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PREFACE

Excerpts from the Preface to the First Edition

There seems to be no general agreement as to what should constitute a first course in
calculus and andytic geometry. Some people insist that the only way to really understand
calculus is to start off with a thorough treatment of the real-number system and develop
the subject step by step in a logical and rigorous fashion. Others argue that calculus is
primarily a tool for engineers and physicists; they believe the course should stress applica
tions of the calculus by apped to intuition and by extensive drill on problens which develop
manipulative skills. There is much that is sound in both these points of view. Calculus is
a deductive science and a branch of pure mathematics. At the same time, it is very impor-
tant to remember that calculus has strong roots in physical problems and that it derives
much of its power and beauty from the variety of its applications. It is possible to combine
a strong theoretical development with sound training in technique; this book represents
an attempt to strike a sensible balance between the two. While treating the calculus as a
deductive science, the book does not neglect applications to physical problems. Proofs of
all the important theorems are presented as an essentid part of the growth of mathematical
ideas; the proofs are often preceded by a geometric or intuitive discussion to give the
student some insight into why they take a particular form. Although these intuitive dis-
cussons will satisfy readers who are not interested in detailed proofs, the complete proofs
are also included for those who prefer a more rigorous presentation.

The approach in this book has been suggested by the historicd and philosophica develop-
ment of calculus and analytic geometry. For example, integration is treated before
differentiation. Although to some this may seem unusual, it is historically correct and
pedagogically sound. Moreover, it is the best way to make meaningful the true connection
between the integral and the derivative.

The concept of the integral is defined first for step functions. Since the integral of a step
function is merely a finite SUm, integration theory in this case is extremely simple. Asthe
student learns the properties of the integral for step functions, he gains experience in the
use of the summation notation and at the same time becomes familiar with the notation
for integrds. This sets the stage 0 that the transition from step functions to more genera
functions seems easy and natural.

Vii



viii Preface

Preface to the Second Edition

The second edition differs from the first in many respects. Linear algebra has been
incorporated, the mean-value theorems and routine applications of calculus are introduced
at an earlier stage, and many new and easier exercises have been added. A glance at the
table of contents reveals that the book has been divided into smaller chapters, each centering
on an important concept. Severd sections have been rewritten and reorganized to provide
better motivation and to improve the flow of ideas.

As in the first edition, a historical introduction precedes each important new concept,
tracing its development from an early intuitive physical notion to its precise mathematical
formulation. The student is told something of the struggles of the past and of the triumphs
of the men who contributed most to the subject. Thus the student becomes an active
participant in the evolution of ideas rather than a passive observer of results.

The second edition, like the first, is divided into two volumes. The first two thirds of
Volume 1 dedls with the calculus of functions of one variable, including infinite series and
an introduction to differential equations. The last third of Volume 1 introduces linear
algebra with applications to geometry and analysis. Much of this materia leans heavily
on the calculus for examples that illustrate the general theory. It provides a natura
blending of algebra and analysis and helps pave the way for the transition from one-
variable calculus to multivariable calculus, discussed in Volume II. Further development
of linear algebra will occur as needed in the second edition of Volume .

Once again 1 acknowledge with pleasure my debt to Professors H. F. Bohnenblust,
A. Erdélyi, F. B. Fuller, K. Hoffman, G. Springer, and H. S. Zuckerman. Their influence
on the first edition continued into the second. In preparing the second edition, 1 received
additional help from Professor Basil Gordon, who suggested many improvements. Thanks
are also due George Springer and William P. Ziemer, who read the fina draft. The staff
of the Blaisdell Publishing Company has, as always, been helpful; 1 appreciate their sym-
pathetic consideration of my wishes concerning format and typography.

Findly, it gives me special plessure to express my gratitude to my wife for the many ways
she has contributed during the preparation of both editions. In grateful acknowledgment
1 happily dedicate this book to her.

T. M. A
Pasadena,  California
September 16, 1966
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INTRODUCTION

Part 1. Historical |ntroduction

11.1 Thetwo basic concepts of calculus

The remarkable progress that has been made in science and technology during the last
Century isduein large part to the development of mathematics. That branch of mathematics
known as integral and differential calculus serves as a natural and powerful tool for attacking
a variety of problems that arise in physics, astronomy, engineering, chemistry, geology,
biology, and other fields including, rather recently, some of the social sciences.

To give the reader an idea of the many different types of problems that can be treated by
the methods of calculus, we list here a few sample questions selected from the exercises that
occur in later chapters of this book.

With what speed should a rocket be fired upward so that it never returns to earth? What
is the radius of the smallest circular disk that can cover every isosceles triangle of a given
perimeter L? What volume of material is removed from a solid sphere of radius 2r if a hole
of radius r is drilled through the center ? If a strain of bacteria grows at a rate proportional
to the amount present and if the population doubles in one hour, by how much will it
increase at the end of two hours? If a ten-pound force stretches an elastic spring one inch,
how much work is required to stretch the spring one foot ?

These examples, chosen from various fields, illustrate some of the technical questions that
can be answered by more or less routine applications of calculus.

Calculus is more than a technical tool-it is a collection of fascinating and exciting ideas
that have interested thinking men for centuries. These ideas have to do with speed, areq,
volume, rate of growth, continuity, tangent /ine, and other concepts from avariety of fields.
Calculus forces us to stop and think carefully about the meanings of these concepts. Another
remarkable feature of the subject is its unifying power. Most of these ideas can be formu-
lated so that they revolve around two rather specialized problems of a geometric nature. W e
turn now to a brief description of these problems.

Consider a curve C which lies above a horizontal base line such as that shown in Figure
11. We assume thiscurve has the property that every vertical lineintersectsit once at most.

!



2 Introduction

The shaded portion of the figure consists of those points which lie below the curve C, above
the horizontal base, and between two paralel verticd segments joining C to the base. The
first fundamental problem of calculus is this © To assign a number which measures the grea
of this shaded region.

Consider next a line drawn tangent to the curve, as shown in Figure 1.1. The second
fundamental problem may be stated as follows: To assign a number which measures the
steepness of this line.

Line tangent to C

Ficure 1.1

Basically, calculus has to do with the precise formulation and solution of these two
specid  problems. It enables us to define the concepts of area and tangent line and to cal-
culate the area of a given region or the steepness of a given tangent line. Integral calculus
dedls with the problem of area and will be discussed in Chapter 1. Differential calculus  dedls
with the problem of tangents and will be introduced in Chapter 4.

The study of calculus requires a certain mathematical background. The present chapter
deadls with fhis background materid and is divided into four parts : Pat 1 provides historica
perspective; Part 2 discusses some notation and terminology from the mathematics of sefs;
Part 3 deals with the real-number system; Part 4 treats mathematical induction and the
summation notation. If the reader is acquainted with these topics, he can proceed directly
to the development of integral calculus in Chapter 1. If not, he should become familiar
with the material in the unstarred sections of this Introduction before proceeding to
Chapter 1.

1.2 Historical background

The birth of integral calculus occurred more than 2000 years ago when the Greeks
attempted to determine areas by a process which they caled the method ofexhaustion. The
essential ideas of this method are very smple and can be described briefly as follows Given
a region whose area is to be determined, we inscribe in it a polygona region which approxi-
mates the given region and whose area we can easily compute. Then we choose another
polygonal region which gives a better approximation, and we continue the process, taking
polygons with more and more sides in an attempt to exhaust the given region. The method
is illusrated for a semicircular region in Figure 1.2. It was used successfully by Archimedes
(287-212 B.c.) to find exact formulas for the area of a circle and a few other specid figures.



The method of exhaustion for the greq of a parabolic segment 3

The development of the method of exhaustion beyond the point to which Archimedes
carried it had to wait nearly eighteen centuries until the use of algebraic symbols and
techniques became a standard part of mathematics. The elementary algebra that is familiar
to most high-school students today was completely unknown in Archimedes time, and it
would have been next to impossible to extend his method to any genera class of regions
without some convenient way of expressing rather lengthy calculations in a compact and
smplified form.

A slow but revolutionary change in the development of mathematical notations began
in the 16th Century a.o. The cumbersome system of Roman numerals was gradually dis-
placed by the Hindu-Arabie characters used today, the symbols + and — were introduced
for the first time, and the advantages of the decimal notation began to be recognized.
During this same period, the brilliant successes of the Italian mathematicians Tartaglia,

Ficure 1.2 The method of exhaustion applied to a semicircular region.

Cardano, and Ferrari in finding algebraic solutions of cubic and quartic equations stimu-
lated a great deal of activity in mathematics and encouraged the growth and acceptance of a
new and superior algebraic language. With the widespread introduction of well-chosen
algebraic symbols, interest was revived in the ancient method of exhaustion and a large
number of fragmentary results were discovered in the 16th Century by such pioneers as
Cavadlieri, Toricelli, Roberval, Fermat, Pascal, and Wallis.

Gradually the method of exhaustion was transformed into the subject now called integral
calculus, a new and powerful discipline with a large variety of applications, not only to
geometrical problems concerned with areas and volumes but also to problems in other
sciences. This branch of mathematics, which retained some of the original features of the
method of exhaustion, received its biggest impetus in the 17th Century, largely due to the
efforts of Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716), and its develop-
ment continued well into the 19th Century before the subject was put on a firm mathematical
basis by such men as Augustin-Louis Cauchy (1789-1857) and Bernhard Riemann (1826-
1866). Further refinements and extensions of the theory are till being carried out in
contemporary mathematics.

1.3 Themethod of exhaustion for the area of a parabolic segment

Before we proceed to a systematic treatment of integral calculus, it will be instructive
to apply the method of exhaustion directly to one of the special figures treated by Archi-
medes himself. The region in question is shown in Figure 1.3 and can be described as
follows: If we choose an arbitrary point on the base of this figure and denote its distance
from O by x, then the vertical distance from this point to the curve is x2. In particular, if
the length of the base itself is b, the altitude of the figure is 42, The vertical distance from
X to the curve is called the “ordinate” at Xx. The curve itself is an example of what is known
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0 M Approximation from low Approximati from above
Ficure 1.3 A parabolic FIGURE 1.4
segment.

as a parabola. The region bounded by it and the two line segments is called a parabolic
segment.

This figure may be enclosed in arectangle of base b and altitude 42, as shown in Figure 1.3.
Examination of the figure suggests that the area of the parabolic segment is less than half
the area of the rectangle. Archimedes made the surprising discovery that the area of the
parabolic segment is exactly one-third that of the rectangle; that is to say, A = b%/3, where
A denotes the area of the parabolic segment. We shall show presently how to arrive at this
result.

It should be pointed out that the parabolic segment in Figure 1.3 is not shown exactly as
Archimedes drew it and the details that follow are not exactly the same as those used by him.

0 26 kb

_nb
non n Ton

Ficure 1.5 Calculation of thearea of aparabolic segment.
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Nevertheless, the essential ideas are those of Archimedes; what is presented here is the
method of exhaustion in modern notation.

The method is simply this: We slice the figure into a number of strips and obtain two
approximations to the region, one from below and one from above, by using two sets of
rectangles as illustrated in Figure 1.4. (We use rectangles rather than arbitrary polygons to
simplify the computations.) The area of the parabolic segment is larger than the total area
of the inner rectangles but smaller than that of the outer rectangles.

If each strip is further subdivided to obtain a new approximation with a larger number
of strips, the total area of the inner rectangles increases, whereas the total area of the outer
rectangles decreases. Archimedes realized that an approximation to the area within any
desired degree of accuracy could be obtained by simply taking enough strips.

Let us carry out the actual computations that are required in this case. For the sake of
simplicity, we subdivide the base into n equal parts, each of length b/n (see Figure 1.5). The
points of subdivision correspond to the following values of x:

b 2b 3b (n = Db nb
0,- =, =, ., — =

s b
n'nn n n

A typical point of subdivision corresponds to x = kb/n, where k takes the successive values
k=0,1,2,3, ..., n At each point kb/n we construct the outer rectangle of altitude (kb/n)?
as illustrated in Figure 1.5. The area of this rectangle is the product of its base and altitude

and is equal to
-5
n/\n n®

Let us denote by S, the sum of the areas of all the outer rectangles. Then since the kth
rectangle has area (b%/n®)k?, we obtain the formula

b3
(L1) S, =5 (P+ 22+ 3+ 4 phy
n
In the same way we obtain a formula for the sum s, of all the inner rectangles:

b3

(1.2) o= [P+ 224304 e (n = 1)

=

This brings us to a very important stage in the calculation. Notice that the factor multi-
plying b%n® in Equation (1.1) is the sum of the squares of the first n integers:

12+ 22+ .+ nt,

[The corresponding factor in Equation (1.2) is smilar except that the sum has only n — 1
terms.] For alarge value of n, the computation of this sum by direct addition of its terms is
tedious andinconvenient. Fortunately there is an interesting identity which makes it possible
to evaluate this sum in a simpler way, namely,

2 24 ., 2_”_3 n_z
(1.3) P2t = 2t

[ 9]
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This identity is valid for every integer n > 1 and can be proved as follows: Start with the
formula (k + 1) = &% + 3k* + 3k + 1 and rewrite it in the form

32+ 3k + 1= (k+ 1) = ko
Takingk =1,2,...,n ~1, weget n =1 formulas

314314 1=28— 3
3-2243:-241=3%_-28

n=12+3n=1+1=n"=(n =13
When we add these formulas, all the terms on the right cancel except two and we obtain
3+ 22+ oo+ (N =1+ 3[A+24+ ...+ (n=D]+ (n=1) = nd =13

The second sum on the left is the sum of terms in an arithmetic progression and it simplifies
to in(n = 1). Therefore this last equation gives us

(1.4) P44+ (n— 1) =——
Adding »* to both members, we obtain (1.3).

For our purposes, we do not need the exact expressions given in the right-hand members
of (1.3) and (1.4). All we need are the two inequalities

3
(L5) 12+22+~~+(n—1)"<1’3—<12+22+...+n2

which are valid for every integer n > 1. These inequalities can de deduced easily as con-
sequences of (1.3) and (I.4), or they can be proved directly by induction. (A proof by
induction is given in Section 14.1.)

If we multiply both inequalities in (1.5) by 4%/ n* and make use of (1.1) and (I.2), we obtain

b3

for every n. Theinequalitiesin (1.6) tell us that %3 is a number which lies between s, and
S, for every n, We will now prove that 5%/3 is the only number which has this property. In
other words, we assert that if A is any number which satisfies the inequalities

(1.7) 5, <ALS,

for every positive integer n, then A = b3/3. It is because of this fact that Archimedes
concluded that the area of the parabolic segment is 5%/3.
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To prove that A = 43/3, we use the inequalities in (1.5) once more. Adding »? to both
sides Of the leftmost inequality in (1.5), we obtain

3
n
12+22+1c|+n2<§-+n2.

Multiplying this by 4%/n® and using (I.1), we find

3 3
(1.8) s, < b
3 n

Similarly, by subtracting #% from both side; of the rightmost inequality in (1.5) and multi-
plying by b%/n®, we are led to the inequaiity

(L.9) < S,.
Therefore, any number A satisfying (1.7) must aso satisfy

3 3 3 3
(1.10) -b——-é-<A<b—+Q-
3 n 3 n

for every integer n > 1. Now there are only three possibilities:

b? b® b®
A>—~, A<L—, A=—.
>3 <3 3

If we show that each of the first two leads to a contradiction, then we must have A = 53/3,
since, in the manner of Sherlock Holmes, this exhausts all the possibilities.

Suppose the inequality A > 4%/3 were true. From the second inequality in (1.10) we
obtain

(1.11) A-—= <=

for every integer n > 1. Since A — 53/3 is positive, we may divide both sides of (1.11) by
A — b33 and then multiply by » to obtain the equivalent statement

b3
< —
A = b3

for every n. But this inequality is obviously fase when n > b%/(4 — 4%/3). Hence the
inequality A > p%3 leads to a contradiction. By a smilar argument, we can show that the
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inequality A < b33 also leads to a contradiction, and therefore we must have A = 4%3,
as asserted.

*[1.4 Exercises

1. (a) Modify the region in Figure 1.3 by assuming that the ordinate at each x is2x2 instead of
x2. Draw the new figure. Check through the principal steps in the foregoing section and
find what effect this has on the cdculaion of the area. Do thesame if the ordinate at each X is
(b) 3x% (c) 3x% (d) 2x2 + 1, (€) ax® + C.

2. Modify the region in Figure 1.3 by assuming that the ordinate at each x is x® instead of x2,
Draw the new figure.

(@ Use a condruction similar to that illustrated in Figure 15 and show that the outer and inner
sums §,, and s, are given by

b4 b4
Sp= @+ 2400 4, 5= P+ 2B+, + (=17,
n n

() Use the inequdities (which can be proved by mahematicd induction; see Section 14.2)

4
(L12) 13+23+-"+(n-1)3<nz<13+23+...+n3

to show that 5, < b%/4 < S, for every n, and prove that b*/4 is the only number which lies
between s, and S, for evay n
(c) What number takes the place of 5*/4 if the ordinate at each x isax® + ¢?

3. Theinequdlities (1.5) and (1.12) are special cases of the more general inequalities

nktl

kg o %
P <1 42" +...+n

(113) T+2 4. . (=1 <

that are valid for every integer n > 1 and every integer k > 1. Assume the -validity of (1.13)
and generalize the results of Exercise 2.

I1.5 Acritical analysis of Archimedes method

From calculations similar to those in Section 1 1.3, Archimedes concluded that the area
of the parabolic segment in question is 5%3. This fact was generally accepted as a mathe-
matical theorem for nearly 2000 years before it was realized that one must re-examine
the result from a more critical point of view. To understand why anyone would question
the validity of Archimedes' conclusion, it is necessary to know something about the important
changes that have taken place in the recent history of mathematics.

Every branch of knowledge is a collection of ideas described by means of words and
symbols, and one cannot understand these ideas unless on¢ knows the exact meanings of
the words and symbols that are used. Certain branches of knowledge, known as deductive
systems, are different from others in that a number of “undefined” concepts are chosen
in advance and all other concepts in the system are defined in terms of these. Certain
statements about these undefined concepts are taken as axioms or postulates and other
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statements that can be deduced from the axioms are called theorems. The most familiar
example of a deductive system is the Euclidean theory of elementary geometry that has
been studied by well-educated men since the time of the ancient Greeks.

The spirit of early Greek mathematics, with its emphasis on the theoretical and postu-
lational approach to geometry as presented in Euclid’s Elements, dominated the thinking
of mathematicians until the time of the Renaissance. A new and vigorous phase in the
development of mathematics began with the advent of algebra in the 16th Century, and
the next 300 years witnessed a flood of important discoveries. Conspicuously absent from
this period was the logically precise reasoning of the deductive method with its use of
axioms, definitions, and theorems. Instead, the pioneers in the 16th, 17th, and 18th cen-
turies resorted to a curious blend of deductive reasoning combined with intuition, pure
guesswork, and mysticism, and it is not surprising to find that some of their work was
later shown to be incorrect. However, a surprisingly large number of important discoveries
emerged from this era, and a great deal of the work has survived the test of history-a
tribute to the unusual skill and ingenuity of these pioneers.

As the flood of new discoveries began to recede, a new and more critical period emerged.
Little by little, mathematicians felt forced to return to the classical ideals of the deductive
method in an attempt to put the new mathematics on a firm foundation. This phase of the
development, which began early in the 19th Century and has continued to the present day,
has resulted in a degree of logical purity and abstraction that has surpassed all the traditions
of Greek science. At the same time, it has brought about a clearer understanding of the
foundations of not only calculus but of all of mathematics.

There are many ways to develop calculus as a deductive system. Qne possible approach
is to take the real numbers as the undefined objects. Some of the rules governing the
operations on real numbers may then be taken as axioms. QOne such set of axioms is listed
in Part 3 of this Introduction. New concepts, such as integral, limit, continuity, derivative,
must then be defined in terms of real numbers. Properties of these concepts are then
deduced as theorems that follow from the axioms.

Looked at as part of the deductive system of calculus, Archimedes' result gbout the area
of a parabolic segment cannot be accepted as a theorem until a satisfactory definition of
area isgivenfirst. It is not clear whether Archimedes had ever formulated a precise defini-
tion of what he meant by area. He seemsto have taken it for granted that every region has an
area associated with it. On this assumption he then set out to calculate areas of particular
regions. In his calculations he made use of certain facts about area that cannot be proved
until we know what is meant by area. For instance, he assumed that if one region lies inside
another, the area of the smaller region cannot exceed that of the larger region. Also, if a
region is decomposed into two or more parts, the sum of the areas of the individual partsis
equal to the area of the whole region. All these are properties we would like area to possess,
and we shall insist that any definition of area should imply these properties. It is quite
possible that Archimedes himself may have taken area to be an undefined concept and then
used the properties we just mentioned as axioms about area.

Today we consider the work of Archimedes as being important not so much because it
helps us to compute areas of particular figures, but rather because it suggests a reasonable
way to define the concept of area for more or less arbitrary figures. As it turns out, the
method of Archimedes suggests a way to define a much more general concept known as the
integral. The integral, in turn, is used to compute not only area but also quantities such as
arc length, volume, work and others.
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If we look ahead and make use of the terminology of integral calculus, the result of the
calculation carried out in Section 1 1.3 for the parabolic segment is often stated as follows :

“The integral of x% from O to b is 3/3.”

b 3
fxgdx= L
6 3

The symbol j (an elongated ) is called an integral sign, and it was introduced by Leibniz
in 1675. The process which produces the number %3 is called integration. The numbers
0 and b which are attached to the integral sign are referred to as the [/imits of integration.
The symbol {3 x2 dx must be regarded as a whole. Its definition will treat it as such, just
as the dictionary describes the word “lapidate” without reference to “lap,” “id,” or “ate.”

Leibniz’ symbol for the integral was readily accepted by many early mathematicians
because they liked to think of integration as a kind of “summation process’” which enabled
them to add together infinitely many “infinitesmally small quantities” For example, the
area of the parabolic segment was conceived of as a sum of infinitely many infinitesmaly
thin rectangles of height x2 and base dx. Theintegral sign represented the process of adding
the areas of all these thin rectangles. This kind of thinking is suggestive and often very
helpful, but it is not easy to assign a precise meaning to the idea of an “infinitesimally small
quantity.” Today the integral is defined in terms of the notion of real number without
using ideas like “infinitesimals.” This definition is given in Chapter 1.

It is written symbolically as

I1.6 The approach to calculus to be used in this book

A thorough and complete treatment of either integral or differential calculus depends
ultimately on a careful study of the real number system. This study in itself, when carried
out in full, is an interesting but somewhat lengthy program that requires a small volume
for its complete exposition. The approach in this book is to begin with the real numbers
as undefined objects and simply to list a number of fundamental properties of real numbers
which we shall take as axioms. These axioms and some of the simplest theorems that can
be deduced from them are discussed in Part 3 of this chapter.

Most of the properties of real numbers discussed here are probably familiar to the reader
from his study of elementary algebra. However, there are a few properties of real numbers
that do not ordinarily corne into consideration in elementary algebra but which play an
important role in the calculus. These properties stem from the so-called least-upper-bound
axiom (also known as the completeness or continuity axiom) which is dealt with here in some
detail. The reader may wish to study Part 3 before proceeding with the main body of the
text, or he may postpone reading this material until later when he reaches those parts of the
theory that make use of |east-Upper-bound properties. Material in the text that depends on
the least-Upper-bound axiom will be clearly indicated.

To develop calculus as a complete, formal mathematical theory, it would be necessary
to state, in addition to the axioms for the real number system, alist of the various “methods
of proof ”” which would be permitted for the purpose of deducing theorems from the axioms.
Every statement in the theory would then have to be justified either as an “established law”
(that is, an axiom, a definition, or a previously proved theorem) or as the result of applying
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one of the acceptable methods of proof to an established law. A program of this sort would
be extremely long and tedious and would add very little to a beginner’s understanding of
the subject. Fortunately, it is not necessary to proceed in this fashion in order to get a good
understanding and a good working knowledge of calculus. In this book the subject is
introduced in an informal way, and ample use is made of geometric intuition whenever it is

convenient to do so. At the same time, the discussion proceeds in a manner that is con-

sistent with modern standards of precision and clarity of thought. All the important
theorems of the subject are explicitly stated and rigorously proved.

To avoid interrupting the principal flow of ideas, some of the proofs appear in separate
starred sections. For the same reason, some of the chapters are accompanied by supple-
mentary material in which certain important topics related to calculus are dealt with in
detail. Some of these are also starred to indicate that they may be omitted or postponed
without disrupting the continuity of the presentation. The extent to which the starred
sections are taken up or not will depend partly on the reader’s background and skill and
partly on the depth of his interests. A person who is interested primarily in the basic
techniques may skip the starred sections. Those who wish a more thorough course in
calculus, including theory as well as technique, should read some of the starred sections.

Part 2. Some Basc Concepts of the Theory of Sets

12.1 Introduction to set theory

In discussing any branch of mathematics, be it analysis, algebra, or geometry, it is helpful
to use the notation and terminology of set theory. This subject, which was developed by
Boole and Cantorf in the latter part of the 19th Century, has had a profound influence on the
development of mathematics in the 20th Century. It has unified many seemingly discon-
nected ideas and has helped to reduce many mathematical concepts to their logical founda-
tions in an elegant and systematic way. A thorough treatment of the theory of sets would
require alengthy discussion which we regard as outside the scope of thisbook. Fortunately,
the basic notions are few in number, and it is possible to devel op a working knowledge of the
methods and ideas of set theory through an informal discussion. Actually, we shall discuss
not so much a new theory as an agreement about the precise terminology that we wish to
apply to more or less familiar ideas.

In mathematics, the word “set” is used to represent a collection of objects viewed as a
single entity. The collections called to mind by such nouns as “flock,” “tribe,” “crowd,”
“team,” and “electorate” are all examples of sets. The individua objects in the collection
ae cdled elements or members of the s, and they ae sid to belomg to or to be contained in
the set. The set, in turn, is said to contain or be composed of its elements.

t George Boole (1815-1864) was an English mathematician and logician. His book, An Investigation of the
Laws of Thought, published in 1854, marked the ¢reation of the first workable system of symbolic logic.
Georg F. § Cantor (1845-1918) and his school created the modern theory of sets during the period
1874-1895
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We shall be interested primarily in sets of mathematical objects: sets of numbers, sets of
curves, sets of geometric figures, and so on. In many applications it is convenient to deal
with sets in which nothing special is assumed about the nature of the individual objects in
the collection. These are called abstract sets. Abstract set theory has been developed to deal
with such collections of arbitrary objects, and from this generality the theory derives its power.

12.2 Notationsfor designating sets

Sets usually are denoted by capital letters: A, B, C, ..., X, Y, Z; elements are designated
by lower-case letters: a, b, ¢, . . ., X, ¥, 2. We use the special notation

xX€ES

to mean that “x is an element of $” or “x belongsto S.” If x does not belong to §, we write
x ¢ S. When convenient, we shall designate sets by displaying the elements in braces; for
example, the set of positive even integers less than 10 is denoted by the symbol (2, 4, 6, 8}
whereas the set of all positive even integers is displayed as {2, 4, 6, . . .}, the three dots
taking the place of “and so on.” The dots are used only when the meaning of “and so on”
isclear. The method of listing the members of a set within braces is sometimes referred to as
the roster notation.

The first basic concept that relates one set to another is equality of sets:

DEFINTION CF SET EQALITY. Two sets A and B are said to be equal (or identical) if
they consist of exactly the same elements, in which case we write A = B. If one of the sets
contains an element not in the other, we say the sets are unequal and we write A 5 B.

exawLe 1. According to this definition, the two sets (2, 4, 6, 8} and (2, 8, 6,4} ae
equal since they both consist of the four integers2, 4, 6, and 8. Thus, when we use the roster
notation to describe a set, the order in which the elements appear is irrelevant.

exawLE 2. The sets {2, 4, 6, 8) and {2, 2, 4, 4, 6, 8} are equal even though, in the second
set, each of the elements 2 and 4 islisted twice. Both sets contain the four elements 2, 4, 6, 8
and no others; therefore, the definition requires that we call these sets equal. This example
shows that we do not insist that the objects listed in the roster notation be distinct. A similar
example is the set of letters in the word Mississippi, which is equal to the set {M, i, s, p},
consisting of the four distinct letters M, i, s, and p,

12.3 Subsets

From a given set S we may form new sets, called subsets of S. For example, the set
consisting of those positive integers less than 10 which are divisible by 4 (the set (4, 8)) isa
sbset of the st of all even integers less than 10. In general, we have the following definition.

DEFINTION OF A susser. A set Aissaid to be a subset of a set B, and we write
A <€ B,

whenever every dement of A also beongs to B. We also say that Aiscontained in B or that B
contains A. The relation < is referred to as set inclusion.
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The statement A < B does not rule out the possibility that B < A. In fact, we may have
both A < B and B < A, but this happens only if A and B have the same elements. In
other words,

A=B ifandonlyif A < Band B < A.

This theorem is an immediate consequence of the foregoing definitions of equality and
inclusion. If A< B but A # B, then we say that A is aproper subset of B; we indicate this
by writing A < B.

In all our applications of set theory, we have a fixed set S given in advance, and we are
concerned only with subsets of this given set. The underlying set S may vary from one
application to another ; it will be referred to as the yniversal set of each particular discourse.
The notation

{x xe€ §and x satisfies P}

will designate the set of all elements x in S which satisfy the property P. When the universal
set to which we are referring is understood, we omit the reference to Sand write smply
{x] x satisfies P}. This is read “the set of all x such that x satisfies P.” Sets designated in
this way are said to be described by a defining property. For example, the set of all positive
real numberscould be designated as{x x > O}; the universal set Sin this case is understood
to be the set of all real numbers. Similarly, the set of all even positive integers {2, 4, 6, . . .}
can be designated as{x‘ X isapositive even integer}. Of course, the letter x is a dummy and
may be replaced by any other convenient symbol. Thus, we may write

fx|x>0={ y>0={ t> 0}
and soon.

It is possible for a set to contain no elements whatever. This set is called the empty set
or the goid set, and will be denoted by the symbol ¢ . We will consider o to be a subset of
every set. Some people find it helpful to think of a set as analogous to a container (such as a
bag or a box) containing certain objects, its elements. The empty set is then analogous to an
empty container.

To avoid logical difficulties, we must distinguish between the element x and the set {x}
whose only element is x. (A box with ahat in it is conceptually distinct from the hat itself.)
In particular, the empty set 2 is not the same as the set{&}. In fact, the empty set ¢ contains
no elements, whereas the set { ¢ } has one element, . (A box which contains an empty box
is not empty.) Sets consisting of exactly one element are sometimes called one-element sets.

Diagrams often help us visualize relations between sets. For example, we may think of a
set S as aregion in the plane and each of its elements as a point. Subsets of S may then be
thought of as collections of pointswithin S. For example, in Figure 1.6(b) the shaded portion
is a subset of A and also a subset of B. Visual aids of this type, called Venn diagrams, are
useful for testing the validity of theorems in set theory or for suggesting methods to prove
them. Of course, the proofs themselves must rely only on the definitions of the concepts and
not on the diagrams.

12.4 Unions, intersections, complements

From two given sets A and B, we can form a new set called the union of A and B. This
new set is denoted by the symbol

A v B (read: “A union B)
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@AuUB (b)AnB (c)AnB=g

Ficure 1.6 Unions and intersections.

and is defined as the set of those elements which arein A, in B, or in both. That is to say,
A U B isthe set of all elements which belong to at least one of the setsA, B.  An example is
illustrated in Figure 1.6(a), where the shaded portion represents A u B.

Similarly, the intersection of A and B, denoted by

AN B (read: “A intersection B”),

is defined as the set of those elements common to both A and B. This is illustrated by the
shaded portion of Figure 1.6(b). In Figure 1.6(c), the two sets A and B have no elementsin
common; in this case, their intersection is the empty set 7. Two sets A and B are said to be
disjointif A NB= &.

If A and B are sets, the difference A — B (also called the complement of B relative to A) is
defined to be the set of all elements of A which are not in B. Thus, by definition,

A—B={x|xedandx¢B}.

In Figure 1.6(b) the unshaded portion of A represents A — B; the unshaded portion of B
represents B — A.

The operations of union and intersection have many formal similarities to (as well as
differences from) ordinary addition and multiplication of real numbers. For example,
since there is no question of order involved in the definitions of union and intersection, it
followsthat AUB =B U A andthat AN B = B n A. That is to say, union and inter-
section are commutative operations. The definitions are also phrased in such a way that the
operdtions ae  asodative

(AuB)UC=Au(BuC ad (AnB)nC=An(BnC).

These and other theorems related to the “algebra of sets’ are listed as Exercises in Section
1 25. One of the best ways for the reader to become familiar with the terminology and
notations introduced above is to carry out the proofs of each of theselaws. A sample of the
type of argument that is needed appears immediately after the Exercises.

The operations of union and intersection can be extended to finite or infinite collections
of sets as follows: Let &% be a nonempty classt of sets. The union of all the setsin & is

1 To help smplify the language, we call a collection of sis a class. Capital scriptletters #, %,%, . . . are
used to denote classes. The usual terminology and notation of set theogl goplies, of course, to dasses “Thus,
for example, A€ F means that A iS one of the SEs in the class & & C % means that every st in &/
isdsin %, ad % forth.
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defined as the set of those elements which belong to at least one of the setsin & and is
denoted by the symbol

Ua4a.

AeF

If & isa finite collection of sets, say # ={A,, A, ..., A}, we write

n
Ua=Ud =4 uA u...uA.

AeF k=1

Similarly, the intersection of all the sets in & is defined to be the set of those elements
which belong to every one of the setsin & ; it is denoted by the symbol

NA.

AeF
For finite collections (as above), we write

A= A, =4, NA, N NA_ .
Aoﬁ kOlk ! 2 "

Unions and intersections have been defined in such a way that the associative laws for

these operations are automatically satisfied. Hence, there is no ambiguity when we write
AuAd,u. . .uA ooAn4dn .. NA,.

12.5 Exercises

1. Use the roger notation to designate the following sets of red numbers.

A={Xx x*=1=0}. D = {x|x®—2x2 + x =2}.
B={x (x=12=0}. E={x|(x+8?2=9%.
C={x|x+8=9}. F={x 2+ 16x)2= 172).

2. For the setsin Exercise 1, notethat B < A. List all the inclusion relations< that hold among
the sets A, B, C, D, E, F.

3. Let A={1},B ={1, 2}. Discuss the validity of the following statements (prove the ones that
aretrue and explain why the others are not true).

@ AcB. (d)1e4,.
(b) A< B. @1cA
(c) A € B. ()1 cB.

4. Solve Exercise 3 if A= {1} and B = {{1},1}.

5. Given the set § = {1, 2, 3, 4). Display all subsets of S. There are 16 altogether, counting
@ and S.

6. Given the following four sets

A={1,2, B={1L{} C={nL{L2, D=1, {12
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discuss the vdidity of the following datements (prove the ones that ae true and explan why
the othes ae not true).
(& A =B. (dAeC (&) B <D
(b) A cB. (e) A < D. (h) BE D.
(c)Acc (f) B <C. (i) A e D.
7. Prove the following propeties of s&t equality.
(@) {a, a} = {a}.
(b) {a, b} = {b, a}.
(c){a ={b,c} ifandonly if a= b=rc.
Prove the set relations in Exercises 8 through 19. (Sample proofs are given at the end of this
section).
8. Commutative laws: AVB=BUA, ANB=BnNA.
9. Associative laws: AV (BUC)= (AuB)UC, An(BAC)=(ANnB)NC.
10. Distributive laws: AN (BUC) = (AnB)V(AnC), AUu(BNC)=(AuB)n(AuC).
11. AUA=A,ANnA=A4,
12 AcAuB, ANBcA
13. AUGg=A, ANnY =g,
14 AUANB) = A An(AuB)=A
15, fAcCand B< C,then 4 UB < C.
16.fC=cAandC ¢ B, thenC c AN B.
17. (@ If Ac B and B < C, prove that A < C.
(o) If AcBandB < C, provethat A< C.
(c) What can you conclude if A < B and B < C?
(d)If x € A and A c B, isit necessarily true that x e B?
(@ Ifxe Aand A €B, isit necessarily true that x e B?
18. A= (BNC) = (A=B) U (A=C).
19. Let # beaclass of sets. Then

B-A=NB-4 and B-NA={(B-A).
AeF AeF AeF AeF

20. (@ Prove that one of the following two formulas is aways right and the other one is sometimes
wrong :

()A=(B=C)=(A=~B)UC,

() A=(BUC)-(A=B) =C.

(b) Sae an additiond necessary and  aufficient condition for the formula which is sometimes
incorrect to  be adways right.

Proof of the commutative law A UB = BUA. Let X=AUB, Y=BUA To
prove that X =Y we prove that X < Y and Y < X. Suppose that x € X. Then x is
in at least one of A or B. Hence, X isin at least one of B or A; SO X € Y. Thus, every
element of X is alsoinY, so X < Y. Smilarly, we findthat Y € X, so X =Y.

Proof of ANBcA. Ifxe An B, then x isin both A and B. In particular, x € A.
Thus, every element of A N B isalsoin A; therefore, An B < A.
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Part 3. A Set of Axioms for the Real-Number System

13.1 Introduction

There are many ways to introduce the real-number system. One popular method is to
begin with the positive integers 1, 2, 3, , . . and use them as building blocks to construct a
more comprehensive system having the properties desired. Briefly, the idea of this method
is to take the positive integers as undefined concepts, state some axioms concerning
them, and then use the positive integers to build a larger system consisting of the positive
rational numbers (quotients of positive integers). The positive rational numbers, in turn,
may then be used as a basis for constructing the positive irrational numbers (real numbers
like 4/2 and 7 that are not rational). The final step is the introduction of the negative real
numbers and zero. The most difficult part of the whole process is the transition from the
rational numbers to the irrational numbers.

Although the need for irrational numbers was apparent to the ancient Greeks from
their study of geometry, satisfactory methods for constructing irrational numbers from
rational numbers were not introduced until late in the 19th Century. At that time, three
different theories were outlined by Karl Weierstrass (1815-1897), Georg Cantor (1845-
1918), and Richard Dedekind (1831-1916). In 1889, the Italian mathematician Guiseppe
Peano (1858-1932) listed five axioms for the positive integers that could be used as the
starting point of the whole construction. A detailed account of this construction, beginning
with the Peano postulates and using the method of Dedekind to introduce irrational
numbers, may be found in a book by E. Landau, Foundations of Analysis (New York,
Chelsea Publishing @., 1951).

The point of view we shall adopt here is nonconstructive. We shall start rather far out
in the process, taking the real numbers themselves as undefined objects satisfying a number
of properties that we use as axioms. That is to say, we shall assume there exists a set R of
objects, called real numbers, which satisfy the 10 axioms listed in the next few sections. All
the properties of real numbers can be deduced from the axioms in the list. When the real
numbers are defined by a constructive process, the properties we list as axioms must be
proved as theorems.

In the axioms that appear below, lower-case letters a, b, ¢, . . ., X, Y, Z represent arbitrary
real numbers unless something is said to the contrary. The axioms fall in a natural way into
three groups which we refer to as the field axioms, the order axioms, and the least-upper-
bound axiom (also called the axiom of continuity or the completeness axiom).

13.2 The field axioms

Along with the set R of real numbers we assume the existence of two operations called
addition and multiplication, such that for every pair of real numbers x and y we can form the
sum of x and y, which is another real number denoted by x + vy, and the product of x and y,
denoted by xy or by x . y. It isassumed that the sum x + y and the product xy are uniquely
determined by x and y. In other words, given x and y, there is exactly one real number
X + y and exactly one real number xy. We attach no special meanings to the symbols
+ and . other than those contained in the axioms.
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AXIOM 1. COMWTATIVE LAWS. X +y =y + X Xy = yx.
AXI OM 2. ASSOCI ATIVE LAVS. X+ (y+2)=04+y + 2 x(yz) = (xp)z.
AXIOM 3. DISTRIBUTIVE LAW  X(y + z) = xy + xz.

AXIOM 4. EXISTENCE OF IDENTITY ELEMENTS.  There exist two gistinct real numbers, which
we denote by 0 and 1, such that for ecery real x we have x + 0 =x and 1:-X = X.

AXIOM 5. EXISTENCE OF NEGATIVES. For ecery real number x there js a real number y
such that x + y = 0.

AXIOM 6. EXISTENCE OF RECIPROCALS. For every real number x 3 0 there js a real
number y such that xy = 1.

Note: Thenumbers 0 and1in Axioms5 and 6 are those of Axiom 4.
From the above axioms we can deduce all the usual laws of elementary algebra. The

most important of these laws are collected here as a list of theorems. In 3]] these theorems
the symbols a, b, ¢, d represent arbitrary real numbers.

THEOREM [.1. oancELLATION  Law FoR apboiTion. If a +b =a + ¢, then b =c. (In
particular, this shows that the number 0 of Axiom 4 is unique.)

THEOREM 1.2. POSSIBILITY G 9SBRACIAN  Given a and b, there is exactly ore x such
that a + x = b. This x is denoted by b — a. In particular, 0 — a is written simply -a and
is called the negative of a.

THeorem 13, b — a = b + (-a).
THEOREM 1.4. -(-a) = a.

tHeorem 15, a(b = c) = ab = ac.
THeorem 16, O+a=a ' 0 =0.

THEOREM 1.7. CANCELLATION LAW FOR MULTI PLI CATI ON. If ab = ac and a # 0, then
b = c. (Inparticular, this shows that the number 1 of Axiom 4 is unique.)

THECREM 1.8, PCSSIBLITY &F DMSON  Given aand b with a3 0, there is exactly one x

such that ax = b. This x is denoted by b/a or g and is called the quotient of b and a. In

particular, 1/a is also written g~Land is called the reciprocal of a.
THEoREM 1.9, If a %0, then bja=b g1,
meorem 110, If a#0, then (gl '=a.
THEOREM L.11. Ifab =0, thena =0o0r b = 0.
Teorem 112 (-a)b = -(ah) and (-a)(-b) = ab.
meorem  1.13. (afb) + (c/d) = (ad + bc)/(bd) if b # 0 and d # 0.
theorem 114, (afb)(c/d) = (ac)/(bd) if b # 0 and d # 0.
teorem 115, (a/b)/(c/d) = (ad)/(bc) if b # 0, ¢ %0, and d # 0.
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To illustrate how these statements may be obtained as consequences of the axioms, we
shall present proofs of Theorems 1.1 through 1.4. Those readers who are interested may
find it instructive to carry out proofs of the remaining theorems.

Proof of 11. Given a + h= a + c. By Axiom 5, there is a numbery such that y + a = 0.
Since sums are uniquely determined, we have y + (a + b) =y + (a + ¢). Using the
associative law, we obtain (y + @) +h=(y+ a) +cor0+ b = 0+ c. But by Axiom 4
wehave0+ b=band0+ c=c, sothat b = c. Notice that this theorem shows that there
is only one real number having the property of 0 in Axiom 4. In fact, if 0 and O' both have
this property, then 0 + 0 =0and 0+ 0 = 0. Hence 0 + 0' = 0 + 0 and, by the ¢an-
cellation law, 0 = 0.

Proof of 1.2. Given a and b, choosey sothat a +y =0 and let x =y + b. Then
a+tx=a+(y+b=(@+y)+ b=0+b=Db. Therefore there is a least one x
such that a + x = p, But by Theorem 1.1 there is at most one such X. Hence there is
exactly one.

Proof of 13. Lete x =b — a andlety = b + (-a). We wish to prove that x = y.
Now x + a = b (by the definition of b — a) and

yta=[b+(-al+a=b+[(-a)+al=b+0=0b
Therefore x + a =y + a and hence, by Theorem 1.1, x = y.

Proof of 1.4. We have a + (-a) = 0 by the definition of -a. But this equation tells us
that a is the negative of -a. That is, a = -(-a), as asserted.

*13.3 Exercises
1. Prove Theorems 1.5 through 115 using Axioms ! through 6 and Theorems 1.1through 14.

In Exercises 2 through 10, prove the given statements or establish the given equations. You
may use Axioms 1 through 6 and Theorems 11 through 115.

-0 = 0.

=1

Zero has no reciprocal.

@+ b) =-a=nh.

-@a=b)=-a+h
.(@a=-b)+(b-0c=a=-=c

If as 0and b 0, then (@b = a7

—(afb) = (—afb) = a/( —b)if b 0.

10. (a/b) = (c/d) = (ad = be)/(bd) if b3 0 and d # 0.

WoNOUO WD

13.4 The order axioms

This group of axioms has to do with a concept which establishes an ordering among the
real numbers. This ordering enables us to make statements about one real number being
larger or smaler than another. We choose to introduce the order properties as a set of
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axioms about a new undefined concept called positiveness and then to define terms like
less than and greater than in terms of positiveness.

We shall assume that there exists a certain subset R+ — R, called the set of positive
numbers, which satisfies the following three order axioms :

AXIOM 7. If xand y are in R*, so are x + y and xy.
Axiom 8. For every real x # 0, either x € Rt or —x € R*, but not both.
amav 9. 0 éRF.

Now we can define the symbols <, >, <, and >, called, respectively, Jess than, greater

than, /ess than or equal to, and greater than or equal to, asfollows:

X < y means that y — X is positive,

y > X means that x <'y;

x <y means that either x <y or x = y;

y 2 x means that x <.
Thus, we have x > 0 if and only if x is postive. If x < 0, we say that x is negative; if
x > 0, we say that x is nonnegative. A pair of simultaneous inequalities such as x <y,
y < z is usualy written more briefly as x <y < z; similar interpretations are given to the
compound inequalitiess x <y <z x< y<Lz adx<Ly<Lz

From the order axioms we can derive all the usual rules for calculating with inequalities.
The most important of these are listed here as theorems.

THECREM ].16. TR cHorow LAw  For arbitrary real numbers a and b, exactly one of
the three relations a < b, b < a, a=b holds.

theorem  L17. Transiive  Law Zf a<bandb <c, thena<c.

theorem 1.18. If a<b,thena+c<b +c.

meorem 119, 1T a < bandc >0 then ac < be.

mieorem 120, 1F a0, then g2 > 0.

merev 1.21. 1 > 0,

meorem 122, If a<bandc <0, then ac > bc.

meorem 123, | fa < b, then -a > -b. Znparticular, fa < 0, then -a > 0.
theorem 124, 1f ab > 0, then both a and b are positive or both are negative.

tHeorem 125, If a<candb <d,thena+b <c+d.

Again, we shall prove only a few of these theorems as samples to indicate how the proofs
may be carried out, Proofs of the others are left as exercises.
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Proof of 116. Letx=b =a. If x =0, then b —a =a = b =0, and hence, by Axiom
9, we cannot have a > b or b > a. If x % 0, Axiom 8 tells us that either x > 0 or x < 0,

but not both; that is, either a < b or b < a, but not both. Therefore, exactly one of the
three relations, a = b, a < b,b < a, holds.

Proof of 117.1f a<b and b <c,then b =a>0and c — b > 0. By Axiom 7 we may
add to obtain (b = a) +(c = b) >0. That is, ¢ = a > 0, and hence a < c.

Proof of 118 Letx = a+c,y=b+c Theny =x=b —a Butb - a > 0 since
a < b. Hencey = x > 0, and this means that x <.

Proof of 119.1f a < b, then b = a > 0. If ¢ > 0, then by Axiom 7 we may multiply

c by (b = a) to obtain (b — a)c > 0. But (b = a)c = bc = ac. Hence bc = ac > 0, and
this means that ac < bc, as asserted.

Proof of 1.20.1f a > 0, then a+a >0 by Axiom 7. If a < 0O, then -a > 0, and hence
(-a) + (-a) > 0 by Axiom 7. In either case we have g2 > 0.

Proof of 1.21. Apply Theorem 1.20 with a = 1.
*I 3.5 Exercises
1. Prove Theorems 1.22 through 1.25, using the earlier theorems and Axioms | through 9.

In Exercises 2 through 10, prove the given statements or establish the given inequalities. You
may use Axioms 1 through 9 and Theorems 11 through 1.25.

N

. Thereis no real number x such that x2 + 1 = 0.
The sum of two negative numbers is negative.
If a> 0, then1/g > 0; if a< 0, then 1/¢ < 0.
.If0O<a< b then0< p1< g,
. Ifu <band b <c,thena < c.
. Ifu <band b < c¢,and a =c,thenb =¢.
. For gll rea aand b we have a2 + b2 > 0. If aand b are not both 0, then a2+ 2 > 0.
. There is no real number a such that x < afor all red x.

10. If x has the property that 0 € x < 4 for every positive real number #, then x = 0.

O©Co~NO A w

13.6 Integers and rational numbers

There exist certain subsets of R which are distinguished because they have special prop-
erties not shared by all real numbers. In this section we shall discuss two such subsets, the
integers and the rational numbers.

To introduce the positive integers we begin with the number 1, whose existence is guar-
anteed by Axiom 4. The number 1 + 1 is denoted by 2, the number 2 + 1 by 3, and so on.
The numbers 1, 2, 3, . . ., obtained in this way by repeated addition of 1 are all positive,
and they are called the positive integers. Strictly speaking, this description of the positive
integers is not entirely complete because we have not explained in detail what we mean by
the expressions “and so on,” or “repeated addition of 1.” Although the intuitive meaning
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of these expressions may seem clear, in a careful treatment of the real-number system it is
necessary to give a more precise definition of the positive integers. There are many ways
to do this. One convenient method is to introduce first the notion of an inductive set.

DEFINITION OF AN INDUCTIVE SET. A set of real numbers /s called an inductive set if it has
the following two properties:

(@ The number 1 is in the set.

(b) For every x in the set, the number x + 1 is glse in the set.

For example, R is an inductive set. $ is the set R*. Now we shall define the positive
integers to be those real numbers which belong to every inductive set.

DEFINITION OF POSITIVE INTEGERS. A real number /s called a positive integer if it belongs
to every inductive set.

Let P denote the set of all positive integers. Then P is itself an inductive set because (a)
it contains 1, and (b) it contains X + 1 whenever it contains X. Since the members of P
belong to every inductive set, we refer to P as the smallest inductive set. This property of
the set P forms the logical basis for a type of reasoning that mathematicians call proof by
induction, adetailed discussion of which is given in Part 4 of this Introduction.

The negtives of the postive integers ae cdled the negative integers. The positive integers,
together with the negative integers and O (zero), form a set Z which we call simply the
set of integers.

In a thorough treatment of the real-number system, it would be necessary at this stage to
prove certain theorems about integers. For example, the sum, difference, or product of two
integers is an integer, but the quotient of two integers need not be an integer. However, we
shall not enter into the details of such proofs.

Quotients of integers a/b (where b # 0) are called rational numbers. The set of rational
numbers, denoted by Q, contains Z as a subset. The reader should realize that all the field
axioms and the order axioms are satisfied by Q. For this reason, we say that the set of
rational numbers is an ordered field. Real numbers that are not in Q are called irrational.

13.7 Geometricinterpretation of real numbersas pointson aline

The reader is undoubtedly familiar with the geometric representation of real numbers
by means of points on a straight line. A point is selected to represent O and another, to the
right of 0, to represent 1, as illustrated in Figure 1.7. This choice determines the scale.
If one adopts an appropriate set of axioms for Euclidean geometry, then each real number
corresponds to exactly one point on this line and, conversely, each point on the line corre-
sponds to one and only one real number. For this reason the line is often called the real line
o the real axis, and it is cusomary to use the words real number and point interchangeably.
Thus we often speak of the point x rather than the point corresponding to the real number x.

The ordering relation among the real numbers has a simple geometric interpretation.
If x <y, the point x lies to the left of the point y, as shown in Figure 1.7. Positive numbers
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lie to the right of 0 and negative numbers to the left of 0. If a < b, a point x satisfies the
inequalities a < x < b if and only if x is between a and b.

This device for representing real numbers geometrically is a very worthwhile aid that
helps us to discover and understand better certain properties of real numbers. However,
the reader should realize that all properties of real numbers that are to be accepted as
theorems must be deducible from the axioms without any reference to geometry. This
does not mean that one should not make use of geometry in studying properties of real
numbers. On the contrary, the geometry often suggests the method of proof of a particular
theorem, and sometimes a geometric argument is more illuminating than a purely analytic
proof (one depending entirely on the axioms for the real numbers). In this book, geometric

0 1 X v

Ficure 1.7 Red numbers represented geometricaly on a line

arguments are used to a large extent to help motivate or clarify a particular discussion.
Nevertheless, the proofs of all the important theorems are presented in analytic form.

13.8 Upper bound of a set, maximum element, least upper bound (supremum)

The nine axioms listed above contain all the properties of real numbers usually discussed
in elementary algebra. There is another axiom of fundamental importance in calculus that
is ordinarily not discussed in elementary algebra courses. This axiom (or some property
equivalent to it) is used to establish the existence of irrational numbers.

Irrational numbers arise in elementary algebra when we try to solve certain quadratic
equations. For example, it is desirable to have a real number x such that x2 = 2. From the
nine axioms above, we cannot prove that such an x exists in R, because these nine axioms
are also satisfied by Q, and there is no rational number x whose squareis 2. (A proof of this
statement is outlined in Exercise 11 of Section 1 3.12.) Axiom 10 alows us to introduce
irrational numbers in the real-number system, and it gives the real-number system a property
of continuity that is a keystone in the logical structure of calculus.

Before we describe Axiom 10, it is convenient to introduce some more terminology and
notation. Suppose S is a honempty set of real numbers and suppose there is a number B
such that

x<B

for every x in S. Then Sissaid to be bounded above by B. The number B is called an upper
bound for S. We say an upper bound because every number greater than B will also be an
upper bound. If an upper bound B is aso a member of S, then B is called the largest
member or the maximum element of S. There can be at most one such B. If it exists, we

write
B=maxsS.

Thus, B=max S if Be Sand x <B forall xin §, A set with noupper bound is said to be
unbounded  above.
The following examples serve to illustrate the meaning of these terms.
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exavle 1. Let S be the set of all positive real numbers. This set is unbounded above.
It has no upper bounds and it has no maximum element.

exaveie 2. Let S be the set of all real x satisfying 0 < x < 1. This set is bounded
above by 1. In fact, 1 is its maximum element.

exavee 3. Let T be the set of all real x satisfying 0 < x < 1. This is like the set in

Example 2 except that the point 1 is not included. This set is bounded above by 1 but it has
no maximum eement.

Some sets, like the one in Example 3, are bounded above but have no maximum element.
For these sets there is a concept which takes the place of the maximum element. This is
called the least upper bound of the set and it is defined as follows:

DEFINITION OF LEAST UPPER BOUND. A number B is called a least wupper bound of a
nonempty set S if B has the following two properties:

(@ B is an upper boundfor S.

(b) No number /ess than B is an upper boundfor S.

If S has a maximum element, this maximum is also a least upper bound for S. But if S
does not have a maximum element, it may still have a least upper bound. In Example 3
above, the number 1 is a least upper bound for T although T has no maximum element.
(See Figure 1.8)

Upper bounds for S Upper bounds for T
\) T
. VA7 77777777777777777977777 . / JN777777777777777777777777
0 | 0 |
\ Largest member of S Least upper bound of T
(a) S has a largest member: (b) T has no largest member, but it has
max § =1 a least upper bound: sup T =1

Ficure 1.8 Upper bounds, maximum element, supremum.

THECREM 1.26. Two different numbers cannot be least upper bounds for the same set.

Proof. Suppose that B and C are two least upper bounds for a set S. Property (b)
implies that C > B since B is aleast upper bound; similarly, B > C since C is a least upper
bound. Hence, we have B = C.

This theorem tells us that if there is a least upper bound for a set S, there is only one and
we may speak of the least upper bound.

It is common practice to refer to the least upper bound of a set by the more concise term
supremum, abbreviated sup. We shall adopt this convention and write

B=sup$S

to express the fact that B is the least upper bound, or supremum, of S.
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13.9 The least-Upper-bound axiom (completeness axiom)

Now we are ready to state the least-Upper-bound axiom for the real-number system.

axom 10. Every nonempty set S of'real numbers which is bounded above has a supremum;
that is, there is a rea number B such that B = sup S.

We emphasize once more that the supremum of S need not be a member of S. In fact,
sup S belongs to S if and only if S has a maximum element, in which case max S = sup S.

Definitions of the terms lower bound, bounded below, smallest member (or minimum
element) may be similarly formulated. The reader should formulate these for himself. If
S has a minimum eement, we denote it by min S.

A number L is called a greatest lower bound (or infimum) of Sif (8) L is alower bound for
S, and (b) no number greater than L is a lower bound for S. The infimum of S, when it
exists, is uniquely determined and we denote it by inf S, If § has a minimum element, then
min § = inf S.

Using Axiom 10, we can prove the following.

teorem  1.27.  Every nonempty set S that is bounded below has a greatest lower bound;
that is, there is a real number L suchthat L =inf S.

Proof. Let —S denote the set of negatives of numbers in S. Then —S' is nonempty and
bounded above. Axiom 10 tells us that there is a number B which is a supremum for —S.
It is easy to verify that -B = inf S.

Let us refer once more to the examples in the foregoing section. In Example 1, the set of
all positive real numbers, the number O is the infimum of S. This set has no minimum
element. In Examples 2 and 3, the number O is the minimum element.

In ali these examples it was easy to decide whether or not the set § was bounded above
or below, and it was also easy to determine the numbers sup S and inf S. The next example
shows that it may be difficult to determine whether upper or lower bounds exist.

exavle 4. Let § be the set of a]] numbers of the form (1 + 1/n)», wheren =1,2,3, . . . .
For example, taking » = 1, 2, and 3, we find that the numbers 2, 2 and £% are in S.
Every number in the set is greater than 1, so the set is bounded below and hence has an
infimum. With a little effort we can show that 2 is the smallest element of § soinf § =
min S = 2. The set S is also bounded above, although this fact is not as easy to prove.
(Try it!) Once we know that S is bounded above, Axiom 10 tells us that there is a number
which is the supremum of S. In this case it is not easy to determine the value of sup .S from
the description of S. In a later chapter we will learn that sup S is an irrational number
approximately equal to 2.718. It is an important number in calculus called the Euler
number e.

13.10 TheArchimedean property of thereal-number system

This section contains a humber of important properties of the real-number system which
are consequences Of the least-Upper-bound axiom.
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THEOREM 1.28.  The set P of positive integers 1, 2, 3, . . . is unbounded above.

Proof. Assume P is bounded above. We shall show that this leads to a contradiction.
Since P is nonempty, Axiom 10 tells us that P has a least upper bound, say b. The number
b — 1, being less than b, cannot be an upper bound for P. Hence, there is at least one
positive integer n such that n > p — 1. For this nwe haven+ 1> ), Sincen+ 1lisin
P, this contradicts the fact that b is an upper bound for P.

As corollaries of Theorem 1.28, we immediately obtain the following consequences:

THEOREM 1.29.  For every real x there exists a positive integer n sych that n > x.

Proof. If this were not so, some x would be an upper bound for P, contradicting
Theorem 1.28.

THEOREM 1.30. If x > 0 and ify is an arbitrary real number, there exists a positive integer
N such that nx >y.

Proof. Apply Theorem 1.29 with x replaced by y/x.

The property described in Theorem 1.30 is calied the Archimedean property of the real-
number system. Geometrically it means that any line segment, no matter how long, may
be covered by a finite number of line segments of a given positive length, no matter how
small. In other words, a small ruler used often enough can measure arbitrarily large
distances. Archimedes realized that this was a fundamental property of the straight line
and stated it explicitly as one of the axioms of geometry. In the 19th and 20th centuries,
non-Archimedean geometries have been constructed in which this axiom is rejected.

From the Archimedean property, we can prove the following theorem, which will be
useful in our discussion of integral calculus.

tHeorem 1.3 1. If three real numbers a, x, and y satisfy the inequalities

(1.14) a<x<a+3

for every integer n > 1, then x = a.

Proof. If x > a, Theorem 1.30 tells us that there is a positive integer n satisfying
n(x — a) > y, contradicting (1.14). Hence we cannot have x > a, so we must have x = a.

13.11  Fundamental properties of the supremum and infimum

This section discusses three fundamental properties of the supremum and infimum that
we shall use in our development of calculus. The first property states that any set of numbers
with a supremum contains points arbitrarily close to its supremum; similarly, a set with an
infimum contains points arbitrarily close to its infimum.
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THEOREM 132 Let h bea given positive number and let Sbe a set of real numbers.

(@ If Shas a supremum, then for some x in S we have
X>supS-h.
(b) If § has an injmum, then for some x in S we have
x<infS+h.
Proof of (a). If wehadx <supS hforall xinS, then sup S — h would be an upper

bound for S smaller than its least upper bound. Therefore we must have x > sup S - h
for at least one x in S. This proves (a). The proof of(b) is similar.

THeoRem 133, aooiTive  prorerty.  Given nonempty subsets A and B of R, Jet C denote
the set

C={a+b|lacAd,beB}.
(& If each of A and B has a supremum, then C has a supremum, and
supC=supA+ sup B.

(b) If each of A and B has an injmum, then C has an infimum, and

inf C= infA4+ infB.

Proof. Assume each of A and B has a supremum. If ¢ € C, then ¢ = a + b, where
aeAandb e B Therefore c < sup A + sup B; so sup A + sup Bis an upper bound for C.
This shows that C has a supremum and that

supC <sup A4 + supB.

Now let n be any positive integer. By Theorem 1.32 (with h = 1/n) thereisan ain A and a
b in B such that

a>supA—%, b>supB-—%.

Adding these inequalities, we obtain

2
a+b>supAd+supB—5,0 1 supA+supB<a+b+%gsupC+%,

since a+ b < sup C. Therefore we have shown that

sup C <sup A+ sup B< supC+%
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for every integer n > 1. By Theorem 1.31, we must have sup C = sup A + sup B. This
proves (&), and the proof of(b) is similar.

tHeorem  1.34.  Given two nonempty subsets S and T of R such that
s<t

for every sin S and every tin 7. Then S has a supremum, and T has an infimum, and they
satisfy the inequality

sup S <inf T,

Proof. Each tin T is an upper bound for S. Therefore S has a supremum which satisfies
the inequality sup S < tfor all tin T. Hence sup S is alower bound for 7,so T has an
infimum which cannot be less than sup S. In other words, we have sup § < inf T, as
asserted.

*[ 3.12 Exercises

L If x and y ae abitray red numbers with x < vy, prove that there is a least one red z sisfying
X<z<y.

2. 1f xis anyarbitrary real number, prove that there are integersm and n such that m <x <n.

3. If x > 0, prove that there is a positive integer n such that 1/n < x.

4. If x is an arbitrary real number, prove that there is exactly one integer n which satisfies the
inequalities n <x< n + 1. Thisn is called the greatest integer in x and is denoted by [x].
For example, [5] = 5, [§] = 2, [-%] = -3.

5. If x is an arbitrary real number, prove that there is exactly one integer n which satisfies
x<n<x+1.

6. If x and y are arbitrary real numbers, x <y, prove that there exists at |east one rational num-
ber r satisfying X < ¥ <y, and hence infinitely many. This property is often described by
sying tha the rationd numbers ae dense in the red-number system.

7. If x isrational, X # 0, and y irrational, prove that X + Y, X -y, Xy, x/y, and y/x are all
irrational.

8. Is the sum or product of two irrational numbers aways irrational ?

9. If x and y are arbitrary real numbers, x <y, prove that there exists at least one irrational
number z satisfying x < z <y, and hence infinitely many.

10. Aninteger niscalled evenif n=2m for someinteger m, and odd if n + 1 iseven. Provethe
following ~ dtatements
(@ An integer cannot be both even and odd.

(b) Every integer is dther even or odd.
(c) The sum or product of two even integersiseven. What can you say about the sum or
product of two odd integers?
) If n?iseven, 0is n If g2 =26% where aandb are integers, then both aand 5 are even.
(e) Every rational number can be expressed in the form a/b, where a and b are integers, at
leat one of which is odd.

11. Provethat thereis no rational number whose squareis 2.

[Hint: Argue by contradiction. Asume (afb)? = 2, where a and b ae integers, a least
one of whichisodd. Use parts of Exercise 10 to deduce a contradiction.]
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12. The Archimedean property of the real-number system was deduced as a consequence of the
least-Upper-bound axiom. Prove that the set of rational numbers satisfies the Archimedean
property but not the least-Upper-bound property. This shows that the Archimedean prop-
ety does not imply the least-Upper-bound axiom.

*] 3,13 Existence of squareroots of nonnegative real numbers

It was pointed out earlier that the equation x2 = 2 has no solutions among the rational
numbers. With the help of Axiom 10, we can prove that the equation x* = a has a solution
among the real numbersif a > 0. Each such x is called a square root of a.

First, let us see what we can say about square roots without using Axiom 10. Negative
numbers cannot have square roots because if x* = a, then a, being a sgquare, must be
nonnegative (by Theorem 1.20). Moreover, if a = 0, then x = 0 is the only square root
(by Theorem 1.11). Suppose, then, that a > 0. If x2 = a, then x # 0 and (—x)? = a,
so both x and its negative are square roots. In other words, if a has a square root, then it
has two square roots, one positive and one negative. Also, it has af most two because
if x2= aand >= a, then x2 = y2 and (x — y)}(x +y) = 0, and so, by Theorem 1.11,
either x =y or x = -y. Thus, if a has a square root, it has exactly two.

The existence of at least one square root can be deduced from an important theorem
in calculus known as the intermediate-value theorem for continuous functions, but it

may be instructive to see how the existence of a square root can be proved directly from
Axiom 10.

tHeorem  1.35.  Every nonnegatioe real number a has a unique nonnegative square root.

Note: If a> 0, we denote its nonnegative square root by a2 or by Va.1f a > 0,
the negative square root is —a'’2 or —V/a.

Proof. If a = 0, then O is the only square root. Assume, then, that a > 0. Let S be
the set of all positive x such that x* < a. Since (1 + g)* > a, the number 1 + a is an
upper bound for S. Also, S is nonempty because the number af(l + a) isin S;in fact,
a® < al+ a)* and hence a?/(1+ a)* < a. By Axiom 10, § has a least upper bound
which we shall call b. Note that b > /(1 + a) so b > 0. There are only three possibilities:
b*>a 2 <a, or bh?=a.

Suppose b* > a and let c = b = (b* = @)/(2b) = }(b + a/b). Then 0 < ¢ < b and
2 = b — (b*—a) + (B? — a)¥/(4b%) = a + (b* = a)’/(4b%) > a. Therefore ¢* > x*
for each x in S, and hence ¢ > x for each x in S. This means that c is an upper bound for
S. Since ¢ < b, we have a contradiction because b was the least upper bound for S.
Therefore the inequality 5% > a is impossible.

Suppose 5% < a. Since b > 0, we may choose a positive number ¢ such that ¢ < b and
such that ¢ < (a — b?)/(3b). Then we have

(b+c)2=b2+ c@b+ ) < b+ e < b4 (@a=b?) - a
Therefore b + ¢ isin S. Since b 4 ¢ > b, this contradicts the fact that b is an upper

bound for S. Therefore the inequality #* < a is impossible, and the only remaining
dternative is b? = a.
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*] 3.14 Roots of higher order. Rational powers

The least-Upper-bound axiom can also be used to show the existence of roots of higher
order. For example, if n is a positive odd integer, then for each rea x there is exactly
one real y such that y” = x. Thisy is caled the nth root of x and is denoted by

(115) y=x" o y=Vx.

When n is even, the situation is slightly different. In this case, if x is negative, there is no
real y such that y” = x because y" > 0 for all real y. However, if x is positive, it can be
shown that there is one and only one positive y such that y* = x. Thisy is called thepositive
nth root of x and is denoted by the symbolsin (1.15). Since n iseven, (—y)*=y" and hence

each x > 0 has two real nth roots, y and -y. However, the symbols x%/™ and Vx ae
reserved for the positive nth root. We do not discuss the proofs of these statements here
because they will be deduced later as consequences of the intermediate-value theorem for
continuous functions (see Section 3.10).

If r is a positive rational number, say r = m/n, where m and n are positive integers, we
define x to be (x™)/", the nth root of x™, whenever this exists. If x # 0, we define x~" =
1/x” whenever x” is defined. From these definitions, it is easy to verify that the usual laws
of exponents are valid for rational exponents : x7 ' x* = x5, (x")* = x™, and (xy)' = x"y".

*] 3.15 Representation of real numbers by decimals

A real number of the form

a a a
116 — hat | Z2 e it
(L16) =gt b
where a,, is a nonnegative integer and a,, a,, . . ., a, are integers satisfying 0 < a, €9, is

usually written more briefly as follows:
r=aeaa,' ' Q, .

Thisis said to be a finite decimal representation of r. For example,
bodoos’ B0k o E=1+ 242 =725
10 10°

Real numbers like these are necessarily rational and, in fact, they all have the form r = /10",
where a is an integer. However, not all rational numbers can be expressed with finite
decimal representations. For example, if  could be so expressed, then we would have
3 =a/10" or 3a = 10" for some integer a. But thisisimpossiblesince 3 is not afactor of any
power of 10.

Nevertheless, we can approximate an arbitrary real number x > 0 to any desired degree
of accuracy by a sum of the form (1.16) if we take n large enough. The reason for this may
be seen by the following geometric argument: If X is not an integer, then x lies between two
consecutive integers, say a < x < a, + 1. The segment joining a, and a, + 1 may be
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subdivided into ten equal parts. If x is not one of the subdivision points, then x must lie
between two consecutive subdivision points. This gives us a pair of inequalities of the form

a, a; + 1
ap+ 2 < x<ag+ ,
710 o 10

where a, is an integer (0 < a, < 9). Next we divide the segment joining a, + g,/10 and
a, + (a +1)/10 into ten equal parts (each of length 10-2) and continue the process. If
after a finite number of steps a subdivision point coincides with x, then x is a number of the
form (1.16). Otherwise the process continues indefinitely, and it generates an infinite set of
integers a, , a,, a3, - - - - Inthiscase, we say that x has the infinite decimal representation

X = pa,asay .

At the nth stage, x satisfies the inequalities

a; ay a, a, +1
a —_— [ — x —_— “ e
0+10+ +10n< <ao+10+ + 10"

This gives us two approximations to x, one from above and one from below, by finite
decimals that differ by 10-". Therefore we can achieve any desired degree of accuracy in
our approximations by taking n large enough.

When x = 3, it is easy to verify that a, = 0 and a, = 3 for all n > 1, and hence the
corresponding infinite decimal expansion is

1=0333 .

Every irrational number has an infinite decimal representation. For example, when x = \/E

we may calculate by trial and error as many digits in the expansion as we wish. Thus, V2
lies between 1.4 and 1.5, because (1 .4)* < 2 < (1.5)%. Similarly, by squaring and com-
paring with 2, we find the following further approximations:

141 < V2 < 142, 1414 < V2 < 1415 14142 < V2 < 14143,

Note that the foregoing process generates a succession of intervals of lengths10-1, 102,
1073, ..., each contained in the preceding and each containing the point x. This is an
example of what is known as asequence of nested intervals, aconcept that is sometimes used
as a basis for constructing the irrational numbers from the rational numbers.

Since we shall do very little with decimals in this book, we shall not develop their prop-
erties in any further detail except to mention how decimal expansions may be defined
analytically with the help of the least-Upper-bound axiom.

If x is a given positive real number, let a, denote the largest integer < x.  Having chosen
a, , we let a, denote the largest integer such that

a
a, + = < x.
10
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More generally, having chosen a, , a,, ..., 4,_; , we let a, denote the largest integer such
that
as a, a
11 G+ —+—=4+""4+2<Lx.
(117) °T 0T 107 + + or =

Let S denote the set of all numbers

(118 a+9ﬁ+&+...+h
“T10 102 10"
obtained in thisway for n =0, 1,2,.... Then S is nonempty and bounded above, and

it is easy to verify that x is actually the least upper bound of S.  The integers a,, a;, a5, - - .
so obtained may be used to define a decimal expansion of x if we write

X = ag.a,a,ag

to mean that the nth digit a, is the largest integer satisfying (1.17). For example, if x = L,
we find a, =0,a, = 1,a = 2 a;=5,and a, =0for all n > 4. Therefore we may write

3 = 0.125000 - - -

If in (1.17) we replace the inequality sign < by <, we obtain a slightly different definition
of decimal expansions. The least upper bound of all numbers of the form (1.18) is again x,
although the integers a, , a,, a,, . . . need not be the same as those which satisfy (1.17). For
example, if this second definition is applied to x = }, we find a, =0, a, = 1, a4, = 2,
a, =4, and a, =9 for all n > 4. This leads to the infinite decimal representation

}=0124999 « o .

The fact that a real number might have two different decimal representations is merely a
reflection of the fact that two different sets of real numbers can have the same supremum.

Part 4. Mathematical Induction, Summation Notation, and
Related  Topics

14.1 An example of a proof by mathematical induction

There is no largest integer because when we add 1 to an integer k, we obtain k + 1,
which is larger than k. Nevertheless, starting with the number 1, we can reach any positive
integer whatever in a finite number of steps, passing successively from k to k + 1 at each
step. This is the basis for a type of reasoning that mathematicians call proof by induction.
We shall illustrate the use of this method by proving the pair of inequalities used in Section
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1.3 in the computation of the area of a parabolic segment, namely
n3
(119 12+22+-~-+(n—])2<~3—<12+22+"'+n2.

