT does not work as in other programming languages that you 
may have come across: this will be demonstrated within the example in this section so you 
know how to use the NOT operator successfully.

All of these operators can be found in the WHERE clause of the SELECT statement used to 
reduce the number of records returned within a query.

■Note  You may come across some legacy code where you will find that the WHERE statement is used to 
join two tables together to make the results look as if they came from one table. For some databases, this is 
the “standard” way to join two tables; however, with SQL Server, the WHERE statement is purely used as a 
filter method.

Try It Out: The WHERE Statement

1. First of all to use a different table, let’s enter some more rows in to the Shares table. Enter and execute 
the following code:

INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('FAT-BELLY.COM','FBC',45.20)
INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('NetRadio Inc','NRI',29.79)
INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('Texas Oil Industries','TOI',0.455)
INSERT INTO ShareDetails.Shares
(ShareDesc, ShareTickerId,CurrentPrice)
VALUES ('London Bridge Club','LBC',1.46)

Dewson_5882C08.fm  Page 273  Wednesday, January 4, 2006  3:43 PM



274 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

2. The requirement for this section is to find the current share price for FAT-BELLY.COM. We restrict the 
SELECT statement so that only the specific record comes back by using the WHERE statement, as can 
be seen in the following code:

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE ShareDesc = 'FAT-BELLY.COM'

3. Execute this code, and you will see that the single record for FAT-BELLY.COM is returned, as shown in 
Figure 8-25.

Figure 8-25. The results of limiting the search

4. To prove that we are working within an installation that is not case sensitive from a data perspective 
(unless you installed a different collation sequence to that described in Chapter 1), if you perform the 
following query, you will get the same results as displayed in Figure 8-25.

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE ShareDesc = 'FAT-BELLY.COm'

■Note  As you can see, this may not always be what you want, because you may want your data to be case 
sensitive. If you do, then query code will also become case sensitive.

5. You have seen the WHERE in action using the equals sign; it is also possible to use the other relational 
operations in the WHERE statement. The next query demonstrates how SQL Server takes the WHERE 
condition and starts returning records after the given point. This query provides an interesting set of 
results. Enter the code as detailed here:

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE ShareDesc > 'FAT-BELLY.COM'
AND ShareDesc < 'TEXAS OIL INDUSTRIES'

6. Once done, execute the code and check the results, which should resemble Figure 8-26.

Figure 8-26. Shares output

Dewson_5882C08.fm  Page 274  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 275

7. Let’s now bring in another option in the WHERE statement that allows us to avoid returning specific rows. 
This can be achieved in one of two ways: the first is by using the less than and greater than signs; 
the second is by using the NOT operator. Enter the following code, which will return all rows except 
FAT-BELLY.COM. Run both sets of code at once. This will return two sets of output, known as multiple 
result sets.

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE ShareDesc <> 'FAT-BELLY.COM'

SELECT ShareDesc,CurrentPrice
FROM ShareDetails.Shares
WHERE NOT ShareDesc = 'FAT-BELLY.COM'

8. Executing this code will produce the output shown in Figure 8-27. Notice how in neither sets of output 
FAT-BELLY.COM has been listed.

Figure 8-27. Multiple output

As you have seen, it is possible to limit the number of records to be returned via the WHERE clause; we can return 
records up to a certain point, after a certain point, or even between two points with the use of an AND statement. It 
is also possible to exclude rows that are not equal to a specific value or range of values by using the NOT statement 
or the <> operator.

When the SQL Server data engine executes the T-SQL SELECT statement, it is the WHERE statement that is dealt 
with before any ordering of the data, or any limitation placed on it concerning the number of rows to return. The data 
is inspected, where possible using an index, to determine whether a row stored in the relevant table matches the 
selection criteria within the WHERE statement, and if it does, to return it. If an index cannot be used, then a full table 
scan will be performed to find the relevant information.

Table scans can present a large performance problem within your system, and you will find that if a query has to 
perform a table scan, then data retrieval could be very slow, depending on the size of the table being scanned. If the 
table is small with only a small number of records, then a table scan is likely to retrieve data more quickly than the 
use of an index. However, table scanning and the speed of data retrieval will be the biggest challenge you will face 
as a SQL Server developer. With data retrieval, it is important to bear in mind that whenever possible, if you are 
using a WHERE clause to limit the records returned, you should try to specify the columns from an index definition 
in this WHERE clause. By doing this, you will be giving the query the best chance for optimum performance.

Dewson_5882C08.fm  Page 275  Wednesday, January 4, 2006  3:43 PM



276 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

As discussed in Chapter 7, getting the index right is crucial to fast data manipulation and retrieval. If you find you are 
forever placing the same columns in a WHERE clause, but those columns do not form part of an index, perhaps this 
is something that should be revisited to see whether any gain can come from having the columns be part of an index.

For any table, ensuring that the WHERE clause is correct is important. As has been indicated from a speed perspective, 
using an index will ensure a fast response of data. This gains greater importance with each table added, and even 
more importance as the size of each table grows.

Finally, by ensuring the WHERE statement filters out the correct rows, you will ensure that the required data is 
returned, the right results are displayed, and less data is sent across the network, as the processing is done on the 
server and not the client. Also, having the appropriate indexing strategy helps with this as well.

It is also possible to return a specific number of rows, or a specific percentage of the number of rows, as you saw 
when displaying rows in SQL Server Management Studio. These statements are discussed next, with a short code 
example demonstrating each in action. First of all, we will look at a statement that does not actually form part of the 
SELECT command itself.

SET ROWCOUNT n
SET ROWCOUNT n is a totally separate command from the SELECT statement and can in fact be 
used with other statements within T-SQL. What this command will do is limit or reset the 
number of records that will be processed for the session that the command is executed in.

■Note  Caution should be exercised if you have any statements that also use a TOP command, described in 
a moment.

The SET ROWCOUNT n function stops the processing of the SELECT command, or even UPDATE 
and DELETE commands, described in the “Updating Data” and “Deleting Data” sections 
respectively, once the number of rows defined has been reached. The difference between SET 
ROWCOUNT and SELECT TOP n is that the latter will perform one more internal instruction to that 
of the former. Processing halts immediately when the number of records processed through 
SET ROWCOUNT is reached. However, by using the TOP command, all the rows are returned inter-
nally, the TOP n rows are selected from that group internally, and these are then passed for display. 
Returning a limited number of records is useful when you want to look at a handful of data to 
see what values could be included, or perhaps you wish to return a few rows for sampling the data.

You can set the number of rows to be affected by altering the number, n, at the end of the 
SET ROWCOUNT function. This setting will remain in force only within the query window in which 
the command is executed, or within the stored procedure in which the command is executed.

To reset the session so that all rows are taken into consideration, you would set the ROWCOUNT 
number to 0.

Dewson_5882C08.fm  Page 276  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 277

Try It Out: SET ROWCOUNT

1. In Query Editor, enter the following code into a new Query Editor pane; once entered, execute it.

SET ROWCOUNT 3
SELECT * FROM ShareDetails.Shares
SET ROWCOUNT 0
SELECT * FROM ShareDetails.Shares

2. You should see two result sets, as shown in Figure 8-28. The first will return three rows from the 
ShareDetails.Shares table. The second result set will return all rows from ShareDetails.Shares.

Figure 8-28. Limiting the output via rowcount

TOP n
This option, found within the SELECT statement itself, will return a specific number of rows from the 
SELECT statement, and is very much like the SET ROWCOUNT function for that reason. In fact, the 
TOP n option is the preferred option to use when returning a set number of rows, as opposed to 
the SET ROWCOUNT function. The reason behind this is that TOP n only applies to that query 
command; however, by using SET ROWCOUNT n, you are altering all commands until you reset 
SQL Server to act on all rows through SET ROWCOUNT 0.

■Caution  Although it is possible to use TOP n without any ORDER BY statement, it is usual to combine 
TOP with ORDER BY. When no order is specified, the rows returned are arbitrary, and if you want consistent 
results, then ordering will provide this. If you are not concerned about which rows are returned, then you can 
avoid using ORDER BY.

Any WHERE statements and ORDER BY statements within the SELECT statement are dealt with 
first, and then, from the resultant records, the TOP n function comes into effect. This will be 
demonstrated with the following example.

Dewson_5882C08.fm  Page 277  Wednesday, January 4, 2006  3:43 PM



278 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Try It Out: TOP n

1. In Query Editor, enter the following code into a new Query Editor pane; once entered, execute it.

SELECT TOP 3 * FROM ShareDetails.Shares
SET ROWCOUNT 3
SELECT TOP 2 * FROM ShareDetails.Shares
SET ROWCOUNT 2
SELECT TOP 3 * FROM ShareDetails.Shares

2. The code returns three result sets, as shown in Figure 8-29. Take a moment to peruse these result sets. 
The first set is just the top three records that are taken from an arbitrary order SQL Server has chosen. 
The second will only return two records, even though the ROWCOUNT is set to 3. The third result set 
takes into account the ROWCOUNT setting, as this is the lesser value this time. Therefore, again, only two 
records are returned.

Figure 8-29. A mixture of TOP and rowcount

TOP n PERCENT
TOP n PERCENT is very similar to the TOP n clause with the exception that instead of working with 
a precise number of records, it is a percentage of the number of records that will be returned. 
Keep this in mind, as it is not a percentage of the number of records within the table. Also, the 
number of records is rounded up; therefore, as soon as the percentage moves over to include 
another record, then SQL Server will include this extra record.

You see more of this option in Chapter 9, which discusses the building of views.

String Functions
A large number of system functions are available for manipulating data. This section looks 
purely at the string functions available for use within a T-SQL command; later in the book, we 
will look at some more functions that are available to us. Following are the functions that are 
used in the next example:

Dewson_5882C08.fm  Page 278  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 279

• LTRIM/RTRIM: These perform similar functionality. If you have a string with leading 
spaces, and you wish to remove those leading spaces, you would use LTRIM so that the 
returned varchar value would have a nonspace character as its first value. If you have 
trailing spaces, you would use RTRIM. You can only use this function with a data type of 
varchar, nvarchar, or a data type that can be implicitly converted to these two data types, 
or with a data type converted to varchar or nvarchar using the CAST SQL Server function.

• CAST: A specialized function that will convert one data type to another data type. I don’t 
cover this within the book. If you wish to convert data types, check on the command in 
Books Online, which can be found by selecting Help in Query Editor.

• LEFT/RIGHT: This function will return the leftmost or rightmost characters from a string. 
Passing in a second parameter to the function will determine the number of characters 
to return from whichever side of the string. The LEFT and RIGHT functions accept any data 
type except text or ntext expressions to perform the string manipulation, implicitly 
converting any noncharacter data type or varchar or nvarchar, and returning a varchar 
or nvarchar data type as a result.

Try It Out: String Functions

1. Enter the code that follows into an empty Query Editor window. Alter the output to text format, by 
pressing Ctrl+T. Notice the use of the + operator within the SELECT query. This will concatenate the 
strings defined within the query into one single string value.

■Note  Unlike with some programming languages, you cannot use the & character, as this has a totally 
different meaning in SQL Server.

SELECT CustomerFirstName + ' ' + CustomerLastName AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers

2. Execute this code, which produces the output in Figure 8-30.

Figure 8-30. Concatenating results

Dewson_5882C08.fm  Page 279  Wednesday, January 4, 2006  3:43 PM



280 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

3. As you can see, it’s a bit unwieldy. The Name column heading goes far wider than is required. There is 
a complex way of getting this right, but a much simpler method is to use the LEFT command. The sum 
of the width of the two columns gives this column width displayed in the output; by using the LEFT command, 
it is possible to achieve something better. Clear the Query Editor pane and enter the following code:

SELECT LEFT(CustomerFirstName + ' ' + CustomerLastName,50) AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers

4. Execute the preceding code. This produces the results shown in Figure 8-31. What the preceding query 
has done is to reduce the output to the first 50 characters starting from the left.

Figure 8-31. Concatenating results and reducing the width

5. The best way is to remove all trailing spaces from the first name and surname concatenated columns is 
the RTRIM command. The following code does this, although the output in the text layout doesn’t. This 
is because SQL Server still doesn’t know what the maximum size of the concatenation will be, and it has 
to believe that the maximum number of characters of the sum of the two columns could still be displayed. 
However, in truth, the amount of data returned will be minimal. Therefore, this is a great method of 
reducing the amount of data passed over a network.

SELECT RTRIM(CustomerFirstName + ' ' + CustomerLastName) AS 'Name',
ClearedBalance Balance
FROM CustomerDetail.Customers

In all of our examples thus far, as you know, rows are returned either in an arbitrary order or in the order of the clustered 
index if one has been defined. We look now at how this can be changed.

Order! Order!
Of course, retrieving the records in the order of the clustered index may not always be what you 
desire. However, it is possible to change the order in which you return records. This is achieved 
through the ORDER BY clause, which is part of the SELECT statement. The ORDER BY clause can have 
multiple columns, even with some being in ascending order and others in descending order.

If you should find that you are repeatedly using the same columns within an ORDER BY 
clause, or that the query is taking some time to run, you should consider having the columns 
within the query as an index. (Indexes were covered in Chapter 6.)

Dewson_5882C08.fm  Page 280  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 281

Ordering the data will of course increase processing time, but it is used as a necessity 
to display the data in the correct order. Ordering on varchar columns also takes longer than 
numeric columns.

■Note  Ordering takes place after the filtering of rows but before the TOP command, so you could still be 
ordering a large set of rows before returning the top few you may need.

Let’s now take a look at building a query that uses an ORDER BY clause.

Try It Out: Altering the Order

1. Clear the query window in Query Editor and set the display option back to showing a grid by pressing 
Ctrl+D. Once complete, enter the following code into the Query Editor pane. This will return the data in 
the ascending (the default) order of the cleared balance of our customers.

SELECT LEFT(CustomerFirstName + ' ' + CustomerLastName,50) AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers
ORDER BY Balance

2. Execute the code; this will produce the results shown in Figure 8-32.

Figure 8-32. Altering the order by balance

3. We can also complete the same query, but have the cleared balance in descending order, rather than 
ascending order. This is simply done by placing DESC after the column name. Change your code as 
detailed here:

SELECT LEFT(CustomerFirstName + ' ' + CustomerLastName,50) AS 'Name',
ClearedBalance Balance
FROM CustomerDetails.Customers
ORDER BY Balance DESC

4. Execute the code; this will produce the results shown in Figure 8-33.

Dewson_5882C08.fm  Page 281  Wednesday, January 4, 2006  3:43 PM



282 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Figure 8-33. Making the order in descending sequence

The LIKE Operator
It is possible to use more advanced techniques for finding records where a mathematical oper-
ation doesn’t quite fit; for example, someone is trying to track down a customer, but doesn’t 
know the customer’s full name or does know the first part of his or her surname but don’t know 
how to spell the full name.

Suppose you know that the surname ends in “Glynn” as in the first customer we added, 
but you don’t know if it starts with Mc, Mac, or even M. So how would this be put into a query? 
There is a keyword that you can use as part of the WHERE statement, called LIKE. This will use 
pattern matching to find the relevant rows within a SQL Server table using the information 
provided.

The LIKE operator can come with one of four operators, which are used alongside string 
values that you want to find. Each of the four operators is detailed in the following list. They can 
be used together, and using one does not exclude using any others.

■Note  LIKE is NOT case sensitive.

• %: This would be placed at the end and/or the beginning of a string. The best way to 
describe this is through an example; if you were searching the customers who had the 
letter “a” within their surname, you would search for “%a%”, which would look for the 
letter “a,” ignoring any letters before and after the letter “a”, and just checking for that 
letter within the first name column.

• _: This looks at a string, but only for a single character before or after the position of the 
underscore. Therefore, looking in the first name column for “_a” would return any customer 
who has two letters in his or first name where the second letter is an “a.” In our example, 
no records would be returned. However, if you combined this with the % sign and search 
for “_a%,” then you would get back Jason Atkins, Ian McMahon, and Ian Prentice. You 
would not get back Vic McGlynn, because “a” is not the second letter.

Dewson_5882C08.fm  Page 282  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 283

• []: This lets you specify a number of values or a range of values to look for. For example, 
if you were looking in the player’s first name for the letters “c-f”, you would use LIKE 
"%[c-f]%".

• [^...]: Similar to the preceding option , this one lists those items that do not have values 
within the range specified.

The best way to learn how to use LIKE is to see an example.

Try It Out: The LIKE Operator

1. We are going to try and find Vic McGlynn via the CustomerLastName column. We know the name ends 
with Glynn. The code that follows will search all of the customer rows looking for anything prefixing Glynn.

SELECT CustomerFirstName + ' ' + CustomerLastName
FROM CustomerDetails.Customers
WHERE CustomerLastName LIKE '%Glynn'

2. Execute the code; this will give the results shown in Figure 8-34.

Figure 8-34. Using the LIKE operator

3. We can also go to extremes using the LIKE operator, for example, seeing which players have the letter 
“n” anywhere in their name. The code for this is shown here:

SELECT CustomerFirstName + ' ' + CustomerLastName AS [Name]
FROM CustomerDetails.Customers
WHERE CustomerFirstName + ' ' + CustomerLastName LIKE '%n%'

4. When you execute this, you should get the results shown in Figure 8-35: four customers are returned, 
as they have an “n” somewhere in their name.

Figure 8-35. Using LIKE to search for customers with “n” in their name

5. Why would we want to go to such lengths? Would it not have been possible to use the Name alias, which 
is a combination of the first name and last name columns? Well, unfortunately not—the code we might 
expect to use would look something like the following:

Dewson_5882C08.fm  Page 283  Wednesday, January 4, 2006  3:43 PM



284 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

SELECT CustomerFirstName + ' ' + CustomerLastName AS [Name]
FROM CustomerDetails.Customers
WHERE [Name] LIKE '%n%'

6. Execute this code. Instead of the success messages that we have become used to, an error message 
will be returned. We can only search on real column names, not aliases.

Msg 207, Level 16, State 1, Line 3
Invalid column name 'Name'.

Creating Data: SELECT INTO
The topic discussed in this section is quite an advanced area to be getting into, but it’s not too 
advanced to be covered within this book. It is possible to create a new table within a database 
by using the INTO keyword, like that found in INSERT INTO, within a SELECT statement, providing, 
of course, you have the right database permissions to create tables in the first place. First of all, 
it is necessary to clarify the syntax of how the SELECT INTO statement is laid out; we simply add 
the INTO clause after the column names, but before the FROM keyword. Although the following 
section of code shows just one table name, it is possible to create a new table from data from 
one or more tables.

SELECT *|column1,column2,...
INTO new_tablename
FROM tablename

The INTO clause is crucial to the success of the creation of the new table. The SELECT state-
ment will fail if there is a table already in existence with the same name for the same table 
owner. This will be demonstrated within the example.

The table generated will consist of the columns returned from the built SELECT statement, 
whether that is all the columns from the table mentioned within the FROM statement or a subset. 
The new table will also contain only the rows returned from the SELECT statement. To clarify, 
this command is creating a new table using the structure within the SELECT statement. There 
will be no keys, constraints, relationships, or in fact any other facet of SQL Server, except a new 
table. Hence creating tables using SELECT...INTO should only be done with thought.

■Note  If you really need to do this, it is faster to create the table using CREATE TABLE and then insert the 
data into it using the INSERT INTO...SELECT statement rather than SELECT .... INTO 
new_tablename FROM tablename.

Two tables can exist with the same name within a database, providing that they have 
different schemas. The tables in ApressFinancial all have the database owner as their owner, 
but it is possible for a CustomerDetails.Customers table to exist for an owner like VMcGlynn.

Dewson_5882C08.fm  Page 284  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 285

■Note  Although possible, this is NOT recommended, as it causes confusion.

Let’s look at the INTO statement in action.

Try It Out: SELECT INTO

1. In an empty Query Editor window, enter the following code:

SELECT CustomerFirstName + ' ' + CustomerLastName AS [Name],
ClearedBalance,UnclearedBalance
INTO CustTemp
FROM CustomerDetails.Customers

2. Execute the code. This will return the following message in the results pane:

 (5 row(s) affected)

3. If we now move to the Object Explorer on the left-hand side (if the Object Explorer is no longer there, 
press F8), and complete a refresh, you should see a new table in the expanded Tables node, called 
CustTemp, as shown in Figure 8-36.

Figure 8-36. New table created with SELECT INTO

You should use the INTO clause with care. For instance, in this example, security has not been set up for the table, 
and we are also creating tables within our database that have not been through any normalization or development 
life cycle. It is also very easy to fill up a database with these tables if we are not careful. However, it is a useful and 
handy method for taking a backup of a table and then working on that backup while testing out any queries that 
might modify the data. Do ensure though that there is enough space within the database before building the table 
if you do use this technique.

Dewson_5882C08.fm  Page 285  Wednesday, January 4, 2006  3:43 PM



286 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

■Note  It is best to avoid doing this in a production environment unless you really do need to keep the table 
permanently.

Who Can Add, Delete, and Select Data
In this chapter, we inserted a certain amount of data into tables. All went well, and the data was 
inserted and selected easily. This was due to using the same connection that created the data-
base. This does not mean that anyone who has access to our database could also add data as 
easily as we can. In Chapter 1, we set up several different users for the system. To recap, here 
are the users and their authority:

• RDewson: Administrator/database owner

• AJMason: Database owner

• VMcGlynn: Administrator

• sa: Administrator, SQL Server’s default system administrator login

We want to prove that not all users can or should be able to do anything against our data. 
If any new user is created and given authority to connect to ApressFinancial, then providing 
this user is not an administrator on the local machine, he or she will not be able to view, insert, 
or delete any data. We do have a limited user in AJMason, although we did give this user db_owner 
rights earlier in the book to demonstrate his connection. This was a short-term solution that is 
now no longer is valid. We need to refine this user so that we can restrict exactly what the user 
can do. In the following example, we will remove the db_owner role and give AJMason SELECT 
permissions on the ShareDetails.Shares table only. You will then see this in action.

Try It Out: Refining Permissions

1. Within the Object Explorer, expand the Security node, and then the Users node. Find XP-PRO\AJMason, 
right-click it, and select Properties.

2. This will bring up the Database User dialog box. As shown in Figure 8-37, deselect the db_owner role 
that you will see as being checked.

Dewson_5882C08.fm  Page 286  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 287

Figure 8-37. Removing database owner role

3. Move to the Securables options for this user. In this area, shown in Figure 8-38, it is possible to define 
the exact privileges that this user can have, and can even pass on to other users. At present, the options 
are blank, but we can add objects by clicking the Add button.

Dewson_5882C08.fm  Page 287  Wednesday, January 4, 2006  3:43 PM



288 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Figure 8-38. Securables tab, preparing to add objects

4. This brings up the Add Objects dialog box. We want to refine who we are going to give the SELECT privilege 
to in the ShareDetails schema. Select this schema in the combo box as shown in Figure 8-39 and 
click OK.

5. When we return to the Securables dialog box, as shown in Figure 8-40, we will see two tables defined, 
ShareDetails.SharePrices and ShareDetails.Shares. Below that is a list of Explicit Permis-
sions, which at the moment reflects the ShareDetails.SharePrices table. Nothing is selected; 
therefore, at present, if we applied the actions performed up to this point, AJMason would be unable to 
perform anything on this table (or any other table as we had removed db_owner).

Dewson_5882C08.fm  Page 288  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 289

Figure 8-39. Defining only the ShareDetails schema

Figure 8-40. Detailing the ShareDetails schema objects

Dewson_5882C08.fm  Page 289  Wednesday, January 4, 2006  3:43 PM



290 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

6. Change the Securables list to the ShareDetails.Shares table. Then in the Explicit Permissions area 
grant Select permissions by checking the check box as shown in Figure 8-41. I will explain this section 
in more detail shortly. Once done, click OK, which will then apply these changes to AJMason.

Figure 8-41. Allowing the user to only select from ShareDetails.Shares

7. Now switch to AJMason on your computer, and connect to SQL Server 2005. Create a new Query Editor 
window. If you do a SELECT * FROM ShareDetails.Shares, then you will get an empty list. This 
is because you have SELECT permissions. However, if you try to INSERT some data, as shown in 
Figure 8-42, then you will see an error.

Figure 8-42. AJMason cannot insert data.

Dewson_5882C08.fm  Page 290  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 291

Securables
There are three different options in the Securables dialog box for explicit permissions. These 
are GRANT, WITH GRANT, and DENY. Although we are looking at tables here, the same options are 
possible with other objects that we come across within SQL Server.

• GRANT: This will grant the user or role access on that action on the defined table.

• WITH GRANT: This will also grant the user or role access on that action on the defined table. 
However, anyone with this option can also pass on the permission to other users or roles.

• DENY: This explicitly denies any user or role the action against the table.

By setting up different roles and placing users in those roles, you should now know which 
users can access the data, and how to set up groups of users to protect your data. Of course, 
it is normal practice to set up several roles within your database for each area of the business. 
There would be a role for supervisors, and perhaps another for line managers, and another for 
directors, and so on. It all depends on your database and the solution you are providing as to 
how many different roles are required. But from this it is simpler to control access to the data.

Updating Data
Now that data has been inserted into our database, and you have seen how to retrieve this 
information, it is time to look at how to modify the data, referred to as updating the data, and 
the different methods of deletion.

Ensuring that you update the right data at the right time is crucial to maintaining data 
integrity. You will find that when updating data, and also when removing or inserting data, it is 
best to group this work as a single, logical unit, called a transaction, thereby ensuring that if 
an error does occur, it is still possible to return the data back to its original state. This section 
describes how a transaction works and how to incorporate transactions within your code. 
When looking at transactions, we will only be taking an overview of them. We will look at the 
basics of a transaction and how it can affect the data.

Deleting data can take one of two forms. The first is where a deletion of the data is logged 
in the transaction log. This means that if there is a failure of some sort, the deletion can be 
backed out. The second is where the deletion of the data is minimally logged. Knowing when to 
use each of these actions can improve performance of deletions.

This discussion aims to ensure that you

• Know the syntax of the UPDATE command.

• Are competent at updating data within a SQL Server table.

• Are aware of transactions and how to use them effectively within SQL Server.

• Understand the dangers when transactions are nested.

• Know the syntax for the DELETE command.

• Know how to use this command in T-SQL.

• Are aware of the pitfalls of the TRUNCATE command.

First of all, let’s take a look at the syntax for the UPDATE command.

Dewson_5882C08.fm  Page 291  Wednesday, January 4, 2006  3:43 PM



292 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

The UPDATE Command
The UPDATE command will update columns of information on rows within a single table 
returned from a query that can include selection and join criteria. The syntax of the UPDATE 
command has similarities to the SELECT command, which makes sense, as it has to look for 
specific rows to update, just as the SELECT statement looks for rows to retrieve. You will also find 
that before doing updates, especially more complex updates, to build up a SELECT statement 
first and then transferring the JOIN and WHERE details in to the UPDATE statement. The syntax that 
follows is in its simplest form. Once you become more experienced, the UPDATE command can 
become just as complex and versatile as the SELECT statement.

UPDATE
    [ TOP ( expression ) [ PERCENT ] ]
    [[ server_name . database_name . schema_name .
    | database_name .[ schema_name ] .
    | schema_name .]
table_or_viewname
    SET
        { column_name = { expression | DEFAULT | NULL }
          | column_name { .WRITE ( expression , @Offset , @Length ) }
          | @variable = expression
          | @variable = column = expression [ ,...n ]
        } [ ,...n ]
    [FROM { <table_source> } [ ,...n ] ]
    [ WHERE { <search_condition>]

The first set of options we know from the SELECT statement. The tablename clause is simply 
the name of the table on which to perform the UPDATE. Moving on to the next line of the syntax, 
we reach the SET clause. It is in this clause that any updates to a column take place. One or more 
columns can be updated at any one time, but each column to be updated must be separated by 
a comma.

When updating a column, there are four choices that can be made for data updates. This can 
be through a direct value setting, a section of a value setting providing that the recipient column is 
varchar, nvarchar, or varbinary, the value from a variable, or a value from another column, even 
from another table. We can even have mathematical functions or variable manipulations included 
in the right-hand clause, have concatenated columns, or have manipulated the contents through 
STRING, DATE, or any other function. Providing that the end result sees the left-hand side having 
the same data type as the right-hand side, the update will then be successful. As a result, we 
cannot place a character value into a numeric data type field without converting the character 
to a numeric value.

If we are updating a column with a value from another column, the only value that it is 
possible to use is the value from the same row of information in another column, provided this 
column has an appropriate data type. When we say “same row,” remember that when tables 
are joined together, this means that values from these joined tables can also be used as they are 
within the same row of information. Also, the expression could also be the result of a subquery.

Dewson_5882C08.fm  Page 292  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 293

■Note  A subquery is a query that sits inside another query. We look at these in Chapter 12.

The FROM table source clause will define the table(s) used to find the data to perform the 
update on the table defined next to the UPDATE command. Like SELECT statements, it is possible 
to create JOIN statements; however, you must define the table you are updating within the FROM 
clause.

Finally, the WHERE condition is exactly as in the SELECT command, and can be used in exactly 
the same way. Note that omitting the WHERE clause will mean the UPDATE statement will affect 
every row in the table.

Updating Data Within Query Editor
To demonstrate the UPDATE command, the first update to the data will be to change the name 
of a customer, replicating when someone changes their name due to marriage or deed, for 
example. This uses the UPDATE command in its simplest form, by locating a single record and 
updating a single column.

Try It Out: Updating a Row of Data

1. Ensure that Query Editor is running and that you are logged in with an account that can perform updates. 
In the Query Editor pane, enter the following UPDATE command:

UPDATE CustomerDetails.Customers
SET CustomerLastName = 'Brodie'
WHERE CustomerId = 1

2. It is as simple as that! Now that the code is entered, execute the code, and you should then see a 
message like this:

 (1 row(s) affected)

3. Now enter a SELECT statement to check that Vic McGlynn is now Vic Brodie. For your convenience, 
here’s the statement, and the results are shown in Figure 8-43:

SELECT * FROM CustomerDetails.Customers
WHERE CustomerId = 1

Figure 8-43. Vic McGlynn is now Vic Brodie.

Dewson_5882C08.fm  Page 293  Wednesday, January 4, 2006  3:43 PM



294 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

4. Now here’s a little trick that you should know, if you haven’t stumbled across it already. If you check out 
Figure 8-44, you will see that the UPDATE code is still in the Query Editor pane, as is the SELECT statement. 
No, we aren’t going to perform the UPDATE again! If you highlight the line with the SELECT statement 
by holding down the left mouse button and dragging the mouse, then only the highlighted code will run 
when you execute the code again.

Figure 8-44. How to execute only specific code

■Note  On executing the highlighted code, you should only see the values returned for the SELECT state-
ment as we saw previously, and no results saying that an update had been performed.

5. It is also possible to update data using information from another column within the table, or with the 
value from a variable. This next example will demonstrate how to update a row of information using the 
value within a variable, and a column from the same table. Notice how although the record will be found 
using the CustomerLastName column, the UPDATE command is also updating that column with a new 
value. Enter the following code and then execute it:

DECLARE @ValueToUpdate VARCHAR(30)
SET @ValueToUpdate = 'McGlynn'
UPDATE CustomerDetails.Customers
   SET CustomerLastName = @ValueToUpdate,
       ClearedBalance = ClearedBalance + UnclearedBalance ,
       UnclearedBalance = 0
 WHERE CustomerLastName = 'Brodie'

6. You should then see the following output:

(1 row(s) affected)

7. Now to check what has happened. You may be thinking that the update has not happened because you 
are altering the column that is being used to find the record, but this is not so. The record is found, then 
the update occurs, and then the record is written back to the table. Once the record is retrieved for 
update, there is no need for that value to be kept. Just check that the update occurred by entering and 
executing the following code:

Dewson_5882C08.fm  Page 294  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 295

SELECT CustomerFirstName, CustomerLastName,
ClearedBalance, UnclearedBalance
FROM CustomerDetails.Customers
WHERE CustomerId = 1

You should now see the alteration in place, as shown in Figure 8-45.

Figure 8-45. Updating multiple columns

8. Now let’s move on to updating columns in which the data types don’t match. SQL Server does a pretty 
good job when it can to ensure the update occurs, and these following examples will demonstrate how 
well SQL Server copes with updating an integer data type with a value in a varchar data type. The first 
example will demonstrate where a varchar value will successfully update a column defined as integer. 
Enter the following code:

DECLARE @WrongDataType VARCHAR(20)
SET @WrongDataType = '4311.22'
UPDATE CustomerDetails.Customers
   SET ClearedBalance = @WrongDataType
WHERE CustomerId = 1

9. Execute the code; you should see the following message when you do:

(1 row(s) affected)

10. The value 4311.22 has been placed into the ClearedBalance column for CustomerId 1. SQL 
Server has performed an internal data conversion (known as an implicit data type conversion) and has 
come up with a money data type from the value within varchar, as this is what the column expects, and 
therefore can successfully update the column. Here is the output as proof:

SELECT CustomerFirstName, CustomerLastName,
ClearedBalance, UnclearedBalance
FROM CustomerDetails.Customers
WHERE CustomerId = 1

Figure 8-46 shows the results of updating the column.

Figure 8-46. Updating a column with internal data conversion

Dewson_5882C08.fm  Page 295  Wednesday, January 4, 2006  3:43 PM



296 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

11. However, in this next example, the data type that SQL Server will come up with is a numeric data type. 
When we try to alter an integer-based data type, bigint, with this value, which we can find in the 
AddressId column, the UPDATE does not take place. Enter the following code:

DECLARE @WrongDataType VARCHAR(20)
SET @WrongDataType = '2.0'
UPDATE CustomerDetails.Customers
   SET AddressId = @WrongDataType
WHERE CustomerId = 1

12. Now execute the code. Notice when we do that SQL Server generates an error message informing you 
of the problem. Hence, never leave data conversions to SQL Server to perform. Try to get the same data 
type updating the same data type. We look at how to convert data within Chapter 12.

Msg 8114, Level 16, State 5, Line 3
Error converting data type varchar to bigint.

Updating data can be very straightforward, as the preceding examples have demonstrated. Where at all possible, 
either use a unique identifier, for example, the CustomerId, when trying to find a customer, rather than a name. 
There can be multiple rows for the same name or other type of criteria, but by using the unique identifier, you can 
be sure of using the right record every time. To place this in a production scenario, we would have a Windows-based 
graphical system that would allow you to find details of customers by their name, address, or account number. Once 
you found the right customer, instead of keeping those details to find other related records, keep a record of the 
unique identifier value instead.

Getting back to the UPDATE command and how it works, first of all SQL Server will filter out from the table the first 
record that meets the criteria of the WHERE statement. The data modifications are then made, and SQL Server 
moves on to try to find the second row matching the WHERE statement. This process is repeated until all the rows 
that meet the WHERE condition are modified. Therefore, if using a unique identifier, SQL Server will only update one 
row, but the WHERE statement looks for rows that have a CustomerLastName of McGlynn, in which case multiple 
rows could be updated. So choose your row selection criteria for updates carefully.

But what if you didn’t want the update to occur immediately? There will be times when you will want to perform an 
update, and then check that the update is correct before finally committing the changes to the table. Or when doing 
the update, you want to check for errors or unexpected data updates. This is where transactions come in, and these 
are covered next.

Transactions
A transaction is a method through which developers can define a unit of work logically or 
physically that, when it completes, leaves the database in a consistent state. A transaction 
forms a single unit of work, which must pass the ACID test before it can be classified as a trans-
action. The ACID test is an acronym for Atomicity, Consistency, Isolation, and Durability:

Dewson_5882C08.fm  Page 296  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 297

• Atomicity: In its simplest form, all data modifications within the transaction must be 
both accepted and inserted successfully into the database, or none of the modifications 
will be performed.

• Consistency: Once the data has been successfully applied, or rolled back to the original 
state, all the data must remain in a consistent state, and the data must still maintain 
its integrity.

• Isolation: Any modification in one transaction must be isolated from any modifications 
in any other transaction. Any transaction should see data from any other transaction 
either in its original state or once the second transaction has completed. It is impossible 
to see the data in an intermediate state.

• Durability: Once a transaction has finished, all data modifications are in place and can 
only be modified by another transaction or unit of work. Any system failure (hardware or 
software) will not remove any changes applied.

Transactions within a database are a very important topic, but also one that requires a 
great deal of understanding. This chapter covers the basics of transactions only. To really do 
justice to this area, we would have to deal with some very complex and in-depth scenarios, 
covering all manner of areas such as triggers, nesting transactions, and transaction logging, 
which is beyond the scope of this book.

A transaction can be placed around any data manipulation, whether it is an update, inser-
tion, or deletion, and can cater to one row or many rows, and also many different commands. 
There is no need to place a transaction around a SELECT statement unless you are doing a 
SELECT...INTO, which is of course modifying data. This is because a transaction is only required 
when data manipulation occurs such that changes will either be committed to the table or 
discarded. A transaction could cover several UPDATE, DELETE, or INSERT commands, or indeed a 
mixture of all three. However, there is one very large warning that goes with using transactions.

■Caution  Be aware that when creating a transaction, you will be keeping a hold on the whole table, pages 
of data, or specific rows of information in question, and depending upon how your SQL Server database is set 
up to lock data during updates, you could be stopping others from updating any information, and you could 
even cause a deadlock, also known as a deadly embrace. If a deadlock occurs, SQL Server chooses one of 
the deadlocks and kills the process; there is no way of knowing which process SQL Server will select.

A deadlock is where two separate data manipulations, in different transactions, are being 
performed at the same time. However, each transaction is waiting for the other to finish the 
update before it can complete its update. Neither manipulation can be completed because 
each is waiting for the other to finish. A deadlock occurs, and it can (and will) lock the tables 
and database in question. So, for example, transaction 1 is updating the customers table 

Dewson_5882C08.fm  Page 297  Wednesday, January 4, 2006  3:43 PM



298 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

followed by the customer transactions table. Transaction 2 is updating the customer transac-
tions table followed by the customers table. A lock would be placed on the customers table 
while those updates were being done by transaction 1. A lock would be placed on the customer 
transactions table by transaction 2. Transaction 1 could not proceed because of the lock by 
transaction 2, and transaction 2 could not proceed due to the lock created by transaction 1. 
Both transactions are “stuck.” So it is crucial to keep the order of table updates the same, espe-
cially where both could be running at the same time.

It is also advisable to keep transactions as small, and as short, as possible, and under no 
circumstances hold onto a lock for more than a few seconds. We can do this by keeping the 
processing within a transaction to as few lines of code as possible, and then either roll back 
(that is, cancel) or commit the transaction to the database as quickly as possible within code. 
With every second that you hold a lock through a transaction, you are increasing the potential 
of trouble happening. In a production environment, with every passing millisecond that you 
hold on to a piece of information through a lock, you are increasing the chances of someone 
else trying to modify the same piece of information at the same time and the possibility of the 
problems that would then arise.

There are two parts that make up a transaction, the start of the transaction and the end of 
the transaction, where you decide if you want to commit the changes or revert back to the orig-
inal state. We will now look at the definition of the start of the transaction, and then the T-SQL 
commands required to commit or roll back the transaction. The basis of this section is that 
only one transaction is in place, and that you have no nested transactions. Nested transactions 
are much more complex and should only really be dealt with once you are proficient with SQL 
Server. The statements we are going through in the upcoming text assume a single transaction; 
the COMMIT TRAN section changes slightly when the transaction is nested.

BEGIN TRAN
The T-SQL command, BEGIN TRAN, denotes the start of the transaction processing. From this 
point on, until the transaction is ended with either COMMIT TRAN or ROLLBACK TRAN, any data 
modification statements will form part of the transaction.

It is also possible to suffix the BEGIN TRAN command with a name of up to 32 characters 
in length. If you name your transaction, it is not necessary to use the name when issuing a 
ROLLBACK TRAN or a COMMIT TRAN command. The name is there for clarity of the code only.

COMMIT TRAN
The COMMIT TRAN command will commit the data modifications to the database permanently, 
and there will be no going back once this command is executed. This function should only be 
executed when all changes to the database are ready to be committed.

ROLLBACK TRAN
If you wish to remove all the database changes that have been completed since the beginning 
of the transaction, say, for example, because an error had occurred, then you could issue a 
ROLLBACK TRAN command.

So, if you were to start a transaction with BEGIN TRAN and then issue an INSERT that succeeds, 
and then perhaps an UPDATE that fails, you could issue a ROLLBACK TRAN to roll back the transac-
tion as a whole. As a result, you roll back not only the UPDATE changes, but also, because they 

Dewson_5882C08.fm  Page 298  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 299

form part of the same transaction, the changes made by the INSERT, even though that particular 
operation was successful.

To reiterate, keep transactions small and short. Never leave a session with an open trans-
action by having a BEGIN TRAN with no COMMIT TRAN or ROLLBACK TRAN. Ensure that you do not 
cause a deadly embrace.

If you issue a BEGIN TRAN, then you MUST issue a COMMIT TRAN or ROLLBACK TRAN transaction 
as quickly as possible; otherwise, the transaction will stay around until the connection is 
terminated.

Locking Data
The whole area of locking data, how locks are held, and how to avoid problems with them, is a 
very large complex area and not for the fainthearted. However, it is necessary to be aware of 
locks, and at least have a small amount of background knowledge on them so that when you 
design your queries you stand a chance of avoiding problems.

The basis of locking is to allow one transaction to update data, knowing that if it has to roll 
back any changes, no other transaction has modified the data since the first transaction did.

To explain this with an example, if you have a transaction that updates the CustomerDetails.
Customers table, and then moves on to update the TransactionDetails.Transactions table, but 
hits a problem when updating the TransactionDetails.Transactions table, the transaction 
must be safe in the knowledge that it is only rolling back the changes it made, and not changes 
by another transaction. Therefore, until all the table updates within the transaction are either 
successfully completed or have been rolled back, the transaction will keep hold of any data 
inserted, modified, or deleted.

However, one problem with this approach is that SQL Server may not just hold the data 
that the transaction has modified. Keeping a lock on the data that has just been modified is 
called row-level locking. On the other hand, SQL Server may be set up to lock the database, 
which is known as database-level locking, found in areas such as backups and restores. The 
other levels in between are row, page, and table locking, and so you could lock a large resource, 
depending on the task being performed.

This is about as deep as I will take this discussion on locks, so as not to add any confusion 
or create a problematic situation. Dealing with locks is handled automatically by SQL Server, 
but it is possible to make locking more efficient by developing an effective understanding of 
the subject, and then customizing the locks within your transactions.

Updating Data: Using Transactions
Now, what if, in the first update query of this chapter, we had made a mistake or an error 
occurred? For example, say we chose the wrong customer, or even worse, omitted the WHERE 
statement, and therefore all the records were updated. These are unusual errors, but quite 
possible. More common errors could result from where more than one data modification has 
to take place and succeed, and the first one succeeds but a subsequent modification fails. By 
using a transaction, we would have had the chance to correct any mistakes easily, and could 
then revert to a consistent state. Of course, this next example is nice and simple, but by working 
through it, the subject of transactions will hopefully become a little easier to understand and 
appreciate.

Dewson_5882C08.fm  Page 299  Wednesday, January 4, 2006  3:43 PM



300 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Try It Out: Using a Transaction

1. Make sure Query Editor is running for this first example, which will demonstrate COMMIT TRAN in 
action. There should be no difference from an UPDATE without any transaction processing, as it will 
execute and update the data successfully. However, this should prove to be a valuable exercise, as it 
will also demonstrate the naming of a transaction. Enter the following code:

SELECT 'Before',ShareId,ShareDesc,CurrentPrice
  FROM ShareDetails.Shares
 WHERE ShareId = 3
BEGIN TRAN ShareUpd
UPDATE ShareDetails.Shares
   SET CurrentPrice = CurrentPrice * 1.1
 WHERE ShareId = 3
COMMIT TRAN
SELECT 'After',ShareId,ShareDesc,CurrentPrice
  FROM ShareDetails.Shares
 WHERE ShareId = 3

Notice in the preceding code that the COMMIT TRAN does not use the name associated with the BEGIN 
TRAN. The label after the BEGIN TRAN is simply that, a label and performs no functionality. It is therefore 
not necessary to then link up with a similarly labeled COMMIT TRAN.

2. Execute the code. Figure 8-47 shows the results, which list out the Shares table before and after the 
transaction.

Figure 8-47. Updating with transaction label and a COMMIT TRAN

3. We are now going to work through a ROLLBACK TRAN. We will take this one stage at a time so that you 
fully understand and follow the processes involved. Note in the following code that the WHERE statement 
has been commented out with --. By having the WHERE statement commented out, hopefully you’ll 
have already guessed that every record in the ShareDetails.Shares table is going to be updated. 
The example needs you to execute all the code at once, so enter the following code into your Query 
Editor pane, and then execute it. Note we have three SELECT statements this time—before, during, and 
after the transaction processing.

SELECT 'Before',ShareId,ShareDesc,CurrentPrice
  FROM ShareDetails.Shares
-- WHERE ShareId = 3
BEGIN TRAN ShareUpd

Dewson_5882C08.fm  Page 300  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 301

UPDATE ShareDetails.Shares
   SET CurrentPrice = CurrentPrice * 1.1
-- WHERE ShareId = 3
SELECT 'Within the transaction',ShareId,ShareDesc,CurrentPrice
  FROM ShareDetails.Shares
ROLLBACK TRAN
SELECT 'After',ShareId,ShareDesc,CurrentPrice
  FROM ShareDetails.Shares
-- WHERE ShareId = 3

4. The results, as you see in Figure 8-48, show us exactly what has happened. Take a moment to look over 
these results. The first list shows the full set of rows in the ShareDetails.Shares table prior to our 
UPDATE. The middle recordset shows us the BEGIN transaction where we have updated every share, 
and the final listing shows the data restored back to its original state via a ROLLBACK TRAN.

Figure 8-48. Updating with transaction label and a ROLLBACK TRAN

Nested Transactions
Let’s look at one last example before moving on. It is possible to nest transactions inside one 
another. We touch on this enough for you to have a good understanding on nested transactions, 
but this is not a complete coverage, as it can get very complex and messy if you involve save 
points, stored procedures, triggers, and so on. The aim of this section is to give you an under-
standing of the basic but crucial points of how nesting transactions work.

Nested transactions can occur in a number of different scenarios. For example, you could 
have a transaction in one set of code in a stored procedure, which calls a second stored procedure 
that also has a transaction. We will look at a simpler scenario where we just keep the transactions in 
one set of code.

Dewson_5882C08.fm  Page 301  Wednesday, January 4, 2006  3:43 PM



302 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

What you need to be clear about is how the ROLLBACK and COMMIT TRAN commands work in 
a nested transaction. First of all, let’s see what we mean by nesting a simple transaction. The 
syntax is shown here, and you can see that two BEGIN TRAN statements occur before you get to 
a COMMIT or a ROLLBACK:

BEGIN TRAN
   Statements
   BEGIN TRAN
      Statements
   COMMIT|ROLLBACK TRAN
COMMIT|ROLLBACK TRAN

As each transaction commences, SQL Server adds 1 to a running count of transactions 
it holds in a system variable called @@TRANCOUNT. Therefore, as each BEGIN TRAN is executed, 
@@TRANCOUNT increases by 1. As each COMMIT TRAN is executed, @@TRANCOUNT decreases by 1. It is 
not until @@TRANCOUNT is at a value of 1 that you can actually commit the data to the database. 
The code that follows might help you to understand this a bit more.

Enter and execute this code and take a look at the output, which should resemble Figure 8-49. 
The first BEGIN TRAN increases @@TRANCOUNT by 1, as does the second BEGIN TRAN. The first COMMIT 
TRAN marks the changes to be committed, but does not actually perform the changes because 
@@TRANCOUNT is 2. It simply creates the correct BEGIN/COMMIT TRAN nesting and reduces @@TRANCOUNT 
by 1. The second COMMIT TRAN will succeed and will commit the data, as @@TRANCOUNT is 1.

BEGIN TRAN ShareUpd
   SELECT '1st TranCount',@@TRANCOUNT
   BEGIN TRAN ShareUpd2
      SELECT '2nd TranCount',@@TRANCOUNT
      COMMIT TRAN ShareUpd2
   SELECT '3rd TranCount',@@TRANCOUNT
COMMIT TRAN -- It is at this point that data modifications will be committed
SELECT 'Last TranCount',@@TRANCOUNT

Figure 8-49. Showing the @@TRANCOUNT

■Note  After the last COMMIT TRAN, @@TRANCOUNT is at 0. Any further instances of COMMIT TRAN or 
ROLLBACK TRAN will generate an error.

Dewson_5882C08.fm  Page 302  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 303

If in the code there is a ROLLBACK TRAN, then the data is immediately rolled back no matter 
where you are within the nesting, and @@TRANCOUNT is set to 0. Therefore, any further ROLLBACK 
TRAN or COMMIT TRAN instances will fail, so you do need to have error handling, which we look at 
in Chapter 11.

