
Tom M. Apostol

CALCULUS
VOLUME 1

One-Variable  Calculus, with an
Introduction to Linear Algebra

SECOND EDITION

John Wiley & Sons, Inc.
New York l Santa Barbara l London l Sydney l Toronto



C O N S U L T I N G  EDITOR

George Springer, Indiana University

XEROX @  is a trademark of Xerox Corporation.

Second Edition Copyright 01967  by John WiJey  &  Sons, Inc.

First Edition copyright 0 1961 by Xerox Corporation.

Al1  rights reserved.  Permission in writing must be obtained
from the publisher before any part of this publication may
be reproduced or transmitted in any form or by any means,
electronic or mechanical, including  photocopy, recording,

or any information storage or retrieval system.

ISBN  0 471 00005 1
Library of Congress  Catalog Card Number: 67-14605

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2



TO

Jane and Stephen





PREFACE

Excerpts from the Preface  to the First Edition

There seems to be no general agreement as to what should constitute  a first course in
calculus  and analytic geometry. Some people insist that the only way to really understand
calculus  is to start off with a thorough treatment of the real-number system and develop
the subject step by step in a logical and rigorous fashion. Others argue that calculus  is
primarily a tool for engineers and physicists; they believe the course should stress applica-
tions of the calculus  by appeal to intuition and by extensive drill on problems which develop
manipulative skills. There is much  that is sound in both these points of view. Calculus is
a deductive science and a branch  of pure mathematics. At the same  time, it is very  impor-
tant to remember that calculus  has strong roots in physical problems and that it derives
much  of its power and beauty from the variety of its applications. It is possible to combine
a strong theoretical development with sound training in technique; this book represents
an attempt to strike a sensible balance between the two. While treating the calculus  as a
deductive science, the book does  not neglect applications to physical problems. Proofs of
a11  the important theorems are presented as an essential part of the growth of mathematical
ideas; the proofs are often preceded by a geometric or intuitive discussion to give the
student some insight into why they take a particular form. Although these intuitive dis-
cussions Will satisfy readers who are not interested in detailed proofs, the complete  proofs
are also  included for those who prefer a more rigorous presentation.

The approach in this book has been suggested by the historical and philosophical develop-
ment of calculus  and analytic geometry. For example, integration is treated before
differentiation.  Although to some this may  seem unusual, it is historically correct and
pedagogically sound. Moreover, it is the best way to make meaningful the true connection
between the integral and the derivative.

The concept of the integral is defined first for step functions. Since  the integral of a step
function  is merely a finite  sum, integration theory in this case is extremely simple. As the
student learns the properties of the integral for step functions,  he gains experience  in the
use of the summation notation and at the same  time becomes familiar with the notation
for integrals. This sets the stage SO that the transition from step functions  to more general
functions  seems easy and natural.

vii



. . .
WI Preface

Prefuce  to the Second Edition

The second edition differs from the first in many  respects. Linear algebra has been
incorporated, the mean-value theorems and routine applications of calculus  are introduced
at an earlier stage, and many new and easier exercises  have been added. A glance at the
table of contents reveals that the book has been divided into smaller chapters,  each  centering
on an important concept. Several sections have been rewritten and reorganized to provide
better motivation and to improve the flow of ideas.

As in the first edition, a historical introduction precedes  each  important new concept,
tracing its development from an early intuitive physical notion to its precise  mathematical
formulation. The student is told something of the struggles of the past and of the triumphs
of the men who contributed most to the subject. Thus the student becomes an active
participant in the evolution of ideas rather than a passive observer of results.

The second edition, like the first, is divided into two volumes. The first two thirds of
Volume 1 deals with the calculus  of functions  of one  variable, including infinite series  and
an introduction to differential equations. The last third of Volume 1 introduces linear
algebra with applications to geometry and analysis. Much  of this material leans heavily
on the calculus  for examples that illustrate the general theory. It provides a natural
blending of algebra and analysis and helps pave the way for the transition from one-
variable calculus  to multivariable calculus, discussed in Volume II. Further development
of linear algebra Will occur  as needed in the second edition of Volume II.

Once again 1 acknowledge with pleasure my debt to Professors H. F. Bohnenblust,
A. Erdélyi, F. B. Fuller, K. Hoffman, G. Springer, and H. S. Zuckerman. Their influence
on the first edition continued into the second. In preparing the second edition, 1 received
additional help from Professor Basil Gordon, who suggested many  improvements. Thanks
are also due George Springer and William P. Ziemer, who read the final draft. The staff
of the Blaisdell Publishing Company has, as always, been helpful; 1 appreciate their sym-
pathetic consideration of my wishes concerning format and typography.

Finally, it gives me special  pleasure to express my gratitude to my wife for the many ways
she has contributed during the preparation of both editions. In grateful acknowledgment
1 happily dedicate this book to her.

T. M. A.
Pasadena, California
September 16, 1966
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INTRODUCTION

Part 1. Historical  Introduction

11.1 The two basic concepts of calculus

The remarkable progress that has been made in science and technology during the last
Century is due in large part to the development of mathematics. That branch of mathematics
known as integral and differential calculus serves as a natural and powerful tool for attacking
a variety of problems that arise in physics, astronomy, engineering, chemistry, geology,
biology, and other fields including, rather recently, some of the social sciences.

TO give the reader an idea of the many different types of problems that cari  be treated by
the methods of calculus, we list here a few sample questions selected from the exercises that
occur in later chapters of this book.

With what speed should a rocket be fired upward SO that it never  returns to earth? What
is the radius of the smallest circular  disk that cari caver  every isosceles triangle of a given
perimeter L? What volume of material is removed from a solid sphere of radius 2r if a hole
of radius r is drilled through the tenter ? If a strain of bacteria grows at a rate proportional
to the amount present and if the population doubles in one  hour, by how much Will  it
increase at the end of two hours? If a ten-Pound force stretches an elastic spring one  inch,
how much work is required to stretch the spring one  foot ?

These examples, chosen  from various fields, illustrate some of the technical questions that
cari  be answered by more or less routine applications of calculus.

Calculus is more than a technical tool-it is a collection of fascinating and exciting ideas
that have interested thinking men for centuries. These ideas have to do with speed, area,
volume, rate of growth,  continuity,  tangent line,  and other concepts from a variety of fields.
Calculus forces us to stop and think carefully about the meanings of these concepts. Another
remarkable feature of the subject is its unifying power. Most of these ideas cari be formu-
lated SO that they revolve around two rather specialized problems of a geometric nature. W e
turn now to a brief description of these problems.

Consider a curve  C which lies above a horizontal base line such  as that shown in Figure
1.1. We assume this curve  has the property that every vertical line intersects it once at most.

1



2 Introduction

The shaded portion of the figure consists  of those points which lie below the curve C, above
the horizontal base, and between two parallel vertical segments joining C to the base. The
first fundamental problem of calculus  is this : TO assign  a number which measures the area
of this shaded region.

Consider next a line drawn tangent to the curve, as shown in Figure 1.1. The second
fundamental problem may  be stated as follows: TO assign a number which measures the
steepness of this line.

FIGURE 1.1

Basically, calculus  has to do with the precise  formulation and solution of these two
special problems. It enables us to dejine  the concepts of area and tangent line and to cal-
culate  the area of a given region or the steepness of a given tangent line. Integral calculus
deals with the problem of area and Will be discussed in Chapter 1. Differential calculus  deals
with the problem of tangents and Will be introduced in Chapter 4.

The study of calculus  requires a certain mathematical background. The present chapter
deals with fhis background material and is divided into four parts : Part 1 provides historical
perspective; Part 2 discusses some notation and terminology from the mathematics of sets;
Part 3 deals with the real-number system; Part 4 treats mathematical induction and the
summation notation. If the reader is acquainted with these topics, he cari  proceed directly
to the development of integral calculus  in Chapter 1. If not, he should become familiar
with the material in the unstarred sections of this Introduction before proceeding to
Chapter 1.

Il.2 Historical background

The birth of integral calculus  occurred more than 2000 years ago  when the Greeks
attempted to determine areas by a process which they called the method ofexhaustion. The
essential ideas of this method are very  simple and cari  be described briefly as follows: Given
a region whose area is to be determined, we inscribe  in it a polygonal region which approxi-
mates the given region and whose area we cari  easily compute. Then we choose  another
polygonal region which gives a better approximation, and we continue the process,  taking
polygons  with more and more sides  in an attempt to exhaust the given region. The method
is illustrated for a semicircular region in Figure 1.2. It was used successfully by Archimedes
(287-212 BS.)  to find exact formulas for the area of a circle  and a few other special figures.



The method of exhaustion for the area  of a parabolic segment 3

The development of the method of exhaustion beyond the point to which Archimedes
carried it had to wait nearly eighteen centuries until the use of algebraic symbols and
techniques became a standard part of mathematics. The elementary algebra that is familiar
to most high-school students today was completely unknown in Archimedes’ time, and it
would have been next to impossible to extend his method to any  general class  of regions
without some convenient way of expressing rather lengthy calculations in a compact and
simplified form.

A slow but revolutionary change in the development of mathematical notations began
in the 16th Century A.D. The cumbersome system of Roman numerals was gradually dis-
placed by the Hindu-Arabie characters used today, the symbols + and - were introduced
for the first time, and the advantages of the decimal notation began to be recognized.
During  this same period, the brilliant successes of the Italian mathematicians Tartaglia,

FIGURE 1.2 The method of exhaustion applied to a semicircular region.

Cardano,  and Ferrari in finding algebraic solutions of cubic and quartic equations stimu-
lated a great deal  of activity in mathematics and encouraged the growth and acceptance of a
new and superior algebraic language. With the widespread introduction of well-chosen
algebraic symbols, interest  was revived in the ancient  method of exhaustion and a large
number of fragmentary results were discovered in the 16th Century by such  pioneers as
Cavalieri, Toricelli, Roberval, Fermat,  Pascal, and Wallis.

Gradually the method of exhaustion was transformed into the subject now called integral
calculus, a new and powerful discipline with a large variety of applications, not only to
geometrical problems concerned with areas and volumes but also to problems in other
sciences. This branch of mathematics, which retained some of the original features of the
method of exhaustion, received its biggest impetus in the 17th Century, largely due to the
efforts of Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716),  and its develop-
ment continued well into the 19th Century before the subject was put on a firm mathematical
basis by such  men as Augustin-Louis Cauchy (1789-1857) and Bernhard Riemann (1826-
1866). Further refinements and extensions of the theory are still being carried out in
contemporary mathematics.

I l . 3 The method of exhaustion for the area  of a parabolic segment

Before we proceed to a systematic treatment of integral calculus, it Will be instructive
to apply the method of exhaustion directly to one  of the special  figures treated by Archi-
medes himself. The region in question is shown in Figure 1.3 and cari be described as
follows: If we choose  an arbitrary point on the base of this figure and denote  its distance
from 0 by X,  then the vertical distance from this point to the curve is x2. In particular, if
the length of the base itself is b, the altitude of the figure is b2. The vertical distance from
x to the curve  is called the “ordinate” at x. The curve  itself is an example of what is known
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FIGURE 1.3 A parabolic
segment.

FIGURE 1.4

as a parabola. The region bounded by it and the two line segments is called a parabolic
segment.

This figure may be enclosed  in a rectangle of base b and altitude b2,  as shown in Figure 1.3.
Examination of the figure suggests that the area of the parabolic segment is less than half
the area of the rectangle. Archimedes made the surprising discovery that the area of the
parabolic segment is exactly one-third  that of the rectangle; that is to say,  A = b3/3,  where
A denotes  the area of the parabolic segment. We shall show presently how to arrive at this
result.

It should be pointed out that the parabolic segment in Figure 1.3 is not shown exactly as
Archimedes drew it and the details that follow are not exactly the same as those used by him.

0 b 26 k b- - . . . - . . . b,!!!
n n n n

FIGURE 1.5 Calculation of the area  of a parabolic segment.
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Nevertheless, the essential ideas are those of Archimedes; what is presented here is the
method of exhaustion in modern notation.

The method is simply this: We slice  the figure into a number of strips and obtain two
approximations to the region, one  from below and one  from above, by using two sets of
rectangles as illustrated in Figure 1.4. (We use rectangles rather than arbitrary polygons to
simplify the computations.) The area of the parabolic segment is larger than the total area
of the inner rectangles but smaller than that of the outer rectangles.

If each  strip is further subdivided to obtain a new approximation with a larger number
of strips, the total area of the inner rectangles increases, whereas the total area of the outer
rectangles decreases. Archimedes realized that an approximation to the area within any
desired degree of accuracy could be obtained by simply taking enough strips.

Let us carry out the actual computations that are required in this case. For the sake of
simplicity, we subdivide the base into n equal  parts, each  of length b/n  (see Figure 1.5). The
points of subdivision correspond to the following values of x:

()b 2 29  > 3 ,...,
(n - 1)b nb b

> -=
n n n n n

A typical point of subdivision corresponds to x = kbln,  where k takes the successive values
k = 0, 1,2,  3, . . . , n. At each  point kb/n  we construct the outer  rectangle of altitude (kb/n)2
as illustrated in Figure 1.5. The area of this rectangle is the product  of its base and altitude
and is equal to

Let us denote  by S, the sum of the areas of a11  the outer  rectangles. Then since  the kth
rectangle has area (b3/n3)k2,  we obtain the formula

(1.1) s,  = $ (12 + 22 + 32  + . * * + 2).

In the same way we obtain a formula for the sum s, of a11  the inner rectangles:

(1.2) s, = if [12 + 22 + 32 + * *
n3

* + (n - 1)21  .

This brings us to a very important stage in the calculation. Notice that the factor  multi-
plying b3/n3  in Equation (1.1) is the sum of the squares of the first n integers:

l2 + 2” + * . * + n2.

[The corresponding factor in Equation (1.2) is similar except that the sum has only n - 1
terms.] For a large value of n, the computation  of this sum by direct addition of its terms is
tedious and inconvenient. Fortunately there is an interesting identity which makes it possible .
to evaluate this sum in a simpler way, namely,

,

(1.3) l2 + 22 + * * *+4+5+l.
6
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This identity is valid for every integer n  2 1 and cari be proved as follows: Start with the
formula (k + 1)” = k3  + 3k2  + 3k + 1 and rewrite it in the form

3k2  + 3k + 1 = (k + 1)” - k3.

Takingk=  1,2,..., n - 1, we get n - 1 formulas

3*12+3.1+  1=23- 13

3~2~+3.2+1=33-23

3(n - 1)” + 3(n - 1) + 1 = n3 - (n - 1)“.

When we add these formulas, a11  the terms on the right cancel  except two and we obtain

3[1”  + 22 + * * *+ (n - 1)2] + 3[1  + 2+ . . . + (n - l)] + (n - 1) = n3  - 13.

The second sum on the left is the sum of terms in an arithmetic progression and it simplifies
to &z(n  - 1). Therefore this last equation gives us

Adding n2 to both members, we obtain (1.3).
For our purposes, we do not need the exact expressions given in the right-hand members

of (1.3) and (1.4). Al1 we need are the two inequalities

12+22+*** + (n - 1)” < -3 < l2 + 22 + . . . + n2

which are valid for every integer n 2 1. These inequalities cari  de deduced easily as con-
sequences  of (1.3) and (1.4), or they cari be proved directly by induction. (A proof  by
induction is given in Section 14.1.)

If we multiply both inequalities in (1.5) by b3/ 3n and make use of (1.1) and (1.2)  we obtain

(1.6) s, < 5  < $2

for every n. The inequalities in (1.6) tel1 us that b3/3  is a number which lies between s, and
S, for every n.  We Will now prove that b3/3  is the ody  number which has this property. In
other words, we assert that if A is any  number which satisfies the inequalities

( 1 . 7 ) s, < A < S,

for every positive integer n, then A = b3/3.  It is because of this fact that Archimedes
concluded that the area of the parabolic segment is b3/3.
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TO prove that A = b3/3,  we use the inequalities in (1.5) once more. Adding n2 to both
sides  of the leftmost inequality in (I.5),  we obtain

l2 + 22  + * * *+ n2 < $ + n2.

Multiplying this by b3/n3  and using  (I.l),  we find

0.8) s,<:+c
n

Similarly, by subtracting n2 from both side;  of the rightmost inequality in (1.5) and multi-
plying by b3/n3,  we are led to the inequaiity

(1.9)
b3 b3- - -
3 n

< s,.

Therefore, any  number A satisfying (1.7) must also satisfy

(1 .10)

for every integer IZ  2 1. Now there are only three possibilities:

A>;, A<$ A=$,

If we show that each  of the first two leads to a contradiction, then we must have A = b3/3,
since,  in the manner of Sherlock Holmes, this exhausts a11  the possibilities.

Suppose the inequality A > b3/3  were true. From the second inequality in (1.10) we
obtain

(1 .11) A-;<!f
n

for every integer n 2 1. Since  A - b3/3  is positive, we may  divide both sides  of (1.11) by
A - b3/3  and then multiply by n to obtain the equivalent statement

n<
b3

A - b3/3

for every n. But this inequality is obviously false when IZ  2 b3/(A - b3/3).  Hence  the
inequality A > b3/3  leads to a contradiction. By a similar argument, we cari  show that the
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inequality A < b3/3  also leads to a contradiction, and therefore we must have A = b3/3,
as asserted.

*Il.4 Exercises

1. (a) Modify the region in Figure 1.3 by assuming that the ordinate at each  x is 2x2 instead of
x2. Draw the new figure. Check  through the principal steps in the foregoing section and
find what effect  this has on the calculation of the area. Do the same  if the ordinate at each  x is
(b) 3x2,  (c) ax2,  (d) 2x2 + 1, (e) ux2 + c.

2. Modify the region in Figure 1.3 by assuming that the ordinate at each  x is x3 instead of x2.
Draw the new figure.
(a) Use a construction similar to that illustrated in Figure 1.5 and show that the outer  and inner
sums S, and s,  are given by

s, = ; (13  + 23  + . . * + n3),
b4

s,  = 2 113  + 23 + . . . + (n - 1)3].

(b) Use the inequalities (which cari  be proved by mathematical induction; see Section 14.2)

(1.12) 13 +23  +... + (n - 1)s < ; < 13 + 23  + . . . + n3

to show that s,  < b4/4  < S, for every n, and prove that b4/4  is the only  number which lies
between s,  and S, for every n.
(c) What number takes the place of b4/4  if the ordinate at each  x is ux3 + c?

3. The inequalities (1.5) and (1.12) are special  cases of the more general inequalities

(1.13) 1” + 2” + . . . + (n - 1)” < & < 1” + 2” + . . . + ?ZK

that are valid for every integer n  2  1 and every integer k 2  1. Assume the -validity  of (1.13)
and generalize the results of Exercise  2.

I l . 5 A critical analysis of Archimedes’ method

From calculations similar to those in Section 1 1.3, Archimedes concluded that the area
of the parabolic segment in question is b3/3.  This fact was generally accepted  as a mathe-
matical  theorem for nearly 2000 years before it was realized that one  must re-examine
the result from a more critical point of view. TO understand why anyone would question
the validity of Archimedes’ conclusion, it is necessary to know something about  the important
changes that have taken place in the recent history of mathematics.

Every branch of knowledge is a collection of ideas described by means of words and
symbols, and one  cannot  understand these ideas unless one  knows the exact meanings of
the words and symbols that are used. Certain branches of knowledge, known as deductive
systems, are different from others in that a number of “undefined” concepts are chosen
in advance  and a11  other concepts in the system are defined in terms of these. Certain
statements about  these undefined concepts are taken as axioms or postulates and other
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statements that cari be deduced from the axioms are called theorems. The most familiar
example of a deductive system is the Euclidean theory of elementary geometry that has
been studied by well-educated men since  the time of the ancient  Greeks.

The spirit of early Greek mathematics, with its emphasis on the theoretical and postu-
lational approach to geometry as presented in Euclid’s Elements,  dominated the thinking
of mathematicians until the time of the Renaissance. A new and vigorous phase in the
development of mathematics began with the advent of algebra in the 16th Century, and
the next 300 years witnessed a flood of important discoveries. Conspicuously absent from
this period was the logically precise  reasoning of the deductive method with its use of
axioms, definitions, and theorems. Instead, the pioneers in the 16th,  17th,  and 18th cen-
turies resorted to a curious blend of deductive reasoning combined  with intuition, pure
guesswork, and mysticism,  and it is not surprising to find that some of their work was
later shown to be incorrect. However, a surprisingly large number of important discoveries
emerged from this era, and a great deal of the work has survived the test of history-a
tribute to the unusual ski11 and ingenuity of these pioneers.

As the flood of new discoveries began to recede,  a new and more critical period emerged.
Little by little, mathematicians felt forced to return to the classical ideals of the deductive
method in an attempt to put the new mathematics on a firm foundation. This phase of the
development, which began early in the 19th Century and has continued to the present day,
has resulted in a degree of logical purity and abstraction that has surpassed a11  the traditions
of Greek science. At the same time, it has brought about a clearer understanding of the
foundations of not only calculus but of a11  of mathematics.

There are many ways to develop calculus  as a deductive system. One possible approach
is to take the real numbers as the undefined abjects. Some of the rules governing the
operations on real numbers may then be taken as axioms. One such  set of axioms is listed
in Part 3 of this Introduction. New concepts, such  as integral,  limit,  continuity,  derivative,
must then be defined in terms of real numbers. Properties of these concepts are then
deduced as theorems that follow from the axioms.

Looked at as part of the deductive system of calculus, Archimedes’ result about the area
of a parabolic segment cannot  be accepted  as a theorem until a satisfactory definition of
area is given first. It is not clear whether Archimedes had ever formulated a precise  defini-
tion of what he meant by area. He seems to have taken it for granted that every region has an
area associated with it. On this assumption he then set out to calculate areas of particular
regions. In his calculations he made use of certain facts about area that cannot be proved
until we know what is meant by area. For instance, he assumed that if one  region lies inside
another, the area of the smaller region cannot  exceed that of the larger region. Also, if a
region is decomposed into two or more parts, the sum of the areas of the individual parts is
equal to the area of the whole region. Al1 these are properties we would like area to possess,
and we shall insist that any  definition of area should imply these properties. It is quite
possible that Archimedes himself may have taken area to be an undefined concept and then
used the properties we just mentioned as axioms about area.

Today we consider the work of Archimedes as being important not SO much because it
helps us to compute areas of particular figures, but rather because it suggests a reasonable
way to dejïne  the concept of area for more or less arbitrary figures. As it turns out,  the
method of Archimedes suggests a way to define  a much more general concept known as the
integral. The integral, in turn, is used to compute not only area but also quantities such  as
arc length, volume, work and others.
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If we look ahead and make use of the terminology of integral calculus, the result of the
calculation carried out in Section 1 1.3 for the parabolic segment is often stated as follows :

“The integral of x2 from 0 to b is b3/3.”

It is written symbolically as

s

0 b3
x2  dx = - ,

0 3

The symbol 1  (an elongated S) is called an integral sign,  and it was introduced by Leibniz
in 1675. The process which produces the number b3/3  is called integration. The numbers
0 and b which are attached to the integral sign are referred to as the limits  of integration.
The symbol Jo x2 dx must be regarded as a whole. Its definition Will treat it as such,  just
as the dictionary describes the word “lapidate” without reference to “lap,”  “id,” or “ate.”

Leibniz’ symbol for the integral was readily accepted  by many early mathematicians
because they liked to think of integration as a kind of “summation process” which enabled
them to add together infinitely many “infinitesimally small quantities.” For example, the
area of the parabolic segment was conceived of as a sum of infinitely many infinitesimally
thin rectangles of height x2 and base dx. The integral sign represented the process of adding
the areas of a11  these thin rectangles. This kind of thinking is suggestive and often very
helpful, but it is not easy to assign a precise  meaning to the idea of an “infinitesimally small
quantity.” Today the integral is defined in terms of the notion of real number without
using ideas like “infinitesimals.” This definition is given in Chapter 1.

I l . 6 The approach to calculus  to be used in this book

A thorough and complete treatment of either integral or differential calculus depends
ultimately on a careful study of the real number system. This study in itself, when carried
out  in full, is an interesting but somewhat lengthy program that requires a small volume
for its complete exposition. The approach in this book is to begin with the real numbers
as unde@zed  abjects  and simply to list a number of fundamental properties of real numbers
which we shall take as axioms. These axioms and some of the simplest theorems that cari
be deduced from them are discussed in Part 3 of this chapter.

Most of the properties of real numbers discussed here are probably familiar to the reader
from his study of elementary algebra. However, there are a few properties of real numbers
that do not ordinarily corne into consideration  in elementary algebra but which play an
important role in the calculus. These properties stem from the so-called Zeast-Upper-bound
axiom (also  known as the completeness or continuity  axiom) which is dealt with here in some
detail. The reader may wish to study Part 3 before proceeding with the main body of the
text, or he may postpone reading this material until later when he reaches those parts of the
theory that make use of least-Upper-bound properties. Material in the text that depends  on
the least-Upper-bound axiom Will be clearly indicated.

TO develop calculus as a complete,  forma1 mathematical theory, it would be necessary
to state, in addition to the axioms for the real number system, a list of the various “methods
of proof”  which would be permitted for the purpose  of deducing theorems from the axioms.
Every statement in the theory would then have to be justified either as an “established law”
(that is, an axiom, a definition, or a previously proved theorem) or as the result of applying
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one  of the acceptable methods of proof  to an established law. A program of this sort would
be extremely long and tedious and would add very little to a beginner’s understanding of
the subject. Fortunately, it is not necessary to proceed in this fashion in order to get a good
understanding and a good working knowledge of calculus. In this book the subject is
introduced in an informa1 way, and ample use is made of geometric intuition whenever it is
convenient  to do SO. At the same time, the discussion proceeds in a manner that is con-
sistent with modern standards of precision and clarity of thought. Al1 the important
theorems of the subject are explicitly stated and rigorously proved.

TO avoid interrupting the principal flow of ideas, some of the proofs appear in separate
starred sections. For the same reason, some of the chapters are accompanied by supple-
mentary material in which certain important topics related to calculus are dealt with in
detail. Some of these are also starred to indicate that they may be omitted or postponed
without disrupting the continuity of the presentation. The extent to which the starred
sections are taken up or not Will depend  partly on the reader’s background and ski11 and
partly on the depth of his interests. A person  who is interested primarily in the basic
techniques may skip the starred sections. Those who wish a more thorough course in
calculus, including theory as well as technique, should read some of the starred sections.

Part 2. Some Basic Concepts of the Theory of Sets

12.1 Introduction to set theory

In discussing any  branch of mathematics, be it analysis, algebra, or geometry, it is helpful
to use the notation and terminology of set theory. This subject, which was developed by
Boole and Cantort  in the latter part of the 19th Century, has had a profound influence on the
development of mathematics in the 20th Century. It has unified many seemingly discon-
nected ideas and has helped to reduce many mathematical concepts to their logical founda-
tions in an elegant and systematic way. A thorough treatment of the theory of sets would
require a lengthy discussion which we regard as outside the scope  of this book. Fortunately,
the basic notions are few in number, and it is possible to develop a working knowledge of the
methods and ideas of set theory through an informa1 discussion. Actually, we shall discuss
not SO much a new theory as an agreement about  the precise  terminology that we wish to
apply to more or less familiar ideas.

In mathematics, the word “set” is used to represent a collection of abjects viewed as a
single entity. The collections called to mind by such  nouns  as “flock,” “tribe,” “crowd,”
“team,” and “electorate” are a11  examples of sets. The individual abjects in the collection
are called elements or members of the set, and they are said to belong  to or to be contained  in
the set. The set, in turn, is said to contain  or be composed  ofits  elements.

t George Boole  (1815-1864)  was  an Engl ish  mathemat ic ian  and logician.  Hi s  book ,  An Investigation of the
Laws  of Thought,  publ i shed  in  1854,  marked the  creation  of  the f irs t  workable system of symbolic logic.
Georg F.  L.  P .  Cantor  (1845-1918)  and his  school  created the  modern theory of  se ts  during  the  per iod
1874-1895.
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We shall be interested primarily in sets of mathematical abjects:  sets of numbers, sets of
curves,  sets of geometric figures, and SO on. In many applications it is convenient to deal
with sets in which nothing special is assumed about  the nature of the individual abjects in
the collection. These are called abstract  sets. Abstract  set theory has been developed to deal
with such  collections of arbitrary abjects,  and from this generality the theory derives its power.

12.2 Notations for designating sets

Sets usually are denoted by capital letters : A, B, C, . . . , X,  Y, Z; elements are designated
by lower-case letters: a, b, c, . . . , x, y, z. We use the special notation

XES

to mean that “x is an element of S” or “x belongs to S.” If x does  not belong to S, we Write
x 6 S. When convenient, we shall designate sets by displaying the elements in braces; for
example, the set of positive even integers less than 10 is denoted by the symbol (2, 4, 6, S}
whereas the set of a11 positive even integers is displayed as (2, 4, 6, . . .}, the three dots
taking the place of “and SO on.” The dots are used only when the meaning of “and SO on”
is clear. The method of listing the members of a set within braces is sometimes referred to as
the roster notation.

The first basic concept that relates one  set to another is  equality  of sets:

DEFINITION OF SET EQUALITY. Two sets A and B are said to be equal  (or identical) if
they consist  of exactly the same elements, in which case we Write  A = B. If one  of the sets
contains  an element not in the other, we say  the sets are unequal  and we Write  A # B.

EXAMPLE 1. According to this definition, the two sets (2, 4, 6, 8} and (2, 8, 6,4}  are
equal since  they both consist  of the four integers 2,4,6,  and 8. Thus,  when we use the roster
notation to describe  a set, the order in which the elements appear is irrelevant.

EXAMPLE 2. The sets {2,4,  6, 8) and {2,2,  4,4, 6, S}  are equal even though, in the second
set, each  of the elements 2 and 4 is listed twice. Both sets contain  the four elements 2,4, 6, 8
and no others; therefore, the definition requires that we cal1  these sets equal. This example
shows that we do not insist that the abjects listed in the roster notation be distinct. A similar
example is the set of letters in the word Mississippi, which is equal to the set {M, i, s, p},
consisting of the four distinct letters M,  i, s,  and p.

12.3 Subsets

From a given set S we may form new sets, called subsets of S. For example, the set
consisting of those positive integers less than 10 which are divisible by 4 (the set (4, 8)) is a
subset of the set of a11  even integers less than 10. In general, we have the following definition.

DEFINITION OF A SUBSET. A set A is said to be a subset of a set B, and we Write

A  c B ,

whenever every element of A also  belongs to B. We also say  that A is contained  in B or that B
contains  A. The relation c is referred to as set inclusion.
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The statement A c B does  not rule  out the possibility that B E A. In fact,  we may have
both A G B and B c A, but this happens only if A and B have the same elements. In
other words,

A = B i f a n d o n l y i f  Ac  BandBc A .

This theorem is an immediate consequence  of the foregoing definitions of equality and
inclusion. If A c B but A # B, then we say  that A is aproper subset of B; we indicate this
by writing A c B.

In a11  our applications of set theory, we have a fixed set S given in advance,  and we are
concerned only with subsets of this given set. The underlying set S may vary from one
application to another ; it Will be referred to as the unit~ersal  set of each  particular discourse.
The notation

{x 1 x E  S and x satisfies P}

Will designate the set of a11 elements x in S which satisfy the property P. When the universal
set to which we are referring is understood, we omit the reference to Sand Write  simply
{x 1 x satisfies P}. This is read “the set of a11  x such  that x satisfies P.” Sets designated in
this way are said to be described by a defining property. For example, the set of a11 positive
real numbers could be designated as {x 1 x > O}; the universal set S in this case is understood
to be the set of a11  real numbers. Similarly, the set of a11  even positive integers {2,4,  6, . . .}
cari be designated as {x 1 x is a positive even integer}. Of course, the letter x is a dummy and
may be replaced by any  other convenient symbol. Thus, we may Write

and SO on.
{x 1 x > 0) = {y 1 y > 0) = {t 1 t > 0)

It is possible for a set to contain  no elements whatever. This set is called the empty set
or the void  set, and Will be denoted by the symbol ,@  . We Will consider ,@  to be a subset of
every set. Some people find it helpful to think of a set as analogous to a container (such  as a
bag or a box) containing certain abjects,  its elements. The empty set is then analogous to an
empty container.

TO avoid logical difficulties, we must distinguish between the element x and the set {x}
whose only element is x. (A box with a hat in it is conceptually distinct from the hat itself.)
In particular, the empty set 0  is not the same as the set {@}. In fact,  the empty set ,@  contains
no elements, whereas the set { 0  } has one  element, 0. (A box which contains an empty box
is not empty.) Sets consisting of exactly one  element are sometimes called one-element  sets.

Diagrams often help us visualize relations between sets. For example, we may think of a
set S as a region in the plane and each  of its elements as a point. Subsets of S may then be
thought of as collections of points within S. For example, in Figure 1.6(b) the shaded portion
is a subset of A and also  a subset of B. Visual aids of this type, called Venn diagrams, are
useful for testing the validity of theorems in set theory or for suggesting methods to prove
them. Of course, the proofs themselves must rely only on the definitions of the concepts and
not on the diagrams.

12.4 Unions, intersections, complements

From two given sets A and B, we cari form a new set called the union of A and B. This
new set is denoted by the symbol

A v B (read: “A union B”)
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FIGURE 1.6 Unions and intersections.

(c) A n B = @

and is defined as the set of those elements which are in A, in B, or in both. That is to say,
A U B is the set of a11  elements which belong to at least  one  of the sets A, B. An example is
illustrated in Figure 1.6(a), where the shaded portion represents A u B.

Similarly, the intersection of A and B, denoted by

AnB  (read: “A intersection B”) ,

is defined as the set of those elements common to both A and B. This is illustrated by the
shaded portion of Figure 1.6(b). In Figure I.~(C),  the two sets A and B have no elements in
common; in this case, their intersection is the empty set 0. Two sets A and B are said to be
disjointifA  nB=  ,D.

If A and B are sets, the difference  A - B (also called the complement  of B relative to A) is
defined to be the set of a11  elements of A which are not in B. Thus, by definition,

In Figure 1.6(b) the unshaded portion of A represents A - B; the unshaded portion of B
represents B - A.

The operations of union and intersection have many forma1 similarities to (as well as
differences from) ordinary addition and multiplication of real numbers. For example,
since  there is no question of order involved in the definitions of union and intersection, it
follows that A U B = B U A and that A n B = B n A. That is to say,  union and inter-
section are commutative operations. The definitions are also  phrased in such  a way that the
operations are associative :

(A u B) u C = A u (B u C) and (A n B) n C = A n (B n C) .

These and other theorems related to the “algebra of sets” are listed as Exercises in Section
1 2.5. One of the best ways for the reader to become familiar with the terminology and
notations introduced above is to carry out the proofs of each  of these laws. A sample of the
type of argument that is needed appears immediately after the Exercises.

The operations of union and intersection cari be extended to finite or infinite collections
of sets as follows: Let 9 be a nonempty class?  of sets. The union of a11  the sets in 9 is

t T O help  simplify the language, we cal1  a collection of sets a class. Capital script letters  d,  g, %‘,  . . . are
used to denote  classes. The usual  terminology and notation of set theory applies, of course, to  classes. Thus,
for example, A E  9 means  that  A is one  of the  sets in the class  9,  and XJ  E .?Z  means  that  every set in I
is also in 9, and SO forth.
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defined as the set of those elements which belong to at least one  of the sets in 9 and is
denoted by the symbol

UA.
AET

If 9 is a finite collection of sets, say  9 = {A, , A,, . . . , A,}, we Write

*;-&A  =Cl&=  AI u A, u . . . u A, .

Similarly, the intersection of a11 the sets in 9 is defined to be the set of those elements
which belong to every one  of the sets in 9; it is denoted by the symbol

ALLA.

For finite collections (as above), we Write

Unions and intersections have been defined in such  a way that the associative laws for
these operations are automatically satisfied. Hence, there is no ambiguity when we Write
A, u A2  u  .  . . u A, or A, n A2  n . - . n A,.

12.5 Exercises

1. Use the roster notation to designate the following sets of real numbers.

A = {x 1 x2 - 1 = O}  . D={~IX~-2x2+x=2}.

B = {x 1 (x - 1)2  = 0} . E = {x 1 (x + Q2  = 9”}.

C = {x ) x + 8 = 9}. F = {x 1 (x2 + 16~)~  = 172}.

2. For the sets in Exercise 1, note that B c A. List a11 the inclusion relations & that hold among
the sets A, B, C, D, E, F.

3. Let A = {l},  B = {1,2}. Discuss the validity of the following statements (prove the ones  that
are true and explain why the others are not true).
(a) A c B. (d) ~EA.
(b) A G B. (e) 1 c A.
(c) A E  B. (f) 1 = B.

4. Solve Exercise 3 if A = (1) and B = {{l},  l}.
5. Given the set S = (1, 2, 3, 4). Display a11 subsets of S. There are 16 altogether, counting

0  and S.
6. Given the following four sets

A = Il,% B = {{l),  W, c = W),  (1, 2% D = {{lh  (8, {1,2H,
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discuss the validity of the following statements (prove the ones  that are true and explain why
the others are not true).
(a) A = B. (d) A E  C. Cg)  B c D.
(b) A G B. (e) A c D. (h) BE D.
(c) A c c. (f) B = C. (i) A E  D.

7. Prove the following properties of set equality.
64 {a,  4 = {a>.
(b)  {a,  b)  = lb,  4.
(c) {a} = {b, c} if and only if a = b = c.

Prove the set relations in Exercises  8 through 19. (Sample proofs are given at the end of this
section).
8. Commutative laws:  A u B = B u A, A n B = B n A.
9. Associative laws:  A V (B v C) = (A u B) u C, A n (B A C) = (A n B) n C.

10. Distributive Zuws: A n (B u C) = (A n B) u (A n C), A u (B n C) = (A u B) n (A u C).
1 1 .  AuA=A,  AnA=A,
12. A c A u B, A n B c A.
13 .  Au@  = A ,  Ana  =ET.
14. A u (A n B) = A, A n (A u B) = A.
15.IfA&CandBcC,thenA~B~C.
16. If C c A and C E B, then C 5  A n B.
17. (a) If A c B and B c C, prove that A c C.

(b) If A c B and B c C, prove that A s C.
(c) What cari  you  conclude  if A c B and B c C?
(d) If x E  A and A c B, is it necessarily true that x E  B?
(e) If x E  A and A E  B, is it necessarily true that x E  B?

18. A - (B n C) = (A - B) u (A - C).
19. Let .F be a class  of sets. Then

B-UA=n(B-A) a n d B - f-j A = u (B - A).
ACF AEF AES AEF

20. (a) Prove that one  of the following two formulas is always right and the other one  is sometimes
wrong :

(i) A - (B - C) = (A - B) u C,

(ii) A - (B U  C) = (A - B) - C.

(b) State an additional necessary and sufficient condition for the formula which is sometimes
incorrect to be always right.

Proof of the commutative law A V B = BuA.  L e t  X=AUB,  Y=BUA.  T O

prove that X = Y we prove that X c Y and Y c X. Suppose that x E  X.  Then x is
in at least one  of A or B. Hence, x is in at least one  of B or A; SO x E Y. Thus,  every
element of X is also  in Y, SO X c Y. Similarly, we find that Y Ç X,  SO X = Y.

Proof of A n B E A. If x E  A n B, then x is in both A and B. In particular, x E  A.
Thus, every element of A n B is also in A; therefore, A n B G A.
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Part 3. A Set of Axioms for the Real-Number System

13.1 Introduction

There are many ways to introduce the real-number system. One popular method is to
begin with the positive integers 1, 2, 3, , . . and use them as building blocks to construct a
more comprehensive system having the properties desired. Briefly, the idea of this method
is to take the positive integers as undefined concepts, state some axioms concerning
them, and then use the positive integers to build a larger system consisting of the positive
rational numbers (quotients of positive integers). The positive rational numbers, in turn,
may then be used as a basis for constructing the positive irrational numbers (real numbers
like 1/2  and 7~  that are not rational). The final step is the introduction of the negative real
numbers and zero. The most difficult  part of the whole process is the transition from the
rational numbers to the irrational numbers.

Although the need for irrational numbers was apparent to the ancient  Greeks from
their study of geometry, satisfactory methods for constructing irrational numbers from
rational numbers were not introduced until late in the 19th Century. At that time, three
different theories were outlined by Karl Weierstrass (1815-1897),  Georg Cantor (1845-
1918), and Richard Dedekind (1831-1916). In 1889, the Italian mathematician Guiseppe
Peano (1858-1932) listed five axioms for the positive integers that could be used as the
starting point of the whole construction. A detailed account of this construction, beginning
with the Peano postulates and using the method of Dedekind to introduce irrational
numbers, may be found in a book by E. Landau, Foundations of Analysis  (New York,
Chelsea Publishing CO., 1951).

The point of view we shah  adopt here is nonconstructive. We shall start rather far out
in the process, taking the real numbers themselves as undefined abjects satisfying a number
of properties that we use as axioms. That is to say,  we shah  assume there exists a set R of
abjects,  called real numbers, which satisfy the 10 axioms listed in the next few sections. Al1
the properties of real numbers cari be deduced from the axioms in the list. When the real
numbers are defined by a constructive process, the properties we list as axioms must be
proved as theorems.

In the axioms that appear below, lower-case letters a, 6, c,  . . . , x, y, z represent arbitrary
real numbers unless something is said to the contrary. The axioms fa11  in a natural way into
three groups which we refer to as the jeld axioms, the order axioms, and the least-upper-
bound axiom (also called the axiom of continuity  or the completeness axiom).

13.2 The field axioms

Along  with the set R of real numbers we assume the existence of two operations called
addition and multiplication, such  that for every pair of real numbers x and y we cari form the
sum of x and y, which is another real number denoted by x + y, and the product  of x and y,
denoted by xy or by x . y. It is assumed that the sum x + y and the product  xy are uniquely
determined by x and y. In other words, given x and y, there is exactly one  real number
x + y and exactly one  real number xy. We attach no special  meanings to the symbols
+ and . other than those contained in the axioms.
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AXIOM 1. COMMUTATIVE LAWS. X +y =y + X, xy = yx.

AXIOM 2. ASSOCIATIVE LAWS. x + (y + 2) = (x + y) + z, x(yz) = (xy)z.

AXIOM 3. DISTRIBUTIVE LAW. x(y + z) = xy + xz.

AXIOM 4. EXISTENCE OF IDENTITY ELEMENTS. There exist two aistinct  real numbers, which
we denote  by 0 and 1, such that for ecery real x we have x + 0 = x and 1 ’ x = x.

AXIOM 5. EXISTENCE OF NEGATIVES. For ecery real number x there is a real number y
such that x + y = 0.

AXIOM 6. EXISTENCE OF RECIPROCALS. For every real number x # 0 there is a real
number y such that xy = 1.

Note: The numbers 0 and 1 in Axioms 5 and 6 are those of Axiom 4.

From the above axioms we cari  deduce a11  the usual laws of elementary algebra. The
most important of these laws are collected here as a list  of theorems. In a11 these theorems
the symbols a, b, C, d represent arbitrary real numbers.

THEOREM 1.1. CANCELLATION LAW FOR ADDITION. Zf  a + b = a + c, then b = c. (In
particular, this shows that the number 0 of Axiom 4 is unique.)

THEOREM 1.2. POSSIBILITY OF SUBTRACTION. Given a and b, there is exactly one  x such
that a + x = 6. This x is denoted by b - a. In particular, 0 - a is written simply  -a and
is called the negative of a.

THEOREM 1.3. b - a = b + (-a).

THEOREM 1.4. -(-a)  = a.

THEOREM 1.5. a(b - c) = ab ‘- ac.

THEOREM 1.6. 0 * a = a * 0 = 0.

THEOREM 1.7. CANCELLATION LAW FOR MULTIPLICATION. Zf ab = ac and a # 0, then
b = c. (Zn  particular, this shows that the number 1 of Axiom 4 is unique.)

THEOREM 1.8. POSSIBILITY OF DIVISION. Given a and b with a # 0, there is exactly one  x

such that ax = b. This x is denoted by bja  or g and is called the quotient of b and a. I n

particular, lia is also  written aa1  and is called the reciprocal of a.

THEOREM 1.9. If a # 0, then b/a  = b * a-l.

THEOREM 1.10. Zf a # 0, then (a-‘)-’  = a.

THEOREM 1.11. Zfab=O,thena=Oorb=O.

THEOREM 1.12. (-a)b = -(ah) and (-a)(-b) = ab.

THEOREM 1.13. (a/b) + (C/d)  = (ad + bc)/(bd)  zf b # 0 and d # 0.

THEOREM 1.14. (a/b)(c/d)  = (ac)/(bd) if’b # 0 and d # 0.

THEOREM 1.15. (a/b)/(c/d)  = (ad)/(bc) if’b + 0, c # 0, and d # 0.
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TO illustrate how these statements may be obtained as consequences  of the axioms, we
shall present proofs of Theorems 1.1 through 1.4. Those readers who are interested may
find it instructive to carry out proofs of the remaining theorems.

Proof of 1.1. Given a + b = a + c. By Axiom 5, there is a numbery such  that y + a = 0.
Since  sums are uniquely determined, we have y + (a + 6) = y + (a + c).  Using the
associative law, we obtain (y + a) + b = (y + a) + c or 0 + b = 0 + c. But by Axiom 4
we have 0 + b = b and 0 + c = c, SO that b = c. Notice that this theorem shows that there
is only one  real number having the property of 0 in Axiom 4. In fact,  if 0 and 0’ both have
this property, then 0 + 0’ = 0 and 0 + 0 = 0. Hence 0 + 0’ = 0 + 0 and, by the can-
cellation law, 0 = 0’.

Proof of 1.2. Given a and 6,  choose y SO that a + y = 0 and let x = y + b. Then
a + x = a + (y + b) = (a + y) + b = 0 + b = b. Therefore there is at least one  x
such  that a + x = 6.  But by Theorem 1.1 there is at most one  such  x. Hence there is
exactly one.

Proof of 1.3. Let x = b - a and let y = b + (-a). We wish to prove that x = y.
Now x + a = b (by the definition of b - a) and

y+a=[b+(-a)]+a=b+[(-a)+a]=b+O=b.

Therefore x + a = y + a and hence,  by Theorem 1.1, x = y,

Proof of 1.4. We have a + (-a) = 0 by the definition of -a. But this equation tells us
that a is the negative of -a. That is, a = -(-a), as asserted.

*13.3 Exercises

1 . Prove Theorems 1.5 through 1.15, using Axioms 1 through 6 a n d Theorems 1.1 through 1.4.

In Exercises  2 through 10, prove the given statements or establish the given equations. You
may  use Axioms 1 through 6 and Theorems 1.1 through 1.15.

2. -0 = 0.
3. 1-l = 1.
4. Zero has no reciprocal.
5. -(a + b) = -a - b.
6. -(a - b) = -a + b.
7. (a - b) + (b - c) = u - c.
8. If a #  0 and b #  0, then (ub)-l = u-lb-l.
9. -(u/b)  = (-a/!~)  = a/(  -b)  if b  #  0.

10. (u/b)  - (c/i)  = (ad - ~C)/(M)  if b  #  0 and d #  0.

13.4 The order axioms

This group of axioms has to do with a concept which establishes an ordering among the
real numbers. This ordering enables us to make statements about  one  real number being
larger or smaller than another. We choose to introduce the order properties as a set of
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axioms about a new undefïned concept called positiveness and then to define  terms like
less  than and greater than in terms of positiveness.

We shah  assume that there exists a certain subset R+ c R, called the set of positive
numbers, which satisfies the following three order axioms :

AXIOM  7. If x and y are in R+, SO are x + y and xy.

AXIOM 8. For every real x # 0, either x E R+ or -x E R+,  but not both.

AXIOM 9. 0 $6 R+.

Now we cari  define  the symbols <, >, 5, and 2, called, respectively, less  than, greater
than, less  than or equal to, and greater than or equal to, as follows:

x < y means that y - x is positive;

y > x means that x < y;

x 5 y means that either x < y or x = y;

y 2 x means that x 5 y.

Thus, we have x > 0 if and only if x is positive. If x < 0, we say  that x is negative; if
x 2 0, we say  that x is nonnegative. A pair of simultaneous inequalities such  as x < y,
y < z is usually written more briefly as x < y < z; similar interpretations are given to the
compound inequalities x 5 y < z, x < y 5 z, and x < y 5 z.

From the order axioms we cari derive a11  the usual rules for calculating with inequalities.
The most important of these are listed here as theorems.

THEOREM 1.16.  TRICHOTOMY LAW. For arbitrary real numbers a and b, exact@  one of
the three relations a < b, b < a, a = b holds.

THEOREM 1.17. TRANSITIVE LAW. Zf a < b andb < c, then a < c.

THEOREM 1.18. If a < b, then a + c < b + c.

THEOREM 1.19. If a < b and c > 0, then ac < bc.

THEOREM 1.20. If a # 0, then a2  > 0.

THEOREM 1.21. 1 > 0.

THEOREM 1.22. Zf a < b and c < 0, then ac > bc.

THEOREM 1.23. If a < b, then -a > -b. Znparticular, fa < 0, then -a > 0.

THEOREM 1.24. If ab > 0, then both a and b are positive or both are negative.

THEOREM 1.25. If a < c and b < d,  then a + b < c + d.

Again,  we shall prove only a few of these theorems as samples to indicate how the proofs
may be carried  out.  Proofs of the others are left as exercises.
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Proof of 1.16. Let x = b - a. If x = 0, then b - a = a - b = 0, and hence, by Axiom
9, we cannot  have a > b or b > a. If x # 0, Axiom 8 tells us that either x > 0 or x < 0,
but not both; that is, either a < b or b < a, but not both. Therefore, exactly one  of the
three relations, a = b, a < 6,  b < a, holds.

Proof of 1.17. If a < b and b < c, then b - a > 0 and c - b > 0. By Axiom 7 we may
add to obtain (b - a) + (c - b) > 0. That is, c - a > 0, and hence a < c.

Proof of 1.18. Let x = a + c, y = b + c. Then y - x = b - a. But b - a > 0 since
a < b. Hence y - x > 0, and this means that x < y.

Proof of 1.19. If a < 6,  then b - a > 0. If c > 0, then by Axiom 7 we may multiply
c by (b - a) to obtain (b - a)c > 0. But (b - a)c = bc - ac. Hence bc - ac > 0, and
this means that ac < bc, as asserted.

Proof of 1.20. If a > 0, then a * a > 0 by Axiom 7. If a < 0, then -a > 0, and hence
(-a) * (-a) > 0 by Axiom 7. In either case we have a2  > 0.

Proof of 1.21. Apply Theorem 1.20 with a = 1.

*I 3.5 Exercises

1. Prove Theorems 1.22 through 1.25, using the earlier theorems a n d Axioms 1 through 9.

In Exercises 2 through 10, prove the given statements or establish the given inequalities. You
may  use Axioms 1 through 9 and Theorems 1.1 through 1.25.

2. There is no real number x such  that x2 + 1 = 0.
3. The sum of two negative numbers is negative.
4. If a > 0, then l/u > 0; if a < 0, then l/a < 0.
5. If 0 < a < b,  then 0 < b-l < u-l.
6. Ifu sbandb  <c,thenu  SC.
7. Ifu <bandb  <c,andu  =c,thenb =c.
8. For a11 real a and b we have u2  + b2  2  0. If a and b are not both 0, then u2  + b2  > 0.
9. There is no real number a such  that x < a for a11 real x.

10. If x has the property that 0 5  x < h for euery  positive real number h,  then x = 0.

13.6 Integers and rational numbers

There exist certain subsets of R which are distinguished because they have special  prop-
erties not shared by a11 real numbers. In this section we shall discuss two such  subsets, the
integers and the rational numbers.

TO introduce the positive integers we begin with the number 1, whose existence is guar-
anteed by Axiom 4. The number 1 + 1 is denoted by 2, the number 2 + 1 by 3, and SO on.
The numbers 1, 2, 3, . . . , obtained in this way by repeated addition of 1 are a11  positive,
and they are called the positive  integers. Strictly speaking, this description of the positive
integers is not entirely complete because we have not explained in detail what we mean by
the expressions “and SO on,” or “repeated addition of 1.” Although the intuitive meaning
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of these expressions may seem clear, in a careful treatment of the real-number system it is
necessary to give a more precise  definition of the positive integers. There are many ways
to do this. One  convenient  method is to introduce first the notion of an inductive set.

DEFINITION OF AN INDUCTIVE SET. A set of real numbers is called an inductive set if it has
the following  two properties:

(a) The number 1 is in the set.
(b) For every x in the set, the number x + 1 is also  in the set.

For example, R is an inductive set. SO is the set R+. Now we shah  define  the positive
integers to be those real numbers which belong to every inductive set.

DEFINITION OF POSITIVE INTEGERS. A real number is called a positive integer if it belongs
to every inductive set.

Let P denote  the set of a11  positive integers. Then P is itself an inductive set because (a)
it contains 1, and (b) it contains x + 1 whenever it contains x. Since  the members of P
belong to every inductive set, we refer to P as the smallest inductive set. This property of
the set P forms the logical basis for a type of reasoning that mathematicians cal1  proof by
induction, a detailed discussion of which is given in Part 4 of this Introduction.

The negatives of the positive integers are called the negative  integers. The positive integers,
together with the negative integers and 0 (zero), form a set Z which we cal1  simply the
set of integers.

In a thorough treatment of the real-number system, it would be necessary at this stage to
prove certain theorems about  integers. For example, the sum, difference, or product  of two
integers is an integer, but the quotient of two integers need not be an integer. However, we
shah  not enter into the details of such  proofs.

Quotients of integers a/b (where b # 0) are called rational numbers. The set of rational
numbers, denoted by Q, contains Z as a subset. The reader should realize that a11  the field
axioms and the order axioms are satisfied by Q. For this reason, we say  that the set of
rational numbers is an orderedfîeld.  Real numbers that are not in Q are called irrational.

13.7 Geometric interpretation of real numbers as points on a line

The reader is undoubtedly familiar with the geometric representation of real numbers
by means of points on a straight line. A point is selected to represent 0 and another, to the
right of 0, to represent 1, as illustrated in Figure 1.7. This choice  determines the scale.
If one  adopts an appropriate set of axioms for Euclidean geometry, then each  real number
corresponds to exactly one  point on this line and, conversely, each  point on the line corre-
sponds to one  and only one  real number. For this reason the line is often called the real  Zinc
or the real axis, and it is customary to use the words real number and point interchangeably.
Thus we often speak of the point x rather than the point corresponding to the real number x.

The ordering relation among the real numbers has a simple geometric interpretation.
If x < y, the point x lies to the left of the point y, as shown in Figure 1.7. Positive numbers
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lie to the right of 0 and negative numbers to the left of 0. If a < b, a point x satisfies the
inequalities a < x < b if and only if x is between a and b.

This device  for representing real numbers geometrically is a very worthwhile aid that
helps us to discover and understand better certain properties of real numbers. However,
the reader should realize that a11 properties of real numbers that are to be accepted  as
theorems must be deducible from the axioms without any  reference to geometry. This
does  not mean that one  should not make use of geometry in studying properties of real
numbers. On the contrary, the geometry often suggests the method of proof  of a particular
theorem, and sometimes a geometric argument is more illuminating than a purely analytic
proof  (one  depending entirely on the axioms for the real numbers). In this book, geometric
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FIGURE 1.7 Real numbers represented geometrically on a line.

arguments are used to a large extent to help motivate  or clarify a particular discussion.
Nevertheless, the proofs of a11 the important theorems are presented in analytic form.

13.8 Upper bound of a set, maximum element, least Upper  bound (supremum)

The nine axioms listed above contain  a11 the properties of real numbers usually discussed
in elementary algebra. There is another axiom of fundamental importance in calculus  that
is ordinarily not discussed in elementary algebra courses. This axiom (or some property
equivalent to it) is used to establish the existence of irrational numbers.

Irrational numbers arise in elementary algebra when we try to salve  certain quadratic
equations. For example, it is desirable to have a real number x such  that x2 = 2. From the
nine axioms above, we cannot prove that such  an x exists in R, because these nine axioms
are also satisfied by Q, and there is no rational number x whose square is 2. (A proof  of this
statement is outlined in Exercise 11 of Section 1 3.12.) Axiom 10 allows us to introduce
irrational numbers in the real-number system, and it gives the real-number system a property
of continuity that is a keystone in the logical structure of calculus.

Before we describe  Axiom 10, it is convenient  to introduce some more terminology and
notation. Suppose 5’ is a nonempty set of real numbers and suppose there is a number B
such  that

x<B

for every x in S. Then Sis said to be bounded above by B. The number B is called an Upper
bound for S. We say  an Upper  bound because every number greater than B Will also be an
Upper  bound. If an Upper  bound B is also a member of S, then B is called the largest
member or the maximum element of S. There cari  be at most one  such  B. If it exists, we
Write

B = m a x S .

Thus, B = max S if B E  S and x < B for a11  x in S. A set with no Upper  bound is said to be
unbounded above.

The following examples serve to illustrate the meaning of these terms.



2 4 Introduction

EXAMPLE 1. Let S be the set of a11 positive real numbers. This set is unbounded above.
It has no upper bounds and it has no maximum element.

EXAMPLE 2. Let S be the set of a11 real x satisfying 0 5 x 5 1. This set is bounded
above by 1. In fact,  1 is its maximum element.

EXAMPLE 3. Let T be the set of a11  real x satisfying 0 < x < 1. This is like the set in
Example 2 except that the point 1 .is not included. This set is bounded above by 1 but it has
no maximum element.

Some sets, like the one  in Example 3, are bounded above but have no maximum element.
For these sets there is a concept which takes the place of the maximum element. This is
called the least Upper  bound of the set and it is defined as follows:

DEFINITION OF LEAST UPPER BO~ND.  A number B is called a least Upper  bound of a
nonempty set S if B has the following  two properties:

(a) B is an Upper  boundfor S.
(b) No number less  than B is an Upper  boundfor S.

If S has a maximum element, this maximum is also a least Upper  bound for S. But if S
does  not have a maximum element, it may still have a least Upper  bound. In Example 3
above, the number 1 is a least Upper  bound for T although T has no maximum element.
(See Figure 1.8.)

/

Upper  bounds  fo r  S Upper  bounds  for  T

is -,,,,,,,,,,,,,,,,,,,,,,,,,
T

. . /
/

0 1
\

0 1
Largest  member of  S Least  upper  bound of  T

(a) S has a largest member: (b)  T has  no  largest  member, but it has
maxS=  1 a  leas t  Upper  b o u n d :  s u p  T = 1

FIGURE 1.8 Upper bounds, maximum element, supremum.

THEOREM 1.26. Two d@erent  numbers cannot  be least Upper  bounds for the same  set.

Proof.  Suppose that B and C are two least Upper  bounds for a set S. Property (b)
implies that C 2 B since B is a least Upper  bound; similarly, B 2 C since C is a least Upper
bound. Hence. we have B = C.

This theorem tells us that if there is a least Upper  bound for a set S, there is only  one  and
we may speak of the least Upper  bound.

It is common  practice to refer to the least Upper  bound of a set by the more concise term
supremum, abbreviated sup. We shall adopt this convention and Write

B = sup S

to express the fact that B is the least Upper  bound, or supremum, of S.
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13.9 The least-Upper-bound axiom (completeness axiom)

Now we are ready to state the least-Upper-bound axiom for the real-number system.

AXIOM 10. Every nonempty set S ofreal  numbers which is bounded above has a supremum;
that is, there is a real number B such  that B = sup S.

We emphasize once more that the supremum of S need not be a member of S. In fact,
sup S belongs to S if and only if S has a maximum element, in which case max S = sup S.

Definitions of the terms lower bound, bounded below, smallest member (or minimum
element) may be similarly formulated. The reader should formulate these for himself. If
S has a minimum element, we denote  it by min S.

A number L is called a greatest lower bound (or injîmum) of S if (a) L is a lower bound for
S, and (b) no number greater than L is a lower bound for S. The infimum of S, when it
exists, is uniquely determined and we denote  it by inf S. If S has a minimum element, then
min S = inf S.

Using Axiom 10, we cari prove the following.

THEOREM 1.27. Every nonempty set S that is bounded below has a greatest lower bound;
that is, there is a real number L such  that L = inf S.

Proof.  Let -S denote  the set of negatives of numbers in S. Then -S is nonempty and
bounded above. Axiom 10 tells us that there is a number B which is a supremum for -S.
It is easy to verify that -B = inf S.

Let us refer once more to the examples in the foregoing section. In Example 1, the set of
a11  positive real numbers, the number 0 is the infimum of S. This set has no minimum
element. In Examples 2 and 3, the number 0 is the minimum element.

In a11  these examples it was easy to decide  whether or not the set S was bounded above
or below, and it was also easy to determine the numbers sup S and inf S. The next example
shows that it may be difficult  to determine whether Upper  or lower bounds exist.

EXAMPLE 4. Let S be the set of a11 numbers of the form (1 + I/n)“,  where n = 1,2,3,  . . . .
For example, taking n  = 1, 2, and 3, we find that the numbers 2, 2, and $4 are in S.
Every number in the set is greater than 1, SO the set is bounded below and hence  has an
infimum. With a little effort we cari show that 2 is the smallest element of S SO inf S =
min S = 2. The set S is also bounded above, although this fact is not as easy to prove.
(Try it!) Once we know that S is bounded above, Axiom 10 tells us that there is a number
which is the supremum of S. In this case it is not easy to determine the value of sup S from
the description of S. In a later chapter we Will learn that sup S is an irrational number
approximately equal to 2.718. It is an important number in calculus called the Euler
number e.

13.10 The Archimedean property of the real-number system

This section contains  a number of important properties of the real-number system which
are consequences  of the least-Upper-bound axiom.
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THEOREM 1.28. The set P of positive integers 1, 2, 3, . . . is unbounded above.

Proof.  Assume P is bounded above. We shah  show that this leads  to a contradiction.
Since P is nonempty, Axiom 10 tells us that P has a least Upper  bound, say  b. The number
b- 1, being less than b, cannot be an Upper  bound for P. Hence, there is at least one
positive integer II such  that n  > h - 1. For this n we have n + 1 > 6.  Since n + 1 is in
P, this contradicts the fact that b is an Upper  bound for P.

As corollaries of Theorem 1.28, we immediately obtain the following consequences:

THEOREM 1.29. For every real .x there exists a positive integer n such  that n > x.

Proof.  If this were not SO, some x would be an Upper  bound for P, contradicting
Theorem 1.28.

THEOREM  1.30. If x > 0 and ify  is an arbitrary real number, there exists a positive integer
n such  that nx > y.

Proof.  Apply Theorem 1.29 with x replaced by y/x,

The property described in Theorem 1.30 is called the Archimedean property of the real-
number system. Geometrically it means that any  line segment, no matter  how long, may
be covered by a finite number of line segments of a given positive length, no matter  how
small. In other words, a small ruler used often enough cari  measure arbitrarily large
distances. Archimedes realized that this was a fundamental property of the straight line
and stated it explicitly as one  of the axioms of geometry. In the 19th and 20th centuries,
non-Archimedean geometries have been constructed in which this axiom is rejected.

From the Archimedean property, we cari prove the following theorem, which Will  be
useful in our discussion of integral calculus.

THEOREM 1.3 1. If three real numbers a, x, and y satisfy  the inequalities

(1.14) a<x<a+i

for every integer n 2  1, then x = a.

Proof.  If x > a, Theorem 1.30 tells us that there is a positive integer n satisfying
n(x - a) > y,  contradicting (1.14). Hence we cannot have x > a, SO we must have x = a.

13.11 Fundamental properties of the supremum and infimum

This section discusses three fundamental properties of the supremum and infimum that
we shall use in our development of calculus. The first property states that any  set of numbers
with a supremum contains points arbitrarily close to its supremum; similarly, a set with an
infimum contains points arbitrarily close to its infimum.
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THEOREM  1.32. Let h be a given positive number and let S be a set of real numbers.

(a) If S has a supremum, then for some x in S we have

x > s u p S - h .

(b) If S has an injmum, then for some x in S we have

x < i n f S + h .

Proof  of (a). If we had x 5 sup S - h for a11  x in S, then sup S - h would be an Upper
bound for S smaller than its least Upper  bound. Therefore we must have x > sup S - h
for at least one  x in S. This proves (a). The proof  of(b) is similar.

THEOREM 1.33. ADDITIVE PROPERTY. Given nonempty subsets A and B of R, Iet  C denote
the set

(a) If each  of A and B has a supremum, then C has a supremum, and

sup C = sup A + sup B .

(b) If each  of A and B has an injmum, then C has an injimum, and

inf C = infA  + infB.

Proof. Assume each  of A and B has a supremum. If c E  C, then c = a + b, where
a E  A and b E  B.  Therefore c 5 sup A + sup B; SO sup A + sup Bis an Upper  bound for C.
This shows that C has a supremum and that

supC<supA+supB.

Now let n be any  positive integer. By Theorem 1.32 (with h = I/n)  there is an a in A and a
b in B such  that

a>supA-k, b>supB-;.

Adding these inequalities, we obtain

a+b>supA+supB-i,  o r supA+supB<a+b+$<supC+i,

since  a + b < sup C. Therefore we have shown that

sup C 5 sup A + sup B < sup C + ;
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for every integer n 2 1. By Theorem 1.31, we must have sup C = sup A + sup B. This
proves (a), and the proof of(b) is similar.

THEOREM 1.34. Given two nonempty subsets S and T of R such  that

slt

for every s in S and every t in 7. Then S has a supremum, and T has an injmum,  and they
satisfy the inequality

supS<infT.

Proof.  Each  t in T is an Upper  bound for S. Therefore S has a supremum which satisfies
the inequality sup S 5 t for a11  t in T. Hence  sup S is a lower bound for T,  SO T has an
infimum which cannot be less than sup S. In other words, we have sup S -< inf T,  as
asserted.

*13.12 Exercises

1 . If x and y are arbitrary real numbers with x < y, prove that there is at least one  real z satisfying
x < z < y .

2. If x is an arbitrary real number, prove that there are integers m and n such  that m < x < n.
3. If x > 0, prove that there is a positive integer n such  that I/n < x.
4. If x is an arbitrary real number, prove that there is exactly one  integer n which satisfies the

inequalities n 5  x < n + 1. This n  is called the greatest integer in x and is denoted by [xl.
For example, [5] = 5, [$] = 2, [-$1 = -3.

5. If x is an arbitrary real number, prove that there is exactly one  integer n which satisfies
x<n<x+l.

6. If x and y are arbitrary real numbers, x < y, prove that there exists at least one  rational num-
ber r satisfying x < Y < y, and hence  infinitely many. This property is often described by
saying that the rational numbers are dense in the real-number system.

7. If x is rational, x #  0, and y irrational, prove that x + y, x -y, xy, x/y,  and y/x  are a11
irrational.

8. 1s  the sum or product  of two irrational numbers always irrational?
9. If x and y are arbitrary real numbers, x <y, prove that there exists at least one  irrational

number z satisfying x < z < y, and hence  infinitely many.
10. An integer n  is called even if n  = 2m for some integer m, and odd if n  + 1 is even. Prove the

following statements :
(a) An integer cannot be both even and odd.
(b) Every integer is either even or odd.
(c) The sum or product  of two even integers is even. What cari  you  say  about  the sum or
product  of two odd integers?
(d) If n2  is even, SO is n. If a2  = 2b2, where a and b are integers, then both a and b are even.
(e) Every rational number cari  be expressed in the form a/b, where a and b are integers, at
least one  of which is odd.

11. Prove that there is no rational number whose square is 2.

[Hint: Argue by contradiction. Assume (a/b)2 = 2, where a and b are integers, at least
one  of which is odd. Use parts of Exercise  10 to deduce a contradiction.]
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12. The Archimedean property of the real-number system was deduced as a consequence  of the
least-Upper-bound axiom. Prove that the set of rational numbers satisfies the Archimedean
property but not the least-Upper-bound property. This shows that the Archimedean prop-
erty does  not imply the least-Upper-bound axiom.

*13.13 Existence of square roots of nonnegative real numbers

It was pointed out  earlier that the equation x 2 = 2 has no solutions among the rational
numbers. With the help of Axiom 10, we cari prove that the equation x2 = a has a solution
among the real numbers if a 2 0. Each such  x is called a square root of a.

First, let us see what we cari say  about  square roots without using Axiom 10. Negative
numbers cannot have square roots because if x2 = a, then a, being a square, must be
nonnegative (by Theorem 1.20). Moreover, if a = 0, then x = 0 is the only square root
(by Theorem 1.11). Suppose, then, that a > 0. If x2 = a, then x # 0 and (-x)” = a,
SO both x and its negative are square roots. In other words, if a has a square root, then it
has two square roots, one  positive and one  negative. Also, it has ut  most two because
if x2 = a and y2  = a, then x2 = y2  and (x - y)(x  + y) = 0, and SO, by Theorem 1.11,
either x = y or x = -y. Thus, if a has a square root, it has exactly two.

The existence of at least one  square root cari  be deduced from an important theorem
in calculus  known as the intermediate-value theorem for continuous functions,  but it
may be instructive to see how the existence of a square root cari be proved directly from
Axiom 10.

THEOREM 1.35. Every nonnegatioe real number a has a unique nonnegative square root.

Note: If a 2 0, we denote  its nonnegative square root by a112  or by 6. If a > 0,
the negative square root is -a112  or -6.

Proof.  If a = 0, then 0 is the only square root. Assume, then, that a > 0. Let S be
the set of a11 positive x such  that x2 5 a. Since  (1 + a)” > a, the number 1 + a is an
Upper  bound for S. Also, S is nonempty because the number a/(1 + a) is in S; in fact,
a2  5 a(1 + a)”  and hence  a”/(1  + a)” < a. By Axiom 10, S has a least Upper  bound
which we shall cal1  b. Note that b 2 a/(1  + a) SO b > 0. There are only three possibilities:
b2 > a, b2 < a, or b2 = a.

Suppose b2 > a and let c = b - (b2 - a)/(2b) = $(b + a/b). Then 0 < c < b and
~2  = b" - (b2 - a) + (b2 - a)2/(4b2)  = a + (b2 - a)2/(4b2)  > a. Therefore c2  > x2
for each  x in S, and hence  c > x for each  x in S. This means that c is an Upper  bound for
S. Since  c < b, we have a contradiction because b was the least Upper  bound for S.
Therefore the inequality b2 > a is impossible.

Suppose b2 < a. Since  b > 0, we may choose  a positive number c such  that c < b and
such  that c < (a - b2)/(3b). Then we have

(b  + 42 = 62 +  c(2b +  c )  <  b2 +  3bc < b2 +  (a  - b2) =  a

Therefore b + c is in S. Since  b + c > b, this contradicts the fact that b is an Upper
bound for S. Therefore the inequality b2 < a is impossible, and the only remaining
alternative is b2 = a.
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*13.14  Roots of higher order. Rational powers

The least-Upper-bound axiom cari also be used to show the existence of roots of higher
order. For example, if n is a positive odd integer, then for each  real x there is exactly
one  real y such  that y” = x. This y is called the nth root of x and is denoted by

(1.15) y = xl’n or J=G

When n is even, the situation is slightly different. In this case, if x is negative, there is no
real y such  that yn  = x because y”  2 0 for a11  real y. However, if x is positive, it cari  be
shown that there is one  and only one  positive y such  that yn  = x. This y is called thepositive
nth root of x and is denoted by the symbols in (1.15). Since  n is even, (-y)”  = y” and hence

each  x > 0 has two real nth roots, y and -y. However, the symbols xlln and & are
reserved for the positive nth root. We do not discuss the proofs of these statements here
because they Will be deduced later as consequences  of the intermediate-value theorem for
continuous functions (see Section 3.10).

If r is a positive rational number, say  r = min,  where m and n are positive integers, we
define  xr to be (xm)rln, the nth root of xm, whenever this exists. If x # 0, we define  x-’ =
1/x’  whenever X”  is defined. From these definitions, it is easy to verify that the usual laws
of exponents are valid for rational exponents : x7 * x5 = x7+‘,  (x7>” = xrs,  and (xy)’ = x’y’,

*13.15  Representation of real numbers by decimals

A real number of the form

(1.16)

where a,, is a nonnegative integer and a,, a2,  . . . , a, are integers satisfying 0 5 a, 5  9, is
usually written more briefly as follows:

r = a,.a,a,  * * * a, .

This is said to be a$nite decimal  representation of r. For example,

l Los l 2 = 0 (32 2g-= -= - = =. ’ 102 *2 10 50 ’ 7 +4 $ + $ 7.25 <

Real numbers like these are necessarily rational and, in fact,  they a11  have the form r = a/lO”,
where a is an integer. However, not a11  rational numbers cari be expressed with finite
decimal representations. For example, if + could be SO expressed, then we would have
+ = a/lO”  or 3a = 10” for some integer a. But this is impossible since  3 is not a factor of any
power of 10.

Nevertheless, we cari  approximate an arbitrary real number x > 0 to any  desired degree
of accuracy by a sum of the form (1.16) if we take n large enough. The reason for this may
be seen  by the following geometric argument: If x is not an integer, then x lies between two
consecutive  integers, say  a, < x < a, + 1. The segment joining a, and a, + 1 may be
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subdivided into ten equal parts. If x is not one  of the subdivision points, then x must lie
between two consecutive  subdivision points. This gives us a pair of inequalities of the form

where a, is an integer (0 < a, 5 9). Next we divide the segment joining a, + a,/10 and
a,, + (a, + l)/lO  into ten equal parts (each of length 1OP) and continue the process. If
after a finite number of steps a subdivision point coincides with x, then x is a number of the
form (1.16). Otherwise the process continues indefinitely, and it generates an infinite set of
integers a, , a2  , a3  , . . . . In this case, we say  that x has the infinite decimal representation

x = a0.a1a2a3  * * - .

At the nth stage, x satisfies the inequalities

a0 + F. + - - * + ~<x<a,+~+-+ an + 1
10” *

This gives us two approximations to x, one  from above and one  from below, by finite
decimals that differ by lO-“. Therefore we cari achieve any  desired degree of accuracy in
our approximations by taking n large enough.

When x = 4, it is easy to verify that a, = 0 and a, = 3 for a11  n 2 1, and hence  the
corresponding infinite decimal expansion is

Q  = 0.333 * * ’ .

Every irrational number has an infinite decimal representation. For example, when x = v’?

we may calculate by tria1 and error as many digits in the expansion as we wish. Thus, G
lies between 1.4 and 1.5, because (1 .4)2 < 2 < (1.5)2.  Similarly, by squaring and com-
paring with 2, we find the following further approximations:

1.41 < v’?  < 1.42, 1.414 < fi < 1.415) 1.4142 < fi < 1.4143.

Note that the foregoing process generates a succession of intervals of lengths 10-l,  10-2,
lO-3,..., each  contained in the preceding and each  containing the point x. This is an
example of what is known as a sequence  of nested intervals, a concept that is sometimes used
as a basis for constructing the irrational numbers from the rational numbers.

Since  we shah  do very little with decimals in this book, we shah  not develop their prop-
erties in any  further detail except to mention how decimal expansions may be defined
analytically with the help of the least-Upper-bound axiom.

If x is a given positive real number, let a, denote  the largest integer 5 x. Having chosen
a, , we let a, denote  the largest integer such  that

a, + A9  <  x .
10 -
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More generally, having chosen  a, , a, , . . . , a,-,  , we let a, denote  the largest integer such
that

(1.17)

Let S denote  the set of a11  numbers

(1.18)

obtained in this way for n = 0, 1, 2, . . . . Then S is nonempty and bounded above, and
it is easy to verify that x is actually the least Upper  bound of S. The integers a,, al,  a2, . . .
SO obtained may be used to define  a decimal expansion of x if we Write

x = ao.a1a2a3  - * *

to mean that the nth digit a, is the largest integer satisfying (1.17). For example, if x = 8,
we find a, = 0, a, = 1, a, = 2, a3  = 5, and a, = 0 for a11  n 2 4. Therefore we may Write

*  = 0.125000*~~,

If in (1.17) we replace the inequality sign 5 by <, we obtain a slightly different definition
of decimal expansions. The least Upper  bound of a11 numbers of the form (1.18) is again x,
although the integers a, , a,, a2  , . . . need not be the same as those which satisfy (1.17). For
example, if this second definition is applied to x = &, we find a, = 0, a, = 1, a2  = 2,
a3  = 4, and a, = 9 for a11 n 2 4. This leads to the infinite decimal representation

Q  = 0.124999 - - - .

The fact that a real number might have two different decimal representations is merely a
reflection of the fact that two different sets of real numbers cari  have the same supremum.

Part 4. Mathematical Induction, Summation Notation, and
Related Topics

14.1 An example of a proof by mathematical induction

There is no largest integer because when we add 1 to an integer k, we obtain k + 1,
which is larger than k. Nevertheless, starting with the number 1, we cari  reach any  positive
integer whatever in a finite number of steps, passing successively from k to k + 1 at each
step. This is the basis for a type of reasoning that mathematicians cal1  proofby  induction.
We shall illustrate the use of this method by proving the pair of inequalities used in Section
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Il.3 in the computation  of the area of a parabolic segment, namely

(1.19) 12+22+*** + (n - 1)2 < $  < l2 + 22 + * * * + n2.

Consider the leftmost inequality first, and let us refer to this formula as A(n) (an assertion
involving n).  It is easy to verify this assertion directly for the first few values of n. Thus,
for example, when IZ  takes the values 1, 2, and 3, the assertion becomes

A(l):0  <$ A(2): l2 < $ > A(3): l2 + 22  < ;,

provided we agree to interpret the sum on the left as 0 when n = 1.
Our abject is to prove that A(n) is true for every positive integer n.  The procedure  is as

follows: Assume the assertion has been proved for a particular value of n, say  for n  = k.
That is, assume we have proved

A(k): l2 + 2’  + . . . + (k - 1)” < -3

for a fixed k 2 1. Now using this, we shall deduce the corresponding result for k + 1:

(k + 1)3A(k + 1): l2 + 22 + . . . + k2 < ~.
3

Start with A(k) and add k2  to both sides.  This gives the inequality

l2 + 22 + . . . + k2  < 5  + k2.

TO obtain A(k + 1) as a consequence  of this, it suffices  to show that

But this follows at once from the equation

(k + 1)3 k3  + 3k2  + 3k + 1 k3-=3 3 =3+k2+k+;.

Therefore we have shown that A(k + 1) follows from A(k). Now, since  A(1) has been
verified directly, we conclude  that A(2) is also true. Knowing that A(2) is true, we conclude
that A(3) is true, and SO on. Since  every integer cari  be reached in this way, A(n) is true for
a11  positive integersn. This proves the leftmost inequality in (1.19). The rightmost inequality
cari be proved in the same way.
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14.2 The principle of mathematical induction

The reader should make certain that he understands the pattern of the foregoing proof.
First we proved the assertion A(n) for n = 1. Next we showed that ifthe  assertion is true
for a particular integer, then it is also  true for the next integer. From this, we concluded
that the assertion is true for a11  positive integers.

The idea of induction may be illustrated in many nonmathematical ways. For example,
imagine a row of toy soldiers, numbered consecutively, and suppose they are SO arranged
that if any  one  of them falls,  say  the one  labeled k, it Will knock over  the next one,  labeled
k + 1. Then anyone cari  visualize what would happen if soldier number 1 were toppled
backward. It is also clear that if a later soldier were knocked over  first, say  the one  labeled
n,  , then a11 soldiers behind him would fall. This illustrates a slight generalization of the
method of induction which cari  be described in the following way.

Method of proof  by induction. Let A(n) be an assertion involving an integer n. We
conclude  that A(n) is true for every n 2 n,  if we cari  perform the following two steps:

(a) Prove that A(n,) is true.
(b) Let k be an arbitrary but fixed integer >nl  . Assume that A(k) is true and prove that

A(k + 1) is also  true.

In actual practice n,  is usually 1. The logical justification for this method of proof  is the
following theorem about real numbers.

THEOREM 1.36. PRINCIPLE OF MATHEMATICAL  INDUCTION. Let S be a set ofpositive
integers which has the following t wo properties:

(a) The number 1 is in the set S.
(b) If an integer k is in S, then SO is k + 1.

Then every positive integer is in the  set S.

Proof.  Properties (a) and (b) tel1 us that S is an inductive set. But the positive integers
were defined to be exactly those real numbers which belong to every inductive set. (See
Section 1 3.6.) Therefore S contains every positive integer.

Whenever we carry out  a proof  of an assertion A(n) for a11  n 2 1 by mathematical induc-
tion, we are applying Theorem 1.36 to the set S of a11  the integers for which the assertion is
true. If we want to prove that A(n) is true only for n 2 n,  , we apply Theorem 1.36 to the
set of n for which A(n + n,  - 1) is true.

*14.3 The well-ordering principle

There is another important property of the positive integers, called the well-ordering
principle, that is also  used as a basis for proofs by induction. It cari be stated as follows.

THEOREM 1.37. WELL-ORDERING PRINCIPLE. Every nonempty set of positive integers
contains  a smallest  member.

Note that the well-ordering principle refers to sets of positive integers. The theorem is
not true for arbitrary sets of integers. For example, the set of a11  integers has no smallest
member .
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The well-ordering principle cari be deduced from the principle of induction. This is
demonstrated in Section 14.5. We conclude  this section with an example showing how the
well-ordering principle cari  be used to prove theorems about positive integers.

Let A(n) denote  the following assertion:

A(n): l2  + 22  + . . *

Again,  we note that A(1) is true, since

Now there are only two possibilities. We have either
(i) A(n) is true for every positive integer II,  or
(ii) there is at least one  positive integer n  for which A(n) is false.

We shall prove that alternative (ii) leads to a contradiction. Assume (ii) holds. Then by
the well-ordering principle, there must be a smallest  positive integer, say  k, for which
A(k) is false. (We apply the well-ordering principle to the set of a11  positive integers n  for
which A(n) is false. Statement (ii) says that this set is nonempty.) This k must be greater
than 1, because we have verified that A(1) is true. Also, the assertion must be true for
k - 1, since k was the smallest integer for which A(k) is false; therefore we may Write

l2 2’

- - -

& - 1): + + . . . + ( k - 1)” = ~ (k 1)33 + ~ (k 1>22 + - k 1 ’6

Adding k2  to both sides  and simplifying the right-hand side,  we find

l2 + 22 + . . . +k2=f+;+i.

But this equation states that A(k) is true; therefore we have a contradiction, because k is
an integer for which A(k) is false. In other words, statement (ii) leads to a contradiction.
Therefore (i) holds, and this proves that the identity in question is valid for a11  values of
12 2 1. An immediate consequence  of this identity is the rightmost inequality in (1.19).

A proof  like this which makes use of the well-ordering principle is also referred to as
a proof  by induction. Of course, the proof  could also be put in the more usual form in
which we verify A(l)  and then pass from A(k) to A(k + 1).

14.4 Exercises

1. Prove the following formulas by induction :

(a) 1 + 2 + 3 + . f . + n  = n(n  + 1)/2.

(b) 1 + 3 + 5 + . + (2n - 1) = n2.

(c) 1” + 23  + 33 + . + n3  = (1 + 2 + 3 + + n)2.

(d) l3 + 23  + . + (n - 1)3  < n4/4  < l3 + 23  + . . . + n3.
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2 . N o t e that
1 =l,

1 - 4 = -(l  + 2))

1 -4+9=1 +2+3,

1 - 4 + 9 - 16 = -(l  + 2  + 3 + 4).

Guess  the  genera l  l aw sugges ted  and  p rove  i t  by  induc t ion .
3. Note that

1+6=2-i,

1+2+$=2-i,

1+*+2+*=2-4.

Guess  the  genera l  l aw sugges ted  and  p rove  i t  by  induc t ion .
4. Note that

l-8=$,

(1 - j=)(l  - g> = 4,

(1 - i)(l - 9)(1  - 4) = a.

Guess  the  genera l  l aw sugges ted  and  p rove  i t  by  induc t ion .
5 .  Guess  a  general  law which s impl i f ies  the  product

(1 -i)(l -$(l -y . ..(l -y

and  p rove  i t  by  induc t ion .
6. Let A(n) denote the statement: 1 + 2 + . + n = Q(2n + 1)2.

(a) Prove that if A(k) is true for an integer k, then A(k  + 1) is also true.
(b)  Cr i t ic ize  the  s ta tement  : “By induction it follows that A(n) is true for a11  n.”
(c) Amend A(n)  by  changing  the  equal i ty  to  an  inequal i ty  tha t  i s  t rue  for  a11 pos i t ive  in t ege r s  n.

7. Let n, be the smallest positive integer n for which the inequality (1 + x)”  > 1 + nx + 11x2 is
true for a11  x > 0. Compute n, , and  prove  tha t  the  inequal i ty  i s  t rue  for  a11  in tegers  n 2 n1  .

8. Given positive real numbers n, , CI~,  a3, . . . , such that a, < ca,-, for a11 n 2 2, where c is a
fixed positive number, use induction to prove that a, 5 ulcn-r  for a11  n 2 1.

9. Prove the following statement by induction: If a line of unit length is given, then a line of

length 6 cari be constructed with straightedge and compass for each positive integer n.
10. Let b denote a fixed positive integer. Prove  the  fo l lowing  s ta tement  by  induct ion:  For  every

integer n 2 0, there exist nonnegative integers q and r such that

12 = qb + r , Olr<b.

11. Let n and d denote integers. We say that dis a divisor of n if n = cd for some integer c. An
integer n is called a prime if n :> 1 and if the only positive divisors of n are 1 and n. Prove, by
induction, that every integer n > 1 is either a prime or a product of primes.

12. Describe  the fallacy in the following “proof”  by induction:

Statement. Given  any col lec t ion of  n b l o n d e  g i r l s . If  at  least  one of  the  g i r l s  has  b lue  eyes ,
then  a11  n of  them have blue eyes.

“Proof.” The statement is obviously true when n = 1. The step from k to k + 1 cari
be illustrated by going from n = 3 to n = 4. Assume, therefore, that the statement is true
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when n = 3 and let  G,, G,, G,, G, be four blonde girls, at  least one  of which, say  G,, has blue
eyes. Taking G,, G,, and G, together and using the fact  that  the statement is true when n = 3,
we find that  G, and G, also have blue eyes. Repeating the process with G,, G,, and G,, we find
that  G, has blue eyes. Thus a11 four have blue eyes. A similar argument allows us to  make
the step from k to k + 1 in general.

Corollary. Al1  blonde girls have blue eyes.

Proof. Since there exists at  least one  blonde girl with blue eyes, we cari  apply the foregoing
result to the collection consisting of a11 blonde girls.

Note: This example is from G. Polya,  who suggests that  the reader may  want to  test the
validity of the statement by experiment.

*14.5 Proof of the well-ordering principle

In this section we deduce the well-ordering principle from the principle of induction.
Let T be a nonempty collection of positive integers. We want to prove that T has a

smallest member, that is, that there is a positive integer t, in T such  that t, 5 t for a11 t in T.
Suppose T has no smallest member. We shall show that this leads to a contradiction.

The integer 1 cannot be in T (otherwise it would be the smallest member of T). Let S
denote  the collection of a11  positive integers n such  that n < t for a11 t in T. Now 1 is in S
because 1 < t for a11  t in T. Next, let k be a positive integer in S. Then k < t for a11  t in T.
We shall prove that k + 1 is also  in 5’.  If this were not SO, then for some t, in T we would
have t, 5 k + 1. Since T has no smallest member, there is an integer t, in T such  that

t2  < h > and hence  t, < k + 1. But this means that t2  5 k, contradicting the fact that
k < t for a11  t in T. Therefore k + 1 is in S. By the induction principle, S contains a11
positive integers. Since Tisnonempty, there is a positive integer t in T. But this t must also
be in S (since  S contains a11  positive integers). It follows from the definition of S that t < t,
which is a contradiction. Therefore, the assumption that T has no smallest member leads
to a contradiction. It follows that T must have a smallest member, and in turn this proves
that the well-ordering principle is a consequence  of the principle of induction.

14.6 The summation notation

In the calculations for the area of the parabolic segment, we encountered the sum

(1.20) 12 + 22 + 32  + . * * + n2  .

Note that a typical term in this sum is of the form k2,  and we get a11  the terms by letting k
run through the values 1,2,3,  . . . , n. There is a very useful and convenient  notation which
enables us to Write  sums like this in a more compact form. This is called the summation

notation and it makes use of the Greek letter sigma, 2. Using summation notation, we cari
Write  the sum in (1.20) as follows:

This symbol is read: “The sum of k2  for k running from 1 to  n.” The numbers appearing
under and above the sigma tel1 us the range of values taken by k. The letter k itself is
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referred to as the index of summation. Of course, it is not important that we use the letter
k; any  other convenient letter may take its place. For example, instead of zkZl  k2  we could
Write zTcl  i2,  z;clj2,  ZZZ1 m2,  etc., a11  of which are considered as alternative notations for
the same thing. The letters i, j, k, m, etc. that are used in this way are called dummy indices.
It would not be a good idea to use the letter n for the dummy index in this particular example
because n is already being used for the number of terms.

More generally, when we want to form the sum of several real numbers, say  a, , a,, . . . ,
a n, we denote  such  a sum by the symbol

(1.21) a, + a2 + . . . + a,

which, using summation notation, cari  be written as follows:

(1.22) iak.
k=l

For example, we have

Sometimes it is convenient to begin summations from 0 or from some value of the index
beyond 1. For example, we havl:

& = x0 + x1+  x2 + x3 + x4>

n$2n3  = 23  + 33 + 43  + 53.

Other uses of the summation notation are illustrated below:

ixm+l! = x + x2 + x3 + x* + x5,
?Il=0

&-‘- = 1 + 2 + 22 + 23 + 2* + 25.

TO emphasize once more that the choice of dummy index is unimportant, we note that the
last sum may also be written in each  of the following forms:

Note: From a  s t r ic t ly  logica l  s tandpoin t ,  the  symbols  in  (1 .21)  and  (1 .22)  do  not  appear
among the primitive symbols for the real-number system. In a more careful treatment, we
cou ld  define  these new symbols in terms of  the primit ive undefined symbols of  our  system.
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This may be done by a process known as definition  by induction which, like proof  by induc-
tion, consists of two parts:

(a) We define

kglak  = a1 .

(b) Assuming that we have defined I&, lia for a fixed n 2 1, we further define

ix ak = (k!lak)  + a,+,.
TO illustrate, we may take II = 1 in (b) and use (a) to obtain

Now, having defined zk=r  ak , we cari use (b) again  with n = 2 to obtain

k%lak  =$;k + a3 = (a1 + a21  + a3.

By the associative law for addition (Axiom 2),  the sum (a1  + a2)  + a3  is the same as
a, + (a2  + a,), and therefore there is no danger of confusion if we drop the parentheses
and simply Write  a, + a2  + a3 for 2i-r  ak . Similarly, we have

k$ak = j: + a4  = (a1  + a2  + Q3)  + a4 e

In this case we cari proue that the sum (a1  + u2  + as)  + u4  is the same as (a1 + a&  +
(a3  + a4) or a, + (a2  + a3  + a,), and therefore the parentheses cari be dropped again  with-
out danger of ambiguity, and we agree to Write

k$ak  = a, + a2  + u3  + u4.

Cont inu ing  in  th i s  way,  we  f ind  tha t  (a )  and  (b)  toge ther  g ive  us  a  complete  def in i t ion  of
the symbol in (1.22). The nota t ion  in  (1 .21)  i s  cons idered  to  be  merely  an  a l ternat ive  way of
writing (1.22). It is justified by a general associative law for addition which we shah not
at tempt  to  s ta te  or  to  prove here .

The reader  should  not ice  tha t  d@nition  by induction and proof  by induction i nvo lve  the
same under ly ing  idea .  A  def in i t ion  by  induc t ion  i s  also cal led a  recursiue definition.

14.7 Exercises

1.  Find the  numerical  values  of  the  fo l lowing sums :

(4 2 k (c) f 22r+1,
k=l T=O

(eli$(2i  + 11,

(b) i 2n-2, (4 i nn,
n=2 ?I=l

(f) $1.
k=l

k(k  + 1)
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2. Establish the following properties of the summation notation:

(a>k$b%  +  6,:)  =  $ (Ik +  2 bk
k=l k=l

(additive property).

(homogeneous property).

ccjkz(%  - ak.-l>  =  an  - uO (telescoping property).

Use the properties in Exercise 2 whenever possible to derive  the formulas in Exercises 3
through 8.

3.2 1 = n.  (This means  zE=,  a,, where each  ak  = 1.)
k=l

4. i (2k - 1) = ns. [Hint:  2k - 1 = k2 - (k - 1)2.]
k=l125. c k=;+;. [Hint: IJse Exercises 3 and 4.1
k=l

++; +f +z. [Hint: k3 - (k - 1)3 = 3k2 - 3 k + 1.1
k=l

8.

9.

10.

11.

if x #  1. Note: x0 is defined to be 1.

[Hint: Apply Exercise 2 to (1 - x) En=0  x”.]

(b) What is the sum equal to when x = l?

Prove, by induction, that the sum I$ (- 1)“(2k  + 1) is proportional to n,  and find the
constant of proportionality.
(a) Give a reasonable definition of the symbol  Irdz  a,.
(b) Prove, by induction, that for n  2 1 we have

s ; = p-y+1*

k=n+l ?7Z=l

Determine whether each  of the following statements is true or false. In each  case give a
reason for your decision.

100 100

<a>nz;4  = 1 n4.
?I=l

100
(b) 12 = 200.

j=o

100
(djizl(i  + 1>2 = zi2.

i=O

100 100

(~‘~~0’”  + k) = 2 + L:  k.
k=O
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12. Guess and prove a general rule which simplifies the sum

4 1

13. Prove that 2(4n + 1 - di) < L < 2(& -
6

m)if n 2 1 . Then use this t o prove
that

2VG -2< 26-l

if m 2  2. In particular, when m = 106, the sum lies between 1998 and 1999.

14.8 Absolute values and the triangle inequality

Calculations with inequalities arise quite frequently in calculus. They are of particular
importance in dealing with the notion of absolute  value. If x is a real number, the absolute
value of x is a nonnegative real number denoted by 1x1 and defined as follows:

( x1x1 =
i f  ~20,

- x i f  ~50.

Note that - 1x1 5 x 5 1x1. When real numbers are represented geometrically on a real axis,
the number 1x1 is called the distance of x from 0. If a > 0 and if a point x lies between -a
and a, then 1x1 is nearer to 0 than a is. The analytic statement of this fact is given by the
following theorem.

THEOREM 1.38. If a 2  0, then 1x1  < a lfand  only  if -a 5  x 5  a.

Proof.  There are two statements to prove: first, that the inequality 1x1 < a implies the
two inequalities -a 5 x 5 a and, conversely, that -a 5 x < a implies 1x1 5 a.

Suppose 1x1 < a. Then we also have -a 5 -IX~. But either x = 1x1 or x = -IX~ and
hence  -a 5 -IX~ < x 5 1x1 5 a. This proves the first statement.

TO prove the converse, assume -a 5 x 5 a. Then if x 2 0, we have 1x1 = x 5 a,
whereas if x 5 0, we have 1x1 = -x < a. In either case we have 1x1 < a, and this com-
pletes the proof.

Figure 1.9 illustrates the geometrical significance of this theorem.

a

FIGURE 1.9 Geometrical significance of Theorem 1.38.

As a consequence  of Theorem 1.38, it is easy to derive an important inequality which
states that the absolute value of a sum of two real numbers cannot  exceed the sum of their
absolute values.
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THEOREM 1.39. For arbitrary real numbers x and y, we  have

Ix + YI  I 1x1  + IYI  *

Note: This property is called the triangle inequality, because when it is generalized to
vectors it states that the length of any  side  of a triangle is less than or equal to the sum of
the lengths of the other two sides.

Proof.  Adding the inequalitie.,0 -IX~ 5 x < 1x1 and -/y1 I y I 1~1,  we obtain

-04 + IA>  I x + Y I 1x1  + IYI  9

and hence,  by Theorem 1.38, we conclude  that Ix + y/  < 1x1 + /y].
If we take x = a - c and y = c - b, then x + y = a - b and the triangle inequality

becomes
la  - bl  5  la - CI  + lb - CI .

This form of the triangle inequality is often used in practice.
Using mathematical induction, we may extend the triangle inequality as follows:

THEOREM 1.40. For arbitrary real numbers a,, a2,  . . . , a,, we have

Proof.  When n = 1 the inequality is trivial, and when n = 2 it is the triangle inequality.
Assume, then, that it is true for ut real numbers. Then for n + 1 real numbers a, , a2  , . . . ,
an+l , we have

Hence the theorem is true for n + 1 numbers if it is true for n. By induction, it is true for
every positive integer n.

The next theorem describes an important inequality that we shall use later in connection
with our study of vector  algebra.

THEOREM 1.41. THE CAUCHY-SCHWARZ INEQUALITY. Zfa,,  . . ..a. andb,, . . ..b.are
arbitrary real numbers, we have

(1.23)

The equality sign  holds if and onl;v  if there is a real number x such  that akx + b, = 0 for each
k = 1, 2, . . . , n.
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Proof. We  bave  & (aKx  + b,)’ 2 0 for every real x because a sum of squares cari
never  be negative. This may be written in the form

(1.24) Ax2+2Bx+C>0,

where

A =ia;, B =ia,b,, C =ib;.
k=l k=l k=l

We wish to prove that B2 < AC. If A = 0, then each  ak  = 0, SO B = 0 and the result is
trivial. If A # 0, we may complete the square and Write

Ax2+2Bx+C=A AC - B2

A *

The right side  has its smallest value when x = -B/A.  Putting x = -B/A  in (1.24),  we
obtain B2  < AC. This proves (1.23). The reader should verify that the equality sign  holds
if and only if there is an x such  that akx  + b,  = 0 for each  k.

14.9 Exercises

1. Prove each  of the following properties of absolute  values.
(a) 1x1 = 0 if and only if x = 0. (0 Ixyl = 1x1 lyl.
(b)  I-4 = Id. Cg)  Ix/yl = Ixlllyl  ify + 0.
cc> Ix -yl  = ly - xl.
(d) lx12 = x2.

04  Ix --y1  S 1x1  + lyl.

(e )  1x1  = +2.
6)  1x1  - lyl  I Ix -yl.
<j> II.4  - lyl  1 I Ix -yl.

2. Each  inequality (ai),  listed below,  is equivalent to exactly one  inequality (bj).  For example,
1x1 < 3 if and only if -3 < x < 3, and hence  (a&  is equivalent to (b,).  Determine a11 equivalent
pairs.
(4  1x1  < 3 . (b,)  4 < x < 6.
(a2>  lx - II < 3. (b,)  -3 < x < 3.
(a&  13  - 2x1 < 1. (b3)  x > 3 or x < -1.
(4 Il + 2x1  2 1. (64)  x  >  2.
(a&  Ix - II > 2. (b,)  -2 < x < 4.
(4  Ix + 21  2 5. (6,) -1/35x<-1 o r  12x5 6.
y;  15  - X+l  < 1. (6,) 1 < x < 2.

x - 51 < Ix + II.
(1;)  1x2  - 21  2  1.

(b,)  x I - 7 or x 2  3.
(b,) + < x < 4.

(a1())  x < x2 - 12 < 4x. @,,)  - 1  I x 5  0.
3. Determine whether each  of the following is true or false. In each  case give a reason for your

decision.
(a) x < 5 implies 1x1 < 5.
(b) Ix - 51  < 2 implies 3 < x < 7.
(c) Il + 3x1 5  1 implies x 2 -g.
(d) There is no real x for which Ix - 11  = Ix - 21.
(e) For every x > 0 there is a y > 0 such  that 12x + yl = 5.

4. Show that the equality sign  holds in the Cauchy-Schwarz inequality if and only if there is a real
number x such  that a$  + bk  = 0 for every k = 1,2,  . . . , n.
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*14.10  Miscellaneous exercises involving induction

In this section we assemble a number of miscellaneous facts  whose proofs are good exercises in
the use of mathematical induction. Some of these exercises may  serve as a basis for supplementary
classroom discussion.

Factorials and binomial coejjîcients. The symbol n! (read “n factorial”)  may  be defined by in-
ductionasfollows:O!=l,n!=(n-l)!nifn>l.  Notethatn!=1.2.3...n.

If 0 5 k 5 n, the binomial coejjfîcient  (k)  is defined as follows:

n0 n!
k = k! (n - k)! ’

Note: Sometimes .C, is written for (E). These numbers appear as coefficients
in the binomial theorem. (See Exercise  4 below.)

1. Compute the values of the following binomial coefficients :
(a>  (3, (b)  Ci), (4 0, (4 Ci’>, (4 (3, (0 (0).

2. (a) Show that (R) = (,nk). (c) Find k, given that (‘j)  = (k? 4).
(b) Find n,  given that ( FO) = (y). (d) 1s  there a k such  that (y)  = ( k’2 a)?

3. Prove that (nkl ) = (k? r) + (R).  This is called the Zaw  of Pascal’s  triangle and it provides  a
rapid way of computing binomial coefficients successively. Pascal%  triangle is illustrated here
for n 5 6 .

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

4. Use induction to prove the binomial theorem

(a + b)” =sc:)a7cbn-r.
k=O

Then use the theorem to derive  the formulas

= 2n a n d  2(-l)“(*)  = 0, i f  n>O.

The  product notation. The product of II real numbers a,, a2,  . . . , a, is denoted by the symbol
ni=1  a,, which may  be defined by induction. The symbol a1a2  .  . . a, is an alternative notation for
this product. Note that

n! = fik.
k=l

5. Give a definition by induction for the product nn=r  ak.
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Prove the following properties of products by induction:

(multiplicative property).

An important special case is the relation ntzl  (cak)  = cn  n$=r  uk.

qyL2
k=laR-l  ao

if each  a, #  0 (telescoping property).

8. If x #  1, show that

kn(1 + X2K-‘)  = g.

What is the value of the product  when x = 1 ?
9. If aR < bk for each  k = 1, 2, . . . , n,  it is easy to prove by induction that Ii=,  ak  < z& bk.

Discuss the corresponding inequality for products:

Some special inequalities

10. If x > 1, prove by induction that xn > x for every integer n  2 2. If 0 < x < 1, prove that
xn < x for every integer n  2 2.

11. Determine a11 positive integers n for which 2n < n!.
12. (a) Use the binomial theorem  to prove that for n a positive integer we have

(b) If n > 1, use part (a) and Exercise  11 to deduce the inequalities

13. (a) Let p be a positive integer. Prove that

bP  - a*  = (b - a)(b”-1  + bp-2a  + b”-3a2  + . . . + baP-2  + a~-1)  .

[Hint: Use the telescoping property for sums.]

(b) Let p and n denote  positive integers. Use part (a) to show that

np  < (n + IF1 - np+l  < (n + l)p

P-t1
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(c) Use induction to prove that

n-1

c

#+l n

kP  <- < c kP.
k=l p + l k=l

Part (b) Will assist in making the inductive step from n to n + 1.
14. Let (Or  , . . . , a, be n real numhers, a11 having the same  sign and a11 greater than -1. Use

induction to prove that

(1 + a&(1  + a,‘) . . ‘(1 +a,>  2  1  + a ,  + a ,  +*** +a,.

In particular, when a, = u2  = * . . = a, = x, where x > -1, this yields

( 1 . 2 5 ) (1 + X)” 2  1 + nx (Bernoulli’s  inequulity).

Show that when n > 1 the equality sign holds in (1.25) only for x = 0.
15. If n  2  2, prove that n!/n”  < (&)“,  where k is the greatest integer I n/2.
16. The numbers 1, 2, 3, 5, 8, 13, 21, . . . , in which each  term after the second is the sum of its

two predecessors, are called Fibonucci numbers. They may  be defined by induction as follows :

Prove that
Ul  = 1, cl2  = 2, %,l = a, + a,-, i f  n>2.

u < l+en
( )

TZ-
2

for every n  2 1.

Znequulities reluting  di’rent types of uveruges. Let x1 , x2 , . . . , x, be n  positive real numbers.
If p is a nonzero integer, the pt,h-power  meun  M,  of the n  numbers is defined as follows :

MD =
xf + . . . + x;

n

The number M,  is also called the urithmetic meun,  M, the root meun  square, and M-,  the
hurmonic meun.

17. Ifp > 0, prove that M,  < M,,, when x1 , x2 , . . . , x, are not a11 equal.

[Hint: Apply the Cauchy-Schwarz inequality with uk  = XE  and bk  = 1.1

18. Use the result of Exercise  17 to prove that

u4  + b4 + c4  2  “34

if u2  + b2  + c2  = 8 and a > 0, b > 0, c > 0.
19. Let a, , . . . , a, be n positive real numbers whose product  is equal to 1. Prove that a, + * * * +

a, 2  n and that the equality sign  holds only if every ak  = 1.

[Hint: Consider two cases: (a) Al1  & = 1; (b) not a11 ak  = 1. Use induction. In case
(b) notice that if uiu2  . . . a,,, := 1, then at least one  factor,  say  ur  , exceeds 1 and at least
one  factor,  say  a+,  , is less than 1. Let b1  = a,~,+, and apply the induction hypothesis to
the product  b1u2  * . * a, , using  the fact  that (ur  - l)(~,+~  - 1) < 0.1
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20.

21.

22.

The geometric mean  G of n positive real numbers x1 , . . . , x, is defined by the formula G =
(x1x2 . . . x,)l’fl.
(a) Let It4,  denote  the pth power mean. Prove that G < Ml and that G = Ml only when
x1 = x2 = . . . = x,.
(b) Let p and q be integers, q < 0 < p. From part (a) deduce that Mp  < G < MD when x1 ,
x2 > . * * > x, are not a11 equal.

Use the result of Exercise  20 to prove the following statement : If a, b, and c are positive real
numbers such  that abc = 8, then a + b + c 2  6 and ab + ac + bc 2 12.
If Xl>  . . . > x, are positive numbers and if y, = 1/x,, prove that

23. If a, b, and c are positive and if a + b + c = 1, prove that (1 - a)(1  - b)(l - c) 2  8abc.
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THE CONCEPTS OF INTEGRAL CALCULUS

In this chapter we present the ‘definition  of the integral and some of its basic properties.
TO understand the definition one  must have some acquaintance with the function concept;
the next few sections are devoted. to an explanation of this and related ideas.

1.1 The basic ideas of Cartesian geometry

As mentioned earlier, one  of the applications of the integral is the calculation of area.
Ordinarily we do not talk about a.rea  by itself. Instead, we talk about the area of something.
This means that we have certain abjects (polygonal regions, circular  regions, parabolic
segments, etc.) whose areas we wish to measure. If we hope to arrive at a treatment of area
that Will enable us to deal with many different kinds of abjects,  we must first find an effective
way to describe  these abjects.

The most primitive way of doing this is by drawing figures, as was done  by the ancient
Greeks. A much better way was ;suggested  by René Descartes (1596-1650),  who introduced
the subject of analytic geometry (also known as Curtesian  geometry). Descartes’ idea was
to represent geometric points by numbers. The procedure  for points in a plane is this:

Two perpendicular reference lines (called coordinate axes) are chosen,  one  horizontal
(called the “x-axis”),  the other vertical (the ‘ty-axis”). Their point of intersection, denoted
by 0, is called the origin. On the x-axis a convenient point is chosen  to the right of 0 and
its distance from 0 is called the unit distance. Vertical distances along the y-axis are usually
measured with the same unit distance, although sometimes it is convenient to use a different
scale  on the y-axis. Now each  point in the plane (sometimes called the xy-plane) is assigned
a pair of numbers, called its coordinates. These numbers tel1 us how to locate the point.
Figure 1.1 illustrates some examples. The point with coordinates (3, 2) lies three units to
the right of they-axis and two unils  above the x-axis. The number 3 is called the x-coordinate
of the point, 2 its y-coordinate. Points to the left of the y-axis have a negative x-coordinate;
those below the x-axis have a negative y-coordinate. The x-coordinate of a point is some-
times called its abscissa  and the y-coordinate is called its ordinate.

When we Write  a pair of numbers such  as (a, b) to represent a point, we agree that the
abscissa  or x-coordinate, a, is written first. For this reason, the pair (a, b) is often referred
to as an orderedpair. It is clear that two ordered pairs (a, b) and (c, d) represent the same
point if and only if we have a == c and b = d. Points (a, b) with both a and b positive
are said to lie in thejrst  quadran,r; those with a < 0 and b > 0 are in the second quadrant;

4 8
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those with a < 0 and b < 0 are in the third quadrant; and those with a > 0 and b < 0
are in the fourth quadrant. Figure 1.1 shows one  point in each  quadrant.

The procedure  for points in space is similar. We take three mutually perpendicular
lines in space intersecting at a point (the origin). These lines determine three mutually
perpendicular planes, and each  point in space cari  be completely described by specifying, with
appropriate regard for signs, its distances from these planes. We shall  discuss three-dimen-
sional Cartesian geometry in more detail later on; for the present we confine our attention
to plane analytic geometry.

A geometric figure, such  as a curve  in the plane, is a collection of points satisfying one
or more special  conditions. By translating these conditions into expressions involving the

y-axis ”
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FIGURE 1.1 FIGURE 1.2 The circle repre-

sented by the Cartesian equation
x2 + y2 = r2.

coordinates x and y, we obtain one  or more equations which characterize the figure in
question. For example, consider a circle of radius r with its tenter  at the origin, as shown
in Figure 1.2. Let P be an arbitrary point on this &cle,  and suppose P has coordinates
(x, y). Then the line segment OP is the hypotenuse of a right triangle whose legs have
lengths 1x1 and [y[  and hence,  by the theorem of Pythagoras,

x2 + y2 = r2.

This equation, called a Cartesian equation of the circle, is satisfied  by a11 points (x, y) on
the circle and by no others,  SO the equation completely characterizes the circle. This
example illustrates how analytic geometry is used to reduce geometrical statements about
points to analytical statements about real numbers.

Throughout their historical development, calculus  and analytic geometry have been
intimately intertwined. New discoveries in one  subject led to improvements in the other.
The development of calculus  and analytic geometry in this book is similar to the historical
development, in that the two subjects are treated together. However, our primary purpose
is to discuss calculus. Concepts from analytic geometry that are required for this purpose
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Will be discussed as needed. Actually, only a few very elementary concepts of plane analytic
geometry are required to understand the rudiments of calculus. A deeper study of analytic
geometry is needed to extend the scope and applications of calculus, and this study Will be
carried  out  in later chapters using  vector  methods as well as the methods of calculus.
Until then, a11 that is required from analytic geometry is a little familiarity with drawing
graphs of functions.

1.2 Functions.  Informa1 description and examples

Various fields  of human  endeavor have to do with relationships that exist between one
collection of abjects and another. Graphs, charts,  curves,  tables, formulas, and Gallup ~011s
are familiar to everyone who reads the newspapers. These are merely devices  for describing
special  relations in a quantitative fashion. Mathematicians refer to certain types of these
relations as functions. In this section, we give an informa1 description of the function
concept. A forma1 definition is given  in Section 1.3.

EXAMPLE 1.  The force F necessary to stretch a steel spring a distance x beyond its natural
length is proportional to x. That is, F = cx, where c is a number independent of x called
the spring constant. This formula, discovered by Robert Hooke in the mid-17th Century, is
called Hooke’s Zaw,  and it is said to express the force as a function of the displacement.

EXAMPLE 2. The volume of a cube is a function of its edge-length. If the edges have
length x, the volume Vis given by the formula V = x3.

EXAMPLE 3. A prime is any  integer n > 1 that cannot be expressed in the form n = ab,
where a and b are positive integers, both less than n. The first few primes are 2, 3, 5, 7, 11,
13, 17, 19. For a given real number x > 0, it is possible to Count  the number of primes less
than or equal to x. This number is said to be a function of x even though no simple algebraic
formula is known for computing it (without counting) when x is known.

The word “function”  was introduced into mathematics by Leibniz, who used the term
primarily to refer to certain kinds of mathematical formulas. It was later realized that
Leibniz’s idea of function was much too limited in its scope, and the meaning of the word
has since  undergone many stages of generalization. Today, the meaning of function is
essentially this : Given two sets, say  X and Y, afunction is a correspondence which associates
with each  element of X one  and only one  element of Y. The set X is called the domain  of the
function. Those elements of Y associated with the elements in X form a set called the range
of the function.  (This may be a11 of Y, but it need not be.)

Letters of the English and Greek alphabets are often used to denote  functions. The
particular lettersf,  g, h, F,  G, H, and 9 are frequently used for this purpose. Iff is a given
function and if x is an abject of its domain, the notation f(x) is used to designate that abject
in the range which is associated to x by the function f, and it is called the value off at x
or the image of x under f. The symbol f(x) is read as “f of x.”

The function idea may be illustrated schematically in many ways. For example, in
Figure 1.3(a) the collections X and Y are thought of as sets of points and an arrow is used
to suggest a “pairing” of a typical point x in X with the image point f(x) in Y. Another
scheme is shown in Figure 1.3(b). Here the function f is imagined to be like a machine into
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(4
FIGURE 1.3 Schematic representations of the function idea.

which abjects of the collection X are fed and abjects of Y are produced. When an abject x
is fed into the machine, the output is the objectf(x).

Although the function idea places no restriction on the nature of the abjects in the domain
X and in the range Y, in elementary calculus  we are primarily interested in functions whose
domain  and range are sets of real numbers. Such  functions are called real-valuedfunctions
of a real variable, or, more briefly, real fînctions,  and they may be illustrated geometrically
by a graph in the xy-plane. We plot the domain  X on the x-axis, and above each  point x in
X we plot the point (x, y), where y = f (x). The totality of such  points (x, y) is called the
graph of the function.

Now we consider some more examples of real functions.

EXAMPLE  4. The identity function. Suppose that f(x) = x for a11  real x. This function
is often called the identity function. Its domain  is the real line, that is, the set of a11 real
numbers. Here x = y for each  point (x, y) on the graph off. The graph is a straight iine
making equal angles with the coordinates axes (see Figure 1.4). The range off is the set of
a11  real numbers.

real number x the nonnegative number
EXAMPLE 5. The absolute-value .function.  Consider the function which assigns  to each

1.5.1x1. A portion of its graph is shown &Figure

FIGURE 1.4 Graph of the identity
functionf(x)  = x.

y’Pw = 1x1

440
X

FIGURE 1.5 Absolute-value
function q(x) = 1x1.
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Denoting this function by p,  we have y(x)  = 1x1 for a11 real x. For example, ~(0) = 0,
~(2) = 2, v(  - 3) = 3. We list here some properties of absolute values expressed in function
notation.

64  d-4 = P(X). (4 dvW1 = dx> .

(b) V(X”)  = x2 ,. (e) y(x) = dxZ .

(c) ~(x + y) 5 q(x)  + &y) (the triangle inequality) .

EXAMPLE 6. Theprime-numberfimction. For any  x > 0, let V(X)  be the number of primes
less than or equal to x. The domain  of n is the set of positive real numbers. Its range is the
set of nonnegative integers (0, 1,2,  . . . }. A portion of the graph of 77  is shown in Figure 1.6.

FIGURE 1.6 The prime-number function. FIGURE 1.7 The factorial
function.

(Different scales  are used on the x- and y-axes.) As x increases, the function value r(x)
remains constant until x reaches a prime, at which point the function value jumps by 1.
Therefore the graph of 7r consists  of horizontal line segments. This is an example of a class
of functions called step functions; they play a fundamental role in the theory of the integral.

EXAMPLE 7. The factorial func/ion.  For every positive integer n, we define  f(n) to be
n!  = l-2..-n. In this example, the domain  off is the set of positive integers. The
function values increase SO rapidly that it is more convenient  to display this function in
tabular form rather than as a graph. Figure 1.7 shows a table listing the pairs (n, n!) for
n = 1, 2, . . . , 10.

The reader should note two features that a11 the above examples have in common.
(1) For each  x in the domain  X.  there is one  and only one  image y that is paired with that

particular x.
(2) Each function generates a set of pairs (x, y), where x is a typical element of the

domain  X,  and y is the unique element of Y that goes  with x.
In most of the above examples, we displayed the pairs (x, y) geometrically as points on a

graph. In Example 7 we displayed them as entries in a table. In each  case, to know the
function is to know, in one  way or another, a11  the pairs (x, y)  that it generates. This simple
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observation is the motivation behind the forma1 definition of the function concept that is
given in the next section.

*1.3  Functions. Forma1 definition as a set of ordered pairs

In the informa1 discussion of the foregoing section, a function was described as a corre-
spondence which associates with each  abject in a set X one  and only one  abject in a set Y.
The words “correspondence” and “associates with” may not convey exactly the same
meaning to a11 people, SO we shall reformulate the whole idea in a different way, basing it on
the set concept. First we require the notion of an orderedpair of abjects.

In the definition of set equality, no mention is made of the order in which elements
appear. Thus, the sets {2,5} and {5,2} are equal because they consist  of exactly the same
elements. Sometimes the order is important. For example, in plane analytic geometry the
coordinates (x, y) of a point represent an ordered pair of numbers. The point with co-
ordinates (2, 5) is not the same as the point with coordinates (5, 2), although the sets (2, 5)
and {5, 2) are equal. In the same way, if we have a pair of abjects a and b (not necessarily
distinct) and if we wish to distinguish one  of the abjects,  say  a, as thefirst  member and the
other, b, as the second, we enclose the abjects in parentheses, (a, b). We refer to this as an
ordered pair. We say  that two ordered pairs (a, b) and (c, d) are equal if and only if their
first members are equal and their second members are equal. That is to say,  we have

(a,  b) = Cc,  4 i f a n d o n l y i f  a = c  a n d  b = d .

Now we may state the forma1 definition of function.

DEFINITION OF FUNCTION. A function f is a set of ordered pairs (x, y) no two  of lishich
have the sameJirst  member.

Iff is a function, the set of a11 elements x that occur as first members of pairs (x, y) in f
is called the domain  off. The set of second members y is called the range off, or the set of
values off.

Tntuitively, a function cari  be thought of as a table consisting of two columns. Each
entry in the table is an ordered pair (x, y); the column of x’s is the domain  off, and the
column of y’s,  the range. If two entries (x, y) and (x, z) appear in the table with the same
x-value, then for the table to be a function it is necessary that y = z. In other words, a
function cannot take two different values at a given point x. Therefore, for every x in the
domain  off there is exactly one  y such  that (x, y) of. Since  this y is uniquely determined
once x is known, we cari  introduce a special  symbol for it. It is customary to Write

Y =fW

instead of (x, y) E  f to indicate that the pair (x, y) is in the set f.
As an alternative to describing a function f by specifying explicitly the pairs it contains,

it is usually preferable to describe  the domain  off, and then, for each  x in the domain, to
describe  how the function value f (x) is obtained. In this connection,  we have the following
theorem whose proof  is left as an exercise  for the reader.
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THEOREM 1.1. Two functions f and g are equal if  and only if
(a) f and g have the same domain,  and
(b) f(x) = g(x) for every x in the  domain  ofj

It is important to realize that the abjects x and f(x) which appear in the ordered pairs
(x, f (x)) of a function need not be numbers but may be arbitrary abjects of any  kind.
Occasionally we shall use this degree of generality, but for the most part we shall be interested
in real functions, that is, functions whose domain  and range are subsets of the real line.

Some of the functions that arise in calculus  are described in the next few examples.

1.4 More examples of real functions

1. Constant functions. A function whose range consists  of a single  number is called a
constant function. An example is shown in Figure 1.8, where f (x) = 3 for every real
x. The graph is a horizontal line cutting the y-axis at the point (0, 3).

f(x)  = 3d=2
1

X
0

Y

g(x) = 2x

/

0
Y

FIGURE 1.8 A constant FIGURE 1.9 A linear function FIGURE 1.10 A quadratic
function f(x) = 3. g(x) = 2x - 1. polynomial f(x) = x2.

2. Linear functions. A function g defined for a11 real x by a formula of the form

g(x) = ax + b

is called a linear function because its graph is a straight line. The number b is called
the y-intercept of the line; it is the y-coordinate of the point (0, b) where the line cuts
the y-axis. The number a is called the slope of the line. One example, g(x) = x, is
shown in Figure 1.4. Another, g(x) = 2x - 1,  is shown in Figure 1.9.

3. The power functions. For a fixed positive integer n, let f be defined by the equation
f(x) = xn for a11 real x. When n  = 1, this is the identity function, shown in Figure 1.4.
For n = 2, the graph is a parabola, part of which is shown in Figure 1.10. For n = 3,
the graph is a cubic curve  and has the appearance of that in Figure 1.11 (p. 56).
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4. Polynomial jîunctions. A polynomial function P is one  defined for a11 real x by an
equation of the form

P(x)=c,+c,x+...+c,x”=$c,xk.
K=O

The numbers cg,  c1  , . . . , c, are called the coefJicients  of the polynomial, and the
nonnegative integer n is called its degree (if c, # 0). They include the constant func-
tions and the power functions as special  cases. Polynomials of degree 2, 3, and 4 are
called quadratic, cubic, and quartic polynomials, respectively. Figure 1.12 shows a
portion of the graph of a quartic polynomial P given by P(x) = $x4  - 2x2.

5. The circle. Suppose we return to the Cartesian equation of a circle, x2 + y2  = r2 and
solve this equation for y in terms of x. There are two solutions given by

y+/- and y= -1/v2_x2.

(We remind the reader that if a > 0, the symbol z/a denotes  the positive square root
of a. The negative square root is -A.) There was a time when mathematicians would

say  that y is a double-valuedfunction of x given by y = &-v’???.  However, the
more modern point of view does  not admit “double-valuedness” as a property of
functions. The definition of function requires that for each  x in the domain, there
corresponds one  and only one  y in the range. Geometrically, this means that vertical
lines which intersect the graph do SO at exactly one  point. Therefore to make this
example fit the theory, we say  that the two solutions for y define  two functions, say
f and g,  where

f cx> = m and g(x)  = -dG2

for each  x satisfying -r < x 5 r. Each of these functions has for its domain  the
interval extending from -r to r. If 1x1 > r, there is no real y such  that x2 + y2  = r2,
and we say  that the functions f and g are not dejined for such  x. Since  f (x) is the non-
negative square root of r2 - x2, the graph off is the Upper  semicircle shown in Figure
1.13. The function values of g are 5 0, and hence  the graph of g is the lower semicircle
shown in Figure 1.13.

6. Sums, products,  and quotients of functions. Let f and g be two real functions having
the same domain  D. We cari  construct new functions from f and g by adding,  multi-
plying, or dividing the function values. The function u defined by the equation

44 =fW + g(x) i f  XED

is called the sum off and g and is denoted by f + g. Similarly, the product  v = f * g
and the quotient w = f/g are the functions defined by the respective formulas

V(X> =fW&> i f  X E  D , 49 =fW/&> if x E  D and g(x) # 0.
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Y
P(x) =  ix’ - 2x2

+px  ‘;;J *x-&x

FIGURE 1.11 A cubic
polynomial: P(x) = x3.

FIGURE 1.12 A quartic polynomial :
P(x) = ix”  - 2x2.

FIGURE 1.13 Graphs of
two functions:

f(x) = dr2  - x2,
g(x) = -o-F?

The next set of exercises is intended to give the reader some familiarity with the use of
the function notation.

1 . 5  Exercises

1. Let f(x) = x + 1 for a11 real x. Compute the following: f(2), f( -2), -f(2), f(h),  llf(2),
f@ + b)>  f(4 + j-(4 fwf@).

2. Let f(x) = 1 + x and let g(x) ==  1 - x for a11 real x. Compute the following: f(2) + g(2),
f(2) - g(2>,f(2>g(2>,f(2)/go,J  tgm,  g[fm>.m  + g( -4,fWg(  -f>.

3. Let p(x)  = Ix - 31  + Ix - l( for ah  real x. Compute the following: p(O),  p(l),  v(2),  p(3),

4.

5.

6 .

q(  -l),  9( -2). Find a11 I for which ~(t + 2) = p(l).
Letf(x) = x2 for a11 real x. Verify each  of the following formulas. In each  case describe  the
set of real x, y, t, etc., for which the given formula is valid.
(4 f< -x) = f(x). (4  f(2y)  = 4f(v).
(b)  f(y)  -f(x)  = (y  - ~>(y  + 4. Ce>  f<t”>  = f<Oi.
(c) f(X + h) -f(x) = 2xh + h”. (0 dfca>  = M.
Let g(x) = Y4 - x2 for 1x1 2  2. Verify each  of the following formulas and tel1  for which
values of x, y, S, and t the given formula is valid.

(4 g(-4  =gW (d) g(a - 2) = Va.

(b)  ,@y) = 2d7. (e)  g i
il

= $d16 - s2.

ILïF-T
Cc)  &(y  = p,  *

1 2 -g(x)
Cf)  2)  = -p--  *

Let f be defined as follows: f(x)  = 1 for 0 5  x < 1; f(x) = 2 for 1 < x < 2. The function
is not defined if x < 0 or if x > 2.
(a) Draw the graph off.
(b) Let g(x) = f (2x). Describe  the domain of g and draw its graph.
(c) Let h(x) =f(x  - 2). Describe  the domain of h  and draw its graph.
(d) Let k(x) = f(2x)  + f(x  - 2). Describe  the domain of k and draw its graph.
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7. The graphs of the two polynomials g(x) = x and f(x) = x3 intersect at three points. Draw
enough of their graphs to show how they intersect.

8. The graphs of the two quadratic polynomialsf(x)  = x2 - 2 and g(x) = 2x2 + 4x + 1 inter-
sect  at two points. Draw the portions of the two graphs between the points of intersection.

9. This exercise  develops some fundamental properties of polynomials. Let f(x) = &, clcxk be
a polynomial of degree n. Prove each  of the following:
(a) If n 2  1 andf(0) = 0, thenf(x)  = X~(X),  whereg is a polynomial of degree n - 1.
(b) For each  real a, the function p given by p(x) =f(x  + a) is a polynomial of degree n.
(c) If n 2 1 andf(a)  = 0 for some real a, thenf(x)  = (x - a)h(x), where h is a polynomial of
degree n - 1. [Hint: Consider p(x) =f(x  + a).]
(d) Iff(x) = 0 for n  + 1 distinct real values of x, then every coefficient ck  is zero andf(x)  = 0
for a11 real x.
(e)  Letg(x)  = zm= bk  ,, kxk be a polynomial of degree m, where m 2 n. Ifg(x)  = f(x) for m + 1
distinct real values of x, then m = n,  b,  = cB for each  k, andg(x)  =f(x) for a11 real x.

10. In each  case, find a11 polynomials p of degree 5  2 which satisfy the given conditions.
(a>  p(O)  =PU)  =pQ)  = 1. (cl  p(O)  =p(l)  = 1.
(b)  p(O)  = p(l) = l,p@) = 2. (4  p(O)  =PU).

11. In each  case, find a11 polynomials p of degree 5  2 which satisfy the given conditions for a11
real x.
(4  p(x)  =PU - 4. cc>  pc24  = 2pw.
(b)  p(x)  = ~(1  + xl. (4  ~(3x1  = p(x + 3).

12. Show that the following are polynomials by converting them to the form z;C=,  ukxk  for a
suitable  m. In each  case n is a positive integer.

(a) (1 + x)~~.
1 - Xn+l

(b)  ~l - x  ’
x #  1. (cl  a(1 + x2?.

1.6 The concept of area  as a set function

When a mathematician attempts to develop a general theory encompassing many different
concepts, he tries to isolate common  properties which seem to be basic to each  of the
particular applications he has in mind. He then uses these properties as fundamental
building blocks of his theory. Euclid  used this process when he developed elementary
geometry as a deductive system based on a set of axioms. We used the same process in our
axiomatic treatment of the real number system, and we shall use it once more in our dis-
cussion of area.

When we assign an area to a plane region, we associate a number with a set S in the plane.
From a purely mathematical viewpoint, this means that we have a function a (an area
function) which assigns a real number a(S) (the area of S) to each  set S in some given
collection of sets. A function of this kind, whose domain  is a collection of sets and whose
function values are real numbers, is called a setfinction. The basic problem is this : Given a
plane set S, what area a(S) shall we assign to S?

Our approach to this problem is to start with a number of properties we feel area should
have and take these as axioms for area. Any  set function which satisfies these axioms Will
be called an area function. TO make certain we are not discussing an empty theory, it is
necessary to show that an area function actually exists. We shall not attempt to do this here.
Instead, we assume the existence of an area function and deduce further properties from the
axioms. An elementary construction of an area function may be found in Chapters 14 and
22 of Edwin E. Moise,  Elementary Geometry From An Advanced Standpoint, Addison-
Wesley Publishing CO., 1963.
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Before we state the axioms for area, we Will make a few remarks about  the collection of
sets in the plane to which an area cari  be assigned. These sets Will be called measurable
sets; the collection of a11 measurable sets Will be denoted by J%‘. The axioms contain enough
information about the sets in ~2? to  enable us to prove that a11 geometric figures arising in
the usual applications of calculus  are in J%’  and that their areas cari  be calculated by integra-
tion.

One of the axioms (Axiom 5) srates that every rectangle is measurable and that its area
is the product  of the lengths of its edges. The term “rectangle” as used here refers to any
set congruentt  to a set of the form

Nx, y> 10  I x 5 h, 0 < y I k),

where h > 0 and k 2 0. The numbers h and k are called the lengths of the edges of the
rectangle. We consider a line segment or a point to be a special  case of a rectangle by
allowing h or k (or both) to be zero.

A step region Ordinate  set
(4

Inner  step region Outer  s t ep  reg ion
(b) (cl

FIGURE 1.14 FIGURE 1.15 An ordinate set enclosed  by two step regions.

From rectangles we cari  build up more complicated sets. The set shown in Figure 1.14
is the union of a finite collection of adjacent rectangles with their bases resting on the x-axis
and is called a step region. The axioms imply that each  step region is measurable and that
its area is the sum of the areas of the rectangular pieces.

The region Q shown in Figure 1.15(a) is an example of an ordinate set. Its Upper  boundary
is the graph of a nonnegative function. Axiom 6 Will enable us to prove that many ordinate
sets are measurable and that their areas cari  be calculated by approximating such  sets by
inner and outer  step regions, as shown in Figure 1.15(b)  and (c).

We turn now to the axioms themselves.

AXIOMATIC DEFINITION OF AREA. We assume there exists a class  J?  of measurable sets
in the plane and a set function  a, whose domain  is A%‘,  with the following  properties:

1. Nonnegative property. For each set S in 4, we have a(S) 2 0.

t Congruence is used here in the same  sense as in elementary Euclidean geometry. Two sets are said to be
congruent if their points cari  be put in one-to-one  correspondence  in such  a way that distances are preserved.
That is, if two points p and q in one  set correspond to p’ and q’ in the other, the distance from p to q must
be equal to the distance from p’ to q’; this must be true for a11 choices  of p and q.
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2. Additive property. If S and Tare in =&,  then S u T and S n Tare in G&‘,  and we have

a(S U T) = a(S) + a(T) - a(S n T) .

3. DifSerenceproperty.  If S  and Tare in J$‘  with S c T, then T - S is in A,  and use  have
a(T - S) = a(T) - a(S).

4. Invariance under congruence. If a set S is in & and if T is congruent to S, then T is also
in J?’  and we have a(S) = a(T).

5. Choice  of scale.  Every rectangle R is in A.  If the edges of R have lengths  h and k,
then a(R) = hk.

6. Exhaustion propert,v. Let Q be a set that cari  be enclosed  between two step regions
S and T, SO that

U-1) SsQcT.

If there is one  and only one  number c which satisjes  the inequalities

49 I c I a(T)

for ail  step regions S and T satisfying (1 .l), then Q is rneasurable  and  a(Q) = c.

Axiom 1 simply states that the area of a plane measurable set is either a positive number
or zero. Axiom 2 tells us that when a set is formed  from two pieces  (which may overlap),
the area of the union is the sum of the areas of the two parts minus the area of their inter-
section. In particular, if the intersection has zero area, the area of the whole is the sum of
the areas of the two parts.

If we remove a measurable set S from a larger measurable set T, Axiom 3 states that the
remaining part, T - S, is measurable and its area is obtained by subtraction, a(T - S) =

a(T) - a(S). In particular, this axiom implies that the empty set ,@  is measurable and has
zero area. Since  a(T - S) 2 0, Axiom 3 also implies the monotone property:

4s) 5 a(T), forsetsSandTin&YwithSc  T .

In other words, a set which is part of another cannot have a larger area.
Axiom 4 assigns equal areas to sets having the same size and shape. The first four

axioms would be trivially satisfied if we assigned the number 0 as the area of every set in
,&Y.  Axiom 5 assigns a nonzero area to some rectangles and thereby excludes this trivial
case. Finally, Axiom 6 incorporates the Greek method of exhaustion; it enables us to
extend the class  of measurable sets from step regions to more general regions.

Axiom 5 assigns zero area to each  line segment. Repeated use of the additive property
shows that every step region is measurable and that its area is the sum of the areas of the
rectangular pieces. Further elementary consequences  of the axioms are discussed in the
next set of exercises.
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1.7 Exercises

The properties of area  in this set of exercises  are to be deduced from the axioms for area  stated
in the foregoing section.
1. Prove that each  of the following sets is measurable and has zero area:  (a) A set consisting of a

single point. (b) A set consisting of a finite  number of points in a plane. (c) The union of a
finite  collection of line segments in a plane.

2. Every right triangular region is measurable because it cari  be obtained as the intersection of
two rectangles. Prove that every  triangular region is measurable and that its area  is one  half
the product  of its base and altitude.

3. Prove that every trapezoid and every parallelogram is measurable and derive  the usual formulas
for their areas.

4. A point (x, y)  in the plane is called a latticepoint  if both coordinates x and y are integers. Let
P be a polygon whose vertices are lattice points. The area  of P is Z + ;B - 1, where Z denotes
the number of lattice points inside the polygon and B denotes  the number on the boundary.
(a) Prove that the formula is valid for rectangles with sides  parallel to the coordinate axes.
(b) Prove that the formula is valid for right triangles and parallelograms.
(c) Use induction on the number of edges to construct  a proof  for general polygons.

5. Prove that a triangle whose vertices are lattice points cannot  be equilateral.

[Hint: Assume there is such  a triangle and compute its area  in two ways, using
Exercises 2 and 4.1

6. Let A = (1,  2, 3, 4, 5}, and let ,I denote  the class  of a11 subsets of A. (There are 32 altogether,
counting A itself and the empty set @ .) For each  set S in A, let n(S)  denote  the number of
distinct elements in S. If S = (1,  2, 3, 4) and T = (3, 4, 5}, compute n(S  u T), n(S  A T),
n(S  - T), and n(T  - S). Prove that the set function  n  satisfies the first three axioms for area.

1.8 Intervals and ordinate sets

In the theory of integration we are concerned primarily with real functions  whose domains
are intervals on the x-axis. Sometimes it is important to distinguish between intervals
which include their endpoints and  those which do not. This distinction is made by introducing
the following definitions.

----
a b a b a bb a

a<xib a,<x<b a<xib a<x<b

Closed Open Half-open. Half-open

FIGURE 1.16 Examples of intervals.

If a < b, we denote  by [a, b] the set of a11  x satisfying the inequalities a 5 x 5 b and
refer to this set as the closed  interval  from a to b. The corresponding open  interval, written
(a, b), is the set of a11 x satisfying  a < x < b. The closed  interval [a, b] includes the end-
points a and b, whereas the open  interval does  not. (See Figure 1.16.) The open  interval
(a, b) is also called the interior of [a, b]. Half-open  intervals (a, b] and [a, b), which include
just one  endpoint are defined by the inequalities a < x 5 b and a 5 x < b, respectively.

Let f be a nonnegative function whose domain  is a closed  interval [a, b]. The portion
of the plane between the graph off and the x-axis is called the ordinate set of J More
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precisely, the ordinate set off is the collection of a11 points (x, JJ)  satisfying the inequalities

In each  of the examples shown in Figure 1.17 the shaded portion represents the ordinate
set of the corresponding function.

Ordinate sets are the geometric abjects whose areas we want to compute by means of the
integral calculus. We shall define  the concept of integral first for step functions and then
use the integral of a step function to formulate the definition of integral for more general

a b a b

FIGURE 1.17 Examples of ordinate sets.

functions. Integration theory for step functions is extremely simple and leads in a natural
way to the corresponding theory for more general functions. TO start this program, it is
necessary to have an analytic definition of a step function. This may be given most simply
in terms of the concept of a partition, to which we turn now.

1.9 Partitions and step functions

Suppose we decompose a given closed interval [a, b] into n subintervals by inserting
n - 1 points of subdivision, say  x1 , x2 , . . . , x,-~ , subject only to the restriction

(1.2)

It is convenient  to denote  the point a itself by x,, and the point b by X, . A collection of
points satisfying (1.2) is called a partition P of [a, b], and we use the symbol

p = {&l,Xl,  . . . 2 &a>

to designate this partition. The partition P determines n closed subintervals

[XII,  $1,  [x1  3 x21 , * . . 7 [X,-I  3 x,1  .

A typical closed subinterval is [xkPl , x,], and it is referred to as the kth closed subinterval
of P; an example is shown in Figure 1.18. The corresponding open  interval (xkPl , xk) is
called the kth open  subinterval of P.

Now we are ready to formulate an analytic definition of a step function.
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kth subinterval [x~ _,  , xk]

0
a = x() XI x2 .., xk-l xk  ... X,-l Xn  =  b

FIGURE 1.18 An example of a partition of [a, b].

DEFINITION OF A STEP FUNCTION. A fîînction s, whose  domain  is a closed interval  [a, b],
is called a step function if there is a partition P = {x,,  , x1 , . . . , x,} of [a, b] such that s is
constant on each open  subinterval of P. That is to say,  for each k = 1, 2, . . . , n,  there is
a real number s, such that

s(x) = Sk if xk-1 < x < xk *

Step functions are sometimes calledpiecewise constant functions.

Note: At each  of the endpoints xkpl and xk the function must have some well-defined
value, but this need not be the same  as sk  .

EXAMPLE. A familiar example of a step function is the “postage function,” whose graph
is shown in Figure 1.19. Assume that the charge for first-class  mail for parcels weighing
up to 20 pounds is 5 cents for every ounce  or fraction thereof. The graph shows the number
of 5-cent  stamps required for mail weighing up to 4 ounces.  In this case the line segments
on the graph are half-open intervals containing their right endpoints. The domain  of the
function is the interval [0, 3201.

From a given partition P of [LJ, b], we cari  always form a new partition P’ by adjoining
more subdivision points to those already in P. Such  a partition P’ is called a rejinement
of P and is said to be jner  than P. For example, P = (0, 1, 2, 3, 4) is a partition of the

interval [0, 41. If we adjoint the points 3/4, 42, and 7/2, we obtain a new partition P’ of

4looo = - = = =

p:o 1 2 3 4

3

2

1

1 IOI 1 1 2 3 4 1

FIGURE 1.19 The postage function.

P’ : 0 31x4 2 3 1 4
4 z

FIGURE 1.20 A partition P of [0,4]  and a
refinement P’.



Exercises 63

[O,  41, namely, P’ = (0, 314,  1, dz, 2, 3,7/2,4},  which is a refinement of P. (See Figure
1.20.) If a step function is constant on the open  subintervals of P, then it is also constant
on the open  subintervals of every refinement P’.

1.10 Sum and product of step functions

New step functions may be formed  from given step functions by adding corresponding
function values. For example, suppose s and t are step functions, both defined on the
same interval [a, b]. Let P, and P, be partitions of [a, b]  such  that s is constant on the open
subintervals of PI  and t is constant on the open  subintervals of P, . Let u  = s + t be the
function defined by the equation

u(x) = s(x) + t(x) if a<x<b.

Graph of t

Graph of s + t

-
.

- -
l

. .
.

’a X1 7a XI X;a XI

FIGURE 1.21 The sum of two step functions.

TO show that u  is actually a step function, we must exhibit a partition P such  that u  is
constant on the open  subintervals of P. For the new partition P, we take a11  the points of
P, along with a11 the points of P, . This partition, the union of P, and P, , is called the
common rejnement of P, and P2  . Since  both s and t are constant on the open  subintervals
of the common refinement, the same is true of w.  An example is illustrated in Figure 1.21.
The partition P, is (a, x1 , b}, the partition P, is {a, xi , b}, and the common refinement is
{a,  x; , xl , 6.

Similarly, the product v  = s * t of two step functions is another step function. An
important special  case occurs when one  of the factors, say  t,  is constant throughout [a, b].
If t(x) = c for each  x in [a, b], then each  function value v(x) is obtained by multiplying the
step function s(x) by the constant c.

1.11 Exercises

In this set of exercises,  [x] denotes  the greatest integer < x.
1. Letf(x) = [x] and letg(x) = [2x] for a11 real x. In each  case, draw the graph of the function

h defined over  the interval  [ - 1, 21  by the formula given.
(4 Mx) = f(x) + g(x). Cc)  h(x) = f(x)&).
(b)  h(x) =/-C-d  + gbP). (4 h(x) = Q-WgW).

2. In each  case,fis  a function defined over  the interval  [ -2, 21 by the formula given. Draw the
graph off. Iffis a step function, find a partition P of [ -2, 21  such  thatfis constant on the
open  subintervals of P.
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(4 f(x)  = x + [xl. (dj j-(x:, = 2[x].
(b)  f(x) = x - [xl. (ej f(x) = [x + 41.
Cc)  f(x) = [-xl. (f) f(%, = [xl + Lx  + 41.

3. In each  case, sketch the graph of the functionfdefined by the formula given.

(4 f(x) = GI for 0 2; x < 10. cc>  j-w  = VGI for 0 5  x < 10.
(b)  j-(x> = [x21 for 0 <;x < 3. (4 j-b)  = [xl’ for 05x53.

4. Prove that the greatest-integer fi.mction  has the properties indicated.
(a) [x + n]  = [x] + n for every integer n.

(b)  [-xl =
(

-[xl if x is an integer,

-[xl - 1 otherwise.

Cc>  [X+~I=[~I+[~I  or  [.yl+[yl+l.
(dj [2x] = [xl + [x + 41.
(e)  [3x] = [xl + Lx  + 41  + Lx  + $1.

Optional exercises.
5. The formulas in Exercises 4(d) and 4(e) suggest a generalization for [nx]. State and prove

such  a generalization.
6. Recall  that a lattice point (x, y) in the plane is one  whose coordinates are integers. Letfbe a

nonnegative function whose domain is the interval  [a, b], where a and b are integers, a < b.
Let S denote  the set of points (x, y) satisfying a 5  x 5  b,  0 < y <f(x).  Prove that the number
of lattice points in S is equal to the sum

f$ [f(n)].
n=a

7. If a and b are positive integers with no common factor,  we have the formula

b-1
n a8 1 (a - lj(b  - 1)
b = 2 *n=l

When b = 1, the sum on the left is understood to be 0.
(a) Derive  this result by a geometric argument, counting lattice points in a right triangle.
(b) Derive  the result analytically as follows: By changing the index of summation, note that
2;~;  [nalbl  = 2:~;  W - njlbl. Now apply Exercises 4(a) and (b) to the bracket  on the
right.