Consider the leftmost inequality first, and let us refer to this formula as A(n) (an assertion
involving n). It is easy to verify this assertion directly for the first few values of n. Thus,
for example, when n takes the values 1, 2, and 3, the assertion becomes

12 28 33
A(l):0<°§, A(2): 1% < 3 AQ3): 12+ 22< 7

provided we agree to interpret the sum on the left as O when n = 1.

Our object is to prove that A(n) is true for every positive integer n. The procedure is as
follows: Assume the assertion has been proved for a particular value of n, say for n = k.
That is, assume we have proved

k3
AKR: 12+ 28+ .+ (k=1 < 3

for a fixed k > 1. Now using this, we shall deduce the corresponding result for k + 1:

A+ 112+ 224+ ki< (k+3 1’

Start with A(k) and add k2 to both sides. This gives the inequality

3
12+22+...+k2<%+ k%,

To obtain A(k + 1) as a consequence of this, it suffices to show that

3 3
K210
3 3
But this follows at once from the equation

3 3 2 3
(k1" K+ 3k ?3k+1=k§+k2+k+§.

Therefore we have shown that A(k + 1) follows from A(k). Now, since A(1) has been
verified directly, we conclude that A(2) is also true. Knowing that A(2) is true, we conclude
that A(3) istrue, and so on. Since every integer can be reached in thisway, A(n) is true for
all positive integersn. This proves the leftmost inequality in (1.19). The rightmost inequality
can be proved in the same way.
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14.2 The principle of mathematical induction

The reader should make certain that he understands the pattern of the foregoing proof.
First we proved the assertion A(n) for n = 1. Next we showed that if the assertion is true
for a particular integer, then it is also true for the next integer.  From this, we concluded
that the assertion is true for all positive integers.

The idea of induction may be illustrated in many nonmathematical ways. For example,
imagine a row of toy soldiers, numbered consecutively, and suppose they are so arranged
that if any one of them falls, say the one labeled k, it will knock over the next one, labeled
k + 1. Then anyone can visualize what would happen if soldier number 1 were toppled
backward. It is also clear that if a later soldier were knocked over first, say the one labeled
n, , then a]l soldiers behind him would fall. This illustrates a slight generalization of the
method of induction which can be described in the following way.

Method of proof by induction. Let A(n) be an assertion involving an integer n. We
conclude that A(n) is true for every n > n, if we can perform the following two steps:
(@) Prove that A(n,) is true.
(b) Let k be an arbitrary but fixed integer >n, . Assume that A(k) is true and prove that
A(k + 1) is also true.

In actual practice », is usually 1. The logical justification for this method of proof is the
following theorem about rea numbers.

THEoReM 1.36. PRINCIPLE oF MATHEMATICAL inouction. Let § be a set ofpositive
integers  which has the following { wo properties

(& The number lisin the set S.

(b) If aninteger kisin S, then s0isk + 1.
Then every positive integer isinthe set S.

Proof. Properties (a) and (b) tell us that S is an inductive set. But the positive integers
were defined to be exactly those real numbers which belong to every inductive set. (See
Section 1 3.6.) Therefore S contains every positive integer.

Whenever we carry out a proof of an assertion A(n) for all n > 1 by mathematica induc-
tion, we are applying Theorem 1.36 to the set S of all the integers for which the assertion is
true. If we want to prove that A(n) is true only for n > n, , we apply Theorem 1.36 to the
set of n for which A(n + n, — 1) is true.

*] 4.3 The well-ordering principle

There is another important property of the positive integers, called the well-ordering
principle, that is also used as a basis for proofs by induction. It can be stated as follows.

THEOREM 1.37. WELL-ORDERING PRINCIPLE.  Every nonempty set of positive integers
contains & smallest member.

Note that the well-ordering principle refers to sets of positive integers. The theorem is
not true for arbitrary sets of integers. For example, the set of all integers has no smallest
member .
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The well-ordering principle can be deduced from the principle of induction. This is
demonstrated in Section 14.5. We conclude this section with an example showing how the
well-ordering principle can be used to prove theorems about positive integers.

Let A(n) denote the following assertion:

3 2
A): 12+ 22+ .. '+n2='—;—+n§+

[ R

Again, we note that A(1) is true, since

1% =

+

[T

+

=
ol=

Now there are only two possibilities. We have either

(i) A(n) is true for every positive integer n, or

(ii) there is at least one positive integer n for which A(n) is false.
We shall prove that alternative (ii) leads to a contradiction. Assume (ii) holds. Then by
the well-ordering principle, there must be a smallest positive integer, say k, for which
A(Kk) is false. (We apply the well-ordering principle to the set of all positive integers » for
which A(n) is false. Statement (ii) says that this set is nonempty.) This k must be greater
than 1, because we have verified that A(1) is true. Also, the assertion must be true for
k — 1, since k was the smallest integer for which A(K) is false; therefore we may write

A(k—l):12+22+u +(k_1)2:___3__])3+___2_1)2+ .

Adding k* to both sides and simplifying the right-hand side, we find
P42+, +EB==4+=+-.

But this equation states that A(k) istrue; therefore we have a contradiction, because k is
an integer for which A(k) is false. In other words, statement (ii) leads to a contradiction.
Therefore (i) holds, and this proves that the identity in question is valid for all values of
n > 1. An immediate consequence of this identity is the rightmost inequality in (1.19).

A proof like this which makes use of the well-ordering principle is aso referred to as
a proof by induction. Of course, the proof could aso be put in the more usua form in
which we verify A(1) and then pass from A(k) to A(k + 1).

14.4 Exercises

1. Prove the following formulas by induction :
@1+2+3+. .+ n=n(n+ D2
M1+3+5+.+((2n~1)=nr%
@V +P+F 4.+ =(1+2+3 ++nt
@B+ 2P+ + =1 <4< P+ 2+ 40
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10.

11.

12.

Note that
1=1,
l=4= —(1+2)
1—449=1+4+2+3,
1 =4+9 =16= —(1+2 +3 +4).
Guess the general law suggested and prove it by induction.
. Note that

1+%= _%’
l+i+1=2-4,
t+3+3+3=2-1.

Guess the general law suggested and prove it by induction.

. Note that
1_%=%5
l=-DA-=9=3,
(1=Ha~-Ha-4={.

Guess the general law suggested and prove it by induction.

. Guess a general law which simplifies the product

(-8 (-3

and prove it by induction.

. Let A(n) denote the statement: 1 + 2 + . + p= {@Q2n + )%

(a) Provethat if A(k) istrue for an integer k, then A(k + 1) isalso true.
(b) Criticize the statement : “By induction it follows that A(n) istrue for all n.”
(c) Amend A(n) by changing the equality to an inequality that is true for all positive integers n.

. Let n, be the smallest positive integer n for which the inequality (1 + x)* > 1 + nx + nx?is

true for all x > 0. Compute »,, and prove that the inequality is true for all integers n > ny -

. Given positive real numbers g, , a;,as, . . ., such that a, < ca,_; for alln > 2, where cis a

fixed positive number, use induction to prove that a, < a;c®*forall n> 1.

. Prove the following statement by induction: If aline of unit length is given, then a line of

length \/1_1 can be constructed with straightedge and compass for each positive integer n.
Let b denote a fixed positive integer. Prove the following statement by induction: For every
integer n> 0O, there exist nonnegative integersq and r such that

n=qb +r, 0<r<b.

Let n and d denote integers. Wesay that dis adivisor of sif n = cd for some integer c. An
integer niscalled aprime if p>> 1 and if the only positive divisors of n are 1 and n, Prove, by
induction, that every integer n> 1 iseither a prime or a product of primes.

Describe the fallacy in the following “proof™ by induction:

Statement. Given any collection of p blonde girls. If at least one of the girls has blue eyes,
then all n of them have blue eyes.

“Proof.”” The statement is obviously true when p = 1. The step from k to k + 1 can
be illustrated by going from = 3 to s = 4. Assume, therefore, that the statement is true
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when n = 3 andlet G;, G, G, G, be four blonde girls, at |east one of which, say G;, has blue
eyes. Taking G,, G,, and G, together and using the fact that the statement is true whenp =3,
we find that G, and G; dso have blue eyes Repedting the process with G, G, ad G,, we find
that G, has blue eyes. Thusall four have blue eyes. A similar argument allows us to meke
the step from k to k + 1 in general.

Corollary. ~ All blonde girls have blue eyes.

Proof. Snce there exids at least one blonde girl with blue eyes, we can apply the foregoing
reallt to the collection conssting of all blonde girls.

Note: Thisexampleisfrom G. Pdlya, who suggeststhat the reader may want to test the
vdidity of the datement by experiment.

*]1 4,5 Proof of the well-ordering principle

In this section we deduce the well-ordering principle from the principle of induction.

Let T be a nonempty collection of positive integers. We want to prove that T has a
smallest member, that is, that there is a positive integer ¢, in T such that 7, < ¢ forallz in T.

Suppose T has no smallest member. We shall show that this leads to a contradiction.
The integer 1 cannot be in T (otherwise it would be the smallest member of T). Let S
denote the collection of all positive integers n such that n < ¢ for all t in T. Now 1 isin §
because 1 < ¢ for all ¢ in T. Next, let k be a positive integer in S. Then k< t forall¢ inT.
We shall prove that k + 1 isalso in §. If this were not so, then for some ¢, in T we would
have t; < k + 1. Since T has no smallest member, there is an integer ¢, in T such that
t, <t,, and hence t, < k + 1. But this means that ¢, < k, contradicting the fact that
k <t for all t in T. Therefore k + 1 is in S. By the induction principle, S contains all
positive integers. Since Tisnonempty, there is a positive integer ¢ in T. But this ¢t must also
bein S (since S contains all positive integers). It follows from the definition of S that ¢ <¢,
which is a contradiction. Therefore, the assumption that T has no smallest member leads
to a contradiction. It follows that T must have a smallest member, and in turn this proves
that the well-ordering principle is a consequence of the principle of induction.

14.6 The summation notation

In the calculations for the area of the parabolic segment, we encountered the sum
(1.20) 12+ 22+ 32+, -+ pt,

Note that a typical term in this sum is of the form k2, and we get all the terms by letting k
run through the values1, 2, 3, .. ., n. Thereis a very useful and convenient notation which
enables us to write sums like this in a more compact form. This is called the summation

notation and it makes use of the Greek letter sigma, Z Using summation notation, we can
write the sum in (1.20) as follows:

K.

M=

k=1

This symbol is read: “The sum of k2 for k running from 1 to ».” The numbers appearing
under and above the sigma tell us the range of values taken by k. The letter k itsdf is
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referred to as the index of summation. Of course, it is not important that we use the letter
k; any other convenient letter may take its place. For example, instead of > | k* we could
write 37 i3 > % 3" m?, etc., all of which are considered as alternative notations for
the same thing. The lettersi, j, k, m, etc. that are used in this way are called dummy indices.
It would not be a good idea to use the letter n for the dummy index in this particular example
because n is already being used for the number of terms.

More generally, when we want to form the sum of several real numbers, say a, , a, . . .,
a,, we denote such a sum by the symbol

(1.22) a+ a +...+a4a

which, using summation notation, can be written as follows:

M=

(1.22) ay -

=
]

For example, we have

Me

a.=ay+ as+ a3 + a4,
1

k:

5
in=x1+xz+x3+x4+x5
-1

Sometimes it is convenient to begin summations from O or from some value of the index
beyond 1. For example, we have

X; = X+ Xy X3+ X3+ Xg,

k3

Mo th

nt= 20+ B g S

n==2

Other uses of the summation notation are illustrated below:

xm+]‘.=x+x2+x3+x4+x5,

3
i =

=

27T =1+ 24+ 224 2%+ 20+ 25

o

=1

To emphasize once more that the choice of dummy index is unimportant, we note that the
last sum may also be written in each of the following forms:

6 5 5 6
2(1——1 = 21‘ — 25—n =Y 26—k.
qgl 'rgo n§0 kgi
Note:  From a strictly logical standpoint, the symbols in (1.21) and (1.22) do not appear
among the primitive symbols for the real-number system. In a more careful treatment, we
could define these new symbols in terms of the primitive undefined symbols of our system.
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This may be done by a process known as definition by induction which, like proof by induc-
tion, consists of two parts:
(a) We define

(b) Assuming that we have defined z;ﬂq{ for afixed n > 1, we further define

n

n+1
z a, = (zak) + a,.
k=1

k=1

Toillustrate, we may take n = 1 in (b) and use (&) to obtain

2 1
ay=a,+a,=a +a,.
1

k= k=1

Now, having defined >%_, a;, we can use (b) again with # = 2 to obtain

3 2
Yay = ap+ az= (a;+ @) + ay.
k=1 k=1

By the associative law for addition (Axiom 2), the sum (a; + a,) + a4 is the same as
a, +{a, + a,), and therefore there is no danger of confusion if we drop the parentheses
and simply write a, + a, + ag for >3 _, a, . Similarly, we have

4 3
Nay= Yap+ ay=(a + ay+ay) + a,

In this case we can proue that the sum (a; + a, + a;) + g, is the same as (g, + a,) +
(az + az)or g, + (a, + az+ a,), and therefore the parentheses can be dropped again with-
out danger of ambiguity, and we agree to write

4
Sap=a, + ay+ a3+ ay.
k=1

Continuing in this way, we find that (a) and (b) together give us a complete definition of
the symbol in (1.22). The notation in (1.21) is considered to be merely an alternative way of
writing (1.22). It isjustified by a general associative law for addition which weshall not
attempt to state or to prove here.

The reader should notice that definition by induction and proof by induction involve the
same underlying idea. A definition by induction is also called a recursiue definition.

14.7 Exercises

1. Find the numerical values of the following sums :

@3k © izwﬂ, @3 @i+,
K=l = =0

5 4 > 1
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2. Establish the following properties of the summation notation:

@@ +b)=Ya+>b (addtive property).
k=1 k=1 k=1

(b) i(cak) = c}njak (homogeneous  property).
k=1 k=1

© i(ak - y) = 4, =y (telescoping property).
k=1

Use the properties in Exercise 2 whenever possible to derive the formulas in Exercises 3
through 8.

3.3 1= a (This means 37_, a, where each g, = 1)
k=1
n
4.3 @k =1)=n%  [Hint: 2k = 1= k2 = (K = 1)2]
k=1
2
5-z L + il, [Hint: Use Exercises 3 and 4,]
ey 2 2
“ P o n . . _
6.2k2 = Hin: K- (k=17 = 32 =3k + 1]
£ 37276

’ T4 T2 T4
k=1

= 1 —xr . .
8 (a)Zx" = if X # 1. Note: x%is defined to be 1.
-~ X
k=0

[Hint: Apply Exercise2t0 (1 =x) >7_, x*]
(b) What is the sum equal to when x = 1?

9. Prove, by induction, that the sum 22’;1 (= 1Y*2k + 1) is proportional to n, and find the
constant of proportionality.

10. (a) Give a reasonable definition of the symbol >™+" a,.
(b) Prove, by induction, that for » > 1 we have

2n 1 22"(_1)m+1
Z k-~ m
m=1

k=n+1

11. Determine whether each of the following statements is true or false. In each case give a
reason for your decision.

10 100 100 99
(a)fn4 =yt @6+ =Y
n=0 n=1 =1 =0
100 100 100 100
(b) > 2 =200. (e)zk3=(2k)-<zk2).
=0 k=1 k=1 k=1

100 100 100 100 \3
©2QC+k)=2+ 3k (f)zk3=(zk).
%=0 =0 k=0 k=0
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12. Guess and prove a generd rule which smplifies the sum

= 1
;k(kﬂ)'

13. Prove that 2(vn + 1 = 4/n) < \/L_ <2(Vn —Vn—1)ifn > 1 Then use thisto prove
that n

m
1
2\/; -2 < — < 2'\/’; — 1
27
if m> 2 Inparticular, when m =108, the sum lies between 1998 and 1999.

14.8 Absolute values and the triangle inequality

Cdlculations with inequalities arise quite frequently in calculus. They are of particular
importance in dealing with the notion of absolute value. If x is a real number, the absolute
value of x is a nonnegative real number denoted by |x| and defined as follows:

x if x>0,
lx] =

- X i f x<0.

Note that — |x] £ x < [x]. When real numbers are represented geometrically on a real axis,
the number |x]| is called the distance of x from 0. If a > 0 and if a point x lies between -a
and a, then |x| is nearer to O than a is. The analytic statement of this fact is given by the
following theorem.

TEcRem  1.38. Ifa >0, then |x| < a ifand only if -a < x < a.

Proof. There are two statements to prove: first, that the inequality |x| < a implies the
two inequalities -a < x < a and, conversely, that -a < x € a implies [x] < a.

Suppose |x] € a. Then we also have -a < —|[x|. But either x = |x] or x = —]x] and
hence -a € —[x] £ x < |x] £ a. This proves the first statement.

To prove the converse, assume -a €< x < a. Then if x > 0, we have [x]= x £ a,
whereas if x € 0, we have |x] = —x < a. In either case we have x| < a, and this com-
pletes the proof.

Figure 1.9 illustrates the geometrical significance of this theorem.

[x] < ain this interval

0
Flare 19 Geometricd — sgnificance  of  Theorem 138,

As a consequence of Theorem 1.38, it is easy to derive an important inequality which
states that the absolute value of a sum of two real numbers cannot exceed the sum of their
absolute values.
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theorem  1.39.  For arbitrary real numbers x and y, we have
lx + 1 < Ixl + Iyl

Note: This property is cdled the triangle inequality, because when it is generdized to
vectors it dates that the length of any side of a triangle is less than or equd to the sum of
the lengths of the other two sides.

Proof. Adding the inequalities —|x| <x < [x[and —|y| <y < ||, we obtain
—(xl+ DL >+ Y Lixl+ b,
and hence, by Theorem 1.38, we conclude that |x + y| < [x| + |y].
If wetdkex =a—=candy = c=D, thenx + y = a = b and the triangle inequality
becomes

la =blLla—c|+ [b=c¢f.

This form of the triangle inequality is often used in practice.
Using mathematical induction, we may extend the triangle inequality as follows:

theorem  1.40.  For arbitrary real numbers a,, a;, . . ., a,, we have

Zak < Elakl .
k=1 k=1

Proof. When n = 1 the inequality is trivial, and when n = 2 it is the triangle inequality.
Assume, then, that it is true for » real numbers. Then for n + 1 real numbers a, ,
a,.1 » We have

dy, ...,

n+1

Eak

n+1

Zak + ann + |an+ll < Zlakl + lapl = Z |ay| -

<|3a

Hence the theorem is true for n + 1 numbers if it is true for n. By induction, it is true for
every positive integer n.

The next theorem describes an important inequality that we shall use later in connection
with our study of vector algebra

THEOREM 1.41. THE CAUCHY- SCHWARZ | NEQUALI TY. Ifal,. . ..a. andb,, . . .,bnare
arbitrary real numbers, we have

The equality sign holds if and only if there is a real number x such that a,x + b, = 0 for each
k=12...,n
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Proof. We have 37 | (a,x + b,)* > 0 for every real x because a sum of squares cap
never be negative. This may be written in the form

(1.24) Ax* 4+ 2Bx+ C2>0,
where
A=3Xa;, B=2ab;, cC=>b;.
k=l k=1 k=l

We wish to prove that B? < AC. If A =0, then each a, =0, so B = 0 and the result is
trivia. If A 3 0, we may complete the square and write

AC — B?

B2
Ax* 4+ 2B C= ( —)
x*+ 2Bx + Ax+A + X

The right side has its smallest value when x = —B/A. Putting x = — B[4 in (1.24), we
obtain B® < AC. This proves (1.23). The reader should verify that the equality sign holds
if and only if there is an x such that a;x + b, = 0 for each k.

14.9 Exercises

1. Prove each of the fdlowing propeties of absolute values.
@lxl=0ifandonly if x=0.  (f) lxyl = |x] Jyl.

(®) |—x| = |x]. @ Ix[yl = |x|/lyl ify # 0.
© lx =yl =1y = x| (h) lx =yl < x| + |yl
(d) Ixl* = 42 @) Ix] =yl < Ix =yl
(e) Ixl = V2 G |lxl =l <lx =yl

2. Each inequality (a;), listed below, is equivalent to exactly one inequality (4;). For example,
|x| < 3if and only if -3 < x < 3, and hence (g,) is equivalent to (4,), Determine ]| equivalent
pairs.

(@) x| < 3. (b) 4 < x < 6.

(@) Ix = 1l < 3. (b)) -3 < x <3

(ag) 3—2x1< 1L (by) x > 3 or x < -1

(ap I + 2x| < 1. (b)) x > 2.

(@) Ix =1] > 2 (by) -2 < x < 4.

(@) Ix + 2| > 5. () —V3<x<—-10 T  1<x<V3
(@) 5= x1 < 1. b) 1<x<2

(ag) | =51 < |x+1|. b x <=7 o X >3

(ag) ¥* =21 < 1. (b) 3§ <x< &

() X< x¥ = 12<4 (b -1 < x<0.
3. Determine whether each of thefollowing istrue or false. In each case give areason for your
decision.
(@ x < 5 implies |x] < 5.
(b) |x = 5| <2 implies3<x <7
(© |1+ 3x] < 1impliesx > —2,
(d) Thereis no real x for which |x =1|=|x = 2|.
(e) For every x > O thereisay > 0 such that |2x + y[ = 5.
4. Show that the equality sign holds in the Cauchy-Schwaz inequdity if and only if there is a red
number x such that g;x + b, = 0 for every k= 1,2, ..., n.
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*14.10 Miscellaneous exercises involving induction

In this sction we asemble a number of miscellaneous facts whose proofs ae good exercises in

the use of mathematica inducion. Some of these exercisss may seve as a bads for supplementary
classroom discussion.

Factorials and binomial coefficients. The symbol n! (read “n factorial’’) may be defined by in-
duction as follows: 0! =1,n! =(n — 1)! nifn > 1. Notethatn! =1-2-3-:-pn
If 0 <k < n, thebinomial coefficient () is defined as follows:

'n n!
(k) K=K

Note: Sometimes ,C; is written for (%). These numbers appear as coefficients
in the binomia theorem. (See Exercise 4 below.)

1. Compute the veues of the following binomid coefficients :
@G, OGO ©@O @O @©a, o).

2. (a) Show that (%) = (,, ") (c) Find k, given that (%) = (;** ).
(b) Find n, given that ( ) = (%). (d) Is there a k such that (12) = ( ,1%,)?

3. Prove that (") = (," ;) + (}). Thisis called the law of Pascal’s triangle and it provides a
rapid way of computing binomial coefficients successively. Pascal’striangleisillustrated here
forn < 6.

15 10 10 5 !
1 6 15 20 15 6 !

4. Use induction to prove the binomial theorem

(@ + by =Z(Z)akbn-k.

k=0

Then use the theorem to derive the formulas

2(2)=2n and ;(—1)76(;):0, if n>o0

k=0

The product notation. The product of # real numbersa,, a,, . . . , a, is denoted by the symbol
TTe., a, which may be defined by induction. The symbol aja, . .. a is an atemaive notation for
this product. Note that

n

n! :Hk.

5. Give a definition by induction for the product T ¢, a.
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Prove the following properties of products by induction:

6. '[T(akbk) (TT )('ﬂ'bk) (multiplicative property).

Animportant special caseisthe relation T, (ea) = ¢* | [1; ay.

7. '[‘]'ﬁ = if eacha, %0  (telescoping property).
=1%1 %

8. If x # 1, show that

n 42"
TTa + =122
x=1 1

— x *
What is the value of the product whenx =17

9.1f @, < by foreach k = 1,2,... ,nitiseasy toprove by induction that >7_ a; < >%_, b,.
Discuss the corresponding inequality for products:

n n
[Tae <] b
k=1 k=1
Some  special  inequalities

10. If x > 1, prove by induction that x® > x for every integer n > 2. If 0 < x < 1, prove that
x™ < X for every integer n > 2.

11. Determine all positive integers » for which 27 <n!.
12. (a) Use the binomial theorem to provethat for n apositive integer we have

(14 )‘”Z{k' -5

(b) If n> 1, use part (a) and Exercise 11 to deduce the inequalities

(1+ ) <1+ZF<3

13. (a) Let p be apositive integer. Prove that
B =aP = (b —a)B" + pP2 + bP e + ... 4 pgr? + grY) .
[Hint: Use the telescoping property for sums.]
(b) Let p and r denote positive integers. Use part (@) to show that

(ﬂ + ])I)‘H — an—l

p T T B
< IES <{n+1)
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(c) Useinduction to prove that

n—1 ety
Z k? < - 1< z k?
k=1 ‘D + k=

Part (b) will assist in making theinductive step from nton + 1.
14. Letq, ..., a, be nred numhers, all having the same sign and alf greater than -1. Use
induction to prove that

QI+apd+a’)..-(I+ay)2>21+a +a, +---+a,.
In particular, when a, = g, = ..= g, = X, where x > -1, this yields
(1.25) AL+x" 21+ nx (Bernoull’s  inequulity).
Show that when » > 1 the equality sign holdsin (1.25) only for x = 0.
15. If g > 2, prove that r!/n" < ()%, where k is the greatest integer < n/2.

16. The numbers 1, 2, 3, 5, 8, 13, 21, . . ., in which each term after the second is the sum of its
two predecessors, ae cdled Fibonucci  numbers. They may be defined by induction es follows :

a1:11 a2:21 a,H_l: an+ an_l |f n22.
Prove that
<(1 + \/3)"
n o~
for every n> 1.
Znequulities relating di'rent types of uveruges Let xy, xy, ..., x, be n positive red numbers.

If pisanonzero integer, the pth-power mean M, of the n numbersis defined as follows :

+ ...+ 1/p
. x?P x2
M, = (—1 - m) .

The number M, is also called the urithmetic mean, M, the root mean square, and M_, the
hurmonic mean.

17. 1fp > O, prove that M, < M,, when x; , x, , .. ., x, are not all equal.
[Hint: Apply the Cauchy-Schwarz inequality with g, = x? and b, = 1.]
18. Use the result of Exercise 17 to prove that

at+ b+t

ifa2+p+c2=8anda>0,b>0,¢c>0.
19. Leta,, ..., a, ben positive real numbers whose product is equal to 1. Provethat a, + '+ +
a, > n and that the equality sign holds only if every q; = 1.

[Hint: Consider two cases: (a) All g, = 1; (b) not all g, = 1. Use induction. In case
(b) noticethat if a4, . . . a1 = 1, then at least one factor, say a; , exceeds 1 and at |east
one factor, say g, , islessthan 1. Let b; = ¢ja,,; and ply the induction hypothess to
the product bya, . » @, , using the fact that (g; = 1)(a,,; — 1) < 0.]
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21,

23

The geometric mean G of n positive real numbersx, , ..., x, is defined by theformula G =
(ot - - - XM

(a) Let M, denote the pth power mean. Provethat G < M, and that G = M, only when
x1=x2=... =xn'

(b) Let p and ¢ beintegers, ¢ <0< p. From part (a) deduce that M, < G < M, when x_,
Xg 4.1y Xy arenot all equal.

Use the resllt of Exercise 20 to prove the following datement : |If a, b, and c are positive real
numbers such that abc = 8, thena+b+c> 6 and ab + ac + bc> 12.
If x;, . .., x, are positive numbers and if y, = 1/x;, prove that

(S (En) 2

If & b, and ¢ are positive and if a+ b + ¢ =1, prove that (1 = a)(1 = b)(I — c) 2> 8abc.



THE CONCEPTS OF INTEGRAL CALCULUS

In this chapter we present the definition of the integral and some of its basic properties.
To understand the definition one must have some acquaintance with the function concept;
the next few sections are devoted. to an explanation of this and related ideas.

1.1 The basic ideas of Cartesian geometry

As mentioned earlier, one of the applications of the integral is the calculation of area.
Ordinarily we do not talk about area by itself. Ingead, we tdk about the area of something.
This means that we have certain objects (polygona regions, circular regions, parabolic
segments, etc.) whose areas we wish to measure. |f we hope to arrive at a treatment of areg
that will enable us to deal with many different kinds of objects, we must first find an effective
way to describe these objects.

The most primitive way of doing this is by drawing figures, as was done by the ancient
Greeks. A much better way was suggested by René Descartes (1596-1650), who introduced
the subject of analytic geometry (also known as Cartesian geometry). Descartes' idea was
to represent geometric points by numbers. The procedure for pointsin a plane is this:

Two perpendicular reference lines (called coordinate axes) are chosen, one horizontal
(called the “x-axis’), the other vertical (the “‘y-axis’). Their point of intersection, denoted
by O, iscalled theorigin. On the x-axis a convenient point is chosen to the right of 0 and
its distance from O is called the unit distance. Vertical distancesalong the y-axis are usually
measured with the same unit distance, although sometimes it is convenient to use a different
scale on the y-axis. Now each point in the plane (sometimes called the xy-plane) is assigned
a pair of numbers, called its coordinates. These numbers tell us how to locate the point.
Figure 1.1 illustrates some examples. The point with coordinates (3, 2) lies three units to
the right of they-axis and two units above the x-axis. The number 3 is called the x-coordinate
of the point, 2 its y-coordinate. Points to the left of the y-axis have a negative x-coordinate;
those below the x-axis have a negative y-coordinate. The x-coordinate of a point is some-
times called its abscissa and the y-coordinate is called itsordinate.

When we write a pair of numbers such as (a, b) to represent a point, we agree that the
abscissa or x-coordinate, a, is written first. For this reason, the pair (a, b) is often referred
to as an orderedpair. It isclear that two ordered pairs (a, b) and (c, d) represent the same
point if and only if we have a == c and b = d. Points (a, b) with both a and b positive
are said to lie in the first quadrant; those witha < 0andb > 0 areinthe second quadrant;

48



The basic ideas of Cartesian geometry 49

those with a < 0 and b < O arein the third quadrant; and those with a >0and b < 0
are in the fourth quadrant. Figure 1.1 shows one point in gach quadrant.

The procedure for points in space is similar. We take three mutually perpendicular
lines in space intersecting at a point (the origin). These lines determine three mutually
perpendicular planes, and each point in space can be completely described by specifying, with
appropriate regard for signs, its distances from these planes. We shall discussthree-dimen-
sional Cartesian geometry in more detail later on; for the present we confine our attention
to plane analytic geometry.

A geometric figure, such as a curve in the plane, is a collection of points satisfying one
or more special conditions. By translating these conditions into expressions involving the

y-axis v

2 --------- "|(3,2) P = (X,y)
X P— L . 71

X

s 4 -3 2 10| 1 2 3 4

-1 ! | x|
|
|
i

Ficure 1.1 Ficure 1.2 The circle repre-

sented by the Cartesian equation
2

X2+ Y= R
coordinates x and y, we obtain one or more equations which characterize the figure in
question. For example, consider a circle of radius r with its center at the origin, as shown
in Figure 1.2. Let P be an arbitrary point on this circle, and suppose P has coordinates
(X, ¥). Then the line segment OP is the hypotenuse of a right triangle whose legs have
lengths |x| and |y| and hence, by the theorem of Pythagoras,

x2+ y2= r2.

This equation, called a Cartesian equation of the circle, is satisfied by all points (x, y) on
the circle and by no others, so the equation completely characterizes the circle. This
example illustrates how analytic geometry is used to reduce geometrical statements gbout
points to analytical statements ahout real numbers.

Throughout their historical development, calculus and analytic geometry have been
intimately intertwined. New discoveries in one subject led to improvements in the other.
The development of calculus and analytic geometry in this book is similar to the historical
development, in that the two subjects are treated together. However, our primary purpose
is to discuss calculus. Concepts from analytic geometry that are required for this purpose
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will be discussed as needed. Actually, only afew very elementary concepts of plane analytic
geometry are required to understand the rudiments of calculus. A deeper study of analytic
geometry is needed to extend the scope and applications of calculus, and this study will be
carried out in later chapters using vector methods as well as the methods of calculus.
Until then, all that is required from analytic geometry is a little familiarity with drawing
graphs of functions.

1.2 Functions. Informal description and examples

Various fields of human endeavor have to do with relationships that exist between one
collection of objects and another. Graphs, charts, curves, tables, formulas, and Gallup polls
are familiar to everyone who reads the newspapers. These are merely devices for describing
special relations in a quantitative fashion. Mathematicians refer to certain types of these
relations as functions. In this section, we give an informal description of the function
concept. A formal definition is given in Section 1.3.

exaveLe |, The force F necessary to stretch a steel spring a distance x beyond its natural
length is proportional to x. That is, F = cx, where ¢ is a number independent of x called
the spring constant. This formula, discovered by Robert Hooke in the mid-17th Century, is
caled Hooke's law, and it is said to express the force as a function of the displacement.

exaveLe 2. The volume of a cube is a function of its edge-length. If the edges have
length x, the volume Vis given by the formula ¥V = 3.

exavele 3. A prime is any integer n > 1 that cannot be expressed in the form n = ab,
where a and b are positive integers, both less than n. The first few primesare 2, 3, 5, 7, 11,
13, 17, 19. For agiven rea number x > 0, it is possible to count the number of primes less
than or equal to x. This number is said to be a function of X even though no simple algebraic
formula is known for computing it (without counting) when x is known.

The word ““function” was introduced into mathematics by Leibniz, who used the term
primarily to refer to certain kinds of mathematical formulas. It was later realized that
Leibniz's idea of function was much too limited in its scope, and the meaning of the word
has since undergone many stages of generalization. Today, the meaning of function is
essentially this: Given two sets, say X and Y, afunction is acorrespondence which associates
with each element of X one and only one element of Y. The set X iscalled the domain of the
function. Those elements of Y associated with the elementsin X form a set called the range
of the function. (This may be all of Y, but it need not be.)

Letters of the English and Greek alphabets are often used to denote functions. The
particular letters f, g, h, F, G, H, and ¢ are frequently used for this purpose. | ff isagiven
function and if x is an object of its domain, the notation f(x) is used to designate that object
in the range which is associated to x by the function f, and it is called the value off at x
or the image of x under f. The symbol f(x) isread as “f of x.”

The function idea may be illustrated schematically in many ways. For example, in
Figure 1.3(a) the collections X and Y are thought of as sets of points and an arrow is used
to suggest a “pairing” of a typical point x in X with the image point f(x) in Y. Another
scheme is shown in Figure 1.3(b). Here the function f is imagined to be like a machine into
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(@) & T

Ficure 1.3 Schematic representations of the function idea.

which objects of the collection X are fed and objects of Y are produced. When an object x
is fed into the machine, the output is the object f(x).

Although the function idea places no restriction on the nature of the objects in the domain
X and in the range Y, in elementary calculus we are primarily interested in functions whose
domain and range are sets of real numbers. Such functions are called real-valued functions
of a real variable, or, more briefly, real functions, and they may be illustrated geometrically
by a graph in the xy-plane. We plot the domain X on the x-axis, and above each point x in
X we plot the point (X, y), wherey = f (). The totality of such points (X, y) is caled the
graph of the function.

Now we consider some more examples of real functions.

EXAMPLE 4. The identity function. Suppose that f(x) = x for all real x. This function
is often called the identity function. Its domain is the real line, that is, the set of all real
numbers. Here x =y for each point (x, y) on the graph of f. The graph is a straight line
making equal angles with the coordinates axes (see Figure 1.4). The range off is the set of
all real numbers.

exampLe 5. The absolute-value function. Consider the function which assigns to each
real number x the nonnegative number |x|. A portion of its graph is shown in Figure 1.5,

Yy
A
Y o
} p(x) = |x|
flx) = x
0 X 0 —- X
Ficure 1.4 Graph of the identity Ficure 1.5 Absolute-value

function f(x) = x. function q(x) = |x|.
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Denoting this function by ¢, we have ¢(x) = |x| for all red x. For example, @(0) = 0,
®(2) = 2, ¢( = 3) = 3. Welist here some properties of absolute values expressed in function
notation.

@ (=% = ). (@) ¢le()] = (x) ,
(b) ¢(x?) = x2. © gx) = V2.
(© ¢(x +y) < ¢x)+ ¢(y) (the triangle inequality) .

exaveLe 6. Theprime-numberfimction. For any X > 0, let #(x) be the number of primes
less than or equal to x. The domain of 7 is the set of positive real numbers. Its range is the
set of nonnegative integers {0,1, 2,. .. }. A portion of the graph of 7 is shown in Figure 1.6.

y
A
64
5+ [
n{ nl n n!
4 P
* 1 6 720
3T ° 2] 2l 7 5,040
2T -— 3 8 40,320
14 — 41 2411 9 362,880
R R R L 5 1120 }] 10| 3,628,800
I l 1 > x
0 T T T T 1 1 I T T T T T
2 3 5 7 11 13
Ficure 1.6 The prime-number function. Ficure 1.7 The factorial

function.

(Different scales are used on the x- and y-axes.) As x increases, the function value (x)
remains constant until x reaches a prime, at which point the function value jumps by 1.
Therefore the graph of 7 consists of horizontal line segments. This is an example of a class
of functions called step functions; they play a fundamental role in the theory of the integral.

exaveLe 7. The factorial function. For every positive integer n, we define f(n) to be
pl=1+2+-+n. In this example, the domain off is the set of positive integers. The
function values increase so rapidly that it is more convenient to display this function in
tabular form rather than as a graph. Figure 1.7 shows a table listing the pairs (n, n!) for
n=12...,10

The reader should note two features that all the above examples have in common.

(1) For each x in the domain X there is one and only one image y that is paired with that
particular  Xx.

(2 Each function generates a set of pairs (X, y), where x is a typica element of the
domain X, and y is the unique element of Y that goes with X.

In most of the above examples, we displayed the pairs (x, y) geometrically as points on a
graph. In Example 7 we displayed them as entries in a table. In each case, to know the
function is to know, in one way or another, 4/l the pairs (x, y) that it generates. This simple
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observation is the motivation behind the formal definition of the function concept that is
given in the next section.

*1.3 Functions. Formal definition as a set of ordered pairs

In the informal discussion of the foregoing section, a function was described as a corre-
spondence which associates with each object in a set X one and only one object inaset Y.
The words “‘correspondence” and “associates with” may not convey exactly the same
meaning to all people, so we shall reformulate the whole idea in a different way, basing it on
the set concept. First we require the notion of an orderedpair of objects.

In the definition of set equality, no mention is made of the order in which elements
appear. Thus, the sets {2,5} and {5, 2} are equal because they consist of exactly the same
elements. Sometimes the order is important. For example, in plane analytic geometry the
coordinates (x, y) of a point represent an ordered pair of numbers. The point with co-
ordinates (2, 5) is not the same as the point with coordinates (5, 2), although the sets (2, 5}
and {5, 2) are equal. In the same way, if we have a pair of objects a and b (not necessarily
distinct) and if we wish to distinguish one of the objects, say a, as the first member and the
other, b, as the second, we enclose the objects in parentheses, (a, b). We refer to this as an
ordered pair. We say that two ordered pairs (a, b) and (c, d) are equa if and only if their
first members are equal and their second members are equal. That is to say, we have

(@, b)= (c,d) ifandonlyif a=c and b=d.

Now we may state the formal definition of function.

perinTion OF  runcrion. A function T is a set of ordered pairs (X, y) no two of which
have the same first member.

If £ isafunction, the set of all elements x that occur as first members of pairs (x, y) in T
is called the domain off. The set of second membersy is called the range off, or the set of
values off.

Tntuitively, a function can be thought of as a table consisting of two columns. Each
entry in the table is an ordered pair (X, y); the column of x’sisthe domain off, and the
column of y's, the range. If two entries (x, y) and (x, z) appear in the table with the same
x-value, then for the table to be a function it is necessary that y = z. In other words, a
function cannot take two different values at a given point x. Therefore, for every x in the
domain off there is exactly one y such that (x, y) €f. Since thisy is uniquely determined
once x is known, we can introduce a special symbol for it. It is customary to write

Y =f(x)

instead of (X, y) € f toindicate that the pair (x, y) isin the set f.

As an alternative to describing a function f by specifying explicitly the pairs it contains,
it is usually preferable to describe the domain of f, and then, for each x in the domain, to
describe how the function value f (x)is obtained. In this connection, we have the following
theorem whose proof is left as an exercise for the reader.
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THEOREM],],  Two functions f and g are equal if and only if
(@ f and g have the same domain, and
(b) f(x) = g(x) for every x in the domain of f.

It is important to realize that the objects x and f(x) which appear in the ordered pairs
(x, f (x)) of a function need not be numbers but may be arbitrary objects of any kind.
Occasionally we shall use this degree of generality, but for the most part we shall be interested
in real functions, that is, functions whose domain and range are subsets of the real line.

Some of the functions that arise in calculus are described in the next few examples.

1.4 More examples of real functions

1. Constant functions. A function whose range consists of a single number is called a
constant function. An example is shown in Figure 1.8, where f (x) = 3 for every red
X. The graph is a horizontal line cutting the y-axis at the point (0, 3).

-

i e(x) = 2x 1
Jx) = x*

FIGURE 1.8 A constant Feure 1.9 A linear function Feure 1.10 A quadratic
function f(x) = 3. gx) = 2X =~ 1. polynomia f(x) = x2

2. Linear functions. A function g defined for all real x by a formula of the form
gx) = ax+ b

is called a linear function because its graph is a straight line. The number b is called
the y-intercept of the ling; it is the y-coordinate of the point (0, b) where the line cuts
the y-axis. The number a is called the slope of the line. One example, g(x) = X, is
shown in Figure 1.4. Another, g(X) = 2x = ], is shown in Figure 1.9.

3. The power functions. For a fixed positive integer n, let f be defined by the equation
f(x) = x" for all real x. When n = 1, this is the identity function, shown in Figure 1.4.
For n = 2, the graph is a parabola, part of which is shown in Figure 1.10. For n = 3,
the graph is a cubic curve and has the appearance of that in Figure 1.11 (p. 56).
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4. Polynomial jiunctions. A polynomial function P is one defined for al] rea x by an
equation of the form

PX)=co+ cx+ -+ ¢, x" =;0Ckxk'

The numbers ¢;, ¢, , . . ., ¢, are caled the coefficients of the polynomial, and the
nonnegative integer n is caled its degree (if ¢, # 0). They include the constant fync-
tions and the power functions as special cases. Polynomials of degree 2, 3, and 4 are
caled quadratic, cubic, and quartic polynomials, respectively. Figure 1.12 shows a
portion of the graph of a quartic polynomial P given by P(x) = ix* — 2x2.

5. The circle. Suppose we return to the Cartesian equation of a circle, x*+ y?= r2 and
solve this equation for y in terms of x. There are two solutions given by

y=Vrr—xt ad y=-Vri— i,

(We remind the reader that if a > 0, the symbol Va denotes the positive square root
o a The negative square root is -\/E,) There was a time when mathematicians would

say that y isa double-valuedfunction of x given by y = +4/r2 — x2 However, the
more modern point of view does not admit “double-valuedness” as a property of
functions. The definition of function requires that for each x in the domain, there
corresponds one and only one vy in the range. Geometrically, this means that vertical

lines which intersect the graph do so at exactly one point. Therefore to make this

example fit the theory, we say that the two solutions for y define two functions, say

[ ad g, whee

F)=4rt—x2 ad g(x) = —1/r2 _ x2

for each x satisfying -r < x < r. Each of these functions has for its domain the
interval extending from -r to r. If |x|>r, there is no real y such that x2+ y? = r2,
and wessay that the functions f and g arenot dejined for sych x.  Since f (x) isthenon-
negative square root of r? — x2, the graphof f isthe upper semicircle shown in Figure
113, Thefunction values of g are < 0, and hence the graph of g isthe lower semicircle
shown in Figure 1.13.

6. Sums, products, and guotients of functions. Let f and g be two real functions having

the same domain D. We can construct new functionsfrom f and g by adding, multi-
plying, or dividing the function values. The function u defined by the equation

u(x) = f(x) + glx) if xeD

is called the sum off and g and is denoted by f +g. Smilaly, the productv=f + @
and the quotient w = f/g are the functions defined by the respective formulas

o(x) = f(x)g(x) if xE D,  wx)=f(x)g(x) if xeDandg(x) #0.



56 The concepts of integral calculus

P(x) =ix 2x2
" y
P(x) = x? S
A
s \ 0 —x { —
\\ /
PaN g
| g Sl ”
Ficure 111 A cubic Ficure 112 A quatic polynomid : Ficure 1.13 Graphs of
polynomial: P(x) = x8. P(X) = §x* = 2x2. two functions:

0= VA==,
g(x) = —~ V2 — &2,

The next set of exercises is intended to give the reader some familiarity with the use of

the function notation.

1.5 Exercises

1 Let f(x) = x + 1 for all real x. Compute the following: f(2), f( -2), f(2), f&), 1/fQ),
f@+b), f@+ f®), f@f ®).

2. Letf(x) =1+ x and let g(x) =1-— x for all red Xx. Compute the following: f(2) + g(2),

S = (), f(DgQ), fDg), f [gD], glf D), fla) + g(~a), f(D)g(—1).

3. Let ¢(x) = |x = 3| + |x = 1| for all real x. Compute the following: @(0), ¢(1), ¢(2), ¢(3),
@( —1), ¢ -2). Find ail ¢ for which ¢(t + 2) = ().

. Let f(x) = x*for all red x. Verify each of the following formulas. In each case describe the
set of redl X, y, t, etc.,, for which the given formulais valid.
@) f(—x) = f(x). d) fQy) = 4f(y).
®) fO)—f)= =00+ x). () (D)= f(O%
(€) fix+ h) fx) = 2xh+ h". () Vfl@ = la.

. Let g(x) = V4 — xEfor |x| < 2. Verify each of the following formulas and tell for which
values of x, y, s, and t the given formulais valid.

(@) g(=x) = glx). (d) gla =2 = Vaa — a.
(b) £2y) = 21 — YA © g(;,) = 1/16 = 2,

1 42 —1 1 2 —g(x)
© g(?) = O35 F@m= "

. Let T bedefined asfollows: f(x) =1for0<x<1;f(x) =2for {<x < 2. The function
is not defined if x <0 or if x > 2.
(a) Draw the ?raph off.
(b) Let g(x) = (). Describe the domain of ¢ and draw its graph.
(©) Let h(x) = f(x ~ 2). Describe the domain of # and draw its graph.
(d) Let k(x) = f(2x) + f(x — 2). Describe the domain of k and draw its graph.



The concept of greg as a set function 57

7. The graphs of the two polynomials g(x) = x and f(x) = x3 intersect at three points. Draw
enough of ther graphs to show how they intersect.

8. The graphs of the two quadratic polynomials f(x) = x2 — 2 and g(x) = 2x* + 4x + 1 inter-
sect & two points Draw the portions of the two graphs between the points of intersection.

9. Thisexercise develops some fundamental properties of polynomials. Let f(x) = 3%_, ¢,x* be
a polynomid of degree n. Proveeach of the following:
(@ If n> 1 andf(0) = 0, then f(x) = xg(x), whereg is a polynomial of degree n = 1.
(b) For each real a, the function p given by p(x) = f(x + &) isa polynomial of degreen.
(©) If n 21 and f(a) = O for some real a, then f(x) = (X — a)h(x), wherehisapolynomial of
degree n — 1. [Hint: Consider p(x) = f(x + @) ]
(d) If f(x) = O for n+ 1 distinct real values of X, then every coefficient ¢, is zeroand f(x) = 0
for all red x.
(€) Letg(x) = D, byx* be apolynomial of degree m, where m > n. If g(x) = f(x) for m + 1
distinct real values of x, then m = n, b, = ¢, for each k, and g(x) = f(x) for all red x.

10. In each casee find all polynomids p of degree < 2 which stisfy the given conditions.
@ p0) =p1) =p(2) = 1. (©) p(0) =p(1) = 1.
0 pO = p()=1,p@) = 2. (d) p0) = p(1).

11. Ineach case, find all polynomiasp of degree £ 2 which satisfy the given conditions for all
red x.
(@ p(x) =p(1 ~ x). () p2x) = 2p(x).
(b) px) = p0+x). (@) pBx)= p(x + 3).

12. Show that the following are polynomials by converting them to the form Y7 a,x* for a
suitable M. In each case » iS a positive integer.

@@+ O = X2l @ TTa+ .
k=0

1.6 The concept of area as a set function

When a mathematician attempts to develop a general theory encompassing many different
concepts, he tries to isolate common properties which seem to be basic to each of the
particular applications he has in mind. He then uses these properties as fundamental
building blocks of his theory. Euclid used this process when he developed elementary
geometry as a deductive system based on a set of axioms. We used the same process in our
axiomatic treatment of the real number system, and we shall use it once more in our dis-
cussion of area.

When we assign anarea to a plane region, we associate a number with aset Sin the plane.
From a purely mathematical viewpoint, this means that we have a function a (an area
function) which assigns a real number a(S) (the area of S) to each set S in some given
collection of sets. A function of this kind, whose domain is a collection of sets and whose
function values are real numbers, is called a setfinction. The basic problem is this : Given a
plane set S, what area a(S) shall we assign to S?

Our approach to this problem is to start with a number of properties we feel area should
have and take these as axioms for area. Any set function which satisfies these axioms will
be called an grea function. To make certain we are not discussing an empty theory, it is
necessary to show that an grea function actually exists. We shall not attempt to do this here.
Instead, we assume the existence of an area function and deduce further properties from the
axioms. An elementary construction of an area function may be found in Chapters 14 and
22 of Edwin E. Moise, Elementary Geometry From An Advanced Standpoint, Addison-
Wesley Publishing Co., 1963.
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Before we state the axioms for area, we will make a few remarks about the collection of
sets in the plane to which an area can be assigned. These sets will be called measurable
sets; the collection of all measurable setswill be denoted by .4, The axioms contain enough
information about the sets in .# 1o enable us to prove that gl] geometric figures arising in
the usual applications of calculus are in .# and that their areas can be calculated by integra-
tion.

One of the axioms (Axiom 5) srates that every rectangle is measurable and that its area
is the product of the lengths of its edges. The term “rectangle” as used here refers to any
set congruentt to a set of the form

{(, ]0L<x<h 0L y< i},

where h > 0 and k > 0. The numbers h and k are called the lengths of the edges of the
rectangle. We consider a line segment or a point to be a special case of a rectangle by
allowing h or k (or both) to be zero.

A step region Ordinate set Inner step region  Quter step region
(a) (b) ()

Ficure 114 Ficure 115 An ordinge s enclosed by two sep regions.

From rectangles we can build up more complicated sets. The set shown in Figure 1.14
is the union of a finite collection of adjacent rectangles with their bases resting on the x-axis
and is called a step region. The axioms imply that each step region is measurable and that
its area is the sum of the areas of the rectangular pieces.

Theregion Q shown in Figure1.15(a) is an example of anordinate set.  Its upper boundary
is the graph of a nonnegative function. Axiom 6 will enable us to prove that many ordinate
sets are measurable and that their areas can be calculated by approximating such sets by
inner and outer step regions, as shown in Figure 1.15(b) and (c).

We turn now to the axioms themselves.

AXIOMATIC DEFINITION OF AREA. We assume there exists a class .# of measurable sets
in the plane and a set function a, whose domain is .4, with the following properties:

1. Nonnegative property. For egch set S in .#, we have a(S) > 0.

+ Congruence is used here in the same Sense as in elementary Euclidean geometry. Two sets are said to be
congruent if their points can be put in one-to-one correspondence in such a way that distances are preserved.
That is, if two points p and g in one set correspond to p' and g’ in the other, the distance from p to g must
be equa to the distance from p’ to q’; this must be true for all choices of p and g.
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2. Additive property. If Sand Tarein-#,then § U T and SN Tare in -#, and we have
aSuT=a9 +al =alSnNT).

3. Difference property. |If S and Tarein .4 with ScT,then T = Sis in .#, and we have
a(T =9 = a(T) — a(s).

4. Invariance under congruence | F a st Sisin . and if T is congruent to S then T is also
in .# and we have a(S) = a(T).

5. Choice of scale. Every rectangle Risin .#. I F the edges of R have lengths h and K,
then a(R) = hk.

6. Exhaustion propert,v. Let Q be a set that can be enclosed between two step regions
Sand 7, so that

.1 ScQcT.
If thereis one and only one number ¢ which satisfies the inequalities
a(s) £ ¢ L a(T)
for all step regions Sand T satisfying (1.1), then Q is measurable gnd a(Q) = c.

Axiom | simply states that the area of a plane measurable set is either a positive number
or zero. Axiom 2 tells us that when a set is formed from two pieces (which may overlap),
the areg of the union is the sum of the areas of the two parts minus the grea of their inter-
section. In particular, if the intersection has zero area, the area of the whole is the sum of
the areas of the two parts.

If we remove a measurable set S from a larger measurable set T, Axiom 3 states that the
remaining part, T — S, is measurable and its area is obtained by subtraction, a(T = S) =
a(T) =~ a(S). In particular, this axiom implies that the empty set @ is measurable and has
zero area, Since a(T = S) > 0, Axiom 3 aso implies the monotone property:

a(S) < a(T), forsetsSand Tin A with S < T.

In other words, a set which is part of another cannot have a larger area.

Axiom 4 assigns equal areas to sets having the same size and shape. The first four
axioms would be trivialy satisfied if we assigned the number 0 as the area of every set in
#. Axiom 5 assigns a nonzero area to some rectangles and thereby excludes this trivia
case. Finally, Axiom 6 incorporates the Greek method of exhaustion; it enables us to
extend the class of measurable sets from step regions to more general regions.

Axiom 5 assigns zero area to each line segment. Repeated use of the additive property
shows that every step region is measurable and that its area is the sum of the areas of the
rectangular pieces. Further elementary consequences of the axioms are discussed in the
next set of exercises.
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1.7 Exercises

The properties of area in this set of exercises are to be deduced from the axioms for area stated
in the foregoing section.

1 Prove tha each of the following sets is meesurable and hes zero area: (3 A st congding of a
single point. (b) A set consisting of a finite number of pointsin aplane. (c) The union of a
finite collection of line segments in a plane

2. Every right triangular region is measurable because it can be obtained as the intersection of
two rectangles. Prove that every triangular region is measurable and that its area iS one half
the product of its base and altitude.

3. Prove that every trapezoid and every padldogram is messurable and derive the usud formulas
for their areas.

4. A point (x, y)inthe planeis called alattice point if both coordinates x and y are integers. Let
P be a polygon whose vertices ae latice points Thearea of PisZ + {B — 1, where Z denotes
the number of latice points indde the polygon and B denotes the number on the boundary.
(@ Prove that the formula is veid for rectangles with sides padld to the coordinate axes.
(b) Provethat the formulaisvalid for right triangles and parallel ograms.
(9 Use induction on the number of edges to conmstruct a proof for generd polygons.

5. Prove that a triangle whose vetices are latice points cannot be equilateral.

[Hint: Assume there is sych a triangle and compute its area in two ways, using
Exercises 2 and 4.]

6. Let A ={1,2, 3 4,5}, and let.# denote the class of all subsets of A. (There are 32 altogether,
counting A itself and the empty set @ ) For each set § in .#, let n(S) denote the number of
distinct elementsin S.If §={1,2 3,4 and T = (3, 4, 5}, compute n(S u T), a(S A T),
n(S =T), and n(T = S). Prove that the set function n satisfies the first three axiomsfor area.

1.8 Intervals and ordinate sets

In the theory of integration we are concerned primarily with real functions whose domains
are intervals on the x-axis. Sometimes it is important to distinguish between intervals

which include their endpointsand those which do not. This distinction is made by introducing
the following definitions.

- e o o o e & 0
a b a b b a b
a<x<b a<x<b a<x<b a<x<b

Closed Open Half-open. Half-open

FiIGure 1.16 Examples of intervals.

If a <b, we denote by [a, b] the set of all x satisfying the inequalities a <x < b and
refer to this set as the closed interval from a to b. The corresponding open interval, written
(a, b), isthe set of all x satisfying a < x < b. The closed interval [a, b] includes the end-
points a and b, whereas the open interval does not. (See Figure 1.16.) The open interval
(a, b) isaso called the interior of [a, b]. Half-open intervals (a, b] and [a, b), which include
just one endpoint are defined by the inequalities a <x < b and a < x < b, respectively.

Let f be a nonnegative function whose domain is a closed inteval [a, b]. The portion
of the plane between the graph off and the x-axis is called the ordinate set of f. More
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precisely, the ordinate set off is the collection of all points (x, y) satisfying the inequalities
a<x<b, 0Ly<f(x.

In each of the examples shown in Figure 1.17 the shaded portion represents the ordinate
set of the corresponding function.

Ordinate sets are the geometric objects whose areas we want to compute by means of the
integral calculus. We shall define the concept of integral first for step functions and then
use the integral of a step function to formulate the definition of integral for more general

a b a b

Ficure 117 Examples of ordinate sets.

functions. Integration theory for step functions is extremely simple and leads in a natural

way to the corresponding theory for more general functions. To start this program, it is
necessary to have an analytic definition of a step function. This may be given most simply

in terms of the concept of a partition, to which we turn now.

1.9 Partitions and step functions

Suppose we decompose a given closed interval [a, b] into » subintervals by inserting
n — 1 points of subdivision, say x;, x5, .. ., x,_; , subject only to the restriction

(1.2) a<x <x < <x 1 <h.

It is convenient to denote the point a itself by x, and the point b by x, . A collection of
points satisfying (1.2) is called a partition P of [a, b], and we use the symbol

Po{xg,xys. 45Xy}

to designate this partition. The partition P determines n closed subintervals

[XO’ xl]’ [xl 1x2] gl ’[xn—l 9xn] .

A typical closed subinterval is[x;,_;, X,], and it is referred to as the kth closed subinterval
of P; an example is shown in Figure 1.18. The corresponding open interval (X,_; , x;) is
called the kth open subinterval of P.

Now we are ready to formulate an analytic definition of a step function.
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kth subinterval [x, _;. x;

I e

Xp X, Xy v Xk -1 X eh Xn-1 Xn =}

FIGURE 1.18 An example of a partition of [a, b].

DEFINITION OF A STEP FUNCTION. A fiinction s, whose domain is a closed interval [a, b],
is called a step function if there is a partition P = {xo, Xy, ..., %}of [a b] suchthat s is
constant on each open subinterval of P.  That is to sap, for eachk = 1,2, ..., n, there is
a real number s, such that

qx) = S {f xk_1<x<xk«

Step functions are sometimes calledpiecewise constant functions.

Note: At each of the endpoints x, , ad x, the function must have some well-defined
value, but this need not be the same as s, .

EXAMPLE. A familiar example of a step function is the “postage function,” whose graph
is shown in Figure 1.19. Assume that the charge for first-class mail for parcels weighing
up to 20 pounds is 5 cents for every ounce or fraction thereof. The graph shows the number
of S-cent stamps required for mail weighing up to 4 ounces. In this case the line segments
on the graph are half-open intervals containing their right endpoints. The domain of the
function is the interval [0, 320].

From a given partition P of [a, b], we can always form a new partition P’ by adjoining
more subdivision points to those aready in P. Such a partition P’ is caled a rejinement
of P and is said to be finer than P. For example, P = {0, 1, 2, 3, 4) is a partition of the

interval [0, 4]. If we adjoint the points 3/4, V2, and 7/2, we obtain a new partition P’ of

T — PO 2 3 4
31 —_—
2+ —
1 4———e
—‘0 s 5 4 o P 5 31 V2 2 _3 1 4
4 2
FIGURE 1.19 The postage function. FIGURE 1.20 A partition P of [0, 4]and a

refinement P,
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[0, 4], namely, P’ = {0, 3/4,1, V/2, 2, 3,7/2, 4}, which is a refinement of P. (See Figure
1.20.) If a step function is constant on the open subintervals of P, then it is also constant
on the open subintervals of every refinement P’.

1.10 Sum and product of step functions

New step functions may be formed from given step functions by adding corresponding
function values. For example, suppose s and ¢ are step functions, both defined on the
same interval [a, b]. Let P, and P, be partitions of [a, 6] such that s is constant on the open
subintervals of P, and ¢ is constant on the open subintervalsof P, . Let u= 5+ ¢ be the
function defined by the equation

ux) = s(x) + t(x) if a<x<h.

Graph of s+t
Graph of s Graph of ¢
[ o ] ———
I 1 I L 1 1 Il | A 1
T S T — L T T T I T
a X, b a x b a x X b

Ficure 121 The sum of two sep functions.

To show that « is actually a step function, we must exhibit a partition P such that « is
constant on the open subintervals of P. For the new partition P, we take all the points of
P, along with all the points of P, . This partition, the union of P, and P, , is caled the
common rejnement of P, and P, . Since both s and ¢ are constant on the open subintervals
of the common refinement, the same is true of . An example is illustrated in Figure 1.21.
The partition P, is (a, x, , b}, the partition P, is{a, x; , b}, and the common refinement is
{a, x;, x;, b}.

Similarly, the product » = s « ¢ of two step functions is another step function. An
important special case occurs when one of the factors, say ¢, is constant throughout [a, b].
If t(x) = c for each x in [a, b], then each function value v(x) is obtained by multiplying the
step function s(x) by the constant c.

1.11 Exercises

In this set of exercises, [x] denotes the greatest integer < x

1 Let f(x) = [x] and letg(x) = [2x] for all real x. In each case, draw the graph of the function
h defined over the interval [ — 1, 2] by the formulagiven.
@) h(x) = flx) + gx). (© h(x) = fx)g(x).
(b) h(x) = f(x) + g(x[2).  (d) h(x) = {(2x)g(x[2).

2. In each case, f'is a function defined over the interval [ -2, 2] by the formula given. Draw the
graph off. If fis a step function, find a partition P of [ -2, 2] such thatfis constant on the
open gbintervals of P.
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@ [ =x+ ] (d fx)=2[x]
(0 f0)=x =[x (g f0)=[x+ 3.
(© ()= [-x] (M) fe) =[x+ [x+ 3]
3. Ineach case, sketch the graph of the functionfdefined by the ic_;rmulagiven.
@@ f(x) =1V« for 0<gxg10 © fx)=+VIkx] for 0<x<10
(b) flx) = [x1 for 0«£x<3 (d) flx) = [xP for 0<x<3.
4. Prove tha the grestest-integer function has the properties indicated.
@ [x + n]1 =[X] + n for every integer n.
—[x] if xisaninteger,
(®) [ =1 = —[x] = 1 otherwise.
© [x+yl=1I{x]+DQl or [x]+[y]+1
(dj 2x]= [x]+ [x + 3]
© Bx] =[x+ [x+ 3]+ [x+ 3],

Optional exercises.

5. The formulas in Exercises 4(d) and 4(e) suggest a generaization for [nx]. State and prove
such ageneralization.

6. Recall that a lattice point (X, y) in the plane is one whose coordinates are integers. Letfbe a
nonnegative function whose domain is the interval [a, b], where aand b are integers, a< b.
Let S denote the set of points (X, y) satisfying a<x <b,0 <y< f{x). Prove that the number
of lattice pointsin S isequal to the sum

[f ().

n M=

7. If aandb are positive integers with no common factor, we have the formula

Z{n?l _ (a- 1)2(b -1 |

n=1

When b =1, the sum on the | eft is understood to be 0.
(&) Derive this result by ageometric argument, counting lattice pointsin aright triangle.
(b) Derive the result analytically as follows: By changing the index of summation, note that
SU-L [nafb] = S0 [a(b ~ n)b]. Now apply Exercises 4(a) and (b) to the bracket on the
right.

8. Let § be a set of points on the real line. The characteristic function of S is, by definition, the
function yg such that yg(x) = 1 for every x in S, and y(x) = O for those x not in S. Let f be
a dep function which tokes the condtant vaue ¢, on the kth open subinterva [, of some partition
of an interval [a, b]. Prove that for each x in the union [, u [, u. VU I, we have

fx) = i 1 (%)
]

This property is described by saying that every step function isalinear combination of char-
ateridic  functions of intervas

1.12 The definition of the integral for step functions

In this section we introduce the integral for step functions. The definition is constructed
so that the integral of a nonnegative step function is equal to the area of its ordinate set.
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Let s be a step function defined on [a, b], and let P={x,, x,, ..., x,} be a partition of
[a b] such that s is constant on the open subintervals of P. Denote by s, the constant value
that s takes in the kth open subinterval, so that

X) = s if Xpa1< X< Xy, k=1,2,...,n.

DEFI NI TION OF THE | NTEGRAL OF STEP FUNCTIONS.  The integral of s from a to b, denoted
by the symbol fZ S(X) &, is defined by the following formula:

n

(1.3) [: s(x) dx = gl S - (X — X1 -

That is to say, to compute the integral, we multiply each constant value s, by the length of
the kth subinterval, and then we add together all these products.

Note that the values of s at the subdivision points are immaterial since they do not appear
on the right-hand side of (1.3). In particular, ifs is constant on the open interval (8, b), say
s(x) = cif a <x< b, then we have

Ji s = 3 (x = m) = o~ a)

regardless of the valuess(@) and g(b). If ¢ > 0 and if s(x) = ¢ for all x in the closed interval
[a b], the ordinate set of s is a rectangle of base b — a and altitude c; the integral of s is
cb ~ a), the area of thisrectangle. Changing the value of s at one or both endpoints a or b
changes the ordinate set but does not ater the integral of s or the area of its ordinate set.
For example, the two ordinate sets shown in Figure 1.22 have equal areas.

X
0 1 2 3 4 5 6
Fiare 1.22 Changes in function values at two Fiare 1.23 The ordinate set of a
points do not dter area of ordinde St step function.

The ordinate set of any nonnegative step function s consists of a finite number of rect-
angles, one for each interval of constancy; the ordinate set may also contain or lack certain
vertical line segments, depending on how s is defined at the subdivision points. The integral
of s is equal to the sum of the areas of the individual rectangles, regardless of the values s
takes at the subdivision points. This is consistent with the fact that the vertical segments
have zero area and make no contribution to the area of the ordinate set. In Figure 1.23,
the step function s takes the constant values 2, 1, and % in the open intervals (1, 2), (2, 5),
and (5, 6), respectively. Its integral is equal to

ffs(x)dx=2 Rul)+ 1 (5=2+2-(6=15) =22,
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It should be noted that the formula for the integral in (1.3) is independent of the choice of
the partition P aslong as s is constant on the open subintervalsof P.  For example, suppose
we change from P to a finer partition P’ by inserting exactly one new subdivision point ¢,
where x, < t < x,. Then the first term on the right of (1.3) is replaced by the two terms
80 (t=x,) and s, < (x; = £), and the rest of the terms are unchanged. Since

51'(t_x0)+51-(xl_t):sl'(xl_xl))’

the value of the entire sum is unchanged. We can proceed from P to any finer partition P’
by inserting the new subdivision points one at a time. At each stage, the sum in (1.3)
remains unchanged, so the integral is the same for all refinements of P.

1.13 Properties of the integral of a step function

In this section we describe a number of fundamental properties satisfied by the integral
of a step function. Most of these properties seem obvious when they are interpreted
geometrically, and some of them may even seem trivial. All these properties carry over
to integrals of more general functions, and it will be a simple matter to prove them in the
general case once we have established them for step functions. The properties are listed
below as theorems, and inegch case a geometric interpretation for nonnegative step functions
isgiveninterms of areas, Analytic proofs of the theorems are outlined in Section 1.15.

| a b a b

Ficure 124 |llludrating the additive propety of the integra.

The first property states that the integral of a sum of two step functions is equal to the
sum of the integrals. This is known as the additive property and it is illustrated in Figure
1.24.

THEOREM 1.2. ADDI TIVE PROPERTY.

[} 560+ 101 dx= [ st oxr [P 100 o
The next property, illustrated in Figure 1.25, is called the homogeneous property. It

states that if all the function values are multiplied by a constant c, then the integral is also
multiplied by c.

THeoreM 1.3, HOMOGENEOUS properTY. FOr every realnumber ¢, we have

fab c.s(x)dx=c fah s(x) dx .

These two theorems can be combined into gne formula known as the linearity property.
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a b a b
Ficure 125 Illustrating the homogeneous property of the integral (with ¢ = 2).

tHEoReM 14, LINeariTY  PROPERTY. For every real ¢; and ¢z , we have

f: [eis(x) + cpt(x)] dx = ¢ f: s(x) dx + ¢, f: t(x) dx

Next, we have a comparison theorem which tells us that if one step function has larger
values than another throughout [a, b}, its integral over this interval is also larger.

THEoReM 15, cowarison TreoRem  If s5(x) < #(x) for every x in [a, b], then

[ 50 ax < Lb t(x) dx .

Interpreted geometrically, this theorem reflects the monotone property of area. If the
ordinate set of a nonnegative step function lies inside another, the area of the smaller region
is less than that of the larger.

The foregoing properties all refer to step functions defined on a common interval. The
integral has further important properties that relate integrals over different intervals.
Among these we have the following.

THEOREM 1.6. ADDITIVITY WTH RESPECT TO THE INTERVAL OF | NTEGRATI ON.
c b b -
fs(x)dx+fs(x)dx:fs(x)dx if a<c<b.
a [ a

This theorem reflects the additive property of area, illustrated in Figure 1.26. If an ordinate
set is decomposed into two ordinate sets, the sum of the areas of the two parts is equal to
the grea of the whole.

The next theorem may be described as invariance under translation. If the ordinate set
of astep function sis “shifted” by an amount c, the resulting ordinate set is that of another
step function ¢ related to s by the equation t(x) = s(x = c). Ifs is defined on [a, b], then
t isdefined on [a + ¢, b + c], and their ordinate sets, being congruent, have equal areas.
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N

a C b a b a+c b+c
Fiare 1.26 Additivity with respect Flare 1.27 lllustrating invariance of the
to the interval of integration. integral under trandlation: t(x) = s(x = C).

This property is expressed analytically as follows:

THEOREM 1.7. | NVARIANCE UNDER TRANSLATI ON
b b+e
f s(X) dx = f s(x — c) dx for every real ¢
d ate

Its geometric meaning is illustrated in Figure 1.27 for ¢ > 0. When ¢ < 0, the ordinate
set is shifted to the left.

The homogeneous property (I’heorem 1.3) explains what happens to an integral under a
change of scale on the y-axis. The following theorem deals with a change of scale on the
x-axis. If s is a step function defined on an interval [a, b] and if we distort the scale in the
horizontal direction by multiplying all x-coordinates by a factor k > 0, then the new graph
is that of another step function ¢ defined on the interval [ka, kb] and related to s by the
equation

H(x) = if  ka<x<Kkb.

s =
Ok
An example with k = 2 is shown in Figure 1.28 and it suggests that the distorted figure has

an area twice that of the original figure. More generaly, distortion by a positive factor k

N

a X, b 2a 2x, 26
Fiare 128 Change of scale on the x-axis: #(x) = s(x/2).
has the effect of multiplying the integral by k. Expressed analytically, this property assumes

the following form :

THECREM 1.8. EXPANSION OR CONTRACTION OF THE INTERVAL OF | NTEGRATI ON
kb X 4
f S(I_c) dx = kf s(x)dx  foreveryk > 0.
ka a

Until now, when we have used the symbol {2, it has been understood that the lower limit
a was less than the upper limit b. It iSconvenient to extend our ideas somewhat and consider

integrals with a lower limit larger than the upper limit. This is done by defining

(L.4) [Fsooax==["spax if a<b.
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We also define

o500 dx=0,

a definition that is suggested by putting a =4 in (1.4). These conventions allow us to con-
clude that Theorem 1.6 is valid not only when c is between a and b but for any arrangement
of the points a, b, c. Theorem 1.6 is sometimes written in the form

f; s(x) dx + f: s(x) dx + f: s(x) dx =0 .

Similarly, we can extend the range of validity of Theorem 1.8 and allow the constant k to
be negative. In particular, when k = — 1, Theorem 1.8 and Equation (1.4) give us

J‘ab 5(x) dx = f__: S( _x) dx .

Ki t(x) = s(—x)

a b -b —a (

Ficure 1.29 |lludrating the reflection propety of the integrd.

We shall refer to this as the reflection property of the integral, since the graph of the function
t given by #(x) = s(—x) is obtained from that of s by reflection through the y-axis. An
example is shown in Figure 1.29.

1.14 Other notations for integrals

The letter x that appears in the symbol §° s(x) dx plays no essential role in the definition
of theintegral. Any other letter would serve equally well. The letterst, u, v, z are frequently
used for this purpose, and it is agreed that instead of [ s(x) dx we may write f s(t) dt,
{? s(u) du, etc., all these being considered as alternative notations for the same thing. The
symbols x, ¢, u, etc. that are used in this way are called “dummy variables.” They are
analogous to dummy indices used in the summation notation.

There is a tendency among some authors of calculus textbooks to omit the dummy
variable and the d-symbol altogether and to write simply |? s for the integral. One good
reason for using this abbreviated symbol is that it suggests more strongly that the integral
depends only on the function s and on the interval [a, b]. Also, certain formulas appear
simpler in this notation. For example, the additive property becomes {2 (s + 1) = {2 5 4+
§¢ t, On the other hand, it becomes awkward to write formulas like Theorems 1.7 and
1.8 in the abbreviated notation. More important than this, we shall find later that the
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original Leibniz notation has certain practical advantages. The symbol dx, which appears
to be rather superfluous at this stage, turns out to be an extremely useful computational
device in connection with many routine calculations with integrals.

1.15 Exercises

1. Compute the value of each of the following integrals. You may use the theorems of Section
1.13 whenever it isconvenient 1.0 do so. The notation [X] denotes the greatest integer < x.