Try to avoid nesting transactions where possible, especially when one stored procedure 
calls another stored procedure within a transaction. It is not “wrong,” but it does require a 
great deal of care.

Now that updating data has been completed, the only area of data manipulation left is row 
deletion, which we look at now.

Deleting Data
Deleting data can be considered very straightforward, especially compared to all of the other 
data manipulation functions covered previously, particularly transactions and basic SQL. 
However, mistakes made when deleting data are very hard to recover from. Therefore, you 
must treat deleting data with the greatest of care and attention to detail, and especially test any 
joins and filtering via a SELECT statement before running the delete operation.

Deleting data without the use of a transaction is almost a final act: the only way to get the 
data back is to reenter it, restore it from a backup, or retrieve the data from any audit tables that 
had the data stored in them when the data was created. Deleting data is not like using the recycle 
bin on a Windows machine: unless the data is within a transaction, it is lost. Keep in mind that 
even if you use a transaction, the data will be lost once the transaction is committed. That’s 
why it’s very important to back up your database before running any major data modifications.

This section of the chapter will demonstrate the DELETE T-SQL syntax and then show how 
to use this within Query Editor. It is also possible to delete records from the results pane within 
SQL Server Management Studio, which will also be demonstrated.

However, what about when you want to remove all the records within a table, especially 
when there could be thousands of records to remove? You will find that the DELETE command 
takes a very long time to run, as each row to delete is logged in the transaction log, thus 
allowing transactions to be rolled back. Luckily, there is a command for this scenario, called 
TRUNCATE, which is covered in the section “Truncating a Table” later in the chapter. However, 
caution should be exercised when using this command, and you’ll see why later.

First of all, it is necessary to learn the simple syntax for the DELETE command for deleting 
records from a table. Really, things don’t come much simpler than this.

DELETE Syntax
The DELETE command is very short and sweet. To run the command, simply state the table you 
wish to delete records from, as shown here:

DELETE
[FROM] tablename
WHERE where_condition

The FROM condition is optional, so your syntax could easily read

DELETE tablename
WHERE where_condition

Dewson_5882C08.fm  Page 303  Wednesday, January 4, 2006  3:43 PM



304 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

There is nothing within this command that has not been covered in other chapters. The 
only area that really needs to be mentioned is that records can only be deleted from one table 
at a time, although when looking for rows to delete, you can join to several tables, as you can 
with SELECT and UPDATE.

Now that you’ve seen the DELETE syntax, let’s dive right in with an example.

Using the DELETE Statement
Recall we created a table with the SELECT INTO command called CustTemp. Rather than delete 
data from the main tables created so far, we’ll use this temporary table in this section of the book.

We’ll use transactions a great deal here to avoid having to keep inserting data back into the 
table. It’s a good idea to use transactions for any type of table modification in your application. 
Imagine that you’re at the ATM and you are transferring money from your savings account to 
your checking account. During that process, a transaction built up of many actions is used to 
make sure that your money doesn’t credit one system and not the other. If an error occurs, the 
entire transaction rolls back, and no money will move between the accounts.

Let’s take a look at what happens if you were to run this statement:

BEGIN TRAN
   DELETE CustTemp

When this code runs, SQL Server opens a transaction and then tentatively deletes all the 
records from the CustTemp table. The records are not actually deleted until a COMMIT TRAN state-
ment is issued. In the interim, though, SQL Server will place a lock on the rows of the table, or 
if this was a much larger table, SQL Server may decide that a table lock (locking the whole table 
to prevent other modifications) is better. Because of this lock, all users trying to modify data 
from this table will have to wait until a COMMIT TRAN or ROLLBACK TRAN statement has been issued 
and completed. If one is never issued, users will be blocked. This problem is one of a number 
of issues frequently encountered in applications when analyzing performance issues. There-
fore, never have a BEGIN TRAN without a COMMIT TRAN or ROLLBACK TRAN.

So, time to start deleting records.

Try It Out: Deleting Records

1. Enter the following commands in an empty Query Editor pane. This will remove all the records from our 
table within a transaction, prove the point by trying to list the rows, and then roll back the changes so 
that the records are put back into the table.

BEGIN TRAN
   SELECT * FROM CustTemp
   DELETE CustTemp
   SELECT * FROM CustTemp
ROLLBACK TRAN
SELECT * FROM CustTemp

Dewson_5882C08.fm  Page 304  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 305

2. Execute the code. You should see the results displayed in Figure 8-50. Notice that the number of records 
in the CustTemp table before the delete is 5, then after the delete the record count is tentatively set to 0. 
Finally, after the rollback, it’s set back to 5. If we do not issue a ROLLBACK TRAN command in here, we 
would see 0 records, but other connections would be blocked until we did.

Figure 8-50. Deletion of all rows that were rolled back

3. Let’s take this a stage further and only remove the last three records of the table. Again, this will be 
within a transaction. Alter the preceding code as indicated in the following snippet. Here we are using 
the TOP command to delete three random rows. Why random? SQL Server only stores rows in a definite 
order if they are covered by a clustered index. No other index, or no index, can guarantee the order in 
which SQL Server stores other rows. This is not the best way to delete rows, as in virtually all cases you 
will want to control the deletion.

BEGIN TRAN
   SELECT * FROM CustTemp
   DELETE TOP (3) CustTemp
   SELECT * FROM CustTemp
ROLLBACK TRAN
SELECT * FROM CustTemp

4. Execute the code, which should produce the results shown in Figure 8-51.

Dewson_5882C08.fm  Page 305  Wednesday, January 4, 2006  3:43 PM



306 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

Figure 8-51. Deletion of three rows that were rolled back

Truncating a Table
All delete actions caused by DELETE statements are recorded in the transaction log. Each time a 
record is deleted, a record is made of that fact. If you are deleting millions of records before 
committing your transaction, your transaction log can grow quickly. Recall from earlier in 
chapter the discussions about transactions; now think about this a bit more. What if the table 
you are deleting from has thousands of records? That is a great deal of logging going on within 
the transaction log. But what if the deletion of these thousands of records was, in fact, cleaning 
out all the data from the table to start afresh? Or perhaps this is some sort of transient table? 
Performing a DELETE would seem a lot of overhead when you don’t really need to keep a log of 
the data deletions anyway. If the action failed for whatever reason, you would simply retry 
removing the records a second time. This is where the TRUNCATE TABLE command comes into 
its own.

By issuing a TRUNCATE TABLE statement, you are instructing SQL Server to delete every 
record within a table, without any logging or transaction processing taking place. In reality, 
minimal data is logged about what data pages have been deallocated and therefore removed 
from the database. This is in contrast to a DELETE statement, which will only deallocate and 
remove the pages from the table if it can get sufficient locks on the table to do this. The deletion 
of the records can be almost instantaneous, and a great deal faster than using the DELETE 
command. This occurs not only because of the differences with what happens with the trans-
action log, but also because of how the data is locked at the time of deletion. Let’s clarify this 
point before progressing.

When a DELETE statement is issued, each row that is to be deleted will be locked by SQL 
Server so that no modifications or other DELETE statements can attempt to work with that row. 
Deleting hundreds or thousands of rows is a large number of actions for SQL Server to perform, 
and it will take time to locate each row and place a lock against it. However, a TRUNCATE TABLE 

Dewson_5882C08.fm  Page 306  Wednesday, January 4, 2006  3:43 PM



C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D A T A 307

statement locks the whole table. This is one action that will prevent any data insertion, modifi-
cation, or deletion from taking place.

■Note  A TRUNCATE TABLE statement will delete data from a table with millions of records in only a few 
seconds, whereas using DELETE to remove all the records on the same table would take several minutes.

The syntax for truncating a table is simple:

TRUNCATE TABLE [{database.schema_name.}]table

■Caution  Use the TRUNCATE TABLE statement with extreme caution: there is no going back after the 
transaction is committed; you cannot change your mind. Also, every record is removed: you cannot use this 
command to selectively remove some of the records.

One “side effect” to the TRUNCATE TABLE clause is that it reseeds any identity columns. For 
example, say that you have a table with an identity column that is currently at 2,000,000. After 
truncating the table, the first inserted piece of data will produce the value 1 (if the seed is set to 
1). If you issue a DELETE command to delete the records from the table, the first piece of data 
inserted after the table contents have been deleted will produce a value of 2,000,001, even 
though this newly inserted piece of data may be the only record in the table!

One of the limitations with the TRUNCATE TABLE command is that you cannot issue it against 
tables that have foreign keys referencing them. For example, the Customers table has a foreign 
key referencing the Transactions table. If you try to issue the following command:

TRUNCATE TABLE CustomerDetails.Customers

you will receive the following error message:

Msg 4712, Level 16, State 1, Line 1
Cannot truncate table 'customers' because it is being referenced
by a FOREIGN KEY constraint.

Dropping a Table
Another way to quickly delete the data in a table is to just delete the table and re-create it. Don’t 
forget that if you do this, you will need to also re-create any constraints, indexes, and foreign 
keys. When you do this, SQL Server will deallocate the table, which is minimally logged. To 
drop a table in SQL Server, issue the following command:

DROP TABLE table_name

Dewson_5882C08.fm  Page 307  Wednesday, January 4, 2006  3:43 PM



308 C H A P T E R  8  ■  W O R K I N G  W I T H  T H E  D AT A

As with TRUNCATE TABLE, DROP TABLE cannot be issued against a table that has a foreign key 
referencing it. In this situation, either the foreign key constraint referencing the table or the 
referencing table itself must first be dropped before it is possible to drop the original table.

Summary
This chapter has taken a look at how to insert and then retrieve data on a set of tables in simplest 
form. Later in the book, we will return to retrieving data with more complex language as well as 
when working with data from more than one table within the single query.

We have taken a look at NULL values and default values, as well as how to insert data within 
columns defined with these settings and constraints. You should also be comfortable with 
getting information from tables using different searching, filtering, and ordering criteria.

Updating data can go wrong, and does, especially when you are working in a live environ-
ment and you wish to update data that is in flux. In such a scenario, getting the correct rows of 
information to update and then actually updating them is akin to a fine art.

Therefore, surrounding any of your work with a transaction will prevent any costly and 
potentially irretrievable mistakes from taking place, so always surround data modifications or 
deletions with a transaction. With data inserts, it is not quite so critical that you surround your 
work with a transaction, although it is recommended. For example, if you are inserting data 
within a test environment and the data insertion is easily removed if you have part of the inser-
tion wrong, then perhaps it’s not overly critical to use a transaction; although to be safe, really 
and truly, I still recommend that you use a transaction.

Updating columns within a table is very straightforward. As long as the data type defined 
for the column to update is the same as, or is compatible with, the data type of the column, vari-
able, or static value that is being used to update this column, then you will have no problem. For 
example, you can update a varchar column with char data type values. However, it is not possible 
to update an integer column with a varchar value that has a noninteger value without converting 
the varchar value to an integer. But don’t be fooled, you can update a varchar with an integer 
or numeric data type.

The DELETE command in this chapter completes the commands for data retrieval and 
manipulation. From this point, SQL Server is your oyster, and there should be no stopping you 
now. Deleting data is a very straightforward process, perhaps too straightforward, and with no 
recycle bin, you really do have to take care. Having to reinstate data is a lot harder than having 
to remove records inserted incorrectly or changing back modifications completed in error.

Whenever deleting data (no matter how small the recordset is), it is strongly recommend 
that a transaction be used, as this chapter has demonstrated, and also that a SELECT statement 
be included to check your work.

Finally, the removal of every record within a table was also shown, along with the dire 
warnings if you got it wrong. Really, only use the TRUNCATE TABLE command in development or 
with the utmost extreme care within production.

So where can you go from here? The next chapter will look at views of data.

Dewson_5882C08.fm  Page 308  Wednesday, January 4, 2006  3:43 PM



309

■ ■ ■

C H A P T E R  9

Building a View

A view is a virtual table that, in itself, doesn’t contain any data or information. All it contains 
is the query that the user defines when creating the view. You can think of a view as a query 
against one or more tables that is stored within the database. Views are used as a security measure 
by restricting users to certain columns or rows; as a method of joining data from multiple tables 
and presenting it as if it resides in one table; and by returning summary data instead of detailed 
data. Another use for a view is to provide a method of accessing the underlying data in a manner 
that provides the end user with a business layout. For example, you will see within this chapter 
the building of a view that shows customer details along with enriched transaction details, thus 
making it easier for anyone interrogating your data who has no knowledge of the underlying 
data model to access useful information.

Building a simple view is a straightforward process and can be completed in SQL Server 
Management Studio or a Query Editor pane using T-SQL within SQL Server. Each of these tools 
has two options to build a view, and this chapter covers all four options so that you become 
conversant with building a view no matter which tool is currently at hand.

To give things a bit more bite in this chapter, a query within a query, known as a subquery, 
will also be demonstrated, along with how to build a subquery to create a column.

Finally, placing an index on a view can speed up data retrieval, but it also can give performance 
problems as well. An index on a view is not quite as straightforward as building an index on a table.

The aim of this chapter is to

• Make you aware of what a view is.

• Inform you as to how views can improve a database’s security.

• Show how to encrypt your view so that the source tables accessed cannot be seen.

• Demonstrate building a view using

• Management Studio View Designer

• Management Studio Create a View Wizard

• A Query Editor pane and T-SQL

• Show how to join two tables within a view.

• Demonstrate subqueries within a view.

• Build an index on a view and give the reasons as to why you would or would not do this.

Dewson_5882C09.fm  Page 309  Monday, January 9, 2006  3:28 PM



310 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

What Is a View?
There will be times when you want to group together data from more than one table, or 
perhaps only allow users to see specific information from a particular table, where some of the 
columns may contain sensitive or even irrelevant data. A view can take one or more columns 
from one or more tables and present this information to a user, without the user accessing the 
actual underlying tables. A view protects the data layer while allowing access to the data. All of 
these scenarios can be seen as the basis and reason for building a view rather than another 
method of data extraction. If you are familiar with MS Access, views are similar to Access queries. 
Because a view represents data as if it was another table, a virtual table in fact, it is also possible to 
create a view of a view.

Let’s take a look at how a view works. As you know, we have a customer table that holds 
information about our customers such as their first name, last name, account number, and 
balances. There will be times when you want your users to have access to only the first and last 
names, but not to the other sensitive data. This is where a view comes into play. You would 
create a view that returns only a customer’s first and last name but no other information.

Creating a view can give a user enough information to satisfy a query he or she may have 
about data within a database without that user having to know any T-SQL commands. A view 
actually stores the query that creates it, and when you execute the view, the underlying query 
is the code that is being executed. The underlying code can be as complex as required, there-
fore leaving the end user with a simple SELECT * command to run with perhaps a small amount 
of filtering via a simple WHERE statement.

From a view, in addition to retrieving data, you can also modify the data that is being 
displayed, delete data, and in some situations insert new data. There are several rules and limi-
tations for deleting, modifying, and inserting data from multitable views, some of which will be 
covered in the “Indexing a View” section later in the chapter.

However, a view is not a tool for processing data using T-SQL commands, like a stored 
procedure is. A view is only able to hold one query at a time. Therefore, a view is more like a 
query than a stored procedure. Just as with a stored procedure or a query within a Query Editor 
pane, you can include tables from databases that are running on different servers. Providing 
the user ID has the necessary security credentials, it is possible to include tables from several 
databases.

So to summarize, a view is a virtual table created by a stored SQL statement that can span 
multiple tables. Views can be used as a method of security within your database, and they 
provide a simpler front end to a user querying the data.

Later in the chapter, you will see how to build a view and how all of these ideas are put into 
practice. Before we get to that, let’s look in more depth at how a view can be used as a security 
vehicle.

Using Views for Security
Security is always an issue when building your database. So far, the book has covered the different 
database-provided roles, when to use them, how to set up different types of roles, and how 
useful they are. By restricting all users from accessing or modifying the data in the tables, you 
will then force everyone to use views and stored procedures to complete any data task. (There 
will be more on stored procedures in the next chapter.)

Dewson_5882C09.fm  Page 310  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 311

However, by taking a view on the data and assigning which role can have select access, 
update access, and so on, you are protecting not only the underlying tables, but also particular 
columns of data. This is all covered in the discussions involving security in this chapter.

Security encompasses not only the protection of data, but also the protection of your 
system. At some point as a developer, you will build a view and then someone else will come 
along and remove or alter a column from an underlying table that was used in the view. This 
causes problems; however, this chapter will show you how to get around this problem and 
secure the build of a view so that this sort of thing doesn’t happen.

Imagine that you have a table holding specific security-sensitive information alongside 
general information—an example would be where you perhaps work for the licensing agency 
for driver licenses and alongside the name and address, there is a column to define the number 
of fines that have had to be paid. As you can see, this is information that should not be viewed 
by all employees within the organization. So, what do you do?

The simplest answer is to create a view on the data where you exclude the columns holding 
the sensitive data. In this way, you can restrict access on the table to the bare minimum of roles 
or logins, and leave either a view or a stored procedure as the only method of data retrieval 
allowed. This way, the information returned is restricted to only those columns that a general 
user is allowed to see.

It is also possible to place a WHERE statement within a view to restrict the rows returned. 
This could be useful when you don’t wish all employee salaries to be listed: perhaps excluding 
the salaries of the top executives would be advised!

All these methods give you, as a developer, a method for protecting the physical data lying 
in the base tables behind the views. Combine this with what you learned with roles, and 
restricting table access, and you can really tighten the security surrounding your data. With 
more and more companies embracing initiatives like Sarbanes-Oxley, where security should 
be so tight a company can be defined as having secure data, views are a great method of getting 
towards this goal.

Another method of securing views is to encrypt the view definition, which we explore next.

Encrypting View Definitions
As well as restricting access to certain tables or columns within a database, views also give the 
option of encrypting the SQL query that is used to retrieve the data. Once a view is built and you 
are happy that it is functioning correctly, you would release that view to production; it is at this 
point that you would add the final area of security—you would encrypt the view.

The most common situation where you will find views encrypted is when the information 
returned by the view is of a privileged nature. To expand further, not only are you using a view 
to return specific information, you also don’t wish anyone to see how that information was 
returned, for whatever reason. You would therefore encrypt the SQL code that makes up the 
view, which would mean that how the information was being returned would not be visible.

There is a downside to encrypting a view: once the process of encryption is completed, it 
is difficult to get back the details of the view. There are tools on the Internet that can decrypt an 
encrypted view. When you encrypt a view, the view definition is not processed via encryption 
algorithms, but is merely obfuscated, in other words, changed so that prying eyes cannot see 
the code. These tools can returned the obfuscation back to the original code. Therefore, if you 
need to modify the view, you will find that it is awkward. Not only would you have to use a tool, 
but you would have to delete the view and re-create it, as it would not be editable. So, if you 

Dewson_5882C09.fm  Page 311  Monday, January 9, 2006  3:28 PM



312 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

build a view and encrypt it, you should make sure that you keep a copy of the source some-
where. This is why it is recommended that encrypted views should be used with care, and really 
should only be placed in production, or at worst, in user testing.

Always keep a copy of the original view, before encryption, in the company’s source 
control system, for example, SourceSafe, and make sure that regular backups are available.

Now that we have touched upon the security issues behind views, it is time to start 
creating views for the database solution that we are building together.

Creating a View: SQL Server Management Studio
The first task for us is to create a view using SQL Server Management Studio. This is perhaps the 
simplest solution, as it allows us to use “drag and drop” to build the view. This may be the 
slowest method for creating a new view, but it does give us the greatest visual flexibility for 
building the view, and this may also be the best method for dealing with views that already exist 
and require only minor modifications.

The View Designer can aid you in the design of a view, or modification of any view already 
built. For example, it can assist if you are trying to build a complex view from a simple view, or 
it can even be used as a trial-and-error tool while you are gaining your T-SQL knowledge.

However, enough of the background—let’s take a look at how the View Designer works. In 
this example, we will be making a view of Shares.

Try It Out: Creating a View in SQL Server Management Studio

1. Ensure that SQL Server Management Studio is running, and that the ApressFinancial database 
is expanded.

2. Find the Views node, and right-click it—this brings up the pop-up menu shown in Figure 9-1; from there 
select New View.

Figure 9-1. Creating a new view

3. The next screen you will see is the View Designer, with a modal dialog box on top presenting a list of 
tables that you can add to make the view. The background is pretty empty at the moment (move the 
dialog box around if you need to) . It is within the View Designer that you will see all of the information 
required to build a view. There are no tables in the view at this time, so there is nothing for the View 
Designer to show. For those of you who are familiar with Access, you will see that the View Designer is 
similar to the Access Query Designer, only a bit more sophisticated! We want to add our table, so moving 
back to the modal dialog box, shown in Figure 9-2, select Shares, click Add, and the click Close to 
remove the dialog box.

Dewson_5882C09.fm  Page 312  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 313

Figure 9-2. Selecting the tables for your view

4. Take a moment to see how the View Designer has changed, as illustrated in Figure 9-3. Notice that the 
background Query Designer area has been altered, the ShareDetails.Shares table has been added, 
and the beginnings of a SELECT statement now appears about two thirds of the way down the screen. 
By adding a table, the Query Designer is making a start to the view you wish to build.

Figure 9-3. The basic view

Dewson_5882C09.fm  Page 313  Monday, January 9, 2006  3:28 PM



314 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

5. There are four separate parts to the View Designer, each of which can be switched on or off for viewing 
via the toolbar buttons on top. Take a look at these toolbar buttons, as shown close up in Figure 9-4. The 
first button brings up the top pane, the diagram pane, where you can see the tables involved in the view 
and can access them via the leftmost toolbar button. The next button accesses the criteria pane, where 
you can filter the information you want to display. The third button accesses the SQL pane, and the fourth 
button accesses the results pane. As with the Query Editor, here you also have the ability to execute a 
query through the execute button (the one with the red exclamation point). The final button relates to 
verifying the T-SQL. When building the view, although the T-SQL is created as you build up the view, you 
can alter the T-SQL code, and this button will verify any changes.

Figure 9-4. View toolbar buttons

6. We will see the ShareDetails.Shares table listed in the top part of the Query Designer (the diagram 
pane) with no check marks against any of the column names, indicating that there are not yet any columns 
within the view. What we want is a view that will display the share description, the stock market ticker 
ID, and the current price. If we wanted all the columns displayed, we could click the check box next to 
* (All Columns), but for our example, just place checks against the last three columns, as shown 
in Figure 9-5. Notice as you check the boxes how the two areas below the table pane alter. The middle 
grid pane lists all the columns selected and gives you options for sorting and giving the column an alias 
name. The bottom part is the underlying query of the columns selected. The finished designer will look 
as shown in Figure 9-5.

Figure 9-5. Our view with the columns selected

Dewson_5882C09.fm  Page 314  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 315

7. We are going to change the details in the column grid now to enforce sorting criteria and to give the 
column aliases. This means that if a user just does SELECT * from the view, then he or she will receive 
the data in the order defined by the view’s query and also that some of the column names will have been 
altered from those of the underlying table. We want to ensure that the shares come out from the view 
in name order ascending. Move to the Sort Type column and click in the row that corresponds to ShareDesc. 
Select Ascending as shown in Figure 9-6.

Figure 9-6. Placing an order on the data

8. In the next column, if we were defining more than one column to sort, we would define the order to sort 
the columns in. However, we still need to add the aliases, which are found in the second column of the 
grid. Notice the third option, CurrentPrice. To make this column more user friendly, we make the 
name Latest Price, with a space. When we type this and tab out of the column, it becomes [Latest 
Price], as you see in Figure 9-7; SQL Server places the square brackets around the name for us 
because of the space.

Figure 9-7. Alias with identifier

9. Scrolling to the right of the screen would allow us to define a filter for the view as well. This is ideal if 
we want to restrict what a user can see. Although sort orders can be changed by the T-SQL that calls the 
view, filters placed within the view cannot return more data than the view allows. So going back to our 
salary example mentioned earlier, this would be where we would restrict users to not seeing the MD’s 
salary. In our example, we will only list those shares that have a current price, in other words where 
CurrentPrice is greater than 0, as shown in Figure 9-8.

Figure 9-8. Filtering the data

10. Notice the Query Editor pane, which now has the filter within it as well as the sorting order. Also take a 
look at the diagram pane and how the table display has been altered, as you see in Figure 9-9.

Dewson_5882C09.fm  Page 315  Monday, January 9, 2006  3:28 PM



316 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

Figure 9-9. The table with the view options applied

11. Moving back to the T-SQL in the SQL pane, what about the TOP (100) PERCENT clause? Where did 
that come from? First of all, if you specify an order in a view, then by default SQL Server will place the 
TOP (100) PERCENT clause within the SQL. It can be used if the table is very large and you don’t want 
to allow users to return all the data on a production system, as it would tie up resources. You can also 
remove that clause from the Query Editor pane if you want; this will unlink your query from the designer 
and the Properties window, but you would also need to remove the ORDER BY. A final point to notice is 
how the column aliases are defined. The physical column is named followed by AS and then the alias.

■Note  The AS when defining aliases is optional.

SELECT TOP (100) PERCENT
  ShareDesc AS Description,
  ShareTickerId AS Ticker,
  CurrentPrice AS [Latest Price]
FROM ShareDetails.SharesWHERE     (CurrentPrice > 0)
ORDER BY ShareDesc

12. If you wish to remove the TOP clause, it would be better to do this within the Properties window, shown 
in Figure 9-10, usually found on the bottom right of SQL Server Management Studio; however, you 
would also need to remove the sorting. If it’s not there, it can be found by selecting View ➤ Toolbox from 
the menu or by pressing F4. Within the properties, we can give the view a description—very useful—
but we can also remove the TOP clause by setting Top Specification to No. We can also define 
whether this view is read-only by setting Update Specification to No.

13. We do need to change some of the properties in the view definition, as shown in Figure 9-11. First of all, 
it is better to give the view a description. Also, like a table, a view should belong to a schema. This can 
be from an existing schema, or if you have a view traversing more than one table, you may have a 
schema to cater to that scenario. In our case, it fits into the ShareDetails schema.

Dewson_5882C09.fm  Page 316  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 317

Figure 9-10. The properties of a view

Figure 9-11. Populated properties of a view

Dewson_5882C09.fm  Page 317  Monday, January 9, 2006  3:28 PM



318 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

14. We think the view is complete, but we need to test it out. By executing the query with the execute button 
(the one sporting the red exclamation point) we will see the results in the results pane.

15. Now that the view is complete, it is time to save it to the database. Clicking the close button will bring 
up a dialog box asking whether you want to save the view. Click Yes to bring up a dialog box in which 
you give the view a name. You may find while starting out that there is a benefit to prefixing the name 
of the view with something like vw_ so that you know when looking at the object that it’s a view. Many 
organizations do use this naming standard; however, it is not compulsory, and SQL Server Management 
Studio makes it clear what each object is. The naming standard comes from a time when tools did not 
make it clear what object belonged to which group of object types. Once you have the name you wish, 
as shown in Figure 9-12, click OK.

Figure 9-12. Naming the view

16. This will bring us back to SQL Server Management Studio, where we will see the view saved (see 
Figure 9-13).

Figure 9-13. Finding a view in Object Explorer

We have now created our first view on the database. However, this method of building a view could be seen as a bit 
slow and cumbersome for something so simple. What if we wanted to combine two tables, or a view and another table?

Creating a View Using a View
Creating a view that uses another view is as straightforward as building a view with a table. The 
downside of building a view with a view is that it cannot be indexed for faster execution. There-
fore, depending on what the T-SQL of the final view is, data retrieval may not be as fast as it could 
be with an index. Also, by having a view within a view, you are adding increased complexity 
when debugging or profiling performance. Therefore, consider including the T-SQL from the 
selected view in this new view.

Dewson_5882C09.fm  Page 318  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 319

In this example, we will build a view of share prices using the vw_Shares view created 
previously. In reality, we would use the ShareDetails.Shares table along with ShareDetails.
SharesPrices for the reasons just discussed.

Try It Out: Creating a View with a View

1. From SQL Server Management Studio Object Explorer, find Views, right-click, and select New View. 
The Add Table dialog box comes up as before (see Figure 9-14). From the Table tab, select 
SharePrices(ShareDetails).

Figure 9-14. Add a table

2. Move to the Views tab; there should only be one view, shown in Figure 9-15, as that is all we have 
created. Select the view, click Add, and then click Close.

Figure 9-15. Adding a view

Dewson_5882C09.fm  Page 319  Monday, January 9, 2006  3:28 PM



320 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

3. The View Designer will now look similar to Figure 9-16, with two tables and the SQL showing a new type 
of join, a CROSS JOIN.

■Note  A CROSS JOIN will take every row in one table and join it with every row in the second table. We 
look at these in Chapter 12.

Figure 9-16. With more than one object, how the basic view looks

4. We want to place an INNER JOIN between the table and the view where for each share we get all the 
share prices only. At this moment in time we cannot do this, as vw_Shares does not have a share ID 
column. We therefore have to modify the vw_Shares view. Keep what you have built in the View Designer, 
and move back to the Object Explorer. Find vw_Shares, right-click, and this time select Modify as 
shown in Figure 9-17.

Figure 9-17. Modifying a view for a join

5. From the View Designer, click the ShareId column, as shown in Figure 9-18. This will then include the 
ShareId column in the view as the last column. You can use the criteria pane to move this column if 
you wish.

Dewson_5882C09.fm  Page 320  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 321

Figure 9-18. Selecting the column

6. Close this dialog box, which will bring up the Save Changes dialog box, as shown in Figure 9-19. Click 
Yes to save the changes.

Figure 9-19. Saving the modifications

7. We can now move back to our original View Designer, and you can now see the new column in the view, 
as shown in Figure 9-20; there should be no need to refresh the screen.

Figure 9-20. The view with the “new” column

8. It is very easy to link the two tables together by dragging a column from one table to a column in another 
table. This is very similar to how the relationships are built in the Database Designer, as we saw earlier 
in the book. First of all, click the ShareId column in the vw_Shares view. Keeping the mouse button 
down, drag the mouse pointer from the vw_Shares view over to the ShareId column in the 
ShareDetails.SharePrices table and then release it. The View Designer should now look like 
Figure 9-21. We have not really created a relationship in the truest sense of the word—this is simply the 
relation between the columns for the purpose of this query. We can see one gray line, which shows 
which fields are used for the join.

Dewson_5882C09.fm  Page 321  Monday, January 9, 2006  3:28 PM



322 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

Figure 9-21. The view with the JOIN completed

9. Select Price and PriceData from the ShareDetails.SharePrices table and Description from 
the vw_Shares view, as shown in Figure 9-22.

Figure 9-22. How the view with a JOIN looks

10. The final part to this view creation is to build the sort orders. We want the result to be in the order of 
ascending description, but we want the most recent price first and the first price last. Figure 9-23 shows 
the criteria pane with these options.

11. Moving to the SQL pane, note the code shows the columns, as well as the INNER JOIN of the two 
ShareId columns, and finally the ordering of the data.

SELECT TOP (100) PERCENT
ShareDetails.SharePrices.Price, ShareDetails.SharePrices.PriceDate,
ShareDetails.vw_Shares.Description
FROM ShareDetails.SharePrices INNER JOIN ShareDetails.vw_Shares ON
  ShareDetails.SharePrices.ShareId = ShareDetails.vw_Shares.ShareId
ORDER BY ShareDetails.vw_Shares.Description,
ShareDetails.SharePrices.PriceDate DESC

Dewson_5882C09.fm  Page 322  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 323

Figure 9-23. Sorting with ascending and descending items

12. Before we can execute to test the view, we need to add some data to the ShareDetails.
SharePrices details. Just because we are completing one action doesn’t preclude us from performing 
another action within another Query Editor window. Click the New Query button on the toolbar if it is not 
visible, and then from the menu select File ➤ New ➤ Query with Current Connection. In the code window 
that comes up, enter the following code and then execute to insert the data:

INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (1,2.155,'1 Aug 2005 10:10AM')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (1,2.2125,'1 Aug 2005 10:12AM')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (1,2.4175,'1 Aug 2005 10:16AM')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (1,2.21,'1 Aug 2005 11:22AM')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (1,2.17,'1 Aug 2005 14:54')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (1,2.34125,'1 Aug 2005 16:10')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (2,41.10,'1 Aug 2005 10:10AM')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (2,43.22,'2 Aug 2005 10:10AM')
INSERT INTO ShareDetails.SharePrices (ShareId, Price, PriceDate)
VALUES (2,45.20,'3 Aug 2005 10:10AM')

13. We can now navigate back to the View Designer window. Execute the code within the view’s code 
window by pressing the execute button, and you should see the results displayed in Figure 9-24.

Dewson_5882C09.fm  Page 323  Monday, January 9, 2006  3:28 PM



324 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

Figure 9-24. View test results

14. Assign the view to the ShareDetails schema in the view’s Properties window, as shown in Figure 9-25.

Figure 9-25. Setting the view schema

15. The final action is to save the view. As before, click the close button and save the view as vw_SharePrices.

Now we have built views using the designer; time to build one with T-SQL.

CREATE VIEW Syntax
Very quickly you will find that creating a view using T-SQL is the better way forward. It is just as 
fast as building a view using the designer.

CREATE VIEW [ schema_name . ] view_name [ (column [ ,...n ] ) ]
[ WITH <view_attribute> [ ,...n ] ]
AS select_statement [ ; ]
[ WITH CHECK OPTION ]
<view_attribute> ::= {[ ENCRYPTION ][ SCHEMABINDING ][ VIEW_METADATA ]}

Dewson_5882C09.fm  Page 324  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 325

The basic CREATE VIEW syntax is very simple and straightforward. The following syntax is 
the most basic syntax of the CREATE VIEW statement and is the one used most often.

CREATE VIEW [database_name.][schema_name.]view_name
WITH {ENCRYPTION | SCHEMABINDING}
AS
SELECT_statement

Taking a look at the first section of the syntax, notice that the name of the view can be 
prefixed with the name of the schema and the name of the database to which it belongs; however, 
the database name and the schema are optional. Providing that we are in the correct database 
and are logged in with the ID we wish to create the view for, the database_name and 
schema_name options are not required, as they will be assumed from the connection details. 
For production views, rather than views used purely by a single SQL Server user, it is recom-
mended that they be built by the database owner. If the view is built by a nondatabase owner, 
then when someone tries to execute the view, that user will need to prefix the name of the view 
with the login of the person who created it.

Following on from these options, we build the query, typically formed with a SELECT state-
ment that makes up the view itself. As you saw in the previous example, the SELECT statement 
can cover one or many tables or views, many columns, and as many filtering options using the 
WHERE statement as you wish. You can also order the data in a view; however, if you recall from 
our earlier example, to place an ORDER BY clause on a SELECT statement within a view, it is 
necessary to use the TOP statement. We specified the TOP 100 PERCENT in our first example to 
get around this problem. Failure to do so will result in an error, and the view will not be created. 
We also cannot reference any temporary variable or temporary table within a view, or create a 
new table from a view by using the INTO clause. To clarify, it is not possible to have a SELECT 
column INTO newtable.

The ENCRYPTION option will take the view created and encrypt the schema contained so 
that the view is secure and no one can see the underlying code or modify the contents of the 
SELECT statement within. However (I know I keep repeating this but it is so important), do keep 
a backup of the contents of the view in a safe place in development in case any modifications 
are required.

The SCHEMABINDING option ensures that any column referenced within the view cannot be 
dropped from the underlying table without dropping the view built with SCHEMABINDING first. 
This, therefore, keeps the view secure with the knowledge that there will be no run-time errors 
when columns have been altered or dropped from the underlying table, and the view is not 
altered in line with those changes. If you try to remove a column from the table that is contained 
within a schema bound view, for example, then you will receive an error. There is one knock-on 
effect when using SCHEMABINDING: all tables or other views named within the SELECT statement 
must be prefixed with the name of the schema of the table or view, even if the owner of these 
objects is the same as the schema of the view.

Going back to the two options that will be used less often, the first being WITH CHECK 
OPTION. If the view is being used as the basis of completing updates to the underlying table, 
then any modification call, such as UPDATE/DELETE/INSERT, will still make the data visible 
through the view.

Dewson_5882C09.fm  Page 325  Monday, January 9, 2006  3:28 PM



326 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

■Note  Even with WITH CHECK OPTION defined, if the data is modified directly in the table, it won’t be 
verified against any views defined with the underlying tables. Also, if the view uses TOP, then WITH CHECK 
OPTION cannot be defined.

The final possible option, VIEW_METADATA, exposes the view’s metadata if you are calling 
the view via ODBC, OLE DB, etc.—in other words, from a program that is external to SQL 
Server.

Now that you are aware of the basic syntax for creating a view, the next example will take 
this knowledge and build a new view for the database.

Creating a View: A Query Editor pane
Another method for creating views is by using T-SQL code in a Query Editor pane, in my expe-
rience the fastest and best option. This can be a faster method for building views than using 
SQL Server Management Studio, especially as you become more experienced with T-SQL 
commands. This section will demonstrate the T-SQL syntax required to create a view, which 
you will soon see is very straightforward.

The SELECT statement forms the basis for most views, so this is where most of the emphasis is 
placed when developing a view. By getting the SELECT statement correct and retrieving the 
required data, it can then be easily transformed into a view. This is how the view in the following 
example is created, so let’s look at building a view using T-SQL and a Query Editor pane. In the 
following example, we will create a view that returns a list of transactions for each customer 
with some customer information.

Try It Out: Creating a View in a Query Editor pane

1. Ensure that SQL Server a Query Editor pane is running and that there is an empty Query Editor pane. First of 
all, let’s get the T-SQL correct. We need to link in three tables, the CustomerDetails.Customers table to 
get the name and address, the TransactionDetails.Transactions table so we can get a list of trans-
actions for the customer, and finally the TransactionDetails.TransactionTypes table so that each 
transaction type has its full description. The code is as follows:

SELECT c.AccountNumber,c.CustomerFirstName,c.CustomerOtherInitials,
tt.TransactionDescription,t.DateEntered,t.Amount,t.ReferenceDetails
FROM CustomerDetails.Customers c
JOIN TransactionDetails.Transactions t ON t.CustomerId = c.CustomerId
JOIN TransactionDetails.TransactionTypes tt ON
  tt.TransactionTypeId = t.TransactionType
ORDER BY c.AccountNumber ASC, t.DateEntered DESC

2. Once done, execute the code by pressing F5 or Ctrl+E, or clicking the execute button.

Dewson_5882C09.fm  Page 326  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 327

3. We can now wrap the CREATE VIEW statement around our code. Execute this code to store the view in 
the ApressFinancial database. As there is an ORDER BY clause, we need to add to the query a TOP 
statement, so we have TOP 100 Percent.

CREATE VIEW CustomerDetails.vw_CustTrans
AS
SELECT TOP 100 PERCENT
c.AccountNumber,c.CustomerFirstName,c.CustomerOtherInitials,
tt.TransactionDescription,t.DateEntered,t.Amount,t.ReferenceDetails
FROM CustomerDetails.Customers c
JOIN TransactionDetails.Transactions t ON t.CustomerId = c.CustomerId
JOIN TransactionDetails.TransactionTypes tt ON
  tt.TransactionTypeId = t.TransactionType
ORDER BY c.AccountNumber ASC, t.DateEntered DESC

This view is a straightforward view with no ENCRYPTION or SCHEMABINDING options. The one complication within 
the view concerns the ORDER BY clause: one of the stipulations for this view is that it returns the data of financial 
transactions with the most recent transaction first. Therefore, an ORDER BY statement is required on the DateEntered 
column to return the records in descending order. To avoid receiving an error message when building the view, it has 
been necessary to place a TOP option within the SELECT statement; in the case of the example, a TOP 100 PERCENT 
statement has been chosen so that all the records are returned.

The remainder of the SELECT statement syntax is very straightforward.

Creating a View: SCHEMABINDING
The following example will bind the columns used in the view to the actual tables that lie behind 
the view, so that if any column contained within the view is modified, an error message will be 
displayed and the changes will be canceled. The error received will be shown so that we can see 
for ourselves what happens.

First of all, let’s build the view before going on to discuss the background. This view is 
going to list products for customers, therefore linking the Customers.CustomerProducts, and 
CustomerDetails.FinancialProducts tables.

Try It Out: Creating a View with SCHEMABINDING

1. Create a new Query Editor pane and connect it to the ApressFinancial database. We can then create 
the T-SQL that will form the basis of our view.

SELECT c.CustomerFirstName + ' ' + c.CustomerLastName AS CustomerName,
c.AccountNumber, fp.ProductName, cp.AmountToCollect, cp.Frequency,
cp.LastCollected
FROM CustomerDetails.Customers c
JOIN CustomerDetails.CustomerProducts cp ON cp.CustomerId = c.CustomerId
JOIN CustomerDetails.FinancialProducts fp ON
  fp.ProductId = cp.FinancialProductId

Dewson_5882C09.fm  Page 327  Monday, January 9, 2006  3:28 PM



328 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

2. We need some test data within the system to test this out. This is detailed in the following code. Enter 
this code and execute it.

INSERT INTO CustomerDetails.FinancialProducts (ProductId,ProductName)
VALUES (1,'Regular Savings')
INSERT INTO CustomerDetails.FinancialProducts (ProductId,ProductName)
VALUES (2,'Bonds Account')
INSERT INTO CustomerDetails.FinancialProducts (ProductId,ProductName)
VALUES (3,'Share Account')
INSERT INTO CustomerDetails.FinancialProducts (ProductId,ProductName)
VALUES (4,'Life Insurance')
INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,
AmountToCollect,Frequency,LastCollected,LastCollection,Renewable)
VALUES (1,1,200,1,'31 October 2005','31 October 2025',0)
INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,
AmountToCollect,Frequency,LastCollected,LastCollection,Renewable)
VALUES (1,2,50,1,'24 October 2005','24 March 2008',0)
INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,
AmountToCollect,Frequency,LastCollected,LastCollection,Renewable)
VALUES (2,4,150,3,'20 October 2005','20 October 2005',1)
INSERT INTO CustomerDetails.CustomerProducts
(CustomerId,FinancialProductId,
AmountToCollect,Frequency,LastCollected,LastCollection,Renewable)
VALUES (3,3,500,0,'24 October 2005','24 October 2005',0)

3. Test out that the T-SQL works as required by executing it. The results you get returned should look 
similar to Figure 9-26.

Figure 9-26. Testing schema binding T-SQL

4. We now need to create the CREATE VIEW. First of all, we are completing a test to see whether the view 
already exists within the system catalogs. If it does, then we DROP it. Then we define the view using the 
WITH SCHEMABINDING clause. The other change to the T-SQL is to prefix the tables we are using with 
the schema that the tables come from. This is to ensure that the schema binding is successful and can 
regulate when a column is dropped.

Dewson_5882C09.fm  Page 328  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 329

IF EXISTS(SELECT TABLE_NAME FROM   INFORMATION_SCHEMA.VIEWS
      WHERE  TABLE_NAME = N'vw_CustFinProducts'
        AND  TABLE_SCHEMA = N'CustomerDetails')
    DROP VIEW CustomerDetails.vw_CustFinProducts
GO
CREATE VIEW CustomerDetails.vw_CustFinProducts WITH SCHEMABINDING
AS
SELECT c.CustomerFirstName + ' ' + c.CustomerLastName AS CustomerName,
c.AccountNumber, fp.ProductName, cp.AmountToCollect, cp.Frequency,
cp.LastCollected
FROM CustomerDetails.Customers c
JOIN CustomerDetails.CustomerProducts cp ON cp.CustomerId = c.CustomerId
JOIN CustomerDetails.FinancialProducts fp ON
  fp.ProductId = cp.FinancialProductId

5. Once done, execute the code by pressing F5 or Ctrl+E, or clicking the execute button. You should then 
see the following message:

The command(s) completed successfully.

6. Now that our vw_CustFinProducts view is created, which we can check by looking in the SQL Server 
Management Studio Object Explorer, it is possible to demonstrate what happens if we try to alter a 
column used in the view and so affect one of the underlying tables. Enter the following code, and then 
execute it:

ALTER TABLE CustomerDetails.Customers
ALTER COLUMN CustomerFirstName nvarchar(100)

7. You will then see in the Results pane two error messages: the first shows that an alteration has been 
attempted on the CustomerDetails.Customers table and has been disallowed and names the view 
stopping this, and the second shows that the alteration failed.

Msg 5074, Level 16, State 1, Line 1
The object 'vw_CustFinProducts' is dependent on column 'CustomerFirstName'.
Msg 4922, Level 16, State 9, Line 1
ALTER TABLE ALTER COLUMN CustomerFirstName failed because one or more
objects access this column.

Dewson_5882C09.fm  Page 329  Monday, January 9, 2006  3:28 PM



330 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

Indexing a View
Views can be indexed just as tables can be indexed. Rules in choosing columns to make indexes 
on a view are similar to those for a table. There are also some major requirements you need to 
meet before you can index a view. I will show you these first so that you are aware which views 
can be indexed and what you have to do with your view.

When building indexes on views, the first index to be created must be a unique clustered 
index. Once such an index has been built, additional nonclustered indexes on this view can 
then be created. This can also be taken further, in that if we have a view with subsequent indexes 
on it, and we drop the unique clustered index, then all of the other indexes will automatically 
be dropped. Also, if we drop the view, as we would expect, the indexes are also dropped.

The view that the index is to build on must only contain tables and cannot contain views. 
The tables must all come from one database, and the view must also reside in that database 
and have been built with the SCHEMABINDING option.

As you saw when creating our database, certain options can be switched on or off. The 
following options must be set to ON while creating an index. These options need only be set to 
ON for that session and therefore would precede the CREATE INDEX statement.

SET ANSI_NULLS ON
SET ANSI_PADDING ON
SET ANSI_WARNINGS ON
SET CONCAT_NULL_YIELDS_NULL ON
SET QUOTED_IDENTIFIER ON

On top of this, the NUMERIC_ROUNDABORT option and IGNORE_DUP_KEY must be set to OFF.

SET NUMERIC_ROUNDABORT OFF
SET IGNORE_DUP_KEY OFF

Finally, the view itself cannot have text, ntext, or image columns defined in it. In Chapter 11, 
we look at how to group data through a clause called GROUP BY. If you have grouping within your 
view, then the columns used to group data are the only columns that can be in the first index.

Although these seem like they could be quite restrictive requirements, the upside is that 
indexing views also come with major speed implications. If a view remains without an index, 
every time that the view is executed, the data behind the view, including any joins, is rebuilt 
and executed. However, as the first index is a clustered index, this is similar to a clustered table 
index, and the data will be retrieved at index-creation time and stored in that order. Also, like 
table indexes, when the data is modified, then the index will receive the updates as well. There-
fore, if SQL Server can use the clustered index, there will be no need to run the query again.

SQL Server will use any indexes that you have on the tables when building the views. Indexing 
a view is most beneficial when the data in the underlying tables is not changing frequently and 
when the view is executed often. Keep in mind that a view is taking information from other 
tables and is not a table itself, and therefore any updates to the underlying tables will not be 
reflected in the view until the view is rerun.

By placing an index on a view, the columns named within the index are stored within the 
database, as are all of the columns defined for the view, along with the data rows. Therefore, 
any changes to the raw data within the native tables will also be reflected in the data stored for 
the view. Keep in mind the performance issues with this. Every data change in the tables used 
in the views requires SQL Server to evaluate the effect the change has on the view. This requires 

Dewson_5882C09.fm  Page 330  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 331

more processing by SQL Server, causing a slowdown in performance. Temper this perceived 
gain of using an index with the downside of the extra processing required to keep the data up 
to date in two places for the table and two places for the index for those columns involved in 
the view.

Now that you are aware of the pros and cons of building indexes on views, and how they 
differ from indexes for tables, it is time to build an index on our view.

The aim of this index is to locate a record in the view quickly. We want to be able to find all 
the products for a customer based on his or her account number. Notice that we are not using 
CustomerId here. First of all, that column is not within the view, so it is unavailable for selec-
tion anyway, but we have to cater to when a customer phones up and supplies the account 
number. This customer will be unaware of his or her ApressFinancial internal CustomerId. 
Building the index is very quick and very simple, especially since you already know the basics 
from building indexes earlier in the book.

Try It Out: Indexing a View

1. The view we want to index is vw_CustFinProducts, as we know that was created with 
SCHEMABINDING. The unique clustered index will be on the AccountNumber, as we know that this will 
be unique. In a Query Editor query pane, enter the following code:

CREATE UNIQUE CLUSTERED INDEX ix_CustFinProds
ON CustomerDetails.vw_CustFinProducts (AccountNumber,ProductName)

2. Execute this code. When you do, you might get an error. The error I received was as follows

Msg 1935, Level 16, State 1, Line 1
Cannot create index. Object 'vw_CustFinProducts' was created with the
following SET options off: 'ANSI_NULLS, QUOTED_IDENTIFIER'.

3. As was mentioned when discussing the options required to index a view, we didn’t have these two options 
set to on. We therefore have to re-create the view. From the Object Explorer, right-click and select Script 
View As ➤ CREATE To ➤ New Query Editor Window, as you see in Figure 9-27.