8. Let S be a set of points on the real line. The characteristic function of S is, by definition, the
function xs such  that xx(x)  = 1 for every x in S, and x,9(x) = 0 for those x not in S. Let f be
a step function which takes the constant value ck  on the kth open  subinterval Zk  of some partition
of an interval  [a, b]. Prove that for each  x in the union Z1  u Z,  u . u Z,  we have

This property is described by saying that every step function is a linear combination of char-
acteristic functions  of intervals.

1.12 The definition of the integral for step functions

In this section we introduce thl:  integral for step functions.  The definition is constructed
SO that the integral of a nonnegative step function is equal to  the area of its ordinate set.
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Let s be a step function defined on [a, b], and let P = {x, , x1 , . . . , x,} be a partition of
[a, b]  such  that s is constant on the open  subintervals of P. Denote by s,  the constant value
that s takes in the kth open  subinterval, SO that

s(x) = s, if X&l < x < xk , k =  1,2 ,..., n .

DEFINITION OF THE INTEGRAL OF STEP FUNCTIONS. The integral of s from a to b, denoted
by the symbol Sa  s(x) dx, is dejined  by the following formula:

(1.3) b s(x)  dx = 5 sk  . (xk  - x& .
k=l

That is to say,  to compute the integral, we multiply each  constant value sk  by the length of
the kth subinterval, and then we add together a11 these products.

Note that the values of s at the subdivision points are immaterial since  they do not appear
on the right-hand side  of (1.3). In particular, ifs is constant on the open  interval (a, b), say
s(x) = c if a < x < b, then we have

s; s(x) dx = ci  (xk - xkpl) = c(b - a)  ,
k = l

regardless of the values s(a) and s(b). If c > 0 and if s(x) = c for a11 x in the closed  interval
[a, b], the ordinate set of s is a rectangle of base b - a and altitude c; the integral of s is
c(b - a), the area of this rectangle. Changing the value of s at one  or both endpoints a or b
changes the ordinate set but does  not alter the integral of s or the area of its ordinate set.
For example, the two ordinate sets shown in Figure 1.22 have equal areas.

X X

FIGURE 1.22 Changes in function values at  two FIGURE 1.23 The ordinate set of a
points do not alter area  of ordinate set. step function.

The ordinate set of any  nonnegative step function s consists  of a finite number of rect-
angles, one  for each  interval of constancy; the ordinate set may also contain or lack certain
vertical line segments, depending on how s is defined at the subdivision points. The integral
of s is equal to the sum of the areas of the individual rectangles, regardless of the values s
takes at the subdivision points. This is consistent with the fact that the vertical segments
have zero area and make no contribution to the area of the ordinate set. In Figure 1.23,
the step function s takes the constant values 2, 1,  and $ in the open  intervals (1, 2), (2, 5),
and (5, 6), respectively. Its integral is equal to

s 1 6 s(x) dx = 2 . (2 - 1) + 1 +(5 - 2) + i. (6 - 5) = “,9.
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It should be noted that the formula for the integral in (1.3) is independent of the choice  of
the partition P as long as s is constant on the open  subintervals of P. For example, suppose
we change from P to a finer partition P’ by inserting exactly one  new subdivision point t,
where x,, < t < x1. Then the first term on the right of (1.3) is replaced by the two terms
s1  * (t - x,,) and s1  * (x1 - t), and the rest of the terms are unchanged. Since

SI * (t - x0) + SI . (x1 - t)  = SI * (x1 - X0))

the value of the entire sum is unchanged. We cari  proceed from P to any  finer partition P’
by inserting the new subdivision points one  at a time. At each  stage, the sum in (1.3)
remains unchanged, SO the integral is the same for a11 refinements of P.

1.13 Properties of the integral of a step function

In this section we describe  a number of fundamental properties satisfied by the integral
of a step function. Most of thlese  properties seem obvious when they are interpreted
geometrically, and some of them may even seem trivial. Al1 these properties carry over
to integrals of more general functions, and it Will be a simple matter  to prove them in the
general case once we have established them for step functions. The properties are listed
below as theorems, and in each  case a geometric interpretation for nonnegative step functions
is given in terms of areas. Analytic proofs of the theorems are outlined in Section 1.15.

a b a b a b

FIGURE 1.24 Illustrating the additive property of the integral.

The first property states that the integral of a sum of two step functions is equal to the
sum of the integrals. This is known  as the additive property and it is illustrated in Figure
1.24.

THEOREM 1.2. ADDITIVE PROPERTY.

jab  b(x) + t(x)]  dx = j; s(x) dx + j; t(x) dx .

The next property, illustrated in Figure 1.25, is called the homogeneous property. It
states that if a11  the function values are multiplied by a constant c, then the integral is also
multiplied by c.

THEOREM 1.3. HOMOGENE~~S PROPERTY. For every realnumber c, we have

s b c . s(x) dx = c b s(x) dx .
a sa

These two theorems cari  be combined  into one  formula known as the linearity property.
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a b a b

FIGURE 1.25 Illustrating the homogeneous property of the integral (with c = 2).

THEOREM 1.4. LINEARITY PRO~ERTY. For every real  cl  and c2,  we bave

j-1 [C~~(X)  + c2t(x)]  dx = cl  Jab  s(x) dx + c2 Jab  t(x) dx <

Next, we have a comparison  theorem which tells us that if one  step function has larger
values than another throughout [a, b],  its integral over  this interval is also larger.

THEOREM 1.5. COMPARISON THEOREM. Ifs(x)  < t(x)for  every x in [a, b], then

Jab  s(x) dx < Jab  t(x) dx .

Interpreted geometrically, this theorem reflects the monotone property of area. If the
ordinate set of a nonnegative step function lies inside another, the area of the smaller region
is less than that of the larger.

The foregoing properties a11  refer to step functions defined on a common  interval. The
integral has further important properties that relate integrals over  different intervals.
Among these we have the following.

THEOREM 1.6. ADDITIVITY WITH RESPECT TO THE INTERVAL  OF INTEGRATION.

1: S(X) dx + J: S(X) dx = s: s(x) dx if a < c < b .

This theorem reflects the additive property of area, illustrated in Figure 1.26. If an ordinate
set is decomposed into two ordinate sets, the sum of the areas of the two parts is equal to
the area of the whole.

The next theorem may be described as invariance under translation. If the ordinate set
of a step function s is “shifted” by an amount c, the resulting ordinate set is that of another
step function t related to s by the equation t(x) = s(x - c). Ifs is defined on [a, b], then
t is defined on [a + c, b + c], and their ordinate sets, being congruent, have equal areas.
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a c b
FIGURE 1.26 Additivity with respect

to the interval  of integration.

a b a+c b+c
FIGURE 1.27 Illustrating invariance of the

integral under translation: t(x) = s(x  - c).

This property is expressed analytically as follows:

THEOREM 1.7. INVARIANCE UNDER TRANSLATION.

J b s(x) dx =: ib+c s(x - c) dx for every real c
a a+C

Its geometric meaning is illustrated in Figure 1.27 for c > 0. When c < 0, the ordinate
set is shifted to the left.

The homogeneous property (l’heorem 1.3) explains what happens to an integral under a
change of scale on the y-axis. The following theorem deals with a change of scale on the
x-axis. If s is a step function defined on an interval [a, b] and if we distort the scale in the
horizontal direction by multiplying a11 x-coordinates by a factor k > 0, then the new graph
is that of another step function t defined on the interval [ka, kb] and related to s by the
equation

t(x)  =: s ;
0

if ka 5 x 5 kb .

An example with k = 2 is shown in Figure 1.28 and it suggests that the distorted figure has
an area twice that of the original figure. More generally, distortion by a positive factor k

2a 2% 2 6

FIGURE 1.28 C’hange  of scale on the x-axis: I(X) = s(x/2).

has the effect  of multiplying the integral by k. Expressed analytically, this property assumes
the following form :

THEOREM 1.8. EXPANSION OR CONTRACTION OF THE INTERVAL  OF INTEGRATION.

j~~~iz)d.x=kj~~s(x)dx  ,foreveryk>O.

Until now, when we have used the symbol ja, it has been understood that the lower limit
a was less than the Upper  limit b. It is convenient  to extend our ideas somewhat and consider
integrals with a lower limit larger than the Upper  limit. This is done  by defining

(1.4) 1: s(x) dx = - 11  s(x) dx if a<b.
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Ia s(x)  dx  = 0 >a

a definition that is suggested by putting a = b in (1.4). These conventions allow us to con-
clude  that Theorem 1.6 is valid not only when c is between a and b but for any  arrangement
of the points a, b, c. Theorem 1.6 is sometimes written in the form

j” s(x)  dx + j;  s(x) dx + j;  s(x) dx = 0 .0

Similarly, we cari  extend the range of validity of Theorem 1.8 and allow the constant k to
be negative. In particular, when k = - 1, Theorem 1.8 and Equation (1.4) give us

-

jab  s(x)  dx  = jl;  s( -x> dx .

X

a b

F IGURE 1.29 Illustrating the reflection property of the integral.

Y

-x

We shall refer to this as the rejectionproperty  of the integral, since  the graph of the function
t given by t(x)  = s(-X) is obtained from that of s by reflection through the y-axis. An
example is shown in Figure 1.29.

1.14 Other notations for integrals

The letter x that appears in the symbol ja s(x)  dx plays no essential role in the definition
of the integral. Any  other letter would serve equally well. The letters t,  u,  v, z are frequently
used for this purpose, and it is agreed that instead of Ja  s(x)  dx we may Write  JE  s(t) dt,
ja s(u)  du, etc., a11  these being considered as alternative notations for the same thing. The
symbols X,  t,  u, etc. that are used in this way are called “dummy variables.” They are
analogous to dummy indices used in the summation notation.

There is a tendency among some authors of calculus  textbooks to omit the dummy
variable and the d-symbol  altogether and to Write  simply Ji  s for the integral. One good
reason for using this abbreviated symbol is that it suggests more strongly that the integral
depends  only on the function s and on the interval  [a, b]. Also, certain formulas appear
simpler in this notation. For example, the additive property becomes ji (s + t)  = ji s +
JE  t.  On the other hand, it becomes awkward to Write  formulas like Theorems 1.7 and
1.8 in the abbreviated notation. More important than this, we shall find later that the
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original Leibniz notation has certain practical advantages. The symbol dx, which appears
to be rather superfluous at this stage, turns out  to be an extremely useful computational
device  in connection  with many  routine calculations with integrals.

1.15 Exercises

1. Compute the value of each  of the following integrals. You may  use the theorems of Section
1.13 whenever it is convenient  1.0 do SO. The notation [x] denotes  the greatest integer 5  x.

(a> j:l [xl  dx. (4 j")[xldx.

(b)  j:l b + tl C&L (4 j:l Pxl dx.

(4  j:l ([xl  + b + $1)  dx. (0  j:l [-xl  dx.
2. Give an example of a step function s,  defined on the closed  interval  [O,  51, which has the

following properties: fi s(x) dx = 5, si s(x) dx = 2.
3. Show that ja [x] dx + ja  [-xl  I~X = a - b.

4. (a) If n is a positive integer, prove that jt [t]  dt  = n(n  - 1)/2.
(b) Iff(x) = j$ [t] dt for x 2  0, draw the graph offover the interval  [0,4].

5. (a) Prove that si  [t2] dt = 5 - & - 4.
(b) Compute jaa [t21  dt.

6. (a) If n is a positive integer, prove that ji [t12  dt = n(n  - 1)(2n  - 1)/6.
(b) Iff(x) = jz [t12  dt for x 2  0, draw the graph offcver the interval  [0, 31.
(c) Find a11 x > 0 for which & [t12  dt = 2(x - 1).

7. (a) Compute s:  [d;]  dt.
(b) If n  is a positive integer, prove that si” [&] dt = n(n - 1)(4n  + 1)/6.

8. Show that the translation property (Theorem 1.7) may  be expressed in the equivalent form

s11,”  f(x) dx = j;  f(x + c) dx .

9. Show that the following property is equivalent to Theorem 1.8 :

j;;f(x)dx  = kjbf(kx)dx.
a

10. Given a positive integer p. A step function s is defined on the interval  [0, p] as follows:
s(x)=(-1)~nifxliesintheintervaln  Ix < n + l , w h e r e n  =0,1,2,...,p-l;s(p)=O.
Let f(p) = Ji  s(x) dx.
(a) Calculatef(3),  f (4), andf(j*(3)).
(b) For what value (or values) ofp is If(p)]  = 7?

11. If, instead of defining integrals of step functions  by using formula (1.3),  we used the definition

s bs(~)  dx = i s; * (xk  - Xk-1)  ,a k=l

a new and different theory of integration would result. Which of the following properties would
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remain valid in this new theory?

(a) j:s + j:s = jls.

(b) j; (s  + t)  = j: s + j: t.

(e) If s(x) < t(x) for each  x in [a, b], then

12. Solve Exercise  Il if we use the definition

1 s(x + c) dx.

=iq/(x;  2 )-X&l  .
k=l

Analytic proofs of the properties of the integral given in Section 1.13 are requested in the
following  exercises.  The proofs of Theorems 1.3 and 1.8 are worked out here as samples.
Hints  a re  g iven  for  the  o thers .

Proof  of Theorem 1.3 : ja c . s(x) dx = c ja s(x) dx for every real c.

LetP={x,,x,,..., x,} be a parti t ion of [a,  b]  such tha t  s i s  cons t an t  on  the  open sub in te rva l s
ofP. A s s u m e s ( x )  =s,ifx,_,  <x <x,(k  = 1,2,..., n). Then c . s(x) = c. sic if xk-r  <
x < xk, and hence by the definition of an integral we have

*c s(x) dx = 2 c Si . (xk  - x&  = c 2 sk (xL - x&  = c *s(x)  dx .
k=L k=I sn

Proof  of Theorenl  1.8 :

s,u”s(i)dx  = k[s(x)dx if k > 0.

Let P = {x, , x1 , . . . , x,}  be a partition of the interval  [a, b]  such that s is constant on the
open subintervals of P. Assume that s(x) = si  if xi-r < x < xi . Let t(x) = s(x/k)  if ka  <
x 5 kb. Then t(x) = si  if x lies in the open interval  (kxipl  , kx,); hence P’ = {kx, , kx, , . . . ,
kx,}  is a partition of [ka, kb] and t is constant on the open subintervals of P’. Therefore t is
a  s tep  function  whose  in tegra l  i s

î
ka  t(x) dx = 2 si  . (kxi  - kx,_J  = k 2 s, . (xi  - xi-J  = k /“”  s(x)  dx .

i=l i=l rQ

13. Prove Theorem 1.2 (the additive property).

[HNZt: Use the additive property for sums: ~~=r(uk  i- bk) = zizi ok  + x{C1 bk .]

14. Prove Theorem 1.4 (the linearity property).

[Hint: Use the  addi t ive  proper ty  and the  homogeneous  proper ty . ]

15. Prove Theorem 1.5 (the comparison  theorem).

[Hint: Use the corresponding property for sums: x&r  ak < J?zC1  bk if ak <  bk for
k = 1, 2, . . . , n.]
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16. Prove Theorem 1.6 (additivity with respect to the interval).

[Hint: If P, is a partition of [a, c] and Pz  a partiton  of [c, 61, then the points of P,  along
with those of P,  form a partition of [a, b].]

17. Prove Theorem 1.7 (invariance under translation).

[Hinf: If P = {x0,  x1  , . . . , x,}  is a partition of [a, b],  thenP’ = {x0 + c, x1 + c, . . . ,
x, + c}  is a partition of [a + c,  b  + cl.]

1.16 The integral of more general functions

The integral sa  s(x) dx has been defined when s is a step function. In this section we shah
formulate a definition of ji,J(x)  dx that Will apply to more general functions J The
definition Will be constructed SO that the resulting integral has a11 the properties listed in
Section 1.13.

a h

F IGURE 1.30 Approximating a function f from above and below by step functions.

The approach Will be patterned somewhat after the method of Archimedes, which was
explained above in Section 1 1.3. The idea is simply this: We begin by approximating the
function f from below and from above by step functions, as suggested in Figure 1.30.
That is, we choose  an arbitrary step function, say  s,  whose graph lies below that off, and a
arbitrary step function, say  t,  whose graph lies above that of jY  Next, we consider the
collection of a11 the numbers ja s(x) dx and ja t(x) dx obtained by choosing s and t in a11
possible ways. In general, we have

j; s(x)  dx  < jab  t(x)  dx

because of the comparison  theorem. If the integral offis  to obey  the comparison  theorem,
then it must be a number which falls between ji s(x) dx and Jt t(x) dx for every pair of
approximating functions s and t. If there is only  one number which has this property
we define  the integral off to be this number.

There is only one  thing that cari  cause trouble in this procedure,  and it occurs in the very
first step. Unfortunately, it is not possible to approximate euery  function from above
and from below by step functions. For example, the functionfgiven by the equations

f(x) =; i f  x#O, f(O)  = 0 2
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is defined for a11 real x, but on any  interval [a, b]  containing the origin we cannot surround
f by step functions. This is due to the fact that f has arbitrarily large values near the origin
or, as we say,  f is unbounded in every neighborhood of the origin (see Figure 1.31). There-
fore, we shall first restrict ourselves to those functions that are bounded on [a, b], that is, to
those functions f for which there exists a number M > 0 such  that

(1.5) -M<f(x)IM

for every x in [a, 61. Geometrically, the graph of such  a function lies between the graphs
of two constant step functions s and t having the values -M and +M,  respectively. (See

- M

t

----------------------s(x)  = _M

FIGURE 1.31 An unbounded function. FIGURE 1.32 A bounded function.

Figure 1.32.) In a case like this, we say  that f is bounded by M. The two inequalities in
(1.5) cari  also be written as

With this point taken tare  of, we cari  proceed to carry out  the plan described above and
to formulate the definition of the integral.

DEFINITION OF THE INTEGRAL OF A BOUNDED FUNCTION. Let f be a function dejned  and
bounded on [a, b]. Let s and t denote  arbitrary step functions dejined  on [a, b] such  that

(1.6) 44  If(x)  5 t(x)

for every x in [a, b]. If there is one  and only  one  number I such  that

(1.7) Jab  s(x)  dx < I 5 6  t(x) dx

for every pair of step functions s and t satisfying (1.6), then this number I is called  the
integral off from a to b, and is  denoted by the symbol ja f(x) dx or by jaf. When such
an Z exists, the function f is said to be integrable on [a, b].



74 The concepts of integral calculus

If a < b, we define  JE~(X) dx = - jaf(x)  dx, p rovided f is integrable on [a, b]. We
also define  jaf(x) dx = 0. If f is integrable on [a, b], we say  that the integral jaf(x) dx
exists. The function f is called the integrand, the numbers a and b are called the limits  of
integration, and the interval [a, b] the interval  of integration.

1.17 Upper and lower integrals

Assume f is bounded on [a, b:l. Ifs and t are step functions satisfying (1.6), we say  s is
below f, and t is abovef, and we Write  s 5 f 5 t.

Let S denote  the set of a11 numbers Ja  s(x) dx obtained as s runs through a11  step functions
belowf,  and let T be the set of a11 numbers ja t(x) dx obtained as t runs through a11  step
functions aboveJ  That is, let

S=(Ibs(x)dxIsIf),  T=[j-;t(x)dxjf<t).a

Both sets Sand Tare nonempty sincef is bounded. Also,  ji s(x) dx 5 ja t(x) dx if s If 5 t,
SO  every number in S is less than every number in T. Therefore, by Theorem 1.34, S has
a supremum, and T has an infimum, and they satisfy the inequalities

i” s(x) dx 5 sup  S 2 inf T 5 jab  t(x) dxa

for a11 s and t satisfying s 5 f 5: t. This shows that both numbers sup S and inf T satisfy
(1.7). Therefore, f is integrable on [a, b] if and only if sup S = inf T,  in which case we have

s(:f(x) dx = sup  S = inf T.

The number ‘sup  S is called the Zower  integral off and is denoted by I(f). The number
inf T is called the Upper  integral off and is denoted by ï(f). Thus, we have

J(f) = sup  (J: s(x) a’x 1 s 5 /)  , 1(f)  = inf (11 t(x) dx 1 f I t) .

The foregoing argument proves .the following theorem.

THEOREM 1.9. Every function f which is bounded on [a, b] has a lower integral J(f) and
an Upper  integral ï(f) satisfying the inequalities

j-”  4x1 dx 5 Kf) I I(f> I Jab  t(x) dx
a

for a11  step functions s and t with s < f < t. The function f is integrable on [a, b] ifand only
if its Upper  and lower integrals are equal,  in which case we have

/abf(x) dx = _I(f) = I(f>  .
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1.18 The area  of an ordinate set expressed as an integral

75

The concept of area was introduced axiomatically in Section 1.6 as a set function having
certain properties. From these properties we proved that the area of the ordinate set of a
nonnegative step function is equal to the integral of the function. Now we show that the
same is true for any  integrable nonnegative function. We recall that the ordinate set of a
nonnegative function f over  an interval [a, b]  is the set of a11  points (x, y) satisfying the
inequalities 0 < y <f(x), a 5 x < b.

THEOREM 1.10. Let f be a nonnegative function, integrable on an interval  [a, b], and let
Q denote  the ordinate set off over  [a, b]. Then Q is measurable and its area  is equal to the
integral Ja f (x) dx.

Proof.  Let S and T be two step regions satisfying S E Q c T. Then there are two step
functions s and t satisfying s 5 f 5 t on [a, b], such  that

a(S) = J: s(x) dx a n d a(T) = J: t(x) dx .

Since  f is integrable on [a, b], the number 1 = j’a f (x) dx is the only number satisfying the
inequalities

j-:  s(x) dx 5  1 I Jab  t(x) dx

for a11 step functions s and t with s < f 5 t. Therefore this is also the only number satisfying
a(S) 5 Z 5 a(T) for a11  step regions S and T with S c Q c T. By the exhaustion property,
this proves that Q is measurable and that a(Q) = Z.

Let Q denote  the ordinate set of Theorem 1.10, and let Q’ denote  the set that remains if
we remove from Q those points on the graph off. That is, let

Q'={(x,y)IaIxIb,OIy<f(x)}.

The argument used to prove Theorem 1.10 also  shows that Q’ is measurable and that
a(Q’)  = a(Q). Therefore, by the difference property of area, the set Q - Q’ is measurable
and

a(Q - Q’) = a(Q) - a(Q’) = 0.

In other words, we have proved the following theorem.

THEOREM 1.11. Let f be a nonnegative function, integrable on an interval  [a, b]. Then
the graph off, that is, the set

{(x,  y>  1 a 5  x 5  b, y = f(x)},

is measurable and has area  equal to 0.

1.19 Informa1 remarks on the theory and technique of integration

Two fundamental questions arise at this stage: (1) Which boundedfunctions are integrable?
(2) Given that a function f is integrable, how do we compute the integral off?
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The first question cornes under the heading “Theory of Integration” and the second under
the heading “Technique of Integration.” A complete  answer to question (1) lies beyond the
scope of an introductory course and Will not be given in this book. Instead, we shall give
partial answers which require only elementary ideas.

First we introduce an important class of functions known as monotonie  jiunctions. In
the following section we define  these functions and give a number of examples. Then we
prove that a11  bounded monotonie  functions are integrable. Fortunately, most of the
functions that occur in practice are monotonie  or sums of monotonie  functions, SO the
results of this miniature theory of integration are quite  comprehensive.

The discussion of “Technique (of  Integration” begins in Section 1.23, where we calculate
the integral Jo xp dx, whenp is a positive integer. Then we develop general properties of the
integral, such  as linearity and additivity, and show how these properties help us to extend
our knowledge of integrals of specific functions.

1.20 Monotonie  and piecewise monotonie  functions. Definitions and examples

A function  f is said to be increasing on a set S if f (x) 5 f(y) for every pair of points x
and y in S with x < y. If the strict inequality f(x) <f(y) holds for a11 x < y in S, the
function  is said to be strictly increasing on S. Similarly, f is called decreasing on S if

a i -a b -a iJ
Increasing Strictly increasing Str ic t ly  decreas ing

FIGURE 1.33 Monotonie  functions.

.f(x) 2 f(y) for a11 x < y in S. 1-f  f(x) > f(y) for a11  x < y in S, then f is called strictly
decreasing on S. A function  is called monotonie  on S if it is increasing on S or if it is de-
creasing on S. The term strictly monotonie  means  thatfis strictly increasing on S or strictly
decreasing on S. Ordinarily, the set S under consideration  is either an open  interval  or a
closed  interval. Examples are shown in Figure 1.33.

FIGURE 1.34 A piecewise monotonie  function.
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A function f is said to be piecewise monotonie  on an interval if its graph consists  of a
finite number of monotonie  pieces. That is to say,  fis piecewise monotonie  on [a, b] if
there is a partition P of [a, b] such  that f is monotonie  on each  of the open  subintervals of
P. In particular, step functions are piecewise monotonie,  as are a11  the examples shown in
Figures 1.33 and 1.34.

EXAMPLE 1. The power functions. If p is a positive integer, we have the inequality

xp < y” i f  Olx<y,

which is easily proved by mathematical induction. This shows that the power functionf,
defined for a11 real x by the equationf(x)  = xp,  is strictly increasing on the nonnegative
real axis. It is also strictly monotonie  on the negative real axis (it is decreasing ifp is even
and increasing ifp is odd). Therefore, f is piecewise monotonie  on every finite interval.

EXAMPLE 2. The square-root function. Let f (x) = %f- fx or x 2 0. This function is strictly
increasing on the  nonnegative real axis. In fact,  if 0 5 x < y, we have

EXAMPLE 3. The graph of the function g defined by the equation

g(x) = l/r2  - x2 if -r < x 5 r

is a semicircle of radius Y. This function is strictly increasing on the interval -r < x 5 0
and strictly decreasing on the interval 0 5 x < r. Hence, g is piecewise monotonie  on
L--r,  rl.

1.21 Integrability of bounded monotonie functions

The importance of monotonie  functions in integration theory is due to the following
theorem.

THEOREM 1.12. Iffis monotonie  on a closed  interval  [a, b], then f is integrable on [a, b].

Proof. We shall prove the theorem for increasing functions. The proof  for decreasing
functions is analogous. Assume f is increasing and let -Icf) and I(f)  denote  its lower and
Upper  integrals, respectively. We shall prove that -Icf) = l(f).

Let n be a positive integer and construct two special  approximating step functions s, and
t, as follows: Let P = {x,, x1,  . . . , x,} be a partition of [a, b] into n equal  subintervals, that
is, subintervals [xkPl, xk. with xk - xkP1 = (b - a)/n  for each  k. Now define  s, and t, by
the formulas

s,(x) = f-h-1)  9 tnc4 = f (x?J if x~-~  < x < x, .
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At the subdivision points, define  s, and t, SO as to preserve the relations s,(x)  <&) <
tri(x)  throughout [a, b]. An example is shown in Figure 1.35(a). For this choice  of step
functions,  we have

s s:tn - abs.  =k~lfcxk)(xk  - Xk-1) -k~lf(~k-l)(xk  - Xk-1)
= !y 2 [f(xk)  - f(Xkwl)]  = t b - a)[J-(p) - “ca)1 ,

k=l

where the last equation is a consequence  of the telescoping property of finite  sums. This last
relation has a simple geometric interpretation. The difference  jz t, - ji s, is equal to the
sum of the areas of the shaded rectangles in Figure 1.35(a). By sliding these rectangles to
the right SO that they rest on a common  base as in Figure 1.35(b), we see that they fil1  out a

-

64 (b)

FIGURE 1.35 Proof  of integrability of an increasing function.

rectangle of base (b - a)/n  and altitude f(b) -f(a); the sum of the areas  is therefore
C/n,  where C = (b - a)[f(b)  -jr(a)].

Now we rewrite the foregoing :relation  in the form
b

WI s s

b

t, - s, = c.
a n n

The lower and Upper  integrals off satisfy the inequalities

Multiplying the first set of inequalities by (- 1) and adding the result to the second set, we
obtain

m - m I Jab  4%  - Iab  s, *

Using (1.8) and the relation I((f>  < I(j),  we obtain
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for every integer n 2 1. Therefore, by Theorem 1.31, we must have J(f) = r(f). This
proves thatfis integrable on [a, b].

1.22 Calculation of the integral of a bounded monotonie function

The proof  of Theorem 1.12 not only shows that the integral of a bounded increasing
function exists, but it also suggests a method for computing the value of the integral. This
is described by the following theorem.

THEOREM 1.13. Assumef is increasing on a closed  interval  [a, b]. Let xk  = a + k(b - a)/n
fork = 0, 1,. . . , n. If I is any  number which satisjîes  the inequalities

(1.9) e %f(x,)  5 z I b-a %f(x,)
n

k=O k = l

for every integer n 2 1, then Z = ji f(x) dx.

Proof.  Let s, and t, be the special  approximating step functions obtained by subdivision
of the interval [a, b] into n equal parts, as described in the proof  of Theorem 1.12. Then,
inequalities (1.9) state that

for every n 2 1. But the integral Ja  f(x) dx satisfies the same inequalities as Z. Using
Equation (1.8) we see that

W~~-/)-Wd+~

for every integer ut  2 1. Therefore, by Theorem 1.31, we have Z = ja f(x) dx, as asserted.
An analogous argument gives a proof  of the corresponding theorem for decreasing

functions.

THEOREM 1.14. Assume f is decreasing on [a, b]. Let xk  = a + k(b - a)/n  for k  =
0, 1, . . . ) n. If Z is any  number which satisfîes the inequalities

for every integer n 2 1, then Z = Jo  f(x) dx.

1.23 Calculation of the integral jo x* dx  when p is a positive integer

TO illustrate the use of Theorem 1.13 we shall calculate the integral Ji  xD dx where
b > 0 andp is any  positive integer. The integral exists because the integrand is bounded
and increasing on [0, b].
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THEOREM 1.15. If p is a positive integer and b > 0, we have

s

b bD+l

x”  dx = -
0 p+ 1’

Proof.  We begin with the inequalities

n-1

c
k" <

k=l

ff$<zkY

k==l

valid for every integer n 2 1 and every integer p 2 1. These inequalities may be easily
proved by mathematical induction. (A proof  is outlined in Exercise 13 of Section 14.10.)
Multiplication of these inequalities by b”+l/nP+l  gives us

If we letf(x)  = xp and xk = kb/n,  for k = 0, 1, 2, . . . , n, these inequalities become

$  xf<xk>  <

K=O

-j$  < 9  -&&).

k=l

Therefore,  the  inequalities (1.9) of Theorem 1.13 are satisfied with f(x) = XV,  a = 0, and
1 = b”+l/(p  + 1). It follows that Jo Y’ dx E b*+l/(p  + 1).

1.24 The basic  properties of tbe integral

From the definition of the integral, it is possible to deduce the following properties.
Proofs are given in Section 1.27.

THEOREM 1.16. LINEARITY WITH RESPECT TO THE INTEGRAND. Ifbothfand  g are in-
tegrable on [a, b], SO is cif  + c,gjfor  everypair of constants cl  and c2 . Furthermore, we have

11”  [cJ(x>  + C&)l  dx = ~1  ipf<4  d.x  + ~2  [  g(x) dx  .

Note: By use of mathematical induction, the linearity property cari  be generalized as
follows: Iffi,...,fn are integrable on [a, b],  then SO is c,fi + . . . + c& for a11 real
Cl,...,C,, a n d

Srabk;l”kfr(x)  dx =kglck  [fk<x> dx .

THEOREM 1.17. ADDITIVITY WITH RESPECT TO THE INTERVAL  OF INTEGRATION. If tW0

of the following three integrals exist,  the third also  exists, and we have
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Note: In particular, iff is monotonie on [a, b]  and also  on [6,  c], then both integrals
ja f and jifexist,  SO jo f also exists and is equal to the sum of the other two integrals.

THEOREM 1.18. INVARIANCE UNDER TRANSLATION. If f is  integrable on [a, b], then for
every real c we have

j-abf(x)  dx = t;;f(x  - c) dx .

THEOREM 1.19. EXPANSION OR CONTRACTION OF THE INTERVAL OF INTEGRATION. If  f is

integrable on [a, b], then for every real k # 0 we have

sabf(x) dx = ; rf (;) dx .

Note: In both Theorems 1.18 and 1.19, the existence of one  of the integrals implies the
existence of the other. When k = - 1, Theorem 1.19 is called the reflectionproperty.

THEOREM 1.20. COMPARISON THEOREM. If both f and g are integrable on [a, b] and if
g(x) 5 f(x) for every x in [a, b], then we have

c g(x) dx I [f(x) dx .
An important special  case of Theorem 1.20 occurs when g(x) = 0 for every x. In this

case, the theorem states that if f (x) 2 0 everywhere on [a, b], then Ja  f (x) dx 2 0. In
other words, a nonnegative function has a nonnegative integral. It cari  also  be shown
that if we have the strict inequality g(x) <f(x) for a11  x in [a, b], then the same strict
inequality holds for the integrals, but the proof  is not easy to give at this stage.

In Chapter 5 we shall discuss various methods for calculating the value of an integral
without the necessity of using the definition in each  case. These methods, however, are
applicable to only a relatively small number of functions,  and for most integrable functions
the actual  numerical value of the integral cari  only be estimated. This is usually done  by
approximating the integrand above and below by step functions  or by other simple functions
whose integrals cari be evaluated exactly. Then the comparison  theorem is used to obtain
corresponding approximations for the integral of the function in question. This idea Will
be explored more fully in Chapter 7.

1.25 Integration of polynomials

In Section 1.23 we established the integration formula

s

b

(1.10)
b D+l

x9dx  = -
0 P+I

for b > 0 andp any  positive integer. The formula is also valid if b = 0, since  both members
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are zero. We cari  use Theorem 1.1.9  to show that (1.10) also holds for negative b. We simply
take k = - 1 in Theorem 1.19 to obtain

s - b
x’ dx  = -

0 s

o”(-x)”  dx  =  (-l)“+‘sbx”  dx  =  -,

0 P+I

which shows that (1 .lO) holds for negative b. The additive property jt xP  dx = Ji xp  dx -
j; xP  dx now leads to the more general formula

b b e+l
x”dx  =

- a”+l

p+l ’

valid for a11  real a and b, and any  integer p 2 0.
Sometimes the special  symbol

is used to designate the difference  P(b) - P(a). Thus the foregoing formula may  also be
written as follows:

s b xu+l  b
x’ tlx  =  -  =

bV+l - av+l

a P+lu p+l  .

This formula, along with the linearity property, enables us to integrate every polynomial.
For example, to compute the integral jt(x” - 3x + 5) dx, we find the integral of each  term
and then add the results. Thus,  we have

s 3(x2  - 3x + 5) dx =
1

S,*‘dx-3~xdx+5j-,3dx=;~;-3;l;+5x[

33  - l3 3 32  - l2 3l  - l1 26=--- -+5-=-- 1 2
3 2 1 3

+ 1 0 = -3.

More generally, to compute the integral of any  polynomial we integrate term by term:

ckxk  dx :=
k=O

0 7%

x”dx =
c

bk+l  _ ak+l

ck
k=O

k+l ’

We cari  also integrate more complicated functions  formed  by piecing together various
polynomials. For example, consider the integral Jo  1x(2x  - l)] dx. Because of the absolute-
value signs, the integrand is nolt  a polynomial. However, by considering the sign of



Exercises 8 3

x(2x - l), we cari  split the interval  [0, l] into two subintervals, in each  of which the inte-
grand is a polynomial. As x varies from 0 to 1, the product  x(2x - 1) changes sign at the
point x = 8; it is negative if 0 < x < 4 and positive if 4 < x < 1. Therefore, we use the
additive property to Write

j; 1x(2x  - 1)j  dx = -1;” x(2x - 1) dx + ll;p  x(2x - 1) dx

1.26 Exercises

= jol’”  (x - 2x2) dx + J;:&2x2  - x) dx

= (4 - 112) + (&  - 3) = a .

Compute each  of the following integrals.

1. s 3x2dx  *
0

11. s f”(8t3+6t2-2t+5)dt.

’2. I x2  dx.
-3

12. s 4, (u - l)(u - 2) du.

23. s 4x3  dx.
0

13. i ~,(x + 1)2dx.

24 .  s 4x3dx.
-2

14. I ,‘(x + l)2dx.

’5. s 5t4  dt. 2
0

15. s (x - 1)(3x - 1) dx.
0

’6 .  s 5t4dt.
-1

16. I ; I(x  - 1)(3x - l)] dx.

7. s ; (5x4  - 4x3)  dx. 317. s (2x - 5)3  dx.
0

8. s Il (5x4  - 4x3)  dx. 318. s (x2  - 3)3  dx.
-3

9. s 2, (t2 + 1) dr. 19. I 0 x2(x  - 5)4  dx.

10.
i

2 (3x2  - 4x -t  2) dx. 20.
i
1;  (x + 4)‘O  dx. [Hint:  Theorem 1 .18.]

21. Find ail values of c for which

(a) jg x(1 - x) dx = 0, (b) j; Ix(1 - x)1 dx = 0.

22. Compute each  of the following integrals.

(4 jff0 dx where f(x) =
1
12-  x

ix

Draw the graph off in each  case.

i f  O<x<l,
if 1 5  x < 2.

if 0 < x 5  c,

(b)  j; f@> dx where f(x) = 1  - x
C -

l
i f  c<x<l;

- c

c is a fixed real number, 0 < c < 1.
23. Find a quadratic polynomial P for which P(0) = P(  1) = 0 and & P(x)  dx = 1.
24. Find a cubic polynomial P for which P(0) = P( -2) = 0, P(1) = 15, and 3 joz P(x)  dx = 4.
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Optional exercises

25. Let f be a function whose domalin  contains -x whenever it contains  x. We say  that f is an
even funct ion iff(-x)  = f(x an) d an odd function if f ( -x) = -f(x) for a11 x in the domain
off. If f is integrable on [0, b], prove that

(4  Jbafb)clx  = 2~~fCx)dx if f is even;

(b) 1” f(x) dx = 0
.-b

iff is odd.

26. Use Theorems 1.18 and 1.19 to (derive  the formula

s1 f(x) d;r  = (b - a)Ji  f [a + (b - a)x] dx .

27. Theorems 1.18 and 1.19 suggest a common generalization for the integral jI,f(Ax  + B) dx.
Guess the formula suggested and prove it with the help of Theorems 1.18 and 1.19. Discuss
also the case A = 0.

28. Use Theorems 1.18 and 1.19 to (derive  the formula

s,bf(c  -X)~X  =j+;f(x)dx.

1.27 Proofs of the hasic  properties of the integral

This section contains proofs oî the basic properties of the integral listed in Theorems
1.16 through 1.20 in Section 1.24. We make repeated use of the fact that every functionf
which is bounded on an interval [(z, b]  has a lower integral Z(j)  and an upper integral @J
given by

where s and t denote  arbitrary step functions below and above f, respectively. We know,
by Theorem 1.9, thatfis integrable if and only if -I<f) = Z(f),  in which case the value of the
integral off is the common value of the Upper  and lower integrals.

Proof of the Linearity Property (.Theorem  1.16). We decompose the linearity property into
two parts:

TO prove (A), let Z(J) = j:fand  let Z(g) = JE  g. We shall prove that J(f + g) = Z(j- + g) =

U)  + Z(g).
Let s1  and s2  denote  arbitrary step  functions below f and g, respectively. Since  f and g

are integrable, we have
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By the additive property of the supremum (Theorem 1.33), we also have

(1.11) ~cf>  + QI = sup  {.rN”  Sl + j-)2  1% I"f3  s2 I s) .

But if sr  If and s2 < g,  then the sum  s = s1  + s2 is a step function below f + g,  and we
h a v e

Therefore, the number I(f + g)  is an Upper  bound for the set appearing on the right of
(1.11). This upper bound cannot be less  than the least Upper  bound of the set, SO we have

(1.12) Z(f)  + $7) I -I(f  + g>  .

Similarly, if we use the relations

r(f) = inf [r tl(  f I ti) , I(g)  = inf [Jl t2  1 g 5 t2)  ,

where tl  and t, denote  arbitrary step functions above f and g,  respectively, we obtain the
inequality

(1.13) I(f+ g> I I<f> + G) *

Inequalities (1.12) and (1.13) together show that_I(f  + g) = r(f + g) = Z(j)  + 1(g).  There-
fore f + g is integrable and relation (A) holds.

Relation (B) is trivial if c = 0. If c > 0, we note that every step function si  below cf  is of
the form s1  = cs, where s is a step function below f. Similarly, every step function t, above
cf is of the form t, = ct, where t is a step function above f. Therefore we have

a n d

I(cf)  = inf [[ t, 1 cf < tl) = inf (c c t If 5 1) = cl(f) .

Therefore l(cf)  = I(cf)  = cZ(f). Here we have used the following properties of the
supremum and infimum :

(1.14) SUp(CXJXEA}=CSUp(xJXEA}, inf(cxJxEA}=cinf{xjxEA},

which hold if c > 0. This proves (B) if c > 0.
If c < 0, the proof  of (B) is basically the same, except that every step function s1  below cf

is of the form s1  = ct, where t is a step function above f, and every step function t, above
cf is of the form t, = cs, where s is a step function below f. Also, instead of (1.14) we use
the relations

sup {cx 1 x E  A} = c inf {x 1 x E  A} , inf{cxIxEA}=c’sup{xIxEA},
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which hold if c < 0. We now have

Similarly, we find I(cf)  = cl(f). Therefore (B) holds for a11  real c.

Proof of Additivity with Respect to the Interval  of Integration (Theorem 1.17). Suppose
that a < b < c, and assume that ,the two integrals Ja  f and j; f exist. Let I(f)  and I(f) denote
the Upper  and lower integrals ol’f over  the interval [a, c]. We shall prove that

(1.15) I(f)  =  Kf> =  j) + j*k

Ifs is any  step function belowf’on [a, c], we have

jac  s = [s + jbC  s.
Conversely, if sr  and s2  are step functions below f on [a, b] and on [b, c], respectively, then
the function s which is equal to 2~~ on [a, b) and equal to s2 on [b, c] is a step function below
f on [a, c] for which we have

j) =  saSI +  j;s2.

Therefore, by the additive property of the supremum (Theorem 1.33)  we have

Similarly, we find

which proves (1.15) when a < b < c. The proof  is similar for any  other arrangement of
the points a, b, c.

Proof of the Translation Prop(orty (Theorem 1.18). Let g be the function defined on the
interval [a + c, b + c] by the equation g(x) = f(x - c). Let _I(g) and I(g) denote  the lower
and Upper  integrals of g on the interval [a + c, b + c]. We shall prove that

(1.16) _I(g)  =  k> =  j)(:x) dx

Let s be any  step function below g on the interval [a + c, b + c]. Then the function s1
defined on [a, b] by the equation sr(x)  = s(x + c) is a step function below f on [a, b].
Moreover, every step function ~:r  below f on [a, b] has this form for some s below g. Also,
by the translation property for integrals of step functions, we have

s(x  + c) dx = s b sl(x)  dx .a
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Therefore we have

Similarly, we find j(g) = fa f(x) dx, which proves (1.16).

Proof of the Expansion Property (Theorem 1.19). Assume k > 0 and define  g on the
interval [ka, kb] by the equation g(x) = f(x/k).  Let J(g) and I(g) denote  the lower and
Upper  integrals of g on [ka, kb]. We shah  prove that

(1.17) I(g) =  J(g)  = k jabfW  dx  .

Let s be any  step function below g on [ka, kb]. Then the function s1  defined on [a, b] by
the equation sr(x)  = s(kx) is a step function below f on [a, b]. Moreover, every step
function sr  below f on [a, b] has this form. Also, by the expansion property for integrals
of step functions,  we have

s

b
s(x) dx = k ~(/LX)  dx = k a sl(x)  dx .

Therefore we have

Icg) = sup  [JLn”  s ) s 5 g)  =  wp  (k Iab  SI  1 ~1 If) = k Jab  A4  dx .

Similarly, we find 1(g)  = kja  f(x) dx, which proves (1.17) if k > 0. The same type of proof
cari  be used if k < 0.

Proof of the Comparison Theorem (Theorem 1.20). Assume g 5 f on the interval [a, b].
Let s be any  step function below g,  and let t be any  step function abovef.  Then we have
Ja s < jg t, and hence  Theorem 1.34 gives us

This proves that jz g I jz f, as required.



2

SOME APPLICATIONS OF INTEGRATION

2.1 Introduction

In Section 1.18 we expressed the area of the ordinate set of a nonnegative function as an
integral. In this chapter we Will1  show that areas of more general regions cari  also be
expressed as integrals. We Will also discuss further applications of the integral to concepts
such  as volume, work, and averages. Then, at the end of the chapter, we Will study
properties of functions  defined by integrals.

2.2 The area  of a region hetween two graphs expressed as an integral

If two functionsf and g are related by the inequalityf(x)  < g(x) for a11 x in an interval
[a, 61, we writef < g on [a, b]. Figure 2.1 shows two examples. Iff 5 g on [a, h], the set
S consisting of a11 points (x, y) satisfying the inequalities

f(x) I Y I g(x)  > alxlb,

is called the region between the graphs off and g. The following theorem tells us how to
express the area of S as an integral.

(4 (b)

FIGURE 2.1 The area  of a region between two graphs expressed as an integral:

a(S) = - ; [g(x) -~(X>I dx.i
8 8
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THEOREM 2.1. Assume f and g are integrable and satisfy f 5 g on [a, b]. Then the region
S between their graphs is measurable and its area  a(S) is given by the irjtegral

(2.1) 4s) = Jab  k(x) - f(x)1 dx .

Proof. Assume first thatf and g are nonnegative, as shown in Figure 2.1(a). Let F and
G denote  the following sets:

F = {(~,y>  ) a I x 5 b,  0 I y <f(x)>, G = {(x,  y) ) a I x 5 b, 0 < y 2 g(x)} .

That is, G is the ordinate set of g, and Fis the ordinate set off, minus the graph off. T h e
region S between the graphs off and g is the difference S = G - F. By Theorems 1.10 and
1.11, both F and G are measurable. Since F s G, the difference S = G - F is also
measurable, and we have

a(S)  = a(G)  - a(F) = Jab  g(x) dx - saj(x)  dx = JI [g(x) -f(x)] dx .

This proves (2.1) when f and g are nonnegative.
Now consider the general case where f 5 g on [a, b], but f and g are not necessarily

nonnegative. An example is shown in Figure 2.1(b). We cari  reduce this to the previous
case by sliding the region upward until it lies above the x-axis. That is, we choose  a positive
number c large enough to ensure that 0 2 f(x) + c 5 g(x) + c for a11 x in [a, b]. By what
we have already proved, the new region T between the graphs off + c and g + c is
measurable, and its area is given by the integral

47 = s”  Kg(x)  + c)  - (f(x) + C)I dx  = IGb k(x) - f(x)1  dx  .a

But T is congruent to S; SO S is also measurable and we have

4% = a(T)  = Iob k(x) -f(x)1 dx  .

This completes the proof.

2.3 Worked examples

EXAMPLE 1. Compute the area of the region S between the graphs off and g over  the
interval [0, 21  iff(x)  = x(x - 2) and g(x) = x/2.

Solution. The two graphs are shown in Figure 2.2. The shaded portion represents S.
Since f < g over  the interval [0, 21, we use Theorem 2.1 to Write

a(S)=~z,x)-,,x)]dx=~<;x-x2)dx=~~-~=;.
0
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FIGURE 2.2 Example 1. FIGURE 2.3 Example 2.

EXAMPLE 2. Compute the area of the region S between the graphs off and g over  the
interval [- 1,2]  iff(x)  = x and g(x) = x3/4.

Solution. The region S is shown in Figure 2.3. Here we do not have f 5 g throughout
the interval [ - 1,2]. However, we do have f 5 g over  the subinterval [ - 1, 0] and g g  f
over  the subinterval [0, 21. Applying Theorem 2.1 to each  subinterval, we have

4s)  =~~lk(x)  - f(x)1  dx  -t-I: V(x) - g(x)1 dx

=-

In examples like this one,  where the interval [a, b]  cari  be broken up into a finite number
of subintervals such  that eitherf 2; g or g 5 fin each  subinterval, formula (2.1) of Theorem
2.1 becomes

4s)  = Jab  k(x) -f(x)1 dx  -

EXAMPLE 3. Area of a circular disk. A circular disk of radius r is the set of a11 points
inside or on the boundary of a c:ircle  of radius r. Such  a disk is congruent to the region
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between the graphs of the two functions f and g defined on the interval [-Y, Y] by the
formulas

g ( x )  =  d z - 2 and f(x) = -dr2 - x2.

Each function is bounded and piecewise monotonie  SO each  is integrable on [-r, r].
Theorem 2.1 tells  us that the region between their graphs is measurable and that its area is
jZr [g(x)  -f(x)]  dx. Let A(r) d enote  the area of the disk. We Will prove that

A(r) = ?A(l)  .

That is, the area  of a disk of radius r is r2 times the area  of a unit disk (a disk of radius 1).
Since  g(x) -f(x) = 2g(x),  Theorem 2.1 gives us

A(r) = J:v 2g(x)  dx = 2 /Iv  dr”  - x2  dx

In particular, when r = 1,  we have the formula

A(1) = 2 J’, 41 - x2 dx .

Now we change the scale  on the x-axis, using Theorem 1.19 with k = l/r, to obtain

A(r)  = 2 11,  g(x)  dx = 2r  J:, g(rx) dx = 2r s:, dr”  - (rx)’  dx

= 2r2  J:,  dl  - x2 dx = r2A(1)  .

This proves that A(r) = r2A(1), as asserted.

DEFINITION. We dejne  the number TT  to be the area  of a unit disk.

The formula just proved states that A(r) = m2.

The foregoing example illustrates the behavior of area under expansion or contraction
of plane regions. Suppose S is a given set of points in the plane and consider a new set of
points obtained by multiplying the coordinates of each  point of S by a constant factor
k > 0. We denote  this set by kS and say  that it is similar to S. The process which produces
kS from S is called a similarity transformation. Each point is moved along a straight line
which passes through the origin to k times its original distance from the origin. If k > 1,
the transformation is also called a stretching or an expansion (from the origin) and, if
0 < k < 1, it is called a shrinking or a contraction (toward the origin).

For example, if S is the region bounded by a unit circle with tenter  at the origin, then
kS is a concentric circular  region of radius k. In Example 3 we showed that for circular
regions, the area of kS is k2  times the area of S. Now we prove that this property of area
holds for any  ordinate set.
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EXAMPLE 4. Behavior of the area  of an ordinate set under a similarity transformation.
Let f be nonnegative and integrable on [a, b]  and let S be its ordinate set. An example is
shown in Figure 2.4(a). If we apply a similarity transformation with a positive factor k,
then kS is the ordinate set of a new function, say  g,  over  the interval [ka, kb]. [See Figure
2.4(b).] A point (x, y) is on the graph of g if and only if the point (x/k,  y/k)  is on the graph
off. Hence y/k = f(x/k),  SO y  = kf(x/k).  In other words, the new function g is related to
f by the formula

g(x) = VW)

k a kb

(4 (b)

FIGURE 2.4 The area  of kS is k2 times that  of S.

for each  x in [ka, kb]. Therefore, the area of kS is given by

a(kS) = jky g(x)  dx = k j2yf(x/k)  dx = k2  SU~(X)  dx ,

where in the last step we used the expansion property for integrals (Theorem 1.19). Since

C.,ftof$  = 4% th is proves that a(kS) = k2a(S).  In other words, the area of kS is k2 times

EXAMPLE 5. Calculation  of the integral j; x Il2 dx. The integral for area is a two-edged
sword. Although we ordinarily use the integral to calculate areas,  sometimes we cari  use
our knowledge of area to calculate integrals. We illustrate by computing the value of the
integral & x1’2  dx, where a > 0. (The integral exists since  the integrand is increasing and
bounded on [0, a].)

Figure 2.5 shows the graph of the functionfgiven byf(x)  = x1j2 over  the interval [0, a].
Its ordinate set S has an area given by

a(S) = 6 xli2  dx

Now we compute this area another way. We simply observe that in Figure 2.5 the region
S and the shaded region T together fil1 out  a rectangle of base a and altitude a112.  Therefore,
a(S) + a(T) = a3j2,  SO we have

a(S) = a3/2 - a(T) .
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But T is the ordinate set of a function g defined over  the interval [0, a1’2]  on the y-axis by the
equation g(y) = ,v2.  Thus, we have

a(T) = 6”’  g(y) dy = 6”’  y2  dy = 4~~‘~  ,

SO a(S) = a312  - $a312 = $a312.  This proves that

FIGURE 2.5 Calculation of the integral ji x1/2 dx.

More generally, if a > 0 and b > 0, we may use the additive property of the integral to
obtain the formula

*’  912 dx  = $(p2  _ a3/2)  .
a

The foregoing argument cari  also be used to compute the integral Ja xlln dx, if n is  a
positive integer. We state the result as a theorem.

THEOREM 2 .2 . For a > 0, b > 0 and n u positive  integer,  we  bave

b

(2.2) s Xl’n dx = b 1+1/?l - a 1+1/n

a 1 + l/n  .

The proof  is SO similar to that in Example 5 that we leave the details to the reader.
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2.4 Exercises

In Exercises 1 through 14, compute the area  of the region S between the graphs off and g over
the interval  [a, b] specified in each  case.
l.f(x) =4 -x2,

Make a sketch of the two graphs and indicate S by shading.
g(x)  = 0, a = -2, b = 2.

2. f(x) = 4 - x2, g(x) = 8 - 2x2, a = -2, b = 2.
3. f(x) = x3 + x2, g(x)  = x3 + 1, a  =  -1 > b = 1.
4. f(x) = x - x2, g(x) = -x, a = 0, b =2.
5. f(x) = x1’3, g(x) = xl’2, a = 0, b = 1.
6. f(x) = ~1’3, g(x) = x1/2, a = 1, b = 2.
7. f(x) = x1/3, g(x) = x1/2, a = 0, b =2.
8. f(x) = x112, g(x)  = x29 a =0, b =2.
9. f(x) = x2, g(x) = x + 1, a  =  -1, b = (1 + y5)/2.

10. f(x) = x(x2 - l), g(x)  = x, a  =  -1, b =&.
11. f(x) = 1x1, g(x) = x2 - 1, a  =  -1

’
b = 1.

12. f(x) = Ix - II, g(x) = x2 - 2x, a = 0, b =2.
13. f(X) = 2 (XI, g(x) = 1 - 3x3, a  =  -&]3,  b  =  4.
14. f(X) = 1x1 + lx - II,  g(x) = 0, a  =  -1, b = 2.
15. The graphs of f(x) = x2 and g(x) = cx3, where c > 0, intersect at the points (0,O) and

(l/c, 1/c2>.  Find c SO that the region which lies between these graphs and over  the interval
[0, l/c]  has area  Q.

16. Letf(x) = x - x2,g(x)  = ax. Determine a SO that the region above the graph ofg and below
the graph off has area  8.

17. We have defined m to be the area  of a unit circular disk. In Example 3 of Section 2.3, we
proved that n  = 2 jtldndx.  Use properties of the integral to compute the following
in terms of r:

(a)  j-:s$=dx; (b) j-;2/mdx; (c) sz2  (x - 3)dGdx.

18. Calculate the areas  of regular dodecagons (twelve-sided polygons) inscribed and circum-
scribed  about  a unit circular disk and thereby deduce the inequalities 3 < r < 12(2  - 43).

19. Let C denote  the unit circle, whose Cartesian equation is x2 -i-  y2  = 1. Let E be the set of
points obtained by multiplying the x-coordinate of each  point (x, y) on C by a constant factor
CI > 0 and the y-coordinate by a constant factor  b > 0. The set E is called an ellipse. (When
a = b, the ellipse is another circle.)
(a) Show that each  point (x, y) on E satisfies the Cartesian equation (~/a)~  + (y/b)2  = 1.
(b) Use properties of the integral to prove that the region enclosed  by this ellipse is measurable
and that its area  is rab.

20. Exercise  19 is a generalization of Example 3 of Section 2.3. State and prove a corresponding
generalization of Example 4 of Section 2.3.

21. Use an argument similar to that in Example 5 of Section 2.3 to prove Theorem 2.2.

2.5 The trigonometric functions

Before we introduce further applications of integration, we Will digress briefly to discuss
the  trigonometric  functions. We assume that the reader has some knowledge of the
properties of the six trigonometric functions,  sine, cosine,  tangent, cotangent, secant,  and
cosecant; and their inverses, arc sine, arc cosine,  arc tangent, etc. These functions are
discussed in elementary trigonometry courses in connection with various problems involving
the sides  and angles of triangles.
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The trigonometric functions are important in calculus, not SO much because of their
relation to the sides  and angles of a triangle, but rather because of the properties they
possess as functions. The six trigonometric functions have in common  an important
property known as periodicity.

A function f is said to beperiodic with periodp # 0 if its domain  contains x + p whenever
it contains  x and if f(x + p) = f(x) for every x in the domain  off. The sine and cosine
functions are periodic with period 277, where 7r is the area of a unit circular disk. Many
problems in physics and engineering deal with periodic phenomena (such  as vibrations,
planetary and wave motion) and the sine and cosine functions form the basis for the
mathematical analysis of such  problems.

The sine and cosine functions cari  be introduced in many different ways. For example,
there are geometric definitions which relate the sine and cosine functions to angles, and
there are analytic definitions which introduce these functions without any  reference whatever
to geometry. Al1 these methods are equivalent, in the sense that they a11 lead to the same
functions.

Ordinarily, when we work with the sine and cosine we are not concerned SO much with
their definitions as we are with the properties that cari  be deduced from the definitions.
Some of these properties, which are of importance in calculus, are listed below. As usual,
we denote  the values of the sine and cosine functions at x by sin x, COS x, respectively.

FUNDAMENTAL PROPERTIES OF THE SINE AND COSINE.

1.  Domain  of dejnition. The sine and cosine functions are dejîned everywhere on the real
line.

2. Special  values. We have COS 0 = sin in-  = 1,  COS 7~  = - 1,

3. Cosine of a difference.  For a11  x and y, we have

(2.3) cos(y  -x) = cosycosx + sinysinx.

4. Fundamental inegualities. For 0 < x < &r, we have

(2.4)
1O<cosx<~X<-

X COS x .

From these four properties we cari  deduce a11  the properties of the sine and cosine that
are of importance in calculus. This suggests that we might introduce the trigonometric
functions axiomatically. That is, we could take properties 1 through 4 as axioms about  the
sine and cosine and deduce a11 further properties as theorems. TO make certain we are not
discussing an empty theory, it is necessary to show that there are functions satisfying the
above properties. We shall by-pass this problem for the moment. First we assume that
functions exist which satisfy these fundamental properties and show how further properties
cari then be deduced. Then, in Section 2.7, we indicate a geometric method of defining the
sine and cosine SO as to obtain functions with the desired properties. In Chapter 11  we also
outline an analytic method for defining the sine and cosine.



96 Some  applications of integration

THEOREM 2.3. If two finctions  sin and COS satisfy properties 1  through 4, then they also
satisfy the following properties:

(a) Pythagorean identity. sin2  x + cos2  x = 1 for a11  x.
(b) Special  values. sin 0 = COS in = sin ré  = 0.
(c) Even and oddproperties. The cosine is an even fînction  and the sine is an oddfunction.

That is, for a11  x  we have

COS (-x) = COS x, sin (-x) = -sin  x.

(d) CO-relations. For a11  x, we have

sin (&r + x) = COS x, COS(& + x )  =  -sinx.