@ [° ) dx. @ [° 20x)d.
® [° [x+ 41 dx. @ [° xldx,

© [ G+ +de. ) [° (-xldx,

2. Give an example of a step function s, defined on the closed interval [0, 5], which has the
following properties: f2 S(x) dx =5, {7 s(x) dx = 2.
3. Show that [*[X] dx + f?[—x] dx =a = b.
4. () If n is apositive integer, prove that §7 [1] dt = n(n = 1)/2.
(b) If f(x) = §%[t] dt forx > O, draw the graph offover the interval [0, 4].
5. (8) Prove that [2 [2]dt = 5 = 4/2 = V/3.
(b) Compute |2, [+*] dt.
6. (8 If n is a positive integer, prove that |7 [/]* dt = n(n ~ 1)(2n — 1)/6.
(b) If f(x) = §2 1712 dt forx > O, draw the graph offcver the interval [0, 3].
(c) Find a1l x > 0 for which jg []? dt =2(x - 1).
7. (@) Compute f; [v/7] dt.
(b) If pisa positive integer, prove that §7* [v/7] dt = n(n — 1)(4n + 1)/6.
8. Show that the trandation property (Theorem 17) may be expressed in the equivaent form

f e fx) dx = L” f(x + c) dx .

a+c

9. Show tha the following propetty is equivdent to Theorem 18 :

[ ey de = k[} flen dx.

10. Given a positive integer p. A step function s is defined on the interval [0, p] as follows:
s(x) = (—1)"nif x lies in the intervaln < x <n+l,wheren =0,1,2,...,p —1;s5(p) = 0.
Let f(p) = jg s(x) dx.

(@) Calculate £(3), f (4), and f(f(3)).
(b) For what value (or values) ofp is|f(p)|=7?
11 If, indead of defining integrds of sep functions by usng formula (1.3), we used the definition

) n
X dx = 830 (xy, = x5
Jav(x) kgl 20 (g = Xp_1)

a new and different theory of integration would result. Which of the following properties would
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12.

13.

14.

15.

remain valid in this new theory?

@ st+f:s:f:s, (C)J';C'S=cfabs.
(b) f: (s+ 1) = f; 5+ E’ 1. (@ L”:: s(x) dx = fz s(x + ¢) dx.

(©) If s(x) < t(x) for each x in [a, b], then f" s < f” L.
a a
Solve Exercise || if we use the definition

fz s(x) dx =§sk (2 =Xl

Analytic proofs of the properties of the integral given in Section 1.13 are requested in the

following exercises. The proofs of Theorems 1.3 and 1.8 are worked out here as samples.
Hints are given for the others.

Proof of Theorem 1.3:]"3 c.s(x) dx = cfs s(x) dx for every real c.

LetP = {xo, Xy,..., %} beapartition of [a, b]such that sis constant on the open subintervals
of P. Assumes(x) =s;if x, 3 <x < x,(k=1,2,...,n.Thenc.s(x) = ¢ sif x, 4 <
X < x, ,and hence by the definition of an integral we have

f es) dx = 3¢ s (=) =C 3 8 G oxpy) = C f:s(x) dx .
k=1

a k=1

Proof Of Theorem 1.8

kb [y b
f s(—)dx = kf s(x) dx if ¥ > 0.
ka k a

Let P={x,, x;,...,x,} beapartition of the interval [a, b] such that 5 is constant on the
open subintervals of P. Assume that s(x) = s;if x,_; <X < x;. Let t(x) = s(x/k) if ka <
x < kb. Then t(x) = s, if x liesin the open interval (kx;_y , kx,); hence P’ = {kxg, kexy, ...,
kx,} isapartition of [ka, kb] and ¢ is constant on the open subintervals of P’. Therefore? is
a step function whose integral is

n

[ 109 ax = S5 o= k) =k s (= xi) = k[ s00) dx
i=1 i ad g

ka i=1

Prove Theorem 1.2 (the additive property).

[Hint: Use the additive property for sums: D2 i(a, + b)) = Dr .y a + iy by |
Prove Theorem 1.4 (the linearity property).

[Hint: Use the additive property and the homogeneous property.]
Prove Theorem 1.5 (the comparison theorem).

[Hint: Use the corresponding property for sums: ZLI a; < ZLI by if @, < by for
k=12...,n]
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16. Prove Theorem 16 (additivity with respect to the interval).

[Hint: If Py is a patition of [a c] and P, a partiton of [c, 5], then the paints of P, along
with those of P, form apartition of [a, b].]

17. Prove Theorem 17 (invaiance under trandation).

[Hint: TP={x,x;,...,x,}isapartition of [a, ], thenP'={x,+C, x; +¢C,...,
x, t ¢} isapartition of [a+ ¢, b + ¢l.]

1.16 The integral of more general functions

The integral § s(x) dx has been defined when s is a step function. In this section we shall
formulate a definition of [ f(x) dx that will apply to more general functions f. The
definition will be constructed so that the resulting integral has all the properties listed in
Section 1.13.

e t, approximation from above

res

5 approximation from below

Fiure 1.30 Approximating a function f from above and bdow by sep functions

The approach will be patterned somewhat after the method of Archimedes, which was
explained above in Section 1 1.3. The idea is simply this: We begin by approximating the
function f from below and from above by step functions, as suggested in Figure 1.30.
That is, we choose an arbitrary step function, say s, whose graph lies below that off, and a
arbitrary step function, say ¢, whose graph lies above that of f. Next, we consider the
collection of all the numbers % S(x) dx and J? t(x) dx obtained by choosing s and ¢ in all
possible ways. In general, we have

[ s ax < " 1) ax

because of the comparison theorem. If the integral of f'is to obey the comparison theorem,
then it must be a number which falls between f? g(x) dx and % t(x) dx for every pair of
approximating functions s and ¢ If there is only one number which has this property
we define the integral off to be this number.

There is only one thing that can cause trouble in this procedure, and it occurs in the very
first step. Unfortunately, it is not possible to approximate every function from above
and from below by step functions. For example, the functionfgiven by the equations

[ -

fx)= if x#0, f(0)=0,

b
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is defined for all real x, but on any interval [, ] containing the origin we cannot surround
f by step functions. Thisis due to the fact that f has arbitrarily large values near the origin
or, as we say, f is unbounded in every neighborhood of the origin (see Figure 1.31). There-
fore, we shall first restrict ourselves to those functions that are bounded on [a, b], that is, to
those functions f for which there exists a number M > 0 such that

(1.5) M fx)<M

for every x in [a, b]. Geometrically, the graph of such a function lies between the graphs
of two constant step functions s and ¢ having the values — M and + M, respectively. (See

Ficure 1.31 An unbounded function. Fieure 1.32 A bounded function.

Figure 1.32.) In a case like this, we say that f is bounded by M. The two inequalities in
(1.5) can also be written as

/I < M.

With this point taken care of, we can proceed to carry out the plan described above and
to formulate the definition of the integral.

DEFINITION OF THE INTEGRAL OF A BOUNDED FUNCTION. Let f be a function defined and
bounded on [a, b]. Letsand tdenote arbitrary step functionsdefined on [a, b] suchthat

(1.6) s(x) < /) < t(x)

for every x in [a, b]. If there is one and only one number | such that

(L.7) f: s(x)dx <1< fa” t(x) dx

for every pair of step functions s and t satisfying (1.6), then this number | is called the
integral off from a to b, and is denoted by the symbol {° f(x) dx or by f%f.  When such
an Z exists, the function f is said to be integrable on [a, b].
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If a<b, we define f?f(x) dx=- {°f(x)dx, provided f isintegrable on [a, b]. We
also define [¢f(x) dx = 0. If f isintegrable on [a, b], we say that the integral {3 f(x) dx
exists. The function ¥ is called the integrand, the numbers a and b are called the limits of
integration, and the interval [a, b] the interval of integration.

1.17 Upper and lower integrals

Asume fis bounded on [a, b]. Ifs and ¢ are step functions satisfying (1.6), we say s is
below f, andtisabove f,and wewrites < f < L.

Let S denote the set of all numbers f? S(x) dx obtained as s runs through all step functions
below £, and let T be the set of all numbers f? t(x) dx obtained as ¢t runs through all step
functions above f. That is, let

S={f:s(x)dx|sgf}, T= {fabt(x)dxlfgt}.

Both sets Sand Tare nonempty sincef is bounded. Also, 2 s(x) dx < fet(x) dx if s< f < T,
so every number in S is less than every number in T. Therefore, by Theorem 1.34, S has
a supremum, and T has an infimum, and they satisfy the inequalities

J:s(x) dx < sup S<inf T < [ 1) dx

for all s and ¢ satisfying s < f <. This shows that both numbers sup S and inf T satisfy
(1.7). Therefore, f isintegrable on [a, b] if and only if sup S =inf T, in which case we have

[bf(x) dx =sup S=inf T.

The number éup S is called the Jower integral off and is denoted by J(f). The number
if T is caled the upper inegrd of f and is denoted by T(F). Thus we have

I(f) = sup {fb s() dx |5 Sf} . I =inf Ub t(x) dx | f < t: :
The foregoing argument proves the following theorem.

THEOREM 19. Every function f which is bounded on [a, b] has a lower integral J(F) and
an upper integral T(F) satisfying the inequalities

[ st ax < 100 < I < I 1) dx

for gl step functions sand twiths < f <t. The function f is integrable on [a, b] ifand only
if itsupper and lower integrals are equal, in which case we have

[P76) dx = 10 = 1),
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1.18 The area of an ordinate set expressed as an integral

The concept of area was introduced axiomatically in Section 1.6 as a set function having
certain properties. From these properties we proved that the area of the ordinate set of a
nonnegative step function is equal to the integral of the function. Now we show that the
same is true for any integrable nonnegative function. We recall that the ordinate set of a
nonnegative function f over an interval [a, ] is the set of all points (x, y) satisfying the
inequalities 0 <y < f(x),a <x <K b

treorem 110, Let f be a nonnegative function, integrable on an jnterpal [a, b], and Jet
Q denote the ordinate set off over [a, b]. Then Q is measurable and its areq is equal to the
integral 2 f (X dx.

Proof. Let Sand T be two step regions satisfying § < Q < T. Then there are two step
functions s and ¢ setisfying s < f <t on [a, b], such that

a@s) = fa" s) dx  and  a(m) = f ® (%) dx .
Since f isintegrable on [a, b], the number 7 = {? f (x) dx is the only number satisfying the
inequalities
[Psoo ax <1< [ 100 ax
for all step functionss and ¢ withs < f <t. Therefore thisis also the only number satisfying

a(S) € Z < a(T) for all step regions S and T with S = Q € T. By the exhaustion property,
this proves that Q is measurable and that a(Q) = Z.

Let Q denote the ordinate set of Theorem 1.10, and let Q' denote the set that remains if
we remove from Q those pointson the graphof f .  That is, let

Q' ={xp]|a<x<b,0<y<fx)}.

The argument used to prove Theorem 1.10 also shows that Q' is measurable and that
a(Q") = a(Q). Therefore, by the difference property of area, the set Q = Q' is measurable
and

aQ — Q) =aQ - a@Q) =0.

In other words, we have proved the following theorem.

THECREM 1.11. Let f Dbe a nonnegative function, integrable on an interval [a, b]. Then
the graph off, that is, the set
{( »la<x <y =},

is measurable and has greg equal to 0.

1.19 Informal remarks on the theory and technique of integration

Two fundamental questions arise at this stage: (1) Which boundedfunctions are integrable?
(2) Given that a function f is integrable, how do we compute the integral off?
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The first question cornes under the heading “Theory of Integration” and the second under
the heading “Technique of Integration.” A complete answer to question (1) lies beyond the
scope of an introductory course and will not be given in this book. Instead, we shall give
partial answers which require only elementary ideas.

First we introduce an important class of functions known as monotonic jiunctions. In
the following section we define these functions and give a number of examples. Then we
prove that a]l bounded monotonic functions are integrable. Fortunately, most of the
functions that occur in practice are monotonic or sums of monotonic functions, so the
results of this miniature theory of integration are quite comprehensive.

The discussion of “Technique of Integration” begins in Section 1.23, where we calculate
the integral f ’(’) x? dx, whenp is a positive integer. Then we develop general properties of the
integral, such as linearity and additivity, and show how these properties help us to extend
our knowledge of integrals of specific functions.

1.20 Monotonic and piecewise monotonic functions. Definitions and examples

A function f is said to be increasing on aset Sif f (x) < f(y) for every pair of points x
and y in § with x < y. If the strict inequality f(x) <f(y) holds for all x <y in S, the
function is said to be strictly increasing on S. Smilarly, f is called decreasing on S if

/
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FIGURE 1.33 Monotonic functions.

flx) 2 1f(y) for all x <y in S. If f(x) > f(y) for all x <y in §, then f is caled strictly
decreasing on S. A function is called monotonic on S if it is increasing on S or if it is de-
creasingon S. Theterm strictly monotonic means thatfis strictly increasing on S or strictly
decreasing on S. Ordinarily, the set S under consideration is either an open interval or a
closed interval. Examples are shown in Figure 1.33.
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FIGURE 1.34 A piecewise monotonic function.
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A function f is said to be piecewise monotonic on an interval if its graph consists of a
finite number of monotonic pieces. That is to say, fis piecewise monotonic on [a, b] if
there is a partition P of [a, b] such that f is monotonic on each of the open subintervals of
P. In particular, step functions are piecewise monotonic, as are all the examples shown in
Figures 1.33 and 1.34.

exawLe 1. The power functions. If p is a positive integer, we have the inequality
x? Ly if 0<x<y,

which is easily proved by mathematical induction. This shows that the power function f,
defined for all real x by the equation f(x) = x?, is strictly increasing on the nonnegative
real axis. It isalso strictly monotonic on the negative real axis (it is decreasing ifp is even
and increasing ifp is odd). Therefore, f is piecewise monotonic on every finite interval.

exavrle 2. The square-root function. Let f (X) = vV xforx > 0. This function is strictly
increasing on the nonnegative real axis. In fact, if 0 < x <y, we have

VY ===
- Vy+Vx
hence, Vy — V/x > 0.

exawLe 3. The graph of the function g defined by the equation

g(x) = Vrt = x2 if r<x<r

is a semicircle of radius y. This function is strictly increasing on the interval -r < x <0
and strictly decreasing on the interval 0 < x < r. Hence, g is piecewise monotonic on
[_r, r]'

121 Integrability of bounded monetonic functions

The importance of monotonic functions in integration theory is due to the following
theorem.

THECREM 1.12.  If f'is monotonic on a closed interval [a, b], then f is integrable on [a, .

Proof. We shall prove the theorem for increasing functions. The proof for decreasing
functions is analogous. Assume f is increasing and let J(f) and I(f) denote its lower and
upper integrals, respectively. We shall prove that I(f) = I(f).

Let n be a positive integer and construct two special approximating step functions s, and
t, asfollows: Let P = {x,, X, ..., x} beapartition of [a, b] into n equal subintervals, that
is, subintervals [x,_,;, x,] with x, — x,_; = (b —~ a)/n for each k. Now define s, and ¢, by
the formulas

$u(x) = f(xr-a) t,(x) = f(xk) if 1< X< x.
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At the subdivision points, define s, and ¢, O as to preserve the relations s,(x) < f(x) <
t,(x) throughout [a, b]. An example is shown in Figure 1.35(a). For this choice Of step
functions, we have

b b n n
f t, —J S, =k§1 S (x;, = X5 ;) —kglf (K- (% = Xz_y)

B0 () = S = L= O 2SO
k=l

n n

where the last equation is a consequence Of the telescoping property of finite sums This last
relation has a smple geometric interpretation. The difference [* ¢, — [* s, is equal to the
sum of the areas of the shaded rectangles in Figure 1.35(a). By sliding these rectangles to
the right < that they rest on a common base as in Figure 1.35(b), we see that they fill out a

=Xy X1 Xz .- Xn=b

@
Ficure 1.35 Proof of integrability of an increasing function.

rectangle of base (b — a)/n and dltitude f(b) -f(a); the sum of the areas is therefore
C/n, where C = (b =~ a)[f(b) — fl@)].
Now we rewrite the foregoing relation in the form

b b C
1_ [hafn:€
(8) d nas n

The lower and upper integrals off satisfy the inequalities

[a<in<[in ad [s<in<[.

Multiplying the first set of inequalities by (- 1) and adding the result to the second set, we
obtain

1) =INE [ 1,=['s,.
Using (1.8) and the relation I(f) < I(f), we obtain

0<If) — KN < f
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for every integer n > 1. Therefore, by Theorem 1.31, we must have Jf) = I(f). This
proves thatfis integrable on [a, b].

1.22 Calculation of the integral of a bounded monotonic function

The proof of Theorem 1.12 not only shows that the integral of a bounded increasing
function exists, but it also suggests a method for computing the value of the integral. This
is described by the following theorem.

treorem 113, Assumef is increasing on a closed interval [a, b]. Let x;, = a + k(b — a)/n

fork =0, 1,. . . ,n. Iflisany number which satisfies the inequalities
b—ad b—a <
(19) —E D J) S TS > f(x)
k=0 k=1

for every integer n > 1, then Z = {? f(x) dx.

Proof. Let s, and ¢, be the special approximating step functions obtained by subdivision
of the interval [a, b] into » equal parts, as described in the proof of Theorem 1.12. Then,
inequalities (1.9) state that

[so<r<

for every n > 1. But the integral (? f(X) dx satisfies the same inequalities as Z. Using
Equation (1.8) we see that

Ogll——fbf(x)dx <&
@ n

for every integer n > 1. Therefore, by Theorem 1.31, we have Z = ? f(x) dx, as asserted.
An analogous argument gives a proof of the corresponding theorem for decreasing
functions.

tHeoRem 114, Assume f is decreasing on [a, b]. Let x; = a + k(b = a)/n for k =
0,1,...,n If Zis any number which satisfies the inequalities

b—a
n

n b _ n—1
D) STST=2 > f(x)
k=1 n k=0
for everyinteger n > 1, then Z = [* f(x) dx.

1.23 Calculation of the integral % x? dx when p is a positive integer

To illustrate the use of Theorem 1.13 we shall calculate the integral 3 x? dx where
b > 0 andp is any positive integer. The integral exists because the integrand is bounded
and increasing on [0, b].
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TEcRem 115, If p is a positive integer and b > 0, we have

b p+1
f x? dx = b .
0

Proof. We begin with the inequalities

L= »+1 T
< 2— <>k

k==t

valid for every integer n > 1 and every integer p > 1. These inequalities may be easily
proved by mathematical induction. (A proof is outlined in Exercise 13 of Section 14.10.)
Multiplication of these inequalities by 6?+1/n?*! gives us

b (kbY bt b2 ?
P> (< <5
ne\n p+1 n =\n

If we let f(x) = x” and x, = kb/n, for k=0, 1,2, ..., n, these inequalities become
AN A (x)
- X < < = f
;f( I< kzl .

Therefore, the inequalities (1.9) of Theorem 1.13 are satisfied with f(x) =x?, a =0 ad
I =p"(p + 1). 1t follows that 3 x? dx = b»#/(p + 1).

1.24 The basic properties of tbe integral

From the definition of the integral, it is possible to deduce the following properties.
Proofs are given in Section 1.27.

THEGREM 116, LINAR'TY WTH RESPECT To THE  INTEGRMND.  [f both fand g are in-
tegrable on [a, b], sois ¢, f +c,g for everypair of constants ¢, and ¢, . Furthermore, we have

4 b b
[ lef) + gl dx = e [ 760 dx + [} gx)dx.
Note;: By use of mahematicd induction, the linearity propety can be genedized &s

follows: If f1,.. ., f. areintegrable on [a, b}, then sois 01f1 +.. L+ of, for all red
CiyenesCp,and

J,Lbkglckfk(x) dx =,§1Ck fa ’ fi(x) dx

THEOREM 1.17. ADDITIVITY WTH RESPECT TO THE INTERVAL OF | NTEGRATI ON. If two
of the following three integrals exist, the third also exists, and we have

Lbf (x) dx + f: f(x)dx = J: f(x) dx .
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Note: In particular, iff iSmonotonic on [a, 5] and also on {5, c], then both integrals
o fand [ifexist, o o F ds edsts and is equd to the sum of the other two integrdls

THEOREM 1.18. INVARIANCE UNDER TRANSLATION. If f is integrable on [a, b], then for
every real c we have

f:f(x) dx = j:::cf(x —c)dx.

THEOREM 1.19. EXPANSION OR CONTRACTION OF THE INTERVAL OF INTEGRATION. If fis
integrable on [a, b], then for every real k# 0 we have

IRCESIRIHE

Note: In both Theorems 1.18 and 1.19, the existence of one of the integrals implies the
existence of the other. When k = 1, Theorem 1.19 is called the reflection property.

THEOREM 1.20. COMPARISON THEOREM. If both f and g are integrable on [a, b] and if
g(x) < f(x) for every xin[a, b], then we have

[ st ax < [0 dx,

An important special case of Theorem 1.20 occurs when g(x) = O for every x. In this
case, the theorem states that if f (x) > O everywhere on [a, b], then f? f (x) dx > 0. In
other words, a nonnegative function has a nonnegative integral. It can also be shown
that if we have the strict inequaity g(x) <f(x) for all x in [a, b], then the same strict
inequality holds for the integrals, but the proof is not easy to give at this stage.

In Chapter 5 we shall discuss various methods for calculating the value of an integral
without the necessity of using the definition in each case. These methods, however, are
applicable to only a relatively small number of functions, and for most integrable functions
the actuyal numerical value of the integral can only be estimated. This is usualy done by
approximating the integrand above and below by step functions or by other simple functions
whose integrals can be evaluated exactly. Then the comparison theorem is used to obtain
corresponding approximations for the integral of the function in question. This idea will
be explored more fully in Chapter 7.

1.25 Integration of polynomials
In Section 1.23 we established the integration formula

J‘h pd qu+1
1.10 =
(110) ox x p+1

for b > 0 andp any positive integer. The formula is also valid if b =0, since both members
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are zero. We can use Theorem 1.19 to show that (1.10) aso holds for negative b. We simply
teke k = = 1 in Theorem 1.19 to obtain

‘b ) b (—b)rtt
f x? dx = —f (—x)? dx = (—1)”“[ x? dx = ~——,
0 0 0 p+1

which shows that (1 .10) holds for negative b. The additive property {? x? dx = f x? dx —
J& x? dx now leads to the more general formula

b v+l . ¢l
" xPdx = o7 — o ,
Ja D =+ 1

valid for all red a and b, and any integer p > 0.
Sometimes  the special symbol

P)|

is used to designate the difference P(b) — P(a). Thus the foregoing formula may aso be
written as follows.
b 1l o p+1 _ o+l
[l ae - 2} b=
a p+1l p+1

This formula, along with the linearity property, enables us to integrate every polynomial.
For example, to compute the integral f3(x2 — 3x + 5) dx, we find the integral of each term
and then add the results. Thus, we have

3 3 3 3 x33 x23 3
f(x2-3x+5) dx:fxzdx—3fxdx+5fdx=— — 3= 4 5x
1 1 1 1 3k 2 I 1

KENS L 3 o~ 12 3t~ 1t 2 20

— _ - it o= 12+ 10 = —.,

=—3 -3 3 t3T =3 3

More generdly, to compute the integral of any polynomial we integrate term by term:

b_m n b
f E cxF dx = E ckf xtdx =
a a
k=0 %=0

We can also integrate more complicated functions formed by piecing together various
polynomials. For example, consider the integral §§ |x(2x = 1)| dx. Because of the absolute-
value signs, the integrand is not a polynomia. However, by considering the sign of

it —
k + 1

n
Cp —
k=0
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X(2x = 1), we can split the interval [0, 1] into two subintervals, in each of which the inte-
grand is apolynomial. As x varies from 0 to 1, the product x(2x =~ 1) changes sign at the
point x = }; it is negative if 0 < x < } and positive if } < x < 1. Therefore, we use the
additive property to write

[ mex = = =[x = 1) o+ [

o X@X = 1) dx

= [ (=2 o + [, (25 = %) o

=(%—1l2)+(1

=
ojer

L
[

) =

1.26 Exercises
Compute each of the following integrds

1.ﬁ3x2dx' 11.£:/2(8t3+6t2—2t+5)dt.
2. f 2 dx. 12. [ jz (U= 1)~ 2) du.
3. f 4x® dx. 13. [ : (x + 1)?dx.
J 433 dx. 14. j ;l (x + 1)2dx.
f 15 dit. 15. .[Z(x - 1)(3x - 1) dx.
.[ 5¢4ds. j‘ i(x — D)3 = 1l dx.
7. f b (5xt = 4x3) dX. 17. f 2x = 5 dx.
8. i_l (5x* — 4x3) dx. 18. 3( - 3P dx.
9. f i (@ +1)dr. 19. f x2(x 5)tdx.
10, f: (3x2 = 4x 4 2) dx. 2. J_z (x+ 410 dx. [Hint: Theorem 1 .18.]

21. Find ail values of ¢ for which
@ fo x1=x) dx=0 (b Jo Ix(1=x)| dx = 0
22. Compuite each of the following integrals. Draw the graph off in each case.

2 i f OSXSL
() f:f(x) dx  Wwhere f(x) :{;—x ifl < x<2
. if0<x<c,

1 d h = -
®) [[feode where f() cllé‘ i f c<x<l;

cisafixed rea number, 0 <c < 1.
23. Find a quadratic polynomial P for which P(0) = P( 1) = 0 and |} P(x) dx = 1.
24. Find a cubic polynomia P for which P(0) = P( -2) = 0, P(1) = 15, and 3 j"_z P(x) dx = 4.
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Optional exercises

25. Let £ be afunction whose domain contains —x whenever it contains X. We say that f is an
even function if f(—x) = f(x)and a odd fuctionif £ (—x)= —F(X) for all x in the domain
off. If f s integrable on [0, b, prove that

b _ A0 . . )
(a) f_b fx)dx = 2_[0 J(x)dx if £ iseven;
(b) [;’ fOO oc=0 iffisodd
26. Use Theorems 1.18 and 1.19 to derive the formula

() dx:(b—a)folf [a+ (b= a)x] dx .

27. Theorems 1.18 and 1.19 suggest a common generalization for the integral j Z‘f (Ax + B) dx.

Guess the formula suggested and prove it with the help of Theorems 1.18 and 1.19. Discuss
also the case A = 0.
28. Use Theorems 1.18 and 1.19 to derive the formula

J" fe = x)dx= f :b f(x) dx .

1.27 Proofs of the basic properties of the integral

This section contains proofs of the basic properties of the integral listed in Theorems
1.16 through 1.20 in Section 1.24. We make repeated use of the fact that every functionf
which is bounded on an interval [a, &] has a lower integral I(f) and an upper integral (1)
given by

b - . b
1 =sw [ s|s<s], Ip=nt|ft]r<1,
where s and ¢ denote arbitrary step functions below and above f, respectively. We know,
by Theorem 1.9, thatfis integrable if and only if I(f) = i(f), in which case the value of the

integral off is the common value of the upper and lower integrals.

Proof of the Linearity Property (Theorem 1.16). We decompose the linearity property into
two parts:

) [oro=[r+].

(B) Lbcf=cj:f.

To prove (A), let I(f) = §2 fand let Z(g) = f; 9. We shall prove that I(f +g) = [(f +g) =
I(f) + 1g)-

Let 5, and s, denote arbitrary step functions below f and g, respectively. Since fand g
are integrable, we have

1 =sw | sls<s], 1@ =sw|[ sln<sl.
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By the additive property of the supremum (Theorem 1.33), we also have

(L1) 1N+1g=sup ] s ['sls <fisn<e

But if 5; < f and s, < g, then the sum s = 5, + 5, is a step function below f + g, and we
have

Lbsl"‘ Lb52= Lbsél(f-F g).

Therefore, the number I(f + g) is an upper bound for the set appearing on the right of
(1.11). This upper bound cannot be less than the least upper bound of the set, so we have

(L12) 1)+ M <If+ 8.

Similarly, if we use the relations

1N =it 0]/ <n), 1@ =it [ g <),

where ¢; and ¢, denote arbitrary step functions above f and g, respectively, we obtain the
inequality

(1.13) If+g) <L) +13) .

Inequalities (1.12) and (1.13) together show that I(f + @) = {f +9) = I(f) + I(g). There-
fore f 4 gis integrable and relation (A) holds.

Relation (B) is trivial if ¢ = 0. If ¢ > 0, we note that every step function s; below ¢f is of
the form s, = cs, where s is a step function below f. Similarly, every step function ¢, above
cf isof theform ¢, = ct, wheret is a step function above f. Therefore we have

Ief) =sup [ si| s < ef = sup e [s|s < 1) = e10)

and
ey =inf {[ 1 of <) =inf |e f;t[fgt} = a(f) .

Therefore I(cf) = Kcf) = cI(f). Here we have used the following properties of the
supremum and infimum :

(L14) sup{cx|xed}=csup{x|xed}, inf{cx|xed}=cinf{x|xe4d},

which hold if ¢ > 0. This proves (B) if ¢ > 0.

If ¢ <0, the proof of (B) is basically the same, except that every step function s, below ¢f
is of the form s, = ct, where t is a step function above f, and every step function ¢, above
¢f isof theform ¢, = cs, where s is a step function below f. Also, instead of (1.14) we use
the relations

sup{cx |[xe A} =cinf {x [xe A} , inf{cxlxeA}=clsup{x|xeA},
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which hold if ¢ < 0. We now have

b b . b
I(cf)=sup{L sllslgcf}=sup{cL t|fgt} =cmf{fa t|f§t>=cl(f).
Similarly, we find J(¢f) = cI(f). Therefore (B) holds for all rea c.
Proof of Additivity with Respect to the Interval of Integration (Theorem 1.17). ~ Suppose

that a < b < c, and assume that the two integrds @ T and ¢ T edidt Let I(f) ad I(f) denote
the upper and lower integrals ol’f over the interval [a, c]. We shall prove that

(115) mn=1In=r+[r

Ifs is any step function belowf’on [a, c], we have

‘[js=f:s+f:s.

Conversdly, if s, and s, are step functions below T on [a, b] and on [b, c], respectively, then
the function s which is equal to s; on [a, b) and equal to s, on [b, ] is a step function below
T on[a  for which we have
c b 4
J;S: le'l' LSz.

Therefore, by the additive property of the supremum (Theorem 1.33), we have

1) =sup ([ s|s<sl=swp (["silsi<s) +sup ([ sl m<s] = [1+ [ 7.
Similarly, we find

In={'r+[7.

which proves (1.15) when a< b <c. The proof is similar for any other arrangement of
the points a, b, c.

Proof of the Translation Property (Theorem 1.18). Let g be the function defined on the
interval [a+ ¢, b + c] by the equation g(x) = f(x = c). Let _I(g) and I(g) denote the lower
and upper integrals of g on the interval [a + ¢, b + c]. We shall prove that

116 I9) = Ig) = [, 1)

Let s be any step function below g on the interval [a + ¢, b + c]. Then the function s,
defined on [a, b] by the equation s,(x) = s(x + c) is a step function below T on[a b
Moreover, every step function s, below T on[a, b] hasthis form for some s below g.  Also,
by the translation property for integrals of step functions, we have

J:): s(x) dx = f: s(x + ¢) dx = L * 5,(x) dx .
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Therefore we have

b+c b b
1) =sup {["“s|s < g =sup s s <1} = [ S dx.
Similarly, we find f(g) = |? f(x) dx, which proves (1.16).
Proof of the Expansion Property (Theorem 1.19). Assume k > 0 and define g on the

interval [ka, kb] by the equation g(x) = f(x/k). Let I(g) and I(g) denote the lower and
upper integrals of g on [ka, kb]. We shall prove that

_ b
(117) I®) = Kg) =k [ fvydx.
Let s be any step function below g on [ka, kb]. Then the function s, defined on [a, b] by
the equation s,(x) = s(kx) is a step function below f on[a b]. Moreover, every step

function s, below f on [a, b] has thisform. Also, by the expansion property for integrals
of step functions, we have

P50 dx = k| stkx) dx = k[ si(x) dx .
J;ca a a
Therefore we have
Ko =swp [ ss <ol = suplic [ si[so< s} =k [ s ax.

Similarly, we find X(g) = kJ? f(x) dx, which proves (1.17) if k > 0. The same type of proof
can be used if k <0.

Proof of the Comparison Theorem (Theorem 1.20). Assume g < f on the interval [a, b].

Let s be any step function below g, and let t be any step function above f. Then we have
¢ s < [" t, and hence Theorem 1.34 gives us

f:g=sup{fabs|sgg}ginfU:tUgt}=J;bf.

This proves that [ g < |% f; as required.
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SOME APPLICATIONS OF INTEGRATION

2.1 Introduction

In Section 1.18 we expressed the area of the ordinate set of a nonnegative function as an
integral. Tn this chapter we will show that areas of more general regions can also be
expressed as integrals. We will also discuss further applications of the integral to concepts
such as volume, work, and averages. Then, at the end of the chapter, we will study
properties of functions defined by integrals.

2.2 The area of a region hetween two graphs expressed as an integral

If two functionsf and g are related by the inequality f(x) < g(x) for all x in an interval
[a, b], we writef < g on [a, b]. Figure 2.1 shows two examples. If f < g on [a, h], the set
S consisting of all points (x, y) satisfying the inequalities

<Ly Lglx), a<x<b,

is called the region between the graphs off and g. The following theorem tells us how to
express the area of S as an integral.

(2) (b)
Ficure 2.1 The area of a region beween two grgphs expresed & an integrd:

a(8) = ,” [g(x) — f(¥)] dx.
88
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THEOREM 2.1. Assume f and g areintegrable and satisfy f < gon[a, b]. Then the region
Shbetween their graphsis measurable and its area a(S) is given by theinftegral

@1 a(8) = [ [g() = f()] dx .

Proof. Assume first thatf and g are nonnegative, as shown in Figure 2.1(a). Let F and
G denote the following sets:

F={on]a<x<b 0y <fl)}, c=ilny)lagx<b o<y <gM}.

That is, G is the ordinate set of g, and Fis the ordinate set off, minus the graph off. The

region S between the graphs off and g is the difference S= G  F. By Theorems 1.10 and
1.11, both F and G are measurable. Since F < G, the difference S = G -~ F is also
measurable, and we have

aS)= aG)=aF) = | g0 dx = [ f@ ax= | [g09 1] dx .

This proves (2.1) when ¥ and g are nonnegative.

Now consider the general case where f < gon [a, b], but f and g are not necessarily
nonnegative. An example is shown in Figure 2.1(b). We can reduce this to the previous
case by dliding the region upward until it lies above the x-axis. That is, we choose a positive
number c large enough to ensure that 0 < f(x) + ¢ < g(x) + c for all x in [a, b]. By what
we have already proved, the new region T between the graphs off + c and g + c is
measurable, and its area is given by the integral

()= [T 1) + ) = (f(x) + Ol dx = [ [gx) = f(0) dx .
But T iscongruent to S; so S is also measurable and we have
a(s) = a(T) = [ fgl) =01 dx
This completes the proof.

2.3 Worked examples

exawvLe 1. Compute the area of the region S between the graphs off and g over the
interval [0, 2] if f{x) = XX = 2) and g(x) = x/2.

Solution.  The two graphs are shown in Figure 2.2. The shaded portion represents S.
Since f < g over the interval [0, 2], we use Theorem 2.1 to write

a(S) =f[g(x) — F()] dx =f(§-x - x2) dx = g%ﬁ _E2_T
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FIlGURE 2.2 Examplel. Flare 23 Example 2.

EXavPLE 2. Compute the area of the region S between the graphs off and g over the
interval [- 1, 2] if f(x) = x and g(x) = x%/4.

Solution.  The region S is shown in Figure 2.3. Herewe do not have ¥ < g throughout
the interval [ = 1, 2]. However, we do have T < g over the subinterval [ — 1, 0] and g < T
over the subinterval [0, 2]. Applying Theorem 2.1 to each subinterval, we have

a§) =[° [8) = F dx + ] [f(x) = ()] dx

°(x° f2( x_3)
fl(zs—x)dﬂ' )

_l'i_—_l)f+(_i)2 22 128 23
4 4 2 2 44 16

In examples like this one, where the interval [a, 5] can be broken up into a finite number
of subintervals such that eitherf < g or g < TN each subinterval, formula (2.1) of Theorem

2.1 becomes

a$) = [ 1g0) — Gl dx

EXAMPLE 3. 4req of acircular disk. A circular disk of radius r is the set of all points
inside or on the boundary of a circle of radius r. Such a disk is congruent to the region
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between the graphs of the two functions f and g defined on the interval [-v, Y] by the
formulas

g(x) = dz-2 and f(x) = —Vr? = 22,

Each function is bounded and piecewise monotonic so each is integrable on [-r, r].
Theorem 2.1 tells us that the region between their graphs is measurable and that its area is
Jr, [g() — f(x)] dx. Let A(r) denote the area of the disk. We will prove that

A(r) = r24(1) .

That is, the area of a disk of radiusr is r? times the area of a unit disk (a disk of radius 1).
Since g(x) -f(x) = 2g(x), Theorem 2.1 gives us

Alr) = j_rr 2g(x) dx = 2 er Vi = i dx

In particular, when r = 1, we have the formula

AD=2 [ Vied.
—1
Now we change the scale on the x-axis, using Theorem 1.19 with k = 1/r, to obtain

A(r)

i

2 f; g(x) dx = 2r f_ll g(rx) dx = 2r fjl V- (rx)? dx
=2 [ Vio tdx=ra).
This proves that A(r) =r?A4(1), as asserted.
DeFINITION. e define the number 7 to be the area of a unit disk.

The formula just proved states that A(r) = r2

The foregoing example illustrates the behavior of area under expansion or contraction
of plane regions. Suppose § is a given set of points in the plane and consider a new set of
points obtained by multiplying the coordinates of each point of S by a constant factor
k > 0. We denote this set by kS and say that it is similar to S. The process which produces
kS from S is called a similarity transformation. Each point is moved along a straight line
which passes through the origin to k times its origina distance from the origin. If k > 1,
the transformation is also called a stretching or an expansion (from the origin) and, if
O0< k < 1,itiscaled a shrinking or a contraction (toward the origin).

For example, if § is the region bounded by a unit circle with center at the origin, then
kS is a concentric circular region of radius k. In Example 3 we showed that for circular
regions, the area of kS is k? timesthe area of S. Now we prove that this property of area
holds for any ordinate set.
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exaveLe 4. Behavior of the area of an ordinate set under a similarity transformation.
Let f be nonnegative and integrable on [a, ] and let S be its ordinate set. An example is
shown in Figure 2.4(a). If we apply a similarity transformation with a positive factor Kk,
then kS is the ordinate set of a new function, say g, over the interval [ka, kb]. [See Figure
24(b)] A point (x, y) is on the graph of g if and only if the point (x/k, y/k) is on the graph
off. Hence y/k = f(x/k), so'y = kf(x/k). In other words, the new function g is related to
f by the formula

g(x) = kf(x[k)

/f

(a) (b)

Ficure 2.4 The area of kS is k2 times that of S.

for each x in [ka, kb]. Therefore, the area of &S is given by

aks) = [ g(x) dx =k [ ek dx = k2 [ () dx |

where in the last step we used the expansion property for integrals (Theorem 1.19). Since
§° f(x) dx = a(S), this proves that a(kS) = k2a(S). In other words, the area of k.S is k2 times
that of S.

exawie 5. Calculation of the integral ¢ x'2 dx. The integral for area is a two-edged
sword. Although we ordinarily use the integral to calculate areas, sometimes we can use
our knowledge of area to calculate integrals. We illustrate by computing the value of the
integral {4 x2 dx, where a > 0. (The integral exists since the integrand is increasing and
bounded on [0, a].)

Figure 2.5 shows the graph of the functionfgiven by f(x) = x!* over the interval [0, a].
Its ordinate set S has an area given by

a(s) = | x' dx

Now we compute this area another way. We simply observe that in Figure 2.5 the region
S and the shaded region T together fill out a rectangle of base a and altitude 4!/, Therefore
a(s) + a(T) = g¥2, so we have

as) = ¥ — a(T) .
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But T isthe ordinate set of afunction g defined over the interval [0, g/2] on the y-axis by the
equation g(y) = y2 Thus, we have

/2

Q172 @ ,
am = [" o dy = [ ytay =

a3/2 ,

Tl

SO a(S) = a%?2 — 3a®? = §a®2. This proves that

a
fo x12 dx = %a3/2 .

) (ﬂ, al/z)

Ficure 25 Calculation of theintegral |2 x!/2dx.

More generdly, if a >0 and b > 0, we may use the additive property of the integra to
obtain the formula

b 5
J. x1/2 dx = é(baﬂ - a3/2) .
a

The foregoing argument can also be used to compute the integral [% x'/" dx, if n is a
positive integer. We state the result as a theorem.

THEOREM 2.2, For a >0, b >0 and n a positive integer, we have

b1+1/n 1+1/n

— 4

b
2.2 1n = "
(2.2) fux dx T+ n

The proof is so similar to that in Example 5 that we leave the details to the reader.
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2.4 Exercises

In Exercises 1 through 14, compute the area of the region S between the graphs off and g over
the interval [a, b] specified in each cae Make a sketch of the two graphs and indicte S by shading.

1. f(x) =4 — x2, gx) =0, a= -2, b=2.
2.fx) =4 = x2, OxX) =8 w2y a = -2, b=2.
3.f(X) = x® + 2 g=8+1 a=-1, b =1
4. f(X) = X = x2 gx) = —x, a=0, b=2,
5. f(x) = x1/3, g(x) = xl2, a=o, b=1
6. f(x) = x1/3, g(x) = xl2, a=1 b=2.
7. f(x) = x1/3, gx) = x1/2, a=0, b =2
8. f(x) = xt/2, glx) = x2, a =0, b=2
9. f(x) = x% gx) =x+1, a-= -1 b= (1++/5)2.
10 f(x) = x(x* = 1),  g(x) = x, a= -1, b =14/2.
1. () = |, oW=x-1 a=-1, b=1
2fx) = |x = 1], gx) =x2=2x, a=0, b=2.
13.1(X) = 2 |x, g¥)=1=33 a=-433b=1
14. f(X) = |x| + |x = 1], g(x) = O, a=-1, b=2.

15. The graphs of f(x) = x? and g(x) = cx® where ¢ > 0, intersect at the points (0, 0) and
(1/c, 1/¢®. Find ¢ so that the region which lies between these graphs and over the interval
[0, /] has area 2.

16. Let f(x) =x — x?, g(x) = ax. Determine a so that the region above the graph ofg and below
the graph off has area 2.

17. We have defined # to be the area of a unit circular disk. In Example 3 of Section 2.3, we
proved that 7 =2 | ilv 1 — x%dx. Use properties of the integral to compute the following
interms of =:

—_— 2 —_—

(a) f:\/9 —x2dx; (b) fo\/l — Ix?dx; (c) fi (X = DV4 — x2dx.

18. Calculate the areas of regular dodecagons (twelve-sided polygons) inscribed and circum-
scribed about a unit circular disk and thereby deduce the inequalities 3 < » <[2(2 = \/3),

19. Let C denote the unit circle, whose Cartesian equation is x* + y* = 1. Let E be the set of
points obtained by multiplying the x-coordinate of each point (x, y) on C by a consant factor
a > 0 and the y-coordinate by a constant factor b > 0. The setE is called an ellipse. (When
a= Db, the éllipse is another circle))
(a) Show that each point (x, y) onE satisfies the Cartesian equation (x/a)? + (y/b)2 = 1.
(b) Use propeties of the integrd to prove that the region enclosed by this dlipse is measurable
and that itsarea iSwab.

20. Exercise 19 is a generalization of Example 3 of Section 2.3. State and prove a corresponding
generaization of Example 4 of Section 2.3.

21. Use an argument similar to that in Example 5 of Section 2.3 to prove Theorem 2.2.

2.5 The trigonometric functions

Before we introduce further applications of integration, we will digress briefly to discuss
the trigonometric functions. We assume that the reader has some knowledge of the
properties of the six trigonometric functions, sine, cosine, tangent, cotangent, secant, and
cosecant; and their inverses, arc sine, arc cosine, arc tangent, etc. These functions are
discussed in elementary trigonometry courses in connection With various problems involving
the sides and angles of triangles.
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The trigonometric functions are important in calculus, not so much because of their
relation to the sides and angles of a triangle, but rather because of the properties they
possess as functions. The six trigonometric functions have in common an important
property known as periodicity.

A function T issaid tobeperiodic with periodp s 0 if itsdomain contains x + p whenever
it contains x andif f(x + p)= f(x) for every x in the domain off. The sine and cosine
functions are periodic with period 277, where = isthe area of a unit circular disk. Many
problems in physics and engineering deal with periodic phenomena (such as vibrations,
planetary and wave motion) and the sine and cosine functions form the basis for the
mathematical analysis of such problems.

The sine and cosine functions can be introduced in many different ways. For example,
there are geometric definitions which relate the sine and cosine functions to angles, and
there are analytic definitions which introduce these functions without any reference whatever
to geometry. All these methods are equivalent, in the sense that they all lead to the same
functions.

Ordinarily, when we work with the sine and cosine we are not concerned SO much with
their definitions as we are with the properties that can be deduced from the definitions.
Some of these properties, which are of importance in calculus, are listed below. As usual,
we denote the values of the sine and cosine functions at x by sin x, cos x, respectively.

FUNDAMENTAL PROPERTIES OF THE SINE AND COSINE.

1. Domain of definition. Thesine and cosine functions are dejined everywhere on thereal
line.

2. Special values. We have cos0 = sin 7 =1, cos 7= —1.

3. Cosine of a difference. For gll x and y, we have
(2.3) cos (y — x) = cosycosx + sinysinx.
4. Fundamental inegualities. For 0 < x < ¥, we have

sin x 1
0<cosx < — < —
(24) X COSx.

From these four properties we can deduce all the properties of the sine and cosine that
are of importance in calculus. This suggests that we might introduce the trigonometric
functions axiomatically. That is, we could take properties 1 through 4 as axioms about the
sine and cosine and deduce all further properties as theorems. To make certain we are not
discussing an empty theory, it is necessary to show that there are functions satisfying the
above properties. We shall by-pass this problem for the moment. First we assume that
functions exist which satisfy these fundamental properties and show how further properties
can then be deduced. Then, in Section 2.7, we indicate a geometric method of defining the
sine and cosine so as to obtain functions with the desired properties. In Chapter 11 we also
outline an analytic method for defining the sine and cosine.
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THEOREM 2.3. If two functions sin and cos satisfy properties / through 4, then they a/so
satisfy the following properties:
(@) Pythagorean identity. sin? X + cos? x = [ for g/l x.
(b) Special values. sin 0 = cos }7 = sin 7 = 0.
(c) Even and oddproperties. The cosine js an even function and the sine is an oddfunction.
That is, for all x we have

COS (X) = COS x, sin (-X) = —sin X.
(d) CO-relations. For all x, we have
sin (37 + X) = cos X, cos (37 +X) = —sinx.

(e) Periodicity. For all x, we have sin (x + 2x) = Sin X, cos (X + 27) = COS X.
(f) Addition formulas. For all x and y, we have

cos(x + y) = cos xcos y — sinxsin y,

sin(x + y) = sinxcosy + cosxsiny.

(g) Difference formulas. For a// a and b, we have

sina—sinszsina;b atb

COos )
2

a-bsina+b
B

cosa —cos b = —2sin

(h) Monotonicity. In the interval [0, 4], the sine is strictly increasing and the cosine is
strictly decreasing.

Proof. Part (a) follows at once if we take x =y in (2.3) and use the relation cos 0 = 1
Property (b) follows from (a) by taking x = 0, x = ¥w, x = 7 and using the relation
sin 37 = 1. The even property of the cosine aso follows from (2.3) by taking y = 0. Next
we deduce the formula

25) cos (37 = x) = sinx,

by taking y = }# in (2.3). From this and (2.3), we find that the sine is odd, since

sin(—x)=cos(2z+x) =cos[1r-— (f-x)1]

:COSnCOS(;-x )+sin7rsin {q—x :)-si nx.
rg o

This proves (c). To prove (d), we again use (2.5), first with x replaced by i» + x and then
with x replaced by —x, Repeated use of (d) then gives us the periodicity relations (e).
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To prove the addition formula for the cosine, we simply replace x by —x in (2.3) and use
the even and odd properties. Then we use part (d) and the addition formula for the cosine
to obtain

sin(x+y)=-—cos(x+y+2z) = —cos x coyy + 593” xqny + f)

=¢osX Siny + sin x cos y

This proves (f). To deduce the difference formulas (g), we first replace y by -y in the
addition formula for sin (x + y) to obtain

sin (x -y) = sinxcosy — cosxsiny.

Subtracting this from the formula for sin (x + y) and doing the same for the cosine function,
we get

sin(x +y) ~sin(x -y) = 2sinycosx,
cos (x +y) —cos{x -y) = -2sinysinx.

Taking x = (a+ b)/2,y = (a = b)/2, we find that these become the difference formulas
in (g).

Properties (a) through (g) were deduced from properties 1 through 3 alone. Property 4
is used to prove (h). The inequalities (2.4) show that cos x and sin x are positive if
0 < x <37 Now, if 0< b <a < }n the numbers (a + b)/2 and (a — b)/2 are in the
interval (0, {=), and the difference formulas (g) show that sina > sin b and cos a < cosb.
This completes the proof of Theorem 2.3.

Further properties of the sine and cosine functions are discussed in the next set of
exercises (page 104). We mention, in particular, two formulas that are used frequently in
calculus. These are called the double-angle or duplication formulas. We have

SN2x =2sNnX ¢os X . COS 2X = cOos? X ==sin2 x =1 = 2 sin® x .

These are, of course, merely special cases of the addition formulas obtained by taking
= X. The second formula for cos 2x follows from the first by use of the Pythagorean

identity. The Pythagorean identity also shows that |cos x| < 1 and |sin x} < 1 for all x

2.6 Integration formulas for the sine and cosine

The monotonicity properties in part (h) of Theorem 2.3, along with the co-relations and
the periodicity properties, show that the sine and cosine functions are piecewise monotonic
on every interval. Therefore, by repeated use of Theorem 1.12, we see that the sine and
cosine are integrable on every finite interval. Now we shall calculate their integrals by
applying Theorem 1.14. This calculation makes use of a pair of inequalities which we state
as a separate theorem.

tHeoRem 2.4, If 0 < a< 4= and n > 1, we have

N ka . a
2.6 = L 2 =,
(2.6) Iqgcosﬁ <sma<ﬁ cos
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Proof. The inequalities in (2.6) will be deduced from the trigonometric identity

@7 2 sin ix zcos kx = sin (n + })x = sin ix ,
k=

which isvalid for n > 1 and all red X. To prove (2.7), we use one of the difference formulas
(g) of Theorem 2.3 to write

2 sin $x cos kx = sin (kK + 3)x — sin (k = {)x .

Taking k= 1,2,...,n and adding these equations, we find that the sum on the right
telescopes and we obtain (2.7).

If 1x is not an integer multiple of 7 we can divide both members of (2.7) by 2 sin 1x to
obtain

n 1
_sin (n+ $)x —sin
Ecosk ( 2) b

= 2sinix

Replacing n by n — 1 and adding 1 to both members we also obtain

GE i 1 in 1
2 sin (n = $)x + sin }
cos kx = 3N ( ) 2

2sini
P sin ix

Both these formulas are valid if x % 2ma, where m is an integer. Taking x = a/n, where
0< a < }» we find that the pair of inequalities in (2.6) is equivaent to the pair

sin (n+ %) g—sin(i) asin(n-%)g+sin (a_)
a n <sina< - n_ 2n
25in(a) Zsin(a)

" m ” 2n

This pair, in turn, is equivalent to the pair

s \2 ]

(2.8) sm(n+1)——sm( ) ———sina < sin(n — } )2+sin(_—a—).

Therefore, proving (2.6) is equivalent to proving (2.8). We shall prove that we have

(2.9) sin(2n+ 1) —sin § < §1_r5_65m 2nf < sin (2n = 1)f + sin §

for 0 < 2nf < 47. When 6 = a/(2n) this reduces to (2.8).
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To prove the leftmost inequality in (2.9), we use the addition formula for the sine to
write

(210)  sin (2n+ 1)% = Sin 200 cos B+ cos 2n Sin % < sin 210 SBY + sing

where we have also used the inequalities

coso<%~6, 0<cos26<1, snf>0,

all of which are valid since 0 < 216 < }=. Inequality (2.10) is equivalent to the leftmost
inequality in (2.9).

To prove the rightmost inequality in (2.9), we again use the addition formula for the sine
and write

Sin (2n = 1)% = sin 2x6 COS f — COS 2nh sin f) .

Adding sin % to both members, we obtain

(211) sin (2n = 1) + sin § = sin 2n0(cos §+sinp l—cosin 2"0) '
sin2n6

But since we have

1—cos2nf _  2sin®nf  _ sinpf
sin 2nf 2sinnf cosnf ~ cos nd’

the right member of (2.11) is equal to

= sin 2nf

sin2n9(cos 6+ sin esmnﬁ) = sin 2 05 0.COS 0 + Sin § sin nf
. cos nb/ cos nf
cos (n — 1)

cos nf

Therefore, to complete the proof of (2.9), we need only show that

(212) cos (n = 1)f, sin 0
cos nf g .
But we have

cosnff= cos(n 1)§cosf sin(n 1)fsing

<cos(n—1)0cos€<cos(n—1)0.—6 ,
sin
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where we have again used the fundamental inequality cos f < 8/(sin 8). This last relation
implies (2.12), so the proof of Theorem 2.4 is complete.

tHeorem 25. If two functions sinand cos satisfy the fundamentalproperties 1 through 4,
then for every real a we have

2
(213) [0 cos x dx = sin a ,

i
(219 J'O sinx dx =1~ cos a.

Proof. First we prove (2.13), and then we use (2.13) to deduce (2.14). Assume that
0 <a < . Since the cosine is decreasing on [0, a], we can apply Theorem 1.14 in con-
junction with the inequalities of Theorem 2.4 to obtain (2.13). The formula aso holds
trivially for a = 0, since both members are zero. The general properties of the integral can
now be used to extend its validity to all real a

For example, if —47 < a <0, then 0 < —a < 4=, and the reflection property gives us

La cos x dx = —fo‘acos (-x) dx = —[_acos x dx = -sin (—a) = sin a .
)

Thus (2.13) is valid in the interval [—im, iw]. Now suppose that i7 < a < §#. Then
—1ir <a— 7 <}n, sowe have

[a /2 [ . a—r
Jcosxdx=f cosxdx+f cosxdx:sm%vr+[ cos (x + =) dx
0 0 /2 Ry

=1—fa_/:cosxdx=1—sin(a—7r)+sin(—%1r):sina.

Thus (2.13) holds for all ain the interval [—3m, §=]. But this interval has length 27, so
formula (2.13) holds for all a since both members are periodic in a with period 2.

Now we use (2.13) to deduce (2.14). First we prove that (2.14) holds when a = /2.
Applying, in succession, the translation property, the co-relation sin (X + }7) = COS X,
and the reflection property, we find

#l2 0 - 0 /2
f sin x dx =f sin (x + —) dx =f cos x dx =f cos (—x) dx.
0 —nl2 2 —al2 0

Using the relation cos (-x) = cos x and Equation (2.13), we obtain
/2
J snxdx=1.
0

Now, for any real a, we may write

a /2 a a—7/2 .
[Sinxdxzf snx dx +f sinxdx=1+J~ sin(x—{-—)dx
0 0 7[2 0 2

Y

a-n/2 T
=1+J cosxdx=l+sin(a—5):1.-cosa_
0

This shows that Equation (2.13) implies (2.14).
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exavLe 1. Using (2.13) and (2.14) in conjunction with the additive property

be(x) dx = [ 1) dx = [ 1) dx
a 0 0o’V '
we get the more general integration formulas

b . .
facosxdx=smb—sma

and
:sinx dx= (1 —cos b) — (1 — cos a) = —(cos b — cos a) .

If again we use the special symbol f(x) |! to denote the difference f(b) — f(a), we can write
these integration formulas in the form

b . b b, b
Lcosxdx:smx and *Lsmx dx:—cosx‘a‘

v 1]

exavLe 2. Using the results of Example 1 and the expansion property

Lbf(x) dx = %f;f(x/c) dx ,

we obtain the following formulas, valid for ¢ # O:

b cb ]
f COS ¢cx dx = -;f COs X dx = % (sin cb = sin ca),
a Ci

{7

and

b 14
. Lfer. 1
fsmcx dx= =] sn x dx= — ~ (cos cb — cos ca).
a ¢ Jea ¢

exaw e 3. The identity cos 2x =1 — 2 sin? x implies sin? x = (1 — cos 2x) so, from
Example 2, we obtain

jsinzxdx:lf(l-cos&)dng_lsinZa.
0 2 Jo 2 4

Since sin? x + ¢os? x = 1, we aso find

a a
f cos® x dx :f(l - sin?x) dx = a —f sin? X dx = = +
Q ( 1]

a sin 2q .
0 2

B =
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2.7 A geometric description of the sine and cosine functions

In this section we indicate a geometric method for defining the sine and cosine functions,
and we give a geometric interpretation of the fundamental properties listed in the Section 2.5.

Consider a circle of radius r with its center at the origin. Denote the point (r, 0) by A,
and let P be any other point on the circle. The two line segments OA4 and OP determine a
geometric configuration called an angle which we denote by the symbol / AOP. An example
is shown in Figure 2.6. We wish to assign to this angle a nonnegative real number x which
can be used as a measurement of its size. The most common way of doing thisis to take a
circle of radius 1 and let x be the length of the circular arc AP, traced counterclockwise

.- twice area of sector

»7?

P:(a,b)
b = sin x

A=(1,0

Ficure 26 An ange £ AOP condsing of x Ficure 2.7 Geometric description of sin x
radians. and cos X

from A to P, and to say that the measure of / AOP is x radians. From a logical point of

view, this is unsatisfactory at the present stage because we have not yet discussed the
concept of arc length. Arc length will be discussed later in Chapter 14. Since the concept
of area has already been discussed, we prefer to use the area of the circular sector AOP
rather than the length of the arc AP as a measure of the size of / 4OP. It is understood

that the sector AOP is the smaller portion of the circular disk when P is above the real axis,

and the larger portion when P is beiow the real axis.

Later, when arc length is discussed, we shall find that the length of arc AP is exactly
twice the area of sector AOP. Therefore, to get the same scale of measurement for angles
by both methods, we shall use twice the area of the sector AOP as a measure of the angle
/. AOP. However, to obtain a “dimensionless’ measure of angles, that is, a measure
independent of the unit of distance in our coordinate system, we shall define the measure
of / AOP to betwice the grea of sector AOP divided by the square of theradius.  This ratio
does not change if we expand or contract the circle, and therefore there is no loss in
generality in restricting our considerations to a unit circle. The unit of measure so obtained
is called the radian. Thus, we say the measure of an angle / AQP is x radians if x/2 is the
area of the sector AOP cut from a unit circular disk.

We have aready introduced the symbol 7 to denote the area of a unit circular disk. When
P = (- 1, 0), the sector AOP is a semicircular disk of area }=, SO it subtends an angle of
radians. The entire disk is a sector consisting of 2x radians. If P is initiadly at (1, 0) and if
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P moves once around the circle in a counterclockwise direction, the area of sector AOP
increases from 0 to 7, taking every value in the interval [0, 7] exactly once. This property,
which is geometrically plausible, can be proved by expressing the area as an integral, but
we shall not discuss the proof.

The next step is to define the sine and cosine of an angle. Actually, we prefer to speak
of the sine and cosine of a number rather than of an angle, so that the sine and cosine will
be functions defined on thereal line. We proceed as follows: Choose a number x satisfying
0< x < 27 and let P be the point on the unit circle such that the area of sector AOP is
equal to x/2. Let (a, b) denote the coordinates of P. An example is shown in Figure 2.7.
The numbers a and b are completely determined by x. We define the sine and cosine of x
& follows :

cos X = a, snx=Db.

In other words, cos x is the abscissa of P and sin x is its ordinate.

For example, when x = 7, we have P = (- 1,0) sothat cos # = =~ 1 and sin 77 = 0.
Similarly, when x = 17 we have P = (0, 1) and hence cos 47 = 0 and sin §7 = 1. This
procedure describes the sine and cosine as functions defined in the open interval (0, 27).
We extend the definitions to the whole real axis by means of the following equations:

sn0=0, COs0=1, sin (x + 27r) = €in x , COS(x +2m)=COS x .

The other four trigonometric functions are now defined in terms of the sine and cosine by
the usual formulas,

sinx COSx
tan x = cotx = ——, SEC X

1 1
, = CSCX = —
cosx’ sin x COSx '

snx '

These functions are defined for all real x except for certain isolated points where the
denominators may be zero. They all satisfy the periodicity property f(x + 27) = f(x).
The tangent and cotangent have the smaller period 7.

Now we give geometric arguments to indicate how these definitions lead to the funda-
mental properties listed in Section 2.5. Properties 1 and 2 have already been taken care of
by the way we have defined the sine and cosine. The Pythagorean identity becomes evident
when we refer to Figure 2.7. The line segment OP is the hypotenuse of aright triangle whose
legs have lengths |cos x| and |sin x|. Hence the Pythagorean theorem for right triangles
implies the identity cos? x + sin® x = 1

Now we use the Pythagorean theorem for right triangles again to give a geometric proof
of formula (2.3) for cos (y — X). Refer to the two right triangles PAQ and PBQ shown in
Figure 2.8. In triangle PAQ, the length of side AQ is|sin y — sin x|, the absolute value of
the difference of the ordinates of Q and P. Smilaly, AP has length jcos x — cos y]. If d
denotes the length of the hypotenuse PQ, we have, by the Pythagorean theorem,

d* = (siny — sin x)? + (COs X = COs y)*.

On the other hand, in right triangle PBQ the leg BP has length |1 — cos (¥ — x)| and the
leg BQ has length [sin (y = x)|. Therefore, the Pythagorean theorem gives us

d? = [l = cos (y = x)I* + sin? (y — x) .
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Equating the two expressions for ¢2 and solving for cos (y = x), we obtain the desired
formula (2.3) for cos (y — x).

Finally, geometric proofs of the fundamental inequalities in property 4 may be given by
referring to Figure 2.9. We simply compare the area of sector OAP with that of triangles
OQP and OAB. Because of the way we have defined angular measure, the area of sector
OAP is %x. Triangle OAB has base 1 and altitude #, say. By similar triangles, we find
A/l = (sin x)/(cos x), sothe area of triangle OAB is 4# = }(sin x)/(cos x). Therefore,
comparison Of areas gives us the inequalities

1 . 1 lsinx
2sm xcosx<2x<éc—o~§—;.
Q= (cos y, siny) 5

P = (cos x, sin x)

0 0t
Ficure 2.8 Geometric proof of the formula  Ficure 2.9 Geomeric proof of the inegudities
for cos (y ~ X). sinx 1
’ 0<cosx <— < —.
X Cos x

Dividing by } sin x and taking reciprocas, we obtain the fundamental inequalities (2.4).

We remind the reader once more that the discussion of this section is intended to provide
a geometric interpretation of the sine and cosine and their fundamental properties. An
analytic treatment of these functions, making no use of geometry, will be described in
Section 11.11.

Extensive tables of values of the sine, cosine, tangent, and cotangent appear in most
mathematical handbooks. The graphs of the six trigonometric functions are shown in
Figure 2.10 (page 107) as they appear over one complete period-interval. The rest of the
graph in each case is obtained by appealing to periodicity.

2.8 Exercises

In this set of exercises, you may use the properties of the sine and cosinelisted in Sections 2.5
through 2.7.

1. (a) Prove that sinpr = O for every integer n and that these are the only values of x for which
snx =0.
(b) Find all red x such that cos x = 0.

2. Find all real x such that (a)sinx = 1;(b)cosx = 1;(c)sinx = —1;(d)cosx = -1.

3. Prove that sin (X + =) = -sin X and cos (X + =) = —cos X for all x.

4. Prove that sin 3x = 3 sin X — 4 sin® X and cos 3X = cos X = 4 sin? X cos X for all red x.
Prove also that cos 3x = 4 cos3x = 3 cos x.
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5.

10.
11.

12.

13.
14.

15.

16.

(a) Prove that sin = =1, cos 4= = §Vv/3. [Hint: UseExercise4.]
(b) Prove that sin §= = 14/3, cos = = §.
(c) Prove that sin r = cos = = 3V/2.

— 1. Obtain corresponding formulas for tan (x + y) and cot (X +y).

. Find numbers A and B such that 3 sin (x + #) = Asinx + B cosx for all x.
. Prove that if C and « are given real numbers, there exist real numbers A and B such that

Csn(x +a) = Asinx + B cosx for all x.

that the formula of Exercise 8 holds.

. Prove that tan (x = y) = (tan x — tan y)/(1+ tan x tan y) for all x and y with tan x tan y

. Provethat if A and B are given real numbers, there exist numbers C and e, with C > 0, such

Determine C and «, with C > 0, such that C sin (X + «) =-2sin X — 2 cos x for all x.
Prove that if A and B are given real numbers, there exist numbers C and «, with C > 0, such

that C cos (x + «) = Asin x + Bcos x. Determine Cand «xif 4 = B = 1.
Find all real x such that sin x = cos x.

Find all real x such that sin x -~ cos x = 1.

Prove that the following identities hold for all x and y.

(a) 2cosxcosy = cos(x -y) + cos(x +Yy).

(b) 2sinxsiny =cos(x -y) — cos(x tY).

(c) 2sinxcosy =sin(x -y) +sin(x +y).

If h % O, prove that the following identities hold for all x

dgn (X + &) —sin x  sin (4/2) +h
h = w3

cos (X + h) -~ cosx sin (h/2) . + K
h i 7/ A ( ?) .

Thee formulas ae used in differentid  cdculus

Prove or disorove each of the following datements.

(8) For all x # 0, we have sin 2x s 2 Sn x.

(b) For every x, thereisay such that cos (X + y) = COS x + COS Y.

(c) Thereisan xsuchthat Sin (x + y) =sinx + siny for ally.

(d) Thereisay # O such that [ sinx dx = siny.

17. Calculate the integral |2 sin x dx for each of the following values of aand b. In each case
interpret your result geometrically in terms of areas.
@ a=0, b= =6, e a=0, b=n
(b)a=0, b= /4 (Ha=0 b= 2m
(©a=0, p==/3. (99a=—-1,p=1 '
(da=0, b= /2. (h) a= —=/6,b = =/4.
Evaluate the integrds in Exercises 18 through 27.
18. f; (X + sn x) dx. 23, f;’ |3+ cos ¢ dt.
19. f:lz (x%+ cosx) dx. 24, f:, L+ cosyldt, if0 < x <,
20. L i (sin x = cos x) dx. 25. f; % + sin?)dr.
2L J;m Sin x == oS x| dx. 26. ﬁlz sin 2x dx.
T 7/3 x
2. f (} + cost) dt. 27. f cos 5 dx.
0 0
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28. Prove the following integration formulas, valid for b # O:

&
f cos(a+ bt) dt = %[sin(a+ bx) - sina],
0

Lm sn (@ + bt) dt = —;;[cos(a+ bx) = cos a] .
29. (a) Usethe identity sin 3¢ = 3 sint = 4sin®¢ to deduce the integration formula
f: sin® t dt = § — %(2 + sin?X) cos X .
(b) Derive the identity cos 3t =4cos®f = 3 cos ¢ and use it to prove that
J‘:ﬂcos3 tdt= 32+ cos®x)sinx.

30. If afunction ¥ is periodic with periodp > 0 and integrable on [0, p], prove that jgf(x) dx =
far? f(x) dx for all a

31. (a) Prove that {2 sin nx dx = 2 cos nx dx = O for all integers n # O.
(b) Use part (a) and the addition formulas for the sine and cosine to establish the following
formulas, valid for integers mand n, m2# n?;

2r 2r . . 2r
Jo sn nx cos MK dx = , Sinnx sinmx dx = . cosnxcosmxdx =0,
2 2n .
f"sin2nxdx: L cos®nxdx =, if n#0.
0

Thee formulas ae known a the orthogondity relations for the sine and cosine
32. Use the identity

Zsin;coskx: sin (2k + 1)g—sin(2k-1);

and the telescoping property of finite sumsto prove that if X # 2m= (man integer), we have

7 .

sin inx cos H(n + 1)X

zcoskx: ikt 12( )
an X

k=l

33. If X # 2m# (M an integer), prove that

n . 1 . 1
. Sin gax sin 3(n + 1)X

Z sin k= 22 S 12(" )

sn 3x

k=1 2

34. Refer to Figure 2.1. By comparing the area of triangle OAP with that of the circuiar sector
OAP, provethat sin x < xif 0 <x <%= Then use the fact that sin (-x) = —sin X to prove
that |sin x| < |x] if 0 < |x| < }=.
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Ficure 2.10 Graphs of the trigonometric functions as they appear over one
period-interval.
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2.9 Polar coordinates

Up to now we have located points in the plane with rectangular coordinates. We can
also locate them with polar coordinates. This is done as follows. Let P be a point distinct
from the origin. Suppose the line segment joining P to the origin has length r > 0 and
mskes an angle of 8 radians with the positive x-axis. An example is shown in Figure 2. 11,
The two numbers r and § are called polar coordinates of P. They are related to the rec-
tangular coordinates (x, y) by the equations

(2.15) x =rcosf, y=r snO.

Y
i
P = (-x’ ,V)
y y=r sin 0
] -
0 X = rcosf
Ficure 2.11 Polar coordinates. Ficure 212 A figuredight curve with polar

equation r = V/|sin 8|.

The positive number r is called the radial distance of P, and # is called a polar angle. We
say a polar angle rather than the polar angle because if § satisfies (2.15), so does 0 + 2nm
for any integer n. We agree to call all pairs of real numbers (r, 8) polar coordinates of P if
they satisfy (2.15) with r > 0. Thus, a given point has more than one pair of polar
coordinates. The radial distance r is uniquely determined, r = V x% 4- ¥%, but the polar
angle § is determined only up to integer multiples of 2.

When P is the origin, the equations in (2.15) are satisfied with r = 0 and any 6.  For this
reason we assign to the origin the radial distance r = 0, and we agree that any real 6 may
be used as a polar angle.

Letfbe a nonnegative function defined on an interval [a, b]. The set of all points with
polar coordinates (r, f) satisfying r = f(f) is called the graph off in polar coordinates.
The equation r = f(§) is caled a polar equation of this graph. For some curves, polar



The integral for greq in polar coordinates 109

equations may be simpler and more convenient to use than Cartesian equations. For
example, the circle with Cartesian equation x® + y* = 4 has the simpler polar equation
r = 2. The equations in (2.15) show how to convert from rectangular to polar coordinates.

ExAMPLE. Figure 2.12 shows a curve in the shape of a figure eight whose Cartesian
equation is (x* + y?)® = y% Using (2.15), we find x2 4+ y? =2, so the polar coordinates of
the points on this curve satisfy the equation r®= r2 sin? 6, or r2 = |sin 6], r = V|sin 8]
It is not difficult to sketch this curve from the polar equation. For example, in the interval
0 <6 <72, sin e increases from 0 to 1, so r also increases from O to 1. Plotting a few
values which are easy to calculate, for example, those corresponding to § = #/6, 7/4, and
(3, we quickly sketch the portion of the curve in the first quadrant. The rest of the curve
is obtained by appealing to symmetry in the Cartesian equation, or to the symmetry and
periodicity of [sin 6|. It would be a more difficult task to sketch this curve from its
Cartesian equation alone.

2.10 The integral for area in polar coordinates

Let ¥ be a nonnegative function defined on an interval [a, b], where0 < b = a < 2.
The set of all points with polar coordinates (r, ) satisfying the inequalities

0<r<flh) a<0<b,

/0=b

Ficure 2.13 The radia set of f over FiIGURE 2.14 The radial set of a step
an interval [, b]. function s is a union of circular sectors.
Its area iS [ s%(0) d.

is called the radial set offover [a, b]. The shaded region shown in Figure 2.13 is an example.
If fis constant on [a, b], its radial set is a circular sector subtending an angle of b — a
radians. Figure 2.14 shows the radial set S of a step function s. Over each of the n open
subintervals (6,_, , 6;) of [a, b] in which s is constant, say s(§) = s, , the graph of s in polar
coordinates is a circular arc of radius s;, , and its radial set is a circular sector subtending an
angle of §, — 0,_, radians. Because of the way we have defined angular measure, the area
of this sector is 4(f, = 0,_,)sz . Since b — a < 27, none of these sectors overlap so, by
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additivity, the area of the radial set of s over the full interval [a, b] is given by

n b
a)=1 3 G—6.0=1] $0) 49,
k=1

where s2(f) means the square of s(0). Thus, for step functions, the area of the radial set has
been expressed as an integral. Now we prove that this integra formula holds more
generally.

THEOREM 2.6. Let R denote the radial set of a nonnegative function ¥ over an interval
[a, b], where 0 <b = a < 27, and assume that R is measurable. Iff 2 is integrable on [a, b]
the greq of R is given by the integral

aR) =} [1%6) d9.
Proof. Choose two step functions § and t satisfying
0 < 5(6) < f6) < «0)

for all 6 in [a, b], and let S and T denote their radial sets, respectively. Sinces <f <t on
[a, Db], the radial sets are related by the inclusion relations S < R € T. Hence, by the
monotone property of area, we have a(S) < a(R) < a(T). But S and T are radial sets of
step functions, so a(S) = 4f° s*(8) 6 and a(T) = 4f° 1%(0) db. Therefore we have the
inequalities

[ 50 de < 2a(R) < [ 0) de

for all step functions s and ¢ satisfying s < f <t on [a, b]. But s* and ¢ are arbitrary step
functions satisfying s* < f2 < 2 on [a, b] hence, since f% is integrable, we must have
2a(R) = {* f¥6) dB. This proves the theorem.