Figure 9-27. Scripting the view

4. This brings up the code in a new Query Editor pane. Modify the two SET options and add in a DROP 
VIEW statement so that we can re-create the view. Executing the code should be successful.

Dewson_5882C09.fm  Page 331  Monday, January 9, 2006  3:28 PM



332 C H A P T E R  9  ■  B U I LD I N G  A  V I E W

USE [ApressFinancial]
GO
/****** Object:  View [CustomerDetails].[vw_CustFinProducts]
Script Date: 08/07/2005 12:31:54 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
DROP VIEW  CustomerDetails.vw_CustFinProducts
GO
CREATE VIEW [CustomerDetails].[vw_CustFinProducts] WITH SCHEMABINDING
AS
SELECT c.CustomerFirstName + ' ' + c.CustomerLastName AS CustomerName,
c.AccountNumber, fp.ProductName, cp.AmountToCollect,
cp.Frequency, cp.LastCollected
FROM CustomerDetails.Customers c
JOIN CustomerDetails.CustomerProducts cp ON cp.CustomerId = c.CustomerId
JOIN CustomerDetails.FinancialProducts fp ON
  fp.ProductId = cp.FinancialProductId

GO
SET ANSI_NULLS OFF
GO
SET QUOTED_IDENTIFIER OFF

5. We can then move back to our pane with the CREATE INDEX statement. Executing that code should be 
successful now as well.

The index on a view has now been successfully created. As you can see, there are a number of restrictions, but not 
to the point that no index can exist. You just have to think about what you are doing, and if you have a query in your 
view that contains an item from the preceding list and you wish to create an index, you just have to find a way 
around it.

Summary
This chapter will have given you the confidence, when building your own view, of knowing 
which options and features of views you wish to use. We have covered what a view is, how 
views can improve a database’s security, how to encrypt your view, building a view using the 
SQL Server Management Studio and a Query Editor pane, how to join two tables within a view, 
and indexing a view.

Creating a view when there is more than one table to retrieve data from on a regular basis 
is quite often a sensible solution, even more so when you wish to use views as a method of 
simplifying the database schema and abstracting the database data into a presentation layer 
for users.

Encrypting views may seem like a good idea to hide even further the schema of your data-
base from potential users; however, do use encrypted views with caution, and always keep a 

Dewson_5882C09.fm  Page 332  Monday, January 9, 2006  3:28 PM



C H A P T E R  9  ■  B U I L D I N G  A  V I E W 333

backup of the source in a safe and secure environment. People have been known to keep a 
printout of the view just in case the source became corrupt. Use encrypted views sparsely, and 
only when really required.

Having seen three different methods to build a view, you should have found a method that 
suits you and your style of working. You may find that as time moves on, the tool used alters, 
as do the methods within that tool. Never discount any tool or option within SQL Server and 
banish it to the annals of history: always keep each option and tool in mind, for one day that 
area may be your savior. When starting out, switch between each method for building a view so 
that you are fully conversant with each method.

You will find that in most cases when building views, the SCHEMABINDING option will be a 
good option to have on a view, ensuring that a view that works today will always work. It would 
only be when someone deliberately removed your view from the system to complete table 
changes, and then didn’t correctly put it back, that you would find that a view has stopped 
working. Herein lies yet another scenario for keeping the code of encrypted views at hand: if 
you have encrypted views, along with SCHEMABINDING, and someone wishes to alter an under-
lying table, then you had better have the code available!

Finally, being aware of the differences between indexes on tables and indexes in views is 
crucial to a successful and well-performing view. If you are unsure, then try out the view with 
and then without an index within your development environment.

Dewson_5882C09.fm  Page 333  Monday, January 9, 2006  3:28 PM



Dewson_5882C09.fm  Page 334  Monday, January 9, 2006  3:28 PM



335

■ ■ ■

C H A P T E R  1 0

Stored Procedures

Now that you know how to build queries of single executable lines of T-SQL code, it is time to 
look at how to place these into a stored procedure within SQL Server, allowing them to be run 
as often as they are required.

While you may save queries on a disk drive somewhere, you have not stored them within 
SQL Server itself up to this point, nor have you saved them as multiple units of work. Often, 
however, you need to execute multiple queries in series from SQL Server. To do this, you 
employ stored procedures. SQL Server assumes that a stored procedure will be run more than 
once. Therefore, when it is executed for the first time, a query plan is created for it, detailing 
how best to execute the query. It is also possible, just like any other database object, to assign 
security to a stored procedure, so that only specific users can run it, lending added security 
compared to a one-time-only query saved to a hard drive.

The aim of this chapter is to build a simple stored procedure that will insert a single record 
and then look at error handling and controlling the flow of execution within our procedure.

Therefore, this chapter will

• Describe what a stored procedure is.

• Explain the advantages of a stored procedure over a view.

• Cover the basic syntax for creating a stored procedure.

• Show how to set values within variables.

• Control the flow through a stored procedure.

What Is a Stored Procedure?
In the simplest terms, a stored procedure is a collection of compiled T-SQL commands that are 
directly accessible by SQL Server. The commands placed within a stored procedure are executed 
as one single unit, or batch, of work—the benefit of this is that network traffic is greatly reduced, 
as single SQL statements are not forced to travel over the network; hence this reduces network 
congestion. In addition to SELECT, UPDATE, or DELETE statements, stored procedures are able to 
call other stored procedures, use statements that control the flow of execution, and perform 
aggregate functions or other calculations.

Dewson_5882C10.fm  Page 335  Tuesday, January 3, 2006  1:15 PM



336 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

Any developer with access rights to create objects within SQL Server can build a stored 
procedure. There are also hundreds of system stored procedures, all of which start with a prefix 
of sp_, within SQL Server. Under no circumstances should you attempt to modify any system 
stored procedure that belongs to SQL Server, as this could corrupt not only your database, but 
also other databases, requiring you to perform a full restore.

There is little point in building a stored procedure just to run a set of T-SQL statements 
only once; conversely, a stored procedure is ideal for when you wish to run a set of T-SQL state-
ments many times. The reasons for choosing a stored procedure are similar to those that would 
persuade you to choose a view rather than letting users access table data directly. Stored proce-
dures also supply benefits; for example, SQL Server will always cache a stored procedure plan 
in memory, and it is likely to remain in cache and be reused, whereas ad hoc SQL plans created 
when running ad hoc T-SQL may or may not be stored in the procedure cache. The latter may 
lead to bloating of the procedure cache with lots of very similar plans for similar batches, as 
SQL Server won’t match plans that use the same basic code but with different parameter values.

Stored procedures give your application a single proven interface for accessing or manip-
ulating your data. This means that you keep data integrity, make the correct modifications or 
selections to the data, and ensure that users of the database do not need to know structures, 
layouts, relationships, or connected processes required to perform a specific function. We can 
also validate any data input and ensure that the data brought into the stored procedure is correct.

Just like a view and tables, we can grant very specific execute permission for users of stored 
procedures (the only permission available on a stored procedure is EXECUTE).

To prevent access to the source code, you can encrypt stored procedures, although this 
really ought to be used in only the most required cases. The code itself isn’t actually encrypted, 
it is only obfuscated, which means it is possible to decrypt the code if required. Therefore, it 
isn’t a total prevention of viewing the code, but it does stop stray eyes. It also limits what can be 
seen in a tool called SQL Server Profiler, which is used to profile performance of stored proce-
dures, code, etc., thus causing difficulty in checking what is happening if there is a problem. 
Therefore, to reiterate, you need to carefully justify any “encryption” you wish to do.

CREATE PROCEDURE Syntax
Begin a stored procedure with a CREATE PROCEDURE statement. The CREATE PROCEDURE syntax 
offers a great many flexible options and extends T-SQL with some additional commands. The 
syntax generally appears as follows:

CREATE PROCEDURE procedure_name
[ { @parameter_name} datatype [= default_value] [OUTPUT]]
[ { WITH [RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION } ]
AS
[BEGIN]
   statements
[END]

First of all, it is necessary to inform SQL Server which action you wish to perform. Obviously, 
we wish to create a stored procedure, and so we need to supply a CREATE PROCEDURE statement.

Dewson_5882C10.fm  Page 336  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 337

The next part of the syntax is to give the procedure a name. It would be advisable, just as it 
is with any SQL Server object, to adhere to a naming standard. Everyone has their own stan-
dard within their installation, but if you prefix the name with sp_, a very common naming 
convention, then you will know what that object is. However, this is not something I recommend 
for two reasons. The first is that stored procedures prefixed by sp_ are seen as system stored 
procedures. The second is that you can hit some unnecessary compile locks due to system 
stored procedure lookups. Therefore, do avoid this naming convention.

Many people adopt a different naming convention whereby the prefix defines what the 
stored procedure will do; for example, an update would have a prefix of up, a deletion dt, and a 
selection sl. There are many different prefixes you could use, but once you have decided on 
your standard, you should stick with it.

Some procedures may require information to be provided in order for them to do their 
work; this is achieved by passing in a parameter. For example, passing in a customer number 
to a stored procedure would provide the necessary information to allow creation of a list of 
transactions for a statement. More than one parameter can be passed in: all you do is separate 
them with a comma.

Any parameter defined must be prefixed with an @ sign. Not all procedures will require 
parameters, and so this is optional; however, if you do wish to pass in parameters to a stored 
procedure, name the parameters and follow them with the data type and, where required, the 
length of the data to pass in. For example, the following specifies a parameter of name L_Name, 
with varchar data type of length 50.

@L_Name varchar(50)

You can also specify a default value in the event that a user does not provide one at execu-
tion time. The value specified must be a constant value, like 'DEFAULT' or 24031964, or it can be 
NULL. It is not possible to define a variable as a default value, since the procedure cannot resolve 
this when the procedure is built. For example, if your application is commonly, but not exclu-
sively, used by the marketing department, you could make the department variable optional by 
setting a default of marketing:

@department varchar(50) = 'marketing'

Thus, in this example, if you were from marketing, you would not need to provide the 
department input. If you were from information services, however, you could simply provide an 
input for department that would override the default.

It is also possible to return a value or a number of values from a stored procedure using a 
parameter to pass the information out. The parameter would still be defined as if it was for 
input, with one exception and one extra option. First of all, the exception: it is not possible to 
define a default value for this parameter. If you try to do so, no errors will be generated, but the 
definition will be ignored. The extra syntax option that is required is to suffix the parameter 
with the keyword OUTPUT. This must follow the data type definition:

@calc_result varchar(50) OUTPUT

You are not required to place OUTPUT parameters after the input parameters; they can be 
intermixed. Conventionally, however, try to keep the OUTPUT parameters until last, as it will 
make the stored procedure easier to understand.

Dewson_5882C10.fm  Page 337  Tuesday, January 3, 2006  1:15 PM



338 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

■Tip  Output parameters can also be input parameters, and therefore can be used to pass a value in as well 
as retrieve a value out.

Before continuing, one last thing about parameters needs to be discussed, and it has to do 
with executing the procedure and working with the defined parameters. When it comes to 
executing a stored procedure that has input parameters, you have two ways to run it.

The first method is to name the stored procedure and then pass the input values for the 
parameters in the same order that they are defined. SQL Server will then take each comma-
delimited value set and assign it to the defined variable. However, this does make an assumption 
that the order of the parameters does not change, and that any default value-defined parameters 
are also set with a value.

The second, and preferred, method of executing a stored procedure is to name the param-
eter, and follow this with the value to pass in. We are then ensuring that, at execution time, 
it doesn’t matter what order the stored procedure has named the parameters, because SQL 
Server will be able to match the parameter defined with the parameter defined within the stored 
procedure. We then don’t need to define a value for parameters that already have default 
values. Also, if the stored procedure needs to be expanded, for backward compatibility, any 
new parameters can be defined with default values, therefore removing the need to change 
every calling code. There will be examples of each of the two different methods of passing in 
values to parameters within this chapter.

Next come two options that define how the stored procedure is built. First of all, just as a 
reminder, a stored procedure, when first run without an existing plan in the procedure cache, 
is compiled into an execution plan, which is an internal data structure in SQL Server that describes 
how it should go about performing the operations requested within the stored procedures. SQL 
Server stores the compiled code for subsequent executions, which saves time and resources.

However, the RECOMPILE option on a stored procedure dictates to SQL Server that every 
time the stored procedure is run, the whole procedure is recompiled. Typically, when a parameter 
can greatly affect the number of rows returned, you may want to add the RECOMPILE option to a 
stored procedure to force the optimizer to produce the best plan every time, i.e., you want to 
avoid reuse of a plan that may not be very good for certain parameter values.

The second of the two options is the ENCRYPTION keyword. It is possible to encrypt, well, 
obfuscate at least, a stored procedure so that the contents of the stored procedure cannot be 
viewed easily. Keep in mind that ENCRYPTION does not secure the data, but rather protects the 
source code from inspection and modification. Both ENCRYPTION and RECOMPILE are preceded 
by the WITH keyword and can be employed together when separated by a comma:

CREATE PROCEDURE sp_do_nothing
   @nothing int
   WITH ENCRYPTION, RECOMPILE
AS
   SELECT something FROM nothing

Dewson_5882C10.fm  Page 338  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 339

The keyword AS defines the start of the T-SQL code, which will be the basis of the stored 
procedure. AS has no other function, but is mandatory within the CREATE PROCEDURE command 
defining the end of all variable definitions and procedure creation options. Once the keyword 
AS is defined, you can then start creating your T-SQL code.

It is then possible to surround your code with a BEGIN...END block. I tend to do this as a 
matter of course so that there is no doubt where the start and end of the procedure lie.

Returning a Set of Records
One method of achieving output from a stored procedure is to return a set of records, also known 
as a recordset. This recordset may contain zero, one, or many records as a single batch of 
output. This is achieved through the use of the SELECT statement within a stored procedure—
what is selected is returned as the output of the stored procedure. Don’t be fooled into 
thinking, though, that we can only return one recordset within a stored procedure, as this is not 
true: we can return as many recordsets as we wish.

In this chapter, you will see single recordsets of data returned and how these look within 
Query Editor. Returning single, or even multiple, recordsets should not really concern you at 
this stage, but is of more concern to developers in languages such as C#, VB .NET, and so on. 
Multiple recordsets will only concern you when we move on to more advanced stored proce-
dures with multiple queries.

Creating a Stored Procedure: Management Studio
Now that you have seen some of the merits of a stored procedure over other methods of 
working with data, it is time to create the first stored procedure in this chapter. This stored 
procedure will be built within SQL Server Management Studio to insert a customer into the 
CustomerDetails.Customers table from the information passed to it. This is also the first part in 
our overall security solution. By using a stored procedure to enter the data into the underlying 
table, we will be in control of what data is entered, as the data can be validated and verified. 
You can also remove all access from the table and leave the stored procedure to serve as the 
only method of inserting data (you would also have stored procedures that update, delete, and 
retrieve data). We will look at this towards the end of the chapter.

Try It Out: Creating a Stored Procedure Using SQL Server Management Studio

1. Navigate to the ApressFinancial database and right-click Stored Procedures. From the pop-up 
menu, select New Stored Procedure.

2. This opens a Query Editor pane with code from a basic stored procedure template, the template called 
Create Stored Procedure (New Menu) to be exact. You can either alter the procedure by changing the 
template options by clicking Ctrl+Shift+M, or just write the code from scratch. As we have chosen to 
create a stored procedure via the Object Explorer, we will use the template this time. Figure 10-1 shows 
the template options that can be changed.

Dewson_5882C10.fm  Page 339  Tuesday, January 3, 2006  1:15 PM



340 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

Figure 10-1. A stored procedure’s blank template

3. The first three options, shown in Figure 10-2, are not part of the stored procedure syntax; they are extra 
options used within the comments of the stored procedure. The first option is very useful because it will 
probably be a dbo account that adds the stored procedure to the database, and therefore it will be hard 
to track who the actual creator of the stored procedure was. It may be that only one account “releases” 
all the code to production for deployment. The second option, Create Date, is not quite as relevant, as 
this can be found by interrogating system views. The Description option is excellent and should form 
part of every stored procedure, as it will allow a short description of what the stored procedure is trying 
to achieve. Never go into too much detail in a description, because not everyone has good discipline in 
updating the comments when the stored procedure changes. However, a short “we are trying to achieve” 
set of text is perfect.

Figure 10-2. First set of template options filled

4. We can now move to the template options that form part of the CREATE PROCEDURE syntax. The first 
option is the name. I have called this apf_insCustomer to define that it’s a stored procedure in the 
ApressFinancial database and that we are inserting a row in the CustomerDetails.Customers 
table. Then we can insert two parameters, as this is what the template is set up for. The first two param-
eters will be used to populate CustomerFirstName and CustomerLastName. We will look at the rest 
in a moment. The parameter values do not have to be the same name as the columns they will be 
working with, but it is best to have similar names. The data type and data length should be defined as 
the same type and length as the columns they will be used for. Failure to do this could lead to problems 
with data truncation if you make the parameter columns too long, for example. We also remove the 
values in the default options. Your template options should now look similar to what you see in Figure 10-3.

Dewson_5882C10.fm  Page 340  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 341

Figure 10-3. The remaining parameters

5. Click OK. The code will now look like the following:

-- ================================================
-- Template generated from Template Explorer using:
-- Create Procedure (New Menu).SQL
--
-- Use the Specify Values for Template Parameters
-- command (Ctrl-Shift-M) to fill in the parameter
-- values below.
--
-- This block of comments will not be included in
-- the definition of the procedure.
-- ================================================
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- =============================================
-- Author: Robin Dewson
-- Create date: 17 Sep 2005
-- Description: This is to insert a customer
-- =============================================
CREATE PROCEDURE apf_InsertCustomer
    -- Add the parameters for the stored procedure here
    @FirstName varchar(50) = ,
    @LastName varchar(50) =
AS
BEGIN
    -- SET NOCOUNT ON added to prevent extra result sets from
    -- interfering with SELECT statements.
    SET NOCOUNT ON;

Dewson_5882C10.fm  Page 341  Tuesday, January 3, 2006  1:15 PM



342 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

    -- Insert statements for procedure here
    SELECT @FirstName, @LastName
END
GO

6. We can now define the remaining parameters. There are one or two points to make before we progress. 
First of all, the parameters can be in any order, although it is best to try and group parameters together. 
The second point is that parameters like @CustTitle, @AddressId, @AccountNumber, and 
@AccountTypeId in this example are showing the numerical reference values that would come from 
values defined in a graphical front end. You may be wondering why the stored procedure is not gener-
ating these values from other information passed. For example, why is the stored procedure not pro-
ducing the title ID from Mr, Miss, etc.? It is likely that the operator using the front end had a combo box 
with a list of possible values to choose from, with IDs corresponding to titles. In the case of the address, 
the ID would link back to an external address database, so rather than holding the whole address, we 
could receive just the ID selected when the operator used the address lookup. The code with the remaining 
parameters is shown here:

CREATE PROCEDURE CustomerDetails.apf_InsertCustomer
    -- Add the parameters for the function here
    @FirstName varchar(50) ,
    @LastName varchar(50),
    @CustTitle int,
    @CustInitials nvarchar(10),
    @AddressId int,
    @AccountNumber nvarchar(15),
    @AccountTypeId int

7. Moving on to the remaining section of the stored procedure, we will take the values of our parameters 
and use these as input to the relevant columns. The remaining code for the stored procedure is as follows:

AS
BEGIN
    -- SET NOCOUNT ON added to prevent extra result sets from
    -- interfering with SELECT statements.
    SET NOCOUNT ON;

    INSERT INTO CustomerDetails.Customers
    (CustomerTitleId,CustomerFirstName,CustomerOtherInitials,
    CustomerLastName,AddressId,AccountNumber,AccountTypeId,
    ClearedBalance,UnclearedBalance)
    VALUES (@CustTitle,@FirstName,@CustInitials,@LastName,
    @AddressId,@AccountNumber,@AccountTypeId,0,0)

END
GO

8. When you execute the preceding code, providing you have made no typing mistakes, you should see the 
following output:

Dewson_5882C10.fm  Page 342  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 343

Command(s) completed successfully.

9. This will have added the stored procedure to the database. We can check this. Move back to the Object 
Explorer, right-click Stored Procedures, and select Refresh. After the refresh, you should see the stored 
procedure in the Object Explorer, as shown in Figure 10-4.

Figure 10-4. Object Explorer with stored procedure listed

10. We have completed our first developer-built stored procedure within the system. Inserting data using 
the stored procedure will now be demonstrated so we can see the procedure in action. To execute this 
stored procedure, we need to specify its name and pass the data in with parameters. There are two 
ways we can progress. The first method is to pass the data across in the same order as the parameters 
defined within the stored procedure as follows:

CustomerDetails.apf_InsertCustomer 'Henry','Williams',
1,NULL,431,'22067531',1

11. If you execute this you should see the following output:

 (1 row(s) affected)

12. However, there is a downside to this method: if someone alters the stored procedure and places a new 
parameter in the middle of the existing list or changes the order of the parameters, or perhaps you don’t 
know the order of the parameters, then you are at risk for errors. The preferred method is to name the 
parameters and the values as shown in the next example. Notice as well that the order has changed.

CustomerDetails.apf_InsertCustomer @CustTitle=1,@FirstName='Julie',
@CustInitials='A',@LastName='Dewson',@AddressId=6643,
@AccountNumber='SS865',@AccountTypeId=6

13. Again, if you execute this, you should see the same results:

 (1 row(s) affected)

You can check that the two customers have been entered if you wish. Let’s take a look at two different methods for 
executing procedures next.

Dewson_5882C10.fm  Page 343  Tuesday, January 3, 2006  1:15 PM



344 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

Different Methods of Executing
There are two different methods of executing a stored procedure. The first is to just call the 
stored procedure, as you saw in the preceding example. The second method is to use the 
EXEC(UTE) command. Both have the end result of invoking the stored procedure, but which is 
better for you to use depends on the particular situation.

No EXEC
It is possible to call a stored procedure without prefixing the stored procedure name with the 
EXEC(UTE) statement. However, the stored procedure call must be the first statement within a 
batch of statements if you wish to exclude this statement.

With EXEC
As we have just indicated, if the stored procedure call is the second or subsequent statement 
within a batch, then you must prefix the stored procedure with the EXEC(UTE) statement. On top 
of this, if you are calling a stored procedure within another stored procedure, then you would 
need to prefix the call with the EXEC(UTE) statement.

Using RETURN
One method of returning a value from a stored procedure to signify an error is to use the RETURN 
statement. This statement immediately stops a stored procedure and passes control back out 
of it. Therefore, any statements after the RETURN statement will not be executed.

It is not compulsory to have a RETURN statement within your code; it is only really necessary 
when you either wish to return an error code or exit from a stored procedure without running 
any further code from that point. A logical RETURN is performed at the end of a stored procedure, 
returning a value of 0.

By default, 0 is returned if no value is specified after the RETURN statement, which means 
that the stored procedure was successful. Any other integer value could mean that an unex-
pected result occurred and that you should check the return code, although it is possible to 
return the number of rows affected by the stored procedure, for example. Notice that the word 
“error” wasn’t mentioned, as it may be valid for a nonzero return code to come out of a stored 
procedure.

In this example, we will create a stored procedure that will return two output parameters 
back to the calling procedure or code, indicating the cleared and uncleared balances of a 
specific customer.

We will also use the RETURN option to indicate whether the customer ID passed to the stored 
procedure finds no rows. Note that this is not an error, as the stored procedure code will be 
working as expected.

So you are probably wondering when to use output parameters and when to use RETURN. 
Output parameters are used to return information back to a calling set of code and can handle 
any data type. On the other hand, a RETURN can only return an integer numeric value and is used 
more often for indicating success or failure.

Dewson_5882C10.fm  Page 344  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 345

Try It Out: Using RETURN and Output Parameters

1. The Template Explorer contains a template set up for output parameters. Navigate to this template, 
shown in Figure 10-5, and double-click it.

Figure 10-5. Template Explorer with OUTPUT stored procedure

2. This will open up a new Query Editor pane with the basics of the relevant stored procedure, which is 
shown, reformatted, in the following code block. Take a moment to peruse this code. First of all, the first 
batch within the template sets up checks to see whether the stored procedure already exists, and if it 
does, deletes the procedure through the DROP PROCEDURE command. After running DROP PROCEDURE, just 
like after dropping any object, all of the permissions associated with that object are lost when we re-
create it as we discussed earlier.

-- ===============================================
-- Create stored procedure with OUTPUT parameters
-- ===============================================
-- Drop stored procedure if it already exists
IF EXISTS (
  SELECT *
    FROM INFORMATION_SCHEMA.ROUTINES
   WHERE SPECIFIC_SCHEMA = N'<Schema_Name, sysname, Schema_Name>'
     AND SPECIFIC_NAME = N'<Procedure_Name, sysname, Procedure_Name>'
)
   DROP PROCEDURE <Schema_Name, sysname, Schema_Name>.
   <Procedure_Name, sysname, Procedure_Name>
GO

CREATE PROCEDURE <Schema_Name, sysname, Schema_Name>.
<Procedure_Name, sysname, Procedure_Name>
    <@param1, sysname, @p1> <datatype_for_param1, , int> =
    <default_value_for_param1, , 0>,
    <@param2, sysname, @p2> <datatype_for_param2, , int>  OUTPUT
AS
    SELECT @p2 = @p2 + @p1
GO

-- =============================================
-- Example to execute the stored procedure
-- =============================================

Dewson_5882C10.fm  Page 345  Tuesday, January 3, 2006  1:15 PM



346 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

DECLARE <@variable_for_output_parameter, sysname, @p2_output>
<datatype_for_output_parameter, , int>

EXECUTE <Schema_Name, sysname, Schema_Name>.
<Procedure_Name, sysname, Procedure_Name> <value_for_param1, , 1>,
<@variable_for_output_parameter, sysname, @p2_output> OUTPUT

SELECT <@variable_for_output_parameter, sysname, @p2_output>
GO

3. Now that we have seen the code, it is time to update the template parameters. Again, we find that the 
template is not ideal for our final solution, as we only have one input parameter and two output parameters. 
However, we have populated the template parameters we need. This stored procedure will belong to the 
CustomerDetails schema. We have one integer input parameter for the customer ID, followed by the 
first of our output parameters for cleared balances. Once you have entered these settings, as shown in 
Figure 10-6, click OK.

Figure 10-6. Template Values for OUTPUT stored procedure

4. Let’s look at the code that was generated. The first section of code checks whether the stored procedure 
exists. If it does, then we delete it using the DROP PROCEDURE statement.

-- ===============================================
-- Create stored procedure with OUTPUT parameters
-- ===============================================
-- Drop stored procedure if it already exists
IF EXISTS (
  SELECT *
    FROM INFORMATION_SCHEMA.ROUTINES
   WHERE SPECIFIC_SCHEMA = N'CustomerDetails'
     AND SPECIFIC_NAME = N'apf_CustBalances'
)
    DROP PROCEDURE CustomerDetails.apf_CustBalances
GO

Dewson_5882C10.fm  Page 346  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 347

5. Move on to the second section, which creates the contents of the stored procedure; we’ll go through 
each part of it in turn. This stored procedure takes three parameters: an input parameter of @CustId, 
and two output parameters that will be passed back to either another stored procedure or a program, 
perhaps written in C#, etc. Don’t worry, it is possible to use Query Editor to see the value of the output 
parameter. When defining parameters in a stored procedure, there is no need to specify that a parameter is 
set for input, as this is the default; however, if we do need to define a parameter as an output parameter, 
we have to insert OUTPUT as a suffix to each parameter.

■Tip  If we define an OUTPUT parameter but do not define a value within the stored procedure, it will have 
a value of NULL.

CREATE PROCEDURE CustomerDetails.apf_CustBalances
    @CustId int,
    @ClearedBalance money OUTPUT, @UnclearedBalance money OUTPUT
AS

6. Take a look at the next section of code, which is very similar to what we have covered several times 
earlier in the book where we are assigning values to variables.

SELECT @ClearedBalance = ClearedBalance, @UnclearedBalance = UnclearedBalance
  FROM Customers
 WHERE CustomerId = @CustId

7. The final section of the stored procedure returns a value from a system global variable, @@ERROR. We'll 
look at this variable in the next chapter, but in essence this variable returns a number if an error occurred. 
From this the calling code can tell whether there have been problems and can then decide whether to 
ignore any values in the OUTPUT parameter.

    RETURN @@Error
GO

8. This completes the stored procedure definition. The template continues defining how to execute the 
stored procedure. The first part of this section defines the variables that hold the output values and the 
return value. We do not need to define a variable for the input value, although you could if it was required. 
Then we move to the EXECUTE section of code. When a value is returned from a stored procedure, it is 
set on the left-hand side of the stored procedure call and is not a parameter value. Then the stored procedure 
is defined with the three parameters. Note that each output parameter has to have the OUTPUT keyword 
after it. The final section of the code is a SELECT statement displaying the values returned and the 
output parameter.

-- =============================================
-- Example to execute the stored procedure
-- =============================================
DECLARE @ClearedBalance Money, @UnclearedBalance Money
DECLARE @RetVal int

Dewson_5882C10.fm  Page 347  Tuesday, January 3, 2006  1:15 PM



348 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

EXECUTE @RetVal=CustomerDetails.apf_CustBalances 1,
@ClearedBalance OUTPUT,
@UnclearedBalance OUTPUT

SELECT @RetVal AS ReturnValue, @ClearedBalance AS ClearedBalance,
@UnclearedBalance AS UnclearedBalance
GO

9. Now that the template has been altered with the changes we need, execute the template by pressing 
Ctrl+E or F5, or clicking the execute button on the toolbar. This will create the stored procedure and run 
the examples at the end to demonstrate the procedure. Of course, we can run this section of code as 
many times as we want because the whole scenario, from dropping and losing the stored procedure 
through to re-creating the stored procedure, is all there, ready for us. The stored procedure will pass 
back its output parameter value to the @ClearedBalance and @UnclearedBalance variables defined 
within the execution batch and the return value to the @RetVal variable. From there, once the variables 
are set, the values can be printed out using a SELECT statement. This will produce the output shown in 
Figure 10-7 in the results pane.

Figure 10-7. Results after running the OUTPUT stored procedure

We have now built two very basic stored procedures in which we are performing an INSERT and a SELECT. 
Next we look at control of flow.

Controlling the Flow
When working on a stored procedure, there will be times when it is necessary to control the 
flow of information through it. The main control of flow is handled with an IF...ELSE statement. 
You can also control the flow with a WHILE...BREAK statement.

■Note  The GOTO statement can also control the flow of a stored procedure. You can use this statement to 
jump to a label within a stored procedure, but this can be a dangerous practice and really is something that 
should be avoided. For example, it might be better to nest the stored procedure calls.

Controlling the flow through a stored procedure will probably be required when a procedure 
does anything more than working with one T-SQL statement. The flow will depend on your 
procedure taking an expression and making a true or false decision, and then taking two separate 
actions depending on the answer from the decision.

Dewson_5882C10.fm  Page 348  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 349

IF...ELSE
At times a logical expression will need to be evaluated that results in either a true or false 
answer. This is where an IF...ELSE statement is needed. There are many ways of making a 
true or false condition, and most of the possibilities involve relational operators such as <, >, =, 
and NOT; however, these can be combined with string functions, other mathematical equations, 
or comparisons between values in local variables, or even system-wide variables. It is also 
possible to place a SELECT statement within an IF...ELSE block, as long as a single value is 
returned.

A basic IF...ELSE would perhaps look like the following:

IF A=B
   Statement when True
ELSE
   Statement when False

IF...ELSE statements can also be nested and would look like the following; this example 
also shows you how to include a SELECT statement within an IF decision.

IF A=B
   IF (SELECT ClearedBalance FROM Customers WHERE CustomerId = 1) > $20000
      Statement2 when True
   ELSE
      Statement2 when False
ELSE
   Statement when False

As you can see, there is only one statement within each of the IF...ELSE blocks. If you wish 
to have more than one line of executable code after the IF or the ELSE, you must include another 
control-of-flow statement, the BEGIN...END block. Before we can try this out, let’s take a look at 
how to code for multiple statements within an IF...ELSE block.

BEGIN...END
If you wish to execute more than one statement in the IF or ELSE code block, you need to batch 
the statements up. To batch statements together within an IF...ELSE, you must surround 
them with a BEGIN...END block. If you try to have more than one statement after the IF, the 
second and subsequent statements will run no matter what the setting of the IF statement is.

So if you have

DECLARE @VarTest
SET @VarTest = 2
IF @VarTest=1
SELECT 1
SELECT 2

then the SELECT 2 statement would run no matter what value you have for @VarTest. If you only 
want SELECT 2 to run when @VarTest is 1, then you would code the example, thus placing the 
code you want to run within the BEGIN...END block.

Dewson_5882C10.fm  Page 349  Tuesday, January 3, 2006  1:15 PM



350 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

DECLARE @VarTest
SET @VarTest = 2
IF @VarTest=1
BEGIN
    SELECT 1
    SELECT 2
END

If you use an ELSE statement after a second or subsequent statement after an IF that has no 
BEGIN...END block, you would get an error message. Therefore, the only way around this is to 
use BEGIN...END.

WHILE...BREAK Statement
The WHILE...BREAK statement is a method of looping around the same section of code from 
zero to multiple times based on the answer from a Boolean test condition, or until explicitly 
informed to exit via the keyword BREAK.

The syntax for this command is as follows:

WHILE Boolean_expression
     { sql_statement | statement_block }
      [ BREAK ]
     { sql_statement | statement_block }
      [ CONTINUE ]
     { sql_statement | statement_block }

The code defined for the WHILE statement will execute while the Boolean expression 
returns a value of True. You can have other control-of-flow statements such as an IF...ELSE 
block within your WHILE block. This is where BREAK and CONTINUE could be used if required. You 
may wish to test a condition and, if it returns a particular result, BREAK the loop and exit the 
WHILE block. The other option that can be used is the CONTINUE statement. This moves processing 
straight to the WHILE statement again and will stop any execution of code that is defined after it. 
The best way to illustrate these concepts is to show a simple example of these three options 
in action.

Try It Out: WHILE...BREAK

1. The first option demonstrates how to build a WHILE loop and then test the value of a variable. If the test 
returns True, we will break out of the loop; if it returns False, we will continue processing. Within the 
example there are two SELECT statements before and after an IF...ELSE statement. In this example, 
the first SELECT will show the values of the variables, but the IF test will either stop the loop via BREAK 
or will move the code back to the WHILE statement via the CONTINUE statement. Either of these actions 
will mean that the second SELECT will not execute.

Dewson_5882C10.fm  Page 350  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 351

DECLARE @LoopCount int, @TestCount int
SET @LoopCount = 0
SET @TestCount = 0
WHILE @LoopCount < 20
BEGIN
   SET @LoopCount = @LoopCount + 1
   SET @TestCount = @TestCount + 1
   SELECT @LoopCount, @TestCount
   IF @TestCount > 10
      BREAK
   ELSE
      CONTINUE
   SELECT @LoopCount, @TestCount
END

2. When the code is executed, we don’t actually make it around the 20 loops due to the value of @TestCount 
causing the break. The output is shown in Figure 10-8.

Figure 10-8. WHILE with BREAK and CONTINUE

3. If we change the code to remove the ELSE CONTINUE statement, the second SELECT statement will 
be executed. The two rows changed have been highlighted. We are not going to execute the two lines 
because they have been commented out by prefixing the code with two hyphens, --.

Dewson_5882C10.fm  Page 351  Tuesday, January 3, 2006  1:15 PM



352 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

DECLARE @LoopCount int, @TestCount int
SET @LoopCount = 0
SET @TestCount = 0
WHILE @LoopCount < 20
BEGIN
   SET @LoopCount = @LoopCount + 1
   SET @TestCount = @TestCount + 1
   SELECT @LoopCount, @TestCount
   IF @TestCount > 10
      BREAK

---   ELSE
---      CONTINUE

  SELECT @LoopCount, @TestCount
END

A snapshot of some of the output from this is shown in Figure 10-9.

Figure 10-9. WHILE with BREAK only

The third statement we’ll look at in this section is the CASE statement. While not a control-of-flow statement for your 
stored procedure, it can control the output displayed based on decisions.

CASE Statement
When a query has more than a plain true or false answer—in other words, when there are 
several potential answers—you should use the CASE statement.

A CASE statement forms a decision-making process within a SELECT or UPDATE statement. 
It is possible to set a value for a column within a recordset based on a CASE statement and the 
resultant value. Obviously, with this knowledge, a CASE statement cannot form part of a DELETE 
statement.

Dewson_5882C10.fm  Page 352  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 353

Several parts of a CASE statement can be placed within a stored procedure to control the 
statement executed depending on each scenario. Two different syntax structures exist for the 
CASE statement depending on how you want to test a condition or what you want to test. Let’s 
take a look at all the parts to the first CASE statement syntax:

CASE expression
WHEN value_matched THEN
   statement
[[WHEN value_matched2 THEN]
   [Statement2]]
...
...
...
[[ELSE]
   [catch_all_code]
END

First of all, you need to define the expression that is to be tested. This could be the value of 
a variable, or a column value from within the T-SQL statement, or any valid expression within 
SQL Server. This expression is then used to determine the values to be matched in each WHEN 
statement.

You can have as many WHEN statements as you wish within the CASE condition, and you do 
not need to cover every condition or possible value that could be placed within the condition. 
Once a condition is matched, then only the statements within the appropriate WHEN block will 
be executed. Of course, only the WHEN conditions that are defined will be tested. However, you 
can cover yourself for any value within the expression that has not been defined within a WHEN 
statement by using an ELSE condition. This is used as a catchall statement. Any value not 
matched would drop into the ELSE condition, and from there you could deal with any scenario 
that you desire.

The second syntax is where you don’t define the expression prior to testing it and each 
WHEN statement performs any test expression you desire.

CASE
     WHEN Boolean_expression THEN result_expression
    [ ...n ]
     [
    ELSE else_result_expression
     ]
END

As just indicated, CASE statements form part of a SELECT, UPDATE, or INSERT statement, therefore 
possibly working on multiple rows of data. As each row is retrieved from the table, the CASE 
statement kicks in, and instead of the column value being returned, it is the value from the 
decision-making process that is inserted instead. This happens after the data has been retrieved 
and just before the rows returned are displayed in the results pane. The actual value is returned 
initially from the table and is then validated through the CASE statement; once this is done, the 
value is discarded if no longer required.

Now that you are familiar with CASE statements, we can look at them in action.

Dewson_5882C10.fm  Page 353  Tuesday, January 3, 2006  1:15 PM



354 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

Try It Out: Using the CASE Statement

1. Our first example will demonstrate the first CASE syntax, where we will take a column and test for a 
specific value. The results of this test will determine which action will be performed. We will prepopulate 
the TransactionDetails.TransactionTypes table first so that you can see how populating this 
table and the CASE statement work.

INSERT INTO TransactionDetails.TransactionTypes
(TransactionDescription,CreditType,AffectCashBalance)
VALUES ('Deposit',1,1)
INSERT INTO TransactionDetails.TransactionTypes
(TransactionDescription,CreditType,AffectCashBalance)
VALUES ('Withdrawal',0,1)
INSERT INTO TransactionDetails.TransactionTypes
(TransactionDescription,CreditType,AffectCashBalance)
VALUES ('BoughtShares',1,0)
SELECT TransactionDescription,
CASE CreditType
WHEN 0 THEN 'Debiting the account'
WHEN 1 THEN 'Crediting the account'
END
FROM TransactionDetails.TransactionTypes

2. Execute this code, and you should see the output shown in Figure 10-10.

Figure 10-10. Simple CASE statement output

3. A customer can have a positive or negative ClearedBalance. The CASE statement that follows will 
demonstrate this by showing either In Credit or Overdrawn. In this case, we want to use the second 
CASE syntax. We cannot use the first syntax, as we have an operator included within the test and we are 
not looking for a specific value. The code is defined as follows:

SELECT CustomerId,
CASE
WHEN ClearedBalance < 0 THEN 'OverDrawn'
WHEN ClearedBalance > 0 THEN ' In Credit'
ELSE 'Flat'
END, ClearedBalance
FROM CustomerDetails.Customers

Dewson_5882C10.fm  Page 354  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 355

4. Execute the code. This produces output similar to what you see in Figure 10-11.

Figure 10-11. Searched CASE statement output

Bringing It All Together
Now that you have seen the control-of-flow statements, we can bring all of this together in our 
most complex set of code so far. The aim of this stored procedure is to take a “from” and “to” 
date, which can be over any period, and return the movement of a particular customer’s trans-
actions that have affected the cash balance. This mimics your bank statement when it says 
whether you have spent more than you have deposited.

This example includes one topic that is not covered until the next chapter: joining data 
from more than one table together. For the moment, just accept that when you see the state-
ment JOIN, all it is doing is taking data from another table and allowing you to work with it.

So let’s build that example.

Try It Out: Bringing It All Together

■Note  In this example, we are performing a loop around rows of data within a table. This example demon-
strates some of the functionality just covered with decisions and control of flow. SQL Server works best with 
sets of data, rather than a row at a time. However, there will be times that row-by-row processing like this 
happens. In SQL Server 2005, you have the option to write .NET-based stored procedures, and this example 
would certainly be considered a candidate for this treatment. Our example works with one row at a time, 
where you would have a running total of a customer’s balance so that you can calculate interest to charge or 
to pay.

1. First of all, let’s create our stored procedure. We have our CREATE PROCEDURE statement that we enter 
in an empty Query Editor pane, and then we name the procedure with our three input parameters.

CREATE PROCEDURE CustomerDetails.apf_CustMovement @CustId bigint,
@FromDate datetime, @ToDate datetime
AS
BEGIN

Dewson_5882C10.fm  Page 355  Tuesday, January 3, 2006  1:15 PM



356 C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S

2. We then need three internal variables. This stored procedure will return one row of transactions at a 
time while we are still in the date range. As we move through each row, we need to keep a running 
balance of the amounts for each transaction. We know that the data in the TransactionDetails.
Transactions table has an ascending TransactionId as each transaction is entered, so the next trans-
action from the one returned must have a higher value. Therefore, we can store the transaction ID in a 
variable called @LastTran and use that in our filtering. Once the variables are declared, we then set 
them to an initial value. We use @StillCalc as a test for the WHILE loop. This could be any variable 
as we are using the CONTINUE and BREAK statements to determine when we should exit the loop.

DECLARE @RunningBal money, @StillCalc Bit, @LastTran bigint

SELECT @StillCalc = 1, @LastTran = 0, @RunningBal = 0

3. We tell the loop to continue until we get no rows back from our SELECT statement. Once we get no 
rows, we know that there are no more transactions in the date range.

WHILE @StillCalc = 1
BEGIN

4. Our more complex SELECT statement will return one row where the TransactionId is greater than 
the previous TransactionId returned; the transaction would affect the customer’s cash balance; and 
the transaction is between the two dates passed in. If there is a transaction, then we add or subtract the 
value from the @RunningBal variable. We use a CASE statement to decide whether we need to make 
the value a negative value for adding to the variable.

   SELECT TOP 1 @RunningBal = @RunningBal + CASE
                WHEN tt.CreditType = 1 THEN t.Amount
                ELSE t.Amount * -1 END,
                @LastTran = t.TransactionId
     FROM CustomerDetails.Customers c
     JOIN TransactionDetails.Transactions t ON t.CustomerId = c.CustomerId
     JOIN TransactionDetails.TransactionTypes tt ON
       tt.TransactionTypeId = t.TransactionType
    WHERE t.TransactionId > @LastTran
      AND tt.AffectCashBalance = 1
      AND DateEntered BETWEEN @FromDate AND @ToDate
    ORDER BY DateEntered

5. If we get a row returned, then we continue the loop. Once we get no rows returned, we know that there 
are no further transactions in the date range.

    IF @@ROWCOUNT > 0
      -- Perform some interest calculation here...
       CONTINUE
    ELSE
       BREAK
END

SELECT @RunningBal AS 'End Balance'
END
GO

Dewson_5882C10.fm  Page 356  Tuesday, January 3, 2006  1:15 PM



C H A P T E R  1 0  ■  ST O R E D  P R O C E D U R E S 357

6. We can now create the stored procedure and test our results. The example is going to check whether 
Vic McGlynn, customer ID 1, has had a positive or negative movement on her cash balance in the month 
of August 2005. The code to find this out follows. First of all, we insert some 
TransactionDetails.Transactions records to test it out. We also prefix the stored procedure 
with an EXEC(UTE) statement, as this is part of a batch of statements.

INSERT INTO TransactionDetails.Transactions
(CustomerId,TransactionType,DateEntered,Amount,RelatedProductId)
VALUES (1,1,'1 Aug 2005',100.00,1)
INSERT INTO TransactionDetails.Transactions
(CustomerId,TransactionType,DateEntered,Amount,RelatedProductId)
VALUES (1,1,'3 Aug 2005',75.67,1)
INSERT INTO TransactionDetails.Transactions
(CustomerId,TransactionType,DateEntered,Amount,RelatedProductId)
VALUES (1,2,'5 Aug 2005',35.20,1)
INSERT INTO TransactionDetails.Transactions
(CustomerId,TransactionType,DateEntered,Amount,RelatedProductId)
VALUES (1,2,'6 Aug 2005',20.00,1)
EXEC  CustomerDetails.apf_CustMovement 1,'1 Aug 2005','31 Aug 2005'

7. Execute the preceding code, which should return a value that we expect, as shown in Figure 10-12.

Figure 10-12. Complex stored procedure output

  

Summary
In this chapter, you have met stored procedures, which are collections of T-SQL statements 
compiled and ready to be executed by SQL Server. You have learned the advantages of a stored 
procedure over an ad hoc query, encountered the basic CREATE PROCEDURE syntax, and created 
some simple stored procedures.

The basics of building a stored procedure are very simple and straightforward. Therefore, 
building a stored procedure within Query Editor may be as attractive as using a template. As 
stored procedures are sets of T-SQL statements combined together, you will tend to find that 
you build up your query, and then at the end surround it with a CREATE PROCEDURE statement.

Probably the largest area of code creation outside of data manipulation and searching will 
be through control-of-flow statements. We look at other areas, such as error handling, in 
Chapter 11, which aims to advance your T-SQL knowledge.

Dewson_5882C10.fm  Page 357  Tuesday, January 3, 2006  1:15 PM



Dewson_5882C10.fm  Page 358  Tuesday, January 3, 2006  1:15 PM



359

■ ■ ■

C H A P T E R  1 1

T-SQL Essentials

Now that you know how to build and work with SQL Server objects, and insert, update, and 
delete data as well as retrieve it, we can now move on to more of the T-SQL essentials required 
to complete your programming knowledge.

Potentially the most important area covered by this chapter is error handling. After all, no 
matter how good your code is, if it cannot cope when an error occurs, then it will be hard to 
keep the code stable and reliable. There will always be times that the unexpected happens, 
either from strange input data to something happening in the server. However, this is not the 
only area of interest. We will be looking at joining tables together, performing aggregations of 
data, and grouping data together. Finally, there will be times that you wish to hold data either 
in a variable or within a table that you only want to exist for a short period. Quite a great deal to 
cover, but this chapter and the next will be the stepping stones that move you from a novice to 
a professional developer.

This chapter will therefore look at the following:

• Joining two or more tables to see more informational results

• Having a method of storing information on a temporary basis via variables

• How to hold rows of information in a nonpermanent table

• How to aggregate values

• Organizing output data into groups of relevant information

• Returning on unique and distinct values

• Looking at and using system functions

• Error handling: how to create your own errors, trap errors, and make code secure

Using More Than One Table
Throughout this book, the SELECT and UPDATE statements have only dealt with and covered 
the use of one table. However, it is possible to have more than one table within our SELECT or 
UPDATE statement, but we must keep in mind that the more tables included in the query, the 
more detrimental the effect on the query’s performance. When we include subsequent tables, 
there must be a link of some sort between the two tables, known as a join. A join will take place 
between at least one column in one table and a column from the joining table. The columns 

Dewson_5882C11.fm  Page 359  Tuesday, January 10, 2006  3:03 PM



360 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

involved in the join do not have to be in any key within the tables involved in the join. However, 
this is quite uncommon, and if you do find you are joining tables, then there is a high chance 
that a relationship exists between them, which would mean you do require a primary key and 
a foreign key. This was covered in Chapter 3.

It is possible that one of the columns on one side of the join is actually a concatenation of 
two or more columns. As long as the end result is one column, this is acceptable. Also, the two 
columns that are being joined do not have to have the same name, as long as they both have 
similar data types. For example, you can join a char with a varchar. What is not acceptable is 
that one side of the JOIN names a column and on the other side is a variable or literal that is 
really a filter that would be found in a WHERE statement.

Joining two tables together can become quite complicated. The most basic join condition 
is a straight join between two tables, which is called an INNER JOIN. An INNER JOIN will join the 
two tables, and where there is a join of data using the columns from each of the two tables, then 
the data will be returned. For example, if there is a share in the shares table that has no price 
and you are joining the two tables on the share ID, then you would only see output where there 
is a share with a share price. You will see this in action in this chapter.