(e) Periodicity. For a11  x, we have sin (x + 2x) = sin x, COS (x + 277) = COS x.
(f) Addition formulas. For a11  x and y, we have

~~~(~+~)=cosxcos~-sinxsiny,

sin(x + y) = sinxcosy + cosxsiny.

(8)  DifSerence  formulas. For a11  a and b, we have

a - b a+bsin a - sin b = 2 sin - COS -
2 2 ’

a - b .  a + bcosa-cosb=-2sin-sm-
2 2 *

(h) Monotonicity. In the interval  [0, &T],  the sine is strictly increasing and the cosine is
strictly  decreasing.

Proof Part (a) follows at once if we take x = y in (2.3) and use the relation COS 0 = 1.
Property (b) follows from (a) by taking x = 0, x = fin,  x = 7r and using the relation
sin &T  = 1. The even property of the cosine also follows from (2.3) by taking y = 0. Next
we deduce the formula

(2.5) cas (&r - x) = sin x ,

by taking y = $T in (2.3). From this and (2.3), we find that the sine is odd, since

sin(-x)=cos(S+x)  =cos[il-  ( f - x ) ]

= COS 7r COS
( 2 77
- - x  +sin7rsin  - - x  = - s i n x .

1 ( 2 ?T 1

This proves (c). TO prove (d), we again use (2.5), first with x replaced by &T  + x and then
with x replaced by -x. Repeated use of (d) then gives us the periodicity relations (e).
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TO prove the addition formula for the cosine, we simply replace x by -x in (2.3) and use
the even and odd properties. Then we use part (d) and the addition formula for the cosine
to obtain

sin(x+y)=-cos(x+y+t)= -COS x COS y + 2( -) ( -)+ sin x sin y + 2

= cas x sin y + sin x Cos y

This proves (f). TO deduce the difference formulas (g),  we first replace y by -y in the
addition formula for sin (x + y) to obtain

sin(x  -y) = sinxcosy - cosxsiny.

Subtracting this from the formula for sin (x + y) and doing the same for the cosine function,
we get

sin(x  +y)  - sin(x  - y )  = 2sinycosx,

COS  (x + y) - COS(~  - y )  = - 2 s i n y s i n x .

Taking x = (a + b)/2,  y = (a - b)/2, we find that these become the difference formulas

in (g).
Properties (a) through (g) were deduced from properties 1 through 3 alone. Property 4

is used to prove (h). The inequalities (2.4) show that COS x and sin x are positive if
0 < x < &7r. Now, if 0 < b < a < ix, the numbers (a + b)/2  and (a - b)/2  are in the
interval (0, &r), and the difference formulas (g) show that sin a > sin b and COS a < COS b.
This completes the proof  of Theorem 2.3.

Further properties of the sine and cosine functions are discussed in the next set of
exercises (page 104). We mention, in particular, two formulas that are used frequently in
calculus. These are called the double-angle or duplication formulas. We have

sin 2x = 2 sin x cas x . cas 2x = COS~  x - sin2  x = 1 - 2 sin2  x .

These are, of course, merely special  cases of the addition formulas obtained by taking
y = x. The second formula for COS 2x follows from the first by use of the Pythagorean
identity. The Pythagorean identity also shows that [COS  XI  5 1 and Isin  XI  < 1 for a11  x.

2.6 Integration formulas for the sine and cosine

The monotonicity properties in part (h) of Theorem 2.3, along with the CO-relations  and
the periodicity properties, show that the sine and cosine functions are piecewise monotonie
on every interval. Therefore, by repeated use of Theorem 1.12, we see that the sine and
cosine are integrable on every finite interval. Now we shall calculate their integrals by
applying Theorem 1.14. This calculation makes use of a pair of inequalities which we state
as a separate theorem.

THEOREM 2.4. If 0 < a < !g and n 2 1, we have

(2.6)

n
a-~cos~<sina<on-‘cos~.
n c
k=l n n k=O n
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Proof. The inequalities in (2.6) Will be deduced from the trigonometric identity

(2.7) 2 sin ix  icos  kx = sin (n + 4)x - sin ix  ,
k=l

which is valid for n 2 1 and a11  real x. TO prove (2.7), we use one  of the difference formulas
(g)  of Theorem 2.3 to Write

2 sin 4x COS kx = sin (k + 4)x - sin (k - i)x .

Taking k= 1,2,..., n and adding these equations, we find that the sum on the right
telescopes  and we obtain (2.7).

If ix is not an integer multiple of rr we cari  divide both members of (2.7) by 2 sin ix to
obtain

12

c
COS kx =

sin (n + 4)x - sin 4x

’
k=l

2 sin &x

Replacing n by n - 1 and adding 1 to both members we also obtain

n-1

c
COS kx = sin (n - $)x + sin ix

’
k=O

2 sin ix

Both these formulas are valid if x # 2mrr,  where m is an integer. Taking x = a/n,  where
0 < a 2 &r  we find that the pair of inequalities in (2.6) is equivalent to the pair

sin (n + 4) a  - sin E
( 1

sin (n - 4) a + sin a
a n

< sin a < 5 n ( 2, 1

n
2 sin

( 2 1 n
2 sin

( 2 1

This pair, in turn, is equivalent to the pair

Therefore, proving (2.6) is equivalent to proving (2.8). We shall prove that we have

(2.9) sin (2n + l)e - sin 8 < y  sin 2nO < sin (2n - l)e  + sin e

for 0 < 2nB 5 +. When 8 = a/(2n) this reduces to (2.8).



Integration formulas for the sine and cosine 99

TO prove the leftmost inequality in (2.9), we use the addition formula for the sine to
Write

(2.10) sin 8sin (2n + 1)% = sin 2n%  cas  8  + cas  2n%  sin % < sin 2n%  -8 + sin e ,

where we have also used the inequalities

sin 8
COS % < -

e ’
0 < COS 2nB  5 1  , sin 8 > 0 ,

a11 of which are valid since 0 < 2n%  < &T. Inequality (2.10) is equivalent to the leftmost
inequality in (2.9).

TO prove the rightmost inequality in (2.9), we again use the addition formula for the sine
and Write

sin (2n - 1)% = sin 2n%  COS e - COS 2n%  sin e .

Adding  sin % to both members, we obtain

(2.11) sin (2n - l)e  + sin % = sin 2n%
(

COS 8 + sin % 1 - cas  2n%
sin 2n% 1 ’

But since we have

1 - COS 2n% 2 sin’  n% sin n%= =-
sin 2n% 2 sin n%  COS n% cos  ne  ’

the right member of (2.11) is equal to

sin 2n%
(

sin n%
COS e + sin e -

1
= sin 2n% COS 8 COS ne  + sin 8 sin n%

COS ne Cos  n%

= sin  2no COS  (n  - 00
*COS ne

Therefore, to complete the proof  of (2.9), we need only show that

(2.12)

But we have

COS (n - i)%  , sin

COS ne 8 .

COS n%  = COS (n - l)e  COS 8 - sin (n - i)%  sin e

< COS (n - i)e  COS 8 < COS (n - qe  JL
sin e ’
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where we have again used the fundamental inequality COS 8  < B/(sin  0).  This last relation
implies (2.12), SO the proof  of Theorem 2.4 is complete.

THEOREM 2.5. If two functions  sin and COS satisfy the fundamentalproperties 1 through 4,
then for every real a we  have

(2.13) î
a

COS x dx = sin a ,
0

(2.14)
a

s sin x dx = 1 - COS a .
0

Proof. First we prove (2.13), and then we use (2.13) to deduce (2.14). Assume that
0 < a < &T.  Since  the cosine  is decreasing on [0, a], we cari  apply Theorem 1.14 in con-
junction  with the inequalities of Theorem 2.4 to obtain (2.13). The formula also holds
trivially for a = 0, since both members are zero. The general properties of the integral cari
now be used to extend its validity to a11 real a.

For example, if -4~ 5 a 5 0, then 0 < -a < &T,  and the reflection property gives us

î
n

COS x dx = - COS x dx = -sin (-a) = sin a .
0 s-%Os (-x) dx = - aa

0 s

Thus (2.13) is valid in the interval [-tr, $T].  Now suppose that &T  < a 5 $T.  Then
-4~ < a - T 5 in-,  SO we have

J

n
aCOS x dx =

0 J

nl2
COS x dx +

0 i7712
COS x dx = sin &r + s ‘-*  COS (x + n-)  dx

-7rj2

COS x dx = 1 - sin (a - n)  + sin (-in)  = sin a .

Thus (2.13) holds for a11 a in the interval [-in,  $r]. But this interval has length 2n,  SO

formula (2.13) holds for a11 a since both members are periodic in a with period 25~.
Now we use (2.13) to deduce (2.14). First we prove that (2.14) holds when a = 7~/2.

Applying, in succession, the translation property, the CO-relation  sin (x + 4,)  = COS x,
and the reflection property, we find

s dz

0
sinxdx=~-~,;in(x+~)dx=/-~,;osxdx=~’2cos(-x)dx.

Using the relation COS (-x) = COS x and Equation (2.13), we obtain

s
rD

sin x dx = 1 .
0

New,  for any  real a, we may Write

s

a
sin x dx =

0 s

RP a

sin x dx +
0 s7712

sinxdx=1+l-“2sin(x+F)dx

a-n/2

=1+
s

COS x dx = 1 + sin = 1 - COS a.
0

This shows that Equation (2.13) implies (2.14).
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EXAMPLE 1. Using (2.13) and (2.14) in conjunction with the additive property

jabf(X)  dx = Jobf(x)  dx - j-;rcx,  dx,
we get the more general integration formulas

J b
cas x dx = sin b - sin aa

a n d

c b sin x dx = (1 - COS b)  - (1 -cosa)=  -(cosb-cosa).-Il

If again we use the special  symbolf(x)  1: to denote  the differencef(b)  -f(a), we cari  Write
these integration formulas in the form

s b

COS x dx = sin x
b

a n d i b
sin x dx = -COS  x

/

b
.a a *a a

EXAMPLE 2. Using the results  of Example 1 and the expansion property

sj-(x) dx = f j-‘>(X/C)  dx ,
en

we obtain the following formulas, valid for c f 0:

a n d

b
1

COS cx dx = -
C

COS x dx = ‘,  (sin cb - sin ca),

b 1
sin cx dx  = - sin x dx = - -L (COS cb - COS ca).

EXAMPLE 3. The identity COS 2,x = 1 - 2 sin2  x implies sin2  x = f(1 - cas 2x) so, from
Example 2, we obtain

s

a

0
sin2  x dx = i

s
o(l - COS 2x) dx = t - 4’  sin 2a .

Since  sin2  x + cos2  x = 1, we also find

s

a

0
COS~ x dx = (1 - sin2  x) dx = a -jusin  x Q!X  = E + l4 sin 2a .

s 0
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2.7 A geometric description of the sine and cosine functions

In this section we indicate a geometric method for defining the sine and cosine functions,
and we give a geometric interpretation of the fundamental properties listed in the Section 2.5.

Consider a circle of radius r with its tenter  at the origin. Denote the point (r, 0) by A,
and let P be any  other point on the circle. The two line segments OA  and OP determine a
geometric configuration called an angle which we denote  by the symbol LAOP. An example
is shown in Figure 2.6. We wish to assign to this angle a nonnegative real number x which
cari  be used as a measurement of its size. The most common  way of doing this is to take a
circle of radius 1 and let x be the length of the circular arc AP, traced counterclockwise

twice area  of sector
r2

FIGURE 2.6 An angle L AOP consisting of x FIGURE 2.7 Geometric description of sin x
radians. and COS x.

from A to P, and to say  that the measure of LAOP is x radians. From a logical point of
view, this is unsatisfactory at the present stage because we have not yet  discussed the
concept of arc length. Arc length Will be discussed later in Chapter 14. Since  the concept
of area has already been discussed, we prefer to  use the area of the circular sector AOP
rather than the length of the arc AP as a measure of the size of LAOP. It is understood
that the sector AOP is the smaller portion of the circular disk when P is above the real axis,
and the larger portion when P is beiow the real axis.

Later,  when arc length is discussed, we shall find that the length of arc AP is exactly
twice the area of sector AOP. Therefore, to get the same scale  of measurement for angles
by both methods, we shall use twice the area of the sector AOP as a measure of the angle
LAOP. However, to obtain a “dimensionless” measure of angles, that is, a measure
independent of the unit of distance in our coordinate system, we shall define  the measure
of LAOP to be twice the area  of sector AOP divided by the square of the radius. This ratio
does  not change if we expand or contract  the circle, and therefore there is no loss in
generality in restricting our considerations to a unit circle. The unit of measure SO obtained
is called the radian. Thus, we say  the measure of an angle LAOP  is x radians if x/2 is the
area of the sector AOP tut  from a unit circular disk.

We have already introduced the symbol n to denote  the area of a unit circular disk. W h e n
P = (- 1, 0), the sector AOP is a semicircular disk of area &n,  SO it subtends an angle of n
radians. The entire  disk is a sector consisting of 27r radians. If P is initially at (1, 0) and if
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P moves once around the circle in a counterclockwise direction, the area of sector AOP
increases from 0 to 7, taking every value in the interval [0, n]  exactly once. This property,
which is geometrically plausible, cari  be proved by expressing the area as an integral, but
we shall not discuss the proof.

The next step is to define  the sine and cosine of an angle. Actually,  we prefer to speak
of the sine and cosine of a number rather than of an angle, SO that the sine and cosine Will
be functions defined on the real line. We proceed as follows: Choose a number x satisfying
0 < x < 27 and let P be the point on the unit circle such  that the area of sector AOP is
equal to x/2. Let (a, b) denote  the coordinates of P. An example is shown in Figure 2.7.
The numbers a and b are completely determined by x. We define  the sine and cosine of x
as follows :

cas  x = a, sin x = b .

In other words, COS x is the abscissa  of P and sin x is its ordinate.
For example, when x = 7~, we have P = (- 1,0) SO that COS v = - 1 and sin x = 0.

Similarly, when x = +r  we have P = (0, 1) and hence  COS & = 0 and sin &T  = 1. This
procedure  describes the sine and cosine as functions defined in the open  interval (0,2n).
We extend the definitions to the whole real axis by means of the following equations:

sin 0 = 0, COS 0 = 1 ) sin (x + 27r) = sin x , COS (x + 2n)  = COS x .

The other four trigonometric functions are now defined in terms of the sine and cosine by
the usual  formulas,

sin x COS x
cotx  = -

1 1
tan x = ~0s  :

sin x ’
sec x = -

COS x ’
cscx = -

sin x ’

These functions are defined for a11 real x except for certain isolated points where the
denominators may be zero. They a11 satisfy the periodicity property f(x + 2n)  =f(x).
The tangent and cotangent have the smaller period 71.

Now we give geometric arguments to indicate how these definitions lead to the funda-
mental properties listed  in Section 2.5. Properties 1 and 2 have already been taken tare  of
by the way we have defined the sine and cosine. The Pythagorean identity becomes evident
when we refer to Figure 2.7. The hne  segment OP is the hypotenuse of a right triangle whose
legs have lengths [COS  x] and Isin  x]. Hence the Pythagorean theorem for right triangles
implies the identity CO?  x + sin”  x = 1.

Now we use the Pythagorean theorem for right triangles again to give a geometric proof
of formula (2.3) for COS (y - x). Refer to the two right triangles PAQ and PBQ shown in
Figure 2.8. In triangle PAQ, the length of side  AQ is ]siny - sin xl,  the absolute  value of
the difference  of the ordinates of Q and P. Similarly, AP has length ~COS  x - COS y]. If d
denotes  the length of the hypotenuse PQ, we have, by the Pythagorean theorem,

d2 = (sin y - sin x)” + (COS x - COS y)” .

On the other hand, in right triangle PBQ the leg BP has length Il - COS (JJ  - x)] and the
leg BQ has length ]sin  (y - x)]. Therefore, the Pythagorean theorem gives us

d2 = [I - cas (y - x)]” + sin2  (-y  - x) .
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Equating the two expressions for dz  and solving for COS (y - x), we obtain the desired
formula (2.3) for COS (y - x).

Finally, geometric proofs of the fundamental inequalities in property 4 may be given by
referring to Figure 2.9. We simply compare the area of sector OAP with that of triangles
OQP and OAB. Because of the way we have defined angular measure, the area of sector
OAP is 4x. Triangle OAB has base 1 and altitude h,  say.  By similar triangles, we find
h/l = (sin ~)/(COS  x), SO the area of triangle OAB is $h = $(sin ~)/(COS  x). Therefore,
comparison  of areas gives us the inequalities

1 sin x
i sin x cas x < 2 x < - -

2 COS x ’
Q = (COS y, sin y) 6

sin xhz-
C O S  x

0

FIGURE 2.8 Geometric proof  of the formula FIGURE 2.9 Geometric proof  of the inequalities
for COS (y - x). sin x

0 <cosx  <y <Ax.

Dividing by 4  sin x and taking reciprocals, we obtain the fundamental inequalities (2.4).
We remind the reader once more that the discussion of this section is intended to provide

a geometric interpretation of the sine and cosine and their fundamental properties. An
analytic treatment of these functions, making no use of geometry, Will be described in
Section 11.11.

Extensive tables of values of the sine, cosine, tangent, and cotangent appear in most
mathematical handbooks. The graphs of the six trigonometric functions are shown in
Figure 2.10 (page 107) as they appear over  one  complete period-interval. The rest of the
graph in each  case is obtained by appealing to periodicity.

2.8 Exercises

In this set of exercises,  you  may  use the properties of the sine and cosine listed  in Sections 2.5
through 2.7.

1. (a) Prove that sin nn  = 0 for every integer n  and that these are the only values of x for which
sin x = 0.
(b) Find a11 real x such  that COS x = 0.

2. Findallrealxsuchthat(a)sinx  = l;(b)cosx  = l;(c)sinx  = -l;(d)cosx  = -1.
3. Prove that sin (x + r) = -sin x and COS (x + n)  = -COS  x for a11 x.
4. Prove that sin 3x = 3 sin x - 4 sin3  x and COS 3x = COS x - 4 sin2  x COS x for a11 real x.

Prove also that COS 3x = 4 cos3x  - 3 COS x.
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5. (a) Prove that sin $r = $, COS & = $2/3. [H~I: Use Exercise 4.1
(b) Prove that sin 4~ = $&, COS 4~ = &.
(c) Prove that sin 4~ = COS tn = zwz.

6. Prove that tan (x - y)  = (tan x - tan y)/(1  + tan x tan y) for a11 x and y with tan x tan y #
- 1. Obtain corresponding formulas for tan (x + y) and cet  (x + y).

7. Find numbers A and B such  that 3 sin (x + &) = A sin x + B COS x for a11 x.
8. Prove that if C and G( are given real numbers, there exist real numbers A and B such  that

C sin (x + a) = A sin x + B COS x for a11 x.
9. Prove that if A and B are given real numbers, there exist numbers C and N,  with C 2  0, such

that the formula of Exercise 8 holds.
10. Determine C and c(,  with C > 0, such  that C sin (x + a)  = -2 sin x - 2 COS x for a11 x.
11. Prove that if A and B are given real numbers, there exist numbers C and c(,  with C 2 0, such

thatCcos(x+cc)=Asinx+Bcosx.  DetermineCandaifA=B=l.
12. Find a11 real x such  that sin x = COS x.
13. Find a11 real x such  that sin x - COS x = 1.
14. Prove that the following identities hold for a11 x and y.

(a) 2cosxcosy =cos(x  -y) +COS(~ +y).
(b) 2sinxsiny =COS(~ -y) -COS(~  +y).
(c) 2sinxcosy =sin(x -y) +sin(x +y).

15. If h  #  0, prove that the following identities hold for a11 x:

sin (x + h)  - sin x sin (h/2)  cos  x + e-=-
h h/2 ( 12 ’

COS (x + h) - COS x =--
h

sin W2)  sin
h/2 i 1

x + E
2 .

These formulas are used in differential calculus.
16. Prove or disprove each  of the following statements.

(a) For a11 x # 0, we have sin 2x #  2 sin x.
(b) For every x, there is a y such  that COS (x + y)  = COS x + COS y.
(c) There is an x such  that sin (x + y)  = sin x + sin y for a11 y.
(d) There is a y # 0 such  that s;  sin x dx = sin y.

17. Calculate the integral Ja  sin x dx for each  of the following values of a and b. In each  case
interpret your result geometrically in terms of areas.
(a) a = 0, b  = n/6. (e) a = 0, b  = 77.
(b) a = 0, b  = n/4. (f) a = 0, b  = 2a.
(c) a = 0, b  = n/3. (g) a = -1,b = 1. ’
(d) a = 0, b  = n/2. (h) a = -7r/6,b  = a/4.

Evaluate  the integrals in Exercises 18 through 27.

18. Ji  (x + sin x) dx. 23. j+;  14  + COS tl dt.

19. j-;”  (x2  + COS x) dx. 24. sT, 1;  + COS tl dt, if 0 5  x 5  rr.

20. c’2  (sin x - COS x) dx. 25.

21.
ior’2  Isin x - COS xl dx. 26. ui2  sin 2x dx.

s

s II
22. (4  + COS t) dt.

0
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28. Prove the following integration formulas, valid for b  #  0:

s 2 1

0
COS (a + bt) dt = b [sin (a + bx) - sin a],

s

0

sin (a + bt) dt =
0

- t [Cos  (a + bx) - Cos  a].

29. (a) Use the identity sin 3t = 3 sin t - 4 sin3  t to deduce the integration formula

s

z .

0
sm3 t dt = $ - 9(2  + sin2  x) COS x .

(b) Derive  the identity COS 3t = 4 cos3  t - 3 COS t and use it to prove that

I

z

0
COS~ t dt = 9(2  + cos2  x) sin x .

30. If a function  f is periodic with period p > 0 and integrable on [0, p], prove that ~:Y(X) dx =
j;+“f(x)  dx for a11 a.

31. (a) Prove that j[”  sin nx  dx = j? COS nx  dx = 0 for a11 integers n  #  0.
(b) Use part (a) and the addition formulas for the sine and cosine to establish the following
formulas, valid for integers m and n, m2 #  n2;

s

2R
sin nx COS mx dx =

2n
s 0

sin nx sin mx dx =
2n

cosnxcosmxdx =0,
0 s 0

sin2  nx dx =
s

2n

0
cos2nxdx =TT, i f  n#O.

These formulas are known as the orthogonality relations for the sine and cosine.
32. Use the identity

2 sin t COS kx = sin (2k + 1) 5 - sin (2k - 1) 5

and the telescoping property of finite  sums to prove that if x #  2mn  (m an integer), we have

n
c COS kx =

sin +2x  cas  &(n  + 1)x

k=l
sin ix

33. If x #  2rnn  (m an integer), prove that

n
c sin kx =

sin &x sin i(n  + 1)x

k = l
sin ix

34. Refer to Figure 2.1. By comparing the area  of triangle OAP with that of the circuiar sector
OAP, prove that sin x < x if 0 < x < 4~. Then use the fact  that sin (-x) = -sin  x to prove
that jsin XI < 1x1 if 0 < 1x1 < 6~.
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-h-=, .&bx

Y
A

4-

3-

2:iJ !)

’ y=cscx;

1 II0
*I

X
2rl

-I-- -2- -3- -1- iii1

FIGURE 2.10 Graphs of the trigonometric functions  as they appear over  one
period-interval.
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2.9 Polar coordinates

Some applications ofintegration

Up to now we have located points in the plane with rectangular coordinates. We cari
also  locate them with polar coordinates. This is done  as follows. Let P be a point distinct
from the origin. Suppose the line segment joining P to the origin has length r > 0 and
mskes an angle of 8  radians with the positive x-axis. An example is shown in Figure 2. Il.
The two numbers r and 19 are called polar coordinates of P. They are related to the rec-
tangular coordinates (x, y)  by the equations

(2.15) x  =  rcos0, y = r sin 0.

Y

y = r sin 19

x = rcosf9

FIGURE 2.11 Polar coordinates. FIGURE 2.12 A figure-eight curve  with polar
equation r = 4jZ-Q.

The positive number r is called the radial distance of P, and 0 is called a polar angle. We
say  a polar angle rather than the polar angle because if 8  satisfies (2.15), SO does  8  + 2m-r
for any  integer n. We agree to cal1  a11 pairs of real numbers (r, 0) polar coordinates of P if
they satisfy (2.15) with r > 0. Thus,  a given point has more than one  pair of polar

coordinates. The radial distance r is uniquely determined, r = m, but the polar
angle 0 is determined only up to integer multiples of 27r.

When P is the origin, the equations in (2.15) are satisfied with r = 0 and any  0. For this
reason we assign to the origin the radial distance r = 0, and we agree that any  real 0  may
be used as a polar angle.

Letfbe a nonnegative function defined on an interval [a, b]. The set of a11  points with
polar coordinates (r, 0) satisfying r =f(e) is called the graph off in polar coordinates.
The equation r =f(e) is called a polar equation of this graph. For some curves,  polar
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equations may be simpler and more convenient  to use than Cartesian equations. For
example, the circle with Cartesian equation x2 + y2 = 4 has the simpler polar equation
r = 2. The equations in (2.15) show how to convert from rectangular to polar coordinates.

EXAMPLE. Figure 2.12 shows a curve in the shape of a figure eight whose Cartesian
equation is (x2 + y2)3  = y2. Using (2.15),  we find x2 + y2  = rz, SO the polar coordinates of

the points on this curve satisfy the equation r6  = r2  sin2  8, or r2  = Isin  61, r = m.
It is not difficult to sketch this curve from the polar equation. For example, in the interval
0 < 8 5 ~r/2,  sin e increases from 0 to 1, SO r also increases from 0 to 1. Plotting a few
values which are easy to calculate, for example, those corresponding to 8 = 7/6,  7r/4,  and
n/3, we quickly sketch the portion of the curve in the first quadrant. The rest of the curve
is obtained by appealing to symmetry in the Cartesian equation, or to the symmetry and
periodicity of Isin  01. It would be a more difficult task to sketch this curve from its
Cartesian equation alone.

2.10 The integral for area  in polar coordinates

Let f be a nonnegative function defined on an interval [a, b], where 0 5 b - a < 277.
The set of a11 points with polar coordinates (r, 0) satisfying the inequalities

/
8=b

FIGURE 2.13 The radial set of f over
an interval  [a, b].

FIGURE 2.14 The radial set of a step
function s is a union of circular sectors.

Its area  is 4s:  x2(0) dB.

is called the radial set offover [a, b]. The shaded region shown in Figure 2.13 is an example.
If f is constant on [a, b], its radial set is a circular sector subtending an angle of b - a
radians. Figure 2.14 shows the radial set S of a step function s.  Over  each  of the IZ open
subintervals (8,-, , 0,) of [a, b] in which s is constant, say  s(0) = sk  , the graph of s in polar
coordinates is a circular arc of radius sk  , and its radial set is a circular sector subtending an
angle of 8, - e,-, radians. Because of the way we have defined angular measure, the area
of this sector is &(0,  - BkP1)s,2  . Since  b - a 5 2rr , none  of these sectors  overlap SO, by
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additivity, the area of the radial set of s over  the full interval [a, b] is given by

where s”(0)  means the square of s(0). Thus, for step functions, the area of the radial set has
been expressed as an integral. Now we prove that this integral formula holds more
generally.

THEOREM  2.6. Let R denote  the radial set of a nonnegative function  f over  an interval
[a, b], where 0 5  b - a 5  2n=,  and assume that R is measurable. Iff 2  is integrable on [a, b]
the area  of R is given by the integral

a(R) = 4 j*f’(e)  de.
a

Proof. Choose two step functions s and t satisfying

0 I de) 1f(4 I t(e)

for a11 0  in [a, b], and let S and T denote  their radial sets, respectively. Since  s 5 f < t on
[a, b], the radial sets are related by the inclusion relations S G R E T. Hence, by the
monotone property of area, we have a(s) 5 a(R) < a(T). But S and T are radial sets of
step functions, SO a(S) = 4s:  s”(0)  de and a(T) = $Ja  t”(e)  dB.  Therefore we have the
inequalities

r ?(e)  de 5 2a(~) 2  t t”(e)  de ,

for a11 step functions s and t satisfying s <f 5 t on [a, b]. But s2  and t2  are arbitrary step
functions satisfying s2  5 f” < t2  on [a, b] hence, since f” is integrable, we must have
2a(R)  = Jafz(0)  dB. This proves the theorem.

Note: It cari  be proved that the measurability of R is a consequence  of the hypothesis
thatf2  is integrable, but we shall not discuss the proof.

EXAMPLE. TO calculate the area of the radial set R enclosed  by the figure-eight curve
shown in Figure 2.12, we calculate the area of the portion in the first quadrant and multiply
by four. For this curve, we havef2(0)  = 1sin 8) and, since sin 8 2 0 for 0 5 0 2 ~12,  we
find

s

RI2

s

nl2
a(R) = 4 &p(e)  de = 2 sin 0 dB  = 2 COS 0 - COS  T = 2 .o

0 i 2

2.11 Exercises

In each  of Exercises  1 through 4, show that the set of points whose rectangular coordinates
(x, y)  satisfy the given Cartesian equation is equal to the set of a11 points whose polar coordinates
(r ,  0) satisfy the corresponding polar equation.
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1. (X - 1)2 + y2  = 1; r  =2cos0,  coso > O .
2.xs+ys-x=4-; r = 1 + cas  0.
3. (x2 +yq2  =x2 -y2,y2  5  x2; r = VGZë,  Cos  20 2 0.
4. (x2 + y2)2 = 1x2 - y21  ; r=+jZZj.
In each  of Exercises  5 through 15, sketch the graph off in polar coordinates and compute the

area  of the radial set offover the interval  specified. You may  assume each  set is measurable.
5. Spiral of Architnedes: f(0)  = 8, 0 I 0 I 27.
6. Circle  tangent to y-axis: f(O) = 2 COS 0, -7112  < 0  I ~12.
7. Two circles tangent to y-axis: f(0) = 2 [COS  01, 0 5  tl  I 2~.
8. Circle tangent to x-axis: f(0) = 4 sin 0, 0 I 0  I T.
9. Two circles tangent to x-axis:f(B)  = 4 Isin 01, 0 5  8  I 2~.

10. Rosepetal: f(0) = sin 20, 0 5  8  5  ~12.
11. Four-leaved rose: f(0) = Isin 201, 0 < 0  I 27~.
12. Lazy eight:  f(O) = ~(COS 81, 0 5 0 I 2ir.
13. Four-leaf clouer: f(0) = 1/icoszer, 0 I t9 I 271.
14. Cardioid:f(B)  = 1 + COS 0, 0 I 0  5 2~.
15. Limaçon: f(e) = 2 + COS e, 0 5  e a 2~.

2.12 Application of integration to the calculation of volume

In Section 1.6 we introduced the concept of area as a set function satisfying certain
properties which we took as axioms for area. Then, in Sections 1.18 and 2.2, we showed
that the areas of many regions could be calculated by integration. The same approach cari
be used to discuss the concept of volume.

We assume there exist certain sets S of points in three-dimensional space, which we cal1
measurable sets, and a set function v, called a volume function, which assigns to each
measurable set S a number v(S), called the volume of S. We use the symbol &’  to denote
the class  of a11  measurable sets in three-dimensional space, and we cal1  each  set S in z&’  a
solid.

As in the case of area, we list a number of properties we would like volume to have and
take these as axioms for volume. The choice  of axioms enables us to prove that the volumes
of many solids cari  be computed by integration.

The first three axioms, like those for area, describe  the nonnegative, additive, and
difference  properties. Instead of an axiom of invariance under congruence, we use a
different type of axiom, called Cavalieri’sprinciple. This assigns equal volumes to congruent
solids and also to certain solids which, though not congruent, have equal cross-sectional
areas tut  by planes perpendicular to a given line. More precisely, suppose S is a given solid
and L a given line. If a plane F is perpendicular to L, the intersection F f? S is called a
cross-section perpendicular to L. If every cross-section perpendicular to L is a measurable
set in its own plane, we cal1  S a Cavalieri  solid. Cavalieri’s principle  assigns equal volumes
to two Cavalieri solids, S and T,  if a(S n F) = a(T n F) for every plane F perpendicular
to the given line L.

Cavalier?s  principle  cari  be illustrated intuitively as follows. Imagine a Cavalieri solid
as being a stack  of thin sheets of material, like a deck  of cards,  each  sheet being perpendicular
to a given line L. If we slide each  sheet in its own plane we cari  change the shape of the solid
but not its volume.

The next axiom states that the volume of a rectangular parallelepiped is the product  of
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the lengths of its edges. A rectangular parallelepiped is any  set congruent to a set of the form

(2.16) 0, y, 2) 10 5 x 5 a, O<y<b,  O<z<c}.

We shah  use the shorter term “box” rather than “rectangular parallelepiped.” The non-
negative numbers a, b,  c in (2.16) are called the lengths of the edges of the box.

Finally, we include an axiom which states that every convex set is measurable. A set is
called convex if, for every pair of points P and Q in the set, the line segment joining P and
Q is also in the set. This axiom, along with the additive and difference properties, ensures
that a11 the elementary solids that occur in the usual applications of calculus  are measurable.

The axioms for volume cari  now be stated as follows.

AXIOMATIC DEFINITION OF VOLUME. We assume there exists a class  &’ of solids  and a
set function v, whose domain  is &‘,  with the follow?ng  properties:

1. Nonnegative property. For each  set S in zzf  we have v(S) 2 0.
2. Additive property. US and Tare in &,  then S  v T and S n T are in &,  and we have

V(S  u T) = v(S) + v(T) - V(S  n T) .

3. DifSerence  property. If S and T are in & with S  E T, then T - S is in &,  and we
have U(T - S) = v(T) - v(S).

4. Cavalier?s principle. If S and T are two Cavalieri solids in & with a(S  n F) 5
a(T n F) for every plane Fperpendicular to a given line, then v(S) < v(T).

5. Choice  of scale. Every box B is in &.  If the edges of B have lengths a, 6,  and c, then
v(B) = abc.

6. Every convex set is in &‘.

Axiom 3 shows that the empty set @ is in &’  and has zero volume. Since  U(T - S) 2 0,
Axiom 3 also  implies the following monotone property :

4s)  I v(T), forsetsSandTin&‘withSG  T .

The monotone property, in turn, shows that every bounded plane set S in ~2 has zero
volume. A plane set is called bounded if it is a subset of some square in the plane. If we
consider a box B of altitude c having this square as its base, then S c B SO that we bave‘
v(S) < v(B) = a%, where a is the length of each  edge of the square base. If we had v(S) > 0,
we could choose  c SO that c < v(S)/a2,  contradicting the inequality v(S) 5 a%. This shows
that u(S) cannot be positive, SO v(S) = 0, as asserted.

Note that Cavalieri’s principle has been stated in the form of inequalities. If a(S  n F) =
a(T n F) for every plane F perpendicular to a given line, we may apply Axiom 5 twice to
deduce v(S) 5 v(T) and v(T) 5 v(S), and hence  we have v(T) = v(S).

Next we show that the volume of a right cylindrical solid is equal to the area of its base
multiplied by its altitude. By a right cylindrical solid we mean a set congruent to a set S
of the form

s = 0, y, 41 (x, y>  E  4 a 5 z 5 bl,
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where B is a bounded plane measurable set. The areas of the cross sections of S perpen-
dicular to the z-axis determine a cross-sectional area function as  which takes the constant
value a(B) on the interval a < z < b, and the value 0 outside [a, b].

Now let T be a box with cross-sectional area function aT  equal to a,. Axiom 5 tells us
that v(T) = a(B)(b - a), where a(B) is the area of the base of T, and b - a is its altitude.
Cavalier?s  principle states that v(S)  = v(T), SO the volume of S is the area of its base,
a(B), multiplied by its altitude, b - a. Note that the product  a(B)(b - a) is the integral
of the function a, over  the interval [a, b]. In other words, the volume of a right cylindrical
solid is equal to the integral of its cross-sectional area function,

v(S) = [ as(z) dz .

We cari  extend this formula to more general Cavalieri solids. Let R be a Cavalieri solid
with measurable cross-sections perpendicular to a given line L. Introduce a coordinate
axis along L (cal1 it the u-axis), and let an(u)  be the area of the cross section tut  by a plane
perpendicular to L at the point U. The volume of R cari  be computed by the following
theorem.

THEOREM  2.7. Let R be a Cavalieri solid in ~2 with a cross-sectional areafunction atz which
is integrable on an interval  [a, b] and zero outside [a, b]. Then the volume of R is equal to
the integral of the cross-sectional area:

v(R) = [ aR(u)  du .

Proof.  Choose step functions  s and t such  that s 5 aR  < t on [a, b] and define  s and t
to be zero outside [a, b]. For each  subinterval of [a, b] on which s is constant, we cari
imagine a cylindrical solid (for example, a right circular cylinder) constructed SO that its
cross-sectional area on this subinterval has the same constant value as s. The union of these
cylinders over  a11 intervals of constancy  of s is a solid S whose volume v(S) is, by additivity,
equal to the integral ji s(u)  du. Similarly, there is a solid T, a union of cylinders, whose
volume v(T) = Ja t(u) du. But as(u)  = s(u)  5 a,(u) 5 t(u) = aT(u)  for a11 u  in [a, b], SO

Cavalieri’s principle implies that v(S) < v(R) 5 v(T). In other words, v(R) satisfies the
inequalities

[ s(u) du 5 v(R) < [ t(u) du

for a11 step functions  s and t satisfying s < a, 5 t on [a, b]. Since  as  is integrable on [a, b],
it follows that v(R) = ji a,(u) du.

EXAMPLE. Volume of a solid of revolution. Let f be a function which is nonnegative and
integrable on an interval [a, b]. If the ordinate set of this function is revolved about  the
x-axis, it sweeps out  a solid of revolution. Each cross section tut  by a plane perpendicular
to the x-axis is a circular disk. The area of the circular disk tut  at the point x is ~Y(X),
wherefa(x)  means the square off(x). Therefore, by Theorem 2.7, the volume of the solid
(if the solid is in JZY)  is equal to the integral sa  V~(X) dx, if the integral exists. In particular,



114 Some applications of integration

iff(x) = drz  - x2 for -Y 5 x 5 r, the ordinate set off is a semicircular disk of radius r
and the solid swept out is a sphere of radius r. The sphere is convex. Its volume is equal to

s 7
-T  T~“(X)  dx = -rr s:7 (r2 - x2)  dx = 27~  Or(r2 - x2)  dx = $rr3.i

More generally, suppose we have two nonnegative functions f and g which are integrable
on an interval [a, b]  and satisfy f 5 g on [a, b]. When the region between their graphs is
rotated about the x-axis, it sweeps out  a solid of revolution such  that each  cross section tut
by a plane perpendicular to the x-axis at the point x is an annulus (a region bounded by two
concentric circles)  with area .rrg2(x)  - T~“(X). Therefore, ifg2  -f 2 is integrable, the volume
of such  a solid (if the solid is in ~2) is given by the integral

sab 4g2(x) - ~“(X>I  dx

2.13 Exercises

1. Use integration to compute the volume of a right circular cane  generated by revolving the
ordinate set of a linear functionf(x)  = cx over  the interval  0 < x < b.  Show that the result
is one-third  the area  of the base times the altitude of the cane.

In each  of Exercises 2 through 7, compute the volume of the solid generated by revolving the
ordinate set of the function  fover the interval  indicated. Sketch each  of the ordinate sets.
2. f(x) = 2/x, Olx21. 5. f(x) = sin x, 0 < x < r.
3. f(x) = x1/4, Olxll. 6. f(x) = COS x, 0 < x < ~12.
4. f(x) = x2, - 1  5x 12. 7. f(x) = sin x + cas  x, 0 5  x < V.

In each  of Exercises 8 through 11, sketch the region between the graphs offand g and compute
the volume of the solid obtained by rotating this region about  the x-axis.
8. f(x) = &, g(x)  = 1, Olxll.
9. f(x) = 4, g(x)  = x2, Olxll.

10. f(x) = sin x, g(x)  = COS x, 0 < x < rr/4.
ll.f(x) = y 4  -x2, g(x) = 1, OIxId3.
12. Sketch the graphs of f(x) = 1/x  and g(x) = x/2 over  the interval  [0,2].  Find a number t,

1 < t < 2, SO that when the region between the graphs off and g over  the interval  [0, t]  is
rotated about  the x-axis, it sweeps out  a solid of revolution whose volume is equal to Tt3/3.

13. What volume of material is removed from a solid sphere of radius 2r by drilling a hole  of radius
r through the tenter?

14. A napkin-ring is formed  by drilling a cylindrical hole  symmetrically through the tenter  of a
solid sphere. If the length of the hole is 2h,  prove that the volume of the napkin-ring is nah3,
where a is a rational number.

15. A solid has a circular base of radius 2. Each  cross section tut by a plane perpendicular to a
fixed diameter is an equilateral triangle. Compute the volume of the solid.

16. The cross sections of a solid are squares perpendicular to the x-axis with their centers on the
axis. If the square tut off at x has edge 2x2,  find the volume of the solid between x = 0 and
x = a. Make a sketch.

17. Find the volume of a solid whose cross section, made by a plane perpendicular to the x-axis,
has the area  ax2 + bx  + c for each  x in the interval  0 5  x < h.  Express the volume in terms
of the areas  B,, M,  and B, of the cross sections corresponding to x = 0, x = h/2,  and x = h,
respectively. The resulting formula is known as theprismoidformula.
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18. Make a sketch of the region in the xy-plane consisting of a11 points (x, y) satisfying the simul-
taneous inequalities 0 < x 2  2, $x2 < y < 1. Compute the volume of the solid obtained by
rotating this region about  (a) the x-axis; (b) the y-axis; (c) the vertical line passing through
(2,0); (d) the horizontal line passing through (0, 1).

2.14 Application of integration to the concept of work

Thus far our applications of integration have been to area and volume, concepts from
geometry. Now we discuss an application to work, a concept from physics.

Work is a measure of the energy expended by a force in moving a particle from one  point
to another. In this section we consider only the simplest case, linear motion. That is, we
assume that the motion takes place along a line (which we take as the x-axis) from one
point, say  x = a, to another point, x = b,  and we also assume that the force acts  along this
line. We permit either a < b or b < a. We assume further that the force acting on the
particle is a function of the position. If the particle is at x, we denote  by f (x) the force acting
on it, where f (x) > 0 if the force acts  in the direction of the positive x-axis, andf(x)  < 0 if
the force acts  in the opposite direction. When the force is constant, say  f(x) = c for a11
x between a and 6,  we define  the work done  by f to be the number c * (b - a), force times
displacement. The work may be positive or negative.

If force is measured in pounds and distance in feet,  we measure work in foot-pounds;
if force is in dynes and distance in centirneters (the cgs  system), work is measured in dyne-
centimeters. One dyne-centimeter of work is called an erg. If force is in newtons  and
distance in meters (the mks system), work is in nebrston-meters.  One newton-meter  of work
is called a joule. One newton is 105 dynes, and one  joule is 107 ergs.

EXAMPLE. A stone weighing 3 pounds (lb) is thrown upward along a straight line, rising
to a height of 15 feet  (ft) and returning to the ground. We take the x-axis pointing up along
the line of motion. The constant force of gravity acts  downward, so f (x) = -3 lb for each
x, 0 5 x 5 15. The work done  by gravity in moving the stone from, say,  x = 6 ft to
x = 15 ft is -3 * (15 - 6) = -27 foot-pounds (ft-lb). When the same stone falls from
x = 15 ft to x = 6 ft, the work done  by gravity is -3(6  - 15) = 27 ft-lb.

Now suppose the force is not necessarily constant but is a given function of position de-
fined on the interval joining a and b. How do we define  the work done  by f in moving a
particle from a to b ? We proceed much as we did for area and volume. We state some
properties of work which are dictated by physical requirements. Then we prove that for
any  definition of work which has these properties, the work done  by an integrable force
function f is equal to the integral Si f(x) dx.

FUNDAMENTAL PROPERTIES OF WORK. Let WJjJ denote  the work  done  by a force function
fin moving a particle from  a to b. Then work has the following  properties:

1.  Additiveproperty. Ifa < c < 6,  then W:(f)  = W:(f)  + W:(f).
2. Monotone property. Iff 5 g on [u,  b], then W:(f)  < W:(g).  That is, a greater force

does  greater work.
3. Elementary formula. qf is constant, say  f (x) = c or a11  x in the open  interval  (a, b),f

then w:(f)  = c. (b - a).

The additive property cari  be extended by induction to any  finite number of intervals.
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That is, if a = x0  < x1  < * * . < x, = b, we have

where W, is the work done  by f from xg_i  to xk. In particular, if the force is a step function
s which takes a constant value sic on the open  interval (x,-,,  xt),  property 3 states that
W, = Si * (xk  - xkpl),  SO we have

W;(s) = 2 sk  . (xk  - x~-~)  =Sas(x)  dx .
k=l

Thus, for step functions, work has been expressed as an integral. Now it is an easy matter
to prove that this holds true more generally.

THEOREM 2.8. Suppose work  has been dejned  for a class  of force functions f in such  a
way  that it satisjies  properties 1,  2, and 3. Then the work done  by an integrable force function
fin moving a particle  froc a to b is equal to the integral off,

w:(f) = C~(X)  dx .

Proof. Let s and t be two step functions satisfying s If 2 t on [a, b]. The monotone
property of work states that W:(s)  5 W:(f) 5 W:(t). But W:(s)  = ja S(X) dx and W:(t) =
JE  t(x) dx, SO the number W:(f) satisfies the inequalities

for a11  step functions s and t satisfying s < f 5 t on [a, b]. Since  f is integrable on [a, b],
it follows that W:(f) = jaf(x)  dx.

Note: Many  authors simply define  work to be the integral of the force function.
The foregoing discussion serves as motivation for this definition.

EXAMPLE. Work required to stretch a spring. Assume that the force f(x) needed to
stretch a steel spring a distance x beyond its natural length is proportional to x (Hooke’s
Zaw).  We place the x-axis along the axis of the spring. If the stretching force acts  in the
positive direction of the axis, we havef(x)  = cx, where the spring constant c is positive.
(The value of c cari  be determined if we know the forcef(x) for a particular value of x # 0.)
The work required to stretch the spring a distance a is ji f(x) dx = jo cx dx = ca2/2,  a
number proportional to the square of the displacement.

A discussion of work for motion along curves  other than straight lines is carried  out  in
Volume II with the aid of line integrals.

2 . 1 5  Exercises

In Exercises  1 and 2 assume the force on the spring obeys  Hooke’s law.
1. If a ten-Pound  force stretches an elastic  spring one  inch,  how much  work is done  in stretching

the spring one  foot?
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2. A spring has a natural length of 1 meter  (m). A force of 100 newtons  compresses it to 0.9 m.
How many  joules of work are required to compress  it to half its natural length? What is the
length of the spring when 20 joules of work have been expended?

3. A particle is moved along  the x-axis by a propelling forcef(x)  = 3x2 + 4x newtons.  Calculate
how many  joules of work are done  by the force to move the particle (a) from x = 0 to x = 7 m;
(b) from x = 2 m to x = 7 m.

4. A particle is to be moved along  the x-axis by a quadratic propelling forcef(x)  = ax2 + bx
dynes. Calculate a and b SO that 900 ergs of work are required to move the particle 10 centi-
meters (cm) from the origin, if the force is 65 dynes when x = 5 cm.

5. A table 50 feet  in length and weighing 4 pounds per foot (Ib/ft)  hangs from a windlass. Cal-
culate  the work done  in winding up 25 ft of the table. Neglect a11 forces except gravity.

6. Solve Exercise 5 if a 50 Pound  weight is attached to the end of the table.
7. A weight of 150 pounds is attached at one  end of a long flexible chain weighing 2 lb/ft. The

weight is initially suspended with 10 feet  of chain over  the edge of a building 100 feet  in height.
Neglect a11 forces except gravity  and calculate the amount of work done  by the force of gravity
when the load is lowered to a position 10 feet  above the ground.

8. In Exercise 7, suppose that the chain is only 60 feet  long and that the load and chain are allowed
to drop to the ground, starting from the same  initial position as before. Calculate the amount
of work done  by the force of gravity  when the weight reaches the ground.

9. Let V(q) denote  the voltage required to place a charge q on the plates of a condenser. The work
required to charge a condenser  from q = CI to q = b is defined to be the integral Ji  V(q) dq.
If the voltage is proportional to the charge, prove that the work done  to place a charge Q on
an uncharged condenser  is +Q  V(Q).

2.16 Average value of a function

In scientific work it is often necessary to make several measurements under similar
conditions and then compute an average or mean  for the purpose  of summarizing the data.
There are many useful  types of averages, the most common  being the arithmetic mean.  If
4, a2,  . . . , a, are n real numbers, their arithmetic mean a is defined by the equation

(2.17)
1 n(j=-
c ak  .

n
k=l

If the numbers ak  are the values of a functionfat n  distinct points, say  a, =f(xk),  then  the
number

; $f cxk)

k=l

is the arithmetic mean of the function valuesf(x,),  . . . ,f(xJ. We cari  extend this concept
to compute an average value not only for a finite number of values off(x) but for a11  values
off(x) where x runs through an interval. The following definition serves this purpose.

DEFINITION OF AVERAGE  VALUE OF A FUNCTION ON AN INTERVAL. Iff is integrable  on

an interval  [a, b], we dejine  A(f  ),  the average value off on [a, b], by the formula

(2.18) AU) = b5 s:f (xl dx .



118 Some applications of integration

When f is nonnegative, this formula has a simple geometric interpretation. Written in
the form (b - a)A(f)  = ja f(x) dx, it states that the rectangle of altitude A(f) and base
[a, b]  has an area equal to that of the ordinate set off over [a, b].

Now we cari  show that formula (2.18) is actually an extension of the concept of the
arithmetic mean. Let f be a step function which is constant on n equal subintervals of
[a, b]. Specifically, let xk = a + k(b - a)/n  for k = 0, 1,2,  . . . , n,  and suppose that

f(x) = f(x&  if xkpl < x < x~.  Then xlc - xk-r  = (b - a)/n,  SO we have

‘w) = &sf(x) dx =

Thus, for step functions, the average A(f) is the same as the arithmetic mean of the values

f (x,)3  . . . , f (x,) taken on the intervals of constancy.
Weighted arithmetic means are often used in place of the ordinary arithmetic mean in

(2.17). If wl, w2> . . . , w, are IZ nonnegative numbers (called weights), not a11 zero, the
weighted arithmetic mean a of a,, a2,  . . . , a, is defined by the formula

iwk
k=l

When the weights are a11 equal, this reduces to the ordinary arithmetic mean. The extension
of this concept to integrable functions is given by the formula

(2.19) s bwWW  dx
4.f) = n b

J
3

w(x) dxa

where M,  is a nonnegative weight function with jz w(x) dx # 0.
Weighted averages are widely used in physics and engineering, as well as in mathematics.

For example, consider a straight rod of length a made of a material of varying density.
Place the rod along the positive x-axis with one  end at the origin 0, and let m(x) denote  the
mass of a portion of the rod of length x, measured from 0. If m(x) =JO  p(t) dt for some
integrable function p (p is the Greek letter ho),  then p is called the mass density  of the rod.
A untform  rod is one  whose mass density is constant. The integralj;  X~(X)  dx is called the
jîrst  moment of the rod about 0, and the tenter  of mass is the point whose x-coordinate is

I
a

,f=  0 V(X>  dx
s“p(x) dx ’”

This is an example of a weighted average. We are averaging the distance function f (x) = x
with the mass density p as weight function.
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The integralj;  X~~(X)  dx is called the second moment, or moment of inertia, of the rod
about 0, and the positive number r given by the formula

1 =X”~(X)  dx
y’= O

s“P(X) dx
0

is called the radius of gyration of the rod. In this case, the function being averaged is the
square of the distance function, f(x) = x2, with the mass density p as the weight function.

Weighted averages like these also occur in the mathematical theory of probability where
the concepts of expectation and variante  play the same role as tenter  of mass and moment
of inertia.

2.17 Exercises

In Exercises 1 through 10, compute the average A(f) for the given functionfover the specified
interval.
1. f(X) = x2, a<x<b. 6. f(x) = COS x, - VT/2  < x < a/2.
2. f(x) = x2 +  x3, Olxll. 7. f(x) = sin 2x, 0 2 x 5 T/2.
3. f(x) = x1/2, OIx14. 8.  f (x )  = sin x COS x, 0 < x < R/4.
4. f(x) = x1/3, lI,x<S. 9. f(x) = sin2  x, 0 <  x 5 a/2.
5. f(x) = sin x, 0 5 x < a/2. 10. f(x) = COS2  x, OIx<?T.

11. (a) Iff(x) = x2 for 0 < x 5 a, find a number c satisfying 0 < c < a such  thatf(c)  is equal to
the average off in [0, a].
(b) Solve part (a) iff(x) = x”, where n is any  positive integer.

12. Letf(x) = x2 for 0 I; x 5  1. The average value off on [0, l] is $. Find a nonnegative weight
function w  such  that the weighted average off on [0, 11,  as defined by Equation (2.19) is
(a>  4~;  (b)  $; Cc>  8.

13. Let A (f)denote the average offover  an interval  [a, b]. Prove that the average has the following
properties :
(a) Additive property: A (f + g) = A(f) + A(g).
(b) Homogenousproperty: A(cf)  = CA(~) if c is any  real number.

, (c) Monotoneproperty:  A(,f) < A(g) if f <g  on [a, b].
14. Which of the properties in Exercise  13 are valid for weighted averages as defined by Equation

(2.19)?
15. Let Ai(f)  denote  the average off on an interval  [a, b].

(a) If a < c < b, prove that there i:i a number t satisfying 0 < t < 1 such  that Ai(f)  =
tAi(f)  + (1 - t)Ae(f).  Thus, Ai(f) is a weighted arithmetic mean  of Ai(f)  and AZ(f).
(b) Prove that the result of part (a) also  holds for weighted averages as defined by Equation
(2.19).

Each  of Exercises 16 through 21 refers t’o  a rod of length L placed  on the x-axis with one  end at
the origin. For the mass density p  as described in each  case, calculate (a) the tenter  of mass of the
rod, (b) the moment of inertia about  the origin,  and (c) the radius of gyration.
16. p(x) = 1 for 0 <x 5  L.

17. p(x) = 1 f o r  05x<:, p(x)  =  2 f o r  g <  .Y  IL.

18. ,D(x)  = x f o r  0  <x  IL.

19. p(x) = x f o r  05x<;, p(x) = ; for g <x  2  L.
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20. p(x) = x2 for 0 I x I L.
L L2

21. p(x) = x2 f o r  Olxlz, P(X) = 4 for 4  2  x < L.

22. Determine a mass density p  SO that the tenter  of mass of a rod of length L Will be at a distance
L/4  from one  end of the rod.

23. In an electrical circuit, the voltage e(t) at time t is given by the formula e(t) = 3 sin 2t. Cal-
culate  the following: (a) the average voltage over  the time interval  [0, a/2]; (b) the root-mean-
square of the voltage; that is, the square root of the average of the function e2  in the interval
w,  r/21.

24. In an electrical circuit, the voltage e(r)  and the current i(r) at time t are given by the formulas
e(t) = 160 sin t,  i(t) = 2 sin (t - x/6). The average power is defined to be

1 T

TOs
e(t)i(t)  dt ,

where T is the period of both the voltage and the current. Determine T and calculate the
average power.

2.18 The integral as a function of the Upper  limit. Indefinite integrals

In this section we assume thatf is a function such  that the integral jZ,  f(t) dt exists for each
x in an interval [a, b]. We shall keep a and f fixed and study this integral as a function of x.
We denote  the value of the integral by A(x), SO that we have

(2.20) A(x) = j;f(t)  dt i f  a<x<b.

An equation like this enables us to construct a new function A from a given functionf,  the
value of A at each  point in [a, b] being determined by Equation (2.20). The function A is
sometimes referred to as an indejnite integral off, and it is said to be obtained from f by
integration. We say  an indefinite integral rather than the  indefinite integral because A also
depends  on the lower limit a. Different values of a Will lead to different functions  A. If we
use a different lower limit, say  c, and define  another indefinite integral F by the equation

then the additive property tells us that

A(x) - F(x) = j:f(t)  dt - j:f(t) dt = j;f(t) dt >

and hence  the difference A(x) - F(x) is independent of x. Therefore any  two indefinite
integrals of the same function differ only by a constant (the constant depends  on the choice
of a and c).

When an indefinite integral off is known, the value of an integral such  as j: f (t) dt may
be evaluated by a simple subtraction. For example, if n is a nonnegative integer, we have
the formula of Theorem 1.15,

s

z xrz+1

t”dt  = -
0 n+1’
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and the additive property implies that

In general, if F(x) = Je f(t) dt, then we have

(2.21) I:f(t)  dt = jcbf(t)  dt - j:j(t)  dt = F(b) - F(a).

A different choice  of c merely changes F(x) by a constant; this does  not alter the difference
F(b) - F(a), because the constant cancels out  in the subtraction.

If we use the special symbol

F(x)/:

to denote  the difference F(b) - F(a), Equation (2.21) may be written as

sabf(x) dx =:  F(x)\: = F(b) - F(a)

There is, of course, a very simple geometric relationship between a function f and its
indefinite integrals. An example is illustrated in Figure 2.15(a), where f is a nonnegative
function and the number A(x) is equal to the area of the shaded region under the graph of
f from a to x. If f assumes both positive and negative values, as in Figure 2.15(b), the
integral A(x) gives the sum of the areas of the regions above the x-axis minus the sum of
the areas below the x-axis.

Many of the functions  that occur in various branches of science arise exactly in this way,
as indefinite integrals of other functions. This is one  of the reasons that a large part of
calculus  is devoted to the study of indefinite integrals.

Sometimes a knowledge of a special property off implies a corresponding special property
of the indefinite integral. For example, if f is nonnegative on [a, b], then the indefinite
integral A  is increasing, since  we have

A(y) - A(x) = j,Lf(f)  dt - jUf(O dt = j;/(t)  dt 2 0,

a X

(4 U-4

F IGURE 2.15 Indefinite integral interpreted geometrically in terms of area.
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P(Y)

-.X x+y Y X x+y
2 2

(a) A convex function (b) A concave function

FIGURE 2.16 Geometric interpretation of convexity and concavity.

whenever a 5 x 5 y 5 b.  Interpreted geometrically, this means that the area under the
graph of a nonnegative function from a to x cannot decrease as x increases.

Now we discuss another property which is not immediately evident geometrically.
Suppose f is increasing on [a, b]. We cari  prove that the indefinite integral A has a property
known as convexity. Its graph bends upward, as illustrated in Figure 2.16(a); that is, the
chord joining any  two points on the graph always lies above the graph. An analytic
definition of convexity may be given as follows.

DEFINITION OF A CONVEX FUNCTION. A function g is said to be convex on an interval
[a, b] if, for all  x and y in [a, b] andfor every CI  satisfying 0 < CC  < 1, we  have

(2.22) g(z) 5 %(Y>  + (1  - 4g(x), where z = CC~  + (1 -.cc)x.

We say  g is concave on [a, b] if the reverse inequality holds,

g(z)  2 %(Y) + (1 - 4g(x>, where z=ocy+(l  -tc)x.

These inequalities have a simple geometric interpretation. The point z = CCJJ  + (1 - K)X
satisfies z - x = ~(y - x). If x < y, this point divides the interval [~,y] into two sub-
intervals, [x, z] and [z, y], the length of [x, z] being CC  times that of [x, y]. As CC  runs from 0
to 1,  the point Mg(y)  + (1 - CC)~(X)  traces out  the line segment joining the points (x, g(x))
and (y, g(y)) on the graph of g. Inequality (2.22) states that the graph of g never  goes  above
this line segment. Figure 2.16(a) shows an example with CC  = 3. For a concave function,
the graph never  goes  below the line segment, as illustrated by the example in Figure 2.16(b).

THEOREM 2.9. Let A(x) = JO  f(t) dt. Then A is convex on every interval  where f is in-
creasing, and concave on every interval  where f is decreasing.

Proof. Assume f is increasing on [a, b], choose  x < y, and let z = CC~  + (1 - CC)~.  We
are to prove that A(z) 5 aA + (1  - ~)A(X). S ince A(z) = ctA(z)  + (1 - N)A(Z),  this
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is the same as proving that ~A(Z)  + (1 - ~)A(Z)  5 CL~(Y) + (1 - ~)A(X),  or that

(1  - 4144  - &41  I 4qy) - 441’

Since we have A(z) - A(x) = J;f(t)  dt  and A(y)  - A(z) = fif  (t) dr,  we are to prove that

(2.23) (1 - CC)  j)(l)  dt < tc SLf(t)  dt .

But f is increasing, SO we have the inequalities

f(t) If(z) if x < t  I z, and f (z)  <f(t) if z I t  < y  .

Integrating these inequalities we find

s;f(t)  dt If(z)(z  - x>, and f(z)(y  - z) 5 jzyî(O  dt .
But (1 - CC)(~  - x) = ~(y - z), SO these inequalities give us

(1 - ~1 J;f(O dt I (1 - Mz)(z - x) = ~-(z)(Y - z)  I ,$‘fG)  dt ,

which proves (2.23). This proves that A is convex when f is increasing. When fis decreasing,
we may apply the result just proved to -J

EXAMPLE.  The cosine function decreases in the interval [0, 7~1. Since sin x = JO COS t  dt,
the graph of the sine function is concave in the interval [0, x].  In the interval [‘rr,  2571,  the
cosine increases and the sine function is convex.

Figure 2.17 illustrates further properties of indefinite integrals. The graph on the left is
that of the greatest-integer function, f(x) = [xl; the graph on the right is that of the
indefinite integral A(x) = J;  [t] dt. On those intervals where f is constant, the function A
is linear. We describe  this by saying that the integral of a step function is piece\+Yse  linear.

F IGURE 2.17 The indefinite integral of a step function is piecewise linear.
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Observe also that the graph off is made up of disconnected line segments. There are
points on the graph offwhere a small change in x produces a sudden jump in the value of
the function. Note, however, that the corresponding indefinite integral does  not exhibit
this behavior. A small change in x produces only a small change in A(x). That is why the
graph of A is not disconnected. This illustrates a general property of indefinite integrals
known as continuity. In the next chapter  we shall  discuss the concept of continuity in
detail and prove that the indefinite integral is always a continuous  function.

2.19 Exercises

Evaluate  the integrals in Exercises 1 through 16.

1. Jo” (1 + t + tz)dt.

2. SO”  (1 + t + t2)  dt.

3. jz (1 + t + t2)  dt.

4. j;-‘(1 - 2t + 3t2)dt.

5.  j:, t2(t2  + 1) dt.

6. js’  (t2  + 1)2  dt.

7. jr0  112 + 1) dt, x  > 0.

8. j;‘(tl’2 + t1’4)  dt, x > 0.

9. j:, COS t dt.

10. j;’  (4 + COS t)  dt.

11. (4 - sin t) dt.

12.

13. j:’ (v2  + sin 3v)  du.

14. .\l (sin2  x + x) dx.
m

15.
SC0

sin 2w + COS t dw.
i

16. j:, (4 + COS t)2  dt.

17. Find a11 real values of x such  that

j;  (t3  - t) dt = 3 j;  (t - t3)  dt .

Draw a suitable  figure and interpret the equation geometrically.

18. Letf(x) = x - [x] - & if x is not an integer, and letf(x)  = 0 if x is an integer. (As usual,
[x] denotes  the greatest integer I x.) Define  a new function P as follows:

f’(x)  = j,)(t)  dt for every real x .

(a) Draw the graph off over  the interval  [ -3, 31 and prove that f is periodic with period 1:
f(x + 1) =f(x)  for a11 x.
(b) Prove that P(x) = $(x2 - x), if 0 5  x 5  1 and that P is periodic with period 1.
(c) Express P(x) in terms of [xl.
(d) Determine a constant c such  that J”A  (P(t) + c) dt = 0.
(e) For the constant c of part (d), let Q(x) = jg (P(t) + c) dt. Prove that Q is periodic with
period 1 and that

Q(x) = ;  - ;  + ; i f  O<x<l.
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19. Given an odd function f, detîned  everywhere, periodic with period 2, and integrable on every
interval. Let g(x) = J;f(t)  dt.
(a) Prove that g(2n)  = 0 for every integer  n.
(b) Prove that g is even and periodic with period 2.

20. Given an even function f, defined everywhere, periodic with period 2, and integrable on every
interval. Let g(x) = j; f (t) dt, and let A = g(1).
(a) Prove that g is odd and that g(x + 2) - g(x) = g(2).
(b) Computeg(2) and g(5) in terms of A.
(c) For what value of A Will g be periodic with period 2?

21. Given two functions  f and g,  integrable on every interval  and having the following properties :
f is odd, g is even,  f(5) = 7, f(0) = 0, g(x) =f(x  + 5),  f(x) = j$ g(t) dt for a11 x. Prove
that (a)& - 5) = -g(x) for a11 x; (b) JO f (t) dt = 7; (c) j$ f(t) dt = g(0) - g(x).
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CONTINUOUS FUNCTIONS

3.1 Informa1 description of continuity

This chapter deals with the concept of continuity, one  of the most important and also
one  of the most fascinating ideas in a11  of mathematics. Before we give a precise  technical
definition of continuity, we shah  briefly discuss the concept in an informa1 and intuitive
way to give the reader a feeling for its meaning.

Roughly speaking, the situation is this: Suppose a function f has the value f(p) at a
certain point p. Then f is said to be continuous at p if at every nearby point x the function

*X
/ = X

- 3 - 2 - l 0 1 2 3 4 0

(a)  A jump d iscont inu i ty  a t  each  in teger . (b)  An infinite  d i s c o n t i n u i t y  a t  0 .

F I G U R E  3.1 I l l u s t r a t i ng  two  k inds  o f  d i scon t inu i t i e s .

value f (x) is close to f (p). Another way of putting it is as follows: If we let x move toward
p, we want the corresponding function values f(x) to become arbitrarily close to f(p),
regardless of the manner in which x approaches p. We do not want sudden jumps in the
values of a continuous function, as in the examples in Figure 3.1.

Figure 3.1(a) shows the graph of the function f defined by the equation f (x) = x - [xl,
where [x] denotes  the greatest integer Ix. At each  integer we have what is known as a
jump discontinuity. For example, f(2) = 0, but as x approaches 2 from the left, f(x)
approaches the value 1, which is not equal to f (2). Therefore we have a discontinuity at 2.
Note that f (x) d oes approach f(2) if we let x approach 2 from the right, but this by itself
is not enough to establish continuity at 2. In a case like this, the function is called continuous
from the right at 2 and discontinuous  from the left at 2. Continuity at a point requires both
continuity from the left and from the right.

126
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In the early development of calculus  almost a11 functions that were dealt with were
continuous and there was no real need at that time for a penetrating look into the exact
meaning of continuity. It was not until late in the 18th Century that discontinuous  functions
began appearing in connection with various kinds of physical problems. In particular, the
work of J. B. J. Fourier (1758-1830) on the theory of heat forced mathematicians of the
early 19th Century to examine more carefully the exact meaning of such  concepts as function
and continuity. Although the meaning of the word “continuous” seems intuitively clear
to most people, it is not obvious how a good definition of this idea should be formulated.
One popular dictionary explains continuity as follows :

Continuity: Quality or state of being continuous.
Continuous: Having continuity of parts.

Trying to learn the meaning of continuity from these two statements alone is like trying to
learn Chinese  with only a Chinese  dictionary. A satisfactory mathematical definition of
continuity, expressed entirely in terms of properties of the real-number system, was first
formulated in 1821 by the French mathematician, Augustin-Louis Cauchy (1789-1857).
His definition, which is still used today, is most easily explained in terms of the limit concept
to which we turn now.

3.2 The defmition of the limit of a function

Let f be a function defined in some open  interval containing a point p, although we do
not insist that f be defined at the point p itself. Let A be a real number. The equation

limf(x)  = A
x-lJ

is read: “The limit off(x), as x approaches p, is equal to A,” or “f(x) approaches A as x
approaches p.” It is also written without the limit symbol, as follows:

f(x)-A a s  x+p.

This symbolism is intended to convey the idea that we cari  make f(x) as close to A as we
please, provided we choose  x sufficiently close to p.

Our first task is to explain the meaning of these symbols entirely in terms of real numbers.
We shall do this in two stages. First we introduce the concept of a neighborhood of a point,
then we define  limits in terms of neighborhoods.

DEFINITION OF NEIGHBORHOOD OF A POINT. Any  open  interval  containing a point p as
its midpoint is called  a neighborhood of p.

Notation. We denote  neighborhoods by N(p), N,(p), N,(p), etc. Since  a neighborhood
N(p) is an open  interval symmetric about p, it consists  of a11 real x satisfying p - r < x <
p + r for some r > 0. The positive number r is called the radius of the neighborhood. W e
designate N(p) by N(p;  r) if we wish to specify its radius. The inequalities p - r < x <
p + r are equivalent to -r < x -p < r, and to Ix -pi  < r. Thus, N(p;  r) consists  of
a11  points x whose distance from p is less than r.
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In the next definition, we assume that A is a real number and thatfis a function defined
on some neighborhood of a point p (except possibly at p). The function f may also be
delined at p but this is irrelevant in the definition.

DEFINITION OF LIMIT OF A FUNCTION. The symbolism

limf(x)  =  A [or  f(x) - A a s  x - p ]
cE+3>

means  that for every neighborhood N,(A)  there is some neighborhood N,(p) such  that

(3.1) f(x)  E  N,(A) whenever x E  N,(p) a n d  x#p.

The first thing to note about this definition is that it involves two neighborhoods, N,(A)
and N,(p). The neighborhood N,(A) is specifiedfirst; it tells us how close we wishf(x)  to

Neighborhood N,(p)

F IGURE 3 . 2 Here lim f(x) = A, but there FIGURE 3.3 Here f is defined at p and
2-p

is no assertion about  f at p.
lim f(x) = f(p), hence  f is continuous  at p.
5-p

be to the limit A. The second neighborhood, N,(p), tells us how close x should be to p SO

thatf(x)  Will be within the first neighborhood N,(A). The essential part of the definition
is that, for every N,(A), no matter how small,  there is some neighborhood N,(p) to satisfy
(3.1). In general, the neighborhood N,(p) Will depend  on the choice  of N,(A). A neighbor-
hood N,(p) that works for one  particular N,(A)  Will also work, of course, for every larger
N,(A), but it may not be suitable for any  smaller N,(A).

The definition of limit may be illustrated geometrically as in Figure 3.2. A neighborhood
N,(A)  is shown on the y-axis. A neighborhood N,(p) corresponding to N,(A)  is shown on
the x-axis. The shaded rectangle consists  of a11  points (x, y) for which x E  N,(p) and
y E  N,(A). The definition of limit asserts that the entire  graph offabove the interval N,(p)
lies within this rectangle, except possibly for the point on the graph above p itself.
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The definition of limit cari  also be formulated in terms of the radii of the neighborhoods
N,(A) and N,(p). It is customary to denote  the radius of N,(A) by E (the Greek letter epsilon)
and the radius of N,(p) by 6 (the Greek letter delta). The statementf(x)  E  N,(A) is equivalent
to the inequality If(x) - Al  < E,  and the statement x E  N,(p), x #p,  is equivalent to the
inequalities 0 < lx -pi  < 6. Therefore, the definition of limit cari  also be expressed as
follows :

The symbol lim5-J(x) = A means  that for every E > 0, there is  a 6  > 0 such  that

(3.2) If(4  - 4  < E whenever 0 < (x - pi  < 6 .

We note that the three statements,

limf(x)  = A , lim (f(x) - A) = 0 , lim If(x) - A( = 0,
2’9 z-2) 2-p

are a11 equivalent. This equivalence becomes apparent as soon as we Write  each  of these
statements in the E,  8-terminology  (3.2).

In dealing with limits as x +p,  we sometimes find it convenient  to denote  the difference
x - p  by a new symbol, say  h, and to let h + 0. This simply amounts to a change in
notation, because, as cari  be easily verified, the following two statements are equivalent:

Iimf(x)  = A ,
Z-P

limf(p  + h)  = A .
h-0

EXAMPLE 1. Limit of a constant function. Let f(x) = c for a11  x. It is easy to prove
that for every p,  we have lim,, p f(x) = c. In fact,  given any  neighborhood NI(c), relation
(3.1) is trivially satisfied for any  choice  of N,(p)  because f (x) = c for a11 x and c E  N,(c) for
a11 neighborhoods N,(c). In limit notation, we Write

lim c = c .
Z-P

EXAMPLE 2. Limit of the identity function. Here f(x) = x for a11 x. We cari  easily prove
that limz+ef(x> = P. Ch oose  any  neighborhood N,(p) and take N,(p) = N,(p). Then
relation (3.1) is trivially satisfied. In limit notation, we Write

lim x = p .
z-9

“One-sided” limits may be defined in a similar way. For example,  if f (x) -+ A as x -+p
through values greater thanp, we say  that A is the right-hand limit off at p, and we indicate
this by writing

limf(x)  = A .
S+i>+

In neighborhood terminology this means that for every neighborhood N,(A), there is some
neighborhood N,(p)  such  that

(3.3) f(x) EJW) whenever x E  N,(p) a n d  x>p.
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Left-hand limits, denoted by writing x +p-, are similarly defined by restricting x to
values less than p.

Iffhas a limit A at p, then it also has a right-hand limit and a left-hand limit at p, both
of these being equal to A. But a function cari  have a right-hand limit at p different from the
left-hand limit, as indicated in the next example.

EXAMPLE 3. Letf(x) = [x] for a11  x, and let p be any  integer. For x nearp,  x < p, we
have f(x) = p - 1, and for x near p, x > p, we have f(x) = p. Therefore we see that

lim f(x) = p - 1 and lim f(x) = p .
r+p- x+9+

In an example like this one,  where the right- and left-hand limits are unequal, the limit of
fat p does  not exist.

EXAMPLE 4. Let f(x) = 1/x2 if x # 0, and let f(O)  = 0. The graph off near zero is
shown in Figure 3.1(b). In this example,ftakes arbitrarily large values near 0 SO it has no
right-hand limit and no left-hand limit at 0. TO prove rigorously that there is no real number
A such  that lim,,,+f(x) = A, we may argue as follows: Suppose there were such  an A,
say  A 2 0. Choose a neighborhood N,(A) of length 1. In the interval 0 < x < l/(A + 2),
we havef(x)  = 1/x2 > (A + 2)2 > A + 2, sof(x)  cannot lie in the neighborhood N,(A).
Thus, every neighborhood N(0) contains  points x > 0 for whichf(x)  is outside N,(A), SO

(3.3) is violated for this choice  of N,(A). Hencefhas no right-hand limit at 0.

EXAMPLE 5. Let f(x) = 1 if x # 0, and let f(0) = 0. This function takes the constant
value 1 everywhere except at 0, where it has the value 0. Both the right- and left-hand
limits are 1 at every point p, SO the limit off(x), as x approaches p, exists and equals 1.
Note that the limit offis 1 at the point 0, even thoughf(0)  = 0.

3.3 The definition  of continuity  of a function

In the definition of limit we made no assertion about  the behavior off at the point p
itself. Statement (3.1) refers to those x # p which lie in N,(p), SO it is not necessary that
f be defined at p. Moreover, even if f is defined at p, its value there need not be equal to
the limit A. However, if it happens thatf is defined atp and if it also happens thatf(p) = A,
then we say  the function f is continuous at p. In other words, we have the following
definition.

DEFINITION OF CONTINUITY OF A FUNCTION AT A POINT. A function f is said to be con-
tinuous at a point p if

(a) fis dejned  at p, and

(b) limfC4 =f(p).I?+D
This definition cari  also be formulated in terms of neighborhoods. A function f is

continuous  at p if for every neighborhood Nl[f (p)] there is a neighborhood N,(p) such  that

(3.4) f(x) E NJf (P)I whenever x E  N,(p).
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Since  f(p) always belongs to N,[f(p)], we do not need the condition x # pin (3.4). In
the E,  S-terminology, where we specify the radii of the neighborhoods, the definition of
continuity cari be restated as follows:

A function f is continuous at p if for every E > 0 there is a S > 0 such  that

If(x)  -f(P)1  < E whenever lx -pJ < 6.

The definition of continuity is illustrated geometrically in Figure 3.3. This is like Figure
3.2 except that the limiting value, A, is equal to the function value f (p) SO the entire  graph
off above N,(p)  lies in the shaded rectangle.

EXAMPLE 1. Constant functions are continuous everywhere. Iff(x) = c for a11 x, then

limf(x)  = lim c = c = f(p)
Z’P x-î)

for every p, so f is continuous everywhere.

EXAMPLE 2. The identity function is  continuous everywhere. If f(x) = x for a11 x, we have

limf(x)  = lim x = p =f(p)
CC-P 3z’D

for every p, SO the identity function is continuous everywhere.

EXAMPLE 3. Let f(x) = [x ] for a11 x. This function is continuous at every pointp which
is not an integer. At the integers it is discontinuous, since the limit off does  not exist, the
right- and left-hand limits being unequal. A discontinuity of this type, where the right- and
left-hand limits exist but are unequal, is called a jump discontinuity.  However, since the
right-hand limit equals f (p) at each  integer p, we say  that f is continuous from the right at p.

EXAMPLE 4. The function f for which f(x) = 1/x2 for x # 0, f(0) = 0, is discontinuous
at 0. [See Figure 3.1(b).] We say  there is an infinite  discontinuity  at 0 because the function
takes arbitrarily large values near 0.

EXAMPLE 5. Let f(x) = 1 for x # 0, f(0) = 0. This function is continuous everywhere
except at 0. It is discontinuous at 0 because f(0) is not equal to the limit off(x) as x + 0.
In this example, the discontinuity could be removed by redefining the function at 0 to have
the value 1 instead of 0. For this reason, a discontinuity of this type is called a removable
discontinuity. Note that jump discontinuities, such  as those possessed by the greatest-integer
function, cannot be removed by simply changing the value off at one  point.

3.4 The hasic  limit theorems. More examples of continuous functions

Calculations with limits may often be simplified by the use of the following theorem
which provides basic rules for operating with limits.
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TMEOREM 3.1. Let f and g be functions such  that

lim j(x) = A , lim g(x) = B .
2-p 2-p

Then we have

(i) lim [f(x) + g(x)] = A + B ,
Z’P

(ii) lim [f(x) - g(x)] = A - B ,
IF+?J

(iii) limf(x)  . g(x) = A . B  ,
z+rJ

( i v )  limf(x)/g(x)  =  A/B i f  B#O.
r*P

Note: An important special  case of (iii) occurs whenfis constant, sayf(x)  = A for
a11 x. In this case, (iii) is written as lim A .g(x) = A B.

fJ+P

The proof  of Theorem 3.1 is not difficult but it is somewhat lengthy SO we have placed
it in a separate section (Section 3.5). We discuss here some simple consequences  of the
theorem.

First we note that the statements in the theorem may be written in a slightly different
form. For example, (i) cari  be written as follows:

lim [f(x) + g(x)] = lim f(x) + lim g(x) .
2+?J e-î, Z-D

It tells us that the limit of a sum is the sum of the limits.
Jt  is customary to denote  by f + g,  f - g,  f. g, and f/g the functions whose values at

each  x under consideration are

f(x) + g(x), f (x)  - g(x), f(x).  g(x), ad  f(x)/g(x)  y

respectively. These functions are called the sum, dijierence,  product, and quotient off and
g. Of course, the quotient f/g is defined only at those points for which g(x) # 0. The
following corollary to Theorem 3.1 is stated in this terminology and notation and is
concerned with continuous functions.

THEOREM 3.2. Let f and g be continuous  at a point p. Then the sum f + g,  the d@erence
i(;)g,+,d  the product f * g are also  continuous  ut p. The same is true of the quotient f/g if

Proof. Since  f and g are continuous  at p, we have lim,,, f (x) = f (p) and lim,, 9  g(x) =
g(p). Therefore we may apply the limit formulas in Theorem 3.1 with A = f(p) and
B = g(p) to deduce Theorem 3.2.
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We have already seen  that the identity function and constant functions are continuous
everywhere. Using these examples and Theorem 3.2, we may construct many more examples
of continuous functions.

EXAMPLE 1. Continuity of polynomials. If we take f(x) = g(x) = x, the result on conti-
nuity of products  proves the continuity at each  point for the function whose value at each
x is x2. By mathematical induction, it follows that for every real c and every positive integer
n, the function f for whichf(x)  = cx” is continuous for a11 x. Since the sum of two con-
tinuous functions is itself continuous, by induction it follows that the same is true for the
sum of any  finite number of continuous functions. Therefore every polynomial p(x) =
z;=,  cLxk is continuous at a11 points.

EXAMPLE 2. Continuity of rational  functions. The quotient of two polynomials is called a
rationalfunction. If r is a rational function, then we have

P(X)r(x) = - )
4(x)

where p and q are polynomials. The function r is defined for a11 real x for which q(x) # 0.
Since quotients of continuous functions are continuous, we see that every rational function
is continuous wherever it is defined. A simple example is r(x) = 1/x  if x # 0. This function
is continuous everywhere except at x = 0, where it fails  to be defined.

The next theorem shows that if a function g is squeezed between two other functions
which have equal limits as x -+p,  then g also has this limit as x -+p.

THEOREM 3.3. SQUEEZING PRINCIPLE. Suppose that f(x) < g(x) < h(x) for a11  x # p
in some neighborhood N(p). Suppose also  that

limf(x)  = lim h(x) = a .
X-+D Z-+P

Then n’e also haue limeeD g(x) = a.

Proof.  Let G(x) = g(x) -f(x), and H(x) = h(x) -f(x). The inequalities f 5 g 5  h
implyO<g-flh-f,or

0 2 G(x) I H(x)

for a11  x # p in N(p). TO prove the theorem, it suffices  to show that G(x) -+ 0 as x +p,
given that H(x) -f 0 as x -f p.

Let N,(O) be any  neighborhood of 0. Since H(x) + 0 as x -+p,  there is a neighborhood
N,(p) such  that

HC4 E K(O) whenever x E  N,(p) a n d  xfp.

We cari  assume that N,(p) E N(p). Then the inequality 0 5 G 5 H states that G(x) is no
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further from 0 than H(x)  if x is in N,(p),  x # p. Therefore G(x) E  N,(O) for such  x, and
hence  G(x) + 0 as x -p.  This proves the theorem. The same proof  is valid if a11  the
limits are one-sided limits.

The squeezing principle is useful in practice because it is often possible to find squeezing
functions f and h which are easier to deal  with than g. We shah  use the result now to prove
that every indefinite integral is a continuous function.

THEOREM 3.4. CONTINUITY  OF INDEFINITE  INTEGRALS. Assume f is  integrable on [a, x]
for every x in [a, b], and let

A(x) = j-)(t)  dt .

Then the ind$inite  integral A is continuous at each  point of [a, b]. (At each  endpoint we have
one-sided continuity.)

Proof. Choose p in [a, b]. We are to prove that A(x) + A(p) as x -+p.  We have

(3.5) A(x)  - A(P)  = j-)(t) dt  +

Now we estimate the size of this integral. Sincefis bounded on [a, b], there is a constant
M > 0 such  that -M <f(t) < A4 for a11 t in [a, b]. If x > p,  we integrate these inequalities
over  the interval  [p, x] to obtain

-M(x  - P>  I A(x) - A(p) 5 M(x  - p)  .

If x < p, we obtain the same inequalities with x - p replaced by p - x. Therefore, in
either case we cari  let x -+ p and apply the squeezing principle to find that A(x) -+ A(p).
This proves the theorem. If p is an endpoint of [a, b], we must let x + p from inside the
interval, SO the limits are one-sided.

EXAMPLE 3. Continuity of the sine and cosine.  Since  the sine function is an indefinite

integral, sin x =lr
COS t dt, the foregoing theorem tells us that the sine is continuous

everywhere. Similarly, the cosine  is everywhere continuous since  COS x = 1 -
!.’ sin t dt.

The continuity of these functions cari  also be deduced without making use of the’fact that
they are indefinite integrals. An alternate proof  is outlined in Exercise 26 of Section 3.6.

EXAMPLE 4. In this example we prove an important limit formula,

(3.6) limSE= 1,
2’0 x

that is needed later in our discussion of differential calculus. Since  the denominator of the
quotient (sin X)/X approaches 0 as x + 0, we cannot apply the quotient theorem on limits
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to deduce (3.6). Instead, we use the squeezing principle. From Section 2.5 we have the
fundamental inequalities

sin x 1
o<cosx<~<-,

COS x

valid for 0 < x < &T. They are also  valid for - $ < x < 0 since COS (-x) = COS x and
sin (-x) = -sin  x, and hence they hold for a11 x # 0 in the neighborhood N(O;  $T).  When
x + 0, we find COS x + 1 since the cosine  is continuous at 0, and hence ~/(COS  x) + 1.
Therefore, by the squeezing principle, we deduce (3.6). If we definef(x)  = (sin x)/x for
x # 0, f(O)  = 1, thenfis continuous everywhere. Its graph is shown in Figure 3.4.

Y

1
“_Of(X)  = 1 =f(O)

/
/

-
-2x-

CX
-X

FIGURE 3.4 ,f(x) = (sin x)/x if x #  0, f(0) = 1. This function is continuous everywhere.

EXAMPLE 5. Continuity off when f (x) = xr  for x > 0, where r is a positive rational number.
From Theorem 2.2 we have the integration formula

s xtl/n  dt = ~
Xl+lln

0 1 + I/n ’

valid for a11 x > 0 and every integer n 2 1. Using Theorems 3.4 and 3.1, we find that the
function A given by ,4(x) = xl+lln  is continuous at a11 points p > 0. Now let g(x) =
Xl/%  = A( )/ fx x or x > 0. Since  g is a quotient of two continuous functions it, too, is
continuous at a11 points p > 0. More generally, if f(x) = xrnjn,  where m is a positive
integer, then f is a product  of continuous functions and hence is continuous at a11 points
p > 0. This establishes the continuity of the rth-power function, f(x) = x’, when r is any
positive rational number, at a11  points p > 0. At p = 0 we have right-hand continuity.

The continuity of the rth-power function for rational r cari  also be deduced without
using integrals. An alternate proof  is given in Section 3.13.

3.5 Proofs of the basic limit tbeorems

In this section we prove Theorem 3.1 which describes the basic rules for dealing with
limits of sums, products,  and quotients. The principal algebraic tools used in the proof



136 Continuous functions

are two properties of absolute  values that were mentioned earlier in Sections 14.8 and 14.9.
They are (1) the triangle inequality, which states that la + b]  5 la1  + 161 for a11 real a and
b,  and (2) the equation lab]  = la1  Jbl, which states that the absolute  value of a product is
the product of absolute values.

Proofs of(i) und (ii). Since  the two statements

limf(x)  = A
r-l)

a n d lim [f(x) - A] = 0
92-D

are equivalent, and since we have

f-(x>  + g(x)  - (‘4 + B) = [f(x) - Al + [g(x)  - 4 ,

it suffices  to prove part (i) of the theorem when the limits A and B are both zero.
Suppose, then, thatf(x) +Oandg(x)+Oasx+p. We shall prove thatf(x)  + g(x) + 0

as x +p. This means we must show that for every E > 0 there is a 6  > 0 such  that

(3.7) IfW + kW  < E whenever 0 < Ix -pi  < 6.

Let E be given. Sincef(x) --f 0 as x +p, there is a 6, > 0 such  that

(3.8) If(x>l  < ; whenever 0 < Ix - PI < 61 .

Similarly, since g(x) + 0 as x +p, there is a 6, > 0 such  that

(3.9) IgWl < ; whenever 0 < Ix - p]  < 6,

If we let 6  denote  the smaller of the two numbers 6, and 6, , then both inequalities (3.8) and
(3.9) are valid if 0 < Ix - pi < 6 and hence,  by the triangle inequality, we find that

If(x)  + &)l I If@)l  + Idx>l  < ; + ; = E

This proves (3.7) which, in turn, proves (i). The proof  of (ii) is entirely similar, except that
in the last step we use the inequality If(x) - g(x)] 5 If(x)]  + ]g(x)l.

Proof of (iii). Suppose that we have proved part (iii) for the special case in which one
of the limits is 0. Then the general case follows easily from this special case. In fact,  a11
we need to do is Write

fWgW  - AB =f(x>[g(x) - Bl  + B[f(x) - A] .

The special case implies that each  term on the right approaches 0 as x +p  and, by property
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(i), the sum of the two terms also approaches 0. Therefore, it remains to prove (iii) in the
special  case where one  of the limits, say  B, is 0.

Suppose, then, thatf(x)  -+ A and g(x) + 0 as x +p. We wish to prove thatf(x)g(x) -f 0
as x +p. TO do this we must show that if a positive E is given, there is a 6  > 0 such  that

(3.10) Ifaw  < E whenever 0 < Ix -pi  < 6.

Since f(x) -+ A as x -p,  there is a 8, such  that

(3.11) If(4 - 4  < 1 whenever 0 < Ix -pl < 61.

For such  x, we have If(x)l = If(x) - A + Al  5 If(x) - Al  + [Al  < 1 + IA],  and hence

(3.12) If(4g(x)I  = IfW IgWl  < (1 + IAI> IgWl.

Since g(x) + 0 as x +p, for every e > 0 there is a 6, such  that

(3.13) w h e n e v e r 0 < Ix - p(  < 6, .

Therefore, if we let 6  be the smaller of the two numbers 6, and 6, , then both inequalities
(3.12) and (3.13) are valid whenever 0 < Ix -pi < 6, and for such  x we deduce (3.10).
This completes the proof  of (iii).

Proofof(iv).  Since the quotientf(x)/g(x)  is the product  off(x)/B with B/g(x),  it suffices
to prove that B/g(x) - 1 as x +p  and then appeal to (iii). Let h(x) = g(x)/B. Then
h(x) + 1 as x +p, and we wish to prove that l/h(x)  -f 1 as x -+p.

Let E > 0 be given. We must show that there is a 6  > 0 such  that

(3.14) whenever 0 < (x - p(  < 6 .

The difference  to be estimated may be written as follows.

(3.15) = Ih(x)  - 11
I@>l ’

Since h(x) + 1 as x +p, we cari  choose  a 6  > 0 such  that both inequalities

(3.16) P(x) - II < ; and b(x)  - II < ;
!

are satisfied whenever 0 < Ix - pi < 6. The second of these inequalities implies h(x) > &
SO l/lh(x)l  = l/h(x)  < 2 for such  x. Using this in (3.15) along with the first inequality in
(3.16), we obtain (3.14). This completes the proof  of (iv).
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3.6 Exercises

Continuous functions

In Exercises 1 through 10, compute the limits and explain which limit theorems you  are using
i n  each  case.

x2 - a2
8. lim1. lim ie .

x+2

25x3 + 2
2. lim ~

2+o  75x7 - 2 .

x2 - 4
3 . lim- .

2-2 x 2-
2x2 - 3x + 1

4 . lim
X+l x-l *

5 lim (t + h12  - t2

h-0 h .

x2 - a2
6. lim

z+. x2 + 2ax + a2  ’

x2 - a2
7. lim

a+O  x2 + 2ax + a2  ’

2+n  x2 + 2ax + a2  ’
a # 0.

9. lim tan t.
t+o

10. lim (sin 2t + t2 cas  5t).
teo

11. lim -.
2-O+  x

12. lim fi .
e-o- x

a # 0.

x #O.

fi
13. lim X.

z-o+

2/x
14. lim - .

a-o- x

Use the relation lim,,, (sin x)/x  = 1 to establish the limit formulas in Exercises 15 through 20.

sin 2x sin 5x - sin 3x
15. lim- = 2. 18. lim = 2 .

2-o x x-o X

tan 2x sin x - sin a
16. lim T = 2 . 19. lim = cas  a.

z+o  sin x 2-O x - a
sin 5x 1 - COS x

17. lim 7 = 5 .
e+O sln  x

20. lim x2 = 4.
X+0

21. Show that lim
l-d,

=x2 4. [Hint: (1 - 2/u)(l + 6) = 1 - u.]
x-o

22. A function  f is defined as follows:

sin x i f  X<C,
,fW = a x + b i f  X>C,

where a, b, c a re  cons tan t s . If b and c are given, find a11  values of a (if any exist) for whichf
is continuous at the point x = c.

23. Solve Exercise  22 if f is defined as follows:

24 .  At  wha t  po in t s  a re  the  t angen t  and  co tangen t  func t ions  con t inuous?
25. Let f(x) = (tan x)/x  if x # 0. Sketch the graph off over the half-open  intervals [-&T, 0)

and (0, $1. What  happens  tof(x) as x + O? Can you  definef(0) SO that fbecomes cont inuous
at O?
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26. This exercise  outlines an alternate proof  of the continuity  of the sine and cosine functions.
(a) The inequality \sinx( < (xl, valid for 0 < 1x1 < BT,  was proved in Exercise 34 of Section
2.8. Use this inequality to prove that the sine function is continuous at 0.
(b) Use part (a) and the identity COS 2x = 1 - 2 sin2  x to prove that the cosine is continuous
at 0.
(c) Use the addition formulas for sin (x + h)  and COS (x + h)  to prove that the sine and cosine
are continuous at any  real x.

27. Figure 3.5 shows a portion of the graph of the functionfdefined as follows:

f(x) = sin k i f  x#O.

For x = l/(nn), where n is an integer, we have sin (1/x)  = sin (na) = 0. Between two such
points, the function values rise  to + 1 and drop back  to 0 or else drop to - 1 and rise  back  to 0.

FIGURE 3.5 f(x) = sin (1/x)  if x #  0. This function is discontinuous at 0 no matter
how f(0) is defined.

Therefore, between any  such  point and the origin, the curve  has an infinite  number of oscilla-
tions. This suggests that the function values do not approach any  fixed value as x + 0. Prove
that there is no real number A such  thatf(x) -+ A as x + 0. This shows that it is not possible
to define  f(0) in such  a way that f becomes continuous at 0.

[Hint: Assume such  an A exists and obtain a contradiction.]

28. For x #  0, let f(x) = [l/x w1, here [t] denotes  the greatest integer 2  t.  Sketch the graph of
f over  the intervals [ -2, -51  and [i, 21. What happens to f (x) as x + 0 through positive
values? through negative values ? Can you  define  f (0) SO that f becomes continuous at O?

29. Same as Exercise 28, when f(x) = ( -1)t1/21  for x #  0.
30. Same as Exercise 28, whenf(x) = x( -l)tl’al  for x #  0.
31. Give an example of a function that is continuous at one  point of an interval  and discontinuous

at a11 other points of the interval, or prove that there is no such  function.
32. Letf(x) = x sin (1/x)  if x #  0. Definef(0)  SO thatfwill be continuous at 0.
33. Letf be a function such  that If(u)  - f(v)1  5  lu - UI  for a11 u  and u  in an interval  [a, b].

(a) Prove that f is continuous at each  point of [a, b].
(b) Assume that f is integrable on [a, h].  Prove that

(b - CZ)~
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(c) More generally, prove that for any  c in [a, b], we have

is:f(x> dx - (b - a)f(c)  5 y .

3.7 Composite functions and continuity

We cari  create new functions from given ones  by addition, subtraction, multiplication,
and division. In this section we learn a new way to construct functions by an operation
known as composition. We illustrate with an example.

Let f(x) = sin (x2). TO compute f(x), we first square x and then take the sine of x2.
Thus,S(x)  is obtained by combining two other functions, the squaring function and the
sine function. If we let v(x) = x2 and U(X) = sin x, we cari  expressS(x)  in terms of u  and u
by writing

We say  that f is the composition of u and v (in that order). If we compose u and u in the
opposite order, we obtain a different result, V[U(X)] = (sin x)“. That is, to compute V[U(X)],
we take the sine of x first and then square sin x.

Now we cari  carry out  this process more generally. Let u  and v be any  two given functions.
The composite or composition of u  and v (in that order) is defined to be the functionffor
which

f(x)  = ~bwl (read as “u of v of x”)  .

That is, to evaluatef at x we first compute v(x) and then evaluate u  at the point v(x). Of
course, this presupposes that it makes sense to evaluate u at v(x), and therefore f Will be
defined only at those points x for which u(x) is in the domain  of u.

For example, if u(x)  = 4; and v(x) = 1 - x2, then the composite f is given by f(x) =
m. Note that v is defined for a11 real x, whereas u is defined only for x 2 0. There-
fore the composite f is defined only for those x satisfying 1 - x2 2 0.

Formally, f(x) is obtained by substituting v(x) for x in the expression u(x). For this
reason, the function f is sometimes denoted by the symbol f = u(v)  (read as “U  of v”).
Another notation that we shall use to denote  composition is f = u 0 u  (read as “U  circle
9). This resembles the notation for the product  u  . u.  In fact,  we shall see in a moment
that the operation of composition has some of the properties possessed by multiplication.

The composite of three or more functions may be found by composing them two at a
time. Thus, the function f given by

f(x) = COS [sin (x2)]

is a composition, f = u o (u  o w),  where

u(x) = COS x > u(x) = sin x, and w(x) = x2 .

Notice that the same f cari  be obtained by composing u and u first and then composing u 0 u
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with W,  thus: f = (U  0 u)  0 w. This illustrates the associative Zaw for composition which
states that

(3.17) u 0  (v 0  w) = (u 0  u)  0  w

for a11 functions u,  U,  w, provided it makes sense to form a11  the composites in question.
The reader Will find that the proof  of (3.17) is a straightforward exercise.

It should be noted that the commutative law, u 0 v = v 0 u, does  not always hold for
composition. For example, if U(X) = sin x and V(X) = x2, the compositef  = u 0 u  is given
by f(x) = sin x2 (which means sin (x2)], whereas the composition g = G 0 u  is given by
g(x) = sin2  x [which means (sin x)“].

Now we shah  prove a theorem which tells us that the property of continuity is preserved
under the operation of composition. More precisely, we have the following.

THEOREM 3.5. Assume v is continuous at p and that u is continuous at q, where q = v(p).
Then the composite finction  f = u 0 v is continuous at p.

Proof.  Since  u is continuous at q, for every neighborhood N,[u(q)]  there is a neighborhood
N,(q)  such  that

(3.18) 4.~4  E W(q)1 whenever y E  N,(q),

But q = u(p)  and v is continuous at p, SO for the neighborhood N,(q)  there is another
neighborhood NS(p)  such  that

(3.19) $4 E N,(q) w h e n e v e r x E  NS(p)  .

If we let y = v(x)  and combine (3.18) with (3.19),  we find that for every neighborhood
N,(u[v(p)])  there is a neighborhood N,(p) such  that

~bW1 E NM~(P)I) whenever x E  N,(p),

or, in other words, sincef(x)  = ~[V(X)],

f(x)  E NI[f(P)l whenever x E  NS(p).

This means thatfis continuous at p, as asserted.

EXAMPLE 1. Let f(x) = sin x2. This is the composition of two functions continuous
everywhere SO f is continuous everywhere.

EXAMPLE 2. Let f(x) = m = u[u(x)], where u(x)  = 6, v(x) = 1 - 2. The
function v is continuous everywhere but u  is continuous only for points x 2 0. Hence f is
continuous at those points x for which u(x)  2 0, that is at a11  points satisfying x2 5 1.
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3.8 Exercises

Continuous  functions

In Exercises 1 through 10, the functionsfandg are defined by the formulas given. Unless other-
wise noted, the domains  off and g consist  of a11 real numbers. Let h(x) =f[g(x)] whenever g(x)
lies in the domain off. In each  case, describe  the domain of h  and give one  or more formulas for
determining h(x).
l.f(x) =x2 - 2 x , g(x) = x + 1.
2.f(x) =x + 1, g(x) = x2 - 2x.
3. j-(x) = 1/x if x 2  0, g(x) = x2.
4. f(x) = 1/x if x 2 0, g(x) = -x2.
5. f(x) = x2, g(x) = vs if x 2  0.
6. f(x) = -x2, g(x) = 2/x if x 2 0.
7. f(x) = sin x, g(x) = VG if x 2 0.
8. f(x) = 4 if x 2  0, g(x) = sin x.
9. f(X) = 2/x if x > 0, g(x)  = x + 1/x if x > 0.

10. f(x) = A-T& if x > 0, g(x) = x + di if x > 0.

Calculate the limits in Exercises 11 through 20 and explain which limit theorems you  are using
in each  case.

x3 + 8
11. lim -

sin (x2 - 1)
x 2 - 4 ’

16. lim
cv+-2 x+1 x-l <

12. lim 1/1  + 2/X. 17. lim x sin i
x+4 X+0 X'

13. lim
sin (tan t)

t-o sin t ’

14. lim
sin (Cos x)

r-n/2 COS x .

1 - COS 2x
18. lim

19 x;ykx-vG

X+0 X

2. lim 1 - VT-ZP
2-o x2 .

21. Let f andg be two functions defined as follows:

x + I-4
f(X)  = ~2

for a11 x , g(x)  =
1
x2

f o r  x<O,
f o r  x20.

Find a formula (or formulas) for computing the composite function  h(x) =f[g(x)]. For
what values of x is h  continuous?

22. Solve Exercise 21 when f and g are defined as follows:

i ; if 1x1 5 1 , l 2 - x2 iff(x) g(x) 1x1 5 2 ,= =
if 1x1 > 1 , 2 if 1x1 > 2 .

23. Solve Exercise 21 when h(x) = g [f(x)].

3.9 Bolzano’s  theorem for continuous functions

In the rest of this chapter  we shall  discuss certain special  properties of continuous func-
tions that are used quite  frequently. Most of these properties appear obvious when inter-
preted geometrically ; consequently many people are inclined to accept  them as self-evident.
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However, it is important to realize that these statements are no more self-evident than the
definition of continuity itself, and therefore they require proof if they are to be used with
any  degree of generality. The proofs of most of these properties make use of the least-upper-
bound axiom for the real number system.

Bernard Bolzano (1781-1848),  a Catholic priest who made many  important contributions
to mathematics in the first half of the 19th Century, was one  of the first to recognize that
many  “obvious” statements about continuous functions require proof.  His observations
concerning continuity were published posthumously in 1850 in an important book, Para-
doxien des Unendlichen. One  of his results, now known as the theorem of Bolzano, is
illustrated in Figure 3.6, where the graph of a continuous function  f is shown. The graph
lies below the x-axis at x = a and above the axis at x = b. Bolzano’s theorem asserts that
the curve  must cross the axis somewhere between a and b. This property, first published
by Bolzano in 1817, may  be stated formally as follows.

THEOREM 3.6. BOLZANO'STHEOREM. Let f be continuous at each  point of a closed  interval
[a, b] and assume that f(a) andf(b)  have opposite signs.  Then there is at Ieast  one c in the
open  interval  (a, b) such  that f (c) = 0.

We shall base our proof of Bolzano’s theorem on the following property of continuous
functions which we state here as a separate theorem.

THEOREM 3.7. SIGN-PRESERVING  PROPERTY OF CONTINUOUS  FUNCTIONS. Letfbe con-
tinuous at c and suppose that f(c) # 0. Then there is an interval  (c - 6,  c + 6)  about  c in
which f has the same  sign as f(c).

Proof of Theorem 3.7. Suppose f(c) > 0. By continuity, for every E  > 0 there is a
6 > 0 such  that

(3.20) f(c) - E <f(x) <f(c) + E whenever c - 6 < x < c + 6 .

If we take the 6 corresponding to E  = f (c)/2 (this E is positive), then (3.20) becomes

4f(c)  <f(x)  < Qf(c) whenever c - 6 < x < c + 6 .

FIGURE 3.6 Illustrating Bolzano’s theorem. FIGURE 3.7 Here f(x) > 0 for x near c
becausef(c)  > 0.
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(See Figure 3.7). Therefore f(x) > 0 in this interval, and hence f(x) and f(c) have the
same sign. Iff(c) < 0, we take the 6 corresponding to E = - 4 f(c) and arrive at the same
conclusion.

Note: If there is one-sided continuity  at c, then there is a corresponding one-sided
interval  [c, c + 6) or (c - 6, c] in which f has the same  sign as f(c).

Proof  of Bolzano’s theorem. TO be specific, assume f(a) < 0 and f(b) > 0, as shown
in Figure 3.6. There may be many values of x between a and b for which f(x) = 0. Our
problem is to find one. We shall do this by finding the largest x for whichf(.x)  = 0. For
this purpose  we let S denote  the set of a11  those points x in the interval [a, b] for which
f(x) 2 0. There is at least one  point in S because f(a) < 0. Therefore S is a nonempty
set. Also, S is bounded above since  a11 of S lies within [a, b], SO S has a supremum. Let
c = sup S. We shall prove that f(c) = 0.

There are only three possibilities: f(c) > 0, f(c) < 0, and f(c) = 0. If f(c) > 0, there
is an interval (c - 6, c + 6), or (c - 6, c] if c = b, in which f is positive. Therefore no
points of S cari  lie to the right of c - 6, and hence c - 6 is an Upper  bound for the set S.
But c - 6 < c, and c is the least Upper  bound of S. Therefore the inequality f(c) > 0
is impossible. If f(c) < 0, there is an interval (c - 6, c + S), or [c, c + S) if c = a, in
which f is negative. Hence f(x) < 0 for some x > c, contradicting the fact that c is an
Upper  bound for S. Thereforef (c) < 0 is also impossible, and the only remaining possibility
is f(c) = 0. Also, a < c < b because f(a) < 0 and f(b) > 0. This proves Bolzano’s
theorem.

3.10 The intermediate-value theorem for continuous  functions

An immediate consequence  of Bolzano’s theorem is the intermediate-value theorem for
continuous  functions, illustrated in Figure 3.8.

THEOREM 3.8. Let f be continuous  ut  each  point of a closed  interval  [a, b]. Choose two
arbitrarypoints x1  < x2  in [a, b] such  thatf (x1)  # f (x2). Then f  takes on every value between
f (x1)  and f (x2)  somewhere in the interval  (x,, x2).

Proof. Suppose f(x&  < f (x2) and let k be any  value between f (x1)  and f (x,). Let g be the
function defined on [x,, x2] as follows:

g(x)  = f (x)  - k .

F IGURE  3 .8  Illustrating  the intermediate- FIGURE 3.9 An example for which Bolzano’s
value theorem. theorem is not applicable.
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Then g is continuous at each  point of [xi,  x,], and we have

~(XI)  = f-h>  - k < 0 , &z) =~CG>  - k > 0 .

Applying Bolzano’s theorem to g,  we have g(c) = 0 for some c between x1 and x2. But
this meansf(c)  = k, and the proof  is complete.

Note: In both Bolzano’s theorem and the intermediate-value theorem, it is assumed
thatf is continuous at each  point of [a, b], including the endpoints a and b. T O understand
why continuity  at both endpoints is necessary, we refer to the curve  in Figure 3.9. Here
fis continuous everywhere in [a, b] except  at a. Although f(a)  is negative and f(b) is
positive, there is no x in [a, b] for whichf(x) = 0.

We conclude  this section with an application of the intermediate-value theorem in which
we prove that every positive real number has a positive nth root, a fact mentioned earlier in
Section 13.14. We state this as a forma1 theorem.

TNEOREM  3.9. If n is a positive integer and if  a > 0, then there is exactly one  positive
b such  that b”  = a.

Proof.  Choose c > 1 such  that 0 < a < c, and consider the function f defined on the
interval [0, c] by the equationf(x)  = xn. This function is continuous on [0, c], and at the
endpoints we have f(0) = 0, f(c) = c”. Since  0 < a < c < cn,  the given number a lies
between the function values f(0) and f(c). Therefore, by the intermediate-value theorem,
we havef(x)  = a for some x in (0, c), say  for x = b. This proves the existence of at least
one  positive b such  that 6”  = a. There cannot be more than one  such  b becausefis strictly
increasing on [0, c]. This completes the proof.

3.11 Exercises

1. Letf be a polynomial of degree n,  sayf(x)  = Ik=O  kc xL, such  that the first and last coefficients
c,,  and c, have opposite signs. Prove that f (x) = 0 for at least one  positive x.

2. A real number x1, such  thatf(x,)  = 0, is said to be a real root of the equationf(x)  = 0. We
say  that a real root of an equation has been isoluted  if we exhibit an interval  [a, b] containing
this root and no others. With the aid of Bolzano’s theorem, isolate  the real roots of each  of
the following equations (each  has four real roots).
(a) 3x4 - 2x3 - 36x2 + 36x - 8 = 0.
(b) 2x4 - 14x2 + 14x - 1 = 0.
(c) x4 + 4x3 + x2 - 6x + 2 = 0.

3. If n  is an odd positive integer and u < 0, prove that there is exactly one  negative b such  that
b”  = a.

4. Let f(x) = tan x. Although f(?r/4) = 1 and f(3=/4)  = -1, there is no x in the interval
[x/4, 3x/4]  such  thatf(x)  = 0. Explain why this does  not contradict Bolzano’s theorem.

5. Given a real-valued function f which is continuous on the closed  interval  [0, 11.  Assume that
0 <f(x)  2 1 for each  x in [0, 11. Prove that there is at least one  point c in [0, l] for which
f(c) = c. Such  a point is called ajxedpoint off. The result  of this exercise  is a special  case of
Brouwer’s/?xed-point  theorem. [Hint: Apply Bolzano’s theorem to g(x) = f(x) - x.1

6. Given a real-valued functionfwhich is continuous on the closed  interval  [a, b]. Assume that
f(u) < u and thatf(b)  2  b. Prove thatfhas a fixed point in [a, b]. (See Exercise  5.)
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3.12 The process of inversion

This section describes another important method that is often used to construct new
functions from given ones. Before we describe  the method in detail, we Will illustrate it with
a simple example.

Consider the function f defined on the interval [0, 21  by the equation J(x) = 2x + 1.
The range offis the interval [l, 51. Each point x in [0,2]  is carried  byf onto  exactly one
point y in [1, 51, namely

(3.21) y=2x+ 1.

Conversely, for every y in [l, 51, there is exactly one  x in [0, 21  for which y = f(x). TO find
this x, we solve Equation (3.21) to obtain

x = $(y - 1).

This equation defines  x as a function ofy. If we denote  this function by g, we have

g(y)  = &(Y  - 1)

for each  y in [l, 51. The function g is called the inverse off. Note that g[f(x)] = x for
each  x in [0,2],  and thatf[g(y)]  = y for each  y in [l, 51.

Consider now a more general functionf with domain  A and range B. For each  x in A,
there is exactly one  y in B such  that JJ =f(x). For each  y in B, there is at least one  x in A
such  that f(x) = y. Suppose that there is exactly one  such  x. Then we cari  define  a new
function g on B as follows:

g(y) = x means y  =S(.X)  .

In other words, the value of g at each  point y in B is that unique x in A such  thatf(x)  = y.
This new function g is called the inverse ofJ The process by which g is obtained fromfis
called inversion. Note that g[f(x)] = x for a11 x in A, and thatf[g(,v)]  = y for a11 y in B.

The process of inversion cari  be applied to any  function f having the property that for
each  y in the range off, there is exactly one  x in the domain  off such  thatf(x)  = y. In
particular, a function that is continuous and strictly monotonie  on an interval [a, 61  has this
property. An example is shown in Figure 3.10. Let c = f(a), d =f(b).  The intermediate-
value theorem for continuous functions tells us that in the interval [a, b], f takes on every
value between c and d.  Moreover,fcannot  take on the same value twice becausef(x,)  #
J”(x.J whenever x1 # x2 . Therefore, every continuous strictly monotonie  function has an
inverse.

The relation between a function f and its inverse g cari  also be simply explained in the
ordered-pair formulation of the function concept. In Section 1.3 we described a function
f as a set of ordered pairs (x, y)  no two of which have the same first element. The inverse
function g is formed  by taking the pairs (x, y) inf and interchanging the elements x and y.
That is, (y, x) E  g if and only if (x, y) EJ Iff is strictly monotonie,  then no two pairs in f
have the same second element, and hence  no two pairs of g have the same first element.
Thus g is, indeed, a function.



Properties of functions preserved by inversion 147

EXAMPLE. The nth-root function. If n is a positive integer, let f(x) = xn  for x 2 0.
Then f is strictly increasing on every interval [a, b] with 0 < a < b. The inverse function g
is the nth-root function, defined for y 2 0 by the equation

g(y)  = Y’” -

3.13 Properties of functions preserved by inversion

Many properties possessed by the function f are transmitted to the inverse g.  Figure
3.11 illustrates the relationship between their graphs. One cari be obtained from the other
merely by reflection through the line y = x, because a point (u,  v) lies on the graph off
if and only if the point (v, u)  lies on the graph of g.

f(b) = d

f(x)  = Y

JC4 = c

------------------

-----------

-----//

Point (qu)  with u = g(v)

Point (u,v)  with u = f(u)

FIGURE  3.10 A continuous, strictly increasing FIGURE  3.11 Illustrating  the process of
func t ion . i nve r s ion .

The properties of monotonicity and continuity possessed by f are transmitted to the
inverse function g, as described by the following theorem.

THEOREM 3.10. Assume f is strictly increasing and continuous on an interval  [a, b]. Let
c = f (a) and d = f (b) and let g be the inverse off. That is, for each  y in [c, d], let g(y) be that
x in [a, b] such  that y = f (x). Then

(a) g is strictly increasing on [c, d] ;
(b) g is continuous on [c, d].

Proof.  Choose y1  < y, in [c, d] and let x, = g(y& x2 = g(y&.  Then y1  = f(xl)  and
y2  =f(xz).  Since  f is strictly increasing, the relation y1  < yz  implies x1 < x,, which, in
turn, implies g is strictly increasing on [c, d]. This proves part (a).

NOW we prove (b). The proof  is illustrated in Figure 3.12. Choose a point y,, in the open
interval (c, d). TO prove g is continuous at y0,  we must show that for every E > 0 there is
a 6  > 0 such  that

(3.22) g(yo)  - E < g(y)  < g(Jd + E whenever y0  - 6 < y < y,, + 6.

Let x0 = g(y,,),  SO that f (x,,)  = y,,. Suppose E is given. (There is no loss in generality if we
consider only those E small enough SO that both x,, - E and x,, + E are in [a, b].) Let 6
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be the smaller of the two numbers

f(xo>  -f(%  - El and f(xo + c> - f(xo>  .
It is easy to check  that this (r works in (3.22). A slight modification of the argument proves
that g is continuous from the right at c, and continuous from the left at d.

There is a corresponding theorem for decreasing functions. That is, the inverse of a
strictly decreasing continuous functionfis strictly decreasing and continuous. This follows
by applying Theorem 3.10 to -J

br------------
g(&J  + f----------- lg

goJo)---------  1 1

a--4

II 1
k!(Yo)  - c-------  ; j j

I I I
I ; 1 I

jjj  1
I I i l II I 1 l I

c y C”yJ60 0

f(%

fb

6 is the smaller of these two distances

FIGURE 3.12 Proof  of the continuity of the inverse function.

EXAMPLE. Continuity of the nth-root function. The nth-root function g,  defined for
y 2. 0 by the equation ,~(y)  = y lin, is strictly increasing and continuous on every interval
[c, d] with 0 5 c < d,  since  it is the inverse of a strictly increasing continuous function.
This gives an alternate proof  of the continuity of the nth-root function, independent of the
theory of integration. Since  the product  of continuous functions is continuous, we again
deduce the continuity of the rth-power function, h(y) = y’, where r = m/n is a positive
rational number and y 2. 0.

3.14 Inverses of piecewise monotonie functions

Suppose we try to apply the process of inversion to a function that is not monotonie  on
[u, b]. For example, suppose thatf(x)  = x2 on an interval of the form [-c, c] on the x-axis.
Each point x in this interval is carried by f into exacdy one  point y in the interval [0, c2],
namely,

(3.23) y = x2.

We cari  salve  Equation (3.23) for x in terms ofy,  but there are two  values of x corresponding
to each  y in (0, c2],  namely,

x=4 a n d x= -<y
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As we have mentioned once before, there was a time when mathematicians would have said
that the inverse g in this case is a double-valuedfirnction  defïned  by

g(y)  = hz/y.

But since  the more modern point of view does  not admit double-valuedness as a property
of functions, in a case like this we say  that the process of inversion gives rise  to MO  new
functions, say  gl  and ge, where

(3.24) &(Y) = 2/ a n d gz(y>  = -fi for each  JJ in [0, c”]  ,

TO fit this in with the notion of inverse as explained above, we cari  look upon the equation
y = .x2 as defining not one  function f but t\iso  functions fi and fi, say,  where

fi(X)  = x2 i f  O<x<c and fi(x)  = x2 if -c 5 x 5 0 .

These may be considered as distinct functions because they have different domains. Each
function is monotonie  on its domain  and each  has an inverse, the inverse of fi being g,
and the inverse off, being g,, where gI  and g2  are given by (3.24).

This illustrates how the process of inversion cari  be applied to piecewise monotonie
functions. We simply consider such  a function as a union of monotonie  functions and invert
each  monotonie  piece.

We shall make extensive use of the process of inversion in Chapter 6.

3.15 Exercises

In each  of Exercises 1 through 5, show thatfis strictly monotonie on the whole real axis. Letg
denote  the inverse off. Describe  the domain of g in each  case. Write y =f(x)  and solve for x
in terms of y; thus find a formula (or formulas) for computingg(y)  for each  y in the domain of g.
l.f(x) =x  + 1. 4. f(x) = x3.
2. f(X)  = 2x + 5. X i f  x<l,
3. f(X) = 1 - x. 5. f(x) =

i
x2 if 1 < x I 4,
8-&i if x > 4.

Mean  values. Let f be continuous  and strictly monotonie on the positive real axis and let g
denote  the inverse of  f. If a, < a2  < < a, are n  given positive real numbers, we define
their mean  value (or average) with respect to f to be the number Ml defined as follows:

In particular, when f(x) = xn for p #  0, M, is called the pth power mean  (See also Section
1 4.10.) The exercises  which follow deal with properties of mean  values.
6. Show that f(A4,) = (l/n) ~~=,f(ai). 1 n other words, the value off at the average M, is the

arithmetic mean  of the function valuesf(a,),  , . . ,~(a,).
7. Show that a, < Mf < a,. In other words, the average of a,, . . . , a, lies between the largest

and smallest of the ai.
8. If h(x) = af(x)  + b,  where CI #  0, show that Mh  = M, . This shows that different functions

may  lead  to the same  average. Interpret this theorem geometrically by comparing the graphs
of h andf.
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3.16 The extreme-value theorem for continuous functions

Letfbe a real-valued function defined on a set S of real numbers. The function f is said
to have an abstilute  maximum on the set S if there is at least one  point c in S such  that

f(x) s f(c) for a11 x in S .

The number f(c) is called the absolute  maximum value off on S. We say  that f has an
absolute  minimum on S if there is a point d in S such  that

f(x) 2f(4

Absolute
maximum

Absolute  minimum

f(x) = sin x, 0 I x S T

(4

for a11  x in S .

Y No absolute
maximum exists

f(x) = k if0 < x 5 2, f(0) = 1

(b)

FIGURE 3.13 Maximum and minimum values of functions.

These concepts are illustrated in Figure 3.13. In Figure 3.13(a), S is the closed interval
[0, ~1 and f(x) = sin x. The absolute minimum, which occurs at both endpoints of the
interval, is 0. The absolute  maximum isf($n)  = 1.

In Figure 3.13(b), S is the closed interval [0, 21  andf(x)  = 1/x  if x > O,f(O)  = 1. In
this example,  f has an absolute minimum at x = 2, but it has no absolute  maximum. lt
fails  to have a maximum because of a discontinuity at a point of S.

We wish to prove that if S is a closed interval and iffis continuous everywhere on S, then
fhas both an absolute  maximum and an absolute  minimum on S. This result, known as
the extreme-value theorem for continuous functions, Will be deduced as a simple consequence
of the following theorem.

THEOREM 3.11. BOUNDEDNESS THEOREM FOR CONTINUOUS FUNCTIONS. Let f be con-
tinuous on a closed interval  [a, b]. Then f is bounded on [a, b]. That is, there is a number
C 2 0 such  that 1 f (x)1  5 C for a11  x in [a, b].
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Proof.  We argue by contradiction, using a technique called the method of successive
bisection. Assume that f is unbounded (not bounded) on [a, b]. Let c be the midpoint of
[a, b]. Since f is unbounded on [a, b] it is unbounded on at least one  of the subintervals
[a, c] or [c, b]. Let [a, , b,] be that half of [a, b] in which f is unbounded. Iff is unbounded
in both halves, let [a, , b,] be the left half, [a, c]. Now continue the bisection process
repeatedly, denoting by [a,,, ,b,,,] that half of [a,, b,] in which f is unbounded, with the
understanding that we choose  the left half iff is unbounded in both halves. Since the length
of each  interval is half that of its predecessor, we note that the length of [a, , b,] is (b - a)/2”.

Let A denote  the set of leftmost endpoints a , a, , a2,  . . . , SO constructed, and let a be the
supremum of A. Then a lies in [a, b]. By continuity off at a, there is an interval of the
form (a - S, a + S) in which

(3.25) If(x) -f(a)1  < 1.

If a = a this interval has the form [a, a + 6), and if a = b it has the form (b - 6,  b].
Inequality (3.25) implies

If(x)1  < 1 + If (dl  ,

SO fis bounded by 1 + If(a)1 in this interval. However, the interval [a, , b,] lies inside
(a - 6, a + 6) when n is SO large that (b - a)/2”  < 6. Therefore f is also bounded in
[a, , b,], contradicting the fact that f is unbounded on [a, , b,]. This contradiction completes
the proof.

If f is bounded on [a, b], then the set of a11 function values f (x) is bounded above and
below. Therefore, this set has a supremum and an infimum which we denote  by sup f and
inff, respectively. That is, we Write

SUPf = suP  {f(x)  1 a I x 5 b}, inff=inf{f(x)Ia~~Ib}.

For any  bounded function we have inf f < f(x) 5 sup f for a11 x in [a, b]. Now we prove
that a continuous function takes on both values inff and sup f somewhere in [a, b].

THEOREM 3.12. EXTREME-VALUE THEOREM FOR CONTINUOUS FUNCTIONS. Assume f is
continuous on a closed  interval  [a, b]. Then there exist  points c and d in [a, b] such  that

f(c) = supf a n d f(d)  = infJ

Proof.  It suffices  to prove thatf attains its supremum in [a, 61. The  result for the inhmum
then follows as a consequence  because the infimum off is the supremum of -J

Let M = supf  We shall assume that there is no x in [a, b] for which f(x) = A4 and
obtain a contradiction. Let g(x) = M -f(x). Then g(x) > 0 for a11 x in [a, b] SO the
reciprocal l/g is continuous on [a, b]. By Theorem 3.11, l/g is bounded on [a, b], say  l/g(x)
< C for a11 x in [a, b], where C > 0. This implies M -f(x) > l/C,  SO that f(x) < A4 -
l/C  for a11 x in [a, b]. This contradicts the fact that M is the least Upper  bound off on
[a, b]. Hence, f(x) = M for at least one  x in [a, b].
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Note: This theorem shows that iffis continuous on [a, b], then sup f is its absolute
maximum, and inf fits absolute  minimum. Hence,  by the intermediate-value theorem, the
range offis  the ciosed  interval  [inff,  supf].

3.17 The small-span theorem for continuous functions (uniform continuity)

Let f be real-valued and continuous on a closed interval [a, b]  and let A4(f) and m(f)
denote,  respectively, the maximum and minimum values off on [a, 61. We shall cal1  the
difference

the span  offin the interval [a, b]. Some authors use the term oscillation instead of span.
However, oscillation has the disadvantage of suggesting undulating or wavelike functions.
Older texts use the word saltus,  which is Latin for leap.  The word “span” seems more
suggestive of what is being measured here. We note that the span offin any  subinterval
of [a, b]  cannot exceed the span offin  [a, b].

We shall prove next that the interval [a, 61  cari  be partitioned SO that the span off in each
subinterval is arbitrarily small. More precisely, we have the following theorem which we
cal1  the small-span theorem for continuous functions. It is usually referred to in the literature
as the theorem on uniform continuity.

THEOREM 3.13. Let f be continuous on a closed interval  [a, b]. Then, for every E > 0
there is a partition of [a, b] into ajnite  number of subintervals such  that the span off in every
subinterval is less  than E.

Proof.  We argue by contradiction, using the method of successive bisections.  Assume
the theorem is false. That is, assume that for some E,  say  for E = q,  , the interval [a, b]
cannot be partitioned into a finite number of subintervals in each  of which the span off
is less than q,  . Let c be the midpoint of [a, b]. Then for the same Q,,  the theorem is false in
at least one  of the two subintervals [a, c] or [c, b]. (If the theorem were true in both intervals
[a, c] and [c, b], it would also be true in the full interval  [a, b].) Let [a, , b,] be that half of
[a, b] in which the theorem is false  for E,, . If it is false in both halves, let [a, , b,] be the left
half, [a, c].  Now continue the bisection  process repeatedly, denoting by [a,,, , b,,,] that
half of [a, , b,] in which the theorem is false for cg, with the understanding that we choose
the left half if the theorem is false in both halves of [a, , b,,].  Note that the span off in each
subinterval [a, , b,] SO constructed is at least c0  .

Let A denote  the collection of leftmost endpoints a, a, , u2, . . . , SO constructed, and let
a be the least Upper  bound of A. Then c(  lies in [a, b]. By continuity off at tc,  there is an
interval (CC  - d,  CI  + S) in which the span off is less than E” . (If cc  = a, this interval is
[a, a + S), and if CI  = b, it is (b - 6, 61.) However, the interval [a, , b,] lies inside (CC  - 6,
dc + S) when n  is SO large that (b - a)/2” < 6, SO the span off in [a, , b,] is also less than
E,, , contradicting the fact that the span off is at least q,  in [a, , b,]. This contradiction
completes the proof  of Theorem 3.13.

3.18 The integrability theorem for continuous functions

The small-span theorem cari be used to prove that a function which is continuous on
[a, b] is also integrable on [a, b].
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THEOREM 3.14. INTEGRABILITY OF CONTINUOUS  FUNCTIONS. If a fimction f is  continuous
at each  point of a closetl  intertjal  [a, b], then f is integrable on [a, b].

Proof.  Theorem 3.11 shows that f is bounded on [a, b], SO f has an upper integral,
j(f),  and a lower integral, J(f). We shall prove that J(f) = j(f).

Choose an integer N 2 1 and let E = l/N.  By the small-span theorem, for this choice
of E there is a partition P = {x, , .x1  , . . . , x,,} of [a, b] into n  subintervals such  that the span
offin  every subinterval is less than E. Denote by Mk(f)  and mk( f ), respectively, the absolute
maximum and minimum values offin  the kth subinterval [xkPI  , xk]. Then we have

foreachk=1,2 ,..., r?. Now let s,, and t, be two step functions  defined on [a, b] as
follows :

&d  = %C(f) if xkPl < x < xk , s,,(a)  = df  ),

Then we have s,(x) <f(x) 5 t,(x) for a11 x in [a, b]. Also, we have

The difference of these two integrals is

Since  é = I/N,  this inequality cari  be written in the form

(3.26)

On the other hand, the Upper  and lower integrals offsatisfy the inequalities

Multiplying the first set of inequalities by (-1) and adding the result to the second set,
we obtain

Using (3.26) and the relation I(f))  < i(f),  we have



154 Continuous ji inctions

for every integer N 2 1. Therefore, by Theorem 1.31, we must have l(f) = r(f). This
proves thatf‘is integrable on [a, 61.

3.19 Mean-value theorems for integrals of continuous functions

In Section 2.16 we defined the average value A(f) of a function f over  an interval [a, b]
to be the quotient jif(x) dx/(b  - a). Whenfis continuous, we cari  prove that this average
value is equal to the value offat  some point in [a, b].

THEOREM 3.15. MEAN-VALUE THEOREM FOR INTEGRAIS. Iff is continuous on [a,b],
then for some c in [a, b] we have

s;f(x)  dx =f(c)(b  - a).

Proof. Let m and M denote, respectively, the minimum and maximum values off on
[a, b]. Then m <f(x) 5 A4  for a11 x in [a, b]. Integrating these inequalities and dividing
by b - a, we find m 5 A(f) 5 M,  where A(f) = j’a f (x) dx/(b  - a). But now the inter-
mediate-value theorem tells us that A(f) = f(c) for some c in [a, b]. This completes the
proof.

There is a corresponding result for weighted mean values.

THEOREM 3.16. WEIGHTED MEAN-VALUE THEOREM FOR INTEGRAIS. Assumefandg are
continuous on [a, b]. If g never  changes sign  in [a, b] then, for some c in [a, b], nse  have

(3.27)

Proof. Since  g never  changes sign in [a, b], g is always nonnegative or always nonpositive
on [a, b]. Let us assume that g is nonnegative on [a, b]. Then we may argue as in
the proof  of Theorem 3.15, except that we integrate the inequalities mg(x) 5 f(x)g(x)  <
Mg(x) to obtain

(3.28) m/)(x)  dx  5 I(:f  (x)g(x)  dx I M/:g(x)  dx.

If Jig(x)  dx = 0, this inequality shows that ja f (x)g(x)  dx = 0. In this case, Equation (3.27)
holds trivially for any  choice  of c since  both members are zero. Otherwise, the integral of g
is positive, and we may divide by this integral in (3.28) and apply the intermediate-value
theorem as before to complete the proof. If g is nonpositive, we apply the same argument
to -g.

The weighted mean-value theorem sometimes leads to a useful estimate for the integral
of a product  of two functions, especially if the integral of one  of the factors is easy to
compute. Examples are given in the next set of exercises.
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3.20 Exercises

1.  Use  Theorem 3 .16  to  es tab l i sh  the  fo l lowing inequal i t ies :

2. Note that 2/1 - x2 = (1 - xz)/d-  and use Theorem 3.16 to obtain the inequalities

3. Use the identity 1 +x6 = (1 +x2)(1  - x2 + x4)  and Theorem 3.16 to prove that for a > 0,
we have

Take a = l/lO  and calculate the value of the integral rounded off to six decimal  places.
4. One of the following two statements is incorrect. Explain why it is wrong.

(a) The integral j$: ( sin t)/r dr  > 0 because jaz  (sin t)/t  dr  > jis  Isin  tl/r dt.
(b) The integral j$j (sin t)/t  dt = 0 because, by Theorem 3.16, for some c between 2n  and 4~
we have

s 4n sin t
Tdt=;

s

477

sin t dt =
COS (2a) - COS (47T) = 0 .

2a 277 c

5. If n is a positive integer, use Theorem 3.16 to show that

s d(?z+lh
~ sin (12) dt  = (_I)n  , where & < c < M.

4% c

6. Assume f i s  con t inuous  on  [a ,  b ] . If jt f(x) dx = 0, p rove thatf(c) = 0 for at least one c in
[a,  bl.

7. Assume thatfis integrable and nonnegative on [a, b]. If JE/(x) dx = 0, prove that f(x) = 0
at each  point of continuity off. [Hint: If f(c) > 0 at a point of continuity c, there is an
interval  about  c in whichf(x) > if(c).]

8. Assume fis continuous on [a, b]. Assume also that jif(x)g(x)  dx = 0 for every function  g
that is continuous on [a, b]. Prove thatf(x) = 0 for a11  x in [a, b].
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DIFFERENTIAL CALCULUS

4.1 Historical introduction

Newton and Leibniz, quite independently of one  another, were largely responsible for
developing the ideas of integral calculus  to the point where hitherto insurmountable problems
could be solved by more or less routine methods. The successful accomplishments of these
men were primarily due to the fact that they were able to fuse together the integral calculus
with the second main branch of calculus,  differential calculus.

The central idea of differential calculus is the notion of derivative. Like the integral,
the derivative originated from a problem in geometry-the problem of finding the tangent
line at a point of a curve. Unlike the integral, however, the derivative evolved very late
in the history of mathematics. The concept was not formulated until early in the 17th
Century when the French mathematician Pierre de Fermat,  attempted to determine the
maxima and minima of certain special  functions.

Fermat’s idea, basically very simple, cari be understood if we refer to  the curve in
Figure 4.1. It is assumed that at each  of its points this curve has a definite direction that
cari  be described by a tangent line. Some of these tangents are indicated by broken lines
in the figure. Fermat  noticed that at certain points where the curve has a maximum or

X0 Xl

FIGURE 4.1 The curve has horizontal tangents above the points x,, and x1 .
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minimum, such  as those shown in the figure with abscissae  x0 and x1 , the tangent line
must be horizontal. Thus the problem of locating such  extreme values is seen  to depend
on the solution of another problem, that of locating the horizontal tangents.

This raises  the more general question of determining the direction of the tangent line
at an arbitrary point of the curve. It was the attempt to solve this general problem that
led Fermat  to discover some of the rudimentary ideas underlying the notion of derivative.

At fust  sight there seems to be no connection whatever between the problem of finding
the area of a region lying  under a curve and the problem of finding the tangent line at
a point of a curve. The first person  to  realize that these two seemingly remote  ideas are,
in fact,  rather intimately related appears to have been Newton’s teacher, Isaac Barrow
(1630-1677). However, Newton and Leibniz were the first to understand the real impor-
tance of this relation and they exploited it to the fullest, thus inaugurating an unprece-
dented era in the development of mathematics.

Although the derivative was originally formulated to study the problem of tangents, it
was soon found that it also provides a way to calculate velocity and, more generally, the
rate of change of a function. In the next section we shall consider a special  problem in-
volving the calculation of a velocity. The solution of this problem contains  a11 the essential
features of the derivative concept and may help to motivate  the general definition of
derivative which is given in Section 4.3.

4.2 A problem involving velocity

Suppose a projectile is fired straight up from the ground with initial velocity of 144 feet
per second. Neglect friction, and assume the projectile is influenced only by gravity SO

that it moves up and back  along a straight line. Letf(t)  denote  the height in feet  that the
projectile attains t seconds after firing. If the force of gravity were not acting on it, the
projectile would continue to move upward with a constant velocity, traveling a distance
of 144 feet  every second, and at time t we would have f(t) = 144t. In actual  practice,
gravity  causes the projectile to slow down until its velocity decreases to zero and then it
drops back to earth. Physical experiments suggest that as long as the projectile is aloft,
its heightf(t)  is given by the formula

(4.1) f(t)  = 144t - 16t2.

The term -16t2  is due to the influence of gravity.  Note that f(t) = 0 when t = 0 and
when t = 9. This means that the projectile returns to earth after 9 seconds and it is to
be understood that formula (4.1) is valid only for 0 5 t < 9.

The problem we wish to consider is this: TO determine the velocity of the projectile at
each  instant of its motion. Before we cari  understand this problem, we must decide  on
what is meant by the velocity at each  instant. TO do this, we introduce first the notion
of average velocity during  a time interval, say  from time t to time t + h. This is defined
to be the quotient

change in distance during time interval = f(t + h)  - f(t)

length of time interval h *

This quotient, called a difference  quotient, is a number which may be calculated whenever
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both t and t + h are in the interval [0,9].  The number h may be positive or negative,
but not zero. We shah  keep t fixed and see what happens to the difference quotient as
we take values of h  with smaller and smaller absolute  value.

For example, consider the instant t = 2. The distance traveled after 2 seconds is

f(2) = 288 - 64 = 224.

At time t = 2 + h, the distance covered is

f(2 + h)  = 144(2 + h) - 16(2 + h)2  = 224 + 80h  - 16h2.

Therefore the average velocity in the interval from t = 2 to t = 2 + h is

f(2 + h)  - f(2) = 8Oh - 16h2  = 80 _ 16h
h h

As we take values of h with smaller and smaller absolute  value, this average velocity gets
closer and closer to 80. For example, if h = 0.1, we get an average velocity of 78.4; when
h = 0.001, we get 79.984; when h = 0.00001, we obtain the value 79.99984; and when
h = -0.00001, we obtain 80.00016. The important thing is that we cari  make the average
velocity as close to 80 as we please by taking Ihl  sufficiently small. In other words, the
average velocity approaches 80 as a limit when h approaches zero. It seems natural to cal1
this limiting value the instantaneous velocity at time t = 2.

The same kind of calculation cari  be carried  out  for any  other instant. The average
velocity for an arbitrary time interval from t to t + h is given by the quotient

f(t  + h)  -f’(t)  = Il‘Wt + h)  - 16(t  + h)21  - [144t  - 16t2]  = 144  _ 32t _ 16h
h h

When h approaches zero, the expression on the right approaches 144 - 32t as a limit,
and this limit is defined  to be the instantaneous velocity at time t.  If we denote  the in-
stantaneous velocity by v(t), we may Write

(4.2) v(t) = 144 - 32t.

The formula in (4.1) for the distance f(t)  defines  a function f which tells us how high
the projectile is at each  instant of its motion. We may refer to f as the position function.
Its domain  is the closed  interval [0, 91  and its graph is shown in Figure 4.2(a). [The scale
on the vertical axis is distorted in both Figures 4.2(a) and (b).] The formula in (4.2) for
the velocity v(t) defines  a new function v which tells us how fast the projectile is moving
at each  instant of its motion. This is called the velocity function, and its graph is shown in
Figure 4.2(b). As t increases from 0 to 9, v(t) decreases steadily from v(0)  = 144 to v(9) =
- 144. TO find the time t for which v(t) = 0, we solve the equation 144 = 32t to obtain
t = 9/2. Therefore, at the midpoint of the motion the influence of gravity  reduces the
velocity to zero, and the projectile is momentarily at rest. The height at this instant
is f(9/2)  = 324. When t > 9/2, the velocity is negative, indicating that the height is
decreasing.
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The limit process by which v(t) is obtained from the difference quotient is written sym-
bolically as follows :

(4.3)
v(t) = limf(t  + h)  -f(t)

h-0 h ’

This equation is used to define  velocity not only for this particular example but, more
generally, for any  particle  moving along a straight line, provided the position function f
is such  that the difference quotient tends to a definite limit as h approaches zero.

(4 (b)

FIGURE 4 . 2 (a) Graph of the position functionf(t)  = 144t - 16t2. (b) Graph of the
velocity function: v(t) = 144 - 32t.

4.3 The derivative of a function

The example described in the foregoing section points the way to the introduction of
the concept of derivative. We begin with a function f defined at least on some open
interval (a, b)  on the x-axis. Then we choose  a fixed point x in this interval and introduce
the difference quotient

fix + h) -f(x)
h ’

where the number h, which may be positive or negative (but not zero), is such  that x + h
also lies in (a, b). The numerator of this quotient measures the change in the function
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when x changes from x to x + h.  The quotient itself is referred to as the average rate of
change off in the interval joining x to x + h.

Now we let h  approach zero and see what happens to this quotient. If the quotient
approaches some definite value as a limit (which implies that the limit is the same whether
h approaches zero through positive values or through negative values), then this limit is
called the derivative off at x and is denoted by the symbol f ‘(x) (read as ‘f prime of x”).
Thus, the forma1 definition off’(x) may be stated as follows :

DEFINITION OF DERIVATIVE. The derivative f ‘(x) is dejîned by the equation

(4.4)
f’(x) = limf(x  ’ h) -f(x)

h-0 h ’

yrovided the limit exists. The number f ‘(x)  is also  called the rate of change off at  x.

By comparing (4.4) with (4.3), we see that the concept of instantaneous velocity is
merely an example of the concept of derivative. The velocity v(l)  is equal to the derivative
f’(t), where f is th e function which measures position. This is often described by saying
that velocity is the rate of change of position with respect to time. In the example worked
out  in Section 4.2, the position function f is described by the equation

f(t) = 144t - 16t2,

and its derivative f’ is a new function (velocity) given by

f’(t) = 144 - 32t.

In general, the limit process which produces f ‘(x) from f (x) gives us a way of obtaining
a new function f’ from a given function f. The process is called dzjêrentiation,  and f’ is
called theJirst  derivative off. Iff', in turn, is defined on an open  interval, we cari  try to
compute its first derivative, denoted by f V  and called the second derivative off. Similarly,
the nth derivative off, denoted by f tn), is defined to be the first derivative off (+l).  We
make the convention that f (O)  = f, that is, the zeroth derivative is the function itself.

For rectilinear motion, the first derivative of velocity (second derivative of position) is
called accelerarion.  For example, to compute the acceleration in the example of Section
4.2, we cari  use Equation (4.2) to form the difference quotient

U(t + h)  - u(t)  = [144 - 32(t + h)]  - [144 - 32t] _  -32h _ -32
h h h

Since  this quotient has the constant value -32 for each  h # 0, its limit as h -f 0 is also
-32. Thus, the acceleration  in this problem is constant and equal to -32.. This result
tells us that the velocity is decreasing at the rate of 32 feet  per second every second. In 9
seconds the total decrease in velocity is 9 * 32 = 288 feet  per second. This agrees with the
fact that during the 9 seconds of motion the velocity changes from v(0)  = 144 to
v(9) = - 144.
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4.4 Examples of derivatives

EXAMPLE  1. Derivative of a constant function. Suppose f is a constant function, say
f(x) = c for a11 x. The difference quotient is

f(x+h)-f(x)-c-c-O,
h h

Since the quotient is 0 for a11 h z 0, its limit, f ‘(x), is also 0 for every x. In other words, a
constant function has a zero derivative everywhere.

EXAMPLE 2. Derivative of a linear function. Suppose f is a linear function, say  f(x) =
mx + b for all real x. If h # 0, we have

f(x  + h) -f(x) = m(x + h)  + b - (mx + b) mh=-=m
h h h ’

Since the difference quotient does  not change when h approaches 0, we conclude that

f’(x) = m for every x.

Thus, the derivative of a linear function is a constant function.

EXAMPLE 3. Derivative of a positive integer power  function. Consider next the case
f(x) = xn,  where n is a positive integer. The difference quotient becomes

f(x+h)-f(x>=(~+h)~-x~
12 h ’

TO study this quotient as h approaches 0, we cari  proceed in two ways, either by factoring
the numerator as a difference of two nth powers or by using the binomial theorem to
expand (x + h)“. We shah  carry out the details by the first method and leave the other
method as an exercise  for the reader. (See Exercise 39 in Section 4.6.)

From elementary algebra we have the identityt

n-1

an - b”  = (a - b)  2 akbnpl-k,
k=O

If we take a = x + h and b = x and divide both sides  by tr, this identity becomes

(x + h)” - xn n-l=
h c

(x + h)kxn-l-k.

k=fl

t This identity is an immediate consequence  of the telescoping property of finite  sums. In fact,  if we multiply
each  term of the sum by (a - b), we find

n - l Il-1
(a _ b) 1 &n-1-w  = 2 (uLtl/y-(E+ll  _ &pL)  = a" _ pl.

k=O k=O
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There are n terms in the sum. As h approaches 0, (x + h)”  approaches xk, the kth term
approaches  xkxn-lPk  = R l,
From this it follows thar  -

and therefore the sum of a11 n terms approaches nx”-l.
. .

f’(x) = nxn-l for every x.

EXAMPLE 4. Derivative of the sine function. Let s(x) = sin x. The difference quotient
in question is

4x + h)  - s(x)  = sin (x + h)  - sin x

h h

TO transform this into a form that makes it possible to calculate the limit as h + 0, we use
the trigonometric identity

v - x Y+xsin y - sin x = 2 sin L COS -
2 2

with y = x + h. This leads to the formula

sin (x + h) - sin x

h

As h --f 0, the factor COS (x + frh) --f COS x because of the continuity of the cosine. Also,
the limit formula

lim
sin x-= 1

2+0 x

established earlier in Section 3.4, shows that

(4.5)
sin  (W) -, 1 a s  h-tO.

h/2

Therefore the difference quotient has the limit COS x as h + 0. In other words, s’(x) =
COS x for every x; the derivative of the sine function is the cosine function.

EXAMPLE 5. The derivative of the cosine function. Let c(x) = COS x. We shall prove that
c’(x) = -sin x; that is, the derivative of the cosine function is minus the sine function.
We start with the identity

v - x .  y + x
COS y - COS x = -2 sin L sin -

2 2

and take y = x + h. This leads to the formula

COS (x + h) - COS x =-
h
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Continuity of the sine shows that sin (x + $h) -f sin x as h -+ 0; from (4.9, we obtain
c’(x) = -sin  x.

EXAMPLE  6. Derivative of the nth-root function. If n is a positive integer, let f(x) = xlln
for x > 0. The difference quotient forf is

j-(x + h) -f(x)  = (x + h)l’”  - xlln

h h ’

Let u  = (x + h)lln  and let v = xlln.  Then we have un  = x + h and un  = x, SO h  =
un  - un,  and the difference quotient becomes

f(x + h)  -f(x) u - v 1z-c
h un  - un Un-l  + Un-2v  + . . . + UVn-2  + g-1 *

The continuity of the nth-root function shows that u  -f v as h + 0. Therefore each  term
in the denominator on the right has the Iimit un-l as h + 0. There are n terms altogether,
SO the difference quotient has the limit v-“/n.  Since  u  = xlln,  this proves that

f’(x) = ! Xlln-l  .
n

EXAMPLE 7. Continuity of functions having derivatives. If a function f has a derivative at
a point x, then it is also continuous at x. TO prove this, we use the identity

j-(x + h) = f(x) + h f(x  + y - f (“))
(

which is valid for h # 0. If we let h - 0, the difference quotient on the right approaches
f’(x) and, since this quotient is multiplied by a factor which tends to 0, the second term on
the right approaches 0 -f’(x) = 0. This shows that f(x + h) Af(x)  as h --i 0, and hence
that f is continuous at x.

This example provides a new way of showing that functions are continuous. Every
time we establish the existence of a derivative f’(x), we also establish, at the same time,
the continuity offat  x. It should be noted, however, that the converse is not true. Con-
tinuity at x does  not necessarily mean that the derivative f’(x) exists. For example, when
f ( x ) =  Ixl,th  p te oin x = 0 is a point of continuity off [since f (x) --, 0 as x + 0] but there
is no derivative at 0. (See Figure 4.3.) The difference quotient [f(O + h) - f(O)]/h  is

F IGURE 4 . 3 The function is continuous at  0 but f’(O) does  net  exist.
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equal to ]h]/h.  This has the value + 1 if h  > 0 and - 1 if h  < 0, and hence  does  not tend
to a limit as h  + 0.

4.5 The algebra of derivatives

Just as the limit theorems of Section 3.4 tel1 us how to compute limits of the sum, differ-
ence,  product, and quotient of two functions, SO the next theorem provides us with a
corresponding set of rules for computing derivatives.

THEOREM 4.1. Let f and g be two functions dejned  on a common  interval. At each  point
Mlhere  f and g have a derivative, the same is true of the sum f + g, the d@erence  f - g,
the product f * g, and the quotient f/g. (For f/g we need the extra proviso that g is not zero at
the point in question.) The derivatives of these functions are given by the following formulas:

(9  (f + g)’ = f’ + g’ ,

(ii) (f - g)’ = f’ - g’ ,

(iii) (f*g)‘=f*g’+g*f’,

(iv) at points x where g(x) # 0.

We shah  prove this theorem in a moment, but first we want to mention some of its
consequences. A special  case of (iii) occurs when one  of the two functions is constant,
say  g(x) = c for a11 x under consideration. In this case, (iii) becomes (c . f)’ = c . f ‘. In
other words, the derivative of a constant times f is the constant times the derivative off.
Combining this with the fact that the derivative of a sum is the sum of derivatives [property
(i)], we find that for every pair of constants c1  and c2  we have

(c1f  + c,g)’  = cJ’  + c2g  ‘*

This is called the linearity property of the derivative, and it is analogous to the linearity
property of the integral. Using mathematical induction, we cari  extend the iinearity
property to arbitrary finite sums as follows:

where e1  , . . . , c, are constants and fi , . . . , fn are functions with derivatives fi , . . . , f,‘, .
Every derivative formula cari  be written in two ways, either as an equality between two

functions or as an equality involving numbers. The properties of Theorem 4.1, as written
above, are equations involving functions. For example, property (i) states that the deriva-
tive of the function f + g is the sum of the two functionsf’ and g’. When these functions
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are evaluated at a point x, we obtain formulas involving numbers. Thus formula (i)
implies

(f + g)‘!x)  = f’(x) + g’(x).

We proceed now to the proof  of Theorem 4.1.

Proofof(i).  Let x be a point where both derivativesf’(x) and g’(x) exist. The dilference
quotient forf + g is

[fix  + h) + dx + WI  - Mxi + g(x)1  _ fb  + 4 - fw  + g(x  + h) - g(x)
h h h ’

When h + 0 the first quotient on the right approachesf’(x), the second approaches g’(x),
and hence  the sum approachesf’(x) + g’(x). This proves (i), and the proof  of (ii) is similar.

Proof of (iii). The difference quotient for the productf.  g is

(4.6)
fb + hk(x  + h) -f(x)g(xj

h

TO study this quotient as h --f 0, we add and subtract in the numerator a term which enables
us to Write  (4.6) as a sum of two terms involving difference quotients offand g. Adding
and subtracting g(x)f(x + h), we see that (4.6) becomes

./Xx  +  hhdx  +  h)  -f(x)&)
h

= g(x) S(x  + h)  -f(x)
h

+ f(x  + h)  g(x  + h)  - g(X)
h ’

When h + 0 the first term on the right approaches g(x)f’(x). Sincefis continuous  at x,
we havef(x  + h) -f(x , SO the second term approachesf(x)g’(x). This proves (iii).)

Proofof(iv).  A special case of (iv) occurs whenf(x) = 1 for a11 x. In this casef’(x)  = 0
for a11 x and (iv) reduces to the formula

(4.7)
1’ g’0- =--
g g2

provided g(x) # 0. We cari  deduce the general formula (iv) from this special case by
writingf/g  as a product  and using (iii), since

Therefore it remains to prove (4.7). The difference quotient for l/g is

(4.8)
W&  + h)l - [llg(x)l  = _ g(x  + h) - g(x)  . 1. 1

h h g(x)  dx  + h)  ’
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When  h + 0, the first quotient on the right approaches g’(x) and the third factor approaches
l/g(x).  The continuity of g at x is required since  we are using the fact that g(x + h)  +
g(x) as h  --f 0. Hence the quotient in (4.8) approaches -g’(x)/g(x)2,  and this proves (4.7).

Note: In order to Write (4.8) we need to know that g(x + h)  #  0 for a11 sufficiently small
h.  This follows from Theorem 3.7.

Theorem 4.1, when used in conjunction with the examples worked out  in Section 4.4,
enables us to derive  new examples of differentiation formulas.

EXAMPLE 1. Polynomials. In Example 3 of Section 4.4 we showed that if f(x) = xn,
where n is a positive integer, then J’(x) = nxn-l. The reader may find it instructive to
rederive this result as a consequence  of the special  case n = 1,  using mathematical induction
in conjunction with the formula for differentiating a product.

Using this result along with the linearity property, we cari  differentiate any  polynomial
by computing the derivative of each  term and adding the derivatives. Thus, if

then, by differentiating term by term, we obtain

Note that the derivative of a polynomial of degree n is a new polynomial of degree n - 1.
For example, iff(x) = 2x3 + 5x2 - 7x + 8, thenf’(x)  = 6x2 + 10x - 7.

EXAMPLE 2. Rational functions. If r is the quotient of two polynomials, say  r(x) =
p(x)/q(x),  then the derivative r’(x) may be computed by the quotient formula (iv) in
Theorem 4.1. The derivative r’(x) exists at every x for which the denominator q(x) # 0.
Note that the function r’  SO defined is itself a rational function. In particular, when r(x) =
l/xm,  where m is a positive integer and x # 0, we find

r’(x) = ’
“.()-  mxmpl -m

=-
X 2m xln-l-l  .

If this is written in the form r’(x) = -mx?-l, it provides an extension from positive
exponents to negative exponents of the formula for differentiating nth powers.

EXAMPLE 3. Rational powers.  Let f(x) = x’ for x > 0, where r is a rational number.
We have already proved the differentiation formula

(4.9) f’(x) = rx’-l

for r = lin, where n is a positive integer. Now we extend it to a11 rational powers. The
formula for differentiating a product shows that Equation (4.9) is also valid for r = 2/n
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and, by induction, for r = min,  where m is any  positive integer. (The induction argument
refers to m.) Therefore Equation (4.9) is valid for a11  positive rational r. The formula
for differentiating a quotient now shows that (4.9) is also valid for negative rational r.
Thus, if f(x) = x2/3,  we have f’(x) = 5x-1/3. If f(x) = x1/2, then f’(x) = -SX-~/~.  In
each  case, we require x > 0.

4.6 Exercises

1. Iff(x) = 2 + x - x2, computef’(O),f’($),f’(l),f’(-10).
2. Iff(x) = $x3 + ix” - 2x, find a11 x for which (a)f’(x) = 0; (b)f’(x)  = -2; (c)f’(x) = 10.

In Exercises 3 through 12, obtain a formula forf(x)  iff(x) is described as indicated.

3. f(x) = x2 + 3x -t 2.

4. f(x) = x4 + sin x.

5. f(x) = x4 sin x.

6.  j-(x>  = --&, x #  - 1 .

7. j-(x> = &y + x5 COS x.

S.f(x)  =$ x # 1.

19. f(x) =
2 + COS x *

10. f(x) =
x2 + 3x + 2
x4 + x2 + 1 *

11. J’(x) =;I”x.

13. Assume that the height,f(t)  of a projectile, t  seconds after being fired directly upward from the
ground with an initial velocity of a0  ft/sec,  is given by the formula

f‘(t) = v,t - 16t2.

(a) Use the method described in Section 4.2 to show that the average velocity of the projectile
during  a time interval  from t to t + h  is ao - 32t - 16h ft/sec,  and that the instantaneous
velocity at time t is u0  - 32t ft/sec.
(b) Compute (in terms of ut,)  the time required for the velocity to drop to zero.
(c) What is the velocity on return to earth?
(d) What must the initial velocity be for the projectile to return to earth after 1 sec? after
10 sec? after T sec?
(e) Show that the projectile moves with constant acceleration.
(f) Give an example of another formula for the height which Will lead  to a constant accelera-
tion of -20 ft/sec/sec.

14. What is the rate of change of the volume of a cube with respect to the length of each  edge?
15. (a) The area  of a circle  of radius r is w2  and its circumference is 2nr.  Show that the rate of

change of the area  with respect to the radius is equal to the circumference.
(b) The volume of a sphere of radius r is 4nr3/3  and its surface area  is 4nr2.  Show that the
rate of change of the volume with respect to the radius is equal to the surface area.

In Exercises 16 through 23, obtain a formula for f’(x) iff(x) is defined as indicated.

16. ,f(x)  = 1/x, x > 0. 18. f(X) = 2’2, x > 0.

1
17. f(x) = ~1+4’ x > 0. 19. f(X) = x-3’2, x > 0.
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20. f(x) = $2 + $13  + x1l4 x > 0.
4

22.  fC-4 = I+x  > x > 0.

2 1. f(x) = x-l’2  + x-1’3  + x-1’4, x > 0. 23. f(x) = -?- >
l-t&

x > 0.

24. Let,f,,... , fn be n functions  having derivatives f l , . . , fn . Develop a rule for differentiating
the product  g =,fr  fn and prove it by mathematical induction. Show that  for  those  points
x, where none of the function  values fi(x), . . . , fn(x)  are zero, we have

g’(x)  fi(x) f;(x)-=-
g(x)  ,fi(X) +‘..  +.fn(xy

25. Verify the entries  in  the  fo l lowing shor t  tab le  of  der iva t ives .  I t  i s  unders tood tha t  the  formulas
hold for those x for which f(x) is defined.

f ( x )

tan x
cet  x

f’(x)

sec2 x
-csc2  x

f ( x )