Note: It can be proved that the measurability of R isa consequence of the hypothesis
that f2 is integrable, but we shal not discuss the proof.

exavLe.  TO calculate the area of the radia set R enclosed by the figure-eight curve
shown in Figure 2.12, we calculate the area of the portion in the first quadrant and multiply
by four. For this curve, we have f(f)) = | sin 6 and, since sin § > 0for 0 < 8§ < 7/2, we
find

sin f d6=2(:oso-.cos ;l) = 2.

w/2

a(R) = 4Lﬂ/2%f2(6) de = ZL]

2.11 Exercises

In each of Exercises 1 through 4, show that the set of points whose rectangular coordinates
(x, y) sdisfy the given Cartesan equation is equal to the st of all points whose polar coordinates
(r, 6) satisfy the corresponding polar equation.
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LX =D+ =1 r =2cosf, cosd >0.

2. x4+t —x = V% 1% r=1+ cos 6.

3 (24P = x% -yt y? < X r = 4/cos20, cos 26 > 0.

4 (x® + y»2 = |x% = ¥, r =1/|cos 26)|.

In each of Exercises 5 through 15, sketch the graph off in polar coordinates and compute the
area Of the radial set offover theinterval specified. You may assume each set is measurable.
5. Spiral of Architnedes: f(6)=6, 0 <8 < 2a.

6. Circle tangent to y-axis: f(6) = 2c0s6, —nf2 <8 <n/2.

7. Two circles tangent to y-axis: f(6) = 2 |cos 8], 0<£ 8 < 2n.

8. Circle tangent to x-axis: f(6) = 4.dnf, 0<6<m,

9. Two circles tangent to x-axis: f(6) = 4|sinf|, 0 <6 < 27,

10. Rosepetal: F(0) = sn 26, 0< b < /2.

11. Four-leaved rose: f(8) = |sin 28], 0 <8 < 2=

12. Lazy eight: f(6) = ~cos 8], 0 < 6 £ 2.

13. Four-leaf clover: f(8) = 4/|cos 26|, 0< 6 < 2m,

14. Cardioid: f(6)= 1+ cos 6, 0< 6 < 2n,
15. Limagon: f(8) = 2+ cos 0, 0<6<2n

2.12 Application of integration to the calculation of volume

In Section 1.6 we introduced the concept of area as a set function satisfying certain
properties which we took as axioms for area. Then, in Sections 1.18 and 2.2, we showed
that the areas of many regions could be calculated by integration. The same approach can
be used to discuss the concept of volume.

We assume there exist certain sets S of points in three-dimensional space, which we c¢all
measurable sets, and a set function v, called a volume function, which assigns to each
measurable set S a number v(S), caled the volume of S. We use the symbol .27 to denote
the class of all measurable sets in three-dimensional space, and we call each set Sin & a
solid.

Asin the case of area, we list a number of properties we would like volume to have and
take these as axioms for volume. The choice of axioms enables us to prove that the volumes
of many solids can be computed by integration.

The first three axioms, like those for area, describe the nonnegative, additive, and
difference properties. Instead of an axiom of invariance under congruence, we use a
different type of axiom, called Cavalieri’sprinciple. Thisassigns equal volumesto congruent
solids and also to certain solids which, though not congruent, have equal cross-sectional
areas cut by planes perpendicular to a given line. More precisely, suppose Sisagiven solid
and L agiven line. If a plane F is perpendicular to L, the intersection F N S is called a
cross-section perpendicular to L. If every cross-section perpendicular to L is a measurable
set in its own plane, we call S a Cavalieri solid. Cavalieri’s principle assigns equal volumes
to two Cavalieri solids, S and 7, if a(S n F) = a(T n F) for every plane F perpendicular
to the given line L.

Cavalieri’s principle can be illustrated intuitively as follows. Imagine a Cavalieri solid
as being astack of thin sheets of material, like adeck of cards, each sheet being perpendicular
toagivenlineL. If wedlideeach sheet initsown plane we can change the shape of the solid
but not its volume.

The next axiom states that the volume of a rectangular parallelepiped is the product of
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the lengths of its edges. A rectangular parallelepiped isany set congruent to a set of the form
(2.16) {(x,y, ]|0<x<a 0<y<h 0Lz

We shall use the shorter term “box” rather than “rectangular parallelepiped.” The non-
negative numbers a, b, ¢ in (2.16) are called the lengths of the edges of the box.

Finally, we include an axiom which states that every convex set is measurable. A set is
called convex if, for every pair of points P and Q in the set, the line segment joining P and
Q is aso in the set. This axiom, along with the additive and difference properties, ensures
that all the elementary solids that occur in the usual applications of calculus are measurable.

The axioms for volume can now be stated as follows.

AXIOMATIC DEFINITION OF voLuMe. We assume there exists a ¢lass & of solids and a
set functionv, whose domain is . with the following properties:

1. Nonnegative property. For each set § in ./ we have v(S) > 0.

2. Additive property. If S and Tarein &/, then S U T and § N T arein &7, and we have

sSUuT)=v(S +Vv(T) —-u(SNT) .

3. Difference property. IT sand Tarein.« withS < 7,then T — Sisin ., and we
have o(T — S) = v(T) — v(S).

4, Cavalier?s principle. If § and T are two Cavalieri solids in & with a(S n F) <
a(T N F) for every plane Fperpendicular to a given line, then v(S) < v(T).

5. Choice of scale. EveryboxBisin.«Z. | ¥ theedgesof B have lengths a, b, and c, then
v(B) = abc.

6. Every convex set isin &,

Axiom 3 shows that the empty set @ isin & and has zero volume. Since v(T = S) > 0,
Axiom 3 also implies the following monotone property :

v(8) £ (T), forsetsSand Tins/ withSc<T.

The monotone property, in turn, shows that every bounded plane set S in &/ has zero

volume. A plane set is called bounded if it is a subset of some square in the plane. If we
consider a box B of altitude ¢ having this square as its base, then § = B so that we have
v(S) € v(B) = a%c, where a is the length of each edge of the square base. If we had v(S) > 0,
we could choose ¢ so that ¢ < »(S)/e?, contradicting the inequality v(S) < a%c. This shows
that v(S) cannot be positive, so v(S) = 0, as asserted.

Note that Cavalieri’s principle has been stated in the form of inequalities. If a(S N F) =
a(T N F) for every plane F perpendicular to a given line, we may apply Axiom 5 twice to
deduce v(S) < v(T) and v(T) < v(S), and hence we have v(T) = v(S).

Next we show that the volume of aright cylindrical solid is equal to the area of its base

multiplied by its altitude. By a right cylindrical solid we mean a set congruent to a set S
of the form

S={xy, 2l(x, NeB, a<z<b},
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where B is a bounded plane measurable set. The areas of the cross sections of S perpen-
dicular to the z-axis determine a cross-sectiona area function g which takes the constant
value a(B) on the interval a <z < b, and the value O outside [a, b].

Now let T be a box with cross-sectional area function a, equal to a,. Axiom 5 tells us
that v(T) = a(B)(b - a), where a(B) isthe area of the base of T, and b = a is its altitude.
Cavalieri’s principle states that #(S) = v(T), so the volume of S is the area of its base,
a(B), multiplied by its altitude, b — a. Note that the product a(B)(b - a) is the integral
of the function a, over the interval [a, b]. In other words, the volume of a right cylindrical
solid is equal to the integral of its cross-sectional area function,

V(S = fab ag(z) dz .

We can extend this formula to more general Cavalieri solids. Let R be a Cavalieri solid
with measurable cross-sections perpendicular to a given line L. Introduce a coordinate
axis along L (call it the u-axis), and let a,(u) be the area of the cross section cut by a plane
perpendicular to L at the point u. The volume of R can be computed by the following
theorem.

THEOREM 27. Let R be a Cadiei wolid in ./ with a crosssectional areafunction a,, which
isintegrable on aninterval [a, b] and zero outside [a, b]. Then the volume of Risequal to
the integral of the cross-sectional area:

V(R) = Lb ap(u)du .

Proof. Choose step functions s and t such that 5 < a;, <t on [a, b] and define s and t
to be zero outside [a, b]. For each subinterval of [a, b] on which s is constant, we can
imagine a cylindrical solid (for example, a right circular cylinder) constructed so that its
cross-sectional area on this subinterval has the same constant value ass.  The union of these
cylinders over all intervals of constancy of s is asolid S whose volume v(S) is, by additivity,
equal to the integral [° s(u) du. Similarly, there is a solid T, a union of cylinders, whose
volume v(T) = f* t(u) du. But gg(u) = s(u) < a,(u) < t(u) = ay(u) for all u in [a, b], sO
Cavdlieri’s principle implies that v(S) < v(R) < v(T). In other words, v(R) satisfies the
inequalities

f: s(u) du < v(R) £ J: t(u) du

for all step functions s and ¢ satisfying s < a, <t on[a, b]. Since agisintegrableon[a, b],
it follows that v(R) = |* a,(u) du.

exavpLE.  Volume of a solid of revolution. Let £ be a function which is nonnegative and
integrable on an interval [a, b]. If the ordinate set of this function is revolved about the
x-axis, it sweeps out a solid of revolution. Each cross section cut by a plane perpendicular
to the x-axis is a circular disk. The area of the circular disk cut at the point x is 7f*(x),
where f%(x) means the square off(x). Therefore, by Theorem 2.7, the volume of the solid
(if the solid is in «7) is equal to the integral {° 7f%(x) dx, if the integral exists. In particular,



114 Some applications of integration

if f(x) = V2 = xE for v <x < r, the ordinate set of f is a semicircular disk of radius r
and the solid swept out is a sphere of radius r. The sphere is convex. Its volume is equal to

[ nfi o= m [0t e ) = 2 [ = ) x= g

More generally, suppose we have two nonnegative functions ¥ and g which areintegrable
on an interval [a, ] and satisfy < g on [a, b]. When the region between their graphs is
rotated ghout the x-axis, it sweeps gyt a solid of revolution gych that each cross section cut
by a plane perpendicular to the x-axis at the point x is an annulus (a region bounded by two
concentric circles) with area mg(x) = mf%(x). Therefore, if g2 — f % is integrable, the volume
of such a solid (if the solid isin &) is given by the integral

[! gt - o as

2.13 EXxercises

1. Use integration to compute the volume of aright circular cone generated by revolving the
ordinate set of alinear function f(x) = cx over the interval 0 <X < p, Show that the result
is one-third the area of the base times the altitude of the cone.

In each of Exercises 2 through 7, compute the volume of the solid generated by revolving the
ordinate set of the function fover theinterval indicated. Sketch each of the ordinde sats

210 = v, 0<x<l. 5 f(x) =snx, 0<x <
3f(x) = x4, 0<x<I. 6.f(x) = cos x, 0<Xx <=2
4. f(x) = x%, -1 <x<2 7.fx) =dnx + cosx, 0<X < 7

In each of Exedses 8 though 11, sketch the region between the graphs offad g and compute
the volume of the <olid obtained hy rotating this region about the x-axis.

8.fx)= vVx, gx)=1 0<x<1,

9 fM=4x, g=x}, 0<x<L

10. f(x) = snx,  g(x)=COSx, 0<x < /4

ILfx) =y 4 —x2, g =1, 0<x<V3

12. Sketch the graphs of f(x) = v/x and g(x) = x/2 over the interval [0, 2]. Find a number ¢,
1<t <2, sothat when the region between the graphs off and g over the interval [0, ] is
rotated about the x-axis, it sweepsgyt a solid of revolution whose volumeis equal to«s3/3.

13, Wha volume of materid is removed from a <olid sphere of radius 2r by drilling a hole of radius
r through the center?

14. A napkin-ring is formed by drilling a cylindrical hole symmetrically through the center of a
wlid shere. If the length of the hole is2h, prove that the volume of the napkin-ring iS=a#?,
where ais arational number.

15. A solid has acircular base of radius 2. Each cross section cut by a plane perpendicular to a
fixed diameter is an equilateral triangle. Compute the volume of the solid.

16. The cross sctions of a solid ae squares perpendicular to the x-axis with their centers on the
axis. If the square cut off at x has edge 22, find the volume of the solid between x = 0 and
X = a. Make a sketch.

17. Find the volume of a solid whose cross section, made by a plane perpendicular to the x-axis,
has the area ax® + bx + c for each X in the interval 0 < x < h. Express the volume in terms
of the areas B, M, and B, of the cross sections corresponding to x = 0, X = 4/2, and x = h,
respectively. The resulting formula is known as theprismoidformula.
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18. Make a sketich of the region in the xy-plane condsting of all points (x, y) sdisfying the simul-
taneous inequalities 0 < x € 2, {x2 <y < 1. Compute the volume of the solid obtained by
rotating this region about () the x-axis; (b) the y-axis; (c) the veticd line passng through
(2,0); (d) the horizontal line passing through (0, 1).

2.14 Application of integration to the concept of work

Thus far our applications of integration have been to area and volume, concepts from
geometry. Now we discuss an application to work, a concept from physics.

Work is a measure of the energy expended by a force in moving a particle from one point
to another. In this section we consider only the simplest case, linear motion. That is, we
assume that the motion takes place along a line (which we take as the x-axis) from one
point, say X = a, to another point, x = b, and we also assume that the force acts along this
line. We permit either a < b or b < a. We assume further that the force acting on the
particle is a function of the position. If the patide is & x, we denote by £ (x) the force acting
on it, where ¥ (x) > 0 if the force acts in the direction of the positive x-axis, and f(x) <Oif
the force acts in the opposite direction. When the force is constant, say f(x) = c for all
X between a and b, we define the work done by T to be the number ¢ - (b = a), force times
displacement. The work may be positive or negative.

If force is measured in pounds and distance in feet, we measure work in foot-pounds;
if force is in dynes and distance in centirneters (the cgs system), work is measured in dyne-
centimeters. One dyne-centimeter of work is called an erg. If force is in newtons and
distance in meters (the mks system), work is in newton-meters. One newton-meter of work
iscaled ajoule. One newton is 105 dynes, and one joule is 107 ergs.

exavrLe. A stone weighing 3 pounds (Ib) is thrown upward along a straight line, rising
to a height of 15 feet (ft) and returning to the ground. We take the x-axis pointing up along
the line of motion. The constant force of gravity acts downward, so f (x) = -3 Ib for each
Xx,0 £ x £ 15. The work done by gravity in moving the stone from, say, x = 6 ft to
X =15 ftis-3 ' (15 = 6) = -27 foot-pounds (ft-lb). When the same stone falls from
x = 15 ft to x = 6 ft, the work done by gravity is —3(6 = 15) = 27 ft-lb.

Now suppose the force is not necessarily constant but is a given function of position de-
fined on the interval joining a and b. How do we define the work done by fin moving a
particle from a to b ? We proceed much as we did for area and volume. We state some
properties of work which are dictated by physical requirements. Then we prove that for

any definition of work which has these properties, the work done by an integrable force
function f is equal to the integral §° f(x) dx.

FUNDAMENTAL PROPERTIES OF WORK.  Let W () denote the work done by a force function
fin moving a particle from ato b. Then work has the following properties:
1. Additiveproperty. If a < ¢ < b, then Wi(f) = WI(f) + W)
2. Monotone property. If f < g on [a, b], then WX(f) < WX(g). That is, a greater force
does greater work.
3. Elementary formula. If f is constant, say f (x) = cfor all x in the open interval (a, b),
then Wi(f)=c* (b = a).

The additive property can be extended by induction to any finite number of intervals.
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That is, if a=xy< x,< '. < x,= b, we have

W) =3 W,,
r=1

where W, is the work done by f from x;_, to x;. In particular, if the force is a step function
s which takes a constant value s, on the open interval (x;_y, X,), property 3 states that
Wi = s, (x; = x;_y), SO we have

Wis) = é S - (X = Xp_q) =Lbs(x) dx .

Thus, for step functions, work has been expressed as an integral. Now it is an easy matter
to prove that this holds true more generally.

THEOREM 2.8. Suppose work has been defined for a class of force functions f in such a
way that it satisfies properties [ 2, and 3. Then the work done by an integrable force function
fin moving a particle from ato b isequal to the integral off,

Wi = [ e dx

Proof. Let s and t be two step functions satisfying s < f < ¢ on [a, b]. The monotone
property of work states that W¥(s) < W2(f) < W(t)- But W,(s) = |, s(x) dx and Wy(t) =
§2 t(x) dx, so the number WY(f) satisfies the inequalities

[ st ax < wiepy < [ 100 ax

for all step functions s and ¢ satisfying s < f <t on[a, b]. Since fisintegrableon[a, b],
it follows that W2(f) = °f(x) dx.

Note: Many authors simply define work to be the integral of the force function.
The foregoing discusson serves as  motivation for  this  definition.

exaveLe.  Work required to stretch a spring. Assume that the force f(x) needed to
stretch a steel spring a distance x beyond its natural length is proportional to x (Hooke's
law). We place the x-axis along the axis of the spring. If the stretching force acts in the
positive direction of the axis, we have f(x) = cx, where the spring constant ¢ is positive.
(The value of ¢ can be determined if we know the force f(x) for a particular value of x # 0.)
The work required to stretch the spring a distance a is fj f(x) dx = 3 cx dx = ¢a?/2, a
number proportional to the square of the displacement.

A discussion of work for motion along curves other than straight lines is carried out in
Volume Il with the aid of line integrals.

2.15 Exercises

In Exercises 1 and 2 assume the force on the spring obeys Hooke' s law.

1. If aten-pound force stretches anelastic spring one inch, how much work isdone in stretching
the sring one foot?
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2. A spring has a natural length of 1 meter (m). A force of 100 newtons compressesit to 0.9 m.
How many joules of work are required to compress it to half its natural length? What is the
length of the sring when 20 joules of work have been expended?

3. A particle is moved along the x-axis by a propelling force f(x) = 3x2 + 4x newtons. Calculate
how many joules of work are done by the force to move the particle (a) fromx=0tox=7m;
(b) fromx=2mtox=7m.

4. A particle is to be moved along the x-axis by a quadratic propelling force f(x) = ax? + bx
dynes. Calculate a and 5 so that 900 ergs of work are required to move the particle 10 centi-
meters (cm) from the origin, if the force is 65 dyneswhen x =5 cm.

5. A cable 50 feet in length and weighing 4 pounds per foot (ib/ft) hangs from a windlass. Cal-
culate the work done in winding up 25 ft of the cable. Neglect all forces except gravity.

6. Solve Exercise 5 if a50 pound weight is attached to the end of the cable.

7. A weight of 150 pounds is attached at one end of along flexible chain weighing 2 Ib/ft. The
weight is initily suspended with 10 feet of chan over the edge of a huilding 100 feet in height.
Neglect all forces except gravity and cal cul ate the amount of work done by the force of gravity
when the load is lowered to a postion 10 feet above the ground.

8. In Execise 7, suppose that the chain is only 60 feet long and that the load and chain are dlowed
to drop to the ground, starting from thesame initial position as before. Cal culate the amount
of wok done by the force of gravity when the weight reaches the ground.

9. Let V(q) denote the voltage required to place a charge q on the plates of a condensor. The work
required to charge a condensor from q = ¢ to g = b is defined to be the integral f V(q) dqg.
If the voltage is proportional to the charge, prove that the work done to place acharge Q on
an unchaged condensor is 10 V(Q).

2.16 Average value of a function

In scientific work it is often necessary to make severa measurements under similar
conditions and then compute an average or mean for the purpose of summarizing the data.
There are many useful types of averages, the most common being the arithmetic mean. If

ay, a,, . .., &, are n real numbers, their arithmetic mean 4 is defined by the equation
n
2.17) a=12 2 a
"

If the numbers 4, are the values of a functionfat » distinct points, say a, = f(x,), then the
number

1 n

=D f

n k=1

is the arithmetic mean of the function values f(x,), .. .,f(x,). We can extend this concept
to compute an average value not only for a finite number of values off(x) but for g]] values
off(x) where x runs through an interval. The following definition serves this purpose.

DEFINITION OF AVERAGE VALLE OF A FUNCTION ON AN intervaL.  If f is integrable on
an interval [a, b], we define A(f ), the average value off on [a, b], by the formula

1 b
(218) ASf) = P L J(x)dx.
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When f is nonnegative, this formula has a simple geometric interpretation. Written in
the form (b — a)A(f) = [? f(x) dx, it states that the rectangle of altitude A(f) and base
[a, b] has an area equal to that of the ordinate set off over [a, b].

Now we can show that formula (2.18) is actually an extension of the concept of the
arithmetic mean. Let f be a step function which is constant on n equal subintervals of
[a, b]. Specificaly, let x, = a + k(b = a)fnfor k =0, 1,2, ..., n, and suppose that
f(x) = f(xy), if X,y <X < x;. Then x;, — x;, = (b — a)/n, O we have

A = = [i00 = = S e Pt = 1S .
b—a = n n
Thus, for step functions, the average A(f) isthe same as the arithmetic mean of the values
f(xy),. .., f(x) taken on the intervals of constancy.

Weighted arithmetic means are often used in place of the ordinary arithmetic mean in
(2.17). If wy, Wy, . . ., w, ae n nonnegative numbers (called weights), not all zero, the
weighted arithmetic mean g of a,, a,, . . ., a, is defined by the formula

E Wiy
a =

gm

When the weights are all equal, this reduces to the ordinary arithmetic mean. The extension
of this concept to integrable functions is given by the formula

[ #(1x) dx
e

(219) A = T
X

}

where w is a nonnegative weight function with §> w(x) dx # 0.

Weighted averages are widely used in physics and engineering, as well as in mathematics.
For example, consider a straight rod of length a made of a material of varying density.
Place the rod along the positive x-axis with one end at the origin 0, and let m(x) denote the
mass of a portion of the rod of length x, measured from 0. If m(x) = [Z p(t) dt for some
integrable function p (p is the Greek letter rho), then p is called the mass density of the rod.
A uniform rod is one whose mass density is constant. The integral {¢ xp(x) dx is called the
first moment of the rod about 0, and the center of mass is the point whose x-coordinate is

e J‘axp(x) dx

fo“p(x) dx

This is an example of a weighted average. We are averaging the distance function f (x) = x
with the mass density p as weight function.
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The integral {2 x2p(x) dx is called the second moment, or moment of inertia, of the rod
about 0, and the positive number r given by the formula

Jﬁaxzp(x) dx
foap(x) dx

is called the radius of gyration of therod. In this case, the function being averaged is the
sguare of the distance function, f(x) = x2, with the mass density p as the weight function.

Weighted averages like these also occur in the mathematical theory of probability where
the concepts of expectation and variance play the same role as center of mass and moment
of inertia.

P =

2.17 Exercises

In Exercises 1 through 10, compute the average A(f) for the given functionfover the specified
interval.

LfX)=x% agx<bh 6. f(x) = cos X, — 72 £x < 72,
2.f(x) = 2+ ¥, 0<x<1 7.f) =sn2x  0<x < a2

3. f(x) = x¥2, 0 <x<4 8. f(x) =sdnx cosX,  0<x <n/4
4.f(x) = x18 1 <x <8 9. f{() = sin? X, 0 <x < #f2

5. f(x) = dn X, 0<x < 7/2. 10. f(X) = cos? X, 0<x<m

11. (&) If f(x) = x* for 0 <x < &, find a number ¢ satisfying 0 < ¢ < a such that f(c) is equal to
the average off in [0, a].
(b) Solve part (a) if f(x) = x*, where n isany positive integer.

12. Let f(x) = x*for 0 < x < 1. The average value off on [0, 1] is}. Find a nonnegative weight
function w such that the weighted average off on [0, 1], as defined by Equation (2.19) is
(@) 5 (b) & (o) 8.

13 Let A (f)denote the average of fover an interval [8 b]. Pove tha the average hes the following
properties
() Additive property: A(f + g) = A(f) + A(9).
(b) Homogenousproperty: A(ef) = cA(f) if cisanyrea number.
(c) Monotone property: A(f) < A(9) if f<gonla, b].

14. Which of the properties in Exercise 13 ae vaid for weighted averages as defined by Equation
(2.19)?

15. Let 4%(f) denote the average off on an interval [a, b].
(@ If a <c< b, prove that there is anumber ¢ satisfying 0 < t <1 such that 4¥(f) =
tALf) + (L = nA%f). Thus, 4%(f) is a weighted arithmetic mean of A¢(f) and Ab(f).
(b) Prove that the result of part (a) also holds for weighted averages as defined by Ecquation
(2.19).

Each of Exercises 16 through 21 refersto arod of length L placed on the x-axis withone end at
the origin. For the mass density o as described in each case cdculae (@) the center of mess of the
rod, (b) the moment of inertiaabout the origin, and (c) the radius of gyration.

16. p(x) = 1 for 0 <x < L.

L L
17.px) = 1 forosxsa, plxy = 2 for§<ng.
18. p(x) = X for 0 <x <L.

rof

L
19. p(x) = x for 0<x<=, pKX = for

2

N
IA
%
IA
—
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20.p(x)=x2 for0 L x < L.

L L2 L

21 p(x) = x? fOI‘OSXSE, P(x):—Z fOfESxS L.

22. Determine a mass densty p <0 tha the center of mass of a rod of length L will be & a distance
L{4 from one end of the rod.

23. In an electrical circuit, the voltage e(t) at time ¢ is given by the formula e(t) = 3 sin 2t. Cal-
culate the following: (a) the average voltage over the timeinterval [0, #/2]; (b) the root-mean-
square of the voltage; that is, the square root of the average of the functione? in the interval

0, /2]

24, I[n an/e? ectrical circuit, the voltage ¢(¢) and the current i(r) at time: are given by the formulas

e(t) =160 sin¢, i(t) = 2 sin (r — =/6). The average power is defined to be

%LT e(ni(r) dt

where T is the period of both the voltage and the current. Determine T and calcul ate the
average power.

2.18 The integral as a function of the wupper limit. Indefinite integrals

In this section we assume thatf is afunctionsuch that theintegral = f(t) dt existsfor each
xinaninterval[a, b]. We shall keepaand ¥ fixed and study thisintegral asafunction of x.
We denote the value of the integral by A(x), so that we have

(2.20) A(x) = f:f(z) dt  if a<x<h.

An equation like this enables us to construct a new function A from a given function £, the
value of A at each point in [a, b] being determined by Equation (2.20). The function A is
sometimes referred to as an indejnite integral off, and it is said to be obtained from ¥ by
integration. We say an indefinite integral rather than the indefinite integral because A also
depends on the lower limit a. Different values of a will lead to different functions A. If we
use a different lower limit, say c, and define another indefinite integral F by the equation

F&) = [ fwar,

then the additive property tells us that

A =F) = [f@dt=["rwde= [Trmat,

and hence the difference A(X) — F(x) is independent of x. Therefore any two indefinite
integrals of the same function differ only by a constant (the constant depends on the choice
of a and c).

When an indefinite integral off is known, the value of an integral such as {2 f (t) dt may
be evaluated by a simple subtraction. For example, if n is a nonnegative integer, we have
the formula of Theorem 1.15,

x n+l
f tdr = 22—,
0 n+1
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and the additive property implies that

b b a ntl _ ntl
ft"dt=f t"dt—f ==
a 0 0 n+1

In general, if F(x) = [ f(t) dt, then we have

(2.21) f:f(t) dt = f:f(t) dt — Laf(t) dt = F(b) — F(a).

A different choice of ¢ merely changes F(x) by a constant; this does not alter the difference
F(b) =— F(a), because the constant cancels out in the subtraction.
If we use the special symbol

F(x)|;

to denote the difference F(b)  F(a), Equation (2.21) may be written as

f: f(x) dx = F(x)|; = F(b) ~ F(a)

There is, of course, a very simple geometric relationship between a function f and its
indefinite integrals. An example is illustrated in Figure 2.15(a), where f is a nonnegative
function and the number A(X) is equal to the area of the shaded region under the graph of
f from a to x. If f assumes both positive and negative values, as in Figure 2.15(b), the
integral A(x) gives the sum of the areas of the regions above the x-axis minus the sum of
the areas below the x-axis.

Many of the functions that occur in various branches of science arise exactly in this way,
as indefinite integrals of other functions. This is one of the reasons that a large part of
calculus is devoted to the study of indefinite integrals.

Sometimes a knowledge of a specia property of f implies a corresponding special property
of the indefinite integral. For example, if f is nonnegative on [a, b], then the indefinite
integral A isincreasing, since we have

AY) = 400 = ["r@y de = |7 de = [ 7 de >0,

Alx) = j; Sf@) dr fa f(¥) dt = algebraic sum of areas

(a) (b)

Ficure 2.15 Indefinite integrd interpreted geometricdly in tems  of area.
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/
gx) +g() N
g(y) g(y)
g +e()
g(x) 2
X xX+y Y_- X xX+y
2 2
(@ A convex function (b) A concave function

Ficure 216 Geometric interpretation of convexity andconcavity.

whenever a < x <y < b. Interpreted geometrically, this means that the area under the
graph of a nonnegative function from a tox cannot decrease as X increases.

Now we discuss another property which is not immediately evident geometrically.
Suppose fisincreasing on [a, b]. We can prove that the indefinite integral A has a property
known as convexity. Its graph bends upward, as illustrated in Figure 2.16(a); that is, the

chord joining any two points on the graph always lies above the graph. An analytic
definition of convexity may be given as follows.

DEFINTION OF A Ccowex FUNCTION. A function g is said to be convex on an interval
[a, b] if, for all x and y in [a, b] andfor every « satisfying 0 < « < 1, we have

(2.22) g(2) <og(y) + (1 —w)g(x), wherez= ap+ (1 — o)x.

We say g isconcave on [a, b] if the reverseinequality holds,

g@) > ag()) + (1= ag(x), where z=ay + (1 — a)x.

These inequalities have a simple geometric interpretation. The point z = «y + (1 — a)x
satisfies z = x = a(y — x). If x <y, this point divides the interval [x, y] into two sub-
intervals, [x, z] and [z, y], the length of [x, z] being « times that of [X, y]. As & runs from 0
to 1, the point «g(y) + (1 = a)g(x) traces out the line segment joining the points (x, g(x))
and (y, g(y)) on the graph of g. Inequality (2.22) states that the graph of g never goes above
this line segment. Figure 2.16(a) shows an example with & = 1. For a concave function,
the graph never goes below the line segment, as illustrated by the example in Figure 2.16(b).

theorem 2.9, Let A(X) = §2 f(t) dt. Then A is convex on every interval where f is in-
oeasing, and concave on every inferval where f is decreasing.

Proof. Assume f isincreasing on [a, b], choose x <y, and let z = ay + (1 = a)x. We
are to prove that A(z) < ad(py) + (1 = 2)A(x). Since A(2) = xA(z) + (1 — a)A(z), this
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is the same as proving that a4(z) + (1 — a)A(z) < xA(y) + (1 — «)A(x), or that
(1 ~ 0)[A(z) — A(¥)] < old(y) — A(2)].

Since we have A(2) = A(x) = JZf(t) df and A(y) — A(@) = f*f (t) dt, we are to prove that

(2.23) 1l=a) J:f(t) dt L« f:f(t) dt .
But ¥ s incressing 0 we have the inequdlities
f) 1@ ifx<t<z and f(2) <f(t) ifz<t<Ly .

Integrating these inequalities we find

[rod<fez=x, ad  fey=2< [ 70 dr .

But (1 — a)(z = X) = a(y — 2), S0 these inequalities give us

(=) 1) dt € (1~ Df (2 = 9 = f QN = ) L of SO dt,

which proves (2.23). This proves that Ais convex whenfisincreasing. When fis decreasing,
we may apply the result just proved to —f.

EXAMPLE. The cosine function decreases in the interval [0, 7). Since sin x = {% cos ¢ dt,
the graph of the sine function is concave in the interval [0, #]. In the interval [, 27], the
cosine increases and the sine function is convex.

Figure 2.17 illustrates further properties of indefinite integrals. The graph on the left is
that of the greatest-integer function, f(x) = [x]; the graph on the right is that of the
indefinite integral A(X) = f [t] df. On those intervals where f is constant, the function A
is linear. We describe this by saying that the integral of a step function is piecewise linear.

~S(x) = [x]

0 x 0 e
[re—
[ S—

Ficure 2.17 The indefinite integrd of a <ep function is piecewise linear.
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Observe also that the graph off is made up of disconnected line segments. There are
points on the graph offwhere a small change in x produces a sudden jump in the value of
the function. Note, however, that the corresponding indefinite integral does not exhibit
this behavior. A small change in x produces only a small change in A(x). That is why the
graph of A is not disconnected. This illustrates a general property of indefinite integrals
known as continuity. In the next chapter we shall discuss the concept of continuity in
detail and prove that the indefinite integral is always a continuous function.

2.19 Exercises

Evaluate the integrds in Execises 1 through 16.

1 [: A+ t+ 2)d, 9. | oos t at
2y mz”

2 [P e ma 10. [ (4 + cos p ait
(22 02 .

3 [Masrema 1 f ¢ —sint)dt
1—x @ i

4. [1 (1 =2t +32)dt iV fo (u? + sin 3u) du.
@ 22 )

5. J. 2t2(t2 + 1) dt. 13. L (v + sin 3v) dv.

6. [ @2+ 1y at 14. [ (sin?x +) dx.
Z e/ W

7 L (2 + 1), x >0 15. sin 2w + Cos > pw.

8. J « (112 4 V9 dt, x> 0. 16. f " (4 +cos 1)? dt.
x -

17. Find all real values of x such that
¢ 3 =1 @ —_ 13
0[0 (# tdt=3 f\/g (t=)dt.

Draw asuitable figure and interpret the equation geometrically.

18. Let f(x)=x = [X] = ¢ if X is not an integer, and let f(x) = 0 if X is an integer. (As usual,
[X] denotes the greatest integer < x.) Define a new function P as follows:

P(x) = j:f(t) dr foreveryred x.

(a) Draw the graph off over theinterval [ -3,3] and prove that ¥ is periodic with period 1:

fx + 1) =f(x)for all x

(b) Prove that P(x) = 3(x? — X), if 0 < x £ 1 and that P is periodic with period 1.

(c) Express P(x) in terms of [x].

(d) Determine a constant ¢ such that |3 (P(t) + c) dt = 0.

(e) For the constant ¢ of part (d), let Q(x) = §& (P(t) + ) dt. Prove that Q is periodic with
period 1 and that

X
12

+

if 0<x<1.

| %

0w =% -
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19.

20.

21

Given an odd function f, defined everywhere, periodic with period 2, and integrable on every
interval. Let g(x) = {2 f(z) dt.

(a) Prove that g(2n) = O for every integer n.

(b) Prove that g is even and periodic with period 2.

Given an even function f[, defined everywhere, periodic with peiod 2, and integrable on every
interval. Let g(x) = [z (t) dt, and let A = g(1).

(a) Prove that g is odd and that g(x + 2) = g(x) = 9(2).

(b) Computeg(2) and g(5) in terms of A.

(c) For what value of A will g be periodic with period2?

Given two functions T and g, integrble on every interval and having the following propeties :
T isodd, g iseven, f(5) =7, f(0) = 0, g(x) = f(x + 5),f(x) = f2 g(t) dt forall x  Prove
that (a) f(x =~ 5) = -g(x) for all x; (b) [3f (t) dt = 7; (c) fz f(t) dt = g(0) =~ g(X).
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CONTINUOUS FUNCTIONS

3.1 Informal description of continuity

This chapter deals with the concept of continuity, one of the most important and also
one of the most fascinating ideas in all of mathematics. Before we give a precise technical
definition of continuity, we shall briefly discuss the concept in an informal and intuitive
way to give the reader a feeling for its meaning.

Roughly speaking, the situation is this: Suppose a function has the vdue F(P) a a
certain point p. Then fis said to be continuous at p if at every nearby point x the function

y

T f

YIS -

-3 -2 -1 0 1 2 3 4 0
(a) A jump discontinuity at each integer. (b) An infinite discontinuity at 0.
Ficure 3.1 Illustrating two kinds of discontinuities.

vaue T (x)isdoseto T (p). Another way of putting it is as follows: If we let x move toward
p, we want the corresponding function values T(X) to become arhitrarily close to f(p),
regardless of the manner in which x approaches p. We do not want sudden jumps in the
values of a continuous function, as in the examples in Figure 3.1.

Figure 3.1(a) shows the graph of the function f defined by the equation f (x) = x — [x],
where [x] denotes the greatest integer <Xx. At each integer we have what is known as a
jump discontinuity. For example, f(2) = 0, but as x approaches 2 from the left, f(x)
approaches the value 1, which is not equal to f (2). Therefore we have a discontinuity at 2.
Note that f (x) does approach f(2) if we let x approach 2 from the right, but this by itself
is not enough to establish continuity at 2. In acase likethis, the function is called continuous
from the right at 2 and discontinuous fromthe left at 2. Continuity at a point requires both
continuity from the left and from the right.

126
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In the early development of calculus almost all functions that were dealt with were
continuous and there was no real need at that time for a penetrating look into the exact
meaning of continuity. It was not until late in the 18th Century that discontinuous functions
began appearing in connection with various kinds of physical problems. In particular, the
work of J. B. J Fourier (1758-1830) on the theory of heat forced mathematicians of the
early 19th Century to examine more carefully the exact meaning of such concepts as function
and continuity. Although the meaning of the word “continuous’ seems intuitively clear
to most people, it is not obvious how a good definition of this idea should be formulated.
One popular dictionary explains continuity as follows :

Continuity: Quality or state of being continuous.

Continuous: Having continuity of parts.

Trying to learn the meaning of continuity from these two statements alone is like trying to
learn Chinese with only a Chinese dictionary. A satisfactory mathematical definition of
continuity, expressed entirely in terms of properties of the real-number system, was first
formulated in 1821 by the French mathematician, Augustin-Louis Cauchy (1789-1857).
His definition, which is still used today, is most easily explained in terms of the limit concept
to which we turn now.

3.2 The defmition of the limit of a function

Let T be afunction defined in some open interval containing a point p, although we do
not insist that T be defined at the point p itself. Let A be a real number. The equation

lim f(x) = A

z—p

is read: “The limit off(x), asx approaches p, is equal to A,” or “f(x) approaches A as x
approaches p.” It is also written without the limit symbol, as follows:

f(x)—»A as x—p.

This symbolism isintended to convey the ideathat we can meke F(X) ascloseto A aswe
please, provided we choose x sufficiently close to p.

Our first task is to explain the meaning of these symbols entirely in terms of real numbers.
We shall do thisin two stages. First we introduce the concept of a neighborhood of a point,
then we define limits in terms of neighborhoods.

DEFINITION OF NEIGHBORHOOD OF A POINT. Any open interval containing a point p as
its midpoint is called a neighborhood of p.

Notation. We denote neighborhoods by N(p), Ny(p), N,(p), etc. Since a neighborhood
N(p) is an open interval symmetric about p, it consists of all real x satisfying p ~r < x <
p 4 r for some r > 0. The positive number r is called the radius of the neighborhood. We
designate N(p) by N(p, r) if we wish to specify its radius. The inequalities p — r < x <
p + r are equivalent to -r <x —p < r, and to [x — p| < r. Thus, N(p, r) consists of
all points x whose distance from p isless thanr.



128 Continuous jiinctions

In the next definition, we assume that A is a real number and thatfis a function defined
on some neighborhood of a point p (except possibly at p). The function f may also be
defined at p but this is irrelevant in the definition.

DEFINITION OF LIMIT OF A FUNCTION. The symbolism
limf(x) = A [or f(x) >4 as x-p]
=D
means that for every neighborhood N,(A) there is some neighborhood N, (p) such that

(3.1) f(x) € Ny(A) whenever X € Ny(p) and x#p.

The first thing to note about this definition is that it involves two neighborhoods, N,(A)
and N,(p). The neighborhood N,(A) is specified first, it tells us how close we wish f(x) to

Neighborhood N,(4)

Neighborhood ~ N,(p) Neighborhood N,(p)
Ficure 3.2 Herelimf(x) = A, but there Ficure 3.3 Here T is defined at p and
Tp . = . .
is no asserion about T a p. ZIET; f(x) = f(p), hence f is continuous at p.

be to the limit A. The second neighborhood, N,(p), tells us how close x should be to p so
that f(x) will be within the first neighborhood N,(A). The essential part of the definition
is that, for every N,(4), no matter how small, there is some neighborhood N,(p) to satisfy
(3.1). In general, the neighborhood N,(p) will depend on the choice of N,(A). A neighbor-
hood N,(p) that works for one particular N,(A4) will also work, of course, for every larger
N,(A), but it may not be suitable for any smaller N,(A).

The definition of limit may be illustrated geometrically as in Figure 3.2. A neighborhood
Ny(A4) is shown on the y-axis. A neighborhood N,(p) corresponding to N,(4) is shown on
the x-axis. The shaded rectangle consists of all points (x, y) for which x € N,(p) and
y € Ny(4). The definition of limit asserts that the entire graph offabove the interval N,(p)
lies within this rectangle, except possibly for the point on the graph above p itself.
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The definition of limit can also be formulated in terms of the radii of the neighborhoods
N,(A) and N,(p). Itiscustomary todenote the radius of N,(A) by ¢ (the Greek |etter epsilon)
and the radius of N,(p) by ¢ (the Greek letter delta). The statement f(x) € N,(A) is equivalent
to the inequality | f(x) — A| < ¢, and the statement x € N,(p), X # p, is equivaent to the
inequalities 0 < |x — p| < 6. Therefore, the definition of limit can also be expressed as
follows :

The symbol lim,_, , f(x) = A means that for every € > 0, there is a > 0 such that
(3.2) [f(x) = 4] <e  whenever O0< |x—p[<§.

We note that the three statements,

imf(x)=A, lim@x) —A) =0, limIfx) — A( = 0,

fand'} rp

are all equivalent. This equivalence becomes apparent as soon as we write each of these
statements in the ¢, d-terminology (3.2).

In dealing with limits as X — p, we sometimes find it convenient to denote the difference
X = p by anew symbol, say h, and to let h — 0. This simply amounts to a change in
notation, because, as can be easily verified, the following two statements are equivalent:

limf(x) = A, limf(p+ h)=A .
2P h—=0

exavpLE 1. Limit OF aconstant function. Let F(X) = C forallxItiseasy to prove
that for every p, we havelim,_, ,f(X) = c. In fact, given any neighborhood N,(c), relation
(3.1) istrivialy satisfied for any choice of N,(p) because f (x) =cfor all x and ¢ € N,(c) for
all neighborhoods N,(c). In limit notation, we write

Iimc=c.
T=p

exaveLe 2. Limit of the identity function. Here f(X) = x for all x. We can easily prove

that lim,,f(x) = p. Choose any neighborhood N,(p) and take N,(p) = N,(p). Then
relation (3.1) is trivially satisfied. In limit notation, we write

imx=p.
z-p

“One-sided” limits may be defined in a similar way. For example, if f (X) > Aasx —p
through values greater thanp, wesay that Aisthe right-hand limitof f at p, and we indicate
this by writing

limf(x) = A .

[iad oy

In neighborhood terminology this means that for every neighborhood N,(A4), there is some
neighborhood N,(p) such that

(3.3) f(x) € Ny(A4) whenever x € Ny(p) and x> p.
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Left-hand limits, denoted by writing x — p—, are similarly defined by restricting x to
values less than p.

Iffhas a limit A a p, then it also has a right-hand limit and a left-hand limit at p, both
of these being equal to A. But a function can have a right-hand limit at p different from the
left-hand limit, as indicated in the next example.

exavLe 3. Letf(x) = [x] for all x, and let p be any integer. For x nearp, x < p, we
have f(x) = p = 1, and for x near p, x > p, we have f(x) = p. Therefore we see that

limf(x) = p =1 and limf(x) = p .

r—p— z=pt+
In an example like this one, where the right- and left-hand limits are unequal, the limit of
fat p does not exist.

exawe 4. Let f(x) = 1/x2 if X # O, and let f(0) = 0. The graph off near zero is
shown in Figure 3.1(b). In this example,ftakes arbitrarily large values near 0 so it has no
right-hand limit and no left-hand limit at 0. To prove rigorously that there is no real number
A such that lim,_,, f(x) = A, we may argue as follows: Suppose there were such an A,
say A > 0. Choose a neighborhood N,(A) of length 1. In the interval 0 < x < 1/(4 + 2),
we have f(x) = 1/x> (A + 2)* > A + 2, 50 f(x) cannot lie in the neighborhood N,(A).
Thus, every neighborhood N(0) contains points x > 0 for which f(x) is outside N,(A), so
(3.9) is violated for this choice of N,(A). Hencefhas no right-hand limit at O.

exavee 5. Let f(x) = 1 if x # 0, and let f(0) = 0. This function takes the constant
value 1 everywhere except at 0, where it has the value 0. Both the right- and left-hand
limits are 1 at every point p, so the limit off(x), as x approaches p, exists and equals 1.
Note that the limit of fis 1 at the point O, even though f(0) = 0.

3.3 The definition of continuity of a function

In the definition of limit we made no assertion about the behavior off at the point p
itself. Statement (3.1) refers to those x # p which lie in Ny(p), so it is not necessary that
T be dfired @ p. Moreover, even if f isdefined at p, its value there need not be equal to
the limit A. However, if it happens thatf is defined atp and if it also happens thatf(p) = A,
then we say the function f is continuous a p. In other words, we have the following
definition.

DEFI NI TION OF CONTINUITY OF A FUNCTION AT A PO NT. A function f is said to be con-
tinuous at a point p if i
(@ TIS defined atp, and

(b) limf(x) = f(p).

D

This definition can also be formulated in terms of neighborhoods. A function f s
continuous at p if for every neighborhood N,[f  (p)] there is aneighborhood N p) such that

(34) SOENLS (p)]  whenever x £ Ny(p).
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Since f(p) always belongs to N[ f(p)], we do not need the condition x # pin (34). In
the ¢, S-terminology, where we specify the radii of the neighborhoods, the definition of
continuity can be restated as follows:

A function fis continuous at p if for every € > O thereis a é > 0 such that

[f(x) —f(p)l < e  whenever |x —p| < é.

The definition of continuity is illustrated geometrically in Figure 3.3. This is like Figure
3.2 except that the limiting value, A, is equal to the function value f (p) so the entire graph
off above Ny(p) lies in the shaded rectangle.

exavrLe 1. Constant functions are continuous everywhere. If f(x) = c for all x, then

lim f(x) = lim c = ¢ = f(p)

a&-Dp TP

for every p, so fis continuous everywhere.

exaveLe 2. The identity function is continuous everywhere. If f(x) = x for all x, we have

limf(x) = lim x = p = f(p)

Ty xrp
for every p, so the identity function is continuous everywhere.

exawele 3, Let f(x) = [x] for all x. This function is continuous at every pointp which
is not an integer. At the integers it is discontinuous, since the limit of f does not exist, the
right- and left-hand limits being unequal. A discontinuity of this type, where the right- and
left-hand limits exist but are unequal, is called a jump discontinuity. However, since the
right-hand limit equals f (p) at each integer p, wesay that f is continuous from the right at p.

exavele 4. The function f for which f(x) = 1/x2 for x %0, f(0) = 0, is disontinuous
a 0. [SeeFigure 3.1(b).] We say there is an infinite discontinuity at O because the function
takes arbitrarily large values near 0.

exawie 5. Let f(x) =1forx %0, f (0) = 0. This function is continuous everywhere
except at 0. It is disontinuous a 0 because f (0) is not equal to the limit of f (x) as x -» O
In this example, the discontinuity could be removed by redefining the function at O to have
the value | instead of 0. For this reason, a discontinuity of this type is called a removable
discontinuity. Note that jump discontinuities, such as those possessed by the greatest-integer
function, cannot be removed by simply changing the value of f at one point.

3.4 The basic limit theorems. More examples of continuous functions

Calculations with limits may often be simplified by the use of the following theorem
which provides basic rules for operating with limits.
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TVMEOREM 3.1. Let f and g befunctions such that

im fx)=A, limgx) =B .

Then we have

@ lim[f(x)+ g)]= A+ B,

x—p

(i) MK — gl =A — B,

r—p

(i) limf(x).gx)=A.B,

z=p

(iv) limf(x)/g(x) = A/B i f B#0.

=D

Note: An important special case of (iii) occurs whenfis constant, say f(x) = A for
all x. In this case, (iii) iswritten aslim A- ¢(x) = AB.
TP

The proof of Theorem 3.1 is not difficult but it is somewhat lengthy so we have placed
it in a separate section (Section 3.5). We discuss here some simple consequences of the
theorem.

First we note that the statements in the theorem may be written in a dlightly different
form. For example, (i) can be written as follows:

lim [f(x) + g¥)] = lim f(x) + lim g(X) .

TP )P z-*p
It tells us that the limit of a sum is the sum of the limits.

It is customary to denote by f+ g, f — g, f+ g, and f]g the functions whose values at
each x under consideration are

fx) + gx), f(x) —8x), f(x). gx), and [f(x)g(x) ,

respectively. These functions are called the sum, difference, product, and quotient off and
g. Of course, the quotient f/g is defined only at those points for which g(x) 7 0. The
following corollary to Theorem 3.1 is stated in this terminology and notation and is
concerned with continuous functions.

tHecRem 3.2, Let f and g be continuous at a point p.  Then the sum f + g, the difference
f— g and the product f + g are also continuous ut p. The same is true of the quotient fg if

g(p) #0.

Proof.  Since f and g arecontinuous at p, we havelim, ., f (x) = f (p) andlim,, ,g(x) =
g(p). Therefore we may apply the limit formulas in Theorem 3.1 with A = f(p) and
B = g(p) to deduce Theorem 3.2.
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We have already seen that the identity function and constant functions are continuous
everywhere.  Using these examples and Theorem 3.2, we may construct many more examples
of continuous functions.

exawLe 1. Continuity of polynomials. If we take f(x) = g(X) = X, the result on conti-
nuity of products proves the continuity at each point for the function whose value at each
X isx2. By mathematical induction, it follows that for every real c and every positive integer
n, the function f for which f(x) = cx™ is continuous for all x. Since the sum of two con-
tinuous functions is itself continuous, by induction it follows that the same is true for the
sum of any finite number of continuous functions. Therefore every polynomial p(x) =
dn_, ¢x* is continuous at all points.

EXAMPLE 2. Continuity of rational functions. The quotient of two polynomials is called a
rationalfunction. If r is a rational function, then we have

p(x)

r(x) = ;E;;:

where p and ¢ are polynomials. The function r is defined for ali real x for which g(x) 3 O.
Since quotients of continuous functions are continuous, we see that every rational function
is continuous wherever it is defined. A simple example is r(x) = 1/x if x # 0. This function
is continuous everywhere except a x = 0, where it fails to be defined.

The next theorem shows that if a function g is squeezed between two other functions
which have equal limits as x — p, then g aso has this limit as x — p.

THECREM 33. SQUEEZING PRINCIPLE.  Suppose that f(x) < g(X) < h(x) for gjl x % p
in some neighborhood N(p). Suppose g/s¢ that

lim f(x) = lim h(x) = a..
foiad] oD
Then we also haue lim,,_,, g(x) = a.

Proof. Let G(x) = g(x) -f(x), and H(x) = h(x) -f(x). The inequalities f < ¢ < h
imply 0 < g —f<h—for
0 < G(x) £ H(x)
for all x 32 p in N(p). To prove the theorem, it suffices to show that G(x) — 0 asx —p,
given that H(x) —» 0asx — p.

Let N,(O) be any neighborhood of 0. Since H(x) — 0 asx — p, there is a neighborhood
N,(p) such that

H(x)e Ny(0) whenever x € N,(p) and x#p.

We can assume that N,(p) & N(p). Then the inequality 0 < G < H states that G(x) is no
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further from 0 than H(x) if x isin Ny(p), x # p. Therefore G(x) € N,(O) for such x, and
hence G(X) — 0 as x —> p. This proves the theorem. The same proof is valid if all the
limits are one-sided limits.

The squeezing principle is useful in practice because it is often possible to find squeezing
functions f and hwhich are easier todeal with than g. We shall use the result now to prove
that every indefinite integral is a continuous function.

THEOREM 3.4. CONTINUITY OF INDEFINITE |NTEGRALS. Assume f isintegrable on [a, X]
for every xin[a, b], and let

A= | fo dt .

Then the indefinite integral A is continuous at each point of [a, b]. (At each endpoint we have
one-sided continuity.)

Proof. Choose p in[a, b]. We are to prove that A(x) = A(p) asx - p. We have

35) A(x) — A(p) = f £(0) dt .

Now we estimate the size of this integral. Sincefis bounded on [a, b], there is a constant
M >0 such that —M <f(t) < A4 for all { in [a, b]. If x> p, we integrate these inequalities
over the interval [p, x] to obtain

—M(x = p) < A(x) = A(p) < M(x = p).

If x < p, we obtain the same¢ inequalities with x — p replaced by p — x. Therefore, in
either case we can let x —» p and apply the squeezing principle to find that A(X) — A(p).

This proves the theorem. If p is an endpoint of [a, b], we must let X — p from inside the

interval, so the limits are one-sided.

exavLe 3. Continuity of the sine and cosire. Since the sine function is an indefinite
integral, sin X :(: cos t dt, the foregoing theorem tells us that the sine is continuous

v

everywhere. Similarly, the cosine is everywhere continuous since COsS X =1 — f “sintdt.
0

The continuity of these functions can aso be deduced without making use of the fact that
they are indefinite integrals. An alternate proof is outlined in Exercise 26 of Section 3.6.

exawLe 4. In this example we prove an important limit formula,

lim—— =1,
(3.6) am

that is needed later in our discussion of differential calculus. Since the denominator of the
quotient (sin x)/x approaches 0 asx — 0, we cannot apply the quotient theorem on limits
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to deduce (3.6). Instead, we use the squeezing principle. From Section 2.5 we have the
fundamental inequalities

0<c Sx<sinx<_1_
O x SES ’

vaid for 0 < x < ¥w. They are also vaid for - i# < x < 0 since cos (-x) = cos x and
sin (-x) = —sin X, and hence they hold for all x # 0 in the neighborhood N(0; 7). When
x — 0, we find cos x — 1 since the cosine is continuous at 0, and hence 1/(cos x) — 1.

Therefore, by the squeezing principle, we deduce (3.6). If we define f(x) = (sin x)/x for
x # 0, f(0) = 1, thenfis continuous everywhere. Its graph is shown in Figure 3.4.

Y
|

lim f(x) = 1 = /0)

/
Nl B

—2‘!’\_/—‘[ 0 ‘K\/Z‘K

Flare 34 f(x) = (sin x)/x if x % 0, f(0) = 1. This function is continuous everywhere.

xawle 5. Continuity off when f ()= x* for x > 0, where r is a positive rational number.
From Theorem 2.2 we have the integration formula

x 1+1/n
J‘ tl/n dt = X 7
0 1+ 1/n

valid for all x > 0 and every integer n > 1. Using Theorems 3.4 and 3.1, we find that the
function A given by ,4(x) = tl/? is continuous at all points p > 0. Now let g(x) =
x!/" = Ak ¥ for x > 0. Since g is a quotient of two continuous functions it, too, is
continuous at all points p > 0. More generaly, if f(x) = x™/", where m is a positive
integer, then f isa product of continuous functions and hence is continuous at all points
p > 0. This establishes the continuity of the rth-power function, f(x) = x", when r is any
positive rational number, at all points p > 0. At p = 0 we have right-hand continuity.

The continuity of the rth-power function for rational r can also be deduced without
using integrals. An alternate proof is given in Section 3.13.

3.5 Proofs of the basic limit tbeorems

In this section we prove Theorem 3.1 which describes the basic rules for dealing with
limits of sums, products, and quotients. The principal algebraic tools used in the proof
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are two properties of absolute values that were mentioned earlier in Sections 14.8 and 14.9.
They are (1) the triangle inequality, which states that |a + b| < |a| + |b| for all real a and
b, and (2) the equation |ab| = |a| 6], which states that the absolute value of a product is
the product of absolute values.

Proofs of(i) und (ii). Since the two statements

limf(x) = A and  lm [f() — A] = O

D [ And'!

are eguivalent, and since we have

f) + g(x) = (4 + B) = [f(x) = A] + [g(x) — B] ,
it suffices to prove part (i) of the theorem when the limits A and B are both zero.
Suppose, then, that f(x) — 0 and g(x) —0as x — p. We shall prove that f(x) + g(x) = 0O
asx — p. This means we must show that for every ¢ > O there is a 4 > 0 such that

(37 [f(x) + g(x)| <e¢  whenever 0 < |x —p| <4,

Let ¢ be given. Since f(x) - 0asx — p, thereisa d; >0 such that
(398 |f(x) < ; whenever 0 <Ix — p| < 6, .

Similarly, since g(x) — 0 as x— p, thereis a d, > 0 such that
(39) |g(x)| <§ whenever 0 < |x — p| < §,

If we let § denote the smaller of the two numbers é, and 4, , then both inequalities (3.8) and
(3.9) are valid if 0 < |x = p| < d and hence, by the triangle inequality, we find that

i 3

If(x) + g(x)| < 1FE + 18(0] < ; + 56

This proves (3.7) which, in turn, proves (i). The proof of (ii) is entirely similar, except that
in the last step we use the inequality |f(x) = g(x)] < |f(x)| + Ig(x)l.

Proof of (iii). Suppose that we have proved part (iii) for the special case in which one

of the limits is 0. Then the general case follows easily from this specia case. In fact, all
we need to do is write

J(x)g(x) — 4B = f(x)[g(x) = B + B[f(x) — A] .

The special case implies that each term on the right approaches 0 asx — p and, by property
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(i), the sum of the two terms also approaches 0. Therefore, it remains to prove (iii) in the
special case where one of the limits, say B, is 0.

Suppose, then, that f(x) — A and g(x) — 0 as x — p. We wish to prove thatf(x)g(x) — 0O
as x — p. To do this we must show that if a positive ¢ is given, there isa ¢ > 0 such that

(3.10) |f(x)g(x)] < e  whenever 0 < |x —p| < 4.
Since f(x) — A as x — p, there is a 8, such that
(3.11) |f(x) = 41<1  whenever 0<Ix —p| < 9.
For such x, we have |f(x)| = [f(x) = A + A] < |f(x) = 4]+ [4] <1+ |A4], and hence
312 [f(g)] = [ /()] gl < (1 + 14]) |g(x)].
Since g(x) — 0 as x — p, for every ¢ > O there is a §, such that

€

(313 [g()] < .y

whenever 0< |x =~ p| < J, .

Therefore, if we let § be the smaller of the two numbers 4, and §, , then both inequalities
(3.12) and (3.13) are valid whenever 0 < |x — p| < 4, and for such x we deduce (3.10).
This completes the proof of (iii).

Proof of (iv). Since the quotient f(x)/g(x) is the product of f(x)/B with B/g(x), it suffices
to prove that Bfg(x)-+ 1 as x —p and then appea to (iii). Let h(x) = g(x)/B. Then
h(x) = 1asx — p, and we wish to prove that 1/4(x) — 1 as x — p.

Let € > 0 be given. We must show that there is a § > 0 such that

—1—-—1‘<€ whenever 0 < |x — p| <4 .

(3.14) o

The difference to be estimated may be written as follows.

(3.15) S 1 l = [h(x) = 1]
h(x) |A(x)]

Since h(x) — 1 asx — p, we can choose a 4 > 0 such that both inequalities

(3.16) |h(x) — 1] < ; and  |h(x) w 1] < %

are satisfied whenever 0 < |x — p| <4, The second of these inequalities implies h(x) > 1
so 1/|a(x)| = 1/h(x) < 2 for such x. Using this in (3.15) along with the first inequality in
(3.16), we obtain (3.14). This completes the proof of (iv).
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3.6 Exercises

In Exercises 1 through 10, compute the limits and explain which limit theorems you are using

in each case.

1
1. lim -
z—2
25x3 + 2
Clim —————
wrp [OXT == 2
2
. x*=4
3. lim .
gz X — 2
 2xr = 3x 4!
4, lim ———,
2l X
AR L
5 lim ()—
10 h

x? - a?

6. lim ——— a#0.

oo X2+ 2ax + g¢'

x2 — g%

7. lim ——m—— X # 0.

2 2%
aso X"t 22X t+a

8 lim—t = %0
lim 55— a #0.
goq X5+ 2ax + ag*’
9. lim tan ¢,

t—0

10. lim (sin 2t + £ cos 51).
t—0
]
11. lim —.
z—0+ X
. xl
12. lim — .
—0— X
xz
13. Ilim —.
z-0+ X
. x?
14. lim =— .
20—

Use the relationlim,_,q (sin x)/x = 1 to establish the limit formulas in Exercises 15 through 20.

. sin2x
15. lim = 2.

2-0 X

. tan 2x
16. lim — =2

a0 SIN X

~sinb5x
17. lim =5

g0 S X

1 —v1—x?
21. Show that lim — =3
X-0 X

22. A function T is defined as follows:

[

Sin 5X w Sin 3x

18 lIm—— =2
X-0 2
_sinx=sina

19. lim ——— =c¢os a.
z—0 -

~1=COSx

2. lim——s—= &

z—0 X

[Hint: (1 =) +Va) =1 =u]

if x<e,

ax +b if x>c,

where a, b, ¢ are constants. If b and c are given, findall values of a (if any exist) for whichf

is continuous at the point x = ¢.
23. Solve Exercise 22 if ¥ is defined as follows

£ = {

2cos x if x<Lec,
ax® + b if x>c.

24. At what points are the tangent and cotangent functions continuous?
25. Let f(x) = (tan x)/x if x # 0. Sketch the graph off over the half-open intervals [—4m, 0)
and (0, 3#]. What happens to f(x) as x — 0? Can you definef(0) so thatfbecomes continuous

a 0?
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26. This exercise outlines an dtemae proof of the continuity of the sne and cosne functions.
(8 The inequality |sin x| < |x|, valid for 0 < {x| < 4=, was proved in Exercise 34 of Section
2.8. Usethisinequality to prove that the sine function is continuous at 0.
(b) Use part (a) and the identity cos 2x = 1= 2sin? X to prove that the cosineis continuous
ao.

(¢) Usetheaddition formulasfor sin (x + A) and cos (x + /) to prove that the sine and cosine
are continuous at any red X.
27. Figure 3.5 shows a portion of the graph of the functionfdefined as follows:

.1 .
f(x)—sm; if x#0.

For x = 1/(n), where n is an integer, we have sin (1/x) = sin (na) = 0. Between two such
points, the function values rise to + 1 and drop back to 0 or ese drop to = 1 and rise back to 0.

y

""""" AV

Ficure 3.5 f(X) = sin (1/x)if x ¢ 0. This function is discontinuous at 0 no matter
how f(0) is defined.

Therefore, between any such point and the origin, the curve has an infinite number of oscilla-

tions. This suggests that the function values do not approach any fixed vdue & x — 0. Prove
that there is no real number A such thatf(x) -» A a x — 0. This shows tha it is not possible
to define f(0) in such away tha T becomes continuous a 0.

[Hint: Asume such an A exigs and obtan a contradiction]

28. Forx #0, let f(x) = [1/x], where [t] denotes the greatest integer < + Sketch the graph of
f over the intervals [ -2, —3] and [}, 2]. What happens tof (x) asx — 0 through positive
values? through negative values? Can you define f (0) sothat f becomes continuous & O?

29. Same as Exercise 28, when f(x) = ( —1)[V=Ifor x 0.

30. Same as Exercise 28, whenf(x) = x( —D*} for x # 0.

3l Give an example of a function that is continuous a one point of an interval and discontinuous
at all other points of theinterval, or prove that there is nosuch function.

32. Letf(x) = x sin (1/x) if x # 0. Define f(0) so thatfwill be continuous at 0.

33. Letf be a function such that |f(u) = f(v)| < |u — v|for allu and » in an interval [a, b].
(a) Prove that fis continuous at each point of [a, b].

(b) Assume that f isintegrable on [a, b]. Prove that

(b —a)®
-

b
ff(X) dx = (b — a)fa)| <
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(c) More generally, prove that for any cin[a, b], we have

(b - ap
-

b
ff(x) dx w (b = a)f(c% <
¢

3.7 Composite functions and continuity

We can create new functions from given ones by addition, subtraction, multiplication,
and division. In this section we learn a new way to construct functions by an operation
known as composition. We illustrate with an example.

Let f(x) = sin (x?). To compute f(x), we first square x and then take the sine of x2.
Thus, f(x) is obtained by combining two other functions, the squaring function and the

sinefunction. If we let v(x) = x* and u(x) = sin X, we can express f(x) in terms of # and v
by writing

S ) = ufp(x)].

We say that T isthe composition of uand v (in that order).  If we compose v and u in the
opposite order, we obtain a different result, v[u(x)] = (sin x)2. That is, to compute v[u(X)],
we take the sine of x first and then square sin x.

Now we can carry out this process more generally. Let « and v beany two given functions.
The composite or composition of # and v (in that order) is defined to be the functionffor
which

S0 = ulv(x)] (read as “u of v of x).

That is, to evaluatef at x we first compute v(x) and then evaluate y at the point v(x). Of
course, this presupposes that it makes sense to evaluate y at v(x), and therefore T will be
defined only at those points x for which v(x) isin the domain of u.

For example, if u(x) = Vx and v(x) = 1 = x?, then the composite T is given by f(x) =
V1 — x2 Note that v is defined for all real x, whereas u is defined only for x > 0. There-
fore the composite f is defined only for those x satisfying 1 — x? > 0.

Formally, f(x) is obtained by substituting v(x) for x in the expression u(x). For this
reason, the function f is sometimes denoted by the symbol f = u(v) (read as “u of v").
Another notation that we shall use to denote composition is f =uov (read as “u circle
v”’). This resembles the notation for the product # . v. In fact, we shall see in a moment
that the operation of composition has some of the properties possessed by multiplication.

The composite of three or more functions may be found by composing them two at a
time. Thus the function f given by

f(x) = cos [sin (x?)]
is a composition, f = u o (v w), where
ux) = COSx, ux)=snx, and  wx)= x*.

Notice that the same f can be obtained by composing x and » first and then composing 4 o p
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with w, thus: T = (u 0 v) o w. This illustrates the associative Jaw for composition which
states that

(3.17) uo(Vow)=(uop)ow
for all functions u, v, w, provided it makes sense to form all the composites in question.
The reader will find that the proof of (3.17) is a straightforward exercise.

It should be noted that the commutative faw, u ¢ v = v ¢ u, does not always hold for
composition. For example, if u(x) = sin x and v(x) = x?% the composite f = u o v is given
by f(x) = sin x? (which means sin (x?)], whereas the composition g = ¢ o 1 is given by
g(x) = sin% x [which means (sin x)2].

Now we shall prove a theorem which tells us that the property of continuity is preserved
under the operation of composition. More precisely, we have the following.

tHeorem  3.5.  Assume Vv js continuous at p and that # is continuous at g, where q = v(p).
Then the composite function f = u o v is continuous at p.

Proof. Since U is continuous at g, for every neighborhood N,u(g)] there is a neighborhood
Ny(g) such that

(3.18) u(y) € Nyi[u(g)] whenever y € Ny(g).

But q = #(p) and v is continuous at p, so for the neighborhood N(g) there is another
neighborhood Ny(p) such that

(319) u(x) € Ny(g)  whenever xeNy(p) .

If welety = v(x) and combine (3.18) with (3.19), we find that for every neighborhood
Ny(u[v(p)]) there is a neighborhood N,(p) such that

ulp(x)] € Ny(u[v(p)]) ~ whenever x € N,(p),
or, in other words, since f(x) = u[v(x)],
S eN[f(p)]  whenever x & Nyp).
This means thatfis continuous at p, as asserted.

ExavpLE 1. Let f(x) = sn x2  This is the composition of two functions continuous
everywhere sof is continuous everywhere.

examrLe 2. Let f(X) = V1 — x* = u[v(x)}, where u(x) = Vx, x) =1 = x2 The
function v is continuous everywhere but # is continuous only for points x > 0. Hence f'is
continuous at those points x for which »(x) > 0, that is at all points satisfying x2 < 1.
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3.8 Exercises

In Exercises 1 through 10, the functiondfandg are defined by the formulas given. Unless other-
wise noted, the domains off and ¢ consist of all real numbers. Let h(x) = f[g(x)] whenever g(x)
lies in the domain off. In each case, describe the domain of # and give one or more formulas for

determining h(x).

L f(x) = x* -2X, gx) = x + 1
2. fx) =x + 1, gx) = x* = X
30 =vx if x>0 gix) = 2
4.fx) = Vx if x >0, g(x) = —x2.
5. f(x) = x2, g =1x if x>0
6. f(x) = —x2, gx) =vVx if x>0
7. f(x) = sn x, g =vx if x>0
8 fx) = vVx if x >0, g(x) = sin x.
9.fX) = vx if x >0, gy =x++Vx if x>0
10.f) = Vx+4/x if x>0, gx)=x++x if x>0
Calculate the limitsin Exercises 11 through 20 and explain which limit theoremsyou are using
in each cax
B+ 8 _sin(x¥=1)
11 | — —
o X2 U
S — 1
2. lim V1+ /%, 17.1im x sin -..
x4 . x—0 x
13 im0 18, Jim 27 S X
o SN A e
z—op/z €08 X 20 X
15, lim 30 =) 20 lim L= V1 =4
t—r I —x 2‘0 x2

21 Let F andg be two functions defined as follows

X+ x|

f&)=—

x
for all x , glx) = {x2

for x <0,
for x >0.

Find a formula (or formulas) for computing the composite function h(x) = flg(x)]. For

what vdues of y is A continuous?
2. Solve Exedse 21 when £ and g ae defined & follun{s
1

if x| >1, )

23. Solve Exercise 21 when h(x) = ¢ [f(X)].

3.9 Bolzano’s theorem for continuous functions

&) =12 —x2  if

x| £ 2,
if |xf > 2.

In the rest of this chapter we shall discuss certain special properties of continuous func-
tions that are used quite frequently. Most of these properties appear obvious when inter-
preted geometrically ; consequently many people are inclined to accept them as self-evident.



Bolzano’s theorem for continuous functions 143

However, it is important to realize that these statements are no more self-evident than the
definition of continuity itself, and therefore they require proof if they are to be used with
any degree of generdity. The proofs of most of these properties make use of the least-upper-
bound axiom for the red number system.

Bernard Bolzano (1781-1848), a Catholic priest who made many important contributions
to mathematics in the first half of the 19th Century, was one of the first to recognize that
many “obvious’ statements about continuous functions require proof. His observations
concerning continuity were published posthumously in 1850 in an important book, Para-
doxien des Unendlichen. One of his results, now known as the theorem of Bolzano, is
illustrated in Figure 3.6, where the graph of a continuous function ¥ is shown. The graph
lies below the x-axis a x = a and above the axis a x = 4. Bolzano's theorem asserts that
the curve must cross the axis somewhere between a and b. This property, first published
by Bolzano in 1817, may be stated formally as follows.

THEOREM  36. BOLZANO STHECREM  Let T be continuous at each point of a closed interval
[a, b] and assume that f(a) and f(b) have opposite signs. Then there is at Jeast one ¢ in the
open interval (&, b) such that f (c) = 0.

We shall base our proof of Bolzano's theorem on the following property of continuous
functions which we state here as a separate theorem.

THEGREM 3. 7. SIGN-PRESERVING PROPERTY CF CONTINUOUS FucTions.  Letfbe con-
tinuous at ¢ and suppose that f(c) #0. Then there is an interval (c — §, ¢ + d) about c in
which f has the same sign as f(c).

Proof of Theorem 3.7. Suppose f(c) > 0. By continuity, for every ¢ > O there is a
d > 0 such that

(3.20) f(c) — € <f(x) <f(c) + € Whenever C =4 < x<c+§.
If we take the § corresponding to e = f (c)/2 (this ¢ is positive), then (3.20) becomes

1f(e) <f(x) <%f(c) whenever c—=d<x<c+4.

1
1
nn /o
]
ﬁ/ \./ U b SA] '
| | : !
= 1 1 I
c— 0 c c+ 6
Ficure 3.6 Illustrating Bolzano’s theorem. Ficure 3.7 Here f(x) > O for x near c

because f(c) > 0.
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(See Figure 3.7). Therefore F(X) > Ointhisinterval, and hence F(X) and f(c) have the
samesign. If f(c) < 0, we take the § corresponding to ¢ = — 1 f(C) and arrive at thesame
conclusion.

Note:  If there is one-sided continuity at ¢, then there is a corresponding one-sided
interval [c, ¢ + 6) or (C — §, ] in which f has the same sign as f(C).

Proof of Bolzano's theorem. To be specific, assume f(a) < 0 and f(b) > 0, as shown
in Figure 3.6. There may be many values of x between a and b for which f(x) = 0. Our
problem is to find one. We shall do this by finding the largest x for which f(x) = 0. For
this purpose we let S denote the set of all those points x in the interval [a, b] for which
f(x) < 0. There is at least one point in S because f(a) < 0. Therefore S is a nonempty
set. Also, S is bounded above since all of S lies within [a, b], so S has a supremum. Let
c = sup S. We shall prove that f(c) = O.