It is possible to return all the rows from one table where there is no join. This is known as 
an OUTER JOIN. Depending on which table you want the rows always to be returned from, this 
will either be a LEFT OUTER JOIN or a RIGHT OUTER JOIN. Taking our shares example, we could 
use an OUTER JOIN so that even when there is no share price, we can still list the share. This 
example will also be demonstrated later in this chapter.

The final type of join is the scariest and most dangerous join. If you wish for every row in 
one table to be joined with every row in the joining table, then you would use a CROSS JOIN. 
So if you had 10 rows in one table and 12 rows in the other table, you would see returned 120 rows 
of data (10×12). As you can imagine, this type of join just needs two small tables to produce even a 
large amount of output.

Although not the most helpful of syntax demonstrated within the book, the syntax for 
joining two tables is as follows:

FROM tablea
 [FULL[INNER|OUTER|CROSS]] JOIN tableb
{ON tableb.column1 = tablea.column2 {AND|OR tableb.column...}}

The best way to look at the syntax is within a described example. We will use two tables to 
demonstrate the inner join in this example, ShareDetails.Shares and 
ShareDetails.SharePrices.

Joining two tables could not be simpler. All the columns in both tables are available to be 
returned through the query, and so we can list the columns desired as normal. However, if there 
are two columns of the same name, they must be prefixed with the name, or the alias name, of 
the table from which the information is derived.

■Note  It is recommended that whenever a join does take place, whether the column name is unique or not, 
that all columns be prefixed with the table or alias name. This saves time if the query is expanded to include 
other tables, but it also clarifies exactly where the information is coming from.

Dewson_5882C11.fm  Page 360  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 361

Try It Out: Joining Two Tables

1. The first join we will look at is the INNER JOIN. This is where we have two tables and we want to list 
all the values where there is a join. In this case, we want to list all the shares where there is a share 
price, and we want to see every share price for that share. Notice that we don’t need to define the word 
INNER. This is presumed if nothing else is specified. Also take note that, like columns, we have defined 
aliases for the table names. This makes prefixing columns easier. We are joining the two tables on 
ShareId, as this is the linking column between the two tables. Enter the following code:

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

2. Once you have executed the code, you should see the output that appears in Figure 11-1. There is no 
output for ShareIds 3, 4, and 5, as they have no share price.

Figure 11-1. First inner join

3. We can take this a stage further and filter the rows to only list the share price row that matches the 
CurrentPrice in the ShareDetails.Shares table. This could be done by filtering the data on a 
WHERE statement, and from a performance perspective it would be better, as neither of these columns 
are within an index and there could be a large number of rows for ShareDetails.SharePrices for 
each share as time goes on; but for this example, it demonstrates how to add a second column for the join.

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
   AND sp.Price = s.CurrentPrice

4. Execute the preceding code, which will return two rows as shown in Figure 11-2. As you can see, an 
INNER JOIN is very straightforward.

Figure 11-2. Inner join with multiple join columns

Dewson_5882C11.fm  Page 361  Tuesday, January 10, 2006  3:03 PM



362 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

5. The next join we look at is an OUTER JOIN, more specifically a LEFT OUTER JOIN. In this instance, 
we want to return all the rows in the left table, whether there is any data in the right table or not. The left 
table in this case is the ShareDetails.Shares, table as it is the left named table of the two we are 
concerned with. Enter the following code:

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  LEFT OUTER JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

6. Once you execute this code, you should see the missing shares from the previous example listed, as you 
see in Figure 11-3. Notice that where no data exists in the ShareDetails.SharePrices table, the 
values are displayed as NULL. OUTER JOINS are a good tool when checking other queries. For example, 
the results in Figure 11-3 demonstrate that quite rightly, the bottom three shares should have been 
missing in the first example, as they did not meet our criteria. This may not be so obvious when there 
are large volumes of data though.

Figure 11-3. Left outer join

7. To get around this problem, we can add a WHERE statement that will list those shares that do not have 
an item in ShareDetails.SharePrices. This is one method of achieving our goal. We will look at the 
other later in the chapter when we examine EXISTS. We know that when there is a missing share price, 
Price and PriceDate will be NULL. It is also necessary to know that Price cannot have a NULL value 
inserted in any rows of data. If it could, then we would need to use another method, such as EXISTS.

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  LEFT OUTER JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
WHERE sp.Price IS NULL

8. This time we will only have three rows returned, as you see in Figure 11-4.

Dewson_5882C11.fm  Page 362  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 363

Figure 11-4. Left outer join for no share prices

9. The next example is a RIGHT OUTER JOIN. Here we expect the table on the RIGHT to return rows 
where there are no entries on the table in the left. In our example, such a scenario does not exist, as it 
would be breaking referential integrity; however, we can swap the tables around, which will show the 
same results as our first LEFT OUTER JOIN example. Take note that you don’t have to alter the column 
order after the ON, as it is the table definition that defines the left and right tables.

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.SharePrices sp
  RIGHT OUTER JOIN ShareDetails.Shares s ON sp.ShareId = s.ShareId

10. Executing this code will give you the results shown in Figure 11-5.

Figure 11-5. Right outer join

11. If you want a LEFT OUTER JOIN and a RIGHT OUTER JOIN to be available at the same time, then you 
need to choose the FULL OUTER JOIN. This will return rows from both the left and right tables if there 
are no matching rows in the other table. So to clarify, if there is a row in the left table but no match in 
the right table, the row from the left table will be returned with NULL values in the columns from the 
right table, and vice versa. This time we are going to break referential integrity and insert a share price 
with no share. We will then delete the row.

INSERT INTO ShareDetails.SharePrices
(ShareId, Price, PriceDate)
VALUES (99999,12.34,'1 Aug 2005 10:10AM')

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.SharePrices sp
  FULL OUTER JOIN ShareDetails.Shares s ON sp.ShareId = s.ShareId

Dewson_5882C11.fm  Page 363  Tuesday, January 10, 2006  3:03 PM



364 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

12. Once the preceding code has been executed, you will see the results that appear in Figure 11-6. Notice 
that we have rows from the ShareDetails.Shares table when there is no share price and vice versa.

Figure 11-6. Full outer join

13. The final demonstration is with a CROSS JOIN. This is a Cartesian join between our ShareDetails.
Shares and ShareDetails.SharePrices table. A CROSS JOIN cannot have any filtering on it, 
therefore it cannot include a WHERE statement. As we are joining every row with every row, there is no 
need to provide an ON statement, because there is no specific row-on-row join.

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.SharePrices sp
  CROSS JOIN ShareDetails.Shares s

14. The preceding code, when executed, generates a large amount of output. Figure 11-7 shows only a 
snippet of the output.

Figure 11-7. Cross join

Dewson_5882C11.fm  Page 364  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 365

Variables
There will be times when you need to hold a value or work with a value that does not come 
directly from a column. Or perhaps you retrieve a value from a single row of data and a single 
column that you want to use in a different part of a query. It is possible to do this via a variable.

A variable can be declared at any time within a set of T-SQL, whether it is ad hoc or a stored 
procedure or trigger. However, a variable has a finite lifetime.

To inform SQL Server you wish to use a variable, use the following syntax:

DECLARE @variable_name datatype, @variable_name2 datatype

All variables have to be preceded with an @ sign, and as you can see from the syntax, more 
than one variable can be declared, although multiple variables should be separated by a comma 
and held on one line of code. If you move to a second line of code, then you need to prefix the 
first variable with another DECLARE statement. All variables can hold a NULL value, and there is 
not an option to say that the variable cannot hold a NULL value. By default then, when a variable 
is declared, it will have an initial value of NULL. It is also not possible at declaration to assign a 
value to a variable.

To assign a value to a variable, you can use a  SET statement or a SELECT statement. It is standard 
to use SET to set a variable value when you are not working with any tables. Let’s take a look at 
some examples to see more of how to work with variables and their lifetime.

Try It Out: Declaring and Working with Variables

1. In this example, we define two variables; in the first, we will be placing the current date and time 
using the system function GETDATE(), and in the second, we are setting the value of the variable 
@CurrPriceInCents to the value from a column within a table with a mathematical function tagged 
on. Once these two have been set using SET and SELECT, we will then list them out, which can only be 
done via a SELECT statement.

DECLARE @MyDate datetime, @CurrPriceInCents money
SET @MyDate = GETDATE()
SELECT @CurrPriceInCents = CurrentPrice * 100
  FROM ShareDetails.Shares
 WHERE ShareId = 2
SELECT @MyDate,@CurrPriceInCents

2. Execute the code, and you will see something like the results shown in Figure 11-8, the first column 
showing your current data and time.

Figure 11-8. Working with our first variable

Dewson_5882C11.fm  Page 365  Tuesday, January 10, 2006  3:03 PM



366 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

3. If we change the query, however, into two batches, the variables in the second batch will not exist, and 
when we try to execute all of the code at once, we will get an error. Enter the code as it appears here; 
the only real change is the GO statement shown in bold.

DECLARE @MyDate datetime, @CurrPriceInCents money
SET @MyDate = GETDATE()
SELECT @CurrPriceInCents = CurrentPrice * 100
  FROM ShareDetails.Shares
 WHERE ShareId = 2

       GO
SELECT @MyDate,@CurrPriceInCents

4. The error returned when this code is executed is defined as the following results, where we are being 
informed that SQL Server doesn’t know about the first variable in the last statement. This is because 
SQL Server is parsing the whole set of T-SQL before executing, rather than one batch at a time.

Msg 137, Level 15, State 2, Line 1
Must declare the scalar variable "@MyDate".

5. Remove the GO statement so we can see one more example of how variables work. We also need to 
remove the WHERE statement in the example so that we return all rows from the ShareDetails.Shares 
table. The value that will be assigned to the variable @CurrPriceInCents will be the last value 
returned from the query of data. The code we wish to execute is as follows. We have kept the two lines 
in the query, but they have now been prefixed with two dashes, --. This indicates to SQL Server that the 
lines of code have been commented out and should be ignored.

DECLARE @MyDate datetime, @CurrPriceInCents money
SET @MyDate = GETDATE()
SELECT @CurrPriceInCents = CurrentPrice * 100
  FROM ShareDetails.Shares
-- WHERE ShareId = 2
--GO
SELECT @MyDate,@CurrPriceInCents

6. If we look at the results that this produces, as shown in Figure 11-9, we can see that the value in the 
second column is from the last row in the ShareDetails.Shares table, which could also be found by 
performing SELECT * FROM ShareDetails.Shares.

Figure 11-9. Variables and batches

Dewson_5882C11.fm  Page 366  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 367

Temporary Tables
There are two types of temporary tables: local and global. These temporary tables will be 
created in tempdb and not within the database you are connected to. They also have a finite life-
time. Unlike a variable, the time such a table can “survive” is different.

A local temporary table will survive until the connection it was created within is dropped. 
This can happen when the stored procedure that created the temporary table completes, or when 
the Query Editor window is closed. A local temporary table is defined by prefixing the table name 
by a single hash mark, #. The scope of a local temporary table is the connection that created it only.

A global temporary table is defined by prefixing the table name by a double hash mark, ##. 
The scope of a global temporary table differs significantly. When a connection creates the table, 
it is then available to be used by any user and any connection, just like a permanent table. A global 
temporary table will only then be “deleted” when all connections to it have been closed.

In Chapter 8, when looking at the SELECT statement, you were introduced to 
SELECT...INTO, which allows a permanent table to be built from data from either another table 
or tables, or from a list of variables. We could make this table more transient by defining the 
INTO table to reside within the tempdb. However, it will still exist within tempdb until it is either 
dropped or SQL Server is stopped and restarted. Slightly better, but not perfect for when you 
just want to build an interim table between two sets of T-SQL statements.

Requiring a temporary table could happen for a number of reasons. Building a single T-SQL 
statement returning information from a number of tables can get complex, and perhaps could 
even not be ideally optimized for returning the data quickly. Splitting the query into two may 
make the code easier to maintain and perform better. To give an example, as our customers 
“age,” they will have more and more transactions against their account IDs. It may be that 
when working out any interest to accrue, the query is taking a long time to run, as there are 
more and more transactions. It might be better to create a temporary table just of the transac-
tions you are interested in, then pass this temporary table to code that then calculates the 
interest rather than trying to complete all the work in one pass of the data.

When it comes time to work with a temporary table, such a table can be built either by 
using the CREATE TABLE statement or by using the SELECT...INTO command. Let’s take a look at 
temporary tables in action.

Try It Out: Temporary Tables

1. The first example will create a local temporary table based on the CREATE TABLE statement. We will 
then populate the table with some data, and retrieve the data. We will then open up a different Query 
Editor pane and try and retrieve data from the table to show that it is local. Also of interest here is how 
we can use a SELECT statement in conjunction with an INSERT statement to add the values. Providing 
that the number of columns returned in the SELECT match either the number of columns within the 
table or the number of columns in the INSERT column list, using a SELECT statement is a great way of 
populating a table, especially temporary tables. First, create the temporary table. For the moment, just 
enter the code, don’t execute it.

Dewson_5882C11.fm  Page 367  Tuesday, January 10, 2006  3:03 PM



368 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

CREATE TABLE #SharesTmp
(ShareDesc varchar(50),
Price numeric(18,5),
PriceDate datetime)

2. Next we want to populate the temporary table with information from the ShareDetails.Shares and 
the ShareDetails.SharePrices tables. Because we are populating every column within the table, 
we don’t need to list the columns in the INSERT INTO table part of the query. Then we use the results from 
a SELECT statement to populate many rows in one set of T-SQL. You can execute the code now if you want, 
but when we get to the third part in a moment, run the SELECT * from the same Query Editor window.

INSERT INTO #SharesTmp
SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

3. The final part is to prove that there is data in the table.

SELECT * FROM #SharesTmp

4. When the code is executed, you should see the output that appears in Figure 11-10.

Figure 11-10. Temporary table

5. Open up a fresh Query Editor and then try and execute the following code:

SELECT * FROM #SharesTmp

6. Now instead of returning a set of results like those in Figure 11-10, you will get an error message:

Msg 208, Level 16, State 0, Line 1
Invalid object name '#SharesTmp'.

7. If we change the whole query to now work with a global temporary variable, you will see a different end 
result. To ensure we are starting afresh, clear all the Query Editors, or execute the following DROP TABLE 
command in the first Query Editor.

DROP TABLE #SharesTmp

Dewson_5882C11.fm  Page 368  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 369

8. Enter the following code, taking note of the double hash marks, in one of the Query Editors.

CREATE TABLE ##SharesTmp
(ShareDesc varchar(50),
Price numeric(18,5),
PriceDate datetime)
INSERT INTO ##SharesTmp
SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId
SELECT * FROM ##SharesTmp

9. When you execute the code, you should see the same results as you did with the first query (refer back 
to Figure 11-10).

10. Move to a new Query Editor, ensuring that you leave the previous Query Editor pane still open. Then 
enter the following SELECT statement:

SELECT * FROM ##SharesTmp

11. When this is executed, you see the same results again, as shown originally in Figure 11-10.

It is not until the first Query Editor pane that defined the global table is closed or until a  DROP TABLE 
##SharesTmp is executed that the table will disappear.

Aggregations
An aggregation is where SQL Server performs a function on a set of data to return one aggre-
gated value per grouping of data. This will vary from counting the number of rows returned 
from a SELECT statement through to figuring out maximum and minimum values. Combining 
some of these functions with the DISTINCT function, discussed later in the section “Distinct 
Values,” can provide some very useful functionality. An example might be when you want to 
show the highest value for each distinct share to demonstrate when the share was worth the 
greatest amount.

Let’s dive straight in by looking at different aggregation types and working through examples 
of each.

COUNT/COUNT_BIG
COUNT/COUNT_BIG is probably the most commonly used aggregation, and it finds out the number 
of rows returned from a query. You use this for checking the total number of rows in a table, or 
more likely the number of rows returned from a particular set of filtering criteria. Quite often 
this will be used to cross-check the number of rows from a query in SQL Server with the number of 
rows an application is showing to a user.

The syntax is COUNT(*) or COUNT_BIG(*). There are no columns defined, as it is rows that are 
being counted.

Dewson_5882C11.fm  Page 369  Tuesday, January 10, 2006  3:03 PM



370 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

■Note  The difference in these two functions is that COUNT returns an integer data type, and COUNT_BIG 
returns a bigint data type.

Try It Out: Counting Rows

1. This example will count the number of rows in the Shares table. We know that we have only inserted 
five rows, and so we expect from the following code a returned value of 5.

SELECT COUNT(*) AS 'Number of Rows'
FROM ShareDetails.Shares

2. Execute the code, and you will see the following results shown in Figure 11-11.

Figure 11-11. Using COUNT()

3. We could of course add a filter such as the following, which counts the number of shares where the 
price is greater than 10 dollars:

SELECT COUNT(*) AS 'Number of Rows'
FROM ShareDetails.Shares
WHERE CurrentPrice > 10

4. Execute the code, and you will now see a count of 2, as appears in Figure 11-12, as expected.

Figure 11-12. COUNT with a filter

SUM
If you have numeric values in a column, it is possible to aggregate them as a summation. The 
ideal scenario for this is to aggregate the number of transactions in a bank account to see how 
much the balance has changed by. This could be daily, weekly, monthly, or over any time 
period required. A negative amount would show that more has been taken out of the account 
than put in, for example.

Dewson_5882C11.fm  Page 370  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 371

The syntax can be shown as SUM(column1|@variable|Mathematical function). The summa-
tion does not have to be of a column, but could include a math function. One example would 
be to sum up the cost of purchasing shares, so you would multiply the number of shares bought 
multiplied by the cost paid.

Try It Out: Summing Values

1. We can do a simple SUM to add up the amount of money that has passed through the account as a with-
drawal, TransactionType 1.

SELECT SUM(Amount) AS 'Amount Deposited'
  FROM TransactionDetails.Transactions
 WHERE CustomerId = 1
   AND TransactionType = 1

2. Executing this code will add up the first two rows we inserted at point 1. The results will be 100+75.67, 
as shown in Figure 11-13.

Figure 11-13. SUMming values

MAX/MIN
On a set of data, it is possible to get the minimum and maximum values of a column of data. 
This is useful if you want to see values such as the smallest share price or the greatest portfolio 
value, or in other scenarios outside of our example, as the maximum number of sales of each 
product in a period of time, or the minimum sold, so that you can see if some days are quieter 
than others.

Try It Out: MAX and MIN

1. In this example, we will see how to find the maximum and minimum values for a share with one state-
ment. Enter the following code:

SELECT MAX(Price) MaxPrice,MIN(Price) MinPrice
FROM ShareDetails.SharePrices
WHERE ShareId = 1

Dewson_5882C11.fm  Page 371  Tuesday, January 10, 2006  3:03 PM



372 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

2. Executing the code will produce the results shown in Figure 11-14.

Figure 11-14. Find the maximum and minimum

AVG
As you might expect, the AVG aggregation returns the average value from the rowset of a column 
of data. All of the values are summed up and then divided by the number of rows that formed 
the underlying result set.

Try It Out: Averaging It Out

1. Our last aggregation example will produce an average value for the share prices found for share ID 1. 
Enter the following code:

SELECT AVG(Price) AvgPrice
FROM ShareDetails.SharePrices
WHERE ShareId = 1

2. Once you have executed the code, you should see the results shown in Figure 11-15.

Figure 11-15. Finding the average

Now that we have taken a look at aggregations, we can move on to looking at grouping data. Aggregations, as you 
have seen, are useful, but limited. In the next section, we can expand these aggregations so that they are used with 
groups of data.

GROUP BY
Using aggregations, as has just been demonstrated, works well when you just wish a single row 
of results for a specific filtered item. If you wish to find the average price of several shares, you 
may be thinking you need to provide a SELECT AVG() for each share. This section will demon-
strate that this is not the case. By using GROUP BY, you instruct SQL Server to group the data to 
return and provide a summary value for each grouping of data. To clarify, as you will see in the 

Dewson_5882C11.fm  Page 372  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 373

upcoming examples, we could remove the WHERE ShareId=1 statement, which would then allow 
you to group the results by each different ShareId.

The basic syntax for grouping is defined in the following code. It is possible to expand 
GROUP BY further to include rolling up or providing cubes of information; however, such a 
discussion falls outside the scope of this book.

GROUP BY [ALL] (column1[,column2,...])

The option ALL is a bit like an OUTER JOIN. If you have a WHERE statement as part of your 
SELECT statement, any grouping filtered out will still return a row in the results, but instead of 
aggregating the column, a value of NULL will be returned. I tend to use this as a checking mech-
anism. I can see the rows with values and the rows without values, and visually this will tell me 
that my filtering is correct.

When working with GROUP BY, the main point that you have to be aware of is that any 
column defined in the SELECT statement that does not form part of the aggregation MUST be 
contained within the GROUP BY clause and be in the same order as the SELECT statement. Failure 
to do this will mean that the query will give erroneous results, and in many cases use a lot of 
resources in giving these results.

Try It Out: GROUP BY

1. This first example will demonstrate how to find maximum and minimum values for every share that has 
a row in the ShareDetails.SharePrices table where the share ID < 9999. This means that the row 
we added earlier when looking at joins that has no Share record will be excluded. The code is as follows:

  SELECT ShareId, MIN(Price) MinPrice, Max(Price) MaxPrice
  FROM ShareDetails.SharePrices
 WHERE ShareId < 9999
 GROUP BY ShareId

2. When the code is executed, you will see the two shares listed with their corresponding minimum and 
maximum values, as shown in Figure 11-16.

Figure 11-16. Max and min of a group

3. If we wish to include any rows where there is a Price row, but the ShareId has a value of 9999 or 
greater, then we would use the ALL option with GROUP BY. In the following example, we are also linking 
into the ShareDetails.Shares table to retrieve the share description.

SELECT sp.ShareId, s.ShareDesc,MIN(Price) MinPrice, Max(Price) MaxPrice
  FROM ShareDetails.SharePrices sp
  LEFT JOIN ShareDetails.Shares s ON s.ShareId = sp.ShareId
 WHERE sp.ShareId < 9999
 GROUP BY ALL sp.ShareId, s.ShareDesc

Dewson_5882C11.fm  Page 373  Tuesday, January 10, 2006  3:03 PM



374 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

4. When you execute the code, the Price row that is outside of the filtering returns a NULL value. The 
other rows return details as shown in Figure 11-17.

Figure 11-17. A JOIN with a max and min group

HAVING
When using the GROUP BY clause, it is possible to supplement your query with a HAVING clause. 
The HAVING clause is like a filter, but it works on aggregations of the data rather than the rows of 
data prior to the aggregation. Hence, it has to be included with a GROUP BY clause. It will also 
include the aggregation you wish to check. The code would therefore look as follows:

GROUP BY column1[,column2...]
HAVING [aggregation_condition]

The aggregation_condition would be where we place the aggregation and the test we wish 
to perform. For example, my bank charges me if I have more than 20 nonregular items pass 
through my account in a month. In this case, the query would group by customer ID, counting 
the number of nonregular transactions for each calendar month. If the count were less than or 
equal to 20 items, then you would like this list to not include the customer in question. To 
clarify this, the query code would look something like the following if we were running this in 
August 2005:

SELECT CustomerId,COUNT(*)
FROM CustomerBankTransactions
WHERE TransactionDate BETWEEN '1 Aug 2005 ' AND '31 Aug 2005 '
GROUP BY CustomerId
HAVING COUNT(*) > 20

Try It Out: HAVING

1. The following example, we will use the MIN aggregate function to remove rows where the minimum 
share price is greater than $10. This query is taken from our GROUP BY ALL example shown earlier. 
Although we have kept the ALL option within the GROUP BY statement, it is ignored, as it is followed by 
the HAVING clause.

Dewson_5882C11.fm  Page 374  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 375

SELECT sp.ShareId, s.ShareDesc,MIN(Price) MinPrice, Max(Price) MaxPrice
  FROM ShareDetails.SharePrices sp
  LEFT JOIN ShareDetails.Shares s ON s.ShareId = sp.ShareId
 WHERE sp.ShareId < 9999
 GROUP BY ALL sp.ShareId, s.ShareDesc
HAVING MIN(Price) > 10

2. The results on the executed code will only return one value, as you see in Figure 11-18, not only ignoring 
ACME as its share price is below $10, but also the share 99999 that has a MinPrice value of NULL.

Figure 11-18. When you wish to only have certain aggregated rows

Even if we changed the HAVING to being less than $10, the share ID 99999 would still be ignored due to the 
HAVING overriding the GROUP BY ALL. Not only that, NULL as you know is a “special” value and is neither less 
than or greater than any value.

Distinct Values
With some of our tables in our examples, multiple entries will exist for the same value. To clarify, 
in the ShareDetails.SharePrices table, there are multiple entries for each share as each price 
is stored. There may be some shares with no price, of course. But what if you wanted to see a 
listing of shares that did have prices, but you only want to see each share listed once? This is a 
simple example, and we will see more complex examples later on when we look at using aggre-
gations within SQL Server. That aside, the example that follows serves it purpose well.

The syntax is to place the keyword DISTINCT after the SELECT statement and before the list 
of columns. The following list of columns is then tested for all the rows returned, and for each 
set of unique distinct values, one row will be listed.

Try It Out: Distinct Values

1. We have to join the ShareDetails.Shares and ShareDetails.SharePrices table again so that 
we know we are only returning rows that have a share price. We had that code in our JOIN section 
earlier in the chapter. It is replicated here, and you can execute it if you wish.

SELECT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

Dewson_5882C11.fm  Page 375  Tuesday, January 10, 2006  3:03 PM



376 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

2. As you know, this will return multiple rows for each share. Placing DISTINCT at the start of the column 
list will not make any difference, because there are different prices and different price dates.

SELECT DISTINCT s.ShareDesc,sp.Price,sp.PriceDate
  FROM ShareDetails.Shares s
  JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

3. To get a list of shares that have a value, it is necessary to remove the last two columns and only list the 
ShareDesc column:

SELECT DISTINCT s.ShareDesc
  FROM ShareDetails.Shares s
  JOIN ShareDetails.SharePrices sp ON sp.ShareId = s.ShareId

4. When you execute this code, you will now see the desired results, as shown in Figure 11-19.

Figure 11-19. Finding unique values

Functions
To bring more flexibility to your T-SQL code, you can use a number of functions with the data 
from variables and columns. This section does not include a comprehensive list, but it does 
contain the most commonly used functions and the functions you will come across early in 
your development career. They have been split into three categories: date and time, string, and 
system functions. There is a short explanation for each, with some code demonstrating each 
function in an example with results.

Date and Time
The first set of functions involve working either with a variable that holds a date and time value 
or using a system function to retrieve the current data and time.

DATEADD()

If you want to add or subtract an amount of time to a column or a variable and display a new 
value in a rowset, or set a variable with that new value, the DATEADD() will do this. The syntax for 
DATEADD() is

DATEADD(datepart, number, date)

The datepart option applies to all of the date functions and details what you want to add 
from milliseconds from years. These are defined as reserved words and therefore will not be 

Dewson_5882C11.fm  Page 376  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 377

surrounded by quotation marks. There are a number of possible values, and they are detailed 
in here:

Taking the second option, to add the value, the number should be positive, and to subtract 
a number, make it negative. Moving to the final option, this can be either a value, a variable, or 
a column date type holding the date and time you wish to change.

Try It Out: DATEADD()

1. We will set a local variable to a date and time. After that, we will add 4 hours to the value and display 
the results, as shown in Figure 11-20.

DECLARE @OldTime datetime
SET @OldTime = '24 March 2006 3:00 PM'
SELECT DATEADD(hh,4,@OldTime)

Figure 11-20. Adding hours to a date

2. Taking the reverse, we will take the same variable and remove 6 hours. The results should appear as 
shown in Figure 11-21.

DECLARE @OldTime datetime
SET @OldTime = '24 March 2006 3:00 PM'
SELECT DATEADD(hh,-6,@OldTime)

datepart Definition Meaning

Ms Millisecond

ss, s Second

mi, n Minute

Hh Hour

dw, w Weekday

wk, ww Week

dd, d Day

dy, y Day of year

mm, n Month

qq, q Quarter

yy, yyyy Year

Dewson_5882C11.fm  Page 377  Tuesday, January 10, 2006  3:03 PM



378 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

Figure 11-21. Subtracting hours from a date

DATEDIFF()

To find the difference between two dates, you would use the function DATEDIFF(). The syntax 
for this function is

DATEDIFF(datepart, startdate, enddate)

The first option contains the same options as for DATEADD(), and startdate and enddate are 
the two days you wish to compare. A negative number shows that the enddate is before the 
startdate.

Try It Out: DATEDIFF()

We will set two local variables to a date and time. After that we find the difference in milliseconds.

DECLARE @FirstTime datetime, @SecondTime datetime
SET @FirstTime = '24 March 2006 3:00 PM'
SET @SecondTime = '24 March 2006 3:33PM'
SELECT DATEDIFF(ms,@FirstTime,@SecondTime)

Figure 11-22 shows the results after executing this code.

Figure 11-22. The difference between two dates

DATENAME()

Returning the name of the part of the date is great for using with things like customer statements. 
Changing the number 6 to the word June makes for more pleasant reading.

The syntax is

DATENAME(datepart, datetoinspect)

We will also see this in action in DATEPART().

Dewson_5882C11.fm  Page 378  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 379

Try It Out: DATENAME()

In this example, we will set one date and time and then return the day of the week. We know this to be a Friday.

DECLARE @StatementDate datetime
SET @StatementDate = '24 March 2006 3:00 PM'
SELECT DATENAME(dw,@StatementDate)

Figure 11-23 shows the results after executing this code.

Figure 11-23. The day name of a date

DATEPART()

If you wish to achieve returning part of a date from a date variable, column, or value, you can 
use DATEPART() within a SELECT statement.

As you may be expecting by now, the syntax has datepart as the first option, and then the 
datetoinspect as the second option, which will return the numerical day of the week from the 
date inspected.

DATEPART(datepart, datetoinspect)

Try It Out: DATEPART()

1. We need only set one local variable to a date and time. After that, we find the day of the month.

DECLARE @WhatsTheDay datetime
SET @WhatsTheDay = '24 March 2006 3:00 PM'
SELECT DATEPART(dd, @WhatsTheDay)

Figure 11-24 shows the results after executing this code.

Figure 11-24. Finding part of a date

2. To produce a more pleasing date and time for a statement, we can combine DATEPART() and DATENAME() 
to have a meaningful output. The function CAST() , which we will look at in detail shortly, is needed 
here, as it is a data type conversion function.

Dewson_5882C11.fm  Page 379  Tuesday, January 10, 2006  3:03 PM



380 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

DECLARE @WhatsTheDay datetime
SET @WhatsTheDay = '24 March 2006 3:00 PM'
SELECT
DATENAME(dw,DATEPART(dd, @WhatsTheDay)) + ', ' +
CAST(DATEPART(dd,@WhatsTheDay) AS varchar(2)) + ' ' +
DATENAME(mm,@WhatsTheDay) + ' ' +
CAST(DATEPART(yyyy,@WhatsTheDay) AS char(4))

3. When this is executed, it will produce the more meaningful date shown in Figure 11-25.

Figure 11-25. Finding and concatenting to provide a useful date

GETDATE()

GETDATE() is a great function for returning the exact date and time from the system. You have 
seen this in action when setting up a table with a default value, and at a couple of other points 
in the book. There are no parameters to the syntax.

String
This next section will look at some functions that can act on those data types that are character 
based, such as varchar and char.

ASCII()

ASCII() will convert a single character to the equivalent ASCII code.

Try It Out: ASCII()

1. This example will return the ASCII code of the first character within a string. If the string has more than 
one character, then only the first will be taken.

DECLARE @StringTest char(10)
SET @StringTest = ASCII('Robin     ')
SELECT @StringTest

Dewson_5882C11.fm  Page 380  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 381

2. Executing the code, you will see the ASCII value of the letter “R” returned, as shown in Figure 11-26.

Figure 11-26. An ASCII value

CHAR()

The reverse of ASCII() is the CHAR() function, which takes a numeric value and turns it into an 
alphanumeric character.

Try It Out: CHAR()

1. In this example, we define a local variable. Notice that the variable is a character-based data type. 
We then place the ASCII() value of “R” in to this variable. From there, we convert back to a CHAR(). 
There is an implicit conversion from a character to a numeric. If the conversion results in a value greater 
than 255, the last value for an ASCII character, then NULL is returned. Enter the following code:

DECLARE @StringTest char(10)
SET @StringTest = ASCII('Robin     ')
SELECT CHAR(@StringTest)

2. Executing the code, you will see an “R,” as shown in Figure 11-27.

Figure 11-27. Changing a number to a character

3. The same result would be derived using a data type that is expected that is numeric based.

DECLARE @StringTest int
SET @StringTest = ASCII('Robin     ')
SELECT CHAR(@StringTest)

LEFT()

When it is necessary to return the first n left characters from a string-based variable, you can 
achieve this through the use of LEFT(n), replacing n with the number of characters you wish 
to return.

Dewson_5882C11.fm  Page 381  Tuesday, January 10, 2006  3:03 PM



382 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

Try It Out: LEFT()

1. In our next example, we take the first three characters from a local variable. Here we are taking the first 
three characters from Robin to return Rob:

DECLARE @StringTest char(10)
SET @StringTest = 'Robin     '
SELECT LEFT(@StringTest,3)

2. As expected, you should get the results shown in Figure 11-28 when you execute the code.

Figure 11-28. The first LEFT characters

LOWER()

To change alphabetic characters within a string, ensuring that all characters are in lowercase, 
you can use the LOWER() function.

Try It Out: LOWER()

1. Our LOWER() example combines this function along with another string function, LEFT(). Like all our 
functions, they can be combined together to perform several functions all at once.

DECLARE @StringTest char(10)
SET @StringTest = 'Robin     '
SELECT LOWER(LEFT(@StringTest,3))

2. As you can see, this results in showing Rob in lowercase, as appears in Figure 11-29.

Figure 11-29. Changing letters to lowercase

LTRIM()

There will be times that leading spaces occur in a string and you want to remove them. LTRIM() 
will trim these spaces on the left.

Dewson_5882C11.fm  Page 382  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 383

Try It Out: LTRIM()

1. To prove that leading spaces are removed by the LTRIM() function, we have to change the value within 
our local variable. On top of that, we have to put a string prefixing the variable to show that the variable 
has had the spaces removed.

DECLARE @StringTest char(10)
SET @StringTest = '     Robin'
SELECT 'Start-'+LTRIM(@StringTest),'Start-'+@StringTest

2. We produce two columns of output, as shown in Figure 11-30, the first with the variable trimmed and 
the second showing that the variable did have the leading spaces.

Figure 11-30. Removing spaces from the left

RIGHT()

The opposite of LEFT() is of course, RIGHT() and this function will return a set of characters 
from the right-hand side.

Try It Out: RIGHT()

1. Keep the variable used in LTRIM(), as it will allow us to return bin, which are the three right-hand side 
characters now.

DECLARE @StringTest char(10)
SET @StringTest = '     Robin'
SELECT RIGHT(@StringTest,3)

2. And you can see, the results should appear as shown in Figure 11-31.

Figure 11-31. Returning a number of characters starting from the right

Dewson_5882C11.fm  Page 383  Tuesday, January 10, 2006  3:03 PM



384 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

RTRIM()

When you have a CHAR() data type, no matter how many characters you enter, the variable will 
be filled on the right, known as right padded, with spaces. To remove these, use RTRIM. This will 
change the data from a fixed-length CHAR() to a variable length value.

Try It Out: RTRIM()

1. This example has no spaces after Robin, and we will prove the space padding with the first column 
returned from the following code. The second column has the spaces trimmed.

DECLARE @StringTest char(10)
SET @StringTest = 'Robin'
SELECT @StringTest+'-End',RTRIM(@StringTest)+'-End'

2. And the results are as expected, as shown in Figure 11-32.

Figure 11-32. Removing spaces from the right

STR()

Some data types have implicit conversions. We will see later how to complete explicit conver-
sions, but a simple conversion that will take any numeric value and convert it to a variable 
length string is STR(), which we look at next.

Try It Out: STR()

1. Our first example demonstrates that we cannot add a number, 82, to a string.

SELECT 'A'+82

2. When the preceding code is executed, you will see the following error:

Msg 245, Level 16, State 1, Line 1
Conversion failed when converting a value of type varchar to type int.
Ensure that all values of the expression being converted can be converted
to the target type, or modify query to avoid this type conversion.

Dewson_5882C11.fm  Page 384  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 385

3. Changing the example to include the STR() function will convert this numeric to a string of varying 
length such as varchar().

SELECT 'A'+STR(82)

4. Instead of an error, we now see the desired result, which appears in Figure 11-33. However, it isn’t really 
desirable as there are spaces between the letter and the number. Leading zeros are translated to spaces.

Figure 11-33. Changing a number to a string

5. By including an LTRIM() function, we can remove those spaces:

SELECT 'A'+LTRIM(STR(82))

6. This code will now produce the correct results, as you see in Figure 11-34.

Figure 11-34. Changing a number to a string and removing leading spaces

SUBSTRING()

As you have seen, you can take a number of characters from the left and from the right of a 
string. To retrieve a number of characters that do not start with the first or last character, you 
need to use the function SUBSTRING(). This has three parameters: the variable or column, which 
character to start the retrieval from, and the number of characters to return.

Try It Out: SUBSTRING()

1. Define the variable we wish to return a substring from. Once complete, we can then take the variable, 
inform SQL Server we wish to start the substring at character position 3, and return the remaining characters.

DECLARE @StringTest char(10)
SET @StringTest = 'Robin     '
SELECT SUBSTRING(@StringTest,3,LEN(@StringTest))

Dewson_5882C11.fm  Page 385  Tuesday, January 10, 2006  3:03 PM



386 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

2. And we have the desired result, as shown in Figure 11-35.

Figure 11-35. Returning part of a string from within a string

UPPER()

The final example is the reverse of the LOWER() function and will change all characters to 
uppercase.

Try It Out: UPPER()

1. After the declared variable has been set, we then use the UPPER() function to change the value to 
uppercase:

DECLARE @StringTest char(10)
SET @StringTest = 'Robin     '
SELECT UPPER(@StringTest)

2. And as you can see from Figure 11-36, Robin becomes ROBIN.

Figure 11-36. Change the case of a string to uppercase

System Functions
System functions are functions that provide extra functionality outside of the boundaries that 
can be defined as string, numeric, or date related. Three of these functions will be used extensively 
throughout our code, and therefore you should pay special attention to CASE, CAST, and ISNULL.

CASE WHEN...THEN...ELSE...END

The first function is when we wish to test a condition. WHEN that condition is true THEN we can do 
further processing, ELSE if it is false, then we can do something else. What happens in the WHEN 
section and the THEN section can range from another CASE statement to providing a value that 
sets a column or a variable.

Dewson_5882C11.fm  Page 386  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 387

The CASE WHEN statement can be used to return a value or, if on the right-hand side of an 
equality statement, to set a value. Both of these scenarios are covered in the following examples.

Try It Out: CASE

1. The example will use a CASE statement to add up customers TransactionDetails.Transactions 
for the month of August. If the TransactionType is 0, then this is a Debit, 1 for a Credit. By using the 
SUM aggregation we can add up the amounts. Combine this with a GROUP BY where the 
TransactionDetails.Transactions will be split between Credit and Debit we will get two rows in 
the results set: one for debits and one for credits.

SET QUOTED_IDENTIFIER OFF
SELECT CustomerId,
CASE WHEN CreditType = 0 THEN "Debits" ELSE "Credits" END
AS TranType,SUM(Amount)
  FROM TransactionDetails.Transactions t
  JOIN TransactionDetails.TransactionTypes tt ON
        tt.TransActionTypeId = t.TransactionType
 WHERE t.DateEntered BETWEEN '1 Aug 2005' AND '31 Aug 2005'
 GROUP BY CustomerId,CreditType

2. When the code is run, you should see the results shown in Figure 11-37.

Figure 11-37. Decisions within a string

CAST()/CONVERT()

These are two functions used to convert from one data type to another. The main difference 
between them is that CAST() is ANSI SQL–92 compliant, but CONVERT() has more functionality.

The syntax for CAST() is

CAST(variable_or_column AS datatype)

This is opposed to the syntax for CONVERT(), which is

CONVERT(datatype,variable_or_column)

Not all data types can be converted between each other, such as converting a datetime to 
a text data type, and some conversions need neither a CAST() or a CONVERT(). There is a grid in 
Books Online that provides the necessary information.

If you wish to CAST() from numeric to decimal or vice versa, then you need to use CAST(); 
otherwise you will lose precision.

Dewson_5882C11.fm  Page 387  Tuesday, January 10, 2006  3:03 PM



388 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

Try It Out: CAST()/CONVERT()

1. The first example will use CAST to move a number to a char(10).

DECLARE @Cast int
SET @Cast = 1234
SELECT CAST(@Cast as char(10)) + '-End'

2. Executing this code results in a left-filled character variable, as shown in Figure 11-38.

Figure 11-38. Changing the data type of a value

3. The second example completes the same conversion, but this time we use the CONVERT() function.

DECLARE @Convert int
SET @Convert = 5678
SELECT CONVERT(char(10),@Convert) + '-End'

4. As you can see from Figure 11-39, the only change is the value output.

Figure 11-39. Changing the data type of a value, using the non-ANSI standard

ISDATE()

Although ISDATE() is a function that works with dates, this system function will take a value in 
a column or a variable and confirm whether it contains a valid date. The value returned is 0, or 
false, for an invalid date, or 1 for true if the date is okay.

Try It Out: ISDATE()

1. The first example demonstrates where a date is invalid. There are only 30 days in September.

DECLARE @IsDate char(15)
SET @IsDate = '31 Sep 2005'
SELECT ISDATE(@IsDate)

Dewson_5882C11.fm  Page 388  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 389

2. Execute the code, and you should get the results shown in Figure 11-40.

Figure 11-40. Testing if a value is a date

3. Our second example is a valid date:

DECLARE @IsDate char(15)
SET @IsDate = '30 Sep 2005'
SELECT ISDATE(@IsDate)

4. This time when you run the code, you see a value of 1 , as shown in Figure 11-41, denoting a valid entry.

Figure 11-41. Showing that a value is a date

ISNULL()

Many times so far you have seen NULL values within a column of returned data. As a value, this 
is very useful, as you have seen. However, you may wish to test whether a column contains a 
NULL or not. If there were a value, you retain it, but if there is a NULL setting, you want to convert 
it to a value. This could be used to cover a NULL value in an aggregation, for example. The syntax is

ISNULL(value_to_test,new_value)

where the first option is the column or variable to test if there is a NULL value, and the second 
option will define what to do change the value to if there is a NULL value. This change will only 
occur in the results and will not change the underlying data that the value came from.

Try It Out: ISNULL()

1. In this example, we define a char() variable of 10 characters in length and then set the value explicitly 
to NULL. The example will also work without the second line of code, which is simply there for clarity. 
The third line will test the variable, and as it is NULL, it will change it to a date. Note though that a date 
is more than 10 characters, so the value will be truncated.

DECLARE @IsNull char(10)
SET @IsNull = NULL
SELECT ISNULL(@IsNull,GETDATE())

Dewson_5882C11.fm  Page 389  Tuesday, January 10, 2006  3:03 PM



390 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

2. And as expected, when you execute the code, you get the first 10 characters of the relevant date, as 
shown in Figure 11-42.

Figure 11-42. If the value is a NULL, changing the NULL to a value

ISNUMERIC()

This final system function tests the value within a column or variable and ascertains whether it 
is numeric or not. The value returned is 0, or false, for an invalid number, or 1 for true if the test 
is okay and can convert to a numeric.

■Note  Currency symbols such as £ and $ will also return 1 for a valid numeric value.

Try It Out: ISNUMERIC()

1. Our first example to demonstrate ISNUMERIC() defines a character variable and contains alphabetic 
values. This test will fail, as shown in Figure 11-43.

DECLARE @IsNum char(10)
SET @IsNum = 'Robin     '
SELECT ISNUMERIC(@IsNum)

Figure 11-43. Checking whether a value is a number and finding out it is not

2. This second example places numbers and spaces in to a char field. The ISNUMERIC() test will ignore 
the spaces provided that there are no further alphanumeric characters.

DECLARE @IsNum char(10)
SET @IsNum = '1234      '
SELECT ISNUMERIC(@IsNum)

Dewson_5882C11.fm  Page 390  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 391

Figure 11-44 shows the results of running this code.

Figure 11-44. Finding out a value is numeric

RAISERROR
Before we look at handling errors, you need to be aware of what an error is, how it is generated 
and the information it generates, and finally how to generate your own errors when something 
is wrong. The T-SQL command RAISERROR allows us as developers to have the ability to produce 
our own SQL Server error messages when running queries or stored procedures. We are not 
tied to just using error messages that come with SQL Server; we can set up our own messages 
and our own level of severity for those messages. It is also possible to determine whether the 
message is recorded in the Windows error log or not.

However, whether we wish to use our own error message or a system error message, we 
can still generate an error message from SQL Server as if SQL Server itself raised it. Enterprise 
environments typically experience the same errors on repeated occasions, since they employ 
SQL Server in very specific ways depending on their business model. With this in mind, atten-
tion to employing RAISERROR can have big benefits by providing more meaningful feedback as 
well as suggested solutions for users.

By using RAISERROR, the whole SQL Server system will act as if SQL Server raised the error, 
as you have seen within this book.

RAISERROR can be used in one of two ways; looking at the syntax will make this clear.

RAISERROR ({msg_id|msg_str} {,severity,state}
           [,argument [ ,...n ] ])
           [WITH option [ ,...n ]]

You can either use a specific msg_id or provide an actual output string, msg_str, either as a 
literal or a local variable defined as string based, containing the error message that will be 
recorded. The msg_id references system and user-defined messages that already exist within 
the SQL Server error messages table.

When specifying a text message in the first parameter of the RAISERROR function instead of 
a message ID, you may find that this is easier to write than creating a new message:

RAISERROR('You made an error', 10, 1)

The next two parameters in the RAISERROR syntax are numerical and relate to how severe 
the error is and information about how the error was invoked. Severity levels range from 1 at 
the innocuous end to 25 at the fatal end. Severity levels of 2 to 14 are generally informational. 

Dewson_5882C11.fm  Page 391  Tuesday, January 10, 2006  3:03 PM



392 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

Severity level 15 is for warnings and levels 16 or higher represent errors. Severity levels from 20 
to 25 are considered fatal, and require the WITH LOG option, which will mean that the error is 
logged in the Windows error log and the connection terminated; quite simply, the stored 
procedure stops executing. The connection referred to here is the connection within Query 
Editor, or the connection made by an application using a data access method like ADO.NET. 
Only for a most extreme error would we set the severity to this level; in most cases, we would 
use a number between 1 and 18.

The last parameter within the function specifies state. Use a 1 here for most implementa-
tions, although the legitimate range is from 1 to 127. You may use this to indicate which error 
was thrown by providing a different state for each RAISERROR function in your stored procedure. 
SQL Server will not act on any legitimate state value, but the parameter is required.

An msg_str can define parameters within the text, and then by placing the value, either 
statically or via a variable, after the last parameter that you define, will replace the message 
parameter with that value. This is demonstrated in an upcoming example. If you do wish to add 
a parameter to a message string, you have to define a conversion specification. The format is

% [[flag] [width] [. precision] [{h | l}]] type

The options are as follows:

• flag: A code that determines justification and spacing of the value entered:

• - (minus): Left justify the value.

• + (plus): The value will show a + or a – sign.

• 0: Prefix the output with zeros.

• #: Preface any nonzero with a 0, 0x, or 0X, depending on the formatting.

• (blank): Prefix with blanks.

• width: The minimum width of the output

• precision: The maximum number of characters used from the argument.

• h: Character types

• d or i: Signed integer

• o: Unsigned octal

• s: String

• u: Unsigned integer

• x or X: Unsigned Hex

To clarify this, to place a parameter within a message string, where the parameter needs to 
be inserted, you would define this by a % sign followed by one of the following options: d or i for 
a signed integer, p for a pointer, s for a string, u for unsigned integer, x or X for unsigned hexa-
decimal, and o for unsigned octal. Note that float, double, and single are not supported as 
parameter types for messages. You will see this in action in the upcoming examples.

Dewson_5882C11.fm  Page 392  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 393

Finally, there are three options that could be placed at the end of the RAISERROR message. 
These are the WITH options:

• LOG will place the error message within the Windows error log.

• NOWAIT sends the error directly to the client.

• SETERROR will reset the error number to 50000 within the message string only.

When using any of these last WITH options, do take the greatest of care, as their misuse can 
create more problems than they solve. For example, you may unnecessarily use LOG a great 
deal, filling up the Windows error log, which leads to further problems.