s e c  x
c s c  x

.f ‘(x)

tan x sec x
-cet x csc x

In Exercises  26 through 35, compute the derivative f’(x). It is understood that each  formula
holds for those x for which f(x) is defined.

26. f(x) = tan x sec x.

27. f(x) = x tan x.

28. f(x) = ; + -$ + f

32. f(x) = --!---
x + sin x ’

1 +x-x2
30.  f(x) = 1 _ x + x2 .

ux2  + bx + c
35’ f(X) = sin  x + ~0s  x ’

36. If f(x) = (ax + b) sin x + (cx + d) COS x, determine values of the constants a, b, c, d such
thatf’(x)  = x COS x.

37. If g(x) = @x2  + bx + c) sin x + (dx2  + ex + f) COS x, determine values of the constants
a, b, c, d, e, f such that g’(x) = x2 sin x.

38. Given the formula

Xn+l  - 1
1 + x + x2 + . . * + xn = x-l

(valid if x # l), determine, by differentiation,  formulas for the following sums:
(a) 1 + 2x + 3x2  + .  .
(b) 12x + 22x2 + 32x3  + +~zx;->xn.
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39. Let f(x) = xn, where n is a positive integer. Use the binomial theorem to expand (x + /J)~

and derive the formula

fCx  + h, -.fCx)  = nx"-l
h

n(n - ')xn-2h  + ., . + nxhn-2  + hn-l

+-T-

Express the sum on the right in summation notation. Let h + 0 and deduce thatf’(x)  = nxn-l.
State which limit theorems you  are using. (This result was derived in another way in Example
3 of Section 4.4.)

4.7 Geometric interpretation of the derivative as a slope

The procedure  used to define  the derivative has a geometric interpretation which leads in
a natural way to the idea of a tangent line to a curve. A portion of the graph of a function
fis shown in Figure 4.4. Two of its points P and Q are shown with respective coordinates

,Vertical  (no slope)

,m = 3

,

+ h) -f(x)

m=\  - 4

X x+h m indicates the slope

FIGURE  4.4 Geometr ic  interpretat ion of  the
difference quotient as the tangent of an angle.

FIGURE  4.5 Lines of  var ious  dopes .

(x,~(x)) and (x + h,f(x  + h)). Consider the right triangle with hypotenuse PQ; its
altitude, J(x + h) -f(x ), r e p resents the difference of the ordinates of the two points Q
and P. Therefore, the difference quotient

(4.10) f(x + h) - f(x)
h

represents the trigonometric tangent of the angle GI that PQ makes with the horizontal.
The real number tan tl  is called the slope of the line through P and Q and it provides  a
way of measuring the “steepness” of this line. For example, iff is a linear function, say
f(x) = mx + b, the difference quotient (4.10) has the value m, SO m is the slope of the
line.

Some examples of lines  of various slopes are shown in Figure 4.5. For a horizontal line,
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u = 0 and the slope, tan cc,  is also 0. If LX lies between 0 and &T,  the line is rising as we move
from left to right and the slope is positive. If CI  lies between &r  and n,  the line is falling as
we move from left to right and the slope is negative. A line for which u = $T has slope 1.
As cc  increases from 0 to &n,  tan CI  increases without bound, and the corresponding lines
of slope tan CI  approach a vertical position. Since  tan &r  is not defined, we say  that vertical
lines  haue no dope.

Suppose now that f has a derivative at x. This means that the difference quotient
approaches a certain limit f ‘(x) as h approaches 0. When this is interpreted geometrically
it tells us that, as h gets nearer to 0, the point P remains fixed, Q moves along the curve
toward P, and the line through PQ changes its direction in such  a way that its slope
approaches the number f ‘(x) as a limit. For this reason it seems natural to define  the dope
of the curve at P to be the numberf ‘(x). The line through P having this slope is called the
tangent line at P.

Note: The concept of a line tangent to a circle (and to a few other special  curves) was
cons idered  by  the  ancient  Greeks.  They def ined  a  tangent  l ine  to  a  c i rc le  as  a  l ine  having
one  of  i t s  po in t s  on  the  c i rc le  and  a11 i t s  o the r  po in t s  ou t s ide  the  c i rc le . From this defini-
t i on ,  many  proper t ies  of  tangent  lines  t o  circles  cari  be  der ived . For example, we cari  prove
that the tangent at  any  point is perpendicular to the radius at that point. However, the
Greek def in i t ion  of  tangent  l ine  i s  not  eas i ly  ex tended to  more general  curves. The method
descr ibed above,  where  the  tangent  l ine  is  def ined in  terms of  a  der ivat ive ,  has  proved to
be far more satisfactory. Using this definition, we cari  prove that  for a circle the tangent
line has a11  the properties ascribed to  it by the Greek geometers. Concepts such  as per-
pendicular i ty  and para l le l i sm cari  be  explained ra ther  s imply in  analyt ic  terms making use
of slopes of lines.  For example, from the trigonometric identity

tan (M - B)  =
tan a - tan B

1 + tan GI tan B ’

it follows that two nonvertical lines  with the same  slope are parallel. Also, from the
i d e n t i t y

cet  (u - 8) =
1 + tan c(  tan /?
tan OL  - tan p ’

we find that  two nonvertical lines  with slopes having product  - 1 are perpendicular.

The algebraic sign of the derivative of a function gives us useful information about  the
behavior of its graph. For example, if x is a point in an open  interval where the derivative
is positive, then the graph is rising in the immediate vicinity of x as we move from left to
right. This occurs at x3 in Figure 4.6. A negative derivative in an interval means the
graph is falling, as shown at x1, while a zero derivative at a point means a horizontal tangent
line. At a maximum or minimum, such  as those shown at x2, x5, and x8, the slope must be
zero. Fermat  was the first to notice that points like x,, x,, and x,, where f has a maximum
or minimum, must occur among the roots of the equation f’(x) = 0. It is important to
realize that f ‘(x) may also be zero at points where there is no maximum or minimum, such
as above the point x4. Note that this particular tangent line crosses the graph. This is an
example of a situation not covered by the Greek definition of tangency.
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XI X2 X3 X4 X5 X6

FIGURE 4 . 6 Geometric significance of the sign of the derivative.

The foregoing remarks concerning the significance of the algebraic sign of the derivative
may seem quite obvious when we interpret them geometrically. Analytic proofs of these
statements, based on general properties of derivatives, Will be given in Section 4.16.

4.8 Other notations for derivatives

Notation has played an extremely important role in the developmenr of mathematics.
Some mathematical symbols, such  as xn or n !, are merely abbreviations that compress long
statements or formulas into a short space. Others, like the integration symbol ji f(x) dx,
not only remind us of the process being represented but also help us in carrying out
computations.

Sometimes several different notations are used for the same idea, preference for one
or another being dependent on the circumstances that surround the use of the symbols.
This is especially true in differential calculus  where many different notations are used for
derivatives. The derivative of a function f has been denoted in our previous discussions
by f ‘,  a notation introduced by J. L. Lagrange (1736-1813) late in the 18th Century. This
emphasizes the fact that f' is a new function obtained from f by differentiation,  its value
at x being denoted by f ‘(x). Each point (x, y) on the graph off has its coordinates x and
y related by the equation y = f (x), and the symbol y’ is also used to represent the derivative
f'(x). Similarly, y #,  . . . , y(lz) represent the higher derivatives f”(x), . . . , f cri)(x). For
example, if y = sin x, then y’ = COS x, y V  = -sin x, etc. Lagrange’s notation is not too
far removed from that used by Newton who wrote j and ÿ,  instead of y’ and y “. Newton’s
dots are still used by some authors, especially to denote  velocity and acceleration.

Another symbol was introduced in 1800 by L. Arbogast (1759-1803) who denoted the
derivative off by DJ a symbol that has widespread use today. The symbol D is called a
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d$èrentiation operator, and it helps to suggest that Df is a new function obtained from f
by the operation of differentiation. Higher derivatives f “,  f”‘, . . . ,fcn)  are written O”f,
O”f,  . . . , O”f,  respectively, the values of these derivatives at x being written D2f(x),
D3f(x),  . . . , D”~(X). Thus, we have D sin x = COS x and Dz  sin x = D COS x = -sin  x.
The rule for differentiating a sum of two functions  becomes, in the D-notation, D(f + g) =
Df + Dg. Evaluation of the derivatives at x leads to the formula [D(f + g)](x) =
Of(x)  + D~(X)  which is also written in the form D[~(X) + g(x)] = D~(X)  + Dg(x).  The
reader may easily formulate the product  and quotient rules in the D-notation.

Among the early pioneers of mathematical analysis, Leibniz, more than anyone else,
understood the importance of well-chosen symbols. He experimented at great length and
carried on extensive correspondence with other mathematicians, debating the merits or
drawbacks of various notations. The tremendous impact that calculus  has had on the
development of modern mathematics is due in part to its well-developed and highly
suggestive symbols, many of them originated by Leibniz.

Leibniz developed a notation for derivatives quite different from those mentioned above.
Using y forf(x),  he wrote the difference quotient

in the form

f(x  + h) -f(x)
h

where Ax (read as “delta x”) was written for h,  and Ay  forf(x  + h) -f(x). The symbol
A is called a d@erence  operator. For the limit  of the difference quotient, that is, for the
derivativef’(x), Leibniz wrote dy/dx.  In this notation, the definition of derivative becomes

!!2  = lim  9
d x  ~r+oLix'

Not only was Leibniz’s notation different, but his way of thinking about derivatives was
different. He thought of the limit dy/dx  as a quotient of “infinitesimal” quantities dy and
dx called “differentials,” and he referred to the derivative dy/dx  as a “differential quotient.”
Leibniz imagined infinitesimals as entirely new types of numbers which, although not zero,
were smaller than every positive real number.

Even though Leibniz was not able to give a satisfactory definition of infinitesimals, he
and his followers used them freely in their development of calculus. Consequently, many
people found calculus  somewhat mysterious and began to question the validity of the
methods. The work of Cauchy and others in the 19th Century gradually led to the replace-
ment of infinitesimals by the classical theory of limits. Nevertheless, many people have
found it helpful to try to think as Leibniz did in terms of infinitesimals. This kind of
thinking has intuitive appeal and often leads quickly to results that cari  be proved correct
by more conventional means.

Recently Abraham Robinson has shown that the real number system cari be extended
to incorporate infinitesimals as envisaged by Leibniz. A discussion of this extension and its
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impact on many branches of mathematics is given in Robinson’s book, Non-standard
Analysis,  North-Holland Publishing Company, Amsterdam, 1966.

Although some of Leibniz’s ideas fe’ll into temporary disrepute, the same cannot be said
of his notations. The symbol dy/dx  for the derivative has the obvious advantage that it
summarizes the whole process of forming the difference quotient and passing to the limit.
Later we shall find the further advantage that certain formulas become easier to remember
and to work with when derivatives are written in the Leibniz notation.

4.9 Exercises

1 .

2.

3 .

4.

5 .

6.

Let f(x) = ix” - 2x2 + 3x + 1 for all x. Find the points on the graph off at which the
tangent line is horizontal.
LetJ’(x)  = $x3 + 1,x2  - x - 1 for a11  x. Find the points on the graph offat  which the slope
is: (a) 0; (b) -1; (c) 5.
Letf(x) = x + sin x for a11 x. Find a11 points x for which the graph offat  (x,f(x)) has slope
zero.
Letf(x) = x2 + ax  + b for a11 x. Find values of a and b such  that the line y = 2x is tangent
to the graph off’at the point (2, 4).
Find values of the constants a, b,  and c for which the graphs of the two polynomialsf(x)  =
x2 + ax  + b and g(x) = x3 - c Will  intersect at the point (1, 2) and have the same  tangent
line at that point.
Consider the graph of the function  f’ defined by the equation f(x) = x2 + ax  + b,  where a
and b  are constants.
(a) Find the slope of the chord  joining the points on the graph for which x = x1 and x = x2.
(b) Find, in terms of x1 and x2 , a11 values of x for which the tangent line at (x,f(x)) has the
same  slope as the chord  in part (a).
Show that the line y = -x is tangent to the curve  given by the equation y = x3 - 6x2 + 8x.
Find the point of tangency.  Does  this tangent line intersect the curve  anywhere else?
Make a sketch of the graph of the cubic polynomialf(x) = x - x3 over  the closed  interval
-2 < x I 2. Find constants m and b such  that the line y = mx + b Will be tangent to the
graph off at the point ( - l,O). A second line through (- 1,0) is also tangent to the graph off
at a point (a, c). Determine the coordinates a and c.
A function  f is defined as follows:

f(x)  = (11 + b (a, b,  c constants) .

Find values of a and b (in terms of c) such  thatf’(c) exists.
10. Solve Exercise  9 when f is defined as follows:

f(X)  =

l

Ïi if 1x1 > c ,

a + bX2 if 1x1 5  c  .

11. Solve Exercise  9 when f is defined as follows:

sin x
f<4 =

i f  X<C,

ax +  b i f  X>C.
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12. Iff(x) = (1 - &)/(l  + 4;)  for x > 0, find formulas for Of(x),  Pfcx), and O~(X).

13. There is a polynomial P(x) = ux3 + bx2  + cx + d such that  P(0) = P(1) = -2, P’(O)  = -1,
and P”(0) = 10. Compute a, b, c, d.

14.  Two funct ions  f and g have first  and  second  der iva t ives  at 0  and  sa t i s fy  the  re la t ions

15.

16.

f(O)  = 2/gKo  , f ‘KO  = 2g’W)  = 4g(O)  > g”(0) = Sf”(0)  = 6f(O)  = 3 .

(a) Let h(x) = f(x)/g(x),  and compute h’(O).
(b) Let k(x) =,f(x)g(x) sin x, and compute k’(0).
(c) Compute the limit of g’(x)lf’(x)  as x + 0.
Given that the derivativef’(a)  exists. State which of the following statements are true and
which are false. Give a reason for your decision in each  case.

f(h) -f(a)
(a)f’(u)=lim’  h-u .

h+a

(c) J”(u) = lim
f(u + 2t) -f(u)

t-o t

(b) ,f’(u)  = lim
f(a)  -f@ - h)

h ’ (d) f’(u) = lim
f(u  + 2t)  -f(u  + t)

B-0 t-o 2 t
Suppose that instead of the usual definition of the derivative Of(x), we define a new kind of
derivative, D*~(X),  by the formula

D*f(x) = limf2(x  + h) -f2(x)

h-0 h ’

where f  2(x) means [f (x)12.
(a) Derive formulas for computing the derivative D* of a sum, difference,  product, and
q u o t i e n t .
(b) Express D*f(x) in terms of Df(x).
(c) For what functions does O*f  = Df?

4.10 The chain rule  for differentiating composite functions

With the differentiation formulas developed thus far, we cari find derivatives of functions
f for which f(x) is a finite sum of products  or quotients of constant multiples of sin x,
COS x, and x’ (Y rational). As yet,  however, we have not learned to deal with something
like f(x) = sin (x2) without going back  to  the definition of derivative. In this section we
shall present a theorem, called the chain rule,  that enables us to differentiate composite
functions such  as f(x) = sin (x2). This increases substantially the number of functions
that we cari  differentiate.

We recall  that if u  and u are functions such  that the domain  of u  includes  the range of ~1,
we cari define  the composite function  f = u 0 u  by the equation

f(x) = 4441  *

The chain rule  tells us how to express the derivative off in terms of the derivatives u’ and v’.

THEOREM 4 .2 .  CHAIN RULE. Let f be the composition of two  functions u and v, say
f=llov. Suppose that both derivatives v’(x) and u’(y) exist, where y = v(x). Then the
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derivative f ‘(x) also exists and is given by the formula
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(4.11) f’(x) = u’(y) * v’(x) .

In other words, to compute the derivative of u 0 v at x, we first compute the derivative of
u at the point y, where y = v(x), and multiply this by v’(x).

Before we discuss the proof  of (4.1 l), we shall mention some alternative ways of expressing
the chain rule formula. If we Write  (4.11) entirely in terms of x, we obtain the formula

f’(x) = u’[u(x)]  * v’(x) .

Expressed as an equation involving functions rather than numbers, the chain rule assumes
the following form

(u 0 v)’ = (u’ 0 v) * v’.

In the u(v)-notation, let us Write  U(V)’  for the derivative of the composite function U(V) and
u’(v)  for the composition U’ 0 v. Then the last formula becomes

u(v)’ = u’(v) * v’.

Proof  of Theorem 4.2. We turn now to the proof  of (4.11). We assume that v has a
derivative at x and that u  has a derivative at v(x), and we wish to prove thatf has a derivative
at x given by the product  u’[v(x)] . v’(x). The difference quotient for f is

(4.12) J-(x +  h)  -f(x) = ~[V(X  +  h)l - ~[~X~I
h h

It is helpful at this stage to introduce some new notation. Let y = v(x) and let k  =
V(X  + h)  - v(x). (It is important to realize that k  depends  on  h.)  Then we have
V(X  + h)  = y + k and (4.12) becomes

(4.13) f(x +  h)  -f(x) = U(Y  +  k) - U(Y)
h h ’

The right-hand side  of (4.13) resembles the difference quotient whose limit defines  u’(y)
except that h appears in the denominator instead of k. If k # 0, it is easy to complete the
proof. We simply multiply numerator and denominator by k, and the right-hand side  of
(4.13) becomes

(4.14) U(Y + k) - U(Y) k.--= u(y + k) - U(Y)  . 4x + h)  - 4x1

k h k h ’

When h -+ 0, the last quotient on the right tends to v’(x). Also, k 4 0 as h -f 0 because
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k = u(x  + h)  - U(X)  and v is continuous  at x. Therefore the first quotient on the right
of (4.14) approaches u’(y)  as h -f 0, and this leads at once to (4.11).

Although the foregoing argument seems to be the most natural way to proceed, it is not
completely general. Since k = V(X  + h)  - v(x), it may happen that k = 0 for infinitely
many values of h  as h  --f 0, in which case the passage from (4.13) to (4.14) is not valid.
TO overcome this difficulty,  a slight modification of the proof  is needed.

Let us return to Equation (4.13) and express the quotient on the right in a form that
does  not involve k in the denominator. For this purpose  we introduce the difference
between the derivative u’(y)  and the difference quotient whose limit is u’(y).  That is, we
define  a new function g as follows:

s(t)  =
NY + t> - U(Y)  _ u’(y) i f  t#O

t

This equation defines  g(t) only if t # 0. Multiplying by t and rearranging terms, we may
Write  (4.15) in the following form:

(4.16) “(y + t>  - u(y) = t[gtt)  + u’(I?>l  *

Although (4.16) has been derived under the hypothesis that t # 0, it also  holds for t = 0,
provided we assign some definite value to g(0). Since g(f) + 0 as t + 0, we shah  define  g(0)
to be 0. This Will ensure  the continuity of g at 0. lf, now, we replace t in (4.16) by k, where
k = U(X  + h)  - v(x), and substitute the right-hand side  of (4.16) in (4.13), we obtain

(4.17) .f(x + 11)  -f(x) = k
h h [g(k)  + U’(Y)1  9

a formula that is valid even if k = 0. When h + 0 the quotient k/h  + U’(X) and g(k) -f  0
SO the right-hand side  of (4.17) approaches the limit u’(y)  * U’(X). This completes the proof
of the chain rule.

4.11 Applications of the chain  rule. Related rates and implicit  differentiation

The chain rule is an excellent example  to illustrate  the usefulness  of the Leibniz notation
for derivatives. In fact,  if ae  Write  (4.11) in the Leibniz notation, it assumes the appearance
of a trivial algebraic identity. First we introduce new symbols, say

y = 44 a n d z = u(y) .

Then we Write  dy/dx  for the derivative v’(x), and dz/dy  for u’(y).  The formation of the
composite function is indicated by writing

z = u(y) = u[z;(x)]  =f(x) )

and dz/dx  is written for the derivative f’(x). The chain rule, as expressed in Equation
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(4.1 l), now becomes

(4.18)
d z dz dy-=--
dx dy dx ’

The strong suggestive power of this formula is obvious. It is especially attractive to people
who use calculus  in physical problems. For example, suppose the foregoing symbol z
represents a physical quantity measured in terms of other physical quantities x and y.
The equation z =f(x) tells us how to find z if x is given, and the equation z = u(y)  tells
us how to find  z if y is given. The relation between x and y is expressed by the equation
y = u(x). The chain rule, as expressed in (4.18),  tells us that the rate of change of z with
respect to x is equal to the product  of the rate of change of z with respect to y and the rate
of change ofy  with respect to x. The following example illustrates how the chain rule may
be used in a special  physical problem.

EXAMPLE 1.  Suppose a gas is pumped into a spherical balloon at a constant rate of 50
cubic centimeters per second. Assume that the gas pressure remains constant and that the
balloon always has a spherical shape. How fast is the radius of the balloon increasing
when the radius is 5 centimeters?

Solution. Let r denote  the radius and V the volume of the balloon at time t. We are
given dV/dt,  the rate of change of volume with respect to time, and we want to determine
dryldt,  the rate of change of the radius with respect to time, at the instant when r = 5. The
chain rule provides the connection between the given data and the unknown. It states that

(4.19)
dl/ dl/  dr-= - -
d t d r  dt’

TO compute dV/dr,  we use the formula V = 4m3/3  which expresses the volume of the sphere
in terms of its radius. Differentiation gives us dV/dr  = 4nrz,  and hence  (4.19) becomes

i!! = 4Tr2  b’
d t dt ’

Substituting dV/dt  = 50 and r = 5, we obtain dr/dt  = 1/(2n). That is to say,  the radius is
increasing at a rate of 1/(2n) centimeters per second at the instant when r = 5.

The foregoing example is called a problem in related rates. Note that it was not necessary
to express r as a function of t in order to determine the derivative dr/dt.  It is this fact that
makes the chain rule especially useful in related-rate problems.

The next two examples show how the chain rule may be used to obtain new differentiation
formulas.

EXAMPLE 2. Givenf(x) = sin (x2), computef’(x).

Solution. The function f is a composition,f(x) = ~[V(X)],  where u(x) = x2 and u(x) =
sin x. TO use the chain rule, we need to determine u’[v(x)] = u’(x2).  Since  u’(x) = COS x,
we have u’(x2)  = COS (x2), and hence  (4.11) gives us

f’(x) = COS (x2)  * u’(x) = COS (x2)  * 2x.
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We may also solve the problem using the Leibniz notation. If we Write  y = x2 and z = f(x),
then z = sin-y  and dz/dx  =f’(x).  The chain rule yields

d z dz dy-z--z
dx

dy  dx (COS y)(2x)  = COS (x”) . 2x )

which agrees with the foregoing result forS’(x).

EXAMPLE 3. rff(X) = [V(X)]", where n is a positive integer, compute f’(x) in terms of
U(X)  and v’(x).

Solution. The function f is a composition, f(x) = u[u(x)],  where u(x)  = xl’. Since
U’(X) = nxnP1,  we have u’[u(x)] = n[v(x)]+l,  and the chain rule  yields

f’(x) = n[v(x)]“-iv’(x)  .

If we omit the reference to x and Write  this as an equality involving functions, we obtain
the important formula

(un)’  = nvn-lv’

which tells us how to differentiate the nth power of v when v’  exists. The formula is also
valid for rational powers if vl” and un-l are defined. TO solve the problem in the Leibniz
notation, we Write  y = v(x) and z = f(x). Then z = y”, dz/dx  = f ‘(x), and the chain rule
gives us

d z dz dy
z=;Syx=ny +lU’(x) = n[u(x)]“-‘v’(x)  ,

which agrees with the first solution.

EXAMPLE 4. The equation x2 +  y2 = r2 represents a circle of radius r and tenter  at the
origin. If we solve this equation for y in terms of x, we obtain two solutions which serve
to define  two functions f and g given on the interval [-r, r] by the formulas

f(x)  = dF-2 a n d g(x) = -d7=2.

(The graph off is the Upper  semicircle and the graph of g the lower semicircle.) We may
compute the derivatives off and g by the chain rule. For f we use the result of Example 3
with v(x) = r2 - x2 and IZ = f to obtain

f’(x) = &(r” - x2)p1i2(-2x)  = 4+2 = f$
r X

whenever f (x) # 0. The same method, applied to g, gives us

(4.21) g’(x) = - de2 = =g
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whenever g(x) # 0. Notice that if we let y stand for eitherf(x) or g(x), then both formulas
(4.20) and (4.21) cari  be combined  into one,  namely,

(4.22) y’ = 7 if y # 0.

Another useful application of the chain rule has to do with a technique known as implicit
diferentiation. We shall explain the method and illustrate its advantages by rederiving
the result of Example 4 in a simpler way.

EXAMPLE  5. Implicit  dlferentiation. Formula (4.22) may be derived directly from the
equation x2 + y2  = r2 without the necessity of solving for y. We remember that y is a
function of x [either y = f(x) or y = g(x)]. A ssuming that y’ exists, we differentiate both
sides  of the equation x2 + y2  = r2 to obtain

(4.23) 2x + 2yy’ = 0 .

(The term 2yy  cornes from differentiating y2  as explained in Example 3.) When Equation
(4.23) is solved for y’ it yields (4.22).

The equation x2 + y2  = r2 is said to define  y implicitly  as a function of x (it actually
defines  two  functions), and the process by which (4.23) is obtained from this equation is
called implicit diferentiation. The end result is valid for either of the two functionsfand g
SO defined. Notice that at a point (x, y) on the circle with x # 0 and y # 0, the tangent
line has a slope -~/y,  whereas the radius from the tenter  to (x, y) has the slope y/,~.  The
product  of the two slopes is -1 SO the tangent is perpendicular to the radius.

4.12 Exercises

In Exercises 1 through 14, determine the derivativef’(x). In each  case it is understood that x is
restricted to those values for which the formula for ,f(x)  is meaningful.

X
l.f(x) =cos2x  -2 s inx . 8. f’(x) = tan - - cet  z

2 2’

2. f(x) = 2/1$-. 9. f(x) = sec2  x + csc2  x.

3. f(x) = (2 - x2)  COS x2  + 2x sin x3. 10. f(X) = x&-K?

4. f(x) = sin (Cos2  x) cas  (sin2  x). 11. f(x) = d&2.

1 + x3 1’3
5. f(x)  = sinn  x . cas  nx. 12. f(x) = G3 .

c 1

6. f(x) = sin [sin (sin X>I. 13. f(x) =
1

dïTF(x  + dïTT>’

sin2  x
7. f(x)  = 7

sur  x2 ’ 14. f(X)  = Jm.
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15. Computef’(x)  iff(x) = (1 + x)(2  + x2)1/2(3  + x3)1/3, x3 + -3.

1
16. Letf(x)

1
= ~

1 + 1/x
if x #  0, and let g(x) =

1 + llfc4
Computef’(x)  and g’(x).

17. The following table of values was computed  for a pair of functions f and g and their deriva-
tivesf’ and g’. Construct  a corresponding table for the two composite functions h and k
@en by &)  =.fLyWl,  k(x) = g[fWl.

fW .f'cx>

1 513 - 2
0 2
2 4

18. A functionfand its first two derivatives are tabulated as shown. Let g(x) = X~(X~)  and make
a table ofg and its first two derivatives for x = 0, 1, 2.

x f(x) f’(x) f”(x)

0 0 1 2
1 1 1 1
2 3 2 1
4 6 3 0

19. Determine the derivativeg’(x) in terms off’(x) if:
64 g(x) = f(x‘?  ; (cl  g(x)  = f’f(x>l;
(b) g(x) =f(sin2  x) +~(COS~  x); (4 g(x) = f{f[fWl>.

Related rates and implicit  diferentiation.

20. Each  edge of a cube is expanding at the rate of 1 centimeter (cm) per second. How fast is the
volume changing when the length of each  edge is (a) 5 cm? (b) 10 cm? (c) x cm?

21. An airplane  flies in level flight at constant velocity, eight miles above the ground. (In this
exercise  assume the earth is flat.) The flight path passes directly over  a point P on the ground.
The distance from the plane to P is decreasing at the rate of 4 miles per minute at the instant
when this distance is 10 miles. Compute the velocity of the plane in miles per hour.

22. A baseball diamond is a 90-foot square. A bal1 is batted along  the third-base line at a constant
speed of 100 feet  per second. How fast is its distance from first base changing when (a) it is
halfway to third base? (b) it reaches third base?

23. A boat sails  parallel to a straight beach  at a constant speed of 12 miles per hour, staying 4
miles offshore. How fast is it approaching a lighthouse on the shoreline at the instant it is
exactly 5 miles from the lighthouse?
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24. A reservoir has the shape of a right-circular cane. The altitude is 10 feet,  and the radius of the
base is 4 ft. Water is poured into the reservoir at a constant rate of 5 cubic feet  per minute.
How fast is the water level rising when the depth of the water is 5 feet  if (a) the vertex of the
cane  is up? (b) the vertex of the cane  is down?

25. A water tank has the shape of a right-circular cane  with its vertex down. Its altitude is 10 feet
and the radius of the base is 15 feet.  Water leaks out  of the bottom at a constant rate of 1
cubic foot per second. Water is poured into the tank at a constant rate of c cubic feet  per
second. Compute c SO that the water level Will  be rising at the rate of 4 feet  per second at the
instant when the water is 2 feet  deep.

26. Water flows into a hemispherical tank of radius 10 feet  (flat side  UP). At any  instant, let h
denote  the depth of the water, measured from the bottom, r the radius of the surface of the
water, and V  the volume of the water in the tank. Compute dV/dh  at the instant when h = 5
feet.  If the water flows in at a constant rate of 52/3 cubic feet  per second, compute dr/dt,
the rate at which r is changing, at the instant t when h = 5 feet.

27. A variable right triangle ABC  in the xy-plane has its right angle at vertex B, a fixed vertex
A at the origin, and the third vertex C restricted to lie on the parabola y = 1 + & x2. The
point B starts at the point (0, 1) at time t = 0 and moves upward along  the y-axis at a constant
velocity of 2 cm/sec.  How fast is the area  of the triangle increasing when t = 7/2  sec?

28. The radius of a right-circular cylinder  increases at a constant rate. Its altitude is a linear
function of the radius and increases three times as fast as the radius. When the radius is 1
foot the altitude is 6 feet.  When the radius is 6 feet,  the volume is increasing at a rate of 1
cubic foot per second. When the radius is 36 feet,  the volume is increasing at a rate of n  cubic
feet  per second, where n is an integer. Compute n.

29. A particle is constrained to move along  a parabola whose equation is y = x2. (a) At what
point on the curve  are the abscissa  and the ordinate changing at the same  rate? (b) Find this
rate if the motion is such  that at time t we have x = sin t and y = sin2  t.

30. The equation x3 + y3 = 1 defines  y as one  or more functions of x. (a) Assuming the derivative
y’ exists, and without attempting to salve  for y, show thaty’ satisfies the equation x2 + y2y’  = 0.
(b) Assuming the second derivative y” exists, show that y” = -2xyP5  whenever y # 0.

31. If 0 < x < 5, the equation xii2 + y1’2 = 5 defines  y as a function of x. Without solving for y,
show that the derivative y’ has a fixed sign. (You may  assume the existence of y’.)

32. The equation 3x2 + 4y2 = 12 defines  y implicitly as two functions of x if 1x1 < 2. Assuming
the second derivative y” exists, show that it satisfies the equation 4y3y”  = -9.

33. The equation x sin xy + 2x2 = 0 defines  y implicitly as a function of x. Assuming the deriva-
tive y’ exists, show that it satisfies the equation y’x2 COS xy + xy COS xy + sin xy + 4x = 0.

34. If y = x”,  where r is a rational number, say  r = m/n,  then y”  = xm. Assuming the existence
of the derivative y’, derive  the formula y’ = rxrP1  using implicit differentiation and the corre-
sponding formula for integer exponents.

4.13 Applications of differentiation to extreme values of functions

Differentiation cari  be used to help locate maxima and minima of functions. Actually,
there are two different uses of the word “maximum” in calculus, and they are distinguished
by the two prefixes absolute  and relative. The concept of absolute maximum was introduced
in Chapter 3. We recall that a real-valued functionfis said to have an absolute maximum
on a set S if there is at least one  point c in S such  that

f(x) If(c) for a11 x in S .

The concept of relative maximum is defined as follows.
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DEFINITION OF RELATIVE MAXIMUM. A function j; dejned  on a set S, is said to have a
relative maximum at a point c in S if there is some open  interval  I containing c such  that

f(x)  <f(c) for a11  x u’hich lie in I n S.

The concept of relative minimum is similarly  dejîned  by reversing the inequality.

In other words, a relative maximum at c is an absolute maximum in some neighborhood
of c, although this need not be an absolute maximum on the whole of S. Examples are
shown in Figure 4.7. Of course, every absolute maximum is, in particular, a relative
maximum. A

A

Absolute

/
maximum

Relat ive
maximum

I
O\

-,X* a
Absolute 5 Absolute

-1
Relative minimum

minimum minimum

f(x) = sin x, 0 I x i 7r
/

I
&/(X)=X(I  -x)2, -41x12

L Absolute  minimum

FIGURE 4.7 Extrema of functions.

DEFINITION OF EXTREMUM. A number M,hich  is either a relative maximum or a relative
minimum of a function f is called  an extreme value or an extremum off.

The next theorem, which is illustrated in Figure 4.7, relates extrema of a function to
horizontal tangents of its graph.

THEOREM 4.3. VANISHING OF THE DERIVATIVE AT AN INTERIOR EXTREMUM. Let f be
deflned  on an open  interval  I, and assume thatf has a relative maximum or a relative minimum
at an interior point c of 1. If the derivative f ‘(c) exists, then f ‘(c) = 0.

Proof. Define a function Q on I as follows:

Q(x)  _ f(x)  - f(c)- if x # c, Q(c,  = f’(c)
x - c

Since  f ‘(c) exists, Q(x) + Q(c)  as x 4  c, SO Q is continuous at c. We wish to prove that
Q(c) = 0. We shall  do this by showing that each  of the inequalities Q(c) > 0 and Q(c) < 0
leads to a contradiction.
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Assume Q(c) > 0. By the sign-preserving property of continuous functions, there is an
interval about c in which Q(x) is positive. Therefore the numerator of the quotient Q(x)
has the same  sign as the denominator for a11 x # c in this interval. In other words,
f(x) > f(c) when x > c, and f(x) <f(c) when x < c. This contradicts the assumption
that f has an extremum at c. Hence, the inequality Q(c) > 0 is impossible. A similar
argument shows that we cannot have Q(c) < 0. Therefore Q(c) = 0, as asserted. Since
Q(c) = f’(c), this proves the theorem.

It is important to realize that a zero derivative at c does  not imply an extremum at c.
For example, let f(x) = x3. The graph off is shown in Figure 4.8. Here f’(x) = 3x2,  SO

Y

*

f(x)  = 1x1
X

0

FIGURE 4.8 Heref’(0)  equals
0 but there is no extremum

at 0.

FIGURE 4.9 There is an ex-
tremum at 0, but f’(0) does

no t  ex i s t .

f'(0) = 0. However, this function is increasing in every interval containing 0 SO there is
no extremum at 0. This example shows that a zero derivative at c is not suficient  for an
extremum at c.

Another example, f(x) = 1x1, shows that a zero derivative does  not always occur at an
extremum. Here there is a relative minimum at 0, as shown in Figure 4.9, but at the point
0 itself the graph has a Sharp  corner and there is no derivative. Theorem 4.3 assumes that
the derivative f’(c) exists at the extremum. In other words, Theorem 4.3 tells us that, in
the absence of Sharp  corners, the derivative must necessarily vanish at an extremum if this
extremum occurs in the interior of an interval.

In a later section we shall describe  a test for extrema which is comprehensive enough to
include both the examples in Figure 4.7 and also the example in Figure 4.9. This test,
which is described in Theorem 4.8, tells us that an extremum always occurs at a point
where the derivative changes its sign. Although this fact may seem geometrically evident,
a proof  is not easy to give with the materials developed thus far. We shall deduce this
result as a consequence  of the mean-value theorem for derivatives which we discuss next.

4.14 The mean-value  theorem for derivatives

The mean-value theorem for derivatives holds a position of importance in calculus
because many properties of functions cari  easily be deduced from it. Before we state the
mean-value theorem, we Will examine one  of its special  cases from which the more general



184 Dlxerential  calculus

theorem Will be deduced. This special  case was discovered in 1690 by Michel Rolle
(1652-l 719), a French mathematician.

THEOREM 4.4. ROLLE’S THEOREM. Let f be a function which is continuous everywhere
on a closed interval  [a, b] and has a derivative at each  point of the open  interual (a, b). Also,
assume that

f(a)  =f@)  .

Then there is at least one point c in the open  interval  (a, b) such  that f ‘(c) = 0.

The geometric significance of Rolle’s theorem is illustrated in Figure 4.10. The theorem
simply asserts that the curve  shown must have a horizontal tangent somewhere between
a and b.

AmB‘bB

a C b a C b a CI CZ b

(4 (b)

FIGURE 4.10 Geometric interpre-
tation of Rolle’s theorem.

FIGURE 4.11 Geometric significance of the mean-value
theorem.

Proof. We assume that f ‘(x) # 0 for every x in the open  interval (a, b), and we arrive
at a contradiction as follows: By the extreme-value theorem for continuous functions,  f
must take on its absolute maximum M and its absolute minimum m somewhere in the
closed interval [a, b]. Theorem 4.3 tells us that neither extreme value cari be taken at any
interior point (otherwise the derivative would vanish there). Hence, both extreme values
are taken on at the endpoints a and b. But since  f (a) = f (b), this means that m = M,  and
hence  f is constant on [a, b]. This contradicts the fact that f ‘(x) # 0 for a11  x in (a, b). It
follows that f’(c) = 0 for at least one  c satisfying a < c < b, which proves the theorem.

We cari use Rolle’s theorem to prove the mean-value theorem. Before we state the
mean-value theorem, it may be helpful to examine its geometric significance. Each of the
curves  shown in Figure 4.11 is the graph of a continuous function f with a tangent line
above each  point of the open  interval (a, b). At the point (c, f (c)) shown in Figure 4.1 l(a),
the tangent line is parallel to the chord  AB. In Figure 4.1 l(b), there are two points where
the tangent line is parallel to the chord  AB. The mean-value theorem guarantees that
there Will be at least onepoint with this property.

TO translate this geometric property into an analytic statement, we need only observe
that parallelism of two lines means equality of their slopes. Since  the slope of the chord
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AB  is the quotient [f (6)  - f (a)]/(b  - )a and since  the slope of the tangent line at c is the
derivative f ‘(c), the above assertion states that

(4.24) y If’“’ = f’@)

for some c in the open  interval (a, b).
TO exhibit strong intuitive evidence  for the truth of (4.24) we may think off(t) as the

distance traveled by a moving particle  at time t. Then the quotient on the left of (4.24)
represents the mean  or average speed in the time interval [a, 61, and the derivative f’(t)
represents the instantaneous speed at time t.  The equation asserts that there must be
some moment when the instantaneous speed is equal to the average speed. For example,
if the average speed during an automobile trip is 45 mph, then the speedometer must
register 45 mph at least once during the trip.

The mean-value theorem may be stated formally as follows.

THEOREM 4.5. MEAN-VALUE THEOREM FOR DERIVATIVES. Assume that f is continuous
everywhere on a closed interval  [a, b] and has a derivative at each point of the open  interval
(a, b). Then there is at least one  interior point c of (a, b) for ichich

(4.25) f(b) -f(a) = f’(c)(b - a).

Proof.  TO apply Rolle’s theorem we need a function which has equal values at the
endpoints a and b. TO construct such  a function, we modify f as follows. Let

h(x)  =f(x)(b  - a) - x[f(b)  -f(a)] .

Then h(a) = h(b) = bf (a) - af(b). Also, h is continuous on [a, b] and has a derivative
in the open  interval (a, 6). Applying Rolle’s theorem to h, we find that h’(c) = 0 for some
c in (a, b). But

h’(x)  =f’(x)(b  - a)  - [f(b) -f(a)] .

When x = c, this gives us Equation (4.25).

Notice that the theorem makes no assertion about  the exact location of the one  or more
“mean  values” c, except to say  that they a11 lie somewhere between a and b. For some
functions  the position of the mean values may be specified exactly, but in most cases it is
very difficult to make an accurate determination of these points. Nevertheless, the real
usefulness of the theorem lies in the fact that many conclusions cari  be drawn from the
knowledge of the mere existence of at least one  mean value.

Note: It is important to realize that the conclusion of the mean-value  theorem may  fail
to  ho ld  i f  there  i s  any  po in t  be tween  a and b where  the  der iva t ive  does  no t  ex i s t . For ex-
ample,  the function f  def ined  by  the  equat ion  f  (xj = 1x1 i s  con t inuous  everywhere  on  the
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real axis and has a derivative everywhere except  at 0. Let A = ( - 1,  f ( - 1)) and let B  =
(2, f(2)). The slope of the chord joining A and B  is

f(2) -f(-1) 2 - 1 1=- =-
2 - ( - 1 ) 3 3

but the derivative is nowhere equal to 4.

The following extension of the mean-value theorem is often useful.

THEOREM 4.6. CAUCHY’S MEAN-VALUE  FORMULA. Let f and g be two  functions con-
tinuous  on a closed  interval  [a, b] and haviq  derivatives in the open  interval  (a, b). Then, for
some c in (a, b), rt’e  have

f'(c)[g(b)  - g(a)1 = g'(c)[f(b)  -.f(a)]  .

Proof. The proof  is similar to that of Theorem 4.5. We let

h(x) =f(x)ig(b)  - g(43 - g(x)[f(b)  -f (41.

Then h(a) = h(b) = f(a)g(b)  - g(a)f(b).  Applying Rolle’s theorem to h, we find that
h’(c) = 0 for some c in (a, 6).  Computing h’(c) from the formula defining h, we obtain
Cauchy’s mean-value formula. Theorem 4.5 is the special  case obtained by taking g(x) = x.

4 . 1 5  Exercises

1. Show that on the graph of any  quadratic polynomial the chord joining the points for which
x = a and x = b is parallel to the tangent line at the midpoint x = (a + b)/2.

2. Use Rolle’s theorem to prove that, regardless of the value of 6,  there is at most one  point x
in the interval  -1 5 x < 1 for which x3 - 3x + b = 0.

3. Define  a functionfas follows:

3 - x2
f(x)  = 7j- i f  x<l, f(x)  = $ i f  x21.

(a) Sketch the graph off for x in the interval  0 I x < 2.
(b) Show that f satisfies the conditions of the mean-value  theorem over  the interval  [O,  21
and determine all the mean  values provided by the theorem.

4. Let f(x) = 1 - xx. Show that f(1) = f( - 1) = 0, but thatf’(x)  is never  zero in the interval
[ -1, 11.  Explain how this is possible, in view of Rolle’s theorem.

5. Show that x2 = x sin x + COS x for exactly two real values of x.
6. Show that the mean-value formula cari  be expressed in the form

f(x+h)=f(x)+hf’(x+Oh)  w h e r e  0<8<1.

Determine 0  in terms of x and h when (a) f(x) = x2; (b),f(x)  = x3. Keep x fixed, x #  0, and
find the limit of 0  in each  case as h  -f 0.

7. Let f be a polynomial. A real number tl is said to be a zero off of multiplicity  m iff(x) =
(x - ct)mg(x),  whereg(a) #  0.
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(a) Iff has r zeros in an interval  [a, 61, prove that J”  has at least r - 1 zeros, and in general,
the kth derivativef”“)  has at least r - k zeros in [a, b]. (The zeros are to be counted as often
as their multiplicity  indicates.)
(b) If the kth derivative f (k) has exactly r zeros in [a, b], what cari  you  conclude  about  the
number of zeros off in [a, b]?

8. Use the mean-value  theorem to deduce the following inequalities:
(a) Isinx  - sinyl  5  Ix -y\.
(b) nyn-l(x  - y) < xn  -y” I: nxn-l(x  -y) if 0 < y 5  x, n = 1, 2, 3, . . . .

9. A functionf, continuous on [a, b], has a second derivativef” everywhere on the open  interval
(a, b). The line segment joining (a, f(n)) and (b, f(b)) intersects the graph offat  a third point
(c,f(c)),  where a < c < b.  Prove thatf”(t)  = 0 for at least one  point t  in (a, b).

10. This exercise  outlines a proof  of the intermediate-value theorem for derivatives. Assume f
has a derivative everywhere on an open  interval  I. Choose a <  b in 1. Then f’ takes on every value
between ,f’(u)  andf’(b)  somewhere in (a, b).
(a) Define  a new function g on [a, b]  as follows:

g(x) = f(x) -f(a) if x #  a,
x - a g(4  =fw .

Prove that g takes on every value betweenf’(a)  and g(b) in the open  interval  (a, b). Use the
mean-value theorem for derivatives to show thatf’ takes on every value betweenf’(a)  andg(b)
in the open  interval  (a, b).
(b) Define  a new function h on [a, b]  as follows:

h(x) = f(x) -f(b)
x - b

if x #  b, h(b) =f’(b) .

By an argument similar to that in part (a), show that f’ takes on every value between f’(b)
and h(u) in (a, b). Since  h(a) = g(b), this proves the intermediate-value theorem for derivatives.

4.16 Applications of the mean-value theorem to geometric properties of functions

The mean-value theorem may be used to deduce properties of a function from a
knowledge of the algebraic sign of its derivative. This is illustrated by the following
theorem.

THEOREM 4.7. Letf be a function which  is  continuous on a closed  interval  [a, b] and assume
f has a derivative at each  point of the open  interval  (a, 6). Then nie  have:

(4 Iff'C4  > Ofor every x in (a, b), f is strictly increasing on [a, b];

(b) Vf'<x>  < Ofor every x in (a, b), f is strictly decreasing on [a, b];

cc> q-f'<4  = Ofor every x in (a, b), f is constant throughout [a, b].

Proof. TO prove (a) we must show that f (x) <f(y) whenever a < x < y 5 b. There-
fore, suppose x < y and apply the mean-value theorem to the closed  subinterval [x, y].
We obtain

(4.26) f(Y) -f(x)  =f’My  - x>, where x < c < y .

Since  both f ‘(c) and y - x are positive, SO is f (y) - f(x), and this means f (x) < f(y), as
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asserted. This proves (a), and the proof  of (b) is similar. TO prove (c), we use Equation
(4.26) with x = a. Sincef’(c)  = 0, we havef(y)  =f(a)  for every y in [a, b],  so f is constant
on [a, b].

We cari  use Theorem 4.7 to prove that an extremum occurs whenever the derivative
changes sign.

THEOREM 4.8. Assume f is continuous on a closed interval  [a, b] and assume that the
derivative f’ exists everywhere  in the open  interval  (a, b), except  possibly at a point c.

(a>  rff’(  1 ’ p ‘t’  fx ts  OSI  tue  or a11  x < c and negative for a11  x > c, then f has a relative
maximum at c.

(b) If, on the other hand, f’(x) is negative for a11  x < c and positive for a11  x  > c, then  f
has a relative minimum at c.

Proof. In case (a), Theorem 4.7(a) tells US that f is strictly increasing on [a, c]  and
strictly decreasing on [c, b]. Hence f(x) < f( ) fc or a11  x # c in (a, b), so f has a relative

ytx)m<’ yL+

I I I I
I I I I I
I l l I I

I l I I l

l I I l
I I 1 l

a c b a c b

(a) Relative maximum at c (b) Relative minimum at c

FIGURE 4.12 An extremum occurs when the derivative changes sign.

maximum at c. This proves (a) and the proof  of(b) is entirely analogous. The two cases
are illustrated in Figure 4.12.

4.17 Second-derivative test for extrema

If a function f is continuous on a closed interval [a, b], the extreme-value theorem tells
us that it has an absolute  maximum and an absolute minimum somewhere in [a, b]. If f
has a derivative at each  interior point, then the only places where extrema cari occur are:

(1) at the endpoints a and b;
(2) at those interior points x where f ‘(x) = 0.

Points of type (2) are often called criticalpoints  off. TO decide  whether there is a maximum
or a minimum (or neither) at a critical point c, we need more information about  f. Usually
the behavior off at a critical point cari  be determined from the algebraic sign of the
derivative near c. The next theorem shows that a study of the sign of the second derivative
near c cari  also be helpful.



Curve sketching 189

THEOREM $9. SECOND-DERIVATIVE TEST FOR AN EXTREMUM AT A CRITICAL POINT. Let
c be a criticalpoint off in an open  interval  (a, b); that is, assume a < c < b andf ‘(c) = 0.
Assume also that the second derivative f” exists in (a, 6). Then we have the follolcing:

(a) Iff" is negative in (a, b), f has a relative maximum at c.
(b) If f" is positive in (a, b), f has a relative minimum at c.

The two cases are illustrated in Figure 4.12.

Proof. Consider case (a), f U  < 0 in (a, b). By Theorem 4.7 (applied to f ‘), the function
f' is strictly decreasing in (a, b). But f'(c) = 0, SO f' changes its sign from positive to
negative at c, as shown in Figure 4.12(a). Hence, by Theorem 4.8, f has a relative maximum
at c. The proof  in case (b) is entirely analogous.

Iff” is continuous  at c, and if f “(c) # 0, there Will be a neighborhood of c in which f n
has the same sign asf”(c).  Therefore, iff’(c) = 0, the function f has a relative maximum
at c if f “(c) is negative, and a relative minimum if r(c)  is positive. This test suffices  for
many examples that occur in practice.

The sign of the second derivative also governs the convexity or the concavity  off. The
next theorem shows that the function is convex in intervals where f" is positive, as illustrated
by Figure 4.12(b). In Figure 4.12(a), fis concave because f' is negative. It suffices  to
discuss only the convex case, because iff is convex, then -fis concave.

THEOREM 4.10. DERIVATIVE TEST FOR CONVEXITY. Assume f is contimous  on [a, b]  and
has a derivative in the open  interval  (a, b). Iff’ is increasing on (a, b), then f is convex on
[a, b]. In particular, f is convex iff” exists and is nonnegative in (a, b).

Proof. Take x < y in [a, b] and let z = ~y  + (1 - LX)X,  where 0 < tc < 1. We  wish
to prove that f(z) 5 af (y) + (1 - a)f  (x). Since  f(z) = af  (z) + (1 - a)f  (z), this is the
same as proving that

(1  - a)[f(z)  -f<x>l  I a[f(y)  -f<z>l.

By the mean-value  theorem (applied twice), there exist points c and d satisfying x < c < z
and z < d < y such  that

f(z)  -f(x) = f’(c)@ - x), and f(y) -f(z) = f’(d)(y  - z )  .

Since  f’ is increasing, we have f ‘(c) 5 f’(d). Also, we have (1 - a)(z - X)  = a(y - z), so
we may Write

(1  - K)[f(z) -f(x)1  = (1  - a>f’(c)(z  - x)  I af’(d)(y  - z)  = cr[f(y)  - f (z)] ,

which proves the required inequality for convexity.

4.18 Curve sketching

The information gathered in the theorems of the last few sections is often useful in curve
sketching. In drawing the graph of a function f, we should first determine the domain  off
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[the set of x for whichf(x)  is defined] and, if it is easy to do SO, we should find the range
off(the  set of values taken on byf). A knowledge of the domain  and range gives us an
idea of the extent of the curve y = f(x), since  it specifies  a portion of the xy-plane in which
the entire  curve must lie. Then it is a good idea to try to locate those points (if any)  where
the curve crosses the coordinate axes. These are called intercepts of the graph. The
y-intercept is simply the point (O,f(O)), assuming 0 is in the domain  off, and the x-intercepts
are those points (x, 0) for whichf(x)  = 0. Computing the x-intercepts may be extremely
difficult in practice, and we may have to be content with approximate values only.

We should also try to determine intervals in whichfis monotonie  by examining the sign
off’, and to determine intervals of convexity and concavity  by studying the sign off “.
Special  attention should be paid to those points where the graph has horizontal tangents.

EXAMPLE 1. The graph of y =f(x),  wheref(x) = x + 1/x  for x # 0.
In this case, there are no intercepts on either axis. The first two derivatives are given by

the formulas

f’(x) = 1 - 1/x2 > Jr(X)  = 2/x3 .

Y

FIGURE 4.13 Graph off(x) = x + 1/x. FIGURE 4.14 Graph off(x) = 1/(x2  + 1).

The first derivative is positive if x2 > 1, negative if x2 < 1, and zero if x2 = 1. Hence
there is a relative minimum at x = 1 and a relative maximum at x = - 1. For x > 0,
the second derivative is positive SO the first derivative is strictly  increasing. For x < 0, the
second derivative is negative, and therefore the first derivative is strictly decreasing. For
x near 0, the term x is small compared  to 1/x, and the curve behaves like the curve y = 1 /x.
(See Figure 4.13.) On the other hand, for very large x (positive or negative), the term 1/x
is small compared  to x, and the curve behaves very much like the line y = x. In this
example, the function is odd, f( -x) = -f(x), SO the graph is symmetric with respect to
the origin.

In the foregoing example, the line y = x is an asymptote of the curve. In general, a
nonvertical line with equation y = mx + b is called an asymptote of the graph of y = f(x)
if the differencef(x) - ( mx + 6)  tends to 0 as x takes arbitrarily large positive values or
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arbitrarily large negative values. A vertical line, x = a, is called a vertical asymptote if
1 f (x)1 takes arbitrarily large values as x --f a from the right or from the left. In the foregoing
example, the y-axis is a vertical asymptote.

EXAMPLE 2. The graph of y = f (x), where f (x) = 1/(x2 + 1).
This is an even function, positive for a11 x, and has the x-axis as a horizontal asymptote.

The first derivative is given by

f’(x)  =
- 2 x

(x2 + 1)2 ’

SO f’(x) < 0 if x > 0, f’(x) > 0 if x < 0, and f’(x) = 0 when x = 0. Therefore the
function increases over  the negative axis, decreases over  the positive axis, and has a relative
maximum at x = 0. Differentiating once more, we find that

f,,(X>  = (x2  + 112(--‘3  -- (-2x)2(x2  + 1X2.x) = 2(3x2  - 1)
(x2 + 1)1 (x2 +  1)3 .

Thus f “(x) > 0 if 3x2 > 1,  and f “(x) <: 0 if 3x2 < 1. Hence, the first derivative increases
when x2 > + and decreases when x2 <: Q.  This information suffices  to draw the curve  in
Figure 4.14. The two points on the graph corresponding to x2 = ‘3, where the second
derivative changes its sign, are called points of i@ection.

4 . 1 9  Exercises

In the following exercises, (a) find a11 points x such  that J”(x) = 0; (b) examine the sign off
and determine those intervals in which f is monotonie;  (c) examine the sign off” and determine
those intervals in which ,f’  is monotonie;  (d) make a sketch of the graph of J In each  case, the
function is defined for ail x for which the given formula forf(x) is meaningful.

1. f(X) = x2 - 3x + 2.
1

8.  fCx)  = (x  - l)(x  - 3) .

2. f(x) = x3  - 4x. 9. f(x) = X/(l  + x2).
3. f(x) = (x - 1)2(x  + 2). 1 0 . f(x) = (x2  - 4)/(x2 - 9).
4. f(x) = x3  - 6x2  + 9x + 5. 11. f(x) = sin2  x.
5. f(x) = 2 + (x - 1)4. 12. f(x) = x - sin x.
6. f(x) = 1/x2. 13. f(x) = x + cosx.
7. f(x) = x + 1/x2. 14. f(X) = -6-x” + 82  COS 2x.

4.20 Worked examples of extremum problems

Many  extremum problems in both pure and applied mathematics cari  be attacked
systematically with the use of differential calculus. As a matter of fact,  the rudiments of
differential calculus  were first developed when Fermat  tried to find general methods for
determining maxima and minima. We shall solve a few examples in this section and give
the reader an opportunity to solve others in the next set of exercises.

First we formulate two simple principles  which cari  be used to solve many extremum
problems.
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EXAMPLE 1. Constant-sum, maximum-product principle. Given a positive number S.
Prove that among a11 choices of positive numbers x and y with x + y = S, the product xy
is largest when x = y = 4s.

Proof. If x + y = S, then y = S - x and the product xy is equal to x(S  - x) =
XS  - x2. Let f(x) = XS  - x2. This quadratic polynomial has first derivative f’(x) =
S - 2x which is positive for x < &S and negative for x > +,Y. Hence the maximum of
xy occurs when x = &Y, y = S - x = &Y. This cari  also be proved without the use of
calculus. We simply Write  f(x) = AS2  - (x - &!7)2  and note that j(x) is largest when
x  =  &Y.

EXAMPLE 2. Constant-product, minimum-sum principle. Given a positive number P.
Prove that among a11 choices of positive numbers x and y with xy = P, the sum x + y is

smallest when x = y = ~6.

Proof. We must determine the minimum of the function f(x) = x + P/x for x > 0.
The first derivative is f’(x) = 1 - P/x2. This is negative for x2 < P and positive for

x2 > P, SO f(.x) has its minimum at x = V?. Hence, the sum x + y is smallest when
x = y = vi?

EXAMPLE 3. Among a11  rectangles of given perimeter, the square has the largest area.

Proof. We use the result of Example 1. Let x and y denote  the sides  of a general
rectangle. If the perimeter is fixed, then x + y is constant, SO the area xy has its largest
value when x = y. Hence, the maximizing rectangle is a square.

EXAMPLE 4. The geometric mean of two positive numbers does  not exceed their arith-
metic  mean. That is, z/ab  5 &(a  + b).

Proof. Given a > 0, b > 0, let P = ab. Among a11 positive x and y with xy = P, the
sum x + y is smallest when x = y = 2/p.  In other words, if xy = P, then x + y 2

V%+V?=21/p.  1n particular, a + b > 2V? = 22/ab, SO 6  < ;(a + b). Equality
occurs if and only if a = b.

EXAMPLE 5. A block of weight W is to be moved along a flat table by a force inclined
at an angle 0 with the line of motion, where 0 < 19 5 &T,  as shown in Figure 4.15. Assume
the motion is resisted by a frictional force which is proportional to the normal force with
which the block presses perpendicularly against the surface of the table. Find the angle 8
for which the propelling force needed to overcome friction Will be as small as possible.

Solution. Let F(8) denote  the propelling force. It has an upward vertical component
F(B) sin 8, SO the net normal force pressing against the table is N = W - F(8) sin 8. The
frictional force is ,uN,  where p (the Greek letter mu) is a constant called the coefficient of
friction. The horizontal component  of the propelling force is F(8) COS 0. When this is
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equated to the frictional force, we get F(8) COS 19 = ,u[  W - F(8) k-81 from which we find

F(e)  == pw
COS e + j.4  sin e *

TO minimize F(B), we maximize the denominator g(0) = COS 0  + ,u  sin 0  in the interval
0 5 8 5 tn. At the endpoints, we have g(0) = 1 and g(hn) = ru.  In the interior of the
interval, we have

g’(e)  := - s i n e  +  pcose,

SO g has a critical point at 8  = CC, where sin cc  = ,U  COS cc. This gives g(x) = COS IX +
/A2  COS c(  = (1 + /L”)  COS t(. We cari  express COS tc in terms of pu. Since ru2 cos2  tc = sin2  t(  =

1 - cos2  cc,  we find (1 + p2)  cos2  SC =: 1, SO COS c(  = l/dm. Thus g(x)  = dm.

Y
F(t)) I

we) c0se

Normal force N = W-  F(B) sin f3

FIGURE 4.15 Example 5. FIGURE 4.16 Example 6.

Since g(cr)  exceeds g(0) and g(&n),  the maximum of g occurs at the critical point. Hence the
minimum force required is

EXAMPLE 6. Find the shortest  distance from a given point (0, b) on the y-axis to the
parabola x2 = 4~.  (The number b may have any  real value.)

Solution. The parabola is shown in Figure 4.16. The quantity to be minimized is the
distance d, where

d :=  tix2  + (y - b)2 >

subject to the restriction x2 = 4~. It is clear from the figure that when b is negative the
minimum distance is Ibl. As the point (0, b) moves upward along the positive y-axis,
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the minimum is b until the point reaches a certain special position, above which the
minimum is <b. The exact location of this special position Will now be determined.

First of all, we observe that the point (x, y) that minimizes d also minimizes d2.  (This
observation enables us to avoid differentiation of square roots.) At this stage, we may
express d2  in terms of x alone or else in terms of y alone. We shall express d2  in terms of
y and leave it as an exercise  for the reader to carry out  the calculations when d2  is expressed
in terms of x.

Therefore the functionfto be minimized is given by the formula

f(y) = d2  = 4y  + (y - b)2.

Althoughf(y)  is defined for a11 real y, the nature of the problem requires that we seek the
minimum only among those y 2 0. The derivative, given byf’(y)  = 4 + 2(y - b), is zero
only when y = b - 2. When b < 2, this leads to a negative critical point y which is
excluded by the restriction y 2 0. In other words, if b < 2, the minimum does  not occur
at a critical point. In fact,  when b < 2, we see that f’(y) > 0 when y 2 0, and hence
f is strictly increasing for y 2 0. Therefore the absolute  minimum occurs at the endpoint

y = 0. The corresponding minimum d is db2  = Ibl.
If b 2 2, there is a legitimate critical point at y = b - 2. Since  f”(y) = 2 for a11 y,

the derivative f’ is increasing, and hence the absolute  minimum off occurs at this critical

point. The minimum d is 1/4(b  - 2) + 4 = 2V%?.  Thus we have shown that the
minimum distance is lb1  if b < 2 and is 22/b-1  if b 2 2. (The value b = 2 is the special
value referred to above.)

4.21 Exercises

1. Prove that among a11 rectangles of a given area,  the square has the smallest perimeter.
2. A farmer has L feet  of fencing to enclose a rectangular pasture adjacent to a long stone wall.

What dimensions give the maximum area  of the pasture?
3. A farmer wishes to enclose a rectangular pasture of area  A adjacent to a long stone wall. What

dimensions require the least amount of fencing?
4. Given S > 0. Prove that among a11 positive numbers x and y with x + y = S, the sum

x2 + y2  is smallest when x = y.
5. Given R > 0. Prove that among a11 positive numbers x and y with x2 + y2  = R, the sum

x + y is largest when x = y.
6. Each  edge of a square has length L. Prove that among a11 squares inscribed in the given

square, the one  of minimum area  has edges of length qL&!.
7. Each  edge of a square has length L, Find the size of the square of largest area  that cari  be

circumscribed about  the given square.
8. Prove that among a11 rectangles that cari  be inscribed in a given circle,  the square has the

largest area.
9. Prove that among a11 rectangles of a given area,  the square has the smallest circumscribed

circle.
10. Given a sphere of radius R. Find the radius Y and altitude h of the right circular  cylinder  with

largest lateral surface area  2wh that cari  be inscribed in the sphere.
11. Among a11 right circular  cylinders of given lateral surface area,  prove that the smallest circum-

scribed  sphere has radius 1/2 times that of the cylinder.
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12. Given a right circular cane  with radius R and altitude H. Find the radius and altitude of the
right circular cylinder of largest lateral surface area  that cari  be inscribed in the cane.

13. Find the dimensions of the right circular cylinder of maximum volume that cari  be inscribed in
a right circular cane  of radius R and ialtitude  H.

14. Given a sphere of radius R. Compute, in terms of R, the radius r and the altitude h of the
right circular cane  of maximum volume that cari  be inscribed in this sphere.

15. Find the rectangle of largest area  that cari  be inscribed in a semicircle, the lower base being on
the diameter.

16. Find the trapezoid of largest area  that cari  be inscribed in a semicircle, the lower base being on
the diameter.

17. An open  box is made from a rectangular piece  of material by removing equal squares at each
corner and turning up the sides. Find the dimensions of the box of largest volume that cari
be made in this manner if the material has sides  (a) 10 and 10; (b) 12 and 18.

18. If a and b  are the legs of a right triangle whose hypotenuse is 1,  find the largest value of 2a + b.
19. A truck  is to be driven 300 miles on a freeway at a constant speed of x miles per hour. Speed

laws require 30 5  x 5  60. Assume that fuel costs  30 cents per gallon and is consumed  at the
rate of 2 + x2/600  gallons per hour. If the driver’s wages are D dollars per hour and if he
obeys  a11 speed laws, find the most economical speed and the cost  of the trip if (a) D = 0,
(b) D = 1, (c) D = 2, (d) D = 3, (e) D = 4.

20. A cylinder is obtained by revolving a rectangle about  the x-axis, the base of the rectangle
lying on the x-axis and the entire rectangle lying in the region between the curve  y = x/(x2 + 1)
and the x-axis. Find the maximum possible volume of the cylinder.

21. The lower right-hand corner of a page is folded over  SO as to reach  the leftmost edge. (See
Figure 4.17.) If the width of the page is six inches,  find the minimum length of the crease.
What angle Will  this minimal crease  rnake with the rightmost edge of the page? Assume the
page is long enough to prevent the crease  reaching the top of the page.

FIGURE 4.17 Exercise  21 FIGURE 4.18 Exercise  22.

22. (a) An isosceles triangle is inscribed in a circle  of radius r as shown in Figure 4.18. If the
angle 2a at the apex is restricted to lie between 0 and i ,n find the largest value and the smallest
value of the perimeter of the triangle. Give full details of your reasoning.
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(b) What is the radius of the smallest circular disk large enough to caver  every isosceles
triangle of a given perimeter L ? Give full details of your reasoning.

23. A window is to be made in the form of a rectangle surmounted by a semicircle with diameter
equal to the base of the rectangle. The rectangular portion is to be of clear glass, and the
semicircular portion is to be of a colored  glass admitting only half as much  light per square
foot as the clear glass. The total perimeter of the window frame is to be a fixed length P. Find,
in terms of P, the dimensions of the window which Will  admit the most light.

24. A log 12 feet  long has the shape of a frustum of a right circular cane  with diameters 4 feet  and
(4 + h)  feet  at its ends, where h 2 0. Determine, as a function of h,  the volume of the largest
right circular cylinder  that cari  be tut from the log, if its axis coincides  with that of the log.

25. Given n real numbers a,, . . . , a,. Prove that the sum 1g-r  (x - aJ2 is smallest when x is
the arithmetic mean  of al,  . . . , a,.

26. If x > 0, letf(x) = 5x2 + Axh5,  where A is a positive constant. Find the smallest A such  that
f(x) 2  24 for a11 x > 0.

27. For each  real I, let f(x) = -$x3 + t2x, and let m(t) denote  the minimum of f(x) over  the
interval  0 5  x < 1. Determine the value of m(t) for each  t in the interval  -1 1. t 5  1.
Remember that for some values of t the minimum off(x) may  occur at the endpoints of the
interval  0 5 x < 1.

28. A number x is known to lie in an interval  a 5  x 5  b,  where a > 0. We wish to approximate
x by another number t in [a, b]  SO that the relative error, (t - X\/X,  Will be as small as possible.
Let M(t) denote  the maximum value of It - X\/X  as x varies from a to b.  (a) Prove that this
maximum occurs  at one  of the endpoints x = a or x = b.  (b) Prove that M(t) is smallest when
t is the harmonie mean  of a and b,  that is, when l/t  = &(l/a  + l/b).

‘4.22 Partial derivatives

This section explains the concept of partial derivative and introduces the reader to some
notation and terminology. We shall not make use of the results of this section anywhere
else in Volume 1, SO this material may be omitted or postponed without loss in continuity.

In Chapter 1, a function was defined to be a correspondence which associates with each
abject in a set X one  and only one  abject in another set Y; the set X is referred to as the
domain  of the function. Up to now, we have dealt with functions having a domain  consisting
of points on the x-axis. Such  functions are usually called functions  of one  real variable. It
is not difficult to extend many of the ideas of calculus  to functions of two or more real
variables.

By a real-valuedfunction of two  real variables we mean one  whose domain  X is a set of
points in the ,uy-plane. If f denotes  such  a function, its value at a point (x, y) is a real
number, written f (x, JJ). It is easy to imagine how such  a function might arise in a physical
problem. For example, suppose a flat metal plate in the shape of a circular disk of radius
4 centimeters is placed on the xy-plane, with the tenter  of the disk at the origin and with
the disk heated in such  a way that its temperature at each  point (x, y)  is 16 - x2 - y2
degrees centigrade. If we denote  the temperature at (x, JI) by f (x, ,v), then f is a function
of two variables defined by the equation

(4.27) f(x,  y) = 16 - x2 - y2.

The domain  of this function is the set of a11 points (~,y)  whose distance from the origin
does  not exceed 4. The theorem of Pythagoras tells us that a11  points (~,y)  at a distance



Partial derivatives 197

Y from the origin satisfy the equation

(4.28) JC2  +  y2 =  r2.

Therefore the domain  in this case consists of a11  points (~,y)  which satisfy the inequality
x2 + y2  5 16. Note that on the circle described by (4.28), the temperature is f(x, y) =
16 - r2.  That is, the functionf is Con:stant  on each  circle with tenter  at the origin. (See
Figure 4.19.)

We shall describe  two useful methods for obtaining a geometric picture of a function of
two variables. One is by means of a sur$zce  in space. TO construct this surface, we introduce
a third coordinate axis (called the z-axis); it passes through the origin and is perpendicular

FIGURE 4.19 The temperature is constant on
each  circle with tenter  at  the origin.

k  i 0)

FIGURE 4.20 The surface represented by the
equation z = 16 - x2 - y2.

to the xy-plane. Above each  point (x, y) we plot the point (x, y, z) whose z-coordinate is
obtained from the equation z = f(x, y).

The surface for the example deseribed above is shown in Figure 4.20. If we placed a
thermometer at a point (x, y) on the plate, the top of the mercury  column would just touch
the surface at the point (x, y, z) where z = f(x, y)  provided, of course, that unit distances
on the z-axis are properly chosen.

A different kind of picture of a function of two variables cari  be drawn entirely in the
xy-plane. This is the method of contour Zines  that is used by map makers to represent a
three-dimensional landscape by a two-dimensional drawing. We imagine that the surface
described above has been tut  by various horizontal planes (parallel to the xy-plane). They
intersect the surface at those points (x, y, z) whose elevation z is constant. By projecting
these points on the xy-plane, we get a. family of contour lines or levez  curves.  Each level
curve  consists of those and only those points (x, y) whose coordinates satisfy the equation
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Y

(a) z = xy (b) Level curves: xy = c

FIGURE 4.21 (a) A surface whose equation is z = xy. (b) The corresponding level
curves xy = constant.

f(x, y) = c, where c is the constant elevation for that particular curve. In the example
mentioned above, the level curves are concentric circles,  and they represent curves’ of
constant temperature, or isothermals, as might be drawn on a weather map. Another
example of a surface and its level curves is shown in Figure 4.21. The equation in this case
is z = xy. The “saddle-shaped” surface is known as a hyperbolicparaboloid.

Contour lines on topographie  maps are often shown for every 100 ft of elevation. W h e n
they are close together, the elevation is changing rapidly as we move from one  contour to
the next; this happens in the vicinity of a steep mountain. When the contour lines are far
apart  the elevation is changing slowly. We cari  get a general idea of the steepness of a

z

X

Plane where y = ya

z = f(x,y,)  on this CU

Surface whose

rve

FIGURE 4.22 The curve of intersection of a surface z =f(x, y) and a plane y = y,.
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landscape by considering the spacing ofits level curves. However, to get precise  information
concerning the rate of change of the elevation, we must describe  the surface in terms of a
function to which we cari  apply the ideas of differential calculus.

The rate at which the elevation is changing at a point (~,,y&  depends  on the direction
in which we move away from this point. For the sake of simplicity, we shall consider at
this time just the two special  directions, parallel to the x- and y-axes. Suppose we examine
a surface described by an equation of the form z =f(x, y); let us tut  this surface with a
plane perpendicular to the y-axis, as shown in Figure 4.22. Such  a plane consists  of a11
points (x, y, z) in space  for which the y-coordinate is constant, say  y = y,,. (The equation
y = y,, is cal1 e d an equation of this plane.) The intersection of this plane with the surface
is a plane curve, a11 points of which satisfy the equation z =f(x, y,J. On this curve the
elevationf(x,  y0)  is a function of x alone.

Suppose now we move from a point (x,, y0)  to a point (x, + h,  y,,). The corresponding
change in elevation isf(x, + h,  y0)  -.f(x,,,  y,,). Th i s suggests that we form the difference
quotient

(4.29) f(xo-  h,  Yo)  - J-(x0,  Yo)
h

and let h + 0. If this quotient approaches a definite limit as h -+ 0, we cal1  this limit the
partial derivative off with  respect to x at (x,, y,J. There are various symbols that are used
to denote  partial derivatives, some of the most common  ones  being

3fc%?  Yo)
ax > f Xx0,  Yo)  3 fhl~ Yo)  3 fic%~  Yo)  7 w-(XO~  Yo)  .

The subscript 1 in the last two notations refers to the fact that only the first coordinate is
allowed to change when we form the difference quotient in (4.29). Thus we have

L(x0 , yo) = lim f(xo + h, YO)  - f(xo  > yo)
h+O h

Similarly, we define  the partial derivati,ve  with respect to y at (x0,  yo)  by the equation

fi(xo~  yo)  = lim f(xo 9 Y0 + k) - f(xo 3 Yo) 9
k - 0 k

alternative notations being

wxo , Y,)
ay ’

L(x0  9 Yo)  ) .fl/(xo  2 Y,) 2 &f(xo  9 Y,) .

If we Write  z =f(x, y), then az/ax  and az/ay are also used to denote  partial derivatives.
Partial differentiation is not a new concept. If we introduce another function g of one

variable, defined by the equation

gc4  = f(x, Yo) 3
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then the ordinary derivative g’(xJ is exactly the same as the partial derivative fi(xO , y,,).
Geometrically, the partial derivative fi(x,  y,,) represents the slope of the tangent line at a
typical point of the curve shown in Figure 4.22. In the same way, when x is constant, say
x = x0 , the equation z = f(xO  , y) describes the curve of intersection of the surface with
the plane whose equation is x = x,, . The partial derivativef,(x,  , y) gives the slope of the
line tangent to this curve. From these remarks we see that to compute the partial derivative
off(x,  y) with respect to x, we cari  treat y as though it were constant and use the ordinary
rules of differential calculus. Thus, for example, if f(x, y) = 16 - x2 - y2,  we get
f,(x,  y) = -2x. Similarly, if we hold x fixed, we findf,(x,  y) = -2~.

Another example is the function given by

(4.30) f(x,y)  = xsiny +y2cosxy.

Its partial derivatives are

fl(x,  y) = sin y - y3  sin xy , fi(x,  y) = x COS  y - xy2  sin xy + 2y COS xy .

Partial difrerentiation  is a process which produces new functions fi = af/lax  and
fi = af/lay  from a given function f. Since  fi and fi are also functions of two variables, we
cari  consider their partial derivatives. These are called second-order partial derivatives of
f, denoted as follows:

Notice that fi,z means (f& , the partial derivative off, with respect to y. In the a-notation,
we indicate the order of derivatives by writing

a- a af-=--
( 1ayax ay ax *

This does  not always yield the same result as the other mixed partial derivative,

a”f a af
( 1-=- -

axay ax ay '

However, equality of the two mixed partial derivatives does  hold under certain conditions
that are usually satisfied by most functions that occur in practice. We shall discuss these
conditions further in Volume II.

Referring to the example in (4.27),  we find that its second-order partial derivatives are
given by the following formulas:

fi,dXPY)  = -23 &(x, y> = fi,&,  y> = 0, fi,z(x3  Y) = -2  -
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For the example in (4.30), we obtain

fi,&, y> = -y4 COS  xy >
fl,2(x, y) = COS y - xy3 cas  xy - 3y2 sin xy ,
$2,1(x, y>  = COS  y - ?Y3 cas  xy - y2  sin xy - 2y2 sin xy =fi,*(x,  y) ,
f2,2(x,  y) = -x sin y - x”y”  COS xy - 2xy  sin xy - 2xy  sin xy + 2 COS xy

= -x sin y - x2y2 COS xy - 4xy  sin xy + 2 cas  xy .

A more detailed study of partial derivatives Will be undertaken in Volume II.

*4.23  Exercises

In Exercises 1 through 8, compute a11 first- and second-order partial derivatives. In each  case
verify that the mixed partial derivativesf,,,(x,  y) andf,,,(x,  y) are equal.

1. f(x, y) = x4 + y4  - 4xzy2. 5. f(x, y) = sin (x2y3).
2. f(x, y) = x sin (x + y). 6. f(x, y) = sin [COS (2x - 3y)].

3. j-(X,  y) = xy + ; (y #  0). 7. fk y)  = 5 (x #  y).

4. f(X, y) = +-T-y. 8.fb,y)=  / x
vx2 + y2

(4 y>  #  (0,  0).

9. Show that x( az/  ax) + y( az/  ay)  = 2z if (a) z = (x - 2~)~,  (b) z = (x4 + y4)‘12.
10. Iff(x, y) = X~/(X~  + y2)2  for (x, y) #  (0, 0), show that

a 2f a 2f
;g2  + -2 = 0.

aY
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THE RELATION BETWEEN INTEGRATION
AND DIFFERENTIATION

5.1 The derivative of an indefinite integral. The first fundamental theorem of calculus

We corne now to the remarkable connection that exists between integration and
differentiation.  The relationship between these  two processes is somewhat analogous to
that which holds between “squaring” and “taking the square root.” If we square a positive
number and then take the positive square root of the result, we get the original number
back again.  Similarly, if we operate on a continuous function f by integration, we get a
new function (an indefinite integral off) which, when differentiated, leads back to the
original function f. For example, if&) = x2, then an indefinite integral A off may be
defined by the equation

where c is a constant. Differentiating, we find A’(x) = x2 = f(x). This example illustrates
a general result, called the first fundamental theorem of calculus, which may be stated as
follows :

THEOREM 5.1. FIRST FUNDAMENTAL THEOREM OF CALCULUS. Let f be a function that is
integrable on [a, x] for each  x in [a, b]. Let c be such  that a < c 5 b and dejne  a new
function A as follows:

A(x) = jCf(t)  dt if a<x<b.

Then the derivative A’(x) exists at eachpoint x in the open  interval  (a, b) where f is continuous,
andfor such  x we have

(5.1) A’(x) = f (x) .

First we give a geometric argument which suggests why the theorem ought to be truc;
then we give an analytic proof.

202
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Geometric motivation. Figure 5.1 shows the graph of a function f over  an interval [a, b].
In the figure, h is positive and

j”;+hf(t)  dt = lczihf(t)  dt - SCf(t)  dt = /I(x + h) - A(x) .

The example shown is continuous throughout the interval [x, x + h].  Therefore, by the
mean-value theorem for integrals, we have

A(x + h) - A(x) = II$-(Z), where x 5 z < x + h  .

Hence we have

(5.2) 4x  + “h  - 4x1 = f(z)  )

a X Z x+h b

FIGURE  5.1 Geometric motivation for the first fundamental theorem of calculus.

and, since  x < z 5 x + h, we find that f(z) -f(x)  as h -+ 0 through positive values. A
similar argument is valid if h + 0 through negative values. Therefore, A’(x) exists and is
equal to f (x).

This argument assumes that the funlction  f is continuous in some neighborhood of the
point x. However, the hypothesis of the theorem refers only to continuity off at a single
point x. Therefore, we use a different method to prove the theorem under this weaker
hypothesis.

Analytic Proof. Let x be a point of continuity off, keep x fixed, and form the quotient

A(:s  + h) - A(x)-
h ’

TO prove the theorem we must show that this quotient approaches the limit f (x) as h + 0.
The numerator is

A(x + h) - .4(x) = IC+*.f(t)  dt - JCzf(t)  dt  = j-;+I’f(t) dt  .
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If we writej’(t)  =Y(x) + [f(t)  -f(x)] in the last integral, we obtain

A(X  + h) - A(X)  = j:+hf(~) dt + j:+l’Lf(t)  - f(x)1  dt

= hf(x)  + jI+”  U-(t)  - f(x)1  dt >

from which we find

(5.3)
A(x  + h) - A(x)

h
= f(x)  + ; j-;-kh[f(t)  -f(x)]  dt .

r

Therefore, to complete the proof  of (5.1), a11 we need to do is show that

lim A s x+h

h-O  h [f(t) - f(x)1  dt = 0.r

Jt  is this part of the proof  that makes use of the continuity off at x.
Let us denote  the second term on the right of (5.3) by G(h). We are to prove that

G(h) -f 0 as h --f 0. Using the definition of limit, we must show that for every E > 0 there
is a 6  > 0 such  that

(5.4) P@)I  -C  E whenever 0 < (h(  < 6 .

Continuity offat  x tells us that, if E is given, there is a positive 6 such  that

(5.5) lf(t> -fWl  < +

whenever

(5.6) x-d<t<x+d.

If we choose  h SO that 0 < h < 6, then every t in the interval [x, x + h] satisfies (5.6) and
hence  (5.5) holds for every such  t. Using the property IJz+“g(t)  dt ( < JZ+“lg(t)l  dt with

g(t) =fW -f(x> , we see that the inequality in (5.5) leads to the relation

/ jtfh  [j-(t) -f(x)] dt ) 5 j;+h  If(t) -S(x)1  dt < j:+n  4~ dt = $hc < he <

If we divide by h, we see that (5.4) holds for 0 < h < 6. If h < 0, a similar argument
proves that (5.4) holds whenever 0 < Ihl < 6, and this completes the proof.

5.2 The zero-derivative  theorem

If a functionfis constant on an open  interval (a, b), its derivative is zero everywhere on
(a, b). We proved this fact earlier as an immediate consequence  of the definition of
derivative. We also  proved, as part (c) of Theorem 4.7, the converse of this statement
which we restate here as a separate theorem.
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THEOREM 5.2. ZERO-DERIVATIVE THE:OREM. If f’(x) = 0 for each  x in an open  interval
I, then f is constant on I.

This theorem, when used in combination with the first fundamental theorem of calculus,
leads  to the second fundamental theorem which is described in the next section.

5.3 Primitive functions and the second fundamental theorem of calculus

DEFINITION OF PRIMITIVE FUNCTION. A function P is called  a primitive (or an antiderivative)
of a function f on an open  interval  I if the derivative of P is f, that is, if P’(x) = f (x) for a11
x in I.

For example, the sine function is a primitive of the cosine on every interval because the
derivative of the sine is the cosine. We speak of a primitive, rather than the primitive,
because if P is a primitive offthen SO is P + k for every constant k. Conversely, any  two
primitives P and Q of the same function f cari  differ only by a constant because their
difference P - Q has the derivative

P’(x)  - Q’(x) = f(x) - f(x) =  0

for every x in I and hence,  by Theorem 5.2, P - Q is constant on Z.
The first fundamental theorem of calculus  tells us that we cari  always construct a primitive

of a continuous function by integration. When we combine this with the fact that two
primitives of the same function cari  differ only by a constant, we obtain the second
fundamental theorem of calculus.

THEOREM 5.3. SECOND FUNDAMENTAL THEOREM OF CALCULUS. Assume f iS COntirUdOUS

on an open  interval  I, and let P be any  primitive off on I. Then, for each  c and each  x in I,
we have

(5.7) P(x) =:  P(c) + JCzf(t)  dt .

Proof. Let A(x) = jC f(t) dt. Since f is continuous at each  x in 1,  the first fundamental
theorem tells us that A’(x) = f(x) for a11 x in Z. In other words, A is a primitive off on Z.
Since two primitives off cari  differ only by a constant, we must have A(x) - P(x) = k
for some constant k. When x = c, this formula implies -P(c) = k, since  A(c) = 0.
Therefore, A(x) - P(x) = -P(c), from which we obtain (5.7).

Theorem 5.3 tells us how to find every primitive P of a continuous functionf. We simply
integrateffrom a fixed point c to an arbitrary point x and add the constant P(c) to get P(x).
But the real power of the theorem becomes apparent when we Write  Equation (5.7) in the
following form :

(5.8) sczf(t:,  dt = P(x) - P(c).

In this form it tells us that we cari compute the value of an integral by a mere subtraction
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if we know a primitive P. The problem of evaluating an integral is transferred to another
problem-that of finding a primitive P off. In actual practice, the second problem is a
great deal casier  to deal with than the fïrst.  Every differentiation formula, when read in
reverse, gives us an example of a primitive of some functionfand this, in turn, leads to an
integration formula for this function.

From the differentiation formulas worked out  thus far we cari  derive  the following
integration formulas as consequences  of the second fundamental theorem.

EXAMPLE 1. Integration of rationalpowers. The integration formula

(5.9) s b

x”dx  =
bn+l - an+l

(n = 0, 1, 2, . . .)
a n+l

was proved in Section 1.23 directly from the definition of the integral. The result may be
rederived and generalized to rational exponents by using the second fundamental theorem.
First of all, we observe that the function P defined by the equation

(5.10)
n+l

P(x) = -z--
n+l

has the derivative P’(x) = .Y if n is any  nonnegative integer. Since  this is valid for a11 real
x, we may use (5.8) to Write

s b

xn  dx = P(b) - P(a) =
bn+l  _ an+l

n n+l

for a11  intervals [a, b]. This formula, proved for a11 integers n 2 0, also holds for a11  negative
integers except n  = - 1,  which is excluded because n + 1 appears in the denominator. TO

prove (5.9) for negative n, it suffices  to show that (5.10) implies P’(x) = xn when n is negative
and # - 1,  a fact which is easily verified by differentiating P as a rational function. Of
course, when n is negative, neither P(x) nor P’(x) is defined for x = 0, and when we use
(5.9) for negative n, it is important to exclude those intervals [a, b] that contain the point
x = 0.

The results of Example 3 in Section 4.5 enable us to extend (5.9) to a11 rational exponents
(except -l), provided the integrand is defined everywhere on the interval [a, b] under
consideration. For example, if 0 < a < b and n = -4, we find

Iab-$dx  =SYx-I/‘dx  = $7:  = 2(45 - 49.

This result was proved earlier, using the area axioms. The present proof  makes no use of
these axioms.

In the next chapter  we shall  define  a general power function f such  that j-(x) = xc for
every real exponent c. We shall find that this function has the derivativef’(x)  = cxe-l  and
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the primitive P(x) = X~+~/(C  + 1) if c f- - 1. This Will enable us to extend (5.9) to a11 real
exponents except - 1.

Note that we cannot get P’(x) = 1/x  by differentiation of any  function of the form
P(x) = xn. Nevertheless, there exists a function P whose derivative is P’(x) = 1/x. TO

exhibit such  a function a11 we need to do is Write  a suitable indefinite integral; for example,

P(x) = lz:  dt
s

if x>o.

This integral exists because the integrand is monotonie. The function SO defined is called
the Zogarithm (more specifically, the naturaf  logarithm). Its  properties are developed
systematically in Chapter 6.

EXAMPLE 2. Integration  of the sine and cosine. Since  the derivative of the sine is the
cosine and the derivative of the cosine is minus the sine, the second fundamental theorem
also gives us the following formulas:

i
b b

COS x dx = sin x = sin b - sin a ,a a

Ï
b b

sinxdx=(-COS~)  =cosa-cosb.

These formulas were also proved in Chapter 2 directly from the definition of the integral.
Further examples of integration formulas cari  be obtained from Examples 1 and 2 by

taking finite sums of terms of the form Ax’“, B sin x, C COS x, where A, B, C are constants.

5.4 Properties of a function deduced. from properties of its derivative

If a function f has a continuous derivative f' on an open  interval Z,  the second fundamental
theorem states that

(5.11) f(x) == f(c)  + /czf’(t)  dt

for every choice  of points x and c in Z.  This formula, which expresses f in terms of its
derivative f ‘,  enables us to deduce prolperties  of a function from properties of its derivative.
Although the following properties have already been discussed in Chapter 4, it may be of
interest  to see how they cari  also be deduced as simple consequences  of Equation (5.11).

Suppose f' is continuous and nonnegative on I. If x > c, then jC f ‘(t) dt 2 0, and hence
f(x) 2 f(c). In other words, if the Iderivative  is continuous and nonnegative on Z,  the
function is increasing on Z.

In Theorem 2.9 we proved that the indefinite integral of an increasing function is convex.
Therefore, iff’ is continuous and increasing on 1,  Equation (5.11) shows thatf is convex  on
Z. Similarly, f is concave on those intervals where f’ is continuous and decreasing.
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5.5 Exercises

In each  of Exercises 1 through 10, find a primitive off; that is, find a function P such  that
P’(x) = f(x) and use the second fundamental theorem to evaluate  j:,(x) dx.

1. f(x) = 5x3. 6. f(x) = z/zx + &, x > 0.

2. f(x) = 4x4 - 12x. 7. f(x) =
2x2 - 6x + 7

22/x ’
x > 0.

3. f(x) = (x + 1)(x3  - 2). 8. f(x)  = 2x1/3 - x-113, x > 0.

4. f(x)  =x4 +x; - 3 , x #O. 9. f(x) = 3 sin x + 2x5.

5. f(x) = (1 + IL),, x > 0. 10. f(x) = x4/3 - 5 COS x.

11. Prove that there is no polynomial f whose derivative is given by the formulaf’(x)  = 1/x.
12. Show that jt It)  dt = +X\X\  for a11 real x.
13. Show that

s

‘(t + ItlY  dt = F (x + Ix]) for a11 real x .
0

14. A function f is continuous everywhere and satisfies the equation

I; f(t) dt = -4 + x2 + x sin 2x + i COS 2x

for a11 x. Compute f(ir)  andf’(&).
15. Find a function f and a value of the constant c such  that

sCE f (t) dt = COS x - 3 for a11 real x .

16. Find a function f and a value of the constant c such  that

s CE
e tf(t>  dt = sin x - x COS x - 4x2 for a11 real x .

17. There is a function J defined and continuous for a11 real x, which satisfies an equation of the
form

lf(t)dt =j)j-(t)dt +G +; +c,

where c is a constant. Find an explicit formula for f (x) and find the value of the constant c.
18. A functionf is defined for a11 real x by the formula

f(x) = 3 + oz  G dt .
s

Without attempting to evaluate  this integral, find a quadratic polynomialp(x) = a + bx + cx2
such  that p(O)  = f(O), p’(O) =T(O),  and p”(O)  =Y(O).
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19. Given a function g, continuous everywhere, such that g( 1) = 5 and so g(t) dt = 2. Let f(x) =
4 j; (x - @g(t)  dt. Prove that

f’(x)  = x /;g(t)  dt -1;  tg(t)  dt ,

then compute f”( 1) and f”‘( 1).
20. Without attempting to evaluate the following indefinite integrals, find the derivativef’(x) in

each  case if f(x) is equal to

(a) JI (1 + t2jp3  dt , (b) j-l’  (1 + t2)-3  dt , (c) j-;a2  (1 + t2)-3  dt .

21. Without attempting to evaluate the integral, computef’(x)  iffis  defined by the formula

f(x) =[’ &a dt .

22. In each  case, computef(2)  iffis  continuous and satisfies the given formula for a11  x 2 0.

(a) J:f(t) dt = x2(1 + x) .

(b) ff(t)  dt = x2(1 + x) .

t2  dt = x2(1 + x) .

(d) j-;z’l+z’  f(t) dt = x .

23. The base of a solid is the ordinate set of a nonnegative functionf’over the interval  [0, a]. Al1
cross  sec t ions  pe rpend icu la r  to  th i s  imerval  are  squares .  The volume of  the sol id  is

a3 - 2a Cos a + (2 - a2) sin a

for every a 2 0. Assume fis continuous on [0, a] and calculatef(a).
24. A mechanism propels a particle along  a straight line. I t  i s  des igned  SO tha t  the  d isplacement

of the particle at time t from an initial point 0 on the line is given by the formula f(t) = &t2  +
2t sin t.  The mechanism works perfectly until time t = 7~  when an unexpected malfunction
occurs. From then on the particle moves with constant velocity (the velocity it acquires at
time t = r).  Compute the following: (a) its velocity at time t = n; (b) its acceleration at
time t = 3~; (c) its acceleration at time t = $5~; (d) its displacement from 0 at time t = 3~.
(e) Find a time t > r when the particle returns to the initial point 0, or else prove that it never
re tu rns  to  0 .

25. A particle moves along  a straight line. Its position at time t is,f(t).  When 0 5 t 5 1, the
pos i t ion  i s  g iven  by  the  in t eg ra l

s

t
f ( t )  =

1 + 2 sin XX Cos HX
1 +x2

dx  .
0

(Do not attempt to evaluate  this integral.) For t 2 1, the particle moves with constant
accelerat ion ( the  accelerat ion i t  acquires  a t  t ime t = 1). Compute the following: (a) its acceler-
ation at time t = 2; (b) its velocity when t = 1; (c) its velocity when t > 1; (d) the difference
f(t) -f(l) when t > 1.

26. In each  case, find a function f with a continuous second derivativef” which satisfies a11 the
given conditions or else explain why auch an example cannot  exist.
(4 f”(x) > 0 for every x, f’(0) = 1, f’(1) = 0.
(b) f”(x)  > 0 for every x, f’(0) = 1, f’(  1) = 3.
(4 fw > 0 for every x, f’(0) = 1, f(x) 5 100 for a11 x > 0.
(4 f”(x) > 0 for every x, f(0)  = 1, f(x) 5 100 for a11  x < 0.
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27. A particle moves along  a straight line, its position at time t beingf(r). It starts with an initial
velocityf(0)  = 0 and has a continuous accelerationf”(f) 2 6 for a11 t in the interval  0 < t 2  1.
Prove that the velocityf’(t) 2  3 for a11 t in some interval  [a, b], where 0 < a < b 5  1, with
b - a = + .

28. Given a functionfsuch that the integral A(x) = ef(t)  dt exists for each  x in an interval  [a, b].
Let c be a point in the open  interval  (a, b). Consider the following ten statements about  this
f and this A:
(a) fis continuous at c. (a)  A is continuous at c.
(b) fis discontinuous at c. (p)  A is discontinuous at c.
(c) fis increasing on (a, b). (y) A is convex  on (a, b).
(d) f(c) exists. (6) A’(c) exists.
(e) f’ is continuous at c. (E) A’ is continuous at c.

a
In a table like the one  shown here, mark T in - - ~ - _-  -

the appropriate square if the statement labeled b
with a Latin letter always implies the statement --~---~
labeled with a Greek letter. Leave the other c
squares blank.  For example, if (a) implies (a), - - - - - -
mark T in the Upper  left-hand corner square, etc. d

-~----
e

5.6 The Leibniz notation for primitives

We return now to a further study of the relationship between integration and differentia-
tion. First we discuss some notation introduced by Leibniz.

We have defined a primitive P of a functionfto be any  function for which P’(x) =f(x).
Iff is continuous on an interval, one  primitive is given by a formula of the form

P(x)  = lc’f(t)  dt >

and a11 other primitives cari  differ from this one  only by a constant. Leibniz used the
symbol jf(x) dx to denote  a general primitive off. In this notation, an equation like

(5.12) J f(x) dx = P(x) + c

is considered to be merely an alternative way of writing P’(x) =f(x). For example, since
the derivative of the sine is the cosine,  we may Write

(5.13) s COS x dx = sin x + C .

Similarly, since  the derivative of xn+l/(n  + 1) is x”, we may Write

(5.14) s xndx
Xn+l

= -
n+l

+c,
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for any  rational power n # - 1. The symbol C represents an arbitrary constant SO each
of Equations (5.13) and (5.14) is really a statement about  a whole set of functions.

Despite similarity in appearance, the symbol jf(x) dx is conceptually distinct from
the integration symbol Jo f(x) dx. The symbols originate from two entirely different
processes-differentiation and integration. Since, however, the two processes are related
by the fundamental theorems of calculus, there are corresponding relationships between
the two symbols.

The first fundamental theorem states that any  indefinite integral off is also  a primitive
off. Therefore we may replace P(x) in Equation (5.12) by Jz  f(t) dt for some lower limit
c and Write  (5.12) as follows:

(5.15) /f(x)  dx  = rf(t)  dt + C .

This means that we cari  think of the symbol jf(x)  dx as representing some indefinite
integral off, plus a constant.

The second fundamental theorem tells us that for any  primitive P off and for any  constant
C, we have

lab  f(x:)  dx = V’(x)  + Cl 11.

If we replace P(x) + C by jf(x)  dx, this formula may be written in the form

The two formulas in (5.15) and (5.16) may be thought of as symbolic expressions of the
first and second fundamental theorems of calculus.

Because of long historical usage, many calculus  textbooks refer to the symbol jf(x)  dx
as an “indefinite integral” rather than as a primitive or an antiderivative. This is justified,
in part, by Equation (5.15),  which tells us that the symbol jf(x)  dx is, apart  from an
additive constant C, an indefinite integral off. For the same reason, many handbooks of
mathematical tables contain  extensive lists of formulas labeled “tables of indefinite
integrals” which, in reality, are tables of primitives. TO distinguish the symbol jf(x)  dx
from Ja f(x) dx, the latter is called a dejnite integral. Since the second fundamental theorem
reduces the problem of integration to that of finding a primitive, the term “technique of
integration” is used to refer to any  systematic method for finding primitives. This termi-
nology is widely used in the mathematical literature, and it Will be adopted also in this
book. Thus, for example, when one  is asked to “integrate” jf (x) dx, it is to be understood
that what is wanted is the most general primitive off.

There are three principal techniques that are used to construct tables of indefinite
integrals, and they should be learned by anyone who desires  a good working knowledge
of calculus. They are (1)  integration by substitution (to be described in the next section),
a method based on the chain rule; (2) integration byparts, a method based on the formula
for differentiating a product  (to be described in Section 5.9); and (3) integration bypartial
fractions, an algebraic technique which is discussed at the end of Chapter 6. These
techniques not only explain how tables of indefinite integrals are constructed, but also
they tel1 us how certain formulas are converted to the basic forms listed in the tables.
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5.7 Integration by substitution

Let Q be a composition of two functions  P and g,  say  Q(x) = P[g(x)] for a11  x in some
interval  Z. If we know the derivative of P, say  P’(x) =f(x),  the chain rule tells us that the
derivative of Q is given by the formula Q’(x) = P’[g(x)]g’(x). Since  P’ =f,  this states
that Q’(x) =f[g(x)]g’(x).  In other words,

(5.17) P’(x)  = fW implies Q’(x) = f[g(x)]g’(x)  .

In Leibniz notation, this statement cari  be written as follows: If we have the integration
formula

(5.18) s f(x) dx = P(x)  + C ,

then we also have the more general formula

(5.19) sfkWl&)  dx = PM41  + C .

For example, if S(x)  = COS x, then (5.18) holds with P(x) = sin x, SO (5.19) becomes

(5.20) I COS g(x) . g’(x) dx = sin g(x) + C .

In particular, if g(x) = x3,  this gives us

COS x3  . 3x2  dx = sin x3  + C ,

a result that is easily verified directly since  the derivative of sin x3  is 3x2  COS x3.
Now we notice that the general formula in (5.19) is related to (5.18) by a simple mechanical

process. Suppose we replace g(x) everywhere in (5.19) by a new symbol u and replace g’(x)
by du/dx,  the Leibniz notation for derivatives. Then (5.19) becomes

At this stage the temptation is
this,  the last formula becomes

(5.21)

s f(u) 2 dx = P(u) + C .

strong to replace the combination g dx by du. If we do

sf CU) du = P(u) + c .

Notice that this has exactly the same  form as (5.18),  except  that the symbol u appears
everywhere instead of x. In other words, every integration formula such  as (5.18) cari  be
made to yield a more general integration formula if we simply substitute symbols. We
replace x in (5.18) by a new symbol u to obtain (5.21),  and then we think of u as representing
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a new function  of x, say  u = g(x). Then we replace the symbol du by the combination
g’(x) dx, and Equation (5.21) reduces to the general formula in (5.19).

For example, if we replace x by ZJ  in the formula J COS x dx = sin x + C, we obtain

s COS u du = sin u + C .

In this latter formula, u may  be replaced by g(x) and du by g’(x) dx, and a correct integration
formula, (5.20),  results.

When this mechanical process is used in reverse, it becomes the method of integration by
substitution. The abject  of the method is to transform an integral with a complicated
integrand, such  as J 3x2  COS x3  dx, into a more familiar integral, such  as J COS u du. The
method is applicable whenever the original integral cari  be written in the form

since  the substitution

u = g(x), du = g’(x) dx ,

transforms this to Jf(u) du . If we succeed in carrying out the integration indicated by
Jf(u) du, we obtain a primitive, say P(u), and then the original integral may  be evaluated
by replacing u by g(x) in the formula for P(u).

The reader should realize that we have attached  no meanings to the symbols dx and du
by themselves. They are used as purely forma1 devices  to help us perform the mathematical
operations in a mechanical way. Each  time we use the process, we are really applying the
statement (5.17).

Success in this method depends  on one’s ability to determine at the outset which part of
the integrand should be replaced by the symbol u, and this ability cornes from a lot of
experience  in working out specific examples. The following examples illustrate how the
method is carried  out  in actual  practice.

EXAMPLE 1.  Integrate J x3  COS x4  dx.

Solution. Let us keep in mind that we are trying to Write x3  COS x4  in the formS[g(x)]g’(x)
with a suitable choice  off and g. Since  COS x4  is a composition, this suggests that we take
f(x) = COS x and g(x) = x4  SO that COS x4  becomes f [g(x)]. This choice  of g gives g’(x) =
4x3,  and hence  f[g(x)Jg'(x)  = (COS x4)  (4x3). The extra factor  4 is easily taken tare of
by multiplying and dividing the integrand by 4. Thus we have

x3  COS x4 = gcos x4)(4x3)  = $f[g(x)]g'(x)  .

New,  we make the substitution u = g(x) = x4,  du = g’(x) dx = 4x3  dx, and obtain

$x3cosx4dx=  $lf(u)du = f$cosudu  = *sinu  + C.
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Replacing u by x4 in the end result, we obtain the formula

i
x3  COS x4  dx = 2 sin x4 + C ,

which cari  be verified directly by differentiation.
After a little practice one  cari  perform some of the above steps mentally, and the entire

calculation cari  be given more briefly as follows: Let u = xd. Then du = 4x3 dx, and we
obtain

j x3 COS x4 dx = $ J^  (COS x4)(4x3 dx) = & j COS u du = $ sin u + C = B  sin x4 + C .

Notice that the method works in this example because the factor x3 has an exponent one
less than the power of x which appears in COS x4.

EXAMPLE 2. Integrate J CO?  x sin x dx.

Solution. Let u  = COS x. Then du = -sin x dx, and we get

s COS’  x sin x dx = -
s

(cosx)‘(-sinxdx)=-  u2du=-$+C=-c$+C.
I

Again,  the final result is easily verified by differentiation.

ExAMPLE  3. Integrate s
Solution. Let u  = 1/x  = xl 2.1 Then du = &x-l12  dx, or dxl&  = 2 du. Hence

s

sin %G- dx  = 2
XG

sin u du = -2 COS u + C = -2 COS 1/x  + C .

s

x dx
ExAMPLE  4. Integrate

m*

Solution. Let u = 1 + x2. Then du = 2x dx SO x dx = + du, and we obtain

-li2 du = ul”  + C = 2/1+x2  + C .

The method of substitution is, of course, also applicable to definite integrals. For example,
to evaluate the definite integral j,,rj2 cos2  x sin x dx, we first determine the indefinite integral,
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as explained in Example 2, and then we use the second fundamental theorem to Write

s

RI2

0
cos2xsinxdx=  -~c~s~x~~=  ~~(,os3~~,os30)  =i.

Sometimes it is desirable to apply the second fundamental theorem directly to the integral
expressed in terms of U. This may be done  by using  new limits of integration. We shall
illustrate how this is carried out  in a particular example, and then we shall justify the
process with a general theorem.

EXAMPLE 5. Evaluate
3 (x+l)dx

s,2 x2 + 2x + 3 .

Solution. Let u  = x2 + 2x + 3. Then du = (2x + 2) dx, SO that

(x + 1)  dx 1 du

ýx2 + 2x + 3 =zzi*

Now we obtain new limits of integration by noting that u  = 11 when x = 2, and that
u=  18whenx=3.  Thenwewrite

3 (’ + ‘) dx
Sd

’ 18u-1iz  du  = 6 ‘a = 2/18  _ fi=-
2 x2 + 2x + 3 2 s 11 11

The same result is arrived at by expressing everything in terms of x. Thus we have

s 3 (x+l)dx

2 dx” + 2x + 3 = dxz  + 2x  + 3

Now we prove a general theorem which justifies the process used in Example 5.

THEOREM 5.4. SUBSTITUTION THEOREM FOR INTEGRALS. Assume g has a continuous
derivative g’  on an open  interval  I. Let .J  be the set of values taken by g on I and assume that
fis continuous on J. Then for each  x and c in I, we have

(5.22)

Proof. Let a = g(c) and define  two new functions  P and Q as follows:

P(x)  = ja'f<4 du if x E  J, Q(x) = [f[g(t)]g’(t)  dt if x E  1  .
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Since  P and Q are indefinite integrals of continuous functions,  they have derivatives given
by the formulas

P’(x) = f(x), Q’(x)  = f kWlg’(4  .

Now let R denote  the composite function, R(x) = P[g(x)]. Using the chain rule, we find

R’(x)  = P’&)lg’(4  = fkWlg’(x) = Q’(x)  .

Applying the second fundamental theorem twice, we obtain

and

Cer)j(u)  du = /;;’ P’(u) du = P[g(x)] - P[g(c)] = R(x) - R(c),

jczf[g(t)]g’(t)  dt = jcz  Q’(t) dt = je=  R’(t) dt = R(x) - R(c) .

This shows that the two integrals in (5.22) are equal.

5.8 Exercises

In Exercises 1 through 20, evaluate  the integrals by the method of substitution.

1 . sv%%  dx.

2 .  xd1+3xdx.
s

3.
s
x2dx  dx.

113 xdx

4. s 1/n *-213

5.
s

(x + 1)dx

(x2 + 2x + 2)3 *

6. s sin3  x dx.

7. jz(z - 1)1’3 dz .

s

COS x dx
8 .  ~

sin3  x ’

9 .
I

rl4o COS 2x&=-%%  dx.

s sin x dx

11*  2/cos3x*

12.

13.

14.

15.

16.

17.

18.

s 8 sin l/xT1  dx

3vzaIxnpl sin xn dx,

s

x5  dx

dc-7.

s
t(1 + t)1’4  dt.

(x2 + 1)-3’2 dx.

n #  0.

J .x2(8x3  + 27)2’3  dx

(sin x + COS x) dx
(sin x - cas  X)I/~  ’

x dx

1 +x2+Vj3’

[ (x2  + 1 - 2~)“~  dx
20. J l-x .
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21. Deduce the formulas in Theorems 1.18 and 1.19 by the method of substitution.
22. Let

s

5 tp
F(x,  a) = ~ dt >

o (P  + a2Y

where a > 0, and p and q are positive integers. Show that F(x,  a) = aw1-2gF(x/a,  1).
23. Show that

24. If m and n are positive integers, show that

Ĵ ; xm(l - x)~  dx  = s; xn(l - x)” dx .

25. If m is a positive integer, show that

COS~  x sin”  x dx = 2F” s 11/2
COS” x dx .

0

26. (a) Show that

s P
xf(sin  x) dx  = -2

s
Rf(sin x) dx  . [H&t:  u = 7r  - x.1

0 0

(b) Use part (a) to deduce the formula

s T x sin x

s

l dx
0 1 + COS2  x

dx=n -
01 +x2’

27. Show that ji (1 - x2)+lj2  dx = jg’2  COS~”  u  du if n  is a positive integer. [Hint: x = sin u.]
The integral on the right cari  be evaluated by the method of integration by parts, to be discussed
in the next section.

5.9 Integration by parts

We proved in Chapter 4 that the derivative of a product  of two functions f and g is given
by the formula

where h(x) =f(x)g(x).  When this is translated into the Leibniz notation for primitives, it
becomes J f(x)g ‘(x) dx + j f’(x)g(x) dx = f(x)g(x)  + C, usually written as follows :

(5.23) j+f(xk’(x) dx = f(x)&)  - j-f’(x)g(x)  dx + C .
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This equation, known as the formula for integration by parts, provides us with a new
integration technique.

TO evaluate an integral, say  j k(x) dx, using (5.23),  we try to find two functions f and g
such  that k(x) cari  be written in the formf(x)g’(x). If we cari  do this, then (5.23) tells us
that we have

j 4~) dx = f(x)&)  - j dx)f'(x)  dx  + C >

and the difficulty has been transferred to the evaluation of J g(x)f’(x) dx. If f and g are
properly chosen, this last integral may be easier to evaluate than the original one.  Some-
times two or more applications of (5.23) Will lead to an integral that is easily evaluated
or that may be found in a table. The examples worked out  below have been chosen to
illustrate the advantages of this method. For definite integrals, (5.23) leads  to the formula

If we introduce the substitutions u =f(x), u = g(x), du  =f’(x) dx,  and & = g’(x) dx,
the formula for integration by parts assumes an abbreviated form that many people hnd
easier to remember, namely

(5.24) I u du = UV - .r vdu + C.

EXAMPLE 1. Integrate J x COS x dx.

Solution. We choose  f(x) = x and g’(x) = COS x. This means that we have f’(x) = 1
and g(x) = sin x, SO (5.23) becomes

(5.25) s x COS x dx = x sin x - s sin x dx + C = x sin x + COS x + C .

Note that in this case the second integral is one  we have already calculated.
TO carry out  the same calculation in the abbreviated notation of (5.24) we Write

u = x, dv = COS x dx ,

du = dx, v = j COS x dx = sin x ,

s
x COS x dx = UV -

s
v du = x sin x - s sin x dx + C = x sin x + COS x + C .

Had we chosen u = COS x and du  = x dx, we would have obtained du = -sin  x dx,
v = $x2, and (5.24) would have given us

s x COS x dx = ‘x2  COS x - 12 2 s x2(-sin  x) dx + C = 3x”  COS x + $ s x2 sin x dx + C .
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Since the last  integral is one  which we have not yet  calculated, this choice of u  and u is not
as useful  as the first choice. Notice, however, that we cari  salve  this last  equation for
J x2 sin x dx and use (5.25) to obtain

s x2 sin x dx = 2x sin x + 2 COS x - x2 COS x + C .

EXAMPLE 2. Integrate J x2 COS x dx.

Solution. Let u  = x2 and du = COS x dx. Then du = 2x dx and v = j COS x dx = sin x,
SO we have

(5.26)  j x2  COS x dx = s u du = UV - s v du + C = x2  sin x - 2 .c x sin x dx + C .

The last integral cari be evaluated by applying integration by parts once more. Since it is
similar to Example 1, we simply state the result:

s x sin x dx = -x COS x + sin x + C .

Substituting in (5.26) and consolidating the two arbitrary constants into one,  we obtain

s x2cosxdx  = x’sinx  + 2xcosx - 2sinx + C.

EXAMPLE 3. The method sometimes fails  because it leads back to the original integral.
For example, let us try to integrate J x-l dx by parts. If we let u  = x and du  = xP2  dx,
then J x-l dx = J u  du. For this choice of u and v, we have du = dx and v = -x-l, SO

(5.24) gives us

(5.27) s X-’ dx = j u du  = UV - jvdu+C=-l+jx-‘dx+C,

and we are back where we started. Moreover, the situation does  not improve if we try
u = x” and du  = xPpl  dx.

This example is often used to illustrate the importance of paying attention to the arbitrary
constant C. If formula (5.27) is written without C, it leads to the equation J x-l d x  =
- 1 + j x-l dx, which is sometimes used to give a fallacious proof  that 0 = - 1.

As an application of the method of integration by parts, we obtain another version of
the weighted mean-value theorem for integrals (Theorem 3.16).

THEOREM 5.5. SECOND MEAN-VALUE THEOREM FOR INTEGRAL~. Assumegiscontinuouson
[a, b], and assume f has a derivative which is continuous  and never  changes sign  in [a, b].
Then,  for some c in [a, b], we have

(5.28) j; f(x)&)  dx = f(a)  j; g(x) dx + f(b)  JC"  g(x) dx .
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Proof  Let G(x) = jag(t)  dt. Since  g is continuous,  we have G’(x) = g(x). Therefore,
integration by parts gives us

(5.29)

since G(a) = 0. By the weighted mean-value theorem, we have

jab  f’(WW  dx = G(c)  jab  f’(x) dx = G(cNf@)  - f(a)1

for some c in [a, b]. Therefore, (5.29) becomes

Iab f(xMx)  dx  = f(b)W)  - G(c)Lf(b)  - f(a)1  = ~C~)G(C)  + f@)W) - G(c)1  .

This proves (5.28) since G(c) = jz g(x) dx and G(b) - G(c) = je g(x) dx .

5.10 Exercises

Use integration by parts to evaluate  the integrals in Exercises 1 through 6.

1 .  xs inxdx .s
4.

s
x3 sin x dx.

2.
s

x2 sin x d:w. 5.
J

sin x COS x dx.

3.
s

x3 COS x  dx . 6. sx sin x COS x dx.

7. Use integration by parts to deduce the formula

s sin2  x dx = -sin  x COS x + î
cos2  x dx  .

In the second integral, Write cos2  x = 1 - sin2  x and thereby deduce the formula

s sin2  x dx = 4.x - 4 sin 2x .

8. Use integration by parts to deduce the formula

jsin” x dx = -siiF x COS x + (n - 1) jsinnP2  x cos2  x dx .

In the second integral, Write cos2  x = 1 - sin2  x and thereby deduce the recursion  formula

s
sinnxdx  = -

sirY  x Cos  x n - 1
+ns

siiF  x dx .
n

9. Use the results of Exercises 7 and 8 to show that

(a) 1”sin2  x dx = f .
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(b) s RI2 3 ni2 377
sin4 x d x = -4 s sin2 x d x = - *0 0 16

s

ut2 5 nP
sin6

577
(cl x d x = -

s 0
sin4 x d x = -

0 6 32
.

10. Use the results of Exercises 7 and 8 to derive  the following formulas.

(a) îsin3xdx  = -~COS~  + &COS  3x.

(b) j sm4 x dx = f x - 4 sin 2x + &Y sin 4x.

Cd j .sm5 x dx = -ix + 2%  COS 3x - y&  COS 5x.

11. Use integration by parts and the results of Exercises 7 and 10 to deduce the following formulas.

(4 jx sin2  x dx  = 4 x2 - 2 x sin 2x - 8 COS 2x.

(b)  jx sin3  x dx = 2 sin x - 3%  sin 3x - 2x COS x + 141 x COS 3x.

(c) jx2 sin2  x dx = +x3 + ($ - 4x2) sin 2x - ix  Cos  2x.

12. Use integration by parts to derive  the recursion  formula

s COP x sin x n - l
COS” x dx - +ns

COS-~X  dx .
n

13. Use the result of Exercise  12 to obtain the following formulas.

(a) jcos2  x dx = ix + t sin 2x.

(b) [COS~  x dx = 2 sin x + 1%  sin 3x.

cc>  jcm4  x dx = #x  + $ sin 2x + & sin 4x.

14. Use integration by parts to show that

s mdx  =Xv’= +s
r$dx.

Write x2 = x2 - 1 + 1 in the second integral and deduce the formula

15. (a) Use integration by parts to derive  the formula

s

X2)*
(a2  - x~)~  dx = “‘;;  -+  1 + SI

s
(a2 - x2)-l  dx + C .

(b) Use part (a) to evaluate  s:  (a2  - x2)5’2 dx.
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216. (a) If Z,(x) = j$ tn(t2  + a )- lf2  dt, use integration by parts to show that

nZ,(x) = x+$47-2 - (n - l)a2Z,,(x) i f  n22.

(b) Use part (a) to show that JO x5(x2 + 5)-*j2  dx = 168/5  - 402/j/3.

17. Evaluate  the integral ST1  t3(4 + t3)-lj2  dt, given that j?i  (4 + t3)1/2  dt = 11.35. Leave the
answer in terms of 1/3  and fi.

18. Use integration by parts to derive  the formula

s

sirP+l  x
’

sin+i  x- -  - -
Co@l  x

dx = ’ sinn  x
m COPX s

~ dx .
m Cos”-l  x

Apply the formula to integrate s tan2  x dx and j tan4  x dx.
19. Use integration by parts to derive  the formula

s
Cos”+1  x-dx=-;z-f s

Cos-l  x
sinnfl  x

~ dx .
sinnP1 x

Apply the formula to integrate j cot2  x dx and j cot4  x dx.
20. (a) Find an integer n  such  that n  jo xf”(2x) dx = ji {f”(t) dt.

(b) Compute ji xf”(2x)  dx, given that f(0) = 1, f(2) = 3, and f’(2) = 5.
21. (a) If $” is continuous  and nonzero on [a, b], and if there is a constant m > 0 such  that

4’(t)  > m for a11 t in [a, b], use Theorem 5.5 to prove that

I[sin+(t)dtI  5:.

[Hint: Multiply and divide the integrand by d’(t).]

(b) If a > 0, show that 1s:  sin (t2)  dtl  < 2/a  for a11 x > a.

*5.11  Miscellaneous review exercises

1. Let f be a polynomial withf(0) = 1 and let g(x) = PJ’(x). Compute g(O), g’(O), . . . , g(n)(0).
2. Find a polynomial P of degree < 5 with P(0) = l,P(l)  = 2,P’(O)  = P”(0) = P’(1) = P”(1) = 0.
3. lff(x)  = COS x andg(x)  = sin x, prove that

,f(qx)  = COS (x + gm) a n d g(“)(x) = sin (x + +T).

4. If h(x) = f(x)g(x),  prove that the nth derivative of h  is given by the formula

P’(x)  = ~($f(“‘(x)g’“-“)(x)  >
k=O '

where (2)  denotes  the binomial coefficient. This is called Leibniz’s formula.
5. Given two functionsJ and g whose derivativesf’ and g’ satisfy the equations

(5 .30) f’w  = g(x) > g’(x) = -f(x), f(O)  = 0, g(O) = 1,
for every x in some open  interval  .Z  containing 0. For example, these equations are satisfied
when f (x) = sin x and g(x) = COS x.
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(a) Prove thatf2(x)  + g2(x) = 1 for every x in J.
(b) Let F and G be another pair of functions  satisfying (5.30). Prove that F(x) =f(x)  and
G(x) = g(x) for every x in J. [Hint: Consider h(x) = [F(x) -,f(x>]”  + [G(x) - ~(X)I~.]
(c) What more cari  you  say  about  functionsfand g satisfying (5.30)?

6. A function f, defined for a11 positive real numbers, satisfies the equation f(x2)  = xa for every
x > 0. Determinef’(4).

7. A function g,  defined for a11 positive real numbers, satisfies the following two conditions:
g(1) = 1 and g’(x2)  = x3 for a11 x > 0. Compute g(4).

8. Show that

s 2  sin t
pdt>O,t +1

for a11 x 2  0.

9. Let C, and C, be two curves  passing through the origin as indicated in Figure 5.2. A curve
C is said to “bisect  in area”  the region between C, and C, if, for each  point P of C, the two
shaded regions A and B shown in the figure have equal areas.  Determine the Upper  curve C,,
given that the bisecting curve C has the equation y = x2 and that the lower curve C, has the
equation y = 4x2.

0

FIGURE 5.2 Exercise  9.

10. A functionfis defined for a11 x as follows:

i

x2 if x is rational ,
f(x)  = o

if x is irrational .

Let Q(h) = f (h)/h  if h  # 0. (a) Prove that Q(h) - 0 as h  - 0. (b) Prove that f has a derivative
at 0, and compute,f’(O).

In Exercises  11 through 20, evaluate  the given integrals. Try to simplify the calculations by
using the method of substitution and/or integration by parts whenever possible.

11. [(2 + 3x) sin 5x dx. 16. J;x4(l  - x)~O  dx.

12. j”xdï%?dx.

13. j:2x(x2  - l)sdx. 18. isin $‘zdx.

s l2x+3
14. ~ dx.

o (6x + 7>3

15. sx4(1 + X~)~~X.

19. sx sin x2 COS x2 dx.

20. Id1  + 3cos2xsin2xdx.
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21. Show that the value of the integral fi 375x5(x2 + l)-”  dx  is 2” for some integer n.
22. ,Determine  a pair of numbers a and b for which ji (ax  + b)(x2  + 3x + 2)-2  dx = 3/2.
23. Let Zn  = jt(l  - x~)~ dx. Show that (2n + l)Z, = 2n InpI,  then use this relation to compute

Z2, Z3, Z4, ad  &.
24. Let F(m, n)  = jg tm(l  + t)”  dt, m > 0, n  > 0. Show that

(m  + l)F(m, n) + nF(m  + 1, n  - 1) = xm+l(l + x)n.

Use this to evaluate  F(l0,  2).
25. Letf(n) =Si’”  tan* x dx where n 2  1. Show that

(4  fCn  + 0 <fM.

(b)  fC4 +fk  - 2) = & if n > 2.

(4
1

& < 2fW  < -n - l
i f  n>2.

26, Compute f(O), given that f(r)  = 2 and that ji[f<x) +Y(x)] sin x dx  = 5.
27. Let A denote  the value of the integral

s
+ cosx

o (x + 2ydx*

Compute the following integral in terms of A:

s

dz  sin x COS x

0 x+1 dx*

The formulas in Exercises  28 through 33 appear in integral tables. Verify each  of these formulas
by any  method.

dx=22/afb,+a
s + c*

29.
s

X+~X + b dx  =
2

a(2n + 3) X~(~X  + b)3’2 - nb
s
xn-ldz  dx + C (n # -3).

30.
s
d&  dx = (2m:  l)b

(
xma  - ma

s
qsdx

1
+ C (m # -4).

31.
sXy,"dk

dax+b  (2n - 3)~
s

dx
= - (n _ ,)bx"-1 - (2n - 2)b Xn-ld&q  + c cn + l).

s
COS” x

32. z dx = (m  ~~,:n~-lx  + ~~~c~ dx + C (m # n).

33.
s
zdx=-

Co??+l  x m - n + 2

s

Cos”  x
(n - 1) sinn-l  x - n - 1 FXdx  + C (fi  f 1).

34. (a) Find a polynomial P(x)  such  that P’(x) - 3P(x) = 4 - 5x + 3x2. Prove that there is
only  one  solution.
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(b) If Q(x) is a given polynomial, prove that there is one  and only one  polynomial P(x) such
that P’(x) - 3P(x) = Q(x).

35. A sequence  of polynomials (called the Bernoullipolynomials) is defined inductively as follows:

P,(x) = 1; Pi(x) = nP,-.1(x) a n d j”iPn(x)  dx = 0 i f  n>l.

(a) Determine explicit formulas for PI(x),  P2(x),  . . . , Pa(x).
(b) Prove, by induction, that P,(x)  is a polynomial in x of degree n,  the term of highest degree
being xn.
(c) Prove that P,(O)  = P,(l)  if n  2  2.
(d) Prove that P,(x  + 1) - P,(x)  = nxn-l  if n  2  1.
(e) Prove that for n  2  2 we have

k

P,(x) dx =
PTz,lW  - pn+m

n+l *

(f) Prove that PJ1  - x) = ( -l)nP,(x)  if n  2  1.
(g) Prove that P2,+l(0)  = 0 and P,,-,(i)  = 0 if n  2 1.

36. Assume that if”(x)1  5 m for each  x in the interval  [O,  a], and assume thatftakes on its largest
value at an interior point of this interval. Show that If’(O)1  + If’(a)]  5  am. You may  assume
thatf” is continuous  in [0, a].
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THE LOGARITHM, THE EXPONENTIAL,

AND THE INVERSE TRIGONOMETRIC FUNCTIONS

6.1 Introduction

Whenever man focuses  his attention on quantitative relationships, he is either studying
the properties of a known function or trying to discover the properties of an unknown
function. The function concept is SO broad and SO general that it is not surprising to find
an endless variety of functions occurring in nature. What is surprising is that a few rather
special  functions govern SO many totally different kinds of natural phenomena. We shall
study some of these functions in this chapter-first of all, the logarithm and its inverse
(the exponential function) and secondly, the inverses of the trigonometric functions. Any-
one  who studies mathematics, either as an abstract  discipline or as a tool for some other
scientific field,  Will find that a good working knowledge of these functions and their prop-
erties is indispensable.

The reader probably has had occasion to work with logarithms to the base 10 in an
elementary algebra or trigonometry course. The definition usually given in elementary
algebra is this: If x > 0, the logarithm of x to the base 10, denoted by log,,  x, is that
real number u such  that 10”  = x. If x = 10U  and y = IO”,  the law of exponents yields
xy  =  lo”+“. In terms of logarithms, this becomes

(6.1) Qhl (xy) = logm  x + log,,  y.

It is this fundamental property that makes logarithms particularly adaptable to computa-
tions involving multiplication. The number 10 is useful as a base because real numbers
are commonly written in the decimal system, and certain important numbers like 0.01,
0.1, 1, 10, 100, 1000, . . . have for their logarithms the integers -2, -1, 0, 1, 2, 3, . . . ,
respectively.

It is not necessary to restrict ourselves to base 10. Any  other positive base b # 1 would
serve equally well. Thus

(6.2) ZJ  = log, x means x= b”,

and the fundamental property in (6.1) becomes

(6.3) log, (xy) = log, x + log, y .

226
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If we examine the definition in (6.2) from a critical point of view, we find that it suffers
from several logical gaps. First of all, to understand (6.2) we must know what is meant
by bu. This is easy to define  when u  is an integer or a rational number (the quotient of two
integers), but it is not a trivial matter  to define  bu  when u  is irrational. For example, how
should we define  lO<2? Even if we manage to obtain a satisfactory definition for bu,
there are further difficulties to overcome before we cari  use (6.2) as a good definition of
logarithms. It must be shown that for every x > 0, there actually exists a number u such
that x = bu. Also,  the law of exponents, b”b”  = bu+“, must be established for a11  real
exponents u  and v in order to derive  (6.3) from (6.2).

It is possible to overcome these difficulties and arrive at a satisfactory definition of
logarithms by this method, but the process is long and tedious. Fortunately, however,
the study of logarithms cari  proceed in an entirely different way which is much simpler
and which illustrates the power and elegance  of the methods of calculus. The idea is to
introduce logarithmsjrst,  and then use logarithms to define  bu.

6.2 Motivation for the definition of the natural logarithm as an integral

The logarithm is an example of a mathematical concept that cari  be defined in many
different ways. When a mathematician tries to formulate a definition of a concept, such
as the logarithm, he usually has in mind a number of properties he wants this concept
to have. By examining these properties, he is often led to a simple formula or process
that might serve as a definition from which a11  the desired properties spring forth as logical
deductions.  We shall illustrate how this procedure  may be used to arrive at the definition
of the logarithm which is given in the next section.

One of the properties we want logarithms to have is that the logarithm of a product
should be the sum of the logarithms of the individual factors. Let us consider this property
by itself and see where it leads us. If we think of the logarithm as a functionf,  then we
want this function to have the property expressed by the formula

(6.4) f(v) =f(x) +f(y)

whenever x, y, and xy are in the domain  off.
An equation like (6.4), which expresses a relationship between the values of a function

at two or more points, is called a functional equation. Many mathematical problems cari
be reduced to solving a functional equation, a solution being any  function which satisfies
the equation. Ordinarily an equation of this sort has many different solutions, and it is
usually very difficult to find them all. lt is easier to seek only those solutions which have
some additional property such  as continuity or differentiability. For the most part, these
are the only solutions we are interested in anyway. We shall adopt this point of view and
determine a11 differentiable solutions of (6.4). But first let us try to deduce what information
we cari  from (6.4) alone, without any  further restrictions on f.

One solution of (6.4) is the function that is zero everywhere on the real axis. In fact,
this is the only solution of (6.4) that is defined for a11  real numbers. TO prove this, letf
be any  function that satisfies (6.4). If 0 is in the domain  off, then we may put y = 0 in
(6.4) to obtain f (0) = f (x) + f (0), and this implies that f (x) = 0 for every x in the domain
off. In other words, if 0 is in the domain  off, thenfmust be identically zero. Therefore,
a solution of (6.4) that is not identically zero cannot be defined at 0.
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If f is a solution of (6.4) and if the domain  off includes 1, we may put x = y = 1 in
(6.4) to obtain f (1) = 2f (l), and this implies

f(1) = 0.

If both 1 and - 1 are in the domain  off, we may take  x = - 1 and y = - 1 to deduce
thatf(1)  = 2f(-1); hencef(-1) = 0. If now x, -x, 1, and - 1 are in the domain  off,
we may put y = - 1 in (6.4) to deduce f(-x) =f( - 1) + f (x) and, since f (- 1) = 0,
we find

f(--4 =fW*

In other words, any  solution of (6.4) is necessarily an euen  function.
Suppose, now, we assume that f has a derivative f ‘(x) at each  x # 0. If we hold y fixed

in (6.4) and differentiate with respect to x (using the chain rule  on the left), we find

Yf  ‘(x9 =f ‘(x)

When x = 1, this gives us y,‘()~)  =f’(l), and hence we have

f’(y) =f’(i> for each
Y

y#O.

From this equation we see that the derivative f’ is monotonie  and hence integrable on
every closed  interval not containing the origin. Also, f’ is continuous on every such  interval,
and we may apply the second fundamental theorem of calculus  to Write

f(x) -f(c) =Izf’(r)  dt = f’(l)/;  f dt  .
e

If x > 0, this equation holds for any  positive c, and if x < 0, it holds for any  negative c.
Since  f(1) = 0, the choice  c = 1 gives us

f(x)  = f’(l)/l’f  dt if x > 0 I

If x is negative then -x is positive and, since f (x) = f (-x), we find

f(x) = /‘(1)/ez  L dt if x <  0 .
1t

These two formulas for f(x) may be combined into one  formula that is vaiid for both
positive and negative x, namely,

f(x) = f’(l)l”’  t dt if x # 0 .

Therefore we have shown that if there is a solution of (6.4) which has a derivative at each
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point x # 0, then this solution must necessarily be given by the integral formula in (6.5).
Iff’(1)  = 0, then (6.5) implies thatf(.x) = 0 for a11 x # 0, and this solution agrees with
the solution that is identically zero. Therefore, if f is not identically zero, we must have
f’(1) # 0, in which case we cari  divide both sides  of (6.5) byf’(1)  to obtain

g(x) = s lzl  11 j- dt i f  x#O,

where g(x) = f(x)/f’(l).  The function g is also a solution of (6.4), since  cf is a solution
whenever f is. This proves that if (6.4) has a solution that is not identically zero and if
this solution has a derivative everywhere except at the origin, then the function g given
by (6.6) is also a solution, and all  solutions may be obtained from this one  by multiplying
g by a suitable constant.

It should be emphasized that this argument does  not prove that the function g in (6.6)
actually is  a solution, because we derived (6.6) on the assumption that there is at least  one
solution that is not identically zero. Formula (6.6) suggests a way to construct such  a
solution. We simply operate in reverse. That is, we use the integral in (6.6) to define  a
function g,  and then we verify directly that this function actually satisfies (6.4). This
suggests that we should define  the logarithm to be the function g given by (6.6). If we
did SO, this function would have the property that g(-x) = g(x) or, in other words,
distinct numbers would have the same logarithm. For some of the things we want to do
later,  it is preferable to define  the logarithm in such  a way that no two distinct numbers
have the same logarithm. This latter property may be achieved by defining the logarithm
only for positive numbers. Therefore we use the following definition.

6.3 The definition of the logarithm. Basic properties

DEFIN IT ION. If x is a positive real number,  w-e  dejine  the natural  logarithm of x, denoted
temporarily by L(x), to be the integral

(6.7) L(x) =
s

‘ldt.
1 t

When x > 1, L(x) may be interpreted geometrically as the area of the shaded region
shown in Figure 6.1.

THEOREM 6.1. The logarithm function has the following properties:
(a) L(1) = 0.

(b) L’(x) = i for every x > 0.

(c) L(ab) = L(a) + L(b) for every a > 0, b > 0.

Proof. Part (a) follows at once from the definition. TO prove (b), we simply note that
L is an indefinite integral of a continuous function and apply the first fundamental theorem
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of calculus. Property (c) follows from the additive property of the integral. We Write

In the last integral we make the substitution u = t/a,  du = dt/a,  and we find that the
integral reduces to L(b), thus proving (c).

FIGURE 6.1 Interpretation  of the log-
arithm as an area.

FIGURE 6.2 The graph of the natural log-
arithm.

6.4 The graph of the natural logarithm

The graph of the logarithm function has the general shape shown in Figure 6.2. Many
properties of this curve cari  be discovered without undue  calculation simply by referring
to the properties in Theorem 6.1. For example, from (b) we see that L has a positive
derivative everywhere SO it is strictly increasing on every interval. Since L(1) = 0, the
graph lies above the x-axis if x > 1 and below the axis if 0 < x < 1. The curve has slope
1 when x = 1. For x > 1, the slope gradually decreases toward zero as x increases
indefinitely. For small values of X,  the slope is large and, moreover, it increases without
bound as x decreases toward zero. The second derivative is L”(x) = -1/x2  which is
negative for a11 x, SO L is a concave function.

6.5 Consequences  of the functional equation L(ab) = L(a) + L(b)

Since the graph of the logarithm tends to level off as x increases indefinitely, it might
be suspected  that the values of L have an Upper  bound. Actually, the function is unbounded
above; that is, for every positive number M (no matter  how large) there exist values of x
such  that

(6.8) L(x) > M.
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We cari deduce this from the functional equation. When a = b, we get L(a2)  = 2L(a).
Using the functional equation once more with b = a2,  we obtain L(a3)  = 3L(a).  By
induction we find the general formula

L(a”) = nL(a)

for every integer n 2 1. When a = 2, this becomes L(2”)  = nL(2),  and hence  we have

(6.9) W”) > M when n  > &.
L(2)

This proves the assertion in (6.8). Taking b = l/a  in the functional equation, we find
L(i/a)  = -L(a). In particular, when a = 2”, where n is chosen  as in (6.9), we have

L $  =  -~5(2”)  <  -M >( 1

which shows that there is also  no lower bound to the function values.
Finally we observe that the graph crosses every horizontal line exactly once. That is,

given an arbitrary real number b (positive, negative, or zero), there is one  and only  one
a > 0 such  that

(6.10) L(a) = b .

TO prove this we cari argue as follows: If b > 0, choose  any  integer n > b/L(2).  Then
L(2”)  > b because of (6.9). Now examine the function L on the closed  interval [l, 2”].
Its value at the left endpoint is L(1) = 0, and its value at the right endpoint is L(2”).
Since  0 < b < L(2”),  the intermediate-value theorem for continuous functions (Theorem
3.8 in Section 3.10) guarantees the existence of at least one  a such  that L(a) = b. There
cannot be another value a’ such  that L(a’) = b because this would mean L(a) = L(a’)
for a # a’, thus contradicting the increasing property of the logarithm. Therefore the
assertion in (6.10) has been proved for b > 0. The proof  for negative b follows from this
if we use the equation L(i/a)  = -L(a). In other words, we have proved the following.

THEOREM  6.2. For every real number b there is exactly one  positive real number a whose
Iogarithm, L(a), is equal to b.

In particular, there is exactly one  number whose natural logarithm is equal to 1. This
number, like YT,  occurs repeatedly in SO many mathematical formulas that it was inevitable
that a special  symbol would be adopted for it. Leonard Euler (1707-1783) seems to have
been the first to recognize the importance of this number, and he modestly denoted it
by e, a notation which soon became standard.

DEFINITION. We denote  by e that numberfor which

(6.11) L(e) = 1 .
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In Chapter 7 we shall obtain explicit  formulas that enable us to calculate the decimal
expansion of e to any  desired degree of accuracy. Its value, correct to ten decimal places,
is 2.7182818285. In Chapter 7 we also prove that e is irrational.

Natural logarithms are also called Napierian Zogarithms, in honor of their inventor,
John Napier (1550-1617). It is common  practice to use the symbols In x or log x instead
of L(x) to denote  the logarithm of x.

6.6 Logarithms referred to any positive base b #  1

The work of Section 6.2 tells us that the most general f which is differentiable on the
positive real axis and which satisfies the functional equation f(xy)  = f(x) + f(u)  is given
by the formula

(6.12) f(x) = c log x ,

where c is a constant. For each  c, we could cal1  thisf(x) the logarithm of x associated with
c although, of course, its value would not be necessarily the same as the natural logarithm
of x. When c = 0, fis identically zero, SO this case is uninteresting. If c # 0, we may
indicate in another way the dependence off on c by introducing the concept of a base
for logarithms.

From (6.12) we see that when c # 0, there exists a unique real number b > 0 such  that
f(b) = 1. This b is related to c by the equation c log b = 1; hence  b # 1, c = l/log  b,
and (6.12) becomes

f(x) = ‘Fb  .

For this choice  of c we say  that f (x) is the logarithm of x to the base b and we Write  log, x
forf(x).

DEFINITION. If b > 0, b # 1, and I~X  > 0, the logarithm of x to the base b is the number

log x
log, x = -

log b ’

where the logarithms on the right are natural logarithms.

Note that log, b = 1. Also, when b = e, we have log, x = log x, SO natural logarithms
are those with base e. Since  logarithms to base e are used SO frequently in mathematics,
the word logarithm almost invariably means natural  logarithm. Later,  in Section 6.15,
we shall define  bu  in such  a way that the equation bu = x Will mean exactly the same as the
equation u = log, x.

Since  logarithms to the base b are obtained from natural logarithms by multiplying by
the constant l/log  b, the graph of the equation y = log, x may be obtained from that of
the equation y = log x by simply multiplying a11  ordinates by the same factor. When
b > 1, this factor is positive, and, when b < 1, it is negative. Examples with b > 1 are
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FIGURE 6 . 3 The graph of y = logb  x for various values of b.

shown in Figure 6.3(a). When b < 1, we note that I/b > 1 and log  b = -1og  (l/b),  SO

the graph of y = log, x may be obtained from that of y = log,,,  x by reflection through
the x-axis. Examples are shown in Figure 6.3(b).

6.7 Differentiation and integration formulas involving logarithms

Since  the derivative of the logarithm is given by the formula D log  x = 1/x  for x > 0,
we have the integration formula

s ;dx=logx+C.

More generally, if u =f(x), wheref has a continuous derivative, we have

(6.13) s d u
- = log t4  + C or

s
f’(x>  dx = logf(x)  + C .

U f(x)

Some tare  must be exercised when using (6.13) because the logarithm is not defined for
negative numbers. Therefore, the integration formulas in (6.13) are valid only if U,  or
f(x), is positive.

Fortunately it is easy to extend the range of validity of these formulas to accommodate
functions that are negative or positive (but nonzero). We simply introduce a new function
L,, defined for a11  real x # 0 by the equation

(6.14) L,(x) = log [XI  =
s

1x1  1

1
;dt,

a definition suggested by Equation (6.6) of Section 6.2. The graph of L, is symmetric
about  the y-axis, as shown in Figure 6.4. The portion to the right of the y-axis is exactly
the same as the logarithmic curve  of Figure 6.2.
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Since  log Ixyl  7 log (1x1 1~~1) = log 1x1 + log 1~1,  the function L,  also satisfies the basic
functional equation in (6.4). That is, we have

Ll(xy)  =  L,(x) +  Llw

for a11  real x and y except  0. For x > 0, we have L;(x)  = 1/x since  L,(x) is the same  as
log x for positive x. This derivative formula also holds for x < 0 because, in this case,
L,(x) = L(-x), and hence  LA(x)  = - L’( -x) = - 1/(-x) = 1/x.  Therefore we have

(6.15) L;(x)  = i for a11  real x # 0 .
X

FIGURE 6.4 The graph of  the funct ion L,.

Hence,  if we use L,  instead of L in the foregoing integration formulas, we cari  extend
their scope to include functions which assume negative values as well as positive values.
For example, (6.13) cari be generalized as follows:

s d u
- = log  IUI  +  c  >

s
f’(X>  dx = 1%  If(x>l  + c.

U f(x)
Of course, when we use (6.16) along  with the second fundamental  theorem of calculus  to
evaluate  a definite integral, we must avoid intervals that include points where u or
f(x) might be zero.

EXAMPLE  1. Integrate J tan x dx.

Solution. The integral has the form -j dulu,  where u = COS x, du = -sin x dx. There-
fore we have

s
tan x dx = -

d u
- = -1og  IUI  +  c  =  -1og  Icos XI  +  C)

U

a formula which is valid on any interval  in which COS x # 0.
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The next two examples illustrate the use of integration by parts.

235

EXAMPLE 2. Integrate S log x dx.

Solution. Let u  = log x, du = dx. Then du = dxlx,  v = x, and we obtain

/logxdx=/udv=uv-/vdu=xlogx-/x;dx=xlogx-x+C.

EXAMPLE 3. Integrate S sin (log x) dx.

Solution. Let u  = sin (log x), v = x. Then du = COS (log x)(  1 /x) dx, and we find

I sin (log x) dx =I u du = UV  - i v du = x sin (log x) -s COS (log x) dx .

In the last integral we use integration by parts once more to get

!” COS (log x) dx = x COS (log x) + [ sin (log x) dx .

Combining this with the foregoing equation, we find that

i sin (log x) dx = 4x sin (log x) - &x  COS (log x) + C ,

and

î COS (log x) dx = 4x  sin (log xj + ix COS (log x) + C .

6.8 Logarithmic differentiation

We shall describe  now a technique known as logarithmic d@erentiation  which is often
a great help in computing derivatives. The method was developed in 1697 by Johann
Bernoulli (1667-1748),  and a11 it amounts to is a simple application of the chain rule.

Suppose we form the composition of L, with any  differentiable function f; say  we let

g(x) = 4llfw = log  If(x>l

for those x such  that f(x) # 0. The chain rule, used in conjunction with (6.15),  yields the
formula

g’(x) = L’[f(x)] *f’(x) - f’o0
- f(x) .

If the derivative g’(x) cari  be found in some other way, then we may use (6.17) to obtain
f’(x) by simply multiplying g’(x) by f(x). The process is useful in practice because in
many cases g’(x) is easier to compute than f’(x) itself. In particular, this is true when f is
a product  or quotient of several simpler functions. The following example is typical.
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EXAMPLE. Computef’(x)  if f (x) = x2  COS x (1  + x4)-‘.

Sohtion. We take the logarithm of the absolute value off(x) and then we differentiate.
Let

g(x)  = log  (f(x)\  = log x2 + log (COS x( + log (1 + x4)-’

= 2 log 1x1 + log [COS  XI  -7 log  (1 + x”).

Differentiation yields

g’(x) = f’(X>  = 2 _ sin x 28x3- - -
f(x) x COS x 1 + x4.

Multiplying by f (x), we obtain

f’(x)  =
2x COS x x2 sin x 28x5  COS x

(1 + x4)’ - (1 + x4)’ - (1 + x4)8 .

6.9 Exercises

(a) Find a11 c such  that  log x = c + jz t-l dt for a11 x > 0.
(b) Let f(x) = log [(l + x)/(1  - x)] if x > 0. If a and b are given numbers, with ab #  - 1,
find a11 x such  thatf(x)  =f(a)  +f(b).
In each  case, find a real  x satisfying the given equation.
(a) log (1 + x) = log (1 - x). (c) 2 log x = x log 2, x #  2.
(b) log (1 + x) = 1 + log(1 - x). (d) log(z/x  + &?Ï)  = 1.
Let  f(x) = (log )/x x if x > 0. Describe  the intervals in which f is increasing, decreasing,
convex,  and concave. Sketch the graph off.

In Exercises 4 through 15, find the derivativef’(x). In each  case, the function  f is assumed to be
defined for a11 real x for which the given formula for f(x) is meaningful.
4. f(x) = log (1 + x2). 10. f(x) = (x + dïT?)n

5. f(x) = log  d-7-2. ll.f(x) =&-TÏ  -log(l  +m).

6. f(x) = log 1/=. 12.  f(x) = x log  (x + l/l+xz> - .+x2:

7. f(x) = log (log x).

8. f(x) = log(x2  log x).

9. f(X) = B  1ogs  <
14. f(x) = x[sin (log x) - Cos (log x)1.
15. f(x) = log, e.

In Exercises 16 through 26, evaluate  the integrals.

17. s log2  x dx.

18. Jxlogxdx.

19. j x log2  x dx.

21. jcotxdx.

22. Jx”  log  (ax) dx.

23. j x2 log2  x dx.
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24.

25.

27.

s

d x
xlogx’

s

1-e- log (1 - t)

0 1 dt.- *

Derive  the recursion  formula

26.
s
xd& dx.

s

xm+l 10gn  x
x” log” x dx =

mfl
- --&

s
x” logn-l x dx

28.
and use it to integrate sx” log3  x dx.
(a) If x > 0, let f(x) = x - 1 - log x, g(x) = log x - 1 + 1/x. Examine the signs  off’
and g’  to prove that the inequalities

1
1 -;<logx<x-1

29.

are valid for x > 0, x #  1. When x = 1, they become equalities.
(b) Sketch graphs of the functions A and B defined by the equations A(x) = x - 1 and
B(x) = 1 - 1/x  for x > 0, and interpret geometrically the inequalities in part (a).
Prove the limit relation

lim
log  (1  + 4 = 1

x-o X

by the following two methods: (a) using the definition of the derivative L’(1); (b) using the
result of Exercise 28.

30.

31.

If a > 0, use the functional equation for the logarithm to prove that log (ar)  = r log a for
every rational number Y.
Let P = {a,, ul,  u2,  . . . , a,} be any  partition of the interval  [1, x], where x > 1.
(a) Integrate suitable  step functions that are constant on the open  subintervals of P to derive
the following inequalities :

si”’  --a,-,)  < logx <z(“k;--r).
k=l

(b) Interpret the inequalities of part (a) geometrically in terms of areas.
(c) Specialize the partition to show that for every integer n  > 1,

n  1 n-1

c c

1
k<logn<  k.

k=2 k=l

32. Prove the following formulas for changing from one  logarithmic base to another:

(a) log,  x = log,  a log, x;
loga  x

(b)  log,  x = logb  .
a

33. Given that log, 10 = 2.302585, correct to six decimal  places, compute log,, e using one  of the
formulas in Exercise 32. How many  correct decimal  places cari  you  be certain of in the result
of your calculation? Note: A table, correct to six decimal  places, gives log,, e = 0.434294.
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34. A function f, continuous on the positive real axis, has the property that for a11 choices  of
x > 0 and y > 0, the integral

srf(t) d t

is independent of x (and therefore depends  only on y). If f(2) = 2, compute the value of the
integral A(x) = jTf(t) dt for a11 n > 0.

35. A functionf, continuous on the positive real axis, has the property that

j;f(t)dt =yJ;f(t)dt  +x/;f(t)dt

for a11 x > 0 and a11 y > 0. If f (1) = 3, compute f (x) for each  x > 0.
36. The base of a solid is the ordinate set of a function f which is continuous over  the interval

[l, a]. Al1  cross sections perpendicular to the interval  Il, a] are squares. The volume of the
solid is $a3  log2  a - $a3  log a + &u3  - & for every a 2  1. Compute f(u).

6.10 Polynomial approximations to the logarithm

In this section we Will show that the logarithm function cari  be approximated by certain
polynomials which cari  be used to compute logarithms to any  desired degree of accuracy.

TO simplify the resulting formulas, we first replace x by 1 - x in the integral defining
the logarithm to obtain

log (1 - x) =
s

‘-* dt
- >

1 t

which is valid if x < 1. The change of variable t = 1 - u converts this to the form

-log(l - x )  =  -
s

* du
0 1 - u ’

valid for x < 1.

Now we approximate the integrand I/(l - u)  by polynomials which we then integrate to
obtain corresponding approximations for the logarithm. TO illustrate the method, we
begin with a simple linear approximation to the integrand.

From the algebraic identity 1 - u2  = (1 - u)(l + u),  we obtain the formula

(6.18)
1 u2

-=1+u+-
1 - U l - u ’

valid for any  real u  # 1. Integrating this from 0 to x, where x < 1, we have

(6.19) - log (1 - x) = x + -2 +
s

x  z12
- d u .

0 1 - u

The graph of the quadratic polynomial P(x) = x + 4x2 which appears on the right of
(6.19) is shown in Figure 6.5 along with the curve  y = -1og  (1 - x). Note that for x near
zero the polynomial P(x) is a good approximation to -1og  (1 - x). In the next theorem
we use a polynomial of degree n - 1 to approximate l/(l  - u),  and thereby obtain a
polynomial of degree n which approximates log (1 - x).
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FIGURE 6.5 A quadratic polynomial approximation to the curve  y = -1og  (1 - x),

THEOREM 6.3. Let P, denote  the polynomial of degree n given by

Then, for every x < 1 and every n 2  1, we have

(6.20) -1og  (1 - x) = P,(x) + o Ï du .
s

x un
- 11

Proof.  From the algebraic identity

1 - un  = (1 - u)(l + u + u2  + . . . + Un-l),

we obtain the formula

1

l - u
= 1 + u + u2  + . . . + un-l  + & )

which is valid for u # 1. Integrating this from 0 to x, where x < 1, we obtain (6.20).
We cari  rewrite (6.20) in the form

(6.21) -1og  (1 - x) = P,(x) + En(x),

where E,(x) is the integral,

E,(x) = ,‘-&  du .
s
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The quantity E,(x) represents the error made when we approximate -1og  (1 - x) by the
polynomial P,(x). TO use (6.21) in computations, we need to know whether the error is
positive or negative  and how large it cari  be. The next theorem tells us that for small
positive x the error E,(x) is positive, but for negative x the error has the same sign as
(- l)n+r, where n is the degree of the approximating polynomial. The theorem also gives
useful Upper  and lower bounds for the error.

THEOREM 6.4. If 0 < x < 1, M>e  have the inequalities

(6.22)
p+l

$+ < E,(x) < -A----
1-xn+l’

If x < 0, the error E,(x) has the same sign as (- l)“+l,  and we have

(6.23)
n+l

0 < (-l)“+‘E,(x)  5 IxI
Il + 1.

Proof. Assume that 0 < x < 1. In the integral defining E,(x) we have 0 < u 5 x, SO

1 - x < 1 - u 5 1, and hence  the integrand satisfies the inequalities

Un
un 5 -

l - u
4%

1 -x’

Integrating these inequalities, we obtain (6.22).
TO prove (6.23),  assume x < 0 and let t = -x = 1x1. Then t > 0 and we have

E,(x) = E,(-t)  = ut-& du  = -
s s

t ( -v )”
s

t
- du  = (-I)“+l 2  du  .

0 1+v 01+v

This shows that E,(x) has the same sign as (- l)“+l.  Also, we have

(-l)“+‘E,(x)  =s,%v  du  <j+‘vn  dv  = f$ = 5  ,
0

which compfetes the proof  of (6.23).
The next theorem gives a formula which is admirably suited for computations of loga-

rithms.

THEOREM 6.5. If 0 < x < 1 and zfrn  2 1, we  have

1+xlog -
-p-l

l - x
=2x+$+...+-( 2m - 1 1

+ Ux) 9
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where the error term, R,,(x), satisjîes  the inequalities

(6.24) X2mfl  < R,,,(x) 5 -~
2 - x gm+1

2m + 1 l-x2m+l’

Proof.  Equation (6.21) is valid for any  real x < 1. If we replace x by -x in (6.21),
keeping x > - 1,  we obtain the formula

(6.25) -1og  (1 + x) = PJ-X)  + E,(-x).

If -1 < x < 1, both (6.21) and (6.25) are valid. Subtracting (6.25) from (6.21), we find

(6.26) 1+xlog -
l - x

= P,(x) - PJ-X)  + E,(x) - E,(-x).

In the difference P,(x) - PJ-x),  the even powers of x cancel  and the odd powers double
up. Therefore, if n is even, say  n = 2m, we have

P&(X)  - Pz,(-x)  = 2
(
x + $ + . . . +

and Equation (6.26) becomes

1+xlog -
l - x

5 + R,(x),

where R,(x) = Ezm(x)  - &,(-x).  This formula is valid if x lies in the open  interval
- 1 < x < 1. Now we restrict x to the interval 0 < x < 1. Then the estimates of Theorem
6.4 give us

and
gm+1

0 < -&,(--x) I ~
2m + 1.

Adding these, we obtain the inequalities in (6.24),  since  1 + I/(l - x) = (2 - x)/(1 - x).

EXAMPLE. Taking m = 2 and x = 4, we have (1 + x)/(1 - x) = 2, and we obtain the
formula

log 2 = 2(9 + &)  + R,(g) 2 where

This gives us the inequalities 0.6921 < log 2 < 0.6935 with very little calculation.
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6.11 Exercises

1 .

2 .

3 .

4 .

5 .

Use Theorem 6.5 with x = i and m = 5 to calculate approximations to log 2. Retain nine
decimals in your calculations and obtain the inequalities 0.6931460 < log  2 < 0.6931476.
If x = 5, then (1 + x)/(1  - x) = 3. Thus,  Theorem 6.5 enables us to compute log 3 in terms
of log 2. Take x = 6 and m = 5 in Theorem 6.5 and use the results of Exercise  1 to obtain the
inequalities 1.098611 < log 3 < 1.098617.

Note: Since  log 2 < log e < log 3, it follows that 2 < e < 3.
Use Theorem 6.5 with x = & to calculate log 5 in terms of log 2. Choose the degree of the
approximating polynomial high enough to obtain the inequalities 1.609435 < log 5 < 1.609438.
Use Theorem 6.5 with x = Q  to calculate log 7 in terms of log 5. Choose the degree of the
approximating polynomial high enough to obtain the inequalities 1.945907 < log 7 < 1.945911.
Use the results of Exercises 1 through 4 to calculate a short table listing log n for n  = 2, 3, . . . ,
10. Tabulate each  entry with as many  correct decimal  places as you  cari  be certain of from the
inequalities in Exercises 1 through 4.

6.12 The exponential function

Theorem 6.2 shows that for every real x there is one  and only oney such  that L(y) = x.
Therefore we cari  use the process of inversion to define  y as a function of x. The resulting
inverse function is called the exponentialfinction, or the antilogarithm, and is denoted by E.

DEFINITION. For any  real x, we dejine  E(x) to be that number y whose  logarithm is  x.
That is, y = E(x) means  that L(y) = x.

The domain  of E is the entire  real axis; its range is the set of positive real numbers. The
graph of E, which is shown in Figure 6.6, is obtained from the graph of the logarithm by

Y

FIGURE 6.6 The graph of the exponential function is obtained from that of the
logarithm by reflection through the line y = x.
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reflection through the line y = x. Since L and E are inverses of each  other, we have

L[E(x)] = x for a11 x and E[L(y)1  = Y for a11 y > 0.

Each property of the logarithm cari  be translated into a property of the exponential.
For example, since  the logarithm is strictly increasing and continuous on the positive real
axis, it follows from Theorem 3.10 that the exponential is strictly increasing and continuous
on the entire  real axis. The counterpart of Theorem 6.1 is given by the following theorem.

THEOREM 6.6. The exponential function has the following  properties:

(a)  E(O)  = 1, E(1) = e.
(b) E’(x) = E(x) for every x.
(c) E(a + b) = E(a)E(b) for ail  a and b.

Proof.  Part (a) follows from the equations L(1) = 0 and L(e) = 1. Next we prove (c),
the functional equation for the exponential. Assume that a and b are given and let

Then we have

x = E(a), y = E(b)  , c = L(xy) .

L(x) = a, L(y)  = b , E(c) = xy .

But c = L(X~)  = L(x) + L(y) = a + b. That is, c = a + b. Hence, E(c) = E(a + b).
On the other hand, E(c) = xy = E(a)E(b),  SO E(a + b) = E(a)E(b),  which proves (c).

Now we use the functional equation to help us prove (b). The difference quotient for
the derivative E’(x) is

E(x  + h)  - E(x)  = E(x)E@)  - E(x) = E(x)  E(h)  - 1
h h h *

Therefore, to prove (b) we must show that

(6.27) lim Rh)  - 1 =l
h-0 h ’

We shall express the quotient in (6.27) in terms of the logarithm. Let k = E(h) - 1.
Then k + 1 = E(h) SO L(k + 1) = h and the quotient is equal to

(6.28)
E(h) - 1 k- -  =

h L(k  + 1) *

Now as h + 0, E(h) 4 1 because the exponential function is continuous at 1. Since
k  = E(h)-  l,wehavek+Oash+O.  But

L(k + 1)  = L(k + 1)  - L(1)  - L’(1)  = 1 a s  k+O.
k k

In view of (6.28),  this proves (6.27) which, in turn, proves (b).
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6.13 Exponentials expressed as powers of e