There are only three possibilities: f(c) >0, f(c) < 0, and f(c) = 0. If f(c) > 0, there
is an interval (c ~ 4, ¢ + §), or (¢ — d, c] if c = b, in which f is positive. Therefore no
points of S can lie to the right of ¢ — ¢, and hence ¢ - § is an upper bound for the set S.
But c — § <c, and c is the least upper bound of S. Therefore the inequality f(c) > 0
is impossible. If f(c) < 0, there is an interval (c — d,c+ d),or[c,c+ dif c= a in
which f is negative. Hence f(x) < 0 for some x > c, contradicting the fact that c is an
upper bound for S. Thereforef (c) < 0 is also impossible, and the only remaining possibility
is f(c) = 0. Also, a < ¢ < b because f(a) < 0 and f(b) > 0. This proves Bolzano's
theorem.

3.10 The intermediate-value theorem for c¢ontinuous functions

An immediate consequence of Bolzano's theorem is the intermediate-value theorem for
continuous functions, illustrated in Figure 3.8.

THEOREM 3.8. Let f be continuous at each point of a closed interval [a, b]. Choose two
arbitrarypoints x; < Xy in [a, b] such thatf (x;) # f(x,). Then f takes on every value between
f (x,) and f (x) somewhere in the interval (X,, x;).

Proof. Suppose f(x;) < f(x,) and let k be any value between f(x,) and f (x,). Létgbethe
function defined on [x,, x,] as follows:

gx)=f(x)—k.

. aé b
a X, Xo b fla)y—o
Ficure 3.8 Illustrating the intermediate- Ficure 39 An example for which Bolzano's

value theorem. theorem is not applicable.



Exercises 145

Then g is continuous at each point of [x,, x,], and we have

gx) =flx) -k <o, g(xg) = f(x) =k >0,

Applying Bolzano's theorem to g, we have g(c) = O for some ¢ between x, and x,. But
this means f(c) = k, and the proof is complete.

Note:  In both Bolzano's theorem and the intermediate-val ue theorem, it is assumed
thetf is continuous & each point of [a b, including the endpoints a and b. To understand
why continuity at both endpointsis necessary, we refer to the curve in Figure 3.9. Here
FIS  continuous everywhere in [a b] except & a Although f(a) is negdive and f(b) is
positive, thereisno x in [a, b] for whichf(x) = 0.

We conclude this section with an application of the intermediate-value theorem in which
we prove that every positive real number has a positive nth root, a fact mentioned earlier in
Section 13.14. We state this as a formal theorem.

THEOREM 39. If n /s a positive integer and if a > 0, then there is exactly one positive
b such that p» = a.

Proof. Choose ¢ > 1 such that 0 < a < ¢, and consider the function f defined on the
interval [0, c] by the equation f(x) = x", This function is continuous on [0, c], and at the
endpoints we have f(0) = O, f(c) = ¢”. Since 0 < a< c < ¢", the given number a lies
between the function values f(0) and f(c). Therefore, by the intermediate-value theorem,
we have f(x) = a for some x in (0, c), say for x = b. This proves the existence of at least
one positive b such that 4™ = a. There cannot be more than one such b becausefis strictly
increasing on [0, c]. This completes the proof.

3.11 Exercises

1. Letf be a polynomial of degree n, say f(x) = 37 £, x*, such tha the fird and last coefficients
¢ and ¢, have oppositesigns. Prove that T (x) =0 for a leat one positive x.

2. A real number x, , such that f(x;) = 0, is said to be a real root of the equation f(x) = 0. We
say that areal root of an equation has beenisolated if we exhibit aninterval [a, b] containing
this root and no others. With the aid of Bolzano’s theorem, isolate the real roots of each of
the following equations (each hes four red roots).

(@) 3x1 —2x* —36x2+36x —8=0.
(b) 2x% = 14x2+ 14X = 1 = 0.
© xt+ 43+ x®*=6x+2=0.
3. If nis an odd positive integer and g < 0, prove that there is exactly one negative b such that
"= a.

4. Let f(x) = tan x. Although f(n/4) = 1 and f(3n/4) = -1, there is no x in the interval
[#/4, 3x/4] such that f(x) = 0. Explain why this does not contradict Bolzano's theorem.

5 Given a red-vdued function f which is continuous on the closed interval [0, 1]. Assume that
0 < f(x) < 1for each x in [0, 11. Prove that there is at least one point ¢ in [0, 1] for which
f(c) = c. Such apoint is called ajxedpoint of f . Theresult of thisexercise isaspecial case of
Brouwer’s fixed-point theorem. [Hint: Apply Bolzano's theorem to g(x) = f(x) = x.]

6. Given areal-valued functionfwhich is continuous on the closed interval[a, b].  Assume that
f(u) < g and that f(b) > b. Prove thatfhas a fixed point in [a, b]. (See Exercise 5,)
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3.12 The process of inversion

This section describes another important method that is often used to construct new
functions from given ones. Before we describe the method in detail, we will illustrate it with
a smple example.

Consider the function f defined on the interval [0, 2] by the equation f(x) =2x + 1.
The range of fis the interval [1, 5]. Each point x in [0, 2] is carried byf onto exactly one
point y in [1, 5], namely

(321) y=2x+1

Conversely, for every y in [1, 5], there is exactly one x in [0, 2] for which y = f(x). To find
this x, we solve Equation (3.21) to obtain

x= i}y = 1.

This equation defines x as a function of y. If wedenote this function by g, we have

gy =4y =1

for each y in [1, 5]. The function g is caled the inverse off. Note that gl f(x)] = x for
each X in [0, 2], and that f[g(y)] =y for eachy in[l, 5].

Consider now a more general functionf with domain A and range B. For each X in A,
there is exactly one y in B such that y = f(x). For eachy in B, thereis at least one x in A
such that f(x) = y. Suppose that there is exactly one such x. Then we can define a new
function g on B as follows:

gy)=x meansy = f(x).

In other words, the value of g at each point y in B is that unique x in A such that f(x) =y.
This new function g is called the inverse of f. The process by which g is obtained fromfis
called inversion. Note that g[f(x)] = x for all x in A, and that f[g(y)] =y for ally in B.

The process of inversion can be applied to any function f having the property that for
each y in the range off, there is exactly one x in the domain off such that f(x) = y. In
particular, a function that is continuous and strictly monotonic on an interval [a, b] has this
property. An example is shown in Figure 3.10. Let ¢ = f(a), d = f(b). The intermediate-
value theorem for continuous functions tells us that in the interval [a, b], ¥ takes on every
value between ¢ and d, Moreover, f cannot take on the same value twice because f(x;) #
f(xy) Whenever x; # x, . Therefore, every continuous strictly monotonic function has an
inverse.

The relation between a function f and its inverse g can aso be simply explained in the
ordered-pair formulation of the function concept. In Section 1.3 we described a function
f as aset of ordered pairs (x, y) no two of which have the same first element. The inverse
function g is formed by taking the pairs (x, y) inf and interchanging the elements x and y.
That is, (y, x) € g if and only if (x, y) €f. If f is strictly monotonic, then no two pairsin f
have the same second element, and hence no two pairs of g have the same first element.
Thus g is, indeed, a function.
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exaveLE.  The nth-root function. If n is a positive integer, let f(x) = x® for x > 0.
Then fis strictly increasing on every interval [, b] withO <a<b. The inverse function g
is the nth-root function, defined for y > 0 by the equation

gy) =y,

3.13 Properties of functions preserved by inversion

Many properties possessed by the function f are transmitted to the inverse g. Figure
3.11 illustrates the relationship between their graphs. One can be obtained from the other
merely by reflection through the line y = x, because a point (u, v) lies on the graph off
if and only if the point (v, #) lies on the graph of g.

f YPoint (ru) with u = g(v)

fhy=a|==———r———————— -~ !
|
]
JR=Y [ === 3 ' ',
' :
l |
[} . .
f(d) S / : ; POH‘Tt‘(u,U)‘WIthU:f(u)
1 ! i
i L i ;x
a X b
Ficure 310 A continuous, drictly increasing Ficure 3.11 TIllustrating the process of
function. inversion.

The properties of monotonicity and continuity possessed by f are transmitted to the
inverse function g, as described by the following theorem.

tHeorem  3.10.  Assume f is strictly increasing and continuous on an interval [a, b]. Let
c=f(a)andd= f(b) and let g betheinverse off. Thatis, for eachyin[c,d], let g(y) bethat
xin[a, b] suchthaty = f(x). Then

(a) gisstrictly increasing on [c, d] ;

(b) giscontinuouson[c, d].

Proof. Choose y1 <y, in[c, d] and let x; = g(y1), X, = g(y2). Then y, = f(x,) and
ye = f(x;). Since fis strictly increasing, the relation y, < y, implies x; < x,, which, in
turn, implies g is strictly increasing on [c, d]. This proves part (a).

Now we prove (b). The proof is illustrated in Figure 3.12. Choose apointy,, in the open
interval (c, d). To prove g is continuous at y,, we must show that for every ¢ > O there is
a d > 0 such that

(3.22) gy — €< g(y) < gy + ¢  whenever y, —d<y<y, +6.

Let xo = g(yo); so that f(x,) = y,. Supposeeisgiven. (Thereisno lossin generality if we
consider only those ¢ small enough so that both x, — ¢ and x, + ¢ are in [a, b].) Let §
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be the smaller of the two numbers

Slxg) = flxg=¢ and  flx, 4+ €)= f(x,).

It is easy to check that this ¢ works in (3.22). A slight modification of the argument proves
that g is continuous from the right at ¢, and continuous from the left at d.

There is a corresponding theorem for decreasing functions. That is, the inverse of a
strictly decreasing continuous functionfis strictly decreasing and continuous. This follows
by applying Theorem 3.10 to —f.

§ is the sndler of thee two distances

FiGre 312 Proof of the continuity of the inverse function.

ExavPLE.  Continuity of the nth-root function. The nth-root function g, defined for
y > 0 by the equation g(y) = y*/*, is strictly increasing and continuous on every interval
[c, d] withO < c< d,since it is the inverse of a strictly increasing continuous function.
This gives an alternate proof of the continuity of the nth-root function, independent of the
theory of integration. Since the product of continuous functions is continuous, we again
deduce the continuity of the rth-power function, h(y) =y’, where r = m/n is a positive
rational number and y > 0.

3.14 Inverses of piecewise monotonic functions

Suppose we try to apply the process of inversion to a function that is not monotonic on
[u, b]. For example, suppose that f(x) = x* on an interval of the form [—c¢, c] on the x-axis.
Each point x in this interval is carried by ¥ into exacdy one point y in the interval [0, ¢?],
namely,

(3.29) y = X2,

We can solve Equation (3.23) for x in terms of y, but there are two values of x corresponding
to each y in (0, ¢?], namely,

x=\/}_z and x=—\/)_)
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As we have mentioned once before, there was a time when mathematicians would have said
that the inverse g in this case is a double-valued function defined by

g) = £Vy.

But since the more modern point of view does not admit double-valuedness as a property
of functions, in a case like this we say that the process of inversion gives rise to two new
functions, say g, and g,, where

(324 aly) = \/; and gy = —\/} for each yin[0, ¢?],

To fit this in with the notion of inverse as explained above, we can ook upon the equation
y = x% as defining not ore function f but zwo functions f, and f;, say, where

filt)=xr if 0<x<e and  fylx) = x® if ~c < x<0.

These may be considered as distinct functions because they have different domains. Each
function is monotonic on its domain and each has an inverse, the inverse of f; being g,
and theinverse of f, being g,, where g, and g, are given by (3.24).

This illustrates how the process of inversion can be applied to piecewise monotonic
functions. We simply consider such a function as a union of monotonic functions and invert
each monotonic piece.

We shall make extensive use of the process of inversion in Chapter 6.

3.15 Exercises

In each of Exercises 1 through 5, show thatfis strictly monotonic on the whole real axis. Letg
denote the inverse off. Describe the domain of g in each case. Write y = f(x) and solve for x
|n terms of y; thus find aformula (or formulas) for computmg g(y)foreachy inthe domain of ¢.

L fx)=x+1 4. f(x) = x*,

2. flx)=2x + 5. X if ox<t,
3.fX) =1 =x 5. f(x) ={x? if 1< x<4,
Bxtt if x > 4,

Mean values. Let f be continuous and strictly monotonic on the positive real axis and let g
denote the inverse of f. If a, < 4, < < @, are n given positive real numbers, we define
their mean value (or average) with respect to f to be the number M, defined & follows

= g(% if(“z)) .

In particular, when f(x) = x* for p # 0, M, is called the pth power mean (See also Section

14.10.) The exercises which follow deal with properties of mean values.

6. Show that f(M,) = (1/n) 3, f(a;). In other words, the value off at the average M, is the
arithmetic mean of the functionvalues f(a)), , . ., f(a,).

7. Show that a, < M, < a,. Inother words, the averageof a,, . . ., a, lies between the largest
and smalet of the a;.

8. If h(X) = af(x) + b, where g # 0, show that M, = M, . This shows that different functions
may lead to the same average. Interpret this theorem geometrically by comparing the graphs
of h and f.
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3.16 The extreme-value theorem for continuous functions

Letfbe a real-valued function defined on a set S of real numbers. Thefunctionf issaid
to have an absolute maximum on the set § if there is at least one point c in S such that

f) L fley forallxins.

The number f(c) is called the absolute maximum value off on S. We say that f has an
absolute minimum on S if there is a point d in S such that

fG)>fd) forallxins.

Y No absolute
maximum  exists

¥y
Absolute Absolute
maximum minimum
1 Absolute
minimum
e ¥ X + + -
ol L3 x 0 1 2
2
Absolute minimum
f(x) =sinx, 0 <X < 1 f(x)=)l—cif0<x <2,f(0) =1

(a) (b)

Ficure 3.13  Maximum and minimum values of functions.

These concepts are illustrated in Figure 3.13. In Figure 3.13(a), S is the closed interval
[0, 7] and f(x) =sin x. The absolute minimum, which occurs at both endpoints of the
interval, is 0. The absolute maximum is f(im) = 1

In Figure 3.13(b), S is the closed interval [0, 2] and f(x) = 1/x if x > 0, f(0) = 1 In
this example, T has an absolute minimum at x = 2, but it has no absolute maximum. It
fails to have a maximum because of a discontinuity at a point of S.

We wish to prove that if Sisa closed interval andif fis continuous everywhere on S, then
fhas both an absolute maximum and an absolute minimum on S. This result, known as
the extreme-value theorem for continuous functions, will be deduced as a simple consequence
of the following theorem.

THEOREM 3.11. BOUNDEDNESS THEOREM FOR CONTINUOUS FUNCTIONS. Leét f be con-
tinuous on a closedinterval [a, b]. Then f isbounded on[a, b]. That is, thereisa number
C 2 Osuchthat f(x)|< Cforallxin[a,b].
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Proof. We argue by contradiction, using a technique called the method of successive
bisection. Assume that f is unbounded (not bounded) on [a, b]. Let ¢ be the midpoint of
[a, b]. Since fis unbounded on [a, b] it is unbounded on at least one of the subintervals
[a, clor[c,b]. Let[a,,b,] bethat half of [a, b] in which fis unbounded. Iff isunbounded
in both halves, let [a, , b,] be the left half, [a, c]. Now continue the bisection process
repeatedly, denoting by [a,,, ,b,,,] that half of [a,, b,] in which f is unbounded, with the
understanding that we choose the left half iff is unbounded in both halves. Since the length
of each interval is half that of its predecessor, we note that the length of [a, , b,] is (b = a)/2".

Let A denote the set of leftmost endpointsa , a, , 4, , - . ., SO constructed, and let a be the
supremum of A. Then a liesin [a, b]. By continuity off at a there is an interval of the
form (a = 4, a+ §) in which

(3.29) 1f(x) —S(@I <1.

If a = a this interval has the form [a, a + d), and if a = b it has the form (b = 4, b].
Inequality (3.25) implies

Sl <T+1f (@),

so fis bounded by 1 + |f(«)| in this interval. However, the interval [a& , b] lies inside
(@ = 6, a+ 6) when n is so large that (b — a)/2" < 6. Therefore f is also bounded in

[a , b,], contradicting the fact that fis unbounded on [a, , b,]. This contradiction completes
the proof.

If fis bounded on [a, b], then the set of all function values f (x) is bounded above and
below. Therefore, this set has a supremum and an infimum which we denote by sup f and
inff, respectively. That is, we write

supf = sup {f(x) a < x< b}, inf f = inf {f(x)|a < x < b}.

For any bounded function we have inf f < f(x) <sup f for all x in [a, b]. Now we prove
that a continuous function takes on both values inff and sup f somewherein [a, b].

THEOREM 3 12 EXTREME-VALUE THEOREM FOR CONTINUOUS FUNCTIONS. Assume fis
continuous on a ¢losed interval [a, b]. Then there exist points ¢ and d in [a, b] such that

f© =supf and f(d) = inff.

Proof. 1t suffices to prove thatf attains its supremum in [a, &]. The result for the infimum
then follows as a consequence because the infimum off is the supremum of —f.

Let M = sup f. We shall assume that there is no x in [a, b] for which f(x) = A4 and
obtain a contradiction. Let g(x) = M -f(x). Then g(x) > O for gll x in [a, b] so the
reciprocal 1/g is continuous on [a, b]. By Theorem 3.11, 1/g is bounded on [a, b], say 1/g(x)
< Cfor all x in [a, b], where C > 0. This implies M -f(x) > 1/C, so that f(x) < A4 —
1/C for all x in [a, b]. This contradicts the fact that M is the least upper bound off on
[a, b]. Hence, f(x) = M for at least one x in [a, b].
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Note: This theorem shows tha if fis continuous on [a b, then sup f is its absolute
maximum, and inf fits absolute minimum. Hence, by the intermediatevalue theorem, the
range of f'is the closed interval [inf £, sup f1.

3.17 The small-span theorem for continuous functions (uniform continuity)

Let f be real-valued and continuous on a closed interval [a, 5] and let M(f) and m(f)
denote, respectively, the maximum and minimum values off on [a, b]. We shall call the
difference

M(f) — m(f)

the span of fin the interval [a, b]. Some authors use the term oscillation instead of span.
However, oscillation has the disadvantage of suggesting undulating or wavelike functions.
Older texts use the word saltus, which is Latin for Jeap. The word “span” seems more
suggestive of what is being measured here. We note that the span of f'in any subinterval
of [a, 4] cannot exceed the span of fin [a, b].

We shall prove next that the interval [a &] can be partitioned so that the span off in each
subinterval is arbitrarily small. More precisely, we have the following theorem which we
call the small-span theorem for continuous functions. 1t is usually referred to in the literature
as the theorem on uniform continuity.

meceem 313, Let T be continuous on a closed interval [a, b]. Then, for every e > 0
thereisa partition of [a, b] intoa finite number of subintervals such that the span off in every
subinterval is jess than e,

Proof. We argue by contradiction, using the method of successive bisections. Assume
the theorem is false. That is, assume that for some e, say for € = ¢, the interval [a, b]
cannot be partitioned into a finite number of subintervals in each of which the span off
islessthane¢,. Let c bethe midpoint of [a, b]. Then for the same ¢, , the theorem is false in
at least pne of the two subintervals[a, c] or [c, b]. (If the theorem were true in both intervals
[a c] and [c, b], it would aso be true in the full interval [a b].) Let [a , b,] be that half of
[a, b] in which the theorem is false for ¢, . If it isfalsein both halves, let [, , b,] be the left
half, [a, ¢]. Now continue the bisection process repeatedly, denoting by [a,, , b,,,] that
haf of [a, , b,] in which the theorem is false for ¢,, with the understanding that we choose
the left half if the theorem is false in both halves of [a, , 4,]. Note that the span off in each
subinterval [a, , b,] so constructed is at least ¢, .

Let A denote the collection of leftmost endpoints &, a, , a,, . . ., SO constructed, and let
o be the least upper bound of A. Then « liesin [a, b]. By continuity off at «, there is an
interval (x — 0, o + ¢) in which the span off is less than ¢, . (If « = a, this interval is
[a a+ d),andif o« = b, itis (b ~ 4, b].) However, the interval [a, , b,] liesinside (« — 4§,
o + 8) when # is so large that (b — a)/2" < §, so the span off in[a , b,] is also less than
€ , contradicting the fact that the span off is at least €, in [a,, b,]. This contradiction
completes the proof of Theorem 3.13.

3.18 The integrability theorem for continuous functions

The small-span theorem ¢an be used to prove that a function which is continuous on
[a b] isalsointegrable on[a, b].
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THECREM 3.14. INTEGRABILITY OF CONTINUOUS FUNCTIONS. If a function f is continuous
at egch point of aclosed interval [a, b], then f isintegrable on [a, b].

Proof. Theorem 3.11 shows that f is bounded on [a, b], so f has an upper integral,
I(f), and a lower integral, J(f). We shall prove that /(f) = I(f).

Choose an integer N > | and let ¢ = |/N. By the small-span theorem, for this choice
of ¢ thereis a partition P= {x,, x;, . . .,x,}of [a, b] intonsubintervals such that the span

of fin every subinterval islessthane. Denote by M,(f)andn( /), respectively, theabsolute
maximum and minimum vaues of fin the kth subinterval [x,_,, x,]. Then we have

Mi(f) —m(f) < e

for each k =1,2,...,n. Now let 5, and 7, be two step functions defined on [a, b] as
follows :

sn(x) = mlc(f) if Xp1 < X _<_. Xk S/L(a) = rnl(f )a
rn(x) = Mk(f) lf xk*l S X < xk ’ tn(b) = Mn(f)'
Then we have s,(x) < f(x) <t,(x) for all x in [a, b]. Also, we have
[se=Sminee—xon  and  [", =3 M0 — % 0)-
k=1 k=1

The difference of these two integralsis

[t = [} 5w = S0 = miPls = xe) < €35 = x) = b — ).

k=1

Since ¢ = 1/N, this inequality can be written in the form

b b _
(3.26) fx,, —f s, <bza
“ « N

On the other hand, the upper and lower integrals offsatisfy the inequalities

[ls.<

[

O n aa s, <in<

T

Multiplying the first set of inequalities by (-1) and adding the result to the second set,
we obtain

i(f) - _I(f) S J;lb t, — _Lb Sp -
Using (3.26) and the relation {(f)) < /(f), we have

b—a
N

0<INH - 1)<
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for every integer N > 1. Therefore, by Theorem 1.31, we must have J(f) = I f). This
proves thatf‘is integrable on [a, b].

3.19 Mean-value theorems for integrals of continuous functions

In Section 2.16 we defined the average value A(f) of a function f over an interval [a, 5]
to be the quotient §° f(x) dx/(b — a@). Whenfis continuous, we can prove that this average
value is equal to the value of f at some point in [a, b].

THEOREM 3.15. MEAN-VALUE THECREM FOR INTEGRAIS. If f is continuous on [g, b],
then for somecin [a, b] we have

[! 7 ax = fexb = a.

Proof. Let m and M denote, respectively, the minimum and maximum vaues off on
[, b]. Then m <f(x) €< M for all x in [a b]. Integrating these inequalities and dividing
by b — a we find m < A(f) < M, where A(f) = [? f (X) dx/(b—3a). But now the inter-
mediate-value theorem tells us that A(f) = f(c) for some c in [a, b]. This completes the
proof.

There is a corresponding result for weighted mean values.

THEOREM 3.16. WEIGHTED MEAN- VALUE THEOREM FOR |INTEGRAIS. Assumefandg are
continuous on [a, b]. If gnever changessignin[a, b] then, for somecin[a, b], e have

(327) [! 7080 dx = 1(@) [ g0x) dx.

Proof. Since g never changes sign in [a, b], g is always nonnegative or always nonpositive
on [a b]. Let us assume that g is nonnegative on [a, b]. Then we may argue as in
the proof of Theorem 3.15, except that we integrate the inequalities mg(x) < f(x)g(x) <
Mg(x) to obtain

(329) m| g0 dx < [°f (0g(x) o < M 8(4) ax

If fog(x) dx =0, this inequality shows that [® f (x)g(x) dx = 0. In this case, Equation (3.27)
holds trivially for any choice of ¢ since both members are zero. Otherwise, the integral of g
is positive, and we may divide by this integral in (3.28) and apply the intermediate-value
theorem as before to complete the proof. If g is nonpositive, we apply the same argument
to —g.

The weighted mean-value theorem sometimes leads to a useful estimate for the integral
of a product of two functions, especialy if the integral of one of the factors is easy to
compute. Examples are given in the next set of exercises.
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3.20 Exercises

1. Use Theorem 3.16 to establish the following inequalities:

! <(1 X <l
—_— < —_— g < —.
10V2 = o V1 +x 10

2. Note that V1= x% = (1 = x2)/A/1 — x* and use Theorem 3.16 to obtain the inequalities

11 1/2 11 /4
gf Vl—x2dx<—/;.
o

24 =2

3. Use the identity 1 + x%= (1 + x2)(1 = x2+ x*) and Theorem 3.16 to prove that for a > 0,
we have

1 a®  ab < @ dx < a® a°
T+a8\?"3t3)s ) 1525273 5"

Take a=1/10 and calculate the value of the integral rounded off to six decimal places.
4. One of the following two statements is incorrect. Explain why it is wrong.
() Theintegral f47 (sin 1)/t dt > O because (37 (sin 1)/t dr > {37 |sin f]/¢ dt.
(b) The integral j‘;;’ (sin )/t dt = 0 because, by Theorem 3.16, for some ¢ between 27 and 4=
we have

rgin ¢ 1 [4n COS (27) = COS
f ﬂdt:—f sintdt= (27) (4ﬂ)=0.
o ! ¢ Jer ¢
5.If nis apositive integer, use Theorem 3.16 to show that
ACESYE —1)*
f " ﬂsin(tz)dt=(—c)—v where Vnr <c <V(n + ).
Var

6. Assume f is continuous on [a, b]. If {2 f(x)dx = 0, prove that f(c) = O for at least one ¢ in
la, bl.

7. Assume thatfis integrable and nonnegative on [a, b]. If jgf(x) dx = 0, prove that f(x) = 0
at each point of continuity off. [Hini: If f(c) > 0 at a point of continuity c, there is an
interval about ¢ in which f(x) > 3f(c).]

8. Assume fiS continuous on [a, b]. Assume also that jf;f(x)g(x) dx = 0 for every function g
that is continuous on [a, b]. Prove that f(x) = 0 for all x in [a, b].



4
DIFFERENTIAL CALCULUS

4.1 Historical introduction

Newton and Leibniz, quite independently of one another, were largely responsible for
developing the ideas of integral calculus to the point where hitherto insurmountable problems
could be solved by more or less routine methods. The successful accomplishments of these
men were primarily due to the fact that they were able to fuse together the integral calculus
with the second main branch of calculus, differential calculus.

The central idea of differential calculus is the notion of derivative. Like the integral,
the derivative originated from a problem in geometry-the problem of finding the tangent
line at a point of a curve. Unlike the integral, however, the derivative evolved very late
in the history of mathematics. The concept was not formulated until early in the 17th
Century when the French mathematician Pierre de Fermat, attempted to determine the
maxima and minima of certain special functions.

Fermat's idea, basicaly very smple, can be understood if we refer to the curve in
Figure 4.1. It is assumed that at each of its points this curve has a definite direction that
can be described by a tangent line. Some of these tangents are indicated by broken lines
in the figure. Fermat noticed that at certain points where the curve has a maximum or

Ficure 4.1 The cuve has horizontd tangents above the points x, and x, .
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minimum, such as those shown in the figure with abscissae x, and x, , the tangent line
must be horizontal. Thus the problem of locating such extreme values is seen to depend
on the solution of another problem, that of locating the horizontal tangents.

This raises the more general question of determining the direction of the tangent line
at an arbitrary point of thecurve. ]t was the attempt to solve this general problem that
led Fermat to discover some of the rudimentary ideas underlying the notion of derivative.

At first sight there seems to be no connection whatever between the problem of finding
the area of a region lying under a curve and the problem of finding the tangent line at
a point of a curve. The first person to realize that these two seemingly remote ideas are,
in fact, rather intimately related appears to have been Newton's teacher, Isaac Barrow
(1630-1677). However, Newton and Leibniz were the first to understand the real impor-
tance of this relation and they exploited it to the fullest, thus inaugurating an unprece-
dented era in the development of mathematics.

Although the derivative was originally formulated to study the problem of tangents, it
was soon found that it also provides a way to calculate velocity and, more generally, the
rate of change of afunction. In the next section we shall consider a special problem in-
volving the calculation of avelocity. The solution of this problem contains all the essential
features of the derivative concept and may help to motivate the general definition of
derivative which is given in Section 4.3.

4.2 A problem involving velocity

Suppose a projectile is fired straight up from the ground with initial velocity of 144 feet
per second. Neglect friction, and assume the projectile is influenced only by gravity so
that it moves up and back along a straight line. Let f(¢) denote the height in feet that the
projectile attains ¢ seconds after firing. If the force of gravity were not acting on it, the
projectile would continue to move upward with a constant velocity, traveling a distance
of 144 feet every second, and at time ¢t we would have f(t) = 144t. In actual practice,
gravity causes the projectile to slow down until its velocity decreases to zero and then it
drops back to earth. Physical experiments suggest that as long as the projectile is aloft,
its height f(¢) is given by the formula

4.1) f(6) = 144t — 162,

The term —16¢? is due to the influence of gravity. Note that f(t) = 0 when f = 0 and
when t = 9. This means that the projectile returns to earth after 9 seconds and it is to
be understood that formula (4.1) is valid only for 0 <t < 9.

The problem we wish to consider is this: To determine the velocity of the projectile at
each instant of its motion. Before we can understand this problem, we must decide on
what is meant by the velocity at each instant. To do this, we introduce first the notion
of average velocity during a time interval, say fromtimef totime¢ + h. This is defined
to be the quotient

change in distance during time interval _ f(t + h) = f(1)
length of time interval h '

This quotient, called a difference quotient, is a number which may be calculated whenever
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both ¢ and ¢ + h are in the interval [0, 9]. The number 4 may be positive or negative,
but not zero. We shall keep ¢ fixed and see what happens to the difference quotient as
we take values of ki with smaller and smaller absolute value.
For example, consider the instant ¢+ = 2. The distance traveled after 2 seconds is
f(2) = 288 = 64 = 224.
Attime ¢t =2+ h, the distance covered is

S + h)= 1442 + h) = 16(2 + h)? = 224 + 80h — 16K°.

Therefore the average velocity in the intervalfrom ¢ =2tof =2+ his

f2 + b= f(2) _80h— 16h* _
h h

80 — 16h

As we take values of h with smaller and smaller absolute value, this average velocity gets
closer and closer to 80. For example, if h = 0.1, we get an average velocity of 78.4; when
h = 0.001, we get 79.984; when h = 0.00001, we obtain the value 79.99984; and when
h = -0.00001, we obtain 80.00016. The important thing is that we can make the average
velocity as close to 80 as we please by taking |/| sufficiently small. In other words, the
average velocity approaches 80 as a limit when h approaches zero. It seems natural to call
this limiting value the instantaneous velocity at time ¢ = 2.

The same kind of calculation can be carried out for any other instant. The average
velocity for an arbitrary time interval from ¢ to ¢ + h is given by the quotient

S+ W) —f(@) [1440 + k) = 16(t + h)"] — [1441 = 16£%)
h h

= 144 — 32t — 16k

When h approaches zero, the expression on the right approaches 144 -- 32t as a limit,
and this limit is defined to be the instantaneous velocity at time ¢, If we denote the in-
stantaneous velocity by v(t), we may write

(4.2) v(t) =144 ~ 32t.

The formula in (4.1) for the distance f(¢) defines a function f which tells us how high
the projectile is at each instant of its motion. We may refer to f as the position function.
Its domain is the closed interval [0, 9] and its graph is shown in Figure 4.2(a). [The scale
on the vertical axis is distorted in both Figures 4.2(a) and (b).] The formula in (4.2) for
the velocity v(t) defines a new function v which tells us how fast the projectile is moving
at each instant of its motion. Thisis called the velocity function, and its graph is shown in
Figure 4.2(b). As ¢t increases from 0 to 9, v(t) decreases steadily from »(0) = 144 to v(9) =
— 144. To find the time ¢ for which v(t) = 0, we solve the equation 144 = 32t to obtain
t = 9/2. Therefore, at the midpoint of the motion the influence of gravity reduces the
velocity to zero, and the projectile is momentarily at rest. The height at this instant
is f(9/2) = 324. When ¢ > 9/2, the velocity is negative, indicating that the height is
decreasing.
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The limit process by which v(t) is obtained from the difference quotient is written sym-
bolically as follows :

(4.3) oi) = lim LU =S

70 h

This equation is used to define velocity not only for this particular example but, more
generally, for any particle moving along a straight line, provided the position function T
is such that the difference quotient tends to a definite limit as h approaches zero.
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FIGURE 4.2 (@) Graph of the position function f(r) = 144t — 16:. (b) Graph of the
velocity function: v(t) = 144 = 32t.

4.3 The derivative of a function

The example described in the foregoing section points the way to the introduction of
the concept of derivative. We begin with a function f defined at least on some open
interval (a, &) on the x-axis. Then we choose a fixed point x in this interval and introduce
the difference quotient

fx+h) —f(x)
h b

where the number h, which may be positive or negative (but not zero), is such that x + h
aso liesin (a, b). The numerator of this quotient measures the change in the function
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when x changes from x to x 4- 4. The quotient itself is referred to as the average rate of
change of f inthe interval joining X to X + 4,

Now we let # approach zero and see what happens to this quotient. If the quotient
approaches some definite value as a limit (which implies that the limit is the same whether
h approaches zero through positive values or through negative values), then this limit is
called the derivative off at x and is denoted by the symbol f ‘(x) (read as *f prime of x”).
Thus, the formal definition off’(x) may be stated as follows :

DEFINITION OF DERIVATIVE. The derivative f ‘(X) is dejined by the equation

(44) f,(X) — llmf(x + h) _f(x),

R0 h

yrovided the limit exiszs. The number f ‘(x) is also called the rate of change off ar x

By comparing (4.4) with (4.3), we see that the concept of instantaneous velocity is
merely an example of the concept of derivative. The velocity (1) is equal to the derivative
f'(t), where f is the function which measures position. This is often described by saying
that velocity is the rate of change of position with respect to time. In the example worked
out in Section 4.2, the position function f is described by the equation

f(t) = 144t =~ 16¢2,
and its derivative f is a new function (velocity) given by
f(t) = 144 -~ 32t.

In general, the limit process which produces f ‘(x) from f (X) gives us a way of obtaining
a new function f’ from a given function f. The process is called differentiation, and f is
called the first derivative off. | f f ', inturn, isdefined on an open interval, wecan try to
compute its first derivative, denoted by f" and called the second derivative off. Similarly,
the nth derivative off, denoted by f ™, is defined to be the first derivative off -1 We
make the convention that f @ = 7 that is, the zeroth derivative is the function itself.

For rectilinear motion, the first derivative of velocity (second derivative of position) is
caled acceleration. For example, to compute the acceleration in the example of Section
4.2, we can use Equation (4.2) to form the difference quotient

ot + h) = o(t) _ [144 = 32(t + h)] = [144 — 321] _ -32h
h B h =y =2

Since this quotient has the constant value -32 for each h # O, itslimit ash — 0 is also
-32. Thus, the acceleration in this problem is constant and equal to -32.. This result
tells us that the velocity is decreasing at the rate of 32 feet per second every second. In 9
seconds the total decrease in velocity is 9 + 32 = 288 feet per second. This agrees with the
fact that during the 9 seconds of motion the velocity changes from y(0) = 144 to
v(9) = ~ 144,
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4.4 Examples of derivatives

EXAMPLE 1. Derivative of a constant function. Suppose f is a constant function, say
f(x) = cfor all x. The difference quotient is

fG+h)—-flx)_c—c
h h

=0.

Since the quotient is O for all h 0, itslimit, f ‘(x), isaso O for every x.  In other words, a
constant function has a zero derivative everywhere.

exavLe 2. Derivative of a linear function. Suppose f is a linear function, say f(x) =
mx + b for all red x. If /4 # 0, we have

S+ M) —f(Xx) _mx+ k) + b= (mx+ b) _mh
h h h

=m‘

Since the difference quotient does not change when / approaches 0, we conclude that
f(xX) = m for every x.
Thus, the derivative of a linear function is a constant function.

exave 3. Derivative of a positive integer power function. Consider next the case
f(x) = x™, where n is a positive integer. The difference quotient becomes

fG+h—fx)_x+h"—x"
h h '

To study this quotient as / approaches 0, we can proceed in two ways, either by factoring
the numerator as a difference of two nth powers or by using the binomial theorem to
expand (x + h)*. We shall carry out the details by the first method and leave the other
method as an exercise for the reader. (See Exercise 39 in Section 4.6.)

From elementary algebra we have the identityt

n—1
a" = b = (2 - b) z P
k=0

If wetake a =x + h and b = x and divide both sides by 4, this identity becomes

(X+h)" E(X_F h)knlk

t This identity is an immediate consequence of the telescoping property of finite sums. In fact, if we multiply
each term of the sum by (a = h), we find

(@ - b z athv1-k = z (@+1bn— 1) gk k) = gn o pn
k=0
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There are n terms in the sum. As / approaches O, (x + h)* approaches x* the kth term
approaches x*x" "= x7 1 and therefore the sum of all # terms approaches px™1.
From this it follows that

f'(x) = nx*? for every x.
exawLe 4. Derivative of the sine function. Let s(x) = sin x. The difference quotient
in question is

s(x + h) = s(x) _ SN (X+ h) —sin x
h B h

To transform this into a form that makes it possible to calculate the limit as h — 0, we use
the trigonometric identity

v-xcosy+x
2 2

siny =msinx=2sn=

with y = x 4 h. This leads to the formula

sn (x + h) = sin x _ sin (h/2) cos (x + g)
h hj2 2/

As h — 0, the factor cos (x + $4) —» cos x because of the continuity of the cosine. Also,
the limit formula
lim SNX_

z=0 X

established earlier in Section 3.4, shows that

sin (h/2) N

1 h .
W2 as h—0

(43)

Therefore the difference quotient has the limit cos x as h — 0. In other words, s'(x) =
cos x for every x; the derivative of the sine function is the cosine function.

exaveLe 5. The derivative of the cosine function. Let ¢(x) = cos x. We shall prove that
c'(x) = -sin x; that is, the derivative of the cosine function is minus the sine function.
We start with the identity

V- X. Y+ X
COSY = COS X = -2 sin - Sin d—

and take y = x + h. This leads to the formula

cos(x + h) —cosx _ _ sin(h/2) . (x + ﬁ)
; h2 '
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Continuity of the sine shows that sin (x + }k) — sin x as h — 0; from (4.5), we obtain
c(X) = —sin x

EXAMPLE 6. Derivative of the nth-root function. If n is a positive integer, let f(x) = x/*
for x > 0. The difference quotient forf is

[+ h) —f(x) _(x+ WY — 5t
h h '

Let w=(x + A" and let v = x'/" Then we have y* = x + h and p* =%, so h =
u™ = p", and the difference quotient becomes

fx+ h) —f(x) _ u-v _ !
h _un_vn—un~1+ gt uvn—2+vn-1'

The continuity of the nth-root function shows that 4 — v ash — 0. Therefore each term
in the denominator on the right has the limit p"~* as h — 0. There are n terms altogether,
so the difference quotient has the limit #'=*/n. Since v = x'/*, this proves that

1
f/(x) —_ _n xl/n—l .

EXAMPLE 7. Continuity of functions having derivatives. If a function f has a derivative at
a point x, then it is also continuous at x. To prove this, we use the identity

flx+h)=fx)+h (L4_h) S (x))

which is valid for h # 0. If we let h — 0, the difference quotient on the right approaches
f'(x) and, since this quotient is multiplied by a factor which tends to O, the second term on
the right approaches 0 -f'(x) = 0. This shows that f(x + h) — f(x) as h — 0, and hence
that fis continuous at X.

This example provides a new way of showing that functions are continuous. Every
time we establish the existence of a derivative f'(x), we also establish, at the same time,
the continuity of fat x. It should be noted, however, that the converse is not true. Con-
tinuity at x does not necessarily mean that the derivative f'(x) exists. For example, when
f(x)= | toip k=0isapoint of continuity off [since f (x) - 0asx - 0] but there
is no derivative at 0. (See Figure 4.3.) The dlfference quotient [ f (O + h) = f(O)l/his

A
J(x) = x|

- X

Ficure 4.3 The function is continuousat O but f' (O) does not exist.
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equal to |A|/h. This has the value + 1 if > 0 and — 1if 4 <0, and hence does not tend
toalimitash — 0.

45 The algebra of derivatives

Just as the limit theorems of Section 3.4 tell us how to compute limits of the sum, differ-
ence, product, and quotient of two functions, so the next theorem provides us with a
corresponding set of rules for computing derivatives.

THEOREM 4.1.  Let f and g be two functions defined on a common interval. At each point
where f and g have a derivative, the sqgme is true of the sum f 4 g, the dijj‘erencef - g,
the product f g, and the quotient f/g. (For f/g we need the extra proviso that g is not zero at
the point in question) The derivatives of these functions are given by the following formulas:

Of+9=f+g,
i) f-9g =f =g,
(i) (f-gy=r-&+gf,

(iv) (l) = w at points x where g(x) 0.
b4 g

We shall prove this theorem in a moment, but first we want to mention some of its
consequences. A special case of (iii) occurs when one of the two functions is constant,
say g(x) = c for all x under consideration. In this case, (iii) becomes (c. fy = c.f’. In
other words, the derivative of a constant times f is the constant times the derivative of f .
Combining this with the fact that the derivative of a sum is the sum of derivatives [property
()], we find that for every pair of constants ¢, and ¢, we have

(ef + cag) = af + g’

This is called the linearity property of the derivative, and it is analogous to the linearity
property of the integral. Using mathematical induction, we can extend the iinearity
property to arbitrary finite sums as follows:

where ¢, , ..., ¢, areconstants and f; , . .., f, are functions with derivatives f7, ..., f. .

Every derivative formula can be written in two ways, either as an equality between two
functions or as an equality involving numbers. The properties of Theorem 4.1, as written
above, are equations involving functions. For example, property (i) states that the deriva-

tive of the function ¥ + g is the sum of the two functionsf’ and g’. When these functions
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are evaluated at a point x, we obtain formulas involving numbers. Thus formula (i)
implies
f+ @)= f(x)+ gk,
We proceed now to the proof of Theorem 4.1.

Proof of (i). Let x be a point where both derivativesf’(x) and g'(x) exist. The difference
quotient forf + g is

G+ M +glx + W] =[f() + )] fx + B) = f(X) + g(x + h) = g(x)
h h h

When h — 0 the first quotient on the right approachesf’ (x), the second approaches g’ (x),
and hence the sum approachesf’(x) + g'(x). This proves (i), and the proof of (ii) is similar.

Proof of (iii). The difference quotient for the product f- g is

S + hglx + h) — f(x)g(x)
h

(4.6)

To study this quotient ash — 0, we add and subtract in the numerator a term which enables
us to write (4.6) as a sum of two terms involving difference quotients offand g. Adding

and subtracting g(x)f(x + h), we see that (4.6) becomes

flx + h)glx 4h- h) —f(X)g(X)= a(x) flx + hh) —f(x) + f b g(x + h:] - g(x) ,

When h — 0 the first term on the right approaches g(x)f’(x). Sincefis continuous at x,
we have f(x + h) — f(x), so the second term approachesf(x)g’(x). This proves (iii).

Proof of (iv). A specia case of (iv) occurs when f(x) = 1 for all x. In this case f'(x) = 0
for all x and (iv) reduces to the formula
]

y-%

(4.7) =
8 g

provided g(x) # 0. We can deduce the genera formula (iv) from this specia case by
writing f]g as a product and using (iii), since

(fé);i"f, s (i)'___g_f'gzg’ _ g'f’;f'g"

Therefore it remains to prove (4.7). The difference quotient for 1/g is

[1/g(x + W] = [1/g(x)] __ Skt —gx. 1 1
h h g(x) g(x + b

(4.8)
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When # — 0, the first quotient on the right approaches g’ (x) and the third factor approaches
1/g(x). The continuity of g a x is required since we are using the fact that g(x + &) —
g(x) as h — 0. Hence the quotient in (4.8) approaches —g’(x)/g(x)?, and this proves (4.7).

Note: In order towrite (4.8) we need to know that g(x + k)« O for all sufficiently small
h. This follows from Theorem 3.7.

Theorem 4.1, when used in conjunction with the examples worked out in Section 4.4,
enables us to derive new examples of differentiation formulas.

exave,e 1. Polynomials. In Example 3 of Section 4.4 we showed that if f(X) = x"
where n is a positive integer, then f'(x) = nx"1. The reader may find it instructive to
rederive this result as a consequence of the special case n =1, using mathematical induction
in conjunction with the formula for differentiating a product.

Using this result along with the linearity property, we can differentiate any polynomial
by computing the derivative of each term and adding the derivatives. Thus, if

£(x) =§0ckx" ,

then, by differentiating term by term, we obtain

fl(x)= i ke x™ 1,
F=o0

Note that the derivative of a polynomial of degree n is a new polynomia of degree n = 1.
For example, if f(x) = 2x* + 5x* — 7x + 8, then f'(x) = 6x2 + 10x — 7.

exawLe 2. Rational functions. If r is the quotient of two polynomials, say r(x) =
p(x)/g(x), then the derivative r'(x) may be computed by the quotient formula (iv) in
Theorem 4.1. The derivative r'(x) exists at every x for which the denominator q(x) # 0.
Note that the function r’ so defined is itself arational function. In particular, when r(x) =
1/x™, where m is a positive integer and x 7 O, we find

m., 0 _ m-1
r’(x) = - k mex = mTl
X X"
If this is written in the form r’(x) = —mx ™1 it provides an extension from positive

exponents to negative exponents of the formula for differentiating nth powers.

exawLe 3. Rational powers. Let f(x) = x" for x > 0, where r is a rational number.
We have aready proved the differentiation formula

(4.9 f'(x) = rx™!

for r = 1/n, where n is a positive integer. Now we extend it to all rational powers. The
formula for differentiating a product shows that Equation (4.9) is also valid for r = 2/n
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and, by induction, for r = m/n, where m is any positive integer. (The induction argument

refers to m.) Therefore Equation (4.9) is vaid for all positive rational r. The formula
for differentiating a quotient now shows that (4.9) is aso valid for negative rational r.

Thus, if f(x) = x2/3, we have f'(x) = §x71/3. If f(x) = x7*/% then '(x) = —}x732 In
each case, we require x > 0.

4.6 Exercises

LIfxy=2+x — x%, compute f'(0), f(B), (D), f(—10).
2. If f(x) = 3x* + $x® = 2, find all x for which (a) f'(x) = 0; (b) f'(x) = -2 (OF (X) = 10.

In Exercises 3 through 12, obtain aformulafor f'(x)if f(x) is described as indicated.
3.(x) = a2+ 3x + 2. B ==, Xx#1

|

4, f(X)=x4+S-nX. 9. f(x)=m.

. _xE+ 3+ 2
5. f(X)—x‘l qn X. 10. f(X) —W.
2 —sinx
6.f(x)=x+l, x#-1. 113(X)=m
_ 1 iwcosx 12 X Sin X
7= g 0K 0=

13. Asume that the height f(r) of a projectile, ¢ seconds after being fired directly upward from the
ground with an initial velocity of v, ft/sec, is given by the formula

f(t) = vt — 1662

(@ Use the method described in Section 42 to show that the average veocity of the projectile
during a time interval from ¢ to ¢ + j is », = 32t = 164 ft/sec, and that the instantaneous
velocity at time ¢ is vy — 32t ft/sec.
() Compute (in terms of ;) the time required for the velocity to drop to zero.
(c) What isthe velocity on return to earth?
(d) What must the initial velocity be for the projectile to return to earth after 1 sec? after
10 sec? after T sec?
(e) Show that the projectile moves with constant acceleration.
(f) Give an example of another formula for the height which will lead to a constant accelera-
tion of -20 ft/sec/sec.

14. Wha is the rae of change of the volume of a cube with respect to the length of each edge?

15. (a) The area of a circle of radius r is »r2 and its circumference is 24r. Show that the rate of
change of the arca with respect to the radius is equad to the drcumference
(b) The volume of a sphere of radius r is 47r3/3 and its surface area is 4+ Show that the
rade of change of the volume with respect to the radius is equa to the surface area.

In Exercises 16 through 23, obtain aformulafor f' (x) if £(x)is defined asindicated.
16. f(x) = Vx, x>0 18. f(X) = x37, X > 0.

1
7. f) = 1+Vx x>0 19 f(X) =x32, x>0
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Vi

20. f(x) = x%/2 4 x1/3 4 x1/4 X > 0. 22, f(x) = o x > 0.
X
21LfX) = x 12+ x1B3+ x4 x>0 23 f(x) = ., x>0
+Vx
24. Letfy, ..., f,be nfunctions having derivatives f ;, .., f, . Develop arule for differentiating
the product g =f; £, and prove it by mathematical induction. Show that for those points
x, where none of the function values fi(x), . . ., fu(x) ae zero, we have

§W _fiW , L [0
PR e R TR

25. Verify the entries in the following short table of derivatives. It is understood that the formulas
hold for those x for which f(x) is defined.

f(x) f'(x) f(x) f (x)
tan x sec? X Sec X tan x sec x
cot X —cse? X CSC X —cot X CSC X

In Exercises 26 through 35, compute the derivative f'(x). It is understood that each formula
holds for those x for which f(x) is defined.

sin x
26. f(x) = tan x sec x. 3L flx) = pat
= 32. f(x) = I
27. f(x) = x tan x. L fx) = XrSnx
08 _1_ 2 3 13 _ax +b
8 (X)_x+;c—2+; 'f(x)—cx-i-d'
29. f(x) = 2x 34 _ cosx
L flx = 1= .f(x)—2x2+3.
1+x —x2 ax® + bx + ¢
. = . . = —F
0.f0= T B SO = G oo

36. If f(x) = (ax +b)Sin X + (cxX + d) cos x, determine values of the constants a, b, ¢, d such
that f"(x) = x cos x.

37.1f g(X) = (ax* + bx + C) sin X + (dx? + ex + f) cos x, determine values of the constants
a, b,c, d,e, fsuchthat g'(x) = x%sinx.

38. Given the formula

xn+l -1

14+x+xt+. .+ xn=
x —1

(valid if x # 1), determine, by differentiation, formulas for the following sums:
@ 1+ 2x+ 3x2+ .. +nx",
(b) 12x + 222 + P23 4+ o o2y,
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39. Let f(x) = x", where p is a positive integer. Use the binomial theorem to expand (X + i)y*
and derive the formula

S, h-fx n(n — 1)
= 2

: nx*1 +

xn~2h + oo T opx k2 + hnvl

Express the sum on the right in summation notation. Let h - O and deduce that f(x) = nx™1,
State which limit theoremsyou are using. (This result was derived in another way in Example
3 of Section 44)

4.7 Geometric interpretation of the derivative as a dope

The procedure used to define the derivative has a geometric interpretation which leads in
anatural way to the idea of atangent line to a curve. A portion of the graph of a function
fis shown in Figure 4.4. Two of its points P and Q are shown with respective coordinates

/ ~Vertical (no dope)

Sl + h) - )

| m=0

|' h | Horizontal

| |

|
/ |

1 |

i |

1 1

X X4+ h m indicates the dope
FiGuRe 4.4 Geometric interpretation of the Ficure 45 Lines of various dopes.

difference quotient a the tangent of an angle

(x, f(x)) and (x + h, f(x + h)). Consider the right triangle with hypotenuse PQ; its
atitude, f(x + h) — f(x), represents the difference of the ordinates of the two points Q
and P. Therefore, the difference quotient

fGe+ h) = f(x)

(4.10) h

represents the trigonometric tangent of the angle « that PQ makes with the horizontal.
The real number tan « is called the slope of the line through P and Q and it provides a
way of measuring the “steepness” of this line. For example, if f is a linear function, say
f(x) = mx + b, the difference quotient (4.10) has the value m, so m is the slope of the
line.

Some examples of lines of various slopes are shown in Figure 4.5. For a horizonta line,
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« = 0 and the slope, tan «, isalso 0. If « lies between 0 and 4, the line is rising as we move
from left to right and the slope is positive. If « lies between 37 and 7, the line is falling as
we move from left to right and the slope is negative. A line for which o = {7 has slope 1.
As a increases from 0 to 3w, tan « increases without bound, and the corresponding lines
of slope tan ¢ approach a vertical position. Since tan 47 is not defined, we say that vertical
lines haue no dope.

Suppose now that ¥ has a derivative at x. This means that the difference quotient
approaches a certain limit ¥ (x) ash approaches0. When this is interpreted geometrically
it tells us that, as h gets nearer to O, the point P remains fixed, Q moves along the curve
toward P, and the line through PQ changes its direction in such a way that its slope
approaches the number T “(x) asalimit. For this reason it seems natural to define the dope
of the curve at P to be the numberf “(x). The line through P having this slope is called the
tangent line at P.

Note: The concept of a line tangent to a drde (and to a few other special curves) was
considered by the ancient Greeks. They defined a tangent line to a circle as a line having
one of its points on the circle and all its other points outside the circle.  From thisdefini-
tion, many properties of tangent lines to circles can be derived. For example, we can prove
that the tangent at any point is perpendicular to the radius at that point. However, the
Greek definition of tangent line is not easily extended tp more general curves. The method
described above, where the tangent line is defined in terms of a derivative, has proved to
be far more satisfactory. Using thisdefinition, we can provethat for acircle the tangent
line has all the properties ascribed to it by the Greek geometers. Conceptssuch as per-
pendicularity and parallelism can be explained rather simply in analytic terms making use
of slopes of lines. For example, from the trigonometric identity

tan _ tana-tan f
(o ﬂ)_1+tanoctanﬂ’

it follows that two nonvertical lines with the same slope are parallel. Also, from the
identity

1+tanatan
cot (« = §) = tan o — tan '

we find that two nonvertical lines with slopes having product = 1 are perpendicular.

The algebraic sign of the derivative of a function gives us useful information about the
behavior of its graph. For example, if x is a point in an open interval where the derivative
is positive, then the graph is rising in the immediate vicinity of x as we move from left to
right. This occurs at x5 in Figure 4.6. A negative derivative in an interval means the
graph is falling, as shown at x,, while a zero derivative at a point means a horizontal tangent
line. At a maximum or minimum, such as those shown at x,, x;, and x;, the slope must be
zero. Fermat was the first to notice that points like x,, x5, and x,, where ¥ has a maximum
or minimum, must occur among the roots of the equation f'(x) = 0. It is important to
realize that f ‘(x) may also be zero at points where there is no maximum or minimum, such
as above the point x,. Note that this particular tangent line crosses the graph. This is an
example of a situation not covered by the Greek definition of tangency.
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S(x5)=0

Ficure 4.6 Geomdric dgnificance of the dgn of the derivative

The foregoing remarks concerning the significance of the algebraic sign of the derivative
may seem quite obvious when we interpret them geometrically. Analytic proofs of these
statements, based on general properties of derivatives, will be given in Section 4.16.

4.8 Other notations for derivatives

Notation has played an extremely important role in the developmenr of mathematics.
Some mathematical symbols, such as x™ or n!, are merely abbreviations that compress long
statements or formulas into a short space. Others, like the integration symbol ¥ f(x) dx,
not only remind us of the process being represented but also help us in carrying out
computations.

Sometimes severa different notations are used for the same idea, preference for one
or another being dependent on the circumstances that surround the use of the symbols.
This is especially true in differential calculus where many different notations are used for
derivatives. The derivative of a function ¥ has been denoted in our previous discussions
by ¥ ‘, anotation introduced by J. L. Lagrange (1736-1813) late in the 18th Century. This
emphasizes the fact that ¥ isanew function obtained from ¥ by differentiation, its value
a x being denoted by £ ‘(x). Each point (x, y) on the graph off has its coordinates x and
]}/ related by the equationy = F (x), and the symbol y’ is also used to represent the derivative
"(x). Similarly,y ”, ..., y represent the higher derivatives f"(x), . . ., f ™(x). For
example, if y =sinx, theny = cos X,y " = -sin X, etc. Lagrange's notation is not too
far removed from that used by Newton who wrote » and j, instead of y’ andy “. Newton's
dots are still used by some authors, especially to denote velocity and acceleration.

Another symbol was introduced in 1800 by L. Arbogast (1759-1803) who denoted the
derivative off by Df, a symbol that has widespread use today. The symbol D is caled a
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differentiation operator, and it helps to suggest that Df is a new function obtained from f

by the operation of differentiation. Higher derivatives f ”, f*, . .., f™ are written D%,
D3, ..., D, respectively, the values of these derivatives at x being written D%*f(x),
D¥(x), ..., D"f(x). Thus, we have D sinx = cos x and D* snx = D cos x = —sin x

The rule for differentiating a sum of two functions becomes, in the D-notation, D(f + g) =
Df + Dg. Evaluation of the derivatives at x leads to the formula [D(f + g)J(x) =
Df(x) + Dg(x) which is aso written in the form D[f(x) + g(x)] = Df(x) + Dg(x). The
reader may easily formulate the product and quotient rules in the D-notation.

Among the early pioneers of mathematical analysis, Leibniz, more than anyone else,
understood the importance of well-chosen symbols. He experimented at great length and
carried on extensive correspondence with other mathematicians, debating the merits or
drawbacks of various notations. The tremendous impact that calculus has had on the
development of modern mathematics is due in part to its well-developed and highly
suggestive symbols, many of them originated by Leibniz.

Leibniz developed a notation for derivatives quite different from those mentioned above.
Using y for f(x), he wrote the difference quotient

fx + h) —f(x)
h
in the form

Ay
Ax’

where Ax (read as “delta x”) was written for 4, and Ay for f(x + h) -f(x). The symbol
A is called a difference operator. For the limit of the difference quotient, that is, for the
derivativef’ (x), Leibniz wrote dy/dx. In this notation, the definition of derivative becomes

ﬂ = lim,.—
d x az-0 Ax

Not only was Leibniz's notation different, but his way of thinking about derivatives was
different. He thought of the limit dy/dx as a quotient of “infinitesimal” quantities dy and
dx called “differentials,” and he referred to the derivative dy/dx as a “differential quotient.”
Leibniz imagined infinitesimals as entirely new types of numbers which, although not zero,
were smaller than every positive real number.

Even though Leibniz was not able to give a satisfactory definition of infinitesimals, he
and his followers used them freely in their development of calculus. Consequently, many
people found calculus somewhat mysterious and began to question the validity of the
methods. The work of Cauchy and others in the 19th Century gradually led to the replace-
ment of infinitesimals by the classical theory of limits. Nevertheless, many people have
found it helpful to try to think as Leibniz did in terms of infinitesimals. This kind of

thinking has intuitive appeal and often leads quickly to results that can be proved correct
by more conventional means.

Recently Abraham Robinson has shown that the real number system can be extended
to incorporate infinitesimals as envisaged by Leibniz. A discussion of this extension and its
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impact on many branches of mathematics is given in Robinson’s book, Non-standard
Analysis, North-Holland Publishing Company, Amsterdam, 1966.

Although some of Leibniz's ideas fell into temporary disrepute, the same cannot be said

of his notations. The symbol dy/dx for the derivative has the obvious advantage that it
summarizes the whole process of forming the difference quotient and passing to the limit.
Later we shall find the further advantage that certain formulas become easier to remember
and to work with when derivatives are written in the Leibniz notation.

4.9 Exercises

L

2

10.

11

Let f(X) = 1x® = 2x% + 3x + 1 for ajl x. Find the points on the graph off at which the
tangent line is horizontd.

Let f(x) = §x* + Jx® = x 1for all x. Find the points on the graph of f at which the slope
is (@ 0; (b -1; (c) 5.

Let f(x) =x + sin x for all x. Find all points x for which the graph of fat (x, f(x)) has slope
zero.

Let f(x) = x>+ gx + b for all x. Find values of a and 5 such that the liney = 2x is tangent
to the graph off’ at the point (2, 4).

Find values of the constants a, b, and ¢ for which the graphs of the two polynomials f(x) =
x*+ gx + b and g(x) = x* — c will intersect at the point (1, 2) and have the same tangent
line at that point.

Consider the graph of the function f defined by the equation f(x) = x*+ ax + b, where g
and b are constants.

(a) Find the slope of the chord joining the points on the graph for which x = x; and x = x,.
(b) Find, in terms of x, and x, , all values of x for which the tangent line at (x, f(x)) has the
same slope as the chord in part (8).

Show that the liney = —x is tangent to the curve given by the equation y = x3 — 6x2 + §x.
Find the point of tangency. Does this tangent line intersect the curve anywhere else ?

. Make a sketch of the graph of the cubic polynomialf(x) = X = x* over the closed interval

-2 <x £ 2. Find constants m and p suych that the liney = mx + § will be tangent to the
graph off at thepoint ( ~1,0). A scond line through (— 10) is dso tangent to the graph off
at apoint (a c). Determine the coordinates aand c.

A function f is defined as follows

x? if x <ec,
+ .
ax b if x>e,

fx) = (& b, ¢ congants) .

Find values of aand (in terms of c) such that f"(c) exists.
Solve Exercise 9 when f is defined as follows.
1

f = |l
a+bx? iflx<c.

if x> c,

Solve Exercise 9 when f is defined as follows

sin x if x<e,

J&) =

ax+b if x>c.
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12, If f(x) = (1 = V/x)/(1 + /%) for x > 0, find formulas for Df(x), D*f(x), and D3f(x).

13. There is a polynomial P(x) = ax® + bx* + cx + d such that P(0) = P(1) = -2, P'(0) = -1,
and P"(0) = 10. Compute a, b, ¢, d.

14. Two functions ¥ and g have first and second derivatives at 0 and satisfy the relations

f0) =2/g0), f(0)= 2¢'(0)= 45(0), g"(0) = 57"(0)= 6/(0)= 3.

(a) Let h(x) = f(x){g(x), and compute 4'(0).
(b) Let k(x) = f(x)g(x) sin x, and compute k’ (0).
(c) Compute the limit of g'(x)/f'(x) asx — 0.
15. Given that the derivative f*(a) exists. State which of the following statements are true and
which are false. Give areason for your decision ineach case.

® f@ = lim WD © J”(u):limw

2
®) f@) = @ =g Ser D

16. Suppose that |nstead of the usual definition of the derlvatlve Df(x), we define a new kind of
derivative, D*{(x), by the formula

“mf—(a) fh(a —h ,

— f2
D*f(x) = i L+ ) 7S h% il

r—0

where f 2(x) means [f (x)]2.

(@) Derive formulas for computing the derivative D* of a sum, difference, product, and
quotient.

(b) Express D*f(x) in terms of Df(x).

(c) For what functions does D*f = Df?

4.10 The chain rule for differentiating composite functions

With the differentiation formulas developed thus far, we can find derivatives of functions
T for which f(x) is a finite sum of products or quotients of constant multiples of sin x,
cos X, and x” (r rational). As yet, however, we have not learned to deal with something
like f(x) = sin (x?) without going back to the definition of derivative. In this section we
shall present a theorem, called the chain rule, that enables us to differentiate composite
functions such as f(x) = sin (x*). This increases substantially the number of functions
that we can differentiate.

We recall that if # and » are functions such that the domain of « includes the range of v,
we can define the composite function f = 4 o » by the equation

f(x) = ulo(x)]

The chain rule tells us how to express the derivative of f  in terms of the derivativesu’ andy’.

THEOREM 4.2. CHAIN RULE. Let f be the composition of fwe functions 4 and v, say
Jf=uov. Suppose that both derivatives v’ (x) and u’(y) exist, where y = v(x). Then the
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derivative ¥ “(x) as eiss and is given by the formula
(4.12) ) =u(y): v(x.

In other words, to compute the derivative of uo v at x, we first compute the derivative of
u at the point y, where y = v(x), and multiply this by v’ (x).

Before we discuss the proof of (4.11), we shall mention some alternative ways of expressing
the chain rule formula. If we write (4.11) entirely in terms of x, we obtain the formula

() = uoe)] v(x) .

Expressed as an equation involving functions rather than numbers, the chain rule assumes
the following form

(Uev)y =(U ov) V.

In the u(v)-notation, let us write u(v)’ for the derivative of the composite function #(v) and
u'(v) for the composition ' - v. Then the last formula becomes

u(v) = u'(v)v.

Proof of Theorem 4.2. We turn now to the proof of (4.11). We assume that v has a
derivative at x and that » has a derivative at v(x), and we wish to prove thatf has a derivative
at x given by the product u'[v(x)] - V'(X). The difference quotient for f is

w1 fot 0=/0) st s 1] = uloe)

It is helpful at this stage to introduce some new notation. Let y = v(x) and let k =
v(x + h) — v(x). (It is important to realize that k depends on h.) Then we have
o(x + h) =y + k and (4.12) becomes

4.13) fx + ’hl) — () _u(y + rl:) — u(y)

The right-hand side of (4.13) resembles the difference quotient whose limit defines u'(y)
except that h appears in the denominator instead of k. If k # 0, it is easy to complete the
proof. We simply multiply numerator and denominator by k, and the right-hand side of
(4.13) becomes

414) u(y + k) — u(y)
' k

u(y + k) = u(y) . lx + h) = v(x)

k _
ho k h

When h — 0, the last quotient on the right tends to v’ (x). Also, k — 0 as h — 0 because
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k = o(x + h) — v(x) and v is continuous at Xx. Therefore the first quotient on the right
of (4.14) approaches u'(y) as h — 0, and this leads at once to (4.11).

Although the foregoing argument seems to be the most natural way to proceed, it is not
completely general. Since k = v(x + h) — v(x), it may happen that k = 0 for infinitely
many values of h as h — 0, in which case the passage from (4.13) to (4.14) is not valid.
To overcome this difficulty, a slight modification of the proof is needed.

Let us return to Equation (4.13) and express the quotient on the right in a form that
does not involve k in the denominator. For this purpose we introduce the difference
between the derivative '(y) and the difference quotient whose limit is «(y). That is, we
define a new function g as follows:

(4.15) g(t) = w —u'(y) if 0

This equation defines g(t) only if # # 0. Multiplying by ¢ and rearranging terms, we may
write (4.15) in the following form:

(4.16) u(y + 1) —u(y) = tfg(t) + ' (»],

Although (4.16) has been derived under the hypothesis that ¢ £ 0, it also holds for ¢ = 0,
provided we assign some definite value to g(0). Since g(f) — 0 as¢ — 0, we shall define g(0)
to be 0. This will ensure the continuity of g at 0. If, now, we replace ¢ in (4.16) by k, where
k = v(x 4 h) -~ v(x), and substitute the right-hand side of (4.16) in (4.13), we obtain

(4.17)

h — f( ’
fo ) —f ’hi [g(k) + w')],

h
a formula that is valid even if k = 0. When j — 0 the quotient k/h — v'(x) and g(k) — 0

so the right-hand side of (4.17) approaches the limit u'(y) * v'(x). This completes the proof
of the chain rule.

4.11 Applications of the chain rule. Related rates and implicit differentiation

The chain rule is an excellent example to illustrate the usefulness of the Leibniz notation
for derivatives. In fact, if we write (4.11) in the Leibniz notation, it assumes the appearance
of atrivial algebraic identity. First we introduce new symbols, say

¥ = v(x) and z = u(y) .

Then we write dy/dx for the derivative v'(x), and dz/dy for u'(y). The formation of the
composite function is indicated by writing

z = u(y) = ulv(x)] = f(x),

and dz/dx is written for the derivative f'(x). The chain rule, as expressed in Equation
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(4.11), now becomes

. o _dedy

dx dy dx '

The strong suggestive power of this formulais obvious. [t is especially attractive to people
who use calculus in physical problems. For example, suppose the foregoing symbol z
represents a physical quantity measured in terms of other physical quantities x and .
The equation z = f(x) tells us how to find z if x is given, and the equation z = u(y) tels
us how to find z if y is given. The relation between x and y is expressed by the equation
y = u(x). The chain rule, as expressed in (4.18), tells us that the rate of change of z with
respect to x is equal to the product of the rate of change of z with respect to y and the rate
of change of y with respect to x. The following example illustrates how the chain rule may
be used in a special physical problem.

exavpLE 1. Suppose a gas is pumped into a spherical balloon at a constant rate of 50
cubic centimeters per second. Assume that the gas pressure remains constant and that the
balloon always has a spherical shape. How fast is the radius of the balloon increasing
when the radius is 5 centimeters?

Solution. Let r denote the radius and V the volume of the balloon at time t. We are
given dV/dt, the rate of change of volume with respect to time, and we want to determine
dr/dt, the rate of change of the radius with respect to time, at the instant when r = 5. The
chain rule provides the connection between the given data and the unknown. It states that

(4.19) dv _ dvVdc
dt dr dt

To compute dV/dr, we use the formula V' = 477r3/3 which expresses the volume of the sphere
in terms of its radius. Differentiation gives us dV/dr = 4=r?, and hence (4.19) becomes

Substituting d¥/dt = 50 and r = 5, we obtain dr/dt = 1/(2w). That is to say, the radius is
increasing at a rate of 1/(27) centimeters per second at the instant when r = 5.

The foregoing example is called a problem in related rates. Note that it was not necessary
to express r as a function of ¢ in order to determine the derivative dr/dt. It is this fact that
makes the chain rule especially useful in related-rate problems.

The next two examples show how the chain rule may be used to obtain new differentiation
formulas.

exavLe 2. Givenf(x) = sin (x?), computef’(x),
Solution. The function ¥ is a composition,f(x) = u[v(x)], where v(x) = x2 and u(x) =
sin x. To use the chain rule, we need to determine u'[v(x)] = u'(x?). Since U (X) = cos X,

we have u'(x*) = cos (x?), and hence (4.11) gives us

f(x) = COS (x2%) u'(x) = COS (x?) + 2x.
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We may also solve the problem using the Leibniz notation. If we write y = x? and z = f(x),
then z = sin y and dz/dx = f’(x). The chain rule yields

which agrees with the foregoing result for /'(x).

EXAMPLE 3.If f(x) = [M(X 1", where n is a positive integer, compute f'(x) in terms of
v(x) and Vv’ (X).

Solution. The function ¥ is a composition, f(x) = u[v(x)], where u(x) = x". Since
u'(x) = nx"1, we have u'[v(x)] = nlv(x)]**, and the chain rule yields

f'(x) = np(x)]*'(x) .

If we omit the reference to x and write this as an equality involving functions, we obtain
the important formula

" = m" W
which tells us how to differentiate the nth power of v when ¢ exists. The formula is also
valid for rational powersif v* and v"~! are defined. To solve the problem in the Leibniz

notation, we write y = v(x) and z = f(x). Then z = y”, dz/dx = f ‘(x), and the chain rule
gives us

which agrees with the first solution.

exavele 4. The equation x% + y? = r? represents a circle of radius r and center at the
origin. If we solve this equation for y in terms of X, we obtain two solutions which serve
to define two functions f and g given on the interval [-r, r] by the formulas

fy=Vrr—x* and  g(x) = —ViE— 2.

(The graph of f isthe upper semicircle and the graph of g the lower semicircle.) We may
compute the derivativesof f and g by the chainrule. For f we use the result of Example 3
with v(x) = r? — x* and # = } to obtain

_—=* _ =X
V- f(x)

whenever f (X) # 0. The same method, applied to g, gives us

(4.20) f'(x) = 4 = x®) V¥ (=2x) =

—X —

(4.21) gx) = - Warsm i e
rP—x
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whenever g(x) # 0. Notice that if we let y stand for eitherf(x) or g(x), then both formulas
(4.20) and (4.21) can be combined into one, namely,

4.22) y = = ify # 0
y

Another useful application of the chain rule has to do with a technique known as implicit
diferentiation. We shall explain the method and illustrate its advantages by rederiving
the result of Example 4 in a simpler way.

EXAMPLE 5. Implicit differentiation. Formula (4.22) may be derived directly from the
equation xz+ y? = 2 without the necessity of solving for y. We remember that y is a
function of x [either y = f(x) or y = g(X)]. A ssuming that y’ exists, we differentiate both
sides of the equation x2 + y* = r? to obtain

(4.23) 2x +2yy'=0.

(The term 2yy’ cornes from differentiating y* as explained in Example 3.) When Equation
(4.23) is solved for y' it yields (4.22).

The equation x%+ y* = r? is said to define y implicitly as a function of x (it actualy
defines two functions), and the process by which (4.23) is obtained from this equation is
clled implicit differentiation. The end result is valid for either of the two functionsfand g
so defined. Notice that at a point (x, y) on the circle with x s 0 and y 0, the tangent
line has a slope —x/y, whereas the radius from the center to (x, y) has the slope y/x. The
product of the two slopes is -1 so the tangent is perpendicular to the radius.

4.12 Exercises

In Exercises 1 through 14, determine the derivativef’ (x). Ineach caseit is understood that x is
rericted to those vaues for which the formula for f(x) is meaningful.

. I x

1. f(x) =cos2x -2sinx. 8. f'(x) = tan 5 = cot =,
2.f(x) = V1 + x2 9. f(x) = sec® x + csc? x.
3. f(x) = (2 = x¥) cos x% + 2x sin x%. 10. f(X) = xV'1 + x2

4. f(x) = sin (cos? X) cos (sin? X).