There is a system stored procedure, sp_addmessage, that can create a new global error message 
that can be used by RAISERROR by defining the @msgnum. The syntax for adding a message is

sp_addmessage [@msgnum =]msg_id,
[@severity = ] severity , [ @msgtext = ] 'msg'
     [ , [ @lang = ] 'language' ]
     [ , [ @with_log = ] 'with_log' ]
     [ , [ @replace = ] 'replace' ]

The parameters into this system stored procedure are as follows:

• @msgnum: The number of the message, typically will be greater than 50000.

• @severity: Same as the preceding, in a range of 1 to 25.

• @lang: Use this if you need to define the language of the error message. Normally will be 
left empty.

• @with_log: Set to 'TRUE' if you wish to write a message to the Windows error log.

• @replace: Set to 'replace' if you are replacing an existing message and updating any of 
the preceding values with new settings.

■Note  Any message added will be specific for that database rather than the server.

It is time to move to an example that will set up an error message that will be used to say a 
customer is overdrawn.

Try It Out: RAISERROR

1. First of all, we want to add a new user-defined error message. To do this, we will use sp_addmessage. 
We can now add any new SQL Server message that we wish. Any user-defined error message must be 
greater than 50000 and so the first error message would normally be 50001.

sp_addmessage @msgnum=50001,@severity=1,
@msgtext='Customer is overdrawn'

Dewson_5882C11.fm  Page 393  Tuesday, January 10, 2006  3:03 PM



394 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

2. We can then perform a RAISERROR to see the message displayed. Notice that we have to define the 
severity again. This is mandatory, but would be better if it was optional, and then you could always 
default to the severity defined.

RAISERROR (50001,1,1)

3. When this is executed, we will see the following output:

Customer is overdrawn
Msg 50001, Level 1, State 1

4. This is not the friendliest of messages, as it would be better to perhaps give out the customer number 
as well. We can do this via a parameter. In the code that follows, we replace the message just added and 
now include a parameter where we are formatting with flag 0, which means we are prefixing the output 
with zeros; then we include the number 10, which is the precision, so that means the number will be 10 digits; 
and finally we indicate the message will be unsigned using the option u.

sp_addmessage @msgnum =50001,@severity=1,
@msgtext='Customer is overdrawn. CustomerId= %010u',@replace='replace'

5. We can then change the RAISERROR so that we add on another parameter. We are hard coding the 
customer number as customer number 243, but we could use a local variable.

RAISERROR (50001,1,1,243)

6. Executing the code now produces output that is much better and more informative for debugging if 
required

Customer is overdrawn. CustomerId= 0000000243Msg 50001, Level 1, State 1

Now that you know how you can raise your own errors if scenarios crop up that need them, we can take a look at 
how SQL Server can deal with errors. We do come back to RAISERROR when looking at these two options next.

Error Handling
When working with T-SQL, it is important to have some sort of error handling to cater to those 
times when something goes wrong. Errors can be of different varieties, such as you are expecting at 
least one row of data returned from a query and you receive no rows. However, what we are 
discussing here is when SQL Server informs us there is something more drastically wrong. We 
have seen some errors throughout the book, and even in this chapter. There are two methods 
of error catching we can employ in such cases. The first uses a system variable, @@ERROR.

Dewson_5882C11.fm  Page 394  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 395

@@ERROR
This is the most basic of error handling. It has served SQL Server developers well over the years, 
but it can be cumbersome. When an error occurs, such as you have seen as we have gone through 
the book creating and manipulating objects, a global variable, @@ERROR, would have been popu-
lated with the SQL Server error message number. Similarly, if you try to do something with a set 
of data that is invalid, such as dividing a number by zero or exceeding the number of digits 
allowed in a numeric data type, then SQL Server will populate this variable for you to inspect.

The downside is that the @@ERROR variable setting only lasts for the next statement following the 
line of code that has been executed; therefore, when you think there might be problems, you 
need to either pass the data to a local variable or inspect it straight away. The first example 
demonstrates this.

Try It Out: Using @@ERROR

1. The first example will try and divide 100 by zero, which is an error. We will then list out the error 
number, and then again list out the error number. Enter the following code and execute it:

SELECT 100/0
SELECT @@ERROR
SELECT @@ERROR

2. It is necessary in this instance to check both the Results and Messages tab. The first tab is the Messages tab, 
which will show you the error that encountered. As expected, we see the Divide by zero error.

Msg 8134, Level 16, State 1, Line 1
Divide by zero error encountered.

(1 row(s) affected)

(1 row(s) affected)

3. Moving to the Results tab, you should see three result sets, as shown in Figure 11-45. The first, showing 
no information, would be where SQL Server would have put the division results, had it succeeded. The 
second result set is the number from the first SELECT @@ERROR. Notice the number corresponds to the 
msg number found in the messages tab. The third result set shows a value of 0. This is because the first 
SELECT @@ERROR worked successfully and therefore set the system variable to 0. This demonstrates 
the lifetime of the value within @@ERROR.

Dewson_5882C11.fm  Page 395  Tuesday, January 10, 2006  3:03 PM



396 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

Figure 11-45. Showing @@ERROR in multiple statements

4. When we use the RAISERROR function, it will also set the @@ERROR variable, as we can see in the following 
code. However, the value will be set to 0 using our preceding example. This is because the severity level 
was below 11.

RAISERROR (50001,1,1,243)
SELECT @@ERROR

5. When the code is executed, you can see that @@ERROR is set to 0, as shown in Figure 11-46.

Figure 11-46. When severity is too low to set @@ERROR

6. By changing the severity to 11 or above, the @@ERROR setting will now be set to the message number 
within the RAISERROR.

RAISERROR (50001,11,1,243)
SELECT @@ERROR

7. The preceding code produces the same message as seen within our RAISERROR example, but as you 
can see in Figure 11-47, the error number setting now reflects that value placed in the msgnum parameter.

Figure 11-47. With a higher severity, the message number is set.

Although a useful tool, it would be better to use the next error-handling routine to be demonstrated, TRY...CATCH.

TRY...CATCH
It can be said that no matter what, any piece of code has the ability to fail and generate some 
sort of error. For the vast majority of this code, you will want to trap any error that occurs, check 

Dewson_5882C11.fm  Page 396  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 397

what the error is, and deal with it as best you can. As you saw previously, this could be done one 
statement at a time using @@ERROR to test for any error code. A new and improved functionality 
exists whereby a set of statements can try and execute, and if any statement has an error, it will 
be caught. This is known as a TRY...CATCH block.

Surrounding code with the ability to try and execute a slice of code and to catch any errors 
and try to deal with them has been around for quite a number of years in languages such as 
C++. Gladly, we now see this within SQL Server.

The syntax is pretty straightforward. There are two “blocks” of code. The first block, BEGIN 
TRY, is where there is one or more T-SQL statements that you wish to try and run. If any of state-
ments have an error, then no further processing within that block will execute, and processing 
will switch to the second block, BEGIN CATCH.

BEGIN TRY
     { sql_statement | statement_block }
END TRY
BEGIN CATCH
     { sql_statement | statement_block }
END CATCH

When you generate your own error via a RAISERROR, then a bit of care has to be taken with 
the severity setting, as this will determine how your code works within a TRY...CATCH scenario. 
If you raise an error with a severity level of 0 to 10, then although an error is generated and will 
be received by the calling program, whether that is Query Editor or a program such as C#, then 
processing will continue without moving to the CATCH block. This can be seen as a “warning” 
level. Changing the severity level to 11 or above will transfer the control to the CATCH block of 
code. Once within the CATCH block you can raise a new error, or raise the same error by using 
values stored within SQL Server system functions.

The system functions that can be used to find useful debugging information are detailed here:

• ERROR_LINE(): The line number that caused the error or performed the RAISERROR 
command. This is will be physical rather than relative, i.e., you don’t have to remove 
blank lines within the T-SQL to get the correct line number, unlike some software that 
does require this.

• ERROR_MESSAGE(): The text message.

• ERROR_NUMBER(): The number associated with the message.

• ERROR_PROCEDURE(): If you are retrieving this within a stored procedure or trigger, the 
name of it will be contained here. If you are running ad hoc T-SQL code, then the value 
will be NULL.

• ERROR_SEVERITY(): The numeric severity value for the error.

• ERROR_STATE(): The numeric state value for the error.

TRY...CATCH blocks can be nested, and when an error occurs, the error will be passed to the 
relevant CATCH section. This would be done when you wanted an overall CATCH block for “general” 
statements, and then you could perform specific testing and have specific error handling 
where you really think an error might be generated.

Dewson_5882C11.fm  Page 397  Tuesday, January 10, 2006  3:03 PM



398 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

Not all errors are caught within a TRY...CATCH block, unfortunately. These are compile 
errors or when deferred name resolution takes place and the name created doesn’t exist. To 
clarify these two points, when T-SQL code that is either ad hoc or within a stored procedure, 
SQL Server compiles the code, looking for syntax errors. However, not all code can be fully 
compiled and is not compiled until the statement is about to be executed. If there is an error, 
then this will terminate the batch immediately. The second is that if you have code that refer-
ences a temporary table, for example, then the table doesn’t exist at run time and so column 
names cannot be checked. This is known as deferred name resolution, and if you try to use a 
column that doesn’t exist, then this will also generate an error, terminating the batch.

There is a great deal more to TRY...CATCH blocks, but concern areas that are quite advanced. 
So now that you know the basics, let’s look at some examples demonstrating what we have just 
discussed.

Try It Out: TRY...CATCH

1. Our first example is a straight error where we have defined an integer local variable. Within our error-
handling block, after outputting a statement to demonstrate that we are within that block, we try to set 
a string to the variable. This is a standard error and will immediately move the execution to the CATCH 
block, and the last SELECT will not be executed.

DECLARE @Probs int
BEGIN TRY
   SELECT 'This will work'
   SELECT @Probs='Not Right'
   SELECT 10+5,
    'This will also work, however the error means it will not run'
END TRY
BEGIN CATCH
   SELECT 'An error has occurred at line ' +
      LTRIM(STR(ERROR_LINE())) +
      ' with error ' + LTRIM(STR(ERROR_NUMBER())) + ' ' + ERROR_MESSAGE()
END CATCH

2. When we run the code, we will see the first statement and then the SELECT statement that executes 
when the error is caught. We use the system functions to display relevant information, which appears in 
Figure 11-48.

Figure 11-48. An error is caught.

Dewson_5882C11.fm  Page 398  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 399

3. Our second example demonstrates nesting TRY...CATCH blocks and how execution can continue 
within the outer block when an error arises within the second block. We keep the same error and will 
see the error message, The second catch block. But once this is executed, processing will con-
tinue to And then this will now work.

DECLARE @Probs int
BEGIN TRY
   SELECT 'This will work'
   BEGIN TRY
     SELECT @Probs='Not Right'
      SELECT 10+5,
     'This will also work, however the error means it will not run'
   END TRY
   BEGIN CATCH
      SELECT 'The second catch block'
   END CATCH
   SELECT 'And then this will now work'
END TRY
BEGIN CATCH
   SELECT 'An error has occurred at line ' +
       LTRIM(STR(ERROR_LINE())) +
      ' with error ' + LTRIM(STR(ERROR_NUMBER())) + ' ' + ERROR_MESSAGE()
END CATCH

4. As expected, we will see three lines of output, as shown in Figure 11-49. The code in the outer CATCH 
block will not run, as the error was catered to within the inner block.

Figure 11-49. An error is caught in a nested batch.

5. This time we will see how our T-SQL code can be successfully precompiled and execution started. Then 
when we try to display results from a temporary table that doesn’t exist, the CATCH block does not fire, 
as execution terminates immediately.

DECLARE @Probs int
BEGIN TRY
   SELECT 'This will work'
   BEGIN TRY
      SELECT * FROM #Temp
   END TRY

Dewson_5882C11.fm  Page 399  Tuesday, January 10, 2006  3:03 PM



400 C H A P T E R  1 1  ■  T -S Q L  E S S E N T I AL S

   BEGIN CATCH
      SELECT 'The second catch block'
   END CATCH
   SELECT 'And then this will now work'
END TRY
BEGIN CATCH
   SELECT 'An error has occurred at line ' +
       LTRIM(STR(ERROR_LINE())) +
      ' with error ' + LTRIM(STR(ERROR_NUMBER())) + ' ' + ERROR_MESSAGE()
END CATCH

6. When the code is run in the Messages tab, we will see the following output, detailing one row has been 
returned, which comes from the first SELECT statement. We then see the SQL Server error. Looking at 
Figure 11-50, you also see just the first SELECT statement output.

 (1 row(s) affected)
Msg 208, Level 16, State 0, Line 5
Invalid object name '#Temp'.

Figure 11-50. What happens when SQL Server terminates execution

7. The final example demonstrates how to reraise the same error that caused the CATCH block to fire. 
Recall with RAISERROR it is only possible to list a number or a local variable. Unfortunately, it is not 
possible to call the relevant function directly or via a SELECT statement. It is necessary to load the 
values in to local variables.

DECLARE @Probs int
SELECT 'This will work'
BEGIN TRY
    SELECT @Probs='Not Right'
    SELECT 10+5,
    'This will also work, however the error means it will not run'
END TRY
BEGIN CATCH
    DECLARE @ErrMsg NVARCHAR(4000)
    DECLARE @ErrSeverity INT
    DECLARE @ErrState INT
    SELECT 'Blimey! An error'

Dewson_5882C11.fm  Page 400  Tuesday, January 10, 2006  3:03 PM



C H A P T E R  1 1  ■  T - S Q L  E S S E N T I A L S 401

    SELECT
        @ErrMsg = ERROR_MESSAGE(),
        @ErrSeverity = ERROR_SEVERITY(),
        @ErrState = ERROR_STATE();

   RAISERROR (@ErrMsg,@ErrSeverity,@ErrState)
END CATCH

Summary
The text for this chapter is not the most fluid, but the information contained will be very useful 
as you start using SQL Server. Each section we have covered contains a great deal of useful and 
pertinent information, and rereading the chapter and maybe even trying out different ideas 
based on the basics demonstrated will give you a stronger understanding of what is happening. 
The main areas of focus were error handling and joining tables to return results. Take time to 
fully understand what is happening and how you can use these two features.

Dewson_5882C11.fm  Page 401  Tuesday, January 10, 2006  3:03 PM



Dewson_5882C11.fm  Page 402  Tuesday, January 10, 2006  3:03 PM



403

■ ■ ■

C H A P T E R  1 2

Advanced T-SQL

By now you really are becoming proficient in SQL Server 2005 and writing code to work with 
the data and the objects within the database. Already you have seen some T-SQL code and 
encountered some scenarios that have advanced your skills as a T-SQL developer. We can now 
look at more advanced areas of T-SQL programming to round off your knowledge and really 
get you going with queries that do more than the basics.

This chapter will look at the occasions when you need a query within a query, known as a 
subquery. This is ideal for producing a list of values to search for, or for producing a value from 
another table to set a column or a variable with. It is also possible to create a transient table of 
data to use within a query, known as a common table expression. We look at both subqueries 
and common table expressions within the chapter.

From there, we explore how to take a set of data and pivot the results, just as you can do 
within Excel. We also take a look at different types of ranking functions where we can take our 
set of data and attach rankings to rows or groups of rows of data.

And finally, you will see how to deal with varchar(max) and varbinary(max) data types 
when loading large text, images, movies, and so on.

We will move away from our ApressFinancial example on occasion to the AdventureWorks 
sample that we installed in Chapter 1 as part of the samples database. This will allow us to have 
more data to work through the examples. It is not necessary to fully appreciate this database for 
the examples, as it is the code that is the important point, but the text will give an overview of 
the tables involved as appropriate.

Subqueries
A subquery is a query on the data that is found within another query statement. There will only 
be one row of data returned and usually only one column of data as well. It can be used to 
check or set a value of a variable or column, or used to test whether a row of data exists in a 
WHERE statement.

To expand on this, there may be times when you wish to set a column value based on data 
from another query. One example we have is the ShareDetails.Shares table. If we had a 
column defined for MaximumSharePrice that held the highest value the share price had gone for 
that year, rather than doing a test every time the share price moved, we could use the MAX function 
to get the highest share price, put that value into a variable, and then set the column via that 
variable. The code would be similar to that defined here:

Dewson_5882C12.fm  Page 403  Monday, January 9, 2006  3:22 PM



404 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

ALTER TABLE ShareDetails.Shares
ADD MaximumSharePrice money
DECLARE @MaxPrice money
SELECT @MaxPrice = MAX(Price)
    FROM ShareDetails.SharePrices
  WHERE ShareId = 1
SELECT @MaxPrice
UPDATE ShareDetails.Shares
SET MaximumSharePrice = @MaxPrice
WHERE ShareId = 1

In the preceding code, if we wished to work with more than one share, we would need to 
implement a loop and process each share one at a time. However, we could also perform a 
subquery, which implements the same functionality as shown in the code that follows. The 
subquery still finds the maximum price and sets the column. Notice that this time we can 
update all shares with one statement. The subquery joins with the main query via a WHERE state-
ment so that as each share is dealt with, the subquery can take that ShareId and still get the 
maximum value.

■Tip  We call this type of subquery a correlated subquery.

SELECT ShareId,MaximumSharePrice
FROM ShareDetails.Shares
UPDATE ShareDetails.Shares
SET MaximumSharePrice = (SELECT MAX(SharePrice)
                                           FROM ShareDetails.SharePrices sp
                               WHERE sp.ShareId = s.ShareId)
FROM ShareDetails.Shares s
SELECT ShareId,MaximumSharePrice
FROM ShareDetails.Shares

We also came across a subquery way back in Chapter 7 when we were testing whether a 
backup had successfully completed or not. The code is replicated here, with the subquery 
section highlighted in bold. In this instance, instead of setting a value in a column, we are 
looking for a value to be used as part of a filtering criteria. Recall from Chapter 7 that we know 
the last backup will have the greatest backup_set_id. We use the subquery to find this value (as 
there is no system function or variable that can return this at the time of creating the backup). 
Once we have this value, we can use it to reinterrogate the same table, filtering out everything 
but the last row for the backup just created.

■Note  Don’t forget that for the FROM DISK option, you will have a different file name than the one in the 
following code.

Dewson_5882C12.fm  Page 404  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 405

DECLARE @BackupSet AS INT
SELECT @BackupSet = position
  FROM msdb..backupset
 WHERE database_name='ApressFinancial'
   AND backup_set_id=
                       (SELECT MAX(backup_set_id)
                       FROM msdb..backupset s
                       WHERE database_name='ApressFinancial')
IF @BackupSet IS NULL
BEGIN
    RAISERROR('Verify failed. Backup information for database
        ''ApressFinancial'' not found.', 16, 1)
END
RESTORE VERIFYONLY
FROM DISK = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\
ApressFinancial\ApressFinancial_backup_200508061136.bak'
WITH FILE = @BackupSet,
NOUNLOAD,
NOREWIND

In both of these cases, we are returning a single value within the subquery, but this need 
not always be the case. You can also return more than one value. One value must be returned 
when you are trying to set a value. This is because you are using an equals (=) sign. It is possible 
in a WHERE statement to look for a number of values using the IN statement.

IN
If you wish to look for a number of values in your WHERE statement, such as a list of values from 
the ShareDetails.Shares table where the ShareId is 1, 3, or 5, then you can use an IN statement. 
The code to complete this example would be

SELECT *
  FROM ShareDetails.Shares
 WHERE ShareId IN (1,3,5)

Using a subquery, it would be possible to replace these numbers with the results from the 
subquery. The preceding query could also be written using the code that follows. The example 
shown here is deliberately obtuse to show how it is possible to combine a subquery and an 
aggregation to produce the list of ShareIds that form the IN:

SELECT *
  FROM ShareDetails.Shares
 WHERE ShareId IN (SELECT ShareId
                     FROM ShareDetails.Shares
                    WHERE CurrentPrice > (SELECT MIN(CurrentPrice)
                                            FROM ShareDetails.Shares)
                      AND CurrentPrice < (SELECT MAX(CurrentPrice)
                                            FROM ShareDetails.Shares))

Dewson_5882C12.fm  Page 405  Monday, January 9, 2006  3:22 PM



406 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

Both of these examples replace what would require a number of OR statements within the 
WHERE filter such as you see in this code:

SELECT *
  FROM ShareDetails.Shares
 WHERE ShareId = 1
   OR ShareId = 3
   OR ShareId = 5

These are just three different ways a subquery can work. The fourth way involves using a 
subquery to check whether a row of data exists or not, which we look at next.

EXISTS
EXISTS is a statement that is very similar to IN, in that it tests a column value against a subset of 
data from a subquery. The difference is that EXISTS uses a join to join values from a column to 
a column within the subquery as opposed to IN, which compares against a comma-delimited 
set of values and requires no join.

Over time, our ShareDetails.Shares and ShareDetails.SharePrice tables will grow to quite 
a large size. If we wanted to shrink them, we could use cascading deletes so that when we delete 
from the ShareDetails.Shares table, we would also delete all the SharePrice records. But how 
would we know which shares to delete? One way would be to see what shares are still held 
within our TransactionDetails.Transactions table. We would do this via EXISTS, but instead of 
looking for ShareIds that exist, we would use NOT EXISTS.

At present, we have no shares listed within the TransactionDetails.Transactions table, 
so we would see all of the ShareDetails.Shares listed. We can make life easier with EXISTS by 
giving tables an alias, but we also have to use the WHERE statement to make the join between the 
tables. However, we aren’t really joining the tables as such; a better way of looking at it is to say 
we are filtering rows from the subquery table.

The final point to note is that you can return whatever you wish after the SELECT statement 
in the subquery, but it should only be one column or a value, and it is easiest to use an asterisk 
in conjunction with an EXISTS statement. If you do set a column or value, then the value returned 
cannot be used anywhere within the main query and is discarded, so there is nothing to gain by 
returning a value from a column.

■Tip  When using EXISTS, it is most common in SQL Server to use * rather than a constant like 1, as it 
simply returns a true or false setting.

The following code shows EXISTS in action prefixed with a NOT.

SELECT *
  FROM ShareDetails.Shares s
 WHERE NOT EXISTS (SELECT 1
                     FROM TransactionDetails.Transactions t
                    WHERE t.RelatedShareId = s.ShareId)

Dewson_5882C12.fm  Page 406  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 407

■Note  Both EXISTS and IN can be prefixed with NOT.

The APPLY Operator
It is possible to return a table as the data type from a function. The table data type can hold 
multiple columns and multiple rows of data as you would expect, and this is one of the main 
ways it differs from other data types, such as varchar, int, etc. Returning a table of data from a 
function allows the code invoking the function the flexibility to work with returned data as if 
the table permanently existed or was built as a temporary table.

To supply extensibility to this type of function, SQL Server provides you with an operator 
called APPLY, which works with a table-valued function and joins data from the calling table(s) 
to the data returned from the function. The function will sit on the right-hand side of the query 
expression, and through the use of APPLY can return data as if you had a RIGHT OUTER JOIN or a 
LEFT OUTER JOIN on a “permanent” table. Before you see an example, you need to be aware that 
there are two types of APPLY: a CROSS APPLY and an OUTER APPLY.

• CROSS APPLY: Returns only the rows that are contained within the outer table where the 
row produces a result set from the table-valued function.

• OUTER APPLY: Returns the rows from the outer table and the table-valued function whether 
a join exists or not. This is similar to an OUTER JOIN, which you saw in Chapter 11. If no row 
exists in the table-valued function, then you will see a NULL value in the columns from 
that function.

CROSS APPLY
In our example, we will build a table-valued function that accepts a CustomerId as an input 
parameter and returns a table of TransactionDetails.Transactions rows.

CREATE FUNCTION TransactionDetails.ReturnTransactions
(@CustId bigint) RETURNS @Trans TABLE
(TransactionId bigint,
CustomerId bigint,
TransactionDescription nvarchar(30),
DateEntered datetime,
Amount money)
AS
BEGIN
 INSERT INTO @Trans
 SELECT TransactionId, CustomerId, TransactionDescription,
          DateEntered, Amount
   FROM TransactionDetails.Transactions t
   JOIN TransactionDetails.TransactionTypes tt ON
           tt.TransactionTypeId = t.TransactionType
  WHERE CustomerId = @CustId
    RETURN
END

Dewson_5882C12.fm  Page 407  Monday, January 9, 2006  3:22 PM



408 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

Now that we have the table-valued function built, we can call it and use CROSS APPLY to 
return only the Customer rows where there is a customer number within the table from the 
table-valued function. The following code demonstrates this:

SELECT c.CustomerFirstName, CustomerLastName,
Trans.TransactionId,TransactionDescription,
DateEntered,Amount
FROM CustomerDetails.Customers AS c
  CROSS APPLY
   TransactionDetails.ReturnTransactions(c.CustomerId)
   AS Trans

The results from the preceding code are shown in Figure 12-1, where you can see that only 
rows from the CustomerDetails.Customers table are displayed where there is a corresponding 
row in the TransactionDetails.Transactions table.

Figure 12-1. CROSS APPLY from a table-valued function

OUTER APPLY
As mentioned previously, OUTER APPLY is very much like a RIGHT OUTER JOIN on a table, but you 
need to use OUTER APPLY when working with a table-valued function.

For our example, we can still use the function we built for the CROSS APPLY. With the code 
that follows, we are expecting those customers that have no rows returned from the table-valued 
function to be listed with NULL values.

SELECT c.CustomerFirstName, CustomerLastName,
Trans.TransactionId,TransactionDescription,
DateEntered,Amount
FROM CustomerDetails.Customers AS c
  OUTER APPLY
   TransactionDetails.ReturnTransactions(c.CustomerId)
   AS Trans

When this is executed, you will see the output shown in Figure 12-2.

Dewson_5882C12.fm  Page 408  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 409

Figure 12-2. OUTER APPLY from a table-valued function

Common Table Expressions
In Chapter 11, we had a look at temporary tables by defining a table in code prefixing the name 
with a hash mark (#). Temporary tables allow you to split a complex query or a query that, if 
built as one unit, would run slow due to the complexity of the joins SQL Server would have to 
do. Therefore, creating a set of subdata in the first query would aid the performance of the 
query in the second. Another scenario where you may use temporary tables is when you wish 
to create some sort of grouping of information and then use that grouping for further analysis. 
As an example, you might create a temporary table that contains a sum of each day’s transac-
tions within a bank account. The second part of the query takes the temporary table and uses 
it to calculate the daily interest accrued.

A common table expression (CTE) is a bit like a temporary table. It’s transient, lasting only 
as long as the query requires it. Temporary tables are available for use during the lifetime of the 
session of the query running the code or until they are explicitly dropped. The creation and use 
of temporary tables is a two- or three-part phase: table creation, population, and use. A CTE is 
built in the same code line as the SELECT, INSERT, UPDATE, or DELETE statements that use it.

The best way to understand a CTE is to demonstrate an example with some code. Within 
the AdventureWorks database, there are a number of products held in the Production.Product 
table. For this example, let’s say you want to know the maximum list price of stock you’re holding 
over all the product categories. Using a temporary table, this would be a two-part process, 
as follows:

USE AdventureWorks
GO
SELECT p.ProductSubcategoryID, s.Name,SUM(ListPrice) AS ListPrice
  INTO #Temp1
  FROM Production.Product p
  JOIN Production.ProductSubcategory s ON s.ProductSubcategoryID =
    p.ProductSubcategoryID
 WHERE p.ProductSubcategoryID IS NOT NULL
 GROUP BY p.ProductSubcategoryID, s.Name

Dewson_5882C12.fm  Page 409  Monday, January 9, 2006  3:22 PM



410 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

SELECT ProductSubcategoryID,Name,MAX(ListPrice)
  FROM #Temp1
  GROUP BY ProductSubcategoryID, Name
HAVING MAX(ListPrice) = (SELECT MAX(ListPrice) FROM #Temp1)

DROP TABLE #Temp1

However, with CTEs, this becomes a bit simpler and more efficient. In the preceding code 
snippet, we’ve created a temporary table. This table has no index on it, and therefore SQL 
Server will complete a table scan operation on it when executing the second part. In contrast, 
the upcoming code snippet uses the raw AdventureWorks tables. There is no creation of a 
temporary table, which would have used up processing time, and also existing indexes could 
be used in building up the query as well rather than a table scan.

The CTE is built up using the WITH statement, which defines the name of the CTE you’ll be 
returning, in this case ProdList, and the columns contained within it. The columns returned 
within the CTE will take the data types placed into it from the SELECT statement within the 
brackets. Of course, the number of columns within the CTE has to be the same as the table 
defined within the brackets. This table is built up, returned, and passed immediately into the 
following SELECT statement outside of the WITH block where the rows of data can then be processed 
as required. Therefore, the rows returned between the brackets could be seen as a temporary table 
that is used by the statement outside of the brackets.

WITH ProdList (ProductSubcategoryID,Name,ListPrice) AS
(
SELECT p.ProductSubcategoryID, s.Name,SUM(ListPrice) AS ListPrice
  FROM Production.Product p
  JOIN Production.ProductSubcategory s ON s.ProductSubcategoryID =
    p.ProductSubcategoryID
  WHERE p.ProductSubcategoryID IS NOT NULL
  GROUP BY p.ProductSubcategoryID, s.Name
)
SELECT ProductSubcategoryID,Name,MAX(ListPrice)
  FROM ProdList
  GROUP BY ProductSubcategoryID, Name
  HAVING MAX(ListPrice) = (SELECT MAX(ListPrice) FROM ProdList)

When the code is executed, the results should resemble the output shown in Figure 12-3.

Figure 12-3. CTE output

Recursive CTE
A recursive CTE is where an initial CTE is built and then the results from that are called recur-
sively in a UNION statement returning subsets of data until all the data is returned. This gives you 
the ability to create data in a hierarchical fashion as we will see in our next example.

Dewson_5882C12.fm  Page 410  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 411

The basis of building a recursive CTE is to build your initial query just as you saw earlier, 
but then append to that a UNION ALL statement with a join on the cte_name. This works so that 
in the “normal” CTE, data is created and built with the cte_name, which can then be referenced 
within the CTE from the UNION ALL. The syntax that you can see here demonstrates how this 
looks in its simplest form:

WITH cte_name ( column_name [,...n] )
AS
(
CTE_query_definition
UNION ALL
CTE_query_definition with a join on cte_name
)

As with all UNION statements, the number of columns must be the same in all queries that 
make up the recursive CTE. The data types must also match up.

■Caution  Care MUST taken when creating a recursive CTE. It is possible to create a recursive CTE that 
goes into an infinite loop. While testing the recursive CTE, you can use the MAXRECURSION option, as you will 
see in our next example.

The following example demonstrates a recursive query that will list every employee, their 
job title, and the name of their manager. We have our anchor CTE, which returns the CEO of 
AdventureWorks. The CEO doesn’t have a “boss,” but we still need to return data as if he had, 
of the same data type as well. To resolve this dilemma, the example returns spaces that are 
converted to the correct data type and length. Once we have that anchor, we can then recur-
sively call the second query, which will continue to return data, moving down the hierarchy as 
more data is added in until no more levels exist. So on the anchor, the 
EmployeeReportingStructure CTE will have the Level 0, or CEO data, within it. The recursive 
query will then add to the CTE the level 1 employees, which then allows the recursive query to 
work with that data to populate level 2, and so on. From this, you should see how it is possible 
to create an infinite loop. To stop this from happening, as mentioned, we can put on the SELECT 
query that invokes the CTE and returns the data, is an option to define how many invocations 
of the recursive query is made. In our example, we set this to four via OPTION (MAXRECURSION 4).

USE AdventureWorks;
GO
WITH EmployeeReportingStructure
(ManagerID, EmployeeID, EmployeeLevel, Level,
ManagerContactId,ManagerTitle,ManagerFirst,ManagerLast,
EmployeeTitle,EmployeeFirst,EmployeeLast)
AS
(

Dewson_5882C12.fm  Page 411  Monday, January 9, 2006  3:22 PM



412 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

-- Anchor member definition
    SELECT e.ManagerID, e.EmployeeID, e.Title as EmployeeLevel,
        0 AS Level,
        e.ContactId as ManagerContactId,
        CAST(' ' as nvarchar(8)) as ManagerTitle,
        CAST(' ' as nvarchar(50)) as ManagerFirst,
        CAST(' ' as nvarchar(50)) as ManagerLast,
        c.Title as EmployeeTitle,c.FirstName as EmployeeFirst,
        c.LastName as EmployeeLast
    FROM HumanResources.Employee AS e
    INNER JOIN Person.Contact c ON c.ContactId = e.ContactId
    WHERE ManagerID IS NULL
    UNION ALL
-- Recursive member definition
    SELECT e.ManagerID, e.EmployeeID, e.Title as EmployeeLevel, Level + 1,
        e.ContactId as ManagerContactId,
        m.Title as ManagerTitle,m.FirstName as ManagerFirst,
        m.LastName as ManagerLast,
        c.Title as EmployeeTitle,c.FirstName as EmployeeFirst,
        c.LastName as EmployeeLast
    FROM HumanResources.Employee AS e
    INNER JOIN Person.Contact c ON c.ContactId = e.ContactId
    INNER JOIN EmployeeReportingStructure  AS d
        ON d.EmployeeID = e.ManagerID
    INNER JOIN Person.Contact m ON m.ContactId = d.ManagerContactId
)
-- Statement that executes the CTE
SELECT ManagerID, EmployeeID,
ISNULL(ManagerTitle+' ','')+ManagerFirst+' '+ManagerLast as Manager,
EmployeeLevel,
ISNULL(EmployeeTitle+' ','')+EmployeeFirst+' '+EmployeeLast as Employee,
Level
FROM EmployeeReportingStructure
ORDER BY Level,EmployeeLast,EmployeeFirst
OPTION (MAXRECURSION 4)

CTEs are used not only as standalone expressions, but also within other functions, such as 
pivoting data, which you can see in action next.

Pivoting Data
If you have ever used Excel, then you have also probably had to perform some sort of pivoting 
of results of the data so that rows of information are pivoted into columns of information. It is 
now possible to perform this kind of operation within SQL Server 2005 via a PIVOT statement. 
Pivoted data can also be changed back using the UNPIVOT statement, where columns of data can 
be changed into rows of data. In this next section, you will see both these statements in action. 
We will be using the AdventureWorks example in this section. The table involved in this example 

Dewson_5882C12.fm  Page 412  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 413

is the SalesOrderDetail table belonging to the Sales schema. This holds details of products 
ordered, the quantity requested, the price they are at, and then the discount the order received.

PIVOT
Before we see PIVOT in action, we need to look at the information that we will pivot. The following 
code lists three products, and for each product we will sum up the amount sold, taking the 
discount into account:

USE AdventureWorks
GO
SELECT productID,UnitPriceDiscount,SUM(linetotal)
  FROM Sales.SalesOrderDetail
  WHERE productID IN (776,711,747)
  GROUP BY productID,UnitPriceDiscount
  ORDER BY productID,UnitPriceDiscount

This produces one line of output for each product/discount combination, as you can see 
in the following results:

711     0.00    143788.908000
711     0.02    11421.237324
711     0.05    4384.931245
711     0.10    2679.760530
711     0.15    3131.779950
747     0.00    501788.197700
776     0.00    1198796.448000
776     0.02    23020.131792
776     0.35    32906.152500

By using PIVOT, we can alter this data so that we can create columns for each of the products, 
and each row is defined for the discount, therefore giving a cross-reference of product to discount.

SELECT pt.Discount,ISNULL([711],0.00) As Product711,
    ISNULL([747],0.00) As Product747,ISNULL([776],0.00) As Product776
FROM
(SELECT sod.LineTotal, sod.ProductID, sod.UnitPriceDiscount as Discount
   FROM Sales.SalesOrderDetail sod) so
PIVOT
(
SUM(so.LineTotal)
FOR so.ProductID IN ([776], [711], [747])
) AS pt
ORDER BY pt.Discount

Before we execute this code, let’s take a look at what is happening. First of all, you need to 
create a subquery that contains the columns of data that the PIVOT operator can use for its 
aggregation (it will also be used later for displaying in the output). No filtering has been completed 

Dewson_5882C12.fm  Page 413  Monday, January 9, 2006  3:22 PM



414 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

at this point—any columns not used in the aggregation will be ignored. The code generates a 
table-valued expression with an alias of so. From this table, you then instruct SQL Server to 
PIVOT the columns while completing an aggregation on a specific column, in our case a SUM of 
the LineTotal column from the table value expression. It is also at this point you define the 
columns to create via the FOR statement, in our case a column for each product of the three 
products. This is the equivalent to using GROUP BY for the aggregation, and it’s also the equiva-
lent of filtering data from the so table value expression. However, within the so table value 
expression, there’s also a third column, UnitPriceDiscount. Without this, the output from the 
PIVOT would produce one row with three columns—one for each product. So this table value 
expression with the PIVOT produces a temporary resultset, which we name pt. We can then use 
this temporary resultset to produce our output.

When you run the code, you should see output similar to what is shown in Figure 12-4.

Figure 12-4. Pivot data results

UNPIVOT
The reverse of PIVOT is, of course, UNPIVOT, which will unpivot data by placing column data into 
rows. You can prove this by unpivoting the data just pivoted using the preceding query. The 
code that follows will rebuild the pivot and place the data into a temporary table. From that 
temporary table, you can unpivot the data.

■Note  UNPIVOT is not the exact reverse of PIVOT. PIVOT performs an aggregation and hence merges 
possible multiple rows into a single row in the output. UNPIVOT does not reproduce the original table-valued 
expression result because rows have been merged. Besides, NULL values in the input of UNPIVOT disappear 
in the output, whereas there may have been original NULL values in the input before the PIVOT operation.

USE AdventureWorks
go
SELECT pt.Discount,ISNULL([711],0.00) As Product711,
    ISNULL([747],0.00) As Product747,ISNULL([776],0.00) As Product776
INTO #Temp1
FROM
(SELECT sod.LineTotal, sod.ProductID, sod.UnitPriceDiscount as Discount
   FROM Sales.SalesOrderDetail sod) so

Dewson_5882C12.fm  Page 414  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 415

PIVOT
(
SUM(so.LineTotal)
FOR so.ProductID IN ([776], [711], [747])
) AS pt
ORDER BY pt.Discount

UNPIVOT has similarities to PIVOT in that you build a CTE—in this case calling it upl—which 
you then use as the basis of unpivoting. Once the CTE is defined, you then use UNPIVOT with the 
column definitions of the columns to create, DiscountAppl and ProductID where using IN defines 
the rows that will be produced back from the UNPIVOT.

SELECT ProductID,Discount, DiscountAppl
  FROM (SELECT Discount, product711, Product747, Product776
          FROM #Temp1) up1
UNPIVOT ( DiscountAppl FOR ProductID
    IN (Product711, Product747, Product776)) As upv2
WHERE DiscountAppl <> 0
ORDER BY ProductID

When the preceding code is executed, the data is unpivoted, as shown in Figure 12-5.

Figure 12-5. Unpivotted data results

Now that we have pivoted data, we can take a look at how we can rank output.

Ranking Functions
With SQL Server 2005, it’s now possible to rank rows of data in your T-SQL code. Ranking functions 
give you the ability to rank each row of data to provide a method of organizing the output in an 
ascending sequence. You can give each row a unique number or each group of similar rows the 
same number. You may be wondering what is wrong with other methods of ranking data, 
which might include IDENTITY columns. These types of columns do provide unique numbers, 
but gaps can form. You are also tied in to each row having its own number when you may wish 
to group rows together.

So then, why not GROUP BY? Well, yes, you can use GROUP BY, but what if the grouping was 
over more than one column? In this case, processing the data further would require knowledge 
about those columns. Ranking functions make it possible to provide a value that allows data 

Dewson_5882C12.fm  Page 415  Monday, January 9, 2006  3:22 PM



416 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

to be ranked in the order required, and then that value can be used for splitting the data into 
further groupings.

There are four ranking functions, which will be discussed in detail in upcoming sections:

• ROW_NUMBER: Allows you to provide sequential integer values to the result rows of a query.

• RANK: Provides an ascending, nonunique ranking number to a set of rows, giving the 
same number to a row of the same value as another. Numbers are skipped for the number 
of rows that have the same value.

• DENSE_RANK: Similar to RANK, but each row number returned will be one greater than the 
previous setting, no matter how many rows are the same.

• NTILE: Takes the rows from the query and places them into an equal (or as close to equal 
as possible) number of specified numbered groups, where NTILE returns the group 
number the row belongs to.

■Note  These ranking functions can only be used with the SELECT and ORDER BY statements. (Sadly, they 
can’t be used directly in a WHERE or GROUP BY clause, but you can use them in a CTE or derived table.

WITH OrderedOrders AS
(SELECT SalesOrderID, OrderDate,
ROW_NUMBER() OVER (order by OrderDate)as RowNumber
FROM Sales.SalesOrderHeader )
SELECT *
FROM OrderedOrders
WHERE RowNumber between 50 and 60;

The syntax for ranking functions is shown as follows:

<function_name>() OVER([PARTITION BY <partition_by_list>]
ORDER BY <order_by_list>)

Taking each option as it comes, you can see how this can be placed within a SELECT statement, 
for example:

• function_name: Can be one of ROW_NUMBER, RANK, DENSE_RANK, and NTILE

• OVER: Defines the details of how the ranking should order or split the data

• PARTITION BY: Details which data the column should use as the basis of the splits

• ORDER BY: Details of the ordering of the data

ROW_NUMBER
Our first ranking function, ROW_NUMBER, allows your code to guarantee an ascending sequence 
of numbers to give each row a unique number. Until now, it has not been possible to guarantee 
sequencing of numbers, although an IDENTITY-based column could potentially give a sequence 
providing all INSERTs succeeded and no DELETEs took place.

Dewson_5882C12.fm  Page 416  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 417

This function is ideal for giving your output a reference point, for example, “Please take a 
look at row 10 and you’ll see...”. Another use for this function is to break the data into exact 
chunks for scrolling purposes in GUI systems. For example, if five rows of data are returned, 
row 1 could be displayed, and then “Next” would allow the application to move to row 2 easily 
rather than using some other method.

The following is an example that shows how the ROW_NUMBER() function can provide an 
ascending number for each row returned when inspecting the Employee view. This is a view in 
AdventureWorks that shows details of employees who work within the AdventureWorks company. 
The ROW_NUMBER() function is nondeterministic, and since the ORDER BY within the OVER function 
doesn’t produce a unique sequence of data (because there might be several people with the 
same last name, for example), then you would need to find some other way to achieve unique-
ness, if getting the same order with each execution were mandatory.

USE AdventureWorks
GO
SELECT ROW_NUMBER() OVER(ORDER BY LastName) AS RowNum,
    FirstName + ' ' + LastName
  FROM HumanResources.vEmployee
  WHERE JobTitle = 'Production Technician - WC60'
  ORDER BY LastName

When we execute the code, we see the names in last name order, as shown in Figure 12-6.

Figure 12-6. Rows with row numbering

It’s also possible to reset the sequence to give a unique ascending number within a section, 
or partition of data, using the PARTITION BY option. This would be ideal if, for example, in the 
same marathon you had different races, such as male, female, disabled male, disabled female, 
over 60s, and so on. Using the category the runner is in as the basis of the partition, no matter 
in what order the runners cross the line, we would still have the right numbering for each category.

The following example will reset the sequential number at each change of first letter in the 
last name of the employees.

Dewson_5882C12.fm  Page 417  Monday, January 9, 2006  3:22 PM



418 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

USE AdventureWorks
GO
SELECT ROW_NUMBER()
  OVER(PARTITION BY SUBSTRING(LastName,1,1)
  ORDER BY LastName) AS RowNum, FirstName + ' ' + LastName
  FROM HumanResources.vEmployee
 WHERE JobTitle = 'Production Technician - WC60'
 ORDER BY LastName

When we execute the code, as the first letter of the last name alters, we see the RowNum 
column, which contains the value for ROW_NUMBER() alter, as shown in Figure 12-7.

Figure 12-7. Rows with row numbering resetting on change of last name, first letter

RANK
If a row of data is returned that contains the same values as another row as defined in the ORDER 
BY clause of your statement, the keyword RANK will give these rows the same numerical value. 
An internal count is kept so that on a change of value you will see a jump in the value. For 
example, say you watch a sport like golf, and in a golf tournament you’re following Tiger Woods 
who wins the tournament on a score of 4 under par, but Colin Montgomery, Arnold Palmer, 
and Lee Westwood are joint second on 3 under par. Finally, Michelle Wie finishes her round on 2 
under par. Tiger would have the value 1; Colin, Arnold, and Lee would have the value 2; and 
Michelle would have the value 5. This is exactly what RANK does. This function would also be 
useful in applications that wanted to return different rankings of data but only show the data 
from one rank at any one time on each page.

The example to demonstrate RANK uses the vEmployeeDepartment view, in which there are 
more rows with the same value than in vEmployee. Here the ROW_NUMBER() function is used as it 
was in the previous example, enabling a cross-check where the RANK function skips to the right 
number. When you run the query, you’ll find that there are five rows with a Department called 
Document Control. RANK will assign these rows the number 1. When the Department changes to 
Engineering, RANK will change to the value 6.

Dewson_5882C12.fm  Page 418  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 419

USE AdventureWorks
GO
SELECT ROW_NUMBER() OVER(ORDER BY Department) AS RowNum,
        RANK() OVER(ORDER BY Department) AS Ranking,
        FirstName + ' ' + LastName AS Employee, Department
  FROM HumanResources.vEmployeeDepartment
 ORDER BY RowNum

The results are shown in Figure 12-8, where you can see in the Ranking column the values 
remain static when the values are the same, and then skip to the correct number on a change 
of value.

Figure 12-8. Ranking and row numbering

DENSE_RANK
DENSE_RANK gives each group the next number in the sequence and does not jump forward if 
there is more than one item in a group. In our golf example from the previous section, for 
example, Michelle Wie would have a value of 3 instead of a value of 5 because her score is the 
third highest. The following code demonstrates DENSE_RANK:

USE AdventureWorks
GO
SELECT ROW_NUMBER() OVER(ORDER BY Department) AS RowNum,
        DENSE_RANK() OVER(ORDER BY Department) AS Ranking,
        CONVERT(varchar(25),FirstName + ' ' + LastName), Department
  FROM HumanResources.vEmployeeDepartment
 ORDER BY RowNum

Dewson_5882C12.fm  Page 419  Monday, January 9, 2006  3:22 PM



420 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

The results can be seen in Figure 12-9. Notice that this time, on change of Department, 
the Ranking becomes 2 when Document Control becomes Engineering, instead of moving to 6.

Figure 12-9. Dense ranking and row numbering

NTILE
Batching output into manageable groups has always been tricky. For example, if you have a 
batch of work that needs cross-checking among a number of people, then GROUP BY had to be 
used, though this wouldn’t give an even split. NTILE is used to give the split a more even, although 
approximated, grouping. The value in parentheses after NTILE defines the number of groups to 
produce, so NTILE(25) would produce 25 groups of as close a split as possible of even numbers.

USE AdventureWorks
GO
SELECT NTILE(10) OVER(ORDER BY Department) AS NTile,
        FirstName + ' ' + LastName, Department
  FROM HumanResources.vEmployeeDepartment

This produces 10 groups of 29 rows each. In Figure 12-10, you will see where the first batch 
ends and the second batch commences.

Dewson_5882C12.fm  Page 420  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 421

Figure 12-10. Batching output into groups of data

Using the MAX Data Type
Within SQL Server, you can store large volumes of data or images. As we discussed when creating 
our database, this would either be as varchar(max) or nvarchar(max) for text-based data, or 
varbinary(max) for image, music, video, and other similar types of data. The easiest method for 
working with image and movie files is to use .NET-based code to import and retrieve the files. 
We don’t look at this within this book (though if you care to learn more, there is an example of 
this in Pro SQL Server 2005 Assemblies, also by yours truly [Apress, 2005; ISBN: 1-59059-566-1]). 
It is possible in SQL Server to import images, etc., as we will demonstrate, but via .NET it is 
possible to manipulate the images, changing them to a consistent data type, and so on.

By default, SQL Server will only store 8,000 bytes of data within a single row on any column 
defined as max. If the data to insert is over 8,000 bytes, the contents are stored away from the 
table in a special large object (LOB) area on the server, and instead of the data within the column, 
a pointer value will be inserted. If the data will be consistently over 8,000 bytes and therefore 
will always be stored in the LOB area, then you can run the following code, which will tell SQL 
Server to always store varchar(max), nvarchar(max), and varbinary(max) values in the LOB area, no 
matter what size they are. The first parameter defines the schema and table to set the value on; 
the second parameter is the option to set; and the final parameter is the value to set.