The functional equation E(a + b)  = E(a)E(b) has many interesting consequences.  For
example, we cari  use it to prove that

(6.29) E(r) = er

for every rational number r.
First we take b = -a in the functional equation to get

E(a)E(-a) = E(0) = 1 ,

and hence  E(-a) = l/E(a)  for every real a. Taking b = a, b = 2a, . . . , b = na in the
functional equation we obtain, successively, E(2a)  = E(a)2,  E(3a)  = E(a)3,  and, in general,
we have

(6.30) E(na) = E(a)”

for every positive integer n. In particular, when a = 1, we obtain

E(n) = e”  ,

whereas for a = I/n,  we obtain E(1) = E(l/n)“. Since E(l/n)  > 0, this implies

(6.31) E i = &” .
0

Therefore, if we put a = l/m in (6.30) and use (6.31), we find

for a11 positive integers m and n. In other words, we have proved (6.29) for every positive
rational number r. Since E(-r) = l/E(r)  = eC, it also holds for a11  negative rational r.

6.14 The definition of es  for arbitrary real x

In the foregoing section weproved that e”  = E(x) when x is any  rational number. Now
we shall de$ne  e”  for irrational x by writing

(6.32) e”  = E(x) for every real x .

One justification for this definition is that we cari  use it to prove that the law of exponents

(6.33) eaeb  = ea+b

is valid for a11  real exponents a and b. When we use the definition in (6.32), the proof  of
(6.33) is a triviality because (6.33) is nothing but a restatement of the functional equation.
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The notation e”  for E(x) is the one  that is commonly used for the exponential. Occasion-
ally exp(x)  is written instead of ed, especially when complicated formulas appear in the
exponent. We shall continue to use E(x) from time to time in this chapter,  but later we
shah  switch to ex.

We have defined the exponential function SO that the two equations

y = e” and x = logy

mean exactly the same thing. In the next section we shall define  more general powers SO

that the two equations y = a5  and x = log, y Will be equivalent.

6.15 The definition of a’  for a > 0 and x real

Now that we have defined ex  for arbitrary real x, there is absolutely no difficulty in
formulating a definition of a5  for every a > 0. One way to proceed is to let a”  denote  that
number y such  that log, y = x. But this does  not work for a = 1, since  logarithms to the
base 1 have not been defined. Another way is to define  a”  by the formula

(6.34) a”  = ,zloga

The second method is preferable because, first of all, it is meaningful for a11 positive a
(including a = 1) and, secondly, it makes it easy to prove the following properties of
exponentials:

log a” = x log a . (ab)”  = a”b”  .
a”@ = a”‘” (a=)Y  = (auy  = a”v  .

Zfa#  l,theny=a”ifandonlyifx=log,y.

The proofs of these properties are left as exercises for the reader.
Just as the graph of the exponential function was obtained from that of the logarithm

by reflection through the line y = x, SO the graph of y = a” cari  be obtained from that
of y = log, x by reflection through the same line; examples are shown in Figure 6.7. The
curves  in Figures 6.7 were obtained by reflection of those in Figures 6.3. The graph
corresponding to a = 1 is, of course, the horizontal line y = 1.

6.16 Differentiation and integration formulas involving exponentials

One of the most remarkable properties of the exponential function is the formula

(6.35) E’(x) = E(x) )

which tells us that this function is its own derivative. If we use this along with the chain
rule, we cari  obtain differentiation formulas for exponential functions  with any  positive
base a.

Suppose f(x) = a”  for x > 0. By the definition of a”,  we may Write

f(x) = ezloga  = E(x  log a) ;
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hence,  by the chain  rule, we find

(6.36) f’(x) = I?(x  log a) * log a = E(x  log a) * log  a = a” log a.

In other words, differentiation of a”  simply multiplies a” by the constant factor log a, this
factor being 1 when a = e.

Y

t a>e O<a<i
1 e

a=-
!<a<1 f
e \

\
l

\
\

\

4

\
\

\
\

\
\

\
\

C

(a) a > 1 (b) 0 < a < 1

F I G U R E  6 . 7 The graph of y = a”  for various values of a.

Of course, these differentiation formulas automatically lead to corresponding integration
formulas. For example, (6.35) yields the result

(6.37) i e”  dx =e”+C,

whereas (6.36) gives us the more general formula

(6.38) s a”dx a” + c= -
log a

(a > 0,  a # 1)  .

These may be generalized further by the method of substitution. We simply replace x
everywhere in (6.37) and (6.38) by u to obtain

(6.39)
s

eu  du = eu + C ,
s

aUdu au + c= -
log a

(a > 0, a # 1)  ,
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where u now represents any  function with a continuous derivative. If we Write  u  =f(x),
and du =f’(x) dx, the formulas in (6.39) become

s
efcx’f’(x)  dx = ef’“’  + C ,

s
affz~‘(x)  dx = af’“’ + C ,

log a

the second of these being valid for a > 0, a # 1.

EXAMPLE 1. Integrate Jx2er3  dx.

Solution. Let u  = x3. Then du = 3x2 dx, and we obtain

s
x2$ dx  = 13 1 er3(3x2  dx) = i 1 eu  du = +eU + C = $exs  + C .

EXAMPLE 2. Integrate
s

2A
- dx .
6

Solution. Let u  = V5 = x%. Then du = 4x-x  dx = $ dx/&.  Hence we have

I $dx=+“jf$)  =+‘du=2--&+C=g+C.

EXAMPLE 3. Integrate J COS x e2  Si*x  dx.

Solution. Let u  = 2 sin x. Then du = 2 COS x dx, and hence  we obtain

i cas x e2sinïd~=~je2sinx(2coS~d~)=~je~dU=~e~+C=~e2Sin~+C.

EXAMPLE 4. Integrate J” e”  sin x dx.

Solution. Let u  = e5, du  = sin x dx. Then du = e”  dx, ~1  = -COS x, and we find

( 6 . 4 0 )  j e”sinxdx  = j u du = UV - i vdu = -ercosx  + s e” COS x dx + C .

The integral j ex  COS x dx is treated in the same way. We let u = e”,  du  = COS x dx, du =
e”  dx, v = sin x, and we obtain

(6.41) s ex  COS x dx = e”  sin x - i e”  sin x dx + C .

Substituting this in (6.40),  we may solve for je” sin x dx and consolidate the arbitrary
constants to obtain

s
e”  sin x dx = f (sin x - COS x) + C .

Notice that we cari use this in (6.41) to obtain also

s
ex  COS x dx = f (COS x + sin x) + C .



248 The logarithrn, the exponential, and the imerse  trigonometric fînctions

ExAMPLE  5. Integrate s d x
1.

Solution. One  way to treat this example is to rewrite the integrand as follows:

1 -xe-=-
1 + e” eex + 1 ’

Now put u = e-” + 1. Then du = -e-” dx, and we get

s -’dx = _  -e-“dxe
s s

du
eë” + 1 -=-  -=-lOglUl+C=-log(l+e-“)+Ce

e-” + 1 u

The result cari  be written in other ways if we manipulate the logarithm. For instance,

1-1og  (1 + eë’) = log ~
1 + e-”

= log e”
e” + 1

= log (ez) - log (e’ + 1) = x - log (1 + e’)

Another way to treat this same example is to Write

Then we have

1 e”-=l--..--
1 + e” 1 + e”’

s d x
s

e”-=x-  - d.x  = x -
1 + ex 1 + er s

- ,
u

where u = 1 + e”. Thus we find

s d x-
1 + e”

= x - log (1 + e’)  + C ,

which is one  of the forms obtained above.

6.17 Exercises

In Exercises 1 through 12, find the derivativef’(x). In each  case the functionfis assumed to be
defined for a11 real x for which the given formula forf(x) is meaningful.

1. f(x) = e3z-1. 7. f(x) = 2”’  [which means  2(z2)].
2. f(x) = e4*‘. 8. f(x) = esin  z.
3. f(x) = eë5*.

5.  ;y; f $

9. f(x) = ecosz  %.
10. f(x) = elOaz.

. x 11. f(x) = eex [which means  e(e5)].
6. f(x) = 2”. 12. f(x) = eeez [which means  exp (e(e”))].
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Evaluate  the indefinite integrals in Exercises 13 through 18.

1 3 .  xe”dx.
s

16.
s

x2 e-2x  dx.

14.
s

x ePx  dx. 17. seG dx.

18.
i

x3e-xa dx.

19. Determine a11 constants a and b such  that e”  = b + ja et  dt.
20. Let A = s cas COS bx dx and B = j e az  sin bx dx, where a and b are constants, not both zero.

Use integration by parts to show that

aA  - bB  = eaz COS bx + Cl, aB + bA  = eaz sin bx + C29

where C, and C, are arbitrary constants. Solve for A and B to deduce the following integration
formulas :

s
eax COS bx dx =

eax(a  COS bx + b sin bx)

a2  + b2

s eax  sin bx dx =
eaz(a  sin bx - b COS bx)

a2  + b2

+ c,

+ c.

In Exercises 21 through 34, find the derivativef’(x). In each  case, the functionfis assumed to be
defined for a11 real x for which the given formula for f(x) is meaningful. Logarithmic differenti-
ation may  simplify the work in some cases.
21. f(x) = x”.
22. f(x) = (1 + x)(1  + ezz).

28. f(x) = (log  x)~.
29. f(x) = xlOgz.

mg 4
30. f(x) = xlog *

24. f(x) = xa’  + a”’  + aaz.
25. f(x) = log [log (log X)l.

26. f(x) = log (e”  + dm).

31. f(x) = (sin x)cos  2  + (COS  x)sin x.
32. f(x) = xl’%.

x2(3 - x)1/3
33’ fcX)  = (1 _  x)(3 + x)2/3'

27. f(x) = x”‘. 34. f(x) = fi (x - a$<.
i=l

35. Let f(x) = xr, where x > 0 and r is any  real number. The formula f(x) = rx’-l  was proved
earlier for rational r.
(a) Show that this formula also holds for arbitrary real r. [Hint: Write x7 = erlogz.]
(b) Discuss under what conditions the result of part (a) applies for x 5  0.

36. Use the definition a” = ezloaa  to derive  the following properties of general exponentials:
(a) log a” = x log a.
(b) (ab)”  = azb”.
(c) azau  = a”+y.
(d) (a”)” = (a”)”  = a”u.
(e) Ifa  # 1, theny  = az  ifandonly  ifx = log,y.

37. Let f(x) = $(az  + a-%)  if a > 0. Show that

J’(x  + y)  +f(x  - y>  = wQw  .
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38. Letf(x) = ecr, where c is a constant. Show thatf’(0) = c, and use this to deduce the following
limit relation:

ecz  - 1
lim- =c.
2+0 X

39. Let f be a function defined everywhere on the real axis, with a derivativef’ which satisfies
the equation

f’(x) = C~(X) for every x ,

where c is a constant. Prove that there is a constant K such  that f(x) = Kecx  for every x.
[MM: Let g(x) = J’(x)eëc”  and consider g’(x).]

40. Let f be a function defined everywhere on the real axis. Suppose also that f satisfies the
functional equation

(9 f(x  + y) =f<x,fol) for aIl x andy .

(a) Using only the functional equation, prove that f(0) is either 0 or 1. Also, prove that if
f(0) #  0 then f(x) # 0 for all x.

Assume, in addition to (i), thatf’(x)  exists for a11 x, and prove the following statements:
W f’Wf~y>  =f’(y>fW  for  a11 x and  y.
(c) There is a constant c such  thatf(x)  = cf(x) for a11 x.
(d) f(x) = eca  if f(0) #  0. [Hint: See Exercise  39.1

41. (a) Let f(x) = es - 1 - x for a11 x. Prove that f(x) 2  0 if x 2 0 and f’(x) 5  0 if x 5  0.
Use this fact  to deduce the inequalities

e”>l + x , eë”  > 1 - x ,

valid for a11 x > 0. (When x = 0, these become equalities.)
Integrate these inequalities to derive  the following further inequalities, a11 valid for x > 0:

(b) e”  > 1 + x + z, eë”  < 1 - x + -
2!.

x2 x3 x2 x3
Cc>  e”  > 1 + x + ~1  + u , eë”>l-~+y,--.

. 3!

(d) Guess the generalization suggested and prove your result.
42. If n  is a positive integer and if x > 0, show that

and that i f  x<n.

By choosing a suitable  value of n, deduce that 2.5 < e < 2.99.
43. Let f(x, y) = xv where x > 0. Show that

af-=
ax  Yx

Y-l a n d af- =xVlogx.
aY
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6.18 The hyperbolic functions

Certain combinations of exponential functions occur quite frequently in analysis, and
it is worth while to give these combinations special  names and to study them as examples
of new functions. These combinations, called the hyperbolic sine (sinh), the hyperbolic
cosine  (cash), the hyperbolic tangent (tanh), etc., are defined as follows:

ex  - e-=
sinh x = - er + eë”cash  x = ~ sinh x er  - e-”

2 ’ 2 ’
tanh x = - = -

cash  x e”  + e-” ’

1
csch x = -

sinh x ’
1

sech  x = -
cash  x ’

1
coth x = -

tanh x ’

y = sinhx y = cash  x y = tanhx

FIGURE 6.8 Graphs  of hyperbolic functions.

The prefix “hyperbolic” is due to the fact that these functions are related geometrically
to a hyperbola in much the same way as the trigonometric functions are related to a circle.
This relation Will be discussed in more detail in Chapter 14 when we study the hyperbola.
The graphs of the sinh, cash,  and tanh are shown in Figure 6.8.

The hyperbolic functions possess many properties that resemble those of the trigonometric
functions. Some of these are listed as exercises in the following section.

6.19 Exercises

Derive  the properties of the hyperbolic functions listed in Exercises 1 through 15 and compare
them, whenever possible, with the corresponding properties of the trigonometric functions.

1. cosh2x  - sinh2x  = 1.
2. sinh (-x) = -sinh  x.
3. cash  (-x) = cash  x.
4. tanh (-x) = -tanh  x.
5. sinh (x + y) = sinh x cash  y + cash  x sinh y.
6. cash  (x + y) = cash  x cash  y + sinh x sinh y.
7. sinh 2x = 2 sinh x cash  x.
8. cash  2x = cosh2  x + sinh2  x.
9. cash  x + sinh x = ex.

10. cash  x - sinh x = eP.
11. (cash  x + sinh x)” = cash  nx  + sinh nx  (n an integer).
12. 2sinh2&x  = coshx - 1.
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13. 2cosh2&  = coshx + 1.
14. tanh2  x + sech2  x = 1.
15. coth2x - csch2x  = 1.
16. Find cash  x if sinh x = 9.
17. Find sinh x if cash  x = 4 and x > 0.
18. Find sinh x and cash  x if tanh x = A.
19. Find cash  (x + y) if sinh x = 3 and sinh y = 2.
20. Find tanh 2x if tanh x = 2.

In Exercises  21 through 26, prove the differentiation formulas.
21. D sinh x = cash  x. 24. D coth  x = -csch2  x.
22. D cash  x = sinh x. 25. D sech  x = -sech  x tanh x.
23. D tanh x = sech2  x. 26. D cschx = -cschxcothx.

6.20 Derivatives of inverse functions

We have applied the process of inversion to construct the exponential function from the
logarithm. In the next section, we shall invert  the trigonometric functions. It is convenient
at this point to discuss a general theorem which shows that the process of inversion transmits
differentiability from a function to its inverse.

THEOREM 6.7. Assume f is strictly increasing and continuous on an interval  [a, b], and
let g be the inverse of J If the derivative f ‘(x) exists and is nonzero at a point x in (a, b),
then the derivative g’(y) also  exists and is nonzero at the corresponding point y, where y =
f(x). Moreover, the two derivatives are reciprocals of each  other; that is, we have

(6.42) 1
d(Y)  = f’(x>  *

Note: If we use the Leibniz notation and Write  y forf(x),  dy/dx  fory(  x forg(y), and
dx/dy  for g’(y), then Equation (6.42) becomes

dx 1

which has the appearance of a trivial algebraic identity.

Proof.  Assume x is a point in (a, 6)  where f’(x) exists and is nonzero, and let y = f(x).
We shah  show that the difference quotient

dy + k) - g(y)
k

approaches the limit l/f’(x)  as k - 0.
Let h  = g(y + k) - g(y). Since  x = g(y), this implies h = g(y + k)  - x or x + h =

g(y + k). Therefore y + k  = f(x + h) ,  and hence  k  = f(x + h)  -f(x). Note that
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h # 0 if k + 0 because g is strictly increasing. Therefore, if k # 0, the difference quotient
in question is

(6.43) & + 4 - g(y) h 1=-
k f(x  + h) -f(x)  = U’(x  + h) - fWh  ’

As k --+ 0, the difference g(y + k) - g(y) -+ 0 because of the continuity of g at y [property
(b) of Theorem 3.101. This means that h + 0 as k - 0. But we know that the difference
quotient in the denominator on the extreme right of (6.43) approaches f’(x) as h -f 0
[since  f’(x) exists]. Therefore, when k -f 0, the quotient on the extreme left of (6.43)
approaches the limit I/f’(x).  This proves Theorem 6.7.

6.21 Inverses of the trigonometric functions

The process of inversion may be applied to the trigonometric functions. Suppose we
begin with the sine function. TO determine a unique inverse, we must consider the sine
over  some interval where it is monotonie.  There are, of course, many such  intervals, for

FIGURE 6.9 y = sin x. FIGURE 6.10 y = arcsin  x.

example [-&r, &r], [$rr 3.rr],  [-$T,  --&T],  etc., and it really does  not matter  which one  of, 2
these we choose.  It is customary to Select  [ - & , 2n &T]  and define  a new function f as follows :

f(x) = sin x if -;<x<;.

The function f SO defined is strictly increasing and it assumes every value between -1
and + 1 exactly once on the interval [ -- 3 7~~  3~1.  (See Figure 6.9.) Hence there is a uniquely
determined function g defined on [- 1, l] which assigns to each  number y in [- 1, l] that
number x in [-&r, &T]  for which y = sin x. This function g is called the inverse sine or
arc sine, and its value at y is denoted by arcsin y, or by sin-l  y. Thus ,

u = arcsin v means v = sin u and -pu<;.

The graph of the arc sine is shown in Figure 6.10. Note that the arc sine is not defined
outside the interval [ - 1, 11.
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The derivative of the arc sine cari  be obtained from formula (6.42) of Section 6.20.
In this case we have f’(x) = COS x and this is nonzero in the open  interval (-4x, +).
Therefore formula (6.42) yields

1 1g’(y) = - = - = 1

f’(x) COS X dl  _ sin2  x
=d& i f  -l<y<l.

With a change in notation we cari Write  this result as follows:

D arcsin x = d&- if -l<x<l.

Of course, this now gives us a new integration formula,

(6.45) ~ dt = arcsin x ,

which is valid for - 1 < x < 1.

Note: This formula may  be used as the starting point for a completely analytic theory
of the trigonometric functions, without any  reference  to geometry. Briefly, the idea is to
begin with  the  a rc  s ine  func t ion ,  def in ing  i t  by  the  in tegra l  in  (6.45),  jus t  as  we def ined the
logarithm as an integral. Next, the sine function is defined as the inverse of the arc sine,
and the cosine as the derivative of the sine. Many  details are required to carry out  this
program completely and we shall not attempt to describe  them here. An alternative
method for introducing the trigonometric functions analytically Will be mentioned in
Chapter 11.

In the Leibniz notation for indefinite integrals we may Write  formula (6.45) in the form

(6.46) s dx

m
= arcsin x + C .

Integration by parts yields the following further integration formula:

s arcsin x dx = x arcsin x -s x dx
l/l-x2= x arcsin x + l/l-x2 + C .

The cosine and tangent are inverted in a similar fashion. For the cosine it is customary
to choose  the interval [0, 7~1  in which to perform the inversion. (See Figure 6.11.) The
resulting inverse function, called the arc cosine, is defined as follows:

2.4 = arccos  v means v = COS u and O<Ul?T.

The graph of the arc cosine function is shown in Figure 6.12.
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FIGURE 6.11 y = COS x. FIGURE 6.12 y = arccos  x.

TO invert the tangent we choose  the open  interval (-$z-,  $r) (see Figure 6.13) and we
define  the arc tangent as follows:

u = arctan v means v = tan u and -;<u<;.

Figure 6.14 shows a portion of the graph of the arc tangent function.
The argument used to derive  (6.44) cari  also be applied to the arc cosine  and arc tangent

functions, and it yields the following differentiation formulas:

(6.47) D arccos  x =
m-1

2/1-x”’

validfor -1 <x< 1,and

(6.48)
1

D arctan x = -
1+ x2’

valid for a11 real x.

5------------

/____--_-----
*--
2

FIGURE 6.13 y = tan x. FIGURE 6.14 y = arctan  x.
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When (6.47) is translated into an integration formula it becomes

(6.49) ~ dt = -(arccos  x - arccos  0) = 5 - arccos  x

if - 1 < x < 1. By comparing (6.49) with (6.45), we deduce the relation $r - arccos  x =
arcsin x. ( This may also be deduced from the familiar identity sin ($T - y )  =
COS y if we Write  y = arccos  x.) In the Leibniz notation for indefinite integrals, we may
Write  (6.49) as follows:

(6.50)
s&=

-arccos  x + C .

Similarly, from (6.48) we obtain

(6.51)
s

x dt
- = arctan x

d x
0 1+ t2

or
s
-
1 + x2

= arctan x + C .

Using integration by parts in conjunction with (6.50) and (6.51), we cari derive the
following further integration formulas :

s arccos  x dx = x arccos  x +s x dx
- x arccos  x - G-S + C ,

Iq-Iy

s
arctan x dx = x arctan x -

s
x dx
- = x arctan x - 4 log (1 + x2) + C .
1 + x2

The inverses of the cotangent, secant,  and cosecant cari be defined by means of the
following formulas :

(6.52) arccot x = Z - arctan x for
2

a11  real x ,

(6.53)
1

arcsec  x = arccos ; w h e n  1x1 2 1,

(6.54)
1arccsc x = arcsin ; when 1x1 2 1 .

Differentiation and integration formulas for these functions are listed in the following
exercises.

6.22 Exercises

Derive  the differentiation formulas in Exercises 1 through 5.

1. Darccosx = ~d&2  i f  - l < x < l .

1
2. D arctan  x = -

1 +x2
for a11 real x.
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- 1
3. Darccotx = -

1 +x2
for a11 real x.

1
4. D arcsec  x =

lXl@=T
i f  ]XI>~.

- 1
5. D arccsc x =

IXl%G=ï
i f  IX]>~.

Derive  the integration formulas in Exercises 6 through 10.

6. j’ arccot x dx = x arccot x + &log  (1 + x2) + C.

7.jarcsecxdx  =xarcsecx-iloglx+Z/XeT1]  +C.

8.
s

arccsc x dx = x arccsc x + i log Ix + q-1  + C.

9. j (arcsin  x)~ dx = x(arcsin x)~ - 2x + 24- arcsin  x + C.

s

arcsin  x
1°*  x2- dx = log 1 --dg arcsin  x

--+c.
X x

11. (a) Show that D arccot x - arctan  J
(

= 0 for a11 x #  0.
X1

(b) Prove that there is no constant C such  that arccot x - arctan  (I/x)  = C for a11 x #  0.
Explain why this does  not contradict the zero-derivative theorem (Theorem 5.2).

In Exercises 12 through 25, find the derivativef’(x). In each  case the functionfis assumed to be
defined for a11 real x for which the given formula for f(x) is meaningful.

12. f(x) = arcsin  5 . 19. f(x) = arctan  (tan2  x).

1  - x
13. f(x) = arccos  - .

fi

14. f(x) = arccos  !
X’

15. f(x) = arcsin  (sin x).

16. f(x) = fi - arctan  1/x.

20. f(x) = arctan  (x + dGZ).

21. f(x) = arcsin  (sin x - cas  x).

22. f(x) = arccos  1/1_xz.

1  + x
23. f(x) = arctan  l-x.

17. f(x) = arctan  x + 4 arctan  (x3). 24. f(x) = [arccos  (x2)lp2.

1 -x2
18. f(x) = arcsin  - .

1 +x2
25. f(x) = log (arccos  -+) .

26. Show that dy/dx  = (x + y)/(~  - y) if arctan  (y/~)  = log 2/X2+r
27. Compute d2y/dx2  if y = (arcsin  x)/\/l’-xi; for 1x1 < 1.

128. Letf(x) = arctan  x - x + %x 3. Examine the sign off’ to prove that

x3
x - - < arctan  x

3
if x > 0.
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In Exercises  29 through 47, evaluate  the indefinite integrals.

29.  &$y23s a # 0.

dx

1 - 2x - x2 *

s d x
3 1 .  -

a2 + x2 ’
a # 0.

d x
3 2 .  -

s
(ab # 0).

a + bx2

34. j x arctan  x dx.

35. J x2 arccos  x dx.

38. s arctan  &

VS(1 + x) dx*

39. sd1  - x2 dx. [Hint:  x = sin u.]

s
x earctan  z

40* (1 + x2)3/2 dx’

s
earc  tan z

41. (1 + .2)3’2  dx.

36. j x(arctan x)~ dx.

37. J arctan  fi dx.

a > 0.

46. s d(x  - a)(b - x) dx, b # a.

sy d x
47. b # a.

( x - a)(b - x) ’
[Hint: x - a = (b - a) sin2  u.]

6.23 Integration  by partial fractions

We recall that a quotient of two polynomials is called a rational function. Differenti-
ation of a rational function leads to a new rational function which may be obtained by
the quotient rule  for derivatives. On the other hand, integration of a rational function
may lead to functions that are not rational. For example, we have

s dx- = log 1x1  + c and
x s

d x
- = arctan  x + C .
1 + x2

We shall describe  a method for computing the integral of any  rational function, and we
shall find that the result cari  always be expressed in terms of polynomials, rational functions,
inverse tangents, and logarithms.

The basic idea of the method is to decompose a given rational function into a sum of
simpler fractions (called partial fractions) that cari  be integrated by the techniques discussed
earlier. We shall describe  the general procedure  by means of a number of simple examples
that illustrate a11  the essential features of the method.

EXAMPLE 1. In this example we begin with two simple fractions, 1/(x - 1) and 1/(x + 3),
which we know how to integrate, and see what happens when we form a linear combination
of these fractions. For example, if we take twice the first fraction plus three times the
second, we obtain

2+3=2(x + 3) + 3(x - 1) = 5x +  3
x - l x+3 (x - 1)(x + 3) x2 + 2x - 3 .
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If, now, we read this formula from right to left, it tells us that the rational function r given
by r(x) = (5x + 3)/(x2 + 2x - 3) has been expressed as a linear combination of 1/(x - 1)
and 1/(x + 3). Therefore, we may evaluate the integral of r by writing

s 5x  + 3
dx=2p-+3/% = 2 log Ix -x2

+ 2x 3
11 + 3 log Ix + 31 + c .-

EXAMPLE 2. The foregoing example suggests a procedure  for dealing with integrals of
the form J(ax + b)/(xz  + 2x - 3) dx.  For example, to evaluate J(2x  + 5)/(x2 + 2x - 3) dx,
we try to express the integral as a linear combination of 1/(x - 1) and 1/(x + 3) by writing

(6.55)
2x + 5~- =

x2  + 2x - 3
A+L
x - l x + 3

with constants A and B to be determined. If we cari  choose  A and B SO that Equation (6.55)
is an identity, then the integral of the fraction on the left is equal to the sum of the integrals
of the simpler fractions on the right. TO find A and B, we multiply both sides  of (6.55) by

(x - 1)(x + 3) to remove the fractions. This gives us

(6.56) A(x  + 3) + B(x - 1) = 2x + 5 <

At this stage there are two methods commonly used to find A and B. One method is to
equate coefficients of like powers of x in (6.56). This leads to the equations A + B = 2
and 3A - B = 5. Solving this pair of simultaneous equations, we obtain A = $ and
B = a.  The other method involves the substitution of two values of x in (6.56) and leads
to another pair of equations for A and B. In this particular case, the presence  of the factors
x - 1 and x + 3 suggests that we use the values x = 1 and x = -3. When we put x = 1
in (6.56), the coefficient of B vanishes, and we find 4A = 7, or A = f. Similarly, we cari
make the coefficient of A vanish by putting x = - 3. This gives us -4B = - 1,  or B = $.
In any  event, we have found values of A and B to satisfy (6.55), SO we have

s 2x + 5
x2  + 2x - 3

dx=~~~+~~~=~log,x-l,+~log,x+3,+C.

It is clear that the method described in Example 2 also applies to integrals of the form
Jf (x)/g(x)  dx in which f is a linear polynomial and g is a quadratic polynomial that cari be
factored into distinct linear factors with real coefficients, say  g(x) = (x - x1)(x - x2). In
this case the quotient f (x)/g(x)  cari  be expressed as a linear combination of 1/(x - x1) and
1/(x - x2), and integration of f(x)/g(x)  leads to a corresponding combination of the
logarithmic terms log Ix - x11  and log Ix - x21.

The foregoing examples involve rational functions  f/g  in which the degree of the
numerator is less than that of the denominator. A rational function with this property
is said to be a proper rational function. Iff/g  is improper, that is, if the degree off is not
less than that of g, then we cari  express f/g  as the sum of a polynomial and a proper rational
function. In fact,  we simply divide f by g to obtain

f(x)z =  Q(x)  +  RE 9
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where Q and R are polynomials (called the quotient and remainder, respectively) such  that
the remainder has degree less  than that of g. For example,

x3 + 3x 10x + 6
x2 .- 2x - 3

= x + 2 +
x2 - 2x - 3

Therefore, in the study of integration technique, there is no loss in generality if we restrict
ourselves to proper rational functions, and from now on we consider jf(x)/g(x)  dx, where
f has degree less than that of g.

A general theorem in algebra states that every proper rational function cari  be expressed
as a finite sum of fractions of the forms

A
and

Bx + C

(x + a)” (x2 + bx + c)” ’

where k and m are positive integers and A, B, C, a, b, c are constants with b2 - 4c < 0.
The condition b2 - 4c < 0 means that the quadratic polynomial x2 + bx + c cannot  be
factored into linear factors with real coefficients or, what amounts to the same thing, the
quadratic equation x2 + bx + c = 0 has no real roots. Such  a quadratic factor is said to
be irreducible. When a rational function has been SO expressed, we say  that it has been
decomposed into partial fractions. Therefore the problem of integrating this rational
function reduces to that of integrating its partial fractions. These may be easily dealt with
by the techniques described in the examples which follow.

We shall not bother to prove that partial-fraction decompositions always exist. Instead,
we shall show (by means of examples) how to obtain the partial fractions in specific
problems. In each  case that arises the partial-fraction decomposition cari  be verified
directly.

It is convenient  to separate the discussion into cases depending on the way in which the
denominator of the quotientf(x)/g(x)  cari  be factored.

CASE 1. The denominator is  a product  of distinct linear factors. Suppose that g(x) splits
into n distinct linear factors, say

g(x) = (x - x1)(x  - x2) . * . (x - x,) .

Now notice that a linear combination of the form

Al

x  - x1
+-.+A

n

may be expressed as a single fraction with the common  denominator g(x), and the numerator
of this fraction Will be a polynomial of degree < n involving the A’s. Therefore, if we cari
find A’s to make this numerator equal tof(x),  we shall have the decomposition

f(x)- Al +...+A,--
g(x) x - x1 x - x,’
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and the integral off(x)/g(x)  Will be equal to & Ai  log lx - xii. In the next example, we
work out  a case with n = 3.

EXAMPLE 3. htegrate
s

2xz+5x-‘dx.
x3  + x2  - 2x

Solution. Since x3 + x2 - 2x = x(x - 1)(x + 2), the denominator is a product of
distinct linear factors, and we try to find A,, A,, and A, such  that

2x2+  5x - 1 Al + A2 + A3.=-  - -
x3  + x2  - 2x x X - l x+2‘

Clearing the fractions, we obtain

2x2 + 5x - 1 = A,(x - I)(x + 2) + A,x(x  + 2) + A,x(x - 1).

When x = 0, we find -2A, = - 1, SO A, = g.  When  x = 1,  we  obtain  3A, = 6, A, = 2,
and when x = -2, we find 6A, = -3, or A,  = -&.  Therefore we have

= 3 log Ix1  + 2 log Ix - 11  - 4 log Ix + 21 + C.

CASE 2. The deenominator is a product of linear factors, some of which  are repeated. W e
illustrate this case with an example.

EXAMPLE 4. Integrate
s

x2  +2x +Ldx.(x _ l)(x  + 1)”

Solution. Here we try to find A,, A,, A, SO that

(6.57)
x2  + 2x + 3 Al A2 A

(x - 1)(x + 1)” = x-l + x + 1+ (x .

We need both A,/(x  + 1) and A,/(x  + 1)” as well as A,/(x  - 1) in order to get a polynomial
of degree two in the numerator and to have as many constants as equations when we try
to determine the A’s. Clearing the fractions, we obtain

(6.58) x2  + 2x + 3 = A,(x  + 1)” + A,(x  - I)(x + 1)  + A3(x - 1)  .

Substituting x = 1, we find 4A, = 6, SO A, = $. When x = - 1, we obtain -2A, =  2
and A, = - 1. We need one  more equation to determine A,. Since there are no other
choices  of x that Will make any  factor vanish, we choose  a convenient  x that Will help to
simplify the calculations. For example, the choice  x = 0 leads to the equation 3 = A, -
A, - A, from which we find A, = -4. An alternative method is to differentiate both
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sides  of (6.58) and then substitute a convenient  x. Differentiation of (6.58) leads to the
equation

2x + 2 = 24(x + 1) + A,(x - 1) + A&  + 1) + A,,

and, if we put x = - 1, we find 0 = -2A, + A,, SO A, = $A, = -i, as before. Therefore
we have found A’s to satisfy (6.57),  SO we have

s

x2 + 2x + 3

(x - 1)(x + 1)”

= 4 log  Ix - 11  - ; log (x + 11  + -..L-
x+1

+c.

If, on the left of (6.57),  the factor (x + 1)3 had appeared instead of (x + l)“, we would
have added an extra term A,/(x  + 1)” on the right. More generally, if a linear factor
x + a appears p times in the denominator, then for this factor we must allow for a sum
ofp terms, namely

P
(6.59)

c
Ak

kil (x + a)” ’

where the A’s are constants. A sum of this type is to be used for each  repeated linear factor.

CASE 3. The denominator contains  irreducible quadratic factors, none  of which  are
repeated.

EXAMPLE 5. Integrate
s

3x2 x; yl-  2 dx .

Solution. The denominator cari  be split as the product  .X~  - 1 = (x - I)(x2 + x + 1),
where x2 + x + 1 is irreducible, and we try a decomposition of the form

3x2 + 2x - 2 _ AI Bx + C

x3 - 1 X - l x2 + x + 1.

In the fraction with denominator x2 + x + 1, we have used a linear polynomial Bx + C
in the numerator in order to have as many constants as equations when we solve for A, B,
C. Clearing the fractions and solving for A, B, and C, we find A = 1, B = 2, and C = 3.
Therefore we have

s 3x2 + 2x - 2
x3-1  dx=[~+/x2~*r~Idx.

The first integral on the right is log Ix - 11.  TO evaluate the second integral, we Write

s 2x + 3 dx = 2x +  1 2

x 2 + x + 1 s dx  +
sx 2 + x + 1

dx
x2+x+1

= log (x” + x + 1) + 2
s

dx

(x + i>” + 2 .
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If we let u  = x + $ and tc = 42, the last integral is

2 s d u 2 4 2x + 1~=-
u2+u2  0:

arctan u = -darctan  ~
CI 3 43 *

Therefore. we have

s 3x2  x3  + - 2x 1 - 2 dx = log Ix - 11 + log (x 2 + x + 1) + i V’? arctan - 2x + 11/3 +c.

CASE 4. The denominator contaitw  irreducible quadratic factors, some of which are
repeated. Here the situation is analogous to Case 2. In the partial-fraction decomposition
off(x)/g(x)  we allow, first of all, a sum  of the form (6.59) for each  linear factor, as already
described. In addition, if an irreducible quadratic factor x2 + bx + c is repeated m times,
we allow a sum of m terms, namely

m

c
B,x  + C,

k=l  ix2  + bx + CY  ’

where each  numerator is linear.

EXAMPLE 6. Jntegrate
s

x4  - x3  + 2x2 - x + 2
(x - 1)(x2  + 2)2 dx.

Solution. We Write

x4  - x3  + 2x2  - x + 2
A +-

B x  +  c Dx +  E-=-
(x - 1)(x2  + 2)2 x - l x2  + 2 + (x2  + 2)“.

Clearing the fractions and solving for A, B, C, D, and E,  we find that

A = 3, B = $, c=  -5, D =  - 1 , E = O .

Therefore, we have

s x4  - x3  + 2x2  - x + 2
(x - 1)(x2  + 2)2

dx=;/~+~~dx-/~x:+dXZ)2
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The foregoing examples are typical of what happens in general. The problem of inte-
grating a proper rational function reduces to that of calculating integrals of the forms

s
dx

s
x dx

ix + a)” ’ (x2  + bx + c)” ’
and

s
dx

(x2  + bx + c)” ’

The first integral is log Ix + a1  if n = 1 and (x + a)‘-“/(1  - n) if n > 1. TO treat the other
two, we express the quadratic as a sum of two squares by writing

x’+bx+c=  ( x + $ ) 2 +  (c-T)  =u2+012,

where u = x + b/2  and CI  = 4%a2. (This is possible because 4c - b2  > 0.) The
substitution u = x + b/2  reduces the problem to that of computing

(6.60)
.

J u du

(u”  + u2y
and

s
d u

(2 + u2y  .

The first of these is 4  log (u”  + x2) if m = 1, and *(u”  + E”)‘-“/il  - m) if m > 1. When
m = 1, the second integral in (6.60) is evaluated by the formula

.r
d u-= L  arctan u + C .

u2+u2  CI u

The case m > 1 may be reduced to the case m = 1 by repeated application of the recursion
formula

s
d u 1 21 2m - 3 d u

(u”  + u2y  = 2cr”(m  - 1) (u”  + a2)+l
+

2cr2(m  - 1) s(u’  + a2)m-1  ’

which is obtained by integration by parts. This discussion shows that every rational
function may be integrated in terms of polynomials, rational functions, inverse tangents,
and logarithms.

6.24 Integrals which cari  be transformed into integrals of rational functions

A function of two variables defined by an equation of the form

P(x, y) = f$ i am,nxmyn
WL=0  n=o

is called a polynomial in tu,o  variables. The quotient of two such  polynomials is called a
rational function of two  variables. Integrals of the form JR(sin  x, COS x) dx, where R is a
rational function of two variables, may be reduced by the substitution u = tan 3x to
integrals of the form jr(u)  du where r is a rational function of one  variable. The latter
integral may be evaluated by the techniques just described. We illustrate the method with
a particular example.

EXAMPLE 1. fntegrate s 1
dx .

sin x + COS x
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Solution. The substitution u = tan 4x gives us

x = 2 arctan  u , dx = 2  du ,
1 + u2

2tan’x  2usin x = 2 sin x ~0s  x = ----K- = -
2 2 sec’ &x 1+ u2’

C O S x = 2 COS2 5 - 1 2= - - 1=-L- 1J-u2-
sec’  3x 1 + IA2 1+ u2’

a n d

sin x + COS x =
2u + 1 - ZL2

1+u2  .
Therefore, we have

s d x = - 2 du
-2sin x + COS x -2U-1= s

du
(u - a)(u - b) ’

where a = 1 + %5 and b = 1 - ~‘5. The method of partial fractions leads to

s (u - a:yu - b) = a ! b S i
1---&jduu - a

and, since  a - b = 2y2,  we obtain

(6.61) J sin  x “c’cos  x = pop  / ;2 / + c = $log  1 :a;  f* 1: ; 2 1 + c.

The final answer may be simplified somewhat by using suitable trigonometric identities.

First we note that V5 - 1 = tan 8~ SO the numerator of the last fraction in (6.61) is
tan 3x + tan $r. In the denominator we Write

tan t - 1 - V? = (A + 1) (V5 - 1) tan : - 1 = (V5 + 1) 1 - tan t tan i

Taking logarithms as indicated in (6.61), we may combine the term -id? log (~5  + 1)
with the arbitrary constant and rewrite (6.61) as follows:

s d x
sin x + COS x

q  =~logItan(~+~)~+C.

In an earlier section we derived the integration formula

s d x-~
%‘l - x2

= arcsin x
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as a consequence  of the formula for differentiating arcsin x. The presence  of arcsin x
suggests  that we could also evaluate this integral by the trigonometric substitution
t = arcsin x. We then have

x = sin t, dx = COS t dt, le-=-T  = .\/1-sin2t  = COS t )

and we find that

s ds=/s=Sdf=t=arcsinx.

This is always a good substitution to try if the integrand involves dg.  More
generally, any  integral of the form jR(x, m) dx, where R is a rational function of
two variables, cari  be transformed by the substitution

x = a sin t, dx = a COS t dt ,

into an integral of the form jR(a sin t,  a COS t)a COS t dt. This, in turn, cari  always be
integrated by one  of the methods described above.

EXAMPLE 2. Integrate s x dx

4-xz+m’

Solution. We let x = 2 sin t, dx = 2 COS t dt, 1/4_x; = 2 COS t, and we find that

s x dx

s

4 sin t COS t dt sin t dt

4-x2+d4=
=

4 COS2  t + 2 COS t s COS t + 4

= -1og  1; + COS tl + c = -log(l  + G=F)+c

The same method works for integrals of the form

s R(x, 6’ - (cx + d)2)  dx ;

we use the trigonometric substitution cx + d = a sin t.
We cari  deal similarly with integrals of the form

s R(x, da2  + (cx + d)2)  dx

by the substitution cx + d = a tan t,  c dx = a sec2  t dt. For integrals of the form

s R(x, q(cx  + d)2  - a”) dx ,

we use the substitution cx + d = a sec t,  c dx = a sec t tan t dt. In either case, the new
integrand becomes a rational function of sin t and COS t.
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6.25 Exercises

Evaluate  the  fo l lowing  in tegra l s :

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

s 2x + 3
(x - 2)(x + 5) dx.

s x dx
(x + 1)(x  + 2)(x + 3) ’

s x dx
x3 - 3x +  2s x4 + 2x - 6
x3 + x2  - 2x

dx .

s

8x3 + 7

(x + 1)(2x + 1)X dx.

s 4x2 + x + 1
x3 - 1

dx .

s

x4 d x
x4 + 5x2 + 4 .

s x + 2
- dx.
x2 + x

s

d x
x(x2 + 1)2  *

s d x
(x + 1)(x  + 2)2(x  + 3)3 .

s x dx
(x + 112’

s

d x
x3 - x *

s

x2 d x
.x2+x-6’

s
(x +  2) dx

x2 - 4x + 4 .

s d x
(x2 - 4x + 4)(x2 - 4x + 5)

s

(x - 3) dx
x3 + 3x2 + 2x.

s d x
(x2 - 1)2’

1

x+1
- dx.

.x3-1

s

x4 + 1
x(x2 + 1)2

dx .

s d x
2 0 .  ~

x4 - 2x3.

2 1 . s 1 -x3
~ dx.
x(x2 + 1)

22.

23.

24.

25.

2 6 .

2 7 .

2 8 .

2 9 .

30.

31.

32.

3 3 .

f

d x
x4 - 1 .

s

d x
x4 + 1.

1

J

x2 d x
(x2  + 2x + 2)2.

s

4x5 - 1
(x5 + x + 1)2  dx.

s

d x
2 sin x - COS x + 5 ’

s

d x
1 +  n COS x

(0 < a < 1).

s

d x
1 + a COS x

(a > 1).

s

sin2  x
1 + sin2 x dx’

I

d x
a2 sin2 x + b2  COS~  x

(ab  # 0).

s
d x

(a sin x + b COS x)~ (a # 0).

s

nl2 s in  x  dx
o 1 + Cos x + sin x’

2/3 - x2 dx.
*

3 4 .  d&dx.
s

3 5 .  -dx.
s X

3 6 .  -dx.
s X

3 7 .  qmdx.
s

3 8 .
s Yx2:x+ldx.



268 The logarithm,  the exponential, and the inverse trigonometric jîunctions

39* &&.s 40. ds 2-x-x2
x2 dx*

[Hint: In Exercise  40, multiply numerator and denominator by 42 - x - x2.]

6.26 Miscellaneous review exercises

1. Let f(x) = s:  (log t)/(t + 1) dt if x > 0. Compute f(x) +f(l/x).  As a check,  you  should
obtainf(2) +f(&)  = 3 log2  2.

2. Find a functionf, continuous for a11 x (and not everywhere zero), such  that

f”(x) =
s

=f(t)  et dt .
0

3. Try to evaluate  je/x  dx by using  integration by parts.
4. Integrate si’” log (ecosZ)  dx.
5. A function f is defined by the equation

f(*) = m i f  x>O.

(a) Find the slope  of the graph off at the point for which x = 1.
(b) The region under the graph and above the interval  [1,4] is rotated about  the x-axis, thus
generating a solid of revolution. Write an integral for the volume of this solid. Compute this
integral and show that its value is VT log (25/8).

6. A function Fis defined by the following indefinite integral:

s
x et

F(x) = - dt
1 t

i f  x>O.

(a) For what values of x is it true that log x < F(x)?
(b) Prove that jf et/(t  + a) dt = e-‘[F(x + a) - F(l + a)].
(c) In a similar way, express the following integrals in terms of F:

l$dt,  l$dt,  lelltdt.

7. In each  case, give an example of a continuous functionfsatisfying the conditions stated for ah
real x, or else  explain why there is no such  function:

(a) jzf(t) dt = e”.

(b) j$(t)  dt = 1 - 2”‘. [2*’  means  2(22).]

(c) j;f(t)  dt =f2(x)  - 1.

8. If f(x + y) = f(x)&)  for a11 x and y and if f(x) = 1 + X~(X),  where g(x) + 1 as x + 0,
prove that (a),f(x)  exists for every x, and (b)f(x) = e”.

9. Given a functiong which has a derivativeg’(x) for every real x and which satisfies the following
equations :

g’(0) = 2 a n d g(x + y)  = e”g(x)  + cg(y) for a11 x and y .

(a) Show that g(2x)  = 2eZg(x)  and find a similar formula for g(3x).
(b) Generalize (a) by finding  a formula relating g(nx) to g(x), valid for every positive integer
n. Prove your result by induction.
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10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

2 0 .

(c) Show that g(0) = 0 and find the limit of g(h)/h  as h  -+ 0.
(d) There is a constant C such  that ‘p’(x) = g(x) + Ce3:  for a11 x. Prove this statement and
find the value of C. [Hier: Use the definition of the derivative g’(x).]
A periodic function with period a satisfiesf(x + a) =f(x)  for a11 x in its domain.  What cari
you  conclude  about  a function which has a derivative everywhere and satisfies an equation of
the form

f<x + 4 = bfW

for a11 x, where a and b are positive constants?
Use logarithmic differentiation to derive  the formulas for differentiation of products  and
quotients from the corresponding formulas for sums and differences.
Let A = j: &/(t  + 1) dt.  Express the values of the following integrals in terms of A:(4 o1 h2 dt.s

s 1

(4 et  log (1 + t) dt.
0

Let p(x) = c,  + crx  + c,x2 and letf(x)  = e”p(x).
(a) Show thatf(“)(O), the nth derivative offat  0, is c.  + nc,  + n(n  - 1)~ .
(b) Solve the problem when p is a polynomial of degree 3.
(c) Generalize to a polynomial of degree m.
Let f(x) = x sin ax. Show that f(zn)(x)  = ( - l)‘$~~~x  sin QX  - 2na2n-1  COS ax).
Prove that

L2(-1)k(k)z&T  = spk(Y)k  + n + 1 .
k=O

[Hint: l/(k  + m + 1) = jo tkfm  dt.]

Let F(x) = Jzf(t)  dt. Determine a formula (or formulas) for computing F(x) for a11 real x
if f is defined as follows:
(a>  f(t) = (t + ltD2. (c) f(t) = ë’t’.

l-12
(b)  f(t) =

if Itl  I 1,
1 _  ,t, if Itl  > 1.

(d) f(t) = the maximum of 1 and t2.

A solid of revolution is generated by rotating the graph of a continuous  function f around
the interval  [0, a] on the x-axis. If, for every u > 0, the volume is a2  + a, find the functionf.
Let f(x) = eë2î  for a11 x. Denote  by S(t)  the ordinate set off over  the interval  [0, t],  where
t > 0. Let A(t)  be the area  of S(t),  V(t)  the volume of the solid obtained by rotating S(t)
about  the x-axis, and W(t)  the volume of the solid obtained by rotating S(t)  about  the y-axis.
Compute the following: (a) A(t); (b) V(t); (c) W(t);  (d) lim,,,  V(t)/A(t).
Let c be the number such  that sinh c = 2. (Do not attempt to compute c.) In each  case
find a11 those x (if any  exist) satisfying the given equation. Express your answers in terms of
log 2 and log 3.
(a) log (e”  + de”%  + 1) = c. (b) log (e”  - d=) = c.
Determine whether each  of the following statements is true or false. Prove each  true statement.

m

(a) 21%5 = 51W2.

1% 5
(b)  logz  5 = lop3 .n

,”

(c) 2  k-Il2  < 2&z  for every n 2  1.
k=l

(d) 1 + sinh x 5  cash  x for every x.
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In Exercises  21 through 24, establish each  inequality by examining the sign of the derivative of
an appropriate function.

2
21. -x < sinx < x

77
i f  O<x<i.

if x > 0.

X3
23. x - 6 < sin x < x i f  x>O.

24. (xb + yb)‘lb < (x” + J”)“~ i f  x>O,y>O,and  O < a < b .

25. Show that
(a) J$ e-l t dt = eë”(e”  - 1 - x).

(b)  2
s

e-tt2dt =2!eP!
X2

8 - 1  -x - - .
0 2!

(c) le-tfdt  =S!e+(P  - 1 -x -g -$.

(d) Guess the generalization suggested and prove it by induction.
26. If a, b, a,, bl are given, with ab #  0, show that there exist constants A, B, C such  that

s

a, sin x + bl COS x
a sin x + b COS x

dx = Ax + Bloglasinx  + bcosxJ  + C.

[Hint: Show that A and B exist such  that

a, sin x + bI COS x = A(u  sin x + b COS x) + B(u  COS x - b sin x).]

27. In each  case, find a function f satisfying the given conditions.
(4 f’(x”>  = 1/x forx > 0, f(l) = 1.
(b) f’(sin2  x) = cos2  x for a11 x, f(1)  = 1.
(c) f’(sin x) = Cos2  x for a11 x, f(1)  = 1.

(d) f’(log x) = (r E x ; ;,’ ” f(0) = 0.

28. A function, called the integral logarithm and denoted by Li, is defined as follows:

s

x dt
L i ( x )  =  -

log t
i f  x22.

2

This function occurs in analytic number theory where it is proved that Li(x) is a very  good
approximation to the number of primes I x. Derive  the following properties of Li(x) :

X x dt 2
(a) Li(x) = -

log x
+

s
- - -

2 loge  t log2’

(b) Li(x) =

where C,, is a constant (depending on n). Find this constant.
(c) Show that there is a constant b such  that f,tOsZ  &/t  dt = Li(x) and find the value of b.
(d) Express j: e2t/(t  - 1) dt in terms of the integral logarithm, where c = 1 + $ log 2.
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(e) Letf(x) = e4  Li(e2z-4)  - e2  Li(e2T-2)  if x > 3. Show that

271

f’@) = x2 _  3x + 2 *

29. Let f(x) = log 1x1 if x < 0. Show that f has an inverse, and denote  this inverse by g.  What
is the domain ofg? Find a formula for computingg(y)  for each  y in the domain ofg. Sketch
the graph of g.

30. Letf(x) = jX(l  + t3)-li2  dt if x 2 0. (Do not attempt to evaluate  this integral.)
(a) Show that f is strictly increasing on the nonnegative real axis.
(b) Let g denote  the inverse of J Show that the second derivative of g is proportional to g2
[that is, g”(u)  = cg”(y)  for each  y in the domain of g]  and find the constant of proportionality.



POLYNOMIAL APPROXIMATIONS TO FUNCTIONS

7.1 Introduction

Polynomials are among the simplest functions that occur in analysis. They are pleasant
to work with in numerical computations  because their values may be found by performing
a finite number of multiplications and additions. In Chapter 6 we showed that the logarithm
function cari be approximated by polynomials that enable us to compute logarithms to any
desired degree of accuracy. In this chapter we Will show that many other functions, such
as the exponential and trigonometric functions, cari  also  be approximated by polynomials.
If the difference between a function and its polynomial approximation is sufficiently small,
then we cari, for practical purposes, compute with the polynomial in place of the original
function.

There are many ways to approximate a given function f by polynomials, depending on
what use is to be made of the approximation. In this chapter we shall be interested in
obtaining a polynomial which agrees with f and some of its derivatives at a given point.
We begin our discussion with a simple example.

Supposefis the exponential function,f(x) = e”. At the point x = 0, the function f and
a11 its derivatives have the value 1. The linear polynomial

g(x) = 1 + x

also  has g(0) = 1 and g’(O) = 1, SO it agrees withfand its first derivative at 0. Geometrically,
this means the graph ofg is the tangent line offat  the point (0, 1), as shown in Figure 7.1.

If we approximate f by a quadratic polynomial Q which agrees with f and its first two
derivatives at 0, we might expect a better approximation to f than the linear function g,  at
least near the point (0, 1). The polynomial

Q(x)  = 1 + x + ix”

has Q(0) = Q’(0) = 1 and Q”(0) = f “(0) = 1. Figure 7.1 shows that the graph of Q
approximates the curve  y = e5  more closely than the line y = 1 + x near the point (0, 1).
We cari  improve further the accuracy of the approximation by using polynomials which
agree withf in the third and higher derivatives as well. It is easy to verify that the polynomial

(7.1) P(x)  = 2 5 = 1 + 2xf;+- .+”
n.

k=O

212
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y = ex

ti
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-1 00

y=l+x

FIGURE 7 . 1 Polynomial approximations to the curve y = e” near (0, 1).

=e x

= I + x

agrees with the exponential function and its first n  derivatives at the point x = 0. Of
course, before we cari use such  polynomials to compute approximate values for the
exponential function, we need some information about the error made in the approximation.
Rather than discuss this particular example  in more detail, we turn now to the general
theory.

7.2 The Taylor polynomials generated by a function

Suppose f has derivatives up to order n at the point x = 0, where n > 1, and let us
try to find a polynomial P which agrees withfand its first n  derivatives at 0. There are n + 1
conditions to be satisfied, namely

(7.2) P(O) = f(O) > P’(0) =f’(O), . . . ) P(“)(O)  =f(@(O)  )

SO we try a polynomial of degree n, say

(7.3) P(x) = cg +,  CIX  + c2xz  + . . . + c,xn  ,

with n + 1 coefficients to be determined. We shall use the conditions in (7.2) to determine
these coefficients in succession.

First, we put x = 0 in (7.3) and we find P(0) = c,, , SO c,, =Y(O).  Next, we differentiate
both sides  of (7.3) and then substitute .K  = 0 once more to find P’(0) = c1 ; hence  c1 =f’(O).
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If we differentiate (7.3) again and put x = 0, we find that P”(0) = 2c,,  SO c2  = f “(0)/2.
After differentiating k times, we find that P(“)(O)  = k! ck, and this gives us the formula

(7.4)

fork=0,1,2  ,..., n. [When k = 0, we interpret f (O)(O)  to mean f (0).] This argument
proves that if a polynomial of degree 5 n exists which satisfies (7.2), then its coefficients
are necessarily given by (7.4). (The degree of P Will be equal to IZ if and only iff cri)(O)  # 0.)
Conversely, it is easy to verify that the polynomial P with coefficients given by (7.4) satisfies
(7.2), and therefore we have the following theorem.

THEOREM 7.1. Let f be a function with derivatives of order n at the point x = 0. Then
there exists one  and only  one  polynomial P of degree < n which satisjes  the n + 1 conditions

P(O)  = f (0) , P’(0) = f ‘(O), . . . > P<@(O)  = f (“J(O)  .

This polynomial is given by the formula

P(x)  = -y$  Xk.

k=O

In the same way, we may show that there is one  and only one  polynomial of degree < n
which agrees with f and its first n  derivatives at a point x = a. In fact,  instead of (7.3), we
may Write  P in powers of x - a and proceed as before. If we evaluate the derivatives at a
in place of 0, we are led to the polynomial

(7.5) P(x) = n f’“‘(a)
c 7 (x - a)“.

k=O

This is the one  and only polynomial of degree 5 n  which satisfies the conditions

P(a)  = f(a) Y P’(a) =,f’(a), . . . , P(“)(a)  = f (n)(a),

and it is referred to as a Taylor polynomial in honor of the English mathematician Brook
Taylor (1685-1731). More precisely, we say  that the polynomial in (7.5) is the Taylor
polynomial of degree n generated by f at the point a.

It is convenient  to have a notation that indicates the dependence of the Taylor polynomial
P on f and n. We shah  indicate this dependence by writing P = T,f or P = T,(f). The
symbol T, is called the Taylor operator of degree n. When this operator is applied to a
function f, it produces a new function Tnf  the Taylor polynomial of degree n. The value
of this function at x is denoted by T,f(x)  or by T,[f(x)].  If we also wish to indicate the
dependence on a, we Write  T,f(x;  a) instead of T,f(x).

EXAMPLE 1. When f is the exponential function, f(x) = E(x) = ea,  we have E(“)(x)  = e”
for a11 k, SO E(“)(O)  = e”  = 1, and the Taylor polynomial of degree n generated by E at 0
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is given by the formula

If we want a polynomial which agrees with E and its derivatives at the point a = 1, we
have E(“)(l)  = e for a11 k, SO (7.5) gives us

T,E(x;  I) = $;(x - 1)“.
k=O '

EXAMPLE 2. Whenf(x)  = sin x, we have f’(x) = COS x, f”(x) = - sin x,f”‘(x) = - COS x,
f(“)(x) = sin x, etc., SO f(zn+l)(0)  = (- 1)” and f(2”)(0)  = 0. Thus only odd powers of x
appear in the Taylor polynomials generated by the sine function at 0. The Taylor polynomial
of degree 2n + 1 has the form

Tzn+i(sin  x) = x - ; ,+ g  - ;;  + . . .
-p+1

. . +(-l)“(2n  + l)!’

EXAMPLE 3. Arguing as in Example 2, we find that the Taylor polynomials generated
by the cosine function at 0 contain  only even powers of x. The polynomial of degree 2n
is given by

TZn(COS  x) = 1 - $  + $  - $  + . * *
2 n

+ (-1)” -z-
. . . (2n)!  *

Note that each  Taylor polynomial T2Jcos x) is the derivative of the Taylor polynomial
T,,+,(sin  x). This is due to the fact that the cosine itself is the derivative of the sine. In
the next section we learn that certain relations which hold between functions are transmitted
to their Taylor polynomials.

7.3 Calculus  of Taylor polynomials

If a function f has derivatives of order n at a point a, we cari  always form its Taylor
polynomial Tnf  by the formula

T,f(x)  = 2’3 (x - a)“.

k=O '

Sometimes the calculation of the derivatives f(“)(a)  may become lengthy, SO it is desirable
to have alternate methods for determining Taylor polynomials. The next theorem describes
properties of the Taylor operator that often enable us to obtain new Taylor polynomials
from given ones.  In this theorem it is understood that a11 Taylor polynomials are generated
at a common  point a.
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THEOREM 7.2. The Taylor operator T, has the following properties:
(a) Linearity property. If c1  and c2  are constants, then

L(c,f + c,g)  = c,T,(f) + cd”&)  .

(b) DifSerentiation  property. The derivative of a Taylor polynomial off is a Taylor
poljnomial  off ‘; in fact,  we have

(Lf)’  = Tn-df’) .

(c) Integration property. An indejnite integral of a Taylor polynomial off is a Taylor
polynomial of an indejînite integral off. A 4ore p recisely, if g(x) = ja f(t) dt, then we
h a v e

Tn+&)  = j-u TJ-(0  dt  .

Proof.  Each statement (a), (b), or (c), is an equation involving two polynomials of the
same degree. TO prove each  statement we simply observe that the polynomial which
appears on the left has the same value and the same derivatives at the point a as the one
which appears on the right. Then we invoke the uniqueness property of Theorem 7.1.
Note that differentiation of a polynomial lowers its degree, whereas integration increases
its degree.

The next theorem tells us what happens when we replace x by cx in a Taylor polynomial.

THEOREM 7.3. SUBSTITUTION PROPERTY. Let g(x) = f(cx),  hw ere c is a constant. Then
we have

T,g(x  ; a) = T,f(cx  ; ca) .

Zn particular, when a = 0, we have T,g(x)  = T,f(cx).

Proof. Since  g(x) =f(cx),  the chain rule  gives us

g’(x)  = cf  ‘(cx) , g”(x) = ?f”(CX), . . . )

Hence we obtain

g’“‘(x) = C”fyCX)  .

T,g(x; a> = cn Lf$ (x - a)” = sf* (cx - ca)” = T,f(cx  ; ca) .
k=O ’ k=O *

EXAMPLES. Replacing x by -x in the Taylor polynomial for ez,  we find that

T,(e-“)  = 1 - x + $ - $ + . . 1

. .
+  ( - 1 ) ”  5.

Since  cash  x = tex  + &e-“, we may use the linearity property to obtain

2n

T,,(cosh  x) = +T&e’)  + +Tzn(eW2)  = 1  + $  i- $  + * * 1 i- x
. . (2n)!  .
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The differentiation property gives us

T,,-,(sinh  x) = x + $  + $  + . + * +
X2n-l

. . (2n - l)!  ’

The next theorem is also  useful in simplifying calculations of Taylor polynomials.

THEOREM 7.4. Let P,  be a polynomial of degree n 2 1. Let f and g be two functions
with derivatives of order n at 0 and assume that

(7.6) f(x) = P,(x) + x”g(x> ,

where g(x) --f  0 as x + 0. Then P,  is the Taylor polynomial generated by f at 0.

Proof.  Let h(x) =f(x)  - P,(x) = x”g(x).  By d’ff1 erentiating t h e  product  x”g(x)
repeatedly, we see that h and its first n derivatives are 0 at x = 0. Therefore, f agrees with
P,  and its first n derivatives at 0, SO P,,  = Tnf) as asserted.

EXAMPLES. From the algebraic identity

(7.7)
1 n+l

-=
1-X

1 + x + x2 + . . . + xn + x  9
1 - x

valid for a11 x # 1, we see that (7.6) is satisfied with f(x) = 1/(1  - x), P,(x) = 1 +
x+*-e + xn,  and g(x) = x/(1 - x).  Since  g(x) + 0 as x + 0, Theorem 7.4 tells us that

Integration of this relation gives us the further Taylor polynomial

Xntl
T,+,[-log  (1 - x)] := x + ; + f + . . . + -

n +  1 ’

In (7.7) we may replace x by -x2 to get

1 x2n+l
- =  1 -x2+x4  _ .  .  .  +  (-1)nx2n  - (-l)n-

1  +  x2 1+ x2’

Applying Theorem 7.4 once more, we lind that

T”.(&) = 2 (-1)“~~~.

k=O

Integration of this relation leads to the formula

Tznfl (arctan  x) = 2  (- 1)” & .
k=O
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7.4 Exercises

1. Draw graphs of the Taylor polynomials Ta(sin  x) = x - x3/3 ! and T,(sin  x) = x - x3/3 ! +
x5/5!.  Pay careful attention to the points where the curves  cross the x-axis. Compare these
graphs with that off(x) = sin x.

2. Do the same  as in Exercise  1 for the Taylor polynomials T,(cos  x), T4  (COS x), and f(x) = cas  x.

In Exercises 3 through 10, obtain the Taylor polynomials T,f(x)  as indicated. In each  case, it
is understood that f(x) is defined for a11 x for which f(x) is meaningful. Theorems 7.2, 7.3, and
7.4 will help simplify the computations  in many  cases.

n (log  a)”  ”
3. T,(az)  =c  7  xl’.

k=O

4 .  T,(A) =&)kxk.

5.  ..+I(&)  =zxzk+‘.

9. T,[(l  + ~>a]  =-$(;)xk,
k=O

6. T, [log(l  + x)] =$(-‘y.
k=l

cf.
where k =

0

cr(a  -l).. . (a - k + 1)
k!

10. Tzn (Sir-? x) = n  ( -l)k+l $ xzk.
c

[HinI: COS  2x = 1 - 2 sin2  x.1
k=l

7.5 Taylor%  formula with remainder

We turn now to a discussion of the error in the approximation of a function f by its
Taylor polynomial TJ at a point a. The error is defined to be the difference E,(x) =

f(x) - L~(X). Thus, iff has a derivative of order n  at a, we may Write

(7.8) f(x) = 29  (x - a)” + E,(x) .
k=O

This is known as Taylor’s formula with remainder E,(x); it is useful whenever we cari
estimate the size of E,(x). We shall express the error as an integral and then estimate the
size of the integral. TO illustrate the principal ideas, we consider first the error arising
from a linear approximation.

THEOREM 7.5. Assume f has a continuous  second derivative f" in some neighborhood of a.
Then, for every x in this neighborhood, we have

where
f(x) =f(a) + f'(a)(x  - a) + G(x),

E,(x) = Jo” (x - t)f”(t) dt .
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Proof. From the definition of the error we may Write

E,(x) = f(x) -f(a) - f’(u)(x  - a) = j-‘f’(t) dt -f’(a) s: dt = s: [f’(t)  -f’(a)] dt .

The last integral may be written as ja u du, where  u  =f’(tj  -f’(a), and  v = t - x. NO~
du/dt  =f”(t>  and du/dt  = 1, SO the formula for integration by parts gives us

E,(x) = 1:  u  du = UV 11 - j: (t - x)f”(t)  dt = i,; (x - t)f”(t) dt ,

since  u  = 0 when t = u,  and v = 0 when t = x. This proves the theorem.
The corresponding result for a polynomial approximation of degree n is given by the

following.

THEOREM 7.6. Assume f has a continuous  derivative of order n + 1 in some interval
containing a. Then, for every x in this interval, we have the Taylor formula

f(x) = zf$ (x - a)” + E,(x),

k=O ’

where

E,(x) = 5 s” (x - t)nf’“+l’(t)  dt .
a

Proof. The theorem is proved by induction on n. We have already proved it for n = 1.
Now we assume it is true for some n and prove it for n  + 1. We Write  Taylor’s formula
(7.8) with n  + 1 and with n  and subtract to get

-%+1(x)  = w4 - f3(,-.,n+l.

Now we use the integral for E,(x) and note that (x - a)n+l/(n  + 1) = J;(x - tj” dt to
obtain

E,n+l(~)  = 1
s

ix - tjnfn+‘)(tj  dt - ~
f'"+l'(u)  z

n. n n! s
a  (x - t)” dt

= ;
s

=(x  - t)n[f’“+“(t)  -f’““‘(u)] dt <
a

The last integral may be written in the form Ja u  du,  where u = f (+l)(t)  -f (n+1)(a)  and v =
-(x - t)“+‘/(n  + 1). Integrating by parts and noting that u  = 0 when t = a, and that
v = 0 when t = x, we find that

E,+,(x) = -$
s

<x
. a

“u dv = - 1
s

“v du  = --!- - t)n+‘f’n+2’(t)  dt  .
n. a (n + l)! sa

This completes the inductive step from n to n + 1, SO the theorem is true for a11  n 2 1.
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7.6 Estimates for the error in Taylor’s formula

Since  the error E,(X)  in Taylor’s formula has been expressed as an integral involving
the (n + 1)st  derivative off, we need some further information aboutf(“+l)  before we cari
estimate the size of E,(x). If Upper  and lower bounds forf(“+l)  are known, we cari  deduce
corresponding Upper  and lower bounds for E,(x), as described in the next theorem.

THEOREM 7.7. Zf the (n + 1)st  derivative off satisfes  the inequalities

(7.9) m <f (n+l)(t)  5 M-

for a11  t in some interval  containing a, then for every x in this interval  we have the following
estimates:

(7.10)
m (x - a)n+l

(n+l),  Iw)ef(x-a)
n+l

(n + l)!
i f  x>a,

a n d

(7.11)
m (a - x)n+l

(n + l)!
5 (- l)“+lE,(x)  < M (a - ‘)*+’

(n + l)!
if x < a .

Proof. Assume first that x > a. Then the integral for E,(x) is extended over  the interval
[a, x]. For each  t in this interval we have (x - t)” 2 0, SO the inequalities in (7.9) give us

m (x - t>”  < cx - t)“f’“+“(t)  5 M cx - t)”
n! - n!

Integrating from a to x, we find that

(7.12) ‘(x  - t)” dt 5 E,(x) < z
s

<-Y  - t)” dt .
. n

The substitution u = x - t, du = -dt gives us

- t)” dt =/‘-‘un du = (x - a)“+l,
0 n+l

SO (7.12) reduces to (7.10).
If x < a, the integration takes place over  the interval [x, a]. For each  t in this interval

we have t 2 x, SO (-I)“(X - t)” = (t - x)” 2 0. Therefore, we may multiply the
inequalities (7.9) by the nonnegative factor (- I)“(x  - t)“/n!  and integrate from x to a to
obtain (7.11).

EXAMPLE 1. Iff(X)  = e”  and a = 0, we have the formula

e”  = n Xk
c F + En(x)  .
k=O ’
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Since f’“+‘)(x)  = e’,  the derivative ftn+l) is monotonie  increasing on every interval, and
therefore satisfies the inequalities eb  :;ftn+l)(t)  < ec  on every interval of the form [6,  c].
In such  an interval, the inequalities for E,(x) of Theorem 7.7 are satisfied with m = eb  and
M = ec.  In particular, when b = 0, we  have

Xn+l Xnfl
(n  + l)! < En(x)  5i ec (n i f  O<~<C.

We cari  use these estimates to calculate the Euler number e. We take b = 0, c = 1,
x = 1, and use the inequality e < 3 to obtain

(7.13)
n  1

e = k=O  k? +  E,(l)  ,  wherec &y,  I En(l)  < 3.
(n + l)!  *

This enables us to compute e to any  desired  degree of accuracy. For example, if we want
the value of e correct to seven decimal places, we choose  an n SO that 3/(n  + l)! < 3lO-s.
We shall see presently that n = 12 suffices. A table of values of I/n ! may be computed
rather quickly because l/n ! may be obtained from l/(~ - l)! by simply dividing by n. The
following table for 3 5 n < 12 contains these numbers rounded off to nine decimals.
The “round-off error” in each  case is indicated by a plus or minus sign which tells whether
the correct value exceeds or is less than the recorded value. (In any  case, this error is less
than one-half  unit in the last decimal place.)

1
12 z
3 0.166 666 667 -
4 0.041 666 667 -
5 0.008 333 333 +
6 0.001 388 889 -
7 0.000 198 413 -

1

n n?

8 0.000 024 802 -
9 0.000 002 756 -

10 0.000 000 276 -
1 1 0.000 000 025 +
12 0.000 000 002 +

The terms corresponding to n = 0, 1, 2 have sum 2. Adding this to the sum of the entries
in the table (for n < 12)  we obtain a total of 2.718281830. If we take into account the
roundoff  errors, the actual  value of this sum may be less than this by as much as ;Z-  of a unit
in the last decimal place (due to the seven minus signs) or may exceed this by as much as
i of a unit in the last place (due to the three plus signs). Cal1  the sum s. Then a11  we cari
assert by this calculation is the inequality 2.718281826 < s < 2.718281832. Now the
estimates for the error E,,(l)  give us 0.000000000 5 E12(l)  < 0.000000001. Since e =
s + E,,(l),  this calculation leads to the following inequalities for e:

2.718281826 < e < 2.718281833.

This tells us that the value of e, correct to seuen decimals, is e = 2.7182818, or that the
value of e, rounded off to eight decimals, is e = 2.71828183.
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EXAMPLE 2. Zrrationality of e. We cari  use the foregoing estimates for the error E,(l)
to prove that e is irrational. First we rewrite the inequalities in (7.13) as follows:

1
(n+l)!‘e-Z:~<(n:l)!’

k=O  .

Multiplying through by n!, we obtain

(7.14)
1

-<n!e-
n+l

if n 2 3. For every n,  the sum on k is an integer. If e were rational, we could choose  n SO

large that n!  e would also be an integer. But then (7.14) would tel1 us that the difference
of these two integers is a positive number not exceeding 2, which is impossible. Therefore
e cannot be rational.

Polynomial approximations often enable us to obtain approximate numerical values for
integrals that cannot be evaluated directly in terms of elementary functions. A famous
example is the integral

f(x) = Joz  evt2  dt

which occurs in probability theory and in many physical problems. It is known that the
function f SO defined is not an elementary function. That is to say,  f cannot be obtained
from polynomials, exponentials, logarithms, trigonometric or inverse trigonometric
functions in a finite number of steps by using the operations of addition, subtraction,
multiplication, division, or composition. Other examples which occur rather frequently
in both theory and practice are the integrals

s
9in  (t2)  dt ,

s
21  - k2  sin2  t dt .

0 0

(In the first of these, it is understood that the quotient (sin t)/t  is to be replaced by 1 when
t = 0. In the third integral, k is a constant, 0 < k < 1.) We conclude  this section with
an example which illustrates how Taylor’s formula may be used to obtain an accurate
estimate of the integral jt’2e-t2dt.

EXAMPLE 3. The Taylor formula for e”  with n = 4 gives us

(7.15) e”  = 1 + x + cy  + $  + $  + Ed(x)  .
. . .

Suppose now that x < 0. In any  interval of the form [-c, 0] we have eëc  < e”  < 1,  SO we
may use the inequalities (7.11) of Theorem 7.7 with m = eëc  and M = 1 to Write

O<(-1)SE,(x)<($  i f  x<O.
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In other words, if .x  < 0, then Ed(x)  is negative and 2 x”/5  ! . Replacing x by -P in (7.15),
we have

(7.16)

where -P0/5!  2 Ed(-t”)  < 0. If 0 5 t 5 4, we find that P0/5! 5 (!#O/S! < 0.000 009.
Thus, if we integrate (7.16) from 0 1.0 4, w e obtain

s 0 li 2 e-t2&=‘-L+ 2 3 . 23 5.25.2!  ’ - 7.27.3!  1 + 9.2’.4!  l -0,

where 0 < 8 < 0.000 0045. Rounding off to four decimals, we find Jt’2e-t2  dt = 0.4613.

*7.7  Other forms of the remainder in Taylor%  formula

We have expressed the error in Taylor’s formula as an integral,

E,(x) = $, s ix  - t)y+yt) dt .a
It cari  also be expressed in many other forms. Since  the factor (x - t)” in the integrand
never  changes sign in the interval of integration,  and sincef(“+l)  is continuous on this
interval, the weighted mean-value theorem for integrals (Theorem 3.16) gives us

s z(x - Qnf(“fl)(t)  dt = f(n+l)
a

(C)/;X
a

- t)” dr = f’“+“(c) (x n-J:+’  ,

where c lies in the closed interval joining a and x. Therefore, the error cari  be written as

E (x) _  f’“+%>12 (n  + 1),  (x - aY’l  .

This is called Lagrange’s form of the remainder. It resembles the earlier terms in Taylor’s
formula, except that the derivative f (71+1)(c) is evaluated at some unknown point c rather
than at a. The point c depends  on x and on n, as well as onf:

Using a different type of argument, we cari  drop the continuity requirement on f(%+l)
and derive  Lagrange’s formula and other forms of the remainder under a weaker hypothesis.
Suppose that f 'wl) exists in some open  interval (h, k) containing the point a, and assume
that fcn) is continuous in the closed interval [h, k]. Choose any  x # a in [h, k]. For
simplicity, say  x > a. Keep x fixed and define  a new function F on the interval [a, x] as
follows :

J-(t)  = j(t) +
Note that F(x) = f(x) and F(a) = Tnf  ( , )x’ a , SO F(x) - F(a) = E,(x). The function Fis
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continuous in the closed  interval [a, x] and has a derivative in the open  interval (a, x). If
we compute F’(t), keeping in mind that each  term of the sum defining F(t) is a product, we
find that a11 terms cancel  except one,  and we are left with the equation

Jv(Q = (x - 0" (n+l)
---yf (t> .

Now let G be any  function that is continuous on [a, x] and differentiable on (a, x).  Then
we cari apply Cauchy’s mean-value formula (Theorem 4.6) to Write

G’(cNW  - @)l  = F’(c)[G(x)  - G(a)1  ,

for some c in the open  interval (a, x). If G’ is nonzero in (a, x), this gives the following
formula for the error E,(x):

E,(x) = $fj [G(x)  - G(a)1  .

We cari  express the error in various forms by different choices  of G. For example, taking
G(t) = (X  - t)n+l,  we obtain Lagrange’s form,

E
n
(x) where a < c < x .

Taking G(f) = x - t,  we obtain another formula, called Cauchy’s form of the remainder,

E (x)  - f”+%)12 - --y--(X - ,-)“@  - a) > where a < c < x  .
n.

If G(t) = (x - t)“, wherep 2 1, we obtain the formula

E
n
(x) _ f’“+%>n,  p (x - cy+l+yx  - a)” ) where a < c < x .

7.8 Exercises

Examples of Taylor’s formula with remainder are given in Exercises 1, 2, and 3. In each  case
prove that the error satisfies the given inequalities.

c
n  (- l)‘c-1xZk-1  + E (x> 1x12n+l1. sinx =

k=l (2k - l)! 2n ’ I~2nW I (2n + 1)! *

2. COS x
n  (-l)“x2kc 1 xp+2

= k=O  (2#/4!  + E2n+l(x)* I~2n+lWI  5 (2n + 2)!'

3. arctan  x
=“-‘(-1)“X2k+’  + E
c,l”“(J  2k + l

(x)
2n 9

x27x+1

I~2nWl < zn + 1 i f  Olxll.
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(a) Obtain the number r = - 3 as an approximation to the nonzero root of the equation
x2 = sin x by using the cubic Taylor polynomial approximation to sin x.
(b) Show that the approximation in part (a) satisfies the inequality

1
Isin r - PI  < 200,

given that fi - 3 < 0.9. 1s  the difference (sin r - r2) positive or negative? Give full
details of your reasoning.
(a) Use the cubic Taylor polynomial approximation to arctan  x to obtain the number r =

(fi - 3)/2  as an approximation to the nonzero root of the equation arctan  x = x2.
(b) Given that fi < 4.6 and that 216  = 65536, prove that the approximation in part (a)
satisfies the inequality

7
]r2  - arctan  r]  < - .

100

1s the difference (r2 - arctan  r) positi.ve  or negative? Give full details of your reasoning.

Prove that s 11 +x30
-

0 1 + x60
dx=l+$ where O<C<~.

,. Prove that 0.493948 <
J

A
0 1+x4

dx  < 0.493958.

8. (a) If 0 5 x L< 4, show that sin x = x - x3/3!  + r(x), where Ir(x)l  < ($)“/5!.

(b) Use the estimate  in part (a) to find an approximate value for the integral jfF/2  sin (x2) dx.
Make sure you  give an estimate  for the error.

9. Use the first three nonzero terms of Taylor’s formula for sin x to find an approximate value
for the integral j: (sin x)/x dx  and give an estimate  for the error. [It is to be understood that
the quotient (sin x)/x is equal to 1 when  x = 0.1

10. This exercise  outlines a method for computing n,  using Taylor’s formula for arctan  x given in
Exercise  3. It is based on the fact  that 71 is nearly 3.2, SO &r  is nearly 0.8 or 2, and this is nearly
4 arctan  8. Let a = arctan  3, B  = 4ar  - &.
(a) Use the identity tan@  + B) = (tan A + tan B)/(l - tan A tan B) with A = B = a and
then again  with A = B = 2a to get tan 2u = la2 and tan 4a = ++g.  Then use the identity
once more with A = ~CC,  B = -3~ to obtain tan B  = &. This yields the following
remarkable identity discovered in 1706 by John Machin (1680-1751):

TI = 16 arctan  g - 4 arctan  &.

(b) Use the Taylor polynomial T,,(arctan  x) with x = 3 to show that

3.158328934 < 16 arctan  3  < 3.158328972.

(c) Use the Taylor polynomial T,(arctan  x) with x = &g  to show that

-0.016736309 < -4 arctan  & < -0.016736300.

(d) Use parts (a), (b) and (c) to show that the value of X,  correct to seven decimals, is
3.1415926.
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7.9 Further remarks on the errer  in Taylor’s formula. The o-notation

Iffhas a continuous (n + 1)st  derivative in some interval containing a point a, we may
Write  Taylor’s formula in the form

(7.17) f(x)  = z’$ (x - a)” + E,(x) .
k=O  ’

Suppose we restrict x to lie in some closed  interval [a - c, a + c] about  a, in whichf(“+‘)
is continuous. Then f (n+l) is bounded on this interval and hence  satistjes  an inequality of
the form

If’“f”Wl  5 M >

where M  > 0. Hence, by Theorem 7.7, we have the error estimate

for each  x in [a - c, a + c]. If we keep x # a and divide this inequaiity by Ix - aIn,  we
find that

If now we let x -* a, we see that E,(x)/(x  - a)n  -f 0. We describe  this by saying that the
error E,(x) is of smaller order than (x - a)n  as x + a.

In other words, under the conditions stated, f(x) may be approximated near a b y  a
polynomial in (x - a) of degree n, and the error in this approximation is of smaller order
than (x - a)n  as x + a.

A special  notation, introduced in 1909 by E. Landau,? is particularly appropriate when
used in connection with Taylor’s formula. This is called the o-notation (the little-oh
notation) and it is defined as follows.

DEFINITION. Assume g(x) # 0 for all  x # a in some interval  containing a. The notation

means  that

f(x)  = O(~(X)) as x - a

The symbolf(x)  = o(g( x)) is read ‘f(x) is little-oh of g(x),” or “f(x) is of smaller order
than g(x),” and it is intended to convey the idea that for x near a, f(x) is small compared
with g(x).

t Edmund Landau (1877-1938)  was  a  famous  German mathematician who made many  impor tan t  cont r i -
butions to mathematics. He is best known for his lucid  books in analysis and in the theory of numbers.
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EXAMPLE 1. j(x) = o(1)  as x + a means that S(x) + 0 as x -+ a.

281

f(x)
EXAMPLE  2. f(x) = o(x) as x --f 0 means that -+ 0 as x + 0.

X

An equation of the formf(x)  = h(x) + o(g( x)) is understood to mean thatf(x)  - h(x) =
o(g(x)) or, in other words, [f(x) - h(x)]/g(x)  + 0 as x --f a.

sinx - x sin x
EXAMPLE 3. We have sin x = x + o(x) because =-- l-+Oasx+O.

X X

The foregoing remarks concerning the error in Taylor’s formula cari  now be expressed
in the o-notation. We may Write

(x -- a)” + o((x - a)“) a s  x-a,
k=O

whenever the derivative fcn+l) is continuous in some closed  interval containing the point a.
This expresses, in a brief way, the fact that the error term is small compared  to (x - a)n
when x is near a. In particular, from the discussion of earlier sections, we have the following
examples of Taylor’s formula expressed in the o-notation:

1-= 1 + x + x2 + ’ . . + xn + o(P) a s  x-0.
l - x

log (1 + x) = x - $  + $  - -4 + . ’ . + (-l)“-’ f + O(Xn) a s  x-+0.

e”  = 1 + x + Fy + * .  . +  1s +  4x”) a s  x-0.

3 X5
sin x = x - : + 5 - ti  + . . *

Zn-1

+ c+-’ (2; - l)!
+ 0(X27 a s  x+0.

. . .

COS x = 1 - ;y + t; - ;; + . . .

2n

+ (-'Y&  + 4x
2n+l

1 a s  x+0.
. . .

3 5 7 x2>Lm-l

arctanx=x-~+~-~+~..+(-l)“l- + O(X2n) a s  x+0.
2n - 1

In calculations involving Taylor approximations, it often becomes necessary to combine
several terms involving the o-symbol. A few simple rules for manipulating o-symbols are
discussed in the next theorem. These caver  most situations that arise in practice.
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THEOREM 7.8. ALGEBRA OF 0-SYMBOLS. As x -f a, we have the following:

64 4&>> -I o(g(x>>  = 4gW.
(b)  O(C&>> = 4gW) if  c#O.
(4  f(x)  * O(&N  = 4fWg(x>>.
(4  44gW  = 4gW).

te>  l = 1 - g(x) + OMXN if g(x)  - 0 a s  x - t a .
1  + g(x)

Proof, The statement in part (a) is understood to mean  that iffi = o(g(x)) and if
fi(x) = o(g(x)),  thenf,(x)  f fi(x) = o(g(x)). But since  we have

fi(X)  h.fi(X)  -fl(X>  p4
g(x) g(x) .dx> ’

each  term on the right tends to 0 as x + a, SO part (a) is proved. The statements in (b),
(c), and (d) are proved in a similar way.

TO prove (e), we use the algebraic identity

1

1+u
=l-u+uL

1+u

g(x)
with u replaced by g(x) and then note that ~ -0 as  x- ta .

1 + g(x)

EXAMPLE  1. Prove that tan x = x + 4x” + 0(x3) as x --f 0.

Solution. We use the Taylor approximations for the sine and cosine. From part (e) of
Theorem 7.8, with g(x) = -4x” + 0(x3), we have

1 1-= a s  x-0.
COS x 1 - 4x2 + 0(x3)

= 1 + f x2 + 0(x2)

Therefore, we have

tan x =
sin x-= x-
COS x (

; x3 + 0(x4)
Ii

1 +  ; x2 +  0(x2)
1

= x + ; x3 + 0(x3) .

EXAMPLE 2. Prove that (1 + x)1/=  = c . 1 - -2  +  g +  o(x2) as x -+ 0.

Solution. Since  (1 + x)ll” = e”/x)lOgo+s), we begin with a polynomial approximation
to log (1 + x). Taking a cubic approximation, we have

log (1 + x) = x - ; +  f +  0(x3) ) 1% (1 + x) = 1
X

- ; +  5 +  0(x2) )



and SO we obtain
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(7.18) (1 + X)l/”  = exp (1 - x/2 + x2/3  + 0(x2)) = e . eu,

where u = -x/2 + x2/3  + 0(x2). But as u -j 0, we have et1  = 1 + u + tu2  + o(G),  SO we
obtain

eu  = 1 - I + $  + 0(x2) + i - 5 -f $  + 0(x2) 2 + 0(x2) = 1 - 5 + $ + 0(x2) .
( )

When we use this in Equation (7.18), we obtain the desired formula.

7.10 Applications to indeterminate forms

We have already illustrated how polynomial approximations are used in the computation
of function values. They cari  also be used as an aid in the calculation of limits. We illustrate
with some examples.

EXAMPLE 1. If a and b are positive numbers, determine the limit

lim a”  .- b”
X+0 X

Solution. We cannot solve this problem by computing the limit of the numerator and
denominator separately, because the denominator tends to 0 and the quotient theorem on
limits is not applicable. The numerator in this case also tends to 0 and the quotient is said
to assume the “indeterminate form O/O”  as x + 0. Taylor’s formula and the o-notation
often enable us to calculate the limit of an indeterminate form like this one  very simply.
The idea is to approximate the numerator a” - 6”  by a polynomial in x, then divide by x
and let x -f 0. We could apply Taylor’s formula directly to f(x) = a” - b”  but, since
az = ,slOga  and  b” = ,xloeb , it is simpler in this case to use the polynomial approximations
already derived for the exponential function. If we begin with the linear approximation

et  = 1 + t + o(t) a s  t-t0

and replace t by x log a and x log b, respectively, we find

a5  = 1 + x log a + o(x) and b”  = 1 + x log b + o(x) a s  x+0.

Here we have used the fact that o(x log  a) = o(x) and o(x log b) = o(x). If now we subtract
and note that o(x) - o(x) = o(x), we find a5  - b”  = x(log a - log  b) + o(x). Dividing
by x and using the relation ~(X)/X  = o(l), we obtain

a”  - b”
= log a + o(1) + log 2 a s  x-0.

X b b
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EXAMPLE 2. Prove that lim,,,ycotx+  -5.

Solution. We use Example 1 of Section 7.9, and Theorem 7.8(e) to Write

cet
1 1 1 1

x = - =
tan x x + $x3 +  0(x3) =  x 1  +  4x2 +  0(x2)

1=-
X i

1 - 5 x2 + 0(x2)
)

= ; - ; x + o(x).

Hence, we have

k(cotx-$)  =-5+0(l)+-: a s  x+0.

EXAMPLE 3. Prove that lim,,,
log  (1  + ax) = a

X
for every real a.

Solution. If a = 0, the result holds trivially. If a # 0, we use the linear approximation
log (1 + x) = x + o(x). Replacing x by ax, we obtain log (1 + ax) = ax + o(ax) =
ax + o(x). Dividing by x and letting x + 0, we obtain the limit a.

EXAMPLE 4. Prove that for every real a, we have

(7.19) lim (1 + ax)liz  = eu ,
X+0

Solution. We simply note that (1 + ax)l/”  = e(l~x)‘o~o+as)  and use the result of Example
3 along with the continuity of the exponential function.

Replacing ax by y in (7.19), we find another important limit relation:

lim (1 + y) “’  = eu  .
u-0

Sometimes these limit relations are taken as the starting point for the theory of the
exponential function.

7.11 Exercises

1. Find a quadratic polynomial P(x) such  that 2x = P(x) -t-  0(x2)  as x + 0.
2. Find a cubic polynomial P(x)  such  that x COS x = P(x) + o((x  - 1)3) as x -i 1.
3. Find the polynomial P(x) of smallest degree such  that sin (x - x2) = P(x) + 0(x6)  as x -+ 0.
4. Find constants a, b,  c such  that log  x = a + b(x - 1) + c(x  - 1)2  + o((x  - 1)2) as x -+ 1.
5. Recall that COS x = 1 - 4x2 + o(2)  as x -i 0. Use this to prove that x-2 (1 - COS x) - $

as x -+ 0. In a similar way, find the limit of xe4(1  - COS 2x - 2x2) as x + 0.
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Evaluate  the limits in Exercises 6 through 29.

sin ax
6. lim 7

x+o  sm  6x’
,8 lim [sin (7dWKlogx)

. s-1  (x3 + 5)(x  - 1) *
tan 2x

7. lim -
xjo sin 3x’ 19. lim

cash  x - COS x

x-o x2 *

8. lim
sin x - x

20. lim
3 tan 4x - 1 2 t a n x

x-o x3 . r+o 3sin4x  - 12sinx’

9. lim
log (1 + x) a”

21. lim
_ asin  z

s-0 @-1  *
X+0 x3 *

10. lim
1 - COS2  x

s+o  x  t a n x  * 22. lim
Cos (sin x) - COS x

X+0 x4 *
sin x

11. limp
r+O  arctan  x’ 23. lim ail.

X+l
a”  - 1

12. lim -,
r-06” - 1

6 21. 24. lim (x + ezz)l’x.
2-O

13. lim
log x

x,1x2+x-2’
25 lim (1 + XY’x - e

CV-0

14. lim
1 - COS x2

z+o  x2 sin x2 ’ 26. :z(  (’ +e’,‘-xr.

15. lim
x(e” + 1) - 2(e3:  - 1) arcsin x lira

2+0 x3 * 27. lim -
2-O ( )*

16. lim
log (1 + x) - x

X+0 1 - cosx  * 28. lii(; -x-&I).

COS x
17. lim - 29. lim

(

1 1
pe+n  x - a,’

- - -
!I+l log x 1x-1.

30. For what value of the constant a Will x- 2 (e ax - fl - x) tend to a finite  limit as x -+ O? What
is the value of this limit ?

31 .  Given  two  functionsfandg  wi th  der iva t ives  in  some interval  con ta in ing  0 ,  whereg  i s  pos i t ive .
Assume also f(x) = O(~(X))  as x + 0. Prove or disprove each  of the following statements:

(a) jrfcl>  dl = o(jf  g(t)  4) as x - 0, (b) f’(x) = e@‘(x)) as x + 0 .

32. (a) Ifg(x) = o(1)  as x + 0, prove that

1
~ = 1 -g(x)  + g2(x>  + o(g2(x))
1 +gm

a s  x-0.

(b) Use part (a) to prove that tan x = x + f + z + 0(x5) a s  x+0.

33.  A function  f has  a  continuous  th i rd  der iva t ive  everywhere  and sa t i s f ies  the  re la t ion

lim

(

1 + x + f(x>  1’z

i

= e3.
X+0 X
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.

[Hint:  If limz,og(x) = A, then g(x) = A + o(l) as x -+ 0.1

7.12 L’Hôpital’s rule  for the indeterminate form O/O

In many examples in the foregoing sections we have calculated the limit of a quotient
f(x)/g(x)  in which both the numeratorS(x)  and the denominator g(x) approached 0. In
examples like these, the quotientf(x)/g( x is said to assume the “indeterminate form O/O.”)

One way to attack problems on indeterminate forms is to obtain polynomial approxima-
tions tof(x)  and g(x) as we did in treating the above examples. Sometimes the work cari
be shortened by use of a differentiation technique known as L’Hôpital’s rule.?  The basic
idea of the method is to study the quotient of derivativesf’(x)/g’(x)  and thereby to try to
deduce information about f(x)/g(x).

Before stating L’Hôpital’s rule, we show why the quotient of derivativesf’(x)/g’(x)  bears
a relation to the quotient f(x)/g(x). Supposefand g are two functions withf(a)  = g(a) = 0.
Then, for x # a, we have

f(x) _ f(x) -f(a) = f(x) -f(a)g(x)  - g(a)
g(x) g(x)  - g(a) x - a l x - u

If the derivativesf’(a)  and g’(a) exist, and if g’(u) # 0, then as x + a the quotient on the
right approachesf’(a)/g’(a)  and hencef(x)/g(x)  AS’(a)/g’(a).

1 - e2r
EXAMPLE. Compute lim,,, ~ .

X

Solution. Here f(x) = 1 - e2x and g(x) = x, SO  f’(x) = -2e2’,  g’(x) = 1. Hence we
havef’(O)/g’(O) = - 2 , SO the limit in question is -2.

In L’Hôpital’s rule, no assumptions are made aboutf,  g or their derivatives ut the point
x = a. Instead, we assume thatf(x)  and g(x) approach 0 as x + a and that the quotient
f’(x)/g’(x) tends to a finite limit as x -j a. L’Hôpital’s rule then tells us thatf(x)/g(x)  tends
to the same limit. More precisely, we have the following.

THEOREM 7.9. L'HÔPITAL'S  RULE  FOR 010. Assume f and g have derivatives f’(x) and
g’(x) at each  point x of an open  interval  (a, b), and suppose that

(7.20) limf(x)  =  0
m-ta+

and lim g(x) = 0 .
57-a+

t In 1696, Guillaume François Antoine de L’Hôpital  (1661-1704) wrote the first textbook on differential
calculus .  This  work appeared in  many  editions  and p layed a  significant  role  in  the  popular iza t ion  of  the
subject. Much  of the content of the book, including the method known as “L’Hôpital’s rule,”  was based
on the earlier work of Johann Bernoulli, one  of L’Hôpital’s teachers.
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Assume also that g’(x) # 0 for each  x in (a, b). If the limit

293

(7.21) Iim  f’(x>
r-a+ g’(x)

exists and has the value L, say,  then the limit

(7.22) lim f(x>
a-n+ g(x)

also  exists and has the value L.

Note that the limits in (7.20), (7.21), and (7.22) are “right-handed.”  There is, of course,
a similar theorem in which the hypotheses are satisfied in some open  interval of the form
(6,  a) and a11 the limits are “left-handed.”  Also, by combining the two “one-sided”
theorems, there follows a “two-sided”  result of the same kind in which x + a in an
unrestricted fashion.

Before we discuss the proof  of Theorem 7.9, we shall illustrate the use of this theorem
in a number of examples.

EXAMPLE 1. We shall use L’Hôpital’s rule to obtain the familiar formula

(7.23) lim
sin x-=l

s-+0  x

Heref(x) = sin x and g(x) = x. The quotient of derivatives isf’(x)/g’(x)  = (COS  x)/1 and
this tends to 1 as x --f 0. By Theorem 7.9 the limit in (7.23) also  exists and equals 1.

EXAMPLE 2. TO determine the limit

lim
x - tan x

270  x - sin x

by L’Hôpital’s rule, we letf(x)  = x - tan X, g(x) = x - sin x, and we find that

(7.24)
f’(x) 1 - sec2  x--=
g’(x) 1 - COS x .

Although this, too, assumes the form O/O  as x -f 0, we may remove the indeterminacy at
this stage by algebraic means. If we Write

11 - sec2  x = 1  - - = COS2  x - 1 = _ (1 + COS X)(l - COS x)
COS2  x COS2  x COS2  x

3

the quotient in (7.24) becomes

f ‘(xlr=-1 + COS x

g’(x:r COS2  x
>

and this approaches -2 as x + 0. Notice that the indeterminacy disappeared when we
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canceled the common factor 1 - COS x.
simplify the work in problems of this kind.

Canceling common factors usually tends to

When the quotient of derivatives f’(x)/g’(x) also  assumes the indeterminate form O/O,
we may try L’Hôpital’s rule again.
after two applications of the rule.

In the next example, the indeterminacy is removed

EXAMPLE 3. For any  real number c, we have

XC-cx+c-1 C - l

lim
Z-r1 (x - 1)”

= Iirn cx - c = ,im C(C  -21)*‘-2  _ C(C  - 1) .
r-1  2(x - 1) 2-1 2

In this sequence  of equations it is understood that the existence of each  limit implies that
of the preceding and also their equality.

The next example shows that L’Hôpital’s rule is not infallible.

EXAMPLE 4. Letf(x)  = e-lix  if x # 0, and let g(x) = x. The quotientf(x)/g(x)  assumes
the indeterminate form O/O  a s  x
the quotient

--f O+,  and one  application of L’Hôpital’s rule leads to

f’(x) Ulx”>e- l/z e-l/x
-= =-

g'(x) 1 X2

This, too, is indeterminate as x + O+,  and if we differentiate numerator and denominator we
obtain (I/x2)e-1/z/(2x)  = e-l/“/(2x3).  After n steps we are led to the quotient e-lix/(n!  xn+l),
SO the indeterminacy never  disappears by this method.

EXAMPLE 5. When using  L’Hôpital’s rule repeatedly, some tare  is needed to make certain
that the quotient under consideration  actually assumes an indeterminate form. A common
type of error is illustrated by the following calculation:

lim3X2-2x-1=lim6x-2=lim6=3
X+l x2 - x r-1  2x - 1 s+l2

The first step is correct but the second is not. The quotient (6x - 2)/(2x - 1) is not
indeterminate as x --f 1. The correct limit, 4, is obtained by substituting 1 for x in
(6x - 2)/(2x - 1).

EXAMPLE 6. Sometimes the work cari  be shortened by a change of variable. For example,
we could apply L’Hôpital’s rule directly to calculate the limit

but we may avoid differentiation of square roots by writing t = V% and noting that

fi t 1 1
::y+  l _ e2G  =ji$ 1  _ e2t = lim - = - -

t+o+  -2e2t 2’

We turn now to the proof  of Theorem 7.9.
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Proof. We make use of Cauchy’s mean-value formula (Theorem 4.6 of Section 4.14)
applied to a closed interval having a as its left endpoint. Since the functionsf and g may
not be detined  at a, we introduce two new functions that are defined there. Let

.

F(x) =Se4 i f  x#a, F(a) = 0 ,

Gc-4  = g(x) i f  x#a, G(a) = 0 .

Both F and G are continuous at a. In fact,  if a < x < b, both functions F and G are
continuous on the closed interval  [a, x] and have derivatives everywhere in the open  interval
(a, x). Therefore Cauchy’s formula is applicable to the interval [a, x] and we obtain

[F(x) - F(a)]c’(c)  = [G(x) - C(~)IF’(C),

where c is some point satisfying a < c < x. Since F(a) = G(a) = 0, this becomes

fbk:‘(c>  = gwf’(c)  .

Now g’(c) # 0 [since, by hypothesis, g’ is never  zero in (a, b)] and also g(x) # 0. In fact,
if we had g(x) = 0 then we would have G(x) = G(a) = 0 and, by Rolle’s theorem, there
would be a point x1 between a and x where G’(x,)  = 0, contradicting the hypothesis that
g’ is never  zero in (a, b). Therefore we may divide by g’(c) and g(x) to obtain

J(x)  f’(c)
g(x)  g’(c)  .

As x--f a, the point c + a (since a < c < x) and the quotient on the right approaches L
[by  (7.21)1. Hence,fb)/g(  > 1x a SO approaches L and the theorem is proved.

7.13 Exercises

Evaluate  the limits in Exercises 1 through 12.

3x2 + 2x - 16
1. lim

x-2 x 2 - x - 2  .

x2 - 4x + 3
2. lim

z,32x2 - 13X + 21.

sinh x - sin x
3. lim

2+0 x3 .

4  lim (2 - x)eZ - x - 2

x-o x3 *

5. lim
log (COS ax)

2-o log (COS bx) ’

x - sin x
6. lim

2+o+ (x sin x)3/2 ’

7 lim vs-v5+d=-u

x-a+ l/zs *

x” - x
8. lim

r-l+  1 - x  +1ogx’
arcsin  2x - 2 arcsin  x

9. lim
X+0 x3 .

x cet  x - 1
10. lim x2 .

X-r0

11. lim;5;1:Tl-n.
x-l

1/x 1/x12. lim J-- a arctan  a - b arctan  7  .
2+0+x2/x ( 1
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13. Determine the limit of the quotient

14.
asx-+Oandalsoasx-+~n.
For what values of the constants a and b is

lim (x-~ sin 3x + axw2  -t b) = O?
X+0

15.

16.

1

s

x t2  dt
Find constants a and b such  that lim,,, - =l.

bx - sin x o ct

A circular  arc of radius 1 subtends an angle of x radians, 0 < x < 4~,  as shown in Figure
7.2. The point C is the intersection of the two tangent lines  at A and B. Let T(x) be the area  of

FIGURE 7.2 Exercise  16.

17.

triangle ABC and let S(x) be the area  of the shaded region. Compute the following: (a) T(x);
(b) S(x); (c) the limit of T(x)/S(x)  as x --+ 0 +.
The current  Z(t) flowing in a certain electrical circuit at time t is given by

(sin 4x)( sin 3x)
x sin 2x

I(t)  = E (1 - ,-J-w)
R

where E,  R, and L are positive numbers. Determine the limiting value of Z(t) as R -f 0 +.
18. A weight hangs by a spring and is caused  to vibrate  by a sinusoidal force. Its displacement

f(t) at time t is given by an equation of the form

f(t) =& (sin kt - sin ct) ,

where A, c, and k are positive constants, with c #  k. Determine the limiting value of the dis-
placement as c -+ k.

7.14 The symhols +C+D and -CO. Extension of L’HÔpital’s rule

L’Hôpital’s  rule may be extended in several ways. First of all, we may wish to consider
the quotient S(x)/g(x)  as x increases without bound. It is convenient to have a short
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descriptive symbolism to express the fact that we are allowing x to increase indefinitely.
For this purpose, mathematicians use the special  symbol + CO,  called “plus infinity.”
Although we shall not attach any  meaning to the symbol + CO  by itself, we shall give
precise definitions of various statements involving this symbol.

One of these statements is written as follows:

lim f(x) = A ,
CZ++CX

and is read “The limit off(x), as x tends to plus infinity, is A.” The idea we are trying to
express here is that the function valuesf(x)  cari  be made arbitrarily close to the real number
A by taking x large enough. TO make this statement mathematically precise, we must
explain what is meant by “arbitrarily close” and by “large enough.” This is done  by means
of the following definition :

DEFINITION. The symbolism

lim f(x) = A
s-++m

means  that for every number E > 0, there is another number M  > 0 (which may depend  on l )
such  that

If(4  - Al < 6 whenever x > M .

Calculations involving limits as x+ + CO  may be reduced to a more familiar case. We
simply replace x by l/t  (that is, let t = 1/x) and note that t - 0 through positive values as
x -+ + CO.  More precisely, we introduce a new function F,  where

(7.25) F(t)=f.(f)  i f  t#O,

and simply observe that the two statements

lim f(x) = A
x-t+m

and lim F(t) = A
t-+0+

mean exactly the same thing. The proof  of this equivalence requires only the definitions
of the two limit symbols and is left as an exercise.

When we are interested in the behavior off(x) for large negative x, we introduce the
symbol -CO (“minus infinity”) and Write

lim f(x) = A
CT-*-CC

to mean: For every E > 0, there is an 44 > 0 such  that

IfW - Al < E whenever x < -M.
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If Fis defined by (7.25), it is easy to verify that the two statements

lim f(x) = A
a!+-*

and lim F(t) = A
t-o-

are equivalent.
In view of the above remarks, it is not surprising to find that a11 the usual  rules for

calculating with limits (as stated in Theorem 3.1 of Section 3.4) also apply to limits as
x + f 00. The same is true of L’Hôpital’s  rule which may be extended as follows:

THEOREM 7.10. Assume that f and g have derivatives f'(x) and g’(x) for a11 x greater
than a certainjxed M > 0. Suppose that

lim f(x) = 0 and lim g(x) = 0 ,
%T++a> CZ++CC

and that g’(x) # 0 for x > M. Zf f ‘(x)/$(x)  tends to a Zimit as x * + CO,  then f(x)/g(x)
also  tends to a limit and the two limits are equal. In other words,

(7.26) ]im i.‘(x> = L implies ]im Ad  = L
.z-‘+m  g’(x) z++m  g(x)

Proof. Let F(t) = f(l /t) and G(t) = g(l /t).  Then f(x)/g(x) = F(t)/G(t)  if t = 1 /x,  and
t + 0+ as x + + 00. Since F(t)/G(t)  assumes the indeterminate form O/O  as t + O+,  we
examine the quotient of derivatives F’(t)/G’(t).  By the chain rule, we have

and G’(r) = 2  g’ ; .
0

Also, G’(t) # 0 if 0 < t < l/M. When x = l/t  and x > M, we have F’(t)/G’(t)  =f’(x)/g’(x)
since  the common  factor - l/t2 cancels.  Therefore, iff’(x)/g’(x)  + L as x -+ + 00,  then
F’(t)/G’(t)  + L as t + 0+ and hence,  by Theorem 7.9, F(t)/G(t)  + L. Since F(t)/G(t)  =
f(x)/g(x)  this proves (7.26).

There is, of course, a result analogous to Theorem 7.10 in which we consider limits as
x+-CO.

7.15 Infinite limits

In the foregoing section we used the notation x -f + CO  to convey the idea that x takes
on arbitrarily large positive values. We also Write

(7.27) limf(x)  = +co
r-+a

or, alternatively,

(7.28) f(X)-+ +cO a s  x+ a
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to indicate thatf(x)  takes arbitrarily large values as x approaches a. The precise  meaning
of these symbols is given in the following definition.

DEFINITION. The symbolism in (7.27) or in (7.28) means  that to every positive number
M (no matter how large), there corresponds another positive number 6 (which may depend  on
M) such  that

f(x) > M uhenever 0 < Ix - a1  < S .

rff (x) > M whenever 0 < x - a < 6,  we  write

limf(x)  = + 00 ,
a-a- t

and we say  that f (x) tends to plus injinity  as x approaches a from the right. Zf f (x)  > M
whenever 0 < a - x < 6,  we Write

limf(x)  = + co  ,
2+u-

and we say  that f (x) tends to plus injinit.y  as x approaches a from the left.

The symbols

limf(x)  = -CO,
2+a

limf(x)  = - co  ,
iC+a+

and limf(x)  = -CO
r-a-

are similarly defined, the only difference being that we replace f(x)  > M by f(x) < -M.
Examples are shown in Figure 7.3.

limf(x)  = - m ; limf(x)  = + mx-0 - x-CI+ limf(x)  = + ~5x-0

FIGURE 7.3 Infinite  limits.
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It is also convenient to extend the definitions of these symbols further to caver  the cases
when x + f 00. Thus, for example, we Write

lim f(x) = + co
2-++CC

if, for every positive number M,  there exists another positive number X such  that f(x) > M
whenever x > X.

The reader should have no difficulty in formulating similar definitions for the symbols

lim f(x) = + cc , lim f(x) = - co  , and lim f(x) = -CO .
a--cc +++CC a?‘-‘x

EXAMPLES. In Chapter 6 we proved that the logarithm function is increasing and un-
bounded on the positive real axis. We may express this fact brielly  by writing

(7.29) lim logx = +co.
S?++OZ

We also proved in Chapter 6 that log x < 0 when 0 < x < 1 and that the logarithm has
no lower bound in the interval (0, 1). Therefore, we may also Write  lim,.,,+  log x = - 00.

From the relation that holds between the logarithm and the exponential function it is
easy to prove that

(7.30) lim e”  = + co and lim e”  =  0 (or lim eé”  = 0) .
z++co z+-m 2++CC

Using these results it is not difficult to show that for cc  > 0 we have

lim xa = + CO
m++CX

and lim L =  0 .
z++m  xa

The idea is to Write  xa = errlogr  and use (7.30) together with (7.29). The formulas in (7.30)
also give us the relations

lim e-lis = + co
r+a-

and lim e-l/’  = 0 .
?C+D+

The proofs of these statements make good exercises for testing a reader’s understanding
of limit symbols involving f cc.

7.16 The behavior of log x and es  for large x

Infinite limits lead to new types of indeterminate forms. For example, we may have a
quotient j(x)/g(x)  where both f(x) + + cc  and g(x) + + CO  as x + a (or as x + f ~0).
In this case, we say  that the quotientf(x)/g( x assumes the indeterminate form CO/  00. There)
are various extensions of L’Hôpital’s  rule that often help to determine the behavior of a
quotient when it assumes the indeterminate form co/co.  However, we shall not discuss
these extensions because most examples that occur in practice cari  be treated by use of the
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following theorem which describes the behavior of the logarithm and the exponential for
large values of x.

THEOREM 7.11. If a > 0 and b > 0, we  have

(7.31) lim  (log  = 0
z-t+00  xa

and

(7.32) l im - =  0 .
~++m  eux

Proof. We prove (7.31) first and then use it to derive  (7.32). A simple proof  of (7.31)
may be given directly from the definition of the logarithm as an integral. If c > 0 and
t 2 1,  we have t-l  < te-l.  Hence, if x > 1,  we may Write

Therefore, we have

o < (log x)” < Xhc-a

Xa Cb
for every c > 0 ,

If we choose  c = $a/b,  then xbc-a  = xpa/2  which tends to 0 as x + + CO.  This proves (7.31).
TO prove (7.32), we make the change of variable t = e”. Then x = log t,  and hence
xb/eax  = (log t)b/t”. But t + + cc as x --f + CO,  SO (7.32) follows from (7.31).

With a natural extension of the o-notation, we cari  Write  the limit relations just proved
in the form

(log x)” = O(XU) a s  X++C~,
a n d

xb = o(eaz) a s  X++C~.

In other words, no matter  how large b may be and no matter  how small a may be (as long
as both are positive), (log x)” tends to infinity more slowly than xa. Also, xb tends to
infinity more slowly than e”“.

EXAMPLE 1. In Example 4 of Section 7.12 we showed that the behavior of e-llx/x  for x
near 0 could not be decided by any  number of applications of L’Hôpital’s  rule for O/O.
However, if we Write  t = 1/x,  this quotient becomes t/et  and it assumes the indeterminate
form co/m  as t + + cc.  Theorem 7.11 tells us that

l im 4  =  0 .
t++m  et

Therefore, eël/‘/x + 0 as x + 0+ or, in other words, e-“’  = o(x)  as x + O+.
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There are other indeterminate forms besides O/O  and co/co.  Some of these, denoted by
the symbols 0 1 CO,  Oo,  and co”, are illustrated by the examples given below. In examples
iike  these, algebraic manipulation often enables us to reduce the problem to an indeterminate
form of the type O/O  or CO/CO  which may be handled by L’Hôpital’s  rule, by polynomial
approximation, or by Theorem 7.11.

EXAMPLE 2. (0 * co).  Prove that lim,,,, xa log x = 0 for each  fixed LX > 0.

Solution. Writing t = 1/x,  we find that xa log x = -(log t)/ta  and, by (7.31), this tends
toOas  t++oo.

EXAMPLE 3. (OO).  Show that lim,,,, x” = 1.

Solution. Since  x” = ex’Or:‘, by continuity of the exponential function we have

lim xr = exp (lim x log x) ,
x-o+ x-+0+

if the last limit exists. But by Example 2 we know that x log x -f 0 as x -j O+,  and hence
x%-te0  = 1.

EXAMPLE  4. (~0~).  Show that lim,,,, x1/”  = 1.

Solution. Put t = I/x and use the result of Example 3.

In Section 7.10 we proved the limit relations

(7.33) lim (1 + ax)l’”  = en
LX-0

and lim (1 + x)“‘l  = e’  .
X+0

Each of these is an indeterminate form of the type 1 OD. We may replace x by 1/x  in these
formulas and obtain, respectively,

lim
LZ++CX

and lim
X-+CC

both of which are valid for a11  real a.
The relations (7.33) and those in Examples 2, 3, and 4 are a11 of the typeS(x)“(“).  These

are usually dealt with by writing

and then treating the exponent g(x) logf(x)  by one  of the methods discussed earlier.
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7.17 Exercises

Evaluate  the limits in Exercises 1 through 25. The letters a and b  denote  positive constants.
e-l/S2

1 .  l i m - .*lOOO 13. lim (x2 -2/x4 -x2 + 1).
x-o x++ m

2. lim
sin (1/x)

2++ao  arctan  (I/x) ’ 14*  ;:y+

3. lim
tan 3x

.,&T *
15. lim (logx) log(1 - x).

Lt-l-
4 lim logb + b@Y

~.
‘r-+m  du + bx2

16. lim x(“‘-l).
2-o+

17. lim [x@)  - 11.
x+0+

6. lim
log Jsin XI

x~n  log Isin 2x1 . 18. lim (1 - 2Z)sin5.
x-o-

7. lim
log (1 - 2x)

LX-&- tan TX  *
1 9  lim xl/lW 2

s-o+

8. lim
cash  (x + 1)

e5  ’ 20. lim (cet  x)sin 2.
cl++ 02 x-o+

9. lim -Xb ’ a > 1 . 21. lim (tan x)tnn 2r.
z-+  m Z-h

t a n x - 5
10. lim

r+tn sec x + 4
1 x

22. lim log- .
x+0+ ( 1X

23.  lim &(l+ls  2).
2-o+

12. lim x114  sin (Il&).
r-+ m

1
25. lim

r-0 log (x + d1) -

26. Find c SO that

24. lim (2 - x)~~~(TZ/~).
r-1

27. Prove that (1 + x)” = 1 + cx + o(x) as x - 0. Use this to compute the limit of

{(ti + x2>li2 - x2} as x + + 00,

28. For a certain value of c, the limit

lim ((x5 + 7x4 + 2)c - x}
x++ 00

is finite  and nonzero. Determine this c and compute the value of the limit.
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29. Let g(x) = x@’  and let f(x) = jy g(t)(t + l/t) dt. Compute the limit of f”(x)&‘(x)  as
x++w.

30. Let g(x) = xcezZ and let f(x) = JO e2t(3t2 + 1)112  dt. For a certain value of c, the limit of
f’(xYg’C4  as  x -+  + CO  is finite  and nonzero. Determine c and compute the value of the limit.

31. Letf(x) = e-1/s2  if x #  0, and let f(0)  = 0.
(a) Prove that for every m > O,f(x)/x” - 0 as x + 0.
(b) Prove that for x #  0 the nth derivative off has the formf(n)(x)  =f(x)P(l/x), where P(t)
is a polynomial in t.
(c) Prove that f tn)(0)  = 0 for a11 n  2 1. This shows that every Taylor polynomial generated
by f at 0 is the zero polynomial.

32. An amount of P dollars is deposited in a bank which pays interest  at a rate r per year, com-
pounded m times a year. (For example, r = 0.06 when the annual rate is 6x.) (a) Prove that
the total amount of principal plus interest  at the end of n  years is P(l + r/m)mn.  If r and n
are kept fixed, this amount approaches  the limit Pern as m + + to.  This motivates the follow-
ing definition: We say  that money grows at an annual rate r when compounded continuously
if the amount f(t) after t years is f(0)ert, where t is any  nonnegative real number. Approxi-
mately how long does  it take for a bank account  to double in value if it receives interest  at an
annual rate of 6% compounded (b) continuously? (c) four times a year?



8

INTRODUCTION TO DIFFERENTIAL EQUATIONS

8.1 Introduction

A large variety of scientific problems arise in which one  tries to determine something
from its rate of change. For example, we could try to compute the position of a moving
particle  from a knowledge of its velocity or acceleration. Or a radioactive substance may
be disintegrating at a known rate and we may be required to determine the amount of
material present after a given time. In examples like these, we are trying to determine an
unknown fonction from prescribed information expressed in the form of an equation
involving at least one  of the derivatives of the unknown function. These equations are
called dij’ërential  equations, and their study forms one  of the most challenging branches
of mathematics.

Differential equations are classified  under two main headings: ordinary  and partial,
depending on whether the unknown is a function of just one  variable or of two or more
variables. A simple example of an ordinary differential equation is the relation

(8.1) f’(x)  = f(-4

which is satisfied, in particular, by the exponential function, f(x) = ex. We shall see
presently that every solution of (8.1) must be of the formf(x)  = Ce”,  where C may be any
constant.

On the other hand, an equation like

a%> Y> + a”fcx,  Y>PC ()
ax2 aY

is an example of a partial differential equation. This particular one,  called Luplace’s
equation, appears in the theory of electricity and magnetism, fluid mechanics, and else-
where. It has many different kinds of solutions, among which are f(x, y)  = x + 2y,
f(x, y)  = e”  COS y, andf(x,  y) = log (x2 + y”).

The study of differential equations is one  part of mathematics that, perhaps more than
any  other, has been directly inspired by mechanics, astronomy, and mathematical physics.
Its history began in the 17th Century when Newton, Leibniz, and the Bernoullis solved
some simple differential equations arising from problems in geometry and mechanics.
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These early discoveries, beginning about  1690, gradually led to the development of a now-
classic “bag of tricks” for solving certain special kinds of differential equations. Although
these special tricks are applicable in relatively few cases, they do enable us to solve many
differential equations that arise in mechanics and geometry, SO their study is of practical
importance. Some of these special methods and some of the problems which they help us
solve are discussed near the end of this chapter.

Experience  has shown that it is difficult to obtain mathematical theories of much
generality about  solutions of differential equations, except for a few types. Among these
are the so-called linear differential equations which occur in a great variety of scientific
problems. The simplest types of linear differential equations and some of their applications
are also discussed in this introductory chapter. A more thorough study of linear equations
is carried  out in Volume II.

8.2 Terminology and notation

When we work with a differential equation such  as (8.1), it is customary to Write  y in
place off(x) and y’ in place off’(x), the  higher derivatives being denoted by y”, y”‘, etc.
Of course, other letters such  as U,  u,  z, etc. are also used instead of y. By the order of an
equation is meant the order of the highest derivative which appears. For example, (8.1)
is a first-order equation which may be written as y’ = y. The differential equation
y’ = $y + sin (xy”) is one  of second order.

In this chapter we shall begin our  study with first-order equations which cari  be solved
for y’ and written as follows:

where the expressionf(x,  y) on the right has various special forms. A differentiable function
y = Y(x) Will be called a solution of (8.2) on an interval Z if the function Y and its derivative
Y’ satisfy the relation

Y’(x) = fk Y(x)1

for every x in Z. The simplest case occurs when f(x, y)  is independent of y. In this case,
(8.2) becomes .

(8.3) Y ’ = Qc4 7

say,  where Q is assumed to be a given function defined on some interval i. TO solve the
differential equation (8.3) means 1:o find a primitive of Q. The second fundamental theorem
of calculus  tells us how to do it when Q is continuous on an open  interval Z. We simply
integrate Q and add any  constant. Thus, every solution of (8.3) is included in the formula

(8.4) Y = j-  Q(x) dx + C ,

where C is any  constant (usually called an arbitrary constant of integration). The differential
equation (8.3) has infinitely many solutions, one  for each  value of C.

If it is not possible to evaluate the integral in (8.4) in terms of familiar functions,  such
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as polynomials, rational functions, trigonometric and inverse trigonometric functions,
logarithms, and exponentials, still we consider the differential equation as having been
solved if the solution cari  be expressed in terms of integrals of known functions. In actual
practice, there are various methods for obtaining approximate evaluations of integrals
which lead to useful information about the solution. Automatic high-speed computing
machines are often designed with this kind of problem in mind.

EXAMPLE. Linear motion determined from the velocity. Suppose a particle  moves along a
straight line in such  a way that its velocity at time t is 2 sin t.  Determine its position at
time t.

Solution. If Y(t) denotes  the position at time t measured from some starting point, then
the derivative Y’(t) represents the velocity at time t. We are given that

Y’(t) = 2 sin t .
Integrating, we find that

Y(t) = 2 1 sin t dt + C = -2 COS t + C .

This is a11 we cari  deduce about Y(t) from a knowledge of the velocity alone; some other
piece  of information is needed to fix the position function. We cari  determine C if we know
the value of Y at some particular instant. For example, if Y(0) = 0, then C = 2 and the
position function is Y(t) = 2 - 2 cas  t. But if Y(0) = 2, then C = 4 and the position
function is Y(t) = 4 - 2 cas  t.

In some respects the example just solved is typical of what happens in general. Some-
where in the process of solving a first-order differential equation, an integration is required
to remove the derivative y’ and in this step an arbitrary constant C appears. The way in
which the arbitrary constant C enters into the solution Will depend  on the nature of the
given differential equation. It may appear as an additive constant, as in Equation (8.4),
but it is more likely to appear in some other way. For example, when we solve the equation
y’ = y in Section 8.3, we shall find that every solution has the form y = Ce”.

In many problems it is necessary to Select  from the collection of a11 solutions one  having
a prescribed value at some point. The prescribed value is called an initial condition, and
the problem of determining such  a solution is called an initial-value problem. This
terminology originated in mechanics where, as in the above example, the prescribed value
represents the displacement at some initial time.

We shall begin our study of differential equations with an important special  case.

8.3 A first-order differential equation for the exponential function

The exponential function is equal to its own derivative, and the same is true of any
constant multiple of the exponential. It is easy to show that these are the only functions
that satisfy this property on the whole real axis.

THEOREM 8.1. If C is a given real number, there is one  and only  one  function f which
satisjîes  the d@erential  equation

f'(x)  =fW
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for a11  real x and which also  satisjîes  the initial condition f(0) = C. This function is given
by the formula

f(x) = Ce”.

Proof. It is easy to verify that the function f (x) = Ce” satisfies both the given differential
equation and the given initial condition. Now we must show that this is the only  solution.

Let y = g(x) be any  solution of this initial-value problem:

g’(x)  = g(x) for a11  x, g(0) = c.

We wish to show that g(x) = Ce” or that g(x)e-”  = C. We consider the  function h(x) =
g(x)e-”  and show that its derivative is always zero. The derivative of h is given by

h’(x)  = g’(x)e-r  - g(x)e-”  = e-“[g’(x)  - g(x)] = 0 .

Hence, by the zero-derivative theorem, h is constant. But g(0) = C SO h(0) = g(0)e” = C. .
Hence, we have h(x) = C for a11 x which means that g(x) = Ce”, as required.

Theorem 8.1 is an example of an existence-uniqueness theorem. It tells us that the given
initial-value problem has a solution (existence) and that it has onZy  one  solution (uniqueness).
The abject of much of the research in the theory of differential equations is to discover
existence and uniqueness theorems for wide classes of equations.

We discuss next an important type which includes both the differential equation y’ = Q(x)
and the equation y’ = y as special cases.

8.4 First-order linear differential equations

A differential equation of the form

63.5) Y’ + f’(x>y = QC4  >

where P and Q are given functions, is called a$rst-order  linear differential equation. The
terms involving the unknown function y and its derivative y’ appear as a linear combination
of y and y’. The functions P and Q are assumed to be continuous on some open  interval I.
We seek a11 solutions y defined on Z.

First we consider the special case in which the right member, Q(x), is identically zero.
The equation

(8.6) y' + P(x)y = 0

is called the homogeneous or reduced equation corresponding to (8.5). We Will show how
to solve the  homogeneous equation and then use the result to help us solve the non-
homogeneous equation (8.5).

If y is nonzero on Z,  Equation (8.6) is equivalent to the equation

(8.7) yl  = -P(x)
Y
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That is, every nonzero y which satisfies (8.6) also satisfies (8.7) and vice versa. Now suppose
y is a positive function satisfying (8.7). Since  the quotient y’/~  is the derivative of log y,
Equation (8.7) becomes D log y = -P(x), from which we find log y = -SP(x)  dx + C,
SO we have

(8.8) y = e-A(r)  ) where A(x) = s P(x) dx - C

In other words, if there is a positive solution of (8.6), it must necessarily have the form
(8.8) for some C. But now it is easy to verify that every function in (8.8) is a solution of
the homogeneous equation (8.6). In fact,  we have

Thus, we have found a11 positive solutions of (8.6). But now it is easy to describe  a11
solutions. We state the result as an existence-uniqueness theorem.

THEOREM 8.2. Assume P is continuous  on an open  interval  Z. Choose any  point a in Z
and let b be any  real number. Then there is one  and only one  function y = f (x) tllhich  satisjes
the initial-value problem

(8.9) y’ + P(x)y = 0, with f(a) = b ,

on the interval  Z. This jiinction is given by the formula

(8.10) f(x) = beëA(“)  , w h e r e A(x) = J:  P(t) dt .

Proof. Let f be defined by (8.10). Then A(a) = 0 SO f(a) = beo  = b. Differentiation
shows that f satisfies the differential equation in (8.9)  SO f is a solution of the initial-value
problem. Now we must show that it is the only solution.

Let g be an arbitrary solution. We wish to show that g(x) = be&(“)  or that g(x)eA(“)  = b.
Therefore it is natural to introduce h(x) = g(x)eA(“).  The derivative of h is given by

(8.11) h’(x) = g’(x)en(‘) + g(x)eA’“‘A’(x) = eA’“‘[g’(x)  + P(X)g(x)] .

Now since g satisfies the differential equation in (8.9), we have g’(x) + P(x)g(x)  =  0
everywhere on Z, SO I~‘(X)  = 0 for a11 x in Z. This means that h is constant on Z. Hence,
we have h(x) = h(a) = g(a)e”‘“)  = g(a) = b. In other words, g(x)e”(“) = b, SO g(x)  =
be&(‘),  which shows that g = f. This completes the proof.

The last part of the foregoing proof  suggests a method for solving the nonhomogeneous
differential equation in (8.5). Suppose that g is any  function satisfying (8.5)  and let
h(x) = g(x)eA(“) where, as above, A(x) = j$ P(t) dt. Then Equation (8.11) is again valid,
but since g satisfies (8.5), the formula for h’(x) gives us

h’(x) = eA(‘)Q(x)  .
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Now we may invoke the second fundamental theorem to Write

h(x)  = h(u) + ioz  eA(‘)Q(t)  dt .

Hence, since  h(a) = g( a ) , every solution g of (8.5) has the form

(8.12) g(x) = ëAcz) h(x) = g(a)eëA’“’  + ëAc2) sax  Q(t) eAtt)dt  .

Conversely, by direct differentiation of (8.12), it is easy to verify that each  such  g is a
solution of (8.5), SO we have found a11  solutions. We state the result as follows.

THEOREM 8.3. Assume P and Q are continuous  on an open  interval  I. Choose anypoint
a in I and let b be any  real number. Then there is one  and only one  function y = f (x) which
satisjes  the initial-value problem

Y’ + f’(x)y  = Q(x), with f(a) = b ,

on the interval  I. Thisfunction is given by the formula

f(x) = be-A(“) + e-A(d
sa% Q(t) eAct)  dt ,

where A(x) = j; P(t) dt.

Up to now the word “interval” has meant a bounded interval of the form (a, b),  [a, b],
[a, b), or (a, b], with a < b. It is convenient to consider also unbounded intervals. They
are denoted by the symbols (a, + OO),  (- 00,  a), [a, + CO)  and (- CO,  a], and they  are
defined as follows:

(6  + a>  = {x I x > a} , (-~,aj={xIx<a},

[a,  + 00)  = lx I x 2 a) , (-oo,a]={xIx<a}.

In addition, it is convenient to refer to the collection of a11  real numbers as the interval
(- oc),  + co). Thus,  when we discuss a differential equation or its solution over  an interval
Z,  it Will be understood that Z is one  of the nine types just described.

EXAMPLE. Find a11 solutions of the first-order differential equation xy’ + (1 - x)y = ezr
on the interval (0, + CO).

Solution. First we transform the equation to the form y’ + P(x)y = Q(x) by dividing
through by x. This gives us

y’+  ;-( )1 Jd$,
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SO P(x) = I/x - 1 and Q(x) = ezx/x. Since  P and Q are continuous on  the  interval
(0, + co),  there is a unique solution y = f(x) satisfying any  given initial condition of the
formf(a)  = b. We shall express a11 solutions in terms of the initial value at the point a = 1.
In other words, given any  real number b, we Will determine a11 solutions for whichf(  1) = 6.

First we compute

Hence  we bave  e-.@)  = e~-l-lW~  = e"-l Ix, and e A(~)  = teret,  SO Theorem 8.3 tells us
that the solution is given by the formula

f(x) = b f$l  + $s,”  q tel-’ dl = b $!  + $S”et  dt
1

=b$i+$(e~-e)=bef+;-$l.

We cari  also Write  this in the form

ezx  + Ce”
f(x) = x >

where C = be-l  - e. This gives a11 solutions on the interval (0, +CD).
It may be of interest  to study the behavior of the solutions as x --f 0. If we approximate

the exponential by its linear Taylor polynomial, we find that ezî: = 1 + 2x + o(x)  and
e”  = 1 + x + o(x)  as x + 0, SO we have

f(x) = (l + c, + (2 + Cb  + 4x)- 1 + c I (2 + c) + o(l)
X X

Therefore, only the solution with C = - 1 tends to a finite limit as x -f 0, this limit being 1.

8.5 Exercises

In each  of Exercises 1 through 5, solve the initial-value problem on the specified interval.
1. y’ - 3~ = ezz on (- ~0,  + CO),  with y = 0 when x = 0.
2. xy’  - 2~ = x5 on (0, + oo),  with y = 1 when x = 1.
3. y’ + y tan x = sin 2x on (-4x, in),  with y = 2 when x = 0.
4. y’+xy =x30n(-a,  +co),withy-=Owhenx  =O.

5. 2  + x = ezt  on (- m, + CO),  with x = 1 when t = 0.

6. Find a11 solutions of y’ sin x + y COS x = 1 on the interval  (0, n).  Prove that exactly one  of
these solutions has a finite  limit as x -+ 0, and another has a finite  limit as x - n.

7. Find a11 solutions of x(x + 1)~’ + y = x(x + 1)2e-“2 on the interval  (-1,O). Prove that a11
solutions approach 0 as x -+ - 1, but that only one  of them has a finite  limit as x -+ 0.

8. Find a11 solutions of y’ + y cet  x = 2 COS x on the interval  (0, r).
these is also a solution on (- ~0,  + a).

Prove that exactly one  of
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9. Find a11 solutions of (x - 2)(x - 3)y’  + 2y = (x - 1)(x  - 2) on each  of the following
intervals: (a) (- ~0,  2); (b) (2, 3); (c) (3, + a). Prove that a11 solutions tend to a finite  limit
as x -+ 2, but that none  has a finite  limit as x + 3.

10. Let S(X)  = (sin x)/x if x #  0, and let s(0)  = 1. Define  T(x) = j$ s(t)  dt.  Prove that the
function f(x) = XT(X)  satisfies the differential equation xy’ - y = x sin x on the interval
(-CO,  + a)  and find a11 solutions on this interval. Prove that the differential equation has
no solution satisfying the initial conditionf(0)  = 1, and explain why this does  not contradict
Theorem 8.3.

11. Prove that there is exactly one  function f, continuous on the positive real axis, such  that

f(x) = 1 + ;
s

zf(‘)  dt
1

for a11 x > 0 and find this function.
12. The function f defined by the equation

J'(x)  = ~,(1-~~)/2  _ xe-X2/2 2 f-2et2/2  dt
1

for x > 0 has the properties that (i) it is continuous on the positive real axis, and (ii) it satisfies
the equation

f(x) = 1 - x j;f(t)  dt

for a11 x > 0. Find a11 functions  with these two properties.

The  Bernoulli equation. A differential equation of the form y’ + &)y = Q(x)yn,  where n is
not 0 or 1, is called a Bernoulli equation. This equation is nonlinear because of the presence  of y”.
The next exercise  shows that it cari  always be transformed into a linear first-order equation for a
new unknown function v, where v = y”,  k = 1 - n.

13. Let k be a nonzero constant. Assume P and Q are continuous on an interval  Z. If a E  Z and
if b  is any  real number, let v =g(x) be the unique solution of the initital-value problem
v’ + kP(x)v  = kQ(x)  on Z, with g(u) = b.  If n  #  1 and k = 1 - n, prove that a function
y =f(x), which is never  zero on Z, is a solution of the initial-value problem

y’ + PWy  = QWyn on Z, with f(a)” = b

if and only if the kth power off is equal to g on Z.

In each  of Exercises  14 through 17, solve the initial-value problem on the specihed  interval.
14. y’ - 4y = 2exyli2 On(--aJ,  +co),withy  =2whenx  =O.
15. y’ -y = -y2(x2 +x + l)on(-a,  +co),withy  = 1 whenx =O.
16. xy’ - 2y = 4~~yl’~ On(-a, +co),withy  =Owhenx = 1.
17. xy’ +y =y2x210gxon(0,  +m),withy  =iwhenx  = 1.
18. 2xyy’  + (1 + x)y2  = e”  on (0, + CO),  with (a) y = Z/ewhen x = 1; (b) y = -&when  x = 1;

(c) a finite  limit as x + 0.
19. An equation of the form y’ + P(x)y  + Q(x)y”  = R(x) is called a Riccati eyuation.  (There

is no known method for solving the general Riccati equation.) Prove that if u  is a known
solution of this equation, then there are further solutions of the form y = u + I/v,  where u
satisfies a first-order linear equation.
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20. The Riccati equation y’ + y + y 2 = 2 has two constant solutions. Start with each  of these
and use Exercise  19 to find further solutions as follows: (a) If -2 5  b < 1, find a solution on
(- m, + CO) for which y = b when x = 0. (b) If b  2 1 or b  < -2, find a solution on the interval
(-MI,  +co)forwhichy  =bwhenx  =O.

8.6 Some physical problems leading to first-order linear differential equations

In this section we Will discuss various physical problems that cari  be formulated mathe-
matically as differential equations. In each  case, the differential equation represents an
idealized simplification of the physical problem and is called a mathematical mode1 of
the problem. The differential equation occurs as a translation of some physical law, such
as Newton’s second law of motion, a “conservation” law, etc. Our purpose  here is not to
justify the choice  of the mathematical mode1 but rather -to  deduce logical consequences
from it. Each mode1 is only an approximation to reality, and its justification properly
belongs to the science from which the problem emanates. If intuition or experimental
evidence  agrees with the results deduced mathematically, then we feel that the mode1 is a
useful one.  If not, we try to find a more suitable model.

EXAMPLE 1. Radioactive decay. Although various radioactive elements show marked
differences  in their rates of decay, they a11 seem to share a common  property-the rate at
which a given substance decomposes at any  instant is proportional to the amount present
at that instant. If we denote  by y =f(t)  the amount present at time t,  the derivative y’ =
f’(t)  represents the rate of change of y at time t,  and the “law of decay” states that

y’ = -ky ,

where k is a positive constant (called the decay constartt)  whose actual value depends  on
the particular element that is decomposing. The minus sign cornes in because y decreases
as t increases, and hence  y’ is always negative. The differential equation y’ = -ky is the
mathematical mode1 used for problems concerning radioactive decay. Every solution
y =f(t)  of th’ d’1s lfferential equation has the form

(8.13) f(t) =f(O)e-““.

Therefore, to determine the amount present at time t,  we need to know the initial amount
f(0)  and the value of the decay constant k.

It is interesting to see what information cari  be deduced from (8.13), without knowing the
exact value off(O)  or of k. First we observe that there is no finite time t at whichf(t) Will
be zero because the exponential e@ never  vanishes. Therefore, it is not useful to study
the “total lifetime” of a radioactive substance. However, it is possible to determine the
time required for any  particularfraction  of a sample to decay. The fraction 4 is usually
chosen  for convenience and the time T at which f(T)/f(O)  = 4 is called the halfXfe of the
substance. This cari  be determined by solving the equation eekT  = i for T. Taking
logarithms, we get -kT = -1og  2 or T = (log 2)/k.  This equation relates the half-life
to the decay constant. Since  we have

f(t + T)---=f(Wk’“+T’  = e-kT  = 1

f(t) f (0)eëk’ 2 ’
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0

FIGURE 8.1 Radioactive decay with half-life T.

we see that the half-life is the same for every sample of a given material. Figure 8.1 illustrates
the general shape of a radioactive decay curve.

EXAMPLE  2. Falling  body  in a resisting medium. A body of mass m is dropped from
rest from a great height in the earth’s atmosphere. Assume that it falls  in a straight line
and that the only forces acting on it are the earth’s gravitational attraction (mg, where g is
the acceleration due to gravity,  assumed to be constant) and a resisting force (due to air
resistance) which is proportional to its velocity. It is required to discuss the resulting
motion.

Let s = f(t) denote  the distance the body has fallen at time t and let u  = s’  = f’(t) denote
its velocity. The assumption that it falls from rest means thatf’(0)  = 0.

There are two forces acting on the body, a downward force mg (due to its weight) and
an upward force -ku  (due to air resistance), where k is some positive constant. Newton’s
second law states that the net sum of the forces acting on the body at any  instant is equal
to the product  of its mass m and its acceleration. If we denote  the acceleration at time r
by a, then a = v’  = S” and Newton’s law gives us the equation

m a = m g - k v .

This cari  be considered as a second-order differential equation for the displacement s or
as a first-order equation for the velocity u. As a first-order equation for v, it is linear and
cari  be written in the form

k
v’+-u=g.

m

This equation is the mathematical mode1 of the problem. Since  v = 0 when t = 0, the
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unique solution of the differential equation is given by the formula

(8.14) -ktlmv=e
s

tgeWm  du  -
0

_ y (1 - e-ktl”‘)  .

Note that v + mg/k  as t -+ +co. If we differentiate Equation (8.14) we find that the
acceleration at every instant is a = geëktlm. Note that a - 0 as t - + CO.  Interpreted
physically, this means that the air resistance  tends to balance out  the force of gravity.

Since v = s’, Equation (8.14) is itself a differential equation for the displacement s,  and
it may be integrated directly to give

2

s =  y t +  g!! e-k’lm +  c .

k2

Since s = 0 when t = 0, we find that C = -gm2/k2  and the equation of motion becomes

2
s  = y  t + 5  (e-“tlm - 1).

If the initial velocity is vo  when t = 0, formula (8.14) for the velocity at time t must be
replaced by

v = y  (1 - eekflm)  + voevkt’m.

It is interesting to note that for every initial velocity (positive, negative, or zero), the limiting
velocity, as t increases without bound, is mg/k,  a number independent of vo  . The reader
should convince himself, on physical grounds, that this seems reasonable.

EXAMPLE 3. A cooling  problem. The rate at which a body changes temperature is pro-
portional to the difference between its temperature and that of the surrounding medium.
(This is called Newton’s  Zaw  of cooling.)  If y =f(t)  is the (unknown) temperature of the
body at time t and if M(t) denotes  the (known) temperature of the surrounding medium,
Newton’s law leads to the differential equation

(8.15) Y’ = -kIy - M(t)1 or y’ + ky = kM(t) ,

where k is a positive constant. This first-order linear equation is the mathematical mode1
we use for cooling problems. The unique solution of the equation satisfying the initial
conditionf(a)  = b is given by the formula

(8.16) f(t) = bewkt  + eekt/I  kM(u)e””  du .

Consider now a specific problem in which a body cools from 200” to 100” in 40 minutes
while immersed in a medium whose temperature is kept constant, say  M(t) = 10”. If we
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measure t in minutes andf(t) in degrees, we havef(0)  = 200 and Equation (8.16) gives us

(8.17) f’(t) = 200eë”’  + 10keëkt s ’ ekzL du
0

= 200eeekf  + lO(1  - e?)  = 10 + 190e@.

We cari  compute k from the information thatf(40) = 100. Putting t = 40 in (8.17),  we
find 90 = 190e-40k, SO -4Ok = log (90/190),  k = &(log  19 - log 9).

Next, let us compute the time required for this same material to cool from 200” to
100” if the temperature of the medium is kept at 5”. Then Equation (8.16) is valid with the
same constant k but with M(u) = 5. Instead of (8.17), we get the formula

f(t) = 5 + 195eëkt.

TO find the time t for which f(t)  = 100, we get 95 = 195e@,  SO -kt = log  (95/195)  =
log (19/39),  and hence

i -t (log 39 log 19) 40 log 39 log 19= - =
*log 19 - log 9

From a four-place table of natural logarithms, we find log 39 = 3.6636, log 19 = 2.9444,
and log 9 = 2.1972 SO, with slide-rule accuracy, we get t = 40(0.719)/(0.747)  = 38.5
minutes.

The differential equation in (8.15) tells us that the rate of cooling decreases considerably
as the temperature of the body begins to approach the temperature of the medium. TO

illustrate, let us find the time required to cool the same substance from 100” to 10” with
the medium kept at 5”. The calculation leads to log (5/95) = -kt,  or

t = i log 19
19

= 40 log = 40(2.944) = 158 minutes
log 19 - log 9 0.747

Note that the temperature drop from 100” to 10” takes more than four times as long as the
change from 200” to 100”.

EXAMPLE 4. A dilutionproblem. A tank contains 100 gallons of brine whose concentration
is 2.5 pounds of salt per gallon. Brine containing 2 pounds of salt per gallon runs into the
tank at a rate of 5 gallons per minute and the mixture (kept uniform by stirring) runs out
at the same rate. Find the amount of sait in the tank at every instant.

Let y =f(t)  denote  the number of pounds of salt in the tank at time t minutes after
mixing begins. There are two factors which cause y to change, the incoming brine which
brings salt in at a rate of 10 pounds per minute and the outgoing mixture which removes salt
at a rate of 5(y/lOO)  pounds per minute. (The fraction y/100  represents the concentration
at time t.)  Hence the differential equation is

o r y’ + &y = 10 .

This linear equation is the mathematical mode1 for our problem. Since  y = 250 when
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t = 0, the unique solution is given by the formula

(8.18) y = 250e-fi20 + e-wJ
s

t l()e+o
0

du = 200 + 50eë’120.

This equation shows that y > 200 for a11 t and that y + 200 as t increases without bound.
Hence, the minimum salt content is 200 pounds. (This could also have been guessed from
the statement of the problem.) Equation (8.18) cari  be solved for t in terms of y to yield

50t = 20 log ~c iy - 200 .

This enables us to find the time at which the salt content Will be a given amount y, provided
that 200 < y < 250.

EXAMPLE  5. Electric circuits. Figure 8.2(a), page 318, shows an electric circuit which
has an electromotive force, a resistor, and an inductor connected  in series.  The electro-
motive force produces a voltage which causes an electric current to flow in the circuit.
If the reader is not familiar with electric circuits, he should not be concerned.  For our
purposes, a11  we need to know about the circuit is that the voltage, denoted by V(t),
and the current, denoted by Z(t),  are functions of time t related by a differential equation
of the form

(8.19) LT(t)  + Rz(t)  = V(t).

Here L and R are assumed to be positive constants. They are called, respectively, the
inductance and resistance of the circuit. The differential equation is a mathematical form-
ulation of a conservation law known as Kirchhofs  voltage Ian,, and it serves as a mathe-
matical  mode1 for the circuit.

Those readers unfamiliar with circuits may find it helpful to think of the current as being
analogous to water flowing in a pipe. The electromotive force (usually a battery or a
generator) is analogous to a pump which causes the water to flow; the resistor is analogous
to friction in the pipe, which tends to oppose the flow; and the inductance is a stabilizing
influence which tends to oppose sudden changes in the current due to sudden changes in
the voltage.

The usual type of question concerning such  circuits is this: If a given voltage V(t)  is
impressed on the circuit, what is the resulting current Z(t)?  Since  we are dealing with a
first-order linear differential equation, the solution is a routine matter.  If Z(0) denotes  the
initial current at time t = 0, the equation has the solution

Z(t)  = Z(0)eëntiL + eëRtiL
s

t V(x>  e%dL  dx .
0 L

An important special  case occurs when the impressed voltage is constant, say  V(t)  = E
for a11 t.  In this case, the integration is easy to perform and we are led to the formula
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Inductor

ElectromoLT@@@-lforce  T
Resistor

(4 (b)
FIGURE 8.2 (a) Diagram for a simple series  circuit. (b) The current resulting from

a constant impressed voltage E.

This shows that the nature of the solution depends  on the relation between the initial
current Z(0) and the quotient E/R. If Z(0) = E/R, the exponential term is not present and
the current is constant, Z(t) = E/R. If Z(0) > E/R, the coefficient of the exponential term
is positive and the current decreases to the limiting value E/R as t + + CO.  If Z(0) < E/R,
the current increases to the limiting value E/R. The constant E/R is called the steady-state
current, and the exponential term [I(O) - E/R]e- “IL  is called the transient current. Exam-
ples are illustrated in Figure 8.2(b).

The foregoing examples illustrate the unifying power and practical utility of differential
equations. They show how several different types of physical problems may lead to
exactly the same type of differential equation.

The differential equation in (8.19) is of special  interest  because it suggests the possibility
of attacking a wide variety of physical problems by electrical means. For example, suppose
a physical problem leads to a differential equation of the form

/+%Y=  Q,

where a is a positive constant and Q is a known function.  We cari  try to construct an
electric circuit with inductance L and resistance  R in the ratio R/L = a and then try to
impress a voltage LQ on the circuit. We would then have an electric circuit with exactly the
same mathematical mode1 as the physical problem. Thus, we cari  hope to get numerical
data about  the solution of the physical problem by making measurements of current in
the electric circuit. This idea has been used in practice and has led to the development of
the analog  computer.
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In the following exercises,  use an appropriate first-order differential equation as a mathematical
mode1 of the problem.

The half-Pife  for radium is approximately 1600 years. Find what percentage of a given quantity
of radium disintegrates in 100 years.
If a strain of bacteria grows at a rate proportional to the amount present and if the population
doubles in one  hour, by how much  Will  it increase at the end of two hours?
Denote  by y =f(t)  the amount of a substance present at time t. Assume it disintegrates at a
rate proportional to the amount present. If n  is a positive integer, the number T for which
f(T) =f(O)/n  is called the l/nth  life of the substance.
(a) Prove that the l/nth  life is the same  for every sample of a given material, and compute T
in terms of n  and the decay constant k.
(b) If a and b are given, prove that f cari  be expressed in the form

f(t) = f(u)y(b)l-~(t)

and determine w(t).  This shows that the amount present at time t is a weighted geometric
mean  of the amounts present at two instants t = a and t = b.

4. A man wearing a parachute jumps from a great height. The combined  weight of man and para-
chute is 192 pounds. Let v(t) denote  his speed (in feet  per second) at time t seconds after
falling. During  the first 10 seconds, before the parachute opens, assume the air resistance  is
$V(t)  pounds. Thereafter, while the parachute is open,  assume the resistance  is 12u(t)  pounds.
Assume the acceleration  of gravity  is 32 ft/sec2  and find explicit formulas for the speed v(t)
at time t.  (You  may  use the approximation e- 5/4 = 37/128  in your calculations.)

5. Refer to Example 2 of Section 8.6. Use the chain  rule to Write

du ds du  du
-=--=u-
dt dt ds ds

and thus show that the differential equation in the example cari  be expressed as follows:

ds bu-=-
du c - v ’

where b = mlk  and c = gm/k.  Integrate this equation to express s in terms of v. Check  your
result with the formulas for Y and s derived in the example.

6. Modify Example 2 of Section 8.6 by assuming the air resistance  is proportional to v2.  Show
that the differential equation cari  be put in each  of the following forms:

ds m  v dt m  1_A-.
du- k$-$’ z=k,z*

where c = dmg/k.  Integrate each  of these and obtain the following formulas for v:

02  =  !f  (1  - e-2kshn)  ;
ebt  _ e-ht

’ =  ’ ebt  +  e-ht=ctanhbt ,

where b = m Determine the limiting value of v as t + +a.
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7. A body in a room at 60” cools  from 200” to 120” in half an hour.
(a) Show that its temperature after t minutes is 60 + 140ePLt,  where k = (log 7 - log 3)/30.
(b) Show that the time t required to reach  a temperature of T degrees is given by the formula
t = [log 140 - log (T - 60)]/k,  where 60 < T 5 200.
(c) Find the time at which the temperature is 90”.
(d) Find a formula for the temperature of the body at time t if the room temperature is not
kept constant but falls at a rate of 1” each  ten minutes. Assume the room temperature is  60”
when the  body temperature  i s  200”.

8. A thermometer has been stored in a room whose temperature is 75”. Five minutes after being
taken outdoors it reads 65”. After another five minutes, it reads 60”. Compute the outdoor
temperature.

9 .  In  a  t ank  a re  100  ga l lons  of  b r ine  conta in ing  50  pounds  of  d i sso lved  Salt. Water  runs  in to  the
tank at the rate of 3 gallons per minute, and the concentration is kept uniform by stirring.
How much  sa l t  i s  in  the  tank  a t  the  end  of  one hour i f  the mixture runs out a t  a  ra te  of  2  gal lons
per minute?

10. Refer to Exercise 9. Suppose the bottom of the tank is covered with a mixture of salt and in-
soluble  mater ia l . Assume tha t  the  sa l t  d i s so lves  a t  a  ra te  p ropor t iona l  to  the  difference  between
the  concent ra t ion  of  the  so lu t ion  and  tha t  o f  a  sa tura ted  so lu t ion  (3  pounds  of  sa l t  per  ga l lon) ,
and that if the water were fresh 1 Pound of salt would dissolve per minute. How much  salt
Will be in solution at the end of one hour?

11. Consider an electric circuit like that in Example 5 of Section 8.6. Assume the electromotive
force is an alternating current  generator which produces a voltage V(t)  = E sin wt,  where E
and o are positive constants (w is the Greek letter omega). If Z(0) = 0, prove that the current
has the form

EoL
4t> = -Q====  sin (ut - ~1 + R2 + 02L2  ëRtIL,

where m  depends only on o, L, and R. Show that a = 0 when L = 0.
12.  Refer  to Example 5 of  Sect ion 8.6.  Assume the impressed voltage is  a  s tep function  defined as

follows: E(t) = E if a < t < b, where a > 0; E(t) = 0 for a11  other t.  If Z(0) = 0 prove that
the current  is given by the following formulas: Z(t) = 0 if t < a;

z(t)  = ; (1 -  e-R(t-a)lL) i f  a<t<b; Z(t) = g  e- RtIL (eRbIL  _ eRa/L) i f  t>b.

Make a sketch indicating the nature of the graph of Z.

Population growth. In a study of the growth of a population (whether human,  animal, or bac-
ter ia l ) ,  the  function  which  counts  the number  x  of  individuals  present  a t  t ime t  i s  necessar i ly  a  step
finction  t ak ing  on  on ly  in t ege r  va lues . Therefore the true rate ofgrowth  dx/dt  is zero (when t lies
in an open interval  where x is constant), or else the derivative dx/dt  does  not exist (when x jumps
from one integer to another). Nevertheless ,  useful  information cari often be obtained if  we assume
that the population x is a continuous  function  of t with a continuous  derivative dx/dt  at each
ins tan t .  We then  pos tu la te  va r ious “ laws  of  growth”  for  the  popula t ion ,  depending  on  the  fac tors
in the environment which may stimulate or hinder growth.

For example, if environment has little or no effect,  it seems reasonable to assume that the rate
of  growth  i s  p ropor t iona l  to  the  amount  presen t . The simplest kind of growth law takes the form

(8.20)
d x
- = k x ,
dt
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where k i s  a  cons tan t  tha t  depends on  the  pa r t i cu la r  k ind  o f  popu la t ion . Cond i t i ons  may deve lop
which cause the factor k to change with time, and the growth law (8.20) cari  be generalized as
follows :

(8 .21)
d x
- = k(t)x .
d t

If, for some reason, the population cannot  exceed a certain maximum M (for example, because
the  food  supply  may be exhausted),  we may reasonab ly  suppose  tha t  the  ra te  o f  g rowth  i s  jo in t ly
proportional to both x and M - x. Thus we have a second type of growth law:

d x
- = kx(M - x) >
d t

where, as in (8.21),  k may be constant or, more generally, k may change with time. Technological
improvements may tend to  increase or  decrease the value of  M s lowly ,  and  hence we cari  general ize
(8 .22)  even fur ther  by a l lowing M to  change with  t ime.

13. Express x as a function of t for each of the “growth laws” in (8.20) and (8.22) (with /c and M
both  cons tant ) .  Show tha t  the  resu l t  for  (8 .22)  cari be  expressed as  fol lows:

M
x = 1 + e-d-tl)  ’

where a is a constant and t, is the time at which x = M/2.
14. Assume the growth law in formula (8.23) of Exercise 13, and suppose a census is taken

at three equally spaced times t, , t, , t, , the resulting numbers being x1 , x2 , xs . Show
that this suffices to determine M and that, in fact,  we have

15. Derive a formula that generalizes (8.23) of Exercise 13 for the growth law (8.22) when k is
not necessarily constant. Express the result in terms of the time t. for which x = M/2.

16. The Census Bureau reported the following population figures (in millions) for the United
States at ten-year intervals from 1790 to 1950: 3.9, 5.3, 7.2, 9.6, 12.9, 17, 23, 31, 39, 50, 63, 76,
92, 108, 122, 135, 150.
(a) Use Equation (8.24) to determine a value of M on the basis of the census figures for 1790,
1850 ,  and  1910 .
(b) Same  as (a) for the years 1910, 1930, 1950.
(c) On the basis of your calculations in (a) and (b), would you  be inclined  to accept or reject
the growth law (8.23) for the population of the United States?

17. (a) Plot a graph of log x as a function of t,  where x denotes  the population figures quoted
in  Exerc ise  16 . Use  th i s  g raph  to  show tha t  the  g rowth  l aw (8 .20)  was  very near ly  sat isf ied from
1790 to 1910. Determine a reasonable average value of k for this period.
(b) Determine a reasonable average value of k for the period from 1920 to 1950, assume that
the growth law (8.20) Will hold for this k, and predict the United States population for the
years  2000  and  2050 .

18. The presence of toxins in a certain medium destroys a strain of bacteria at a rate jointly pro-
portional to the number of bacteria present and to the amount of toxin. If there were no
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FIGURE 8.3 Exercise  18.

toxins present, the bacteria would grow at a rate proportional to the amount present. Let x
denote  the number of living bacteria present at time t. Assume that the amount of toxin is
increasing at a constant rate and that the production of toxin begins at time t = 0. Set up a
differential equation for x. Solve the differential equation. One  of the curves  shown in Figure
8.3 best represents the general behavior of x as a function of t. State your choice  and explain
your reasoning.

8.8 Linear equations of second order with constant coefficients

A differential equation of the form

yn  +  PI(x +  Pz(x)y  =  Jw

is said to be a linear equation of second order. The functions P,  and Pz  which multiply the
unknown function y and its derivative y’ are called the coe#icients  of the equation.

For first-order linear equations, we proved an existence-uniqueness theorem and deter-
mined a11  solutions by an explicit  formula. Although there is a corresponding existence-
uniqueness theorem for the general second-order linear equation, there is no explicit
formula which gives a11  solutions, except in some special  cases. A study of the general
linear equation of second order is undertaken in Volume II. Here we treat only the case
in which the coefficients P,  and P,  are constants. When the right-hand member R(x) is
identically zero, the equation is said to be homogeneous.

The homogeneous linear equation with constant coefficients was the first differential
equation of a general type to be completely solved. A solution was first published by Euler
in 1743. Apart  from its historical interest, this equation arises in a great variety of applied
problems, SO its study is of practical importance. Moreover, we cari  give explicit  formulas
for a11  the solutions.

Consider a homogeneous linear equation with constant coefficients which we Write  as
follows :

y#  + ay’ + by = 0 .
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We seek solutions on the entire  real axis (- 00, + co). One solution is the constant function
y = 0. This is called the trivial solution. We are interested in finding nontrivial solutions,
and we begin our study with some special cases for which nontrivial solutions cari  be found
by inspection. In a11 these cases, the coefficient of y’ is zero, and the equation has the form
y” + by = 0. We shall find that solving this special equation is tantamount to solving the
general case.

8.9 Existence of solutions of the equation y” + by = 0

EXAMPLE 1. The equation y” = 0. Here both coefficients a and b are zero, and we cari
easily determine a11 solutions. Assume y is any  function satisfying y” = 0 on (- CO,  + CO).
Then its derivative y’ is constant, say  y’ = c1  . Integrating this relation, we find that y
necessarily has the form

y = ClX + c2  ,

where c1  and cZ  are constants. Conversely, for any  choice  of constants c1  and c2  , the linear
polynomial y = clx + c2  satisfies y” = 0, SO we have found a11 solutions in this case.

Next we assume that b # 0 and treat separately the cases b < 0 and b > 0.

EXAMPLE 2. The equation y” + by = 0, ir*here  b < 0. Since  b < 0, we cari  Write  b = -k2,
where k > 0, and the differential equation takes the form

y” = k2y  .

One obvious solution is y = elrZ,  and another is y = eë”“.  From these we cari  obtain
further solutions by constructing linear combinations of the form

y = c,e”” + c2eëkx 7

where c1  and cZ  are arbitrary constants. It Will be shown presently, in Theorem 8.6, that
ail  solutions are included in this formula.

EXAMPLE 3. The equation y” + by = 0, u,here  b > 0. Here we cari  Write  b = k2,  where
k > 0, and the differential equation takes the form

y” = -kZy  .

Again we obtain some solutions by inspection. One solution is y = COS kx, and another
is y = sin kx. From these we get further solutions by forming linear combinations,

y = cl  COS kx + c2  sin kx ,

where c1  and c2  are arbitrary constants. Theorem 8.6 Will show that this formula includes
a11 solutions.
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8.10 Reduction  of the general equation to the special case y” + by = 0

The problem of solving a second-order linear equation with constant coefficients cari
be reduced to that of solving the special cases just discussed. There is a method for doing
this that also applies to more general equations. The idea is to consider three functions
y, U,  and  u such  that y = UU. Differentiation gives us y’ = UV’ + U’V,  and y” = MI”  +
224’21’ + ~A”U.  Now we express the combination y” + ay’  + by  in terms of u and v. We
h a v e

(8.25) y” + ay’  + by - uv”  + 224’~’  + M”U  + a(uv’ + u’u)  + buv

= (v”  + au’  + bv)u + (221’  + av)u’ + vu’.

Next we choose v to make the coefficient of u’  zero. This requires that v’  = -av/2,  SO we
may choose v = e-ax/2. For this v we have un  = -au’/2  = a2v/4,  and the coefficient of
u in (8.25) becomes

y” + au’  + bu = ff!f
4
-$+ bv=4+zu.

Thus, Equation (8.25) reduces to

y” + ay’  + by =

Since  v = e-ax/2,  the function v is never  zero, SO y satisfies the differential equation y” +
ay’  + by = 0 if and only if u satisfies u”  + &(4b  - az)u = 0. Thus, we have proved the
following theorem.

THEOREM 8.4. Let y and u be two  functions such  that y = ue-ns/2. Then, on the interval
(- 00,  + CO),  y satisjes  the dfsi erential  equation y” + ay’  + by = 0 if und  only  if u satis$es
the dl@erential  equation

Un  + 4b  - a2  u  = 0
4

This theorem reduces the study of the equation y” + ay’  + by = 0 to the special case
y” + by = 0. We have exhibited nontrivial solutions of this equation but, except for the
case b = 0, we have not yet  shown that we have found a11  solutions.

8.11 Uniqueness theorem for the equation y” + by = 0

The problem of determining a11 solutions of the equation y” + by = 0 cari  be solved
with the help of the following uniqueness theorem.

THEOREM 8.5. Assume tti<o  functions f and g satisfy the difSerentia1  equation y” + by = 0
on  ( - 00, + a~). Assume also that f and g satisfy the initial conditions

f@> = go-2 > f'(O) = g'(O).
Then f (x)  = g(x) for dl  x.
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Proof.  Let h(x) =f(x) - g(x). W e wish to prove that h(x) = 0 for a11 x. We shall
do this by expressing h in terms of its Taylor polynomial approximations.

First we note that h is also a solution of the differential equation y” + by = 0 and satisfies
the initial conditions h(0) = 0, h’(0) = 0. Now every function y satisfying the differential
equation has derivatives of every order on (- CO,  + CO)  and they cari  be computed by
repeated differentiation of the differential equation. For example, since y” = -by, we
have y”’ = -by’,  and y(*)  = -by”  = bzy. By induction we find that the derivatives of
even order are given by

~(2~)  = (- l)"b"y  ,

while those of odd order are yc2+l) = (- l)“-lb”-‘y’.  Since h(0) and h’(0) are both 0, it
follows that a11 derivatives h(“)(O)  are zero. Therefore, each  Taylor polynomial generated
by h at 0 has a11  its coefficients zero.

Now we apply Taylor’s formula with remainder (Theorem 7.6), using a polynomial
approximation of odd degree 2n - 1, and we find that

h(x)  = E,,-,(x)  3

where E,,-,(x)  is the error term in Taylor’s formula. TO complete  the proof, we show that
the error cari  be made arbitrarily small by taking n large enough.

We use Theorem 7.7 to estimate the size of the error term. For this we need estimates
for the size of the derivative h (2n). Consider any  finite closed  interval [-c, c], where c > 0.
Since h is continuous  on this interval, it is bounded there, say  Ih(x)l 5 M on [-c, c].
Since h@“)(x)  = (- l)“b”h(x),  we have the estimate [h(2”)(x)1  < M Jbl” on [-c, c]. Theorem
7.7 gives us ]E2,_i(x)]  < M Ibl n  x2”/(2n)! SO, on the interval [-c, c], we have the estimate

(8.26) 0 5 I@>l  5
M lb/”  x2?’

(2n)! I M lbl”  c2n _ MA2”
(2n)! (2n)! ’

where A = lbj1’2 c. Now we show that A”lm!  tends to 0 as m + + CO.  This is obvious if
O<A<l.  IfA>  1,wemaywrite

A” AA A A
-=-.-  .  .._.  - . . . -

m.1 1 2

where k < m. If we choose  k to be the greatest integer 5 A, then A < k + 1 and the last
factor tends to 0 as m -+  + a3. Hence A”/m!  tends to 0 as m + CO,  SO inequality (8.26)
shows that h(x) = 0 for every x in [-c, c]. But, since c is arbitrary, it follows that h(x) = 0
for a11 real x. This completes the proof.

Note: Theorem 8.5 tells us that two solutions of the differential equation y” + by  = 0
which have the same  value and the same  derivative at 0 must agree everywhere. The choice
of the point 0 is not essential. The same  argument shows that the theorem is also true if 0
is replaced  by an arbitrary point c. In the foregoing proof,  we simply use Taylor poly-