X
1. = —.
N/@= =
1+ x3\U3
5. f(x) = sin® X.cos NX. 12. f(x) ( _‘)5 .

1

6. f(x) = sin [sin (3n x)]. 13. f(x) :\/1 Vi

sin® X
sin x2 '

7. flx) = M./ =[x + Ve + V.
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15. Compute f'(x) if f() = (1 + x)2 + x)1/2(3 + x3)1/3 x8 = -3.
N R _ !
16. Letf(x) = m if x # 0, and let g(X) —T/f(x).
17. The following table of values wascomputed for apair of functions f and g and their deriva-
tivesf’” and g’. Construct a corresponding table for the two composite functions j and k

given by h(x) = flg(x)], k(x) = g[f(x)].

Compute f'(x) and g’ (X).

x f() fx) gx) g™
0 1 5 2 -

1 3 -2 0 1
2 0 2 3 1
3 2 4 1 -6

18. A functionfand its first two derivatives are tabulated as shown. Let g(x) = xf(x?) and make
atable ofg and its first two derivatives for x =0, 1, 2.

x &) [ &)

A M — O
o w — O
O = N

19. Determine the derivativeg' (x) in terms off’ (x) if:
(@ gx) = f(xH; © £ = fIf;
) g = f(sin?X) + f(cos? X); (@ gx) = f{ fI f(x)]}.

Related rates and implicit differentiation.

20. Each edge of a cubeis expanding at the rate of 1 centimeter (cm) per second. How fast isthe
volume changing when the length of each edgeis(a) 5cm? (b) 10 cm? (c) x cm?

21. An airplane fliesin level flight at constant velocity, eight miles above the ground. (In this
exercise asume the earth is fla) The flight path passes directly over a point P on the ground.
The distance from the plane to P is decreasing at the rate of 4 miles per minute at the instant
when this distance is 10 miles. Compute the velocity of the planein miles per hour.

2. A besthdl diamond is a 90-foot squae A ball is bated along the third-bese line & a congtant
speed of 100 feet per second. How fast isits distance from first base changing when (a) it is
hdfway to third bese? (b) it reaches third base?

23. A boat sails parallel to a straight beach at a constant speed of 12 miles per hour, staying 4
miles offshore. How fast is it approaching a lighthouse on the shoreline at the instant it is
exactly 5 miles from the lighthouse?
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24,

25.

26.

27.

28.

29.

30.

3L

32.

33.

A resavoir hes the shape of a right-circular cone. The dtitude is 10 feet, and the radius of the
baseis4ft. Water ispoured into the reservoir at a constant rate of 5 cubic feet per minute.
How fast is the water level rising when the depth of the water is 5 feet if (a) the vertex of the
cone isup? (b) the vertex of the cone isdown?

A water tank has the shape of aright-circular cone with its vertex down. Its altitudeis 10 feet
and the radius of the base is 15 feet. Water leaks out of the bottom at a constant rate of 1
cubic foot per second. Water is poured into the tank at a constant rate of ¢ cubic feet per
second. Compute ¢ so that the water level will berising at the rate of 4 feet per second at the
ingant when the water is 2 feet desp.

Water flows into a hemispherical tank of radius 10 feet (flat side up). At any instant, let A
denote the depth of the water, measured from the bottom, r the radius of the surface of the
water, and I’ the volume of the water in the tank. Compute dV/dk at the instant when 4 =5
feet. If the water flows in at a constant rate of 54/3 cubic feet per second, compute drldt,
the rate at whichr is changing, at the instantt when s =5 feet.

A variable right triangle 4BC in the xy-plane has its right angle at vertex B, afixed vertex
A at the origin, and the third vertex C restricted to lie on the parabolay = 1 + 5% x2. The
point B darts a the point (0, 1) a time t = 0 ad moves upward along the y-axis @ a congtant
velocity of 2 cm/fsec. How fast isthe area of the triangle increasing whent =7/2 sec?

The radius of a right-circular cylinder increases at a constant rate. Its altitude is a linear
function of the radius and increases three times as fast as the radius. When the radiusis 1
foot the altitude is 6 feet. When the radius is 6 feet, the volume is increasing at arate of 1
cubic foot per second. When the radius is 36 feet, the volume is incressng a a rate of » cubic
feet per second, wheren is an integer. Compute n.

A rparticle is constrained to move along a parabola whose equation isy = x2 (a) At what
point on the curve are the abscissa and the ordinate changing at the same rate? (b) Find this
rate if the motion is such that at time t we have x = sint and y = sin?t.

The equation x® + y3 = 1 defines y & one or more functions of x. (@ Assuming the derivative
y' exigts, and without atempting to solve for y, show thay' sdtisfies the equation x> + y*y* = 0.
(b) Asuming the second derivative y' exists show that y" = —2xy—5 whenever y # 0.

If 0 < x < 5, the equation x'/2 + yl/ﬂ =bdefines y asafunction of x. Withowt solving for v,
show that the derivative y' hes a fixed sign. (You may assume the exisence of y')

The equation 3x? + 4y% = 12 defines y implicitly as two functions of x if |x| < 2. Assuming
the second derivative y” exists, show that it satisfies the equation4y®y” = -9.

The equation x sin xy + 2x¢ = 0 defines y implicitly asafunction of x. Assuming the deriva-
tivey’ exists, show that it satisfies the equation y'x* cos xy + Xy cos xy +sinxy +4x = 0.

. If y = x,where r isarational number, say r = m/n, then y» = xm Assuming the existence

of the derivativey’, derive the formulay’ = rx™* using implicit differentiation and the corre-
sponding formula for integer exponents.

4.13 Applications of differentiation to extreme values of functions

Differentiation can be used to help locate maxima and minima of functions. Actually,

there are two different uses of the word “maximum” in calculus, and they are distinguished
by the two prefixesabsolute and relative. The concept of absolute maximum was introduced
in Chapter 3. We recall that a real-valued functionfis said to have an absolute maximum
on a set Siif thereis at least one point ¢ in S such that

f(x) Lfle) forallxins.

The concept of relative maximum is defined as follows.
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DEFINITION OF RELATIVE MAXIMUM. A function f, defined on a set S, is said to have a
relative maximum at a point ¢ in Sif there is some open interval | containing ¢ such that

f(x) <f(c) for all xuhichlieinl NS

The concept of relative minimum s similarly defined by reversing the inequality.

In other words, a relative maximum at c is an absolute maximum in some neighborhood
of c, although this need not be an absolute maximum on the whole of S. Examples are
shown in Figure 4.7. Of course, every absolute maximum is, in paticular, a relative

maximum. A
Absolute__
A maximum
Absolute
/maximum
Relative
maximum
}
—_ X L l Il | r
0 T a’ -y 5 N 2
Absolute 2 Absoclute Relative minimum
minimum minimum
f(xX) =sinx, 0 £x <¢

S =x(1 - xpp, -4 <x<2
Absolute minimum

Ficure 4.7 Extremaof functions.

DEFINITION OF EXTREMUM. A number which is either a relative maximum or a relative
minimum of a function f is called an extreme value or an extremum off.

The next theorem, which is illustrated in Figure 4.7, relates extrema of a function to
horizontal tangents of its graph.

THEOREM 4.3. VANISHING OF THE DERIVATIVE AT AN INTERIOR EXTREMUM. Let f be
defined on an openinterval I, and assume thatf has a relative maximum or a relative minimum
at aninterior point c of 7. If the derivative f ‘(c) exists, thenf‘(c) = 0

Proof. Define a function Q on [ as follows:

(x) f ()

ox) = if X # c, Q) =f(o

Since f ‘(c) exists, Q(X) = Q(c) asx — ¢, so @ is continuous at c. We wish to prove that
Q(c) = 0. We shall do this by showing that each of the inequalities Q(c) > 0 and Q(c) < 0
leads to a contradiction.
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Assume Q(c) > 0. By the sign-preserving property of continuous functions, there is an
interval about ¢ in which Q(x) is positive. Therefore the numerator of the quotient Q(x)
has the same sign as the denominator for all x # c in this interval. In other words,
T(X) >f(c) when x > ¢, and f(x) <f(c) when x < c. This contradicts the assumption
that f has an extremum at c. Hence, the inequality Q(c) > 0 is impossible. A similar
argument shows that we cannot have Q(c) < 0. Therefore Q(c) = 0, as asserted. Since
Q(c) = f'(c), this proves the theorem.

It is important to realize that a zero derivative at ¢ does not imply an extremum at c.
For example, let f(x) = x® The graph of f is shown in Figure 4.8. Here f'(x) = 3x% 0

y
]

0
Ficure 4.8 Heref(0) equals Ficure 4.9 There is an ex-
0 but there is no extremum tremum at 0, but f'(0) does
at 0. not exist.

£7(0) = 0. However, this function is increasing in every interval containing 0 so there is
no extremum at 0. This example shows that a zero derivative at ¢ is not sufficient for an
extremum at c.

Another example, f(x) = |x|, shows that a zero derivative does not always occur at an
extremum. Here there is a relative minimum at O, as shown in Figure 4.9, but at the point
0 itself the graph has a sharp corner and there is no derivative. Theorem 4.3 assumes that
the derivative f'(c) exists at the extremum. In other words, Theorem 4.3 tells us that, in
the absence of sharp corners, the derivative must necessarily vanish at an extremum if this
extremum occurs in the interior of an interval.

In a later section we shall describe a test for extrema which is comprehensive enough to
include both the examples in Figure 4.7 and also the example in Figure 4.9. This test,
which is described in Theorem 4.8, tells us that an extremum aways occurs at a point
where the derivative changes its sign. Although this fact may seem geometrically evident,
a proof is not easy to give with the materials developed thus far. We shall deduce this
result as a consequence of the mean-value theorem for derivatives which we discuss next.

4.14 The mean-value theorem for derivatives

The mean-value theorem for derivatives holds a position of importance in calculus
because many properties of functions can easily be deduced from it. Before we state the
mean-value theorem, we will examine one of its special cases from which the more general
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theorem will be deduced. This special case was discovered in 1690 by Michel Rolle
(16521 719), a French mathematician.

THEOREM 4.4. ROLLE'S THEOREM. Let ¥ be a function which is continuous everywhere
on a closed interval [a, b] and has a derivative at each point of the open interual (a, b). Also,

assume that
fl@=f®) .

Then there is at least one point ¢ in the gpeninterval (a, b) such that f *(c) = 0.

The geometric significance of Rolle's theorem is illustrated in Figure 4.10. The theorem
simply asserts that the curve shown must have a horizontal tangent somewhere between
aandb.

S =0 (e Al )

a ¢ b
(a) (b)
Ficure 4.10 Geomelric interpre- FIGURE 4.11 Geometric significance of the mean-value

tation of Rolle’s theorem. theorem.

Proof. We assume that f ‘(x) # O for every x in the open interval (a, b), and we arrive
at a contradiction as follows: By the extreme-value theorem for continuous functions, f
must take on its absolute maximum M and its absolute minimum m somewhere in the
closed interval [a, b]. Theorem 4.3 tells us that neither extreme value can be taken at any
interior point (otherwise the derivative would vanish there). Hence, both extreme values
are taken on at the endpoints a and b. But since f (a) = f (b), this means that m = M, and
hence f is constant on [a, b]. This contradicts the fact that f ‘(x) # 0 for all xin (a, b). It
follows that f'(c) = O for at least one c satisfying a < ¢ < b, which proves the theorem.

We can use Rolle's theorem to prove the mean-value theorem. Before we state the
mean-value theorem, it may be helpful to examine its geometric significance. Each of the
curves shown in Figure 4.11 is the graph of a continuous function f with a tangent line
above each point of the open interval (a, b). At the point (c, f (c)) shown in Figure 4.1 1(a),
the tangent line is parallel to the chord AB. In Figure 4.1 |(b), there are two points where
the tangent line is paralel to the chord AB. The mean-value theorem guarantees that
there will be at least onepoint with this property.

To translate this geometric property into an analytic statement, we need only observe
that parallelism of two lines means equality of their slopes. Since the slope of the chord
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AB is the quotient [f (b) —f (a)]/(b —8) and since the slope of the tangent line at c is the
derivative f * (c), the above assertion states that

w24 IO =1@ _ o
b—a
for some c in the open interval (a, b).

To exhibit strong intuitive evidence for the truth of (4.24) we may think off(t) as the
distance traveled by a moving particle at time ¢. Then the quotient on the left of (4.24)
represents the mean or average speed in the time interval [a, &), and the derivative f'(t)
represents the instantaneous speed at time r. The equation asserts that there must be
some moment when the instantaneous speed is equal to the average speed. For example,
if the average speed during an automobile trip is 45 mph, then the speedometer must
register 45 mph at least once during the trip.

The mean-value theorem may be stated formally as follows.

THEOREM 4.5. MEAN-VALUE THEOREM FOR DERIVATIVES. Assume that fis continuous
everywhere on a closed interval [a, b] and has a derivative at each point of the openinterval
(a, b). Then there is at least one interior point ¢ of (a, b) for which

4.25) f(b) -fla) = F(c)(b = a).

Proof. To apply Rolle's theorem we need a function which has equal values at the
endpoints a and b. To construct such a function, we modify f as follows. Let

h(x) = f)Nb — @) = x[f(b) -f(a)] .

Then h(a) = h(b) = bf (a) af(b). Also, h is continuous on [a, b] and has a derivative
in the open interval (a, b). Applying Rolle's theorem to h, we find that h’(c) = 0 for some
cin (a, b). But

K@) =f(x)b = a) = [f(b) -f(a)] .
When x = c, this gives us Equation (4.25).

Notice that the theorem makes no assertion about the exact location of the one or more
“mean values’ ¢, except to say that they all lie somewhere between a and b. For some
functions the position of the mean values may be specified exactly, but in most cases it is
very difficult to make an accurate determination of these points. Nevertheless, the real
usefulness of the theorem lies in the fact that many conclusions can be drawn from the
knowledge of the mere existence of at least one mean value.

Note: It is important to redize that the conclusion of the mean-value theorem may fail
to hold if there is any point between a and b where the derivative does not exist. ~For ex-
ample, the function f defined by the equation f (xj = |x|is continuous everywhere on the
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redl ais and has a derivdive everywhere except & 0. LetA=(=1,f(~1))andletB=
(2, f(2)). The slope of the chord joining A and B is

f2) —f(=1) _2-1
2= (-1) 3

=1
3
but the derivaive is nowhere equa to 1,

3
The following extension of the mean-value theorem is often useful.

THEOREM 4.6. CAUCHY's MEAN-VALUE FormuLa. Let T and g be rwo functions con-
tinuous On aclosed interval [, b] and having derivatives in the gpeninterval (a, b).  Then, for
somecin (a, b), we have

S ©lgb) = g@) = g'(o)[f(b) —f@] .

Proof. The proof is similar to that of Theorem 4.5. We let

hx) = f(0)[gb) — g@] = g(x)[f(b) -T (a)].

Then h(a) = h(b) = f(a)g(b) — g(a)f(b). Applying Rolle's theorem to h, we find that
h'(c) = 0 for some c in (a, ). Computing h'(c) from the formula defining h, we obtain
Cauchy’s mean-value formula. Theorem 4.5 is the special case obtained by taking g(x) = x.

4.15 Exercises

1. Show that on the graph of any quadratic polynomial the chord joining the points for which
x = aand x = b is paralel to the tangent line at the midpoint x = (a+ b)/2.

2. Use Roll€e' stheorem to prove that, regardless of the value of b, there is at most one point x
in the interval -1 <x < 1 for which x3 = 3x+ b = 0.

3. Define a functionfas follows:

f(x):3'2"2 if x<1, f(x):;t- if x>1.

(a) Sketch the graphof f for x intheinterval 0<x < 2.
(b) Show that f satisfies the conditions of the mean-value theorem over the interval [0, 2]
and determine gll the mean vaues provided by the theorem.

4. Let f(x) =1 = x*. Show that f(1) = f( ~ 1) = 0, but that f"(x) is never zero in the interval
[-1, 1]. Explain how this is possible, in view of Rolle’s theorem.

5. Show that x2 = x sin x + cos x for exactly two real values of x.

6. Show that the mean-value formulacan be expressed in the form

S+ =fx)+hx+)Where 0<0<I1.

Determine ¢ in terms of x and i when (a) f(X) = x2; (b) f(x) = x3. Keep X fixed, x # 0, and
find the limit of 6 ineach case as h— 0.

7. Let f be a polynomial. A real number « is said to be a zero off of multiplicity m if f(x) =
(X ~ 0)™g(x), where g() = 0.
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(@) Iff hasr zerosin aninterval [a, b], prove that f* has at least r ~ 1 zeros, and in general,
the kth derivative f*) has at least r — k zerosin [a, b]. (The zeros are to be counted as often
astheir multiplicity indicates.)
(b) If the kth derivative ) has exactly r zerosin [a, b], what can you conclude about the
number of zeros off in [a, b]?

8. Use the mean-value theorem to deduce the following inequalities:
(a) [sinx = siny| < |x —yl.
(b) my"Ux —y) € x"-y" £ nx"Nx -y) ifo<y <x 1=123,....

9. A function f, continuous on [a, b], has a second derivativef” everywhere on the open interval
(@ b). Theline segment joining (a, f(n)) and (b, f(b)) mtersectsthegraphoffatathlrd point
(¢, f(c)), where a< ¢ < b, Prove that f”(s) = O for at |east one point ¢ in (a b).

10. This exercise outlines a proof of the intermediate-value theorem for derivatives. Assume f
has a derivative everywhere on an open interval 1. Choosea < bin I Then f* takes on every value
between f*(a) and f'(b) somewhere in (a, b).

(a) Define a new function g on [a, 4] as follows:

. f(x) f() if X #a  ga=f@).

Prove that g takes on every value between f”(a) and g(b) in the open interval (& b). Use the
meanvaue theorem for derivaives to show thaf’ tekes on every velue between f'(a) and g(b)
in the open interval (a, b).

(b) Define a new functionh on [a, 5] asfollows:

f(X) f()

hx)="——">F— it x=b hb)=70).

By an argument similar to that in part (a), show that f* takes on every value between f’ (b)
and hu) in (a b). Since h(@) = g(b), this proves the intermediate-vaue theorem for derivatives.

4.16 Applications of the mean-value theorem to geometric properties of functions

The mean-value theorem may be used to deduce properties of a function from a
knowledge of the algebraic sign of its derivative. This is illustrated by the following
theorem.

tHeorem 4.7, Letf be a functionwhich is continuous on aclosed interval [a, b] and assume
f hasa derivative at each point of the open interval (a,b).  Then we have:

@ Iff'(x) > O for every x in (a b), f s grictly increasing on [a, b];

() If f'(x) < O for every x in (a b), f s drictly decreasing on [a, b];

(©) If f'(x) = O for every x in (a b), f is constant throughout [a, b].

Proof. To prove (a) we must show that f (x) <f(y) whenever a < x <y < b. There-

fore, suppose x <y and apply the mean-value theorem to the closed subinterval [x, y].
We obtain

(4.26) fO) —f(x) =f()y ~x), whee x<c<y.

Since both f ‘(c) and y — x are positive, so is f (y) — f(x), and this means f (x) <f(y), as
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asserted. This proves (a), and the proof of (b) is similar. To prove (c), we use Equation
(4.26) with x = a. Since f'(c) = 0, we have f(y) = f(a) for every y in [a, b], S0 f is constant
on [a, b].

We can use Theorem 4.7 to prove that an extremum occurs whenever the derivative
changes sign.

tHeorem 4.8.  Assume T is continuous on a closed interval [a, b] and assume that the
derivative f* exists everywhere in the open interval (3, b), except possibly at a point c.
(@) If f'& is osipvétbr jall x < ¢ and negative for all x > c, then f has a relative
maximum at c.
(b) If, on the other hand, f'(x) is negative for a/l x < ¢ and positive for gll x > ¢, then f
has a relative minimum at c.

Proof. In case (a), Theorem 4.7(a) tells us that f is strictly increasing on [a, ¢] and
strictly decreasing on [c, b]. Hence f(x) < f{c) for all x 3¢ ¢ in (a, b), so f has a relative

. f(x)<0
Sx) >

|
|
|
|
|
|
|
|
!
|
i
a

o» | ————-—
ol —-——

b

(8) Relative maximum at c (b) Relative minimum at ¢

Ficure 412 An exdremum occurs when the derivaive changes sign

maximum at c. This proves (a) and the proof of(b) is entirely analogous. The two cases
are illustrated in Figure 4.12.

417 Second-derivative test for extrema

If a function f is continuous on a closed interval [a, b], the extreme-value theorem tells
us that it has an absolute maximum and an absolute minimum somewhere in [a, b]. If f
has a derivative at each interior point, then the only places where extrema can occur are:

(1) at the endpoints a and b;

(2) at those interior points x where f ‘(x) = 0.

Points of type (2) are often called critical points off. To decide whether there is a maximum
or a minimum (or neither) at a critical point ¢, we need more information about f. Usualy
the behavior off at a critical point can be determined from the algebraic sign of the
derivative near c. The next theorem shows that a study of the sign of the second derivative
near ¢ can aso be helpful.
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THEOREM 49 SECOND-DERIVATIVE TEST FOR AN EXTREMUM AT A CRITICAL POINT. Let
¢ be a criticalpoint off in an open interval (a, b); that is, assume a < ¢ < b andf *(c) = 0.
Assume also that the second derivative f” existsin (a, b). Then we havethe following:

@ Iff" is negative in (a b), f has a relative maximum at c.

(0 If f" is postive in (a b), f has a relative minimum at c.

The two cases are illustrated in Figure 4.12.

Proof. Consider case (a), f/ "<0in(a, b). By Theorem 4.7 (applied to f '), the function
T" isstrictly decreasingin(a, b). But ¥ (C) =0,s0f' changesitssign from positiveto
negative at c, as shown in Figure 4.12(a). Hence, by Theorem 4.8, f has a relative maximum
at c. The proof in case (b) is entirely analogous.

If /" is continuous at ¢, and if f “(c) # O, there will be a neighborhood of ¢ in which f *
has the same sign as f"(c). Therefore, if f'(c) = O, the function f has a relative maximum
a cif f “(c) is negative, and arelative minimum if f"(c)is positive. This test suffices for
many examples that occur in practice.

The sign of the second derivative also governs the convexity or the concavity off. The
next theorem shows that the function is convex in intevds whee F'' is postive as illustrated
by Figure 4.12(b). In Figure 4.12(a), FIS concave because f” s negative. It suffices to
dscuss only the convex case becase iff is convex, then -FIS  concae

THEOREM 4.10. DERIVATIVE TEST FOR CONVEXITY. ASSume f is continuous On [, b]and
has a derivative in the apen interval (a, b). If f' isincreasing on (a, b), then f is convex on
[a b]. Inparticular, fisconvexif f" exists and is nonnegativein (a, b).

Proof. Takex <y in [a b] andlet z= ay + (1 = a)x, where 0 < « < 1. We wish
to prove that f(z) < af (y) + (1 = «)f (x). Since f(2) = of (2) + 1 = «)f (2), thisis the
same as proving that

(1 = 9lf(2) — f0] < ol f(y) = f)].

By the mean-value theorem (applied twice), there exist points ¢ and d satisfying x < ¢c < z
and z < d <y such that

f(z) -f(x) = f)z=x), and f(y) -f(2 = f@D - 2) .

Since f”isincreasing, we have f ‘(c) < f'(d). Also, we have (1 — a)(z — x) = a(y = 2), SO
we may write

(1 =a)f(@) = f)] = 1= )f'(e)z = x) < of @)y = 2) = ol f(y) -f(2)],

which proves the required inequality for convexity.

4.18 Curve sketching

The information gathered in the theorems of the last few sections is often useful in curve
sketching. In drawing the graph of a function f, we should first determine the domain off
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[the set of x for which f(x) is defined] and, if it is easy to do so, we should find the range
of f (the set of values taken on byf). A knowledge of the domain and range gives us an
idea of the extent of the curve y = f(x), since it specifies a portion of the xy-plane in which
the entire curve must lie. Then it is a good idea to try to locate those points (if any) where
the curve crosses the coordinate axes. These are called intercepts of the graph. The
y-intercept is simply the point (0, f(0)), assuming 0 is in the domain off, and the x-intercepts
are those points (x, 0) for which f(x) = 0. Computing the x-intercepts may be extremely
difficult in practice, and we may have to be content with approximate values only.

We should also try to determine intervals in whichfis monotonic by examining the sign
off’, and to determine intervals of convexity and concavity by studying the sign off ”,
Special attention should be paid to those points where the graph has horizontal tangents.

EXAMPLE 1. The graph of y = f(x), where f(x) = x + 1/x for x 3 0.
In this case, there are no intercepts on either axis. The first two derivatives are given by
the formulas

POy =1 —1xt,  f()= 250

y

-~y = X + l—
X

—yV=x

1

/%

. 0 X Y
1 1 1 1 Ax
I R
V3 V3
Ficure 413 Graph off(x) = X + 1/x. FIGURE 4.14 Graph off(x) = 1/(x* + 1).

The first derivative is positive if x2 > 1, negative if x? < 1, and zero if x? = 1. Hence
there is a relative minimum a x = 1 and a relative maximum a x = - 1. For x > 0,
the second derivative is positive so the first derivative is strictly increasing. For x < 0, the
second derivative is negative, and therefore the first derivative is strictly decreasing. For
x near O, the term X is small compared to 1/x, and the curve behaves like the curvey = 1 /x.
(See Figure 4.13.) On the other hand, for very large x (positive or negative), the term 1 [x
is small compared to X, and the curve behaves very much like the line y = x. In this
example, the function is odd, f( —x) = -f(x), so the graph is symmetric with respect to
the origin.

In the foregoing example, the line y = x is an asymptote of the curve. In general, a
nonvertical line with equation y = mx + b is called an asymptote of the graph of y = f(x)
if the differencef(x) = (mx + &) tends to 0 as x takes arbitrarily large positive values or
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arbitrarily large negative values. A vertica ling, x = a, is caled a vertical asymptote if
f (x)| takes arbitrarily large values as x - a from the right or from the left. In the foregoing
example, the y-axis is a vertical asymptote.

exavle 2. The graph of y =f (x), where f (x) = 1/(x? + 1).

This is an even function, positive for all x, and has the x-axis as a horizontal asymptote.
The first derivative is given by
v -2X
(x) = ————
10 =
so f(x) <0if x>0, f(x) >0 if x <0, and f(x) = 0 when x = 0.  Therefore the
function increases over the negative axis, decreases over the positive axis, and has a relative
maximum at x = 0. Differentiating once more, we find that

wron _ (2 + DA(=2) - (=2x)2(x* + D2x) _ 2(3x* = 1)
f (X) - (xz + 1)4 - (x2 + 1)3 .

Thus f“(x) > 0if 3x2> [,and f “(x) < Oif 3x2< 1L Hence, the first derivative increases
when x > { and decreases when x2 < }. This information suffices to draw the curve in
Figure 4.14. The two points on the graph corresponding to x2 = %, where the second
derivative changes its sign, are called points of inflection.

4.19 Exercises

In the following exercises, (a) find all points x such that J'(x) = 0; (b) examine the sign off
and determine those intervals in which f ismonotonic; (C) examine the sign off” and determine
those intervals in which /" ismonotonic; (d) make a sketch of thegraph of £, In each case, the
function is defined for all x for which the given formula for f(x) is meaningful.

1
1. f(x):x2_3X+2. 8,f(x):m.
2.f(x) = x* - 4x 9. f(x) = x/(1 + x¥.
3f(X) = (X = 1)*(x + 2). 10 fx) = (x® = DIx® 9.
4 f(x) = x® = 6x%+ 9x + 5, 11 f(x) = sin® x
5 flx) = 2 +(x =1, 2 f(x) =x=9nx.
6. f(x) = 1/x% 13. f(x) = x + cos x.
7. f(x) = x + 1/x% 14. f(X) = x* + & COS 2x.

4.20 Worked examples of extremum problems

Many extremum problems in both pure and applied mathematics can be attacked
systematically with the use of differential calculus. As a matter of fact, the rudiments of
differential calculus were first developed when Fermat tried to find general methods for
determining maxima and minima. We shall solve a few examples in this section and give
the reader an opportunity to solve others in the next set of exercises.

First we formulate two simple principles which can be used to solve many extremum
problems.
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exavrle 1. Constant-sum, maximum-product principle. Given a positive number S.
Prove that among all choices of positive numbers x and y with x + y = S, the product xy
is largest when x =y = 185.

Proof. If x +y= § theny =S — x and the product xy is equal t0 x(S — Xx) =
xS = x% Le f(x) = xS — x% This quadratic polynomial has first derivative f'(x) =
S — 2x which is positive for x < 1.8 and negative for x > }S. Hence the maximum of
Xy occurs when x = 1S,y = S = x = 1§. This can aso be proved without the use of
calculus. We simply write f(x) = 15 — (x — 45)® and note that f(x) is largest when
X = 3S.

exaveLe 2. Constant-product, minimum-sum principle. Given a positive number P.
Prove that among all choices of positive numbers x and y with xy = P, thesum x +y is

smallest when x =y = V/P.

Proof. We must determine the minimum of the function f(X) = x + P/x for x > 0.
The first derivative is f'(x) = 1 = P/x% This is negative for x* < P and positive for
x? > P, so f(x) has its minimum a x = 4/P. Hence, the sum x + y is smallest when

X=y-= \/]_)
exawLle 3. Among all rectangles of given perimeter, the square has the largest area.

Proof. We use the result of Example 1. Let x and y denote the sides of a general
rectangle. If the perimeter is fixed, then x + y is constant, sothe areg xy has its largest
value when X =Y. Hence, the maximizing rectangle is a square.

exavvle 4. The geometric mean of two positive numbers does not exceed their arith-
metic mean. That is, Vab < }(a + b).

Proof. Given a>0, b >0, let P = ab. Among all positive x and y with xy = P, the
sum x + y is smallest when x = y = 4/P. In other words, if xy = P, then x +y >

VP + VP = 2V/P. 1n paticular, a + b >2/P= 2v/ab, s0 Vab < Ha + b). Equality
occurs if and only if a = b.

exawte 5. A block of weight W is to be moved along a flat table by a force inclined
at an angle 6 with the line of motion, where 0 < fl < 4=, as shown in Figure 4.15. Assume
the motion is resisted by a frictional force which is proportional to the normal force with
which the block presses perpendicularly against the surface of the table. Find the angle §
for which the propelling force needed to overcome friction will be as small as possible.

Solution.  Let F(8) denote the propelling force. It has an upward vertical component
F(0) sin 6, so the net normal force pressing against the table is N = W= F(8) sin §, The
frictional force is uN, where p (the Greek letter mu) is a constant called the coefficient of
friction. The horizontal component of the propelling force is F(8) cos . When this is
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equated to the frictional force, we get F(8) cos § = u[ W = F(8) sin"8] from which we find

uWw
6-650+[usin i/

F(0)

To minimize F(B), we maximize the denominator g(f) = cos 6 + p sin 6 in the interval
0 £ 6 £ 4. At the endpoints, we have g(0) = 1 and g(3m) = w. In the interior of the
interval, we have

g'(0) = -sine + pucosb,
so g has a critical point at § = o, where sin ¢ = u cos o, This gives g(x) = cos IX +

u*COSa = (1+ u?) COS«. We can express cos « in terms of g, Since u? cos® o = sin® g =
1 = cos? «, we find (I + u?) cos? & = 1, SO COS & = 1/V'1 4 pu% Thus g(z) = V1 + 12,

F(H) ‘

Frictional force ___
N > F(f) cosf

Normal force N =w- F(8)sin §

Ficure 4.15 Example 5. Ficure 4.16 Example 6.

Since g(«) exceeds g(0) and g(3=), the maximum of g occurs at the critical point. Hence the
minimum force required is

Foy = WY _ W
g(e) V1+‘u2'

exavpLe 6. Find the shortest distance from a given point (O, b) on the y-axis to the
parabola x2 = 4y. (The number b may have any rea vaue)

Solution. The parabola is shown in Figure 4.16. The quantity to be minimized is the
distance d, where

d=vVx2+(y —b)?,

subject to the restriction x2 = 4y. It is clear from the figure that when b is negative the
minimum distance is |b|. As the point (0, b) moves upward along the positive y-axis,
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the minimum is b until the point reaches a certain specia position, above which the
minimum is <b. The exact location of this special position will now be determined.

First of all, we observe that the point (X, y) that minimizes d also minimizes d2. (This
observation enables us to avoid differentiation of square roots.) At this stage, we may
express d2 in terms of x alone or else in terms of y alone. We shall express d? in terms of
y and leave it as an exercise for the reader to carry out the calculations when 42 is expressed
in terms of x.

Therefore the functionfto be minimized is given by the formula

fy) = d* =4y + (y — b).

Although f(y) is defined for all real y, the nature of the problem requires that we seek the
minimum only among those y > 0. The derivative, given by f'(y) = 4 + 2(y = b), is zero
only wheny = b —2. When b < 2, this leads to a negative critical point y which is
excluded by the restriction y > 0. In other words, if b < 2, the minimum does not occur
at a critical point. In fact, when b < 2, we see that f'(y) > 0 when y > 0, and hence
f is strictly increasing for y > 0. Therefore the absolute minimum occurs at the endpoint
y = 0. The corresponding minimum d is /5% = |b|.

If b > 2, there is a legitimate critical point at y = b — 2. Since f’(y) = 2 for all y,
the derivative f'is increasing, and hence the absolute minimum off occurs at this critical
point. The minimum d is V4 — 2) + 4 = 2v/b — 1. Thus we have shown that the

minimum distance is |b| if b <2 and is 2v'h — 1if b > 2. (The value b = 2 is the special
value referred to above.)

4.21 Exercises

1. Prove that among all rectangles of a givenarea, the square has the smallest perimeter.

2. A farmer has L feet of fencing to enclose arectangular pasture adjacent to along stone wall.
What dimensions give the maximum area of the pasture?

3. A fame wishes to encloe a rectangular padure of area A adjacent to a long stone wal. What
dimensions require the least amount of fencing?

4. Given § > 0. Prove that among all positive numbers x and y with x +y = §, the sum
x% + y*issmallest when x =y.

5. Given R > 0. Prove that among all positive numbers x and y with x2 + y? = R, the sum
x +yislargest when x =y.

6. Each edge of a square has length L. Prove that among all squares inscribed in the given
square, the one of minimum area has edges of length4Lv/2.

7. Each edge of a square has length L, Find the size of the square of largest area that can be
dreumsribed  about  the  given  square

8. Prove that among all rectangles that can be inscribed in a given circle, the square has the
lagest area.

9. Prove that among all rectangles of a given area, the square has the smallest circumscribed
circle.

10. Given a sphere of radius R Find the radiusy and altitude 4 of the right circular cylinder with
larget laerd suface area 2#rh that can be insoribed in the sphere

11. Among all right circular cylindes of given laerd suface area, prove that the smalest circum-

scribed sphere has radi usx/i times that of the cylinder.
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12.

13

14.

15.

16.

17.

18

19.

20.

Given aright circular cone with radiusR and altitude H.  Find the radius and altitude of the
right circular cylinder of largest lateral surface area that can be inscribed in the cone.

Find the dimensons of the right circular cylinder of maximum volume tha can be inscribed in
aright circular cone of radius R and altitude H.

Given a sphere of radius R. Compute, in terms of R, the radius r and the altitude 4 of the
right circular cone of maximum volume that can be inscribed in this sphere.

Find the rectangle of largest area that can be inscribed in a semicircle the lower base being on
the diameter.

Find the trapezoid of larges area that can be inscribed in a semicircle the lower base being on
the diameter.

Anopen box is made from arectangular piece of material by removing equal squares at each
corner and turning up the sides. Find the dimensions of the box of largest volume that can
be made in this manner if the material hassides (a) 10 and 10; (b) 12 and 18.

If a ad b ae the legs of a right triangle whose hypotenuse is 1, find the largest vdue of 2a + b.
A truck isto be driven 300 miles on afreeway at a constant speed of x miles per hour. Speed
laws require 30 < x< 60. Assume that fuel costs 30 cents per gallon and isconsumed at the
rate of 2 + x%/600 gallons per hour. If the driver’s wages are D dollars per hour and if he
obeys all speed laws, find the most economical speed and the ¢ost of the trip if (a) D = 0,
(b)D=1,(c) D=2 (D=3, (e D=4

A cylinder is obtained by revolving a rectangle about the x-axis, the base of the rectangle
lying on the x-axis and the entire rectangle lying in the region between the curve y = x/(x2 + 1)
and the x-axis. Find the maximum possible volume of the cylinder.

21. The lower right-hand corner of a page is folded over so as to reach the leftmost edge. (See

22.

Figure 4.17.) If the width of the page is six inches, find the minimum length of the crease.
What angle will this minimal crease rnake with the rightmost edge of the page? Assume the
page is long enough to prevent the crease reaching the top of the page

Ficure 4.17 Exercise 21 Ficure 4.18 Exercise 22.

(@) An isosceles triangle is inscribed in a circle of radius r as shown in Figure 4.18. If the
angle 2« a the apex is restricted to lie between 0 and 3 » find the lagest vaue and the smdlet
vdue of the peimeter of the triangle Give full detals of your reasoning.
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(b) What is the radius of the smallest circular disk large enough to cover every isosceles
triangle of agiven perimeter L? Give ful detals of your reasoning.

23. A window isto be made in the form of arectangle surmounted by a semicircle with diameter
equal to the base of the rectangle. The rectangular portion is to be of clear glass, and the
semicircular portion isto be of acolored glass admitting only half asmuch light per square
foot as the clear glass. The totd peimeter of the window frame is to be a fixed length P. Find,
in terms of P, the dimensions of the window which will admit the most light.

24. A log 12 feet long has the shape of afrustum of aright circular cone with diameters 4 feet and
(4 + h)feet at its ends, where /> 0. Determine, as afunction of 4, the volume of the largest
right circular cylinder that can be cut from the log, if its axiscoincides with that of the log.

25. Given n real numbersa,, . . ., a, Provethat thesum X7, (X — a,)? is smallest when x is
the arithmetic mean of a,, . . ., a,.

26.1f x > 0, let f(x) = 5x2 + Ax~® where A is a positive constant. Find the smallest A such that
f(x) > 24 for all x > 0.

27. For eachreal ¢ let f(x) = —1x® + 2, and let m(t) denote the minimum of f(x) over the
interval 0 < x < 1. Determine the value of m(t) for each ¢ in the interval -1 < < 1
Remember that for some values of ¢ the minimum off(x) may occur at the endpoints of the
interval 0 <x < 1.

28. A number x is known to lie in an interval a < x < b, where a > 0. We wish to approximate
x by another number ¢ in[a, 5] SO that the relative error, |1 - x}/x, will be as small as possible.
Let M(t) denote the maximum value of |z = x|/x as x varies from a to 5. (a) Prove that this
maximum occurs at one of the endpoints x = a or x = p, (b) Prove that M(t) is smallest when
t is the harmonic mean of a and b, that is, when 1/t = §(1/a + 1/b).

*4,22 Partial derivatives

This section explains the concept of partial derivative and introduces the reader to some
notation and terminology. We shall not make use of the results of this section anywhere
else in Volume 1, so this material may be omitted or postponed without loss in continuity.

In Chapter 1, a function was defined to be a correspondence which associates with each
object in aset X one and only one object in another set Y; the set X is referred to as the
domain of the function. Up to now, we have dealt with functions having adomain consisting
of points on the x-axis. Such functions are usually called functions of one real variable. It
is not difficult to extend many of the ideas of calculus to functions of two or more real
variables.

By a real-valuedfunction of two real variables we mean one whose domain X is a set of
points in the xy-plane. If f denotes such a function, its value at a point (x, y) is a rea
number, written £ (x, y). Itiseasy to imagine how such a function might arise in a physical
problem. For example, suppose a flat metal plate in the shape of a circular disk of radius
4 centimeters is placed on the xy-plane, with the center of the disk at the origin and with
the disk heated in such a way that its temperature at each point (X, y)is16 = x% = j?
degrees centigrade. If we denote the temperature at (x, y) by /' (x, »), then f isafunction
of two variables defined by the equation

(4.27) J(x,y) = 16 = x2 — »%

The domain of this function is the set of all points (x, y) whose distance from the origin
does not exceed 4. The theorem of Pythagoras tells us that all points (x, y) at a distance
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y from the origin satisfy the equation
(4.28) e yre 1R

Therefore the domain in this case consists of all points (x, y) which satisfy the inequality
x% + y* < 16. Note that on the circle described by (4.28), the temperature is f(x, y) =
16 — r2 That is, the functionf is constant on each circle with center at the origin. (See
Figure 4.19.)

We shall describe two useful methods for obtaining a geometric picture of a function of
two variables. One is by means of asurface inspace. To construct this surface, we introduce
a third coordinate axis (called the z-axis); it passes through the origin and is perpendicular

(x, »,0)

Ficure 4.19 The temperature is constant on Ficure 4.20 The surface represented by the
each circle with center at the origin. equation z = 16 — x% = y%

to the xy-plane. Above each point (x, y) we plot the point (X, y, z) whose z-coordinate is
obtained from the equation z = f{(x, y).

The surface for the example deseribed above is shown in Figure 4.20. If we placed a
thermometer at a point (x, y) on the plate, the top of the mercury column would just touch
the surface at the point (x, y, z) where z = f(x, y) provided, of course, that unit distances
on the z-axis are properly chosen.

A different kind of picture of a function of two variables can be drawn entirely in the
xy-plane. This is the method of contour /ines that is used by map makers to represent a
three-dimensional landscape by a two-dimensional drawing. We imagine that the surface
described above has been cut by various horizontal planes (parallel to the xy-plane). They
intersect the surface at those points (x, y, z) whose elevation z is constant. By projecting
these points on the xy-plane, we get a. family of contour lines or level curves. Each level
curve consists of those and only those points (x, y) whose coordinates satisfy the equation



198 Differential calculus

(@ z=xy (b) Levd cuves xy = ¢

Ficure 421 (&) A surface whose equation is z = xy. (b) The corresponding level
curves xy = constant.

f(x, y) = ¢, where c is the constant elevation for that particular curve. In the example
mentioned above, the level curves are concentric circles, and they represent curves' of
constant temperature, or isothermals, as might be drawn on a weather map. Another
example of a surface and its level curves is shown in Figure 4.21. The equation in this case
is z = xy. The “saddle-shaped” surface is known as a hyperbolicparaboloid.

Contour lines on topographic maps are often shown for every 100 ft of elevation. When
they are close together, the elevation is changing rapidly as we move from one contour to
the next; this happens in the vicinity of a steep mountain. When the contour lines are far
apart the elevation is changing slowly. We can get a general idea of the steepness of a

z

Planewherey = y,

Z = f(x,y,) On this curve

Surface whose
L~ equation is z = f(x,y)

Ficure 422 Thecurve of intersection of asurfacez = f(x,y) and aplaney =vy,.
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landscape by considering the spacing ofits level curves. However, to get precise information
concerning the rate of change of the elevation, we must describe the surface in terms of a
function to which we can apply the ideas of differential calculus.

The rate at which the elevation is changing at a point (xo, y,) depends on the direction
in which we move away from this point. For the sake of simplicity, we shall consider at
this time just the two special directions, parallel to the x- and y-axes. Suppose we examine
a surface described by an equation of the form z = f(x, y); let us cut this surface with a
plane perpendicular to the y-axis, as shown in Figure 4.22. Such a plane consists of all
points (X, y, z) in space for which the y-coordinate is constant, say y =y,,. (The equation
Y = yois called an equation of this plane.) The intersection of this plane with the surface
is a plane curve, all points of which satisfy the equation z = f(x, y,). On this curve the
elevation f(x, y,) is a function of x alone.

Suppose now we move from a point (X,, ¥,) to a point (x, + 4, y,,). The corresponding
change in elevation is f(x, + h, y) — f(x,, ¥,,). This suggests that we form the difference
quotient

(4.29) J(xo + h, yoh) - f(xg, Vo)

andleth — 0. If this quotient approaches a definite limit as h - 0, we call this limit the
partial derivative off with respect to x a& (x,, ). There are various symbols that are used
to denote partial derivatives, some of the most common ones being

Mg;y% Fibswyos  flxny)s  filke vy Difxe yo).

The subscript 1 in the last two notations refers to the fact that only the first coordinate is
allowed to change when we form the difference quotient in (4.29). Thus we have

Silxo , yo) = limf(x0 + 5y = /0, 3o
1IN0 - 2 h
=0

Similarly, we define the partial derivative with respect to y at (x,, y,) by the equation

f(Xo , YO+ k)_f(xo,)’o)’
k

Ja(xo 5 yo) = lim
k-0
alternative notations being

of (x ,
f(a;y’y()) ) SXo\ Yo) Slxo s ¥o) s Do f(xo,y0) .
If we write z = f(x, y), then 9z/0x and 0z/dy are also used to denote partial derivatives.

Partial differentiation is not a new concept. If we introduce another function g of one
variable, defined by the equation

glx) = f(x, yo)
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then the ordinary derivative g'(x,) is exactly the same as the partial derivative fi(x, , V,,).
Geometrically, the partial derivative fi(x,y,,) represents the slope of the tangent line at a
typical point of the curve shown in Figure 4.22. In the same way, when x is constant, say
X = X, , the equation z = f(x, , y) describes the curve of intersection of the surface with
the plane whose equation is x = x, . The partial derivative f3(x, , y) gives the slope of the
line tangent to this curve. From these remarks we see that to compute the partial derivative
of f(x, y) with respect to X, we can treat y as though it were constant and use the ordinary
rules of differential calculus. Thus, for example, if f(x,y) = 16 = x* — )2, we get
fix, y) = -2x. Similarly, if we hold x fixed, we find fy(x, y) = —2y.
Another example is the function given by

(4.30) f(x, ) = xsiny + y?cosxy.
Its partial derivatives are

filx,y)=siny  y*sinxy,  falx,y) = x cos y — xy*sinxy + 2y cos xy .

Partid differentiation is a process which produces new functions f; = dffox and
f = 9fjdy from a gven funcon F. Since f; and f, arealso functions of two variables, we
can consider their partial derivatives. These are called second-order partial derivatives of
f, denoted & follows

f &f _ o _r O
ax2, fl,z_fwy_ayax’ f2,1_fyw_axay’ f2,2_f1l‘y—'ay2'

fl,l =f:vz =

Notice that f,, means (fy), . the patid derivative of f, with respect to y. In the a-notation,
we indicate the order of derivatives by writing

B _2 (1),

dy ox 0y ox

This does not always yield the same result as the other mixed partial derivative,

Y _ i(?i)
oxdy ox \dy/

However, equality of the two mixed partial derivatives does hold under certain conditions
that are usually satisfied by most functions that occur in practice. We shall discuss these
conditions further in Volume II.

Referring to the example in (4.27), we find that its second-order partial derivatives are
given by the following formulas:

fabep) = =2, fien )= Ll ) =0, foulx,v) = =2,
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For the example in (4.30), we obtain

Sia(x, y) = —p*cos xy,

fra(x, ¥) = COSY = xp3 cos xy = 3y* sin xy ,

Saa(x, y) = cos y — xp®cos xy = y2SINXY = 2)%sin xy = f; 5(x, ) ,

Jao(x,Y) = —x SNy = x%)? COS Xy = 2xp SIN Xy = 2xy SN Xy + 2 COS Xy
= —x Siny = x2y? COs xy = 4xy Snxy + 2 cos xy .

A more detailed study of partial derivatives will be undertaken in Volume I1.

*4,23 Exercises

In Exercises 1 through 8, computeal] first- and second-order partial derivatives. In each case
verify that the mixed partial derivatives f] o(x, y) and f5 1(x, y) are equal.

L flx,y) = xt+ ' = a2 5. f(x,y) = sin (7).
2. f(x,y) =xs8n (x+y). 6. f(x,y) = sin [cos (2 = 3y)].
X X +
3. flx,y) =xy +;} (y # 0). 7. f(x, y):x_y (x #y).
4 flx,y) = Ve T 5. 8. f(x, y) = szx—Tyz @, 1) # (0, 0).

9. Show that x(9z/ ax) + y( 3z/ 3y) =2zif (@) z=(x = 2y)% (b) z = ();4 + e,
10. If f(x, y) = xp/(x® + y®? for (x, y) # (O, 0), show that

_af£+ﬂ:0.

ox2 ayZ
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THE RELATION BETWEEN INTEGRATION
AND DIFFERENTIATION

5.1 The derivative of an indefinite integral. The first fundamental theorem of calculus

We corne now to the remarkable connection that exists between integration and
differentiation. The relationship between these two processes is somewhat analogous to
that which holds between “squaring” and “taking the square root.” If we square a positive
number and then take the positive square root of the result, we get the original number
back again. Similarly, if we operate on a continuous function f by integration, we get a
new function (an indefinite integral off) which, when differentiated, leads back to the
original function f. For example, if f(x) = x2, then an indefinite integral A off may be
defined by the equation

A(x) =ff(t) dt =fj12dt = 3‘3—3 - %3

where ¢ is a constant. Differentiating, we find A’(x) = x* = f(x). This example illustrates
a general result, called the first fundamental theorem of calculus, which may be stated as
follows :

THEOREM 5.1.  FIRST FUNDAMENTAL THEOREM OF cALcuLus. Let f be a function that is
integrable on [a, X] for each xin [a, b]. Let ¢ be sych that a < ¢ < b and deﬁne a new
function A as follows:

A= [fpdt i a<x<b.

Then the derivative A'(x) exists at eachpoint x in the open interval (a, b) where f is continuous,
andfor such X we have

(5.1) A= f (9.

First we give a geometric argument which suggests why the theorem ought to be true;
then we give an analytic proof.

202
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Geometric motivation.  Figure 5.1 shows the graph of a function f over an interval [a, b].
In the figure, h is positive and
x+h x+h T
[Troa= "o r@d= ax+n - am.

The example shown is continuous throughout the interval [x, x + hk]. Therefore, by the
mean-value theorem for integrals, we have

A(x + h) = A(x) = Kf(2), where x<z <x+ h .

Hence we have

(5.2) A(x + h) — A(x)

=f(@,

h

a X 7 x+h b

Ficure 5.1 Geometric motivation for the first fundamental theorem of calculus.

and, since x <z < x+ h, we find that f(2) — f(x) as h — 0 through positive values. A
similar argument is valid if h — O through negative values. Therefore, A’(x) exists and is

equal to f (x).

This argument assumes that the function f is continuous in some neighborhood of the
point x. However, the hypothesis of the theorem refers only to continuity off at a single
point x. Therefore, we use a different method to prove the theorem under this weaker

hypothesis.

Analytic Proof. Let x be a point of continuity off, keep x fixed, and form the quotient

Alx + h) = A(x)
. .

To prove the theorem we must show that this quotient approaches the limit f (x) as h — 0.
The numerator is

A+ ) = a0 = | de = [ s di= [Mrwar.
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If we write f(1) = f(x) + [f(z) -f(X)] in the last integral, we obtain

A+ ) = A= [ des [0 = o) at
=W+ [ W= sl dr,

from which we find

z-+h
53 At B =40 - f 4 L f L) — £6o) dt .

Therefore, to complete the proof of (5.1), all we need to do is show that

fm Lm[f(t) ~ ()] di = 0.

It is this part of the proof that makes use of the continuity off a x.

Let us denote the second term on the right of (5.3) by G(h). We are to prove that
G(h) —+ 0ash — 0. Using the definition of limit, we must show that for every ¢ > 0 there
isa 6 >0 such that

(54) |G(h)] < € whenever 0 < || < § .

Continuity of fat x tells us that, if ¢ is given, there is a positive § such that

(55) Lf(t) —f(x)] < ge
whenever
(5.6) x—0<t<x+39d.

If we choose h so that 0 < h < 4, then every ¢ in the interval [x, x + h] satisfies (5.6) and
hence (5.5) holds for every such ¢, Using the property |[2+g(z) dt < f&**|g(2)| dt with
&) = f(t) — f(X). we see that the inequality in (5.5) leads to the relation

[ - -f001 ot | < [T 150 — s at < [ et = dhe < he

If we divide by h, we see that (5.4) holds for 0 < h < 4.If h < 0, a similar argument
proves that (5.4) holds whenever 0 < || < 4, and this completes the proof.

5.2 The zero-derivative theorem

If a functionfis constant on an open interval (a, b), its derivative is zero everywhere on
(a, b). We proved this fact earlier as an immediate consequence of the definition of
derivative. We also proved, as part (c) of Theorem 4.7, the converse of this statement
which we restate here as a separate theorem.
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THEOREM 5.2,  ZERO-DERIVATIVE THEOREM. If f/(X) = O for each x in an open interval
I, then f js constant on I.

This theorem, when used in combination with the first fundamental theorem of calculus,
leads to the second fundamental theorem which is described in the next section.

5.3 Primitive functions and the second fundamental theorem of calculus

DEFINITION OF PRIMITIVE FUNCTION. A function P is called a primitive (or an antiderivative)
of a function f on an open interval I if the derivative of P is f, that is, if P'(x) = f (x) for all
xinl.

For example, the sine function is a primitive of the cosine on every interval because the
derivative of the sine is the cosine. We speak of a primitive, rather than the primitive,
because if P is a primitive offthen sois P + k for every constant k. Conversely, any two
primitives P and Q of the same function f can differ only by a constant because their
difference P — Q has the derivative

Px) = Q) = f(X) —fx = O

for every x in | and hence, by Theorem 5.2, P — Q is constant on Z.

The first fundamental theorem of calculus tells us that we can always construct a primitive
of a continuous function by integration. When we combine this with the fact that two
primitives of the same function can differ only by a constant, we obtain the second
fundamental theorem of calculus.

THEOREM 5.3. SECOND FUNDAMENTAL THEOREM OF CALCULUS. Assumef iS continuous
on an gpen interval 1, and let P be any primitive off on I.  Then, for each ¢ and each x in I,
we have

(5.7 P(x) = P(c) + f;f(t) dt .

Proof. Let A(X) = [* f(t) dt. Since fis continuous at each x in I, the first fundamental
theorem tells us that A’(x) = f(x) for all x in 1. In other words, A isaprimitive of f on Z.
Since two primitives off can differ only by a constant, we must have A(x) — P(x) = k
for some constant k. When x = ¢, this formula implies -P(c) = k, since A(c) = 0.
Therefore, A(x) — P(x) = -P(c), from which we obtain (5.7).

Theorem 5.3 tells us how to find every primitive P of a continuous function f. Wesimply
integrateffrom a fixed point ¢ to an arbitrary point x and add the constant P(c) to get P(x).

But the real power of the theorem becomes apparent when we write Equation (5.7) in the
following form :

(5.8) 7 ot = Py = o).

In this form it tells us that we can compute the value of an integral by a mere subtraction
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if we know a primitive P. The problem of evaluating an integral is transferred to another
problem-that of finding a primitive P off. In actual practice, the second problem is a
great deal easier to deal with than the first. Every differentiation formula, when read in
reverse, gives us an example of a primitive of some functionfand this, in turn, leads to an
integration formula for this function.

From the differentiation formulas worked out thus far we can derive the following
integration formulas as consequences of the second fundamental theorem.

exaveLe 1. Integration of rationalpowers. The integration formula

J‘h bn+1_an+1
Tdx = ———88 n=012...
59 T )

was proved in Section 1.23 directly from the definition of the integral. The result may be
rederived and generalized to rational exponents by using the second fundamental theorem.
First of all, we observe that the function P defined by the equation

xn+1
(5.10) P(x) =
n+1

has the derivative P’(x) = x" if nisany nonnegative integer. Since thisis valid for all real
X, we may use (5.8) to write

bn+1 __ an+1

b

x" dx = P(b) = P(a) =
L n+1
for all intervals [a, b]. This formula, proved for all integers n > 0, aso holds for all negative
integers except n = ~ 1, which is excluded because n +1 appears in the denominator. To
prove (5.9) for negative n, it suffices to show that (5.10) implies P’(x) = x™ when n is negative
and # - I, a fact which is easily verified by differentiating P as a rational function. Of
course, when n is negative, neither P(x) nor P’(x) is defined for x = 0, and when we use
(5.9) for negative n, it is important to exclude those intervals [a, b] that contain the point
x = 0.

The results of Example 3 in Section 4.5 enable us to extend (5.9) to all rational exponents
(except —1), provided the integrand is defined everywhere on the interval [a, b] under

consideration. For example, if 0 < a < b and n = —{, we find
J‘b 1 d b 12 xl/Z b
—dx =| x¥dx = — | =2 - .
" \/} . 1 (\/B \/E)

This result was proved earlier, using the area axioms. The present proof makes no use of
these axioms.

In the next chapter we shall define a general power function ¥ such that f(x) = x° for
every real exponent c. We shall find that this function has the derivative f'(x) = cx** and
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the primitive P(x) = x¢*1/(¢c + 1) if ¢ ¢ — 1. This will enable us to extend (5.9) to all real
exponents except e 1.

Note that we cannot get P’(x) = l/x by differentiation of any function of the form
P(x) = x". Nevertheless, there exists a function P whose derivative is P’(x) = l/x. To
exhibit such a function all we need to do is write a suitable indefinite integral; for example,

P(x):J)—l-dt if x>0,
st

This integral exists because the integrand is monotonic. The function so defined is called

the Zogarithm (more specifically, the natural logarithm). Its properties are developed
systematically in Chapter 6.

exawLe 2. Integration of the sine and cosine. Since the derivative of the sine is the
cosine and the derivative of the cosine is minus the sine, the second fundamental theorem
also gives us the following formulas:

b - b . .
jacosxdx:smxa:smb~sma,

b
[ sin x dx = (—cosx) =cosa —cosbh.

b
vq 1

These formulas were also proved in Chapter 2 directly from the definition of the integral.
Further examples of integration formulas can be obtained from Examples 1 and 2 by
taking finite sums of terms of the form Ax", B sinx, C cos X, where A, B, C are constants.

5.4 Properties of a function deduced. from properties of its derivative

If a fucion f has a continuous derivaive * on an open interval 7, the seoond fundamentd
theorem states that

51 f0 = £+ [ 1w dr

for every choice of points x and c in I. This formula, which expresses f in terms of its
derivative f ', enables us to deduce properties of afunction from properties of its derivative.
Although the following properties have already been discussed in Chapter 4, it may be of
interest to see how they can also be deduced as simple consequences of Equation (5.11).

Suppose  f* is continuous and nonnegaive on 1. If x > c, then % f ‘(t) dt > O, and hence
f(x) > f(c). In other words, if the derivative is continuous and nonnegative on I, the
function is increasing on Z.

In Theorem 2.9 we proved that the indefinite integral of an increasing function is convex.
Therefore, iff’ is continuous and increasing on [, Equation (5.11) shows thatf is convex on
1. Similarly, f is concave on those intervals where f' is continuous and decreasing.
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55 Exercises

In each of Exercises 1 through 10, find a primitive off; that is, find a function P such that
P’ (x) = f(x) and use the second fundamental theorem toevaluate {2 f(x) dx.

1 f(x) = 5x% 6. f(x) = V2x + Vix, x> 0.

2x2 = 06X + 7

2. f(x) = x4 ~ 12 7. fx) = T, x> 0.
3 f®=(x+ D3 = 2). 8. fx) = 241313 x>0
4 f() =’i4_+—xf§'_3, X 5 0. 9. f(x) = 3sin x + 25,

5. fx) = (L+ V%% x>0 10. f(x) = x*/3 = 5 COS x.

11. Prove that there is no polynomial f whose derivative is given by the formula f/(x) =1/x.
12. Show that [ |#| dt = $x|x for all red x.
13. Show that

2x2
ad (x + |x]) for all real x .

3 R _ e
L(tﬂtl)dt— 3

14. A function f is continuous everywhere and sdtisfies the equation
f:f(t)dt: ~}+ 2+ xsin 2 + } cos

for all x. Compute f(}n) and f'(}=).
15. Find afunction f and a value of the constant ¢ such that

fmf(t) dt =cosx =1} for all real x .
16. Find afunctionf and a value of the constant ¢ such that
J:tf(t) dt = sin)(_xc;c)sx—%x2 for all real x .

17. Thereisafunction f, defined and continuous for all real x, which satisfies an equation of the
form

- 1 x16 xlﬂ
J fOde =f (1) dt +? +? +c,
0 x

where ¢ is a condant. Find an explicit fomua for f (x) ad find the vadue of the condant c.
18. A functionf is defined for all real x by the formula

1 +sint

Without attempting to evaluate thisintegral, find a quadratic polynomiap(x) = a+ bx + ¢x?
such that p(0) = f(O), p'(0) =f©), and p'(0) =£"(0).
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19.

20.

21.

22.

23.

24.

25.

26.

Given afunction g, continuous everywhere, such that ¢( 1) =5 and j(} g)dr=2.  Let f(x) =
%fﬂé (x — 1)?g(») dt. Prove that
) T z
fx)=ux L g dt—fu 1g(f) dt,
then compute f“( 1) and f( 1)
Without attempting to evaluate the following indefinite integrals, find the derivativef’(x) in

each case if f(x) is equal to

T 22 22
@[ @+dyra, O arerca,  © [, arosa.
Without attempting to evaluate the integral, compute f*(x)if fis defined by the formula

22 tG
) =L o

In each case, compute f(2) iffis continuous and satisfies the given formula for all x > 0.
(a)
@) J:f(t) dt= x2(1 + x) . © ﬁ:”‘ 2dt = x2(1+ %) .
x? 22 (142
(b) fo f@dt= 21+ x) . ) fo ) dt = x

The base of a solid is the ordinate set of a nonnegative functionf’ over theinterval [0, a]. All
cross sections perpendicular to this interval are squares. The volume of the solid is

@ —=2acosa+ (2 ~dd)sina

for every a> 0. Assume fis continuous on [0, a] and calculate f{a).

A mechanism propels a particlealong astraight line. |t is designed so that the displacement
of the particle at timez from an initial point O on the line is given by the formula () = i+
2t sin t. The mechanism works perfectly until time ¢t = z when an unexpected malfunction
occurs. From then on the particle moves with constant velocity (the velocity it acquires at
time ¢t = #), Compute the following: (a) its velocity at time ¢t = #; (b) its acceleration at
time ¢ = L#; (C) its acceleration at time ¢ = %#; (d) its displacement from O at time ¢ = §.
(e) Find atimet > » when the particle returns to the initial point O, or else prove that it never
returns to 0.

A particle moves along a straight line. Its position at time ¢ is f(r). When 0 <t < 1, the
position is given by the integral

Jf 1+ 2 sin xx ¢os 7x

(M) =) — 132

(Do not attempt to evaluate this integral.) For ¢ > 1, the particle moves with constant
acceleration (the acceleration it acquires at time ¢ = 1). Compute the following: (a) itsacceler-
ation at time ¢ = 2; (b) its velocity when ¢ = 1; (c) its velocity when ¢ > 1; (d) the difference
f(t) -f(1) when ¢ > 1.

Ineach case, find afunction f with a continuous second derivativef” which satisfiesall the

given conditions or else explain why such an examplecannot exist.

@ f'x)>0 foreveryx, f(0) =1, f() =0.

by f[x)>0 foreveryx, f(0) =1, f(1)=3

© ff[x»>0 for every X, f(0) = 1, f(x) < 100 for gl x > 0.

d f')>0 foreveryx, f(0)=1, f(x) £ 100 for all x <O.



210 The relation between integration and differentiation

27. A particle movesalong astraight line, its position at times being f(r). It startswith aninitial
velocity f(0) = 0 and has a continuous acceleration f"(r) > 6 for allz in theinterval 0<¢ < 1.
Prove that the velocity f(f) > 3 for all 7 in some interval [a, b], where0 < a < b < 1, with
b-a=+.

28. Given afunctionfsuch that the integral A(x) = f @ f(r) dr existsfor each X in aninterval [a, b].

Let c beapoint in theopen interval (a, b). Consider the following ten statementsabout this
f and thisA:

@ FiIs continuous a c. («) Aiscontinuous at c.
() Fis disontinuous a c. (§) Aisdiscontinuous at c.
© FIS increasing on (3 b). (y) A is convex on (a, b).
@ f(c) exidts. (6) A(c) exids.

(@ f is continuous & c. (e) A’ iscontinuous at C.

o | Bly )| «

In atable like the one shown here, mark Tin _—
the appropriate square if the statement labeled b
with aLatin |etter always implies the statement
labeled with a Greek letter. Leave the other c
squares blank. For example, if (@) implies (3), - - - - - -
mak T in the upper lefthand comer square, efc. d

5.6 The Lebniz notation for primitives

We return now to a further study of the relationship between integration and differentia-
tion. First we discuss some notation introduced by Leibniz.

We have defined a primitive P of a functionfto be any function for which P'(x) = f(x).
Iff is continuous on an interval, one primitive is given by a formula of the form

PC) = [ f(0) dt

and all other primitives can differ from this one only by a constant. Leibniz used the
symbol §f(x) dx to denote a general primitive off. In this notation, an equation like

(5.12) [0 dx = Px) + ¢

is considered to be merely an aternative way of writing P’(x) = f(x). For example, since
the derivative of the sine is the cosine, we may write

~

(5.13) jcmxm:mx+c.

Similarly, since the derivative of x™1/(n + 1) is x", we may write

J‘nd _ xn+1 c
(5.14) X x—n+1+ )
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for any rational power n # — 1. The symbol C represents an arbitrary constant so each
of Equations (5.13) and (5.14) is really a statement about a whole set of functions.

Despite similarity in appearance, the symbol {f(x) dx is conceptually distinct from
the integration symbol % f(x) dx. The symbols originate from two entirely different
processes-differentiation and integration. Since, however, the two processes are related
by the fundamental theorems of calculus, there are corresponding relationships between
the two symbols.

The first fundamental theorem states that any indefinite integral off is also a primitive
off. Therefore we may replace P(x) in Equation (5.12) by f% f(t) dt for some lower limit
¢ and write (5.12) as follows:

(5.15) ff(x) dx = f:f(t) dt + C.

This means that we can think of the symbol [ f(x) dx as representing some indefinite
integral off, plus a constant.

The second fundamental theorem tells us that for any primitive P of f  and for any constant
C, we have

[ rwax=1pw + €1

If we replace P(x) + C by {f(x) dx, thisformula may be written in the form

(5.16) [ fo0ax = [ sy ax .

The two formulas in (5.15) and (5.16) may be thought of as symbolic expressions of the
first and second fundamental theorems of calculus.

Because of long historical usage, many calculus textbooks refer to the symbol f f(x) dx
as an “indefinite integral” rather than as a primitive or an antiderivative. This is justified,
in part, by Equation (5.15), which tells us that the symbol {f(x) dx is, apart from an
additive constant C, an indefinite integral of f. For the same reason, many handbooks of
mathematical tables contain extensive lists of formulas labeled “tables of indefinite
integrals” which, in readlity, are tables of primitives. To distinguish the symbol { f(x) dx
from [° f(x) dx, the latter is called a definite integral. Since the second fundamental theorem
reduces the problem of integration to that of finding a primitive, the term “technique of
integration” is used to refer to any systematic method for finding primitives. This termi-
nology is widely used in the mathematical literature, and it will be adopted also in this
book. Thus, for example, when one is asked to “integrate” [f (x) dx, it is to be understood
that what is wanted is the most general primitive off.

There are three principal techniques that are used to construct tables of indefinite
integrals, and they should be learned by anyone who desires a good working knowledge
of calculus. They are (1) integration by substitution (to be described in the next section),
a method based on the chain rule; (2) integration byparts, a method based on the formula
for differentiating a product (to be described in Section 5.9); and (3) integration bypartial
fractions, an algebraic technique which is discussed at the end of Chapter 6. These
techniques not only explain how tables of indefinite integrals are constructed, but also
they tell us how certain formulas are converted to the basic forms listed in the tables.
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5.7 Integration by substitution

Let Q be a composition of two functions P and g, say Q(x) = P[g(x)]for all x in some
intervalZ. If we know the derivative of P, say P’(x) = f(x), the chain rule tells us that the
derivative of Q is given by the formula Q' (x) = P’[g(x)]g’(x). Since P’ = f, this states
that Q' (X) = fg(x)]g’(x). In other words,

(5.17) P'(x)= f(x) implies Q(X) = flg(x)]g'(x).

In Leibniz notation, this statement can be written as follows: If we have the integration
formula

(5.18) [fx)dx = P + C

then we also have the more general formula

(519 J l)1g (x) dx = Pl + C .
For example, if f(x) = cosx, then (5.18) holds with P(x) = sin x, 0 (5.19) becomes
(5.20) fcos g(x).g'(x)dx=sngkx) + C.
In particular, if g(x) = x?, this gives us
cos x3.3x2dx =sinx* + C,

aresult that is easily verified directly since the derivative of sin x® is3x% cos x®.

Now we notice that the generd formula in (5.19) is related to (5.18) by a smple mechanica
process.  Suppose we replace g(X) everywhere in (5.19) by a new symbol u and replace ¢'(x)
by du/dx, the Leibniz notation for derivatives. Then (5.19) becomes

ff(u) du dx = P(u) + C .
dx

du
At this stage the temptation is strong to replace the combination o dx by du. If we do
this, the last formula becomes

(5.21) [f@)du =Py + ¢

Notice that this has exactly the same form as (5.18), except that the symbol u appears
everywhere instead of x. In other words, every integration formula such as (5.18) can be
made to yield a more general integration formula if we simply substitute symbols. We
replace x in (5.18) by a new symbol # to obtain (5.21), and then we think of » as representing
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anew function of X, say u = g(x). Then we replace the symbol du by the combination
g(x) dx, and Equation (5.21) reduces to the genera formula in (5.19).
For example, if we replace x by « in the formula { cosx dx = sin x + C, we obtain

Jcosudu=sinu+C.

In this latter formula, » may be replaced by g(x) and du by g'(x) dx, and a correct integration
formula, (5.20), results

When this mechanical process is used in reverse, it becomes the method of integration by
substitution. The object of the method is to transform an integral with a complicated
integrand, such as | 3x? Cos x® dx, into a more familiar integral, such as | cosy du. The
method is applicable whenever the original integral can be written in the form

[ flgeongx) dx ,
since the substitution

u = g(x), du = g’(x) dx ,

transforms this to | f(u) du. If we succeed in carrying out the integration indicated by
{ () du, we obtain a primitive, say P(u), and then the original integral may be evaluated
by replacing » by g(x) in the formula for P(u).

The reader should redlize that we have attached no meanings to the symbols dx and du
by themsdves. They are used as purely formal devices to help us perform the mathematical
operations in a mechanicd way. Each time we use the process, we are redly applying the
statement  (5.17).

Success in this method depends on one's ability to determine a the outset which part of
the integrand should be replaced by the symbol 4, and this ability cornes from a lot of
experience in working out specific examples. The following examples illustrate how the
method is carried out in actual practice.

exawLe 1. Integrate | x3 cos x* dx.

Solution. Let us keep in mind that we are trying to write x* cos x* in the form f[g(x)]g'(x)
with a suitable choice off and g. Since C0s x* is a composition, this suggests that we take
f(X) = cosx and g(x) = x* =0 that cos x4 becomes T [g(x)]. This choice of g gives g'(X) =

4x3, and hence f[g(x)]g’(x) = (cos x*) (4x%). The extra factor 4 is easily taken care of
by multiplying and dividing the integrand by 4. Thus we have

x3COSxt = }(cos x)(4x®) = 1 f[g(0)lg'(x) -

Now, we make the substitution ¥ = g(X) = x%, du= g’ (x) dx = 4% dx, and obtain

fx"’cosx“dx= 1ff(u)du = ifcosudu = 1sinu + C.
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Replacing u# by x* in the end result, we obtain the formula
fxb‘oosx“dx: 1sinx'+ C,

which can be verified directly by differentiation.

After a little practice one can perform some of the above steps mentally, and the entire
calculation can be given more briefly as follows: Let u = xi Then du = 4x? dx, and we
obtain

fx:’cosx“dx:ij(cosx“)(4x3dx):ifcosudu:%sinu+C:ésin X*4+C.

Notice that the method works in this example because the factor x® has an exponent one
less than the power of x which appears in cos x*

exavLe 2. Integrate [ cos® x Sn x dx.

Solution. Let ¥ = cos x. Then du = -sin x dx, and we get

fcoszxsinxdx = —f(cosx)z(—sinxdx)= —fuzdu= —u;+C= — + C.

Again, the final result is easily verified by differentiation.

sin

Vx

xdx.

EXAMPLE 3. Integrate f

Solution. Let u= Vx = x/2 Then du= 3x~/2 dx, or dx/\/; = 2 du. Hence

fslg—/_ﬁdx=2fsinudu:-2 s 4+ C=-2 cos Vx+ C .

X
4. Integrate f X dx
EXAMPLE 4. e —
V1 4 x?

Solution. Let u= 1+ x2 Then du =2x dx so x dx =% du, and we obtain

sz:% ;—d/—ti=%fu’”2du:u“2+C=\/1__|_x~2+C.
Vi+x u

The method of substitution is, of course, also applicable to definiteintegrals. For example,
to evaluate the definite integral f{,”z cos? x sin x dx, we first determine the indefinite integral,
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as explained in Example 2, and then we use the second fundamental theorem to write

7|2

/2 2 . 1 1 ™
cos*xsinx dx = — = cos® x = — —(cos3— — cos® 0)
0 3 3 2

1
0 g )
Sometimes it is desirable to apply the second fundamental theorem directly to the integral
expressed in terms of u. This may be done by using new limits of integration. We shall
illustrate how this is carried out in a particular example, and then we shall justify the
process with a general theorem.