■Note  sp_tableoption is a system stored procedure that sets options for tables. The 'large value 
types out of row' text is a standard option. Others can be found here: http://msdn2.microsoft.
com/en-us/library/ms173530.aspx.

sp_tableoption 'TransactionDetails.Transactions',
'large value types out of row',1

Dewson_5882C12.fm  Page 421  Monday, January 9, 2006  3:22 PM



422 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

Until now, we have not looked at the Notes column within the TransactionDetails.
Transactions table, but we will make extensive use of it in a moment. First, let’s switch back to 
holding the information in rows by executing the following code:

sp_tableoption 'TransactionDetails.Transactions',
'large value types out of row',0

Inserting text data to a max column is no different from inserting data into one defined with 
a specific value. However, when you wish to update values, there is new functionality we need 
to look at. We will also take a look at string functionality for working with the data.

To update text data, it is possible to use existing string-based functions such as SUBSTRING, 
but it is also possible to use a function called .WRITE(). This function has three parameters: the 
first is the text to update, the second is the offset to start the updating at (a value of 0 says that 
you are starting at the beginning, a value of 1 means the first character stays, and so on), and 
the third is the number of characters to remove within the existing text. The syntax is as follows:

SET column_name .WRITE(text,@offset,@length)

■Note  Notice that there is a space between the column_name and .WRITE.

To clarify, the third parameter defines the number of characters to remove from the existing 
text that is contained within the column you are updating and is not the length of the data you 
are inserting. Therefore, the following would remove 15 characters of text from position 10 and 
replace the text defined in the first parameter at position 10:

SET column_name .WRITE(text,10,15)

Try It Out: Working with Text LOB Data

1. First of all, let’s insert a text value into the TransactionDetails.Transactions table. Enter and 
execute the following code:

UPDATE TransactionDetails.Transactions
SET Notes = 'From online auction sale of Redskins memorabilia, helmet'
WHERE TransactionId = 1

2. We can see that the insertion has worked by executing the following code and looking at the results in 
Figure 12-11:

SELECT * FROM TransactionDetails.Transactions

Dewson_5882C12.fm  Page 422  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 423

Figure 12-11. Notes added to a varchar(max) column

3. If we realize that we have made a mistake and in fact it wasn’t Redskins memorabilia but Dolphins 
memorabilia we’re after, and we wanted to change several other items of information, then we could 
use the following to update the whole of the Notes column:

UPDATE TransactionDetails.Transactions
SET Notes .WRITE(
'From online auction sale of Dolphins memorabilia, helmet',
0,8000)
WHERE TransactionId = 1

4. If we then list the details again, we can see the updates as shown in Figure 12-12.

SELECT * FROM TransactionDetails.Transactions WHERE TransactionId = 1

Figure 12-12. Notes modified

5. The last demonstration will show how we update part of a piece of text. in this case, we still didn’t get 
it right, as it is Raiders memorabilia we’re really after. Here we update column 28 and remove 8 char-
acters, the number of characters in the word Dolphins.

UPDATE TransactionDetails.Transactions
SET Notes .WRITE('Raiders',28,8)
WHERE TransactionId = 1

6. If we then list the details again, we can see the updates in Figure 12-13.

SELECT * FROM TransactionDetails.Transactions WHERE TransactionId = 1

Figure 12-13. Notes modified at a specific location

Now that we have looked at text, we can turn our attention to images.

Dewson_5882C12.fm  Page 423  Monday, January 9, 2006  3:22 PM



424 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

Image LOB
Inserting and updating images, movies, Excel spreadsheets, or any data that can be accessed 
via an OLE DB data provider into rows of data uses a T-SQL function called OPENROWSET. OLE DB 
is a method used to access data information from a program. This can be Excel, text files, image 
files, and so on. Some OLE DB providers offer basic functionality, whereas others allow you to 
work with the data within your program as if you were using the raw data’s own program. For 
example, there is an OLE DB provider that allows you to work with Excel data in, for example, 
a C# program as if you were in Excel. We won’t look at the OPENROWSET function extensively, 
as it is quite an advanced area, but bulk loading binary data located locally on our computer 
doesn’t need any provider or connection information, and so it is very straightforward.

■Note  Remember that although we are using an image here, it could be music files, movies, or any data at 
all that could be loaded.

The OPENROWSET syntax that we will be looking at is shown next, and it has to be used as if 
we are returning data from a table, therefore we would need to use the INSERT...SELECT FROM 
OPENROWSET functionality.

FROM OPENROWSET(BULK 'name_of_file', type_of_operation) column_alias

The first option is the name_of_file. This will define the location, the name, and the file type of 
the file we wish to bulk load. The second option allows us three different types of bulk loading:

• SINGLE_BLOB: This reads the file and creates one row and column of data, which is defined as 
varbinary(max).

• SINGLE_CLOB: Same as SINGLE_BLOB, except the data is varchar(max) using the collation of 
the database the query is run on.

• SINGLE_NCLOB: Same as SINGLE_CLOB, but the data is unicoded and therefore is nvarchar(max).

Once the data has been bulk loaded, we need to give the column a column alias so we can 
refer to it within our SELECT statement. So the full statement would look like this:

INSERT INTO table_name (column_in_table)
SELECT column_alias.*
FROM OPENROWSET(BULK 'name_of_file ',type_of_operation) column_alias

To update a row, you would need to use OPENROWSET as a subquery to set the column you 
wish to modify.

Dewson_5882C12.fm  Page 424  Monday, January 9, 2006  3:22 PM



C H A P T E R  1 2  ■  A D V A N C E D  T -S Q L 425

Try It Out: Working with Image LOB Data

1. In this example, we will insert a new TransactionDetails.Transactions row and insert an image 
into the Notes column. This image could be from a document scanner of the share purchase made, a 
copy of the written check from the bank account, or even a copy of the credit card receipt. As security 
is the byword in SQL Server, we won’t be showing this, and I will use a picture found on my computer.

2. Enter the following code noting that we have a column alias of PhotoToLoad that is defined from the 
BULK operation and then used in the SELECT:

INSERT INTO TransactionDetails.Transactions
(CustomerId, TransactionType, DateEntered,Amount,Notes, RelatedProductId)
SELECT 2, 1, GETDATE(),1000,PhotoToLoad.*, 1
FROM OPENROWSET
    (BULK 'd:\photo.tif', SINGLE_BLOB) PhotoToLoad

3. When you execute this code, you should see the following results:

 (1 row(s) affected)

4. To update the row, first of all find the TransactionId of the row entered previously; in my case this 
was 24. Then we create a subquery in which we only return one column and one row. We can use this 
to set the value within a column.

UPDATE TransactionDetails.Transactions
SET Notes = (
SELECT PhotoToLoad.*
FROM OPENROWSET
    (BULK 'd:\photo2.jpg', SINGLE_BLOB) PhotoToLoad)
WHERE transactionId = 7

5. When you execute this code, you should see the following results:

 (1 row(s) affected)

■Note  Images cannot be retrieved for viewing within SQL Server. It is necessary to use some sort of graph-
ical program or tool to display the image.

Dewson_5882C12.fm  Page 425  Monday, January 9, 2006  3:22 PM



426 C H A P T E R  1 2  ■  AD V A N C E D  T - S Q L

Summary
So we are coming toward the end of the book, and you are well primed with T-SQL knowledge 
of what you can achieve within stored procedures and functions. In Chapter 13, we take a look 
at triggers, and all you have learned with programming T-SQL can also be applied there as well.

Subqueries are one of the most commonly used areas of T-SQL, but common table expres-
sions are also useful, so knowing these areas well will enable you to move forward at a rapid 
pace. Combine this knowledge with the functionality covered in Chapter 11, especially when 
working with JOINs, and you should start to see how powerful T-SQL can be at working with 
time-based data.

One last piece of advice: if a query starts becoming very complex, you may find that it starts 
performing badly. We don’t look at performance of queries within this book, although we have 
discussed indexes and how they can help your query perform better. Always take a step back 
and think, “Would this work better as two queries where the first query creates a subset of 
data?” Writing the most complex of queries that processes all the data in one pass of the data 
may not always be the best answer.

Dewson_5882C12.fm  Page 426  Monday, January 9, 2006  3:22 PM



427

■ ■ ■

C H A P T E R  1 3

Triggers

Although you have become quite proficient in using SQL Server 2005, you really ought to 
know about one last aspect of it. Triggers are that one last step, and this chapter is the missing 
link in the foundation of your knowledge and skill set.

There will be times when a modification to data somewhere within your database will 
require an automatic action on data elsewhere, either in your database, another database, or 
elsewhere within SQL Server; a trigger is the object that will do this for you. When a modifica-
tion to your data occurs, SQL Server will fire a trigger, which is a specialized stored procedure 
that will run, performing the actions that you desire. Triggers are similar to constraints but more 
powerful, and they require more system overhead, which can lead to a reduction in performance. 
Triggers are most commonly used to perform business rules validation, carry out cascading 
data modifications (changes on one table causing changes to be made on other tables), keep 
track of changes for each record (audit trail), or do any other processing that you require when 
data on a specific table is modified.

The aim of this chapter is as follows:

• Describe what a trigger is.

• Detail potential problems surrounding triggers.

• Show the CREATE TRIGGER T-SQL syntax.

• Discuss when to use a constraint and when to use a trigger.

• Show the system tables and functions specific to triggers.

• Demonstrate the creation of a trigger through a template and straight T-SQL commands.

• Talk about image data types and the problems that surround updating these columns 
and firing a trigger.

First of all, let’s see just what constitutes a trigger.

What Is a Trigger?
A trigger is a specialized stored procedure that can execute either on a data modification, 
known as a Data Modification Language (DML) trigger, or can execute on a data model action, 
such as CREATE TABLE, known as a Data Definition Language (DDL) trigger. DML triggers are 
pieces of code attached to a specific table that are set to automatically run in response to an 

Dewson_5882C13.fm  Page 427  Tuesday, January 10, 2006  3:26 PM



428 C H A P T E R  1 3  ■  T R I G G E R S

INSERT, DELETE, or UPDATE command. However, a DDL trigger is attached either to an action that 
occurs within a database or within a server. The first part of the chapter will look at DML triggers, 
followed by an investigation of DDL triggers.

■Note  Unlike stored procedures, you cannot manually make a trigger run, you cannot use parameters with 
triggers, and you cannot use return values with triggers.

The DML Trigger
Triggers have many uses. Perhaps the most common for a DML trigger is to enforce a business 
rule; for example, when a customer places an order, check that they have sufficient funds or 
that you have enough stock; if any of these checks fail, you can complete further actions or 
return error messages and roll back the update.

DML triggers can be used as a form of extra validation, for example, to perform quite 
complex checks on data that a constraint could not achieve. Keep in mind that using constraints 
instead of triggers gives you better performance, but triggers are the better choice when dealing 
with complex data validation. Another use for a DML trigger is to make changes in another 
table based on what is about to happen within the original triggered table. For example, when 
you add an order, you would create a DML trigger that would reduce the number of that item 
in stock. Finally, DML triggers can be used to create an automated audit trail that generates a 
change history for each record.

We can create separate triggers for any table action except SELECT, or triggers that will fire 
on any combination of table actions. Obviously, as no table modifications occur on a SELECT 
statement, it is impossible to create such a trigger. There are three main types of triggers:

• INSERT trigger

• DELETE trigger

• UPDATE trigger

You can also have a combination of the three types of triggers.
Triggers can update tables within other databases if desired, and it is also possible for triggers 

to span servers as well, so don’t think the scope of triggers is limited to the current database.
It is possible for a trigger to fire a data modification, which in turn will execute another 

trigger, which is known as a nested trigger. For example, imagine you have Table A, which has 
a trigger on it to fire a modification within Table B, which in turn has a trigger on it that fires a 
modification within Table C. If a modification is made to Table A, then Table A’s trigger will 
fire, modifying the data in Table B, which will fire the trigger in Table B, thus modifying data in 
Table C. This nesting of triggers can go up to 32 triggers deep before you reach the limit set 
within SQL Server; however, if you start getting close to that sort of level, you either have a very 
complex system, or perhaps you have been overly zealous with your creation of triggers!

It is possible to switch off any nesting of triggers so that when one trigger fires, no other 
trigger can fire; however, this is not usually the norm. Be aware that your performance will 
suffer greatly when you start using nested triggers; use them only when necessary.

Dewson_5882C13.fm  Page 428  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 429

■Note  There is one statement that will stop a DELETE trigger from firing. If you issue a TRUNCATE TABLE 
T-SQL command, it is as if the table has been wiped without any logging. This also means that a DELETE 
trigger will not fire, as it is not a deletion per se that is happening.

As with stored procedures, do take care when building triggers: you don’t want to create a 
potentially endless loop in which a trigger causes an update, which fires a trigger already fired 
earlier within the loop, thereby repeating the process.

CREATE TRIGGER Syntax for DML triggers
The creation of a trigger through T-SQL code can be quite complex if you use the full trigger 
syntax. However, the reduced version that I cover here is much more manageable and easier 
to demonstrate. When building a trigger, it can be created for a single action or for multiple 
actions. To expand on this, a trigger can be for insertion of a record only, or it could cover 
inserting and updating the record.

■Note  Although this chapter will demonstrate DML triggers on tables, a trigger can also be placed on a view 
as well, so that when data is modified through a view, it too can fire a trigger if required.

Here is the syntax for creating a basic trigger:

CREATE TRIGGER trigger_name
ON {table|view}
[WITH ENCRYPTION]
{
{{FOR {AFTER|INSTEAD OF} {[INSERT] [,] [UPDATE] [,] [DELETE]}
AS
[{IF [UPDATE (column)
[{AND|OR} UPDATE (column)]] ]
COLUMNS_UPDATE()]
sql_statements}}

Let’s explore the options in this syntax more closely:

• CREATE TRIGGER trigger_name: First of all, as ever, you need to inform SQL Server what 
you are attempting to do, and in this instance, you wish to create a trigger. The name for 
the trigger must also follow the SQL Server standards for naming objects within a data-
base. In this chapter, you name the triggers starting with tg to indicate the object is a 
trigger, followed by the type of trigger (ins for insert, del for delete, and upd for update), 
and then the name of the root table the trigger will be associated with.

Dewson_5882C13.fm  Page 429  Tuesday, January 10, 2006  3:26 PM



430 C H A P T E R  1 3  ■  T R I G G E R S

• ON {table|view}: It is then necessary to give the name of the single table or view that the 
trigger relates to, which is named after the ON keyword. Each trigger is attached to one 
table only.

• [WITH ENCRYPTION]: As with views and stored procedures, you can encrypt the trigger 
using the WITH ENCRYPTION options so that the code cannot be viewed by prying eyes.

• {FOR|AFTER|INSTEAD OF}:

• The FOR|AFTER trigger will run the code within the trigger after the underlying data is 
modified. Therefore, if you have any constraints on the table for cascading changes, 
then the table and these cascades will complete before the trigger fires. You either 
specify FOR or AFTER.

• INSTEAD OF: The most complex of the three options to understand as a trigger defined 
with this option will run the T-SQL within the trigger rather than allowing the data 
modification to run. This includes any cascading. To clarify, if you have an INSTEAD OF 
trigger that will execute on a data INSERT, then the insertion will not take place.

• {[INSERT] [,] [UPDATE] [,] [DELETE]}: This section of the syntax determines on what 
action(s) the trigger will execute. This can be an INSERT, an UPDATE, or a DELETE 
T-SQL command. As mentioned earlier, the trigger can fire on one, two, or three of 
these commands, depending on what you wish the trigger to do. Therefore, at this point, 
you need to mention which combination of commands, separated by a comma, you 
wish to work with.

• AS: The keyword AS defines that the trigger code has commenced, just as the AS keyword 
defined the start of a stored procedure. After all, a trigger is just a specialized stored 
procedure.

• [{IF UPDATE (column) [{AND|OR} UPDATE (column)]]: This option can be used within a 
trigger that is not available within a stored procedure, and that is the test to check whether 
a specific column has been modified or not. This happens through the use of the UPDATE() 
keyword. By placing the name of the column to test in between the parentheses, a logical 
TRUE or FALSE will be returned depending on whether the column has been updated or 
not. The deletion of a record will not set the UPDATE test to TRUE or FALSE, as you are removing 
an item and not updating it. An INSERT or an UPDATE record manipulation will set the 
UPDATE test to the necessary value.

• COLUMNS_UPDATE(): This has functionality similar to UPDATE(), but instead of testing a 
specific named column, it tests multiple columns in one test.

• sql_statements: At this point you code the trigger just like any other stored procedure.

The main thought that you must keep in mind when building a trigger is that a trigger fires 
after each record is flagged to be modified, but before the modification is actually placed into 
the table. Therefore, if you have a statement that updates many rows, the trigger will fire after 
each record is flagged, not when all the records have been dealt with.

Dewson_5882C13.fm  Page 430  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 431

■Note  Keep in mind, the FOR trigger executes before the underlying data is modified; therefore, a trigger 
can issue a ROLLBACK for that particular action if so desired.

Now that you know how to create a trigger, we’ll look at which situations they best apply 
to, as opposed to constraints.

Why Not Use a Constraint?
There is nothing stopping you from using a constraint to enforce a business rule, and in fact, 
constraints should be used to enforce data integrity. Constraints also give you better perfor-
mance than triggers. However, they are limited in what they can achieve and what information 
is available to them to complete their job.

Triggers are more commonly used for validation of business rules, or for more complex 
data validation, which may or may not then go on to complete further updates of data elsewhere 
within SQL Server.

A constraint is only able to validate data that is within the table the constraint is being built 
for or a specified value entered at design time. This is in contrast to a trigger, which can span 
databases, or even servers, and check against any data set at design time or built from data 
collected from other actions against any table. This can happen if the necessary access rights 
are given to all objects involved.

However, constraints are the objects to use to ensure that data forming a key is correct, or 
when referential integrity needs to be enforced through a foreign key constraint.

At times a fine line will exist between building a constraint and a trigger, when the trigger 
is meant to perform a very simple validation task. In this case, if the decision deals with any 
form of data integrity, then use a constraint, which will give you better performance than using 
a trigger. If the object to be built is for business rules and may require complex validation, needs to 
handle multiple databases or servers, or requires advanced error handling, then build a trigger. 
For example, a trigger must be used if you need a change on one table to result in an action 
(update, delete, etc.) on a table that is located in another database. You might have this situa-
tion if you keep an audit trail (change history) database separate from your production database. 
It is doubtful that you would want to use a trigger if you are doing something simple like verifying 
that a date field only contains values within a certain range.

Deleted and Inserted Logical Tables
When a table is modified, whether this is by an insertion, modification, or removal, an exact 
record of the row of data is held in two system logical tables called DELETED and INSERTED. When 
a record is inserted into a table within a database, a full copy of the insertion of the record is 
placed into the INSERTED table. Every item of information placed into each column for the 
insertion is then available for checking. If a deletion is performed, a record of the row of data is 
placed in the DELETED table. Finally, when an update occurs on a row of data, a record of the row 

Dewson_5882C13.fm  Page 431  Tuesday, January 10, 2006  3:26 PM



432 C H A P T E R  1 3  ■  T R I G G E R S

before the modification is placed in the DELETED table, and then a copy of the row of data after 
the modification is placed in the INSERTED table.

The INSERTED and DELETED tables will hold one record from each table for each modifica-
tion. Therefore, if you perform an UPDATE that updates 100 rows, the DELETED logical table is 
populated with the 100 rows prior to the UPDATE. The modification then takes place, and the 
INSERTED table is populated with 100 rows. Finally, the trigger will fire. Once the trigger has 
completed, the data for that table is removed from the relevant logical tables.

These tables do not actually physically exist within SQL Server, so it is not possible to 
complete any further processing on these tables, such as creating an index, and the data can 
only be interrogated via a SELECT statement and cannot be modified. You can, therefore, access 
these tables within a trigger to find out which records have been inserted, updated, or deleted.

To check what columns have been modified, it would be possible to compare each and 
every column value between the two tables to see what information had been altered. Luckily, 
as was discussed when we examined the syntax, there is a function, UPDATE(), that can test 
whether a column has been modified.

Now that you are fully up to date as to what a DML trigger is and how it works, it is time to 
create and test the first trigger within the database.

Creating a DML FOR Trigger
The first trigger we will be looking at is a DML trigger. The following example will demonstrate 
how to create a trigger on a data insertion, but also what happens to that INSERT when there is 
a problem in the trigger itself. As we are near the end of the book, our T-SQL within the trigger 
will be more advanced than some of the code so far.

Try It Out: Creating a Trigger in Query Editor

The purpose of our example is to change a customer’s account balance when a financial transaction occurs as defined 
by an INSERT in the TransactionDetails.Transactions table. We want to change the balance AFTER the row 
has been inserted into the TransactionDetails.Transactions table. This is so we do not change the 
customer’s account balance if later in the INSERT of the row a problem occurs and the INSERT does not complete.

1. Ensure that Query Editor is running and that you are logged in with an ID that can insert objects into the 
database. First of all, it is necessary to give the trigger a meaningful name. Then you define the table 
that the trigger will be attached to, which in this case is the TransactionDetails.Transactions 
table. The final part of the start of the trigger will then define the type of trigger and on what actions the 
trigger will execute on. This will be a FOR AFTER trigger on an INSERT on the 
TransactionDetails.Transactions table. The first part of the code looks as follows:

CREATE TRIGGER trgInsTransactions
ON TransactionDetails.Transactions
AFTER INSERT
AS

Dewson_5882C13.fm  Page 432  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 433

2. It is now time to enter the remainder of the code for the trigger. We need to retrieve the Amount 
and TransactionType from the INSERTED table to be able to use these in the update of 
the CustomerDetails.Customers table. We can JOIN from the INSERTED table to the 
TransactionDetails.TransactionTypes table to find out whether we are dealing with a credit or 
a debit transaction. If it is a debit, then through the use of a subquery and a CASE statement we can alter 
the Amount by multiplying it by -1 so that we are reducing a customer’s balance. Notice the subquery 
includes a WHERE statement so that if we are entering a transaction type that does not affect the cash 
balance, such as recording a share movement, then the ClearedBalance will not be altered. The final 
action is to update the customer’s balance, which we will do via an UPDATE statement. There is a great 
deal to take in, so take time over the code. Also, the two examples of running this trigger should clear 
up any queries you will have.

■Note  This trigger does have a deliberate bug, which is included so that you can see a little later in this 
section what happens when a trigger has a bug.

UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance +
      (SELECT CASE WHEN CreditType = 0
                   THEN i.Amount * -1
                   ELSE i.Amount
                   END
         FROM INSERTED i
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = i.TransactionType
        WHERE AffectCashBalance = 1)
   FROM CustomerDetails.Customers c
   JOIN INSERTED i ON i.CustomerId = c.CustomerId

3. Execute the code to create the trigger in the database. We can test the trigger now by inserting a cash 
withdrawal or deposit relating to the two transaction types we currently have. We will list the customer 
balance before executing the INSERT into the TransactionDetails.Transactions table, and 
then we will add the row and look at the balance again to show that it has changed. Enter the following 
code, which inserts a withdrawal of $200 from Vic McGlynn’s account:

SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE customerId=1

INSERT INTO TransactionDetails.Transactions (CustomerId,TransactionType,
Amount,RelatedProductId, DateEntered)
VALUES (1,2,200,1,GETDATE())

SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE customerId=1

Dewson_5882C13.fm  Page 433  Tuesday, January 10, 2006  3:26 PM



434 C H A P T E R  1 3  ■  T R I G G E R S

4. Execute the code. As you see in Figure 13-1, the results should show that the balance has dropped by 
$200 as expected. You could also double-check that the transaction exists in the TransactionDetails.
Transactions table.

Figure 13-1. Balance reduction after trigger action

5. So our next test is to simulate a noncash transaction that has been recorded. For example, if you bought some 
shares, there would be the cash transaction removing the funds from your bank account, ProductId=1, and 
then a second row entered on ProductId=2, which is the equities product showing the addition of 
shares. This is a simple accounting procedure of one debit and one credit. Enter the following code:

SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE customerId=1

INSERT INTO TransactionDetails.Transactions (CustomerId,TransactionType,
Amount,RelatedProductId, DateEntered)
VALUES (1,3,200,1,GETDATE())

SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE customerId=1

6. Now execute the code. Instead of seeing two rows where the balance hasn’t altered, we see the following 
error message and on the Results tab only one set of output, as shown in Figure 13-2. Our trigger has 
a bug in that the subquery will return a NULL value where the transaction type does not affect a cash 
balance, and we have not accounted for that scenario. There are two reasons for showing you an error: 
the first is to demonstrate how to alter a trigger, the second, more importantly, is to determine whether 
the INSERT statement succeeded or failed.

 (1 row(s) affected)
Msg 515, Level 16, State 2, Procedure trgInsTransactions, Line 6
Cannot insert the value NULL into column 'ClearedBalance', table
'ApressFinancial.CustomerDetails.Customers'; column does not allow nulls.
UPDATE fails.
The statement has been terminated.

Dewson_5882C13.fm  Page 434  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 435

Figure 13-2. Balance not updated

7. To reiterate, the INSERT statement is correct and would normally work. However, as the trigger has a 
bug, the transaction did not insert the data and was rolled back. You can see this by inspecting the 
TransactionDetails.Transactions table with the following code and the results shown in 
Figure 13-3.

SELECT *
  FROM TransactionDetails.Transactions
 WHERE CustomerId=1

Figure 13-3. Transaction table listing

8. We can change a trigger using the ALTER TRIGGER command. The changes to the code occur in the 
subquery: we surround the single column we will have returned with an ISNULL()test. If the result is 
NULL, then we transpose this with the value of 0 as the cash balance is not to alter. The code we need 
to change is in BOLD.

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions
AFTER INSERT
AS
UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance +

      ISNULL((SELECT CASE WHEN CreditType = 0
                   THEN i.Amount * -1
                   ELSE i.Amount
                   END
         FROM INSERTED i
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = i.TransactionType

        WHERE AffectCashBalance = 1),0)
   FROM CustomerDetails.Customers c
   JOIN INSERTED i ON i.CustomerId = c.CustomerId

Dewson_5882C13.fm  Page 435  Tuesday, January 10, 2006  3:26 PM



436 C H A P T E R  1 3  ■  T R I G G E R S

9. Once the changes have been completed, we can then execute the code to alter the trigger. We can now 
rerun our test, which will add a row to the TransactionDetails.Transactions table without altering 
the balance. If you wish, you could also list the TransactionDetails.Transactions table to prove 
that the INSERT succeeded this time, as Figure 13-4 demonstrates.

SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE customerId=1

INSERT INTO TransactionDetails.Transactions (CustomerId,TransactionType,
Amount,RelatedProductId, DateEntered)
VALUES (1,3,200,1,GETDATE())

SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE customerId=1

Figure 13-4. Transactions table with no balance change

Checking Specific Columns
It is possible to check whether a specific column or set of columns have been updated via the 
UPDATE() or COLUMNS_UPDATED() functions available within a trigger. This can reduce the amount of 
processing within the trigger and therefore speed up your batch and transactions. Checking 
columns and only performing specific T-SQL code if a column is altered will reduce trigger 
overheads. As you will see, only when an amount or type of transaction has altered do you 
really need to perform an UPDATE on the CustomerDetails.Customers table.

The first statement we will look at is UPDATE().

Using UPDATE()
The UPDATE() function is a very simple, yet powerful tool to a developer who is building a trigger. 
It is possible to check against a specific column, or a list of columns, to see whether a value has 
been inserted or updated within that column. It is not possible to check whether a value has 

Dewson_5882C13.fm  Page 436  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 437

been deleted for a column, because, quite simply, you cannot delete columns, you can only 
delete whole rows of data. If you wish to check more than one column at the same time, place 
the columns one after another with either an AND or an OR depending on what you wish to happen. 
Each individual UPDATE() will return TRUE if a value has been updated. If there are a number of 
columns, each column will have to be defined separately. For example:

IF UPDATE(column1) [AND|OR UPDATE(column2)]

You can use this function to deal with updates to the TransactionDetails.Transactions 
table. For example, there will be times that a transaction record has been incorrectly inserted. 
The trigger we created previously would have to be modified to deal with an UPDATE to alter the 
CustomerDetails.Customers ClearedBalance. The UPDATE would remove the value within the 
DELETED table and then apply the value within the INSERTED table. However, what if the alter-
ation has nothing to do with any transaction that would alter the cash balance? For example, we 
were changing the date entered. By simply checking each column as necessary, it is possible to see 
whether an update is required to the CustomerDetails.Customers table. The two columns that 
would interest us are Amount and TransactionType.

Try It Out: UPDATE() Function

1. Within Query Editor, let’s alter our trigger to deal with an UPDATE first of all before moving to the 
UPDATE() function. The first part of the alteration is to tag an UPDATE to the AFTER statement.

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions
AFTER INSERT,UPDATE
AS

2. Then we need to deal with the undoing of the amount in the DELETED table row from the 
CustomerDetails.Customers table. The actions on the ClearedBalance need to be the opposite 
of the addition.

UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance -
      ISNULL((SELECT CASE WHEN CreditType = 0
                   THEN d.Amount * -1
                   ELSE d.Amount
                   END
         FROM DELETED d
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = d.TransactionType
        WHERE AffectCashBalance = 1),0)
   FROM CustomerDetails.Customers c
   JOIN DELETED d ON d.CustomerId = c.CustomerId

Dewson_5882C13.fm  Page 437  Tuesday, January 10, 2006  3:26 PM



438 C H A P T E R  1 3  ■  T R I G G E R S

3. The remainder of the trigger is the same. Once you have added in the following code, execute it so that 
the trigger is altered.

UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance +
      ISNULL((SELECT CASE WHEN CreditType = 0
                   THEN i.Amount * -1
                   ELSE i.Amount
                   END
         FROM INSERTED i
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = i.TransactionType
        WHERE AffectCashBalance = 1),0)
   FROM CustomerDetails.Customers c
   JOIN INSERTED i ON i.CustomerId = c.CustomerId

4. We can test that the trigger works by reducing the amount of a withdrawal, in this case TransactionId 
number 12, which currently sits at a value of $200. The following code will list the transactions for 
CustomerId=1 and the current cleared balance. We then alter the amount of withdrawal from $200 
down to $100. The final actions will list the tables to prove the update to the TransactionDetails.
Transactions and CustomerDetails.Customers tables has succeeded.

SELECT *
  FROM TransactionDetails.Transactions
 WHERE CustomerId = 1
SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE CustomerId = 1
UPDATE TransactionDetails.Transactions
   SET Amount = 100
 WHERE TransactionId = 5
SELECT *
  FROM TransactionDetails.Transactions
 WHERE CustomerId = 1
SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE CustomerId = 1

5. Once you execute the code, the transactions amount and cleared balances are altered as shown in 
Figure 13-5. So now we know the trigger has worked and will do these actions no matter what happens 
to the transaction table.

Dewson_5882C13.fm  Page 438  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 439

Figure 13-5. Transactions and balances

6. We are now going to alter the trigger to test the Amount and TransactionType columns. If there is an 
update, we will complete the actions described previously; if not, then we will skip this processing. We 
will prove which path the trigger takes by using the system function RAISERROR, which you saw in the 
discussion of error handling in Chapter 11. Each section of the IF statement will have an appropriate 
RAISERROR.

7. We will now alter the trigger to only update the CustomerDetails.Customers table if Amount or 
TransactionType is altered. If we execute this code, we will have a RAISERROR saying this is what 
we have done. Similarly, if we don’t update the table, we will have an appropriate but different RAISERROR. 
The trigger is defined in the following code with the alterations shown in BOLD. Once you have made 
the same changes, execute the code to alter the trigger.

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions
AFTER INSERT,UPDATE
AS
IF UPDATE(Amount) OR Update(TransactionType)
BEGIN
UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance -
      ISNULL((SELECT CASE WHEN CreditType = 0
                   THEN d.Amount * -1
                   ELSE d.Amount
                   END

Dewson_5882C13.fm  Page 439  Tuesday, January 10, 2006  3:26 PM



440 C H A P T E R  1 3  ■  T R I G G E R S

         FROM DELETED d
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = d.TransactionType
        WHERE AffectCashBalance = 1),0)
   FROM CustomerDetails.Customers c
   JOIN DELETED d ON d.CustomerId = c.CustomerId

UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance +
      ISNULL((SELECT CASE WHEN CreditType = 0
                   THEN i.Amount * -1
                   ELSE i.Amount
                   END
         FROM INSERTED i
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = i.TransactionType
        WHERE AffectCashBalance = 1),0)
   FROM CustomerDetails.Customers c
   JOIN INSERTED i ON i.CustomerId = c.CustomerId
RAISERROR ('We have completed an update',10,1)
END
ELSE
RAISERROR ('Updates have been skipped',10,1)

8. We can now test out the example, which will not update the Amount or TransactionType but will 
alter the DateEntered.

SELECT *
  FROM TransactionDetails.Transactions
 WHERE TransactionId=5
SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE CustomerId = 1
UPDATE TransactionDetails.Transactions
   SET DateEntered = DATEADD(dd,-1,DateEntered)
 WHERE TransactionId = 5
SELECT *
  FROM TransactionDetails.Transactions
 WHERE TransactionId=5
SELECT ClearedBalance
  FROM CustomerDetails.Customers
 WHERE CustomerId = 1

9. Once we have run this code, we will see the Results tab showing the DateEntered being altered but 
the ClearedBalance not, as Figure 13-6 illustrates. However, at this point we don’t know if this is 
because we have removed and then readded the amount, giving a null effect.

Dewson_5882C13.fm  Page 440  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 441

Figure 13-6. Details where updates have been skipped

10. Moving to the Messages tab, we can see the RAISERROR that occurred when we skipped updating the 
CustomerDetails.Customers table. There are also fewer “row(s) affected” messages.

 (1 row(s) affected)
(1 row(s) affected)
Updates have been skipped
(1 row(s) affected)
(1 row(s) affected)
(1 row(s) affected)

This brings us to the end of looking at the UPDATE() function. Let’s move on to COLUMNS_UPDATED().

Using COLUMNS_UPDATED()
Instead of working with a named single column, the COLUMNS_UPDATED() function can work with 
multiple columns. It does this through the use of bit flags rather than naming columns. There 
are 8 bits in a byte, and a bit can be either off (a value of 0) or on (a value of 1).

COLUMNS_UPDATED() checks the bits of a single byte, which is provided by SQL Server, to see 
whether a column has been updated. It can do this by correlating a bit with a column in the 
underlying table. So to clarify, the TransactionDetails.Transactions table has nine columns. 
The first column, TransactionId, would relate to the first bit within the byte. The Amount column is 
the fifth column and therefore would relate to the fifth bit within the byte. If the first bit is on 
(a value of 1), the TransactionId column has been updated. Similarly, if the fourth bit is on, the 
Amount column has been updated.

■Note  Confusingly, when talking about bits, the first bit is known as bit 0, the second bit is known as bit 1, 
and the byte is made up of bits 0 through 7. Therefore, the TransactionId column is bit 0, and the Amount 
column is bit 4. We will use this convention from this point onwards.

Dewson_5882C13.fm  Page 441  Tuesday, January 10, 2006  3:26 PM



442 C H A P T E R  1 3  ■  T R I G G E R S

The bit flag settings are based on the column order of the table definition. To test for a bit 
value, you use the ampersand (&) operator to test a specific bit or multiple set of bits. Before we 
discuss how this works, inspect the following table. A bit value increases by the power of 2 as 
you progress down the bit settings, as you can see.

Bit Value
0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

■Note  Another point about bits is that they work from right to left. For example, 00000010 shows bit 1 is 
set and therefore a value of 2.

Now if bits 2 and 4 are switched on within a byte, in other words, they have a setting of true 
(00010100), then the value is 4 + 16, which equates to 20. Therefore, to test whether the third 
and fifth columns of our table have BOTH been altered, we would use the following syntax:

IF COLUMNS_UPDATE() & 20 > 0

This is a great deal to take in and understand, so I have included the following code to help 
you to understand this further. Here we have a byte data type variable. We then set the variable 
to a value; in this case, we believe that bits 0 and 1 will be set. By using the & operator we can 
check this. To reiterate, slightly confusingly, it’s not the bit position we have to test, but the 
corresponding bit value, so bit 0 has a value of 1.

DECLARE @BitTest varbinary
SET @BitTest = 3
SELECT @BitTest & 1,@BitTest & 2,@BitTest & 4,@BitTest & 8,@BitTest & 16

As a byte contains 8 bits, COLUMNS_UPDATED() can only test the first eight columns on this 
basis. Obviously, tables will contain more than eight columns, as you have seen with the 
TransactionDetails.Transaction table we have just been using.

Once a table has more than eight columns, things change. Instead of being able to test 
COLUMNS_UPDATED() & 20 > 0 to check whether columns 3 or 5 have updated, it is necessary to 
SUBSTRING() the value first. Therefore, to test columns 3 or 5, the code needs to read as follows:

IF (SUBSTRING(COLUMNS_UPDATED(),1,1) & 20) > 0

Dewson_5882C13.fm  Page 442  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 443

However, even this is not the correct solution, although we are almost there. It is necessary 
to substring the COLUMNS_UPDATED() into 8-bit chunks for each set of eight columns. However, 
we need to involve the power() function to get the correct value to test for. The syntax for the 
power() section of the test is as follows:

power(2,(column_to_test – 1))

Therefore, if you wish to test whether column 9 has been updated, the statement would be 
as follows, where we take the second set of eight columns using the SUBSTRING character 2, and 
then test the first column of the second set of eight; in other words column 8 + 1 = 9.

IF (SUBSTRING(COLUMNS_UPDATED(),2,1)=power(2,(1-1)))

The following tests columns 1, 4, and 10 to see whether any of them has changed:

IF (SUBSTRING(COLUMNS_UPDATED(),1,1)=power(2,(1-1))
OR SUBSTRING(COLUMNS_UPDATED(),1,1)=power(2,(4-1))
OR SUBSTRING(COLUMNS_UPDATED(),2,1)=power(2,(2-1)))

We can use this function to deal with updates to the TransactionDetails.Transactions 
table. For example, there will be times that a transaction record has been incorrectly inserted. 
The trigger we created previously would have to be modified to deal with an UPDATE that alters 
the customer’s ClearedBalance. The UPDATE would remove the value within the DELETED table 
and then apply the value within the INSERTED table. However, what if the alteration has nothing 
to do with any transaction that would alter the cash balance? For example, say we were changing 
the date entered. By simply checking each column as necessary, it is possible to see whether an 
update is required to the CustomerDetails.Customers table. The two columns that would interest 
us are Amount and TransactionType.

Try It Out: COLUMNS_UPDATED()

The example in this section will take the same example as UPDATE() and convert it to use COLUMNS_UPDATED(). 
It is a two-line change. The following test will see whether either the TransactionType OR the Amount has 
altered by checking the two column settings using the power() function.

ALTER TRIGGER TransactionDetails.trgInsTransactions
ON TransactionDetails.Transactions
AFTER UPDATE,INSERT
AS
    IF (SUBSTRING(COLUMNS_UPDATED(),1,1) = power(2,(3-1))
    OR SUBSTRING(COLUMNS_UPDATED(),1,1) = power(2,(5-1)))
BEGIN
UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance -
      ISNULL((SELECT CASE WHEN CreditType = 0
                   THEN d.Amount * -1
                   ELSE d.Amount
                   END

Dewson_5882C13.fm  Page 443  Tuesday, January 10, 2006  3:26 PM



444 C H A P T E R  1 3  ■  T R I G G E R S

         FROM DELETED d
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = d.TransactionType
        WHERE AffectCashBalance = 1),0)
   FROM CustomerDetails.Customers c
   JOIN DELETED d ON d.CustomerId = c.CustomerId

UPDATE CustomerDetails.Customers
   SET ClearedBalance = ClearedBalance +
      ISNULL((SELECT CASE WHEN CreditType = 0
                   THEN i.Amount * -1
                   ELSE i.Amount
                   END
         FROM INSERTED i
         JOIN TransactionDetails.TransactionTypes tt
           ON tt.TransactionTypeId = i.TransactionType
        WHERE AffectCashBalance = 1),0)
   FROM CustomerDetails.Customers c
   JOIN INSERTED i ON i.CustomerId = c.CustomerId
RAISERROR ('We have completed an update ',10,1)
END
ELSE
RAISERROR ('Updates have been skipped',10,1)

Now that we have covered DML triggers, we can take a look at DDL triggers.

DDL Triggers
Checking whether an action has happened on an object within SQL Server either on a database 
or within the server is not code that you will write every day. As more and more audit require-
ments are enforced on companies to ensure that their data is safe and has not been amended, 
auditors are now also turning their attention to areas that may cause that data to be altered. 
A DDL trigger is like a data trigger, as it can execute on the creation, deletion, or modification 
of rows within system tables rather than on user tables. So how does this help you?

I am sure we can all recall specific stories involving major institutions having a program 
running that removed funds or stock. My favorite is one in which a developer wrote a program 
that calculated interest on clients’ accounts. Obviously, there needed to be roundings, so the 
bank always rounded down to the nearest cent. However, all the “down roundings” added up 
each month to a fairly substantial amount of money. Of course, auditors saw that the data 
updates were correct, as the amount on the transaction table matched the amount in the client’s 
account. The interest calculation stored procedure also passed QA at the time. However, once 
it was live, the developer altered the stored procedure so that all the down roundings were 
added up in a local variable, and at the end of the process, the amount was added to a “hidden” 
account. It was a simple stored procedure that never went wrong, and of course it was encrypted 
so nobody could see what the developer had done. If the stored procedure needed an update, 

Dewson_5882C13.fm  Page 444  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 445

it was the “old” correct code that went live, and the developer simply waited until the time was 
right and reapplied his code. Auditors could not figure out why at a global level thousands of 
dollars could not be accounted for over time. Of course, eventually they did, but if they had a 
DDL trigger so that whenever a stored procedure was released they received an e-mail or some 
other notification, they could have immediately seen two releases of the stored procedure and 
been asking “Why?” within minutes. Our example will demonstrate this in action.

First of all, let’s look at database scoped events.

DDL_DATABASE_LEVEL_EVENTS
This section presents a listing of all the events that can force a DDL trigger to execute. Similar 
to DML triggers that can execute on one or more actions, a DDL trigger can also be linked to 
one or more actions. However, a DDL trigger is not linked to a specific table or type of action. 
Therefore, one trigger could execute on any number of unrelated transactions. For example, 
the same trigger could fire on a stored procedure being created, a user login being dropped, 
and a table being altered. I doubt if you will create many if any triggers like this, but it is 
possible.

There are two ways that you can create a trap for events that fire. It is possible to either trap 
these events individually (or as a comma-separated list) or as a catchall. You will see how to do 
this once we have looked at what events are available.

Database-scoped Events

The following table lists all the DDL database actions that can be trapped. This is quite a 
comprehensive list and covers every database event there is. Many of the actions you will 
recognize from previous chapters, although the commands have spaces between words rather 
than underscores.

CREATE_TABLE ALTER_TABLE DROP_TABLE

CREATE_VIEW ALTER_VIEW DROP_VIEW

CREATE_SYNONYM DROP_SYNONYM CREATE_FUNCTION

ALTER_FUNCTION DROP_FUNCTION CREATE_PROCEDURE

ALTER_PROCEDURE DROP_PROCEDURE CREATE_TRIGGER

ALTER_TRIGGER DROP_TRIGGER CREATE_EVENT_NOTIFICATION

DROP_EVENT_NOTIFICATION CREATE_INDEX ALTER_INDEX

DROP_INDEX CREATE_STATISTICS UPDATE_STATISTICS

DROP STATISTICS CREATE_ASSEMBLY ALTER_ASSEMBLY

DROP_ASSEMBLY CREATE_TYPE DROP_TYPE

CREATE_USER ALTER_USER DROP_USER

CREATE_ROLE ALTER_ROLE DROP_ROLE

CREATE_APPLICATION_ROLE ALTER_APPLICATION_ROLE DROP_APPLICATION_ROLE

CREATE_SCHEMA ALTER_SCHEMA DROP_SCHEMA

CREATE_MESSAGE_TYPE ALTER_MESSAGE_TYPE DROP_MESSAGE_TYPE

CREATE_CONTRACT ALTER_CONTRACT DROP_CONTRACT

Dewson_5882C13.fm  Page 445  Tuesday, January 10, 2006  3:26 PM



446 C H A P T E R  1 3  ■  T R I G G E R S

CREATE_QUEUE ALTER_QUEUE DROP_QUEUE

CREATE_SERVICE ALTER_SERVICE DROP_SERVICE

CREATE_ROUTE ALTER_ROUTE DROP_ROUTE

CREATE_REMOTE_SERVICE_BINDING ALTER_REMOTE_SERVICE_BINDING DROP_REMOTE_SERVICE_BINDING

GRANT_DATABASE DENY_DATABASE REVOKE_DATABASE

CREATE_SECEXPR DROP_SECEXPR CREATE_XML_SCHEMA

ALTER_XML_SCHEMA DROP_XML_SCHEMA CREATE_PARTITION_FUNCTION

ALTER_PARTITION_FUNCTION DROP_PARTITION_FUNCTION CREATE_PARTITION_SCHEME

ALTER_PARTITION_SCHEME DROP_PARTITION_SCHEME

DDL Statements with Server Scope

Database-level events are not the only events that can be trapped within a trigger; server events 
can also be caught.

Following are the DDL statements that have the scope of the whole server. Many of these 
you may not come across for a while, if at all, so we will concentrate on database-scoped events.

CREATE_LOGIN ALTER_LOGIN DROP_LOGIN

CREATE_HTTP_ENDPOINT DROP_HTTP_ENDPOINT GRANT_SERVER_ACCESS

DENY_SERVER_ACCESS REVOKE_SERVER_ACCESS CREATE_CERT

ALTER_CERT DROP_CERT

A DDL trigger can also accept every event that occurs within the database and, within the 
T-SQL code, decide what to do with each event, from ignoring upwards. However, catching 
every event results in an overhead on every action.

■Note  It is not possible to have a trigger that fires on both server and database events; it’s one or the other.

The syntax for a DDL trigger is very similar to that for a DML trigger:

CREATE TRIGGER trigger_name
ON {ALL SERVER|DATABASE}
[WITH ENCRYPTION]
{
{{FOR |AFTER } {event_type,…}
AS
sql_statements}}

The main options that are different are as follows:

Dewson_5882C13.fm  Page 446  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 447

• ALL SERVER|DATABASE: The trigger will fire either for the server or the database you are 
attached to when creating the trigger.

• Event_type: This is a comma-separated list from either the database or server list of DDL 
actions that can be trapped.

■Note  You can also catch events that can be grouped together. For example, all table and view events can 
be defined with a group, or this group can be refined down to just table events or view events. The only grouping we 
will look at is how to catch every database-level event.

Dropping a DDL trigger
Removing a DDL trigger from the system is not like removing other objects where you simply 
say DROP object_type object_name. With a DDL trigger, you have to suffix this with the scope 
of the trigger.

DROP TRIGGER trigger_name ON {DATABASE|ALL SERVER}

EVENTDATA()
As an event fires, although there are no INSERTED and DELETED tables to inspect what has changed, 
you can use a function called EVENTDATA(). This function returns an XML data type containing 
information about the event that fired the trigger. The basic syntax of the XML data is as 
follows, although the contents of the function will be altered depending on what event fired.

<SQLInstance>
    <PostTime>date-time</PostTime>
    <SPID>spid</SPID>
    <ComputerName>name</ComputerName>
</SQLInstance>

I won’t detail what each event will return in XML format, otherwise we will be here for 
many pages. However, in one of the examples that follow we will create a trigger that will fire 
on every database event, trap the event data, and display the details.

Database-level events have the following base syntax, different from the previously shown 
base syntax:

<SQLInstance>
    <PostTime>date-time</PostTime>
    <SPID>spid</SPID>
    <ComputerName>name</ComputerName>
    <DatabaseName>name</DatabaseName>
    <UserName>name</UserName>
    <LoginName>name</LoginName>
</SQLInstance>

Dewson_5882C13.fm  Page 447  Tuesday, January 10, 2006  3:26 PM



448 C H A P T E R  1 3  ■  T R I G G E R S

The XML elements can be described as follows:

• PostTime: The date and time of the event firing

• SPID: The SQL Server process ID that was assigned to the code that caused the trigger 
to fire

• ComputerName: The name of the computer that caused the event to fire

• DatabaseName: The name of the database that caused the event to fire

• UserName: The name of the user who caused the event to fire

• LoginName: The login name of the user who caused the event to fire

It’s time to see a DDL trigger in action.

Try It Out: DDL Trigger

1. This first example will create a trigger that will execute when a stored procedure is created, altered, or 
dropped. When it finds this action, it will check the time of day, and if the time is during the working day, 
then the action will be disallowed and be rolled back. On top of this, we will raise an error listing the 
stored procedure. This will allow you to see how to retrieve information from the EVENTDATA() function. 
The final action is to roll back the changes if an action is happening during the working day.