nomial approximations at c instead of at 0.
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8.12 Complete solution of the equation y” + by = 0

The uniqueness theorem enables us to characterize a11  solutions of the differential
equation y” + by  = 0.

THEOREM 8.6. Given a real number b, dejine  two functions u1  and u2  on (-CO,  +CD)  as
follows:

(a) If b = 0, Zet  u,(x) = 1, uZ(x)  = x.
(b) Zf b < 0, u!rite  b = - k2  and dejine  ul(x)  = eLx,  uz(x)  = eekx.
(c) Zf b > 0, write b = k2  and dejne  ul(x)  = COS kx, uz(x)  = sin kx.

Then every solution of the d@erential  equation y” + by = 0 on (- 00,  + CQ)  has the form

(8.27) Y = Cl%(4  + c2u2(x>  >

where c1  and c2  are constants.

Proof.  We proved in Section 8.9 that for each  choice  of constants c1  and c2  the function
y given in (8.27) is a solution of the equation y” + by = 0. Now we show that a11  solutions
have this form. The case b = 0 was settled in Section 8.9, SO we may assume that b # 0.

The idea of the proof  is this: Let y = f(x) be any  solution of y” + by = 0. If we cari
show that constants c1  and c2  exist satisfying the pair of equations

(8.28) c,49  + c,u,m =f(O> , c,4@) + cg@)  =f'(O>,

then both f and clul  + cZuZ  are solutions of the differential equation y” + by = 0 having
the same value and the same derivative at 0. By the uniqueness theorem, it follows that
f= qu1 + C$h.

In case (b), we have ul(x)  = e”‘,  uZ(x)  = eëkz, SO u,(O)  = u,(O) = 1 and u;(O)  = k,
u:(O)  = -k. Thus the equations in (8.28) become c1  + c2  = f (0), and c1  - c2  = f ‘(O)/k.
They have the solution c1  = &f(O)  + if’(O)/k,  c2  = if(O)  - af’(O)/k.

In case (c), we have ul(x)  = COS kx, uz(x)  = sin kx, SO u,(O) = 1, ~~(0)  = 0, u;(O)  = 0,
U;(O) = k, and the solutions are c1  = f(O), and c2  = f’(O)/k. Since  c1  and c2  always exist
to  satisfy (8.28), the proof  is complete.

8.13 Complete solution of the equation y” + uy’ + by = 0

Theorem 8.4 tells us that y satisfies  the differential equation y” + ay’  + by = 0 if
and only if u  satisfies U”  + &(4b  - a2)u  = 0, where y = eP’&.  From Theorem 8.6 we
know that the nature of each  solution u depends  on the algebraic sign of the coefficient of
u,  that is, on the algebraic sign of 4b - a2  or, alternatively, of a2  - 46. We cal1  the number
a2  - 4b the discriminant of the differential equation y” + ay’  + by = 0 and denote  it by
d.  When we combine the results of Theorem 8.4 and 8.6 we obtain the following.

THEOREM 8.7. Let  d = a2  - 4b be the discriminant of the linear differential equation
y” + ay’  + by = 0. Then every solution of this equation on (- CO,  + CO)  has the form

(8.29) y = eëaz’2[c1u1(x)  + c2u2(x)3  ,



Complete solution of the equation y” + a,v’  + by = 0 327

where c1  and c2  are constants, and the functions u1  and u2  are determined according to the
algebraic sign  of the discriminant as follows:

(a) Ifd = 0, then ul(x)  = 1 and uz(x)  = x.

(b) If d > 0, then ul(x)  = ekx  and uz(x)  = e-“‘, where k = $42.

(c) If d < 0, then ul(x)  = COS kx and uz(x)  = sin kx, where k = 4d-d.

Note: In case (b), where the discriminant dis positive, the solution y in (8.29) is a linear
combination of two exponential functions,

where

r,=-%+k=
- a  +VS a

p-,=---k=
- a  -&

2 ’ 2 2 *

The two numbers r1 and r2 have sum rl + r2 = -a and product  rlr2 = P(u”  - d)  = b.
Therefore, they are the roots of the quadratic equation

r2+ar  +b =O.

This is called the characteristic equation associated with the differential equation

y” + uy’  + by = 0 .

The number d = a2  - 4b is also  called the discriminant of this quadratic equation; its
algebraic sign determines the nature of the roots. If d 2 0, the quadratic equation has real
roots given by (-a f &)/2.  If d < 0, the quadratic equation has no real roots but it
does  have complex roots r1  and r2 . The definition of the exponential function  cari  be ex-
tended SO that eV+ and erzr  are meaningful when rl  and r2 are complex numbers. This ex-
tension, described in Chapter 9, is made in such  a way that the linear combination in
(8.29) cari  also be written as a linear combination of erls and e”z+,  when rl and r2 are
complex.

We conclude  this section with some miscellaneous remarks. Since  a11 the solutions of
the differential equation y” + ay’  + by = 0 are contained in formula (8.29), the linear
combination on the right is often called the general  solution of the differential equation.
Any  solution obtained by specializing the constants cr  and c2  is called aparticular solution.

For example, taking cr  = 1, c2  = 0, and then c, = 0, c2  = 1, we obtain the two particular
solutions

v1  = eëar12u1(x)  , v2  = eëash2(x)  .

These two solutions are of special  importance because linear combinations of them give
us a11  solutions. Any  pair of solutions with this property is called a basis for the set of
a11 solutions.

A differential equation always has more than one  basis. For example, the equation
y” = 9y has the basis v1  = e3x, v2  = e-3x. But it also has the basis )vr  = cash  3x, u12 =
sinh 3x. In fact,  since  e3s = bvl  + w2  and e-3x  = UJ~  - w2  , every linear combination of e3z
and eP3+  is also a linear combination of w1  and u’~ . Hence, the pair w1  , w2 is another basis.

It cari  be shown that any  pair of solutions v1  and v2 of a differential equation y” +
ay’  + by = 0 Will be a basis if the ratio v,/v,  is not constant. Although we shall not need



328 Introduction to d$Gerential  equations

this fact, we mention it here because it is important in the theory of second-order linear
equations with nonconstant coefficients. A proof  is outlined in Exercise 23 of Section 8.14.

8.14 Exercises

Find a11 solutions of the following differential equations on (- CO, + CO).
1. y” - 4y = 0. 6. y” + 2y’  - 3y = 0.
2. yo  + 4y = 0. 7. y” - 2y’ + 2y = 0.
3. yo  - 4y’ = 0. 8. y” - 2y’  + Sy  = 0.
4. y” + 4y’ = 0. 9. yfl + 2y’ + y = 0.
5. y” - 2y’ + 3y = 0. 10. y” - 2y’ + y = 0.

In Exercises 11 through 14, find the particular solution satisfying the given initial conditions.
11.2y”+3y’=O,withy=landy’=lwhenx=O.
l2.y”+25y=O,withy=  -1andy’=Owhenx=3.
13.~“-4y’-y=O,withy=2andy’=  -lwhenx=l.
14. y” + 4y’  + Sy = 0, with y = 2 and y’ = y” when x = 0.
15. The graph of a solution u of the differential equation y” - 4y’  + 29y  = 0 intersects the graph

of a solution u  of the equation y” + 4y’  + 13y = 0 at the origin. The two curves have equal
slopes at the origin. Determine u and v if u’&)  = 1.

16. The graph of a solution u of the differential equation y” - 3y’  - 4y = 0 intersects the graph
of a solution v of the equation y” + 4y’  - 5y = 0 at the origin. Determine u and v if the two
curves have equal slopes at the origin and if

]im  ‘04  = 5

z-+ m 44 6 ’

17. Find a11 values of the constant k such  that the differential equation y” + ky = 0 has a non-
trivial solution y =fk(x) for whichf,(O) =fk(l) = 0. For each  permissible value of k, deter-
mine the corresponding solution y = fk(x). Consider both positive and negative values of k.

18. If (a, b)  is a given point in the plane and if m is a given real number, prove that the differential
equation y” + k2y  = 0 has exactly one  solution whose graph passes through (a, b)  and has the
slope m there. Discuss also the case k = 0.

19. (a) Let (ai  , b,)  and (az  , b,)  be two points in the plane such  that a1  - a2  #  m, where n is an
integer. Prove that there is exactly one  solution of the differential equation y” + y = 0 whose
graph passes through these two points.
(b) 1s  the statement in part (a) ever true if a, - a2  is a multiple of n?
(c) Generalize the result in part (a) for the equation y” + k2y  = 0. Discuss also the case k = 0.

20. In each  case, find a linear differential equation of second order satisfied by u1  and u2 .
(a) ui(x) = er,  ue(x)  = e-“.
(b) ui(x) = e2r,  u2(x)  = xe2”.
(c) ul(x) = eëxi2 cas  x, u2(x)  = eëri2  sin x.
(d) ur(x) = sin (2x + l), u2(x)  = sin (2x + 2).
(e) ui(x) = cash  x, u2(x)  = sinh x.

The Wronskian. Given two functions  ui  and u2  , the function  W defined by W(x) = u,(x)u~(x)  -
u,(x)u~(x)  is called their Wronskian, after J. M. H. Wronski (1778-1853). The following exercises
are concerned  with properties of the Wronskian.
21. (a) If the Wronskian W(x) of ui and u2 is zero for a11 x in an open  interval  Z,  prove that the

quotient uz/ul  is constant on Z. In other words, if u2/ui  is not constant on Z, then W(c) #  0
for at least one  c in Z.
(b) Prove that the derivative of the Wronskian is W’ = ului M- L$u1  .
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22. Let W be the Wronskian of two solutions u r , u2  of the differential equation y” + uy’  + by = 0,
where a and b are constants.
(a) Prove that W satisfies the first-order equation W’ + a W = 0 and hence  W(x)  = W(0)eëa2.
This formula shows that if W(0) #  0, then W(x) #  0 for a11 x.
(b) Assume ui  is not identically zero. Prove that  W(0) = 0 if and only if uz/ul  is constant.

23. Let ut  and u2  be any  two solutions of the differential equation y” + ay’  + by = 0 such  that
v,/vt  is not constant.
(a) Let y =f(x)  be any  solution of the differential equation. Use properties of the Wronskian
to prove that constants ci  and c2  exist such  that

w,(O)  +w,(O)  = f(O)  > c,zgO)  + c,v;(O)  =,f(O)  .

(b) Prove that every solution has the form y = ciut  + czvz  . In other words, vr  and ve form
a basis for the set of a11 solutions.

8.15 Nonhomogeneous linear equations of second order with constant coefficients

We turn now to a discussion of nonhomogeneous equations of the form

(8.30) y” + ay’  + by = R ,

where the coefficients a and b are constants but the right-hand member R is any  function
continuous  on (- CO,  + cc). The discussion may be simplified by the use of operator
notation. For any  function f with derivatives f' and f “,  we may define  an operator L
which transforms f into another function L(f) defined by the equation

L(f) =f" + af' + bf.

In operator notation, the differential equation (8.30) is written in the simpler form

L(y) = R .

lt is easy to verify that L(yl  + yz)  = L(yl) + L(y.J, and that L(cy)  = CL(~)  for every
constant c. Therefore, for every pair of constants ci  and c2  , we have

L(c,y,  + c,y,)  = c,L(y,)  + czL(yz)  .

This is called the Zinearity property of the operator L.
Now suppose y1  and yz  are any  two solutions of the equation L(y) = R. Since  L(yJ =

L(yJ = R, linearity gives us

L(yz  - yl) = L(ys)  - Uy,)  = R - R = 0 ,

SO yz  - y1  is a solution of the homogeneous equation L(y) = 0. Therefore, we must have

y2 - y1 = Cl4  + c2uz  9 where cru1  + c2v2  is the general solution of the homogeneous
equation, or

y2 = Cl%  + c2v2  +y,.
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This equation must be satisfied by every pair of solutions y1  and yz  of the nonhomogeneous
equation L(y) = R. Therefore, if we cari  determine one  particular solution y1  of the non-
homogeneous equation, a11  solutions are contained in the formula

(8.31) y = Cl4 + czvz  + y1 >

where c1  and c2  are arbitrary constants. Each such  y is clearly a solution of L(y) = R
because L(c,v,  + c2v2  + yI) = L(c,v,  + czvz)  + L(yl)  = 0 + R = R. Since  a11  solutions
of  L(y) = R are found in (8.31),  the linear combination c,v,  + czuz  + y1  is called the general
solution of (8.30). Thus, we have proved the following theorem.

THEOREM 8.8. If y1  is a particular solution of the nonhomogeneous equation L(y) = R,
the general solution is obtained by adding  to y1  the general solution of the corresponding
homogeneous equation L(y) = 0.

Theorem 8.7 tells us how to find the general solution of the homogeneous equation
L(y) = 0. It has the form y = clul  + c2uz  , where

(8.32) ul(x)  = e-arhl(x)  , v2(x)  = e-ar&42(x)  ,

the functions ur  and u2  being determined by the discriminant of the equation, as described
in Theorem 8.7. Now we show that v1  and v2 cari be used to construct a particular solution
y1  of the nonhomogeneous equation L(y) = R.

The construction involves a function W defined by the equation

W(x) = v1(x)lqx)  - u,(x)o;(x)  .

This is called the Wronskian of v1  and v2 ; some of its properties are described in Exercises
21 and 22 of Section 8.14. We shall need the property that W(x) is never  zero. This cari  be
proved by the methods outlined in the exercises or it cari  be verified directly for the particular
functions v1  and v2  given in (8.32).

THEOREM 8.9. Let v1  and v2  be the solutions of the equation L(y) = 0 given by (8.32),
where L(y) = y” + ay’  + by. Let W denote  the Wronskian of v1  and v2  . Then the non-
homogeneous equation L(y) = R has a particular solution y1  given by the formula

where
YlW  = t1W1(x>  + t2(xb2(4 3

(8.33) t1(x) = - z&(x)  -s R(x) dxW(x)  ’ t2(x>  = h(X) -s R(x) dxW(x)  *
Proof  Let us try to find functions t,  and t,  such  that the combination y1  = t,v, + t,v,

Will satisfy the equation L(yI)  = R. We have

y’ = t,v;  + t,v;  + (t$, + t&,)  )
yf = t,v; + t,v; + (t;v;  + t;v;) + (tiv, + t;v2)’  .
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When we form the linear combination L(yl)  = y; + ayi  + byl,  the terms involving tl
and t,  drop out  because of the relations L(u,) = L(U,)  = 0. The remaining terms give us
the relation

L(yl)  = (t;u;  + t&> + (tiu, + tau2>’  + a(tih  + Gu2>  .

We want to choose t, and t2  SO that L(yl)  = R. We cari  satisfy this equation if we choose
t, and t, SO that

t;u,  + tpu,  = 0 and t;u;  + t;u;  = R .

This is a pair of algebraic equations for ti and ti . The determinant of the system is the
Wronskian of u1  and u2  . Since this is never  zero, the system has a solution given by

t;  = -u,RlW and t;  = u,RIW.

Integrating these relations, we obtain Equation (8.33), thus completing the proof.

The method by which we obtained the solution y1  is sometimes called variation ofparam-
eters. It was first used by Johann Bernoulli in 1697 to solve linear equations of first order,
and then by Lagrange in 1774 to solve linear equations of second order.

Note: Since the functions t,  and t,  in Theorem 8.9 are expressed as indefinite integrals,
each  of them is determined only to within an additive constant. If we add a constant c1
to t1 and a constant c2  to t,  we change the function y1  to a new function yz  = y1  + clul  +
cZvZ  . By linearity, we have

L(y2) = Uyd + L(c,u,  + czu2) = L(y1) ,

SO the new function y, is also  a particular solution of the nonhomogeneous equation.

EXAMPLE 1. Find the general solution of the equation y” + y = tan x on (-~r/2,  7~/2).

Solution. The functions u1  and u2  of Equation (8.32) are given by

Their Wronskian is
tion (8.33) gives us

Ul(X) = COS x > u2(x)  = sin x .

W(x) = u,(x)u~(x) - u,(x)u~(x)  = cos2  x + sin2  x = 1. Therefore Equa-

and
h(x)  = ; j .sm x tan x dx = sin x - log Isec  x + tan XI  ,

t2(x)  =  j COS x tan x dx = I s i n x d x  =  -COS~.

Thus, a particular solution of the nonhomogeneous equation is

y1 =  h(XM4  +  t2(+2(x>  =sm x cas x - cas x log [sec  x + tan xl - sin x cas x

= -cosxloglsecx+  tanxl.
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By Theorem 8.8, its general solution is

y = cl  cas x + c2  sin x - cas x log [sec  x + mn XI  .

Although Theorem 8.9 provides a general method for determining a particular solution
of L(y) = R, special methods are available that are often easier to apply when the function
R has certain special forms. In the next section we describe  a method that works when R
is a polynomial or a polynomial times an exponential.

8.16 Special methods for determining a particular solution of the nonhomogeneous equation
y” + uy’  + by = R

CASE 1.  The right-hand member R is a polynomial of degree n. If b # 0, we cari  always
find a polynomial of degree n that satisfies the equation. We try a polynomial of the form

h(x) = 5 43lr=o

with undetermined coefficients. Substituting in the differential equation L(y) = R and
equating coefficients of like powers ofx, we may determine a,, a,-, , , . . , a,, a, in succession.
The method is illustrated by the following example.

EXAMPLE 1. Find the general solution of the equation y” + y = x3.

Solution. The general solution of the homogeneous equation y” + y = 0 is given by
y = c1  COS x + c2  sin x. TO this we must add one  particular solution of the nonhomogeneous
equation. Since  the right member is a cubic polynomial and since  the coefficient of y is
nonzero, we try to find a particular solution of the form Y~(X)  = Ax3  + Bx2  + Cx + D.
Differentiating twice, we find that y”(x) = 6Ax + 2B. The dilIerentia1  equation leads to
the relation

(6Ax + 2B) + (Ax3  + Bx2  + Cx + D) = x3.

Equating coefficients of like powers of x, we obtain A = 1, B = 0, C = -6, and D = 0,
SO a particular solution is y,(x) = x3 - 6x. Thus, the general solution is

Y = cl  COS x + c2  sin x + x3 - 6x .

It may be of interest  to compare this method with variation of parameters. Equation
(8.33) gives us

t,(x) = - 1 x3 sin x dx = -(3x3 - 6) sin x + (x3 - 6x) COS x

and

tz(x> = J x3  COS x dx = (3x2  - 6) COS x + (x3  - 6x) sin x .

When we form the combination t,v,  + t,u,  , we find the particular solution y,(x) = x3 - 6x,
as before. In this case, the use of variation of parameters required the evaluation of the
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integrals jx” sin x dx and jx” COS x dx. With the method of undetermined coefficients, no
integration is required.

If the coefficient b is zero, the equation y” + ay’  = R cannot be satisfied by a polynomial
of degree n,  but it cari  be satisfied by a polynomial of degree n + 1 if a # 0. If both a and
b are zero, the equation becomes y” = R; its general solution is a polynomial of degree
n + 2 obtained by two successive integrations.

CASE 2. The right-hand member has the form R(x) = p(x)emx,  where p is a polynomial
of degree n, and m is constant.

In this case the change of variable y = u(x)emx transforms the differential equation
y” + ay’ + by = R to a new equation,

u”  + (2m + a)u’ + (m”  + am + b)u  = p .

This is the type discussed in Case 1 SO it always has a polynomial solution u1  . Hence, the
original equation has a particular solution of the form y1  = U1(x)ern”,  where u1  is a poly-
nomial. If m2  + am + b # 0, the degree of CI~  is the same as the degree of p. If m2  +
am + b = 0 but 2m + a # 0, the degree of u1  is one  greater than that of p. If both
m2  + am + b = 0 and 2m + a = 0, the degree of u1  is two greater than the degree ofp.

EXAMPLE 2. Find a particular solution of the equation y” + y = xe3’.

Solution. The change of variable y = ue 3a leads to the new equation U”  + 6~’  +
10~  = x. Trying ul(x)  = Ax + B, we find the particular solution ur(x)  = (5x - 3)/50, SO

a particular solution of the original equation is y1  = e3”(5.x  - 3)/50.

The method of undetermined coefficients cari  also be used if R has the form R(x) =
p(x>e”” COS LXX,  or R(x) = p(x)e”” sin LXX,  wherep is a polynomial and m and CI  are constants.
In either case, there is always a particular solution of the form y,(x) = e”“[q(x)  COS QX  +
r(x) sin KX], where q and r are polynomials.

8.17 Exercises

Find the general solution of each  of the differential equations in Exercises 1 through 17. If the
solution is not valid over  the entire  real axis, describe  an interval  over  which it is valid.

1 .  y*  -y  =x . 9. y” + y’ - 2y = P.
2. yn  - y’ = x2. 10. y0  + y’ - 2y = e2s.
3. ys  + y’ = x2 + 2x. 11. y” +y’-2y  =e3: +e25.
4. y” - 2y’  + 3y = x3. 12. y” -2y’ +y =x +2x8.
5. y” - Sy’  + 4y = x2 - 2x + 1. 13. yn  f 2y’  + y = e-*/x2.
6. y” + y’ - 6y = 2x3 $  5x2 - 7x + 2. 14. y” + y = cot2  x.
7. yo  - 4y = e2x. 15. y” - y = 2/(1 + eZ).
8. y” + 4y = e-2x. 16. y” + y’ - 2y = eZ/(  1 + e”).

17. y” + 6y’  + 9y =f(x), wheref(x) = 1 for 1 < x < 2, andf(x)  = 0 for a11 other x.
18. If k is a nonzero constant, prove that the equation y” - k2y  = R(x) has a particular solution

y1  given by

yp;  x
s

R(t) sinh k(x - t) dt  .
0

Find the general solution of the equation y” - 9y = S5.
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19. If k is a nonzero constant, prove that the equation y” + k2y = R(x) has a particular solution
y1  given by

R(t) sin k(x - t) dt .

Find the general solution of the equation y” + 9y = sin 3x.

In each  of Exercises  20 through 25, determine the general solution.
20. y” + y = sin x. 23. y” + 4y = 3x sin x.
21. y” + y = cosx. 24. y” - 3y’  = 2ezx sin x.
22. y” + 4y = 3x COS x. 25. y#  + y = ezz  cas  3x.

8.18 Examples of physical problems leading to linear second-order equations with constant
coefficients

EXAMPLE 1. Simple harmonie  motion. Suppose a particle is constrained to move in a
straight line with its acceleration directed toward a fixed point of the line and proportional
to the displacement from that point. If we take the origin as the fixed point and let y be
the displacement at time x, then the acceleration y” must be negative when y is positive,
and positive when y is negative. Therefore we cari  Write  y” = -k2y,  or

y” + k2y  = 0 )

where k2  is a positive constant. This is called the differential equation of simp2e  harmonie
motion. It is often used as the mathematical mode1 for the motion of a point on a vibrating
mechanism such  as a plucked string or a vibrating tuning fork. The same equation arises
in electric circuit theory where it is called the equation of the harmonie  oscillator.

Theorem 8.6 tells us that a11 solutions have the form

(8.34) y =  A s i n k x +  B c o s k x ,

where A and B are arbitrary constants. We cari  express the solutions in terms of the sine
or cosine  alone. For example, we cari  introduce new constants C and u,  where

ckKiq-2 and
B

CI  = arctan - ,
A

then we have (see Figure 8.4) A = Ccos  CI,  B  = C sin CI, and Equation (8.34) becomes

y=Ccoscrsinkx+Csincrcoskx=Csin(kx+cc).

When the solution is written in this way, the constants C and tc have a simple geometric
interpretation (see Figure 8.5). The extreme values of y, which oc&r  when sin (kx + a)  =
f 1, are &C.  When x = 0, the initial displacement is C sin CI.  As x increases, the particle
oscillates between the extreme values +C and -C with period 2n/k.  The angle kx + CI
is called the phase angle and u itself is called the initial value of the phase angle.
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FIGURE 8.4 FIGURE 8.5 Simple harmonie motion.

EXAMPLE 2. Damped vibrations. If a particle  undergoing simple harmonie  motion is
suddenly subjected to an external force proportional to its velocity, the new motion satisfies
a differential equation of the form

y” + 2cy’  + k2y  = 0 ,

where c and k2  are constants, c # 0, k > 0. If c > 0, we Will show that a11 solutions tend
to zeroasx-t  +co. In this case, the differential equation is said to be stable. The external
force causes damping of the motion. If c < 0, we Will show that some solutions have
arbitrarily large absolute  values as x + + 00. In this case, the equation is said to be
unstable.

Since the discriminant of the equation is d = (2~)~  - 4k2 = 4(c2  - k2),  the nature of
the solutions is determined by the relative sizes of c2  and k 2. The three cases d = 0, d > 0,
and d < 0 may be analyzed as follows:

(a) Zero discriminant: c2  = k2.  In this case, a11 solutions have the form

y = ewcs(A  + Bx).

If c > 0, a11 solutions tend to 0 as x 4  + CO. This case is referred to as critical damping.
If B # 0, each  solution Will change sign exactly once because of the linear factor A + Bx.
An example is shown in Figure 8.6(a). If c < 0, each  nontrivial solution tends to + CO  or
to  -cc asx+ +co.

(b) Positive discriminant: c2 > k2. By Theorem 8.7 a11  solutions have the form

y = e-cz(~ehz  +  Be-h”) = Ae(h-c)ï  +  Be-(h+ds  >

where h = $16 = dc2  - k2.  Since h2  = c2 - k2,  we have h”  - c2 < 0 SO (h - c)(h + c) < 0.
Therefore, the numbers h - c and h + c have opposite signs. If c > 0, then h + c is
positive SO h - c is negative, and hence  both exponentials e (h-e)x  and e-(h+c)r  tend to zero
as x- +Go. In this case, referred to as overcritical damping, a11  solutions tend to 0 for
large x. An example is shown in Figure 8.6(a). Each solution cari change sign at most
once.

If c < 0, then h - c is positive but h + c is negative. Thus, both exponentials ethecjZ
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and e-(h+c)r  tend to + cc for large x, SO again there are solutions with arbitrarily large
absolute values.

(c) Negative discriminant: c2 < k2. In this case, a11  solutions have the form

y = Cece”  sin (hx + X)  ,

where h = $Cd = 2/k2 - c2. If c > 0, every nontrivial solution oscillates, but the
amplitude of the oscillation decreases to 0 as x + + CO. This case is called undercritical
damping and is illustrated in Figure 8.6(b). If c < 0, a11 nontrivial solutions take arbitrarily
large positive and negative values as x + + CO.

Undercritical damping

Critical damping
,.-*

-,’,,

(a) Discriminant 0 or positive
I

(b) Discriminant negative

FIGURE 8.6 Damped vibrations occurring as solutions of y” + 24 + k2y = 0, with
c > 0, and discriminant 4(c2  - k2).

EXAMPLE 3. Electric circuits. If we insert a capacitor in the electric circuit of Example 5
in Section 8.6, the differential equation which serves as a mode1 for this circuit is given by

Wt)  + RZ(t)  + ; s I(t) dt = v(c) >
where C is a positive constant called the capacitance. Differentiation of this equation gives
a second-order linear equation of the form

LZ”(t)  + RZ’(t)  + ; Z(t) = V’(t) .

If the impressed voltage V(t)  is constant, the right member is zero and the equation takes
the form

Z”(t) + ; Z’(t) + $ z(t) = 0 .

This is the same type of equation analyzed in Example 2 except that 2c is replaced by RIL,
and k2  is replaced by l/(LC).  In this case, the coefficient c is positive SO the equation is
always stable. In other words, the current  Z(t) always tends to 0 as t - + CO.  The
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terminology of Example 2 is also used here. The current  is said to be critically damped
when the discriminant is zero (CR2 = 4L), overcritically damped when the discriminant
is positive (CR2  > 4L),  and undercritically damped when the discriminant is negative
(CR2  < 4L).

EXAMPLE 4. Motion of a rocket  with  variable mass. A rocket is propelled by burning
fuel in a combustion chamber,  allowing the products  of combustion to be expelled backward.
Assume the rocket starts from rest and moves vertically upward along a straight line.
Designate the altitude of the rocket at lime  t by r(t), the mass of the rocket (including fuel)
by m(t), and the velocity of the exhaust matter,  relative to the rocket, by c(t). In the absence
of external forces, the equation

(8.35) m(t)r”(t)  = m’(t)c(t)

is used as a mathematical mode1 for discussing the motion. The left member, m(t)r”(t),  is
the product  of the mass of the rocket and its acceleration. The right member, m’(t)c(t),  is
the accelerating force on the rocket caused  by the thrust developed by the rocket engine.
In the examples to be considered here, m(t) and c(t) are known or cari  be prescribed in
terms of r(t) or its derivative r’(t) (the velocity of the rocket). Equation (8.35) then becomes
a second-order differential equation for the position function r.

If external forces are also present, such  as gravitational attraction, then, instead of
(8.3.5),  we use the equation

(8.36) m(t)r”(t)  = m’(t)c(t)  + F(t) ,

where F(t) represents the sum of a11  external forces acting on the rocket at time t.
Before we consider a specific example, we Will give an argument which may serve to

motivate  the Equation (8.35). For this purpose  we consider first a rocket that fires its
exhaust matter intermittently, like bullets from a gun. Specifically, we consider a time
interval [t,  t + h], where h is a small positive number; we assume that some exhaust
matter is expelled at time t,  and that no further exhaust matter is expelled in the half-open
interval (t, t + h]. On the basis of this assumption, we obtain a formula whose limit, as
h + 0, is Equation (8.35).

Just before the exhaust material is expelled at time t,  the rocket has mass m(t) and
velocity v(t). At the end of the time interval [t,  t + h], the rocket has mass m(t + h) and
velocity v(t + 11).  The mass of the expelled matter  is m(t) - m(t + h), and its velocity
during the interval is u(t) + c(t), since  c(t) is the velocity of the exhaust relative to the
rocket. Just before the exhaust material is expelled at time t,  the rocket is a system with
momentum m(t)v(t).  At time t + h, this system consists  of two parts, a rocket with
momentum m(t + h)u(t  + h)  and exhaust matter  with momentum [m(t) - m(t + h)][u(t)  +
c(t)]. The law of conservation of momentum states that the momentum of the new system
must be equal to that of the old. Therefore, we have

m(t)v(t)  = m(t + h)v(t + h)  + [m(t) - m(t + h)l[v(t)  + c(t)1  y

from which we obtain

m(t + h)[v(t  + h)  - v(t)]  = [m(t  + h)  - m(t>lc(t)  .
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Dividing by h and letting h + 0, we find that

m(t)?/(t) = m’(t)c(t)  >

which is equivalent to Equation (8.35).
Consider a special  case in which the rocket starts from rest with an initial weight of

w  pounds (including b pounds of fuel) and moves vertically upward along a straight line.
Assume the fuel is consumed at a constant rate of k pounds per second and that the products
of combustion are discharged directly backward with a constant speed of c feet  per second
relative to the rocket. Assume the only external force acting on the rocket is the earth’s
gravitational attraction. We want to know how high the rocket Will travel before a11  its
fuel is consumed.

Since  a11  the fuel is consumed when kt = b, we restrict t to the interval 0 5 t 2 b/k.
The only external force acting on the rocket is -m(t)g,  the velocity c(t) = -c, SO Equation
(8.36) becomes

m(t)r”(t)  = -m’(t)c  - m(t)g  .

The weight of the rocket at time t is w - kt, and its mass m(t) is (w  - kt)/g;  hence  we have
m’(t) = -k/g  and the foregoing equation becomes

m’(t)r”(t)  = - - k c

40
c-g=--

w - k t  g*

Integrating, and using the initial condition r’(0) = 0, we  find

w - kt
r’(t) = -c log - - gt .

W

Integrating again and using the initial condition r(0) = 0, we obtain the relation

r(t) =
c(w  - kt) w - k t  1

k
log -

W
- ; gt2  + cf.

Al1 the fuel is consumed when t = b/k.  At that instant the altitude is

(8.37)
b c(w  - b) br- =-0k k

log w-
W

This formula is valid if b < w. For some rackets, the weight of the carrier is negligible
compared  to the weight of the fuel, and it is of interest  to consider the limiting case b = w.
We cannot put b = w in (8.37) because of the presence  of the term log (w  - b)/w. However,
if we let b + w, the first term in (8.37) is an indeterminate form with limit 0. Therefore,
when b + w, the limiting value of the right member of (8.37) is

]im r b = _ ! gw2

0b+w  k
2>+y=-;gT2+cT,

where T = w/k  is the time required for the entire  weight w to be consumed.
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8.19 Exercises

In Exercises 1 through 5, a particle is assumed to be moving in simple harmonie motion, accord-
ing to the equation y = C sin (kx + a).  The velocity of the particle is defined to be the derivative
y’. Thefrequency of the motion is the reciprocal of the period. (Period = 2n/k;  frequency = k/2=.)
The frequency represents the number of cycles completed in unit time, provided k > 0.

1. Find the amplitude C if the frequency is l/n  and if the initial values of y and y’ (when x = 0)
are 2 and 4, respectively.

2. Find the velocity when y is zero, given that the amplitude is 7 and the frequency is 10.
3. Show that the equation of motion cari  also  be written as follows:

y = A COS (mx + 8)  .

Find equations that relate the constants A, m, /?,  and C, k, u.
4. Find the equation of motion given that y = 3 and y’ = 0 when x = 0 and that the period is +.
5. Find the amplitude of the motion if the period is 2 n and the velocity is &v,  when y = y,, .
6. A particle undergoes simple harmonie motion. Initially its displacement is 1, its velocity is 2

and its acceleration is - 12. Compute its displacement and acceleration when the velocity is 1/8.
7. For a certain positive number k, the differential equation of simple harmonie motion y” +

k2y  = 0 has solutions of the form y = f(x) with f(0) = f(3) = 0 and f(x) < 0 for a11 x in
the open  interval  0 < x < 3. Compute k and find a11 solutions.

8. The current Z(t) at time t flowing in an electric circuit obeys  the differential equation Z”(t)  +
Z(t) = G(t), where G is a step function  given by G(t) = 1 if 0 5  t 5  27~,  G(t) = 0 for a11 other t.
Determine the solution which satisfies the initial conditions Z(0) = 0, Z’(0) = 1.

9. The current Z(t) at time t flowing in an electric circuit obeys  the differential equation

Z”(t) + RZ’(t)  + Z(t) = sin wt  ,

where R and o are positive constants. The solution cari  be expressed in the form Z(t) =
F(t) + A sin (ot  + a), where F(t)  - 0 as t - + CO,  and A and OL  are constants depending on
R and w,  with A > 0. If there is a value of o which makes A as large as possible, then 0/(2~)
is called a resonance  frequency of the circuit.
(a) Find a11 resonance  frequencies when R = 1.
(b) Find those values of R for which the circuit Will have a resonance  frequency.

10. A spaceship is returning to earth. Assume that the only external force acting on it is the
action of gravity,  and that it falls along  a straight line toward the tenter  of the earth. The
effect  of gravity  is partly overcome by firing  a rocket  directly downward. The rocket  fuel is
consumed  at a constant rate of k pounds per second and the exhaust material has a constant
speed of c feet  per second relative to the rocket. Find a formula for the distance the spaceship
falls in time t if it starts from rest at time t = 0 with an initial weight of w  pounds.

11. A rocket  of initial weight w  pounds starts from rest in free space  (no external forces) and
moves along  a straight line. The fuel is consumed  at a constant rate of k pounds per second
and the products  of combustion are discharged directly backward at a constant speed of c
feet  per second relative to the rocket. Find the distance traveled at time t.

12. Solve Exercise  11 if the initial speed of the rocket  is v0  and if the products  of combustion are
fired at such  a speed that the discharged material remains at rest in space.

8.20 Remarks concerning nonlinear differential equations

Since  second-order linear differential equations with constant coefficients occur in such
a wide variety of scientific problems, it is indeed fortunate that we have systematic methods
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for solving these equations. Many nonlinear equations also  arise naturally from both
physical and geometrical problems, but there is no comprehensive theory comparable to
that for linear equations. In the introduction to this chapter we mentioned a classic “bag
of tricks” that has been developed for treating many special  cases of nonlinear equations.
We conclude  this chapter with a discussion of some of these tricks and some of the problems
they help to solve. We shall consider only first-order equations which cari be solved for
the derivative y’ and expressed in the form

(8.38)

We recall that a solution of (8.38) on an interval Z is any  function, say  y = Y(x), which
is differentiable on Z and satisfies the relation Y’(x) =f[x, Y(x)] for a11  x in Z. In the linear
case, we proved an existence-uniqueness theorem which tells us that one  and only one
solution exists satisfying a prescribed initial condition. Moreover, we have an explicit
formula for determining this solution.

This is not typical of the general case. A nonlinear equation may have no solution
satisfying a given initial condition, or it may have more than  one. For example, the equation
(y’)”  - xy’  + y + 1 = 0 has no solution with y = 0 when x = 0, since  this would require
that (j)” E - 1 when .X  = 0. On the other hand, the equation y’ = 3~~‘~  has two distinct
solutions, Y,(x) = 0 and Y,(X)  = x3, satisfying the initial condition y = 0 when x = 0.

Thus, the study of nonlinear equations is more difficult because of the possible non-
existence or nonuniqueness of solutions. Also,  even when solutions exist, it may not be
possible to determine them explicitly in terms of familiar functions.  Sometimes we cari
eliminate the derivative y’ from the differential equation and arrive at a relation of the form

satisfied by some, or perhaps all, solutions. If this equation cari  be solved for y in terms
of x, we get an explicit  formula for the solution. More often than not, however, the
equation is too complicated to solve for y. For example, in a later section we shall study
the differential equation

and we shall find that every solution necessarily satisfies the relation

(8.39) i log (x” + y") + arctan 2 + C = 0
X

for some constant C. It would be hopeless to try to solve this equation for y in terms of x.
In a case like this, we say  that the relation (8.39) is an implicitformula  for the solutions. It
is common  practice to say  that the differential equation has been “solved” or “integrated”
when we arrive at an implicit  formula such  as F(x, y) = 0 in which no derivatives of the
unknown function appear. Sometimes this formula reveals useful information about the
solutions. On the other hand, the reader should realize that such  an implicit  relation may
be less helpful than the differential equation itself for studying properties of the solutions.
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In the next section we show how qualitative information about the solutions cari  often
be obtained directly from the differential equation without a knowledge of explicit  or
implicit formulas for the solutions.

8.21 Integral curves and direction fields

Consider a differential equation of first order, say  y’ = f(x, y), and suppose some of the
solutions satisfy an implicit relation of the form

(8.40) w, y, c>  = 0 ,

where C denotes  a constant. If we introduce a rectangular coordinate system and plot a11
the points (x, y)  whose coordinates satisfy (8.40) for a particular C, we obtain a curve called
an integral curve of the differential equation. Different values of C usually give different
integral curves, but a11  of them share a common  geometric property. The differential
equation y’ = f(x, y) relates the s ope y’ at each  point (x, y) of the curve to the coordinates1
x and y. As C takes on a11 its values, the collection of integral curves obtained is called a
one-parameter  family of curves.

For example, when the differential equation is y’ = 3, integration gives us y = 3x + C,
and the integral curves form a family of straight lines,  a11 having slope 3. The arbitrary
constant C represents the y-intercept of these lines.

If the differential equation is y’ = x, integration yields y = 4x” + C, and the integral
curves form a family of parabolas as shown in Figure 8.7. Again,  the constant C tells us
where the various curves cross the y-axis. Figure 8.8 illustrates the family of exponential

FIGURE 8.7 Integral curves of the differ-
ential equation y’ = x.

FIGURE  8.8 Integral curves of the differential
equation y’ = y.
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curves, y = Ce”, which are integral curves of the differential equation y’ = y. Once more,
C represents the y-intercept. In this case, C is also equal to the slope of the curve at the
point where it crosses the y-axis.

A family of nonparallel straight lines is shown in Figure 8.9. These are integral curves
of the differential equation

(8.41)

FIGURE  8.9 Integral curves of the differential
dY

Y

FIGURE  8.10 A solution of Equation
(8.41) that is not a member of the

family in Equation (8.42).

and a one-parameter  family of solutions is given by

(8 .42) y = cx - $22 .

This family is one  which possesses an envelope, that is, a curve having the property that
at each  of its points it is tangent to one  of the members of the family.7 The envelope here
is y = x2 and its graph is indicated by the dotted curve in Figure 8.9. The envelope of a
family of integral curves is itself an integral curve because the slope and coordinates at a
point of the envelope are the same as those of one  of the integral curves of the family. In
this example, it is easy to verify directly that y = x2 is a solution of (8.41). Note that this
particular solution is not a member of the family in (8.42). Further solutions, not members
of the family, may be obtained by piecing together members of the family with portions
of the envelope. An example is shown in Figure 8.10. The tangent line at A cornes from
taking C = -2 in (8.42) and the tangent at B cornes from C = 1. The resulting solution,
y =f(~),  is given as follows:

- 2 x -  1 i f  x5-1,

f ( x )  = x2 if -l<.X<i,
+x - xl6 i f  .x2;.

t And conversely, each  member of the family is tangent to the envelope.
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This function has a derivative and satisfies the differential equation in (8.41) for every
real x. It is clear that an infinite number of similar examples could be constructed in the
same way. This example shows that it may not be easy to exhibit a11  possible solutions of
a differential equation.

Sometimes it is possible to find a first-order differential equation satisfied by a11  members
of a one-parameter  family of curves. We illustrate with two examples.

EXAMPLE 1. Find a first-order differential equation satisfied by a11 circles with tenter
at the origin.

Solution. A circle with tenter  at the origin and radius C satisfies the equation
x2 + y2  = C2.  As C varies over  a11  positive numbers, we obtain every circle with tenter
at the origin. TO find a first-order differential equation having these circles as integral
curves, we simply differentiate the Cartesian equation to obtain 2x + 2yy’  = 0. Thus,
each  circle satisfies the differential equation y’ = -~/y.

EXAMPLE 2. Find a first-order differential equation for the family of a11  circles passing
through the origin and having their centers on the x-axis.

Solution. If the tenter  of a circle is at (C, 0) and if it passes through the origin, the
theorem of Pythagoras tells us that each  point (x, y) on the circle satisfies the Cartesian
equation (x - C)2  + y2  = C2,  which cari  be written as

(8.43) x2+y2-2cx=o.

TO find a differential equation having these circles as integral curves, we differentiate (8.43)
to obtain 2x + 2yy’  - 2C = 0, or

x+yy ’=  c .

Since  this equation contains C, it is satisfied only by that circle in (8.43) corresponding to
the same C. TO obtain one  differential equation satisfied by a11  the curves in (8.43),  we
must eliminate C. We could differentiate (8.44) to obtain 1 + yy”  + (Y’)~ = 0. This is a
second-order differential equation satisfied by a11  the curves in (8.43). We cari  obtain a
first-order equation by eliminating C algebraically from (8.43) and (8.44). Substituting
x + yy’  for C in (8.43),  we obtain x2 + y2  - 2x(x + yy’), a first-order equation which
cari  be solved for y’ and written as y’ = (y”  - x2)/(2xy).

Figure 8.11 illustrates what is called a direction jîeld of a differential equation. This is
simply a collection of short line segments drawn tangent to the various integral curves.
The particular example shown in Figure 8.11 is a direction field of the equation y’ = y.

A direction field cari  be constructed without solving the differential equation. Choose
a point, say  (a, b), and compute the numberf(a,  b)  obtained by substituting in the righthand
side  of the differential equation y’ =f(x, y). If there is an integral curve  through this point,
its slope there must be equal tof(a,  b). Therefore, if we draw a short line segment through
(a, b)  having this slope, it Will be part of a direction field of the differential equation. By
drawing several of these line segments, we cari  get a fair idea of the general behavior of the
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F IGURE 8.11 A direction field for the differential equation y’ = y.

integral curves. Sometimes such  qualitative information about the solution may be a11
that is needed. Notice that different points (0, b)  on the y-axis yield different integral
curves. This gives us a geometric reason for expecting an arbitrary constant to appear
when we integrate a first-order equation.

8.22 Exercises

In Exercises 1 through 12, find a first-order differential equation having the given family of
curves as integral curves.

1. 2x+3y=c. 6. x2 +y2  + 2Cy = 1.
2. y = Ceë2’. 7. y = C(x - l)e=.
3. x2 - y2  = c. 8. y4(x  + 2) = C(x - 2).
4. xy = c. 9. y = ccosx.
5. y2  = cx. 10. arctan  y + arcsin  x = C.

11. Al1  circles through the points (1,O)  and ( - 1,O).
12. Al1  circles through the points (1, 1) and ( - 1, - 1).

In the construction of a direction field of a differential equation, sometimes the work may  be
speeded considerably if we first locate  those points at which the slope y’ has a constant value C.
For each  C, these points lie on a curve called an isocline.
13. Plot the isoclines corresponding to the constant slopes i, 1, s, and 2 for the differential equation

y’ = x2 + y”.  With the aid of the isoclines, construct  a direction field for the equation and try
to determine the shape of the integral curve passing through the origin.

14. Show that the isoclines of the differential equation y’ = x + y form a one-parameter  family
of straight lines.  Plot the isoclines corresponding to the constant slopes 0, &&,  fl, +$,  f2.
With the aid of the isoclines, construct  a direction field and sketch the integral curve passing
through the origin. One  of the integral curves is also an isocline; find this curve.
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15. Plot a number of isoclines and construct  a direction field for the equation

du  du  2y=xz+-&  .
( )

If you  draw the direction field carefully, you  should be able to determine a one-parameter
family of solutions of this equation from the appearance of the direction field.

8.23 First-order separable equations

A first-order differential equation of the form y’ = f(x, y) in which the right member
f (x, y) splits into a product  of two factors, one  depending on x alone and the other depending
on y alone, is said to be a separable equation. Examples are y’ = x3,y’ = y, y’ = sin y log x,
y’ = x/tan  y, e tc. Thus each  separable equation cari  be expressed in the form

Y’ = QGW(u)  2

where Q and R are given functions. When R(y) # 0, we cari  divide by R(y) and rewrite
this differential equation in the form

where A(y) = l/R(y). T h e next theorem tells us how to find an implicit formula satisfied
by every solution of such  an equation.

THEOREM 8.10. Let y = Y(x) be any  solution of the separable dtxerential  equation

(8.45) &)y’  = Q(x)

such  that Y’ is continuous on an open  interval  I. Assume that both Q and the composite
function A 0 Y are continuous on I. Let G be any  primitive of A, that is, any  function such
that G’ = A. Then the solution Y satisjes  the implicit formula

(8.46) G(Y) = j Q(x)  dx  + C

for some constant C. Conversely, if y satisfïes  (8.46) then y is a solution of (8.45).

Proof Since  Y is a solution of (8.49, we must have

(8.47) A [ WI Y’(4 = QG>

for each  x in I. Since  G’ = A, this equation becomes

G’[ Y(x)] Y’(x) = Q(x) .

But, by the chain rule, the left member is the derivative of the composite function G 0 Y.
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Therefore G 0 Y is a primitive of Q, which means that

(8.48) G[W)l  = j” Q(x)  dx + C

for some constant C. This is the relation (8.46). Conversely, if y = Y(x) satisfies (8.46),
differentiation gives us (8.47), which shows that Y is a solution of the differential equation
(8.45).

Note: The implicit formula (8.46) cari  also  be expressed in terms of A. From (8.47)
we have

(A[ Y(x)] y’(x) dx =J Q(x) dx + C .

If we make the substitution y = Y(x), dy = Y’(x) dx in the integral on the left, the
equation becomes

(8.49) fi(y)  dy  = jQW dix  + C .

Since the indefinite integral j A(y) dy represents any  primitive of A, Equation (8.49) is
an alternative way of writing (8.46).

In practice, formula (8.49) is obtained directly from (8.45) by a mechanical process. In
the differential equation (8.45) we Write  dy/dx  for the derivative y’ and then treat dy/dx  as
a fraction to obtain the relation A(y) dy = Q(x) dx. Now we simply attach  integral signs
to both sides  of this equation and add the constant C to obtain (8.49). The justification for
this mechanical process is provided by Theorem 8.10. This process is another example
illustrating the effectiveness of the Leibniz notation.

EXAMPLE. The nonlinear equation xy’ + y = y2  is separable since  it cari  be written in
the form

(8.50) Y’ 1-=-
Y(Y - 1) x ’

provided that y(y  - 1) # 0 and x # 0. Now the two constant functions y = 0 and y = 1
are clearly solutions of xy’ + y = y2. The remaining solutions, if any  exist, satisfy (8.50)
and, hence,  by Theorem 8.10 they also satisfy

s dy~ =
Y(Y  - 1) s -$K

x

for some constant K. Since the integrand on the left is l/(y  - 1) - l/y, when we integrate,
we find that

This gives us l(y - l)/yl = 1 1x eK  or (y - l)/y  = Cx for some constant C. Solving for y,
we obtain the explicit  formula

(8.51) 1
Y=1-&
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Theorem 8.10 tells us that for any  choice of C this y is a solution; therefore, in this example
we have determined a11  solutions: the constant functions y = 0 and y = 1 and a11  the
functions defined by (8.51). Note that the choice C = 0 gives the constant solution y = 1.

8.24 Exercises

In Exercises 1 through 12, assume solutions exist and find an implicit formula satisfied by the
solutions.

1. y’ = xa/yz. 7. (1 - x2)i’Zy’ + 1 + y2  = 0.
2. tan x cas  y = -y’ tan y. 8. xy(1  + x2)y’  - (1 + y2) = 0.
3. (x + 1)y’  + y2  = 0. 9. (x2  - 4)y’ = y.
4. y’ = (y - l)(y - 2). 10. xyy’ = 1 + x2 + y2  + x”y”.
5. y$4=2y’  = x. 11. yy’  = @+22/  sin x.
6. (x - 1)~’ = xy. 12. x dx  + y dy  = xy(x dy  - y dx).

In Exercises 13 through 16, find functionsf,  continuous on the whole real axis, which satisfy the
conditions given. When it is easy to enumerate a11 of them, do SO; in any  case, find as many  as
you  cari.
13. f(x) = 2 + jlf(t) dt.
14. f(x>f’(x)  = 5x, f(0) = 1.
15. f’(x) + 2x&) = 0, f(0) = 0.
16. ,f2(x) + [f’(x)]”  = 1. Note: f(x) = -1 is one  solution.
17. A nonnegative functionf,  continuous on the whole real axis, has the property that its ordinate

set over  an arbitrary interval  has an area  proportional to the length of the interval. Findf.
18. Solve Exercise 17 if the area  is proportional to the difference of the function  values at the end-

points of the interval.
19. Solve Exercise 18 when “difference” is replaced by “sum.”
20. Solve Exercise 18 when “difference” is replaced by “product.”

8.25 Homogeneous first-order equations

We consider now a special kind of first-order equation,

(8.52) Y’ = f(X9 Y> 9

in which the right-hand side  has a special property known as homogeneity. This means that

(8.53) f(w 94 = f(XY  Y)

for a11 ,Y, y, and a11  t # 0. In other words, replacement of x by tx  and y by ty has no effect
on the value off(x,  y). Equations of the form (8.52) which have this property are called
homogeneous  (sometimes called homogeneous of degree zero). Examples are the following:

y’ = y-x y’ = x2 + y2 3

y+x’ ( )- 2 y’ = x sin  -x2 + Y2 y’=logx-logy.
XY Y -&2  - y2’

If we use (8.53) with t = 1/x,  the differential equation in (8.52) becomes

(8.54) y’ =f l,Y  .
( 1x
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The appearance of the quotient y/x on the right suggests that we introduce a new unknown
function v where v = y/x.  Then y = vx, y’ = v’x + v, and this substitution transforms
(8.54) into

v’x + v =f(l, v) or x$=j(l,V)-v.

This last equation is a first-order separable equation for v. We may use Theorem 8.10 to
obtain an implicit formula for u  and then replace v by y/x  to obtain an implicit formula
for y.

EXAMPLE. Solve the differential equation y’ = (y - ~)/(y  + x).

Solution. We rewrite the equation as follows:

V/X  - 1y ’  4  ~

y/x  + 1.

The substitution v = y/x transforms this into

du v - lx-z--v=-l+.
d x u+l v+l

Applying Theorem 8.10, we get

s V

1 + u2
du+  ’

s
-du= -
1 + u2 s

$+c.

Integration yields

t log (1 + u”)  + arctan v = -1og  Ix1 + C

Replacing v by y/x, we have

t log (x2 + y”)  - 4 log x2 + arctan 2 = -1og  Ix( + C ,
x

and since  log x2 = 2 log 1x1, this simplifies to

4 log (x2 + y2)  + arctan y = C .
x

There are some interesting geometric properties possessed by the solutions of a homo-
geneous equation y’ = f(x, y). First of all, it is easy to show that straight lines through the
origin are isoclines of the equation. We recall that an isocline of y’ =f(x, y) is a curve
along which the slope y’ is constant. This property is illustrated in Figure 8.12 which
shows a direction field of the differential equation y’ = -2y/x.  The isocline corresponding
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to slope c has the equation -2y/x  = c, or y = -icx  and is therefore a line of slope -te
through the origin. TO prove the property in general, consider a line of slope m through
the origin. Then y = mx for a11  (x, y) on this line; in particular, the point (1, m) is on the
line. Suppose now, for the sake of simplicity, that there is an integral curve through each
point of the line y = mx. The slope of the integral curve through a point (a, b)  on this
line is f(a, b) =f(a,  ma). If a # 0, we may use the homogeneity property in (8.53) to

Y

FIGURE 8.12 A direction field for the differential equation y’ = - 2y/x. The isoclines
are straight lines  through the origin.

Write  f(a, ma) =f(l, m). In other words, if (a, b)  # (0, 0), the integral curve through
(a, b)  has the same slope’as the integral curve through (1, m). Therefore the line y = mx
is an isocline, as asserted. (It  cari  also be shown that these are the only isoclines of a
homogeneous equation.)

This property of the isoclines suggests a property of the integral curves known as
invariance under similarity transformations. We recall that a similarity transformation
carries a set S into a new set kS obtained by multiplying the coordinates of each  point
of S by a constant factor k > 0. Every line through the origin remains fixed under a
similarity transformation. Therefore, the isoclines of a homogeneous equation do not
change under a similarity transformation; hence  the appearance of the direction field
does  not change either. This suggests that similarity transformations carry integral curves
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into integral curves. TO prove this analytically, let us assume that S is an integral curve
described by an explicit  formula of the form

(8.55) y = F(x) .

TO say  that S is an integral curve of y’ = f(~,  y) means that we have

(8.56) F’(x)  = f(x, F(x))

for a11  x under consideration. Now choose  any  point (x, y) on kS. Then the point (x/k,  y/k)
lies on S and hence  its coordinates satisfy (8.55),  SO we have y/k  = F(x/k)  or y = kF(x/k).
In other words, the curve kS is described by the equation y = G(x), where G(x) = kF(x/k).
Note that the derivative of G is given by

G’(x) = kF’($ $ = F’(s)  .

TO prove that kS is an integral curve of y’ = f(x, y) it Will suffice  to show that G’(x) =
f(x, G(x)) or, what is the same thing, that

(8.57) Fr(;) =f (x, kF($)  .

But if we replace x by x/k  in Equation (8.56) and then use the homogeneity property with
t = k, we obtain

F$)  =f(;>$)) =f(x,kF(;j)  >

and this proves (8.57). In other words, we have shown that kS is an integral curve whenever
Sis. A simple example in which this geometric property is quite obvious is the homogeneous
equation y’ = -x/y whose integral curves form a one-parameter  family of concentric
circles given by the equation x2 + y2  = C.

It cari  also be shown that if the integral curves of a first-order equation y’ = f(x, y) are
invariant under similarity transformations, then the differential equation is necessarily
homogeneous.

8 . 2 6  Exercises

1. Show that the substitution y = X/V  transforms a homogeneous equation y’ = f (x, y) into a
first-order equation for v which is separable. Sometimes this substitution leads to integrals
that are easier to evaluate  than those obtained by the substitution y = xv discussed in the text.

Integrate the differential equations in Exercises  2 through 11.
2 +

2. y’ = T. 4. y’ =~ 2y2 .
XY

3. y’=1  +;. 5. (2yZ - x”)y’  + 3xy = 0.



Some geometrical and physical problems leading to Jirst-order  equations 351

6. xy’ = y - 2/x2 + y2. 9. y’ = y(x2 + xy + y?
x(x2 + 3xy + y21  *

7. x2y’ + xy + 2y2  = 0. 10. y’ =: +sin:.

8. y2  + (x2 - xy + y”)y’  = 0. 11.  x(y + 4x)y’ + y(x + 4y) = 0.

8.27 Some geometrical and physical problems leading to first-order equations

We discuss next some examples of geometrical and physical problems that lead to
first-order differential equations that are either separable or homogeneous.

Orthogonal trajectories. Two curves are said to intersect orthogonally at a point if their
tangent lines are perpendicular at that point. A curve which intersects every member of a
family of curves orthogonally is called an orthogonal trajectory for the family. Figure 8.13
shows some examples. Problems involving orthogonal trajectories are of importance in
both pure and applied mathematics. For example, in the theory of fluid flow, two orthogonal
families of curves are called the equipotential lines  and the stream lines,  respectively. In the
theory of heat, they are known as isothermal lines  and lines  ofJow.

Suppose a given family of curves satisfies a first-order differential equation, say

(8.58) Y' =fku> *

The number f (x, y) is the slope of an integral curve passing through (x, y). The slope of
each  orthogonal trajectory through this point is the negative reciprocal - l/f  (x, y), SO the
orthogonal trajectories satisfy the differential equation

1

y’  = - f(x, y) *

If (8.58) is separable, then (8.59) is also separable. If (8.58) is homogeneous, then (8.59) is
also homogeneous.

EXAMPLE 1. Find the orthogonal trajectories of the family of a11 circles through the origin
with their centers on the x-axis.

Solution. In Example 2 of Section 8.21 we found that this family is given by the
Cartesian equation x2 + y2  - 2Cx = 0 and that it satisfies the differential equation
y’ = (y”  - x~/(~xJ)).  Replacing the right member by its negative reciprocal, we find that
the orthogonal trajectories satisfy the differential equation

y1 = 2xy
x2 - Y2  .

This homogeneous equation may be integrated by the substitution y = vx, and it leads to
the family of integral curves

x2 + y2  - 2cy = 0 .
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This is a family of circles passing through the origin and having their centers on the y-axis.
Examples are shown in Figure 8.13.

Pursuit  problems. A point Q is constrained to move along a prescribed plane curve C, .
Another point P in the same plane “pursues” the point Q. That is, P moves in such  a
manner that its direction of motion is always toward Q. The point P thereby traces out
another curve C, called a curve of pursuit. An example is shown in Figure 8.14 where C, is

X

\ \ ; F
1 ‘\\ - -  M-0

,/’ /
\

I’ /

/I
\ \ ‘. ,/

‘.- -/

FIGURE 8.13 Orthogonal circles. FIGURE 8.14 The tractrix as
a curve of pursuit.  The dis-
tance from P to Q is constant.

the y-axis. In a typical problem of pursuit  we seek to determine the curve C, when the
curve C, is known and some additional piece  of information is given concerning P and Q,
for example, a relation between their positions or their velocities.

When we say  that the direction of motion of P is always toward Q, we mean that the
tangent line of C, through P passes through Q. Therefore, if we denote  by (x, y) the
rectangular coordinates of P at a given instant, and by (X, Y) those of Q at the same
instant, we must have

(8.60) y’ = Y-y.
X -X

The additional piece  of information usually enables us to consider X and Y as known
functions of x and y, in which case Equation (8.60) becomes a first-order differential
equation for y. Now we consider a specific example in which this equation is separable.
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EXAMPLE 2. A point Q moves on a straight line C1, and a point P pursues  Q in such  a
way that the distance from P to Q has a constant value k > 0. If P is initially not on C, ,
find the curve of pursuit.

Solution. We take C, to be the y-axis and place P initially at the point (k, 0). Since
the distance from P to Q is k, we must have (X - x)” + (Y - y)” = k2.  Eut X = 0 on

C, , SO we have Y - y = m, and the differential equation (8.60) becomes

y, dk2  - x2=
-x

Integrating this equation with the help of the substitution x = k COS t and using the fact
that y = 0 when x = k, we obtain the relation

y = k log k+y-qw.

The curve of pursuit  in this example is called a tractrix; it is shown in Figure 8.14.

Flow ofjuid  through an orijïce. Suppose we are given a tank (not necessarily cylindrical)
containing a fluid. The fluid flows from the tank through a Sharp-edged  orifice. If there

were no friction (and hence  no loss of energy) the speed of the jet would be equal to 2/2gy
feet  per second, where y denotes  the height (in feet)  of the surface above the orifice.7 (See

Figure 8.15.) If Ao  denotes  the area (in square feet)  of the orifice, then A,Ygy  represents
the number of cubic feet  per second of fluid flowing from the orifice. Because of friction,
the jet stream contracts somewhat and the actual  rate of discharge is more nearly C&V$$,
where c is an experimentally determined number called the discharge coeficient.  For
ordinary Sharp-edged  orifices, the approximate value of c is 0.60. Using this and taking

g = 32, we find that the speed of the jet is 4.86 feet  per second, and therefore the rate of

discharge of volume is 4.8A,$ cubic feet  per second.
Let V(y)  denote  the volume of the fluid in the tank when the height of the fluid is y. I f

the cross-sectional area of the tank at the height u  is A(u), then we have V(y) = fi A(u)  du,
from which we obtain dV/dy  = A(y). The argument in the foregoing paragraph tells us
that the rate of change of volume with respect to time is dV/dt  = -4.8A,dj cubic feet  per
second, the minus sign coming in because the volume is decreasing. By the chain rule we
h a v e

g = dg  z = A(y) yt.

Combining this with the equation dV/dt  = -4.8A,dj,  we obtain the differential equation

A(y) Gt  = -4.8A,dL  .

t If a particle  of mass WI  falls  freely through a distance y and reaches a speed v,  its kinetic energy ~mv”
must be equal to the potential  energy mgy  (the work done  in lifting it up a distance y). Solving for v,  we
get v = d2gu.
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This separable differential equation is used as the mathematical mode1  for problems
concerning fluid slow  through an orifice. The height y of the surface is related to the time
t by an equation of the form

(8.61) s

FIGURE 8.15 Flow of fluid through an orifice.

EXAMPLE 3. Consider a specific case in which the cross-sectional area of the tank is
constant, say  A(y) = A for a11 y, and suppose the level of the fluid is lowered from 10 feet
to 9 feet  in 10 minutes (600 seconds). These data cari be combined  with Equation (8.61)
to give us

-j=;z = kSo*OOdt,

where k = 4.8Ao/A.  Using this, we cari determine k and we find that

V%--49 ,-fi-3= 600k or -
4 300 *

Now we cari compute the time required for the level to fa11  from one  given value to any
other. For example, if at time t, the level is 7 feet  and at time t, it is 1 foot (tl,  t, measured
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in minutes, say),  then we must have

which yields

t2  - tl = 2(d7  - ‘) = 10 ;; 1 : = “(”  - 1)(2/1o  + 3, = (1())(1&5)(6.162)
60k 10 - 9

= 101.3 min.

8.28 Miscellaneous review exercises

In each  of Exercises  1 through 10 find the orthogonal trajectories of the given family of curves.
1.  2x +3y = c. 5. x”y = c.
2. xy = c. 6. y = Cemzx.
3. x2 + y2  + 2cy  = 1. 7. x2 - y2  = c.
4. y2  = ex. 8. y = Ccosx.
9. Al1  circles through the points (1,O) and (- 1,O).

10. Al1  circles througb  the points (1, 1) and ( - 1, - 1).
Il.  A point Q moves upward along  the positive y-axis. A point P, initially at (1, 0), pursues  Q

in such  a way that its distance from the y-axis is 4  the distance of Q from the origin. Find a
Cartesian equation for the path of pursuit.

12. Solve Exercise 11 when the fraction i is replaced  by an arbitrary positive number k.
13. A curve with Cartesian equation y =f(x)  passes through the origin. Lines  drawn parallel

to the coordinate axes through an arbitrary point of the curve form a rectangle with two sides
on the axes. The curve divides every such  rectangle into two regions A and B, one  of which
has an area  equal to n  times the other. Find the functionf.

14. Solve Exercise 13 if the two regions A and B have the property that, when rotated about  the
x-axis, they sweep out  solids one  of which has a volume n times that of the other.

1.5. The graph of a nonnegative differentiable function  f passes through the origin and through
the point (1, 2/=).  If, for every x > 0, the ordinate set off above the interval  [0, x] sweeps
out  a solid of volume X~~(X)  when rotated about  the x-axis, find  the function  f.

16. A nonnegative differentiable function  f is defined on the closed  interval  [0, l] with f(1) = 0.
For each  a, 0 < a < 1, the line x = a cuts  the ordinate set off into two regions having areas
A and B, respectively, A being the area  of the leftmost region. If A - B = 2f(a) + 3a  + b,
where b is a constant independent of a, find the function  f and the constant 6.

17. The graph of a functionfpasses through the two points P,,  = (0, 1) and P, = (1,O).  For every
point P = (x, y) on the graph, the curve lies above the chord  POP,  and the area  A(x) of the
region between the curve and the chord  PP,, is equal to x3. Determine the function  f.

18. A tank with vertical sides  has a square cross-section of area  4 square feet. Water is leaving the
tank through an orifice of area  513  square inches. If the water level is initially 2 feet  above
the orifice, find the time required for the level to drop 1 foot.

19. Refer to the preceding problem. If water also flows into the tank at the rate of 100 cubic inches
per second, show that the water level approaches  the value (25/24)2  feet  above the orifice,
regardless of the initial water level.

20. A tank has the shape of a right circular  cane  with its vertex up. Find the time required to
empty a liquid from the tank through an orifice in its base. Express your result in terms of the
dimensions of the cane  and the area  A, of the orifice.
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21. The equation xy” - y’ + (1 - x)y = 0 possesses a solution of the form y = em”,  where m
is constant. Determine this solution explicitly.

22. Solve the differential equation (x + y3) + 6xy2y’  = 0 by making a suitable  change of variable
which converts  it into a linear equation.

23. Solve the differential equation (1 + y2ez5)y’  + y = 0 by introducing a change of variable of
the form y = uemx, where m is constant and u  is a new unknown function.

24. (a) Given a function f which satisfies the relations

2f’(x) =f ;
0

if x > 0, f(l) = 2,

let y =f(x)  and show that y satisfies a differential equation of the form

x2y” + axy’ + by = 0 ,

where a and b are constants. Determine a and b.
(b) Find a solution of the formf(x) = Cxn.

25. (a) Let u  be a nonzero solution of the second-order equation

y” + P(x)y’  + Q(x)y = 0 .

Show that the substitution y = UV converts  the equation

y” + f’(dy + Q(x)y = R(x)

into a first-order linear equation for v’.
(b) Obtain a nonzero solution of the equation y” - 4y’  + ~“(y’  - 4y)  = 0 by inspection
and use the method of part (a) to find a solution of

y”  - 4y’  + x2(y’  - 4y)  = 2xe-z3/3

such  that y = 0 and y’ = 4 when x = 0.
26. Scientists  at the Ajax Atomics Works isolated one  gram of a new radioactive element called

Deteriorum. It was found to decay at a rate proportional to the square of the amount present.
After one  year, fr gram remained.
(a) Set up and solve the differential equation for the mass of Deteriorum remaining at time t.
(b) Evaluate  the decay constant in units of gm-l  yr-l.

27. In the preceding problem, suppose the word square were replaced  by square root, the other
data remaining the same.  Show that in this case the substance would decay entirely within
a finite  time, and find this time.

28. At the beginning of the Gold Rush, the population of Coyote Gulch, Arizona was 365. From
then on, the population would have grown by a factor  of e each  year, except  for the high rate
of “accidental”  death, amounting to one  victim  per day among every 100 citizens. By solving
an appropriate differential equation determine, as functions  of time, (a) the actual  population of
Coyote Gulch t years from the day the Gold Rush began, and (b) the cumulative number of
fatalities.

29. With what speed should a rocket  be fired upward SO that it never  returns to earth? (Neglect
a11 forces except  the earth’s gravitational attraction.)
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30. Let y =f(x)  be that solution of the differential equation

357

y
I 2y2 +  x

= 3ya  + 5

which satisfies the initial conditionf(0)  = 0. (Do not attempt to solve this differential equation.)
(a) The differential equation shows thatf’(0) = 0. Discuss whetherf has a relative maximum
or minimum or neither at 0.
(b) Notice that f’(x) 2 0 for each  x 2  0 and that f’(x) 2 8 for each  x 2  13”. Exhibit
two positive numbers a and b such  that f(x) > ax  - b for each  x 2 8.
(c) Show that x/y2  + 0 as x -+ +a. Give full  details of your reasoning.
(d) Show that y/x  tends to a finite  limit as x + + CO  and determine this limit.

3 1. Given a function  f which satisfies the differential equation

X~(X)  + ~X[~(X)I~  = 1 - e+

for a11 real x. (Do not attempt to solve this differential equation.)
(a) Iffhas an extremum at a point c #  0, show that this extremum is a minimum.
(b) Iffhas an extremum at 0, is it a maximum or a minimum? Justify your conclusion.
(c) Iff(0)  =f’(O) = 0, find the smallest  constant A such  thatf(x)  I Ax2  for a11 x 2 0.
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COMPLEX NUMBERS

9.1 Historical introduction

The quadratic equation x2 + 1 = 0 has no solution in the real-number system because
there is no real number whose square is - 1. New types of numbers, called complex numbers,
have been introduced to provide solutions to such  equations. In this brief chapter we
discuss complex numbers and show that they are important in solving algebraic equations
and that they have an impact on differential and integral calculus.

As early as the 16th Century, a symbol d-  1 was introduced to provide solutions of the
quadratic equation x2 + 1 = 0. This symbol, later denoted by the letter i, was regarded
as a fictitious or imaginary number which could be manipulated algebraically like an
ordinary real number, except that its square was - 1. Thus,  for example, the quadratic
polynomial x2 + 1 was factored by writing x2 + 1 = x2 - i2 = (x - i)(x  + i), and the
solutions of the equation x2 + 1 = 0 were exhibited as x = fi, without any  concern
regarding the meaning or validity of such  formulas. Expressions such  as 2 + 3i were
called complex numbers, and they were used in a purely forma1 way for nearly 300 years
before they were described in a manner that would be considered satisfactory by present-day
standards.

Early in the 19th Century, Karl Friedrich Gauss (1777-1855) and William Rowan
Hamilton (1805-1865) independently and almost simultaneously proposed the idea of
defining complex numbers as ordered pairs (a, 6) of real numbers endowed with certain
special  properties. This idea is widely accepted  today and is described in the next section.

9.2 Definitions and field properties

DEFINITION. If a and b are real numbers, the pair (a, b) is called a complex number,
provided that equality, addition, and multiplication of pairs is de$ned  as follows:

(a) Equality: (a, 6) = (c, d) means  a = c and b = d.
(b) Sum: (a, b) + (c, d) = (a + c, b + d).
(c) Product: (a, b)(c, d) = (ac - bd, ad + bc).

The definition of equality tells us that the pair (a, b) is to be regarded as an ordered pair.
Thus, the complex number (2,3)  is not equal to the complex number (3, 2). The numbers

358
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a and b are called components of (a, b). The first component, a, is also called the realpart
of the complex number ; the second component, b, is called the imaginarypart.

Note that the symbol i = d-  1 does  not appear anywhere in this definition. Presently
we shall introduce i as a particular complex number which has a11  the algebraic properties-
ascribed to the fictitious symbol q-  1 by the early mathematicians. However, before we
do this, we Will discuss the basic properties of the operations just defined.

THEOREM 9.1. The operations of addition and multiplication of complex numbers satisfy
the commutative, associative and distributive laws. That is, if x, y, and z are arbitrary complex
numbers, we have the following.

Commutative laws:  x + y = y + x, xy = yx .
Associative laws:  x + (y + z) = (x + y) + z, X(YZ>  = (xy>z  .
Distributive Iaw:  x(y  + z) = xy + xz .

Proof. Al1 these laws are easily verified directly from the definition of sum and product.
For example, to prove the associative law for multiplication, we Write  x = (xl , x,),
y = (y, , y&  z = (zl,  zZ)  and note that

x(yz> = (Xl > X2)(Jvl - yzz2 2 y92 + Y2Zd

= MYlZl  - Y2Z2) - x,(y,z,  + yzzd,  dy,z,  + Y24 + x,(y,z,  - y,z,))

= KW1 - x2y2h  - hy2 + X2YdZ2~ hy2 + X2Ylh  + &Y1 - x2yz)zz)

= (XlYl  - X2Y2,  %.Y2  + X2YlK~l>Z2) = (xy>z.

The commutative and distributive laws may be similarly proved.

Theorem 9.1 shows that the set of a11  complex numbers satisfies the first three field
axioms for the real number system, as given in Section 1 3.2. Now we Will show that
Axioms 4, 5, and 6 are also  satisfied.

Since  (0, 0) + (a, b) = (a, b) for a11 complex numbers (a, b), the complex number (0, 0)
is an identity element for addition. It is called the zero complex number. Similarly, the
complex number (1,0) is an identity for multiplication because

(a,  W, 0) = (a,  b)

for a11  (a, b). Thus,  Axiom 4 is satisfied with (0,O) as the identity for addition and (1, 0)
as the identity for multiplication.

TO verify Axiom 5, we simply note that (-a, -b) + (a, b) = (0, 0), SO (-a, -b) is the
negative of (a, 6).  We Write  -(a, b) for (-a, -b).

Finally, we show that each  nonzero complex number has a reciprocal relative to the
identity element (1, 0). That is, if (a, b) # (0, 0), there is a complex number (c, d) such  that

(a, b)(c, 4  = (LOI  .

In fact,  this equation is equivalent to the pair of equations

ac - bd= 1, ad+bc=O,



360 Complex numbers

which has the unique solution

(9.1)
aCE -

a2  + b2’
&-b

a2  + b2 ’

The condition (a, b) # (0,O)  ensures  that a2  + b2 # 0, SO the reciprocal is well defined.
We Write  (a, b)-’  or l/(a,  b) for the reciprocal of (a, b). Thus, we have

(9.2)
1 a - b-=

(a, b) a2  +  b2 ’ a2  + b2
if (a, b) # (0, 0) .

The foregoing discussion shows that the set of a11 complex numbers satisfies the six
field axioms for the real-number system. Therefore, a11  the laws of algebra deducible from
the field axioms also hold for complex numbers. In particular, Theorems 1.1 through 1.15
of Section 1 3.2 are a11  valid for complex numbers as well as for real numbers. Theorem
1.8 tells us that quotients of complex numbers exist. That is, if (a, b) and (c, d)  are two
complex numbers with (a, b) # (0, 0), then there is exactly one  complex number (x, y)
such  that (a, b)(x, y)  = (c, d). In fact,  we have (x, y) = (c, d)(a, b)-l.

9.3 The complex numbers as an extension of the real numbers

Let C denote  the set of a11 complex numbers. Consider the subset C, of C consisting of
a11 complex numbers of the form (a, 0), that is, a11 complex numbers with zero imaginary
part. The sum or product  of two members of C,  is again in C,. In fact,  we have

(9.3) (a, 0) + (b, 0) = (a + 6, 0) a n d (a, W,  0) = (ah  0) .

This shows that we cari  add or multiply two numbers in C, by adding or multiplying the
real parts alone. Or, in other words, with respect to addition and multiplication, the
numbers in C,  act exactly as though they were real numbers. The same is true for
subtraction and division, since  -(a, 0) = (-a, 0) and (b, 0)-l = (b-l, 0) if b # 0. For this
reason, we ordinarily make no distinction between the real number x and the complex
number (x, 0) whose real part is X; we agree to identify x and (x, 0), and we Write  x = (x, 0).
In particular, we Write  0 = (0, 0), 1 = (1, 0), - 1 = (- 1, 0), and SO on. Thus, we cari
think of the complex number system as an extension of the real number system.

The relation between C,  and the real-number system cari  be described in a slightly
different way. Let R denote  the set of a11 real numbers, and letfdenote the function which
maps each  real number x onto  the complex number (x, 0). That is, if x E  R, let

f(x) = (x,0) .

The functionf so defined has domain  R and range C,, and it maps distinct elements of R
onto  distinct elements of C,. Because of these properties,fis  said to establish a one-to-one
correspondence  between R and C,. The operations of addition and multiplication are
preserved under this correspondence. That is, we have

f(a + b)  =f@>  +f(b) and f(ab> =fWV>  ,

these equations being merely a restatement of (9.3). Since  R satisfies the six field axioms,
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the same is true of C,. The two fields R and C,  are said to be isomorphic; the function f
which relates them as described above is called an isomorphism. As far as the algebraic
operations of addition and multiplication are concerned,  we make no distinction between
isomorphic fields. That is why we identify the real number x with the complex number
(x, 0). The complex-number system C is called an extension of the real-number system R
because it contains a subset C, which is isomorphic to R.

The field C, cari  also be ordered in such  a way that the three order axioms of Section 1  3.4
are satisfied. In fact,  we simply define  (x, 0) to be positive if and only if x > 0. It is trivial
to verify that Axioms 7, 8, and 9 are satisfied, SO C, is an ordered field. The isomorphism
f described above also preserves order since it maps the positive elements of R onto  the
positive elements of C,  .

9.4 The imaginary unit i

Complex numbers have some algebraic properties not possessed by real numbers. For
example, the quadratic equation x2 + 1 = 0, which has no solution among the real
numbers, cari  now be solved with the use of complex numbers. In fact,  the complex
number (0, 1) is a solution, since we have

(0, l)“=  (0, lj(0, 1) = (0.0 - 1. 1, 0. 1 + 1 *oj  = (-1,O)  = -1.

The complex number (0, 1) is denoted by i and is called the imaginary unit. It has the
property that its square is - 1, i2 = - 1. The reader cari  easily verify that (-i)” = - 1,
SO x = -i is another solution of the equation x2 + 1 = 0.

Now we cari  relate the ordered-pair idea with the notation used by the early mathe-
maticians. First we note that the definition of multiplication of complex numbers gives
us (b, Oj(0,  1) = (0, 6), and hence  we have

(a,  b) = (a,  0) + (0,  b) = (a,  0) + (b,  WO,  1) .

Therefore, if we Write  a = (a, 0), b = (b, 0), and i = (0, l), we get (a, b) = a + bi. In
other words, we have proved the following.

THEOREM 9.2. Every complex number (a, b) cari  be expressed in the form (a, b) = a + bi.

The advantage of this notation is that it aids us in algebraic manipulations of formulas
involving addition and multiplication. For example, if we multiply a + bi by c + di,
using  the distributive and associative laws, and replace i2 by - 1,  we find that

(a + bi)(c + di) = ac - bd + (ad + bc)i ,

which, of course, is in agreement with the definition of multiplication. Similarly, to
compute the reciprocal of a nonzero complex number a + bi, we may Write

1 a - bi a- bi a bi- = z - E - - - - -
a + bi (a + bij(,a  - bi) a2  + b2 a2  + b2 a2  + b”

This formula is in agreement with that given in (9.2).
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By the introduction of complex numbers, we have gained much more than the ability
to solve the simple quadratic equation x2 + 1 = 0. Consider, for example, the quadratic
equation ux2 + bx + c = 0, where a, b, c are real and a # 0. By completing the square,
we may Write  this equation in the form

If 4ac - b2  5 0, the equation has the real roots (-b f -)/(2a). If 4ac - b2  > 0,
the left member is positive for every real x and the equation has no real roots. In this case,
however, there are two complex roots, given by the formulas

(9.4) r,=-b+i~  and  b 1/4ac-b2.
2a 2a

y,=---i
2a 2a

In 1799, Gauss proved that every polynomial equation of the form

where a,, a, , . . . , a, are arbitrary real numbers, with a, # 0, has a solution among the
complex numbers if n 2 1. Moreover, even if the coefficients a,, a, , . . . , a, are complex,
a solution exists in the complex-number system. This fact is known as the jiindamental
theorem of a1gebra.t  It shows that there is no need to construct numbers more general
than complex numbers to solve polynomial equations with complex coefficients.

9.5 Geometric interpretation. Modulus and argument

Since  a complex number (x, y) is an ordered pair of real numbers, it may be represented
geometrically by a point in the plane, or by an arrow or geometric vector  from the origin
to the point (x, y), as shown in Figure 9.1. In this context, the xy-plane  is often referred
to as the complex plane. The x-axis is called the real axis; the y-axis is the imaginary axis.
It is customary to use the words complex number and point interchangeably.  Thus, we
refer to the point z rather than the point corresponding to the complex number z.

The operations of addition and subtraction of complex numbers have a simple geometric
interpretation. If two complex numbers z1 and z2 are represented by arrows from the
origin to z1 and z2 , respectively, then the sum z1 + z2 is determined by the parallelogram
Zaw. The arrow from the origin to z1 + z2 is a diagonal of the parallelogram determined
by 0, z1 , and z2 , as illustrated by the example in Figure 9.2. The other diagonal is related
to the difference of z1 and z2 . The arrow from z1 to z2 is parallel to and equal in length to
the arrow from 0 to z2 - z1 ; the arrow in the opposite direction, from z2 to z1 , is related
in the same way to z1 - z2 .

t A proof  of the fundamental theorem of algebra cari  be found in almost any  book on the theory of functions
of a complex variable. For example, see K. Knopp, Theory  of  Functions,  Dover  Pub l ica t ions ,  New York ,
1945, or E. Hille, Analytic  Function Theory, Vol. 1, Blaisdell  Publishing CO., 1959. A more elementary
proof  is given in 0. Schreier and E. Sperner, Introduction to Modem  Algebra  and Matrix Theory, Chelsea
Publishing Company, New York, 1951.
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If (x, y) # (0, 0), we cari  express x and y in polar coordinates,
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and we obtain
x = r COS 8, y = r sin e ,

(9.5) x + iy = r (COS e + i sin e) .

The positive number r, which represents the distance of (x, y) from the origin, is called
the modulus  or absolute  value of x + iy and is denoted by 1.x + iy].  Thus,  we have

Ix + iyl = dx2  + y2.

Y

z, +z,

0
CX

FIGURE 9 . 1 Geometric representation of the
complex number x + iy.

FIGURE 9.2 Addition and subtraction of
complex numbers represented geometrically

by the parallelogram law.

The polar angle 8 is called an argument of x + iy. We say  an  argument rather than the
argument because for a given point (x, y) the angle 0 is determined only up to multiples
of 27r. Sometimes it is desirable to assign a unique argument to a complex number. This
may be done  by restricting 8 to lie in a half-open interval of length 2~. The intervals
[0,27r) and (-7r, ~1 are commonly used for this purpose. We shall use the interval (-r, ~1
and refer to the corresponding 0 as the principal argument of x + iy; we  denote  this  0 by
arg (x + iy). Thus,  if x + iy # 0 and r = Ix  + iyl,  we  define  arg  (x + iy) to be  the
unique real 8  satisfying the conditions

x = r COS e, y = r sin 8, -n<esn.

For the zero complex number, we assign the modulus 0 and agree that any  real 0  may be
used as an argument.

Since  the absolute value of a complex number z is simply the length of a line segment, it
is not surprising to find that it has the usual properties of absolute values of real numbers.
For example, we have

1.4 > 0 if z # 0, and ]zl - z2] = ]za - zl] .
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Geometrically, the absolute value Izl - z.J represents the distance between the points z1
and z2 in the complex plane. The triangle inequality

IZl + z21  I 1211  + Iz21

is also valid. In addition, we have the following formulas for absolute values of products
and quotients of complex numbers:

(9.6) bl z2l = IZll I%l

and

bll=-
1221

if z2 # 0 .

If we Write  z1 = a + bi and z2 = c + di, we obtain (9.6) at once from the identity

(UC  - bd)” + (bc + a@ = (a” + b2)(c2  + dz)  .

The formula for Iz1/z21 follows from (9.6) if we Write  z1 as a product,

z1  = z2  3.
z2

If z = x + iy, the complex conjugate of z is the complex number z = x - iy. Geometri-
cally, z represents the reflection of z through the real axis. The definition of conjugate
implies that

z1  + z2  = 2,  + z,  >
- -

ZlZ2  = ZlZ2  3 ZllZ2  = Q2 > zz  = 1212  .

The verification of these properties is left as an exercise  for the reader.
If a quadratic equation with real coefficients has no real roots, its complex roots, given

by (9.4), are conjugates. Conversely, if r1 and r2 are complex conjugates, say  r1 = CI  + i/3
and r2 = tc - i/l,  where CI  and ,8 are real, then r1 and r2 are roots of a quadratic equation
with real coefficients. In fact,  we have

S O
r1 +  r2 =  2u and r1r2  = tc2  + /?”  ,

(x - rl)(x  - r2)  = x2 - (rl  + r2>x  + r1r2  ,

and the quadratic equation in question is

x2 - 2ctx  + cc2  + p  = 0.
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9.6 Exercises

1. Express the following complex numbers in the form a + bi.
;;;  ;;  + i12. (e)  (1 + i)/(l - 2i).

(c) 1,;;  + i).
(f) i5 + i16.
(g) 1 + i + i2  + P.

(d) (2 + 3i)(3  - 49. (h) +(l + i)(l + i-*).
2. Compute the absolute  values of the following complex numbers.

(a) 1 + i. (d) 1 + i + i2.
(b) 3 + 4i. (e) i’ + Po.
(c)  (1 + i>/(l  - i). (f) 2(1 - i) + 3(2  + i).

3. Compute the modulus and principal argument of each  of the following complex numbers.
(a) 2i. (f) (1 + i)/z/z.
(b) -3i. (g)  (-1 + i)3.
(c) -1. (h) (-1 - i)3.
(dl  1. (i) l/(l + i).
(e) -3 + & i. Cj)  l/(l  + iY.

4. In each  case, determine a11 real numbers x and y which satisfy the given relation.
(a) x + iy = x - iy. (d) (x + i~)~  = (x - y)2.

(b) x + iy = 1.x  + iyl. Ce>
x + iy
- = x  -iy.
x - iy
100

(c) Ix + iyl  = Ix - iyl. (f) kzo  ik = x + iy.

5. Make a sketch showing the set of a11 z in the complex plane which satisfy each  of the following
conditions.
64 14 < 1. (d) Iz  - 11 = Iz  + II.
(b) z + z = 1. (e)  Iz  - il = Iz  + il.
(c) z - 2 = i. (f) z + i = lzl2.

6. Let f be a polynomial with real coefficients.
(a) Show that f(z) = f(i) for every complex z.
(b) Use part (a) to deduce that the nonreal zeros off(if  any  exist) must occur in pairs of con-
jugate complex numbers.

7. Prove that an ordering relation cannot  be introduced in the complex number system SO that
a11 three order axioms of Section 13.4 are satisfied.

[Hint: Assume that such  an ordering cari  be introduced and try to decide  whether the
imaginary unit i is positive or negative.]

8. Define  the following “pseudo-ordering” among the complex numbers. If z = x + iy,  we say
that z is positive if and only if x > 0. Which of the order axioms of Section 13.4 are satisfied
with this definition of positive?

9. Solve Exercise 8 if the pseudo-ordering is defined as follows: We say  that z is positive if and
only if IzI  > 0.

10. Solve Exercise 8 if the pseudo-ordering is defined as follows: If z = x + iy, we say  that z is
positive if and only if x > y.

11. Make a sketch showing the set of a11 complex z which satisfy each  of the following conditions.
(a) 122  + 31  < 1. (c) Iz  - il 5 Iz  + il.
(b) Iz  + 11 < Iz  - II. (d) Izl  Il22 + II.

12. Let w  = (az + b)/(cz  + d), where a, b,  c, and d are real. Prove that

w - iv = (ad - bc)(z  - i)/lcz  + dj2.

If ad - bc  > 0, prove that the imaginary parts of z and w  have the same  sign.
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9.7 Complex exponentials

We wish now to extend the definition of e”  SO that it becomes meaningful when x is
replaced by any  complex number z. We wish this extension to be such  that the law of
exponents, eaeb  = eaib, Will be valid for a11  complex a and b. And, of course, we want ez
to agree with the usual exponential when z is real. There are several equivalent ways to
carry out  this extension. Before we state the definition of ez  that we have chosen,  we shall
give a heuristic discussion which Will serve as motivation for this definition.

If we Write  z = x + iu,  then, if the law of exponents is to be valid for complex numbers,
we must  have

ez  = ex+iY = e”ei”

Since  e”  has already been defined when x is real, our task is to arrive at a reasonable
definition for eiY  when y is real. Now, if eiY  is to be a complex number, we may Write

(9.7) eiy = A(y) + 8(y)  ,
where A and B are real-valued  functions to be determined. Let us differentiate both sides
of Equation (9.7), assuming A and B are differentiable, and treating the complex number
i as though it were a real number. Then we get

(9.8) ieiv  = A’(y) + iB’(y)  .

Differentiating once more, we find that

-eiy = A”(y) + ii?‘(y)  .

Comparison of this equation with (9.7) shows that A and B must satisfy the equations

A”(y)  = --A(y) and B”(y)  =  -B(y)  .

In other words, each  of the functions A and B is a solution of the differential equation
f” + f = 0. From the work of Chapter 8, we know that this equation has exactly one
solution with specified initial values f (0) and f ‘(0). If we put y = 0 in (9.7) and (9.8) and
use the fact that e”  = 1, we find that A and B have the initial values

A(0) = 1, A’(0) = 0, and B(0) = 0, B’(0) = 1 .

By the uniqueness theorem for second-order differential equations with constant coefficients,
we must have

A(y) = COS y a n d B(y) = sin y .

In other words, if eiY  is to  be a complex number with the properties just described, then
we must  have ei* = COS y + i sin y. This discussion serves to  motivate  the following
definition.
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DEFINITION. Ifz = x + iy, ule  dejine  ez to be the complex number given by the equation

(9.9) ez = e”(cos  y + i sin y) .

Note that eZ  = e”  when y = 0; hence  this exponential agrees with the usual exponential
when z is real. Now we shah  use this definition to deduce the law of exponents.

THEOREM 9.3. If a and b are complex numbers, we  have

(9.10) eaeh  =  ea+b

Proof. Writing a = x + iy and b = u + iv, we have

S O
ea = e”(cos  y + i sin y), eb  = eU(cos  v + i sin v) ,

eaeb  = e”e”[cos  y cas v - sin y sin v + i(cos y sin u + sin y COS u)] .

Now we use the addition formulas for COS (y + v) and sin (y + v) and the law of exponents
for real exponentials, and we see that the foregoing equation becomes

(9.11) eaeh  = ez+u[COS (y + u) + i sin  (Y  + V)I  <

Since  a + b = (x + U)  + i(y + v), the right member of (9.11) is ea+b.  This proves (9.10).

THEOREM 9.4. Every complex number z # 0 cari  be expressed in the form

(9.12) z = reie,

h>here  r = \zJ  and 8 = arg (z) + 2nx,  n being any integer. This representation is called  the
polar form of z.

Proof.  I f  z = x + iy, the polar-coordinate representation (9.5) gives us

z = r(cos 19 + i sin 0) ,

where r = Jzj and 8 = arg (z) + 2nn,  n being any  integer. But if we take x = 0 and y = 8
in (9.9), we obtain the formula

which proves (9.12).

e i8 = cas  8 + i sin 0,

The representation of complex numbers in the polar form (9.12) is especially useful in
connection with multiplication and division of complex numbers. For example, if z1 = rIede
and z2 = r2eî4’,  we have

(9.13) ZlZ2 = rlei0r2e i0 = r1r2e de++> .
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Therefore the product of the moduli, r1r2, is the modulus of the product z1z2 , in agreement
with Equation (9.6), and the sum of the arguments, 8  + 4, is an admissible argument for
the product z1z2 .

When z = reie, repeated application of (9.13) gives us the formula

zn  = peina  = P(cos ne + i sin ne),

valid for any  nonnegative integer n. This formula is also valid for negative integers n  if
we define  zP’  to  be (z-~)~ when m is a positive integer.

Similarly, we have

3 _ rie ie
r1 ice-,#J>--=-e >

Z2 w
ie

r2

SO the modulus of zJzz is r,/r,  and the difference 6’ - 4 is an admissible argument for zl/z2 .

9.8 Complex-valued functions

A function f whose values are complex numbers is called a complex-valued function.
If the domain  offis a set of real numbers, f is called a complex-valued function of a real
variable. If the domain  is a set of complex numbers,fis  called a complex-valued function
of a complex variable, or more simply, a function of a complex variable. An example is
the exponential function, defined  by the equation

f(z)  = e”

for a11 complex z. Most of the familiar elementary functions of calculus, such  as the
exponential, the logarithm, and the trigonometric functions, cari  be extended to become
functions of a complex variable. (See Exercises  9 and 10 in Section 9.10.) In this more
general  framework many new properties and interrelationships are often revealed. For
example, the complex exponential function is periodic. In fact,  if z = x + ij~ and if n
is any  integer, we have

ez+znni  = e”[cos  (y + 2n77)  + i sin (y + 2n77)]  = e”(cos  y + i siny) = eZ  .

Thus we see thatf(z  + 2mri)  =f(z), sof has the period 2ni.  This property of the expo-
nential function is revealed only when we study the exponefitial  as a function of a complex
variable.

The first systematic treatment of the differential and integral calculus  of functions of
a complex variable was given by Cauchy early in the 19th Century. Since  then the theory
has developed into one  of the most important and interesting branches of mathematics.
It has become an indispensable tool for physicists and engineers and has connections in
nearly every branch of pure mathematics. A discussion of this theory Will not be given
here. We shall discuss only the rudiments of the calculus  of complex-valued functions of a
real variable.
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Suppose f is a complex-valued function defined on some interval Z of real numbers. For
each  x in Z,  the function valueS  is a complex number, SO we cari  Write

f(x) = 4x) + iv(x) ,

where U(X) and v(x) are real. This equation determines two real-valued functions u and v
called, respectively, the real and imaginary parts off; we Write  the equation more briefly
as f = u + iv.  Concepts such  as continuity, differentiation, and integration off may be
defined in terms of the corresponding concepts for u  and v, as described in the following
definition.

DEFINITION. qf  = u + iv, we say f is  continuous ut a point if both u and u are con-
tinuous at that point. The derivative off is dejned by the equation

f’(x) = u’(x) + iv’(x)

whenever both derivatives u’(x) and v’(x) exist. Similarly, we dejîne the integral off by the
equation

j;f(x)  dx = c u(x) dx + i t v(x) dx

whenever both integrals on the right exist.

In view of this definition, it is not surprising to find that many of the theorems of differ-
ential and integral calculus  are also valid for complex-valued functions. For example, the
rules for differentiating sums, products,  and quotients (Theorem 4.1) are valid for complex
functions. The first and second fundamental theorems of calculus  (Theorems 5.1 and 5.3)
as well as the zero-derivative theorem (Theorem 5.2) also hold for complex functions. TO

illustrate the ease with which these theorems cari  be proved, we consider the zero-derivative
theorem :

Zff’(x)  =  O f  Ifor a x on an open interval I,  then f is constant on I.

Proof Write f = u + iv. Since  f’ = u’  + iv’, the statement f’ = 0 on Z means that
both u’  and v’  are zero on Z.  Hence, by Theorem 5.2, both u and u are constant on I.
Therefore f is constant on Z.

9.9 Examples of differentiation and integration formulas

In this section we discuss an important example of a complex-valued function of a real
variable, namely the function f defined for a11 real x by the equation

f(x) = etm  ,

where t is a fixed complex number. When t is real, the derivative of this function is given
by the formula f ‘(x) = tet”. Now we prove that this formula is also valid for complex t.
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THEOREM 9.5. Iff(X)  = d'for a11 real x and ajxed complex t, then f’(x) = tetx.

Proof.  Write t = cc  + $, where M  and ,!I  are real. From the definition of the complex
exponential, we have

f(x) = e ” = eaz+iaa:  = car  Cos /lx  + ieax  sin px .

Therefore, the real and imaginary parts off are given by

(9.14) u(x) = eus  cas  0x and u(x)  = eux  sin px  .

These functions  are differentiable for a11 x and their derivatives are given by the formulas

U’(x) = ue””  cas /3x - @eae  sin Bx ,

Since  f’(x) = u’(x) + iv’(x), we have

v’(x) = ue’”  sin bx  + ge’” COS px  .

f’(x) = ueaz(cos  @x  + i sin px) + i/leaz(cos  Bx  + i sin Bx)

= (u + i/j>e(a+i/J)Z  = tet”.

This completes the proof.

Theorem 9.5 has some interesting consequences. For example, if we adopt the Leibniz
notation for indefinite integrals, we cari  restate  Theorem 9.5 in the form

(9.15) s et”etx  dx = -
t

when t # 0. If we let t = CI  + i/l and equate the real and imaginary parts of Equation
(9.15), we obtain the integration formulas

and
s eux  COS ,8x  dx = eas(u  cas j3x + fl  sin Bx)

2 + p

s car  sin px  dx =
ebz(u  sin /Ix  - b COS Bx)

cc2  + B”
3

which are valid if cc  and /? are not both zero.
Another consequence  of Theorem 9.5 is the connection between complex exponentials

and second-order linear differential equations with constant coefficients.

THEOREM 9.6. Consider the dl@erential  equation

(9.16) y” + ay’ + by = 0 ,

where a and b are real constants. The real and imaginary parts of the function  f dejned on
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(- CO,  + ~XI)  by  the equation f(x) = ets  are solutions of the dzjèrential  equation (9.16) if
and only  if t is a root of the characteristic equation

t2  + ut  + b = 0,

Proof.  Let L(y) = y” + ay’  + by. Since  f’(x) = tet”,  we also have r(x) = t2etz,  SO

L(f) = etî(t2  + ut  + b). But et” is never  zero since  etZeëtZ  = e”  = 1. Hence, L(f) = 0
if and only if t2  + ut  + b = 0. But if we Write  f = u + iv,  we find L(f) = L(u)  + Z(u),
and hence  L(f) = 0 if and only if both L(u) = 0 and L(u)  = 0. This completes the proof.

Note: If t = OL  + $, the real and imaginary parts off are given by (9.14). If the
characteristic equation has two distinct roots, real or complex, the linear combination

y = QU(X)  + c2u(x>

is the general solution of the differential equation. This agrees with the results proved
in Theorem 8.7.

Further examples of complex functions are discussed in the next set of exercises.

9.10 Exercises

1. Express each  of the following complex numbers in the form a + bi.
(a) enii2. (e) i + e2ai.
(b) 2e-vi/2

’
(f) enil

(c) 3eRi. Cg)  .eni/4  _  e-oil4 .
(d) -e-Ri. 1 _  enil

04 ~1 + eni/2  -

2. In each  case, find a11 real x and y that satisfy the given relation.
(a) x + iy = xeiy. (c) e+iy  = -1.
(b) x + e = yeir. 1 +i

(4 -1  - i
=  xeiY.

3. (a) Prove that ez  #  0 for a11 complex z.
(b) Find a11 complex z for which ez  = 1.

4. (a) If 0  is real, show that

COS 8 =

ei8 + e-i8 eie _ e-ie

2
a n d sin 9  =

2i ’

(b) Use the formulas in (a) to deduce the identities

COS2  e = g<1  + COS 2e), sin2  0  = $(l - COS 20)  .

5. (a) Prove DeMoivre’s  theorem,

(COS e + i sin ey = COS  ne + i sin ne ,

valid for every real 0  and every positive integer n.
(b) Take n = 3 in part (a) and deduce the trigonometric identities

sin38 =3c0s2esine  -sin38. Cos38  =c03e  -3cos8sin2e.



312 Complex numbers

6. Prove that every trigonometric sum of the form

S,(X)  = ;a0 + 5 (ak  COS kx + bk sin  kx)
k=l

cari  be expressed as a sum of complex exponentials,

cgeilca  ,
k = - n

whereck=+(ak-ib,)fork=1,2,...,n. Determine corresponding formulas for tek  .
7. (a) If m and n are integers, prove that

s

277
einx  e-imx dx  =

i

0 i f  m#n,

0

2n
i f  m=n.

(b) Use part (a) to deduce the orthogonality relations for the sine and cosine (m and n are
integers, m2  Z n2):

i

277
sin nx COS mx dx =

i

2R
sin nx  sin mx dx =

0 0
cosnxcosmxdx = 0,

1 277
sin2  nx dx =

i

2n
cos2nxdx  = T i f  n#O.

0 0

8. Given a complex number z #  0. Write z = y&*,  where 19  = arg(z).  Let zi = Reza,  where
R = rlin  and tc = O/n,  and let E  = elaiin,  where n is a positive integer.
(a) Show that zr = z; that is, zi is an nth root of z.
(b) Show that z has exactly n distinct nth roots,

z1 ,  EZ1  , r2z1 , . . . >  E n-1Zl  ,

and that they are equally spaced on a circle of radius R.
(c) Determine the three cube roots of i.
(d) Determine the four fourth roots of i.
(e) Determine the four fourth roots of -i.

9. The definitions of the sine and cosine functions cari  be extended to the complex plane as
follows :

,iz  + &7. ,iz _  e-iz
COS z =

2 ’
sin z = 2i ’

When z is real, these formulas agree with the ordinary sine and cosine functions. (See Exercise
4.) Use these formulas to deduce the following properties of complex sines and cosines.  Here
u,  v, and z denote  complex numbers, with z = x + iy.
(a) sin (u + v) = sin u cas  v + COS u  sin v.
(b) COS (u + v) = COS u  COS v - sin u sin v.
(c) sin2z + cos2z  = 1.
(d) COS (iy)  = cash  y, sin (iy) = i sinh y.
(e) COS z = COS x cash  y - i sin x sinh y.
(f) sin z = sin x cash  y + i COS x sinh y.
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10.

11.

12.

13.

14.

15.

If z is a nonzero complex number, we define  Log z, the complex logarithm of z, by the equation

Log 2 = log IzI  + i arg(z) .

When z is real and positive, this formula agrees with the ordinary logarithm. Use this formula
to deduce the following properties of complex logarithms.
(a) Log (- 1) = pi, Log (i) = d/2.
(b) Log (zrzs)  = Log zr + Log z2  + 2mi, where n is an integer.
(c) Log (zJzs) = Log zr - Log z2 + 2niri, where n  is an integer.
(d) eLog  z = z.

If w and z are complex numbers, z #  0, we define  zw  by the equation

zw  = etoLogz >

where Log z is defined as in Exercise 10.
(a) Compute li, ii, and ( -l)i.
(b) Prove that zazb  = za+b if a, b,  and z are complex, z #  0.
(c) Note that the equation

(9.17) (w2)w = zyz;

is violated when zr = Z~ = -1 and w = i. What conditions on zr and z, are necessary for
Equation (9.17) to hold for a11 complex w?

In Exercises 12 through 15, L denotes  the linear operator defined by Z(y)  = y” + uy’  + by,
where a and b are real constants.
Prove that if R is a complex-valued function, say  R(x) = P(x)  + iQ(x),  then a complex-valued
function f(x) = u(x) + iv(x) satisfies the differential equation L(y)  = R(x) on an interval  Z
if and only if u  and v satisfy the equations L(u)  = P(x) and L(v) = Q(x) on Z.
If A is complex and w  is real, prove that the differential equation L(y)  = A&@*  has a complex-
valued solution of the form y = Beéax, provided that either b #  w2  or aw  #  0. Express the
complex number B in terms of a, b, A, and o.
Assume c is real and b #  02.  Use the results of Exercise 13 to prove that the differential
equation L(y) = c COS ox has a particular solution of the form y = A COS (ox - a), where

c
A

ao

= d(b -
a n d

,2)2 + a%02
tana=b-02.

Assume c is real and b #  w2.  Prove that the differential equation L(y) = c sin ox has a par-
ticular solution of the form y = A sin (ox + a) and express A and a in terms of a, b, c,  and o.



10
SEQUENCES, INFINITE SERIES,

IMPROPER INTEGRALS

10.1 Zeno’s paradox

The principal subject matter  of this chapter  had its beginning nearly 2400 years ago
when the Greek philosopher Zeno  of Elea (495-435 B.C.) precipitated a crisis in ancient
mathematics by setting forth a number of ingenious paradoxes. One of these, often called
the racecourse paradox, may be described as follows:

A runner cari  never  reach the end of a racecourse because he must caver half of any
distance before he covers  the whole. That is to say,  having covered the first half he
still has the second half before him. When half of this is covered, one-fourth yet
remains. When half of this one-fourth is covered, there remains one-eighth,  and SO

on, ad injnitum.

Zeno was referring, of course, to an idealized situation in which the runner is to be
thought of as a particle  or point moving from one  end of a line segment to the other. W e
cari  formulate the paradox in another way. Assume that the runner starts at the point
marked 1 in Figure 10.1 and runs toward the goal marked 0. The positions labeled ‘,, t,
8, etc., indicate the fraction of the course yet  to be covered when these points are reached.
These fractions, each  of which is half the previous one,  subdivide the whole course into an
endless number of smaller portions. A positive amount of time is required to caver each
portion separately, and the time required for the whole course is the sum total of a11 these
amounts. TO say  that the runner cari  never  reach the goal is to say  that he never  arrives
there in a finite length of time; or, in other words, that the sum of an endless number of
positive time intervals cannot possibly be finite.

This assertion was rejected 2000 years after Zeno’s time when the theory of infinite
series  was created. In the 17th and 18th centuries, mathematicians began to realize that it
is possible to extend the ideas of ordinary addition fromJinite  collections of numbers to
inznite collections SO that sometimes infinitely many positive numbers have a finite “sum.”
TO see how this extension might corne about  and to get an idea of some of the difficulties
that might be encountered in making the extension, let us analyze Zeno’s paradox in more
detail.

Suppose the aforementioned runner travels at a constant speed and suppose it takes him
T minutes to caver  the first half of the course. The next quarter of the course Will take

374
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T/2  minutes, the next eighth Will take T/4  minutes, and, in general, the portion from
1/2” to 1/2 n+l Will take T/2”  minutes. The “sum”  of a11 these time intervals may be indi-
cated symbolically by writing the following expression:

(10.1) T+$+;+-

This is an example of what is known as an injnite  series,  and the problem here is to decide
whether there is some reasonable way to assign a number which may be called the sum of
this series.

Our physical experience tells us that a runner who travels at a constant speed should
reach his goal in twice the time it takes for him to reach the halfway point. Since  it takes

F IGURE 10 .1 The racecourse paradox.

T minutes to caver  half the course, it should require 2T minutes for the whole course.
This line of reasoning strongly suggests that we should assign the “sum” 2T to the series
in (lO.l),  and it leads us to expect that the equation

(10.2) T+;+T+- +;+- . = 2T

should be “true” in some sense.
The theory of infinite series  tells us exactly how to interpret this equation. The idea is

this: First we add a$nite  number of the terms, say  the first n, and denote  their sum by s,.
Thus we have

(10.3) s,=T+;+;+-+-&.

This is called the nth partial sum of the series. Now we study the behavior of s, as n takes
larger and larger values. In particular, we try to determine whether the partial sums s,
approach a finite limit as n increases without bound.

In this example it is easy to see that 2T is the limiting value of the partial sums. In
fact,  if we calculate a few of these partial sums,  we find that

sl=  T , s,=T+;=;T, s,=T+;+;=;T,
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Now, observe that these results may be expressed as follows:

Sl  = (2 - l)T, s2 = (2 - $)T, SS = (2 - f)T, sq = (2 - $)T.

This leads us to conjecture the following general formula:

(10.4) for a11  positive integers n .

Formula (10.4) is easily verified by induction. Since 1/2n-1  + 0 as n increases indefinitely,
this shows that s, -+ 2T. Therefore, Equation (10.2) is “true” if we interpret it to mean that
2T is the limit of the partial sums s,. This limit process seems to invalidate the assertion
that the sum of an infinite number of time intervals cari  never  be finite.

Now we shall  give an argument which lends considerable  support to Zeno’s point of
view. Suppose we make a small but important change in the foregoing analysis of the
racecourse paradox. Instead of assuming that the speed of the runner is constant, let us
suppose that his speed gradually decreases in such  a way that he requires T minutes to
go from 1 to 1/2,  T/2  minutes to go from 1/2  to 1/4,  T/3  minutes to go from 1/4  to 1/8,
and, in general, T/n  minutes to go from 1/2n-1  to 1/2”.  The “total time” for the course
may now be represented by the following infinite series:

(10.5) T+f+;+...

In this case, our physical experience does  not suggest any  natural or obvious “sum”  to
assign  to this series,  and hence  we must rely entirely on mathematical analysis to deal with
this example.

Let us proceed as before and introduce the partial sums s, . That is, let

s,=T+$+;+...+;.

Our abject is to decide  what happens to s,  for larger and larger values of n.  These partial
sums are not as easy to study as those in (10.3) because there is no simple formula analogous
to (10.4) for simplifying the expression on the right of (10.6). Nevertheless, it is easy to
obtain an estimate  for the size of s, if we compare the partial sum with an appropriate
integral.

Figure 10.2 shows the graph of the functionf(x)  = 1/x  for x > 0. (The scale  is distorted
along the y-axis.) The rectangles shown there have a total area equal to the sum

1+;+;+...+;.

The area of the shaded region is j ;2+lx-l dx = log (n + 1). Since this area cannot exceed
the sum of the areas of the rectangles, we have the inequality

(10.8) 1+;+;+... + ‘, 2 log  (n + 1) .
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Multiplying both sides  by T,  we obtain s, 2 Tlog (n + 1). In other words, if the runner’s
speed decreases in the manner described above, the time required to reach the point 1/2”
is at least T log (n + 1) minutes. Since  log (n + 1) increases without bound as n  increases,
we must agree with Zeno and conclude  that the runner cannot reach his goal in any  finite
time.

The general theory of infinite series  makes a distinction between series  like (10.1) whose
partial sums tend to a finite limit, and those like (10.5) whose partial sums have no finite

x-’  dx = log(n  + 1)

FIGURE 10.2 Geometric meaning of the inequality 1 + 1/2 + . . . + I/n  2 log (12  + 1).

limit. The former are called convergent, the latter divergent. Early investigators in the
field paid little or no attention to questions of convergence or divergence. They treated
infinite series  as though they were ordinary finite sums, subject to the usual laws of algebra,
not realizing that these laws cannot be universally extended to infinite series.  Therefore,
it is not surprising that some of the results they obtained were later shown to be incorrect.
Fortunately, many of the early pioneers possessed unusual intuition and ski11 which
prevented them from arriving at too many false conclusions, even though they could not
justify a11 their methods. Foremost among these men was Leonard Euler who discovered
one  beautiful formula after another and at the same time used infinite series  as a unifying
idea to bring together many branches of mathematics, hitherto unrelated. The great
quantity of Euler’s work that has survived the test of history is a tribute to his remarkable
instinct for what is mathematically correct.

The widespread use of infinite series  began late in the 17th Century, nearly fifty years
before Euler was born, and coincided with the early development of the integral calculus.
Nicholas  Mercator (1620-l 687) and William Brouncker (1620-l 684) discovered an infinite
series-  for the logarithm in 1668 while attempting to calculate the area of a hyperbolic
segment. Shortly thereafter, Newton discovered the binomial series. This discovery proved
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to be a landmark  in the history of mathematics. A special case of the binomial series  is
the now-familiar binomial theorem which states that

(1 + x)” = 2 (;jxk,
k=O

where x is an arbitrary real number, n is a nonnegative integer, and (I;n)  is the binomial
coefficient. Newton found that this formula could be extended from integer values of
the exponent n  to arbitrary real values of n  by replacing the finite sum on the right by a
suitable infinite series,  although he gave no proof  of this fact.  Actually, a careful treatment
of the binomial series  raises some rather delicate questions of convergence that could not
have been answered in Newton’s time.

Shortly after Euler’s death in 1783, the flood of new discoveries began to recede  and the
forma1 period in the history of series  came to a close. A new and more critical period
began in 1812 when Gauss published a celebrated memoir which contained, for the first
time in history, a thorough and rigorous treatment of the convergence of a particular
infinite series. A few years later Cauchy introduced an analytic definition of the limit
concept in his treatise Cours d’anaZyse  algébrique (published in 1821) and laid the founda-
tions of the modern theory of convergence and divergence. The rudiments of that theory
are discussed in the sections that follow.

10.2 Sequences

In everyday usage of the English language,  the words “sequence”  and “series”  are
synonyms, and they are used to suggest a succession of things or events arranged in some
order. In mathematics these words have special technical meanings. The word “sequence”
is employed as in the common  use of the term to convey the idea of a set of things arranged
in order, but the word “series”  is used in a somewhat different sense. The concept of a
sequence  Will be discussed in this section, and series  Will be defined in Section 10.5.

If for every positive integer n  there is associated a real or complex number a,, then the
ordered set

a1  , a2  , a3, . . . , a, , . . .

is said to define  an infinite sequence. The important thing here is that each  member of
the set has been labeled with an integer SO that we may speak of the$rst  term a, , the second
term a2  , and, in general, the nth term a, . Each term a, has a successor a,,, and hence
there is no “last” term.

The most common  examples of sequences  cari  be constructed if we give some rule  or
formula for describing the nth term. Thus, for example, the formula a, = l/n defines  a
sequence  whose first five terms are

11””
> 3,  3,  4, 5 .

Sometimes two or more formulas may be employed as, for example,

aznel  = 1, a2n  = 2n2  ,
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the first few terms in this case being

1, 2, 1, 8, 1, 18, 1, 32, 1 .
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Another common  way to define  a sequence is by a set of instructions which explains how
to carry on after a given start. Thus we may have

a, = us  = 1, a,+, =  0, +  a,-, for n 2 2 .

This particular rule is known as a recursion  formula, and it defines  a famous sequence
whose terms are called the Fibonaccit  numbers. The first few terms are

1, 1,2,3,  5, 8, 13,21,  34.

In any  sequence the essential thing is that there be some function f defined on the positive
integers such  that f(n) is the nth term of the sequence for each  n  = 1, 2, 3, . . . . In fact,
this is probably the most convenient  way to state a technical definition of sequence.

D E F I N I T I O N . A jiinction f whose domain  is the set of a11  positive integers 1, 2, 3, . . . is
called an infinite  sequence. The function value f(n) is called the nth term of the sequence.

The range of the function (that is, the set of function values) is usually displayed by writing
the terms in order, thus:

fU>,fG?,fW,  . . . ,f(n>, . . . .
For brevity, the notation {f(n)} is used to denote  the sequence whose nth term is f(n).
Very often the dependence on n is denoted by using subscripts, and we Write  a,, s, , x, , u, ,
or something similar instead of f(n). Unless otherwise specified, a11 sequences  in this
chapter  are assumed to have real or complex terms.

The main question we are concerned with here is to decide  whether or not the terms
f(n) tend to a finite limit as n  increases indefinitely. TO treat this problem, we must extend
the limit concept to sequences.  This is done  as follows.

DEFINITION. A sequence {f(n)} is said to have a limit L if, for every positive number E,
there is another positive number N (which may depend  on l ) such  that

If(n) - LI < E for a11  n 2 N .

In this case, we say  the sequence {f(n)} converges to L and we Write

limf(n)  = L, o r f(n)+L  a s  n-tco.
n+m

A sequence which does  not converge is called divergent.

In this definition the function values f (n) and the limit L may be real or complex numbers.
If f and L are complex,  we may decompose them into their real and imaginary parts, say
f = u + iv and L = a + ib. Then we have f(n) - L = u(n) - a + i[v(n) - b]. The

t Fibonacci ,  also  known as  Leonardo of  Pisa  (circa  1175-1250),  encountered  th is  sequence  in  a  problem
concerning the offspring of rabbits.
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inequalities
Mn>  - 4  I If(n)  - LI and Mn> - 4 I If(n)  - 4

show that the relationf(n)  + L implies u(n) + a and v(n) + b as n + CO. Conversely, the
inequality

If(n)  - LI I b(n)  - 4 + Mn)  - 4
shows that the two relations u(n) + a and v(n) --f b  imply f(n) + L as n + CO. In other
words, a complex-valued  sequence f converges if and only if both the real part u  and the
imaginary part z, converge separately, in which case we have

limf(n)  = lim u(n) + ilim v(n) .
n-+cc n-tm n’m

It is clear that any  function defined for a11 positive real x may be used to construct a
sequence by restricting x to take only integer values. This explains the strong analogy
between the definition just given and the one  in Section 7.14 for more general functions.
The analogy carries  over  to injnite  Zimits as well, and we leave it for the reader to define
the symbols

limf(n)  = +co and limf(n)  = -CO
n+‘x 12-m

as was done  in Section 7.15 when f is real-valued. Iffis  complex,  we Write  f(n) + CO  as
n+  coiflf(n)l+  +co.

The phrase “convergent sequence” is used only for a sequence whose limit isfinite.  A
sequence with an infinite limit is said to diverge. There are, of course, divergent sequences
that do not have infinite limits. Examples are defined by the following formulas:

f(n)  = (--lY  , f(n) = sin 7, f(n) = (-I)“(l  + -j , f (n)  = enin”.

The basic rules for dealing with limits of sums, products,  etc., also  hold for limits of
convergent sequences. The reader should have no difficulty in formulating these theorems
for himself. Their proofs are somewhat similar to those given in Section 3.5.

The convergence or divergence of many sequences may be determined by using properties
of familiar functions that are defined for a11 positive x. We mention a few important
examples of real-valued sequences whose limits may be found directly or by using some of
the results derived in Chapter 7.

(10.9) lim L =  0
n-+m  na

i f  a>O.

(10.10) lim xn = 0 if 1x1 < 1  .
?L+a>

(10.11)

12) lim n lin = 1  .
?L+a,

(10.

(10. 13) lim 1 + a n=  ea
( 1

for a11  real a .
?L’O2 n

lim(logn)“O
nb

for a11  a > 0, b  > 0 .
n+m
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10.3 Monotonie sequences of real numbers

A sequence {f(n)} is said to be increasing if

381

f(n)sf(n+  1) forallnk  1 .

We indicate this briefly by writingf(n)f  . If, on the other hand, we have

f(n)>f(n+ 1) foralln2  1 ,

we cal1  the sequence decreasing and Write  f (n)\.  A sequence is called monotonie  if it is
increasing or if it is decreasing.

Monotonie  sequences are pleasant to work with because their convergence or divergence
is particularly easy to determine. In fact,  we have the following simple criterion.

THEOREM 10.1. A monotonie  sequence converges if and only  if it is bounded.

Note: A sequence {f( n )} .IS called bounded if there exists a positive number M such  that
If(n)]  5  M for a11 n. A sequence that is not bounded is called unbounded.

Proof.  It is clear that an unbounded sequence cannot converge. Therefore, a11 we need
to prove is that a bounded monotonie  sequence must converge.

Assume f(n)7 and let L denote  the least Upper  bound of the set of function values.
(Since the sequence is bounded, it has a least Upper  bound by Axiom 10 of the real-number

L-C L

Y,
J(l)  f(2) f(3)  f(4) J(N)  J(n)

FIGURE 10.3 A bounded increasing sequence converges to its least Upper  bound.

system.) Thenf(n)  5 L for a11  n, and we shall prove that the sequence converges to L.
Choose any  positive number E. Since L - E cannot be an Upper  bound for a11  numbers

f(n), we must have L - E <f(N) for some N. (This N may depend  on E.) If n 2.  N,
we have f(N) <f(n)  since  f(n)7  . Hence, we have L - E <f(n) 5 L for a11 n 2  N,  as
illustrated in Figure 10.3. From these inequalities we find that

0 < L - f (12)  < E for a11  n 2  N

and this means that the sequence converges to L, as asserted.
Iff(n)L  , the proof  is similar, the limit in this case being the greatest lower bound of the

set of function values.
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10.4 Exercises

In Exercises 1 through 22, a sequence {f(n)} is defined by the formula given. In each  case, (a)
determine whether the sequence converges or diverges, and (b) find the limit of each  convergent
sequence. In some cases it may  be helpful to replace the integer n by an arbitrary positive real x
and to study the resulting function  of x by the methods of Chapter 7. You may  use formulas (10.9)
through (10.13) listed at the end of Section 10.2.

n+l
l.f(n)  =* - - .

n

2. f(n) = -& - ql.

3” + (-2)n
12* fCn)  = 3n+1  + ( -2)“+1  *

13. f(n)  = m - fi.

3. f(n) = COS n;. 14. f(n) = nun, where \a(  < 1.

n2  + 3n - 2
4. f(n) = 5n2  .

6. f(n) = 1 + ( -l)n.

7. f(n) =
1 + (-1)n

II -
C-1)”

8. f(n) = -
+  1 +  (-1)n

n 2 .

log,  n15. f(n) = 7 , a > 1.

100,000n
16.  f(n) = 1 .

18.f(n)  = 1 +-/&cosy.

.

9. f(n) = 211n.

10. f(n) = n(-l)n.

20. f(n) = eeni”12.

21. f(n) = i eënin12,

n213  sin (n !)
ll.f(n>=  n+l . 22. f(n) = neëoini2,

Each  of the sequences  {a,} in Exercises 23 through 28 is convergent. Therefore, for every pre-
assigned E  > 0, there exists an integer N (depending on c)  such  that la, - LI < E  if n > N, where
L = lim,,, un  . In each  case, determine a value of N that is suitable  for each  of the following
values of E:  E  = 1, 0.1, 0.01, 0.001, 0.0001.

29. Prove that a sequence cannot  converge to two different limits.
30. Assume lim,,, a, = 0. Use the definition of limit to prove that lim,,, un  = 0.
31. If lim,,, a, = A and lim,,, b, = B, use the definition of limit to prove that we have

limn+m  (a, + b,) = A + B, and lim,,, (ca,) = CA,  where c is a constant.
32. From the results of Exercises 30 and 31, prove that if lim,,, a, = A then lim,,, ui = AZ.

Then use the identity 2a,b,  = (a, + bJ2  - un.  - bi to prove that lim,,,(u,b,)  = AB if
lim,,, 4 = A and lim,,, b, = B.
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33. If M  is a real number and n a nonnegative integer, the binomial coefficient (t) is defined by

34.

35.

the equation

u

0

C((cc  - l)(cc  - 2) . . . (a - n + 1)
=n n !

(a) When u = -4,  show that

(:)= -;,  (;)=i,  (;)= -&, (o;)=$  (;)= -g.

(b) Let  a, = (- 1)” (-i’“).  Prove that a, > 0 and that a,+, < a, .
Let  f be a real-valued function  that is monotonie increasing and bounded on the interval
[O,  11. Define  two sequences {sn}  and (tn}  as follows:

(a) Prove that s,  5  :f(x) dx  < t, and that 0 <
s s

‘J(x) dx - s, 2  f(1’  if(‘)  .
0

(b)  Prove that both sequences {Si} and {tn}  converge to the limit
sif (-4 dx.

(c) State and prove a corresponding result for the interval  [a, b].
Use Exercise  34 to establish the following limit relations:

1
(a) lim -

n+ocs  n

(b)  lim cñfk  = log2.
12-m kzl

12

(d) lim
12-00 k=l & = 1%  (1 + ti).c

10.5 Infinite series

From a given sequence of real or complex numbers, we cari  always generate a new
sequence by adding together successive terms. Thus, if the given sequence has the terms

4 , a2,  . . . , a,, . . . ,

we may form, in succession, the “partial sums”

Sl = a,, s2 = a, + 4 > sg = a, + a2 + a3 ,

and SO on, the partial sum s, of the first n terms being defined  as follows:

(10.14) s, = a, + u2  + . * * + a, =gJk  *
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The sequence {s,) of partial sums is called an injinite  series, or simply a series, and is also
denoted by the following symbols:

m

(10.15) a,  + a2  + a3  + . . . , a,l-a,+-..+a,+*..,  zak.
k=l

For example, the series  zpzl  l/k  represents the sequence {s,} for which

n  1
s, = c k’

k=l

The symbols in (10.15) are intended to remind us that the sequence of partial sums {s,}
is obtained from the sequence {a,} by addition of successive terms.

If there is a real or complex number S such  that

lim s, = S ,
n-m

we say  that the series  ~~zl  a, is convergent and has the sum S, in which case we Write

If {s,} diverges, we say  that the series  ~~fl  a, diverges and has no sum.

EXAMPLE 1. THE HARMONIC SERIES. In the discussion of Zeno’s paradox, we showed that
the partial sums s, of the series  zpzl  l/k  satisfy the inequality

n 1
s,  = c - > log (n  + 1).

k=l  k -

Since  log (n + 1) - CO  as n + 00, the same is true of s,,  and hence the series  ZZZ1  I/k
diverges. This series  is called the harmonie series.

EXAMPLE 2. In the discussion of Zeno’s paradox, we also encountered the partial sums
of the series  1 + & + & + * * . , given by the formula

cn 14-L

k-1  2k-1 y - 1 '

which is easily proved by induction. As n + 00,  these partial sums approach the limit 2,
and hence the series  converges and has sum 2. We may indicate this by writing

(10.16) 1+4+$+...=2.

The reader should realize that the word “sum” is used here in a very special  sense. The
sum of a convergent series  is not obtained by ordinary addition but rather as the Zimit
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of the sequence  of partial sums. Also, the reader should note that for a convergent series,
the symbol Ii:=,  ak is used to denote  both the series  and its sum, even though the two are
conceptually distinct. The sum represents a number and it is not capable of being con-
vergent or divergent. Once the distinction between a series  and its sum has been realized,
the use of one  symbol to represent both should cause no confusion.

As in the case of finite summation notation, the letter k used in the symbol zpzl  a, is a
“dummy index” and may be replaced by any  other convenient symbol. The letters n, m,
and r are commonly used for this purpose. Sometimes it is desirable to start the summation
from k = 0 or from k = 2 or from some other value of k. Thus, for example, the series
in (10.16) could be written as zr=,  1/2”.  In general, ifp 2 0, we define  the symbol zF=, a,
to mean the same as Er=,  b, , where b, = aD+k-l.  Thus b, = a,, b, = aP+l,  etc. When there
is no danger of confusion or when the starting point is unimportant, we Write  2 a, instead
Of  2:x, ak  .

It is easy to prove that the two series  X:=1 a, and zF=,  a, both converge or both diverge.
Suppose we let s, = a, + * . . + a, and t, = a, + a,,, + * * - + a,+,-, . If p = 0,  we
have tn+l = a, + s, , SO if s, -t S as n --f CO,  then t, --f a,, + S and, conversely, if t, -+ T
asn+ao,thens,+T-a,. Therefore, both series  converge or both diverge whenp = 0.
The same holds true if p 2 1. For p = 1, we have s, = t, , and for p > 1, we have
t, = s,+,-1  - s,-1 > and again it follows that the sequences  {s,} and {t,} both converge
or both diverge. This is often described by saying that a finite number of terms may be
omitted or added at the beginning of a series  without affecting its convergence or divergence.

10.6 The linearity property of convergent series

Ordinary finite sums have the following important properties:

(10.17)

a n d

(10.18)

z>ak + bk) =g;k  + 2 bkk=l

k$Jca,> = ci ak
k=l

(homogeneous property) .

The next theorem provides a natural extension of these properties to convergent infinite
series  and thereby justifies many algebraic manipulations in which convergent series  are
treated as though they were finite sums. Both additivity and homogeneity may be com-
bined into one  property called linearity which may be described as follows :

THEOREM 10.2. Let 2 a, and 2 b, be convergent injnite  series  of complex  terms and
let 0:  and p be complex  constants. Then the series  2 (ua, + fib,) also  converges, and its sum
is given by the equation

(10.19)
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Proof.  Using (10.17) and (10.18),  we may Write

When n -+ CO,  the first term on the right of (10.20) tends to CI  z;?, a, and the second term
tends to ,CI zFZ1  6,. Therefore tbe  left-hand side  tends to their sum, and this proves that
the series  2 (~(a~  + /3b,) converges to the sum indicated by (10.19).

Theorem 10.2 has an interesting corollary which is often used to establish the divergence
of a series.

THEOREM 10.3. If2 a, converges and ifz b, diverges, then 2 (a, + b,) diverges.

Proof.  Since  b, = (a, + b,) - a, , and since  2 a, converges, Theorem 10.2 tells us that
convergence of 1 (an + b,) implies convergence of 2 b, . Therefore, 2 (a, + b,) cannot
converge if 2 b, diverges.

EXAMPLE. The series  2 (1 /k  + 1/2”)  diverges because 2 1 /k diverges and 2 1/2”  converges.

If x a, and 1 b, are both divergent, the series  1 (an + b,) may or may not converge. For
example, when a, = b, = 1 for a11  n, then 2 (a, + 6,)  diverges. But when a, = 1 and
b n = -1 for a/  n, then 2 (a, + b,) converges.

10.7 Telescoping series

Another important property of finite sums is the telescoping property which states that

n

(10.21) kzl@k  - b,+d  = b,  - b,+l.

When we try to extend this property to infinite series  we are led to consider those series
2 a, for which each  term a, may be expressed as a difference of the form

(10.22) a, = b, - b,+I  .

These series  are known as telescoping series  and their behavior is characterized by the
following theorem.

THEOREM 10.4. Let {a,>  and {b,} be two sequences  of complex  numbers such  that

(10.23) a, = b, - b,+I for n=l,2,3 ,....

Then the series  2  a, converges if and only  if the sequence  {b,} converges, in which case we have

(10.24) $Fn=b,-L where L = lim b, .
n’a>
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Proof. Let s, denote  the nth partial sum of 2 a, . Then we have
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% = 2 ak = i@k - bk+d =  b,  - b,+l  ,
k-l k=l

because of (10.21). Therefore, both sequences  {s,}  and {b,} converge or both diverge.
Moreover, if b, + L as n + CO,  then s, + b,  - L, and this proves (10.24).

Note: Every series  is telescoping because we cari  always satisfy (10.22) if we first choose
b,  to be arbitrary and then choose b,+l  = b,  - s,  for n  2 1, where s,  = a, + . + a,.

EXAMPLE 1. Let a, = l/(n” + n). Then we have

1 1 1
a,=-=---

n(n + 1) n n+  1’

and hence  (10.23) holds with b, = I/n.  Since  b,  = 1 and L = 0, we obtain

COc 1

n(n  + l)=
1 .

?l=l

EXAMPLE 2. If x is not a negative integer, we have the decomposition

1 1
(

1 1

(n + x)(n  + x + l)(n  + x + 2) = Z ( n + x)(n  + x + 1) - (n + x + I)(n  + x + 2) 1

for each  integer n 2 1. Therefore, by the telescoping property, the following series  conver-
ges and has the sum indicated:

cac 1 1

n=l (n + x)(n  + x + I)(n  + x + 2)  = 2(x  + 1)(x  + 2)  ’

EXAMPLE 3. Sincelog [n/(n  + 1)] = log n - log (n + l), and sincelog ut + cc as ut  + 00,
the series  2 log [n/(n  + l)] diverges.

Note: Telescoping series  illustrate an important difference  between finite  sums and
infinite  series.  If we Write  (10.21) in extended form, it becomes

(b, - b,)  + (b, - b3)  + - . * + (6, - b,+,)  = b, - b,+1

which cari  be verified by merely removing parentheses and canceling. Suppose now we per-
form the same  operations on the infinite  series

(6,  - b,)  + (b,  - b3)  + (b3  - b,) + . a e .

We leave b,  , cancel bz  , cancel b,  , and SO on. For each  n  > 1, at some stage we cancel b,  .
Thus every b,  cancels  with the exception of bI  . This leads us to the conclusion that the sum
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of the series is b, . Because of Theorem  10.4, this conclusion is false unless lim,.,,  b, = 0.
This shows that parentheses cannot  always be removed in an infinite series as they cari in a
finite  sum. (See also Exercise  24 in Section 10.9.)

10.8 The geometric series

The telescoping property of finite sums may  be used to study a very  important example
known as the geometric series. This series  is generated by successive addition of the terms
in a geometric progression and has the form 2 x”, where the nth term xn is the nth power
of a fixed real or complex number x. It is convenient  to start this series  with n = 0, with
the understanding that the initial term, x0, is equal to 1.

Let s, denote  the nth partial sum of this series,  SO that

s, q = 1  + ⌧ + ⌧2 + * . . + X+l.

If x = 1, each  term on the righ t is 1 and s, = n. In this case, the series  diverges since
s, + CO  as n -t CO.  If x # 1, we may  simplify the sum for s, by writing

12-l n-1

(1 - X)S, = (il  - xjI~oxk  =r'xk  - xk+lj = 1 - in,

since the last sum telescopes. Dividing by 1 - x, we obtain the formula

1-x” 1 Xn
s = - - = - - -7 1 i f  x+1.

1 - :c 1 - X l - x

This shows that the behavior of s, for large n depends  entirely on the behavior of xn.
When 1x1 < 1, then xn --f 0 as n  --f CO,  and the series  converges to the sum I/(l - x).

Since  sn+r  - s, = xn, convergence of {.Y~)  implies x” + 0 as n  --f 00. Therefore, if
1x1 2 1 the sequence  (s,} diverges since xn does  not tend to 0 in this case. Thus we have
proved the following theorem.

THEOREM 10.5. Zf x is complex, with 1x1 < 1, the geometric series ~~‘,x”  converges
and has sum l/(l - x). That is to say,  we  have

(10.25)
11  + x + x2 + . . + /yn + . . . = -

l - x
if 1x1 < 1.

Zf (xl  2 1, the series diverges.

The geometric series,  with (XI  < 1, is one  of those rare examples whose sum we are
able to determine by finding  first a simple formula for its partial sums. (A special  case
with x = 4 was encountered in Section 10.1 in connection  with Zeno’s  paradox.) The
real importance of this series  lies in the fact  that it may  be used as a starting point for
determining the sums of a large number of other interesting series.  For example, if we
assume 1x1 < 1 and replace x by x2 in (10.25),  we obtain the formula

(10.26)
11 + X2 + xl + . ,. . + X2n  + . . . = --

1 - x2
if 1x1 < 1 .
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Notice that this series  contains those terms of (10.25) with euen  exponents. TO find the
sum of the odd powers alone, we need only multiply both sides  of (10.26) by x to obtain

(10.27)
Xx + x3 + x5 + . . . + x2n+1  + * * * = -

1 - x2
if 1x1 < 1 .

If we replace x by -x in (10.25),  we find that

(10.28)
11 - x + x3 _ x3  + . . . + (-lyx” + . . . = -

1 + x
if 1x1 < 1 .

Replacing x by x2 in (10.28),  we find that

(10.29)  l-~~+x~-x~+~~~+(-l)~x~~+~~~=~~ if 1x1 < 1 .

Multiplying both sides  of (10.29) by x, we obtain

(10.30) Xx - x3 + x5 - x’ + * . * + (- l)nxZn+l  + * . . = -
1 + x2

if 1x1 < 1 .

If we replace x by 2x in (10.26),  we find that

11+4x2+16x4+~~~+4”x2”+~~~= ~
1 - 4x2 ’

which is valid if 12x1 < 1 or, what is the same thing, if 1x1 < t. It is clear that many other
examples may be constructed by similar means.

Al1 these series  have the special  form

and are known as pow,er  series.  The numbers a, , a, , a2  , . . . , which may be real or complex,
are called coejîcients  of the power series. The geometric series  is an example with a11
coefficients equal to 1. If x and a11 the coefficients are real, the series  is called a real power
series.  We shall find later, when we discuss the general theory of real power series,  that it
is permissible to differentiate and to integrate both sides  of each  of the Equations (10.25)
through (10.30),  treating the left-hand members as though they were ordinary finite sums.
These operations lead to many remarkable new formulas. For example, differentiation of
(10.25) gives us

(10.31)
1

1 + 2x + 3x2 + . . . + nx”-l + . . . = ~
(1 - x)”

if 1x1  < 1 ,



390 Sequencez,  in$nite  series,  improper integrals

whereas integration of (10.28) yields the interesting formula

n ni - l

(10.32) (-l) x
n+l

+ **-  = log(l +x>

which expresses the logarithm as a power series.  This is the discovery of Mercator and
Brouncker (1668) that we mentioned earlier. Although each  of the Equations (10.25)
through (10.31) is valid for x in the open  interval -1 < x < +l,  it turns out that the
logarithmic series  in (10.32) is valid at the endpoint x = + 1 as well.

Another important example, which may be obtained by integration of (10.29),  is the
following power-series expansion for the inverse tangent, discovered in 1671 by James
Gregory (1638-l 675) :

3

(10.33)
X5x-;+5-z:+...+

n 2n+l

-, (-l)’ +..*=arctanx.
/ 2n + 1

Gregory’s series  converges for each  complex x with 1x1 < 1 and also  for x = f 1. When
x is real, the series  agrees with the inverse tangent function introduced in Chapter 6. The
series  cari  be used to extend the definition of the arctangent function from real values of x
to complex x with 1x1 < 1.

Many of the other elementary functions  of calculus, such  as the sine, cosine,  and expo-
nential, may also be represented by power series. This is not too surprising, in view of
Taylor’s formula which tells us that any  function may be approximated by a Taylor poly-
nomial in x of degree < n if it bas  derivatives of order n  + 1 in some neighborhood of the
origin. In the examples given above, the partial sums of the power series  are precisely the
Taylor polynomials. When a function f has derivatives of every order in a neighborhood
of the origin, then for every positive integer n Taylor’s formula leads to an equation of the
form

(10.34) J’(X)  = ia,xk + E,(x) )
k=O

where the finite sum z;=.  akxk  is a Taylor polynomial of degree < n and E,(x) is the error
for this approximation. If, now, we keep x fixed and let n increase without bound in (10.34)
the Taylor polynomials give rise  to a power series,  namely zkm_o  akxk,  where each  coefficient
ak is determined as follows:

f ‘“‘(0)
ak=k!.

If, for some x, the error E,(x) tends to 0 as n  + CO,  then for this x we may let n  - CO  in
(10.34) to obtain

f(x) = lim ia,xk  + lim E,(x) = iakxk
n+  CO  k=O n-+m R=O

In other words, the power series in question converges to f(x). If x is a point for which
E,(x) does  not tend to 0 as n  + CO: then the partial sums Will not approachf(x). Conditions
on f for guaranteeing that E,(x) -+ 0 Will be discussed later in Section Il. 10.
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TO lay  a better foundation for the general theory of power series,  we turn next to certain
general questions related to the convergence and divergence of arbitrary series.  We shall
return to the subject of power series  in Chapter 11.

10.9 Exercises

Each  of the series  in Exercises 1 through 10 is a telescoping series,  or a geometric series,  or some
related series  whose partial sums may  be simplified. In each  case, prove that  the series  converges
and has the sum indicated.

m m

c
1 1

c
1

1 .
n=l  (2n - 1)(2n  + 1) = z *

6.
n=l (n + l)(n + 2)(n  + 3) = 4’

c c
7.

n=l n2(n + 1Y =c
2n + 1

1 .

5 .
c

m lhzT--di  =l.

fi=1 Yn2+n
10.

m log  [(l +  l/n)“(l +  n)]

n=2  oog n”)[log (n + lYfl1 =c log, 4.

Power series  for log (1 + x) and arctan  x were obtained in Section 10.8 by performing various
operations on the geometric series. In a similar manner, without attempting to justify the steps,
obtain the formulas in Exercises 11 through 19. They are a11 valid at  least for 1x1 < 1. (The theo-
retical  justification is provided in Section 11.8.)

11.

12.

13.

14.

15.

20.

m
c 16.
?l=lcc
c

x2 + x
?Z=l

n2xn = (1 -x)3'

cc
c

x3 + 4x2 + x

?l==l
n3xn = (lAX)4  .

17.

18.

m
c n4xn = x4 + 11x3 + 11x2 + x

n=l
(1 - x)5 .

19.

ao

c

X"
- =log+x.n

n=l

00
c X2n-1 1 +x- =
n=l  2n - l

a log -
1 -x’

00

c (n + 1)x” = -L
(1 - x)2.?%=Il

m (n  + I)(n + 2)
c

1
2! Xn  = (1 -x)3  *TL=O

m (n  + l)(n  + 2)(n  + 3)c 1
3! Xn =(l -x)4'

?L=ll

The results of Exercises 11 through 14 suggest  that  there exists  a general formula of the form

cv

c
%W

n=1
nkXn = (1 -x)k+l'

where Pk(x)  is a polynomial of degree k, the term of lowest degree being x and that  of highest
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degree being xk. Prove this by induction, without attempting to justify the forma1 manipula-
tions with the series.

21. The results of Exercises  17 through 19 suggest the more general formula

1
Xn  = (1  _ X)k+i  ’

where
= (n + l)(n + 2) * * . (n + k)

k !

Prove this by induction, without attempting to justify the forma1 manipulations with the
series.

22. Given that zz=a xn/n ! = e”  for a11 x, find the sums  of the following series,  assuming it is
permissible to operate on infinite  series  as though they were finite  sums.

(b) 7%.
ïz?

(c)  -$ (n - 1;;  + 1).

n=2

23. (a) Given that ~~zO  xn/n!  = e”  for a11 x, show that

cc
c

n2xn
- = (2 + x)e”,

TZ!
Tl=l

assuming it is permissible to operate on these series  as though they were finite  sums.
(b) The sum of the series  ~~=-,  ,n3/n!  is ke, where k is a positive integer. Find the value of k.
Do not attempt to justify forma1 manipulations.

24. Two series  ~~=r  a, and ~~=r  6, are called identical if a, = b,  for each  n  2 1. For example,
the series

0+0+0-t... a n d (1 - 1) + (1 - 1) + (1 - 1) + . . .

are identical, but the series

1+1+1+..- a n d 1+0+1+0+1  +o+..,

are not identical. Determine whether or not the series  are identical in each  of the  following
pairs :
(a) 1 - 1 + 1 - 1 + .  . a n d (2 - 1) - (3 - 2) + (4 - 3) - (5 - 4) + . . . .
(b) 1 - 1 + 1 - 1 + . . . (and (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + . . . .
(c) 1 - 1 + 1 - 1 + . + and 1 +(-1+1)+(-l +1)+(-l  +l)+....
(d) 1 + 4 + $ + 4 + .  . ;and 1 + (1 - 4) + (4 - $) + (i - $) + . . . .

25. (a) Use (10.26) to prove that

1+o+rs+o+x4+...=$-& if 1x1 < 1 .

Note that, according to the definition given in Exercise  24, this series  is not identical to the
one  in (10.26) if x #  0.
(b) Apply Theorem 10.2 to the result in part (a) and to (10.25) to deduce (10.27).
(c) Show that Theorem 10.2 when  applied directly to (10.25) and (10.26) does  not yield (10.27).
Instead, it yields the formula X:C1 (x” - xzn)  = x/(1  - x2),  valid for 1x1 < 1.
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*lO.lO  Exercises on decimal expansions

Decimal  representations of real numbers were introduced in Section 13.15. It was shown there
that  every posi t ive real  x  has  a  decimal  representat ion of  the form

where 0 5 uk < 9 for each  k 2 1. The number x is related to the digits a, , a, , a2 , . . . by the
inequal i t i es

(10.35)
01

a, + E + . .
a,-, 0, + 1

.+~~~x<u,+~+...+10"-11+10'L.

If we let s,  =z”k=O  uJlO”,  and if we subtract s,  from each  member of (10.35), we obtain

0 < x - s,  < 10-n.

This shows that s,  + x as n --f ~0, and hence  x is given by the convergent series

(10.36)

m

k=O

Each  of the infinite decimal expansions in Exercises 1 through 5 is understood to be repeated
indef in i t e ly  as  sugges ted . In  each case,  express the decimal as an infinite series, find the sum of the
series, and thereby express  x  as  a  quot ient  of  two in tegers .

1. x=0.4444.... 4. x = 0.123123123123.. . .
2. x = 0.51515151 . . . . 5. x = 0.142857142857142857142857.. . .
3. x = 2.02020202. . . .
6 .  Prove that  every repeat ing decimal  represents  a  ra t ional  number .
7. If a number has a decimal expansion which ends in zeros, such as 4 = 0.1250000. . . , then

this  number  cari a lso  be  wri t ten  as  a  decimal  which ends  in  n ines  i f  we decrease  the  las t  nonzero
digit by one unit. For example, &  = 0.1249999 . . . . Use  infinite series to  prove  th i s  s ta tement .

The decimal representation in (10.36) may be generalized by replacing the integer 10 by any
other integer b > 1.  If x > 0, let a, denote the greatest integer in x; assuming that a,,  a,,  , . , %-1

have been defined,  let  a ,  denote  the  la rges t  in teger  such that

11
c%X.k-0  bk -

The following exercises  refer to the sequence  of integers a, , a, , u2  , . . . SO obtained.

8. Show that 0 < uk 5 b - 1 for each  k 2 1.
9. Describe  a geometric method for obtaining the numbers a,,  a, , u2  , . . . .

10. Show that the series xreo uk/bk  converges and has sum x. This  provides  a decimal expansion
of x in the scale of 6. Important special cases, other than b = 10, are the binury  SC&, b = 2,
and the duodecimul seule, b = 12.
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10.11 Tests for convergence

In theory, the convergence or (divergence of a particular series  2 a, is decided by examin-
ing its partial sums s, to see whether or not they tend to a finite limit as n + 00.  In some
special  cases, such  as the geometric series,  the sums defining s, may be simplified to the
point where it becomes a simple matter to determine their behavior for large n. However,
in the majority of cases there is no nice  formula for simplifying s, and the convergence
or divergence may be rather difficult to establish in a straightforward manner. Early
investigators in the subject, notably Cauchy and his contemporaries, realized this ditlîculty
and they developed a number of “convergence tests” that by-passed the need for an explicit
knowledge of the partial sums. A few of the simplest and most useful of these tests Will
be discussed in this chapter,  but first we want to make some general remarks about the nature
of these tests.

Convergence tests may be broadly classified  into three categories: (i) su&ient  conditions;
(ii) necessary conditions; (iii) necessary and S@cient  conditions. A test of type (i) may
be expressed symbolically as follows:

“If C is satisfied, then 2 a, converges,”

where C stands for the condition in question. Tests of type (ii) have the form

“If 2 a,?  converges, then C is satisfied,”

whereas those of type (iii) may be written thus:

“1  a, converges if and only if C is satisfied.”

We shall see presently that there are tests of type (ii) that are not of type (i) (and vice versa).
Beginners often use such  tests incorrectly by failing to realize the difference between a
necessary condition and a suflcient  condition. Therefore the reader should make an effort
to keep this distinction in mind when using a particular test in practice.

The simplest of a11 convergence tests gives a necessary condition for convergence and
may be stated as follows.

THEOREM  10.6. If the series 2 a, converges, then its nth term tends to 0; that is,

(10.37) lim a, = 0 .
?L+u>

ProoJ Let s, = a, + a2  + . . . + a, . Then a, = s, - s,-~.  As n + CO,  both s, and
s,-i  tend to the same limit and hence  a, + 0. This proves the theorem.

This is an example of a test of type (ii) which is not of type (i). Condition (10.37) is not
sufficient for convergence. For example, when a, = I/n,  the condition a, + 0 is satisfied
but the series  2 I/n  diverges. The real usefulness of this test is that it gives us a suficient
condition for divergence. That is, if the terms a, of a series  1 a, do not tend to zero, then
the series  must diverge. This statement is logically equivalent to Theorem 10.6.

10.12 Comparison tests for series  of nonnegative terms

In this section we shall  be concerned with series  having nonnegative terms, that is, series
of the form 2 a,, where each a n ;z  0. Since  the partial sums of such  series  are monotonie
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increasing, we may use Theorem 10.1 to obtain the following necessary and sujjîcient
condition for convergence.

THEOREM 10.7. Assume that a, 2 0 for each n 2 1. Then the series 2 a, converges
if and only i f  the sequence  of  i ts  partial sums is bounded above.

If the partial sums are bounded above by a number M,  say,  then the sum of the series
cannot exceed M.

EXAMPLE 1. Theorem 10.7 may be used to establish the convergence of the seriesIc=,  l/n!.
We estimate the partial sums from above by using  the inequality

L<L
k, - 2k-1'

which is obviously true for a11 k 2. 1 since k! consists  of k - 1 factors, each  22.  Therefore
we have

the last series  being a geometric series. The series  zc=,  I/n!  is therefore convergent and
has a sum < 2. We shall see later that the sum of this series  is e - 1, where e is the Euler
number.

The convergence of the foregoing example was established by comparing the terms of
the given series  with those of a series  known to converge. This idea may be pursued further
to yield a number of tests known as comparison  tests.

THEOREM 10.8. COMPARISON TEST. A s s u m e a, 2 0 a n d b, 2 0 for a11 n 2 1 . I f there
exists a positive constant c such that

(10.38) a, I 4

for a11  n, then convergence of 2 b, implies convergence of 2 a,.

Note: The conclusion may  also be formulated as follows: “Divergence of 2 a, implies
divergence of z 6, .” This statement is logically equivalent to Theorem 10.8. When the
inequality (10.38) is satisfied, we say  that the series  1 b, dominates the series  1 a,  .

Proof.  Let s, = a, + . . . + a,, t, = b, + * * * + b, . Then (10.38) implies s, < ct, . If
1 b, converges, its partial sums are bounded, say  by M. Then s, < CM,  and hence  2 a,
is also convergent since its partial sums are bounded by CM. This completes the proof.
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Omitting a finite number of terms at the beginning of a series  does  not affect its con-
vergence or divergence. Therefore Theorem 10.8 still holds true if the inequality (10.38) is
valid only for a11 n 2 N for some N.

THEOREM 10.9. LIMIT  COMPARIISON TEST. Assume that a,,, > 0 and 6,  > 0 for a11  n 2 1,
and suppose that

(10.39) lim F = 1 .
vL+cc  n

Then 2 a, converges if and only  i,f 2 b, converges.

Proof.  There exists an N such  that n 2 N implies fr < anlb, < $. Therefore b, < 2a,
and a, < $b, for a11 n 2 N, and the theorem follows by applying Theorem 10.8 twice.

Note that Theorem 10.9 also holds if lim,,,a,/b,  = c, provided that c > 0, because
we then have lim ,,man/(cbn)  = 1 and we may compare 2 a, with x (cb,). However, if
limn+coanlbn  = 0, we conclude only that convergence of 2 b, implies convergence of 1 a, .

DEFINITION. Two sequences  {a,,} and {b,} of complex  numbers are said to be asymptotically
equal if

lim F = 1 .
n-+02  12

This relation is often indicated symbolically by writing

(10.40) a, - 6, a s  n-ta,.

The notation a, - b, is read “1~~  is asymptotically equal to b, ,” and it is intended to
suggest that a, and b, behave in essentially the same way for large n. Using this terminology,
we may state the limit comparison  test in the following manner.

THEOREM 10.10. Two series  2  a, and 2 b, with terms that are positive and asymptotically
equal converge together or they diverge together.

EXAMPLE 2. THE RIEMANN ZETA-FUNCTION. In Example 1 of Section 10.7, we proved
that 1 l/(n” + )n is a convergent telescoping series. If we use this as a comparison  series,
it follows that 2 l/n2  is convergent, since  l/n2  N l/(n2  + n) as n + ûo.  Also, 2 l/nz
dominates 1 I/n8 for s 2 2, and therefore 2 l/ns  converges for every real s 2 2. We shall
prove in the next section that this series  also  converges for every s > 1. Its sum, denoted
by c(s)  (5 is the Greek letter zeta), defines  an important function in analysis known as the
Riemann zeta-function:

5(s)  = $$ i f  s>l.
n=l

Euler discovered many beautiful formulas involving c(s). In particular, he found that c(2) =
7?/6, a result which is not easy to derive at this stage.
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EXAMPLE 3. Since 2 I/n  diverges, every series  having positive terms asymptotically
equal to I/n  must also diverge. For example, this is true of the two series

CU

1
m

c
1

n=ldn(n  + 10) and c
sin - .

nn=l

The relation sin l/n - l/n follows  from the fact  that (sin x)/x --+ 1 as x + 0.

10.13 The integral test

TO use comparison  tests effectively, we must have at our disposa1 some examples of
series  of known behavior. The geometric series  and the zeta-function are useful for this
purpose.  New examples cari  be obtained very  simply by applying the integral test, first