¥ o(x 4+ Ddx
2y x2 + 2X + 3.

exaveLe 5. Evaluate

Solution. Let u = x2 + 2x + 3. Then du = (X + 2) dx, so that

(x+1Ddx _ 1du
Vx: 4+ 2x + 3 2Vu

Now we obtain new limits of integration by noting that » = 11 when x = 2, and that
u = 18 when x = 3. Thenwewrite

3M—lﬁu—l/2 du =\/; 1711= \/1—-— \/ﬁ

s VXE+ 2x+ 3 2Ju

The same result is arrived at by expressing everything in terms of x. Thus we have

I o
v % x* 2x 3| =VIg-Vil.
2 \/x2+ 2x+3 = + + 9

Now we prove a general theorem which justifies the process used in Example 5.

THEOREM 54. SUBSTITUTION THEOREM FOR |NTEGRALS. Assume g has a continuous
derivative g’ on anopen interval |. Let J bethe set of valuestaken by g on | and assume that
fis continuous on J. Then for each x and c in 1, we have

x glax)
(522) | riemgdi= [ " du.

Proof. Let a = g(c) and define two new functions P and Q as follows:

P(x) = f;f(u) du fxeld QX = f “flelg' ey dt if x € 1.
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Since P and Q are indefinite integrals of continuous functions, they have derivatives given
by the formulas

Px)= f(x), Q®=/f[g®gk.
Now let R denote the composite function, R(x) = P[g(x)]. Using the chain rule, we find

R'(x) = Plg)lg’™) = flg()lg' () =Q'(x) .

Applying the second fundamental theorem twice, we obtain

g(2) glx)
faydu= |
glc} vglc)

and

P'(u) du = P[g()] = Pg(c)] = R(x) = R(c),

[ remema= oo d=[ RO d=R0 = RO .

This shows that the two integrals in (5.22) are equal.

58 Exercises

In Exercises1through 20, evaluate the integrals by the method of substitution.

L jmdx.

$siny/x + 1dx
2 f xV/1 ¥ 3% dx. 2 | %
3 fxa/x_ﬂ . 3 fx"—l snx dx  n#0.
13 xdx u x5 dx
4 Joapna/2 3% Vi=ab
5. f (x§x++2X1 )+dx2)3 . 15 f (1 + ry/adt,
6. Jsm3xdx. 16. f(x2 +1)7%/2 dx.
7. [2z =1 dz 7. [ 2580 + 277 dx,

cos x dx
8 T
sin® x

JZM oS 2xV 4 — sin 2x dx.

o

sin x dx

10. (3 + cos x)?’

1 fsnxdx
" J Vot x

(sinx + cos x) dx

(SN X — cos x)M/*"

19. f X dx .
Vit 1Vt

[ &2+ 1 — 2x)5 dx

) [-x

18.
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21. Deduce the formulas in Theorems 118 and 119 by the method of subdtitution.
22 Let

J‘x 1P d
=| 5——=dt
F(x9 a) 0 (tz + az)q y

whee a > 0, and p and g ae postive integers.  Show that F(x, a) = a?1-2¢F(x/a, 1).

23. Show that
L dr Yz gt )
Jl+t2=£ 1+t2 lf x>0.

@

24. If m and n are positive integers, show that

j: (= dx = [ =X dx
25. If misapositive integer, show that

/2 . _ /2 -
. cos™ X sin” X dx = 2 mfo cos” x dx .

26. (a) Show that

ﬁﬂ xf(sin X) dx = gfﬂf(sin x)dx. [Hint: u= 7 — x.]

(b) Use part (@) to deduce the formula

T xsnx 1 dx
—2dx=7r T =
o 1+ cos®* X ol +x

27. Show that [} (1 = x%~1/2 dx = [3/% cos®® y du if n is @ positive integer. [Hint: x = sinul]
The integral on the right can be evalugted by the method of integration by parts to be discussed
in the next section.

5.9 Integration by parts

We proved in Chapter 4 that the derivative of a product of two functions f and g is given
by the formula

K (x) = f(x)g'(x) + f'(x)g(x) ,

where h(x) = f(x)g(x). When this is translated into the Leibniz notation for primitives, it
becomes | f(x)g ‘(X) dx + [ f'(x)g(x) dx = f(x)g(x) + C, usually written as follows :

(529 [ 18/ dx = 10080 = [ Fgx) ax + ¢
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This equation, known as the formula for integration by parts, provides us with a new
integration technique.

To evaluate an integral, say | k(X) dx, using (5.23), we try to find two functions f and g
such that k(x) can be written in the form f(x)g'(x). If we can do this, then (5.23) tells us
that we have

| k(x) dx = f(x)g(x) = | g()f'(x) dx +C,
and the difficulty has been transferred to the evaluation of § g(x)f'(x) dx. If fand gare
properly chosen, this last integral may be easier to evaluate than the original one. Some-
times two or more applications of (5.23) will lead to an integral that is easily evaluated

or that may be found in a table. The examples worked out below have been chosen to
illustrate the advantages of this method. For definite integrals, (5.23) leads to the formula

[ rmg e dx = 1b)eb) — f@sta) — [ /(g dx

If we introduce the substitutions u = f(x), v = g(x), du = f'(x) dx, and gy =g (X) dx,
the formula for integration by parts assumes an abbreviated form that many people find
easier to remember, namely

(5.24) fu dv=uv — fvdu + C.

exapLe 1. Integrate | x cos x dx.

Solution. We choose f(x) = x and g'(X) = cos X. This means that we have f'(x) = 1
and g(X) = sin X, so (5.23) becomes

(5.25) fxcosxdx:xsinx—fsinxdx+C:x snx+ cosx + C.

Note that in this case the second integral is one we have already calculated.
To carry out the same calculation in the abbreviated notation of (5.24) we write

u = X, dv=cos x dx ,

du = dx, v=jcosxdx:sinx,

fxcnsxdx:w-fvdu=xsinx-fsinx dx+C=x sinx+ cosx+C.

Had we chosen u = cos x and dv = x dx, we would have obtained du = —sin x dx,
v = }x% and (5.24) would have given us

J‘xcosxdx:%gxzcosx_.%sz(—sinx) dx +C =1x* cos x+ } fxzsinx dx + C .
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Since the last integral is one which we have not yet calculated, this choice of 4 and v is not
as useful as the first choice. Notice, however, that we can solve this last equation for
{ x*sin x dx and use (5.25) to obtain

fxzsinx dx=2x sinx+2 cosx —x2cos x + C.

exaveLe 2. Integrate | x? cos x dx.

Solution. Let 4 = x2 and du = cos x dx. Then du
sowe have

2 dxandv = f cosx dx = snX,

a

(5.26) foCOSxdx=fudu= uv—fvdu+ C= xzsinx-ZJ xsnx dx + C .

The last integral can be evaluated by applying integration by parts once more. Since it is
similar to Example 1, we simply state the resuilt:

fxs'nx dx= —x cosx+ snx + C.

Substituting in (5.26) and consolidating the two arbitrary constants into one, we obtain

’. x2cosx dx = x%sinx + 2xcosx == 2sinx + C.

exawLe 3. The method sometimes fails because it leads back to the original integral.
For example, let us try to integrate | x~! dx by parts. If we let 4y = x and dv = x 2 dx,
then f x1 dx = [ u dv. For this choice of u and v, we have du = dx and v = —x71, so
(5.24) gives us

(527) [xtdc=jude= v [vdutC=—1+[x"dx+C,

and we are back where we started. Moreover, the situation does not improve if we try
u= x*and dyp = x 1 dx

This example is often used to illustrate the importance of paying attention to the arbitrary
constant C. If formula (5.27) is written without C, it leads to the equation | x~! dx =
— 1+ | x71 dx, which is sometimes used to give a fallacious proof that 0 = 1.

As an application of the method of integration by parts, we obtain another version of
the weighted mean-value theorem for integrals (Theorem 3.16).

THEOREM 5.5, SECOND  MEAN-VALUE  THEOREM FOR  INTEGRAL~.  ASSUMEgiscontinuouson
[a, b], and assume f has a derivative which is continuous and never changes sign in [a, b].
Then, for some cin[a, b], we have

529) [} £098) dx = 7(a) [ ) dx + ) [ gl) s
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Proof. Let G(x) = f%g(r) dt. Since g is continuous, we have G'(x) = g(x). Therefore,
integration by parts gives us

(529 [ e dx = [ @G dx = FBYG®) — [ £(06x) d,
since G(a) = 0. By the weighted mean-value theorem, we have
[ re6e s = 6) [ 1160 dx = 61 b) = f(@)]
for some c in [a, b]. Therefore, (5.29) becomes
J| F()2x) dx = £BYG(B) ~ GOLI(B) = f(@)] = J(@G(e) + SBIC(E) = G,
This proves (5.28) since G(c) = % g(X) dx and G(b) — G(c) = J? g(x) dx .

5.10 Exercises

Use integration by pats to evaluate the integrds in Exercises 1 through 6.

1. [xsinxdx. 4 fx3sinx dx.
2. |x2sinX dx. 5. fsinx cos X dx.
3. |8 cos x dx. 6. fx sn X cosX dx.

7. Use integration by parts to deduce the formula
fsin2 X dx = —sin X COS X + Jcos2x dx .
In the second integral, write cos? x = 1 —sin? x and thereby deduce the formula
Jsinzxdx: Ix =1}sin2x.
8. Useintegration by parts to deduce the formula
fsin” X dx = =sin®1x cos X + (n = 1) fsin"_z X cos? X dx .

In the second integral, write cos? x = 1 — sin2 X and thereby deduce the recursion formula

. sin®"!Xcosx n=1[
fsm" xdx= = p + p sin”2 x dx .

9. Us the results of Exercises 7 and 8 to show that

72 .
@ f sin? x dx = —.
o 4
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fﬂ/z 3 fﬂ/z 3n
(b) Jo sintxdx =4Ji sin?xdx = 46"

© f:lz sin® X dx = % J;)m sin* x dx = %
10. Use theresults of Exercises 7 and 8 toderive the following formulas.

@ fsin3 xdx = —}cosx + Y5 cos 3X

(b) jsintx dx=3x —}sin2x + g} sin 4x.

(¢) jsin®X dx = —3x + 5 COS 3x — #5 COS 5x.
11. Use integration by pats and the results of Exercisss 7 and 10 to deduce the following formulas.

(@ jXsin?Xdx=}x2=}xSN2X =% COS X

(b) jx sin®X dx = $ SINX — g5 SN 3X = 3x COS X + 7 X COS 3x.

© fxz sin® X dx = 1x3 + (} — $x?) Sin 2x = }x cos 2.

12. Use integration by parts to derive the recursion formula

cos"Ixsnx n - | S
cos”" xdx= —— + " cos™%x dx .
n

13. Use the result of Exercise 12 to obtain the following formulas.
@ fcos2x dx = 3x + § dn 2x.
(b) fcossx dx = 3 Sin X + 7 sin 3x,
(€) jeos*xdx = §x+1sin2x+ 3% sSn4x.

14. Use integration by pats to show that

x2
f\/l —xtdx =x\1 - x? +fﬁdx.
Write x2 = x2= 1 + 1 in the second integral and deduce the formula
1
f\/l —x¥dx =xV1 — x* +%fﬁdx.

15. (a) Use integration by parts to derive the formula

x(a® — x¥m N 2a°n
2n +1 2n +1

f(a2 - x2)n dx = J-(a2 —_ x2)n—1 dx + C .

(b) Use part (a) to evaluate [§ (a® — x*)° dx.
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16. (@) If I(x) = 5 (2 + a® 12 dt, use integration by pats to show that
nl(x) = ¥ W/ x% + a® — (n = Da?l, o(x) if n>2.

(b) Use part (a) to show that f2 x3(x* + 55/2 dx = 168/5 — 40V/5/3.

17. Evaluate the integral |3, /(4 + £)™V2 dt, given that %, (4 + ) dt = 11.35. Leave the

answer in terms of 4/3 and4/31.
18. Use integration by parts to derive the formula

fsin’”rl X lsin"x_ n j sin™* x

—_dx = —
cos™Hl x mcos™x mJcos™ 1y

Apply the formulato integrate | tan® x dx and f tan* x dx.
19. Use integration by parts to derive the formula

cos™tl x v lcos™x m{ cos™lx
sin"t x nsin®x n) sin"lx

Apply the formulato integrate | cot? x dx and | cot! x dx.
20. (a) Find an integer n such that n §§ xf"(2x) dx = {3 {f"(t) dt.
(b) Compute j}] xf"(2x) dx, given that f(0) = 1, f(2) = 3, and f’(2) = 5.
21. (&) If ¢” is continuous and nonzero on [a, b], and if there is a constant m > 0 such that

¢’(t) >mforallz in[a b], use Theorem 5.5 to prove that

b
f sin ¢(¢) dt

<=
m

[Hint: Multiply and divide the integrand by 6°(¢).]
(b) If a> 0, show that | {2 sin (%) df| < 2/a for all x > a

*5.11 Miscellaneous review exercises
1. Let f be apolynomia withf(0) = 1 and let g(x) = PJ (x). Compute g(O), g'(O), . . ., g™(0).
2. Find a polynomial P of degree < 5 with P(0) =1,P(1)=2,P(0)=F'(0) = P’ (1) = P'(1) = 0.
3. If f(x) = cos x and g(x) = Sin x, prove that
fiWx)=COS(X +4nm) and  g"(x) =sin (X + nm).
4.1f h(X) = f(x)g(x), prove that the nth derivative of # is given by the formula

n

h(")(x) = z(Z)f(k)(x)g(nfk)(x) ,

k=0"

where (%) denotes the binomial coefficient. Thisis called Leibniz’s formula.
5 Given two functions f ad g whose dervatives’ and ¢ satisfy the equations

(5.30) f)=gx), ggo=—-f®, fO=0, g0=1,

for every x in some open interval J containing 0. For example, these equations are satisfied
when ¥ (x) =sn x and g(x) = cos x.
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(a) Prove that f3(x) + g%x) = 1 for every x in J,
() Let F and G be another pair of functions satisfying (5.30). Prove that F(x) = f(x) and
G(x) = g(x) for every x in J. [Hint: Consider h(x) = [F(X) — f(0)F + [G(X) = g(x)]%]
(c) What more can you say about functionsfand g satisfying (5.30)?

6. A function f, defined for all positive real numbers, satisfies the equation f(x®) = x? for every
X > 0. Determinef’(4).

7. A function g, defined for all positive real numbers, satisfies the following two conditions:
g(1) =1 and g'(x® = x3 for all x > 0. Compute g(4).

8. Show that

zsint
j@—’ +1dt20 for all x > 0.
9. Let ¢, and C, be two curves passing through the origin as indicated in Figure 5.2. A curve
C is said to “bisect in area” the region between C; and (, if, for each point P of C, the two
shaded regions A and B shown in the figure have equal areas. Determine the upper curve C,,

given that the bisecting curve C has the equation y = x2 and that the lower curve C; has the
equationy = $x2

Ficure 5.2 Exercise 9.

10. A functionfis defined for all x as follows:

x2 if x is rationa

J&) :{

0 if x is irrational .

Let Q) =F (m)/hif h#0. (a) Provethat Q(h) > 0 ash—0. (b) Prove that T hes a derivative
at 0, and compute f(0).

In Exercises 11 through 20, evaluate the given integrals. Try to simplify the calculations by
usng the method of subditution andlor integration by pats whenever possible.

11 [(2 + 3%) sn 5 dx. 16. f 0‘;;4(1 — X dx.
2 !
12. fx\/ 1 + x%dx. 17. f x~2sin o dx.
1
13 f A0 = 1 dx, 18 j sin ¥/x = 1 dx.
12x+3 .
—_ T 19, 2 2 dx.
14, L(Gx 7 dx. 9 fx sn x? cos x* dx

5 J'x4(1 + X dx. 7} f A/T+ 3 cos? x sin 2x dx.
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21. Show that the value of the integral |2 375¢(¢ + 1)~ dx is 2n for some integer .
22. Determine a pair of numbers a and b for which [} (ax + ) + 3x + 2)72 dx = 3/2.
23. Letl,= {1~ x*™ dx. Show that (2n + 1)I, = 2n I,_,, then use this relation to compute

12’ 13’ 14’ and I5'
24. Let F(m, m)= 2 1+ ) dt, m > 0, n > 0. Show that

(m + DFE@m, n) + nFm + 1,1 = 1) = x™1(1 + x),

Use this to gvaluate F(10, 2).
25. Let f(n)= [1/*tan* x dx where n > 1. Show that

@ f(z +1) <f(n.
(Mf@)+ﬂn-2):;é7 ifn> 2.

1 1 .
(C)n+l<2f(n)<~r-]—_-'|- if n>2

26, Compute f (Q), giventhat f(=) =2 and that {Glf(x) +f’(x)] Snx dx = 5.
27. Let A denote the value of the integral

fﬂ cosx
o (x + 2 -

Compute the following integral in terms of A:

25N X Cos X
—dx.
0

x +1

The formulas in Exercises 28 through 33 appear in integral tables. Verify each of these formulas
by any method.

Va+bx f dx
28, | ——dx =2V ——
f s = Wadbta ) et TC
(x {ax + B — nb | x» 1/ ax +bdx) + C (n # -3

x™\/ a +bx—nmaf

29.

o

fx“\/ax +bdx= (

30.

+3)
f xm dx ( xm—1 p . o
Va +bx (2m + Db Voo x) (m = =)).

1 x Vax+b Qn — 3a dx C )
xVax +b = (n (n - Dbx—1  (2n =2)b Wax +b6 '
s’ x cos™ 1 x m — 1 {cos™2x
i sin™ x o= (m — n) sin™x Y= nJ sin” x dx +C (m 5 n).
» fcos’"xx=_ cos™H x _m—n+2J‘cos"‘xdx+C(n¢1)
") osin®x (n — 1) sin®! x n—1 Jsin"2x ‘

34. (a) Find a polynomial P(x) such that P'(x) — 3P(x) = 4 — 5¢ + 3x2 Prove that there is
only one solution.
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3.

36.

(b) If Q(x) is agiven polynomial, prove that there is one and only one polynomia P(X) such
that P'(x) = 3P(x) = Q(X).
A sequence of polynomids (cdled the Bernoullipolynomials) is defined inductively as follows.

PX) =1 P.X)=nPyx) and fP®dx=0 if n>l.

(8) Determine explicit formulas for Py(x), Py(x), . - - , Ps(x).

(b) Prove, by induction, that P,(x) is a polynomid in x of degree m, the tem of highes degree
beng x™,

(c) Prove that P,(0)= P, (1) ifn>2

(d) Prove that P(x + 1) = P,(x) = mx™ 2 if p > L

(e) Prove that for » > 2 we have

k-1

n ¥ _Pn+1(k)—Pn 1(0)
Zr —‘[)P,(x)dx—#.

=1
(f) Prove that P,(1 =~ x) = ( =1)"P,(x) if n > 1.
(9) Prove that P,,.,(0)=0and P, ;($)=0if p> L
Assume that |f“(x)| < m for each x in the interval [0, a], and assume thatftakes on its largest

value at an interior point of this interval. Show that |f(0)| + |f*(a)l < am. You may assume
thatf” is continuous in [0, a].



6

THE LOGARITHM, THE EXPONENTIAL,
AND THE INVERSE TRIGONOMETRIC FUNCTIONS

6.1 Introduction

Whenever man focuses his attention on quantitative relationships, he is either studying
the properties of a known function or trying to discover the properties of an unknown
function. The function concept is so broad and so general that it is not surprising to find
an endless variety of functions occurring in nature. What is surprising is that a few rather
special functions govern so many totally different kinds of natural phenomena. We shall
study some of these functions in this chapter-first of all, the logarithm and its inverse
(the exponential function) and secondly, the inverses of the trigonometric functions. Any-
one Who studies mathematics, either as an abstract discipline or as a tool for some other
scientific field, will find that a good working knowledge of these functions and their prop-
erties is indispensable.

The reader probably has had occasion to work with logarithms to the base 10 in an
elementary algebra or trigonometry course. The definition usualy given in elementary
algebra is this: If x > 0, the logarithm of x to the base 10, denoted by logy, x, is that
real number u such that 10* = x. If x = 10* and y = 107, the law of exponents yields
Xy = 10%*t*, In terms of logarithms, this becomes

(6.1) logye (xy) = logyy x + logy, p.

It is this fundamental property that makes logarithms particularly adaptable to computa-
tions involving multiplication. The number 10 is useful as a base because real numbers
are commonly written in the decimal system, and certain important numbers like 0.01,
0.1, 1, 10, 100, 1000, . . . have for their logarithms the integers -2, -1, 0, 1, 2, 3, . . .,
respectively.

It is not necessary to restrict ourselves to base 10. Any other positive base » # 1 would
serve equally well. Thus

(6.2) u=1log, x means x=b",
and the fundamental property in (6.1) becomes

(63) log, (xy) =log, x + log, y .
226
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If we examine the definition in (6.2) from a critical point of view, we find that it suffers
from several logical gaps. First of all, to understand (6.2) we must know what is meant
by b*. Thisis easy to define when u is an integer or a rational number (the quotient of two
integers), but it is not a trivial matter to define b% when u is irrational. For example, how
should we define 10v2? Even if we manage to obtain a satisfactory definition for ¥,
there are further difficulties to overcome before we can use (6.2) as a good definition of
logarithms. It must be shown that for every x > O, there actualy exists a number y such
that x = p*, Also, the law of exponents, p*b* = b**¥, must be established for all rea
exponents y and v in order to derive (6.3) from (6.2).

It is possible to overcome these difficulties and arrive at a satisfactory definition of
logarithms by this method, but the process is long and tedious. Fortunately, however,
the study of logarithms can proceed in an entirely different way which is much simpler
and which illustrates the power and elegance of the methods of calculus. The idea is to
introduce logarithms first, and then use logarithms to define 5%

6.2 Moativation for the definition of the natural logarithm as an integral

The logarithm is an example of a mathematical concept that can be defined in many
different ways. When a mathematician tries to formulate a definition of a concept, such
as the logarithm, he usually has in mind a number of properties he wants this concept
to have. By examining these properties, he is often led to a simple formula or process
that might serve as a definition from which ali the desired properties spring forth as logical
deductions. We shall illustrate how this procedure may be used to arrive at the definition
of the logarithm which is given in the next section.

One of the properties we want logarithms to have is that the logarithm of a product
should be the sum of the logarithms of the individual factors. Let us consider this property
by itself and see where it leads us. If we think of the logarithm as a function f, then we
want this function to have the property expressed by the formula

(6.4) S&p) =f(x) + f(»)

whenever x, y, and xy are in the domain of f .

An equation like (6.4), which expresses a relationship between the values of a function
at two or more points, is caled a functional equation. Many mathematical problems can
be reduced to solving a functional equation, a solution being any function which satisfies
the eguation. Ordinarily an equation of this sort has many different solutions, and it is
usually very difficult to find them all. It is easier to seek only those solutions which have
some additional property such as continuity or differentiability. For the most part, these
are the only solutions we are interested in anyway. We shall adopt this point of view and
determine all differentiable solutions of (6.4). But first let us try to deduce what information
we can from (6.4) alone, without any further restrictions on T.

One solution of (6.4) is the function that is zero everywhere on the rea axis. In fact,
this is the only solution of (6.4) that is defined for all real numbers. To prove this, letf
be any function that satisfies (6.4). If 0 is in the domain off, then we may put y = 0 in
@)tootan £ 0= F (X) + f (0 andthisimpliesthat ¥ (x) = 0 for every x in the domain
of f. In other words, if 0 isin the domain of f, thenfmust be identically zero. Therefore,
a solution of (6.4) that is not identically zero cannot be defined at 0.
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If ¥ isasolution of (6.4) and if the domain off includes 1, we may put x =y = 1 in
(6.4) to obtain ¥ (1) = 2f (1), and this implies

f(1) = O.

If both 1 and = 1 are in the domain off, we may takeXx = — 1 and y = — 1 to deduce
that f(1) = 2f(—1); hencef(-1) = 0. If now x, —x, 1, and — 1 are in the domain off,
we may puty = = 1in (6.4) to deduce f(-x) = f(— 1) +f (x) and, since¥ (- 1) = o,

we find
f(=x)=fx).

In other words, any solution of (6.4) is necessarily an even function.
Suppose, now, we assume that ¥ hasaderivative ¥ ‘(x) ateachx 0. If we hold y fixed
in (6.4) and differentiate with respect to x (using the chain rule on the left), we find

o Gy) =f (%)

When x = 1, this gives us yf’(y) = f'(1), and hence we have

') =f—%2 foreach  y 0.

From this equation we see that the derivative f' is monotonic and hence integrable on

every closed interval not containing the origin. Also, f’ iscontinuous on every such interval,
and we may apply the second fundamental theorem of calculus to write

) -(0) =fx Sod= £ f ’ % dt .

If x > 0, this equation holds for any positive ¢, and if x < 0, it holds for any negative c.
Since f(1) = 0, the choice ¢ = 1 gives us

x
f(x) = f’(l)f %dt it x>0
1
If x is negative then —x is positive and, since f (X) = f (-X), we find

0= rml Lda if x<o.

u t

These two formulas for f(x) may be combined into one formula that is vaiid for both
positive and negative x, namely,

6.5) i) = f(1) fl a 1t dt  if x50 .

Therefore we have shown that if there is a solution of (6.4) which has a derivative at each
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point X # 0, then this solution must necessarily be given by the integral formula in (6.5).

If f(1) = 0, then (6.5) implies that f(x) = O for allx # 0, and this solution agrees with
the solution that is identically zero. Therefore, if f is not identically zero, we must have
(1) # O, in which case we can divide both sides of (6.5) by f’(1) to obtain

H
(6.6) g(x) =J %—d: if x#0,
1

where g(x) = f(x)/f'(1). The function g is also a solution of (6.4), since ¢f is a solution
whenever T is. This proves that if (6.4) has a solution that is not identically zero and if
this solution has a derivative everywhere except at the origin, then the function g given
by (6.6) is also a solution, and a// solutions may be obtained from this one by multiplying
g by a suitable constant.

It should be emphasized that this argument does not prove that the function g in (6.6)
actually js a solution, because we derived (6.6) on the assumption that there is at least one
solution that is not identically zero. Formula (6.6) suggests a way to construct such a
solution. We simply operate in reverse. That is, we use the integral in (6.6) to define a
function g, and then we verify directly that this function actually satisfies (6.4). This
suggests that we should define the logarithm to be the function g given by (6.6). If we
did so, this function would have the property that g(-x) = g(x) or, in other words,
distinct numbers would have the same logarithm. For some of the things we want to do
later, it is preferable to define the logarithm in such a way that no two distinct numbers
have the same logarithm. This latter property may be achieved by defining the logarithm
only for positive numbers. Therefore we use the following definition.

6.3 The definition of the logarithm. Basic properties

perivimion.  I'F xis a positive real number, we define the natural 1ogarithm of x, denoted
temporarily by L(x), to be the integral

_|°1
(6.7) L(x) = . tdt.

When x > 1, L(x) may be interpreted geometricaly as the area of the shaded region
shown in Figure 6.1.

THEOREM 6.1 The logarithm function has the following properties:
@ L@ =0

1
(b) L'(X) = p for every x > 0.

(c) L(ab) = L(a) + L(b) for everya> 0, b > 0.

Proof. Part () follows at once from the definition. To prove (b), we simply note that
L is an indefinite integral of a continuous function and apply the first fundamental theorem
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of calculus. Property (c) follows from the additive property of the integral. We write

ab dt a ab ab
I““f[7=f%ff#=“”f[%'
1 1 a a

In the last integral we make the substitution # = t/a, du = dt/a, and we find that the
integral reduces to L(b), thus proving (c).

¥ = L(x)

(1,0)

Ficure 6.1 Interpretation of the log- Ficure 6.2 The graph of the natural log-
arithm as an area. arithm.

6.4 The graph of the natural logarithm

The graph of the logarithm function has the general shape shown in Figure 6.2. Many
properties of this curve can be discovered without undue calculation simply by referring
to the properties in Theorem 6.1. For example, from (b) we see that L has a positive
derivative everywhere so it is strictly increasing on every interval. Since L(1) = O, the
graph lies above the x-axis if x > 1 and below the axis if 0 < x < 1. The curve has slope
1 when x = 1. For x > 1, the sope gradually decreases toward zero as X increases
indefinitely. For small values of x, the slope is large and, moreover, it increases without
bound as x decreases toward zero. The second derivative is L” (X) = —1/x® which is
negative for all x, so L is a concave function.

6.5 Consequences of the functional equation L(ab) = L(a) + L(b)

Since the graph of the logarithm tends to level off as x increases indefinitely, it might
be suspected that the values of L have anupper bound. Actually, the function is unbounded
above; that is, for every positive number M (no matter how large) there exist values of x
such that

(6.8) LX) > M,
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We can deduce this from the functional equation. When a = b, we get L(a?) = 2L(a).
Using the functional equation once more with b = &% we obtain L(a®) = 3L(a). By
induction we find the general formula

L(@") =nL(a)
for every integer n > 1. When a = 2, this becomes L(2") = nL(2), and hence we have

(6.9) L2") > M when n > M

L)
This proves the assertion in (6.8). Taking b = 1ja in the functional equation, we find
L(l/a) = -L(a). In particular, when a = 2" where nis chosen asin (6.9), we have

1
L(Z_" ): —L(2") < —-M ,
which shows that there is also no lower bound to the function values.

Finally we observe that the graph crosses every horizontal line exactly once. That is,

given an arbitrary real number b (positive, negative, or zero), there is one and only one
a > 0 such that

(6.10) L@="hb.

To prove this we can argue as follows: If b >0, choose any integer # > b/L(2). Then
L(2™) > b because of (6.9). Now examine the function L on the closed interval [1, 27].
Its value at the left endpoint is L(1) = O, and its value at the right endpoint is L(2").
Since 0 < b < L(2"), the intermediate-value theorem for continuous functions (Theorem
3.8 in Section 3.10) guarantees the existence of at least one a such that L(a) = b. There
cannot be another value a' such that L(a’) = b because this would mean L(a) = L(a")
for a # a, thus contradicting the increasing property of the logarithm. Therefore the
assertion in (6.10) has been proved for b > 0. The proof for negative b follows from this
if we use the equation L(l/a) = -L(a). In other words, we have proved the following.

THEOREM 6.2. For every real number b thereis exactly one positive real number a whose
logarithm, L(a), isequal to b.

In particular, there is exactly one number whose natural logarithm is equal to 1. This
number, like 7, occurs repeatedly in so many mathematical formulas that it was inevitable
that a special symbol would be adopted for it. Leonard Euler (1707-1783) seems to have
been the first to recognize the importance of this number, and he modestly denoted it
by e, a notation which soon became standard.

periniTion. e denote by e that numberfor which

(6.12) Le)=1.
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In Chapter 7 we shall obtain explicit formulas that enable us to calculate the decimal
expansion of e to any desired degree of accuracy. Its value, correct to ten decimal places,
is 2.7182818285. In Chapter 7 we aso prove that e is irrational.

Natural logarithms are also called Napierian Zogarithms, in honor of their inventor,
John Napier (1550-1617). It is common practice to use the symbols In x or log x instead
of L(x) to denote the logarithm of x.

6.6 Logarithms referred to any positive base b # 1

The work of Section 6.2 tells us that the most general f which is differentiable on the
positive real axis and which satisfies the functional equation f(xy) = f(x) + f(y) is given
by the formula

(6.12) f(x) = clog x ,

where c isaconstant. For each c, we could call thisf(x) the logarithm of x associated with
¢ athough, of course, its value would not be necessarily the same as the natural logarithm
of x. When ¢ = 0, FIS identicaly zero, so this case is uninteresting. If ¢ # 0, we may
indicate in another way the dependence off on ¢ by introducing the concept of a base
for logarithms.

From (6.12) we see that when ¢ # 0, there exists a unique real number b > 0 such that
f(b) = 1. This b is related to ¢ by the equation c log b = 1; hence b # 1, ¢ = 1/log b,
and (6.12) becomes

log x

f(x) =i—(gl—)'

For this choice of c we say that f (x) is the logarithm of x to the base b and we write log, x

for f(x).

perinimion. 1 b >0, b 1, and if x > 0, the logarithm of x to the base b is the number

log x

log b’

where the logarithms on the right are natural logarithms.

Note that log, b = 1. Also, when b = e, we have log, X = log X, so natural logarithms
are those with base e. Since logarithms to base e are used so frequently in mathematics,
the word logarithm almost invariably means natural logarithm. Later, in Section 6.15,
we shall define b* in such a way that the equation §* =x will mean exactly the same as the
equation y = log, X.

Since logarithms to the base b are obtained from natural logarithms by multiplying by
the constant 1/log b, the graph of the equation y = log, X may be obtained from that of
the equation y = log x by simply multiplying all ordinates by the same factor. When
b > 1, this factor is positive, and, when b < 1, it is negative. Examples with b > 1 are
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@b>1 (b) 0<b<l

Ficure 6.3 Thegraph of y = log, X for various values of b,

shown in Figure 6.3(a). When b < 1, we note that 1/6 > 1 and log b = —log (1/b), S0

the graph of y = log, X may be obtained from that of y = log,,, X by reflection through
the x-axis. Examples are shown in Figure 6.3(b).

6.7 Differentiation and integration formulas involving logarithms

Since the derivative of the logarithm is given by the formula D log x = 1/x for x > 0,
we have the integration formula

f)—lcdx=logx+C.

More generdly, if u = f(x), wheref has a continuous derivative, we have

(6.13) j%HZIOgu+C or f%dleogf(x)+c.

Some care must be exercised when using (6.13) because the logarithm is not defined for
negative numbers. Therefore, the integration formulas in (6.13) are valid only if u, or
f(x), is positive.

Fortunately it is easy to extend the range of validity of these formulas to accommodate
functions that are negative or positive (but nonzero). We simply introduce a new function
L, defined for all red x % 0 by the equation

IEd]
(6.14) L) = log |x| = L %dt,

a definition suggested by Equation (6.6) of Section 6.2. The graph of L; is symmetric
about the y-axis, as shown in Figure 6.4. The portion to the right of the y-axis is exactly
the same as the logarithmic curve of Figure 6.2.
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Since log |xy| = log (|x||y|) = log |x| + log |y|, the function L, also satisfies the basic
functional equation in (6.4). That is, we have

Ly(xy) = LX) + Ly(y)
for all real x and y except 0. For x > 0, we have Lg(x) = 1/x since L,(x) isthe same as
log x for positive x. This derivative formula also holds for x < O because, in this case,
L,(x) = L(-x), and hence Ly(x) = — L'( —x) = — 1/(—x) = 1/x. Therefore we have

(6.15) Ly(x) = forallreal x £ 0 .

b

/,V = Lo(x) = log| x|

Ficure 6.4 The graph of the function L,

Hence, if we use L, instead of L in the foregoing integration formulas, we can extend
their scope to include functions which assume negative values as well as positive values.
For example, (6.13) can be generalized as follows:

(6.16) f%: log |ul + ¢, f’ffl(%dleog IfG)l+ C.

Of course, when we use (6.16) along with the second fundamental theorem of calculus to
evaluate a definite integral, we must avoid intervals that include points where u or
f(x) might be zero.

EXAMPLE 1. Integrate | tan x dx.

Solution. Theintegral has the form — [ du/u, where # = cos x, du = —sinx dx. There-
fore we have

J-tanx dx=—f@= —log |u| + ¢ = —log|cos x| + C,
u

a formula which is valid on any interval in which cos x # 0.
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The next two examples illustrate the use of integration by parts.
exawie 2. Integrate | log x dx.

Solution. Let ¥ = log X, du = dx. Then du =dx/x, v = x, and we obtain

flogxdx=fudv=uv—fvdu=xlogx—fxldx=xlogx—x+C.
x

exaveLe 3. Integrate | sin (log x) dx.

Solution. Let # = sin (log x), v = x. Then du = cos (log x)( 1 /x) dx, and we find

fsin (log x) dx :fu dv = uv —fvdu = x sin (log x) --fcos (log x) dx .

In the last integral we use integration by parts once more to get

fcos (log x) dx = x cos (I og x)+fsin(logx) dx .

Combining this with the foregoing equation, we find that

J sin (log x) dx = 4x sin (log X) — 4x cos (log x) + C,

and

fcos (log x) dx = $x sin (log xj +%x cos (log x) + C.

6.8 Logarithmic differentiation

We shall describe now a technique known as logarithmic differentiation which is often
a great help in computing derivatives. The method was developed in 1697 by Johann
Bernoulli (1667-1748), and all it amounts to is a simple application of the chain rule.

Suppose we form the composition of L, with any differentiable function f; say we let

g(x) = Lo[f(x)] = log ]f(x)|

for those x such that f(x) # 0. The chain rule, used in conjunction with (6.15), yields the
formula

F(x)
J(x).

If the derivative g'(x) can be found in some other way, then we may use (6.17) to obtain
f'(x) by simply multiplying g'(x) by f(X). The process is useful in practice because in
many cases g'(x) is easier to compute than ' (x) itself. In particular, this is true when f is
a product or quotient of several smpler functions. The following example is typical.

(6.17) gX = L)X =
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exampLE. Compute f7(x) if f (X) = x2 cosx (1 + x%)~7.

Solution. \We take the logarithm of the absolute vaue off(x) and then we differentiate.
Let

g(x) = log | f(x) = log x2 + log (COS x| + log (1 + x4

2 log |x| + log |cos x|-7 log (1 + X").

Differentiation yields

, ‘(x) 2 sinx _ 28x%
g =82 ..
fx) x COS x 1 + x
Multiplying by f (x), we obtain

, 2 COS x xZsinx 28x° cosx
Je) = ne o N 48
T+ x9H *+ x9H a1+ x%°.

6.9 Exercises

1. (&) Find all ¢ such that log x = ¢ + j = dt for all x > 0.

(b) Let f(x) = log [(1 + x)/(1 = X)] if x > 0. If a and b are given numbers, with ab # = 1,
find all x such that f(x) = f(a) + f(b).
2. In each ca find a real x sdisfying the given eguation.

@ log (1 +x)=log (L - X). (©)2logx=xlog2, x=2
(b) log (1L + x) =1 + log(1 — X). dlogVx +Vx+1) =1

3. Let f(x) = (logx)/x if x > 0. Describe the intervals in which f is increasing, decreasing,
convex, and concave. Sketch the graph off.

In Exercises 4 through 15, find the derivative f*(x). In each case, the function fis assumed to be
defined for all real x for which the given formulafor f(x) is meaningful.

4. f(x) = log (1 + x?). 10. f)=(X + V1 2"

5. f(x) = log /1 + x% 1L f(x) =vVx+1 —log(l +Vx +1).
6.1 = 1og VA~ % 1. f) = xlog (x+ /1 +38) = VI ¥ 2

1
7./ =1og log). 15 /) = 5= log et XV
8. f(x) = log(x® log x). 2Vab " +/a — xv/b
xt —1 14. f(x) = x[sin (log x) = Cos (log x)].
o 1 JA—
9. f(X) = ¢ log 51 15. f(x) = log, e
In Exercises 16 through 26, evaluate the integrals.

p dx 20 -1 gt
1'J2+3x' ), T
17. { log? x dx. 21. { cot x dx.
18. fx log x dx. 22. {x"log (ax) dx.

19. § x log? x dx. 23. { a2 log?x dx.



Exercises 237

24,

25,
27,

28,

3L

32

J‘ dx % loglxl

xlogx’ v1+log|x
1-¢% log (1 1) dQt
¢ 1 -z ’

Derive the recursion formula

x™*110gm x n
m " = — m n—1
fx log” x dx m+1 m+1jx log™™ x dx

and use it to integrate {x®log®x dx.
@I1fx>0letf(x) = x=1=10g X, g(x) = log X = 1+ 1/x, Examine the signs off’
ad g’ to prove that the inegudlities

!
== <logx <x—1
x

arevaid for x > 0, x % 1. When x = 1, they become equalities.
(b) Sketch graphs of the functions A and B defined by the equations A(x) = x — 1 and
B(x) =1 ~1/x for x > 0, and interpret geometrically the inequalities in part ().
Prove the limit relation
1 1
lim o8 L+ 0

x®—0

=1

by the following two methods: (a) using the definition of the derivative L’ (1); (b) using the
reult of Execie 28.

If a> 0, use the functional equation for the logarithm to prove that log (a") = r log a for

every rationd number .

Let P ={a,, a5, ay, ..., &} beany partition of the interval [1, X], where x > 1.

(a) Integrate suitable step functions that are constant on the open subintervals of P to derive
the following inequalities :

< ap — g1 S ap = g
z ———)<logx < z —).
a = ]

k=F

(b) Interpret the inequalities of part (a) geometrically in terms of areas.
(c) Specialize the partition to show that for every integer n> 1,

n—1 1

ZE< Ogn<2k

k=2

Prove the following formulas for changing from one Iogarithmic base to another:
log, x
log, b’
Given that log, 10 = 2.302585, correct to six decimal places, compute log,, e using one of the

formulasin Exercise 32. How many correct decimal placescan you be certain of in the result
of your calculation? Note: A table, correct to six decimal places, gives log, e = 0.434294.

(a) log, x = log, alog, X; (b) log, x =
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34. A function f, continuous on the positive real axis, has the property that for all choices of
x>0andy > 0, the integral

J :” £ dt

isindependent of x (and therefore depends only on'y). If f(2) = 2, compute the value of the
integral A(x) = {2 f(¢) dt for all x > 0.
35. A function f, continuous on the positive real axis, has the property that

flawf(t) dt =yf:f(t) dt + xﬂf(t) dr

forallx>0andally >0. If f(1) =3, compute f (x) for each x > 0.

36. The base of a solid isthe ordinate set of afunction f which is continuousover the interval
[1, a] . All cross sections perpendicular to the interval [1, a] are squares. The volume of the
solid is 34® log? a — §a® log a + Fa® ~ 35 for every a > 1. Compute f(u).

6.10 Polynomial approximations to the logarithm

In this section we will show that the logarithm function can be approximated by certain
polynomials which can be used to compute logarithms to any desired degree of accuracy.
To simplify the resulting formulas, we first replace x by 1 - x in the integral defining
the logarithm to obtain
1—-x dt

log (1 = Xx) :fl .

which is valid if x < 1. The change of variable f =1 == u converts this to the form

* du
—log (1 = x = —
8 ) Ol-u’

valid for x < 1
Now we approximate the integrand 1/(1 — #) by polynomials which we then integrate to
obtain corresponding approximations for the logarithm. To illustrate the method, we
begin with a simple linear approximation to the integrand.

From the algebraic identity 1 = %2 = (1 = u)(1 + u), we obtain the formula

(6.18) —— =1+u+

valid for any real u s 1. Integrating this from O to x, where x < 1, we have

2 T 2
(6.19 —log (1 =X)=x+ % +f0-1ufiuu

The graph of the quadratic polynomial P(x) = x + }x% which appears on the right of
(6.19) is shown in Figure 6.5 along with the curve y = —log (1 = x). Note that for x near
zero the polynomial P(x) is a good approximation to —log (1 — X). In the next theorem
we use a polynomial of degree n = 1 to approximate 1/(1 = u), and thereby obtain a
polynomial of degree n which approximates log (1 = X).
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.
o

-

-

- log (1 -%)

-
——
— y

FIGURe 65 A quadratic polynomial approximation to the curve y = —log (1 = x).
Let P, denote the polynomial of degree n given by

THEOREM 6.3.
k=1

x* x° x" < X
P = hadl bl e = A
(%) x+2+3+ " Zk

—log (1 — x) = P,(X) +J U
Jo1 iy

Then, for every x < 1 and every n > 1, we have
& n

(6.20)

Proof. From the agebraic identity
le—w=Q =uw(l+u+ u®+ ...+ u"d),
we obtain the formula
n
R L u ,
1—u

L 1 +u+ a4+

| - u
which is valid for u# # 1. Integrating this from 0 to x, where x < 1, we obtain (6.20).

We can rewrite (6.20) in the form
—log (1 = x) = P() + E.x),

(6.21)
where E,(x) is the integral,
E,(x) :f Y du .
(l—u
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The quantity E,(x) represents the error made when we approximate —log (1 — x) by the
polynomia P,(x). To use (6.21) in computations, we need to know whether the error is
positive or negative and how large it can be. The next theorem tells us that for small
positive x the error E,(X) is positive, but for negative x the error has the same sign as

(—1)"*1, where n is the degree of the approximating polynomial. The theorem also gives
useful upper and lower bounds for the error.

THEOREM 6.4. If 0 < x < 1, we have the inequalities

n+1 1 xn+1
E, (x)

n+1= Sl—xn+4+1

6.22) X

If x < 0, the error E,(X) has the same sign as (- 1)+, and we have

| n¥L

1+ 1

629 0 < (—1yE, ) < M

Proof. Assume that 0 < x < 1. In the integral defining E,(x) we have 0 < u <% so
1-x<1-—y<1, and hence the integrand satisfies the inequalities

n

u
S - 1 —-x
Integrating these inequalities, we obtain (6.22).
To prove (6.23), assume x < 0 and let t = —x = |x|. Then ¢ > 0 and we have
—1 n t -V)" t v
E(¥) = E,(—t :f Y du =—f ( dv=(—1 "+1f dv
(=1 s 1 —u 01+ (=) ol +v

This shows that E,(x) has the same sign as (- 1)**. Also, we have

t t n+1 n+l
(=1 E,(x) =f v dugf o dp = Ll
ol + v 6

n+1 n+4+1

which compfetes the proof of (6.23).

The next theorem gives a formula which is admirably suited for computations of loga-
rithms.

THEOREM 65. If0< x €1 and ifm>1, we have

2m—1

2m =1

Iogl+x
I - X

x3
=2(x+?+"'+ )+Rm(x),
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where the error term, R,(X), satisfies the inequalities

2m+1 - 2m+1
(6.24) X <R,(X < 2= xx

2m+ 1 “1—x2m+1

Proof. Equation (6.21) is valid for any rea x < 1. If we replace x by —x in (6.21),
keeping x > == 1, we obtain the formula

(6.25) —log (1 + x) = P(—x)+ E,(—x).

If -1 < x <1, both (6.21) and (6.25) are valid. Subtracting (6.25) from (6.21), we find

(6.26) Iog} +§ = P,(X) = Py(—x) + E(X) — E,(—x).

In the difference P,(X) — P,(—x), the even powers of x cancel and the odd powers double
up. Therefore, if n iseven, say N = 2m, we have

3 2m—1
P2NL(x)_P2m(—x)=2X+x_+' .t ad )a

3 ' 2m — 1

and Equation (6.26) becomes

14+ x ( x? xz”‘_l)

where R,(X) = E,,(x) — Eyu(—x). This formula is valid if x lies in the open interval
— 1 < x < 1. Now we restrict X to the interval O < x < 1. Then the estimates of Theorem
6.4 give us

x2mt1 1 x2m+1 x2m+l
< E,(x) L and O0< —E, (—x) <
2m + 1 2 ( ) 1 — N 2m + 1 2m( ) =

2m+ 1
Adding these, we obtain the inequalities in (6.24), since | + 1/(1 =X = (2 = x)/(1 = X).

exawle.  Taking m = 2 and x = }, we have (1 + x)/(1 — x) = 2, and we obtain the
formula

log2 =20} + s0) + R(}), whee  3(3)° < R(3) < 3(3)° = ks

This gives us the inequalities 0.6921 < log 2 < 0.6935 with very little calculation.
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6.11 Exercises

1. Use Theorem 6.5 with x = § and m = 5 to calculate approximations to log 2. Retain nine
decimals in your calculations and obtain the inequalities 0.6931460 < log 2 < 0.6931476.

2. If x=1%,then (1 + x)/(1 = X) = §. Thus, Theorem 6.5 enables us to compute log 3 in terms
of log 2. Takex =% and m = 5in Theorem 6.5 and use the results of Exercise 1 to obtain the
inequalities 1.098611 < log 3 < 1.098617.

Note Since log 2 < log e < log 3, it follows that 2 < e< 3.

3. Use Theorem 6.5 with x = § to calculate log 5 in terms of log 2. Choose the degree of the
approximating polynomial high enough to obtain the inequalities 1.609435 < log 5 < 1.609438.

4. Use Theorem 6.5 with x = 1 to calculate log 7 in terms of log 5. Choose the degree of the

approximating polynomial high enough to obtain the inequalities 1.945907 < log 7 < 1.945911.
5. Usetheresults of Exercises 1 through 4 to calculate ashort table listing logrnforn=2,3, ...,

10. Tabulate each entry with asmany correct decimal places asyou can be certain of from the
inequdities in Execisess 1 through 4.

6.12 The exponential function

Theorem 6.2 shows that for every real x there is one and only oney such that L(y) = x.
Therefore we can use the process of inversion to define y as a function of x. ~ The resulting
inverse function is called the exponentialfinction, or the antilogarithm, and is denoted by E.

DEFINITION.  For any real X, we define E(X) to be that number y whose logarithm js x.
That is, y = E(X) means that L(y) = x.

The domain of E isthe entire real axis; its range is the set of positive real numbers. The
graph of E, which is shown in Figure 6.6, is obtained from the graph of the logarithm by

Y
'}
PR
) =X
©.1) /,,f” Ny L
//
A/ X
0 // (1,0)
/
/
]

FIGURE 6.6 The graph of the exponential function is obtained from that of the
logarithm by reflection through theliney = x.
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reflection through the line y = x. Since L and E are inverses of each other, we have
L[E(x)] = x forallx and E[L(»)] =Y for ally > 0.

Each property of the logarithm can be translated into a property of the exponential.
For example, since the logarithm is strictly increasing and continuous on the positive real
axis, it follows from Theorem 3.10 that the exponential is strictly increasing and continuous
on the entire real axis. The counterpart of Theorem 6.1 is given by the following theorem.

THEOREM 6.6.  The exponential function has the following properties:
(a) E(0) = 1, E(l) =e

(b)) EX) = E(x) for every x.

(c) E(a + b) = E(a)E(b)  for all a and b.

Proof. Part (a) follows from the equations L(1) = 0 and L(e) = 1. Next we prove (c),
the functional equation for the exponential. Assume that a and b are given and let

x=E@, y=£0), c=L(x).
Then we have
L) = a  L(y)=1b, E(c) = xy

But ¢ = L(xy) = L(x) +L(y) = a+Db. Thatis,c= a+ b. Hence, E(c) = E(a + b).
On the other hand, E(c) = xy = E(@)E(b), 0 E(a + b) = E(a)E(b), which proves (c).

Now we use the functional equation to help us prove (b). The difference quotient for
the derivative E'(X) is

E(x + ) = E(x) _ ECOE(R) — E(x)
h h

E(h) - 1

= E(x) ———

Therefore, to prove (b) we must show that

(6.27) lim 20 =1

=0

=1,

We shall express the quotient in (6.27) in terms of the logarithm. Let k == E(h) == 1.
Then k + 1= E(h) so L(k + 1) = h and the quotient is equal to

6.8 Eh -1 _ k
(6.2) h Lk + 1)

Now as h — 0, E(h) — 1 because the exponential function is continuous at 1. Since
= E(h)- 1, wehave k - 0ash— 0. But

Lk+ D _ L(k+ 1)_1‘(1)—»1}(1):1
k

as k—0.
k

In view of (6.28), this proves (6.27) which, in turn, proves (b).
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6.13 Exponentials expressed as powers of e

The functional equation E(a + b) = E(a)E(b) has many interesting consequences. For
example, we can use it to prove that

(6.29) E(N) = ¢

for every rational number r.
First we take b = -a in the functional equation to get

E(a)E(-a) = E(0) = 1,
and hence E(-a) = 1/E(a) for every rea a. Teking b =a, b= 24,...,b = nain the
functional equation we obtain, successively, E(2a) = E(a)?, E(3a) = E(a)®, and, in general,
we have
(6.30) E(na) = E(a)”
for every positive integer n. In particular, when a = 1, we obtain

E(n) = e,

whereas for a = 1/n, we obtain E(1) = E(1/n)". Since E(1/n) > 0, this implies

(6.31) E (1) = /",

n

Therefore, if we put a = 1/m in (6.30) and use (6.31), we find

o) =l

for all positive integers m and n. In other words, we have proved (6.29) for every positive
rational number r, Since E(-r) = 1/E(r) = e, it also holds for all negative rationa r.

6.14 The definition of ¢* for arbitrary real x

In the foregoing section weproved that e* = E(x) when x is any rational number. Now
we shell define ¢® for irrational x by writing

(6.32 e® = EX) for every real x .
One justification for this definition is that we can use it to prove that the law of exponents
(6.33) el = ettt

is valid for all real exponents a and b. When we use the definition in (6.32), the proof of
(6.33) is a triviality because (6.33) is nothing but a restatement of the functional equation.
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The notation e* for E(x) is the one that is commonly used for the exponential. Occasion-
aly exp(x) is written instead of e”, especialy when complicated formulas appear in the
exponent. We shall continue to use E(x) from time to time in this chapter, but later we
shall switch to &*.

We have defined the exponential function so that the two equations

y=¢ and x = logy

mean exactly the same thing. In the next section we shall define more general powers so
that the two equations y = g¢” and x = log, y will be equivalent.

6.15 The definition of a* for a >0and x real

Now that we have defined ¢* for arbitrary real x, there is absolutely no difficulty in
formulating a definition of ¢ for every a > 0. One way to proceed is to let g* denote that
number y such that log, y = x. But this does not work for a =1, since logarithms to the
base 1 have not been defined. Another way is to define ¢* by the formula

(6.34) a* = evloge

The second method is preferable because, first of all, it is meaningful for all positive a

(including a = 1) and, secondly, it makes it easy to prove the following properties of
exponentials:

loga” =xloga. (ab)® = a*b® .
a*a¥ = a*tv (@) = (@)’ =a™ .

Ifa# 1,theny = a®if and only if x = log, y.

The proofs of these properties are left as exercises for the reader.

Just as the graph of the exponential function was obtained from that of the logarithm
by reflection through the line y = x, so the graph of y = a” can be obtained from that
of y = log, x by reflection through the same line; examples are shown in Figure 6.7. The
curves in Figures 6.7 were obtained by reflection of those in Figures 6.3. The graph
corresponding to a = 1 is, of course, the horizontal liney = 1.

6.16 Differentiation and integration formulas involving exponentials

One of the most remarkable properties of the exponential function is the formula
(6.35) E'(X) = EX) ,
which tells us that this function is its own derivative. If we use this along with the chain

rule, we can obtain differentiation formulas for exponential functions with any positive
base a.

Suppose f(X) = a* for x > 0. By the definition of a°, we may write

f(x) = e*22 = E(x log a) ;



246 The logarithm, the exponential, and the inverse trigonometric functions

hence, by the chain rule, we find
(6.36) f'(x) = E’'(x log a) *log a= E(x log a) 'log a = a” log a.

In other words, differentiation of a®* simply multiplies a’ by the constant factor log a, this
factor being 1 when a = e.

@a>1 (b)0<a<1

Ficure 6.7 Thegraph of y = ¢® for various values of a.

Of course, these differentiation formulas automatically lead to corresponding integration
formulas. For example, (6.35) yields the result

637) [ed=e+cC,

whereas (6.36) gives us the more general formula

(6.39) fawdx =2t ¢ (@a>0,a%l).
log a

These may be generalized further by the method of substitution. We simply replace x
everywhere in (6.37) and (6.38) by u to obtain

u
(6.39) fe"du:e“+C, fa“du:—f’—-+ c (@>0a#l)),
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where u now represents any function with a continuous derivative. If we write ¥ = f(x),
and du = f’(x) dx, the formulas in (6.39) become

fla)
J‘ef(x)f/(x) dx = @ + C , fafmf'(X) dx = Ia + C,

og a

the second of these being valid for a >0, a # 1.
exawLe 1. Integrate J'xze“'”a dx.

Solution. Let u = x3, Then du = 3x? dx, and we obtain

f X% dx = 1 [ e’”3(3x2 dx) =

Cojpmd

fe“du:%e"+C:%e’” + C.

2V
EXAWPLE 2. Integratef X.
Vx

Solution. Let u = Vx = x4, Then du = 1x~% dx = } dx/V/x. Hence we have

\/; U 1-{—\/;
2 dx=zfzﬁ(1ﬁ)=2fzudu=zz +Cc=2—1+cC
Vx 24/x log 2 log2

exavpLe 3. Integrate | cos x * Sn% dx.

Solution. Let y = 2 sin x. Then du =2 cos x dx, and hence we obtain

[ cos x €251 ¥ dx = 1 f e**1"%(2 cos x dx) = %fe“ du = }e* + C = " 4 C.

exawLe 4. Integrate | ¢ Sin x dx.

Solution. Let u = ¢, 4y =snx dx. Then du = ¢ dx, v = —cos X, and we find
(6.40) je’sinxdx = | wdu= uv = J vdu = —e®cos x + J e®cosxdx +C.

The integral je“” cos x dx istreated in the same way. We let u = ¢*, dp = cos x dx, du =
e” dx, v = sin x, and we obtain

(6.42) Jezcosxdx:e’”sinxwje“sinxdx+c.

Substituting this in (6.40), we may solve for fe”sinx dx and consolidate the arbitrary
constants to obtain

&z
fe”sinxdx:%(sinx_cosx)+c.
Notice that we c¢an use this in (6.41) to obtain also

e’ .
fe“cosxdx:E(cosx+ snx) + C.



248 The logarithm, the exponential, and the inverse trigonometric functions

dx
EXAMPLE 5. Integrate
= j I+

Solution. One way to treat this example is to rewrite the integrand as follows:

1 e?
1+e”‘“e_”+1'

Now put u = e® + 1. Then du = —e™® dx, and we get

e~ —e® du,
z5w+1“ - fe_x—fic=— - = —logful + C=—log(1 + ¢+ C.

The result can be written in other ways if we manipulate the logarithm. For instance,

ea:

e+ 1

_ |
—1 1+ %=1 =
og(1+ e 0g1+e log
=log () mlog (¢ + 1) = x —log (1 + &)

Another way to treat this same example is to write

Then we have

dx fe” jdu
=X = x =X = —,
fl+ez 1+e“"d’C U

whereu = 1 + €". Thuswe find

f dx = x = log(l+e)+C,
1+ ¢

which is one of the forms obtained above.

6.17 Exercises

In Exercises 1 through 12, find the derivative f'(x). Ineach case the functionfis assumed to be
defired for all red x for which the given formula for f(x) is meaningful.

L fe)= e, 7. f(x) = 2%° [which means 2],
2. f(x) = e4m:. 8. f(x)= eSinzw'
3. f(x) = e‘m__ 9. f(x) = 8" *,
4. f(x) = e”?. 10. f(x) = eloge,
5. f(x) = el/x_ 11 f(X) - eez [Wh|Ch means e(ea:)].

6. f(x) = 2". 12. f(x) = ¢ [which means exp(e!*")].
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Evaluate the indfinite integrds in Exercises 13 through 18.

13. f x e® dx. 16. f X2 2 dx.
14, f X ¥ dx. 17. j Ve gx.
15. fxz & dx. 18. fxae‘ma dx.

19. Determine all constants a and 4 such that & = 5 + {2 ¢t dt.

20. Let A= j ™ cos bxdx and B = j e sin bx dx, where a and b are constants, not both zero.
Use integration by pats to show that

aAd —bB= ¢ cosbx + C;, aB+ bA= ¢ sinbx + G,

whee €; ad C, ae abitray condants Solve for A and B to deduce the following integration
formulas

¢%(a cos bx + b sin bx)
at + b

fea“ cos bx dx = + C,

€%(a Sin bx — b cos bx)
a’ + b

Je" sin bx dx =

In Exercises 21 through 34, find the derivativef'(x). In each case, the functionfis assumed to be

defined for all real x for which the given formula for f(x) is meaningful. Logarithmic differenti-
aion may smplify the work in some cases

21 f(x) = x* 28. f(x) = (log x)*.
22. f(x) = (1 + 01 + &), 29. f(x) = xloge,

— 2 1
2. f() = 5y 20, 0= 82,
24, f(X) = xll + ax + aa”" 31 f(X) - (Sn x)cos T 4 (COS x)sin e
25. f(x) =log [log (log x)]. 32 f(x) = x/=,

\/__‘m x2(3 — x)1/3

26. f(x) = log (¢" + V1 + ). 33. flx) = T=20+F o7

27. f(x) = x*, 3A. f(x) = -|_|- (x = a),

=1
35. Let f(x) = x”, where x > 0 and r is any real number. The formula f(x) = rx™! was proved
earlier for rational r.

(@) Show that this formula also holds for arbitrary real r.[Hint: Write x™ = er1°22 ]
(b) Discuss under what conditions the result of part (a) appliesfor x £ 0.
36. Use the definitiona” = e*1°82 to derive the following properties of general exponentials:
(a) log a* = x log a.
(0) (aby* = a®~
(©) a%a¥ = a*ty,
(d) (@ = (@) = a.
(€ Ifa# 1,theny = a® ifand only if x = lo
37. Let f{x) = }a® + i—m) if z{ > 0. Shyovc B

[t )+ = =@ .
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38. Let f(x) = e°r, where ¢ is a condant. Show thatf'()) = ¢, and use this to deduce the following
limit relation:
. ecm — 1
lim
-0

=c.

39. Let f be afunction defined everywhere on the real axis, with a derivativef’ which satisfies
the equation

f(x) = ¢f(x) foreveryx,

where c is a constant. Prove that there is a constant K such that f(x) = Ke®® for every x.
[Hint: Letg(X) = f(x)e** and consider g'(X).]

40. Let ¥ beafunction defined everywhere on thereal axis. Suppose dso tha T stisfies the
functional equation

@) foe+ Y)=f()f(y) forallxandy .

(a) Using only the functional equation, provethatf ( 0) iseither 0 or 1. Also, prove that if
f(0) s 0thenf(x)s 0forall x.
Asume, in addition to (i), thatf’(x) exists for all x, and prove the following statements.
(®) () =f () (x) forall xandy,
(c) Thereis a constant ¢ such that f'(x) = ¢f(x) for all x
(d)f(x) =e*if f (0) 0. [Hint: See Exercise39.]
41. (a) Let f(x) = ¢» — 1 = x for all x. Prove that f(x) 2 0if x >0and f'(x) <0if x £ 0.
Use this fact to deduce the inequalities

e >1+x, e*>1=-x,

valid for all x > 0. (When x = 0, these become equalities.)
Integrate these inequalities to derive the following further inequalities, all valid for x > O:

2 2
() & >1+x+ 5 eT<lmxr G
210 2!
2
(c)e’”>1+x+—)—cz+—x3 e‘w>1—x+£—§—3.
20 3t 21 3!

(d Gues the generdization suggeted and prove your result.
42. If nisapositiveinteger and if x > O, show that

x\n x\~ " .
(1+;!)<e”, and that e””<(1—'—1) if x<n.

By choosing asuitable value of n, deduce that 2.5 < e< 2.99.
43. Let f(x,y) = x¥ where x > 0. Show that

g
L yx’l}—l and —

= x¥log x.
0x &
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6.18 The hyperbolic functions

Certain combinations of exponential functions occur quite frequently in analysis, and
it is worth while to give these combinations special names and to study them as examples
of new functions. These combinations, called the hyperbolic sine (sinh), the hyperbolic
cosine (cosh), the hyperbolic tangent (tanh), etc., are defined as follows:

. T - T4 oaa ; 2 ot
sinh x= &=£— | cosh x= ¢ ee, tanhx = 300X _ ¢ =¢ \
2 coshx e+ ¢*
1
csch x = = , sech x = , coth x = '
sinh x cosh x tanh x
y y y
! 4 4
T T | _—
0 X ) X 0 - X
_______ | i
y = sinhx y = cosh x y = tanhx

FIGURE 6.8 Graphs of hyperbolic functions.

The prefix “hyperbolic” is due to the fact that these functions are related geometrically
to a hyperbola in much the same way as the trigonometric functions are related to a circle.
This relation will be discussed in more detail in Chapter 14 when we study the hyperbola.
The graphs of the sinh, cosh, and tanh are shown in Figure 6.8.

The hyperbolic functions possess many properties that resemble those of the trigonometric
functions. Some of these are listed as exercises in the following section.

6.19 Exercises

Derive the properties of the hyperbolic functions listed in Exercises 1 through 15 and compare
them, whenever possble  with the corresponding  properties  of  the  trigonometric  functions.
1 cosh? x — sinh?x = 1.
2. §nh (-Xx) = —sinh X
. cosh (—x) = cosh X
tanh (-X) = —tanh X
.Sinh (x +y) =sinh x cosh Y + cosh x sinh y.
. cosh (X +Yy) = cosh x coshy + sinh x sinh y.
sinh 2x =2 sinh X cosh X
cosh 2X = cosh? x + sinh? X
cosh X + sinh X = ¢,
. cosh x — Sinh x = ¢ %,
. (cosh X + sinh x)* = cosh nx + sinh nx (n an integer).
. 2sinh?{x = coshx — 1.

REBoow~wousw
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13. 2 cosh® §x = coshx + 1.

14. tanh® X + sech? X = 1.

15. coth?x — csch?x = 1.

16. Find cosh x if sinh x = &

17. Find sinh x if cosh x=% and x > 0.

18. Find sinh x and cosh x if tanh x = 1%.

19. Find cosh (x +y) if sSnhx =% and sinhy =
20. Find tanh 2x if tanh x = §,

In Exercises 21 through 26, prove the differentiation formulas.

e

21. D sinh x = cosh x. 24. D coth X = —csch? x.
22. D cosh x = snh x. 25. D sech x = —sech x tanh Xx.
23. D tanh x = sech? X 26. D cschx = —csch x coth x.

6.20 Derivatives of inverse functions

We have applied the process of inversion to construct the exponentia function from the
logarithm. In the next section, we shall invert the trigonometric functions. It is convenient
at this point to discuss a general theorem which shows that the process of inversion transmits
differentiability from a function to its inverse.

THeoRem  6.7.  Assume f is strictly increasing and continuous on an interval [a, b], and
let g be the inverse of f If the derivative f *(x) existsand isnonzero at a point xin (a, b),
then the derivative g’ (y) also exists and is nonzero at the corresponding point y, wherey =
f(x). Moreover, the two derivatives are reciprocals of each other; that is, we have

1
6.42 = —.
(6.42) g 70

Note: If we use the Leibniz notation and write y for f(x), dy/dx for f'(x), x forg(y), and
dx/dy for g(y), then Equation (642) becomes

dx_ 1
dy ~ (dy\’
dx

which has the aopearance of a ftrivid dgebrac identity.

Proof. Assume x is a point in (a, b) where f'(x) exists and is nonzero, and let y = f(x).
We shall show that the difference quotient

gy + k) = g(»)
k

approaches the limit 1/f(x) as k — 0.
Let h =9(y + K) —= 9(y). Since x = g(y), thisimplies h= g(y + k) —x or x + h =
gy + k). Thereforey + k = f(x + h), and hence k = f(x + h) -f(x). Note that
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h # 0if k 3 0 because g is dtrictly increasing. Therefore, if k # 0, the difference quotient
in question is

gy + k) =g(y) _ h !

(6.43) =
k J&x A+ h) = f(x) = [f(x + B) = f(0)]fh

As k - 0, the difference g(y + k) - g(y) — O because of the continuity of g at y [property
(b) of Theorem 3.101. This means that h — 0 as k — 0. But we know that the difference
quotient in the denominator on the extreme right of (6.43) approaches f'(x) as h —» 0
[since f'(x) exists]. Therefore, when k — 0, the quotient on the extreme left of (6.43)
approaches the limit 1/f’(x). This proves Theorem 6.7.

6.21 Inverses of the trigonometric functions

The process of inversion may be applied to the trigonometric functions. Suppose we
begin with the sine function. To determine a unique inverse, we must consider the sine
over some interval where it is monotonic. There are, of course, many such intervals, for

y y
J 'y
w
13/
: |
' i
; L > X T : X
_r 0o = ~1 0 1
21 2 !
1 1 __*I
2
FIGURE 6.9 ¥y = SN X. FIGURE 6.10 Y = arcsin X

example [—1m, in], 17, 37], [—3m, —1n], etc., and it redlly does not matter which one of
these we choose. It is customary to select [ — §7 ,37] and define a new function f asfollows :

fx)=sinx if —=<x<

N[y
N[y

The function f so defined is strictly increasing and it assumes every value between -1

and + 1 exactly once on the interval [ -- 1w, 1n]. (See Figure 6.9.) Hence there is a uniquely
determined function g defined on [- |, 1] which assigns to each number y in [- 1, 1] that
number x in [—3im, i7] for which y = sin x. This function g is called the inverse sine or
arc sine, and its value at y is denoted by arcsin y, or bysin—!y. Thus,

u = arcsin v means v = sin u and -— .

<u<Z
2

NEH

The graph of the arc sine is shown in Figure 6.10. Note that the arc sine is not defined
outside the interval [ = 1,1].
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The derivative of the arc sine ¢an be obtained from formula (6.42) of Section 6.20.
In this case we have f'(x) = cos x and this is nonzero in the open interval (—4w, 7).
Therefore formula (6.42) yields

11 1 _____1___
flx) “cosx Viesintx Vi)

gy = i f —1l<y<1,

With a change in notation we can write this result as follows:
6.44 Darcsin x= ———— if —1<x<l1.
(6.44) (o

Of course, this now gives us a new integration formula,

® 1
(6.45) f dt = arcsin X ,
6V]— ¢

which isvalid for = 1< x < 1.

Note: This formula may be used as the dtating point for a completely andytic theory
of the trigonometric functions, without any reference to geometry. Briefly, theideaisto
begin with the arc sine function, defining it by the integral in (6.45), just as we defined the
logarithm as an integrd. Next, the sne function is defined as the inverse of the ac sng
and the cosine as the derivative of the sine. Many details are required to carry out this
program completely and we shall not attempt to describe them here. An alternative
method for introducing the trigonometric functions analytically will be mentioned in
Chapter 11.

In the Leibniz notation for indefinite integrals we may write formula (6.45) in the form

dx .
6.46 f— = arcsin X + C .
(6.46) T

Integration by parts yields the following further integration formula:

. , x dx .
farcsmx dx = x arcsin x—f\/=2: x arcsin x+ V1 —x*+ C .
1—x

The cosine and tangent are inverted in a similar fashion. For the cosine it is customary
to choose the interval [0, =] in which to perform the inversion. (See Figure 6.11.) The
resulting inverse function, called the arc cosine, is defined as follows:

24 = arccos V means v=COSu and 0<u<mr.

The graph of the arc cosine function is shown in Figure 6.12.
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Y
1
K
y 1 1
4 !
)
'
!
i
\ :
]
- X ~ » X
0 x Er,, -1 0 1
2 |
Ficure 6.11 y = COS X. FIGURE 6.12 y = arccos X

To invert the tangent we choose the open interval (—}=, }7) (see Figure 6.13) and we
define the arc tangent as follows:

u= arctan v means v = tan u and —;—T<u<§.
Figure 6.14 shows a portion of the graph of the arc tangent function.

The argument used to derive (6.44) can also be applied to the arc cosine and arc tangent
functions, and it yields the following differentiation formulas:

-1

6.47 D arccos X = ——,
(6.47) S

validfor -1 < x < 1,and

(6.48) D arctan x = 5
14+ x
valid for all red x.
y
l } '.
| I
| |
i ]
| : k3
E el 2
i i
] 1
i | . -
Y 0 A 0 X

21 12 /
| |
t ]
I t
| o e e e -
| : ....l
: ' 2
| '
| |

FiGurRe 6.13 y = tan Xx. FiIGURE 6.14 y = arctan Xx.
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When (6.47) is translated into an integration formula it becomes

@ 1 T
6.49 f dt = —(arccos x — arccos 0) = — — arccos x
(6.49) T ( )= 3

if = 1< x <1 By comparing (6.49) with (6.45), we deduce the relation = — arccos x =
arcsin x. ( This may also be deduced from the familiar identity sin (37 = y) =
cos y if we write y = arccos x.) In the Leibniz notation for indefinite integrals, we may
write (6.49) as follows:

(6.50) f—ld\/_i_—_; = —arccos x + C .
—_X

Similarly, from (6.48) we obtain

T odt dx _
(6.52) = arctan X or mm— = arctan X + C .
o141 1+ x

Using integration by parts in conjunction with (6.50) and (6.51), we can derive the
following further integration formulas :

x dx —
Jarccosx dx = xarccosx+f—-xarccosx— 1—x*+C,
V1 —x?
x dx 1 2
arctan x dx = x arctan x — s == xarctan x =} log (1+ x* + C .
X

The inverses of the cotangent, secant, and cosecant can be defined by means of the
following formulas :

(6.52) arccot x = % - arctan x for allred x,
1

(6.53) arcsec x = arccos - when |x[ > 1,

(6.54) arcesc X = arcsin% when |x} > 1.

Differentiation and integration formulas for these functions are listed in the following
exercises.

6.22 EXxercises

Derive the differentition formulas in Exercises 1 through 5.