CREATE TRIGGER trgSprocs
ON DATABASE
FOR CREATE_PROCEDURE, ALTER_PROCEDURE, DROP_PROCEDURE
AS
IF DATEPART(hh,GETDATE()) > 9 AND DATEPART(hh,GETDATE()) < 17
BEGIN
    DECLARE @Message nvarchar(max)
    SELECT @Message =
      'Completing work during core hours. Trying to release - '
      + EVENTDATA().value
        ('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]','nvarchar(max)')
   RAISERROR (@Message, 16, 1)
   ROLLBACK
END

2. We can now test the trigger. Depending on what time of day you run the code, the following will either 
succeed or fail.

CREATE PROCEDURE Test1
AS
SELECT 'Hello all'

3. Try running the preceding code between 9 a.m. and 5 p.m. so that it is possible to see the creation fail. 
Running the code in the afternoon provided me with the following error:

Dewson_5882C13.fm  Page 448  Tuesday, January 10, 2006  3:26 PM



C H A P T E R  1 3  ■  T R I G G E R S 449

Msg 50000, Level 16, State 1, Procedure trgSprocs, Line 11
Completing work during core hours.
Trying to release - CREATE PROCEDURE Test1
AS
SELECT 'Hello all'
Msg 3609, Level 16, State 2, Procedure Test1, Line 3
The transaction ended in the trigger. The batch has been aborted.

4. It is necessary to drop the preceding trigger so we can move on, unless of course you are now outside 
of the prohibited hours and you wish the trigger to remain:

DROP TRIGGER trgSprocs ON DATABASE

5. We can create our second DDL trigger. This time we will not look for any specific event but wish this trigger 
to execute on any action that occurs at the database. This will allow us to see the XML data generated 
on any event we want to.

CREATE TRIGGER trgDBDump
ON DATABASE
FOR DDL_DATABASE_LEVEL_EVENTS
AS
    SELECT EVENTDATA()

6. This trigger can be tested by successfully creating the stored procedure we couldn’t in our first example.

CREATE PROCEDURE Test1
AS
SELECT 'Hello all'

7. Check the results window. You should see results that you have not seen before. What is returned is 
XML data, and the results window displays the data as shown in Figure 13-7.

Figure 13-7. Event data XML

8. If you click the row, a new Query Editor pane opens after a few moments, and the XML data is trans-
posed into an XML document layout. Each of the nodes can be inspected just like the CommandText 
node was earlier.

<EVENT_INSTANCE>
  <EventType>CREATE_PROCEDURE</EventType>
  <PostTime>2005-09-04T14:24:14.593</PostTime>
  <SPID>61</SPID>
  <ServerName>XP-PRO</ServerName>
  <LoginName>XP-PRO\rdewson</LoginName>
  <UserName>dbo</UserName>

Dewson_5882C13.fm  Page 449  Tuesday, January 10, 2006  3:26 PM



450 C H A P T E R  1 3  ■  T R I G G E R S

  <DatabaseName>ApressFinancial</DatabaseName>
  <SchemaName>dbo</SchemaName>
  <ObjectName>Test1</ObjectName>
  <ObjectType>PROCEDURE</ObjectType>
  <TSQLCommand>
    <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON"
QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
    <CommandText>CREATE PROCEDURE Test1
AS
SELECT 'Hello all'
</CommandText>
  </TSQLCommand>
</EVENT_INSTANCE>

Summary
DML triggers should be seen as specialized and specific stored procedures set up to help your 
system with maintaining data integrity, cascading updates throughout a system, or enforcing 
business rules. If you take out the fact that there are two system tables, INSERTED and DELETED, 
and that you can check what columns have been modified, then the whole essence of a trigger 
is that it is a stored procedure that runs automatically when a set data-modification condition 
arises on a specific table.

DDL triggers will be built mainly for security or reporting of system changes to compliance 
departments and the like. With the EventData() XML information available to a trigger, a great 
deal of useful information can be inspected and used further.

Coding a trigger is just like coding a stored procedure with the full control of flow, error 
handling, and processing that is available to you within a stored procedure object.

The aim of this chapter was to demonstrate how a trigger is fired, and how to use the informa-
tion that is available to you within the system to update subsequent tables or to stop processing 
and rollback the changes.

The DML triggers built within this chapter have demonstrated how to use the virtual 
tables, as well as how to determine whether a column has been modified. The DDL triggers 
built have demonstrated how you can trap events and determine what has been changed 
either within a database or a server.

Dewson_5882C13.fm  Page 450  Tuesday, January 10, 2006  3:26 PM



451

■ ■ ■

C H A P T E R  1 4

SQL Server 2005 
Reporting Services

If I were a salesman, I would start this chapter like this: “Do you need reporting? For a single 
desktop? Or maybe for the whole enterprise? Do you want to export reports in PDF or Excel or 
maybe just e-mail them to your boss? Want embedded reports for your applications? If so, I have 
just what you’re looking for: SQL Server 2005 Reporting Services. Did I mention it’s free?” SQL 
Server reporting services is a flexible reporting tool designed and developed purely for SQL Server, 
therefore removing the “generic” facia that other tools that work with several different types of 
database have to provide. This chapter is an overview of Reporting Services as it does require a 
whole book to use this tool well. In this chapter, I will cover the following:

• The definition of Reporting Services

• Elements of the architecture both for neophytes and for more advanced programmers

• Creating a basic report using Report Wizard

• Creating a report from scratch

• Building and using a report model

First, let me introduce you to Reporting Services.

■Tip  To read more about reporting services, please see Pro SQL Server 2005 Reporting Services (Apress, 
2005; ISBN 1590594983).

What Is Reporting Services?
It may not be a shock for you, but in most cases, computing is meant to bring some business 
value, some sort of competitive advantage. And there comes SQL Server 2005 Business Intel-
ligence solution with the promise of delivering the right data to the right people at any time. 
The promise is fulfilled using three main products: Integration Services, Analysis Services, 
and Reporting Services.

Dewson_5882C14.fm  Page 451  Tuesday, January 10, 2006  2:35 PM



452 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

Before I go any further, I will stop for a moment to explain the term Business Intelligence. 
Let’s say that you run a lemonade stand. It’s July and you know from last year that in August 
and the hot weather that was experienced previously, you sold ten times more lemonade than 
for any other month. It was great except the fact that you could have done better, if you just had 
bought enough supplies. Another thing that concerns you is that in April, a new school was opened 
just near your location, and since then you have permanently a queue of 10 to 15 noisy children. 
You are the decision maker, so you buy another machine for lemonade and hire a person to sell 
and to manage supplies. That’s business intelligence—using past and current information to 
make informed decisions. And as you see, the information can be of use for every employee, not 
just for decision makers. Your fictive employee will buy additional supplies based on the current 
quantity of supplies and the estimation of the quantity needed.

Getting back to Reporting Services, we use reports to make information available to anyone 
who needs it, at any time and in the right format (paper, PDF, Excel spreadsheet, etc.). If you 
prefer the official definition, Reporting Services is a server-based platform for creating, 
managing, and delivering both traditional and interactive reports. The next section will add 
more details in terms of architecture.

Reporting Services Architecture from 5000 Feet
If you don’t want to know a lot of technical details about the architecture of Reporting Services, 
then this section is written especially for you. Just read this section and skip the next one.

Reporting Services components can be grouped in three layers: an application layer, a 
server layer, and a data layer:

• The application layer includes report tools, configuration utilities, custom applications, 
browsers, etc.

• The server layer is represented by your report server and is the primary component of 
Reporting Services. You will deploy your reports to the report server that will handle 
reports delivery, scheduling, data processing, etc.

• Finally, two SQL Server databases, ReportServer and ReportServerTempDB, make the 
data layer.

Another thing that you may want to know is the typical reporting life cycle that includes 
three stages: authoring, management, and delivery.

In the authoring stage, you create the reports and, actually, you create an XML file. Every 
report is defined using Report Definition Language (RDL), an extensible open schema that 
contains the layout and data information for a report. After creating a report, you will publish 
it to a report server to make it available to end users.

The next stage is management, where you manage the objects stored on a report server. 
You can set access security, schedule operations, manage data sources, etc.

In the last stage, the reports will get to those who need them using various formats (PDF, 
XLS, etc.), various devices (e-mail, file shares, etc.), and two delivery methods (“push,” known 
also as on-demand delivery, and “pull,” or event-based delivery). There is another option for 
report delivery, a local delivery, if you use the new Report Viewer controls. The new Report 
Viewer controls allow you to embed reports in both Windows Forms applications and web 
applications. The controls can deliver reports through your application without a connection 
to a report server.

Dewson_5882C14.fm  Page 452  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 453

You may proceed now to the next section, but if you feel any dizziness or worse any boredom, 
you can skip directly to the “Building Your First Report Using Report Wizard” section.

Reporting Services Architecture: A Closer Look
The architecture of Reporting Services can be divided in three layers: a server layer, an applica-
tion layer, and a data layer, as can be seen in Figure 14-1.

Figure 14-1. Reporting Service architecture

Dewson_5882C14.fm  Page 453  Tuesday, January 10, 2006  2:35 PM



454 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

The Application Layer
At the application layer level, you will find report design tools, configuration tools, and custom 
applications that use Reporting Services. Let’s see how they’re used.

Web Browser

The simplest way to access a report server is using a browser. On the report server, all the items 
(such as reports, report models, and shared data sources) are organized using a folder hierarchy. 
The folder hierarchy looks like a file system, but actually all folders and items are stored in SQL 
Server databases. You can navigate through this hierarchy and view reports using a browser. 
The path to a report will be included in the URL used by the browser to display the report. For 
example, one of the reports we will create in the demo section “Building a Report Model” can 
be viewed with a browser using this URL: http://localhost/Reports/Pages/Report.aspx?
ItemPath=%2fAd+Hoc+Report.

Another use for a web browser is web-based management using Report Manager. Report 
Manager is an ASP.NET web application used as a management tool for Reporting Services.

Report Tools

A new option in SQL Server 2005 Reporting Services is the ability to create report models and 
ad hoc reports. A report model hides the complexity of a report. Based on a model, a business 
user can create with limited technical knowledge ad hoc reports. You will see them at work in 
the examples later in the chapter.

To create reports, report models, or ad hoc reports, you have several options from 
Notepad to third-party tools. I will not talk about Notepad, but I will mention briefly the other 
options.

Business Intelligence Management Studio

Based on a Visual Studio 2005 shell, Business Intelligence Management Studio is the tool that 
allows you to create Business Intelligence projects. For Reporting Services you have three 
project templates available: Report Model Project, Report Server Project, and Report Server 
Project Wizard. Using the project templates will actually start the Report Designer and the 
Model Designer tools, which are design tools for creating the reports and report models.

Configuration Tools

For Reporting Services configuration and management, you have several tools at your disposal. 
We have seen these tools already within the book, but let’s take a moment to see how they fit 
within Reporting Services.

SQL Server Configuration Manager

If you want to configure SQL Server 2005 components services or network libraries, you will use 
this tool.

Dewson_5882C14.fm  Page 454  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 455

Surface Area Configuration

This tool will help you to reduce the options of a potential attacker by stopping or disabling 
unused components. For Reporting Services, you can enable or disable the following features:

• Web services request and HTTP access: If you don’t use a client application that requires 
Reporting Services web service, you can disable this feature.

• Scheduled events and report delivery: If you only require “on-demand” report delivery, 
then you can disable this feature.

• Windows Integrated Security: In order to access data sources, you need some credentials. If 
you disable the Windows Integrated Security feature, you will reduce the probability 
that a user’s identity may be used without the user’s consent. To access data, you will 
have several options for obtaining credentials such as prompted credentials, stored 
credentials, or no credentials.

Report Manager

I already mentioned this web-based application that allows you to manage a report server. 
If you don’t want to install any client utilities on your machine, then the best management tool 
for you is Report Manager.

Reporting Services Configuration Tool

This tool allows you to configure and modify the settings for a reporting services installation. 
You can configure the virtual directories used by a report server or by the Report Manager 
application; you can also configure service accounts, report server databases, or e-mail delivery. 
If you want to scale-out reporting services, you will need this tool.

SQL Server Management Studio

You should already be familiar with this tool that allows the central management for all SQL 
Server component servers and it can replace Report Manager.

Command Line Tools

In addition to graphical tools, Reporting Services comes with several command line utilities 
such as rs (for scripted operations), rsconfig (for configuring the report server connection to 
the report server database), rskeymgmt (for encryption key management), and sac (the 
command line version of Surface Area Configuration).

Custom Applications

The extensible architecture of all Reporting Services components gives you the possibility to 
develop custom applications for the complete reporting life cycle. You can build new report 
designers, management tools, or just use reports in your applications. I want to remind you 
that you can use Report Viewer controls, a set of two freely redistributable controls that can 
work in local and remote mode. In local mode, you can display reports without connecting to 
a report server.

Dewson_5882C14.fm  Page 455  Tuesday, January 10, 2006  2:35 PM



456 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

The Server Layer
At the server layer, we have the report server—a perfect marriage between a Windows service 
and a web service.

Web Service

The web service provides a set of programmatic interfaces that allow communication with the 
report server. It is required for on-demand delivery and for the use of client tools like Report 
Manager, Report Builder, or SQL Server Management Studio.

Windows Service

The Windows service is responsible for scheduling and delivery services, server maintenance, 
encryption operations, and initialization services. It is required for the push delivery method of 
reports. For scheduling operations, the SQL Server Agent Service is required. If you need just 
push delivery reporting, you can run only the Report Server Windows service. However, you 
will have available just a part of the Reporting Services functionality.

Programming Interfaces

Applications can use Simple Object Access Protocol (SOAP), URL endpoints, and Windows 
Management Instrumentation (WMI) to talk to report servers. If you are not familiar with web 
services, they simply allow you to use programmatic functionality (functions, procedures, T-SQL 
stored procedures, etc.) over the web, by including the call to the functionality in your request 
to the web server and the result of the call in the web server’s response. The communication 
protocol used by web services is SOAP. SOAP messages have a simple XML form. I captured the 
SOAP message used by Business Intelligence Development Studio to deploy a report. You can 
see that it is not so complicated. A report named ContactList is created in a parent folder named 
Advance Report. The existing report, if any, will be overwritten.

 <?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body>
<CreateReport xmlns="http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/
reportingservices">
  <Report>ContactList</Report>
  <Parent>/Advanced Report</Parent>
  <Overwrite>true</Overwrite>
  <Definition>...</Definition>
</CreateReport>
</soap:Body>
</soap:Envelope>

Dewson_5882C14.fm  Page 456  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 457

The importance of SOAP is that anyone can talk SOAP, which is XML. To receive SOAP 
messages, the Reporting Services web service uses URL endpoints, to which you send your 
requests to work with reports. SQL Server 2005 Reporting Services comes with two new 
endpoints—for report execution and for report management. You can use both of them to 
build custom tools, though most likely you will be just happy with the existing set of tools.

Processors

The only components of Reporting Services that cannot be extended are the Report Processor 
and the Scheduling and Delivery Processor. The first one is responsible for combining a report 
layout with data and rendering a report in a requested format. The Scheduling and Delivery 
Processor is responsible for delivering reports and supports scheduled operations.

Extensions

One of the main qualities of Reporting Services is extensibility. You can add custom extensions 
for authentication, data processing, report processing, rendering, and delivery.

Authentication Extensions

Reporting Services uses a role-based security model in which users and groups are mapped to 
roles. Roles are just a collection of tasks that can be performed. For example, the Report Builder 
Role allows a user to build and edit reports with Report Builder. You can also define your own 
custom roles. The default authentication uses Internet Information Services (IIS) to authenti-
cate Windows users and groups. You can use a custom authentication extension to get users 
from other directory services like Novell Directory Services, for example.

Data Processing Extensions

Data processing extensions are used to get data from various sources like SQL Server, Analysis 
Services, Oracle, OLE DB, and ODBC data sources.

Rendering Extensions

Rendering extensions work with Report Processor to transform the data and the report layout 
into a specific format. Available are the following rendering extensions: HTML (to generate 
HTML using UTF-8 encoding), Excel (to generate reports in a native file format for Excel—Binary 
Interchange File Format), CSV (to generate Comma-Separated Value files), Image (to generate 
image formats like BMP, GIF, JPEG, TIFF, EMF, WMF), PDF, and XML.

Report Processing Extensions

If you need custom report items, you can add new report processing extensions for them.

Delivery Extensions

The delivery extensions are used by the Scheduling and Delivery Processor to deliver reports to 
locations such as e-mails or file shares. You can even send short notices (not the actual report) 
to mobile devices like pagers and phones.

Dewson_5882C14.fm  Page 457  Tuesday, January 10, 2006  2:35 PM



458 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

The Data Layer
At the data layer level, we have two SQL Server databases and a lot of options for data sources.

Report Server Databases

SQL Server 2005 Reporting Services uses two SQL Server databases (ReportServer, 
ReportServerTempDB) to store the information used by the report server. The ReportServer 
database stores static metadata such as report definitions, data sources, users, roles, subscrip-
tions, and schedule definitions. The ReportServerTempDB database stores temporary objects 
such as work tables or session data. To store Reporting Services databases, you can use another 
server and even another version of SQL Server (SQL Server 2000).

Data Sources

The report data sources can come from SQL Server, Analysis Services, Excel, Access, Oracle, flat 
files or any OLE DB, and ODBC data sources. Using data processing extensions, you can add 
new sources of data.

Building Your First Report Using Report Wizard
In this section, we will call the Report Wizard—the perfect tool for a beginner or for an urgent 
situation. The end result will be a simple report containing the list of contacts from the 
CustomerDetails.Customers table.

Try It Out: Using the Report Wizard

1. From the Start menu, select Programs ➤ Microsoft SQL Server 2005 ➤ SQL Server Business Intelli-
gence Development Studio.

2. Once Business Intelligence Development Studio has opened, on the File menu, select New ➤ Project.

3. In the Project Types list, click Business Intelligence Projects.

4. In the Templates list, click Report Server Project Wizard.

5. Type ApressFinancial Reports in the name textbox as shown in Figure 14-2 and leave the default 
location as it is. Click OK to start the Report Wizard.

6. On the Welcome page of the wizard, you will see a short description of the wizard. You may read it and 
then click Next.

7. On the Select the Data Source page, make sure that Microsoft SQL Server is selected in the Type 
drop-down list.

Dewson_5882C14.fm  Page 458  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 459

Figure 14-2. Selecting the report template and report name

8. This step defines the source of data for our report. We will use the ApressFinancial database from our 
local server. Use the Edit button to open the Connection Properties dialog box and specify XP-PRO for 
Server Name and ApressFinancial in Select or Enter a Database Name as shown in the following screenshot.

Dewson_5882C14.fm  Page 459  Tuesday, January 10, 2006  2:35 PM



460 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

An alternative is to remain in the Data Source page and type Data source= XP-PRO; Initial Catalog=
ApressFinancial in the Connection String textbox as you see in Figure 14-3. Click Next.

Figure 14-3. Define the data source

■Tip  Remember to change the Data source to the SQL Server instance you are connecting to, such as (local).

9. In the Design the Query page, shown in Figure 14-4, you can use the Query Designer to build your query. 
This example is very simple, so just use the Query string text box to enter the following SELECT 
statement and click Next:

SELECT CustomerFirstName, CustomerLastName FROM CustomerDetails.Customers

10. The next step is to select a report type. Select Tabular and click Next.

11. To make the report really simple, I will not use any kind of grouping. In the Design the Table page, shown 
in Figure 14-5, you can select fields by which to group or fields to display in the Report Details section. 
Select the CustomerFirstName and CustomerLastName fields and click the Details button to add 
them to the details section. Click Next.

Dewson_5882C14.fm  Page 460  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 461

Figure 14-4. Design the Query window

Figure 14-5. Design the Table window

Dewson_5882C14.fm  Page 461  Tuesday, January 10, 2006  2:35 PM



462 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

12. The Choose the Table Style page allows you to apply a style to the report by selecting a style template. 
I prefer the style template named Corporate. Select one template and click Next.

13. The next page, Choose the Deployment Location, allows you to configure the report server and the 
folder to which the report will be published. The Report Wizard will not publish the report. You can do 
that yourself later on.

14. The last step gives you a last chance to verify the information entered. You have the option to rename 
the report, but for this demo leave the default name—Report1. Select the Preview Report check box to 
preview the report as soon as the wizard finishes. Click Finish.

Congratulations! You just did your first report. If you did everything just right, you should see the preview of your 
report, which should resemble Figure 14-6.

Figure 14-6. The preview of your report

You can see the two columns selected in step 11, the tabular format of data because of the choice you selected in 
step 10, and of course, the great name Report1 that you can change if you choose to.

In the next section, I will tell you about various report items.

Building a Report from Scratch
In this section, you will learn to build a report without the help of Report Wizard. That means 
that you will have to define a data source and build a design for your report. Once the report is 
built, I will show you how to add some interactivity by using parameters. Before we do the 
actual demo, let’s take a closer look at some of the elements we can use.

Dewson_5882C14.fm  Page 462  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 463

Data-Related Elements
The utility of a report is given mainly by its data. In order to have data in a report, you have to 
define at least a data source and a dataset. The data view of the graphical designer interface 
allows you to create datasets and data sources.

Data Source

A data source represents the necessary information to get to the source of data. Such informa-
tion may include a server name, a database name, and user credentials. The information 
included depends on the source of data, for example, if you use a text file, you will specify the 
path to the text file and not a server name or a database name. A report can use multiple data 
sources. There are two types of data sources: shared (can be used by multiple reports) or report 
specific (used by a particular report). Another difference between shared and report-specific 
data sources is their storage location. A shared data source is stored in a separate file on the 
report server, while the report-specific data source is stored in the report definition.

Dataset

Once we have defined the source of data, we will create a dataset using a query. You can imagine 
a dataset as a set of rows with data. I would mention that a report can also have multiple datasets.

Fields

Every row of a dataset has one or more fields that typically refer to columns returned by the 
query that populated the dataset. You can find all fields of a dataset in the Fields window. Using 
the drag-and-drop method, you can include any field in your report.

Custom fields

Besides the existing fields of a dataset, you can create new ones using several methods. You can 
create calculated fields based on existing fields, or you can use aggregate functions such as Sum, 
Avg, and Count.

Report Items
There are two types of report items: data regions and independent items.

Data Regions

Data regions display data from datasets, with each data region being associated to one dataset. 
You can use the following types of data regions:

• Table: A table is a data region that uses static columns and rows to display data.

• Matrix: A matrix (or crosstab) is a more complex data region having columns and rows 
that can contain other columns or rows.

Dewson_5882C14.fm  Page 463  Tuesday, January 10, 2006  2:35 PM



464 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

• List: A list allows you to display data in a free-form way. It basically repeats each row (or 
group) in a dataset.

• Chart: A chart data region displays the data in a graphical form, allowing you to use 
charts like bar charts, pie charts, and other types of charts.

Independent Items

Independent report items are not linked to a dataset but can be used to display data or graph-
ical elements. The following types are available:

• Text box: A text box is a control that allows displaying of text data. They can be placed 
anywhere on a report.

• Line: A line is a graphical element that can be placed anywhere in your report. You can 
apply different styles to it, you can make it horizontal, vertical, diagonal, etc.

• Image: An image control allows you to display images from a file, URL, or database field.

• Rectangle: A rectangle is a graphical element that can be used to group other items, and 
as the name says its shape is rectangular.

• Subreport: A subreport is an item that references the body of another report.

Reports Structure
A report can contain different sections such as report header and footer (that appear on the 
first and the last pages, respectively), page headers and page footers (that appear on all pages), 
and table headers and footers (displayed at the beginning and the end of a table). If you have 
groups, you can use group headers and group footers.

That should be enough to give you an overview on what you need to create a report. Let’s 
start the demo.

Try It Out: Creating a Report Structure

I will use a new simple table for this report. Open SQL Server Management Studio and run the following script:

USE ApressFinancial
GO
CREATE TABLE CustomerDetails.Title
(CustomerTitleId int primary key,TitleDescription varchar(16))
GO
INSERT INTO CustomerDetails.Title VALUES (1,'Mr')
INSERT INTO CustomerDetails.Title VALUES (2,'Ms')
INSERT INTO CustomerDetails.Title VALUES (3,'Dr')

1. Open Business Intelligence Development Studio and on the File menu, select New ➤ New Project.

2. Click Business Intelligence Projects in the Project Types list. Click the Report Server Project template.

3. In the Name textbox, type Advanced Report and then click OK to create the project.

Dewson_5882C14.fm  Page 464  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 465

4. Make sure that Solution Explorer window is visible. To display it, from the View menu click Solution Explorer.

5. In Solution Explorer, right-click Reports, and select Add ➤ New Item.

6. In Add New Item, click Report.

7. In Name textbox, type ContactList.rdl and then click Add. The new report will open in Data view.

In this section, we will create a data source for the report and two datasets.

8. In the Data view, expand the Dataset drop-down list, and select New Dataset to open the Data Source 
dialog box.

9. In the Name textbox, type ApressFinancial. In the Type drop-down menu, select Microsoft SQL Server.

10. In the Connection string textbox, type the following:

Data source=XP-PRO; Initial Catalog=ApressFinancial

Dewson_5882C14.fm  Page 465  Tuesday, January 10, 2006  2:35 PM



466 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

11. Click OK to add the ApressFinancial dataset.

12. Type the following query into the SQL pane that opened:

SELECT C.CustomerFirstName, C.CustomerLastName, T.TitleDescription
FROM CustomerDetails.Customers C
JOIN CustomerDetails.Title T
ON C.CustomerTitleId = T.CustomerTitleId

13. Click the Run (!) button on the Query Designer toolbar to see the results of the query.

14. To create a second dataset, expand the Dataset drop-down list, and select New Dataset.

15. In the Dataset dialog box, type TitleList in the Name textbox, leave ApressFinancial as the data source, 
make sure that in the Command type drop-down list Text is selected, and in the Query string textbox 
type the following:

Dewson_5882C14.fm  Page 466  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 467

SELECT TitleDescription FROM CustomerDetails.Title

16. Click OK to add the TitleList dataset. Optionally, you can click the Run (!) button on the Query Designer 
toolbar to see the results of the query.

In this section, we will add a table data region to the report layout.

17. Click the Layout tab to display the Layout view.

18. If the Toolbox window is not displayed, from the View menu click Toolbox. It may be just a small tab on 
the top left of your design area so it may not be obvious.

19. In the Toolbox window, click the Table control and then click the design surface. A table with three 
columns is generated.

20. In the Datasets explorer, probably on the left of the design pane, expand the ApressFinancial dataset to 
see the fields.

21. Drag the CustomerFirstName field to the detail row (the middle row) of the first column.

22. Drag the CustomerLastName field to the detail row (the middle row) of the second column.

23. Drag the TitleDescription field to the detail row (the middle row) of the third column. Your columns 
should now resemble those shown in Figure 14-7.

Dewson_5882C14.fm  Page 467  Tuesday, January 10, 2006  2:35 PM



468 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

Figure 14-7. The design surface

24. Use the File menu and click Save All. Click the Preview tab to see the report.

 

Try It Out: Enhancing the Report

In this section, we will change the design by adding a new column, and we will add some interactivity to our report 
using a parameter.

1. Click the Layout tab to display the Layout view.

2. Double-click the first column of the first row in the table that displays the text Customer First Name. 
Delete the word Customer.

3. Repeat the step for the second column.

Dewson_5882C14.fm  Page 468  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 469

4. Delete the Description word from the third column using the same method.

5. Click the table to display the column and row handles. Right-click the handle of the third column (Title) 
and select Insert Column To the Right, as shown in Figure 14-8.

Figure 14-8. Adding a new column

6. Double-click the detail row for the new column (the fourth). Enter the following expression that will calculate 
the initials:

=Left(Fields!CustomerFirstName.Value,1) & " " &
Left(Fields!CustomerLastName.Value,1)

7. Double-click the first row for the new column and type Initials. Click the Preview tab to see the results.

 

Dewson_5882C14.fm  Page 469  Tuesday, January 10, 2006  2:35 PM



470 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

Try It Out: Deploying the Report (Optional)

In this section, we will deploy the report to the local report server and use Report Manager to view the report.

1. In the Solution Explorer, right-click Advanced Report solution, and select Properties.

2. In the TargetServerURL textbox, type http://localhost/ReportServer and click OK.

3. The Report Services service has to be running. This will only be started manually unless you have changed 
the default within your Services. From the Control Panel, select Administrative Tools, then select Services.  
Find SQL Server Reporting Services, right-click, and click Start as seen in the following illustration: 

4. In the Solution Explorer, right-click Advanced Report solution, and select Deploy.

5. Open Microsoft Internet Explorer and in the address bar, type the Report Manager URL: http://localhost/
Reports/. This will then redirect you to the reports pages (see Figure 14-9).

Dewson_5882C14.fm  Page 470  Tuesday, January 10, 2006  2:35 PM



C H A P T E R  1 4  ■  S Q L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S 471

Figure 14-9. The Report Manager

6. Click the Advanced Report folder. Click the Contact List report (see Figure 14-10). 

Figure 14-10. The Contact List Report

And that will conclude this demonstration.

Dewson_5882C14.fm  Page 471  Tuesday, January 10, 2006  2:35 PM



472 C H A P T E R  1 4  ■  SQ L  S E R V E R  2 0 0 5  R E P O R T I N G  S E R V I C E S

Summary
This brings us to the end of Beginning SQL Server 2005 Programming, demonstrating how to 
report on the data within the example we have been building up throughout the book. There 
has been an overview of how reporting services works and is architected, and we have seen an 
overview of building a simple report and previewing the results. The next move for you would 
be to read Pro SQL Server 2005 (Apress, 2005; ISBN 1590594770) and also Pro SQL Server 2005 
Assemblies (Apress, 2005; ISBN 1590595661).

Dewson_5882C14.fm  Page 472  Tuesday, January 10, 2006  2:35 PM



473

■ ■ ■

A P P E N D I X

Glossary of Terms

The aim of this glossary is to provide you with a quick and easy-to-use reference to many of 
the terms that you will come across in this book.

When beginning to study a new area of interest (especially in specialized areas), whether it 
be computing or not, it is very easy for a book, or any discussion for that matter, to get bogged 
down in new terminology, making it difficult for a new reader to advance in their knowledge of 
the subject at hand. Essentially, that’s where this glossary comes in. Hopefully, this glossary 
will help you come to grips with SQL Server, and you may also find this to be a practical refer-
ence guide for use in meetings, or indeed any other situation while you are starting out with 
SQL Server. So, without further ado, let’s begin...

A

alias
A substituted name for a database, table, column, or other database object. If you have, for 
example, a table or a column with a long name, or if you are joining two tables together and 
both have a column name that is the same, or if the name of a column doesn’t lend itself to 
describing the contents of the data that it holds well enough for output displayed, then you 
could use an alias on the column name. In this way, you can assign a more descriptive name 
to the column, via the alias, thereby making it easier to see just what the data in the column 
actually represents. The alias on the column name would typically be used within SELECT 
statements or WHERE clauses of SQL commands.

You can also alias table names to make it easier when building queries joining two tables, so 
that the alias is used in defining the join conditions, rather than a long table name.

ANSI
Acronym for American National Standards Institute, a body of representatives from industry 
and business based in America that defines standards in many areas, one of which deals 
with databases.

Dewson_5882AppA.fm  Page 473  Thursday, January 12, 2006  7:05 AM



474 A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S

authentication
When logging in to SQL Server, whether using Windows authentication or SQL Server 
authentication, this refers to the process of verifying that the submitted user ID is valid for 
a given instance of SQL Server, and then allocating permissions to that user based upon his 
or her user profile.

B

backup device
Describes a hardware device such as a tape drive used to back up a SQL Server database. 
If a tape drive is used, then the tape drive must be attached directly to the computer that the 
SQL Server database resides on, and cannot be a tape drive found on a remote computer 
elsewhere on the network. This can also refer to a file on the same computer, or another 
server if required.

batch
A set of T-SQL statements forming one group, or batch, of actions. In Query Editor, you 
define the end of a batch by employing a GO statement, or another statement set via options 
within Query Editor. A batch allows you to put together a set of work that either has to be a 
batch because of the way SQL Server works, or you wish to “batch” together a set of work as 
one single unit. Finally, certain T-SQL commands must be placed in a batch on their own 
with no other T-SQL commands. These are statements like CREATE TABLE.

BEGIN TRAN[SACTION]
This statement is used to denote the start of a transaction, in which modifications will be 
made to data that can either be placed in to the database using a COMMIT TRAN[SACTION], or 
rejected using a ROLLBACK TRAN[SACTION].

C

checkpoint
This is a system function that will write all the confirmed transaction changes from memory 
to disk.

clustered index
An index on a table (or view) that defines the physical order in which the data will be stored 
on the table (or view).

COMMIT TRAN[SACTION]
Used to inform SQL Server that any data modifications performed within a transaction, by 
using the BEGIN TRAN[SACTION] statement , are to be accepted as being valid and are to be 
committed to the database (that is, permanently written to the database).

Dewson_5882AppA.fm  Page 474  Thursday, January 12, 2006  7:05 AM



A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S 475

constraint
A constraint can be a check placed against a table column to ensure that the data entered is 
valid or of a default value; a foreign key constraint identifies the relationship between two 
tables, while a primary key constraint identifies the column(s) that make a unique primary 
key on a table.

control-of-flow language
The T-SQL structures contained within a stored procedure, trigger, or batch of queries 
that determines the flow of execution of T-SQL statements. Contains commands such as 
BEGIN...END and IF...ELSE, among others.

D

data integrity
Ensuring that all the data stored within your database is valid, and that there are no incon-
sistencies between rows or tables of any information. Maintaining data integrity is paramount to 
the success of your database solution, and can be achieved through the use of constraints, 
keys, and triggers.

database
A repository of objects holding information that makes up a single unit of information. 
A database will hold not only rows and columns of information within a table, but also 
objects that let you work with that data, such as stored procedures, views, etc.

database diagram
A graphical representation generated by SQL Server that displays all or a subset of the tables 
and relationships within a SQL Server database. A default database diagram can be specifi-
cally generated by a developer, and is displayed within SQL Server Management Studio. 
However, there can be as many diagrams as desired containing any tables within the database.

deadlock
Occurs when there is a cyclic dependency between two or more threads for some set of 
resources. This can be seen when there are two transactions trying to complete an update 
simultaneously. For example, when transaction 1 has updated one table (TableA), and is 
trying to update another table (TableB), the second transaction has updated TableB, and is 
waiting to update TableA. After a period of time, SQL Server will choose a deadlock victim, 
which is the update to be canceled and rolled back.

■Note  Deadlock is a condition that can occur on any system with multiple threads, not just on a relational 
database management system.

Dewson_5882AppA.fm  Page 475  Thursday, January 12, 2006  7:05 AM



476 A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S

default database
When a user is created in SQL Server, a default database is automatically assigned to him or 
her (this is master by default). This can be changed to any other database within the server. 
When no specific database is defined in a connection made by programs written in languages 
such as C#, Java, etc., the default database assignment is used to denote which database will 
be connected to.

default instance
An instance of SQL Server installed on a server with no instance name specified. The name 
of the instance is thus just the computer name. Multiple instances of SQL Server can be 
installed on the same computer; however, only one can be the default instance. The other 
instances are referred to as named instances and have the form 
computername\instancename.

delimiter
Characters that denote the start and end of object names. Delimiter characters are either 
double quotation marks or square brackets.

differential database backup
When a backup of a database is made, only the changes made to the database since the last 
full database backup are reflected.

F

foreign key (FK)
A column or set of columns that match the definition of a primary key or a unique key from 
another table. A foreign key is used to establish relationships between two tables through 
the correspondence between the foreign key and the primary key.

foreign table
If a table has a foreign key, then the table is known as a foreign table, and the use of this term 
is most common when discussing relationships between tables.

full backup
When a complete backup of all the data within a SQL Server database is taken. All data, 
including indexes, are backed up.

G

GRANT statement
When you wish to give a user or, indeed, a group of users defined within a role, permissions 
to access or work with a database object, then you need to grant permission to them to 
perform the desired task using the GRANT statement.

Dewson_5882AppA.fm  Page 476  Thursday, January 12, 2006  7:05 AM



A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S 477

I

identity column
A specialized column within a table that has its value automatically inserted by SQL Server 
each time a new record is inserted. This value cannot be altered. The value is unique for the 
table and is based upon a starting point and an increment for each insertion.

index
By creating an index on a table, you can potentially speed up access and data retrieval from 
a table or a view. An index consists of one or more columns from a table.

instance
An installation of SQL Server on a local or remote computer. It is possible to have multiple 
instances of SQL Server installed and running simultaneously on the same computer, with 
some or all instances registered within SQL Server Management Studio.

ISO
ISO stands for the International Organization for Standardization. This is one of the two 
international standards bodies responsible for developing international data communication 
standards. The other organization is the International Electrotechnical Commission (IEC). 
ISO and IEC are responsible for the SQL-92 standard for SQL. If a database is defined as SQL-
92 compliant, this means it meets the requirements described in this standard, which is set 
by these two organizations.

J

JOIN condition
A T-SQL clause or a condition forms a relationship that is used to relate two tables and make 
them appear as one. There are different types of joins such as INNER, OUTER, and CROSS.

K

key
A single column or combination of columns that defines a single row as unique, such as a 
primary key or unique key, or defines a relationship between two tables, such as a foreign key.

L

local server
An example of local server is the type of server used throughout this book, where the instance of 
SQL Server is running on the same computer as the application.

Dewson_5882AppA.fm  Page 477  Thursday, January 12, 2006  7:05 AM



478 A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S

local variable
Within a stored procedure or query, when wishing to store values without wanting to place 
them within a table, you can place them within a user-defined, locally scoped variable using 
the DECLARE statement. You can then assign a value using a SELECT or SET statement. As soon 
as the batch of work is complete, the local variable is no longer valid, and the values within 
will have been destroyed.

lock
When updating data, a lock is placed on the data stopping any other connection from being 
able to modify the data that has been locked, until such time as the process is finished and 
releases the lock. A lock is released at the end of a transaction when its work has been processed. 
Locks should be held for as short a time as possible to avoid a deadlock situation. There are 
different levels of locking from row-level locking to full table-level locking.

M

many-to-many relationship
Such a relationship exists between two tables where there are many records in one table that 
can be related, or linked, to many records in the other table.

many-to-one relationship
A many-to-one relationship exists when two tables are linked and there are many records in 
one table that can be linked to one record in another table. An example of this would be 
when looking at customer records and retrieving the country of residence from a cross-
reference number within the customer’s details. Also known as a one-to-many relationship.

master database
This is the most important database within SQL Server, as it serves as the database that controls 
logins, environment settings, and system error messages. This database should not be 
altered manually. Using commands or system stored procedures within SQL Server will alter 
the database, but it is only through these system stored procedures, such as sp_configure, 
that the master database should be altered. This database also holds the location of the files 
of all other databases.

media set
All the media, whether it is tapes or disks, involved in the process of making a backup.

model database
Used as the template from which all other databases and database objects are built. Details 
from within this database are copied when creating a new database, and when a new object 
is created, the details of the object initially come from the model database. Alter with care.

msdb
A system-defined database used by SQL Server Agent when dealing with automated jobs 
and alerts.

Dewson_5882AppA.fm  Page 478  Thursday, January 12, 2006  7:05 AM



A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S 479

N

nonclustered index
An index where the columns listed within the index do not define the physical order of the 
data in the table the index is defined on (as opposed to a clustered index).

NULL
A NULL value indicates that no data is stored in a column. This is a special entry within a 
column, as it can be placed in any data type and yet means nothing. If you find this value 
within a column, you cannot compare it through a comparison with any other value, other 
than another NULL, which is a special comparison. In other words, it is not less than or greater 
than any other value, or equal to any other value, even another NULL value.

nullability
Expresses whether or not a column or a parameter can accept NULL values.

O

object
An object is any component contained within a database. As such, an object can range from 
a database table right through to a stored procedure.

one-to-many relationship
Similar to a many-to-one relationship, wherein there is one row in the master table being 
related to many rows in a child table. However, the difference here is it is the master table 
that is driving the relationship. An example is a table for orders (one) with a table of order 
details (many).

one-to-one relationship
This relationship is rarely found, and exists when every record in one table has a relationship 
with a single record in another table, and vice versa. This could be when a single row in a 
table becomes split in two where data in one table is referenced frequently, and data in the 
other table is not so frequently referenced. This will then speed up data retrieval on the 
frequently referenced table.

P

precision
The number of digits found in a noninteger number both to the left and to the right of the 
decimal point.

Dewson_5882AppA.fm  Page 479  Thursday, January 12, 2006  7:05 AM



480 A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S

primary key (PK)
A single column or a set of columns from a single table that can uniquely identify a row of 
data within that table or view. No two rows can have the same value within a primary key, 
and no column defined for the primary key can contain a NULL value.

Q

query
A single or set of T-SQL statements that deals with any aspect of data manipulation or 
retrieval. Queries can be run once, or run many times, and quite often are stored within 
stored procedures.

R

referential integrity (RI)
A state wherein all the relationships between tables are valid, commonly achieved using 
constraints and keys, to ensure that data integrity, hence referential integrity, remains valid. 
Preserving referential integrity will ensure that all data within the database is in alignment.

ROLLBACK TRAN[SACTION]
If, when working within a transaction, you decide that you no longer wish for any data modi-
fications within the transaction to be committed to SQL Server, then you would issue a 
ROLLBACK TRAN[SACTION] statement that will restore the original values to all of the columns 
and all the rows that have been modified in the most recent transaction.

row
A single, “horizontal” set of values that have come from one or more tables through a query, 
or a single “horizontal” set of values from all columns within a table. This can also be called 
a record.

S

schema
A method for organizing database entities with similar logical entities. Logins can then be 
assigned access rights at the schema level and also can be assigned default schemas.

SET
Used to define the value of a variable rather than using SELECT.

SQL (Structured Query Language) query
An action that will either manipulate or retrieve data from objects within SQL Server or any 
other database that supports SQL, for example, Oracle or Sybase.

Dewson_5882AppA.fm  Page 480  Thursday, January 12, 2006  7:05 AM



A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S 481

SQL Server authentication
A method for validating login attempts to SQL Server using a user ID and password that are 
defined with SQL Server.

stored procedure
A set of T-SQL statements grouped together and stored as a compiled object within SQL 
Server, associated to a particular table. Can contain control of flow, error statements, etc.

subquery
A SELECT statement that is used to aid data selection, by being nested within another SQL Query.

T

table
A database object that contains rows and columns of data. Each column will have a predefined 
data type and may also have constraints, indexes, and keys associated with it.

table scan
Occurs when SQL Server scans every row within a table while performing a SQL command, 
rather than using an index. It does this because it is faster to scan the table rather than look 
at an index, then retrieve the data from the table, then move back to get the next index item, 
etc., and tends to occur when there are no indexes that return a low percentage of the data. 
To clarify, an ideal index should return a low number of rows; otherwise, a table scan is 
highly likely to occur.

tempdb
Transient database that will hold any temporary tables, indexes, and any temporary storage 
needed by a query, stored procedure, or any system process.

temporary table
A table placed in the tempdb, which is then lost at the end of the session that built it. It could 
also be a table defined with a single hash, #, or double hash, ##.

Transact-SQL (T-SQL)
A language extension to the SQL-92 defined standards for a database to allow administrating 
data and objects within SQL Server.

transaction
A logical unit of work, such that if it contains any data modifications, these modifications 
can be committed or rolled back depending upon a decision that can be made at any time 
within the transaction. Related to BEGIN TRAN[SACTION], COMMIT TRAN[SACTION], and ROLLBACK 
TRAN[SACTION].

Dewson_5882AppA.fm  Page 481  Thursday, January 12, 2006  7:05 AM



482 A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S

transaction log
A file separate from the database, which holds all of the data modifications made within a 
transaction. Used by SQL Server for recovery purposes.

trigger
A specialized stored procedure that is executed when data in the table associated with the 
trigger is modified. Used to enforce referential integrity or business rules.

U

unique index
An index that defines that no two rows within a table are the same.

user-defined data type
A data type based upon a SQL Server data type created by the user or built using .NET code, 
which will not be based on a SQL Server base data type.

user-defined function (UDF)
A function that can be created by a user to perform frequently used, or business-related, 
logic. User-defined functions are different from stored procedures because they are like 
code snippets rather than full-blown procedures and can form a column in a result set. 
These user-defined functions can be written in T-SQL or .NET code

V

variables
Holders of values used in queries, stored procedures, etc.; although they can hold informa-
tion from a column of data from a table, they are not actually part of any table. Variables are 
defined by using the DECLARE command and are prefixed with the @ sign. Values are placed 
into variables using the SET or the SELECT statement.

view
A database object that can be used as a security measure when dealing with data that is 
sensitive, or to make data schemas more friendly and usable for user-defined data queries. 
Acts in a similar fashion to a table, and although called a view, data can be updated and 
deleted providing specific conditions are met.

Dewson_5882AppA.fm  Page 482  Thursday, January 12, 2006  7:05 AM



A P P E N D I X  ■  G L O S S A R Y  O F  T E R M S 483

W

Windows authentication
A SQL Server database will have either Windows authentication or SQL Server authentica-
tion, or both, as the basis of any connections to the database. Windows authentication uses 
the Windows user ID and logon as the basis of its connection to SQL Server. This is more 
secure than SQL Server authentication for connecting to SQL Server.

X

XML
Short for eXtensible Markup Language, this is a technique for building self-describing data. 
This can be used to pass data and information between systems or to a web browser. Data 
can be retrieved from SQL Server in an XML format. There is also a specific data type for 
XML data.