proved by Cauchy in 1837.

FIGURE 10.4 Proof of the integral test.

THEOREM 10.11. INTEGRAL TEST. Let f be a positive decreasing function,  defined  for
allrealx>  1. Foreachnk  1,let

and t, = i(x)  d x  .
k=l s1

Then both sequences {s,} and {t,} converge or both diverge.

Proof.  By comparing f with appropriate step functions as suggested in Figure 10.4, we
obtain the inequalities

or s, -f(l) 5 t, I s,-1  . Since both sequences {s,} and {t,}  are monotonie  increasing,
these inequalities show that both are bounded above or both are unbounded. Therefore,
both sequences converge or both diverge, as asserted.
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EXAMPLE 1. The integral test enables us to prove that

O2 1c -
ns

converges if and only if s > 1 .

TL=l

Takingf(x)  = x+, we have
nlps  - 1

i f  s#l,
t, = l - s

log n i f  s=l.

When s > 1 the term nlPs  -+ 0 as n + CO  and hence {t,}  converges. By the integral test,
this implies convergence of the series  for s > 1.

When s < 1, then t, + CO  and the series  diverges. The special  case s = 1 (the harmonie
series) was discussed earlier in Section 10.5. Its divergence was known to Leibniz.

EXAMPLE 2. The same method may be used to prove that

m
c

1

s=l>  n@x n)!;
converges if and only if s > 1 .

a

(We start the sum with n = 2 to  avoid n for which log n may be zero.)
The corresponding integral in this case is

n 1
(log n)‘-” - (log 2)l-’

t, =s -dx  = l - s
i f  s#l,

2 x(log  x)
log (log n) - log (log 2) i f  s=l.

Thus {t,}  converges if and only if s > 1, and hence, by the integral test, the same holds
true for the series  in question.

10.14 Exercises

Test the following series  for convergence
decision.

on
n

” zl  (4n  - 3)(4n  - 1)  .
A

2. cm 2/2n-llog(4n+l).  c
n(n + 1)n=1

m n + l
3. c -yY’ L

n=1

4.5;.  L
n=1

or divergence. In each  case, give a reason for your

5. c
?X=l

m

6.
c
n=1

m

7. c
n=1
cc

8.
c
n=2

Isin nxj
yF-‘C

2 +(-un*  (,

2n

log n

qi=z  *
c
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m
c

1
9. ~.

n=l  dn(n  + 1) k”
m

1 +&i
10. cn=l  (n + 1j3 - 1 * 6

m
1

11. -
cn=2 (log  ds *

m n Cos2  (n743)
14. c 2n .n=1

m
1

15’ C n log n (log log n)S  .
n=3

16. 2  neën’.
n=1
m

12.
O2  I%l
c 10%  9 bnl  < 10. c 17.

cs
1ln 6  dx
0 1+x2 *n=1 n=1

m
1

m

13. c k 18. CI
n+1

1000n  + 1 * ’
e-dl  dx .n

?I=l ?a=1
19. Assumefis a nonnegative increasing function  defined for a11 x 2  1. Use the method suggested

by the proof  of the integral test to show that

Takef(x)  = log  x and deduce the inequalities

(10.41) enneen  < n !  < enn+‘eën.

These give a rough estimate  of the order of magnitude of n!. From (10.41),  we may  Write

&n (n !)Un elln  &n

e<-
n
<y.

Letting n + w, we find that

(n!)lln  1
-+- (,l)lh  N ”or . a s  n-tco.

n e e

10.15 The root test and the ratio test for series  of nonnegative terms

Using the geometric series  2 xn as a comparison series,  Cauchy developed two useful
tests known as the root test and the ratio test.

If 2 a, is a series  whose terms (from some point on) satisfy an inequality of the form

(10.42) 0 5 a, 5 x”, where O<x<l,

a direct application of the comparison test (Theorem 10.8) tells us that 2 a, converges.
The inequalities in (10.42) are equivalent to

(10.43)

hence  the name  root test.
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If the sequence  {aia}  is convergent, the test may be restated in a somewhat more useful
form that makes no reference to the number x.

THEOREM 10.12. ROOT TEST. Let 2 a, be a series  of nonnegative terms  such  that

a:lln  + RI Z a s  n-00.

(a) If R < 1, the series  converges.
(b) If R > 1, the series  diverges.
(c) If R = 1, the test is inconchasive.

Proof.  Assume R < 1 and choose x SO that R < x < 1. Then (10.43) must be satisfied
for a11 n 2 N for some N. Hence, 1 a, converges by the comparison test. This proves (a).

TO prove (b), we observe that R > 1 implies a, > 1 for infinitely  many values of n
and hence  a, cannot tend to 0. Therefore, by Theorem 10.6,2  a, diverges. This proves (b).

TO prove (c), consider the two examples in which a, = I/n and a, = l/n2.  In both
cases R = 1 since nll”  --i 1 as n -+ CO  [see Equation (10.12) of Section 10.21, but 2 l/n
diverges whereas 2 1 /n2  converges.

EXAMPLE 1. The root test makes it easy to determine the convergence of the series
ZZZ2  (log n)-” since

lin -- 1a ,  - - - - + O a s  n-w.
log n

EXAMPLE 2. Applying the root test to 2 [n/(n  + l)]““, we find that

lin  - n na, - - =( 1
1 1

(1 + l/n)“+é asn+l
n -f w,

by Equation (10.13) of Section 10.2. Since  l/e  < 1, the series  converges.

A slightly different use of the comparison test yields the ratio test.

THEOREM 10.13. RATIO TEST. Let 2 a, be a series  of positive terms such  that

a,+1- - + L as n+w.
‘1,

(a) If L < 1, the series  converges.
(b) If L > 1, the series  diverge,r.
(c) Zf  L = 1, the test is inconclusive.

Proof.  Assume L < 1 and choose x SO that L < x < 1. Then there must be an N
such  that a,+,/a,  < x for a11 n 2  N. This implies

for a11  n 2 N .
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In other words, the sequence  {a,/x”}  is decreasing for n 2 N. In particular, when n 2 N,
we must have anlxn  5 aN/xN,  or, in other words,

a, 5 12, where c = 9
ix*.

Therefore x a, is dominated by the convergent series  x xn.  This proves (a).
TO prove (b), we simply observe that L > 1 implies a,,, > a, for a11  n 2 N for some N,

and hence  a, cannot approach 0.
Finally, (c) is proved by using the same examples as in Theorem 10.12.

Warning. If the test ratio a,,, /a, is always less than 1, it does  not necessarily follow that
the Zimit L Will be less than 1. For example, the harmonie  series,  which diverges, has test
ratio n/(n + 1) which is always less than 1 but the limit L equals 1. On the other hand, for
divergence it is sufficient that the test ratio be greater than 1 for a11  sufficiently large IZ
because for such  n we have a,,, > a, and a, cannot approach 0.

EXAMPLE 3. We may establish the convergence of the series  x n!/n” by the ratio test.
The ratio of consecutive  terms is

a12+1-_ (n + 1>!  . f = n

a, (n + l)n+l  n! ( 1
1 n= 1

n+l (1 + l/n)”  + i
a s  n - 0 0 ,

by formula (10.13) of Section 10.2. Since l/e  < 1, the series  converges. In particular, this
implies that the general term of the series  tends to 0; that is,

(10.44)
In.- -0 a s  n-03.

nn

This is often described by saying that nn  “grows faste?’ than n! for large n. Also,  with a
natural extension of the o-notation, we cari  Write  (10.44) as follows: n! = o(rP) as II  + 00.

Note: The relation (10.44) may  also  be proved directly by writing

n! 1 2 k k + l  nz=~.~‘..~.n...-
n’

where k = n/2  if n is even, and k = (n - 1)/2  if n is odd. If n 2  2, the product  of the first
k factors on the right does  not exceed (J$)~,  and each  of the remaining factors does  not
exceed 1. Since (4)”  + 0 as n  + ~0, this proves (10.44). Relation (10.44) also follows
from (10.41).

The reader should realize that both the root test and the ratio test are, in reality, special
cases of the comparison  test. In both tests when we have case (a), convergence is deduced
from the fact that the series  in question cari  be dominated by a suitable geometric series
z: xn. The usefulness of these tests in practice is that a knowledge of a particular comparison
series  x xn is not explicitly required. Further convergence tests may be deduced by using
the comparison  test in other ways. Two important examples known as Raabe’s test and
Gauss’ test are described in Exercises  16 and 17 of Section 10.16. These are often helpful
when the ratio test fails.
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10.16 Exercises

Test the following series  for convergence or divergence and give a reason for your decision  in
each  case.

* (n!)2
1. -.
cn=l  (24  !

cc

8 .
2

Y  (nl’n - 1)“.
n=1

m (n!)2
2.&.

n=1
9. 2 evn2.

n=1

m 2%!
3. 7.cTL=l

10. $$i - eën’).
n=1

4. z3;. ’ 11.
c c  (1000)n
c
-.

n!n=1 n=1cc
c

n!
5 . F*

n=1

m
c

nn+lln
12.

n=l  (n + l/nY  *
cc
c

n!
6 . pi’

?I=l
m

1
7 .  ~
cn=2  (log  nV  ’

m n”[fi  + (-l)“]”
13.

c 3n
n=1

m

14.
c

r”  /sin  nxl, r > 0.
n=1

15. Let {a,} and {b,} be two sequences  with a, > 0 and b, > 0 for a11  n 2.  N, and let c, =  b, -
b,+la,+,/a, . Prove that :
(a) If there is a positive constant r such that c n 2 r > 0 for a11  n 2 N, then 2 a, converges.

[Hintc Show that ~~zA~  ak :<  u&Jr.]

(b) If c, 5 0 for n 2 N and if 2 l/b,  diverges, then x a, diverges,

[Hint: Show that 2 u, dominates z l/b,  .]

16. Let 2 a, be a series  of positive terms. Prove Raabe’s test: If there is an r > 0 and an N > 1
such that

Qn+1 1
-‘çl---I
a, n n

for a11  n 2 N  ,

then  2 a,  converges . The series 21 a, diverges if

a,,,>12 for a11  n 2 N  .
an n

[Hin t : Use Exercise 15 with b,+l  = n.]

17. Let 2 a, be a series of positive terms. Prove Gauss’ test: If there is an N > 1, an s > 1, and
an M > 0 such that

an+,-=1-A+fO
4 n ns

f o r  n>N,

where If(n)] 5 M for a11  n, then 2 a,, converges if A > 1 and diverges if A 5 1.

[Hin t : If A # 1, use Exercise 16. If A = 1, use Exercise 15 with b,+l = n log n.]



Alternating series 403

18. Use Gauss’ test (in Exercise  17) to prove that the series

1 .3 . 5 . . . (2n - 1)
2 .4 .6 . . . (2~2)

converges if k > 2 and diverges if k < 2. For this example the ratio test fails.

10.17 Alternating series

Up to  now we have been concerned largely with series  of nonnegative terms. We wish
to turn our attention next to  series  whose terms may be positive or negative. The simplest
examples occur when the terms alternate in sign. These are called alternating series  and
they have the form

(10.45) nxl(-l)nmlan  = a, - a2  + a3  - a4  + . . . + (--1Ya,  + * ’ . y

where each  a, > 0.
Examples of alternating series  were known to many early investigators. We have already

mentioned the logarithmic series

As we shall prove later on,
-1-c x 5 1. For positive
obtain the formula

(10.46)

log (1 + x) =
2 3 4

x _ “r + “s _ ; + . . . + (-I)n-1  x; + . . . .

this series  converges and has the sum log  (1 + x) whenever
x, it is an alternating series. In particular, when x = 1 we

1,,2+;+;-$+...+-(-l)“-l  + . . . ,
n

which tells us that  the alternating harmonie  series  has the sum log 2. This result is of
special  interest  in view of the fact that the harmonie  series  2 l/n diverges.

Closely related to (10.46) is the interesting formula

(10.47) ;= (-1)-lIA+&;+...+  -
2n  - 1 + ***

discovered by James Gregory in 1671. Leibniz rediscovered this result in 1673 while
computing the area of a unit circular  disk.

Bath series  in (10.46) and in (10.47) are alternating series  of the form (10.45) in which the
sequence  {a,} decreases monotonically to  zero. Leibniz noticed,  in 1705, that this simple
property of the a, implies the convergence of any alternating series.
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THEOREM 10.14. LEIBNIZ% RULE. If {a,} is a monotonie  decreasing sequence with limit
0, then the alternating series  ZZZ,,  (- l)+la,,  converges. If S denotes  its sum and s, its nth
partial sum, we also  have the inequalities

(10.48) 0 < (--l)“(S  - s,)  < a,,, for each  n 2  1 .

The inequalities in (10.48) provide a useful way to estimate the error in approximating
the sum S by any  partial sum s,. The first inequality tells us that the error, S - s, , has
the sign (- l)“, which is the same as the sign of the first neglected term, (- l)na,+l . The
second inequality states that the absolute value of this error is less than that of the first
neglected term.

s,,  n even S”,  n odd
c 1

FIGURE 10.5 Proof of Leibniz’s rule for alternating series.

Proof.  The idea of the proof  of Leibniz’s rule  is quite simple and is illustrated in Figure
10.5. The partial sums sZn (consisting of an even number of terms) form an increasing
sequence because sZn+2  - sZn  = &rZnil  - a2n+2  > 0. Similarly, the partial sums sZn-r  form
a decreasing sequence. Both sequences  are bounded below by s2 and above by s1  . There-
fore, each  sequence {sZn}  and {sZn-r},  being monotonie  and bounded, converges to a limit,
say  sZn  --f S’, and sZnel  -+ S”. But S’ = S” because

S’ - S” = lim sZn - lim sZn-l  = lim (sZn  - sZnpl)  = lim (-a,,) = 0 .
n+cc n--t52 n-tm n+m

If we denote  this common  limit by  S, it is clear that the series  converges and has sum S.
TO derive  the inequalities in (10.48) we argue as follows : Since sZnf  and sZ,-rL, we have

%n -c ht+2 s s and s I SZn+l < SZn-1 for a11  n 2 1 .

Therefore we have the inequalities

0 < s - s2n  I s2n+l  - s2n  = a2n+l and 0 < sznpl  - S S s2n-l - szn  = azn  ,

which, taken together, yield (10.48). This completes the proof.

EXAMPLE 1. Since l/nL  and -l/n + 0 as n + 00,  the convergence of the alternating
harmonie  series  1 - 3 + i - $ $- * * . is an immediate consequence  of Leibniz’s rule. The
sum of this series  is computed  below  in Example 4.

EXAMPLE 2. The alternating series  2 (- 1)” (log n)/n  converges. TO prove this using
Leibniz’s rule, we must show that (log n)/n --f 0 as n + 00 and that (log n)/nL.  The first
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statement follows from Equation (10.11) of Section 10.2. TO prove the second statement,
we note that the function f for which

f(x) = ‘y when x >  0

has the derivative f ‘(x) = (1 - log x)/x”.  When x > e, this is negative and f is monotonie
decreasing. In particular, f(n + 1) <f(n) for n 2 3.

EXAMPLE 3. An important limit relation may be derived as a consequence  of Leibniz’s
rule. L e t

2  dxa, = 1, a2= s -, 3
=

1x
a3 2,

d x
a4= s -, . . .

2 x
,

where, in general,

1 PI+’  dx
a2n-1 = i and azn  = -

s
f o r  n=l,2,3  ,....

n X

It is easy to verify that a, + 0 as n + CO  and that a,\. Hence the series  2 (- l)n-lan
converges. Denote its sum by C and its nth partial sum by s, . The (2n - 1)st  partial sum
may be expressed as follows:

El+;+-. +$ n$s1

=I+i+... + b - log n .

Since  s2n-l  --f C as n + CO,  we obtain the following limit formula:

(10.49) lim 1 + i + . . *
n-+m t

+i-logn  = C .
1

The number C defined by this limit is called Euler’s  constant (sometimes denoted by y).
Like r and e, this number appears in many analytic formulas. lts value, correct to ten
decimals, is 0.5772156649. An interesting problem, unsolved to this time, is to decide
whether Euler’s constant is rational or irrational.

Relation (10.49) cari  also be expressed as follows:

(10.50) n  1
c

- = log n + C + o(l)
k

a s  n+co.
k=l

From this it follows that the ratio (1 + 4 + * * *+ l/n)/log  n + 1 as n + CO,  SO the partial
sums of the harmonie  series  are asymptotically equal to log n. That is, we have

n  1
c

- - log n
k

a s  n-m.
k = l
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The relation (10.50) not only explains why the harmonie  series  diverges, but it also gives
us some concrete  idea of the rate of growth of its partial sums. In the next example we use
this relation to prove that the alternating harmonie  series  has the sum log 2.

EXAMPLE 4. Let s,,  = Ikm,r (- l)“-l/k.  We know that s,  tends to a limit as m --f 00,
and we shall prove now that th:is limit is log 2. When m is even, say  m = 2n, we may
separate the positive and negative terms to obtain

n

S277 =
c
k=l

Applying (10.50) to each  sum on the extreme right, we obtain

S2TL = (log 2n + C -t. o(1)) - (log n + C + o(1)) = log 2 + O(l),

sos2n+log2asn+a3. This proves that the sum of the alternating harmonie  series  is log 2.

10.18 Conditional and absolute convergence

Although the alternating harmonie  series  1 (- l)“-‘/n is convergent, the series  obtained
by replacing each  term by its absolute value is divergent. This shows that, in general,
convergence of 2 a, does  not imply convergence of 2 la,l. In the other direction, we have
the following theorem.

THEOREM 10.15. Assume 1 la,,]  converges. Then 2 a, also  converges, and we  have

(10.51)

Proof.  Assume first that the terms a,
that 1 b, converges.

are real. Let b, = a, + la,]. We shall prove
It then follows (by Theorem 10.2) that 1 a, converges because

a, = b, - la,l.
Since b, is either 0 or 2 la,l, we have 0 < b, < 2 la,\, and hence  1 la,1  dominates 2 b, .

Therefore 2 b, converges and, as already mentioned, this implies convergence of 2 a, .
Now suppose the terms a, are complex,  say  a, = U,  + iv, , where U,  and v,  are real.

Since lu,1 5 la,l, convergence of 2 la,/  implies convergence of 2 lu,1 and this, in turn,
implies convergence of 1 u, , since  the U,  are real. Similarly, 2 v,  converges. By linearity,
the series  2 (u,  + iv,) converges..

TO prove (10.51),  we note that lx;=,  a,1  < z;=,  la,l,  and then we let n + CO.

DEFINITION. A series  za, is called  absolutely  convergent if 2 la,1  converges, It is
called  conditionally convergent if 2 a, converges but 2 la,1 diverges.

If 2 a, and 2 b, are absolutely convergent, then SO is the series  2 (aa,  + ,Bb,) for every
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choice  of M  and B. This follows at once from the inequalities

which show that the partial sums of 2 laa,  + /3b,l  are bounded.

10.19 The convergence tests of Dirichlet and Abel

The convergence tests of the earlier sections that were developed for series  of nonnegative
terms may also be used to test absolute  convergence of a series  with arbitrary complex
terms. In this section we discuss two tests that are often useful for determining convergence
when the series  might not converge absolutely. Both tests make use of an algebraic identity
known as the Abel partial summation formula, named in honor of the Norwegian mathe-
matician Niels Henrik Abel (1802-1829). Abel’s formula is analogous to the formula for
integration by parts and may be described as follows.

THEOREM 10.16. ABEL?  PARTIAL SUMMATION FORMULA. Let {a,} and {b,} be two
sequences  of complex numbers, and let

A ,  =ia,.
?C=l

Then IVe  have the identity

(10.52)

Proof. If we define  A, = 0, then ak  = A, - A,-,  for each  k = 1,2,  . . . , n, SO we have

&A, = %A  - A,-db,  = i AA - ~ A&,,,  + A,$,,,  ,k=l k = l k=l k=l

which gives us (10.52).

If we let n  + 00 in (10.52),  we see that the series  2 a,b, converges if both the series
2 A,(b,  - b,+,)  and the sequence {A.b,+l}  converge. The next two tests give sufficient
conditions for these to converge.

THEOREM 10.17. DIRICHLET'S TEST. Let 1 a, be a series  of complex terms M)hose  partial
sums form a bounded sequence.
Then the series  2 a,b,  converges.

Let {b,} be a decreasing sequence which  converges to 0.

Proof. Using the notation of Theorem 10.16, there is an M > 0 such  that IA,1  < M
for a11 n. Therefore A,b,+,  + 0 as n  --f CO. TO establish convergence of 2 anb,  , we need
only show that the series  1 A,(b,  - bktl)  is convergent. Since  b,L,  we have the inequality

IA,@,  - bR+Jl  I M@/c  - b+d .
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But the series  C (b, - b,,,)  is a convergent telescoping series  which dominates

I: Ak@k - b,+J .

This implies absolute  convergence and hence convergence of 2 A,(& - bk+J.

THEOREM 10.18. ABEL'S TEST. Let 1 a, be a convergent series  of complex terms and
Iet  {b,} be a monotonie  convergent sequence of real terms. Then the series  2 anb,  converges.

Proof.  Again we use the notation of Theorem 10.16. Convergence of 2 a, implies
convergence of the sequence {A.}  and hence of the sequence {A,b,+,}.  Also, {A,} is a
bounded sequence. The rest of the proof  is similar to that of Dirichlet’s test.

TO use Dirichlet’s test effectively, we need some examples of series  having bounded
partial sums. Of course, every convergent series  has this property. An important example
of a divergent series  with bounded partial sums is the geometric series  1 x”, where x is a
complex number with 1x1 = 1 but x # 1. The next theorem gives an Upper  bound for the
partial sums of this series. When  1x1 = 1, we may Write  x = e2@,  where 19 is real, and we
have the following.

THEOREM 10.19. For every real f3  not an integer multiple of rr,  we have the identity

(10.53j
T1,
‘3 e2ike sin nec-----e zhtl)e

sin 0k;=l

from which we  obtain the estimate

(10.54)

Proof. If x # 1, the partial sums of the geometric series  are given by

12c x” - 1xk=x-----
x - l ’

k = l

Writing x = e2i0 in this formula, where 8 is real but not an integer multiple of n,  we find

n 2ine

c

e2ikB 2iB  e - 1=e  --=ezie
ein”  - eë’neeicn+l,o  _ sin n0  ei(n+l,e

- 1 eie  _  e-ie .
sin e

k=l

This proves (10.53). TO deduce (10.54),  we simply note that (sin ne1  5 1 and (ei(n+l)e\  = 1.
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EXAMPLES. Assume {b,}  is any  decreasing sequence  of real numbers with limit 0. Taking
a, = xn in Dirichlet’s test, where x is complex,  1x1 = 1, x # 1, we find that the series

(10.55) $x”

converges. Note that Leibniz’s rule for alternating series  is merely the special  case in which
x = - 1. If we Write  x = eie,  where 19 is real but not an integer multiple of 2n,  and consider
the real and imaginary parts of (10.55),  we deduce that the two trigonometric series

COS rd3 and zl~, sin ne

converge. In particular, when b, = ni,  where cc  > 0, we find the following series  converge:

cc  eintJ
c-9

m cas  nf3 * sin nf3

na c-na  ’ c -na  ’
?L=l ?I=l n=l

When cc  > 1, they converge absolutely since  they are dominated by 2 nMa.

10.20 Exercises

In Exercises 1 through 32, determine convergence or divergence of the given series.  In case of
convergence, determine whether the series  converges absolutely or conditionally.

m (-I)n+1

1 . cn=l  42 .

4
2.  $(-l)+$

PL=1

5. m (-l)n(n-l)/Zc 2n *
7Z=l

6. -f(4)” (SF.
?l=l

m cc

7.
c

(-1Y

n=2  vi  + (-1P.
15.

c
sin (log n).

TL=l
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17. 2(-l)”  (1 - nsink)  .
Tl=l

18. $(-l)n (1 -cos$.
1L=l
m

19.
c

1
( - 1)” arctan  -

n=l
2n + 1 .

20. z(-l)n  (a - arctan(logn)j

21.~1~~(1+~)~

27. f$  a,, where a, =
n=l i

l/n

1/?22
m

c

l/n2
28. a,, where a, =

?l=l -l/n
CO

1
312

2 9 .
a 1

sin - *
n

n=l

m sin (l/n)
3 0 .  ~

c n .
Yl=l

22.zsin(nn+&j.

cc

2 3 . c
1

n=l  1/241  + l/n) ’+ . . . +

24. z(-1)”  [e - (1 +~-r] .

m

2 5 . c
C-1)”

12==2  (n +  (-  1)“)s ’
03

2 6 . 2 -w
n=;  1

if n is a square,

otherwise .

if n is odd,

if n i s  even .
m

3 1 .
ci

1 - n sin .!
n ’

?L=l 1

3 2 .
Tkl

In Exercises  33 through 46, describe  the set of a11  complex z for which the series converges.
m

33. .
c

nnzn 4 0 .
m (z - 1)”

7L=l n=O (n .c

m (-1)nZan
3 4 .  ~.

c n! 4 1 .
m (-  lyyz - 1)”

?l=l
c n
n=l

‘n

c

Zn
3 5 . +. 4 2 .

m (2z + 3y

n=O
cn=l  n log (n + 1) ’

CO

c
Zn

3 6 . F’
n=l

3 7 .
m (-l)n

&=*c

c c

3 8 .
c

2n + 1
-1og-.

ne16  n
CO

3 9 .
c

1
4 6 .

n=l (1 + Iz12Y  .
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In Exercises 47 and 48, determine the set of real x for which the given series  converges.

2n sin2n x
47. 2(-l)” -y-  .

m 2” sinn  x
48. c --Jr-’

?L=l ?L=l

In Exercises 49 through 52, the series  are assumed to have real terms.
49. Ifa,  >Oandz a, converges, prove that 2 l/a,  diverges.
50. If 1 \a,1  converges, prove that 2 ai  converges. Give a counterexample in which 2 an  converges

but 1 la,1 diverges.
5 1. Given a convergent series  2 u,  , where each  a, 2  0. Prove that 15 dz  n-B  converges if p > $.

Give a counterexample for p = 4.
52. Prove or disprove the following statements:

(a) If 1 a, converges absolutely, then SO does  2 ug/(l  + ~2,).
(b) If 2 a, converges absolutely, and if no a, = - 1,  then 1 a,/( 1 + a,) converges absolutely.

*10.21  Rearrangements of series

The order of the terms in a finite sum cari  be rearranged without affecting the value of
the sum. In 1833 Cauchy made the surprising discovery that this is not always true for
infinite series.  For example, consider the alternating harmonie  series

(10.56) 1-j+*-*++-++  -...= log2.

The convergence of this series  to the sum log 2 was shown in Section 10.17. If we rearrange
the terms of this series,  taking alternately two positive terms followed by one  negative
term, we get a new series  which cari  be designated as follows:

(10.57) l+a-~+%+P-B+~+-~~ï-~++  _....

Each term which occurs in the alternating harmonie  series  occurs exactly once in this
rearrangement, and vice versa. But we cari  easily prove that this new series  has a sum
greater than log 2. We proceed as follows:

Let t, denote  the nth partial sum of (10.57). If n is a multiple of 3, say  n  = 3m,  the
partial sum t,, contains  2m positive terms and m negative terms and is given by

2m

t 3m =
c
k=l

In each  of the last three sums,  we use the asymptotic relation

to obtain

n 1c - = log n + C + o(1)
k

a s  n+co,
k=l

t 3m = (10g  4~2  + C  + o(1)) - +.(log  2m + C + 00)) - &@g  m + C + OU))

= + log 2 + o(1) .
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Thus t,, + +j log 2 as m -+ 00. But t3m+l = t3,,&  + 1/(4m + 1) and t3m-1  = t,,  - 1/(2m),
SO t3rn+l  and tsnzpl  have the same limit as t,, when m -+  CO.  Therefore, every partial sum
t, has the limit Q log 2 as n -f CO,  SO the sum of the series  in (10.57) is 8 log 2.

The foregoing example shows that rearrangement of the terms of a convergent series
may alter its sum. We shall prove next that this cari happen only if the given series  is
conditionally convergent. That is, rearrangement of an absolutely convergent series  does
not alter its sum. Before we prove this, we Will  explain more precisely what is meant by a
rearrangement.

DEFINITION. Let P = (1, 2, 3, . . .}  denote  the set of positive integers. Let f be a function
whose domain  is P and whose range is P, and assume f has the following  property:

m#n implies f(m) # f (4 .

Such  a function f is calied  a permutation of P, or a one-to-one  mapping of P onto  itself. y
2 a, and 2 b, are two series  SUC~ that for every n 2 1 we have

for some permutation f,  then the series  2 b, is said to  be a rearrangement of 2 a,  .

EXAMPLE. If 2 a, denotes  the alternating harmonie  series  in (10.56) and if 2 b, denotes
the series  in (10.57),  we have b, = a,(,, , wherefis the permutation defined by the formulas

f(3n + 1) = 4n + 1 , f(3n + 2) = 4n + 3 , f(3n + 3) = 2n + 2 *

THEOREM 10.20. Let 2 a, be an absolutely convergent series  having sum S. Then every
rearrangement of c a, also  converges absolutely and has sum S.

Proof. Let 2 b, be a rearrangement, say  b, = a,(,)  . First we note that 2 b, converges
absolutely because 2 lb,\  is a series  of nonnegative terms whose partial sums are bounded
above by 2 la,l.

TO prove that 2 b, also has su.m S, we introduce

Bn  = fb,, 4 =iak, and
k=l k=l. k=l k=l

Now A, -t S and A*,  -+ S* as n -t CO.  Therefore, given any  E > 0, there is an N such  that

IAN - SI <; and IA; - S*I < ;.

For this N we cari  choose  M SO that

{1,2,.  . . 3  NI  E {f(l),f(2)>.  . . ,f(Wl.
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This is possible because the range offincludes a11  the positive integers. If n 2 M, we have

(10.58) IB, - SI = IB, - -4, + A,  - SI I P, - -&VI  + IA, - SI S P, - ANI  + ;.

But we also  have

The terms a, , . . . , aN  cancel  in the subtraction, SO we have

Combining this with (10.58),  we see that IB, - SI < E for a11  II  2 M,  which means that
B, --f S as n + 00. This proves that the rearranged series  2 b, has sum S.

The hypothesis of absolute convergence in Theorem 10.20 is essential. Riemann dis-
covered that a conditionally convergent series  of real terms cari  always be rearranged to give
a series  which converges to any  preassigned sum. Riemann’s argument is based on a special
property of conditionally convergent series  of real terms. Such  a series  2 a, has infinitely
many positive terms and infinitely many negative terms. Consider the two new series  2 a;t
and 2 a; obtained by taking the positive terms alone and the negative terms alone. More
specifically, define  un  and a; as follows:

(10.59) a+ - a, + I%l - 0,  - I%ln-
2 ’ an=  2 .

If a,, is positive, then u:  = a, and a; = 0; if a, is negative, then a; = a, and ai = 0.
The two new series  1 aa and x a; are related to the given series  2 a, as follows.

THEOREM 10.21. Given a series  2 a,, of real terms, dejine aA  and a; by (10.59).
(a) If c a, is conditionally convergent, both 1 a: and 2 a; diverge.
(b) Zf  1 a, is absolutely  convergent, both 2 a;t  and 2 a; converge, and we have

(10.60)

Proof. TO prove part (a), we note that 1 +a,  converges and 2 $z,~I  diverges. Therefore,
by the linearity property (Theorem 10.3) 2 a: diverges and 2 a; diverges. TO prove part
(b), we note that both 2 ;a,  and 2 &la,l  converge, SO by the linearity property (Theorem
10.2) both z at,  and 1 a; converge. Since  a, = a: + a; , we also obtain (10.60).

Now we cari  easily prove Riemann’s rearrangement theorem.

THEOREM 10.22. Let z a, be a conditionally convergent series  of real terms, and let S
be a given real number. Then there is a rearrangement 2 b, of 2 a, which converges to the
sum S.
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Proof. Define a: and a; as indicated in (10.59). Both series  2 a: and 1 a; diverge
since 1 a, is conditionally convergent. We rearrange 2 a, as follows:

Take, in order, just enough positive terms a: SO that their sum exceeds S. Ifp, positive
terms are required, we have

n$;n  > S but $GIS if q  <pl.

This is always possible since the partial sums of 1 ai tend to + CO.  TO this sum we add
just enough negative terms a; , say  n, negative terms, SO that the resulting sum is less than S.
This is possible since the partial sums of a; tend to - 00. Thus, we have

Now we repeat the process, adding just enough new positive terms to make the sum exceed
S, and then just enough new negative terms to make the sum less than S. Continuing in
this way, we obtain a rearrangement 2 b, . Each partial sum of 1 b, differs from S by at
most one  term a: or a; . But a, + 0 as n + CO  since 2 a, converges, SO the partial sums
of 2 b, tend to S. This proves that the rearranged series  2 6, converges and has sum S,
as asserted.

10.22 Miscellaneous review exercises

1. (a) Let a, = .t/n  + 1 - &.  Compute lim,,, a, .
(b) Let a, = (n + 1)” - ne,  where c is real. Determine those c for which the sequence {a,}
converges and those for which it diverges. In case of convergence, compute the limit of the
sequence. Remember that c cari  be positive, negative, or zero.

2. (a) If 0 < x < 1, prove that (1 + x”)lln approaches  a limit as n  + ~0 and compute this
limit.
(b) Given a > 0, b  > 0, compute lim,,,(an  + bn)lin.

3. A sequence {a,} is defined recursively in terms of a, and a2  by the formula

4 + a,-,
%4-l  = 2

f o r  n22.

(a) Assuming that {a,} converges, compute the limit of the sequence in terms of a, and a2  .
The result is a weighted arithmetic mean  of a, and a2  .
(b) Prove that for every choice  ofa,  and a2  the sequence {a,} converges. You may  assume that
a1  < a2. [Hint:  Consider {a,,} and {a2n+l} separately.]

4. A sequence {x,} is defined by the following recursion  formula:

X:l = 1 ) x,+1 = 2/lfx,

Prove that the sequence converges and find its limit.
5. A sequence {xn} is defined by the following recursion  formula:

1
x()  = 1 ) x,=1, -= -!- +‘.

X?l+? x,+1  XII

Prove that the sequence converges and find its limit.
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6. Let {a,} and (6,)  be two sequences  such  that for each  n  we have

eu”  = a, + e %

(a) Show that a, > 0 implies b, > 0.
(b) If a,, > 0 for a11 n  and if 2 a, converges, show that 1 (b,/a,)  converges.

In Exercises  7 through 11, test the given series  for convergence.
00

c
1

9.
n=2 (log  nPn  .

m

8. n~lns(~ - 242  + 2/n-l). c
1

10. -
nl+l/n  .

n=1

11.  ~;&&l, where a, = l/n if n  is odd, a, = l/n2  if n  is even.
12. Show that the infinite  series

converges for a > 2 and diverges for a = 2.
13. Given a, > 0 for each  n.  For each  of the following statements,  give a proof  or exhibit a

counterexample.
(a) If zzcl  a, diverges, then ~~=,  ai diverges.
(b) If zzcl  u:  converges, then Ic=,  a,/n  converges.

14. Find a11 real c for which the series  zz’, (n!)c/(3n)!  converges.
15. Find a11 integers a 2 1 for which the series  zF=r  (n!)3/(an)!  converges.

7%.  L e t  n,  <  n2  < n3  < . denote  those positive integers that do not involve the digit 0 in their
decimal  representations.  Thus n,  = 1, n2  = 2, . . . , n,  = 9, n10  = 11, . . . , nia = 19, nlQ  = 21,
etc. Show that the series  of reciprocals I:=I l/n,  converges and has a sum less than 90.

[Hint: Dominate the series  by 9 xz=0  (9/10)n.]

17. If a is an arbitrary real number, let s,(a) = la + 2a + . . . + na.  Determine the following
limit :

s,(a + 1)
lim-.
n-m n&L@)

(Consider both positive and negative a, as well as a = 0.)
18. (a) If p and q are fixed integers, p 2  q 2  1, show that

P?z
c 1

lim
n+m  k=Qn

- = logi.
k

(b) The following series  is a rearrangement of the alternating harmonie series  in which there
appear, alternately, three positive terms followed by two negative terms:

1l+g+;-$-$+++*+l~l---s+++--....i

Show that the series  converges and has sum log 2. + a log  8.

[Hint: Consider the partial sum sbn  and use part (a).]
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(c) Rearrange the alternating harmonie series,  writing alternately p positive terms followed
by q negative terms. Then use part (a) to show that this rearranged series  converges and has
sum log 2 + 9 log  (p/q).

10.23 Improper integrals

The concept of an integral &“(x) dx was introduced in Chapter 1 under the restriction
that the function f is de$ned  and bounded on a$nite  interval  [a, b]. The scope  of integration
theory may be extended by relax@ these restrictions.

TO begin with, we may study the behavior of SI~(X) dx as b -+ + 03. This leads to the
notion of an injnite  integral (also called an improper integral of thejrst  kind) denoted by
the symbol jaf(x) dx. Another extension is obtained if we keep the interval [a, b] finite
and allowf to become unbounded at one  or more points. The new integrals SO obtained
(by a suitable limit process) are called improper integrals of the second kind. TO distinguish
the integrals of Chapter 1 from :improper integrals, the former are often called “proper”
integrals.

Many important functions in analysis appear as improper integrals of one  kind or
another, and a detailed study of such  functions  is ordinarily undertaken in courses in
advanced calculus. We shah  be concerned here only with the most elementary aspects of
the theory. In fact,  we shall merely state some definitions and theorems and give some
examples.

It Will be evident presently that the definitions pertaining to improper integrals bear a
strong resemblance to those for infinite series. Therefore it is not surprising that many of
the elementary theorems on series  have direct analogs for improper integrals.

If the proper integral Jaf(x) d.Y exists for every b > a, we may define  a new function I
as follows :

z(b) = jabf<4  dx for each  b 2 a .

The function I defined in this waly  is called an infinite  integral, or an improper integral of
thejrst kind,  and it is denoted by the symbol jz f (x) dx. The integral is said to converge
if the limit

(10.61) llim I(b) = ,“im  Saf(x)  dx
b+tm

exists and is finite. Otherwise, the integral ja f(x) dx is said to diverge. If the limit in
(10.61) exists and equals A, the number A is called the value of the integral, and we Write

samf(x)  dx = A.
These definitions are similar to  those given for infinite series.  The function values I(b)

play the role of the “partial SU~S” and may be referred to as “partial integrals.” Note
that the symbol j: f(x) dx is used both for the integral and for the value of the integral
when the integral converges. (Compare with the remarks near the end of Section
10.5.)
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EXAMPLE 1. The improper integral SF xeS  dx converges if s > 1 and diverges if s < 1.
TO prove this, we note that

bl-”  - 1
I(b) =I;x+  dx = 1 - s

i f  s#l,

log b i f  s=l.

Therefore Z(b) tends to a finite limit if and only if s > 1, in which case the limit is

s 00
1

x-’  dx = S&I  .

The behavior of this integral is analogous to that of the series  for the zeta-function,
l(s)  = IF=,  KS.

EXAMPLE 2. The integral JF sin x dx diverges because

Z(b) = job sin x dx = 1 - COS b ,

and this does  not tend to a limit as b -+ + CO.

Infinite integrals of the form Jb,  f(x) dx are similarly defined. Also, if SF,  f(x) dx and
Jd  f(x) dx are both convergent for some c,  we say  that the integral jmm f(x) dx is convergent,
and its value is defined to be the sum

(10.62) j-t f(x)  dx  = j:Jx) dx + jcmf(x) dx  .

(It is easy to show that the choice  of c is unimportant.) The integral jZoof(x)  dx is said to
diverge if at least one  of the integrals on the right of (10.62) is divergent.

EXAMPLE 3. The integral jz, e- alrl  dx converges if a > 0, for if b > 0, we have

s

b b e-ah  - 1 1
e -a’%’  dx  =

s

e-a=  dx  =  ~  + - a s  b-ta.
0 0 - a a

Hence jr e- a15/ dx converges and has the value l/a. Also, if b > 0, we have

s

0
e-lx’ dx = -b ens  dx = -lb0  eVat  dt = job eëaf  dt .

Therefore JO, e- alxl dx also converges and has the value l/a. Hence we have j’?m e-airl dx =
2/a. Note, however, that the integral j:, eWar  dx diverges because JO,  ePx  dx diverges.

As in the case of series,  we have various convergence tests for improper integrals. The
simplest of these refers to a positive integrand.
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THEOREM 10.23. Assume that the proper integral ja f (x) dx exists for each  b 2 a and
suppose that f(x) 2 0 for a11  x I>  a. Then jam f(x) dx converges if and only  if  there is a
constant M > 0 such  that

iabf(x)  dx 5 M for every b 2 a .

This theorem forms the basis for the following comparison  tests.

THEOREM 10.24. Assume the proper integral sz f (x) dx exists for each  b 2 a and suppose

that  0 If(x) I g(x) fo r a11  x ]> a, where ja  g(x) dx converges. Then jz f(x) dx also
converges and

Jr  f(x)  dx I ifrn g(x)  dx .

Note: The integral ja g(x) dx  is said to dominate  the integral jzf(x) dx.

THEOREM 10.25. LIMIT  COMPA!RISON TEST. Assume both proper integrals j: f (x) dx and
jz g(x) dx exist for each  b 2 a, where f (x) 2 0 and g(x)  > 0 for all  x 2 a. If

(10.63) lim Jl.9 = c
x-t+m  g(x) ’

where c # 0 ,

then both integrals ja f (x) dx and jarn g(x) dx converge or both diverge.

Note: If the limit in (10.63) :is 0, we cari  conclude  only that convergence of Ja  g(x) dx
implies convergence of j: f(x) dx.

The proofs of Theorem 10.23 through 10.25 are similar to the corresponding results for
series  and are left as exercises.

EXAMPLE 4. For each  real s,  the integral j; e-=x’  dx converges. This is seen  by com-
parison with jy xP2 dx since  e-xxs/x-2  -f 0 as x + + CO.

Improper integrals of the second kind may be introduced as follows: Suppose f is
defined on the half-open interval (a, b], and assume that the integral JE  f(t) dt exists for
each  x satisfying a < x 5 b. Define a new function Z as follows:

Z(x)  =:  Jzbf(r)  dt i f  a<x<b.

The function I SO defined is called an improper integral of the second kind and is denoted
by the symbol  Si+ f (t) dt. The integral is said to converge if the limit

(10.64) lim I(x) = lim “f(f)  dt
î-+a+ sz-ta+  z

exists and is finite. Otherwise, the integral Si+ f(t) dt is said to diverge. If the limit in
(10.64) exists and equals A, the number A is called the value of the integral, and we Write

sa;f(t)  dt = A .
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EXAMPLE 5. Let f(t)  = TP  if t > 0. If b > 0 and x > 0, we have

bl-S _ xl-S
I(x) =/;  tP  dt = l - s

i f  S#I,

log b - log x i f  s=l.

When x --f O+,  Z(x) tends to a finite limit if and only ifs < 1. Hence the integral si+ tF dt
converges ifs < 1 and diverges ifs 2 1.

This example may be dealt with in another way. If we introduce the substitution t = l/u,
dt = -ü2 du, we obtain

î
0

s

1/x
t-* dt = us-’ du .22 llb

When x+0+,  1/x+ +co  and hence  Jo+ t+ dt = jz, zP2  du, provided the last integral
converges. By Example 1, this converges if and only if s - 2 < - 1, which means s < 1.

The foregoing example illustrates a remarkable geometric fact.  Consider the function
f defined by the equation f(x) = x -3 / 4 if 0 < x 5 1. The integral &+  f (x) dx converges,
but the integral si+ nf  “(x)  dx diverges. Geometrically, this means that the ordinate set of
f has a finite area, but the solid obtained by rotating this ordinate set about the x-axis has
an infinite volume.

Improper integrals of the form Si-f(t)  dt are defined in a similar fashion. If the two
integrals Sa+  f (t) dt and j”i-  f (t) dt both converge, we Write

j-ayf(t) dt = I:+f(t)  dt + /cb-fW  dt .

Note: Some authors Write ji where we have written Si;.

The definition cari  be extended (in an obvious way) to caver the case of any  finite number
of summands. For example, if f is undefined at two points c < d interior to an interval
[a, b], we say  the improper integral Jzf  (t) dt converges and has the value Si-  f(t) dt +
E,f (t) dt  + Sd+f (t) 4 provided that each  of these integrals converges. Furthermore, we
cari  consider “mixed” combinations such  as sa+  f(t) dt + SF f(t) dt  which we Write  as
jz+ f (t) dt, or mixed combinations of the form ji- f (t) dt + j;+ f (t) dt + jr f (t) dt  which
we Write  simply as Ju  f (t) dt.

EXAMPLE 6. The gamma function. If s > 0 the integral J:+ ePtts-’  dt converges. This
must be interpreted as a sum, say

s 1

(10.65) O+  eëttspl  dt + Jlrn eëtts-’  dt .

The second integral converges for a11 real s,  by Example 4. TO test the first integral we putt = I/u and note that

e-ttS-l  dt = s:/' e-l/Uu-s-l  du .
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But SF e-1%.-s-1 du converges for s > 0 by comparison  with ST u-S-1  du. Therefore the
integral jt+ e-Q-’ dt converges for s > 0. When s > 0, the sum in (10.65) is denoted by
I’(s). The function I?  SO defined is called the gamma function, first introduced by Euler in
1729. It has the interesting property that I’(n  + 1) = n! when n is any  integer 20.  (See
Exercise 19 of Section 10.24 for an outline of the proof.)

The convergence tests given in Theorems 10.23 through 10.25 have straightforward
analogs for improper integrals of the second kind. The reader should have no difficulty in
formulating these tests for himself.

10.24 Exercises

In each  of Exercises 1 through 10, test the improper integral for convergence.

4.
s

om--&  dx.

11. For a certain real C the integral

s
cc dx

10.
2 z(logx)s  *

converges. Determine C and evaluate  the integral.
12. For a certain real C, the integral

converges. Determine C and evaluate  the integral.
13. For a certain real C, the integral

‘Dz
i (

1 c

- -0 dl x + 1 1 dx+ 2x2

converges. Determine C and evaluate  the integral.
14. Find the values of a and b SUC~  that

2x2  + bx + a

x(2x + a)
- 1  d x = l .

1
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15. For what values of the constants a and b Will the following limit exist and be equal to 1 ?

lim
s

9 x3  + ux2  + bx
dx.

p-f+m  -P x2+x+1

16. (a) Prove that

;Al(/T$  +[$) = 0  a n d t h a t  JJ-ia  Lhsinxdx  = O .

(b) Do the following improper integrals converge or diverge?

17. (a) Prove that the integral si+ (sin x)/x dx converges.
(b) Prove that lim,,, xsi  (COS t)/t2  dt  = 1.
(c) Does  the integral 10, (COS t)/t2  dt  converge or diverge?

18. (a) Iff is monotonie  decreasing for a11 x 2  1 and iff(x)  + 0 as x - + ~0,  prove that the
integral jrWf(x)  dx and the series  1 f(n) both converge or both diverge.

[KHZ: Recall the proof  of the integral test.]

(b) Give an example of a nonmonotonic f for which the series  2 f(n) converges and the in-
tegral s i  f(x) dx diverges.

19. Let l?(s)  = jr+ t+le&  dt,  ifs > 0. (The gamma function.) Use integration by parts to show
P(s + 1) = SI?(S). Then use induction to prove that I(n + 1) = n!  if n  is a positive integer.

Each  of Exercises 20 through 25 contains  a statement, not necessarily true, about  a function f
defined for a11 x 2  1. In each  of these exercises,  n  denotes  a positive integer, and Zn  denotes  the
integral J; f(x) dx, which is always assumed to exist. For each  statement either give a proof  or
provide  a counterexample.
20. Iffis  monotonie  decreasing and if lim,,, Zn  exists, then the integral j? f(x) dx  converges.
21. If lim,,,f(x) = 0 and lim,,, Zn  = A, then jyf(x) dx  converges and has the value A.
22. If the sequence  {In}  converges, then the integral jy ,f(x)  dx converges.
23. Iffis positive and if lim,,,Z, = A, then ~?Y(X) dx converges and has the value A.
24. Assumef’(x) exists for each  x 2  1 and suppose there is a constant M > 0 such  that If’(x)[  5  M

for a11 x > 1. If lim,,, Zn  = A, then the integral jFf(x) dx converges and has the value A.
25. If j? f(x) dx converges, then lim,,, f(x) = 0.
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SEQUENCES 14ND  SERIES OF FUNCTIONS

11.1 Pointwise convergence of sequences of functions

In Chapter 10 we discussed sequences whose terms were real or complex numbers. Now
we wish to  consider sequences {fn}  whose terms are real- or complex-valued fonctions
having a common  domain  on the real line or in the complex plane. For each  x in the
domain,  we cari  form another sequence {f,Jx)}  fo numbers whose terms are the corre-
sponding function values. Let S denote  the set of points x for which this sequence converges.
The function f defined on S by t:he equation

f(x) = lim  f,(x) i f  xES,
n-tm

is called the limitfînction of the sequence {fn},  and we say  that the sequence {fn} converges
pointwise to f on the set S.

The study of such  sequences is concerned primarily with the following type of question:
If each  term of a sequence {fn} has a certain property, such  as continuity, differentiability,
or integrability, to  what extent is this property transferred to the limit function? For
example, if each  function fn is continuous at a point x, is the limit function f also continuous
at x? The following example Sh#ows  that, in general, it is not.

EXAMPLE 1. A sequence of continuous functions with  a discontinuous limit function. Let
fn(x)  = xn if 0 < x 5 1. The gralphs  of a few terms are shown in Figure 11.1. The sequence
{fn} converges pointwise on the closed  interval [0, 11, and its limit function f is given by
the formula

f(x) = Ilim xn =
i
y

i f  O<x<l,

n-m i f  x=1.

Note that the limit function f is discontinuous at 1, although each  term of the sequence is
continuous in the entire  interval [0, 11.

EXAMPLE 2. A sequence for which lim,, m Ji fn(x)  dx # ja lim,, oo fn(x)  dx. Let fn(x)  =
nx(1 - x2)n  for 0 5 x < 1. In this example, the sequence {fn} converges pointwise to a
limit  function f which is 0 everywhere in the closed  interval [0, 13.  A few terms of the

422
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sequence are shown in Figure 11.2. The integral off%  over  the interval [0, l] is given by

sof,(x)  dx = n/‘x(l - x2)% dx = - 5 Cl Ti2r”  ‘= n
0 0 2(n + 1) ’

Therefore we have lim,,, &fn(x)  dx = 4, but Ji  lim,,, fn(x)  dx = 0. In other words,
the limit of the integrals is not equal to the integral of the limit. This example shows that

FIGURE 11.1 A sequence of continuous  func-
tions with a discontinuous  limit function.

FIGURE 11.2 A sequence of functions for
which fn - 0 on the interval  [O,  l] but

stfn +*asn--+  CO.

the two operations of “limit” and “integration” cannot always be interchanged. (See also
Exercises  17 and 18 in Section 11.7.)

George G. Stokes (1819-1903),  Phillip L. v. Seidel (1821-1896),  and Karl Weierstrass
were the first to realize that some extra condition is needed to justify interchanging these
operations. In 1848, Stokes and Seidel (independently and almost simultaneously) intro-
duced a concept now known as uniform  convergence and showed that for a uniformly
convergent sequence the operations of limit and integration could be interchanged.
Weierstrass later showed that the concept is of great importance in advanced analysis. W e
shall introduce the concept in the next section and show its relation to continuity and to
integration.

11.2 Uniform convergence of sequences of functions

Let {fn} be a sequence which converges pointwise on a set S to a limit function f. By the
definition of limit, this means that for each  x in S and for each  E > 0 there is an integer N,
which depends  on both x and E,  such  that 1 f,Jx)  - f(x)1 < E whenever n 2 N. If the same
N serves equally well for a11  points x in S, then the convergence is said to be uniform  on S.
That is, we have the following.



4 2 4 Sequences  and series  of functions

DEFINITION. A sequence of f;unctions  {fn} is said to converge uniformly to .f on a set S
iffor  every E > 0 there is an N (depending only  on E)  such  that n  2 N implies

1 fn(x)  - f(x) 1 < E for ail x in S .

We denote  this symbolically  by writing

fn  -f uniformly on S .

F I G U R E  11 .3 Geometric meaning of uniform convergence. If n  2  N, the entire graph
of eachf,  lies within a. distance E  from the graph of the limit functionf.

When the functions fn  are rleal-valued,  there is a simple geometric interpretation of
uniform convergence. The inequality Ifn(x)  - f(x)1 < E is equivalent to the pair of
inequalities

f(x) - E  < fn(x) <f(x) + 6.

If these hold for a11 n 2 N and every x in S, then the entire  graph offn  above  S lies within
a band of height 2~ situated symmetrically about the graph off, as indicated in Figure 11.3.

11.3 Uniform convergence and continuity

Now we prove that uniform convergence transmits continuity from the individual terms
of the sequence {fa} to the limit function f.

THEOREM 11.1 Assume fn -,f uniformly on an interval  S. If each  function f,, is con-
tinuous  at a point p in S, then the limit function f is also  continuous at p,

Proof.  We Will show that for every E > 0 there is a neighborhood N(p) such  that
If(x) -f(p)1  < E whenever x E  N(p) n S. If E > 0 is given, there is an integer N such
that n 2 N implies

for a11  x in S .

SinceJv  is continuous at p, there is a neighborhood N(p) such  that

If&> -fAmI  < 5 for a11 x in N(p) n S .
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Therefore, for a11 x in N(p) n S, we have
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If(x)  - f(P) I = If(4 - fnc4  + fni(4  - fn(p) + &r(p> - f(p) I

I If(4  -fNwI  + Ifn(4  -fXp)I  + I”&(p)  -f(p)I.

Since  each  term on the right is < l /3, we find If(x) -f(p) 1 < 6,  which completes the proof.

The foregoing theorem has an important application to infinite series  of functions. If
the function valuesf,(x)  are partial sums of other functions, say

and lffn +f  pointwise on S, then we have

f’(x) =;+y&) = 2 Uk(X)
k=l

for each  x in S. In this case, the series  2 ulC  is said to converge pointwise to the sum function
f . If fn --+ f uniformly on S, we say  the series  1 uk  converges uniformly to f. If each  term
uk  is continuous at a point p in S, then each  partial sum fn is also continuous at p SO, from
Theorem 11.1, we obtain the following corollary.

THEOREM 11.2. If a series  of functions 2 uk  converges uniformly to a sum function f on
a set S, and if each  term uk  is continuous at a point p in S, then the sum f is also  continuous
a tp .

Note: We cari  also express this result symbolically by writing

lim 5 u&)  = 2 lim I(l~(x).
+-D  R=I k=lz+fl

We describe  this by saying that for a uniformly convergent series  we may  interchange
the limit symbol with the summation symbol, or that we cari  pass to the limit term by
term.

11.4 Uniform convergence and integration

The next theorem shows that uniform convergence allows us to interchange the integration
symbol with the limit symbol.

THEOREM 11.3. Assume fn -f uniformly on an interval  [a, b], and assume that each
function fn is continuous on [a, b]. Dejne  a new  sequence  {g,} by the equation

g,(x) = ~MO  dti if  x E [a, bl ,
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and let

g(x) =  ah) dt  .i

Then g, + g uniformly on [a, b]. In  symbols,  we have

Proof. The proof  is very simple. Given E > 0, there is an integer N such  that n  2 N
implies

for a11  t in [a, b] .

Hence, if x E  [a, b] and if n 2 N, we have

k,(X)  - s(x)1  = jbn(t) -f(t)) dt I ablln(O --f(t)1 dt <lbea dt = E  ,
a l s

sogn-g uniformly on [a, b].

Again,  as a corollary, we have a corresponding result for infinite series.

THEOREM  11.4. Assume that a series of functions 2 uk  converges uniformly to a sum
function f on an interval  [a, b], where each  uk  is continuous  on [a, b]. If x E  [a, b], de-fine

a n d g(x)  = f (t)  dt  .
sa

Then g, -t  g un@rmly on [a, b]. In other words,  we have

01

Proof. Apply Theorem 11.3 to the sequence  of partial sums {fn} given by

f,(t)  = 5 uk(t)  9
k=l

and note that jz fn(t)  dt = z;=,  Ja z+(t)  dt.
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Theorem 11.4 is often described by saying that a uniformly convergent series  may be
integrated term by term.

11.5 A sufficient condition for uniform convergence

Weierstrass developed a useful test for showing that certain series  are uniformly con-
vergent. The test is applicable whenever the given series  cari be dominated by a convergent
series  of positive constants.

THEOREM 11.5. THE WEIERSTRASS M-TEST. Given a series  qf jiinctions 2 u,  which con-
vergespointwise  to a function  f on a set S. If there is a convergent series  ofpositive constants
2 M, such  that

0 I Mx)l I Mn for every n 2 1 and every x in S ,

then the series  2 u, converges un$ormly  on S.

Proof. The comparison  test shows that the series  1 un(x) converges absolutely for each
x in S. For each  x in S, we have

Since  the series  2 M,<  converges, for every E > 0 there is an integer N such  that n 2 N
implies

5 M,<E.
k=n+l

This shows that

for a11 n 2 N and every x in S. Therefore, the series  2 U,  converges uniformly tofon S.

Term-by-term differentiation of an arbitrary series  of functions is even less promising
than term-by-term integration. For example, the series  ZZZ,  (sin nx)/n”  converges for a11
real x because it is dominated by 2 l/n2. Moreover, the convergence is uniform on the
whole real axis. However, the series  obtained by differentiating term by term is 2 (COS nx)/n,
and this diverges when x = 0. This example shows that term-by-term differentiation may
destroy convergence, even though the original series  is uniformly convergent. Therefore,
the problem of justifying the interchange of the operations of differentiation and summation
is, in general, more serious than in the case of integration. We mention this example SO the
reader may realize that familiar manipulations with finite sums do not always carry over
to infinite series,  even if the series  involved are uniformly convergent. We turn next to
special  series  of functions, known as power series,  which cari  be manipulated in many
respects as though they were finite sums.
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11.6 Power series.  Circle  of convergence

An infinite series  of the form

nzoan(z  - ajn  = 120  + al(z - a) + . . . + a,(z  _ a)n  + . . .

is called a power series  in z - a. The numbers z, a, and the coefficients a, are complex.
With each  power series  there is associated a circle, called the circle of convergence, such
that the series  converges absolutely for every z interior to this circle, and diverges for every
z outside this circle. The tenter  of the circle is at u and its radius r is called the radius of

FIGURE 11.4 The circle of convergence of a power series.

convergence. (See Figure 11.4.) In extreme cases, the circle may shrink to the single point
a, in which case r = 0, or it may consist  of the entire  complex plane, in which case we say
that r = + CO.  The existence of the circle of convergence is shown in Theorem 11.7.

The behavior of the series  at the  boundary points of the circle cannot be predicted in
advance. Examples show that there may be convergence at none, some, or a11  the boundary
points .

For many power series  that occur in practice, the radius of convergence cari  be determined
by using either the ratio test or the root test, as in the following examples.

EXAMPLE 1. TO find the radius of convergence of the power series  1 zn/n!,  we apply
the ratio test. If z # 0, the ratio of consecutive  terms has absolute value

Z n+l 1 14~- =-

(n + l)!  1’ n+l

Since this ratio tends to 0 as n + CO,  we conclude  that the series  converges absolutely for
a11 complex z # 0. It also converges for z = 0, SO the radius of convergence is + CO.

Since the general term of a convergent series  must tend to 0, the result of the foregoing
example proves that

l im  - = 0
n+m  n!
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for every complex z. That is, n! “grows faste?  than the nth power of any  fixed complex
number z as n  -f cc).

EXAMPLE 2. TO test the series  2 n23nz”,  we use the root test. We have

(n23”  Izl”)lln  = 3 IzI  n2jn  -+ 3 IzI a s  n--+oo,

since n21n  = (n11n)2  and n’ln  + 1 as n --f 00. Therefore, the series  converges absolutely if
lzl < i and diverges if IzI > 3. The radius of convergence is i. This particular power
series  diverges at every boundary point because, if IzI  = $, the general term has absolute
value n2.

EXAMPLE 3. For each  of the series  2 znln  and 1 zn/n 2, the ratio test tells us that the
radius of convergence is 1. The first series  diverges at the boundary point z = 1 but
converges at a11  other boundary points (see Section 10.19). The second series  converges
at every boundary point since it is dominated by 2 l/n2.

We conclude  this section with a proof  that every power series  has a circle  of convergence.
The proof  is based on the following theorem.

THEOREM 11.6. Assume the power series  2 a,zn  converges for a particular z # 0, say
f or z = z1  . Then we  have:

(a) The series  converges absolutely for every z with IzI  < 1~~1.
(b) The series  converges uniformly  on every circular disk with  tenter  at 0 and radius

R < l-4.

Proof. Since 1 a,z:  converges, its general term tends to 0 as n --f 00. In particular,
la,zFl < 1 from some point on, say  for n 2 N. Let S be a circular disk of radius R, where
O<R<lz,l.  IfzESandn>N,wehavelzl<Rand

Since 0 < t < 1, the series  1 a,zn  is dominated by the convergent geometric series  1 tn.
By Weierstrass’ M-test, the series  1 a,zn  converges uniformly on S. This proves (b). The
argument also shows that the series  2 a,zn  converges absolutely for each  z in S. But since
each  z with IzI < 1~~1  lies in some circular disk S with radius R < 1~~1,  this also proves
part (a).

THEOREM 11.7. EXISTENCE OF A CIRCLEOF CONVERGENCE. Assume that the power series
x a,z”  converges for at least one z # 0, say jbr  z = z1  , and that it diverges for at least one
z, say for z = z2  . Then there exists a positive real number r such  that the series  converges
absolutely if IzI  < r and diverges if IzI  > r.

Proof Let A denote  the set of a11 positive numbers IzI for which the power series
2 a,zn  converges. The set A is not empty since, by hypothesis, it contains IzJ.  Also, no
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number in A cari  exceed Iz21  (because of Theorem 11.6). Hence, Iz21  is an Upper  bound
for A. Since  A is a nonempty set of positive numbers that is bounded above, it has a least
Upper  bound which we denote  by r. It is clear that r > 0 since  r 2 1zJ.  By the definition of
r, no number in A cari exceed r. Therefore, the series  diverges if Izl > r. But it is easy
to prove that the series  converges absohtely  if lzl < r. If IzI < r, there is a positive number
x in A such  that lzl < x < r. 1%~  Theorem 11.6, the series  2 a,z” converges absolutely.
This completes the proof.

There is, of course, a corresponding theorem for power series  in z - a which may be
deduced from the case just treated by introducing the change of variable 2 = z - a. The
circle of convergence has its tenter  at a, as shown in Figure 11.4.

11.7 Exercises

In Exercises 1 through 16, determine the radius of convergence r of the given power series.  In
Exercises 1 through 10, test for convergence at the boundary points if r is finite.

1. -fg. 9.
OD  (n!)2
cn=lJ n=l  (2n)!  =“-

a3

c
Zn

2.
a2  pGzn

12=o (n + 1P”  *
1 0 .  -.c nn=1

3.
m (z + 3Y
cn=O  (n + 112”  ’

1
.3*5...(2n

-
11. 1)2 .4 .6 . . . (2~2) =“*

4.
m ( - l)n22nZ2n

c 2n *n=1
12.2 (1 + ;rzn.

n=1
m m

5. 2
- [l - ( -2)qz”. 13. c (sin an)zn, a > 0.

1E=l n=om
c

n !z”
6. nn.

TL=1

a>

14. c
(sinh un)zn, a > 0.

12=0
m

Z”
7.

m (-l)n(z  + l)n
c n2+1  .

15. ~c un  + b”  ’
a > 0, b > 0.

12=0 n=1
a,

8. un2zn,
c

O<u<i. a > 0, b > 0.
PL=0

16. -$ (; + ;)  zn,
TL=1

17. Iff,(x)  = nxeënz2  for n  = 1,2, . . . and x real, show that

This example shows that the operations of integration and limit cannot  always be interchanged.
18. LetfJx)  = (sin nx)/n,  and for each  fixed real x letf(x) = lim,,,f,(x). Show that

lim fi(O) #f(O) .
n-a>
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This example shows that the operations of differentiation and limit cannot  always be inter-
changed.  -

19. Show that the series  EzC1 (sin nx)/n2  converges for every real x, and denote  its sum byf(x).
Prove that f is continuous  on [0, ~1,  and use Theorem 11.4 to prove that

sorf(x)  dx = 25 -!--n=l en - lj3.
20. It is known that

m
c

cas nx x2  TX 2
-=--2+xn2 4

i f  05x527~.
?t=l

Use this formula and Theorem 11.4 to deduce the following formulas:

(a) 2  -$ = -5 ;
?l=l

11.8 Properties of functions represented by real power series

In this section we restrict ourselves to real power series,  that is series  of the form
2 a,(z - a)n in which z, a, and the coefficients a, are a11  real numbers. We also Write  x in
place of z. The interior of the circle of convergence intersects the real axis along an interval
(a - r, a + r) symmetrically located about  a; we refer to this as the interval  of convergence
of the real power series  2 a,(x  - a)n. The number r is called the radius of convergence.
(See Figure 11.5.)

Absolute  convergence

a - r a a+r

FIGURE 11 .5 The interval  of convergence of a real power series.

Each real power series  defines  a sum function whose value at each  x in the interval of
convergence is given by

f(x) =n$,& - a)“.

The series  is said to  represent the function f in the interval of convergence, and it is called
the power-series expansion off about  a.

There are two basic problems about power-series expansions that concern us here:
(1) Given the series,  to find properties of the sum function f.
(2) Given a function f, to find whether or not it may be represented by a power series.

It turns out  that only rather special  functions possess power-series expansions. Nevertheless,
the class  of such  functions includes most examples that arise in practice, and hence  their
study is of great importance. We turn now to a discussion of question (1).
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Theorem 11.6 tells us that the power series  converges absolutely for each  x in the open
interval (a - r, a + r), and that it converges uniformly on every closed subinterval
[a - R, a + R], where 0 < R < r. Since  each  term of the power series  is continuous on
the whole real axis, it follows from Theorem 11.2 that the sum function f is continuous
on every closed subinterval [a - R, a + R], and hence  on the open  interval (a - r, a + r).
Also, Theorem 11.4 tells us that we cari  integrate the power series  term by term on every
closed subinterval [a - R, a + R]. These properties of functions represented by power
series  are stated formally in the following theorem.

THEOREM 11.8. Assume a fumtion f is represented by the power series

(11.1)

in an open  interval  (a - r, a + r), Then f is continuous on this interval, and its integral  over
any closed subinterval may  be com,uuted  by integrating the series  term by term. In particular,
for every x in (a - r, a + r), u’e  have

/:f(t)dt  = can/:(t  - a)"&  = $f$-(,  - ajnfl

?l=O n=0

Theorem 11.8 also shows that the radius of convergence of the integrated series  is at
least as large as that of the original series. We Will prove presently that both series  have
exactly the same radius of convergence. First we show that a power series  may be
differentiated term by term within its interval of convergence.

THEOREM 11.9. Let f be represented by the poser  series  (11.1) in the interval  of con-
vergence (a - r, a + r). Then \~e  bave:

(a) The dljêrentiated  series  ~7~=,  na,(x  - a)‘“-l  also  has radius of convergence r.
(b) The derivative f ‘(x) exists ,for  each  x in the interval  of convergence and is given by

f’(x) =.g&‘”  - ay-l,

Proof. For simplicity, in the proof  we assume that a = 0. First we prove that the
differentiated series  converges absolutely in the interval (-r, r). Choose any  positive x
such  that 0 < x < r, and let h be a small positive number such  that 0 < x < x + h < r.
Then the series  for f (x) and for f (x + h) are each  absolutely convergent. Hence, we may
Write

(11.2) t-(x +  k) -J&f(x>  = m a, (x +  k)” - xs
k c k

n=O

The series  on the right is absolutely convergent since  it is a linear combination of absolutely
convergent series.  Now we apply the mean-value theorem to Write

(x + k)” - xn = knci-’  ,
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where x < C, < x + h. Hence, the series  in (11.2) is identical to the series

(11.3) z na&’
?l=l

which must be absolutely convergent, since  that in Equation (11.2) is. The series  (Il .3)
is no longer a power series,  but it dominates the power series  2 nar,xn-l,  SO this latter series
must be absolutely convergent for this x. This proves that the radius of convergence of
the differentiated series  2 na,x+l is at least as large as r. On the other hand, the radius of
convergence of the differentiated series  cannot exceed r because the differentiated series
dominates the original series  2 a,xn. This proves part (a).

TO prove part (b), let g be the sum function of the differentiated series,

g(x) = z na,xn-l  .
VS1

Applying Theorem 11.8 to g,  we may integrate term by term in the interval of convergence
to obtain

s
‘g(t)  dt = 2 a,xn = f(x) - a,.

0 n=l

Since g is continuous,  the first fundamental theorem of calculus tells us thatf’(x)  exists
and equals g(x) for each  x in the interval of convergence. This proves (b).

Note: Since every power series  1 a,(x  - ~2)~  cari  be obtained by differentiating its
integrated series,  2 a,(x  - ~~)~fl/(n  + l), Theorem 11.9 tells us that  both these series
have the same  radius of convergence.

Theorems 11.8 and 11.9 justify the forma1 manipulations of Section 10.8 where we
obtained various power-series expansions using term-by-term differentiation and integration
of the geometric series. In particular, these theorems establish the validity of the expansions

log (1 + x) = Oo (-l)nXn+lc and arctan x  =
‘a (- 1yx2n+1

n+l c 2n+1 ’
n=O ?Z=O

whenever x is in the open  interval - 1 < x < 1.
As a further consequence  of Theorem 11.9, we conclude that the sum function of a power

series  has derivatives of every order and they may be obtained by repeated term-by-term
differentiation of the power series.  If f(x) = 1 a,(x  - a)n  and if we differentiate this
formula k times and then put x = a in the result, we find thatftk)(a)  = k!a,  , SO the kth
coefficient ak is given by the formula

f (k’(a)
ak  =  k! f o r  k=l,2,3 ,....
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This formula also  holds for k = 0 if we interpret f(O)(a)  to mean f(a). Thus,  the power-
series  expansion off has the form

(11.4) f(x)  = yp (x - a)“.

K=O '

This property cari  be formulated as a uniqueness theorem for power-series expansions.

THEOREM 11.10. If two  power series  1 a,(x  - a)*  and 2 b,(x  - a)n  have the same sum
function f in some neighborhood of the point a, then the two  series  are equal term by term; in
fact,  we have a, = b, = f (“)(a)/n  ! for each  n 2 0.

Equation (11.4) also shows that the partial sums of a power series  are simply the Taylor
polynomials of the sum function at a. In other words, if a functionfis representable by a
power series  in an interval (a ‘- r, a + r), then the sequence  of Taylor polynomials
{T,f(x;  a)} generated by f at a converges pointwise in this interval to the sum function f.
Moreover, the convergence is uniform in every closed  subinterval of the interval of
convergence.

11.9 The Taylor’s series  generated by a function

We turn now to the second problem raised at the beginning of the foregoing section.
That is, given a function f, to find whether or not it has a power series  expansion in some
open  interval about a point a.

We know from what was just proved that such  a function must necessarily have derivatives
of every order in some open  interval about a and that the coefficients of its power-series
expansion are given by Equation (11.4). Suppose, then, that we start with a function f
having derivatives of every order in an open  interval about  a. We cal1  such  a function
injînitely  diflerentiable  in this interval. Then we cari  certainly form the power series

(11.5) cm ff!!$d  (x _ a)” .
k=O '

This is called the Taylor’s series  generated by f at a. We now ask two questions : Does this
series  converge for any  x other than x = a ? If so, is its sum equal to f(x)? Surprisingly
enough, the answer to both questions is, in general, “no.” The series  may or may not
converge for x # a and, if it does  converge, its sum may or may not be f (x). An example
where the series  converges to a sum different from f(x) is given in Exercise 24 in Section
11.13.

A necessary and sufficient condition for answering both questions in the affirmative cari
be given by using Taylor’s formula with remainder, which provides a.finite expansion of
the form

(11.6) f(x) = z’+ (x - a)” + E,(x)
k=O
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The finite sum is the Taylor polynomial of degree n generated by f at a, and E,,(x) is the
error made in approximatingf by its Taylor polynomial. If we let n  + 00 in (11.6),  we
see that the power series  (11.5) Will converge tof(x)  if and only if the error term tends to 0.
In the next section we discuss a useful su$cient  condition for the error term to tend to 0.

11.10 A sufficient condition for convergence of a Taylor%  series

In Theorem 7.6 we proved that the error term in Taylor’s formula could be expressed
as an integral,

(11.7) E,(x) = J$ s yx - t)y-(n+l)(t)  dt. a
in any  interval about a in which fcn+l)  is continuous. Therefore, iff is infinitely differentiable,
we always have this representation of the error SO the Taylor’s series  converges to f(x) if
and only if this integral tends to 0 as n -f CO.

The integral cari  be put into a slightly more useful form by a change of variable. We
Write

t = x + (a - x)u  , d t  =  - (x  - a)du,

and note that u  varies from 1 to 0 as t varies from a to x. Therefore, the integral in (11.7)
b e c o m e s

(11.8) E,(x) = (’ -,a’n+l~lunj(n+l’[x  + (a - x)u]  du
n. 0

This form of the error enables us to give the following sufficient condition for convergence
of a Taylor’s series.

THEOREM 11.11. Assume f is injnitely  d$%rentiable  in an open  interval  Z = (a - r, a + r),
and assume that there  is a positive constant A such  that

(11.9) If’“‘<x>l  < A” f o r  n=l,2,3  ,...,

and every x in Z. Then the Taylor’s series  generated by f at a converges to f (x) for each  x in Z.

Proof. Using the inequality (11.9) in the integral formula (11.8),  we obtain the estimate

0 < ,,yJx), 5 Ix - ;ln+l  A”+‘slu”  du  = Ix
n. 0

( ‘y+;;“”  = 5,  ,
n . n .

where B = A lx - a[. But for every B, B”/n!  tends to 0 as n - CO,  SO E,(x) - 0 for each
x in Z.

11.11 Power-series  expansions for the exponential and trigonometric functions

The sine and cosine  functions and a11  their derivatives are bounded by 1 over  the entire
real axis. Therefore, inequality (11.9) holds with A = 1 if f (x) = sin x or if f (x) = COS x,
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and we have the power-series expansions

sin x - x _ ?Y  +  hf _ 2 +-

3! 5 ! 7!
. . . + (- ,y x2+1

(2n-l)!+“”

(-.osx  = 1 _ - + 5:  _ - +
2n

2! 4.! 6!
. ..+(-l)&+..*.

valid for every real x. For the exponential  function, f (x) = e5,  we havef @J(x)  = e”  for a11
x, SO in any  finite interval (-r, r) we have e5  5 e’. Therefore, (11.9) is satisfied with
A = er.  Since  r is arbitrary, this shows that the following power-series expansion is valid
for a11 real x:

e”  = 1 + x + 5  + * * . +$+.Y

The foregoing power-series expansions for the sine and cosine cari  be used as the starting
point for a completely analytic treatment of the trigonometric functions. If we use these
series  as dejnitions of the sine and cosine, it is possible to derive  a11 the familiar algebraic
and analytic properties of the trigonometric functions from these series  alone. For example,
the series  immediately give us the formulas

sin 0 = 0, COS0 = 1, sin (-x) = -sin  x , COS (-x) = COS X)

D sin x == COS x , Dcosx = -sinx.

The addition formulas may be derived by the following simple device:  Let u and u be
new functions defined by the equations

u(x) = sin (x + a) - sin x cas a - cas  x sin a,

u(x)  = COS (x + a) - COS x cas  a + sin x sin a,

where a is a fixed real number, and let f(x) = [u(x)]”  + [V(X)]~.  Then it is easy to verify
that u’(x) = v(x) and v’(x) = -u(x),  and so f’(x) = 0 for a11  x. Therefore, f is a constant
and, since  f(0) = 0, we must have f(x) = 0 for a11  x. This implies U(X) = u(x) = 0 for
a11  x or, in other words,

sin (x + a) = sin x cas a + cas  x sin a ,

Cos  (x + a) = cas  x Cos  a - sin x sin a.

The number 7~  may be introducecl as the smallest positive x such  that sin x = 0 (such  an
x cari  be shown to exist) and then it cari  be shown that the sine and cosine are periodic
with period 2n,  that sin (&r) = 1, and that COS (3~) = 0. The details, which we shall not
present here, may be found in the book Theory and Application of Znjnite  Series  by
K. Knopp (New York: Hafner, 1951).
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*11.12  Bernstein’s theorem

Theorem 11 .l 1 shows that the Taylor’s series  of a functionfconverges if the nth derivative
j”fn)  grows no faster than the nth power of some positive number. Another sufficient
condition for convergence was formulated by the Russian mathematician Sergei N.
Bernstein (1880-  :).

THEOREM 11.12. BERNSTEIN’S THEOREM. Assume f and all  its derivatives are nonnegative
on a closed interval  [0, r]. That is, assume that

f(x) 2 0 and f(“)(x)  2  0

for each  x in [0, r] and each  n = 1,2,3,  . . . . Then, $0 < x < r, the Taylor’s series

cO2 f’“‘oxk
k!

converges tof(x).
k=O

Proof.  The result holds trivially for x = 0, SO we assume that 0 < x < r. We use
Taylor’s formula with remainder to Write

(11.10) f(x) = $fT xk + E,(x).
k=O '

We Will prove that the error term satisfies the inequalities

(11.11) 0 5 E,(x) 5
0

“r  “‘f(r) .

This, in turn, shows that E,(x) + 0 as n + CO  since the quotient (x/r)“+l  + 0 when
O<x<r.

TO prove (11.1 l), we use the integral form of the error as given in Equation (11.8) with
a = 0:

E,(x) = 5
s

1

unffn+l)(x - xu) du .
. 0

This formula is valid for each  x in the closed interval [0, r]. If x # 0, let

E,o  = 1
F,(x)  = Xn+l s

lUnf(n+l)(X  - xu) d u.
n. 01

The function fcn+-l) is monotonie  increasing in the interval [0, r] since its derivative is
nonnegative. Therefore, we have

f(n+l)(x  - xu) =f(n+l)[~(l  - u)]  < f(“+“[r(l  - u)]
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if 0 5 u 5 1, which implies that F,(x) < F,(r) if 0 < x 5 r. In other words, we have
E,(x)/xn+l I EJr)/P+l  or

(11.12)

Setting x = r in Equation (1 l.lO),  we see that E,(r) <f(r) because each  term in the sum
is nonnegative. Using this in (11.112),  we obtain (11.11) which, in turn, completes the proof.

11.13 Exercises

For each  of the power series  in Exercises 1 through 10 determine the set of a11 real x for which
the series  converges and compute the sum of the series. The power-series expansions given earlier
in the text may  be used whenever it is.  convenient to do SO.

CO

1 . c ( - l)flxZn.
m  2”xn

6. -.c
PL=0

nfi=1
m

2. -
c 3n+1  *
n=O
m

3. nxn.
c

m (-1)%X312
8. ~
c 1 .

n=O
n.n=o

m m

c
(-l)%Xn. c

Xn
4. 9 .

fi=0
n=O  6-m  *

a)

5.
c

(-2y  g xn.
Vk=O

10.
m (x - 1)”

a=O  (n *c

Each  of the functions  in Exercises 11 through 21 has a power-series representation in powers of x.
Assume the existence of the expansion, verify that the coefficients have the form given, and show
that the series  converges for the values of x indicated. The expansions given earlier in the text may
be used whenever it is convenient to do SO.

Oo11. a”  =
c

mg aY  Xn
a>0 (a11  x). [Hint: a5  = e r1oga

n! .l
?Z=O

00

c
X2n+l

12. sinhx =,=o(2n  + l)!
(a11  x).

13. sin2x = m (-l)%+12G  x2n
c

(a11  x). [Hkt:  cas  2x = 1 - 2 sin2  x.1
n=1

1 mX”
1 4 .  -  =

2 -x n=02n+lc (1x1  -c  2).

15. e+  = m (-1),x2,
c
~1 (a11  x).

n.
n=O

16. sin3x = i
m

c
32n  - 1

(-lYfl (2n X2n+1 (a11  x).
12=1
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17.1o,g =zs (Ix1 < 1).

X 1 w
18.

1 +x-2x2=5 c [l - (-2)n]x” (Ixl < 3).
n=1

[Hint: 3x/(1  + x - 2x2)  = l/(l - x) - l/(l  + 2x).]

19. (1x1 < 1).

m1 2
20.

277(n  + 1)ZZZ-
x2 + x + 1 q’j n=O  sinc

X”
3 (1x1 -c 1).

[Hint: x3 - 1 = (x - 1)(x2  + x + l).]

mX 1
21.  (1 -X)(l -x2)  = 5 R=l n  +z(

1 -C-l)”
2 i

Xn
(Ixl < 1).

22. Determine the coefficient at,s  in the power-series expansion sin (2x + in) = ~~!,  a,xn.
23. Let f(x) = (2 + x2)512. Determine the coefficients a,, a,, . . . , a4  in the Taylor? series

generated by f at 0.
24. Letf(x) = ë1ia:2  if x #  0, and letf(0)  = 0.

(a) Show thatf has derivatives of every order everywhere on the real axis.
(b) Show thatf(“)(O) = 0 for a11 n 2 1. This example shows that the Taylor’s series  generated
by f about  the point 0 converges everywhere on the real axis, but that it represents f only at
the origin.

11.14 Power series  and differential equations

Power series  sometimes enable us to obtain solutions of differential equations when
other methods fail. A systematic discussion of the use of power series  in the theory of
linear second-order differential equations is given in Volume II. Here we illustrate with
an example some of the ideas and techniques involved.

Consider the second-order differential equation

(11.13) (1 - x2)y”  = -3.

Assume there exists a solution, say  y = f(x), which may be represented by a power-series
expansion in some neighborhood of the origin, say

(11.14) y = f a,xn .
7l=O

The first thing we do is determine the coefficients a,, a,, a2,  . . . .
One way to proceed is this: Differentiating (11.14) twice, we obtain

y” = 2 n(n  - l)a,xn-” .
n=2
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Multiplying by 1 - x2, we find that

(11.15) (1 - ?)y”  =%:;(a  - l)a,xne2 -2 n(n  - l)a,xn
2

=~$FI  +  2)(n  +  l)an+2x12  -z;(n  - l)aX

=~!PI  + 2)(n  + l)a,,? - n(n - WJx” .

Substituting each  of the series  (111.14) and (11.15) in the differential equation, we obtain
an equation involving two power series,  valid in some neighborhood of the origin. By
the uniqueness theorem, these power series  must be equal term by term. Therefore we
may equate coefficients of xn and obtain the relation

(n  +  2)(n  +  l)a,+,  - n(n  - l)a, =  -2a,

or, what amounts to the same thing,

n2-n-2 n - 2a
n+2  = <12  + 2)(n  + 1) an  = n+2 an  *

This relation enables us to determine a2,  ah, a6,  . . . successively in terms of a,. Similarly,
we cari  compute a3,  as, a,, . . . in terms of a,. For the coefficients with even subscripts,
we find that

a2  =  - a , , a4 =O*a,=O, a, = a, = a,, = * . . = 0 .

The odd coefficients are

l - 2 --1 3 - 2a3=-ul=--a =- = A. (-1)
1+2 3 12 a5 3+2 a2 5 3 a1y

and, in general,

a -5-2  ---a5=-.-.pal=-a  (-1)3 1 -1

7 5+2 7 5 3 7.5 l

2n - 3 2n - 3 2n - 5 2n - 7a
2n+1

- - a  - =-p - .-.-. .
2n  _ ’

.
2n + 1 2n + 1 2n - 1 2n - 3

When the common  factors are canceled,  this simplifies to

-1
a 2n+‘L  = (2n  + 1)(2n  - 1) a’ ’

Therefore, the series  for y cari  be written as follows:

3.1 C-1).-
'5 5 3 a,.

m

y = a,(1 - x2) - a,
c

1 X2n+l

’n=O  P + 1Pn  - 1)
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The ratio test may be used to verify the convergence of this series  for 1x1 < 1. The work
just carried out  shows that the series  actually satisfies the differential equation in (11.13),
where a, and a, may be thought of as arbitrary constants. The reader should note that
in this particular example the polynomial which multiplies a, is itself a solution of (11.13),
and the series  which multiplies a, is another solution.

The procedure  just described is called the method of undetermined coe#cients.  Another
way to find these coefficients is to use the formula

f woa, = -
1

if y = f(x) .
n.

Sometimes the higher derivatives of y at the origin cari  be computed directly from the
differential equation. For example, setting x = 0 in (11.13) we immediately obtain

and hence we have
f "(0)  = -2f (0) = -2a,,

a2  =frn = -a
2!

0 ’

TO find the higher derivatives, we differentiate the differential equation to obtain

(11.16) (1 - x2)y” - 2xy” = -2y’ .

Putting x = 0, we see that f “‘(0) = -2f’(O) = -2a,,  and hence a3  = f “‘(0)/3!  = -a,/3.
Differentiation of (11.16) leads to the equation

(1 - x2)y@)  - 4xy”  = 0 .

When x = 0, this yields f ca)(O) = 0, and hence a4  = 0. Repeating the process once more,
we find

(1 _  ,2)95)  - fjxy’4’ - 4f”  = 0,

fc5)(0)  = 4f “‘(0) = - 8a,  , fC5)(0)  a1
a5=-=-i?5!

It is clear that the process may be continued as long as desired.

11.15 The binomial series

We cari  also use our knowledge of differential equations to determine the sums of certain
power series. For example, we shall use the existence-uniqueness theorem for first-order
linear differential equations to prove that the binomial series  expansion

(11.17) (1 + xy = -$ (n)xn

7L=O
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is valid in the interval 1x1 < 1. Here  the exponent M  is an arbitrary real number and (;)
denotes  the binomial coefficient defined by

(11.18)
u

0
= u(u  - 1) * . . (u - n + 1)

n II.I

When t(  is a nonnegative integer, a11 but a finite number of the coefficients (n)  are zero, and
the series  reduces to a polynomial of degree G(, giving us the familiar binomial theorem.
TO prove (11.17) for an arbitrary real a, we first use the ratio test to find that the series
converges absolutely in the open  interval - 1 < x < 1. Then we define  a function f by
means of the equation

(11.19) f(x) = s (n)xn if 1x1 < 1.

?l=O

We then show thatfis a solution (of  the linear differential equation

(11.20) Y’ - *Y=0

and satisfies the initial condition J”(0)  = 1. Theorem 8.3 tells us that in any  interval not
containing the point x = -1 there is only one  solution of this differential equation with
y = 1 when x = 0. Since  y = (1 -f x>” is such  a solution, it follows thatf(x)  = (1 + x)
i f - l  < x <  1 .

Therefore, to prove (11.17) we need only show that f satisfies the differential equation
(11.20). For this purpose, we require the following property of the binomial coefficients:

(n  + 1) n T 1‘ = (a - n)(i)  .( )
This property, which is an immediate consequence  of the definition in (11.18) holds for
every real cc  and every integer n  2 0. It cari  also be expressed in the form

(11.21)

Differentiation of (11.19) gives us

f’(x)  = 2  n(n)x+l  = z(n  + l)(n $-  l)~n,

?I=l TZ=O

from which we find that

(1 + X>~‘(X)  = 2 ((n  + 1:) (n;l) +n(~)~x~=u~(~)x”=oIfo,
TZ=O n=O
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because of (Il .21). This shows thatf satisfies the differential equation (11.20) and this, in
turn, proves (11.17).

1 1

1

..16  Exercises

The differential

. zo

equation (1 - ~“)y”  - 2xy’  + 6y = 0 has a power-series solution f(x) =
u,xn withf(0) = 1 andf’(0)  = 0. Use the method of undetermined coefficients to obtain

a recursion  formula relating an+2 to a, . Determine a, explicitly for each  n  and find the sum
of the series.

2. Do the same  as in Exercise 1 for the differential equation (1 - ~“)y” - 2xy’  + 12~  = 0 and
the initial conditionsf(0)  = O,,r(O)  = 2.

In each  of Exercises 3 through 9, the power series  is used to define  the function  f. Determine
the interval  of convergence in each  case and show thatfsatisfies the differential equation indicated,
where y =f(x). In Exercises 6 through 9, solve the differential equation and thereby obtain the
sum of the series.

3.f(x)  =Zo&  ; $J = y .

4. f(x) =n$$  ; xy# +y’  -y = 0.

q(x)  = 1 +$  l .4.  7;;-);3n  - 2, X3n;

S=I

6. f(x) =c x; ; y’ = 2xy.
fi=0

y* = x"y  + b. (Find a and b.)

8. f(x) =y(!;;;y2n  ; y#  + 4y = 0.
n=O

7. f(x) =z ;; y’ = x + y.
n=2

m (3x)2n+l
9. f(X) = x +zo(2n  + l)r ; y" = 9(y - x>.

10. The functions J, and J1 defined by the series

Jo(x)  =$(-on&,

X2n+l

?l=O
Jl(X) =$  (-'Qn  + 1)!22n+l

*="

are called Besselfunctions  of thejrst  kind of orders zero and one,  respectively. Thcse  functions
arise in many  problems in pure and applied mathematics. Show (a) both series  converge
for a11 real  x; (b) Jo(x) = -J,(x);  (c)j,(x)  = j;(x),  wherej,,(x)  = xJ,,(x)  and,j,(x)  = xJ,(x).

11. The differential equation
x”y”  + xy’ + (x2 - $)y  = 0

is called Bessel’s  equation. Show that J,, and J, (as defined in Exercise 10) are solutions when
n  = 0 and 1, respectively.

In each  of Exercises 12, 13, and 14, assume the given differential equation has a power-series
solution and find the first four nonzero terms.
12.y’=x2+y2,withy=1whenx=0.
13. y’ = 1 + xy2,  with y = 0 when x = 0.
14. y’=x +y2,withy  =Owhenx =O.
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In Exercises  15, 16, and 17, assume the given differential equation has a power-series solution of
the form y = 2 a,x”, and determine the nth coefficient a, .
15. y’ = 0zy. 16. y*  = xy.
18. Let f(x) = xz’e a,x”,

17. y” + xy’ + y = 0.
where a, = 1 and the remaining coefficients are determined by the

identity

eëzr  = f {2a, + (n + l)an+l}xn.
n=0

Compute a1  , a2  , a3  , and find the sum of the series  forf(x).
19. Letf(x) = IF=, a,x”, where t l he  coefficients a, are determined by the relation

cas  x = 2 a,(n + 2)~~.
n=o

Compute as, a,, andf(r).
20. (a) Show that the first six term;s  of the binomial series  for (1 - x)-lj2  are:

1 +;.c  +ix2  +;x3  +gx4+g6x5.
(b) Let a, denote  the nth term of this series  when x = 1/50,  and let r,  denote  the remainder
after n terms; that is, for n 2 0 let

rn = a,,, + a,+2  + a1L+3  + * . . .

Show that 0 < rn < a,/49.

[Hint:  Show that a,+, < a,/50, and dominate  r,  by a suitable  geometric series.]

(c) Verify the identity

and use it to compute the first ten correct decimals of d.

[Hirzt:  Use parts (a) and (b), retain twelve decimals during  the calculations,
and take into account  round-off errors.]

21. (a) Show that

(b) Proceed as suggested in Exercise  20 and compute the first fifteen correct decimals of 43.
22. Integrate the binomial series  for (1 - x2)-l12 and thereby obtain the power-series expansion

.$l.3.5...(2n-l) X2n+l
arcsin  x = x + >~4 2 .4 .6. (I-4 < 1).. . 2n + 1

11.=l
(2n)



12
VECTOR ALGEBRA

12.1 Historical introduction

In the foregoing chapters we have presented many of the basic concepts of calculus
and have illustrated their use in solving a few relatively simple geometrical and physical
problems. Further applications of the calculus  require a deeper knowledge of analytic
geometry than has been presented SO far, and therefore we turn our attention to a more
detailed investigation of some fundamental geometric ideas.

As we have pointed out  earlier in this book, calculus  and analytic geometry were
intimately related throughout their historical development. Every new discovery in one
subject led to an improvement in the other. The problem of drawing tangents to curves
resulted in the discovery of the derivative; that of area led to the integral; and partial
derivatives were introduced to investigate curved surfaces in space.  Along with these
accomplishments came other parallel developments in mechanics and mathematical
physics. In 1788 Lagrange published his masterpiece Mécanique analytique (Analytical
Mechanics) which showed the great flexibility and tremendous power attained by using
analytical methods in the study of mechanics. Later on, in the 19th Century, the Irish
mathematician William Rowan Hamilton (1805-l 865) introduced his Theory of Quaternions,
a new method and a new point of view that contributed much to the understanding of both
algebra and physics. The best features of quaternion analysis and Cartesian geometry were ’
later united, largely through the efforts of J. W. Gibbs (1839-1903) and 0. Heaviside
(1850-1925),  and a new subject called vector  algebra sprang into being. It was soon realized
that vectors are the ideal tools for the exposition and simplification of many important
ideas in geometry and physics. In this chapter  we propose to discuss the elements of vector
algebra. Applications to analytic geometry are given in Chapter 13. In Chapter 14 vector
algebra is combined with the methods of calculus, and applications are given to both
geometry and mechanics.

There are essentially three different ways to introduce vector  algebra: geometrically,
analytically, and axiomatically. In the geometric approach, vectors are represented by
directed line segments, or arrows. Algebraic operations on vectors, such  as addition,
subtraction, and multiplication by real numbers, are defined and studied by geometric
methods.

In the analytic approach, vectors and vector  operations are described entirely in terms
of numbers, called components. Properties of the vector  operations are then deduced from

445
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corresponding properties of numbers. The analytic description of vectors arises naturally
from the geometric description as soon as a coordinate system is introduced.

In the axiomatic approach, no attempt is made to describe  the nature of a vector or of
the algebraic operations on vectors. Instead, vectors and vector operations are thought
of as unde$ned  concepts of which we know nothing except that they satisfy a certain set of
axioms. Such  an algebraic system, with appropriate axioms, is called a Zinear space or a
linear vector space. Examples of linear spaces occur in a11 branches of mathematics, and
we Will study many of them in Chapter 15. The algebra of directed line segments and the
algebra of vectors described by components are merely two examples of linear spaces.

The study of vector algebra from the axiomatic point of view is perhaps the most
mathematically satisfactory approach to use since  it furnishes a description of vectors that
is free of coordinate systems and free of any  particular geometric representation. This
study is carried  out in detail in Chapter 15. In this chapter we base our treatment on the
analytic approach, and we also use directed line segments to interpret many of the results
geometrically. When possible, we give proofs by coordinate-free methods. Thus, this
chapter serves to provide familiarity with important concrete examples of vector spaces,
and it also motivates the more abstract  approach in Chapter 15.

12.2 The vector space of n-tuples  of real numbers

The idea of using a number to locate a point on a line was known to the ancient Greeks.
In 1637 Descartes extended this idea, using a pair of numbers (a, , az)  to locate a point in
the plane, and a triple of numbers (a,, a2,  a&  to locate a point in space. The 19th Century
mathematicians A. Cayley (1821-1895) and H. G. Grassmann (1809-1877) realized that
there is no need to stop with three numbers. One cari  just as well consider a quadruple of
numbers (a,, a2,  a3, a3 or, more generally, an n-tuple  of real numbers

(a,,  4, . . . , a,)

for any  integer n 2  1. Such  an n-tuple is called an n-dimensionalpoint or an n-dimensional
vector, the individual numbers a,, a2,  . . . , a, being referred to as coordinates or components
of the vector. The collection of a11 n-dimensional vectors is called the vector space of
n-tuples, or simply n-space. We denote  this space by V,  .

The reader may well ask at this stage why we are interested in spaces of dimension
greater than three. One answer is that many problems which involve a large number of
simultaneous equations are more easily analyzed by introducing vectors in a suitable
n-space  and replacing a11 these equations by a single vector equation. Another advantage
is that we are able to deal in one  stroke with many properties common  to 1-space, 2-space,
3-space,  etc., that is, properties independent of the dimensionality of the space. This
is in keeping with the spirit of modern mathematics which favors the development of
comprehensive methods for attacking problems on a wide front.

Unfortunately, the geometric pictures which are a great help in motivating and illustrating
vector concepts when n = 1,2,  and 3 are not available when n > 3 ; therefore, the study
of vector algebra in higher-dimensional spaces must proceed entirely by analytic means.

In this chapter we shall usually denote  vectors by capital letters A, B, C, . . . , and
components by the corresponding small letters a, b, c, . . . . Thus, we Write

A = (a,, a2,  . . . , a,) ,
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TO convert V, into an algebraic system, we introduce equality of vectors and two vector
operations called addition and multiplication by scalars. The word “scalar” is used here as
a synonym for “real number.”

DEFINITION. Two vectors A and B in V,  are called equal  whenever they agree in their
respective components. That is, ifA = (a,, a2,  . . . , a,) and B = (b, , b,  , . . . , b,), the vector
equation A = B means  exactly the same as the n scalar equations

a1  = b,  , a2=b2,  .  .  .  .  a,=b,.

The sum A + B is dejned  to be the vector obtained by adding  corresponding components:

A+B=(a,+b,,a,+b,,...,a,+b,).

If c is a scalar, we dejine  CA or Ac to be the vector obtained by multiplying  each  component
of A by c:

CA  = (cal,  ca,, . . . , ca,).

From this definition it is easy to verify the following properties of these operations.

THEOREM 12.1. Vector  addition is commutative,

and associative,

A + B = B + A ,

A+(B+C)=(A+B)+C.

Multiplication by scalars is associative,

c(dA) = (cd)A

and satisjes  the two distributive laws

c(A+B)=cA+cB, a n d (c + d)A = CA  + dA  .

Proofs of these properties follow quickly from the definition and are left as exercises for
the reader.

The vector with a11 components 0 is called the zero vector and is denoted by 0. It has
the property that A + 0 = A for every vector A; in other words, 0 is an identity element
for vector addition. The vector (- l)A is also denoted by -A and is called the negative
of A. We also Write  A - B for A + (-B) and cal1  this the dijërence  of A and B. The
equation (A + B) - B = A shows that subtraction is the inverse of addition. Note that
OA = 0 and that IA = A.

The reader may have noticed the similarity between vectors in 2-space  and complex
numbers. Both are defined as ordered pairs of real numbers and both are added in exactly
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the same way. Thus, as far as addition is concerned,  complex numbers and two-dimensional
vectors are algebraically indistinguishable. They differ only when we introduce multiplica-
tion.

Multiplication of complex numbers gives the complex-number system the field properties
also possessed by the real numbers. It cari  be shown (although the proof  is difficult) that
except for n = 1 and 2, it is not possible to introduce multiplication in V,  SO as to satisfy
a11  the field properties. However, special  products  cari  be introduced in V,,  which do not
satisfy ail  the field properties. For example, in Section 12.5 we shall discuss the dotproduct
of two vectors in V, . The result of this multiplication is a scalar, not a vector. Another
product, called the cross product, is discussed in Section 13.9. This multiplication is
applicable only in the space V3 . The result is always a vector, but the cross product is
not commutative.

12.3 Geometric interpretation for n < 3

Although the foregoing definitions are completely divorced from geometry, vectors and
vector operations have an interesting geometric interpretation for spaces  of dimension
three or less. We shall draw pictures in 2-space  to illustrate these concepts and ask the
reader to produce the corresponding visualizations for himself in 3-space  and in 1-space.

B (terminal
point)

A (initial point)

F I G U R E  12 .1 The geometric vector

A3  from A to B.

4 - CI

b,  - a,

F I G U R E  12 .2 z and 6 are equivalent
because B - A = D - C.

A pair of points A and B is called a geometric vector if one  of the points, say  A, is called
the initialpoint and the other, B, the terminalpoint, or tip. We visualize a geometric vector
as an arrow from A to B, as shown in Figure 12.1, and denote  it by the symbol A2.

Geometric vectors are especially convenient  for representing certain physical quantities
such  as force, displacement, velocity, and acceleration, which possess both magnitude and
direction. The length of the arrow is a measure of the magnitude and the arrowhead
indicates the required direction.
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Suppose we in>roducea+coordinate  system with origin 0. Figure 12.2 shows two geo-
metric vectors AB  and CD with B - A = D - C. In terms of components, this means
that we have

h,  - a, = dl  - cl and b,  - a2  = d,  - c2  .

By compariso:  of thetcongruent  triangles in Figure 12.2, we see that the two arrows
representing AB and CD have equal lengths, are parallel, affd point in the same direction.
We cal1  such  geometric vectors equivalent. That is, we say  AB is equivalent to G whenever

(12.1) B - A = D - C .

Note that the four points A, B, C, D are vertices of a parallelogram. (See Figure 12.3.)
Equation (12.1) cari  also be written in the form A + D = B + C which tells us that
opposite vertices of theparallelogram have the same sum. In particular, if one  of the vertices,
say  A, is the origin 0, as in Figure 12.4, the geometric vector from 0 to the opposite vertex
D corresponds to the vector sum D = B + C. This is described by saying that vector
addition corresponds geometrically to addition of geometric vectors by the parallelogram
Zaw. The importance of vectors in physics stems from the remarkable fact that many
physical quantities (such  as force, velocity, and acceleration) combine by the parallelogram
law.

D

FIGURE 12.3 Opposite vertices of
a parallelogram have the same  sum :

A + D = B + C .

FIGURE 12.4 Vector  addition interpreted
geometrically by the parallelogram law.

For simplicity in notation, we shall use the same symbol to denote  a point in V, (when
n 5 3) and the geometric vector from the origin to this point. Thus, we Write  A instead of
&l,  B instead of 6, and SO on. Sometimes we also Write  A in place of any  geometric
vector equivalent to &. For example, Figure 12.5 illustrates the geometric meaning of
vector subtraction. Two geometric vectors are labeled as B - A, but these geometric vectors
are equivalent. They have the same length and the same direction.

Figure 12.6 illustrates the geometric meaning of multiplication by scalars. If B = CA,
the geometric vector B has length ICI times the length of A; it points in the same direction
as A if c is positive, and in the opposite direction if c is negative.
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B -A

7
A - B

FIGURE 12.5 Geometric meaning of subtraction of FIGURE 12.6 Multiplication of
vectors. vectors by scalars.

The geometric interpretation of vectors in V, for 12 5 3 suggests a way to define
parailelism in a general n-space.

DEFINITION. Two vectors A and B in V, are said to have the same direction if  B = CA
for some positive scalar c, and the opposite direction if  B = cA  for some negative c. They are
called  parallel if  B = CA  for some nonzero c.

Note that this definition makes every vector have the same direction as itself-a property
which we surely want. Note also that this definition ascribes  the following properties to
the zero vector: The zero vector is the only vector having the same direction as its negative
and therefore the only vector having the opposite direction to itself. The zero vector is the
only vector parallel to the zero vector.

1 2 . 4  Exercises

1. Let A = (1,3,6),  B = (4, -3, 3),  and C = (2, 1, 5) be three vectors in Va.  Determine the
components of each  of the following vectors: (a) A + B; (b) A - B; (c) A + B - C; (d)
7A - 2B - 3C; (e) 2A + B - 3C.

2. Draw the geometric vectors from the origin to the points A = (2, 1) and B = (1,3).  On the
same  figure, draw the geometric vector from the origin to the point C = A + tB for each  of the
following values of 1: t  = g; t = +; t = g; t = 1; t = 2; t = -1; t ZZZ  -2.

3. Solve Exercise  2 if C = tA + B.
4. Let A = (2, l), B = (1, 3),  and C = xA + yB, where x and y are scalars.

(a) Draw the geometric vector from the origin to C for each  of the following pairs of values of
xandy:x  = y  =&;x  =$,y =$;x  =$,y =$;x  =2,y =  -1;~ =3,y =  -2;~  =  -4,
y=$;x= -l,y=2.

(b) What do you  think is the set of points C obtained as x and y run through a11 real numbers
such  that x + y = l? (Just make a guess and show the locus on the figure. No proof  is
required.)
(c) Make a guess  for the set of a11 points C obtained as x and y range independently over  the
intervals 0 < x < 1, 0 5  y 5  1, and make a sketch of this set.
(d) What do you  think is the set of a11 C obtained if x ranges through the interval  0 5 x < 1
and y ranges through a11 real numbers?
(e) What do you  think is the set if x and y both range over  a11 real numbers?

5. Let A = (2, 1) and B = (1,3).  Show that every vector C = (cr  , ca) in V. cari  be expressed in
the form C = xA + yB. Express x and y in terms of cr  and ca.
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6 .

7 .

8 .

9 .
10.

11.

12.

Let A = (1, 1, l), B = (0, 1, l), and C = (1, 1,O)  be three vectors in Va and let D = xA +
yB + zC, where x, y, z are scalars.
(a) Determine the components of D.
(b) If D = 0, prove that x = y = z = 0.
(c) Find x, y, z such  that D = (1,2,3).
Let A = (1, 1, l), B = (0, 1, 1) and C = (2, 1,  1) be three vectors in V, , and let D = xA  +
yB + zC, where x, y, and z are scalars.
(a) Determine the components of D.
(b) Find x, y, and z, not a11 zero, such  that D = 0.
(c) Prove that no choice of x, y, z makes D = (1,2,3).
Let A = (1, 1, l,O),  B = (0, 1, 1, l), C = (1, 1, 0, 0) be three vectors in V,,  and let D =
xA + yB + zC, where x, y, and z are scalars.
(a) Determine the components of D.
(b) If D = 0, prove that x = y = z = 0.
(c) Find x, y, and z such  that D = (1, 5, 3,4).
(d) Prove that no choice of x, y, z makes D = (1,2,  3,4).
In V, , prove that two vectors parallel to the same  vector  are parallel to each  other.
Given four nonzero vectors A, B, C, D in V, such  that C = A + B and A is parallel to D.
Prove that C is parallel to D if and only if B is parallel to D.
(a) Prove, for vectors in V, , the properties of addition and multiplication by scalars given in
Theorem 12.1.
(b) By drawing geometric vectors in the plane, illustrate the geometric meaning of the two
distributive laws (c + d)A  = CA + dA  and C(A  + B) = CA + cB.
If a quadrilateral OABC in Va is a parallelogram having A and C as opposite vertices,  prove
that A + $(C - A) = $B.  What geometrical theorem about  parallelograms cari  you  deduce
from this equation?

12.5 The dot product

We introduce now a new kind of multiplication called the dot product or scalar product
of two vectors in V,  .

DEFINITION. Zf A = (a,, . . . , a,) and B = (b, , . . . , b,) are two vectors in V,  , their dot
product is denoted b.y A * B and is de$ned  by the equation

A . B = $ a,b,  .
k=l

Thus, to compute A . B we multiply corresponding components of A and B and then
add a11  the products. This multiplication has the following algebraic properties.

THEOREM 12.2. For a11  vectors A, B, C in V,  and a11  scalars c, we have the following
properties:

(a) A*B=B*A (commutative luw),
(b) A - (B + C) = A. B + A - C (distributive law),
(c) C(A  - B) = (CA). B = A - (cB) (homogeneity),
(d) A . A > 0 i f  A#0 (positivity),
(e) A - A = 0 if A=O.
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Proof. The first three properties are easy consequences  of the definition and are left
as exercises.  TO prove the last two, we use the relation A * A = 2 a:. Since  each  term is
nonnegative, the sum is nonnegative. Moreover, the sum is zero if and only if each  term
in the sum is zero and this cari  happen only if A = 0.

The dot product has an interesting geometric interpretation which Will be described in
Section 12.9. Before we discuss this, however, we mention an important inequality con-
cerning dot products  that is fundamental in vector algebra.

THEOREM 12.3. THE CAUCHY-SCHWARZ INEQUALITY. If A andB  are vectors in V,,  we
have

(12.2) (A . B)2  5 (A . A)(B . B) .

Moreover, the equality sign holds ifand only ifone of the vectors is  a scalar multiple of the
other.

Proof. Expressing each  member of (12.2) in terms of components, we obtain

which is the inequality proved earlier in Theorem 1.41.
We shall present another proof  of (12.2) that makes no use of components. Such  a proof

is of interest  because it shows that the Cauchy-Schwarz inequality is a consequence  of the
five properties of the dot product listed in Theorem 12.2 and does  not depend  on the
particular definition that was used to deduce these properties.

TO carry out  this proof, we notice first that (12.2) holds trivially if either A or B is the
zero vector. Therefore, we may assume that both A and B are nonzero. Let C be the vector

C=xA-yB, where x = B * B a n d  y=A*B.

Properties (d) and (e) imply that C * C 2 0. When we translate this in terms of x and y,
it Will yield (12.2). TO express C * C in terms of x and y, we use properties (a), (b) and (c)
to obtain

c * c = (xA - yB) . (xA - yB) = x2(A . A) - 2xy(A  . B) + y2(B.  B) .

Using the definitions of x and y and the inequality C * C 2 0, we get

(B . B)2(A  . A) - 2(A + B)2(B. B) + (A . B)2(B. B) 2 0.

Property (d) implies B . B > 0 since  B # 0, SO we may divide by (B * B) to obtain

(B - B)(A . A) - (A . B)2  2 0,

which is (12.2). This proof  also shows that the equality sign holds in (12.2) if and only
if C = 0. But C = 0 if and only if xA = yB. This equation holds, in turn, if and only if
one  of the vectors is a scalar multiple of the other.
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The Cauchy-Schwarz inequality has important applications to the properties of the
length or norm of a vector, a concept which we discuss next.

12.6 Length or norm of a vector

Figure 12.7 shows the geometric vector from the origin to a point A = (a,, aJ in the
plane. From the theorem of Pythagoras, we find that the length of A is given by the
formula

0

length of A = va:  + ai.

FIGURE 12.7 In V, , the length FIGURE 12.8
0fAisda:  +a;.

In V3, the length of A is da:  + ai + a$.

A corresponding picture in 3-space  is shown in Figure 12.8. Applying the theorem of
Pythagoras twice, we find that the length of a geometric vector A in 3-space  is given by

length of A = da: + ai + ~3.

Note that in either case the length of A is given by (A . A)lj2,  the square root of the dot
product of A with itself. This formula suggests b way to introduce the concept of length
in n-space.

DEFINITION. Zf A is a vector in V,,  , its length or norm is denoted by Il A 11 and is dejïned by
the equation

[/AI/ = (A . A)1’2.

The fundamental properties of the dot product lead to corresponding properties of norms.

THEOREM  12.4. Zf A is a vector in V,  and if c is a scalar,  u!e  have the following  properties:
(4  II A Il > 0 if A#0 (positivity),
(b) IlAIl  = 0 if A=O,
Cc> IlcAll  = ICI  I lAIl (homogeneity).



454 Vector  algebra

Proof. Properties (a) and (b) follow at once from properties (d) and (e) of Theorem
12.2. TO prove (c), we use the homogeneity property of dot products  to obtain

IICA  11  = (CA * CA)“2 = (?A * A)I’2 = (c2)1/2(A  * Ay  = (CI IlAI) .

The Cauchy-Schwarz inequality cari  also be expressed in terms of norms. It states that

(12.3) (A  - a2  2 IlA I l2 lPl12.

Taking the positive square root of each  member, we cari  also  Write the Cauchy-Schwarz
inequality in the equivalent form

(12.4) I A  * BI I IlAIl  I I ~ I1 *

Now we shall use the Cauchy-Schwarz inequality to deduce the triangle inequality.

THEOREM 12.5. TRIANGLE INEQUALITY. If A and B are vectors in V,  , we have

I I A + WI I IlAIl  + I IB I I  .

Moreover, the equality  sign  holds if and only  if A = 0, or B = 0, or B = CA  for some
c > 0.

Proof. TO avoid square roots, we Write the triangle inequality in the equivalent form

(12.5) I I A + WI2  I (IlA  II + llBlD2.

The left member of (12.5) is

I I A + Bl12 = (A  + B) * (A + B) = A * A + 2A . B + B . B = IIA  112  + 2A . B + llBj12,

whereas the right member is

(IlAIl  + 11~11)”  = IlAIl  + WII  I IB I I  + llBl12.

Comparing these two formulas, we see that (12.5) holds if and only if we have

(12.6) A - B S I I A I I  I IB I I  .

But A * B < IA * BJ SO (12.6) follows from the Cauchy-Schwarz inequality, as expressed in
(12.4). This proves that the triangle inequality is a consequence  of the Cauchy-Schwarz
inequality.

The converse statement is also true. That is, if the triangle inequality holds then (12.6)
also holds for A and for -A, from which we obtain (12.3). If equality holds in (12.5),  then
A *B = IlAIl  llB[j,  SO B = CA  for some scalar c. Hence  A *B = C[\A[/~  and )\AI( 11Bll  =
ICI IIAl12. If A # 0 this implies c = ICI 2 0. If B # 0 then B = CA  with c > 0.
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The triangle inequality is illustrated geometrically in Figure 12.9. It states that the
length of one  side  of a triangle does  not exceed the sum of the lengths of the other two
sides.

12.7 Orthogonality of vectors

In the course of the proof  of the triangle inequality (Theorem 12.5), we obtained the
formula

(12.7) I IA + Bll’  = lIAIl + llBl12  + 2x4 * B

FIGURE 12.9 Geometric meaning of the
triangle inequality :

I IA + BII I I IA I l + I I4 .

c
IlAIl

II Bll

FIGURE 12.10 Two perpendicular
vectors satisfy the Pythagorean
identity :

IM + w+ = IM Il2 + llBl12.

which is valid for any  two vectors A and B in V,  . Figure 12.10 shows two perpendicular
geometric vectors in the plane. They determine a right triangle whose legs have lengths
((A(( and ((Bl(  and whose hypotenuse has length ((A + B((.  The theorem of Pythagoras
states that

IIA + Bl12  = ]]A\I2 + )jB/2.

Comparing this with (12.7),  we see that A * B = 0. In other words, the dot product  of two
perpendicular vectors in the plane is zero. This property motivates the definition of per-
pendicularity of vectors in V,  .

DEFINITION. Two  vectors A and B in V,  are calledperpendicular or orthogonal ifA  * B = 0.

Equation (12.7) shows that two vectors A and B in V,  are orthogonal if and only if
1) A + B Il2 = )I A 1)  2 + 1)  B )12. This is called the Pythagorean identity in V, .
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12.8 Exercises

1. LetA =(1,2,3,4),B=(-1,2,-3,0),andC=(O,l,O,l)bethreevectorsinV,.  Compute
each  of the following dot products:
(a) A . B; (b) B. C; (c) A ’ C; (d) A . (B + C); (e) (A - B) * C.

2. Given three vectors A = (2,4,  -7), B = (2,6,3),  and C = (3,4,  -5). In each  of the following
there is only one  way to insert  parentheses to obtain a meaningful expression. Insert  paren-
theses and perform the indicated operations.
(a) A 3 BC; (b) A . B + C; (c) A + B . C; (d) AB . C; (e) A/B  . C.

3. Prove or disprove the following statement about  vectors in V,, : If A . B = A . C and A # 0,
then B = C.

4. Prove or disprove the following statement about  vectors in V, : If A . B = 0 for every B, then
A = 0.

5 .  IfA =(2,1,  -1)andB  =(l, - 1,2), find a nonzero vector C in Y3 such  that A.C = BC = 0.
6. If A = (1, -2, 3) and B = (3, 1, 2),  find scalars x and y such  that C = xA  + yB is a nonzero

vector with C * B = 0.
7. If A = (2, -1,2)  and B = (1,2,  -2>,  find two vectors C and D in V, satisfying a11 the follow-

ing conditions: A = C + D, B . D = 0, C parallel to B.
8. If A = (1, 2, 3, 4, 5) and B = (1, 3, 4, a,  $>,  find two vectors C and D in V, satisfying a11 the

following conditions: B = C + 20, D . A = 0, C parallel to A.
9. Let A = (2, -1, 5),  B = (-1, -2, 3),  and C = (1, -1, 1) be three vectors in V, . Calculate

the norm of each  of the following vectors:
(a) A + B; (b) A - B; (c) A + B - C; (d) A - B + C.

10. In each  case, find a vector B in V, such  that B A = 0 and jlBil = IjA  /I if:
(a>  A  = (1,  1); (b) A = (1, -1); (c) A = (2, -3); (d) A = (a, b).

11. Let A = (1, -2,3)  and B = (3, 1,2) be two vectors in V, . In each  case, find a vector C of
length 1 parallel to:
(a) A -t B; ( b ) A  - B ; (c)  A + 2B; (d) A - 2B; (e)  2A - B.

12. Let A = (4, 1, -3), B = (1, 2, 2),  C = (1, 2, -2), D = (2, 1, 2),  and E = (2, -2, -1) be
vectors in V, . Determine a11 orthogonal pairs.

13. Find a11 vectors in V, that are orthogonal to A and have the same  length as A if:
(a)  A = (1,2); (b) A = (1, -2); (c) A = (2, -1); (d) A = (-2, 1).

14. If A = (2, -1, 1) and B = (3, -4, -4), find a point C in 3-space  such  that A, B, and C are
the vertices  of a right triangle.

15. If A = (1, -1,2)  and B = (2, 1, -l),  find a nonzero vector C in V3 orthogonal to A and B.
16. Let A = (1,2)  and B = (3,4)  be two vectors in V, . Find vectors P and Q in V, such  that

A = P + Q,  P is parallel to B, and Q is orthogonal to B.
17. Solve Exercise  16 if the vectors are in V4  , with A = (1,2,  3, 4) and B = (1, 1, 1, 1).
18. Given vectors A = (2, -1, l), B = (1,2,  -l),  and C = (1, 1, -2) in V, . Find every vector

D of the form xB  + JC  which is orthogonal to A and has length 1.
19. Prove that for two vectors A and B in V, we have the identity

1IA + B1j2 - lIA  - B112  = 4A . B,

and hence  A . B = 0 if and only if IIA  + BII = IlA  - BI(.  When this is interpreted geo-
metrically in V, , it states that the diagonals of a parallelogram are of equal length if and only if
the parallelogram is a rectangle.

20. Prove that for any  two vectors A and B in V, we have

I IA + Bl12  + IIA - Bl12  = 2 IlAIl  + 2 IIBl12.

What geometric theorem about  the sides  and diagonals of a parallelogram cari  you  deduce
from this identity?
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21. The following theorem in geometry suggests a vector identity involving three vectors A, B,
and C. Guess the identity and prove that it holds for vectors in V, . This provides  a proof  of the
theorem by vector methods.

“The sum of the squares of the sides  of any  quadrilateral exceeds the sum of the squares of
the diagonals by four times the square of the length of the line segment which connects  the
midpoints of the diagonals.”

22. A vector A in V, has length 6. A vector B in V, has the property that for every pair of scalars
x and y the vectors xA + yB  and 4yA  - 9xB  are orthogonal. Compute the length of B and
the length of 2A + 3B.

23. Given two vectors A = (1, 2, 3,4,  5) and B = (1, $, i, a,  5) in V, . Find two vectors C and D
satisfying the following three conditions: C is parallel to A, D is orthogonal to A, and B =
C + D.

24. Given two nonperpendicular vectors A and B in V,, prove that there exist vectors C and D
in V, satisfying the three conditions in Exercise  23 and express C and D in terms of A and B.

25. Prove or disprove each  of the following statements concerning vectors in V, :
(a) If A is orthogonal to B, then IIA  + xBII  2 IIA  II for a11 real x.
(b) If IlA  + xBI/  2 IIA  II for a11 real x, then A is orthogonal to B.

12.9 Projections. Angle between vectors in n-space

The dot product of two vectors in V, has an interesting geometric interpretation. Figure
12.1 l(a) shows two nonzero geometric vectors A and B making an angle 0 with each  other.
In this example, we have 0 < 0 < &T. Figure 12.1 l(b) shows the same vector A and two
perpendicular vectors whose sum is A. One of these, tB, is a scalar multiple of B which we
cal1  the projection of A along  B. In this example, t is positive since  0 < 0 < in.

(4 (b)

tB  = projection of
A along  B

FIGURE 12.11 The vector tB  is the projection of A along  B.

We cari  use dot products to express t in terms of A and B. First we Write  tB + C = A
and then take the dot product of each  member with B to obtain

tB.B+C.B=A.B.

But C. B = 0, because C was drawn perpendicular to B. Therefore tB * B = A . B, SO
we have

(12.8)
t=A.B  A.B-=-

B . B llB11’  *
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On the other hand, the scalar t bears a simple relation to the angle 0. From Figure 12.1 l(b),
we see that

cos ( j _ IIN  _ t ll4l
IlAIl I lAIl  ’

Using (12.8) in this formula, we find that

(12.9)

or

A.B
COS 8 = ~

1141  I IB I I

A.  B = IlAIl  IlBl/  COS 6’.

In other words, the dot product  of two nonzero vectors A and B in V, is equal to the prod-
uct of three numbers: the length of A, the length of B, and the cosine of the angle between
A and B.

Equation (12.9) suggests a way to define  the concept of angle in V, . The Cauchy-Schwarz
inequality, as expressed in (12.4), shows that the quotient on the right of (12.9) has absolute
value 5 1 for any  two nonzero vectors in V, . In other words, we have

-1<AB
- Il4 I IB I I  ’ ”

Therefore, there is exactly one  real 8  in the interval 0 < 0 5 v such  that (12.9) holds. We
define  the angle between A and B to be this 8. The foregoing discussion is summarized in
the following definition.

DEFINITION. Let A and B be two vectors in V, , with B # 0. The vector tB, bvhere

is called  the projection of A along  B. If both A and B are nonzero, the angle 8 between A
and B is dejned  by the equation

A.B
% = arccos  ~

I lAIl  I I B I I  ’

Note: The arc cosine function restricts 0 to the interval 0 5 0 5 7~. N o t e also that
0 = 3~ when A . B = 0.

12.10 The unit coordinate vectors

In Chapter 9 we learned that every complex number (a, b) cari  be expressed in the form
a + bi, where i denotes  the complex number (0, 1). Similarly, every vector (a, b) in V,
cari  be expressed in the form

(a, b)  = 41, 0) + b(O,  1) .
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The two vectors (1, 0) and (0, 1) which multiply the components a and b are called unit
coordinate vectors. We now introduce the corresponding concept in V, .

DEFINITION. In V, , the n vectors E, = (1, 0, . . . , 0), E, = (0, 1 , 0, . . . , 0), . . . , E,  =
(0, 0, . . . , 0, 1) are called the unit coordinate vectors. It is understood that the kth component
of Elc  is 1 and a11  other components are 0.

The name  “unit vector” cornes from the fact that each  vector Ek  has length 1. Note that
these vectors are mutually orthogonal, that is, the dot product  of any  two distinct vectors
is zero,

EI,. Ej  = 0 i f  k#j.

THEOREM 12.6 . Every vector X = (x1  , . . . , x,) in V, cari  be expressed in the form

X = x,E, + . . . + x,E,  = i X~E,.
k=l

Moreover,  this representation  is unique. That is, if

X = 2 x,E, and x = i Y,&,
k=l k=l

then xk  = y, for each  k = I,2,  . . . , n.

Proof.  The first statement follows immediately from the definition of addition and
multiplication by scalars. The uniqueness property follows from the definition of vector
equality.

A sum of the type 2 ciAi  is called a linear combination of the vectors A,, . . . , A,.
Theorem 12.6 tells us that every vector in V, cari  be expressed as a linear combination of
the unit coordinate vectors. We describe  this by saying that the unit coordinate vectors
E . . . ) E,  span the space  V, . We also say  they span V, uniquely  because each  representa-
tiin  of a vector as a linear combination of E,, . . . , E,  is unique. Some collections of
vectors other than E, , . . . , E,  also  span V, uniquely, and in Section 12.12 we turn to the
study of such  collections.

In V, the unit coordinate vectors E, and E, are often denoted, respectively, by the
symbols i and j in bold-face italic  type. In V, the symbols i, j, and k are also used in place
Of-E,,  E,,  E,. Sometimes a bar or arrow is placed  over  the symbol, for example, i or i.
The geometric meaning of Theorem 12.6 is illustrated in Figure 12.12 for n = 3.

When vectors are expressed as linear combinations of the unit coordinate vectors,
algebraic manipulations involving vectors cari  be performed by treating the sums cxkEk
according to the usual rules of algebra. The various components cari  be recognized at any
stage in the calculation by  collecting the coefficients of the unit coordinate vectors. For
example, to add two vectors, say  A = (a,, . . . , a,) and B = (b, , . . . , b,), we Write

A = i a,E,  ,
k=l

B = 5 b,E,  >
k=l
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A = a,i + aj+  a,k

FIGURE 12.12 A vector A in V,  expressed as a linear combination of i, j, k.

and apply the linearity property of finite sums to obtain

A + B = i a,E,  + i b,E,  = 2 (ah + b&, .
k=l k=l k=l

The coefficient of Ek  on the right is the kth component  of the sum A + B.

12.11 Exercises

1. Determine the projection of A along  B if A = (1, 2, 3) and B = (1, 2, 2).
2. Determine the projection of A along  B if A = (4, 3, 2, 1) and B = (1, 1, 1, 1).
3. (a) Let A = (6, 3, -2), and let a, b,  c denote  the angles between A and the unit coordinate

vectors i,  j, k, respectively. Compute COS a, COS b, and COS c. These are called the direction
cosines of A.
(b) Find a11 vectors in V, of length 1 parallel to A.

4. Prove that the angle between the two vectors A = (1, 2, 1) and B = (2, 1, - 1) is twice that
between C = (1,4,  1) and D = (2, 5, 5).

5. Use vector methods to determine the cosines of the angles of the triangle in 3-space  whose
vertices  are at the points (2, -1, l), (1, -3, -5), and (3, -4, -4).

6. Three vectors A, B, C in V, satisfy a11 the following properties:

Il4  =  IlCIl  =  5 , IIBII = 1 , IIA  - B + CII = IlA  + B + CII.

If the angle between A and B is r/S, find the angle between B and C.
7. Given three nonzero vectors A, B, C in V, . Assume that the angle between A and C is equal to

the angle between B and C. Prove that C is orthogonal to the vector I(BII  A - l\A  11 B.
8. Let 1!3  denote  the angle between the following two vectors in V, : A = (1, 1, . . . , 1) and B =

(1,  2,  * * * , n).  Find the limiting value of 0  as n  -f ~0.
9. Solve Exercise  8 if A = (2, 4, 6, . . . ,2n) and B = (1, 3, 5, . . . ,2n  - 1).
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10. Given vectors A = (COS 0, -sin 0) and B = (sin 8,  COS 0) in V, .
(a) Prove that A and B are orthogonal vectors of length 1. Make a sketch showing A and B
when 0  = 3~16.
(b) Find a11 vectors (x, y) in Vs such  that (x, y) = xA + yB. Be sure to consider a11 possible
values of 8.

Il.  Use vector methods to prove that the diagonals of a rhombus are perpendicular.
12. By forming the dot product of the two vectors (COS a, sin a) and (COS b,  sin 6),  deduce the

trigonometric identity COS (a - b) = COS a COS b  + sin a sin b.
13. If 0  is the angle between two nonzero vectors A and B in V, , prove that

IIA  - Bl12  = II-4 Il2 + IlBl12  - 2 IIA i l IIBll  COS  0.

When interpreted geometrically in V,  , this is the law of cosines  of trigonometry.
14. Suppose that instead of defining the dot product of two vectors A = (a1  , . . . , a,) and B =

(6,  > . . . , 6,) by the formula A . B = ztl akbk  , we used the following definition :

A . B = 2 lakbkl  .
k=l

Which of the properties of Theorem 12.2 are valid with this definition? 1s  the Cauchy-Schwarz
inequality valid with this definition?

15. Suppose that in V2  we define  the dot product of two vectors A = (a1  , a2)  and B = (b, , 6,)  by
the formula

A * B = 2a,b,  + a,b2  + a,b,  + a,b,  .

Prove that a11 the properties of Theorem 12.2 are valid with this definition of dot product. 1s
the Cauchy-Schwarz inequality still valid?

16. Solve Exercise  15 if the dot product of two vectors A = (a1  , a2  , as) and B = (b, , b,  , b3)  in V,
is defined by the formula A . B = 2a,b,  + a,b,  + a,b,  + a,b,  + a,b,  .

17. Suppose that instead of defining the norm of a vector A = (a1  , . . . , a,) by the formula
(A . A)1’2, we used the following definition :

IIA I I = i Id .
k=l

(a) Prove that this definition of norm satisfies a11 the properties in Theorems 12.4 and 12.5.
(b) Use this definition in V,  and describe  on a figure the set of a11 points (x, y) of norm 1.
(c) Which of the properties of Theorems 12.4 and 12.5 would hold if we used the definition

18. Suppose that the norm of a vector A = (a1  , . . . , a,) were defined by the formula

IIA Il = max  la,\ ,
l<kSn

where the symbol on the right means  the maximum of the n numbers laJ, la,l, . . . , la,l.
(a) Which of the properties of Theorems 12.4 and 12.5 are valid with this definition?
(b) Use this definition of norm in V2  and describe  on a figure the set of a11 points (x, y) of
norm 1.
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19. If A = (a1  , . . . , a,) is a vector in V, , define  two norms as follows:

a n d IIA  Il2 = max  lakl .
lik<n

Prove that IIA  Ils I IIA  Il I IIA  Ill . Interpret this inequality geometrically in the plane.
20. If A and B are two points in n-space,  the distance from A to B is denoted by d(A,  B) and is

defined by the equation d(A,  B) = lIA  - Bl(.  Prove that distance has the following prop-
erties :
(a) d(A,  B) = d(B,  A). (b) d(A,  B) = 0 if and only if A = B.
Cc>  44  B) I 44,  C>  + d(C,  B).

12.12 The linear span of a finite  set of vectors

Let S = {A,, . . . , A,} be a nonempty set consisting of k vectors in V, , where k, the
number of vectors, may be less  than, equal to, or greater than n,  the dimension of the space.
If a vector X in V, cari  be represented as a linear combination of A, , . . , A,, say

X = i ciAi,
i=l

then the set S is said to span the vector X.

DEFINITION. The set of a11  vectors spanned by S is called the linear span of S and is denoted

by  L(S)-

In other words, the linear span of S is simply the set of a11 possible linear combinations
of vectors in S. Note that linear combinations of vectors in L(S) are again in L(S). We
say  that S spans the whole  space V, if L(S) = V, .

EXAMPLE 1. Let S = {A,}. Then L(S) consists  of a11 scalar multiples of A, .

EXAMPLE 2. Every set S = {A,, . . . , Ak}  spans thezero vector since  0 = OA,  + * + . + OA,.
This representation, in which a11 the coefficients c1  , . . . , cR  are zero, is called the trivial
representation of the zero vector. However, there may be nontrivial linear combinations
that represent 0. For example, suppose one  of the vectors in S is a scalar multiple of
another, say  A, = 2A, . Then we have many nontrivial representations of 0, for example

0=2tA,-tA,+OA,+...+OA,,

where t is any  nonzero scalar.
We are especially interested in sets S that span vectors in exactly one  way.

DEFINITION. A set S = {A,, . . . , Alc}  of vectors in V, is said to span X uniquely ifs spans
Xandif

(12.10) X = i ciAi and X = i diAi implies ci  = di f o r  a11  i  .
i=l i=l
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In the two sums appearing in (12.10),  it is understood that the vectors A, , . . . , A, are
written in the same order. It is also  understood that the implication (12.10) is to hold for a
fixed but arbitrary ordering of the vectors A, , . . . , A,.

THEOREM 12.7. A set S spans every vector in L(S) uniquely if and only  if S spans the
zero vector uniquely.

Proof. If S spans every vector in L(S) uniquely, then it certainly spans 0 uniquely. TO

prove the converse, assume S spans 0 uniquely and choose  any  vector X in L(S). Suppose
S spans X in two ways, say

X = -$ ciAi and X = 5 d,A,  .
i=l i=l

By subtraction, we find that 0 = 26, (ci  - d,)Ai  . But since  S spans 0 uniquely, we must
have ci  - di = 0 for a11  i, SO S spans X uniquely.

12.13 Linear independence

Theorem 12.7 demonstrates the importance of sets that span the zero vector uniquely.
Such  sets are distinguished with a special  name.

DEFINI T ION. A set S = {A,, . . . , A,} which spans the zero vector unique&  is said to be
a linearly independent set of vectors. Otherwise, S is called linearly dependent.

In other words, independence means that S spans 0 with only the trivial representation:

implies a11  ci  =  0

Dependence means that S spans 0 in some nontrivial way. That is, for some choice  of
scalars c1  , . . . , ck  , we have

i&Ai = 0 but not a11  c,  are zero .

Although dependence and independence are properties of sets of vectors, it is common
practice to also apply these terms to the vectors themselves. For example, the vectors in
a linearly independent set are often called linearly independent vectors. We also agree to
cal1  the empty set linearly independent.

The following examples may serve to give further insight into the meaning of dependence
and independence.

EXAMPLE 1. If a subset T of a set S is dependent, then S itself is dependent, because
if T spans 0 nontrivially, then SO does  S. This is logically equivalent to the statement that
every subset of an independent set is independent.
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EXAMPLE 2. The n unit coordinate vectors E1, . . . , E,,  in V,, span 0 uniquely SO they
are linearly independent.

EXAMPLE 3. Any  set containing the zero vector is dependent. For example, if A, = 0,
we have the nontrivial representation 0 = lA,  + OA,  + . * * + OA,  .

EXAMPLE 4. The set 5’ = {i,j,  i + j} of vectors in V, is linearly dependent because we
have the nontrivial representation of the zero vector

0  =  i  + j  +  (-I)(i+i).

In this example the subset T = {i, j} is linearly independent. The third vector, i + j, is
in the linear span of T. The next theorem shows that if we adjoin to i and j any  vector in the
linear span of T, we get a dependent set.

THEOREM 12.8. Let s = {A,, . . . > Ak}  be a linearly independent set of k vectors in V,,  ,
and let L(S) be the linear span  of S. Then, every set of k + 1 vectors in L(S) is linearly
dependent.

Proof. The proof  is by induction on k, the number of vectors in S. First suppose k = 1.
Then, by hypothesis, S consists of one  vector, say  A, , where A, # 0 since  Sis independent.
Now take any  two distinct vectors Br and B, in L(S). Then each  is a scalar multiple of A,,
say  B1 = c,A,  and B, = c,A,  , where c1  and c2  are not both zero. Multiplying B, by c2  and
B, by  ci  and subtracting, we find that

c,B,  - c,B,  = 0 .

This is a nontrivial representation of 0 SO B, and B, are dependent. This proves the
theorem when k = 1.

Now we assume that the theorem is true for k - 1 and prove that it is also true for k.
Take any  set of k + 1 vectors in L(S), say  T = {B, , B, , . . . , Bk+l}.  We wish to prove that
T is linearly dependent. Since  each  Bi  is in L(S), we may Write

(12.11)

f o r  each  i= 1,2,... , k + 1. We examine a11  the scalars ai1  that multiply A, and split
the proof  into two cases according to whether a11 these scalars are 0 or not.

CASE 1. ail  = 0 for every i = 1, 2, . . . , k + 1. In this case the sum in (12.11) does  not
involve A, SO each  Bi  in T is in the linear span of the set S’ = {A, , . . . , A,}. But S’ is
linearly independent and consists of k - 1 vectors. By the induction hypothesis, the
theorem is true for k - 1 SO the set T is dependent. This proves the theorem in Case 1.

CASE 2. Not ail the scalars ai,  are zero. Let us assume that a,, # 0. (If necessary, we
cari  renumber the B’s to achieve this.) Taking i = 1 in Equation (12.11) and multiplying
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both members by ci  , where ci  = a,,/a,,  , we get

Ci&  = ailA  + 2 cia,,Aj  .
i=2

From this we subtract Equation (12.11) to get

ciBl  - B, = i (c,alj  - aij)Aj,
5=2

for i = 2, . . . , k + 1. This equation expresses each  of the k vectors ciB, - B, as a linear
combination of k - 1 linearly independent vectors A, , . . . , A, . By the induction hy-
pothesis, the k vectors c,B, - Bi  must be dependent. Hence, for some choice  of scalars
t 2 >  . . . >  t,,, 7 not a11  zero, we have

k+l

from which we find

But this is a nontrivial linear combination of Bl , . . . , Bk+l  which represents the zero vector,
SO the vectors B, , . . . , B,,,  must be dependent. This completes the proof.

We show next that the concept of orthogonality is intimately related to linear inde-
pendence.

DEFINITION. A Set  S= {z‘i,,...,A,}  Of vectors in V, is called  an orthogonal set if
Ai * Ai = 0 whenever i # j. In other ti<ords,  any  t&tso  distinct vectors in an orthogonal set
are perpendicular.

THEOREM 12.9. Any orthogonal set S = {A,, . . . , Ak}  of nonzero vectors in V, is linearly
independent. Moreover, if S spans a vector X, say

(12.12) X = i ciAi  >
i=l

then the scalar multipliers  cl  , . . . , ck  are given by the formulas

(12.13)

Proof.  First we prove that 5’ is linearly independent. Assume that zF=,  ciAi  = 0.
Taking the dot product  of each  member with A, and using the fact that A, * Ai = 0 for
each  i # 1, we find c,(A,  * A,) = 0. But (A, * A,) # 0 since  A, # 0, SO c1  = 0. Repeating
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this argument with A, replaced by A, , we find that each  ci  = 0. Therefore S spans 0
uniquely SO S is linearly independent.

Now suppose that S spans X as in Equation (12.12). Taking the dot product  of X with
Ai  as above, we find that cj(Aj  * AJ  = X-  Ai  from which we obtain (12.13).

If a11 the vectors A, , . . . , A, in Theorem 12.9 have norm 1,  the formula for the multipliers
simplifies to

cj  = X*A,.

An orthogonal set of vectors {A, , . . , A,}, each  of which has norm 1, is called an ortho-
normal set. The unit coordinate vectors E, , . . . , E,  are an example of an orthonormal set.

12.14 Bases

It is natural to study sets of vectors that span every vector in V, uniquely. Such  sets are
called buses for V, .

DEFINITION. ,d Set  s = {A,  , . . . , A,} of vectors in V, is called a basis for V, if  S spans
every vector in V,, uniquely. If, in addition, S is orthogonal, then S is called an orthogonal
basis.

Thus,  a basis is a linearly independent set which spans the whole space V, . The set of
unit coordinate vectors is an example of a basis. This particular basis is also an orthogonal
basis. Now we prove that every basis contains the same number of elements.

THEOREM 12.10. In a given vector space V, , buses have the following properties:
(a) Every basis contains  exactly n vectors.
(b) Any set of linearly independent vectors is a subset of some basis.
(c) Any set of n linearly independent vectors is a basis.

Proof. The unit coordinate vectors E, , . . . , E,  form one  basis for V, . If we prove that
any  two bases contain  the same number of vectors we obtain (a).

Let S and T be two bases, where S has k vectors and T has r vectors. If r > k, then T
contains  at least k + 1 vectors in L(S), since L(S) = V, . Therefore, because of Theorem
12.8, T must be linearly dependent, contradicting the assumption that T is a basis. This
means we cannot have r > k, SO we must have r < k. Applying the same argument with
S and T interchanged, we find that k 2 r. Hence, k = r SO part (a) is proved.

TO prove (b), let S = {A,, . . . , Ak}  be any  linearly independent set of vectors in V, .
If L(S) = V, , then S is a basis. If not, then there is some vector X in V,  which is not in
L(S). Adjoin this vector to S and consider the new set S’ = {A,, . . . , A,, X}. If this set
were dependent, there would be scalars c1  , . . . , c~+~  , not a11 zero, such  that

i CiAi + ck+lx  = 0 .
i=l

But ck+l Z 0 since A, , . . . , A, are independent. Hence, we could solve this equation for



Exercises 467

X and find that XE L(S), contradicting the fact that X is not in L(S). Therefore, the set
S’ is linearly independent but contains k + 1 vectors. If L(S’)  = V, , then S’ is a basis
and, since  S is a subset of S’, part (b) is proved. If S’ is not a basis, we may argue with S’
as we did with S, getting a new set S”  which contains  k + 2 vectors and is linearly inde-
pendent. If S” is a basis, then part (b) is proved. If not, we repeat the process. We must
arrive at a basis in a finite number of steps, otherwise we would eventually obtain an inde-
pendent set with n + 1 vectors, contradicting Theorem 12.8. Therefore part (b) is proved.

Finally, we use (a) and (b) to prove (c). Let S be any  linearly independent set consisting
of IZ vectors. By part (b), S is a subset of some basis, say  B. But by (a) the basis B has
exactly n elements, SO S = B.

12.15 Exercises

1. Let i and j denote  the unit coordinate vectors in V, . In each  case find scalars x and y such  that
x(i  -j) + y(i + j) is equal to
(a>  i; (b)  A (c) 3i - Sj; (d) 7i + Sj.

2. If A = (1,2),  B = (2, -4), and C = (2, -3) are three vectors in VZ , find scalars x and y such
that C = xA + yB.  How many  such  pairs x, y are there?

3. If A = (2, -1, l), B = (1,2,  -l),  and C = (2, -11,7)  are three vectors in V, , find scalars
x and y such  that C = xA + yB.

4. Prove that Exercise  3 has no solution if C is replaced  by the vector (2, 11, 7).
5. Let A and B be two nonzero vectors in V, .

(a) If A and B are parallel, prove that A and B are linearly dependent.
(b) If A and B are not parallel, prove that A and B are linearly independent.

6. If (a, b)  and (c, d)  are two vectors in Va , prove that they are linearly independent if and only
ifad-bc#O.

7. Find a11 real t for which the two vectors (1 + t,  1 - t)  and (1 - t,  1 + t)  in V, are linearly
independent.

8. Let i, j, k be the unit coordinate vectors in Va . Prove that the four vectors i,  j, k, i + j + k
are linearly dependent, but that any  three of them are linearly independent.

9. Let i and j be the unit coordinate vectors in VZ and let S = {i,  i + j}.
(a) Prove that S is linearly independent.
(b) Prove that j is in the linear span of S.
(c) Express 3i - 4j as a linear combination of i and i + j.
(d) Prove that L(S) = V, .

10. Consider the three vectors A = i, B = i + j, and C = i + j + 3k in V, .
(a) Prove that the set {A, B, C>  is linearly independent.
(b) Express each  of j and k as a linear combination of A, B, and C.
(c) Express 2i - 3j + 5k  as a linear combination of A, B, and C.
(d) Prove that {A, B, C} is a basis for V, .

11. Let A = (1, 2),  B = (2, -4), C = (2, -3), and D = (1, -2) be four vectors in V,. Display
a11 nonempty subsets of (A, B, C, D} which are linearly independent.

12.LetA=(1,1,1,O),B=(0,1,1,1)andC=(1,1,0,0)bethreevectorsinV~.
(a) Determine whether A, B, C are linearly dependent or independent.
(b) Exhibit a nonzero vector D such  that A, B, C, D are dependent.
(c) Exhibit a vector E such  that A, B, C, E are independent.
(d) Having chosen  E in part (c), express the vector X = (1, 2, 3, 4) as a linear combination of
A, B, C,E.

13. (a) Prove that the following three vectors in Va are linearly independent: (43,  1, 0), (1, d?,  l),

641,  fil.
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(b) Prove that the following three are dependent: (42,  1, 0), (1, 42, l), (0, 1, d?).
(c) Find a11 real t for which the following three vectors in V, are dependent: (t, 1, 0), (1, t, l),
(0, 12th

14. Consider the following sets of vectors in V, . In each  case, find a linearly independent subset
containing as many  vectors as possible.
(4 {Cl,&  l,O>,  (1,  1,  1,  l>, (0, 1,  0, 11,  CLO, -1,O)l.
(b) ((1,  1,  1,  l), (1,  -1,  1,  l), (1,  -1,  -1,  11,  (1,  -1,  -1,  -111.
Cc)  ((1, 1,  1,  lh (0, 1,  1,  l), (O,O,  1,  l>,  (O,O,  0, 111.

15. Given three linearly independent vectors A, B, C in V, . Prove or disprove each  of the follow-
ing statements.
(a) A + B, B + C, A + C are linearly independent.
(b) A - B, B + C, A + C are linearly independent.

16. (a) Prove that a set S of three vectors in Va is a basis for V, if and only if its linear span L(S)
contains  the three unit coordinate vectors i, j, and k.
(b) State and prove a generalization of part (a) for V, .

17. Find two bases for V, containing the two vectors (0, 1, 1) and (1, 1, 1).
18. Find two bases for V, having only  the two vectors (0, 1, 1, 1) and (1, 1, 1,  1) in common.
19. Consider the following sets of vectors in V, :

39  = ((1,  1,  l),(O,  1,2),  u,o,  -l>>, T = {G  1,  01, G&O,  -211, u  = {(1,2,3),  (1, 3,5)}.
(a) Prove that L(T) E L(S).
(b) Determine a11 inclusion relations that hold among the sets L(S), L(T), and L(U).

20. Let A and B denote  two finite  subsets of vectors in a vector space V, , and let L(A) and L(B)
denote  their linear spans. Prove each  of the following statements.
(a) If A C B, then L(A) s L(B).
(b) L(A n B) c L(A) r\ L(B).
(c) Give an example in which L(A n B) # L(A) fi L(B).

12.16 The vector space V,(C)  of n-tuples of complex numbers

In Section 12.2 the vector space V,  was defined to be the collection of a11  n-tuples of
real numbers. Equality, vector addition, and multiplication by scalars were defined in
terms of the components as follows: If A = (a, , . . . , a,) and B = (6,  , . . . , b,), then

A = B means a ,  =  bi foreachi= 1,2  ,..., n,

A + B = (a, + b, , . . . , a, + b,)  , CA  = (cal  , . . . , ca,) .

If a11 the scalars a, , bi  and c in these relations are replaced by complex numbers, the new
algebraic system SO obtained is called complex vector space and is denoted by V,(C).
Here C is used to remind us that the scalars are complex.

Since  complex numbers satisfy the same field properties as real numbers, a11 theorems
about real vector space V, that use only the field properties of the real numbers are also
valid for V,(C), provided a11 the scalars are allowed to be complex. In particular, those
theorems in this chapter that involve only vector addition and multiplication by scalars
are also valid for V,(C).

This extension is not made simply for the sake of generalization. Complex vector spaces
arise naturally in the theory of linear differential equations and in modern quantum
mechanics, SO their study is of considerable  importance. Fortunately, many of the theorems
about real vector space V,  carry over  without change to V,(C). Some small changes have
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to be made, however, in those theorems that involve dot products.  In proving that the dot
product A . A of a nonzero vector with itself is positive, we used the fact that a sum of
squares of real numbers is positive. Since a sum of squares of complex numbers cari  be
negative, we must modify the definition of A * B if we wish to retain the positivity property.
For V,(C), we use the following definition of dot product.

DEFINITION. If A = (a, , . . . , a,) and B = (b, , . . . , b,) are two vectors in V,(C), we
define  their dot product A . B by the formula

A * B = f$ a&  ,
k = l

where 6, is the complex conjugate  of 6,  .

Note that this definition agrees with the one  given earlier for V,  because b,  = b,  when
bk  is real. The fundamental properties of the dot product, corresponding to those in
Theorem 12.2, now take the following form.

THEOREM 12.11. For a11  vectors A, B, C in V,(C) and a11  complex scalars  c, we have

(a) A . B = B-,
(b) A . (B + C) = A . B + A . C,
(c) C(A  . B) = (CA)  . B = A * (CB),
(d) A . A > 0 if  A#O,
(e) A . A = 0 i f  A=O.

Al1 these properties are easy consequences  of the definition and their proofs are left as
exercises.  The reader should note that conjugation takes place in property (a) when the
order of the factors is reversed. Also, conjugation of the scalar multiplier occurs in prop-
erty (c) when the scalar c is moved from one  side  of the dot to the other.

The Cauchy-Schwarz inequality now takes the form

(12.14) IA . B12  < (A . A)(B . B) .

The proof  is similar to that given for Theorem 12.3. We consider the vector C = xA - yB,
where x = B. B and y = A . B, and compute C. C. The inequality C * C 2 0 leads to
(12.14). Details are left as an exercise  for the reader.

Since the dot product of a vector with itself is nonnegative, we cari introduce the norm
of a vector in V,(C) by the usual formula,

IIA/I  = (A . A)1’2  .

The fundamental properties of norms, as stated in Theorem 12.4, are also  valid without
change for V,(C). The triangle inequality, [IA  + BII < Ij A II + llB\l,  also  holds in V,(C).

Orthogonality of vectors in V,(C) is defined by the relation A . B = 0. As in the real
case, two vectors A and B in V,(C)  are orthogonal whenever they satisfy the Pythagorean
identity, IfA + BJ12  = llAI12  + llBl12.
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The concepts of linear span, linear independence, linear dependence, and basis, are defined
for V,(C) exactly as in the real case. Theorems 12.7 through 12.10 and their proofs are a11
valid without change for V,(C).

12.17 Exercises

1. Let A = (1, i), B = (i, -i),  and C = (2i,  1) be three vectors in V,(C). Compute each  of the
following dot products:
(a) A * B; (b) B.A; (c) (iA)  . B; (d) A . (iB); (e) (iA)  . (iB);
(f) B . C; Cg)  A . C; (h) (B  + C).A; (i) (A - C). B;
(j) (A - iB)  . (A + iB).

2. If A = (2,1,  -i) and B  = (i, -1, 2i),  find a nonzero vector C in V,(C) orthogonal to both A
and B.

3. Prove that for any  two vectors A and B in V,(C), we have the identity

IIA  + Bll’  = IM  il2  + IIBl12  + A . B + A . B.

4. Prove that for any  two vectors A and B in V,(C), we have the identity

IIA  + B112  - IjA  - B/12  = 2(A.  B + A. B),

5. Prove that for any  two vectors A and B in V,(C), we have the identity

IIA  + Bl12  + IIA  - B/12  = 2 I]A112  + 2 1lBl12.

6. (a) Prove that for any  two vectors A and B in V,(C), the sum A . B + A . B is real.
(b) If A and B are nonzero vectors in V,(C), prove that

7. We define  the angle 0  between two nonzero vectors A and B in V,(C) by the equation

0  = arccos
&(A  . B + A . B)

I I4 IIBII *

The inequality in Exercise 6 shows that there is always a unique angle 8  in the closed  interval
0 I 0  I r satisfying this equation. Prove that we have

IIA - Bl12  = IlAIl  + lIBl12  - 2 IIA I l IIBII ~0s 0.

8. Use the definition in Exercise 7 to compute the angle between the following two vectors in
V,(C): A = (1, 0, i, i, i), and B = (i, i, i, 0, i).

9. (a) Prove that the following three vectors form a basis for V,(C): A = (1, 0, 0), B = (0, i, 0),
C = (1, 1, i).
(b) Express the vector (5,2  - i, 2i) as a linear combination of A, B, C.

10. Prove that the basis of unit coordinate vectors E, , . . . , En in V, is also a basis for V,(C).
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APPLICATIONS OF VECTOR ALGEBRA
TO ANALYTIC GEOMETRY

13.1 Introduction

This chapter  discusses applications of vector algebra to the study of lines,  planes, and
conic sections. In Chapter 14 vector algebra is combined with the methods of calculus, and
further applications are given to the study of curves  and to some problems in mechanics.

The study of geometry as a deductive system, as conceived by Euclid around 300 B.C.,

begins with a set of axioms or postulates which describe  properties of points and lines.
The concepts “point” and “line” are taken as primitive notions and remain undefined.
Other concepts are defined in terms of points and lines,  and theorems are systematically
deduced from the axioms. Euclid listed ten axioms from which he attempted to deduce a11
his theorems. It has since  been shown that these axioms are not adequate for the theory.
For example, in the proof  of his very  first theorem Euclid made a tacit assumption concern-
ing the intersection of two circles that is not covered by his axioms. Since  then other lists
of axioms have been formulated that do give a11 of Euclid’s theorems. The most famous
of these is a list given by the German mathematician David Hilbert (1862-1943) in his now
classic GrundIugen  der Geometrie, published in 1899. (An English translation exists:
The Foundations of Geometry, Open Court Publishing CO., 1947.) This work, which went
through seven German editions  in Hilbert’s lifetime, is said to have inaugurated the abstract
mathematics of the twentieth Century.

Hilbert starts his treatment of plane geometry with five undefined concepts: point, line,
on (a relation holding between a point and a line), between  (a relation between a point and a
pair of points), and congruence (a relation between pairs of points). He then gives fifteen
axioms from which he develops a11 of plane Euclidean geometry. His treatment of solid
geometry is based on twenty-one axioms involving six undefined concepts.

The approach in analytic geometry is somewhat different. We define  concepts such  as
point, line, on, between, etc., but we do SO in terms of real numbers, which are left un-
defined. The resulting mathematical structure is called an analytic mode1  of Euclidean
geometry. In this model, properties of real numbers are used to deduce Hilbert’s axioms.
We shall  not attempt to describe  a11 of Hilbert’s axioms. Instead, we shall  merely indicate
how the primitive concepts may be defmed in terms of numbers and give a few proofs to
illustrate the methods of analytic geometry.

471
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13.2 Lines  in n-space

In this section we use real numbers to define  the concepts of point, line,  and on. The
definitions are formulated to fit our intuitive ideas about three-dimensional Euclidean
geometry, but they are meaningful in n-space for any n 2 1.

A point is simply a vector in V, , that is, an ordered n-tuple of real numbers; we shall use
the words “point” and “vector” interchangeably. The vector space V, is called an analytic
mode1 of n-dimensional Euclidean space or simply Euclidean n-space. TO define  “line,” we
employ the algebraic operations of addition and multiplication by scalars in V, .

DEFINITION. Let P be a given point and A a given nonzero vector. The set of a11  points
of the form P + tA, where t runs  through a11  real numbers, is called a line through Pparallel
to A. We denote  this line  by L(P; A) and Write

L(P; A) = {P + tA  1 t real} or, more briejy, L(P; A) = {P + tA} .

A point Q is said to be on the line L(P; A) if Q E  L(P; A).

In the symbol L(P; A), the point P which is written first is on the line since  it corresponds
to t = 0. The second point, A, is called a direction vector for the line. The line L(0;  A)
through the origin 0 is the linear span of A; it consists  of a11 scalar multiples of A. The
line through P parallel to A is obtained by adding P to each  vector in the linear span of A.

Figure 13.1 shows the geometric interpretation of this definition in V, . Each point P + tA
cari  be visualized as the tip of a geometric vector drawn from the origin. As t varies over
a11 the real numbers, the corresponding point P + tA  traces out  a line through P parallel
to the vector A. Figure 13.1 shows points corresponding to a few values of t on both lines
L(P; A) and L(0;  A).

FIGURE 13.1 The line  L(P; A) through P parallel to A and its geometric relation to
the line L(O; A) through 0 parallel to A.
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13.3 Some simple properties of straight lines

First we show that the direction vector A which occurs in the definition of L(P;  A) cari
be replaced by any  vector parallel to A. (We recall that two vectors A and B are called
parallel if A = cB  for some nonzero scalar c.)

THEOREM 13.1. Two  lines  L(P; A) and L(P; B) through the same point P are equal if
and only if the direction vectors A and B are parallel.

Proof. Assume first that L(P; A) = L(P; B). Take a point on L(P; A) other than P,
for example, P + A. This point is also on L(P; B) SO P + A = P + cB for some scalar c.
Hence, we have A = cB and c # 0 since  A # 0. Therefore, A and B are parallel.

Now we prove the converse. Assume A and B are parallel, say  A = cB  for some c # 0.
If Q is on L(P; A), then we have Q = P + tA  = P + t(cB) = P + (ct)B,  SO Q is on
L(P; B). Therefore L(P; A) c L(P; B). Similarly, L(P; B) s L(P; A), SO L(P; A) = L(P; B).

Next we show that the point P which occurs in the definition of L(P; A) cari  be replaced
by any  other point Q on the same line.

THEOREM 13.2. T\zto lines  L(P; A) and L(Q;  A) with  the same direction vector A are
equal ifand  only  if  Q is on L(P; A).

Proof.  Assume L(P; A) = L(Q;  A). Since  Q is  on L(Q;  A), Q is  a lso on L(P; A).
TO prove the converse, assume that Q is on L(P; A), say  Q = P + CA. We wish to prove
that L(P; A) = L(Q;  A). If X E  L(P; A), then X = P + tA  for some t. But P = Q - CA,
S O X = Q - CA  + tA  = Q + (t - C)A,  and hence  X is  a lso on L(Q;  A). Therefore
L(P; A) c L(Q;  A). Similarly, we find L(Q;  A) c L(P; A), SO the two lines are equal.

One of Euclid’s famous postulates is the parallelpostulate which is logically equivalent
to the statement that “through a given point there exists one  and only one  line parallel to a
given line.” We shah  deduce this property as an easy consequence  of Theorem 13.1.
First we need to define  parallelism of lines.

DEFINITION. Two  lines  L(P; A) and L(Q;  B) are called parallel if  their direction vectors
A and B are parallel.

THEOREM 13.3. Given a line  L and a point Q not on L, then there is one  and only  one
line  L’ containing  Q andparallel to L.

Proof. Suppose the given line has direction vector A. Consider the line L’ = L(Q;  A).
This line contains  Q and is parallel to L. Theorem 13.1 tells us that this is the only line
with these two properties.

Note: For a long time mathematicians suspected  that the parallel postulate could
be deduced from the other Euclidean postulates, but a11 attempts to prove this resulted
in failure. Then in the early 19th Century the mathematicians Karl F. Gauss (1777-1855),