V1 —x®

14 x2

1. Darccosx = if -lI<x<lI.

2. D arctan X = for all red x.
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3. Darccotx = for all red x.
1+ %2
1
4. DarcseC X = ———— i f [x|>1
lxvx2 -1
-1
5. D arcCst X = ———— i folx]>1.
|xVx® —1 I

Derive the integration formulas in Exercises 6 through 10.
6. [ arccot x dx = x arccot x + log (1 + x%) + C.

loglx +vx2 —1] +C.

x
7. f arcsec x dx = x arcsec x — ™

X
8. Jarccscx dx:xarccscx+ﬁlog|x+vx2 -1 +C
X

9. [ (arcsin x)? dx = x(arcsin x)? = 2x + 2¢/1 — a2 arcsin X + C.

0. J'arcii; X iy = log 1-4/1— x| _arcsin X

by X

+ C.

1
11. (a) Show that D(arccot X = arctan ;) =0for allx 0.

(b) Prove that there is no constant C such that arccot x = arctan ({/x) = C for all x # 0.
Explain why thisdoes not contradict the zero-derivative theorem (Theorem 5.2).

In Exercises 12 through 25, find the derivative f'(x). Ineach case the functionfis assumed to be
defined for ali real x for which the given formula for f(x) is meaningful.

12. f(X) = arcsin g . 19. f(x) = arctan (tan?® x).
13. f(x) = arccos \/-EX' 20. f(x) = arctan (x + /1 + 9.
1 .
14. f(x) = arccos - . 21. f(X) = arcsin (SN X ~ cos X).
X
15. f(x) = arcsin (sin X). 22. f(x) = arccos V1 — x2,
1 +x
16. f(x) = V/x = arctan Vx. 23.10 = arctan .
17. f(x) = arctan x + } arctan (x%). 24. f(x) = [arccos (¥
T o _ 1
18. f(x) = arcsin T2 25. f(x) = log (arccos ——\/-;) .

26. Show that dy/dx = (X + p)/(x = Y) if arctan (y/x) = log V' x® + 2
27. Compute d2y/dx? if y = (arcsin x)[v/1 — x2 for |x| < 1.
28. Let f(x) = arctan X = X + 1x% Examinethe sign off’ to prove that

X3 .
x—?<arctanx if x > 0.
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In Exercises 29 through 47, evaluate the indefinite integrals.

dx 20 arctan \/;c
—_— a#0.
2. f\/az — X2 Va(l + %) x)
dx -
—_— —_ 2 e = i
30. fm 30. j\/l x% dx. [Hint: x = sin u.]
dx earctan r
31 fam, a#0. 40. f(l r{wz dx.
dX earcta
32 f S5z (a0 41, f(_'"_”P dx.
33, (2 n [—2_ &
Tyx—x 427 ¥ A0
A d 43 i d.
. J x arctan x dx. N
arccot e*
35. § x? arccos x dx. 44. f —— dx.
1/2
36. | x(arctan x)* dx. 45, f(a ha x) dx, a>o.
a—Xx
37. | arctan 4/ dx. 46. [v/(x—a)b—x) dx, b##a
dx
a1, f ————, bwa [Hin: x=a=(b=a)sin?u]
V(x =a)b =x)

6.23 Integration by partial fractions

We recall that a quotient of two polynomials is called a rational function. Differenti-
ation of a rational function leads to a new rational function which may be obtained by
the quotient rule for derivatives. On the other hand, integration of a rational function
may lead to functions that are not rational. For example, we have

f%:|Og|x|+C and fldx

+_)c2

= arctan X + C .

We shall describe a method for computing the integral of any rational function, and we
shall find that the result can always be expressed in terms of polynomials, rational functions,
inverse tangents, and logarithms.

The basic idea of the method is to decompose a given rational function into a sum of
simpler fractions (called partial fractions) that can be integrated by the techniques discussed
earlier. We shall describe the general procedure by means of a number of simple examples
that illustrate all the essential features of the method.

exawele 1. In this example we begin with two simple fractions, 1/(x = 1) and 1/(x + 3),
which we know how to integrate, and see what happens when we form a linear combination
of these fractions. For example, if we take twice the first fraction plus three times the
second, we obtain

2 3 _2x+3+3x-1) __5x+3
x -1 x+3 (x=Dx+3  x*+Xx=3.
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If, now, we read this formula from right to left, it tells us that the rational function r given
by r(x) = (5x + 3)/(x* + 2x — 3) has been expressed as a linear combination of 1/(x — 1)
and 1/(x + 3). Therefore, we may evaluate the integral of r by writing

5x + 3 _dx dx
X dx =2 +3f =2log|x =1+ 3log|x + 3L + C.
.f + 2x 3 x—1 + 3 9l ! g1

exawLe 2. The foregoing example suggests a procedure for dealing with integrals of
the form f(ax + b)/(x% + 2x = 3) dx. For example, to evaluate f(2x + 5)/(x2 + 2x = 3) dx,
we try to express the integral as a linear combination of 1/(x = 1) and 1/(x + 3) by writing

2x+5 A B

6.55 =
(6.:55) X+ 2x =3 x -1 x+3

with constants A and B to be determined. If we can choose A and B so that Equation (6.55)
is an identity, then the integral of the fraction on the left is equal to the sum of the integrals
of the simpler fractions on the right. To find A and B, we multiply both sides of (6.55) by
(x — 1)(x + 3) to remove the fractions. This gives us

(6.56) A(x + 3) + B(x = 1) =2 +5,

At this stage there are two methods commonly used to find A and B. Qne method is to
equate coefficients of like powers of x in (6.56). This leads to the equations A+ B = 2
and 3A — B = 5. Solving this pair of simultaneous equations, we obtain A = Z and

B = 1. The other method involves the substitution of two values of x in (6.56) and leads

to another pair of equations for A and B. In this particular case, the presence of the factors
x =1 and x + 3 suggests that we use the values x = 1 and x = -3. When we put X =1
in (6.56), the coefficient of B vanishes, and we find 4A =7, or A = . Smilarly, we can
make the coefficient of A vanish by putting x = — 3. Thisgivesus -4B= — 1, or B =

In any event, we have found values of A and B to satisfy (6.55), so we have

2x + 5 7f dx lf dx 7 1
Ty o =Tt ==log|x — 1|+ -1 3+ C.
fx2+2x—3 ax—1"2)x137 4 g Ix |+4oglx+ | +

It is clear that the method described in Example 2 also applies to integrals of the form
§f (x)/g(x) dx inwhich f is alinear polynomial and g is a quadratic polynomial that can be
factored into distinct linear factors with real coefficients, say g(x) = (X = x;)(x — x,). In
this case the quotient f (x)/g(x) can be expressed as a linear combination of 1/(x = x;) and
1/(x = xy), and integration of f(x)/g(x) leads to a corresponding combination of the
logarithmic terms log |x = x;] and log |x = x,|.

The foregoing examples involve rational functions f/g in which the degree of the
numerator is less than that of the denominator. A rational function with this property
is said to be a proper rational function. If f/g isimproper, that is, if the degree of f isnot
less than that of g, then we can express f/g as the sum of a polynomial and a proper rational
function. In fact, we simply divide f by g to obtain

oy R&)
60”29
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where Q and R are polynomials (called the quotient and remainder, respectively) such that
the remainder has degree less than that of g. For example,

¥+ 3x 10X + 6
—_X+2+—
X% = 2X = 3 X = 2X - 3,

Therefore, in the study of integration technique, there is no loss in generality if we restrict
ourselves to proper rational functions, and from now on we consider { f(x)/g(x) dx, where
f has degree less than that of g.

A general theorem in algebra states that every proper rational function can be expressed
as a finite sum of fractions of the forms

A Bx + C
— ad S
(x + a)f (x* + bx + o)

where k and m are positive integers and A, B, C, a, b, ¢ are constants with b — 4¢ < 0.
The condition % =~ 4¢ < 0 means that the quadratic polynomial x*+ bx + ¢ cannot be
factored into linear factors with real coefficients or, what amounts to the same thing, the
quadratic equation x2 + bx + ¢ = O has no real roots. Such a quadratic factor is said to
be irreducible. When a rational function has been so expressed, we say that it has been
decomposed into partial fractions. Therefore the problem of integrating this rational
function reduces to that of integrating its partial fractions. These may be easily dealt with
by the techniques described in the examples which follow.

We shall not bother to prove that partial-fraction decompositions always exist. Instead,
we shall show (by means of examples) how to obtain the partial fractions in specific
problems. In each case that arises the partia-fraction decomposition can be verified
directly.

It is convenient to separate the discussion into cases depending on the way in which the
denominator of the quotient f(x)/g(x) can be factored.

CASE 1. The denominator is a product of didinct linear factors. Suppose that g(x) splits
into n distinct linear factors, say

900 = (X = X)(x = %) . . (X = X,) .

Now notice that a linear combination of the form

A, A

x-—x1+ +x——xn

n

may be expressed as a single fraction with the common denominator g(x), and the numerator
of this fraction will be a polynomial of degree < n involving the A’s. Therefore, if we can
find A’s to make this numerator equal to f(x), we shall have the decomposition

n

f&d A4 ., 4
g(x)""x—x1+ +x—xn

b
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and the integral of f(x)/g(x) will be equal to 7, 4, log |x — x,|. In the next example, we
work out a case with n = 3.

2 —
EXAMPLE 3. Integratef A —1
X3+ x? = 2x

Solution.  Since x* + x? = 2 = x(X = 1)(x + 2), the denominator is a product of
distinct linear factors, and we try to find A,, A,, and A, such that

x4 Bx = 1 A + A2 + Ay
¥+ xF=2x x X-1 x42

Clearing the fractions, we obtain
2x2 + 5X = 1= Aj(x = )X +2) + Ax(x +2) + Agx(x = 1).

When x = 0, we find —24; = = 1, so A, = . When x =1, we obtain 34, = 6, A, = 2,
and when x = -2, we find 64; = -3, or 4, = —3%. Therefore we have

2x* + 5x — 1 _lf_q'_)_c fdx 1f dx
fx3+x2——2xdx_2 PR ey R x+2

= Llog|x|+ 2 log|x = 1] = Llog |x + 2| + C.

CASE 2. The deenominator is a product of linear factors, some of which arerepeated. We
illustrate this case with an example.

2
EXAMPLE 4. Integrate ui—_i X
(x = D(x 1)y
Solution.  Here we try to find A,, A,, A, so that

x2+2X+3 Al Ap+ n%
K= Dx+17 = x—[+x+ 1 (x4 1)

(6.57)

We need both 4,/(x + 1) and 4;/(x + 1)? aswell as 4,/(x — 1) in order to get a polynomial
of degree two in the numerator and to have as many constants as equations when we try
to determine the A's. Clearing the fractions, we obtain

(6.58) X2 2X+ 3= A(x+ 12+ Ac —~Dx+ D+ Ay(x=1)
Substituting x = 1, we find 44, =6, so A, = 3. When x = — 1, we obtain —24; = 2
and A, = — 1. We need one more equation to determine A,. Since there are no other

choices of x that will make any factor vanish, we choose a convenient x that will help to
simplify the calculations. For example, the choice x = 0 leads to the equation 3 = A, —
A, ~ A, from which we find A, = —}. An alternative method is to differentiate both



262 The logarithm, the exponential, and the inverse trigonometric  functions

sides of (6.58) and then substitute a convenient x Differentiation of (6.58) leads to the
equation
2X + 2= 2A4,(x + 1) + Ay(x = 1)+ Ax(x + 1) + A,

and, if we put x = — 1, we find 0 = —24, + A, so A, = 34, = —1, as before. Therefore
we have found A's to satisfy (6.57), so we have

fx2+2x+3dx___?3fdx _1 dx f dx
(x = D(x + 1) 20x—1 x+1 (x + 1)

3 1 1

=-1lo -1 == + C
) g IX l 2Iog|x+1|+x_i_1
If, on the left of (6.57), the factor (x + 1)® had appeared instead of (x + 1)% we would

have added an extra term A,/(x + 1)® on the right. More generaly, if a linear factor
X + a appears p times in the denominator, then for this factor we must allow for a sum
ofp terms, namely

(6.59) i Ay

~ (x + a)t’

where the A's are constants. A sum of this type is to be used for each repeated linear factor.

CASE 3. The denominator contains irreducible quadratic factors, none of which are
repeated.

3Ix2 4+ 2x —2
x5 — 1

EXAMPLE 5. Integratef ax

Solution.  The denominator can be split as the product x3 — 1 =(x = I){(x* + x + 1),
where x2 + x + 1 is irreducible, and we try a decomposition of the form

P+ 2x -2, A Bx + C
Bl X - xEEx+ 1

In the fraction with denominator x? + x + 1, we have used a linear polynomia Bx + C
in the numerator in order to have as many constants as equations when we solve for A, B,
C. Clearing the fractions and solving for A, B, and C, we find A=1 B =2, and C = 3.

Therefore we have
2
f3x +2x-2 =fdx +f 2x 4+ 3 dx
=1 x —1 x4+ x4 1
The first integral on the right is log |x — I]. To evaluate the second integral, we write

2t 3 =fﬂdx J;dx

X2+ x+1 X2+ x4+ 1 XZ+x+1

Iog(x"+x+1)+2f

(x + 2)2



Integration by partial fractions 263

If welet u=x+ §and ¢ = /3, the last integral is

2f du 2 u_ 4 2x +1
= % arctan = = -V/3 arctan ,
'+ o g « 3 V3

Therefore. we have

N +C
J.3x2x3+-2x1— 20dx = log |x = 1] + log (x®+ x + 1) + g\@arctan —/3u

CASE 4. The denominator contains irreducible quadratic factors, some of which are
repeated. Here the situation is analogous to Case 2. In the partial-fraction decomposition
of f(x)/g(x) we dlow, first of &l, a sum of the form (6.59) for each linear factor, as already
described. In addition, if an irreducible quadratic factor x2 + bx + c is repeated m times,
we alow a sum of mterms, namey

B.x + C;

] T
‘ (x®+ bx + of

where each numerator is linear.

Xt =3+ 2X2 - X + 2
(X = (3% + 22 dx.

ExavLE 6. Jntegratef

Solution. We write

=X+ 22P—x+2_ 4 Bx #¢c Dx+ E
X =D+ 2% Tx-1 X2+ 2+ 2P

Clearing the fractions and solving for A, B, C, D, and E, we find that

A: 13’ B:%’ C=_%! D: '1, E:O

Therefore, we have

fx4_x3+ 2x2 — X + 2

x=1pcr 2 &

fdx +f%x_%dx‘f xdx
x—1 x4 2 (x® + 2)?
fdx +1f2xdx_1f dx _lf 2x dx
x—1 3Jx*4+2 3Jx*4+2 22422

1
log|x — 1] + 3 log (x* +2) — %Earctan =

V2

W = = W=

11
2x2 42

+ +C
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The foregoing examples are typical of what happens in general. The problem of inte-
grating a proper rational function reduces to that of calculating integrals of the forms

f dx ’ f : X dx  and f dx |
(x + @) (x* + bx + ¢)" (x* + bx + ¢)”

The first integral is log |x + a| if n = 1 and (X + a)* /(1 -~ n) if n > 1. To treat the other
two, we express the quadratic as a sum of two sguares by writing

2

XX+ bx4c=(x+9$)2+ (c—%)=u2+oz2,

where ¥ = x + bj2 and « = }V4c — b2 (This is possible because 4¢ — b2 > 0.) The
substitution # = x + b/2 reduces the problem to that of computing

u du du
6.60 _— and f—
( ) (uz + a2)m (uz + o(Z)m )

The first of these is { log (# + «2)if m =1, and i(u? + o2)'™/(1 = m) if m > 1. When
m = 1, the second integral in (6.60) is evaluated by the formula

du 1
(2 Z=—arc’tang+C.
Jut 4+ o o

The case m> 1 may be reduced to the case m= 1 by repeated application of the recursion
formula

f du 1 u , _2m-3 J‘ du
W+ &)™ = 2o%(m = 1) W+ oH)™ 20%(m - 1) (1,42 + az)m_l :
which is obtained by integration by parts. This discussion shows that every rational

function may be integrated in terms of polynomials, rational functions, inverse tangents,
and logarithms.

6.24 Integrals which can be transformed into integrals of rational functions

A function of two variables defined by an equation of the form

P q
Px,y) = 3 3 @pX"y"
m=0 n=0

is called a polynomial in sy variables. The quotient of two such polynomials is called a
rational function of fyo variables. Integrals of the form fR(sin x, cos x) dx, where R is a
rational function of two variables, may be reduced by the substitution » = tan 4x to
integrals of the form fr(«) du where r is a rational function of one variable. The latter
integral may be evaluated by the techniques just described. We illustrate the method with
a particular example.

L
EXAMPLE 1. Integratef.—dx :
9n X + COS X
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Solution.  The substitution u = tan x gives us

x =2 arctany , dx = 2 du ,

1+ 4

: Lox o x  2tanix 2u
sin x=28in >~ 00§ ~ = —== = 5 0
2 2 sec” 3x 14 u

2
005X = 2gog? s | = —omm o2 g _lou
sec® 3x 1+ 4P 1+ u®
and
22U+l -yt

sin x+ Cos x = >
14 u
Therefore, we have

J’ dx { du f du
. .= 2| = 2 e
sin X + Cos x Jut—2u—1 (U == a)(u =b)

where a =1 + \/E and b =1 \/E The method of partial fractions leads to

f du _ 1 | )d
U—a)u=b) "a—-bsiju~a u—0> “
and, since a — b = 2V/2, we obtain

/5
(6.61) [ _dax V2

, — log
sin X + cos x 2

The final answer may be simplified somewhat by using suitable trigonometric identities.

First we note that \/5 = 1 = tan = so the numerator of the last fraction in (6.61) is
tan ix + tan §=. In the denominator we write

’tan%—-l—w/%:(\/5+l) (ﬁ—l)tang—lz(\/i+l)1_tan§tan%

Taking logarithms as indicated in (6.61), we may combine the term —1v/2 log (v/2 + 1)
with the arbitrary constant and rewrite (6.61) as follows:

J dx 2
————— = ~Flog
sin X + COS x 2

In an earlier section we derived the integration formula

dx _ .
-{/1 = = arcsin X
- x
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as a consequence of the formula for differentiating arcsin x. The presence of arcsin X
suggests that we could also evaluate this integral by the trigonometric substitution
t = arcsin Xx. We then have

X=sint, dx = cos t dt, \/1—x2=\/1—sin2t=COSt,
and we find that

cos t dt

f dx = f = fdt =t = arcsin x
V1 — x2 cos ¢t '

This is always a good substitution to try if the integrand involves v/ — x2 More
generally, any integral of the form {R(x, V'a® — x?) dx, where R is a rationa function of
two variables, can be transformed by the substitution

X =asn¢, dx =a cos t dt,

into an integral of the form fR(a sin ¢, a cos t)a cos tdt. This, in turn, can always be
integrated by one¢ of the methods described above.

X dx

EXAMPLE 2. Integratef .
4 — x2 4+ V4 — x2

Solution. Weletx =2snt,dx =2 cos tdt, V4 — x? =2 cos t, and we find that

f X dx _f 4snt costdt _J sint dt
42+ V4_x J4cos?t+2C0St J COSt+ 4

=—log|i+COSt +c=—log(l+ Y4—x})+C

The same method works for integrals of the form
fR(x, Va? = (cx + d)*) dx ;

we use the trigonometric substitution cx + d = a sin ¢,
We can deal similarly with integrals of the form

J R(x, Va* + (cx + d)?) dx
by the substitution cx + d = atan ¢, c dx = a sec? t dt. For integrals of the form

f R(x, V(cx + d)? = a”) dx

we use the substitution cx + d =a sec t, c dx = a sec ¢ tan t dt. In either case, the new
integrand becomes a rational function of sin ¢ and cos ¢.



Exercises

6.25 Exercises

Evaluate the following integrals:

2x + 3
g f(x—Z)(x+5)d
X dx

(x + D(x + 2)(x + 3

X dx
sz
X' 4 2x =6
P+ r=2x
8x3 + 7
e P

w

dx.

6 42 +x + 1 ]
’ x3 — 1 X.
x* dx
F+52+4.
X + 2
8. f‘q—- dx.
x4 +X
dx
9. YO + 132 '
Xx2 + 1)
10. dx
(x + 1)(x + 2)2(x + 3)3 '
1 x dx
e
1 dx
' fx3 -
13 x% dx
(x +2) dx
W lmam+a.
15 dx
)G = A 4)x = A+ 5)
g, [ K=
T+ 32+ 2x

17 dx
X+ 1
w [FEg o

4
x*+1
19. fx(xz—-i-l)z dx.

dx
5 [a g
x%dx
o+ X+ 2

25 4’ -1
@ iaxr ™

26 dx
"J2sinx =cosx+5"

24,

2 f1+aCOSx 0<a<1).
28. f1+aCOSx (a>1).

2 fl'si'lfm);

30f sm2x+ B% cos? X {ab # 0).

dx

3 (asinx + b cos x)? (a#0).

2 sin x dx
g [__Snx&
g 1+ cosx +sinx

3. f Vi=dx.

34f X 4
== ax
\/3——x2

3 — %2
5]@@

Va +x
6 | —dx.
X
7f V3 + 5dx.

X
V3t x +1

267
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dx V2 —x — 3
» [ lTme =

[Hint: N Exercise 40, multiply numerator and denominator by v/2 —x — x%.]

6.26 Miscellaneous review exercises

1 Let f(x) = j= (log nj(¢ + 1) dt if x > 0. Compute f(x) + f(1/x). As a check, you should
obtainf(2) + f(3) = 1 log? 2.
2. Find afunction f, continuous for all x (and not everywhere zero), such that

* sin ¢
" (x) = J; f(t)mdt

3. Try toevaluate f¢%/x dx by using integration by parts.
4. Integrate f7/2 1og (2%%) dx.
5. A function f is defined by the equation

/ 4x + 2 i f 0
fe) = x(x+])(x+2)' x>0

(&) Find the slope of the graph off at the point for which x = 1
(b) The region under the graph and above the interval [1, 4] is rotated about the x-axis, thus
generating a olid of revolution. Write an integral for the volume of this solid. Compute this
integral and show that its value is» 10g (25/8).

6. A function Fis defined by the following indefiniteintegral:

[Tt it
F(x)—J;let If x>0.

(a) For what values of x isit truethat log x < F(x)?
(b) Prove that % et/(z + @) dt = e *[F(x + a) — F(l + d)].
(c) Inasimilar way, express the following integralsin terms of F:

2 gat a:t T
f——-dt f—dt fel/‘dt.
1

7. In each cae give an example of a continuous functionfsatisfying the conditions stated for all
rea X, or else explain why there is nosuch function:
@ f5f@odt= e
(b) f&f()dt= 1 =2 [2°" means 26" ]
(© fof(ndt = 2x)=1

8. If flx+y)= fx)f(y)for all x andy and if f(x) = 1 + xg(x), where g(x) — 1 as x — O,
prove that (a) f'(x) exists for every x, and (b) f(x) = ¢*

9. Given a functiong which has a denivativeg'(x) for every red x and which stidies the following
equations

g0 =2 and g(x + y) = e%g(x) + e%g(p) forallxandy.

(@) Show that g(2x) = 2¢%g(x) and find a similar formula for ¢(3x).
(b) Generdlize (a) by finding aformula relating g(nx) to g(x), valid for every positive integer
n. Prove your result by induction.
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10.

11.

13

14,
15.

16.

17.

18.

19.

20.

(c) Show that g(0) = 0 and find the limit of g(h)/h ash— O.

(d) Thereis a constant C such that g'(x) = g(X) + Ce® for all X. Prove this statement and
find the value of C. [Hint: Use the ddfinition of the derivative ¢'(x))

A periodic function with period a satisfies f(x + a) = f(x) for all x in its domain. What can
you conclude about a function which has a deivaive everywhere and sdisfies an equation of
theform

f&x + a) = bf)

for all x, whee a and b ae postive congants?
Use logarithmic differentiation to derive the formulas for differentiation of products and
quotients from the corresponding formulas for sums and differences.

Let A = f1¢t/(¢ + 1) dr. Express the values of the following integralsin terms of A:
et ! et
(a) a—lmdt © J;m dt
1
_— *log (1 + t) dt.
“”foﬂﬂd’- @ [¢0ga+na

Let p(x) = ¢ + cx + cyx? and let f(x) = €%p(x).

(@) Show that £)(0), the nth derivative of fat O, is ¢y + ne; + n(n ~ 1)c, -

(b) Solve the problem when p isapolynomial of degree 3.

(c) Generalize to a polynomial of degree m.

Let f(x) = x gn ax. Show that f©#)(x) = (=1)a*x Sin ax = 2na*"* cos aX).

Prove that
n n m 1
A
;O( o) ,Z ) —
[Hint: 1tk + m+ 1) = [§ ftm dt]
Let F(x) = 2 f(¢) dt. Determine a formula (or formulas) for computing F(x) for all real x

if fis defined as follows

(@) f(t) = (t + L) (c) f(t) = &'t
-2 if |1 <1,

(b) (1) ‘{ - i > L

A solid of revolution is generated by rotating the graph of a continuous function f around
the interval [0, & on the x-axis. If, for every a > 0, the volume is @® + a, find the function f.

Let f(x) = e~%* for all X. Denote by S(¢) the ordinate set off over the interval [0, ¢], where
t > 0. Let A(f) bethe area of S(z), V() the volume of the solid obtained by rotating S(f)

about the x-axis, and W(#) the volume of the solid obtained by rotating S(¢) about the y-axis.

Compute the following: (a) 4(r); (b) V(t); (c) W(¢); (d) lim,_, V() A(t).

Let ¢ be the number such that sinh ¢ = . (Do not attempt to compute c.) In each case
find all thoe x (if any exis) sdisfying the given equation. EXxpressyour answersin terms of
log 2 and log 3.

(@ log (& +4ve=+ 1 =c. (b) log (&* = v —1) =cC.

Determine whether each of the following datements is true or fdse Prove each true datement.

(d) f(t) = the maximum of 1 and £

ki
(a) 2logs = slog?, (© Z k=172 < 24/ for every n > 1.
(b) logy 5 - ]Ogg33 (d) 1 +sinhx < cosh x forevery x.



270 The logarithm, the exponential, and the inverse trigonometric functions

In Exercises 21 through 24, establisheach inequality by examining the sign of the derivative of
an appropriate function.

2 ) .
2l —x < 9nNX < X If0<x<§.
™

1 1 1 .
i 1 +- - if x > 0.
22.x+%< og( +x)<x
x° .
23.x—€<sinx<x if x>0.

24, (X2 + P < (x0 + pyl/a if x>0,y>0and O<ac<b.
25. Show that

@ frettdt= e’ —1=X.

T ot lo— 1 X

(b) L et dt =2le (em -1 —x -2-!)‘
x% a8
21 3)

(d Gues the generdization suggested and prove it by induction.
26. If a, b, a,, b, are given, with ab = 0, show that there exist constants A, B, C such that

[
(©) f e titdt = 3!e‘”(e’” -1l—-x—
0

a, Snx+ p, cos x .
dx = Ax + Bloglasinx + bcosx| + C.

a snx+bcosx
[Hint: Show that A and B exist such that
a, SNX+ b, cos X = A(a SN X + b cos X) + B(a COS X = b SN X) ]

27. In each cesg find a function f saisfying the given conditions.

(@ feH=1x fox >0, f(1) = L
(b) f(sin?X) = cos?x  forallx, f(1) =1
(¢) f/(sin X) = cos? X forallx, f(1)= 1
1 for 0 < x <1,
@ raogo={, 3T 1@ =0

28. A function, cdled the integral logarithm and denoted by Li, is defined as follows

. r dt
Li(x P i >2.
()ﬁmgt it x>

This function occursin analytic number theory where it is proved that Li(x) is a very good
approximation to the number of primes < x. Derive the following propeties of Li(x) :

. x Tz dt 2
@ Lix) = 7= +L ¥ -

log x log? t log 2

n—1
x k!x * dt
0 LK) = > _+n!f & e,
log x P, loghtt x o loght
wherec,, isaconstant (depending on n). Find this constant.

(c) Show that there is a constant b such that ijOM et/t dt = Li(x) and find the value of b.
(d) Express [® ¢¥/(z — 1) dt in terms of the integral logarithm, wherec = 1 + § log 2.
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(€) Let f(x) = ¢* Li(e*%) — ¢? Li(e*? if x > 3. Show that

22
f’(X) = xz__esx_'"_2

29. Let f(x) = log [x| if x < 0. Show that f has an inverse, and denote this inverse by g. What
is the domain ofg? Find a formulafor computing g(y) for each y in the domain ofg. Sketch
the greph of g.

30. Let f(x) = ((1+ )2 drif x > 0. (Do not attempt to evaluate this integral.)
@ Show tha T is grictly increasing on the nonnegative red axis
(b) Lét g denote theinverse of f. Show that the second derivative of g is proportional to g
[that is, g"(y) = ¢g®(y) for each y in the domain of g] and find the constant of proportionality.
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POLYNOMIAL APPROXIMATIONS TO FUNCTIONS

7.1 Introduction

Polynomials are among the simplest functions that occur in analysis. They are pleasant
to work with in numerical computations because their values may be found by performing
a finite number of multiplications and additions. In Chapter 6 we showed that the logarithm
function can be approximated by polynomials that enable us to compute logarithms to any
desired degree of accuracy. In this chapter we will show that many other functions, such
as the exponential and trigonometric functions, can also be approximated by polynomials.
If the difference between a function and its polynomial approximation is sufficiently small,
then we can, for practical purposes, compute with the polynomial in place of the original
function.

There are many ways to approximate a given function f by polynomials, depending on
what use is to be made of the approximation. In this chapter we shall be interested in
obtaining a polynomial which agrees with f and some of its derivatives at a given point.
We begin our discussion with a simple example.

Supposefis the exponential function,f(x) = e*. At the point x =0, the function ¥ and
all its derivatives have the value 1. The linear polynomial

gx) = 1+ x

also has g(0) = L and g’ (O) = 1, so it agrees withfand its first derivative at 0. Geometrically,
this means the graph ofg is the tangent line of f at the point (0, 1), as shown in Figure 7.1.

If we approximate ¥ by a quadratic polynomial Q which agrees with T anditsfirst two
derivatives at 0, we might expect a better approximation to f than the linear function g, at
least near the point (O, 1). The polynomial

O(x) = 1+ x + Jx?

has Q0) = Q(0) = 1 and Q"(0) = ¥ “(0) = 1. Figure 7.1 shows that the graph of @

approximates the curve y = ¢” more closely than the line y = 1 + x near the point (0, 1).
We can improve further the accuracy of the approximation by using polynomials which
agree withf in the third and higher derivatives as well. It iseasy to verify that the polynomial

(7.1 P(x):ii-:l.l_x_}.x__l_..._}_x_

272
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y=14+x4

5] y=1+x

y=1l+x4i*

<
I
"

/—1 0

Yy = 1 + X
Ficure 7.1 Polynomial approximations to the curve y = ¢ near (0, 1).

agrees with the exponential function and its first » derivatives at the point x = 0. Of
course, before we can use such polynomials to compute approximate values for the
exponential function, we need some information about the error made in the approximation.

Rather than discuss this particular example in more detail, we turn now to the general
theory.

7.2 The Taylor polynomials generated by a function

Suppose f has derivatives up to order n at the point x = 0, where n > 1, and let us
try to find a polynomial P which agrees withfand its first » derivatives at 0. Thereare n+1
conditions to be satisfied, namely

(7.2) PO)= f(0), PO=f0), ..., P"0)=f"0),
so we try a polynomia of degree n, say

(1.3) PX) = ¢y + X + cx® + . .+ X" |
with n + 1 coefficients to be determined. We shall use the conditions in (7.2) to determine
these coefficients in succession.

First, we put x = 0 in (7.3) and we find P(0) =¢,, SO ¢, = f(0). Next, we differentiate
both sides of (7.3) and then substitute x = 0 once more to find P’(0) = ¢, ; hence ¢; = f7(0).
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If we differentiate (7.3) again and put x = 0, we find that P" (0) = 2¢,, 0 ¢; =f "(0)/2.
After differentiating k times, we find that P*(0) = k! ¢;, and this gives us the formula

f(k)(o)
(7.4) O = e
fork=0,1,2,...,n [When k =0, we interpret f ®(0) to mean f (0)] This argument

proves that if a polynomial of degree < n exists which satisfies (7.2), then its coefficients
are necessarily given by (7.4). (The degree of P will be equal to y if and only iff ™(0) # 0.)
Conversely, it is easy to verify that the polynomial P with coefficients given by (7.4) satisfies
(7.2), and therefore we have the following theorem.

THEOREM 7.1. Let f be a function with derivatives of order » at the point x = 0. Then
there exists one and only one polynomial P of degree < » which satisfies then + 1 conditions

P0)=£(0), P’ (0) =f'(0), Cey Py =f )(0) .

This polynomial is given by the formula

n (k)
P(x) = Zf—k(!o) xF.
k=0
In the same way, we may show that there is one and only one polynomial of degree < n
which agrees with f and its first n derivatives at a point x = a. In fact, instead of (7.3), we
may write P in powers of X « a and proceed as before. If we evaluate the derivatives at a
in place of 0, we are led to the polynomial

n (k)
(7.5) P(x) = z%“)(x —a)".
k=0

This is the one and only polynomial of degree < » which satisfies the conditions
P(a) = f(a) , P'(a) = f'(a), e P™(g) = ™(a),

and it is referred to as a Taylor polynomial in honor of the English mathematician Brook
Taylor (1685-1731). More precisely, we say that the polynomia in (7.5) isthe Taylor
polynomial of degreen generated by f at the point a.

It is convenient to have a notation that indicates the dependence of the Taylor polynomial
P on f and n. We shall indicate this dependence by writing P = 7,f or P = T,(f). The
symbol T, is called the Taylor operator of degree n. When this operator is applied to a
function f, it produces a new function 7, f, the Taylor polynomial of degree n. The value
of this function at x is denoted by 7, f(x) or by T,[f(x)]. If we also wish to indicate the
dependence on a, we write 7,,f(x; a) instead of T, f(x).

exavele 1. When f is the exponential function, f(x) = E(x) = ¢* we have E¥(x) = &*
for all k, so E®(0) = ¢® = 1, and the Taylor polynomial of degree n generated by E at 0
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is given by the formula

x nxk x2 x™
T"E(x)=Tn(e)=,z‘]:|=1+x+;+.“+n—|‘

=0

If we want a polynomial which agrees with E and its derivatives at the point a= 1, we
have E*(1) = efor all k, so (7.5) gives us

T,E(x; 1) = kﬁ'(x — DF.

k=0

exaveie 2. When f(x) = sin x, we have f'(x) = cos x, f"(x) = —sin x, f"(x) = = cos X,
f®(x) = sin x, ec., so f@H(0) = (— 1)" and f?™(0) = 0. Thus only odd powers of x
appear in the Taylor polynomials generated by the sine functionat 0. The Taylor polynomial
of degree 2n + 1 has the form

Box5 i K2nil
i = —_— e -t .
Tunlsin X) =X =53+ 57 =5 RS A merayy

exaveLe 3. Arguing as in Example 2, we find that the Taylor polynomials generated
by the cosine function at 0 contain only even powers of x. The polynomial of degree 2n
isgiven by

x2 x4 6 x2r1

X
=]l ==+~ ==+, -1)” .
Tenfc0s X) 2L 4L 6! + (D (2n)!

Note that each Taylor polynomia 73,,(cos x) is the derivative of the Taylor polynomial
Tsna(sin X). This is due to the fact that the cosine itself is the derivative of the sine. In
the next section we learn that certain relations which hold between functions are transmitted
to their Taylor polynomials.

7.3 Calculus of Taylor polynomials

If afunction f has derivatives of order n at a point a, we can always form its Taylor
polynomial T, f by the formula

n k)
Ti0= > - ay.

k=0
Sometimes the calculation of the derivatives f*)(g) may become lengthy, so it is desirable
to have alternate methods for determining Taylor polynomials. The next theorem describes
properties of the Taylor operator that often enable us to obtain new Taylor polynomials

from given ones. In this theorem it is understood that all Taylor polynomials are generated
at a common point a.
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THEOREM 7.2. The Taylor operator T, has the following properties:
(8 Linearity property. If ¢; and ¢, are constants, then

Tn(clf + ng) = ClTn(f) + CZTn(g) .
(b) Differentiation property. The derivative of a Taylor polynomial off is a Taylor
polynomial off '; in fact,we have
(Tf) = T, Af") .

(c) Integration property. An indegjnite integral of a Taylor polynomial off is a Taylor
polynomial of an indegjinite integral off. Adore precisely, if g(x) = fff f(t) dt, then we
have

T,g() = | T,f(0) dt

Proof. Each statement (a), (b), or (c), is an equation involving two polynomials of the
same degree. To prove each statement we simply observe that the polynomial which
appears on the left has the same value and the same derivatives at the point a as the one
which appears on the right. Then we invoke the uniqueness property of Theorem 7.1.

Note that differentiation of a polynomia lowers its degree, whereas integration increases
its degree.

The next theorem tells us what happens when we replace x by cx in a Taylor polynomial.

THEOREM 7.3, swesTiTution  ProPERTY.  Let g(X) = f(cx), where c is a constant. Then
we have

T.gx,a)=T,f(cx;ca).

Zn particular, when a = 0, we have T,g(x) = T, f(cx).

Proof.  Since g(x) = f(cx), the chain rule gives us

g =¢f (cx), 9" (x) = ¢¥"(cx), e g“(X) = Ff®(cx).

Hence we obtain

(k)

MM)zk@@ Zf

exawLes.  Replacing x by —x in the Taylor polynomial for ¢%, we find that

(k)
MWnW~JWM)

2 3 n

2y — 1 XX i X
T(e%) =1 x+2'_ 3!+ + (-1) "

Since cosh x = Le” + 1e~*, we may use the linearity property to obtain

2 * % L X
Ty,(cosh X) = 3Tp,(e") + 3Ton(e™™) = 1+ E,-I_ a1 R @! :
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The differentiation property gives us

3 5 2n—1
. X X X
Ty, a(sinh X) = x+ =+ =+ . .. +

3t s @n = 1)1’
The next theorem is also useful in simplifying calculations of Taylor polynomials.

THEREM  7.4.  Let P, be a polynomial of degree n > 1. Let f and g be two functions
with derivatives of order n at 0 and assume that

(7.6) SX) = P+ xmg(x)
where g(x) —0as x — 0. Then P, is the Taylor polynomial generated by f ato0.

Proof. Let h(x) =f(x) = P,(x) = x"g(x). By differentiating t he product x"g(x)
repeatedly, we see that h and itsfirst n derivativesare O at x = 0.  Therefore, f agrees with
P, and its first n derivatives at 0, so P, = Tnf, as asserted.

exaveLes.  From the algebraic identity

o1
1 =1+x+ x*+...+ x"+ ,

1—x 1- X

(7.7)

valid for all x # 1, we see that (7.6) is satisfied with f(x) = 1)(1 = X), P(x) = 1 +
x40+ x" and g(X) = x/(1 — x). Since 9X) - 0asx — 0, Theorem 7.4 tells us that

T”(ll )=:1+x+x2+"'+x".

— X

Integration of this relation gives us the further Taylor polynomial

X3 Y
T, 1[—log (1l mX)] =X+ =+ =—+ ...+
al—log (1 =] o+ |
In (7.7) we may replace x by —x? to get
Vv2nt+1
”—1"—'221—x2+x4_. L+ (_l)nx%_(_l)n LA
LoeoXx 1+ x*

Applying Theorem 7.4 once more, we find that

() = 2 0

Integration of this relation leads to the formula

x2k+1

2k+1°

n
Ty, (arctan x) = Z (— 1)
k=0
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74 Exercises

1. Draw graphs of the Taylor polynomials Ty(sin X) =X w x%/3 ! and Ty(sin X) =X — x3/3 ! +
x5/51. Pay careful attention to the points where the curves cross the x-axis. Compare these
graphs with that off(x) = sin x.

2. Do the same as in Exercise 1 for the Taylor polynomialsTy(cos X), T, (cosx), and f(x) =cos x.

In Exercises 3 through 10, obtain the Taylor polynomialsT, f(x) asindicated. In each case, it
is understood that f(x) is defined for all x for which f(x) is meaningful. Theorems 7.2, 7.3, and
7.4 will help smplify the computations in many cases.

n n
(log a)* (—1)FHixE
3. T, (a% =Z ,‘E, x, 6. T, llog (1 + x)] =z_k_.
k=0 ) k=1
1 < 1 +x B X2k
4. Tn(—) = D> (=D x~ 7. T2n+1(log )-—- .
1 +x ; 1-x/ & 2k + 1
x > 1 2oxk
e
k=0 k=0
N a\ _afa—1) . (a=k+ 1
9. Tn[(l + x)f = (k)xk, where (k) = ( ) k|( )
k=C
a 2%~1
10. Ty, (sin? X) = > =1y o x%, [Hint: cos 2x =1 — 2sin? x.]
k=1 :

7.5 Taylor’s formula with remainder

We turn now to a discussion of the error in the approximation of a function f by its
Taylor polynomial T, f at a point a. The error is defined to be the difference E(X) =
f(x) = T,f(x). Thus, iff has a derivative of order n at a, we may write

n (k)
78 w = >

k=0

x = a)” + EX .

This is known as Taylor’s formula with remainder E,(x); it is useful whenever we can
estimate the size of E,(x). We shall express the error as an integral and then estimate the
size of the integral. To illustrate the principal ideas, we consider first the error arising
from a linear approximation.

THEOREM 7.5. Assume f has a continuous second derivative f* in some neighborhood of a.
Then, for every x in this neighborhood, we have

) =fa) + f@F = a) + Exx),

where

E()= | 6 =00 at |
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Proof. From the definition of the error we may write
E() = 100 @) - f@x-a = [ rod-+@ [(da= [ 1o @) d.

The last integral may be written as (* u du, where u = f'(z) -f' (@), and v =t — x, Now
duldt = f"(t) and dv/dt = 1, so the formula for integration by parts gives us

E0 = udu= wl - ["t=nrmda= [ x=nrwad,

since u = 0 when t = g, and v = 0 when t = x. This proves the theorem.
The corresponding result for a polynomial approximation of degree » is given by the
following.

THEOREM 7.6. Assume f has a continuous derivative of order » 4+ 1 in some jnterval
containing a. Then, for every x in this interval, we have the Taylor formula

n (k)
) = Zf% (x =) + E(),

k=0
where

E.(X) = % f; (x = ") dt .

Proof. The theorem is proved by induction on n. We have already proved it for n= 1.
Now we assume it is true for some » and prove it for n + 1. We write Taylor's formula
(7.8) with p + 1 and with » and subtract to get

f(n+1)(a)
T (nF 1)

Now we use the integral for E,(x) and note that (X == a)"*/(n + 1) = f*(x — 1) dt to
obtain

E,11(x) = E,(x) (x —at.

x (n
E,p(x) = #f (x = Of"() dt —Linl,—@ f =1 dt

_ LT ap ety pee
—n!L(x O )] dt

The last integral may be written in the form (% y dp, whereu = f ¢*3(¢) — £ *+1(g) and v =
—(x — )"*Yf(n + 1). Integrating by parts and noting that » = 0 when t = a, and that
v = 0 when ¢ = x, we find that

@ r @
E+,(x) = lJudv =uifvdu— 1 f(x—t)"“f‘"”’(t)dt.
nlJa AalJa a

T (n + D!

This completes the inductive step from z to n + 1, so the theorem is true for all n > 1.



280 Polynomial approximations to functions

7.6 Estimates for the error in Taylor’'s formula

Since the error E,(x) in Taylor's formula has been expressed as an integral involving
the (n + I)st derivative off, we need some further information about f("+) before we can
estimate the size of E,(x). If upper and lower bounds for f"+1) are known, we can deduce
corresponding upper and lower bounds for E,(x), as described in the next theorem.

THECReM  7.7. If the (n + 1)st derivative off satisfies the inequalities
79 mgf <M

for all t in some interval containing a, then for every x in this jnterval we have the following
estimates:

(X — a)n+1 (X _ a)n+1 )
7.10 ———<E M ———-
(710) nrr SEWSME=SEE i x>,
and
(a _ x)n+1 it (a — x)n+1 )
(7.11) m —(n N 1)! S (- 1) + En(x) S M (n-{-—l)' if Xx <a.

Proof. Assume first that x > a. Then the integral for E,(x) is extended over the interval
[a, x]. For each t in this interval we have (x = t)” > 0, so the inequalities in (7.9) give us

n! n! n!
Integrating from a to x, we find that
(7.12) ﬂf(x —t dt <EM <X f (x —t)" dt .
n!Ja n!. a

The substitution » =x = t, du = -dt gives us

Jw(x—t)” i =f " du (x _-a)n+1’
a n+1

S0 (7.12) reduces to (7.10).

If x < a, the integration takes place over the interval [x, a]. For each ¢ in this interval
we have t > X, so (-)*(x = #)" = (¢t = X" > 0. Therefore, we may multiply the
inequalities (7.9) by the nonnegative factor (- 1)*(x — ¢)"/n! and integrate from x to a to
obtain (7.11).

EXAWVPLE |. If f(x) = ¢ and a = 0, we have the formula

=3

+ E.x)

?T‘IX
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Since f"D(x) = ¢, the derivative f{"+1) is monotonic increasing on every interval, and
therefore satisfies the inequalities e” < f(**1)(r) < e° on every interval of the form [5, c].
In such an interval, the inequalities for E,(x) of Theorem 7.7 are satisfied with m = ¢? and
M = ¢ In particular, when b = 0, we have

WC"H ntl

wr s PO Gy

if 0<x<e.

We can use these estimates to calculate the Euler number e. We take b = 0, ¢ = 1,
x =1, and use the inequality e < 3 to obtain

(7.13) i
k=0

This enables us to compute e to any desired degree of accuracy. For example, if we want

the value of e correct to seven decimal places, we choose an n so that 3/(n + I)! < 11078,

We shall see presently that n = 12 suffices. A table of values of 1/n ! may be computed
rather quickly because 1/n ! may be obtained from 1/(n I)! by simply dividing by n. The
following table for 3 < n < 12 contains these numbers rounded off to nine decimals.
The “round-off error” in each case is indicated by a plus or minus sign which tells whether

the correct value exceeds or is less than the recorded value. (In any case, this error is less
than one-half unit in the last decimal place.)

1 3
E (1 —
LD wher(n Y <EM) << ———r n+ D

»In—\

1 1
H n! n n!
3 0.166 666 667 = 8§ 0.000 024 802 —
4 0.041 666 667 = 9 0.000 002 756 =
5 0.008 333 333 + 10 0.000 000 276 —
6 0.001 388 839 — | 11 0.000 000 025 +
7 0.000 198 413 — | 12 0.000 000 002 +

The terms corresponding to n = 0, 1, 2 have sum 3. Adding this to the sum of the entries
in the table (for n < 12), we obtain a total of 2.718281830. If we take into account the
roundoff errors, the actual value of this sum may be less than this by as much as ¢ of a unit
in the last decimal place (due to the seven minus signs) or may exceed this by as much as
3 of a unit in the last place (due to the three plus signs). Call the sum s. Then all we can
assert by this calculation is the inequality 2.718281826 < s < 2.718281832. Now the
estimates for the error E;,(1) give us 0.000000000 < E;»(1) < 0.000000001. Since e =
S+ E(1), this calculation leads to the following inequalities for e:

2718281826 < e < 2.718281833.

This tells us that the value of e, correct to seuen decimals, is e = 2.7182818, or that the
value of e, rounded off to eight decimals, is e = 2.71828183.
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exawLe 2. Zrrationality of e. We can use the foregoing estimates for the error E,(1)
to prove that e is irrational. First we rewrite the inequalities in (7.13) as follows:

1 n, 3
e— > —XK .
m+=¢ Ek! n + 1!

Multiplying through by n!, we obtain

1 < n! 3 3
<nle— - < <-
(7.14) n+ 1 ;k! n+17 4
if n > 3. For every n, the sum on k is an integer. If e were rational, we could choose # O
large that #! e would also be an integer. But then (7.14) would tell us that the difference
of these two integers is a positive number not exceeding £, which is impossible. Therefore
e cannot be rational.

Polynomial approximations often enable us to obtain approximate numerical values for
integrals that cannot be evaluated directly in terms of elementary functions. A famous
example is the integra

=] " o

which occurs in probability theory and in many physical problems. It is known that the
function f so defined is not an elementary function. That isto say, T cannot be obtained
from polynomials, exponentials, logarithms, trigonometric or inverse trigonometric
functions in a finite number of steps by using the operations of addition, subtraction,
multiplication, division, or composition. Other examples which occur rather frequently
in both theory and practice are the integrals

f S, fsin(F)dt, f V1 — K sint dt .
o t 0 {

(In the first of these, it is understood that the quotient (sin ¢)/¢ is to be replaced by 1 when
t = 0. In the third integral, k is a constant, 0 < k < 1.) We conclude this section with
an example which illustrates how Taylor's formula may be used to obtain an accurate
estimate of the integral [Y/2e~“dt.

exavete 3. The Taylor formula for ¢ with n = 4 gives us

x2 X X!
(7.15) E=1l+x+ 5_+ 3—!.+ Z.Jr E(x) .

Suppose now that x < 0. In any interval of the form [-c, 0] we have ¢7¢ < e” <1, so we
may use the inequalities (7.11) of Theorem 7.7 with m=¢=¢and M = 1 to write

(=x)°

0 < (—=DEy(x) < 5

[ f x<0.
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In other words, if x <0, then E,(x) is negative and > x*/5! . Replacing x by —#2 in (7.15),
we have
t4

—* _ _2___i6 t_s 2
(7.16) NG

where —119/5! < E)(—1%) < 0. If 0 <t <}, we find that 1°/5! < (3)1/5! < 0.000 009.
Thus, if we integrate (7.16) from0 10 L, we obtain

2
f‘“/e“zdt=~l———— 1 n+23'5'25-2]z'—7-27-31 + 9-29-41!'—0,
where 0 < § < 0000 0045. Rounding off to four decimals, we find f1/2e** dt = 0.4613.

*77 Other forms of the remainder in Taylor’s formula

We have expressed the error in Taylor's formula as an integral,

E(X) - fomorsenedt,

It can also be expressed in many other forms. Since the factor (X — #)* in the integrand
never changes sign in the interval of integration, and since f**V is continuous on this
interval, the weighted mean-value theorem for integrals (Theorem 3.16) gives us

fx(x - t)nf(n+l)(t) dt = f“”l)(c)ﬁ:(x —t)"dr= f(n+1)(c) (x n—:)ln+1_’

where c lies in the closed interval joining a and x. Therefore, the error can be written as

(n
E,(0) -—(%ﬂf?(x —

!

This is called Lagrange's form of the remainder. It resembles the earlier terms in Taylor's
formula, except that the derivative T+V(c) is evaluated at some unknown point c rather
than at a. The point ¢ depends on x and on n, as well as on f.

Using a different type of argument, we can drop the continuity requirement on f+%
and derive Lagrange's formula and other forms of the remainder under a weaker hypothesis.
Suppose that F "+ exists in some open interval (h, &) containing the point a, and assume
that f** is continuous in the closed interval [h, k]. Choose any x # a in [h, K]. For
simplicity, say x > a. Keep x fixed and define a new function F on the interval [a, X] as
follows :

n (r)
F() = £(1) + Z’ik%’%x .
=1

Note that F(x) = f(x) and F(@) = T,f %:a), SO F(X) = F(@) = E(x). The function Fis
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continuous in the closed interval [a, x] and has a derivative in the open interval (a, x). If
we compute F’(t), keeping in mind that each term of the sum defining F(t) is a product, we
find that all terms cancel except one, and we are left with the equation

F(t) = & =gy

Now let G be any function that is continuous on [a, x] and differentiable on (a, x). Then
we can apply Cauchy’s mean-value formula (Theorem 4.6) to write

G'(OIF(x) = F@)] = F'(0)[G(x) = G(a)] ,

for some c in the open interval (a, x). If G’ is nonzero in (a, x), this gives the following
formula for the error E, (x):

B =L Ecg [G(x) ~ G(a)],

We can express the error in various forms by different choices of G.  For example, taking
G() = (x = t)**, we obtain Lagrange's form,

f(n+1)(c)
B =0

(x—a)*', wheea<c< x.

Taking G(f) = x ~— ¢, we obtain another formula, called Cauchy’'s form of the remainder,

(n+1)
Ey(x) ""‘f_;@(" - (x—-a), wherea<c <x.
If G(t) = (x ~ ¢)?, wherep > 1, we obtain the formula

(nt+1)
E,(x) -—f'J (x = c)"P(x —a)" , where a<c<Xx.
n!p

7.8 EXxercises

Examples of Taylor’'s formula with remainder are given in Exercises 1, 2, and 3. In each case
prove that the error sdisfies the given inequalities.

‘ xl 2n+1

_ l)k—l 2k—1 4
1. sinx ——z((zk d B (x), |E2n(x)l < (W'

lxl2n+2

(_ )k x2k
2.COSx z (Zk)' Epp11(), |E2n+1(x)| < m

1 kx2k+1 + K2 _
3. arctan X ——z( ) - Eon(x), |Eyn(x)] < w1 if 0<x<1.
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4.

6.

7. Prove that 0.493948 <f
8.

9.

10.

(a) Obtain the number r = 4/15 — 3 a an approximaion to the nonzero root of the equation
x2 = sin x by using the cubic Taylor polynomial approximation to sin x.
(b) Show that the approximation in part (a) satisfiestheinequality

S
|sin r rl<200,

given that 4/15 = 3<09. Is the difference (sin r — r?) positive or negative? Give full
details of your reasoning.

. (@) Use the cubic Taylor polynomial approximation to arctan X to obtain the number r =

(v/21 —3)/2 as an approximation to the nonzero root of the equation arctan x = x2,

(b) Given that 4/2] < 4.6 and that 21 = 65536, prove that the approximation in part (a)
stisfies the  inequdity

7
2 — arct < =
|2 = arctan ¢| ™

Is the difference (r* — arctan 1) positive o negaive? Give full details of your ressoning.
1] 4 5% c
— = — 0 1.
Prove thatfo 5 ® dx =1+ T where 0 < ¢ <
1/2

dx < 0.493958.

1
o L+
(@ 1f 0 <x < &, show that sin x = x = x3/3! + r(x), where |r(x) < 3)*/5!.
(b) Use the estimate in part (a) to find an approximate value for the integral %2 sin(x?) dx.
Make sure you give anestimate for the error.
Use the first three nonzero terms of Taylor's formulafor sin x to find an approximate value
for the integral jg (sinx)/x dx and give anestimate for theerror. [It is to be underood that
the quotient (sin x)/x is equal to 1 when x =0.]
Thisexercise outlines amethod for computing =, using Taylor’s formulafor arctan X givenin
Exercise 3. It is based on the fact that = is nealy 32, 0 1= is nearly 08 or £, and this is nearly
4 arctan 1. Let a = arctan }, § = 4o = {m.
(a) Use the identity tan(4 + B) = (tan A + tan B)/(1 = tan A tan B) with A = B =aand
then again with A = B = 2a to get tan 2« = & and tan 4« = 1}§. Then use the identity
once more with A = 4a, B = —}= to obtain tan g = w3g. This yields the following
remarkable identity discovered in 1706 by John Machin (1680-1751):

7 = 16 arctan 3 == 4 arctan 3}7.
() Use the Taylor polynomial Ty(arctan X) with x = £ to show that
3158328934 < 16 arctan 1 < 3.158328972.
(c) Use the Taylor polynomial Ty(arctan X) with X = 335 to show that
-0016736309 < -4 arctan iy < -0.016736300.

(d) Use parts (a), (b) and (c) to show that the value of =, correct to seven decimals, is
3.1415926.
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7.9 Further remarks on the error in Taylor's formula. The o-notation

Iffhas a continuous (n + 1)st derivative in some interval containing a point a, we may
write Taylor's formula in the form

n (k)
(717) 109 = ST D o —ay + B0

k!
k=0

Suppose we restrict x to lie in some closed interval [a = ¢, a + ] about a, in which f"+¥
is continuous. Then f (+1 is bounded on this interval and hence satisfies an inequality of
the form

|f () < M,

where M > 0. Hence, by Theorem 7.7, we have the error estimate

ix — a!ﬂ+1

|E,(x)| < M 1D

for each x in[a —c, a + c]. If wekeep x # a and divide this inequaiity by |x — a|", we
find that

Eq(x)
(x —a)"

M
)

Ix — al.

If now we let x — a, we see that E,(x)/(x = a)" — 0. We describe this by saying that the
error E,(x) is of smaler order than (x — a)® asx — a.

In other words, under the conditions stated, f(x) may be approximated near a by a
polynomia in (x — @) of degree n, and the error in this approximation is of smaller order
than (x — a@)" asx — a.

A special notation, introduced in 1909 by E. Landau,? is particularly appropriate when
used in connection with Taylor's formula. This is called the o-notation (the little-oh
notation) and it is defined as follows.

DEFINITION.  Assume g(X) # O for all x #% ain some interval containing a. The notation

f(x) = o(g(x) asx — a
means that

lim@ =0.
z=a g(X)

The symbol f(x) = o(g(x)) is read ‘f(x) is little-oh of g(x),” or “f(x) is of smaller order
than g(x),” and it is intended to convey the idea that for x near a, f(x) is small compared
with g(x).

+ Edmund Landau (1877-1938) was a famous German mathematician who made many important contri-
butions to mathematics. He is best known for his lucid books in analysis and in the theory of numbers.
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xawte 1 f(x) = o(l) asx — a means that f(x) > 0asx — a.

J(x)

EXAMPLE 2, f(X) = o(x) a x — O means that — —0ax — 0.

An equation of the form f(x) = h(x) + o(g(x)) is understood to mean that f(x) — h(x) =
o(g(x)) or, in other words, [f(x) — A(x)]/g(x) > 0 asx — a.

. sinx == x Sin X
exavvle 3. We have sin x = x + 0o(x) because x =— —1-0as x—0.

The foregoing remarks concerning the error in Taylor's formula can now be expressed
in the o-notation. We may write

n f(k)(a)

S =" 5

k=0

(x - a)"” + o((x — a)) as x—a,

whenever the derivative f"+1) is continuous in some closed interval containing the point a.
This expresses, in a brief way, the fact that the error term is small compared to (x — a)"

when x isnear a. In particular, from the discussion of earlier sections, we have the following
examples of Taylor's formula expressed in the o-notation:

!

I =1+x+ x¥++. .+ x"+ o(x") as x—0.
- X
2 3 4 n
Iog(1+x):x--)—c—+x——x—+.-.+(—1)”‘1x—+o(x") as x—0,
2 3 4 n
xZ "C"
F=1l+X+ =+ ..+ =+ ox") as x—0.
2! n!
x-3 x5 x7 L x2n—1 .
SN X =X = —+ — = — + -t o(x*") as x—0.
351 T + (=D 2n = 1)!
x2 x4 x6 xZI\ 2 1
===+ ., (=D L o(x*"t as x—0.
cos X 2 46l D"y - o)
t e XX Xy 2 o) as x—0
arctanx =x — —+ = — =+ - — .
¢ 375 20 =1

In calculations involving Taylor approximations, it often becomes necessary to combine
several terms involving the o-symbol. A few simple rules for manipulating o-symbols are

discussed in the next theorem. These cover most situations that arise in practice.
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THEOREM 7.8. ALGEBRA OF 0-SYMBOLS. AsX —» @, we have the following:

(@) o(g(x) £ o(g(x)) = olg(x)).

(®) o(cg(x)) = o(g(x)) if c#0.
(© f(x)  o(g(x)) = o(f(x)g(x)).

(d) o(o(g(x))) = o(g(x)).

1
© 1+ gx)

=1=g(x)+ o(g(x)) if gx) >0 as x-ta.

Proof. The statement in part (a) is understood to mean that if fi(x) = o(g(x)) and if
fi(x) = o(g(x)), then fi(x) + fa(x) = o(g(x)). But since we have

A £ 569 _ [0 | fi)
g(x) gx) ™~ gx)’
each term on the right tends to 0 as x — a, so part (@) is proved. The statements in (b),

(c), and (d) are proved in a similar way.
To prove (), we use the algebraic identity

1 u
=1—
14+u u+u1+u

g(x)
1+ g

with u replaced by g(x) and then note that —0 as x-ta.

EXAMPLE 1. Prove that tan x = X 4 4x3 4+ o(x®) asx — O.

Solution. We use the Taylor approximations for the sine and cosine. From part (€) of
Theorem 7.8, with g(x) = —3x® + o(x%), we have

1 1
COSx 1 =1x2+ o(x%

:1+§x2+ 0(x2) as x—0,

Therefore, we have

sin x 1 1 1
tanx:———=(x——x3 ox4)(1 =y 2):X+— 34+ o(x%) .
CoSx g T \Le g x o) ;¥ o)
x 11x2
exavele 2. Provethat (1 + x)1/* = ¢ |1 =2 + 2 + o(x?) as x-— 0.
2 24

Solution. Since (1 + x)1/* = @/=log1+2) e begin with a polynomial approximation
to log (1 + x). Taking a cubic approximation, we have

l—og(1+x)_1_§+§f+ o(x?)
- )

2 x3
log(1+X) = x ==+ =+ o(x%,
o ( ) 2 3 ) X 2 3
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and so we obtain
(7.18) @A+ ) =exp (Ll =x2+ xY3+ o(x?)) =e. ¢

where u = -x/2 + x2/3 + o(x*). But as « — 0, we have ¢* =1+ u+ Ly?+ o(u?), so we
obtain

1( x |, x° 5
Slm o oox
2V 2 3 )

\ x , 11x?
+oxH =1 ==+ == + p(x?) .
Jo oty =1 e 1

u o x*? 2
=1 = +§+o(x)+

[N RR

When we use this in Equation (7,18), we obtain the desired formula

7.10 Applications to indeterminate forms

We have aready illustrated how polynomial approximations are used in the computation
of function values. They can also be used as an aid in the calculation of limits. We illustrate
with some examples.

exavete 1. If a and b are positive numbers, determine the limit

i a:t — T
lim a = b’ .
20 X

Solution.  We cannot solve this problem by computing the limit of the numerator and
denominator separately, because the denominator tends to O and the quotient theorem on
limits is not applicable. The numerator in this case also tends to 0 and the quotient is said
to assume the “indeterminate form 0/0”” as x — 0. Taylor’'s formula and the o-notation
often enable us to calculate the limit of an indeterminate form like this one very simply.
The idea is to approximate the numerator a” — b* by a polynomial in x, then divide by x
and let x — 0. We could apply Taylor's formula directly to f(x) = a” — b* but, since
a® = ¢*108a and p* = ¢*1°¢? it is simpler in this case to use the polynomial approximations
already derived for the exponential function. If we begin with the linear approximation

et =1+ 1+t + ot) as t—0
and replace ¢ by x log a and x log b, respectively, we find
@ =1+xlog a+ o(x) and b¥*= 1+xlog b + o(x) as x—0.
Here we have used the fact that o(x log @) = o(x) and o(x log b) = o(x). If now we subtract
and note that o(x) — o(x) = o(x), we find &* — b* = x(log a — log b) + o(x).  Dividing

by x and using the relation o(x)/x = o(l), we obtain

a” = b*

:Iog%+o(1)—>log% as x—0.
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. 1 1 1
exawLe 2. Prove that lim,.,, —(cotx — —)= - =,
X X 3
Solution.  We use Example 1 of Section 7.9, and Theorem 7.8(€) to write

1 1 1 1
cot X = i

tan x X 4+ 3¢+ o(x) = x L + Jx* + o(x?)
1( 1, 2)_1 1
=-|1==x"+ o(x = — == =X t+ 0(X).
X 3 ) x 3 )
Hence, we have
1 1 1 1
;(cotx—;)——§+o(1)—>—§a s x—0,

log (1 + ax) _
— =

exave 3. Prove that lim,,, a for every rea a.

Solution.  If a = 0, the result holds trivially. If a s 0, we use the linear approximation
log (1 + x) = x + ox). Replacing x by ax, we obtain log (1 + ax) = ax + o(ax) =
ax + o(x). Dividing by x and letting x — 0, we obtain the limit a.

exaveLe 4. Prove that for every real a, we have

(7.19) lim (1 + ax)'® = ¢,

z—0

Solution.  We simply note that (1 + ax)}/* = e1/mlogti+a2) gnd use the result of Example

3 along with the continuity of the exponential function.
Replacing ax by y in (7.19), we find another important limit relation:

lim @1 +y) ¥V = ¢ .

¥-0

Sometimes these limit relations are taken as the starting point for the theory of the
exponential function.

7.11 Exercises

. Find a quadratic polynomial P(x) such that 2¢ = P(x) 4 o(x?) asx — O.

. Find a cubic polynomial P(x) such that x cos x = P(xX) + o((x =~ 1)%) as x — 1.

. Find the polynomial P(x) of smallest degree such that sin (x = x2) = P(X) + o(x%) asx — O.

. Find constants a, &, ¢ such that log x =a+ b(X = 1) + ¢(x = 1)? + o((x = 1)) asx — 1.

. Recall that cos x =1 — 1x? + o(x®) asx — 0. Usethisto prove that x—2 (1~ cos x) — %
asx — 0. In asimilar way, find the limit of x~%(1 = cos 2x = 2x?) asx — O.

GO WN
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Evaluate the limits in Exercises 6 through 29.

6. lim sin ax 18 lim [sin (7/2x))(log x)
o0 8iD BX cael (B S)x =1)°
_ tan 2x i cosh X = cos X
. z-’l) sn 3X, 19- lm x—z'
X-0
8 lim sin X =X 20. lim 3tan4x = 12tanx
X-0 ¥ " a—o 38in4x — 12sinx’
. log (L +X T _ 8ing
9. Ilm%, 21. Iim‘#,
2—0 a—0 X
10. lim 1 — cos? x 2 lim &8 (Sin X) = cos X
Teo0 X tanx m'_n_?, x? '
11. lim X . 23. lim yl/(~a)
»0 AICtan x ’ el )
. ar=1
120imeo— 61, 24. lim (x + e2)/a,
z—0 - z—0
. log x 1+ x)te =
13 lim ———— im —————
REET 2 lim,
. 1=CO0s x? (1 + x)V/=\V=z
14. lim ——-. 26. lim{ ———————
gp X2 SIN x2 m‘f}, e ’
_x(e® + 1) = 2" = 1) arcsin x \V/#*
15. lim 3 s 27. Iim(———) .
z—0 X 2—0
16 Iimw 28. lim l_ !
w0 L1 — cosx ' 'zl,,ox e —1)
17. lim oS x 29. lim 1 :
m—»%ﬂ-x_%ﬂ' .a:al |09X x—1)

30. For what value of the constant a will x2(ea — ¢* — x) tend to a finite limit as x —, O? What

is the value of this limit ?
31. Given two functions fand g with derivatives in some interval containing 0, whereg is positive.

Assume also f(x) = o(g(x)) asx — 0. Prove or disprove each of the following statements:

(@) J.:f(t) dt = O(J': £(0) dt)) asx — 0, (b) F'(x) = o(g’(x)) as x — O .
32. (a) If g(x) = o(1) as x — 0, prove that

1
1m+g(x) =1 —g(x) + g2(x) + O(gz(x)) as x—0.

x5

(b) Usepart(a)toprovethattanx=x+?+E + o(x%) as x—0.

33. A function T has a continuous third derivative everywhere and satisfies the relation
. )\ /2
llm(l +x + @) = ¢8,

z—0
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. FO\=
Compute f(0), (0), f7(0), and llm(l + ) ‘

z—0 x

[Hint: 1f lim,_og(x) = A theng(x) = A+ o(1) asx — 0.]

7.12 L'Hopital’s rale for the indeterminate form 0/0

In many examples in the foregoing sections we have calculated the limit of a quotient
f(x)/g(x) in which both the numerator f(x) and the denominator g(x) approached O. In
examples like these, the quotient f(x)/g(x)is said to assume the “indeterminate form 0/0.”

One way to attack problems on indeterminate forms is to obtain polynomial approxima-
tions to f(x) and g(x) as we did in treating the above examples. Sometimes the work can
be shortened by use of a differentiation technique known as L'Hopital’s rule.t The basic
idea of the method is to study the quotient of derivatives f'(x)/g'(x) and thereby to try to
deduce information about f(x)/g(x).

Before stating L’ Hopital’s rule, we show why the quotient of derivatives f'(x)/g’(x) bears
arelation to the quotient f(x)/g(x). Supposefand g are two functions with f(a) = g(a) = 0.
Then, for X # a, we have

gx) _ f(x) —fla) _ Fx) — f(a) g(a)
g(x)  g(x) — gla) X - a X-u

If the derivatives f’(a) and g'(a) exist, and if g'(u) 5 O, then as x — a the quotient on the
right approaches f'(a)/g’(a) and hence f(x)/g(x) — f'(a)/g(a).

1 = eZac

ExavpLE.  Compute lim,_,,
X

Solution.  Heref(x) =1 — ¢ and g(x) = x,30 f'(x) = —2¢*, g(x) = 1. Hence we
have f'(0)/g'(0) = - 2, so the limit in question is -2.

In L’Hopital’s rule, no assumptions are made about f, g or their derivatives g the point
X = a. Instead, we assume that f(x) and g(x) approach 0 as x — a and that the guotient
f'(x)/g’(x) tends to a finite limit asx — a L'Hopital’s rule then tells us that f(x)/g(x) tends
to the same limit. More precisely, we have the following.

THEOREM 7.9. L’HOPITAL’S RULE ror 0/0. Assume f and g have derivatives f'(x) and
g'(X) at each point x of an open interval (a, b), and suppose that

(7.20) limf(x)= 0 and limg(x) =0 .

x-at zat

t In 169, Guillaume Francois Antoine de L’Hopital (1661-1704) wrote the firs textbook on differentia
calculus. This work appeared in many editions and played a significant role in the popularization of the
subject. Much of the content of the "book, including the method known as “L'Hépita’s rule,”” was based
on the earlier work of Johan Beroulli, one of L'Hopita's teachers.
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Assume also that g'(x) O for each x in (a, b). If the limit

(7.21) lim L&)
ot g

exists and has the value L, say, then the limit

(7.22) Jim {&)
ant g(x)

also exists and has the value L.

Note that the limits in (7.20), (7.21), and (7.22) are “right-handed.” There is, of course,
a similar theorem in which the hypotheses are satisfied in some open interval of the form
(b, @) and all the limits are “left-handed.” Also, by combining the two “one-sided”
theorems, there follows a “‘two-sided” result of the same kind in which x — a in an
unrestricted fashion.

Before we discuss the proof of Theorem 7.9, we shall illustrate the use of this theorem
in a number of examples.

exavle 1. We shall use L’Hopital’s ryle to obtain the familiar formula

7.23) lim22X _ 4

z+0 X
Here f(x) = sin x and g(x) = x. The quotient of derivatives is f'(x)/g’(x) = (cos x)/1 and
thistendsto 1 asx —» 0. By Theorem 7.9 the limit in (7.23) also exists and equals 1.

exawLe 2. TO determine the limit

. X = tan X
lim———
a',—OOX = SIN X

by L'Hopital’s rule, we let f(x) = x —tan X, g(X) =x = sin x, and we find that
’ 2

(7.24) fx)_ 1—sec’x
g(x) 1--COSx.

Although this, too, assumes the form 0/0 as x-» 0, we may remove the indeterminacy at
this stage by algebraic means. If we write

e se? X = 1o e = cos?x ~1 _ (1+COS x)(1- COSx)
cos® x cos® X cos® x ’
the quotient in (7.24) becomes
f'(x)  1+COSx
g'(x) cos® x

and this approaches -2 as x — 0. Notice that the indeterminacy disappeared when we
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canceled the common factor 1 — cos x.  Canceling common factors usually tends to
simplify the work in problems of this kind.

When the quotient of derivatives f’(x)/g'(x) also assumes the indeterminate form /0,

we may try L’Hopital’s rule again. In the next example, the indeterminacy is removed
after two applications of the rule.

exavLe 3. For any real number ¢, we have

4 C-1 — c—2 —

x—cx+c—1=h.mcx —C:Hmc(_c 1)x clc =1) .
z-1 (X -_ 1)” -1 2(X —_— 1) 221 2 i

In this sequence of equations it is understood that the existence of each limit implies that

of the preceding and also their equality.

The next example shows that L'Hopital’s rule is not infalible.

exawee 4. Let f(x) = e/ if x # 0, and let g(x) = x. The quotient f(x)/g(x) assumes
the indeterminate form 0/0 as x— 0+, and one application of L’'Hopital’s rule leads to
the quotient

f0) _ (et ot

gy 1%
This, too, is indeterminate as x — 04, and if we differentiate numerator and denominator we
obtain (1/x?)e=1/"/(2x) = e~1/*/(2x®). After n steps we are led to the quotient e=1/%/(n! x"+1),
so the indeterminacy never disappears by this method.

exavLe 5. When using L’Hopital’s rule repeatedly, some care is needed to make certain
that the quotient under consideration actually assumes an indeterminate form. A common
type of error is illustrated by the following calculation:

3x* — 2x — 1 6x—2 . 6

lim——T—=lim—— =1

=3
z-1 X ==X z-1 2X =1 z-12

The first step is correct but the second is not. The quotient (6x — 2)/(2x — 1) is not
indeterminate as x — 1. The correct limit, 4, is obtained by substituting 1 for x in
(6x — 2)/(2x — 1).

exaveLe 6. Sometimes the work ¢an be shortened by a change of variable. For example,
we could apply L'Hopital’'s ryle directly to calculate the limit

fim Y%
-0+ 1 — 62\/5 