Dewson_5882AppA.fm  Page 483  Thursday, January 12, 2006  7:05 AM



Dewson_5882AppA.fm  Page 484  Thursday, January 12, 2006  7:05 AM



485

Index

■Symbols
# prefix, temporary tables, 367

$IDENTITY option, SELECT statement, 268

$ROWGUID option, SELECT statement, 268

■Numbers
1NF normal form, 73

2NF normal form, 73–74

3NF normal form, 73–74

■A
Access, compared to SQL Server, 2

ACID test for transactions, 296–297

Ad Hoc Remote Queries, SAC (Surface Area 
Configuration tool), 50

ADD CONSTRAINT command, T-SQL, 150, 
256, 261

administrator account, 96

administrator rights, 19, 22

Administrators group in Windows, 106

AdventureWorks/AdventureWorksDW 
example databases, 58

aggregation

AVG, 372

COUNT/COUNT_BIG, 369–370

description, 369

DISTINCT keyword, 375–376

GROUP BY, 372, 374

HAVING clause, 374–375

MAX/MIN, 371–372

SUM, 370–371

alias, defined, 473

alias column headings, in SELECT, 269

All Databases, backup options, Maintenance 
Plan Wizard, 235

ALL option in SELECT statement, 267

All System Databases, backup options, 
Maintenance Plan Wizard, 235

All User Databases, backup options, 
Maintenance Plan Wizard, 235

Allow Nulls option, table definition, 249

ALTER DATABASE command, T-SQL, 86

ALTER TABLE command, T-SQL, 141–142, 
150–151, 256

ALTER TRIGGER command, T-SQL, 435–436

alternatives to SQL Server, 2

American National Standards Institute 
(ANSI), defined, 473

Analysis Services, 10

ANSI (American National Standards 
Institute), defined, 473

ANSI_NULL_DEFAULT, T-SQL, 86

ANSI_WARNINGS, T-SQL, 86

ANSI-92 standard, 2, 26

Append to File, T-SQL database structure 
backup, 228

application layer, Reporting Services 
architecture, 454–455

application roles

creating, 108, 111

user groups for, 108

APPLY operator and subquery, 407

Dewson_5882Index.fm  Page 485  Thursday, January 12, 2006  5:50 PM



486 ■I N D E X

ARITHABORT, T-SQL, 86

AS keyword, stored procedures, 339

AS option, SELECT statement, 268

ASCII( ) function, T-SQL, 380

assembly, definition, 55

asterisk versus specific column names, in 
SELECT, 268

atomicity ACID test for transactions, 297

attaching databases

CREATE DATABASE command, 221–222

overview, 214–215

sp_attach_db stored procedure, 221

SQL Server Management Studio 
procedure, 217, 220

T-SQL procedure, 220

attribute, defined, 72

authentication, definition, 474

authentication modes, 14, 18–19

Auto List Members, SSMS, 38

AUTO_CLOSE, T-SQL, 87

AUTO_CREATE_STATISTICS, T-SQL, 87

AUTO_SHRINK, T-SQL, 87

AUTO_UPDATE_STATISTICS, T-SQL, 87

AUTO_UPDATE_STATISTICS_ASYNC, 
T-SQL, 88

autorun.exe, installation, 7

AVG, aggregation, 372

■B
Back Up Database (Differential), 

Maintenance Plan Wizard, 232

Back Up Database (Full), Maintenance Plan 
Wizard, 232

Back Up Database (Transaction Log), 
Maintenance Plan Wizard, 232

BACKUP DATABASE statement, 198–199

backup device, 198, 474

BACKUP LOG command, 205–206

backups

differential backup, 188, 192, 199–200, 203

full database backup, 188, 192, 199–200, 203

master database backup, 196

model database backup, 196

msdb system database backup, 196

offline, 190–191

offsite location, 185

overview, 185–186

restoring overview, 207

SQL Server Management Studio 
procedure, 191, 193–196

strategies, 188–189

structure backup, T-SQL scripts, 222–223, 
226–227

transaction log backup, 188, 192, 204–206

T-SQL commands, 196–199

verification, 189–190

batch, defined, 474

batch insertions, 262

Batch Separator option, SSMS, 41

BEGIN . . . END blocks, stored procedures, 
339, 349–350

BEGIN TRAN command, transactions, 298

BEGIN TRAN, definition, 474

BEGIN TRY/CATCH statement, error 
handling with T-SQL, 397

bigint data type, table definitions, 123, 130

binary data type, table definitions, 125

bit data type, table definitions, 125

blank lines, Tools menu Option, SSMS, 39

BLOB processing, 424

BLOCKSIZE in BACKUP DATABASE 
command, 198

Bookmark Window, SSMS, 31

Dewson_5882Index.fm  Page 486  Thursday, January 12, 2006  5:50 PM



487■I N D E X

Find it faster at http://superindex.apress.com

buffer cache and transaction log, 187

bulkadmin server login role, 106

business intelligence description, 451–452

Business Intelligence Management Studio, 
Reporting Services, 454

■C
caching and transaction log, 187

case sensitivity, in SELECT statement, 270

CASE statement, stored procedures, 
352–353, 355

CASE WHEN statement, T-SQL, 386–387

CAST( ) statement, T-SQL, 387–388

CAST string function, 279

CHAR( ) function, T-SQL, 381

char data type, table definitions, 121

character processing, .WRITE function, 422

chart data regions in reports, 464

CHECK constraint, 257, 261

Check Database Integrity, Maintenance Plan 
Wizard, 232

CHECKIDENT, DBCC command, 254–255

checkpoint

defined, 474

and transaction logs, 187

CHECKSUM, in BACKUP DATABASE 
command, 198

Clean Up History, Maintenance Plan 
Wizard, 232

clustered index, 154–155, 158, 163, 172, 474

collation settings, 14

column constraints, 256

column names, INSERT command, 246

column update trigger, 436, 438–443

columns, defined, 54

COLUMNS_UPDATED statement, triggers, 
441–443

COMMIT TRAN command, 298, 474

committing and transaction logs, 187

common table expression (CTE), 409–410

component selection, SQL Server 
installation, 9

compound index, 154

CONCAT_NULL_YIELDS_NULL, T-SQL, 88

configuration check, SQL Server 
installation, 8

Connect to Server dialog box, SSMS, 26

Connection Properties tab, SSMS, 27

Connection Time-out, SSMS, 27

consistency ACID test for transactions, 297

constraints

ADD CONSTRAINT, 256, 261

ALTER TABLE, 256

compared with triggers, 431

defined, 475

inserting data, 245, 255, 257, 261

keys, 431

procedures for using, 256, 258, 260

referential integrity, 431

Continue Scripting on Error, T-SQL database 
structure backup, 228

control-of-flow language, definition, 475

CONVERT( ) statement, T-SQL, 387–388

Convert UDDTs to Base Types, T-SQL 
database structure backup, 228

COPY ONLY in BACKUP DATABASE 
command, 199

correlated subquery, 404

COUNT/COUNT_BIG, aggregation, 369–370

covered index, 157–158

CPU hardware requirement, 4

CREATE DATABASE statement, T-SQL, 84, 
92–94

Find it faster at http://superindex.apress.com

Dewson_5882Index.fm  Page 487  Thursday, January 12, 2006  5:50 PM



488 ■I N D E X

CREATE INDEX command, 164–166

CREATE PROCEDURE statement, 336–339

CREATE TABLE statement, T-SQL, 134–135

CREATE TRIGGER syntax, DML triggers, 
429–430

CREATE VIEW

WITH CHECK OPTION, 325

ENCRYPTION option, 325

SCHEMABINDING option, 325

syntax, 324–326

VIEW_METADATA option, 326

creating data sources and datasets, 
procedures, 465, 467

creating databases, 53

Auto Close option, 82

Auto Create Statistics option, 82

Auto Shrink option, 83

Auto Update Statistics option, 83

Autogrowth, 80–81

Collation option, 81

Compatibility Level option, 82, 85

Filegroup, 79

illegal characters for database names, 78

Initial Size, 80

MDF file extension, 79

NDF file extension, 79

overview, 76

Path, 81

Query Pane, 92

Recovery Model option, 81

SQL Server Management Studio, 76–77, 
79–81, 83

creating report layouts, procedures, 467–468

creating reports, procedures, 465

creating user accounts, 98, 103

creating Windows security groups, 96–98, 103

CROSS APPLY operator, 407–408

CROSS JOIN, 360, 364

CTE (common table expression), 409–410

CTE (infinite loops and recursive common 
table expressions), 411–412

cursor data type, 125

CURSOR_CLOSE_ON_COMMIT, T-SQL, 87

CURSOR_DEFAULT, T-SQL, 88

■D
DAC (dedicated administrator connection), 

SAC, 50

Data Definition Language (DDL) trigger, 427, 
444–447

data integrity, defined, 475

data layer, Reporting Services 
architecture, 458

data manipulation security administration, 
286, 290

Data Modification Language (DML) trigger, 
427–429

data regions in reports, 463

data sources for reports, 463

Data Tuning Advisor (DTA), 160

data types in table definitions, 121–125, 130

database, defined, 475

database design

assembly definition, 55

attributes, 72

column definition, 54

creating relationships, 67

data-gathering for design, 60–62

definition of a database, 54

entities, 72

function definition, 55

grouping data into tables, 62–63

Dewson_5882Index.fm  Page 488  Thursday, January 12, 2006  5:50 PM



489■I N D E X

Find it faster at http://superindex.apress.com

ignoring information in design, 65

index definition, 55

information external to the database, 65

linking tables, 65–68, 70, 144, 146, 148

logical modeling, 72

master database, 56

master table and child table key 
mapping, 70

metadata security, 55

normalization definition, 53

normalization overview, 71

objects that can be contained in, 54

overview, 53

record definition, 54

relationship types, 68

relationships, 65–67, 70, 144, 146, 148

relationships and referential integrity, 
67–68

row definition, 54

stored procedure definition, 55

system tables, security, 55

table definition, 54

table design, 55, 62–63

user interviews, 60–62

view definition, 55

database diagram, definition, 475

Database Engine Tuning Advisor, SSMS, 32

Database Maintenance Plan Wizard, 231, 
234, 236, 238, 240, 242

Database Maintenance Wizard, 230

database name in BACKUP DATABASE 
command, 198

database roles, 107–108

dataset creation for reports, 463

DATE_CORRELATION_OPTIMIZATION, 
T-SQL, 88

DATEADD( ) function, T-SQL, 376–377

DATEDIFF( ) function, T-SQL, 378

DATENAME( ) function, T-SQL, 378–379

DATEPART( ) function, T-SQL, 379–380

datetime data type, table definitions, 124

db_accessadmin database role, 107

db_backupoperator database role, 107

DB_CHAINING, T-SQL, 89

db_datareader database role, 107

db_datawriter database role, 107

db_ddladmin database role, 107

db_denydatareader database role, 107

db_denydatawriter database role, 108

db_securityadmin database role, 108

DBCC command, 254–255

dbcreator server login role, 106

dbo/db_owner database role, 107

DDL (Data Definition Language) trigger, 427, 
444–447

DDL trigger

example, 448–450

trappable database actions, 445–446

trappable server actions, 446

deadlock, 297, 475

deadly embrace, transactions, 297

decimal data type, table definitions, 123

DECLARE statement, 365–366

dedicated administrator connection (DAC), 
SAC, 50

DEFAULT constraint, 257, 261

default database, definition, 476

Default Destination for Results option, 
SSMS, 43

default instance, defined, 476

Default Location option, SSMS, 43

Dewson_5882Index.fm  Page 489  Thursday, January 12, 2006  5:50 PM



490 ■I N D E X

default login, 22–23

default values, 126, 130, 249

DELETE statement, 303–305

DELETED logical table and triggers, 431–432

deleting

data, 303

databases, 89, 91

deletion options, 149

delimiter, defined, 476

delivery methods, Reporting Services, 452

denormalization, 75

DENSE RANK ranking function, 416, 419–420

DENY GRANT, Securables dialog, 291

deploying reports, procedures, 470–471

DESC option, ORDER BY clause, 281

DESCRIPTION in BACKUP DATABASE 
command, 198

detaching databases

KeepFulltextIndexFile T-SQL 
parameter, 220

overview, 214–215

skipchecks T-SQL parameter, 220

sp detach stored procedure, 220

SQL Server Management Studio 
procedure, 215, 217

T-SQL procedure, 220

diagramming databases

Add Related Tables toolbar button, 181

Add Relationship toolbar button, 182

Add Table toolbar button, 180

Auto Arrange toolbar button, 182

change control limitation, 177–178

creating the diagram, 178, 180

default diagram recommendation, 178

diagram toolbar, 180

documentation purpose, 176–177

ERWin tool, 177

Full-Text Index toolbar button, 182

Generate Change Script toolbar 
button, 181

Manage Check Constraints toolbar 
button, 183

Manage Indexes and Keys toolbar 
button, 182

Management Studio diagramming tool, 177

New Table toolbar button, 180

New Text Annotation toolbar button, 181

object inclusion limitation, 177

overview, 153

Page Break Refresh toolbar button, 182

Page Break View toolbar button, 182

Relationship Name toolbar button, 182

Resize Tables toolbar button, 182

screen space limitation, 177

Set Primary Key toolbar button, 181

Table View toolbar button, 181

XML index management toolbar 
button, 183

differential backup, 188, 192, 199–200, 
203, 476

DIFFERENTIAL in BACKUP DATABASE 
command, 198

Disconnect After the Query Executes, 
SSMS, 41

disk cache, 187

diskadmin server login role, 106

Display NN Files in Recently Used List, 
SSMS, 34

DISTINCT keyword, aggregation, 375–376

DISTINCT option, SELECT statement, 267

DML (Data Modification Language) trigger, 
427–429

Dewson_5882Index.fm  Page 490  Thursday, January 12, 2006  5:50 PM



491■I N D E X

Find it faster at http://superindex.apress.com

Docked Tool Window, SSMS, 34

DROP CONSTRAINT command, 173–174

DROP INDEX command, 173

DROP TABLE statement, 307

dropping a database, 89, 91

dropping column references from views, 325

DTA (Data Tuning Advisor), 160

duplicated data and referential integrity, 67

durability ACID test for transactions, 297

■E
Enable Single-Click URL Navigation, 

SSMS, 39

Enable Virtual Space Tools menu option, 
SSMS, 38

encrypting database view definitions, 
311–312

ENCRYPTION option

CREATE VIEW statement, 325

stored procedures, 338

enhancing reports, procedures, 468

Enterprise Manager

dropping a database, 90

New Database Diagram, 178

entities

defined, 72

unique identifiers, 73

Environment Layout, SSMS, 34

Environment Node, SSMS, 34

Error and Usage Report settings, 16

error handling with T-SQL

@@ERROR system variable, 395–396

BEGIN TRY/CATCH statement, 397

ERROR LINE( ), 397

RAISERROR command, 391, 394

TRY … CATCH processing, 396–399, 401

ERROR_LINE( ) function, error handling with 
T-SQL, 397

EVENTDATA( ) XML data type, 447–448

Excel spreadsheet compared with table, 120

Execute SQL Server Agent Job, Maintenance 
Plan Wizard, 232

executing stored procedures, 344

Execution Time-out option, SSMS, 40

EXISTS statement and subquery, 406

EXPIREDATE in BACKUP DATABASE 
command, 198

■F
fields for reports, 463

File Extensions, SSMS, 38

file or filegroup name, in BACKUP 
DATABASE command, 198

Filegroup, 79

financial example application overview, 6

float data type, table definitions, 123

Fonts and Colors Node, SSMS, 35

foreign keys

constraints, 149

defined, 476

indexing considerations, 157

foreign table, definition, 476

FORMAT in BACKUP DATABASE 
command, 198

fragmentation in indexes, 169

Framework, SQL Server installation, 7

FROM table name, view name option in 
SELECT statement, 268

full backup, defined, 476

full database backup, 188, 192, 199–200, 203

Full Screen, SSMS, 31

full text index files definition, 220

full-text index toolbar button, 182

Dewson_5882Index.fm  Page 491  Thursday, January 12, 2006  5:50 PM



492 ■I N D E X

function, defined, 55

functions in T-SQL

ASCII( ), 380

CASE WHEN statement, 386–387

CAST( ) statement, 387–388

CHAR( ), 381

CONVERT( ) statement, 387–388

DATEADD( ), 376–377

DATEDIFF( ), 378

DATENAME( ), 378–379

DATEPART( ), 379–380

GETDATE( ), 380

ISDATE( ) statement, 388–389

ISNULL( ) statement, 389–390

ISNUMERIC( ) statement, 390–391

LEFT( ), 381–382

LOWER( ), 382

LTRIM( ), 382–383

overview, 376

RIGHT( ), 383

RTRIM( ), 384

STR( ), 384–385

SUBSTRING( ), 385–386

UPPER( ), 386

■G
Generate Script for Dependant Objects, 

T-SQL database structure backup, 228

GETDATE( ) function in T-SQL, 380

Globally Unique Identifier (GUID), table 
definitions, 124–125

GO statement, 85, 474

GRANT option, Securables dialog, 291

GRANT statement, defined, 476

GROUP BY, aggregation, 372, 374

groups, Windows security, 95, 97

GUID (Globally Unique Identifier), table 
definitions, 124–125

■H
hard disk space, 5

hardware requirement (RAM), 5

hardware requirements, 4–5

HAVING clause, aggregation, 374–375

Help Node, SSMS, 36

Hide Advanced Members, SSMS, 38

Hide System Objects, SSMS, 34

history of SQL Server, 3

■I
identity column, definition, 477

IDENTITY column, resetting with DBCC, 
254–255

IDENTITY values in table definitions, 
126–127, 130

IEC (International Electrotechnical 
Commission), definition, 477

IEC, definition, 477

IF . . . ELSE statements, stored 
procedures, 349

illegal characters for database names, 78

image, considerations for transactions, 128

image data type, 123, 128

image large object (LOB), processing 
example, 424–425

images

in reports, 464

SQL Server storage considerations, 
127–128

implicit data type conversion, 295

IN statement and subquery, 405

in the box advantage of SQL Server, 2

Dewson_5882Index.fm  Page 492  Thursday, January 12, 2006  5:50 PM



493■I N D E X

Find it faster at http://superindex.apress.com

Include Descriptive Headers, T-SQL 
database structure backup, 228

Include If NOT EXISTS, T-SQL database 
structure backup, 229

index

defined, 55, 477

description, 153

indexing databases

changing columns in an index, 174, 176

clustered index, 154–155, 158, 163, 172

column maintenance cost, 156

compound index, 154

covered index, 157

CREATE INDEX command, 164

Data Tuning Advisor (DTA), 160

foreign keys, 157

fragmentation, 169

index selection criteria, 156, 159

maximums and minimums for indexes, 156

nonclustered index, 155

overview, 153

performance review, 160

physical ordering, 154–155, 158

primary keys, 157

range searching, 158

relationship to keys and pointers, 154

simple index, 154

small tables, 159

statistics available, 163–164

steps in creating indexes, 161–163

Table Designer, 161–163

table scan, 154

templates in Query Editor, 166, 168

too many columns, 159

T-SQL in Query Editor, 170–173

types of indexes, 154

unique indexes, 156, 163

unsuitable columns, 159

WHERE clause considerations, 157

indexing views, 330–332

infinite loops and recursive common table 
expressions (CTE), 411–412

INIT in BACKUP DATABASE command, 199

initial database permissions, 95

INNER JOIN, 360–362

input parameters, stored procedures, 338

INSERT command

column names, 246

default values, 249

NULL values, 249

populating databases, 246

Query Editor, 247–249

SET QUOTED_IDENTIFIER, 248

syntax, 246

VALUES keyword, 246

INSERTED logical table and triggers, 431–432

inserting data

constraints, 245, 255, 257, 261

INSERT command, 246

multiple record insertions, 262–263

overview, 245

installation, SQL Server, 6–7

instance, definition, 477

instances of SQL Server, 11

int data type, table definitions, 123

Integration Services, 10

International Electrotechnical Commission 
(IEC), definition, 477

International Organization for 
Standardization (ISO), defined, 477

Dewson_5882Index.fm  Page 493  Thursday, January 12, 2006  5:50 PM



494 ■I N D E X

ISDATE( ) statement, T-SQL, 388–389

ISNULL( ) statement, T-SQL, 389–390

ISNUMERIC( ) statement, T-SQL, 390–391

ISO (International Organization for 
Standardization), defined, 477

isolation ACID test for transactions, 297

■J
join condition, definition, 477

joining tables, 321–322, 359–364

■K
KEEP_REPLICATION in RESTORE 

DATABASE command, 211

KeepFulltextIndexFile T-SQL parameter, 
detaching databases, 220

key, definition, 477

key mapping, database design, 70

Keyboard Node, SSMS, 36

keys

alternate keys, 66

candidate keys, 66

constraints compared with keys, 67

foreign keys, 66, 70, 147

overview, 65

and pointers in indexing, 154

referencing keys, 66

■L
large object (LOB), processing example, 

421–423

large text, SQL Server storage 
considerations, 127

Leave the Database in Read-only Mode, 
SSMS restore option, 209

Leave the Database Non-operational, SSMS 
restore option, 209

Leave the Database Ready to Use, SSMS 
restore option, 209

LEFT( ) function, T-SQL, 381–382

LEFT string function, 279

LIKE operator

case sensitivity, 282

SELECT statement, 282, 284

string operators, 282–283

limiting searches

SET ROWCOUNT, 276–277

TOP n option, 277–278

TOP n PERCENT option, 278

WHERE filter clause, 273–275

line element in reports, 464

Line Numbers, SSMS, 39

list data regions in reports, 464

LOB (image large object), processing 
example, 424–425

LOB (large object), processing example, 
421–423

local server, defined, 477

local system account, 13

local variable, definition, 478

locks

database-level locking, 299

defined, 478

description, 299

row-level locking, 299

log files, 186–188

LOG in BACKUP LOG command, 205

logging and TRUNCATE TABLE 
statement, 306

logical modeling, 72

logical tables and triggers, 431–432

logins overview, 95

Dewson_5882Index.fm  Page 494  Thursday, January 12, 2006  5:50 PM



495■I N D E X

Find it faster at http://superindex.apress.com

LOWER( ) function, T-SQL, 382

LTRIM( ) function, T-SQL, 382–383

LTRIM/RTRIM string function, 279

■M
maintenance

Database Maintenance Wizard, 230

Maintenance Plan Wizard, 231, 234, 236, 
238, 240, 242

overview, 186, 230

planning, 230–231

Management Studio

Connect to Server, 26

Connection Properties, 27

Connection Time-out, 27

Graphical User Interface (GUI), 26

network, use on, 26

Object Explorer, 30

overview, 25–26

Query Editor, 26

Registered Servers Explorer, 29

steps for using, 26, 28, 30–31, 33

View menu options, 31

many-to-many relationships, 69, 478

many-to-one relationships, 478

Master Data File, 79

master database

backup, 196

defined, 478

description, 56

matrix data regions in reports, 463

MAX data type, 421

maximums and minimums for indexes, 156

MAX/MIN, aggregation, 371–372

MAXRECURSION option and recursive 
common table expressions (CTE), 
411–412

MDF file extension, 79

media set

backups, 199

defined, 478

MEDIADESCRIPTION, in BACKUP 
DATABASE command, 199

MEDIANAME, in BACKUP DATABASE 
command, 199

MEDIAPASSWORD, in BACKUP DATABASE 
command, 199

memory hardware requirement, 5

metadata security, 55

minimum requirements for database 
creation, 77

MIRROR TO in BACKUP DATABASE 
command, 198

mixed mode authentication, 18–19, 22

model, standard SQL server database, 57

model database

backup, 196

defined, 478

money data type, table definitions, 124

MOVE, in RESTORE DATABASE 
command, 211

msdb

defined, 478

SQL server database, 58

msdb system database backup, 196

MULTI_USER, T-SQL, 89

multiple record insertions, 262–263

multiple tables

SELECT statement, 359

UPDATE statement, 359–364

Dewson_5882Index.fm  Page 495  Thursday, January 12, 2006  5:50 PM



496 ■I N D E X

■N
NAME in BACKUP DATABASE 

command, 199

naming instances, in SQL Server, 11

Navigation Bar, SSMS, 39

nchar data type, table definitions, 121

NDF file extension, 79

nested transactions, 301–303

New Analysis Service Query, SSMS, 33

New Database Engine Query, SSMS, 33

NO_TRUNCATE in BACKUP LOG 
command, 205

non-clustered index, 155, 479

NORECOVERY

in BACKUP LOG command, 205

in RESTORE DATABASE command, 211

normal forms, 73

normalization

defined, 53

denormalization, 75

duplicate information, 73

first normal form (1NF), 73–74

normal forms, 73

overnormalizing, 72

overview, 71

repeating values, 73

second normal form (1NF), 74

second normal form (3NF), 74

unique identifier, 73

Notification Services, 10

ntext data type

versus nvarchar data type, 122

table definitions, 122

NTILE ranking function, 416, 420

null, defined, 479

NULL data comparisons, 86

NULL values

advantages, 127

INSERT command, 249

Query Editor, 252–253

SQL Server Management Studio, 251

in table definitions, 127, 130

nullability, defined, 479

numeric data type, table definitions, 123

NUMERIC_ROUNDABORT, T-SQL, 88

nvarchar data type, 122

■O
Object Explorer, SSMS, 30

objects

creating, security rights for, 115, 117

defined, 479

offline backups, 190–191

offsite location, 185

OLAP (Online Analytical Processing)

data warehouse, 60

overview, 58–59

OLTP (Online Transaction Processing)

backing up, 59

indexing, 59

overview, 58–59

one-to-many relationships, 69, 478–479

one-to-one relationships, 68, 479

ONLINE = ON (REBUILD WITH) option, 173

Online Analytical Processing. See OLAP

Online Transaction Processing (OLTP)

backing up, 59

indexing, 59

overview, 58–59

OPENROWSET function, 424–425

Dewson_5882Index.fm  Page 496  Thursday, January 12, 2006  5:50 PM



497■I N D E X

Find it faster at http://superindex.apress.com

operating system requirement of SQL 
Server, 5

Oracle, compared to SQL Server, 2–4

ORDER BY clause in SELECT statement, 281

Other Windows, SSMS, 31, 268, 280

OUTER APPLY operator, 407–408

OUTER JOIN, 360

OUTPUT parameters, stored procedures, 337

Overwrite the Existing Database option, 
SSMS, 208

■P
PAGE_VERIFY CHECKSUM, T-SQL, 89

Parameter Information option, SSMS, 38

PASSWORD in BACKUP DATABASE 
command, 198

PERCENT option, SELECT statement, 267

physical ordering, 154–155, 158

PIVOT statement, 412–414

planning database maintenance, 230–231

Play the Windows Default Beep option, 
SSMS, 43

pointers and keys in indexing, 154

populating databases, 245

precision, defined, 479

Preserve the Replication Settings, SSMS 
restore option, 208

Primary key constraint, adding column 
constraints, 256

primary key (PK)

defined, 480

joining multiple tables, 359

table definition, 143–144

processadmin server login role, 106

programming interfaces, Reporting Services 
architecture, 456–457

Prompt Before Restoring Each Backup, SSMS 
restore option, 208

Properties Window, SSMS, 31

protecting physical data, 311

public database role, 108

■Q
query, defined, 480

Query Editor, 45–47

populating databases, 252–253

procedure for using, 247–249

templates to create indexes, 166, 168

T-SQL to create indexes, 170–173

UPDATE command, 293–296

using SCHEMABINDING in views, 
327–329

Query Editor toolbar, SSMS, 46–47

Query Execution Node options, SSMS, 42

Query Execution options, SSMS, 40

Query Pane database creation, 92

Query pane, table definition, 135

Query Results Node, SSMS, 42–45

QUOTED_IDENTIFIER, T-SQL, 88

■R
RAISERROR T-SQL command

example, 393–394

options, 393

overview, 391

parameters, 392

severity levels, 391

sp addmessage, 393

syntax, 391

RAM (hardware requirement), 5

range searching, indexing considerations, 158

RANK ranking function, 416, 418–419

Dewson_5882Index.fm  Page 497  Thursday, January 12, 2006  5:50 PM



498 ■I N D E X

ranking functions

alternatives, 415

DENSE RANK, 416, 419–420

NTILE, 416, 420

RANK, 416, 418–419

ROW NUMBER, 416, 418

syntax, 416

RDL (Report Definition Language), 452

READ_WRITE or READ_ONLY option, 
T-SQL, 89

real data type, table definitions, 124

Rebuild Index, Maintenance Plan Wizard, 232

REBUILD WITH (ONLINE = ON) option, 173

RECOMPILE option, stored procedures, 338

record, defined, 54

recordsets, stored procedures, 339

RECOVERY

in RESTORE DATABASE command, 211

T-SQL(Transact SQL), 89

rectangle element in reports, 464

recursive common table expression (CTE), 
410–412

RECURSIVE_TRIGGERS, T-SQL, 88

referential integrity (RI)

defined, 480

and relationships, 67–68

reflexive relationships, 70

Registered Servers Explorer, SSMS, 29

relationships

candidate/alternate keys, 66

constraints, 67

creating, 67, 144, 146, 148

deletion options, 149

foreign key constraints, 149

foreign keys, 66, 70

many-to-many, 69

one-to-many, 69

one-to-one, 68

overview, 65

reflexive, 70

self-join, 70

update options, 149

Remote Connections, SAC (Surface Area 
Configuration tool), 48

Reorganize Index, Maintenance Plan 
Wizard, 232

REPLACE, in RESTORE DATABASE 
command, 211

Report Definition Language (RDL), 452

Report Manager, Reporting Services, 
454–455

Report Processor, Reporting Services, 457

Report Wizard procedures, 458, 460, 462

Reporting Services, 10, 15

application architecture layer, 454–455

architecture, 452

authentication extensions, 457

Business Intelligence Management 
Studio, 454

chart data regions in reports, 464

creating data sources and datasets, 465, 467

creating report layouts, 467–468

creating reports, 465

custom extensions, 457

data architecture layer, 458

data processing extensions, 457

data regions in reports, 463

data sources for reports, 463

databases in data layer, 452, 458

dataset creation for reports, 463

defining report structures, 464

Dewson_5882Index.fm  Page 498  Thursday, January 12, 2006  5:50 PM



499■I N D E X

Find it faster at http://superindex.apress.com

delivery extensions, 457

delivery methods, 452

deploying reports, procedures, 470–471

enhancing reports, procedures, 468

Excel rendered output, 457

fields for reports, 463

HTML rendered output, 457

image rendered output, 457

images in reports, 464

line element in reports, 464

list data regions in reports, 464

matrix data regions in reports, 463

overview, 451

programming interfaces, 456–457

rectangle element in reports, 464

rendering extensions, 457

report building elements, 463

report building procedures, 462

Report Definition Language (RDL), 452

Report Manager, 454–455

report processing extensions, 457

Report Processor, 457

Report Wizard procedures, 458, 460, 462

Reporting Services Configuration Tool, 455

rsconfig, 455

rskeymgmt, 455

Scheduling and Delivery Processor, 457

security, 455

server architecture layer, 456–457

SQL Server Configuration Manager, 454

SQL Server Management Studio, 455

subreports in reports, 464

Surface Area Configuration, 455

table data regions in reports, 463

text box in reports, 464

web service, 456

Windows service, 456

Reporting Services Configuration Tool, 
Reporting Services, 455

ReportServer databases, 452, 458

ReportServerTempDB databases, 452, 458

RESEED option, DBCC command, 254

resetting IDENTITY columns with DBCC, 
254–255

RESTART, in RESTORE DATABASE 
command, 211

RESTORE DATABASE command, 210–211

Restore the Database Files As, SSMS restore 
option, 209

restoring databases

overview, 207

SQL Server Management Studio 
procedure, 207, 210

T-SQL procedure, 210–214

Restrict Access to the Restored Database, 
SSMS restore option, 209

RESTRICTED_USER in RESTORE DATABASE 
command, 211

Results in Text output, display option, 271

Results To File output, display option, 272

Results to Grid options, SSMS, 43–44

Results to Text options, SSMS, 44–45

RETAINDAYS, in BACKUP DATABASE 
command, 198

retrieving data

order of returned records, 265

output display options, 271

overview, 263

Results in Text, 271

Results To File, 272

Dewson_5882Index.fm  Page 499  Thursday, January 12, 2006  5:50 PM



500 ■I N D E X

RETURN command, stored procedures, 
344–345

REWIND, in BACKUP DATABASE command, 
199

RIGHT( ) function in T-SQL, 279, 383

roles, login, 105

rollback

caused by T-SQL bug, 434

and transaction logs, 187

ROLLBACK TRAN command

defined, 480

transactions, 298

ROW_NUMBER ranking function, 416, 418

rows, defined, 54, 480

rsconfig, Reporting Services, 455

rskeymgmt, Reporting Services, 455

RTRIM( ) function in T-SQL, 384

■S
sa login, 22–23

SAC (Surface Area Configuration) tool, 25, 
47–48, 51

Scheduling and Delivery Processor, 
Reporting Services, 457

schema, defined, 480

SCHEMABINDING option, CREATE VIEW 
command, 325

schemas

creating, 112

modifying with T-SQL, 112

overview, 111–112

Script Behavior, T-SQL database structure 
backup, 229

Script Check Constraints, T-SQL database 
structure backup, 229

Script Collation, T-SQL database structure 
backup, 229

Script Database Create, T-SQL database 
structure backup, 229

Script Defaults, T-SQL database structure 
backup, 229

Script Extended Properties, T-SQL database 
structure backup, 229

Script Foreign Keys, T-SQL database 
structure backup, 229

Script Full-Text Indexes, T-SQL database 
structure backup, 229

Script Indexes, T-SQL database structure 
backup, 229

Script Logins, T-SQL database structure 
backup, 229

Script Object-Level Permissions, T-SQL 
database structure backup, 229

Script Owner, T-SQL database structure 
backup, 229

Script Primary Keys, T-SQL database 
structure backup, 229

Script Statistics, T-SQL database structure 
backup, 229

Script Triggers, T-SQL database structure 
backup, 229

Script Unique Keys, T-SQL database 
structure backup, 229

Script USE DATABASE, T-SQL database 
structure backup, 229

Secondary Data File, 79

Securables dialog box, 291

security

adding tables, 113

administration, 286, 290

administrator account, 96

administrator rights, 19, 22

allowing object creation, 115, 117

checking database owner, 113–114

and database views, 310–311

initial permissions, 95

Dewson_5882Index.fm  Page 500  Thursday, January 12, 2006  5:50 PM



501■I N D E X

Find it faster at http://superindex.apress.com

mixed mode authentication, 22

overview, 95

Reporting Services, 455

sa login, 22–23

Windows groups, 95, 97

securityadmin server login role, 106

SELECT INTO statement

compared with INSERT INTO, 284

example, 285–286

overview, 284

SELECT statement

$IDENTITY option, 268

$ROWGUID option, 268

alias column headings, 269

alias_name option, 267

ALL option, 267

asterisk option, 267

asterisk versus specific column names, 268

case sensitivity, 270

column name, 267

DISTINCT option, 267

example using, 269, 271

expression, 268

LIKE operator, 282, 284

multiple tables, 359–364

AS option, 268

ORDER BY clause, 280–281

overview, 266

PERCENT option, 267

SELECT option, 267

SET ROWCOUNT n command, 276–277

string functions, 278–280

syntax, 267

FROM table name, view name option, 268

table scans, 275

table_name option, 267

WITH TIES option, 267

TOP n option, 277–278

TOP n PERCENT option, 278

TOP option, 267

using *, 267

view_name option, 267

WHERE filter_clause, 268, 273–275

SELECT TOP statements, 276

self-join relationships, 70

server layer, Reporting Services architecture, 
456–457

server login

permissions, 105

roles, 106

serveradmin server login role, 106

service accounts, 13, 18

Service Status, Database Engine, SAC 
(Surface Area Configuration tool), 48

set, defined, 480

SET OFFLINE command, 190–191

SET ONLINE command, 190–191

SET QUOTED_IDENTIFIER, INSERT 
command, 248

SET ROWCOUNT and SELECT TOP 
statements, 276

SET ROWCOUNT n in SELECT statement, 
276–277

SET ROWCOUNT option, SSMS, 40

SET ROWCOUNT statements, 276

SET TEXTSIZE option, SSMS, 40

setupadmin server login role, 106

Show Visual Glyphs Tools menu Option, 
SSMS, 39

Shrink Database, Maintenance Plan 
Wizard, 232

Dewson_5882Index.fm  Page 501  Thursday, January 12, 2006  5:50 PM



502 ■I N D E X

simple index, 154

Simple Object Access Protocol (SOAP), 
Reporting Services, 456–457

SINGLE_BLOB, OPENROWSET function, 424

SINGLE_CLOB, OPENROWSET function, 424

SINGLE_NCLOB, OPENROWSET function, 424

SKIP in BACKUP DATABASE command, 199

skipchecks T-SQL parameter, detaching 
databases, 220

smalldatetime data type, table definitions, 124

smallint data type, table definitions, 123

smallmoney data type, table definitions, 124

SOAP (Simple Object Access Protocol), 
Reporting Services, 456–457

Solution Explorer, SSMS, 31

sort settings, 14

Source Control Node, SSMS, 37

sp_addmessage and RAISERROR T-SQL 
command, 393

sp_attach stored procedure, 221

sp_detach stored procedure, 220

sp_prefix, stored procedures, 336–337

spaces versus underscores in names, 129

SPID, EVENTDATA( ) XML data type, 448

SQL (Structured Query Language) query, 
defined, 480

SQL Server, 3–4

accounts, 13

authentication, defined, 481

comparison with Access, 2

comparison with Oracle, 2–4

comparison with Sybase, 2

data warehouses, 60

example databases, 58

hardware requirements, 4

history, 3

installation, 6–7

instances, 11

Online Analytical Processing (OLAP), 58–59

Online Transaction Processing (OLTP), 
58–59

operating system requirements, 5

standard databases, 56–58

trial version, 6

as Windows service, 18

SQL Server Configuration Manager, 
Reporting Services, 454

SQL Server Database Services, 10

SQL Server Management Studio (SSMS), 455

Connect to Server, 26

Connection Properties, 27

Connection Time-out, 27

creating stored procedures, 339–340, 
342–343

database creation, 76–77, 79–81, 83

File Extensions option, 38

GUI (Graphical User Interface), 26

minimum requirements for database 
creation, 77

network, use on, 26

Object Explorer, 30

overview, 25–26

populating databases, 251

Query Editor, 26

Query Execution options, 40

Query Results options, 42, 44–45

Registered Servers Explorer, 29

Results to Grid options, 43, 45

Results to Text options, 44

retrieving data, 263–264, 266

steps for using, 26, 28, 30–31, 33

table definition, 121, 128, 130, 133

Dewson_5882Index.fm  Page 502  Thursday, January 12, 2006  5:50 PM



503■I N D E X

Find it faster at http://superindex.apress.com

Tools menu Options, 34–36, 38

view creation, 312, 314, 316, 318

View menu options, 31

SQL Server Mobile, SSMS, 33

SQL Server Profiler, SSMS, 32

SQL standard, ANSI-92, 2

sql_variant data type, 126

SQL-92 standard, 477

SQLCMD Mode, SSMS, 41

sqlservr.exe process, 25

SSMS (SQL Server Management Studio), 455

Connect to Server, 26

Connection Properties, 27

Connection Time-out, 27

creating stored procedures, 339–340, 
342–343

database creation, 76–77, 79–81, 83

File Extensions option, 38

GUI (Graphical User Interface), 26

minimum requirements for database 
creation, 77

network, use on, 26

Object Explorer, 30

overview, 25–26

populating databases, 251

Query Editor, 26

Query Execution options, 40

Query Results options, 42, 44–45

Registered Servers Explorer, 29

Results to Grid options, 43, 45

Results to Text options, 44

retrieving data, 263–264, 266

steps for using, 26, 28, 30–31, 33

table definition, 121, 128, 130, 133

Tools menu Options, 34–36, 38

view creation, 312, 314, 316, 318

View menu options, 31

STANDBY

in BACKUP LOG command, 205

in RESTORE DATABASE command, 211

Startup options, SSMS, 34

Startup Type, Database Engine, SAC (Surface 
Area Configuration tool), 48

statistics, 163–164

STATS, in BACKUP DATABASE 
command, 199

STOP_ON_ERROR, in BACKUP DATABASE 
command, 198

STOPAT, in RESTORE DATABASE 
command, 211

stored procedures

advantages, 336

BEGIN . . . END blocks, 339, 349–350

CASE statement, 352–353, 355

conditional commands, 348–351, 353, 
355–357

CREATE PROCEDURE command, 
336–339

defined, 55, 481

description, 335

encryption, 336

ENCRYPTION option, 338

EXEC command, 344

executing procedures, 338, 344

execution plan creation, 335, 338

IF . . . ELSE blocks, 349

input parameters, 338

AS keyword, 339

naming conventions, 336–337

output parameters, 337

overview, 335

Dewson_5882Index.fm  Page 503  Thursday, January 12, 2006  5:50 PM



504 ■I N D E X

parameters, 337

RECOMPILE option, 338

recordsets, 339

and referential integrity, 68

RETURN command, 344–345

security permission, 336

single execution procedures, 336

sp prefix, 336–337

system procedures, 336–337

Template Explorer, 345–348

using SQL Server Management Studio, 
339–340, 342–343

WHILE . . . BREAK blocks, 350–351

STR( ) function in T-SQL, 384–385

string functions, 279

structure database backup, T-SQL scripts, 
222–223, 226–227

Structured Query Language (SQL) query, 
defined, 480

subquery

correlated subquery, 404

CROSS APPLY operator example, 407–408

defined, 481

description, 403

examples, 405–406

EXISTS statement, 406

OUTER APPLY operator example, 408

IN statement, 405

subreports, 464

SUBSTRING( ) function, in T-SQL, 385–386

SUM, aggregation, 370–371

Supress Provider Message Headers, SSMS, 41

Surface Area Configuration (SAC) tool, 25, 
47, 51

Surface Area Configuration tool (Ad Hoc 
Remote Queries, SAC), 50

Surface Area Configuration tool (SAC), 48

Sybase, compared to SQL Server, 2

syntax standard for SQL, ANSI-92, 2

sysadmin server login role, 106

system-table, security, 55

■T
table data regions, in reports, 463

table definition

ALTER TABLE command, 141–142

creating relationships, 144, 146, 148

data type storage specification, 120

data types, 121

default values, 126, 130

IDENTITY values, 126–127, 130

logical relationship of rows, 120

login requirement, 120

NULL values, 127, 130

overview, 119

Query Editor, 134

Query pane, 135

setting a primary key, 143–144

spaces versus underscores in names, 129

SQL Server Management Studio, 121, 128, 
130, 133

templates in SQL Server, 136–137, 139, 141

unique column data type, 120

table design

alternate keys, 66

candidate keys, 66

constraints compared with keys, 67

Customer Addresses example table, 64

Customers example table, 64

Financial Products example table, 63

foreign keys, 66, 70, 147

Dewson_5882Index.fm  Page 504  Thursday, January 12, 2006  5:50 PM



505■I N D E X

Find it faster at http://superindex.apress.com

grouping data, 62–63

key selection, 63–65

referencing keys, 66

Shares example table, 64

Transactions example table, 64

user requirements, satisfying, 63–65

Table Designer, 161–163

table expressions

common table expression (CTE), 409–410

PIVOT statement, 412–414

recursive (CTE), 410–412

temporary tables, 409

UNPIVOT statement, 414–415

table scans, 154

defined, 481

in SELECT statement, 275

tables. See also table definition; table design; 
table expressions; table scans

adding to databases, 113

compared with Excel spreadsheet, 120

defined, 120

dropping, 307

in SQL Server, 54, 120, 481

Tabs node, Tools menu options, SSMS, 39

tempdb, 56–57, 481

Template Explorer, 31, 345–348

templates

creating and altering, 139, 141

for indexes in Query Editor, 166, 168

using for table definition, 136–137, 139

temporary tables, 367–369, 409, 481

text box in reports, 464

text data type, table definitions, 122

Text Editor Node, SSMS, 38

These Databases, backup options, 
Maintenance Plan Wizard, 235

timestamp data type, table definitions, 124

tinyint data type, table definitions, 123

Toolbars, SSMS, 31

Toolbox Window, SSMS, 31

Tools menu options, SSMS, 34–36, 38

TOP n option, in SELECT statement, 277–278

TOP n PERCENT option, in SELECT 
statement, 278

TOP option, in SELECT statement, 267

transaction log backup, 188, 192, 204–206

transactions

@@TRANCOUNT, 302–303

ACID test, 296

BEGIN TRAN command, 298

COMMIT TRAN command, 298

database-level locking, 299

deadlock, 297

deadly embrace, 297

defined, 481

description, 291, 296

example, 299, 301

guidelines for, 297–298

and image or large text storage, 128

locks, 299

and logs, 187–188, 482

naming transactions, 298

nested transactions, 301–303

ROLLBACK TRAN command, 298

row-level locking, 299

trial version, SQL Server, 6

Dewson_5882Index.fm  Page 505  Thursday, January 12, 2006  5:50 PM



506 ■I N D E X

triggers

ALTER TRIGGER T-SQL command, 
435–436

auditing and DDL triggers, 444

bit flag checking, 441–443

business rule enforcement, 431

column update trigger, 436, 438–443

COLUMNS_UPDATED( ) statement, 
441–443

compared with constraints, 431

CREATE TRIGGER syntax, DML triggers, 
429–430

Data Definition Language (DDL), 427, 
444–447

Data Modification Language (DML), 
427–429

defined, 482

description, 427

DML FOR trigger, 432–434

dropping a DDL trigger, 447

EVENTDATA( ) XML data type, 447

example T-SQL trigger, 432–434

logical tables, 431–432

nested trigger, 428–429

overview, 427

and referential integrity, 68

rollback caused by T-SQL bug, 434

TRUNCATE TABLE T-SQL command, 429

UPDATE( ) statement, 436, 438–440

TRUNCATE TABLE statement, 306–307

truncating the transaction log, 187

trusted connection, Windows 
Authentication, 19

TRY … CATCH processing, 396–399, 401

T-SQL statement, defined, 55

T-SQL(Transact SQL)

ADD CONSTRAINT statement, 150

ALTER DATABASE statement, 86

ALTER TABLE statement, 150–151

ANSI_NULL_DEFAULT, 86

ANSI_PADDING, 86

ANSI_WARNINGS, 86

ARITHABORT, 86

AUTO_CLOSE, 87

AUTO_CREATE_STATISTICS, 87

AUTO_SHRINK, 87

AUTO_UPDATE_STATISTICS, 87

AUTO_UPDATE_STATISTICS_ASYNC, 88

CONCAT_NULL_YIELDS_NULL, 88

CREATE DATABASE statement, 84, 92–94

CREATE TABLE statement, 134–135

CURSOR_CLOSE_ON_COMMIT, 87

CURSOR_DEFAULT, 87

database creation, 76, 84–86

DATE_CORRELATION_OPTIMIZATION, 88

DB_CHAINING, 89

defined, 481

GO statement, 85

login creation script, 101–104

MULTI_USER, 89

NUMERIC_ROUNDABORT, 88

options, 40, 42–45

overview, 26

PAGE_VERIFY CHECKSUM, 89

QUOTED_IDENTIFIER, 88

READ_WRITE or READ_ONLY, 89

RECOVERY, 89

RECURSIVE_TRIGGERS, 88

schema modification script, 112

USE statement, 84

Dewson_5882Index.fm  Page 506  Thursday, January 12, 2006  5:50 PM



507■I N D E X

Find it faster at http://superindex.apress.com

■U
UDF (user-defined function), defined, 482

underscores versus spaces in names, 129

unique indexes, 156, 163

uniqueidentifier data type, table definitions, 
124–125

UNLOAD in BACKUP DATABASE 
command, 199

UNPIVOT statement, 414–415

UPDATE( ) statement, triggers, 436, 438–440

UPDATE command

syntax, 292

unmatched data types, 295

update source choices, 292

updating from another column, 292

using Query Editor, 293–296

update options, 149

UPDATE statement, 359–364

Update Statistics, Maintenance Plan 
Wizard, 232

updating data, 291

UPPER( ) function in T-SQL, 386

URL endpoints, Reporting Services, 456

USE statement, T-SQL, 84

user interviews

database design, 60–62

example results, 61–62

user-defined data type, defined, 482

user-defined function (UDF), defined, 482

■V
VALUES keyword, INSERT command, 246

varbinary data type

versus image data type, 123, 128

table definitions, 125

varchar data type, table definitions, 122

variables

defined, 482

T-SQL statements, 365–366

verification of database backup, 189–190

VIEW_METADATA option, CREATE VIEW 
command, 326

views

data layer protection, 310

defined, 55, 482

description, 310

dropping column references, 325

encrypting view definitions, 311–312

indexing, 324, 330–332

joining tables in, 321–322

limitations of, 310

options for building, 309

overview, 309

SSMS View Designer, 314, 316, 318

TOP (100) PERCENT clause, 316

using Query Editor pane, 326

using SCHEMABINDING in Query Editor 
pane, 327–329

using SQL Server Management Studio, 
312, 314, 316, 318

using T-SQL with views, 325

using views for security, 310–311

View Designer in SSMS, 312

within views, 318, 321, 324

■W
Web Browser, SSMS, 31

web service, Reporting Services 
architecture, 456

WHERE clause

in database indexing, 157

and table joins, 273

Dewson_5882Index.fm  Page 507  Thursday, January 12, 2006  5:50 PM



508 ■I N D E X

WHERE filter_clause in SELECT statement, 
268, 273–275

WHILE . . . BREAK statement, stored 
procedures, 350–351

Windows authentication, 14, 18

defined, 483

example, 19, 22

trusted connection, 19

Windows Management Instrumentation 
(WMI), Reporting Services, 456

Windows services, 18, 456

Windows use of SQL Server, 4

WITH CHECK OPTION, CREATE VIEW 
command, 325

WITH GRANT, Securables dialog box, 291

WITH TIES option, in SELECT statement, 267

WMI (Windows Management 
Instrumentation), 456

Word Wrap, SSMS, 38

Workstation Components, 10

.WRITE ( ) function, character 
processing, 422

■X
XML, defined, 483

xml data type, table definitions, 125

XML editor options, SSMS, 38

Dewson_5882Index.fm  Page 508  Thursday, January 12, 2006  5:50 PM



Dewson_5882Index.fm  Page 509  Thursday, January 12, 2006  5:50 PM



Dewson_5882Index.fm  Page 510  Thursday, January 12, 2006  5:50 PM



CONGRATULATIONS!
You are holding one of the very first copies of
Beginning SQL Server 2005 for Developers:

From Novice to Professional.

We believe this complete guide to SQL Server 2005 will prove so indispensable

that you will want to carry it with you everywhere. Which is why, for a limited

time, we are offering the identical eBook absolutely free—a $25 value—to customers

who purchase the book now. This fully searchable PDF will be your constant

companion for quick code and topic searches.

Once you purchase your book, getting the free eBook is simple:

1 Visit www.apress.com/promo/free.

2 Complete a basic registration form to receive a randomly

generated question about this title.

3 Answer the question correctly in 60 seconds, and you will

receive a promotional code to redeem for the free eBook.

For more information about Apress eBooks, contact pr@apress.com.

2560 Ninth Street • Suite 219 • Berkeley, CA 94710

5882 BOB_eBook.qxd  1/11/06  2:39 PM  Page 1

Dewson_5882Index.fm  Page 511  Thursday, January 12, 2006  5:50 PM



FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

Leading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

BOB_SuperIndex_7x925.qxd  1/12/06  10:44 AM  Page 1

Dewson_5882Index.fm  Page 512  Thursday, January 12, 2006  5:50 PM


	Beginning SQL Server 2005 for Developers
	Table of Content
	Chapter 1 SQL Server 2005 Overview and Installation
	Chapter 2 SQL Server Management Studio
	Chapter 3 Database Design and Creation
	Chapter 4 Security
	Chapter 5 Defining Tables
	Chapter 6 Creating Indexes and Database Diagramming
	Chapter 7 Database Backups, Recovery, and Maintenance
	Chapter 8 Working with the Data
	Chapter 9 Building a View
	Chapter 10 Stored Procedures
	Chapter 11 T-SQL Essentials
	Chapter 12 Advanced T-SQL
	Chapter 13 Triggers
	Chapter 14 SQL Server 2005 Reporting Services
	Appendix A Glossary of Terms
	Index