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J. Bolyai (1802-1860), and N. 1. Lobatchevski (1793-1856) became  convinced that the
parallel postulate could  not be derived from the others and proceeded to develop non-
Euclidean geometries, that is to say,  geometries in which the parallel postulate does  not
hold. The work of these men inspired other mathematicians and scientists  to enlarge
their points of view about  “accepted  truths” and to challenge other axioms that had been
considered sacred  for centuries.

It is also easy to deduce the following property of lines which Euclid  stated as an axiom.

THEOREM 13.4. TWO distinct points determine a line.  That is, if  P # Q, there is one
and only  one  line  containing both P and Q. It cari  be described as the set {P + t(Q  - P)}.

Proof Let L be the line through P parallel to Q - P, that is, let

L = L(P; Q - P) = {P + t(Q  - P)} .

This line contains  both P and Q (take t = 0 to get P and t = 1 to get Q). Now let L’ be
any  line containing both P and Q. We shah  prove that L’ = L. Since L’ contains  P, we
have L’ = L(P; A) for some A # 0. But L’ also contains  Q SO P + CA  = Q for some c.
Hence  we have Q - P = CA,  where c # 0 since  Q # P. Therefore Q - P is parallel to A
SO, by Theorem 13.2, we have L’ = L(P; A) = L(P; Q - P) = L.

EXAMPLE. Theorem 13.4 gives us an easy way to test if a point Q is on a given line
L(P; A). It tells us that Q is on L(P; A) if and only if Q - P is parallel to A. For example,
consider the line L(P; A), where P = (1, 2, 3) and A = (2, - 1, 5). TO test if the point
Q = (1, 1,4)  is on this line, we examine Q - P = (0, - 1, 1). Since Q - P is not a scalar
multiple of A, the point (1, 1, 4) is not on this line. On the other hand, if Q = (5, 0, 13),
we find that Q - P = (4, -2, 10) = 2A,  SO this Q is on the line.

Linear dependence of two vectors in V, cari  be expressed in geometric language.

THEOREM 13.5. TWO vectors A and B in V, are linearly  dependent if  and only  if  they lie
on the same line  through the origin.

Proof. If either A or B is zero, the result holds trivially. If both are nonzero, then A
and B are dependent if and only if B = tA  for some scalar t. But B = tA  if and only if B
lies on the line through the origin parallel to A.

13.4 Lines  and vector-valued functions

The concept of a line cari  be related to the function concept. The correspondence which
associates to each  real t the vector P + tA  on the line L(P; A) is an example of a function
whose domain  is the set of real numbers and whose range is the line L(P; A). If we denote
the function by the symbol A’,  then the function value X(t)  at t is given by the equation

(13.1) X(t) = P + tA  .

We cal1  this a vector-valued function of a real variable.
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The function point of view is important because, as we shah  see in Chapter 14, it provides
a natural method for describing more general space  curves  as well.

The scalar t in Equation (13.1) is often called aparameter, and Equation (13.1) is called a
vector parametric equation or, simply a vector equation of the line. Occasionally it is con-
venient to think of the line as the track of a moving particle,  in which case the parameter t
is referred to as time and the vector X(t) is called the position vector.

Note that two points X(a) and X(b) on a given line L(P; A) are equal if and only if we have
P + aA  = P + bA,  or (a - b)A = 0. Since  A # 0, this last relation holds if and only if
a = b. Thus, distinct values of the parameter t lead to distinct points on the line.

Now consider three distinct points on a given line, say  X(a), X(b), and X(c), where a > b.
We say  that X(c) is between X(a) and X(b) if c is between a and b, that is, if a < c < b.

Congruence cari  be defined in terms of norms. A pair of points P, Q is called congruent
to another pair P’, Q’ if IIP  - QI/  = IIP’  - Q’I/.  The norm IIP  - QI/  is also  called the
distance between P and Q.

This completes the definitions of the concepts ofpoint,  line,  on, betutseen,  and congruence
in our analytic mode1 of Euclidean n-space.  We conclude  this section with some further
remarks concerning parametric equations for lines in 3-space.

If a line passes through two distinct points P and Q,  we cari  use Q - P for the direction
vector A in Equation (13.1); the vector equation of the line then becomes

X(t) = P + t(Q  - P) or X(t) = tQ  + (1 - t)P .

Vector equations cari  also be expressed in terms of components. For example, if we
Write  P = (p, q, r), A = (a, 6,  )c , and X(t) = (..Y, y, z), Equation (13.1) is equivalent to the
three scalar equations

(13.2) x =p + ta , y=q+  tb, z = r + tc.

These are called scalar parametric equations or simply parametric equations for the line;
they are useful in computations  involving components. The vector equation is simpler
and more natural for studying general properties of lines.

If a11 the vectors are in 2-space,  only the first two parametric equations in (13.2) are
needed. In this case, we cari  eliminate t from the two parametric equations to obtain the
relation

(13.3) 0 - P) - a(y  - q)  = 0,

which is called a Cartesian equation for the line. If a # 0, this cari  be written in thepoint-
slope  form

y-4+x-p)

The point (p, q) is on the line; the number b/a  is the slope of the line.
The Cartesian equation (13.3) cari  also be written in terms of dot products.  If we let

N = (b,  -4, X = (x, y), and P = (p, q), Equation (13.3) becomes

(X - P) * N = 0 or X.N=P.N.
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The vector N is perpendicular to the direction vector A since  N * A = bu - ab = 0; the
vector N is called a normal vector to the line. The line consists  of a11  points X satisfying
the relation (X - P) * N = 0.

The geometric meaning of this relation is shown in Figure 13.2. The points P and X are
on the line and the normal vector N is orthogonal to X - P. The figure suggests that among
a11 points X on the line, the smallest length 11 XII occurs when X is the projection of P along
N. We now give an algebraic proof  of this fact.

Y

t

N Normal vector

F IGURE 13 .2 A line in the xy-plane through P with normal vector N. Each  point X
on the line  satisfies (X - P) * N = 0.

THEOREM 13.6. Let L be the line in V, consisting of a11  points X satisfying

X.N=P.N,

where P is on the line and N is a nonzero vector normal to the Iine.  Let

d = Ip ’ NI
IlNIl  ’

Then every X on L has length j l X/I  2  d. Moreover,  II XII  = d if and onZy  if X is the pro-
jection of P along  N:

X=tN, P.Nwhere t = -
N.N’

Proof. If XE L, we have X * N = P.  N. By the Cauchy-Schwarz inequality, we have

IP * NI = IX* NI 5 IIXII  IlNIl,

which implies (1  XII 2 [P * Nl/llNll  = d. The equality sign holds if and only if X = tN
for some scalar t,  in which case P.  N = X * N = tN * N, SO t = P.  N/N * N. This com-
pletes the proof.
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In the same way we cari  prove that if Q is a given point in Vz not on the line L, then for
a11 X on L the smallest value of 11X - QI1  is I(P - Q) * Nl/llNll,  and this occurs when
X - Q is the projection of P - Q along the normal vector N. The number

IV  - Q> * NI
IlNIl

is called the distance from the point Q to the line L. The reader should illustrate these con-
cepts on a figure similar to that in Figure 13.2.

13.5 Exercises

1. A line L in Vs contains  the two points P = (-3, 1) and Q = (1, 1). Determine which of the
following points are on L. (a) (0,O);  (b) (0, 1); (c) (1,2);  (d) (2, 1); (e) (-2, 1).

2. Solve Exercise  1 if P = (2, -1) and Q = (-4,2).
3. A line L in V, contains  the point P = (-3, 1, 1) and is parallel to the vector (1, -2, 3).

Determine which of the following points are on L. (a) (0, 0,O); (b) (2, -1,4);  (c) (-2, - 1,4);
(d) (-4, 3, -2); (e) (2, -9, 16).

4. A line L contains  the two points P = (-3, 1, 1) and Q = (1, 2, 7). Determine which of the
followingpointsareonL.  (a)(-7,0,5);  (b)(-7,0,  -5); (c)(-11,1,11); (d)(-11, -1,ll);
Ce>(-1,%4);  (f)(-9,9,3);  Cg>(-l,i?,  -4).

5. In each  case, determine if a11 three points P, Q, R lie on a line.
(a) P = (2, 1, l), Q = (4, 1, -1). R = (3, -1, 1).
(b) P = (2,2,  3),  Q = (-2, 3, 1), R = (-6,4,  1).
(c) P = (2, 1, l), Q = (-2, 3, l), R = (5, -1, 1).

6. Among the following eight points, the three points A, B, and C lie on a line. Determine a11
subsets of three or more points which lie on a line: A = (2, 1, l), B = (6, -1, l), C =
(-6, 5, l), D = (-2, 3, l), E = (1, 1, l), F = (-4,4,  l), G = (-13, 9, l), H = (14, -6, 1).

7. A line through the point P = (1, 1, 1) is parallel to the vector A = (1, 2,3).  Another line
through Q = (2, 1, 0) is parallel to the vector B = (3, 8, 13). Prove that the two lines  intersect
and determine the point of intersection.

8. (a) Prove that two lines  L(P; A) and L(Q; B) in V, intersect if and only if P - Q is in the
linear span of A and B.
(b) Determine whether or not the following two lines  in Vs intersect :

L = ((1, 1, -1) + t(-2,1,3)}, L’ = ((3, -4, 1) + t(  -1, 5,2)} .

9. Let X(t) = P + tA be an arbitrary point on the line L(P; A), where P = (1,2,  3) and A =
(1, -2,2),  and let Q = (3, 3, 1).
(a) Compute IiQ - X(t)112, the square of the distance between Q and X(t).
(b) Prove that there is exactly one  point X(t,) for which the distance /I Q - X(t)11  is a minimum,
and compute this minimum distance.
(c) Prove that Q - X(t,J is orthogonal to A.

10. Let Q be a point not on the line L(P; A) in V, .
(a) Letf(t)  = 11 Q - X(t)112, where X(r) = P + tA. Prove thatf(t)  is a quadratic polynomial
in t and that this polynomial takes on its minimum value at exactly one  t,  say  at t = t,,  .
(b) Prove that Q - X(t,,)  is orthogonal to A.

11. Given two parallel lines  L(P;  A) and L(Q;  A) in V, . Prove that either L(P; A) = L(Q; A)
or the intersection L(P; A) n  L(Q; A) is empty.

12. Given two lines  L(P; A) and L(Q; B) in V, which are not parallel. Prove that the intersection
is either empty or consists  of exactly one  point.
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13.6 Planes in Euclidean n-space

A line in n-space was defined to be a set of the form {P + tA} obtained by adding to a
given point P a11 vectors in the linear span of a nonzero vector A. A plane is defined in a
similar fashion except that we add to P a11 vectors in the linear span of two linearly inde-
pendent vectors A and B. TO make certain that Vn contains two linearly independent
vectors, we assume at the outset that n 2 2. Most of our applications Will be concerned
with the case IZ = 3.

+ fB

FIGURE 13.3 The plane through P spanned by A and B, and its geometric relation
to the plane through 0 spanned by A and B.

DEFINITION. A set M of points in V, is called  a plane if there is a point P and  t\vo  linearly
independent vectors A and B such  that

M = {P + SA  + tB 1 s, t real)  .

We shah  denote  the set more briefly by writing M = {P + SA  + tB}.  Each point of A4
is said to be on the plane. In particular, taking s = t = 0, we see that P is on the plane. The
set {P + SA  + tB}  is also called the plane through P spanned by A and B. When P is the
origin, the plane is simply the linear span of A and B. Figure 13.3 shows a plane in V,
through the origin spanned by A and B and also a plane through a nonzero point P spanned
by the same two vectors.

Now we shah  deduce some properties of planes analogous to the properties of lines given
in Theorems 13.1 through 13.4. The first of these shows that the vectors A and B in the
definition of the plane {P + SA + tB}  cari  be replaced by any  other pair which has the
same linear span.

THEOREM 13.7. Tico  planes M = {P + SA + tB}  and M’ = {P + SC  + tD} through
thé same point P are equal if and only  if the Iinear  span of A and B is equal  to the linear
span qf C and D.
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Proof. If the linear span of A and B is equal to that of C and D, then it is clear that
M = M’.  Conversely, assume that A4 = M’. Plane M contains both P + A and P + B.
Since  both these points are also on M’, each  of A and B must be in the linear span of C
and D. Similarly, each  of C and D is in the linear span of A and B. Therefore the linear
span of A and B is equal to that of C and D.

The next theorem shows that the point P which occurs in the definition of the plane
{P + sA + tB}  cari  be replaced by any  other point Q on the same plane.

THEOREM 13.8. Two  planes M = {P + SA  + tB}  and M’ = {Q + sA + tB}  spanned by
the same  vectors A and B are equal if and only  if Q is on M.

Proof. If M = M’, then Q is certainly on M. TO prove the converse, assume Q is on
M, say  Q = P + aA  + bB. Take any  point X in M. Then X = P + SA + tB  for some
scalars s and t.  But P = Q - aA  - bB, SO X = Q + (s - a)A + (t - b)B. Therefore
X is in M’, SO M E M’. Similarly, we find that M’ c M, SO the two planes are equal.

Euclid’s parallel postulate (Theorem 13.3) has an analog for planes. Before we state this
theorem we need to define  parallelism of two planes. The definition is suggested by the
geometric representation in Figure 13.3.

DEFINITION. Tw’o planes M = {P + SA + tB}  and M’ = {Q + SC  + tD} are said to
be parallel if  the linear span of A and B is equal to the Iinear span of C and D. We also  say
that a vector  X is parallel to the plane M if X is in the linear span of A and B.

THEOREM 13.9. Given a plane M and a point Q not on M, there is one  and only  one  plane
M’ which contains  Q and is parallel to M.

Proof. Let M = {P + SA + tB}  and consider the plane M’ = {Q + SA + tB}. This
plane contains  Q and is spanned by the same vectors A and B which span M. Therefore
M’ is parallel to M. If M” is another plane through Q parallel to M, then

M” = {Q + SC  + tD}

where the linear span of C and D is equal to that of A and B. By Theorem 13.7, we must
have M” = M’. Therefore M’ is the only plane through Q which is parallel to M.

Theorem 13.4 tells us that two distinct points determine a line. The next theorem shows
that three distinct points determine a plane, provided that the three points are not collinear.

THEOREM 13.10. If P, Q,  and R are three points not on the same  line,  then there is one
and only  one  plane M containing these three points. It cari be described as the set

(13.4) M = {P + s(Q - P) + t(R  - P)>.
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Proof. We  assume first that one  of the points, say  P, is the origin. Then Q and R are
not on the same line through the origin SO they are linearly independent. Therefore, they
span a plane through the origin, say  the plane

M’ = {SQ  + tR} .

This plane contains  a11  three points 0, Q, and R.
Now we prove that M’ is the only plane which contains  a11  three points 0, Q, and R.

Any  other plane through the origin has the form

M”  = {SA  + tB},

where A and B are linearly independent. If M”  contains Q and R, we have

(13.5) Q = aA,+  bB, R=cA+dB,

for some scalars a, b, c, d. Hence, every linear combination of Q and R is also a linear
combination of A and B, SO M’ c M”.

TO prove that M”  c M’, it suffices  to prove that each  of A and B is a linear combination
of Q and R. Multiplying the first equation in (13.5) by d and the second by b and sub-
tracting, we eliminate B and get

(ad - bc)A = dQ  - bR.

Now ad - bc cannot be zero, otherwise Q and R would be dependent. Therefore we cari
divide by ad - bc and express A as a linear combination of Q and R. Similarly, we cari
express B as a linear combination of Q and R, SO we have M”  E M’. This proves the
theorem when one  of the three points P, Q,  R is the origin.

TO prove the theorem in the general  case, let M be the set in (13.4), and let C = Q - P,
D = R - P. First we show that C and D are linearly independent. If not we would have
D = tC for some scalar t,  giving us R - P = t(Q - P), or R = P + t(Q - P),  contra-
dicting the fact that P, Q, R are not on the same line. Therefore the set M is a plane
through P spanned by the linearly independent pair C and D. This plane contains a11 three
points P, Q, and R (take s = 1, t = 0 to get Q, and s = 0, t = 1 to get R). Now we must
prove that this is the only plane containing P, Q, and R.

Let M’ be any  plane containing P, Q, and R. Since M’ is a plane containing P, we have

M’ = (P  + SA  + tB}

for some linearly independent pair A and B. Let Mi = {SA  + tB}  be the plane through the
origin spanned by the same pair A and B. Clearly, M’ contains a vector X if and only if
Mi contains X - P. Since M’ contains Q and R, the plane Mi contains  C = Q - P and
D = R - P. But we have just shown that there is one  and only one  plane containing 0,
C, and D since  C and D are linearly independent. Therefore Mi = {SC  + tD}, SO M’ =
{P + SC + tD} = M. This completes the proof.

In Theorem 13.5 we proved that two vectors in V, are linearly dependent if and only if
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they lie on a line through the origin. The next theorem is the corresponding result for three
vectors.

THEOREM 13.11. Three vectors A, B, C in V,  are linearly dependent if  and only  if  they
lie on the same plane through the origin.

Proof.  Assume A, B, C are dependent. Then we cari  express one  of the vectors as a
linear combination of the other two, say  C = SA  + tB.  If A and B are independent, they
span a plane through the origin and C is on this plane. If A and B are dependent, then
A, B, and C lie on a line through the origin, and hence  they lie on any  plane through the
origin which contains a11  three points A, B, and C.

TO prove the converse, assume that A, B, C lie on the same plane through the origin, say
the plane M. If A and B are dependent, then A, B, and C are dependent, and there is
nothing more to prove. If A and B are independent, they span a plane M’ through the
origin. By Theorem 13.10, there is one  and only one  plane through 0 containing A and B.
Therefore M’  = M. Since  C is on this plane, we must have C = SA  + tB, SO A, B, and
C are dependent.

13.7 Planes and vector-valued functions

The correspondence which associates to each  pair of real numbers s and t the vector
P + SA  + tB on the plane M = {P + SA  + tB}  is another example of a vector-valued
function. In this case, the domain  of the function is the set of a11 pairs of real numbers
(s, t)  and its range is the plane M. If we denote  the function by X and the function values
by X(s,  t), then for each  pair (s, t)  we have

(13.6) X(s,t)=P+sA+tB.

We cal1  X a vector-valued function of two real variables. The scalars s and t are called
parameters, and the equation (13.6) is called a parametric or vector equation of the plane.
This is analogous to the representation of a line by a vector-valued function of one  real
variable. The presence  of two parameters in Equation (13.6) gives the plane a two-
dimensional quality. When each  vector is in V, and is expressed in terms of its components,

SaY

P=(Pl,pz,pJ, A = (a1  , a2  , aa> , B = PI,  b,  > h), and w, t>  = (x, y,  4 9

the vector equation (13.6) cari  be replaced by three scalar equations,

x = p1  + sa, + tb,, Y = pz + sa,  + tb,, z = p3 + sa3  + tb,.

The parameters s and t cari  always be eliminated from these three equations to give one
linear equation of the form ax + by + cz = d,  called a Cartesian equation of the plane.
We illustrate with an example.
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EXAMPLE. Let M = {P + sA  + tB}, where P  = (1, 2, 3) A  = (1, 2, l), and  B  =
(1,  -4, -1). The corresponding vector equation is

qs, t)  = (1,2,  3) + S(I,  2, 1) + t(l, -4,  -1).

From this we obtain the three scalar parametric equations

x=1+s+t, y = 2 + 2s - 4 ) 2=3+s-t.

TO obtain a Cartesian equation, we rewrite the first and third equations in the form x - 1 =
s + t,  z - 3 = s - t.  Adding and then subtracting these equations, we find that 2s =
x + z - 4, 2t = x - z + 2. Substituting in the equation for y, we are led to the Cartesian
equation x + y - 3z = -6. We shall return to a further study of linear Cartesian equa-
tions in Section 13.16.

13.8 Exercises

1. Let M = (P + SA + tB},  where P = (1, 2, -3), A = (3, 2, l), and B = (1, 0,4).  Determine
which of the following points are on M.

(4 (1,2,0);  (b) (1,2,  1); (cl (64,  6);  (dl (6% 6);  Ce> (6, 6, -9.
2. The three points P = (1, 1, -l), Q = (3, 3, 2), and R  = (3, -1, -2) determine a plane M.

Determine which of the following points are on M.

(a>  (2,2,&);  (b) (4,0,  -4); Cc)  (-3,1,  - 3 ) ;  (4 (3,1,3);  Ce> (O,O,O).
3. Determine scalar parametric equations for each  of the following planes.

(a) The plane through (1, 2, 1) spanned by the vectors (0, 1,O)  and (1, 1, 4).
(b) The plane through (1,2,  l), (0, 1, 0), and (1, 1,4).

4. A plane M has scalar parametric equations

x=l+s-2t, y=2+s+4t, 2 = 2s + t.

(a) Determine which of the following points are on M: (0, 0, 0), (1, 2, 0), (2, -3, -3).
(b) Find vectors P, A, and B such  that M = {P + SA + tB}.

5. Let M be the plane determined by three points P, Q, R not on the same  line.
(a) If p, q, r are three scalars such  that p + q + r = 1, prove that pP  + qQ + rR  is on M.
(b) Prove that every point on M has the formpP  + qQ + rR, wherep + q + r = 1.

6. Determine a linear Cartesian equation of the form ax + by  + cz = d for each  of the following
planes.
(a) The plane through (2, 3, 1) spanned by (3,2,  1) and (-1, -2, -3).
(b) The plane through (2,3,  l), (-2, -1, -3), and (4,3,  - 1).
(c) The plane through (2,3,  1) parallel to the plane through the origin spanned by (2,0,  -2)
and (1, 1, 1).

7. A plane M has the Cartesian equation 3x - Sy + z = 9.
(a) Determine which of the following points are on M: (0, -2, -l), (-1, -2, 2),  (3, 1, -5).
(b) Find vectors P, A, and B such  that M = (P + SA + tB}.

8. Consider the two planes M = {P + SA + tB}  and M’ = {Q + SC  + tD}, where P = (1, 1, 1),
A = (2, -1, 3),  B = (-1, 0, 2),  Q = (2, 3, l), C = (1, 2, 3), and D = (3, 2, 1). Find two
distinct points on the intersection M n M’.

9. Given a plane M = {P + SA + tB}, where P = (2, 3, l), A = (1, 2, 3),  and B = (3, 2, l), and
another plane .M’  with Cartesian equation x - 2y + z = 0.
(a) Determine whether M and M’ are parallel.
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(b) Find two points on the intersection M’ n  M”  if M” has the Cartesian equation

x+2y+z=o.

10. Let L be the line through (1, 1, 1) parallel to the vector (2, -1, 3),  and let M be the plane
through (1, 1, -2) spanned by the vectors (2, 1, 3) and (0, 1, 1). Prove that there is one  and
only one  point on the intersection L n  M and determine this point.

11. A line with direction vector X is said to be parallel to a plane M if X is parallel to M. Let
L be the line through (1, 1, 1) parallel to the vector (2, - 1, 3). Determine whether L is parallel
to each  of the following planes.
(a) The plane through (1, 1, -2) spanned by (2, 1, 3) and (2,  1, 1).
(b) The plane through (1, 1, -2), (3, 5, 2),  and (2,4,  -1).
(c) The plane with Cartesian equation x + 2~ + 32 = -3.

12. Two distinct points P and Q lie on a plane M. Prove that every point on the line through P
and Q also lies on M.

13. Given the line L through (1,2,3)  parallel to the vector (1, 1, l), and given a point (2, 3, 5)
which is not on L. Find a Cartesian equation for the plane M through (2, 3, 5) which contains
every point on L.

14. Given a line L and a point P not on L. Prove that there is one  and only one  plane through
P which contains  every point on L.

13.9 The cross product

In many applications of vector algebra to problems in geometry and mechanics it is
helpful to have an easy method for constructing a vector perpendicular to each  of two
given vectors A and B. This is accomplished by means  of the cross product A x B (read
“A cross B”) which is defined as follows:

DEFINITION. Let A = (a, , a2,  as)  and B = (b, , b,  , b3)  be two  vectors in V, . Their cross
product A x B (in that order) is de$ned  to be the vector

A x B = (a,b,  - a,b, , a,b,  - a,b, , a,b, - a,b,) .

The following properties are easily deduced from this definition.

THEOREM 13.12. For a11  vectors A, B, C in VS and for a11  real c kr,e  have:
(a) A x B = -(B x A) (skew  symmetry),
(b) A x (B  + C) = (A x B) + (A x C) (distributive law),
(c) C(A  x B) = (CA)  x B,
(d) A . (A x B) = 0 (orthogonality to A),
(e) B * (A x B) = 0 (orthogonality to B),
(f) I I A x Bll’ = I14/211Bl12  - (A.  Bj2 (Lagrange’s identity),
(g)  A x B = 0 if  and only  if  A and B are linearly  dependent.

Proof.  Parts (a), (b), and (c) follow quickly from the definition and are left as exercises
for the reader. TO prove (d), we note that

A * (A x B) = a,(a,b, - a,b,) + a,(a,b, - a,b,) + a,(a,b, - a,b,) = 0 .
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Part (e) follows in the same way, or it cari  be deduced from (a) and (d). TO prove (f), we
Write

IIA x  BI12  =  (a,b,  - a2b2j2  + (a&,  - a,b,)2  + (a$,  - a2bA2

and

II A Il2  Il Bll 2 - (A * B)2  = (a:  + ai  + ai)@:  + bi  + ba)  - (a&,  + a&,  + a3b3)2

and then verify by brute force that the two right-hand members are identical.
Property (f) shows that A x B = 0 if and only if (A * B)2  = 11 A II 2 II Blj2. By the Cauchy-

Schwarz inequality (Theorem 12.3), this happens if and only if one  of the vectors is a scalar
multiple of the other. In other words, A x B = 0 if and only if A and B are linearly
dependent, which proves (g).

EXAMPLES. Both (a) and (g) show that A x A = 0. From the definition of cross product
we fmd that

ixj=k, j x k = i , k x i = j .

The cross product is not associative. For example, we have

i x ( i x j ) = i x k = - j but (iXi)Xj=Oxj=O.

The next theorem describes two more fundamental properties of the cross product.

THEOREM 13.13. Let A and B be linearly independent vectors in V, . Then we have the
following:

(a) The vectors A, B, A x B are linearly independent.
(b) Every vector N in V, orthogonal to both A and B is a scalar multiple of A x B.

Proof. Let C = A x B. Then C # 0 since A and B are linearly independent. Given
scalars a, 6,  c such  that aA  + bB + CC = 0, we take the dot product of each  member with
C and use the relations A . C = B. C = 0 to find c = 0. This gives aA  + bB = 0, SO

a = b = 0 since A and B are independent. This proves (a).
Let N be any  vector orthogonal to both A and B, and let C = A x B. We shah  prove

that
(Na  C)2  = (Ne  N)(C. C).

Then from the Cauchy-Schwarz inequality (Theorem 12.3) it follows that N is a scalar
multiple of C.

Since  A, B, and C are linearly independent, we know, by Theorem 12.10(c), that they
span V, . In particular, they span N, SO we cari Write

N = aA  + bB + CC

for some scalars a, b, c. This gives us

N*N=N.(aA+bB+cC)=cN*C
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since N * A = N * B = 0. Also, since Cm A = C * B = 0, we have

C.N=C.(aA+bB+cC)=cC*C.

Therefore, (N * N)(C * C) = (cN * C)(C. C) = (N * C)(cc. C) = (N . C)2, which completes
the proof.

Theorem 13.12 helps us visualize the cross product geometrically. From properties (d)
and (e), we know that A x B is perpendicular to both A and B. When the vector  A x B is
represented geometrically by an arrow, the direction of the arrow depends  on the relative

k

j

i

k

i

j \
AxBAxB

(a) A right-handed coordinate system (b) A left-handed coordinate system

FIGURE 13.4 Illustrating the relative positions of A, B, and A x B.

positions of the three unit coordinate vectors. If i, j, and k  are arranged as shown in Figure
13.4(a), they are said to form a right-handed coordinate system. In this case, the direction of
A x B is determined by the “right-hand  rule.” That is to say,  when A is rotated into B
in such  a way that the fingers of the right hand point in the direction of rotation, then the
thumb indicates the direction of A x B (assuming, for the sake of the discussion, that the
thumb is perpendicular to the other fingers). In a left-handed coordinate system, as shown
in Figure 13.4(b), the direction of A x B is reversed and may be determined by  a corre-
sponding left-hand rule.

The length of A x B has an interesting geometric interpretation. If A and B are nonzero
vectors making an angle 0 with each  other, where 0 < 0 5 n-,  we may Write  A . B =
[(A  11 11 BII COS 0  in property (f) of Theorem 13.12 to obtain

IIA x  Blj2 =  IIA  lj2~\B~~2(1  - cos2  0) =  ~IA~~2~~B~~2  sin2  8,

from which we find

I I A x BII  = I I A I I  I IB I I  sin 8 .

Since  11 B II sin 8  is the altitude of the parallelogram determined by A and B (see Figure 13.9,
we see that the length of A x B is  equal to the area of this parallelogram.
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FIGURE  13.5 The length of A x B is the area  of the parallelogram determined  by A and B.

13.10 The cross product expressed as a determinant

The formula which defines  the cross product cari be put in a more compact form with the
aid of determinants. If a, b, c, d are four numbers, the difference  ad - bc is often denoted
by the symbol

a b

I Ic d

and is called a determinant (of order two). The numbers a, b, c, d are called its elements,
and they are said to be arranged in two horizontal roM’.s,  a, b and c, d, and in two vertical
columns, a, c and b, d. Note that an interchange of two rows or of two columns only  changes
the sign of the determinant. For example, since  ad - bc = -(bc - ad), we have

If we express each  of the components of the cross product as a determinant of order two,
the formula defining A x B becomes

This cari also be expressed in terms of the unit coordinate vectors i, j, k as follows:

(13.7)

Determinants of order three are written with three rows and three columns and they may
be defined in terms of second-order determinants by the formula

(13.8)

This is said to be an “expansion” of the determinant along  its first row. Note that the
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determinant on the right that multiplies a, may be obtained from that on the left by deleting
the row and column in which a, appears. The other two determinants on the right are
obtained similarly.

Determinants of order greater than three are discussed in Volume II. Our only purpose
in introducing determinants of order two and three at this stage is to have a useful device
for writing certain formulas in a compact form that makes them easier to remember.

Determinants are meaningful if the elements in the first row are vectors. For example,
if we Write  the determinant

and “expand”  this according to the rule prescribed in (13.Q we find that the result is equal
to the right member of (13.7). In other words, we may Write  the definition of the cross
product A x B in the following compact form:

b, b, b,

For example, to compute the cross product of A = 2i - 8j + 3k and B = 4j + 3k, we
Write

13.11 Exercises

1. Let A = -i + 2k, B = 2i + j - k, C = i + 2j + 2k. Compute each  of the following
vectors in terms of i, j, k:
(a) A x B; (d) A x (C x A); Cg)  (A x Cl x  B;
(b) B x C; (e) (A x B) x C; (h)  (A + B) x (A - C);
(c)  c  x  A ; (f) A x(BxC); (i) (A x B) x (A x C).

2. In each  case find a vector  of length 1 in V, orthogonal to both A and B:
( a )  A = i + j + k , B=2i+3j-k;
(b) A = 2i - 3j + 4k, B = - i  + Sj  + 7k;
(c) A = i - 2j + 3k, B = -3i + 2j - k.

3. In each  case use the cross product to compute the area  of the triangle with vertices  A, B, C:

(4 A = (0,2,2), B = (2,0,  -l), c =(3,4,0);

0) A = (-293,  11, B = (1, -3,4), c = (1,2,  1);
(cl  A  = (0,  0, 01, B = (0,  1,  11, c = (l,O,  1).

4. If A = 2i + Sj + 3k,  B = 2i + 7j + 4k, and C = 3i + 3j + 6k, express the cross product
(A - C) x (B - A) in terms of i,  j, k.

5. Prove that IlA  x BJI = i/All  11Bll  if and only if A and B are orthogonal.
6. Given two linearly independent vectors A and B in V, . Let C = (B x A) - B.

(a) Prove that A is orthogonal to B + C.
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(b) Prove that the angle 0  between B and C satisfies $T < 0  < n.
(c) If 11811  = 1 and IIB  x AIl  = 2, compute the length of C.

7. Let A and B be two orthogonal vectors in Vs , each  having length 1.
(a) Prove that A, B, A x B is an orthonormal basis for Vs.
(b) Let C = (A x B) x A. Prove that l/Cll = 1.
(c) Draw a figure showing the geometric relation between A, B, and A x B, and use this
figure to obtain the relations

(AxB)xA=B, (AxB)xB=-A.

(d) Prove the relations in part (c) algebraically.
8. (a) If A x B = 0 and A . B = 0, then at least one  of A or B is zero. Prove this statement

and give its geometric interpretation.
(b) Given A #  0. If A x B = A x C and A . B = A . C, prove that B = C.

9. LetA=2i-j+2kandC=3i+4j-k.
(a) Find a vector B such  that A x B = C. 1s  there more than one  solution?
(b) Find a vector B such  that A x B = C and A . B = 1. 1s  there more than one  solution?

10. Given a nonzero vector A and a vector C orthogonal to A, both vectors in V, . Prove that there
is exactly one  vector B such  that A x B = C and A . B = 1.

11. Three vertices  of a parallelogram are at the points A = (1, 0, 1), B = (-  1, 1, 1), C =

(2, -192).
(a) Find a11 possible points D which cari  be the fourth vertex of the parallelogram.
(b) Compute the area  of triangle ABC.

12. Given two nonparallel vectors A and B in V, with A . B = 2, IlAIl  = 1, [lB]l  = 4. Let C =
2(A  x B) - 3B. Compute A . (B + C), IlCll, and the cosine  of the angle 0  between  B and C.

13. Given two linearly independent vectors A and B in V, . Determine whether each  of the follow-
ing statements is true or false.
(a) A + B, A - B, A x B are linearly independent.
(b) A + B, A + (A x B), B + (A x B) are linearly independent.
(c) A, B, (A + B) x (A - B) are linearly independent.

14. (a) Prove that three vectors A, B, C in Y, lie on a line if and only if (B - A) x (C - A) = 0.
(b) If A #  B, prove that the line through A and B consists  of the set of a11 vectors P such
that (P - A) x (P - B) = 0.

15. Given two orthogonal vectors A, B in V, , each  of length 1. Let P be a vector satisfying the
equation P x B = A - P. Prove each  of the following statements.
(a) P is orthogonal to B and has length $A.
(b) P, B, P x B form a basis for V, .
(c) (P x B) x B = -P.
(d) P = $A  - &(A  x B).

13.12 The scalar triple product

The dot and cross products  cari  be combined to  form the scalar tripleproduct A . B x C,
which cari  only mean A * (B x C). Since  this is a dot product  of two vectors, its value is a
scalar. We cari  compute this scalar by means of determinants. Write A = (a,, a2,  a&
B = (b, , b,  , b,), C = (cl,  c2, cg)  and express B x C according to  Equation (13.7). Forming
the dot product  with A, we obtain

A*BxC=a,
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Thus, A * B x C is equal to the determinant whose rows are the components of the factors
A, B, and C.

In Theorem 13.12 we found that two vectors A and B are linearly dependent if and only
if their cross product A x B is the zero vector. The next theorem gives a corresponding
criterion for linear dependence of three vectors.

THEOREM 13.14. Three vectors A, B, C in V3  are linearly dependent ifand only  if

A*Bx  C=O.

Proof. Assume first that A, B, and C are dependent. If B and C are dependent, then
B x C = 0, and hence  A . B x C = 0. Suppose, then, that B and C are independent.
Since a11  three are dependent, there exist scalars a, b,  c, not a11 zero, such  that aA + bB  +
CC = 0. We must have a # 0 in this relation, otherwise B and C would be dependent.
Therefore, we cari  divide by a and express A as a linear combination of B and C, say  A =
tB  + SC. Taking the dot product of each  member with B x C, we find

A.(Bx  C)=tB.Bx  C+sC.Bx  C=O,

since  each  of B and C is orthogonal to B x C. Therefore dependence of A, B, and C
implies A . B x C = 0.

TO prove the converse, assume that A . B x C = 0. If B and C are dependent, then SO

are A, B, and C, and there is nothing more to prove. Assume then, that B and C are linearly
independent. Then, by Theorem 13.13, the three vectors B, C, and B x C are linearly
independent. Hence, they span A SO we cari  Write

A = aB  + bC + c(B  X C)

for some scalars a, b, c. Taking the dot product of each  member with B x C and using the
fact that A * (B x C) = 0, we find c = 0, SO A = aB  + bC.  This proves that A, B, and C
are linearly dependent.

EXAMPLE. TO determine whether the three vectors (2, 3, - l), (3, -7, 5) and (1, -5, 2)
are dependent, we form their scalar triple product, expressing it as the determinant

2 3 -1

3 -7 5 =2(-14+25)-3(6-5)-l(-15+7)=27.

1 -5 2

Since the scalar triple product is nonzero, the vectors are linearly independent.

The scalar triple product has an interesting geometric interpretation. Figure 13.6 shows
a parallelepiped determined by three geometric vectors A, B, C not in the same plane. Its
altitude is l]Cll COS 4, where 4 is the angle between A x B and C. In this figure, COS 4
is positive because 0 5 4 < &r. The area of the parallelogram which forms the base is
11 A x Bll,  and this is also  the area of each  cross section parallel to the base. Integrating
the cross-sectional area from 0 to II CII COS 4, we find that the volume of the parallelepiped
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is 11 A x BII (11  CII COS 4), the area of the base times the altitude. But we have

IIA x  Bil(IlCllcos+)=(A  x  B).C.

In other words, the scalar triple product A x B . C is equal to the volume of the parallele-
piped determined by A, B, C. When &r  < q5  5 r, COS 4 is negative and the product
A x B * C is the negative of the volume. If A, B, C are on a plane through the origin, they
are linearly dependent and their scalar triple product is zero. In this case, the parallelepiped
degenerates and has zero volume.

AxB

Altitude = 11 Cl1  COS 6- Volume= AxB.C

F IGURE 13 .6 Geometric interpretation of the scalar triple product as the volume of
a parallelepiped.

This geometric interpretation of the scalar triple product suggests certain algebraic
properties of this product. For example, a cyclic permutation of the vectors A, B, C
leaves the scalar triple product unchanged. By this we mean that

(13.9) AxB.C=BxC.A=CxA.B.

An algebraic proof  of this property is outlined in Exercise 7 of Section 13.14. This property
implies that the dot and cross are interchangeable in a scalar triple product. In fact,  the
commutativity of the dot product implies (B x C) . A = A . (B x C) and when this is
combined  with the first equation in (13.9),  we find that

(13.10) AxB-C=A.BxC.

The scalar triple product A * B x C is often denoted by the symbol [ABC] without indi-
cating the dot or cross. Because of Equation (13. lO),  there is no ambiguity in this notation-
the product depends  only on the order of the factors A, B, C and not on the positions of
the dot and cross.

13.13 Cramer%  rule  for solving  a system of three Iinear equations

The scalar triple product may be used to solve a system of three simultaneous linear
equations in three unknowns x, y, z. Suppose the system is written in the form

w + &y + clz = dl  ,

(13.11) a,x  + b,y + c2z  = d,  ,

a2x  + b,y + c3z  = d, .
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Let A be the vector with components a, , a2  , a3  and define  B, C, and D similarly. Then the
three equations in (13.11) are equivalent to the single  vector equation

(13.12) xA+yB+zC=  D .

If we dot multiply both sides  of this equation with B x C,  writing [ABC] for A . B x C,
we find that

x[ABC] + y[BBC] + z[CBC] = [DBC] .

Since  [BBC] = [CBC] = 0, the coefficients of y and z drop out  and we obtain

(13.13) xJ!Kl
WC1

if [ABC] # 0.

A similar argument yields analogous formulas for y and z. Thus we have

(13.14) [ADCI
Y = [ABC]

and zJL!El
[ABCI

if [ABC] # 0 .

The condition [ABC] # 0 means that the three vectors A, B, C are linearly independent.
In this case, (13.12) shows that every vector D in 3-space  is spanned by A, B, C and the
multipliers x, y, z are uniquely determined by the formulas in (13.13) and (13.14). When
the scalar triple products  that occur in these formulas are written as determinants. the
result is known as Cramer’s rule  for solving the system (13.11) :

X=

4 b,  cl

4 b,  ~2

4 b,  G

4 b,  ~1

a2  b2 c2

a3  b3 cg

3  y=

a1  4 cl

a2  d2  c2

a3  d3  c3

a, b, cl

a2  b2  c2

a3  b3  cg

) z=

a, h 4

a2  b2  d2

a3  b3  d3
a, b, cl

a2  b2  c2

a3  b3  cg

If [AK] = 0, then A, B, C lie on a plane through the origin and the system has no
solution unless D lies in the same plane. In this latter case, it is easy to show that there are
infinitely many solutions of the system. In fact,  the vectors A, B, C are linearly dependent
SO there exist scalars U,  U,  u’  not a11  zero such  that uA  + vB + MC = 0. If the triple (x, y, z)
satisfies (13.12) then SO does  the triple (x + tu, y + tu, z + tw)  for a11 real t,  since  we have

(x + tu)A + (y + tv)B  + (z + tw)C

13.14 Exercises

1. Compute the scalar triple product  A . B x C in each  case.
(a> A = (3,0,0>, B = (0,4,  o), c = (0, 0,s).
(b) A = (293,  -11, B = (3, -7, 5), c = (1, -5,2).
Cc> A = (2,  1, 3), B = (-3,0,  6), c = (4, 5, -1).
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2. Find a11  real t for which the three vectors (1, t,  l), (t, 1, 0), (0, 1, t)  are linearly dependent.
3. Compute the volume of the parallelepiped determined by the vectors i + j,  j + k, k + i.
4.ProvethatAxB=A.(Bxi)i+A.(Bxj)j+A.(Bxk)k.
5.Provethatix(Axi)+jx(Axj)+kx(Axk)=2A.
6. (a) Find a11  vectors ai + bj + ck which satisfy the relation

(ai + bj + ck) * k x (6i + 3j + 4k) = 3 .

(b) Find that vector ai + bj + ck of shortest  length which satisfies the relation in (a).
7. Use algebraic properties of the dot and cross products  to derive the following properties of

the  sca la r  t r ip le  p roduc t .
(a) (A + B) . (A + B) x C = 0.
(b) A B x C = -B . A x C. This shows that switching the first two vectors reverses the
sign. [H&t: Use par t  (a )  and  d is t r ibu t ive  laws . ]
(c) A . B x C = -A . C x B. This shows that switching the second and third vectors
reverses the sign. [Hint: Use skew-symmetry.]
(d) A . B x C = -C . B x A. This shows that switching the first and third vectors reverses
the sign. [Hint:  Use (b) and (c).]

Equating the right members of(b), (c), and (d), we find that

A.BxC=B.CxA=C.AxB,

which shows that  a  cycl ic  permutat ion of  A,  B, C l eaves  the i r  sca la r  t r ip le  product  unchanged .
9. This exercise  outlines a proof  of the vector identity

(13.15) A x (B x C) = (C.  A)B - (B . A)C >

sometimes referred to as the “cab minus bac” formula. Let B = (b, , b, , b3),  C = (cl , c2  , CJ
and prove that

ix(BxC)=c,B-b,C.

This proves (13.15) in the special case A = i. Prove corresponding formulas for A = j and
A = k, and then combine them to obtain (13.15).

10. Use the “cab minus bac” formula of Exercise  9 to derive  the following vector identities.
(a) (A x B) x (C x D) = (A x B.  D)C - (A x B.  C)D.
(b) A x (B x C) + B x (C x A) + C x (A x B) = 0.
(c)  A  x ( B  x C)=(A x B) x CifandonlyifB  x (C x A) =O.
(d) (A x B) (C x D) = (B . D)(A C) - (B . C)(A . D).

11. Four vectors A, B, C,  D in V, satisfy the relations A x C.  B = 5, A x D . B = 3, C + D =
i+2j+k,C-D=i-k.  Compute(A  xB)  x(Cx  D ) i n t e r m s o f i , j , k .

12. Prove that (A x B) . (B x C) x (C x A) = (A . B x C)2.
13. Prove or disprove the formula A x [A x (A x B)] . C = - lIAIl  A . B x C.
14. (a) Prove that the volume of the tetrahedron whose vertices  are A, B, C, D is

+ j(B  - A). (C - A) x (D - A)I  .

(b) Compute this volume when A = (1, 1, l), B = (0, 0, 2),  C = (0,3,0),  and D = (4,0,0).
15. (a) If B # C, prove that the perpendicular distance from A to the line through B and C is

/IV  - B) x  (C  - B)II/lIB  - Cil .

(b) Compute this distance when A = (1, -2, -5), B = (-1, 1, 1), and C = (4, 5, 1).
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16. Heron’s formula for computing the area  S of a triangle whose sides  have lengths a, b,  c states
that S = ds(s  - U)(S  - b)(s  - c), where s = (a + b + c)/2. This exercise  outlines a
vectorial  proof  of this formula.

Assume the triangle has vertices  at 0, A, and B, with 1jAli  = a, /iBlI  = b,  jlB - AIl  = c.
(a) Combine the two identities

IIA x Bl? = lIA/121/Bl12  - (A  . N2, -2A . B = IIA  - Bl12  - IjA1j2  - IIBj12

to obtain the formula

4~2  = a2@ - $(c2  - a2  - 62)2  = a(2ab  _ c2  + a2 + b2)(2ab  + c2  - a2 - b2)  .

(b) Rewrite the formula in part (a) to obtain

S2  = 116(a  + b + c)(a + b - C)(C  - a + b)(c  + a - b) ,

and thereby deduce Heron’s formula.

Use Cramer%  rule to solve the system of equations in each  of Exercises  17, 18, and 19.
17. x + 2y + 3z = 5, 2x -y +4z = 11, -y +z = 3.
18. x +y +2z  =4, 3 x - y - z = 2 , 2x + 5y + 3z = 3.
19. x + y = 5, x+z=2, y+z=5.
20. If P = (1, 1, 1) and A = (2, 1, -l), prove that each  point (x, y, z) on the line {P + tA}

satisfies the system of linear equations x - y + z = 1, x + y + 3z = 5, 3x + y + 7z = 11.

13.15 Normal vectors to planes

A plane was defined in Section 13.6 as a set of the form {P + sA  + tB>,  where A and B
are linearly independent vectors. Now we show that planes in Va cari  be described in an
entirely different way, using the concept of a normal vector.

DEFINITION. Let M = {P + SA + tB}  be the plane through P spanned by A and B. A
vector N in V, is said to be perpendicular to M tf  N is  perpendicular to both A and B. If, in
addition, N is nonzero, then N is called a normal vector to the plane.

Note: If N.  A = N.  B = 0, then N ’ (sA  + tB)  = 0, SO a vector perpendicular to
both A and B is perpendicular to every vector in the linear span of A and B. Also,  if
N is normal to a plane, SO is tN for every real t Z 0.

THEOREM 13.15. Given a plane M = {P + SA  + tB}  through P spanned by A and B.
Let N = A x B. Then we have the following:

(a) N is a normal vector to M.
(b) M is the set of all  X in V, satisfying the equation

(13.16) (2’  - P) * N = 0,

Proof Since  M is a plane, A and B are linearly independent, SO A x B # 0. This
proves (a) since  A x B is orthogonal to both A and B.
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TO prove (b), let M’  be the set of a11 X in V, satisfying Equation (13.16). If X E  M,  then
X - P is in the linear span of A and B, SO X - P is orthogonal to N. Therefore XE M’
which proves that M c M’. Conversely, suppose XE M’. Then X satisfies  (13.16). Since
A, B, N are linearly independent (Theorem 13.13), they span every vector in V, SO, in
particular, we have

X-P=sA+tB+uN

for some scalars s,  t,  U.  Taking the dot product  of each  member with N, we find u = 0,
SO x - P = SA + tB.  This shows that XE M. Hence, M’ G M, which completes the
proof  of(b).

The geometric meaning of Theorem 13.15 is shown in Figure 13.7. The points P and X
are on the plane and the normal vector N is orthogonal to X - P. This figure suggests the
following theorem.

THEOREM 13.16. Given a plane M through a point P, and given a nonzero vector N normal
to M, let

(13.17) d = 1’ ’ NI
-K-’

Then every X on M has length (( X(/  2 d. Moreover, we  have (j X(l  = d if and on&  if X is  the
projection of P along  N:

X=tN,
P*N

where t = -
N.N’

ProoJ The proof  follows from the Cauchy-Schwarz inequality in exactly the same
way as we proved Theorem 13.6, the corresponding result for lines in I’, .

By the same argument we find that if Q is a point not on M, then among a11 points X
on M the smallest length Ij X - Q II occurs when X - Q is the projection of P - Q along
N. This minimum length is J(P  - Q) . Nl/llNil and is called the distance from Q to the
plane. The number d in (13.17) is the distance from the origin to the plane.

13.16 Linear Cartesian equations for planes

The results of Theorems 13.15 and 13.16 cari  also  be expressed in terms of components.
If we Write  N = (a, b, c), P = (xi , y1  , z,), and X = (x, y, z), Equation (13.16) becomes

(13.18) a(x - xl) + b(y - yl) + c(z - ~1) = 0.

This is called a Cartesian equation for the plane, and it is satisfied by those and only those
points (x, y, z) which lie on the plane. The set of points satisfying (13.18) is not altered if
we multiply each  of a, b, c by a nonzero scalar t. This simply amounts to a different choice
of normal vector in (13.16).

We may transpose the terms not involving x, y, and z, and Write  (13.18) in the form

(13.19) ax + by + cz = dl,
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where d, = ax, + by, + czl  . An equation of this type is said to be linear in x, y, and z.
We have just shown that every point (x, y, z) on a plane satisfies a linear Cartesian equation
(13.19) in which not a11 three of a, b, c are zero. Conversely, every linear equation with this
property represents a plane. (The reader may verify this as an exercise.)

The number d, in Equation (13.19) bears a simple relation to the distance d of the plane
from the origin. Since  dl = P * N, we have Id,1  = IP  * NJ = dllNl1.  In particular Id11  = d
if the normal N has length 1. The plane passes through the origin if and only if dl = 0.

FI G U R E 13.7 A plane through P and
X with normal vector N.

FIGURE 13.8 A plane with intercepts
3, 1, 2.

EXAMPLE. The Cartesian equation 2x + 6y + 32 = 6 represents a plane with normal
vector N = 2i + 6j + 3k. We rewrite the Cartesian equation in the form

from which it is apparent that the plane intersects the coordinate axes at the points (3,0,0),
(0, 1, 0), and (0, 0, 2). The numbers 3, 1, 2 are called, respectively, the x-, y-, and z-
intercepts of the plane. A knowledge of the intercepts makes it possible to sketch the plane
quickly. A portion of the plane is shown in Figure 13.8. Its distance d from the origin is
d = 6/IINII  = 6/7.

Two parallel planes Will have a common  normal N. If N = (a, b, c), the Cartesian equa-
tions of two parallel planes cari  be written as follows:

ax + by + cz = d, , ax + by + cz = dz,

the only difference  being in the right-hand members. The number Id1 - d21/ljN/l  is called
the perpendicular distance between the two planes, a definition suggested by Theorem 13.16.
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Two planes are called perpendicular if a normal of one  is perpendicular to a normal of the
other. More generally, if the normals of two planes make an angle 13 with each  other, then
we say  that 0  is an angle between the two planes.

13.17 Exercises

1. GivenvectorsA =2i+3j-4kandB=j+k.
(a) Find a nonzero vector N perpendicular to both A and B.
(b) Give a Cartesian equation for the plane through the origin spanned by A and B.
(c) Give a Cartesian equation for the plane through (1,2,3)  spanned by A and B.

2. A plane has Cartesian equation x + 2y - 22 + 7 = 0. Find the following:
(a) a normal vector of unit length;
(b) the intercepts  of the plane;
(c) the distance of the plane from the origin;
(d) the point Q on the plane nearest the origin.

3. Find a Cartesian equation of the plane which passes through (1,2,  -3) and is parallel to the
plane given by 3x -y + 2z = 4. What is the distance between the two planes?

4. Four planes have Cartesian equations x + 2y - 22 = 5, 3x - 6y + 32 = 2, 2x + y + 2z =
- l , a n d x  -2y +z =7.
(a) Show that two of them are parallel and the other two are perpendicular.
(b) Find the distance between the two parallel planes.

5. The three points (1, 1, -l),  (3, 3,2),  and (3, -1, -2) determine a plane. Find (a) a vector
normal to the plane; (b) a Cartesian equation for the plane; (c) the distance of the plane
from the origin.

6. Find a Cartesian equation for the plane determined by (1, 2, 3),  (2, 3, 4),  and (-1, 7, -2).
7. Determine an angle between the planes with Cartesian equations x + y = 1 and y + z = 2.
8. A line parallel to a nonzero vector N is said to be perpendicular to a plane M if N is normal

to M. Find a Cartesian equation for the plane through (2, 3, -7), given that the line through
(1,2,  3) and (2,4,  12) is perpendicular to this plane.

9. Find a vector parametric equation for the line which contains  the point (2, 1, -3) and is
perpendicular to the plane given by 4x - 3y + z = 5.

10. A point moves in space  in such  a way that at time f its position is given by the vector X(r) =
(1 - t)i + (2 - 3t)j + (2t - 1)k.
(a) Prove that the point moves along  a line. (Cal1 it L.)
(b) Find a vector N parallel to L.
(c) At what time does  the point strike the plane given by 2x + 3y + 2z + 1 = O?
(d) Find a Cartesian equation for that plane parallel to the one  in part (c) which contains
the point X(3).
(e) Find a Cartesian equation for that plane perpendicular to L which contains  the point X(2).

11. Find a Cartesian equation for the plane through (1, 1, 1) if a normal vector N makes angles
in,  in,  &v,  with i, j, k, respectively.

12. Compute the volume of the tetrahedron whose vertices  are at the origin and at the points
where the coordinate axes intersect the plane given by x + 2y + 32 = 6.

13. Find a vector A of length 1 perpendicular to i + 2j - 3k and parallel to the plane with
Cartesian equation x - y + 5z = 1.

14. Find a Cartesian equation of the plane which is parallel to both vectors i + j and j + k and
intersects the x-axis at (2,0,  0).

15. Find a11 points which lie on the intersection of the three planes given by 3x + y + z = 5,
3x+y+5z=7,x-y+32=3.

16. Prove that three planes whose normals are linearly independent intersect in one  and only
one  point.
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17. A line with direction vector A is said to be parallel to a plane M  if A is parallel to M.  A line
containing (1, 2, 3) is parallel to each  of the planes given by x + 2y + 32 = 4, 2x + 3y +
4z = 5. Find a vector parametric equation for this line.

18. Given a line L not parallel to a plane M,  prove that the intersection L I-J  M contains  exactly
one  point.

19. (a) Prove that the distance from the point (x,, , y,, z,,) to the plane with Cartesian equation
ax  + by  + cz + d = 0 is

I~X,  + by,,  + czo + dl
(2  + b2 + c2p .

(b) Find the point P on the plane given by 5x - 14y + 2z + 9 = 0 which is nearest to the
point Q = (-2, 15, -7).

20. Find a Cartesian equation for the plane parallel to the plane given by 2x - y + 22 + 4 = 0
if the point (3,2,  -1) is equidistant from both planes.

21. (a) If three points A, B, C determine a plane, prove that the distance from a point Q to this
plane is I(Q  - A).  (B - A) x (C - A)l/l[(B  - A) x (C - A)lI.
(b) Compute this distance if Q = (1, 0, 0), A = (0, 1, l), B = (1, -1, l), and C = (2, 3,4).

22. Prove that if two planes M and M’ are not parallel, their intersection M n  M’ is a line.
23. Find a Cartesian equation for the plane which is parallel to j and which passes through the

intersection of the planes described by the equations x + 2y + 32 = 4, and 2x + y + z = 2.
24. Find a Cartesian equation for the plane parallel to the vector 3i - j + 2k if it contains  every

point on the line of intersection of the planes with equations x + y = 3 and 2y + 3z = 4.

13.18 The conic sections

A moving line G which intersects a fixed line A at a given point P, making a constant
angle 8 with A, where 0 < 0 < &T,  generates a surface in 3-space  called a right circular
cane.  The line G is called a generator of the cane, A is its axis,  and P its vertex. Each of the
cones  shown in Figure 13.9 has a vertical axis. The Upper  and lower portions of the cane
meeting at the vertex are called nappes of the cane. The curves  obtained by slicing the
cane with a plane not passing through the vertex are called conic sections, or simply conics.
If the cutting plane is parallel to a line of the cane through the vertex, the conic is called a

FIGURE 13.9 The conic sections.
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parabola. Otherwise the intersection is called an ellipse or a hyperbola,  according as the
plane cuts  just one  or both nappes. (See Figure 13.9.) The hyperbola consists  of two
“branches,” one  on each  nappe.

Many  important discoveries in both pure and applied mathematics have been related
to the conic sections. Appolonius’ treatment of conics as early as the 3rd Century B.C. was
one  of the most profound achievements of classical Greek geometry. Nearly 2000 years
later, Galileo discovered that a projectile fired horizontally from the top of a tower falls
to earth along a parabolic path (if air resistance  is neglected and if the motion takes place
above a part of the earth that cari  be regarded as a flat plane). One of the turning points in
the history of astronomy occurred around 1600 when Kepler suggested that a11  planets
move in elliptical orbits. Some 80 years later, Newton was able to demonstrate that an
elliptical planetary path implies an inverse-square law of gravitational attraction. This led
Newton to formulate his famous theory of universal gravitation which has often been
referred to as the greatest scientific discovery ever made. Conic  sections appear not only as
orbits of planets and satellites but also as trajectories of elementary atomic particles.  They
are used in the design of lenses  and mirrors, and in architecture. These examples and many
others show that the importance of the conic sections cari  hardly be overestimated.

There are other equivalent definitions of the conic sections. One of these refers to special
points known as foci (singular: fous). An ellipse may be defined as the set of a11 points in a
plane the sum of whose distances d,  and d,  from two fixed points F1 and F, (the foci) is

1 Directrix
I

d, =  d,
(parabola)

FIGURE 13.10 Focal definitions of the conic sections.

constant. (See Figure 13.10.) If the foci  coincide, the ellipse reduces to a circle. A hyper-
bola  is the set of a11 points for which the difference Id,  - d,l  is constant. A parabola is the
set of a11  points in a plane for which the distance to a fixed point F (called the focus)  is
equal to the distance to a given line (called the directrix).

There is a very simple and elegant argument which shows that the focal property of an
ellipse is a consequence  of its definition as a section of a cane. This proof, which we may
refer to as the “ice-cream-cane proof,” was discovered in 1822 by a Belgian mathematician,
G. P. Dandelin (1794-1847),  and makes use of the two spheres S, and S, which are drawn
SO as to be tangent to the cutting plane and the cane, as illustrated in Figure 13.11. These
spheres touch the cane along two parallel circles C, and CZ . We shall prove that the points
FI and F, , where the spheres contact the plane, cari  serve as foci  of the ellipse.
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FIGURE 13.11 The ice-cream-cane proof.

Let P be an arbitrary point of the ellipse. The problem is to prove that llP?l\\  + Ilk?211
is constant, that is,  independent of the choice  of P. For this purpose, draw that line on the
cane from the vertex 0 too  and let AI  and A, be its intersections with the Cir$es  CI
and C, , respectively. _Then  PFIAnd  3, are two tangents to S, from P, and hence  IIPF,  II =
llz1 11. Similarly (1 PF, II = IIPA,  11, and therefore we have

II~~III  + llP~2ll = IIP~III  + IlP~,II  .

But Il~111  + II%I1  = IMlfj,ll> which is the distance between the parallel circles C, and
C, measured along the surface of the cane. This proves that FI  and F, cari  serve as foci  of
the ellipse, as asserted.

Modifications of this proof  work also for the hyperbola and the parabola. In the case
of the hyperbola, the proof  employs one  sphere in each  portion of the cane. For the
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parabola one  sphere tangent to the cutting plane at the focus  Fis used. This sphere touches
the cane along a circle which lies in a plane whose intersection with the cutting plane is the
directrix of the parabola. With these hints the reader should be able to show that the focal
properties of the hyperbola and parabola may be deduced from their definitions as sections
of a cane.

13.19 Eccentricity of conic sections

Another characteristic property of conic sections involves a concept called eccentricity.
A conic section cari  be defined as a curve traced out  by a point moving in a plane in such
a way that the ratio of its distances from a fixed point and a fixed line is constant. This
constant ratio is called the eccentricity of the curve and is denoted by e. (This should not be
confused  with the Euler number e.) The curve is an ellipse if 0 < e < 1, a parabola if
e = 1, and a hyperbola if e > 1. The fixed point is called a focus and the fixed line a
directrix.

We shah  adopt this definition as the basis for our study of the conic sections since  it
permits a simultaneous treatment of a11 three types of conics and lends  itself to the use of
vector methods. In this discussion it is understood that a11 points and lines are in the same
plane.

DEFINITION. Given a line  L, a point F not on L, and a positive number e. Let d(X,  L)
denote  the distance from a point X to L. The set of ail X satisfying the relation

(13.20) IIX  - FI[  = e d(X, L)

is called a conic section with eccentricity e. The conic is called an ellipse if e < 1, a parabola
lfe = 1, and a hyperbola ife > 1.

If N is a vector normal to L and if P is any  point on L the distance d(X,  L) from any
point X to L is given by the forrnula

(f(X2 L) = I(X - P). NI
IlNIl ’

When N has length 1, this simplifies to d(X,  L) = 1(X  - P) . NI, and the basic equation
(13.20) for the conic sections bec:omes

(13.21) 11 .Y - F/I  = e I(X  - P) * NI  .

The line L separates the plane into two parts which we shall arbitrarily label as “positive”
and “negative” according to the choice  of N. If (X - P) . N > 0, we say  that X is in the
positive half-plane, and if (X - P) * N < 0, we say  that X is in the negative half-plane.
On the line L itself we have (X - P) -N = 0. In Figure 13.12 the choice  of the normal
vector N dictates that points to the right of L are in the positive half-plane and those to the
left are in the negative half-plane.

Now we place the focus  F in the negative half-plane, as indicated in Figure 13.12, and
choose  P to be that point on L nearest to F. Then P - F = dN,  where Id/  = IIP - FI1  is
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Directrix L

) N unit normal to Lllt;;h /=~;rmalto  L
FocusF  ,~~,--__---L------------FocusF P =  F+dN

d-(X-F).N-

FIGURE 13.12 A conic section with eccentricity e is the set of a11 X satisfying
I\X  - FI1  = e I(X  - F).  N - dl.

the distance from the focus  to the directrix. Since  F is in the negative half-plane, we have
(F - P) * N = -d < 0, SO dis positive. Replacing P by F + dN  in (13.21),  we obtain the
following theorem, which is illustrated in Figure 13.12.

THEOREM 13.17. Let C be a conic section with eccentricity e, focus F, and directrix L
at a distance d from F. If N is a unit normal to L and if F is in the negative half-plane deter-
mined by N,  then C consists  of a11  points X satisfying the equation

(13.22) [IX - FI\  = e I(X - F) * N - dl  .

13.20 Polar equations for conic sections

The equation in Theorem 13.17 cari be simplified if we place the focus  in a special
position. For example, if the focus  is at the origin the equation becomes

(13.23) IlXll  = e IX-  N - dl.

This form is especially useful if we wish to express X in terms of polar coordinates. Take
the directrix L to be vertical, as shown in Figure 13.13, and let N = i. If X has polar co-
ordinates r and 8, we have I\Xll = r, X * N = r COS 8, and Equation (13.23) becomes

(13.24) r = e Ir COS 8 - dl.

If X lies to the left of the directrix, we have r Cos  0 < d,  SO Ir COS 19 - dl  = d - r COS 0
and (13.24) becomes r = e(d - r COS 13),  or, solving for r, we obtain

(t3.25)
edr =

e cas  8 + 1.
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If X lies to the right of the directrix, we have r COS 0 > d, SO (13.24) becomes

giving us

r = e(r COS 8 - d) ,

(13.26)
ed

r =
ecose-  1 ’

Since  r > 0, this last equation implies e > 1. In other words, there are points to the right
of the directrix only for the hyperbola. Thus, we have proved the following theorem which
is illustrated in Figure 13.13.

I
F

(a) r COS 8 <  don  the  e l l ipse ,  parabola ,
and  left  branch of  the hyperb’ola

(b) r COS f3  >  don the right branch of
the  hype rbo la

FIGURE 13.13 Conic  sections with polar equation r = e Ir COS 0 - dl.  The focus  F
is at the origin and lies to the left  of the directrix.

THEOREM 13.18. Let C be a conic section with eccentricity e, uith a focus F ai  the origin,
and with a vertical directri.u  L at a distance d to the right of F. If 0 < e 5 1, the conic C is
an ellipse or a parabola; every poirjt  on C lies to the left of L and satis$es  the polar equation

ed
r =

e COS e + 1 .

If e > 1,  the curve  is a hyperbola risith  a branch on each side  of L. Points on the Ieft  branch
satisfy (13.27) andpoints on the right branch satisfy

ed
r =

e COS e - 1 ’

Polar equations corresponding to other positions of the directrix are discussed in the

next set of exercises.
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13.21 Exercises

1. Prove that Equation (13.22) in Theorem 13.17 must be replaced  by

I/X  - FI]  = e I(X  - F) . N + dl

if Fis in the positive half-plane determined by N.
2. Let C be a conic section with eccentricity e, with a focus at the origin, and with a vertical

directrix L at a distance d to the left of F.
(a)  Prove tha t  i f  C is  an  e l l ipse  or  parabola ,  every  point  of  C l ies  to  the  r ight  of  L and sat isf ies
the  po la r  equa t ion

e d
‘=l  -ecos8’

(b) Prove that if C is a hyperbola, points on the right branch satisfy the equation in part (a)
and points on the left branch satisfy r = -ed/(l + e COS 0). Note that 1 + e COS 0 is always
negat ive  in  th i s  case .

3. If a conic section has a horizontal directrix at a distance d above a focus at the origin, prove
that  i t s  poin ts  sa t i s fy  the  polar  equat ions  obta ined  f rom those  in  Theorem 13.18  by  replac ing
COS 0 by sin 0.  What are the corresponding polar equations if the directrix is horizontal and
l ies  be low the  focus?

Each of Exercises 4 through 9 gives a polar equation for a conic section with a focus Fat the
origin and a vertical directrix lying to the right of F. In each  case, determine the eccentricity e
and  the  d i s tance  d from the focus to  the  di rect r ix . Make a  sketch  showing the  re la t ion  of  the  curve
to its focus and directrix.

2 1
4 . r = 7 . r =

1 + C O S 0. -3 + COS e.

3
5. r =

1 + g COS 0.

In  each  of  Exercises  10 through 12,  a  conic  sect ion of  eccentr ic i ty  e  has  a  focus a t  the  o r ig in  and
a  d i rec t r ix  wi th  the  g iven  Car tes ian  equat ion . In  each  case,  compute the dis tance d from the focus
to the directrix and determine a polar equation for the conic section. For a hyperbola, give a
polar equation for each  branch. Make a sketch showing the relation of the curve to its focus
and directrix.
10. e = 4; directrix: 3x + 4~ = 25.
11. e = 1; directrix: 4x + 3y  = 25.
12. e = 2; directrix: x + y = 1.
13. A cornet moves in a parabolic orbit  with the sun at the focus. When the cornet is lO*  miles

from the sun, a vector from the focus to the cornet makes an angle of 71/3  with a unit vector
N from the focus perpendicular to the directrix, the focus being in the negative half-plane
determined by N.
(a) Find a polar equation for the orbit, taking the origin at the focus, and compute the
smal les t  d is tance f rom the  cornet  to  the  sun.
(b) Solve part (a) if the focus is in the positive half-plane determined by N.
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13.22 Conic  sections symmetric about the origin

A set of points is said to be symmetric about  the origin if -X is in the set whenever X is
in the set. We show next that the focus  of an ellipse or hyperbola cari  always be placed SO

the conic section Will be symmetric about the origin. TO do this we rewrite the basic
equation (13.22) as follows:

(13.29) I(X  - P(( = e I(X - F) * N - dl = e(X-N-F-N-dl=  (eX*N-ai,

where a = ed + eF * N. Squaring both members, we obtain

(13.30) llXl12  - 2F. X + [IFIl  = e2(X*N)2  - 2eaX.N + a2.

If we are to have symmetry about the origin, this equation must also be satisfied when X
is replaced by -X, giving us

(13.31) 11  XII  2 + 2F * X + IlFIl  = e2(X  * N)2  + 2eaX * N + a2.

Subtracting (13.31) from (13.30),  we have symmetry if and only if

F*X=eaX*N o r (F-eaN)*X=O.

This equation cari  be satisfied for a11 X on the curve  if and only if F and N are related by
the equation

(13.32) F=eaN, where a = ed + eF. N.

The relation F = eaN  implies F * N = ea, giving us a = ed + e2a. If e = 1, this last
equation cannot be satisfied since  d, the distance from the focus  to the directrix, is nonzero.
This means there is no symmetry about the origin for a parabola. If e # 1, we cari  always
satisfy the relations in (13.32) by  taking

(13.33)
ed

1 - e2’
F = e2da=- - N .

1 - e2

Note that a > 0 if e < 1 and a .: 0 if e > 1. Putting F = eaN  in (13.30) we obtain the
following.

THEOREM 13.19. Let C be a conic section with eccentricity e # 1 and with a focus Fat
a distance d jrom a directrix L. If N is a unit normal to L and if F = eaN,  where a =
ed/(  1 - e2),  then C is the set of allpoints  X satisfying  the equation

(13.34) llxl/2  i- e2a2  = e2(X. N)2  + a2.
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This equation displays the symmetry about the origin since  it is unchanged when X is
replaced by -X. Because of this symmetry, the ellipse and the hyperbola each  have two
foci, symmetrically located about the tenter,  and two directrices, also symmetrically located
about the tenter.

Equation (13.34) is satisfied when X = faN. These two points are called vertices  of the
conic. The segment joining them is called the major axis if the conic is an ellipse, the
transverse axis if the conic is a hyperbola.

Let N’ be a unit vector  orthogonal to N. If X = bN’,  then X * N = 0, SO Equation (13.34)
is satisfied by X = bN’ if and only if b2  + 2 2 -e a - a2. This requires e < 1, b2  = a2(1  - e”).

The segment joining the points X = fbN’,  where b = ad1  - e2  is called the minor axis
of the ellipse.

Note: If we put e = 0 in (13.34),  it becomes /iXll = a, the equation of a circle of radius
a and tenter  at the origin. In view of (13.33),  we cari  consider such  a circle as a limiting
case of an ellipse in which e + 0 and d + ~0 in such  a way that ed + a.

13.23 Cartesian equations for the conic sections

TO obtain Cartesian equations for the ellipse and hyperbola, we simply Write  (13.34)
in terms of the rectangular coordinates of X. Choose N = i (which means the directrices
are vertical) and let X = (x, y). Then 11 XII2  = x2 + y2,  X * N = x, and (13.34) becomes
x2 + y2  + e2a2  = e2x2  + a2,  or x2(1  - e2) + y2  = a2(  1 - e2),  which gives us

(13.35) g+  Y2
a2 a’(1  - e”)  =

1.

This Cartesian equation represents both the ellipse (e < 1) and the hyperbola (e > 1) and
is said to be in standardform. The foci  are at the points (ae, 0) and (-ae, 0); the directrices
are the vertical lines x = a/e  and x = -a/e.

If e < 1, we let b = ad1  - e2  and Write  the equation of the ellipse in the standard form

(13.36) g+-=,,
a2  b2

Its foci  are located at (c, 0) and (-c, 0), where c = ae = 2/a2  - b2.  An example is shown
in Figure 13.14(a).

If e > 1, we let b = laide2 - 1 and Write  the equation of the hyperbola in the standard
form

(13.37)
x2 y2---=
a2  b2

1.

Its foci  are at the points (c, 0) and (-c, 0), where c = la1  e = w. An example is
shown in Figure 13.14(b).
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Note: Solving for y in termIs  of x in (13.37) , we obtain two solutions

(13.38) y=*j+sc
a

For large positive x, the number ýxz  - a 1  nearly equal to x, SO the right member of2 ‘s
(13.38) is nearly rtbx/lal.  It is easy to prove that the difference between y1  = bx/laj  and
y2  = bdx2  - az/lal  approaches  0 as x - + a>. This difference is

SO y, -y,  -+ 0 as x - + CU. Therefore, the line y = bx/\al  is an asymptote of the
hyperbola. The line y = -bx,llal  is another asymptote. The hyperbola is said to ap-
proach these lines asymptotically. The asymptotes are shown in Figure 13.14(b).

(a) Ellipse (b) Hyperbola

X’-.-+$  = 1 ;  b2=a2  -c2 X2 p=  1;  p=c* -a*
;- b-2

FIGURE 13.14 Conic  sections of eccentricity e # 1, symmetric about  the origin. The
foci are at (fc, 0), where c = la/  e. The triangles relate a, 6, c geometrically.

The Cartesian equation for the ellipse and hyperbola Will take a different form if the
directrices are not vertical. For example, if the directrices are taken to be horizontal, we
may take N = j in Equation (13.34). Since  Xe N = X * j = y, we obtain a Cartesian
equation like (13.35),  except  that x and y are interchanged. The standard form in this
case is

(13.39) $+ x2
a2(1  - e”)

=1.

If the conic  is translated by adding  a vector X,, = (x, , y,,) to each  of its points, the tenter
Will be at (x, , y,,)  instead of at the origin. The corresponding Cartesian equations may be
obtained from (13.35) or (13.39) by replacing x by x - x0 and y by y - y,, .
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TO obtain a Cartesian equation for the parabola, we return to the basic equation (13.20)
with e = 1. Take the directrix to be the vertical line x = -c and place the focus  at (c, 0).
If X = (x, y), we have X - F = (x - c, y), and Equation (13.20) gives us (x - c)”  + y2  =
Ix + c12.  This simplifies to the standard form

(13.40) y2  = 4cx.

The point midway between the focus  and directrix (the origin in Figure 13.15) is called the
vertex of the parabola, and the line passing through the vertex and focus  is the axis of the
parabola. The parabola is symmetric about its axis. If c > 0, the parabola lies to the right
of the y-axis, as in Figure 13.15. When c < 0, the curve  lies to the left of the y-axis.

Y

Directrix 1
x=-c;

+
I

4Ix+4
X

---e-------------1 _____
Directrix y = -c

FIGURE 13.15 The parabola y2  = 4cx. FIGURE 13.16 The parabola x2 = 4cy.

If the axes are chosen  SO the focus  is on the y-axis at the point (0, c) and if the horizontal
line y = -c is taken as directrix, the standard form of the Cartesian equation becomes

X2 = 4cy.

When c > 0 the parabola opens upward as shown in Figure 13.16. When c < 0, it opens
downward.

If the parabola in Figure 13.15 is translated SO that its vertex is at the point (x0,  y,,), the
corresponding equation becomes

(y - yo)  = 4c(x  - x0).

The focus  is now at the point (x,, + c, y0)  and the directrix is the line x = x,,‘-  c. The
axis of the parabola is the line y = y0.

Similarly, a translation of the parabola in Figure 13.16 leads to the equation

(x - -%>2  = 4cly  - yo)  7

with focus  at (x,, , y0  + c). The line y = y,, - c is its directrix, the line x = x,, its axis.
The reader may find it amusing to prove that a parabola does  not have any  asymptotes.
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13.24 Exercises

Each  of the equations in Exercises 1 through 6 represents an ellipse, Find the coordinates of
the  tenter,  the  foci, and the  ver t ices ,  and  sketch  each  curve.  Also determine the  eccentr ic i ty .

4. 9x2 + 25ye  = 25.

5. 4y2  + 3x2 = 1.

3 (x-2)2+(Y+3)21.
’ 16

6 (x + 1Y  + (y +  a2 1
9 . 16 ---tir=.

In each  of Exercises 7 through 12, find a Cartesian equation (in the appropriate standard form)
for  the  e l l ipse  tha t  sa t i s f ies  the  condi t ions  g iven .  Ske tch  each  curve.
7. Center at (0, 0), one focus at ($,  0), one vertex at (l,O).
8. Center at (-3, 4),  semiaxes of lengths 4 and 3, major axis parallel to the x-axis.
9. Same  as Exercise 8, except with major axis parallel to the y-axis.

10. Vertices at (-  1, 2),  (-7, 2),  minor axis of length 2.
11. Vertices at (3, -2),  (13, -2),  foci at (4, -2), (12, -2).
12. Center at (2, l), major axis parallel to the x-axis, the curve passing through the points (6, 1)

and (2,  3) .
Each  of  the  equat ions  in  Exerc ises  13  through 18  represents  a  hyperbola .  F ind  the  coordina tes

of the tenter,  the  foci, and  the  ver t ices . Sketch each curve  and  show the  pos i t ions  of  the  asympto tes .
Also ,  compute  the  eccent r ic i ty .

16. 9x2 - 16y2  = 144.

17. 4x2 - 5y2  + 20 = 0 .

~ (x+3)2
-

- ( y 3)2 1 . 18
(x Il2

15 - = -(v =
.

4 4 9 1 ’

In  each  of  Exercises  19 through 23,  f ind a  Cartes ian equat ion ( in  the appropriate  s tandard form)
for  the  hyperbola  which  sa t i s f ies  the  condi t ions  g iven . Sketch each  curve  and  show the  pos i t ions
of  the  asymptotes .
19. Center at (0, 0), one focus at (4,0),  one vertex at (2,0).
20. Foci at (0, f 42),  vertices at (0: &l).
21. Vertices at (f2,0),  asymptotes y = f2x.
22. Center at ( - 1,4), one focus at ( - 1,2), one vertex at ( - 1, 3).
23. Center at (2, -3), transverse axis parallel to one of the coordinate axes, the curve passing

through (3, -1) and (-1,O).
24. For what value (or values) of C Will  the line 3x - 2y  = C be tangent to the hyperbola

x2 - 3y2  = 1 ?
25. The asymptotes of a hyperbola are the lines  2x - y = 0 and 2x + y = 0. Find a Cartesian

equat ion  for  the  curve  i f  i t  passes  through the  poin t  (3 ,  - 5).
Each  of the equations in Exercises 26 through 31 represents a parabola. Find the coordinates

of the ver tex,  an equat ion for  the directr ix ,  and an equat ion for  the axis . Sketch each of the curves.
26. y2  = -8x. 29. x2 = 6y.
27. y2  = 3x. 30. x2 + 8y  = 0.
28. (y - 1)2  = 12x - 6. 31. (x + 2)2 = 4y  + 9.
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In each  of Exercises  32 through 37, find a Cartesian equation (in appropriate standard form)
for  the  parabola  tha t  sa t i s f ies  the  condi t ions  g iven  and  ske tch  the  curve.
32. Focus  at (0, -i);  equation of directrix,y = i.
33. Vertex at (0,O); equation of directrix, x = -2.
34. Vertex at (-4,3);  focus at (-4, 1).
35. Focus  at (3, -1); equation of directrix, x = $.
36. Axis is parallel to the y-axis; passes through (0, l), (1, 0), and (2,O).
37. Axis is parallel to the x-axis; vertex at (1, 3) ; passes through ( - 1,  - 1).
38.  Proceeding direct ly  f rom the focal  def ini t ion,  f ind a  Car tes ian equat ion for  the  parabola  whose

focus is the origin and whose directrix is the line 2x + y = 10.

13.25 Miscellaneous exercises on conic sections

1. Show that the area  of the region bounded by the ellipse x2/a2  + y2/b2  = 1 is ab times the
area  of a circle of radius 1.

Note: This s tatement  cari be  proved f rom general  proper t ies  of  the  in tegral ,  wi thout
performing any in t eg ra t i ons .

2. (a) Show that the volume of the solid of revolution generated by rotating the ellipse
x2/a2  + y2/b2 = 1 about  its major axis is ab2  times the volume of a unit sphere.

Note: This s tatement  cari be  proved f rom general  proper t ies  of  the  in tegral ,  wi thout
performing any in t eg ra t i ons .

(b) What is the result if the ellipse is rotated about  its minor axis?
3. Find a11  positive numbers A and B, A > B, such that the area  of the region enclosed  by the

ellipse ,4x2  + By2  = 3 is equal to the area  of the region enclosed  by the ellipse

(A + B)x2  -t-  (A - B)y”  = 3 .

4. A parabolic arch has a base of length b and altitude h. Determine the area  of the region
bounded  by  the  arch  and the  base .

5. The region bounded by the parabola y 2 = 8x and the line x = 2 is rotated about  the x-axis.
Find the  volume of  the  so l id  of  revolut ion  SO genera ted .

6. Two parabolas having the equations y2  = 2(x - 1) and y 2 - 4- ( x - 2)  enclose  a  p lane  region R.
(a) Compute the area  of R by integration.
(b) Find the volume of the solid of revolution generated by revolving R about  the x-axis.
(c) Same  as (b), but revolve R about  the y-axis.

7. Find a Cartesian equation for the conic section consisting of a11  points (x, y) whose distance
from the point (0,2)  is half the distance from the line y = 8.

8. Find a Cartesian equation for the parabola whose focus is at the origin and whose directrix
is the line x + y + 1 = 0.

9 .  F ind  a  Car tes ian  equat ion  for  a  hyperbola  pass ing  through the  or ig in ,  g iven  tha t  i t s  asymptotes
are the lines  y = 2x + 1 andy = -2x + 3.

10. (a) For each  p > 0, the equation px2  + (p + 2)y2  =p2  + 2p represents an ellipse. Find
(in terms ofp) the eccentricity and the coordinates of the foci.
(b) Find a Cartesian equation for the hyperbola which has the same foci as the ellipse of

par t  (a)  and which has  eccent r ic i ty  43.
11. In Section 13.22 we proved that a conic symmetric about  the origin satisfies the equation

((X  - FI( = (ex. N - a/, where a = ed + eF. N. Use this relation to prove that 11X - FI1  +
/IX + FJl  = 2a if the conic is an ellipse. In other words, the sum of the distances from any
po in t  on  an  e l l i p se  t o  i t s  foci i s  c o n s t a n t .
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12. Refer to Exercise 11. Prove that  on each  branch  of a hyperbola the difference  [IX  - FI1  -
/IX + FI1  is constant.

13. (a) Prove that a similarity transformation (replacing x by tx and y by ty)  carries  an ellipse
with tenter  at the origin into .another ellipse with the same eccentricity. In other words,
s imi lar  e l l ipses  have  the  same eccent r ic i ty .
(b) Prove also the converse. That is, if two concentric ellipses have the same eccentricity
and major axes on the same line, then they are related by a similarity transformation.
(c)  Prove  resul t s  cor responding  to  (a )  and  (b)  for  hyperbolas .

14. Use the Cartesian equation which represents a11  conics of eccentricity e and tenter  at the
or ig in  to  prove  tha t  these  conics  are  in tegra l  curves  of  the  d i f ferent ia l  equat ion  y’  =  (e2 - I)X/~.

Note: Since t h i s  i s  a  homogeneous  different ia l  equat ion (Sect ion 8.25),  the set  of  a11
such conics  of  eccentr ic i ty  e is  invariant  under  a  s imilar i ty  t ransformation.  (Compare
with Exercise 13.)

15. (a) Prove that the collection of a11  parabolas is invariant under a similarity transformation.
That is, a similarity transformation carries  a parabola into a parabola.
(b) Find a11  the parabolas similar to y = x2.

16. The line x - y + 4 = 0 is tangent to the parabola y 2 = 16x. Find the point of contact.
17. (a) Given a # 0. If the two para.bolas y2  = 4p(x  - a) and x2 = 4qy  are tangent to each  other,

show that  the  x-coordinate  of  the  point  of  contact  i s  determined by a  a lone.
(b )  F ind  a  cond i t ion  on  a,  p ,  ancl  q which expresses  the  fact tha t  the  two parabolas  a re  tangent
to each other.

18. Consider the locus of the points P in the plane for which the distance of P from the point
(2,  3)  is  equal  to  the  sum of  the  dis tances  of  P from the two coordinate axes.
(a) Show that the part of this locus which lies in the first quadrant is part of a hyperbola.
Locate the asymptotes  and make a  sketch.
(b)  Sketch  the  graph  of  the  locus  in  the  o ther  quadrants .

19. Two parabolas have the same point as focus and the same line as axis, but their vertices  lie
on opposite sides of the focus. Prove that the parabolas intersect orthogonally (i.e., their
tangen t  lines  are  perpendicular  a t  the  points  of  in tersec t ion) .

20. (a) Prove that the Cartesian equation

represents a11  conics symmetric a.bout the origin with foci at (c, 0) and (-c, 0).
(b) Keep c f ixed and let  S denote  the set  of  a11 such conics  ob ta ined  as  a2 var ies  over a11  pos i t i ve
numbers #c2. Prove  tha t  every  curve i n  S sat is f ies  the  di f ferent ia l  equat ion

4 2c 1 dYx y  -& + (x2  - y2  - c2)  TX - xy = 0.

(c) Prove that S is self-orthogonal; that is, the set of a11  orthogonal trajectories of curves in
S is S itself. [Hint: Replace y’ by -l/y’  in the differential equation in (b).]

21. Show that the locus of the centers of a family of circles, a11  of which pass through a given
point and are tangent to a given line, is a parabola.

22. Show that the locus of the centers of a family of circles, a11  of which are tangent (externally)
to  a  g iven  circle  and a lso  to  a  g iven  s t ra ight  l ine ,  i s  a  parabola .  (Exerc ise  21  cari be  cons idered
to be a special case.)
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23. (a) A chord of length 8 ICI  is drawn perpendicular to the axis of the parabola y2  = 4cx.  Let
P and Q be  the  points  where  the  chord meets  the  parabola . Show that the vector from 0 to P
is perpendicular to that from 0 to Q.
(b) The chord of a parabola drawn through the focus and parallel to the directrix is called
the lutus  rectum. Show first that the length of the latus rectum is twice the distance from the
focus to the directrix, and then show that the tangents to the parabola at both ends of the
latus rectum intersect the axis of the parabola on the directrix.

24. Two points P and Q are said to be symmetric with respect to a circle if P and Q are collinear
wi th  t he  tenter,  if  the tenter  is  not  between them, and i f  the  product  of their  distances from the
tenter  is equal to the square of the radius. Given that Q describes the straight line
x + 2y  - 5 = 0, find the locus of the point P symmetric to Q with respect to the circle
x2  + y2 = 4.
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CALCULUS  OF VECTOR-VALUED FUNCTIONS

14.1 Vector-valued functions of a real variable

This chapter  combines vector algebra with the methods of calculus  and describes some
applications to the study of curves  and to some problems in mechanics. The concept of a
vector-valued function is fundamental in this study.

DEFINITION. A function whose  domain  is a set of real numbers and whose  range is a
subset of n-space V, is called  a vector-valuedfunction of a real variable.

We have encountered such  functions in Chapter 13. For example, the line through a
point P parallel to a nonzero vector A is the range of the vector-valued function .Y  given by

for a11 real t.
X(t) = P + tA

Vector-valued functions Will be denoted by capital letters such  as F,  G, X, Y, etc., or by
small bold-face italic  lettersf,  g, etc. The value of a function Fat t is denoted, as usual, by
F(t). In the examples we shall study, the domain  of F Will be an interval which may contain
one  or both endpoints or which may be infinite.

14.2 Algebraic operations. Components

The usual operations of vector algebra cari  be applied to combine two vector-valued
functions or to combine a vector-valued function with a real-valued function. If F and G
are vector-valued functions, and if u  is a real-valued function, a11 having a common  domain,
we define  new functions F + G, uF,  and F.  G by the equations

(F + G)(t) = F(t) + G(t) , (UV(t) = u(W(t)  , (F 1 G)(t) = F(t) . G(t) .

The sum F + G and the product  uF are vector valued, whereas the dot product  F*  G is
real valued. If F(t) and G(t) are in 3-space,  we cari  also define  the cross product  F x G by
the formula

(F x G)(t) = F(t) x G(t).

512
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The operation of composition may be applied to combine vector-valued functions with
real-valued functions. For example, if F is a vector-valued function whose domain  in-
cludes  the range of a real-valued function U,  the composition G = Fo u is a new vector-
valued function defined by the equation

G(t) = FM01

for each  t in the domain  of u.
If a function F has its values in V, , then each  vector F(t) has n components, and we cari

Write

F(t) = (fi(t>&t>>\.  . . >fn(t>>  .

Thus, each  vector-valued F gives rise  to n real-valued functions fi , . . . , fn whose values at
t are the components of F(t). We indicate this relation by writing F = (fi , . . . ,fJ, and we
cal1  fk the kth component  of F.

14.3 Limits, derivatives, and integrals

The basic concepts of calculus, such  as limit, derivative, and integral, cari  also  be extended
to vector-valued functions. We simply express the vector-valued function in terms of its
components and perform the operations of calculus  on the components.

DEFINITION. v F = (fi , . . ,fn) is  a vector-valued jiinction, ule  dejne  limit, derivative,
and integral by the equations

lim F(t) = limfi(t),  . . . , limf,(t)
t-0 t-D t+LIJ

F’(t)  =  (f;(t)>  .  >.fXQ> >

whenever the components on the right are meaningful.

We also say  that Fis continuous,  d@erentiabIe,  or integrable on an interval if each  com-
ponent of F has the corresponding property on the interval.

In view of these definitions, it is not surprising to find that many of the theorems on
limits, continuity,  differentiation,  and integration of real-valued functions are also valid for
vector-valued functions. We state some of the theorems that we use in this chapter.

THEOREM 14.1. If F, G, and u are dlferentiable on an interval, then SO are F + G, uF,
and F.  G, and we have

(F + G)’ = F’ + G’, (uF)’  = u’F  + uF’, (F.G)‘=F’.G+F.G’.



514 Calculus  of vector-valued functions

If F and G have values in V,, we  also  have

(F >:  G)’ = F’ x G + F x G’

Proof TO indicate the routine: nature of the proofs we discuss the formula for (uF)‘.
The proofs of the others are similar and are left as exercises for the reader.

Writing F = (fi , . . . , fn), we have

uF = (ufl,  . . . , ufn)  , (W  = NUfi)‘,  . . . > (ufJ’>  -

But the derivative of the kth component  of uF  is (u&)’  = u’fk  + uf; , SO we have

(UP’)’  = u’(fi  , ,f,) + u(f;  > . . . ,f;) = u’F  + uF’.

The reader should note that the differentiation formulas in Theorem 14.1 are analogous
to the usual formulas for differentiating a sum or product of real-valued functions. Since
the cross product is not commutative, one  must pay attention to the order of the factors in
the formula for (F x G)‘.

The formula for differentiating F + G gives us the following theorem which we shall use
frequently.

THEOREM 14.2. If a vector-valued function is d@erentiable  and has constant length on
an open  interval  I, then F.  F’  = 0 on I. In other lvords,  F’(t) is perpendicular to F(t) for
each  t in I.

Pro~f. Let g(t) = liF(t)l12  = F(t). F(t). By hypothesis, g is constant on 1,  and hence
g’  = 0 on I. But since  g is a dot product, we have g’ = F’ . F + F.  F’ = 2F.  F’. Therefore
wehaveF.F’=O.

The next theorem deals with composite functions. Its proof  follows easily from Theorems
3.5 and 4.2 which contain the corresponding results for real-valued functions.

THEOREM 14.3. Let G = Fa u,  where  F is vector  valued  and u is real valued.  !f u  is
continuous  at t and if F is continuous  at u(t), then G is continuous at t.  If the derivatives
u’(t) and F’[u(t)]  exist, then G’(t) ar’so  exists and is given by the chain  rule,

G’(t) = F’[u(t)]u’(t)  .

If a vector-valued function F is continuous  on a closed  interval [a, b], then each  com-
ponent is continuous  and hence integrable on [a, b], SO Fis integrable on [a, b]. The next
three theorems give basic propert-ies of the integral of vector-valued functions. In each
case, the proofs follow at once from the corresponding results for integrals of real-valued
functions.

THEOREM 14.4. LINEARITY AND ADDITIVITY. If the vector-valued functions F and G
are integrable on [a, b], SO is c,F + c,G for a11  c1  and cg,  and we have

J;(clp(t)  + c&(t))  dt = cl/;  F(t) dt + c2JIG(t)  dt .
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Also,  for each  c in [a, b], we have

/If(t)  dt  =/;F(t)  dt +l;F(t)  dt .

THEOREM 14.5. FIRST FUNDAMENTAL THEOREM OF CALCULUS. Assume F is a vector-
vahred function continuous on [a, b]. If c E  [a, b], dejne  the indepnite  integral A to be the
vector-valuedfunction  given by

A(x) = f” F(t) dt if  a<x<b.
-c

Then A’(x) exists, and we have A’(x) = F(x).for  each  x in (a, b).

THEOREM 14.6. SECOND FUNDAMENTAL THEOREM  OF CALCULUS. Assume that the vector-
valuedfunction F bas  a continuous derivative F’  on an open  interval  I. Then, for each  choice  of
c and s itl  I, n‘e have

F(x) = F(c) +J’:F’(t)  dt

The next theorem is an extension of the property cji  F(t) dt = 6: cF(t) dt, with multipli-
cation by the scalar c replaced by dot multiplication by a vector C.

THEOREM 14.7. If F = (fi > . . . ,fn)  g blIS wte ra e on [a, b], then for every vector C =
(Cl  9 . . >cJ the dot product  C.  Fis integrable on [a, b], and we bave

C j” F(t) dz =s”  C . F(r) dt .
a a

Proof. Since  each  component  of Fis integrable, we have

b
c.

Now we use Theorem 14.7 in conjunction with the Cauchy-Schwarz inequality to obtain
the following important property of integrals of vector-valued functions.

THEOREM 14.8. If F and IlFil  are integrable on [a, b] we have

(14.1)

Proof. Let C = Jo F(t) dt. If C = 0, then (14.1) holds trivially. Assume, then, that
C # 0 and apply Theorem 14.7 to get

(14.2) lIC112  = C C = C j)(r)  dt =/;C.  F(t) dt .
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Since the dot product  C * F(t) is real valued, we have the inequality

(14.3) jbC.  F(t)  dt I j” IC. F(t)1  dt 5 j~llCll  llF(Oll dt 9a a

where in the last  step we used the Cauchy-Schwarz inequality, IC.  F(t)] < IlCll  IlF(t)
Combining (14.2) and (14.3), we get

IIW  5 I lCI l j; IIF(OII  dt.

Since IlCIl  > 0, we cari divide by )ICI\  to get (14.1).

14.4 Exercises

Compute the derivatives F’(t) and F”(t)  for each  of the vector-valued functions in Exercises 1
t h r o u g h  6 .

1. F(t) = (t, t2,  t3,  t4). 4. F(t)  = 2eti + 3ey.
2. F(t)  = (cas  t,  sin2 t,  sin 2t, tan t), 5. F(t)  = cash t i + sinh 2tj + eë3tk.

3. F(t)  = (arcsin t,  arccos  t). 6. F(t)  = log (1 + t2)  i + arctan  tj + AZ k.

7.  Let  F be  the  vec tor -va lued  funct ion  g iven  by

1 - t2
F(t)  =Gzi+-l +t2j+k.

Prove  tha t  the  angle  be tween  F(.f)  and F’(t)  i s  cons tan t ,  tha t  i s ,  independent  o f  t.

Compute  the  vec tor -va lued  in tegra ls  in  Exerc ises  8  through 11 .

s

1

8. (t, d, et) dt.
0

1 i
S(

et
10. -

o >l+et
i +

7714
9 .
s

(sin t, COS t,  tan t) dt. 11.
0 s

1

(teti  + t2etj + te@k)  dt.
0

12. Compute A B, where A = 2i -.  4j + k and B = jo  (te2ti  + t cash  2tj + 2teë2tk)  dt.
13. Given a nonzero vector B and a vector-valued function F such that F(t) B = t for a11  t,

and such that the angle between F’(t) and B is constant (independent of t). Prove that F"(t)
i s  o r thogona l  t o  F’(t) .

14. Given fixed nonzero vectors A and B, let F(t) = eztA + eëztB.  Prove that F”(t) has the same
direc t ion  as  F(t).

15. If G = F x F’, compute G’ in terms of F and derivatives of F.
16. IfG  = F.F’  x F”,provethat  G’ = F.F’  x F”‘.
17. Prove that lim t+2,  F(t) = A if and only if lim,,,  [IF(t)  - Al/  = 0.
18. Prove that a vector-valued function F is differentiable on an open interval  Z if and only if

for each  t in Z we have

F”(t) = lim k [F(t + h) - F(t)] .
11-o

19. Prove the zero-derivative theore:m for vector-valued functions. If F'(t) = 0 for each t in an
open interval  Z,  then there is a vector C such that F(t) = C for a11  t in Z.
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20. Given fixed vectors A and B and a vector-valued function F such  that F”(t) = tA  + B,
determine F(t) if F(0) = D and F’(0) = C.

21. A differential equation of the form Y’(x) + p(x) Y(x) = Q(x), where p is a given real-valued
function, Q a given vector-valued function, and Y an unknown vector-valued function, is called
a first-order linear vector differential equation. Prove that if p and Q are continuous on an
interval  Z,  then for each  a in Z and each  vector B there is one  and only one  solution Y which
satisfies the initial condition Y(a) = B, and that this solution is given by the formula

y(t) = Be-4(t) + e-G’( t ) s1 Q(x)&“)  dx ,

where q(x) = j$p(t) dt.
22. A vector-valued function F satisfies the equation tF’(t) = F(t) + tA  for each  t 2 0, where A

is a fixed vector. Compute F”(1) and F(3) in terms of A, if F(1) = 2A.
23. Find a vector-valued function F, continuous on the interval  (0, + CO),  such  that

F(x) = xe”A  + i
s

z
F(t)  dt ,

1

for a11 x > 0, where A is a fixed nonzero vector.
24. A vector-valued function F, which is never  zero and has a continuous derivative F’(t) for

a11 t, is always parallel to its derivative. Prove that there is a constant vector A and a positive
real-valued function u such  that F(t) = u(t)A  for a11 t.

14.5 Applications to curves. Tangency

Let X be a vector-valued function whose domain  is an interval Z.  As t runs through Z,
the corresponding function values X(t)  run through a set of points which we cal1  the
graph of the function X. If the function values are in 2-space  or in 3-space,  we cari  visualize
the graph geometrically. For example, if X(t) = P + tA, where P and A are fixed vectors
in V,, with A # 0, the graph of X is a straight line through P parallel to A. A more general
function Will trace out  a more general graph, as suggested by the example in Figure 14.1.
If X is continuous on Z,  such  a graph is called a curve; more specifically, the curve described
by X.  Sometimes we say  that the curve is described parametrically by X.  The interval Z
is called a parametric interval; each  t in I is called a parameter.

Properties of the function X cari  be used to investigate geometric properties of its graph.
In particular, the derivative X’ is related to the concept of tangency,  as in the case of a
real-valued function. We form the difference quotient

(14.4) X(t  + h)  - X(t)
h

and investigate its behavior as h --f 0. This quotient is the product  of the vector X(t + h) -
X(t) by the scalar I/h. The numerator, X(t + h) - X(t), illustrated geometrically in
Figure 14.2, is parallel to the vector in (14.4). If we express this difference quotient in
terms of its components and let h -t 0, we find that

lim  X(t + h) - X(t) = x’(t) )
h + 0 12
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FIGURE 14.1 A curve traced  out  by a
vector X(f).

FIGURE 14.2 The vector X(r  + h)  - X(t) is
parallel to [X(r + h)  - X(~)]/!I.

assuming that the derivative X’(t) exists. The geometric interpretation of this relation
suggests the following definition.

DEFINITION. Let C be a curve described by  a continuous vector-valued function X. If
the derivative X’(t) exists and is  rqonzero,  the straight line through X(t) parallel  to X’(t) is
called the tangent line to C at X(t)., The vector X’(t) is called a tangent vector to C at X(t).

EXAMPLE 1. Straight line.  For a line given by X(t) = P + tA, where A # 0, we have
X’(t) = A, SO the tangent line at each  point coincides with the graph of X,  a property which
we surely want.

EXAMPLE 2. Circle.  If X describes a circle of radius a and tenter  at a point P, then
11 X(t) - PI1 = a for each  t.  The vector X(t) - P is called a radius cector; it may be repre-
sented geometrically by an arrow from  the tenter  to the point X(t). Since  the radius vector
has constant length, Theorem 14.2 tells us that it is perpendicular to its derivative and hence
perpendicular to the tangent line. Thus,  for a circle, our definition of tangency  agrees
with that given in elementary plane geometry.

EXAMPLE 3. Invariance under a change of parameter. Different functions cari  have the
same graph. For example, suppose that X is a continuous vector-valued function defined
on an interval I and suppose that u  is a real-valued function that is differentiable with u’
never  zero on an interval J, and such  that the range of u is Z. Then the function Y defined
on J by the equation

Y(f)  = m4t)l

is a continuous vector-valued function having the same graph as X.  Two functions X
and Y SO related are called equivalent. They are said to provide different parametric
representations of the same curve. The function u is said to define  a change of parameter.

The most important geometric concepts associated with a curve are those that remain
invariant under a change of parameter. For example, it is easy to prove that the tangent
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line is invariant. If the derivative X’[u(t)]  exists, the chain rule shows that Y’(t) also exists
and is given by the formula

Y’(t)  = X’[u(t)]u’(t)  .

The derivative u’(t)  is never  zero. If X’[u(t)]  is nonzero, then Y’(t) is also nonzero, SO Y’(t)
is parallel to X’[u(t)]. Therefore both representations X and Y lead to the same tangent
line at each  point of the curve.

EXAMPLE 4. ReJection  properties of the conic sections. Conic  sections have reflection
properties often used in the design of optical  and acoustical equipment. Light rays emanat-
ing from one  focus  of an elliptical reflector Will converge at the other focus,  as shown in

/
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FIGURE 14.3 Reflection properties of the conic sections.

Figure 14.3(a). Light rays directed toward one  focus  of a hyperbolic reflector Will con-
verge at the other focus,  as suggested by Figure 14.3(b). In a parabolic reflector, light rays
parallel to the axis converge at the focus,  as shown in Figure 14.3(c). TO establish these
reflection properties, we need to prove that in each  figure the angles labeled 8 are equal. We
shall do this for the ellipse and hyperbola and ask the reader to give a proof  for the parabola.

Place one  focus  FI  at the origin and let uI  and u2  be unit vectors having the same directions
as X and X - F, , respectively, where X is an arbitrary point on the conic. (See Figure
14.4.) If 4 = I/X]/  and d, = 11 X - F2j1 are the focal distances between X and the foci
FI  and F, , respectively, we have

X = d,u, and X = d2u2  + F2  .

Now we think of X,  ul,  u2, dl, and d,  as functions defined on some interval of real numbers.
Their derivatives are related by the equations

(14.5) X’ =  d,u; +  Lqu,, X’ = d,u;  + d;u,  .

Since  u1  and u2 have constant length, each  is perpendicular to its derivative, SO Equations
(14.5) give us X’ . u1  = d; and X’ 1 U, = di . Adding and subtracting these relations, we



520 Calculus  of vector-valued  jiinctions

find that

(14.6) x’ . (ul + u2)  =:  d; + d; , X’ . (ul - u2)  = d; - d;.

On the ellipse, d, + d, is constant, SO di + d; = 0. On each  branch of the hyperbola,

(a) 0, = LT  - 13, on theellipse (b) 19~ = 0, on the hyperbola

F IGURE 14 .4 Proofs of the reflection properties for the ellipse and hyperbola.

dl  - d, is constant, SO d; - di == 0. Therefore, Equations (14.6) give us

X’ - (ZQ  + UJ = 0 on the ellipse, X’ . (q - uz)  = 0 on the hyperbola.

Let T = X’/ 11 X’ I/ be a unit vector having the same direction as Y. Then T is tangent to the
conic,  and we have

T*u,= -T.u, on the ellipse, T.u, = T-u, on the hyperbola.

If 8, a n d 8, denote, respectively, t h e angles that T makes with ur a n d u2, where 0 2 8, 5 7~
and 0 < e2  < 7~, these last two E:quations  show that

COS 8, = -cos  8, on the ellipse, COS e2  = cos  8, on the hyperbola.

Hence we have e2  = n - 8, on the ellipse, and 8, = 8, on the hyperbola. These relations
between the angles 0r and e2  give the reflection properties of the ellipse and hyperbola.

14.6 Applications to curvilinear motion. Velocity, speed, and acceleration

Suppose a particle moves in 2-space  or in 3-space  in such  a way that its position at time
t relative to some coordinate sys#tem  is given by a vector X(t).  As t varies through a time
interval, the path traced out  by the particle is simply the graph of X.  Thus, the vector-
valued function X serves as a natural mathematical mode1 to describe  the motion. We cal1
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X the position jîînction of the motion. Physical concepts such  as velocity, speed, and
acceleration cari  be defined in terms of derivatives of the position function.

In the following discussion we assume that the position function may be differentiated
as often as is necessary without saying SO each  time.

DEFINITION. Consider a motion described by a vector-valued  function X. The derivative
X’(t) is called the velocity vector at time t. The length of the velocity vector, 1) X’(t) 11,  is
called the speed. The second derivative of the position vector, X”(t), is called the acceleration
vector .

Notation. Sometimes the position function X is denoted by Y, the velocity vector by u,
the speed by v, and the acceleration by a. Thus, u  = r’,  v = 11~11,  and u = u’  = r”.

If the velocity vector X’(t) is visualized as a geometric vector attached to the curve at
X(t), we see that it lies along the tangent line. The use of the word “speed” for the length
of the velocity vector Will be justified in Section 14.12 where it is shown that the speed is the
rate of change of arc length along the curve. This is what the speedometer of an auto-
mobile tries to measure. Thus, the length of the velocity vector tells us how fast the par-
ticle is moving at every instant, and its direction tells us which way it is going. The
velocity Will change if we alter either the speed or the direction of the motion (or both). The
acceleration vector is a measure of this change. Acceleration causes the effect  one  feels
when an automobile changes its speed or its direction. Unlike the velocity vector, the
acceleration vector does  not necessarily lie along the tangent line.

EXAMPLE 1. Linear motion. Consider a motion whose position vector is given by

r(t) = P +f(t)A  ,

where P and A are fixed vectors, A # 0. This motion takes place along a line through
P parallel to A. The velocity, speed, and acceleration are given by

u(t) =f’(t)A  > v( t )  = I lu(t> I/ = If'(t)1  I I A I I  9 a(t) = f “(t)A  .

Iff’(t)  andf”(t) are nonzero, the acceleration vector is parallel to the velocity.

EXAMPLE 2. Circular  motion. If a point (x, y) in VZ  is represented by its polar coordinates
r and f3, we have

x = r Cos  8, y = r sin 8 .

If r is fixed, say  r = a, and if 0  is allowed to vary over  any  interval of length at least 277,
the corresponding point (x, y) traces out  a circle of radius a and cerner  at the origin. If
we make 8 a function of time t,  say  8  = f(t), we have a motion given by the position function

r(t) = a cosf( + a sinf(t)j.

The corresponding velocity vector is given by

v(t) = r’(t) = -af  ‘(t) sinf(t)i  + af’(t) cosf(t)j,
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from which we find that the speed at time t is

v(t) = Il u(t) II = a If’(t)1 .

The factor If’(t)1  = IL/~/L/~/  is called the angulur  speed of the particle.
An important special  case occurs when 0 = wt,  where w (omega) is a positive constant.

In this case, the particle starts at the point (a, 0) at time t = 0 and moves counter-clockwise
around the circle with constant angular speed (1).  The formulas for the position, velocity,
and speed become

r(t) = a COS ut i  + a sin cxtj  , u(t)  = --cou  sin cet  i  -t wa COS wtj  , v(r) = UOJ  .

The acceleration vector is given bsy

U(t) = -Lo2u Cos cd  i - w2u  sin ajtj  = -(02v(t),

which shows that the acceleration is always directed opposite to the position vector. When
it is visualized as a geometric vector drawn at the location of the particle, the acceleration
vector is directed toward the tenter  of the circle. Because of this, the acceleration is called
centripetul or “tenter-seeking,” a term originally proposed by Newton.

Note: If a moving particle has mass ~7,  Newton’s second law of motion states that the
force acting on it (due to its acceleration) is the vector ma(t),  mass times acceleration. If
the particle moves on a circle with constant angular speed, this is called a centripetal force
because it is directed toward tlhe tenter.  This force is exerted by the mechanism  that
confines the particle to a circular  orbit.  The mechanism is a string  in the case of a stone
whirling  in a slingshot, or gravitationa/  attraction in the case of a satellite around  the
earth. The equal and opposite reaction  (due to Newton’s third law), that is, the force
-ma(t), is said to be centrifugal  or “tenter-fleeing.”

EXAMPLE 3. Motion on un ellip.ye.  Figure 14.5 shows an ellipse with Cartesian equation
x2/uz  + y2/b2  = 1, and two concentric circles with radii a and 6.  The angle 0 shown in
the figure is called the eccentric angle. It is related to the coordinates (x, y) of a point on the
ellipse by the equations

x == a COS  8 ) y = b sin 0.

As 0 varies over  an interval of length 2n, the corresponding point (s,  y)  traces out  the
ellipse. If we make 19 a function of time t,  say  0  = f(t), we have a motion given by the
position function

r(t)  = a cosf(  + b sinf(t)j.

If 8  = wt, where w is a positive constant, the velocity, speed, and acceleration are given by

u(t)  = w(-a sin wt i  + b COS wtj), v(t) = w(u2  sin2  cet  + b2  COS?  wt)l’“,

a(t) = -w”(a Cos wt i  + b sin wtj) = -m+(t).
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FIGURE 14.5 Motion on an ellipse. FIGURE 14.6 Motion on a helix.

Thus, when a particle  moves on an ellipse in such  a way that its eccentric angle changes at a
constant rate, the acceleration is centripetal.

EXAMPLE 4. Motion on a helix. If a point (x, y, z) revolves around the z-axis at a constant
distance a from it and simultaneously moves parallel to the z-axis in such  a way that its
z-component is proportional to the angle of revolution, the resulting path is called a
circular  helix. An example is shown in Figure 14.6. If 0  denotes  the angle of revolution,
we have

(14.7) x = a cas  0, y = a sin 8, z= b6,

where a > 0, and b # 0. When 8 varies from 0 to 23r, the x- and .y-coordinates return to
their original values while z changes from 0 to 2nb. The number 2nb is often referred to
as the pitch of the helix.

Now suppose that 8  = wt,  where w is constant. The motion on the helix is then de-
scribed  by the position vector

r(t) = a COS wt  i + a sin tut j + bwtk  .

The corresponding velocity and acceleration vectors are given by

u(t)  = -Lua sin ut  i  + wa  COS wt j + bwk, a(t) = -oz(a  cas  wt  i + a sin ot j) .

Thus, when the acceleration vector is located on the helix, it is parallel to the xy-plane and
directed toward the z-axis.

If we eliminate 0  from the first two equations in (14.7),  we obtain the Cartesian equation
x2 + y2  = a2  which we recognize as the equation of a circle in the xy-plane. In 3-space,
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however, this equation represents a surface. A point (x, y, z) satisfies the equation if and
only if its distance from the z-axis is equal to a. The set of a11 such  points is a right circular
cylinder of radius a with its axis along the z-axis. The helix winds around this cylinder.

14.7 Exercises

In each  of Exercises 1 through 6, r(t) denotes  the position vector at time t for a particle moving
on a space curve.  In each  case, determine the velocity u(t)  and acceleration a(t)  in terms of i,j,  k;
also,  compute the speed v( t) .

1. r(t) = (31 - t3)i + 3t2j  + (3t + t3)k.
2. r(t) = COS t i + sin t j + etk.

4. r(t) = (t - sin t)i + (1 - COS t)j  + 4 sin f k.
5. r(t) = 36%  + 2t3j  + 3tk.

3. r(t) = 3t COS t i + 3t sin t j + 4fk. 6. r(t) = t i + sin tj + (1 - COS t)k.
7. Consider the helix described by the vector equation r(t) = a COS ot i + a sin wt  j +  bwtk,

where o is a positive constant. Prove that the tangent line makes a constant angle with the
z-axis and that the cosine  of this angle is b/l/a2  + b2.

8. Referring to the helix in Exercise 7, prove that the velocity u and acceleration a are vectors of
cons tan t  l ength ,  and  tha t

110  x all a

T=-*a2  + b2

9. Referring to Exercise 7, let a(t) denote  the unit vector u(t) = sin ot i - COS otj. Prove that
there are two constants A and B such  that v x a = Au(t) + Bk, and express A and B in
terms of a, b, and o.

10.  Prove that  for  any  mot ion  the  dot  product  of  the  ve loc i ty  and accelera t ion  i s  ha l f  the  der iva t ive
of  the square of  the speed :

u(t)  * u(t) = ; ; vyt>  .

11. Let c be a fixed unit vector. A particle moves in space in such  a way that its position vector
r(t) satisfies the equation r(t) . c = e2t for a11  t,  and its velocity vector o(t)  makes a constant
angle 0 with c, where 0 < 0 < 1;~.
(a) Prove that the speed at time t is 2ezt/cos  8.
(b) Compute the dot product u(t) . v(t) in terms of t and 0.

12. The identity cosh2  0 - sinh2  0 = 1 for hyperbolic functions  suggests that the hyperbola
x2/a2 - y2/b2  = 1 may  be represented by the parametric equations x = a cash  0,  y = b sinh 0,
or what amounts to the same  thing, by the vector equation r = a cash  0 i +  b sinh 0 j. When
a = b = 1, the parameter 0 may  be given a geometric interpretation analogous to that which
holds between 0, sin 8, and COS 0 in the unit circle shown in Figure 14.7(a). Figure 14.7(b)
shows one  branch  of the hyperbola  x2 - y2  = 1. If the point P has coordinates x = cash  0
and y = sinh 0,  prove that 6 equals twice the area  of the sector OAP shaded in the figure.

[Hint: Let A(0) denote  the area  of sector OAP. Show that

A(8) = $ cash  0 sinh 0 -
î

Differentiate to get A’(0) = 4.1
13. A particle moves along  a hyperbola according to the equation r(t) = a cash  ot i + b sinh ot j,

where CO is a constant. Prove that the acceleration is centrifugal.
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t p = (COS 8  , sin 8  )
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P

(a) Circle:  x2 + y2  = 1 (b) Hyperbola: x2 - y2  = 1

FIGURE 14.7 Analogy between parameter for a circle  and that for a hyperbola.

14. Prove that the tangent line  at a point X of a parabola bisects the angle between the line
joining X to the focus  and the line through X parallel to the axis. This gives the reflection
property of the parabola. (See Figure 14.3.)

15. A particle of mass 1 moves in a plane according to the equation r(t) = x(t)i  + y(t)j  It is
attracted toward the origin by a force whose magnitude is four times its distance from the
origin. At time t = 0, the initial position is r(0) = 4i and the initial velocity is v(O)  = Si.
(a) Determine the components x(t) and v(r)  explicitly in terms of t.
(b) The path of the particle is a conic section. Find a Cartesian equation for this conic,
sketch the conic, and indicate the direction of motion along  the curve.

16. A particle moves along  the parabola x2 + C(V  - x) = 0 in such  a way that the horizontal
and vertical components of the acceleration vector are equal. If it takes T units of time to
go from the point (c, 0) to the point (O,O), how much  time will it require to go from (c, 0)
to the halfway point (c/2,  c/4)?

17. Suppose a curve C is described by two equivalent functions  X and Y, where Y(t) = X[L(t)].
Prove that at each  point of C the velocity vectors associated with X and Y are parallel, but
that the corresponding acceleration vectors need not be parallel.

14.8 The unit tangent, the principal normal, and the osculating plane of a curve

For linear motion the acceleration vector is parallel to the velocity vector. For circular
motion with constant angular speed, the acceleration vector is perpendicular  to the velocity.
In this section we show that for a general motion the acceleration vector is a sum of two
perpendicular vectors, one  parallel to the velocity and one  perpendicular to the velocity.
If the motion is not linear, these two perpendicular vectors determine a plane through each
point of the curve called the osculating plane.

TO study these concepts, we introduce the unit tangent vector T. This is another vector-
valued function associated with the curve, and it is defined by the equation

T(t) = xl(t>
II x’(t)ll

whenever the speed 11X’(t)  11 # 0. Note that I/ T(t)jl  = 1 for a11 t.
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Figure 14.8 shows the position of the unit tangent geometric vector T(t) for various
values of t when it is attached ta the curve. As the particle  moves along the curve, the
corresponding vector T, being of constant length, cari  change only in its direction. The
tendency of T to change its direction is measured by its derivative T’. Since  T has constant
length, Theorem 14.2 tells us that T is perpendicular to its derivative T’.

T

T
i

xJ

T
T

-Y
-Y

/
X

FIGURE 14 .8 The unit tangent vector T. FIGURE 14.9 The osculating plane.

If the motion is linear, then T’ == 0. If T’ # 0, the unit vector having the same direction
as T’ is called the principal normal to the curve and it is denoted by N. Thus,  N is a new
vector-valued function associated with the curve and it is defined by the equation

N(t) = X!l-
Il T”(t)11  ’

whenever /j T’(t)11 # 0.

When the two unit geometric vectors T(t) and N(t) are attached to the curve at the point
X(t), they determine a plane known  as the osculating plane of the curve. If we choose  three
values of t,  say t 1, t, , and t, , and consider the plane determined by the three points X(tl),
X(t& X(t3),  it cari  be shown that the position of the plane approaches the position of the
osculating plane at X(t,) as t, and t, approach tl . Because of this, the osculating plane is
often called the plane that best lits the curve at each  of its points. If the curve itself is a
plane curve (not a straight line), the  osculating plane coincides with the plane of the curve.
In general, however, the osculating plane changes with t.  Examples are illustrated in
Figure 14.9.

The next theorem shows that the acceleration vector is a sum of two vectors, one  parallel
to T and one  parallel to T’.
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THEOREM 14.9. For a motion described by  a vector-valuedfunction r, let v(t) denote  the
speed ut  time t, v(t) = Ilr’(t)/I.  Then the acceleration vector a is a linear combination of T
and T’ given by the.formula

(14.8)

If T’(t) # 0, we also  have

a(t) = v’(t)T(t) + v(t)T’(t).

(14.9) a(t) = v’(t)T(tj + U(t>  II T’(t)11 N(t).

Proof. The formula defining the unit tangent gives us

u(t) = v(t)T(tj.

Differentiating this product, we find that

a(t) = v’(t)T(t)  + v(t)T’(t),

which proves (14.8). TO prove (14.9), we use the definition of N to Write  T’(t) =
II T’(t)  II N(t).

This theorem shows that the acceleration vector always lies in the osculating plane. An
example is shown in Figure 14.10. The coefficients of T(t) and N(t) in (14.9) are called,
respectively, the tangential and normal components of the acceleration. A change in speed
contributes to the tangential component, whereas a change in direction contributes to the
normal component .

For a plane curve, the length of T’(t) has an interesting geometric interpretation. Since
T is a unit vector, we may Write

T(t) = cas m(t)i  + sin a(t)j,

‘

Oscu la t ing  P lane

fly
X

FIGURE 14.10 The accelerat ion vector  l ies FIGURE 14.11 The angle of inclination of the
in  the  oscu la t ing  p lane tangent vector of a plane curve.

Y

t

a’(t) <  0
u(t) = - N(t)

a’(t) > 0

u(t)  = N(t)  /7-(t) = COS a(t)i + sin a(t)j

a(t) increasing
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where u(t)  denotes  the angle between  the tangent vector and the positive x-axis, as shown
in Figure 14.11. Differentiating, we find that

T’(t)  = -sin  a(t) u’(t)  + COS u(t)  u’(t)j  = u’(t)u(t) ,

where u(t)  is a unit vector. Therefore 11 T’(t)11 = lu’(t)1  and this shows that /I T’(t)11 is  a
measure of the rate of change of the angle of inclination of the tangent vector. When
u’(t) > 0, the angle is increasing,, and hence  u(t)  = N(t).  When u’(t) < 0, the angle is
decreasing and, in this case, u(t) = -N(t).  The two cases are illustrated in Figure 14.11.
Note that the angle of inclination. of u(t)  is u(t) + $ since  we have

u(t)  = -sin  cx(t)i  + cas (~(t)j  = COS oc(t) + 2 z + sin a(t) + 2  J .
( “1.  . i 9

14.9 Exercises

Exercises 1 through 6 below refer 10  the motions described in Exercises 1 through 6, respectively,
of Section 14.7. For the value of t specified, (a) express the unit tangent Tand the principal normal
N in terms of i,i,  k; (b) express the: acceleration a as a linear combination of T and N.

1. t =2. 3. t = 0. 5. t =l.
2. t = 77. 4. t = x. 6. t = &T.
7. Prove that if the acceleration vector is always zero,  the motion is linear.
8. Prove that the normal component of the acceleration vector is I(tt  x a[~/l~u[l.
9. For each  of the following statements about  a curve traced  out  by a particle moving in 3-space,

either give a proof  or exhibit a counter  example.
(a) If the velocity is constant, the curve lies in a plane.
(b) If the speed is constant, the lcurve  lies in a plane.
(c) If the acceleration is constant, the curve lies in a plane.
(d) If the velocity is perpendicular to the acceleration, the curve lies in a plane.

10. A particle of unit mass with position vector r(t) at time t is moving in space  under the actions
of certain forces.
(a) Prove that r x II = 0 implies r x u  = c,  where c is a constant vector.
(b) If r x D = c, where c is a constant vector, prove that the motion takes place in a plane.
Consider both c #  0 and c = 0.
(c) If the net force acting on the particle is always directed  toward the origin, prove that the
particle moves in a plane.
(d) 1s  r x u  necessarily constant if a particle moves in a plane?

11. A particle moves along  a curve in such  a way that the velocity vector makes a constant angle
with a given unit vector c.
(a) If the curve lies in a plane containing c,  prove that the acceleration vector is either zero
or parallel to the velocity.
(b) Give an example of such  a curve (not a plane curve) for which the acceleration vector is
never  zero nor parallel to the velocity.

12. A particle moves along  the ellipse 3x2 + y2  = 1 with position vector r(t) =f(t)i  + g(t)j.
The motion is such  that the horizontal component of the velocity vector at time t is -g(t).
(a) Does  the particle move around  the ellipse in a clockwise or counterclockwise direction?
(b) Prove that the vertical component of the velocity vector at time t is proportional tof(t)
and find the factor  of proportion,ality.
(c) How much  time is required for the particle to go once around  the ellipse?

13. A plane curve C in the first quadrant has a negative slope at each  of its points and passes
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through the point (i-, 1). The position vector r from the origin to any  point (~,y) on C
makes an angle 0  with i,  and the velocity vector makes an angle 4 with i, where 0 < 0  < &r,
and 0 < + < .$rr. If 3 tan + = 4 cet  0  at each  point of C, find a Cartesian equation for C
and sketch the curve.

14. A line perpendicular to the tangent line of a plane curve is called a normal line. If the normal
line and a vertical line are drawn at any  point of a certain plane curve C, they tut off a segment
of length 2 on the x-axis. Find a Cartesian equation for this curve if it passes through the
point (1,2).  Two solutions are possible.

15. Given two fixed nonzero vectors A and B making an angle 8  with each  other, where 0 < 0  < x.
A motion with position vector r(t) at time t satisfies the differential equation

r’(t) = A X  r(t)

and the initial condition r(0) = B.
(a) Prove that the acceleration  a(t)  is orthogonal to A.
(b) Prove that the speed is constant and compute this speed in terms of A, B, and 0.
(c) Make a sketch of the curve, showing its relation to the vectors A and B.

16. This exercise  describes how the unit tangent and the principal normal are affected  by a change
of parameter. Suppose a curve C is described by two equivalent functions  X and Y, where
Y(t) = X[~(Z)].  Denote  the unit tangent for X by Ts and that for Y by T, .
(a) Prove that at each  point of C we have Ty(t) = Tx[u(t)]  fi u  is strictly increasing, but that
TF(t) = - T,[u(t)]  if u  is strictly decreasing. In the first case, II is said to preserve orientation;
in the second case, u  is said to reverse orientation.
(b) Prove that the corresponding principal normal vectors N, and N, satisfy NY(t)  =
N,[u(t)]  at each  point of C. Deduce that the osculating plane is invariant under a change of
parameter.

14.10 The definition of arc length

Various parts of calculus  and analytic geometry refer to the arc length of a curve. Before
we cari  study the properties of the length of a curve we must agree on a definition of arc
length. The purpose  of this section is to formulate such  a definition. This Will lead,  in a
natural way, to the construction of a function (called the arc-length function) which
measures the length of the path traced out  by a moving particle  at every instant of its
motion. Some of the basic properties of this function are discussed in Section 14.12. In
particular, we shall prove that for most curves  that arise in practice this function may be
expressed as the integral of the speed.

TO arrive at a definition of what we mean by the length of a curve, we proceed as though
we had to measure this length with a straight yardstick. First, we mark off a number of
points on the curve which we use as vertices  of an inscribed polygon. (An example is
shown in Figure 14.12.) Then, we measure the total length of this polygon with our  yard-
stick and consider this as an approximation to the length of the curve. We soon observe
that some polygons “fit” the curve better than others. In particular, if we start with a
polygon  P, , and construct a new inscribed polygon  P, by adding more vertices  to those of P, ,
it is clear that the length of P, Will be larger than that of P, , as suggested in Figure 14.13.
In the same way we cari  form more and more polygons with successively larger and larger
lengths.

On the other hand, our intuition tells us that the length of any  inscribed polygon should
not exceed that of the curve (since  a straight line is the shortest  path between two points).
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In other words, when we arrive at a definition for the length of a curve, it should be a
number which is an Upper  bound to the lengths of a11 inscribed polygons. Therefore, it
certainly seems reasonable to define  the length of the curve to be the Zeast  Upper  bound
of the lengths of a11 possible inscrib’ed  polygons.

For most curves that arise in ptactice,  this definition gives us a useful and reasonable
way to assign a length to a curve. Surprisingly enough, however, there are certain patho-
logical cases where this definition is not applicable. There are curves for which there is
no Upper  bound to the lengths of the inscribed polygons. (An example is given in Exercise

FIGURE 14.12 A curve with an in-
scribed  polygon.

FIGURE 14.13 The polygon ABC has a
length greater than the polygon AC.

22 in Section 14.13.) Therefore it becomes necessary to classify a11 curves into two cate-
gories:  those which have a length, and those which do not. The former are called rectifiable
curves, the latter, nonrectljîable.

TO formulate these ideas in analytic terms, we begin with a curve in 3-space  or in 2-space
described by a vector-valued function Y, and we consider the portion of the curve traced
out  by u(t) as t varies over  an interval [a, b]. At the outset, we only assume that Y is contin-
uous on the parametric interval. Later we shah  add further restrictions.

Consider now any  partition P of the interval [a, b], say

P = {to  , t,  , . . . > t,> > where a = t,  < tl  < * . . < t, = b .

Denote by n(P) the polygon whose vertices  are the points r(t,),  r(tl), . . . , r(t,),  respectively.
(An example with n = 6 is shown in Figure 14.14.) The sides  of this polygon have lengths

lb-(h)  - r(td  I I  T IlrlCGJ - r(td  II,  . . . , llr(tJ  - 44-J I l .

Therefore, the length of the polygon n(P), which we denote  by Jr(P)/,  is the sum

I43l  = i lb+(h)  - r(t,-dl.
k=l

DEFINITION. If there exists a positive number M such  that

(14.10) I+)I  I M
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for a11  partitions P of [a, b], then the curve is said to be rectifiable and its arc length, denoted
by A(a,  b), is dejined to be the least Upper  bound of the set of a11  numbers In(P)/. If there is
no such  M, the curve is called  nonrectl$able.

Note that if an M exists satisfying (14.10),  then, for every partition P, we  bave

(14.11)

since  the least Upper  bound cannot exceed any  Upper  bound.

2

a b
. =; 0 *Y
to t, f2 f3 f4 f5 te

X

FIGURE 14.14 A partition of [a, b] into six subintervals and the corresponding
inscribed polygon.

It is easy to prove that a curve is rectifiable whenever its velocity vector u  is continuous
on the parametric interval [a, b]. In fact,  the following theorem tells us that in this case we
may use the integral of the speed as an Upper  bound for a11 numbers In(P)I.

THEOREM 14.10. Denote  by a(t) the velocity vector of the curve with position vector r(t)

and let v(t) = IIu(t)ll  denote  the speed. If u  is  continuous on [a, b], the curve is rectifiable and
its length A(a,  6)  satisjîes  the inequality

R(a, b) I 1”  v(t) dt .
a

Proof. For each  partition P of [a, b], we have
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the inequality being a consequence  of Theorem 14.8. This shows that we have

IeY  I J” 49 dta

for a11 partitions P, and hence the number Ji v(t) dt is an upper bound for the set of a11
numbers In(P)]. This proves that the curve 1s rectifiable and, at the same time, it tells us
that the length A(a,  6) cannot exceed the integral of the speed.

In a later section we shall prove that the inequality in (14.12) is, in fact,  an equality.
The proof  of this fact Will make use of the additivity of arc length, a property described in
the next section.

14.11 Additivity of arc length

If a rectifiable curve is tut  into two pieces,  the length of the whole curve is the sum of the
lengths of the two parts. This is another of those “intuitively obvious” statements whose
proof  is not trivial. This property is called additivity of arc length and it may be expressed
analytically as follows.

THEOREM 14.11. Consider a rec@able curve of Iength  A(a,  b) traced  out  by a vector
r(t) as t varies over  an interval  [a, b].  If a < c < 6,  let C,  and C,  be the curues  traced  out  by
r(t)  as t varies over  the intervals [a, c] and [c, b], respectively. Then Cl  and C,  are also  rectifiable
and, if R(a,  c) and A(c, b) denote  their respective lengths, M’e  have

A(U,  b) = R(a,  c)  + A(c, b) .

Prooj Let P, and P, be arbitrary partitions of [a, c] and [c, b], respectively. The points
in P, taken together with those in P, give us a new partition P of [a, b] for which we have

(14.13) W’Jl  + I4PJl  = I@)I I Na, b).

This shows that In(PJl  and 17r(Pz)j are bounded by A(a,  b), and hence Ci and C, are
rectifiable. From (14.13),  we also have

I49I  I ha, b)  - I+‘,)I .

Now, keep P, fixed and let P, vary over  a11 possible partitions of [a, c]. Since  the number
h(a, b) - Iz$P.Jl  is an Upper  bound for a11  numbers Iz-(P~)\,  it cannot be less than their
least Upper  bound, which is A(a, c).  Hence, we have A(a,  c) 5 A(a, b) - Ix(PJl or, what
is the same thing,

I4PJl  I Na, b)  - Na, cl.

This shows that A(a,  b) - A(a, c 1s an Upper  bound for a11 the sums In(Pz)l,  and since  itj
cannot be less than their least Upper  bound, A(c,  b), we have A(c,  b) 5 A(a, b) - A(a, c).
In other words, we have

(14.14) NG c>  + NC,  6) I Na, bj .
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Next we prove the reverse inequality. We begin with any  partition P of [a, b]. If we
adjoin the point c to P, we obtain a partition P, of [a, c] and a partition P, of [c, 61  such  that

This shows that h(a, c) + A(c, 6) is an upper bound for a11 numbers In(P)].  Since this
cannot be less than the least Upper  bound, we must have

Na,  b)  I Na,  c>  + NC,  b)  .
This inequality, along with (14.14),  implies the additive property.

14.12 The arc-length function

Suppose a curve is the path traced out  by a position vector  r(t). A natural question to ask
is this: How far has the particle moved along the curve at time t? TO discuss this question,
we introduce the arc-length function s,  defined as follows:

s(t)  = A(a, t) if t>a, s(a) = 0.

The statement s(a) = 0 simply means we are assuming the motion begins when t = a.
The theorem on additivity enables us to derive  some important properties of s.  For

example, we have the following.

THEOREM  14.12. For any  rect$ïable  curve, the arc-length jiinction s is monotonically
increasing on [a, b]. That is, \Te  have

(14.15)

Proof. If a 5 t,  < t2 < b, we have

4G - 44 = ha,  tz>  - Na,  rd = A(t,, G,
where the last equality cornes from additivity. Since A(t, , tz)  2 0, this proves (14.15).

Next we shall  prove that the function s has a derivative at each  interior point of the
parametric interval and that this derivative is equal to the speed of the particle.

THEOREM  14.13. Let s denote  the arc-length function associated kth  a curve and let
v(t) denote  the speed at  time t.  If v is continuous  on [a, b], then the derivative s’(t) existsfor
each  t in (a, b) and is given by the formula

(14.16) s’(t)  = v(t).

ProoJ Define f(t)  = si  v(u) du. We know that f’(t) = v(t) because of the first funda-
mental theorem of calculus. We shall prove that s’(t) = v(t). For this purpose  we form the
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difference quotient

(14.17) Il
f-(t + h) - r(t)

Ilh .

Suppose first that h > 0. The line segment joining the points r(t) and r(t + h) may be
thought of as a polygon approximating the arc joining these two points. Therefore,
because of (14.1 l), we have

Ilr(t  + h)  - r(:t>II  I A(t, t + h)  = s(t + h)  - s(t).

Using this in (14.17) along with the inequality (14.12) of Theorem 14.10 we have

Il
r(t  + h)  - r(t)

Il
< s(t+  h)  - s(t)  < I t+n

h - h sh t
v(u)  du  = f(l + h,  - fct>

h ’

A similar argument shows that these inequalities are also valid for h < 0. If we let h - 0,
the difference quotient on the extreme left approaches ilr’(t)I)  = v(t) and that on the
extreme right approaches f’(t)  == v(t). It follows that the quotient [s(t  + h) - s(t)]/h
also approaches v(t). But this means that s’(t)  exists and equals v(t), as asserted.

Theorem 14.13 conforms  with our  intuitive notion of speed as the distance per unit time
being covered during the motion.

Using (14.16) along with the second fundamental theorem of calculus, we cari  compute
arc length by integrating the speed. Thus,  the distance traveled by a particle during a time
interval [tl  , t,] is

s(t2> - s(h)  = j-)‘(t)  dt =j-i;v(t) dt.

In particular, when t, = a and t, = b,  we obtain the following integral for arc length:

R(a, b) =Juv(t)  dt ,

EXAMPLE 1. Length of a circular  arc. TO compute the length of an arc of a circle of
radius a, we may imagine a particle moving along the circle according to the equation
r(t)  = a COS t i  + a sin t i. The ,velocity  vector  is u(t)  = -a sin t i + a COS tj  and the
speed is v(t) = a. Integrating the rpeed over  an interval of length 8, we find that the length
of arc traced out  is a&J.  In other words, the length of a circular arc is proportional to the
angle it subtends; the constant of proportionality is the radius of the circle. For a unit
circle we have a = 1, and the arc length is exactly equal to the angular measure.

EXAMPLE 2. Length of the graph  of a real-valued  function.  The graph of a real-valued
function f defined on an interval [a, b]  cari  be treated as a curve  with position vector  r(t)
given by

r(t) = ti +f(t)j,

The corresponding velocity vector  is u(t)  = i + f ‘(t)j, and the speed is

v(t) := Ilu(t)I[  = dl  + [f’(t)]2  .
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Therefore, the arc length of the graph off above a subinterval [a, x] is given by the integral

(14.18) s(x) =j-)(t)  dt =J;  41 + [f’(t)]”  dt .

14.13 Exercises

In Exercises 1 through 9, find the length of the path traced  out  by a particle moving on a curve
accord ing  to  the  g iven  equa t ion  during  the t ime interval  specif ied in  each  case.

1. r(t) = a(1 - cas  t)i + a(t  - sin t)i, 0 5  t 5  271,  a > 0.
2. r(t) = et cas  t i + et sin tj, O<t<2.
3. r(t) = a(cos  t + t sin t)i + a(sin  t - t Cos  t)j, 0 5 t 5  27-f,  a > 0.

2 2
4. r(t) = a Cos3  t i + b sin3  tj, 0 I t 12n, c2  = a2 - b2, 0 < b < a.

5. r(t) = a(sinh  t - t)i + a(cosh  t - l)j, Ol,t<T,  a>O.
6. r(t) = sin t i +  tj  + (1 - COS t)k (0 5 t < 2x).
7. r(t) = t i + 3t2j  + 6t3k (0 5  t 5  2).
8. r(t) = t i + log  (sec t)j + log (sec t + tan t)k (0 5  t 5  &T).
9. r(t) = u COS ot i + a sin wtj  + bwk 00  5 t 5  0

10.

1 1 .
12.

13.

14.

15.

16.

17.

Find an integral similar to that in (14.18) for the length of the graph of an equation of the
form x = g(u),  where g has a continuous  derivative on an interval  [c, d].
A curve has the equation y2  = x3. Find the length of the arc joining (1,  - 1) to (1, 1).
Two points A and B on a unit circle with tenter  at 0 determine a circular  sector AOB. Prove
tha t  the  arc  AB has  a  l eng th  equa l  to  twice  the  area of the sector .
Set up integrals for the lengths of the curves  whose equations are (a) y = e’,  0 2 x 5 1;
(b) x = t + log  t,  y = t - log  t,  1 < t < e. Show that the second length is 2/2 times the
first one.
(a) Set up the integral which gives the length of the curve y = c cash  (X/C)  from x = 0 to
x = u (a > 0, c > 0).
(b) Show that c times the length of this curve is equal to the area  of the region bounded by
y = c cash  (X/C),  the x-axis, the y-axis, and the line x = a.
(c) Evaluate  this integral and find the length of the curve when a = 2.
Show that the length of the curve y = cash  x joining the points (0, 1) and (x, cash  x) is
sinh x if x > 0.
A nonnegative function  f has the property that its ordinate set over  an arbitrary interval  has
an area  proportional to the arc length of the graph above the interval. F ind  f.
Use the vector  equation r(t) = a sin t i +  b COS tj,  where 0 < b < a, to show that the cir-
cumference L of  an  e l l ipse  i s  g iven  by  the  in tegra l

L = 4a
R/2

J-4
1

0
- e2  sin2  t dt ,

where e = 2/az_bzla. ( T h e number e i s  the  eccent r ic i ty  of  the  e l l ipse . )  This  i s  a  special  case
of an integral of the form

E(k) = ~~“z/l  - k2  sin2  t dt ,

called an elliptic  integral of the second kind,  where 0 < k < 1. The numbers E(k) have been
tabulated for  var ious  values  of  k.
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18. If 0 < 6 < 4a,  let r(f) = a(t - sin t)i  + a(1  - COS t)j + b sin ht k. Show that the length of
the path traced  out  from t = 0 to t = 2~  is 8&(k),  where E(k) has the meaning given in
Exercise  17 and k2  = 1 - (b/4~)~.

19. A particle moves with position vector

r(t)  = tA  + t2B  + 2(5t)3/3  A x  B ,

where A and B are two fixed unit vectors making an angle of ~13  radians with each  other.
Compute the speed of the particle at time t and find how long it takes for it to move a distance
of 12 units of arc length from the initial position r(0).

20. (a) When a circle rolls (without slipping) along  a straight line, a point on the circumference
traces out  a curve called a cycloid. If the fixed line is the x-axis and if the tracing point (x, y)
is originally at  the origin, show that  when the circle rolls through an angle 0  we have

x = a(0  - sin 0) , y = a(1 - COS e)  >

where a is the radius of the circlle. These serve as parametric equations for the cycloid.
(b) Referring to part (a), show that dy/dx  = cet  $0 and deduce that the tangent line of the
cycloid at (x, y) makes an angle +  (7~ - 0) with the x-axis. Make a sketch and show that the
tangent line passes through the highest point on the circle.

21. Let C be a curve described by two equivalent functions  X and Y, where Y(t) = X[u(t)]  for
c 5  t 5  d. If the function  u  which defines  the change of parameter has a continuous  deriv-
ative  in [c,  d] prove that

i ‘u(d)u(c) IIX’(u)Ij  du =j””  11 Y’(t)i/  dt ,c

and deduce that the arc length of C is invariant under such  a change of parameter.
22. Consider the plane curve whose vector equation is r(t) = ti +f(t)j,  where

rr
f ( t )  =  f C O S  z

0
i f  t#O, f(0)  = 0 .

Consider the following partition of the interval  [0, 11:

1 1 1

p= i 0,’ ~ - -
2n >2n _  1 9*. . >3 > 2 >1

1
.

Show that the corresponding inscribed polygon T(P)  has length

and deduce that this curve is nonrectifiable.

14.14 Curvature of a curve

For a straight line the unit tangent vector T does  not change its direction, and hence
T’ = 0. If the curve is not a straight line, the derivative T’ measures the tendency of the
tangent to change its direction. The rate of change of the unit tangent with respect to arc
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length is called the curvature vector of the curve. We denote  this by dT/ds,  where s repre-
sents arc length. The chain rule, used in conjunction with the relation s’(t) = v(t), tells us
that the curvature vector dT/ds  is related to the “time” derivative T’ by the equation

dT dt dT-c--c-
d s ds dt &>  T’(t)  = & T’(t).

Since  T’(t) = II T’(t) / / N(t),  we obtain

(14.19) dT IITYOII  Nctj-=-
d s 40 ’

which shows that the curvature vector has the same direction as the principal normal N(t).
The scalar factor which multiplies N(t) in (14.19) is a nonnegative number called the
curvature of the curve at t and it is denoted by K(t)  (K is the Greek letter kappa). Thus the
curvature K(t), defined to be the length of the curvature vector, is given by the following
formula :

(14.20) K(t) - 11 T’(t)11  .
40

EXAMPLE 1. Curcature of a circle. For a circle of radius a, given by r(t) = a COS t i +
a sin tj, we have v(t) = -a sin t i + a COS t j, v(t) = a, T(t) = -sin  t i + COS tj, and
T’(t) = -COS t i - sin t j. Hence we have 11 T’(t)11  = 1 SO K(t)  = I/a.  This shows that a
circle has constant curvature. The reciprocal of the curvature is the radius of the circle.

When K(t)  # 0, its reciprocal is called the radius of curvature and is denoted by p(t)
(p is the Greek letter rho). That circle in the osculating plane with radius p(t) and tenter
at the tip of the curvature vector is called the osculating circle. It cari  be shown that the
osculating circle is the limiting position of circles passing through three nearby points on
the curve as two of the points approach the third. Because of this property, the osculating
circle is often called the circle that “best fits the curve” at each  of its points.

EXAMPLE  2. Curvature of a plane curve. For a plane curve, we have seen  that 11 T’(t) Ij =
Iu’(t)l,  where u(t) is the angle the tangent vector makes with the positive x-axis, as shown
in Figure 14.11. From the chain rule, we have cr’(t)  = dcc/dt  = (dcc/ds)(ds/dt)  = v(t)dcc/ds,
SO Equation (14.20) implies

In other words, the curvature of a plane curve is the absolute value of the rate of change of
cx  with respect to arc length. It measures the change of direction per unit distance along the
curve.

EXAMPLE 3. Plane curves  of constant curvature. If dulds  is a nonzero constant, say
da/ds  = a, then tc = as + b, where b is a constant. Hence, if we use the arc length s as
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a parameter, we have T = COS (as + b)i + sin (as + ZI)~.  Integrating, we find that r =
(lia)  sin (as + b)i  - (l/a)  COS (as + 6)j  + A, where A is a constant vector. Therefore
11~ - A 11 = I/lal,  SO the curve is a circle (or an arc of a circle) with tenter  at A and radius
l/lal.  This proves that a plane curve of constant curvature K # 0 is a circle (or an arc of a
circle) with radius l/~.

Now we prove a theorem which relates the curvature to the velocity and acceleration.

THEOREM 14.14. For any  motion with  velocity v(t), speed v(t), acceleration u(t), and
curvature K(t),  we  have

(14.21) u(t) -= v’(t)T(t)  + K(t)v’(t)N(t).

This formula, in turn,  implies

(14.22) K(t)  = Ila x V(al
u3(t)

Proof. TO prove (14.21),  we rewrite (14.20) in the form I/ T’(t) 11 = K(t)V(t),  which gives us
T’(t) = K(t)V(f)N(t).  Substituting this expression for T’(t) in Equation (14.8), we obtain
(14.21).

TO prove (14.22),  we form the cross product  u(t) x v(t), using (14.21) for u(t) and the
formula v(t) = v(t)T(t)  for the velocity. This gives us

(14.23) a x v = v’vT  x T + KV~N  x T = KV~N  x T

since  T x T = 0. If we take the length of each  member of (14.23) and note that

Il N x Tlj = lINl/  II TII  sin &T  = 1 ,

we obtain Ila x vlj  = KV~, which proves (14.22).

In practice it is fairly easy to compute the vectors u  and a (by differentiating the position
vector Y); hence Equation (14.22) provides a useful method for computing the curvature.
This method is usually simpler than determining the curvature from its definition.

For a straight line we have u x v = 0, SO the curvature is everywhere zero. A curve
with a small curvature at a point has a large radius of curvature there and hence does  not
differ much from a straight line in the immediate vicinity of the point. Thus the curvature
is a measure of the tendency of a curve to deviate from a straight line.

14.15 Exercises

1 . Refer to the curves  described in Exercises 1 through 6 of Section 14.9 and in each  case determine
the curvature K(I) for the value of t indicated.

2. A helix is described by the position function  r(t) = a COS ot i  + a sin otj  + bwtk.  Prove that
it has constant curvature K  = a/(~?  + @).
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3. Two fixed unit vectors A and B make an angle 0  with each  other, where 0 < 8  < rr.  A
particle moves on a space curve in such  a way that its position vector r(t) and velocity v(t)
are related by the equation u(t) = A x r(t). If r(0) = B, prove that the curve has constant
curvature and compute this curvature in terms of 0.

4. A point moves in space according to the vector equation

r(t) =4costi  +4sintj+4costk.

(a) Show that the path is an ellipse and find a Cartesian equation for the plane containing
this ellipse.
(b) Show that the radius of curvature is p(t) = 24 (1 + sin2  t)3/2.

5. For the curve whose vector equation is r(t) = eti + eeti  + ti  t k, show that the curvature is
à = $b/(et  + eët)2.

6. (a) For a plane curve described by the equation r(t) = x(t)i  + u(t)j, show that the curvature
is given by the formula

a = lx’Wy”W  - y’wY~)l
{b’W12  + [y’(012~3’2 -

(b) If a plane curve has the Cartesian equation y = f(x), show that the curvature at the point
CG  f(x)>  is

If”(x) I
(1 + [~(X)l2}3’2 *

7. If a point moves SO that the velocity and acceleration  vectors always have constant lengths,
prove that the curvature is constant at a11 points of the path. Express this constant in terms
of ilall  and llull.

8. If two plane curves with Cartesian equations y =f(x)  and y = g(x) have the same  tangent
at a point (a, 6) and the same  curvature at that point, prove that If”(a)1  = Ig”(a)l.

9. For certain values of the constants a and b,  the two curves with Cartesian equations y =
ax(b - x) and (x + 2)~  = x intersect at only one  point P, have a common  tangent line at P,
and have the same  curvature at P.
(a) Find a11 a and b which satisfy a11 these conditions.
(b) For each  possible choice  of a and b satisfying the given conditions, make a sketch of the
two curves. Show how they intersect at P.

10. (a) Prove that the radius of curvature of a parabola is smallest at its vertex.
(b) Given two fixed unit vectors A and B making an angle 0  with each  other, where 0 < 0  < VT.
The curve with position vector r(t) = tA + t2B  is a parabola lying in the plane spanned by
A and B. Determine (in terms of A, B, and 0) the position vector of the vertex of this parabola.
You may  use the property of the parabola stated in part (a).

11. A particle moves along  a plane curve with constant speed 5. It starts at the origin at time
t = 0 with initial velocity 5j, and it never  goes  to the left of the y-axis. At every instant the
curvature of the path is à = 2t. Let cc(t) denote  the angle that the velocity vector makes
with the positive x-axis at time t.
(a) Determine cc(t) explicitly as a function  of t.
(b) Determine the velocity u(t) in terms of i andj.

12. A particle moves along  a plane curve with constant speed 2. The motion starts at the origin
when t = 0 and the initial velocity u(0)  is 2i. At every instant it is known that the curvature
à = 4t.  Find the velocity when t = a&  if the curve never  goes  below the x-axis.
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14.16 Velocity and acceleration  in polar coordinates

Sometimes it is more natural to  describe  the points on a plane curve by polar coordinates
rather than rectangular coordinates. Since  the rectangular coordinates (x, y) are related to
the polar coordinates r and 0 by the equations

Y

x := r cas  0  , y = r sin 8,

Y /

r= xi+Yj

y =: r sin 0

FIGURE 14.15 Polar coordinates. FIGURE 14.16 The unit vectors u,  and U,J.

the position vector r = xi + yj joining  the origin to (x, y) is given by

where r = IIr  11) This relation is illustrated in Figure 14.15.
The vector COS 0  i + sin 0 j is a vector of unit length having the same direction as r.

This unit vector is usually denoteld  by U, and the foregoing equation is written as follows:

r = ru,, w h e r e  u,=cosBi+sinOj.

It is convenient  to introduce also a unit vector ug  , perpendicular to u,  , which is defined as
follows :

du,
ue  == de  =

-sin  8 i + cas 0 j .

Note that we have

h9-=
de

-Cos  0 i - sin 0 j = -u,~ .

In the study of plane curves,  the two unit vectors u, and uO  play the same roles in polar
coordinates as the unit vectors i and j in rectangular coordinates. Figure 14.16 shows the
unit vectors u,  and ug  attached to a curve at some of its points.
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Now suppose the polar coordinates r and 19 are functions of t, say  r =f(t),  8 = g(t).
We shah  derive  formulas for expressing the velocity and acceleration in terms of u,  and
u,  . For the position vector, we have

r = ru, =f(t)u+. .

Since 13 depends  on the parameter t,  the same is true of the unit vector u,  and we must take
this into account when we compute the velocity vector. Thus we have

dr d(ru,) dry=-= du,-=-uT+r-.
dt dt dt d t

Using the chain rule, we may express du,/dt  in terms of ug  by writing

(14.24)
du, _  dB  du, de-z-u
d t - dt dB  dt ”

and the equation for the velocity vector becomes

(14.25)
dr de

v=-u,+r-uO.
dt dt

The scalar factors dr/dt  and rdO/dt  multiplying u,  and uO  are called, respectively, the
radial and transverse components of velocity.

Since u,  and u,  are orthogonal unit vectors, we find that

SO the speed v is given by the formula

Differentiating both sides  of (14.25),  we find that the acceleration vector is given by

The derivative du,/dt  may be expressed in terms of us  by (14.24). We may similarly express
the derivative of ug  by the equation

duo de duO  dB-=--=--u
d t d t  de dt ”
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This leads to the following formula which expresses a in terms of its radial and transverse
components :

(14.26)

When 8 = t,  the curve  may be described by the polar equation Y = f(e). In this case, the
formulas for velocity, speed, and acceleration simplify considerably, and we obtain

drv = - u, + ruO  ,
de

v  :=

14.17 Plane motion with radial acceleration

The acceleration vector is said to be radial if the transverse component in Equation
(14.26) is always zero. This component is equal to

Therefore, the acceleration is radial if and only if r2 de/dt  is constant.
Plane motion with radial acceleration has an interesting geometric interpretation in

terms of area. Denote by A(t) the area of the region swept out  by the position vector from
a fixed time, say  t = a, to a later time t.  An example is the shaded region shown in Figure
14.17. We shall prove that the time rate of change of this area is exactly equal to ir”  de/dt.
That is, we have

(14.27)

From this it follows that the acceleration vector is radial if and only if the position vector
sweeps out  area at a constant rate.

TO prove (14.27) we assume that it is possible to eliminate t from the two equations
r = f(t), 0  = n(t), and thereby express r as a function of 8, say  r = R(0). This means that
there is a real-iaiued  functionVR  such  that R[g(t)]  =f(t).
14.17 is the radial set of R over  the interval [g(a), g(t)].
region is given by the integral

Then the shaded region in Figure
By Theorem 2.6, the area of this

Differentiating this integral by the first fundamental theorem of calculus  and the chain
rule, we find that

A’(t) = i R2[g(t)]g’(t) = 5 f’(t)g’(t)  = i r2 $ ,

which proves (14.27).
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14.18 Cylindrical coordinates

If the X-  and y-coordinates of a point P = (x, y, z) in 3-space  are replaced by polar
coordinates r and 0, then the three numbers r, 8, z are called cylindrical coordinates for
the point P. The nonnegative number r now represents the distance from the z-axis to
the point P, as indicated in Figure 14.18. Those points in space for which r is constant are
at a fixed distance from the z-axis and therefore lie on a circular cylinder (hence  the name
cylindrical coordinates).

, Area  = A(t)

FIGURE 14.17 The position vector sweeps

1 d0
out  area  at the rate A’(t) = 2 r2  z .

FIGURE 14.18 Cylindrical coordinates.

TO discuss space curves  in cylindrical coordinates, the equation for the position vector
r must be replaced by one  of the form

r = ru, + z(t)k .

Corresponding formulas for the velocity and acceleration vectors are obtained by merely
adding the terms z’(t)k and z”(t)k,  respectively, to the right-hand members of the two-
dimensional formulas in (14.25) and (14.26).

14.19 Exercises

1. A particle moves in a plane SO that its position at time t has polar coordinates r = t, 0 = t.
Find formulas for the velocity U,  the acceleration a, and the curvature K  at any  time t.

2. A particle moves in space SO that its position at time t has cylindrical coordinates r = t,
0  = t,  z = t.  It traces out  a curve  called a conical  helix.
(a) Find formulas for the velocity u,  the acceleration a, and the curvature K  at time t.
(b) Find a formula for determining the angle between the velocity vector and the generator
of the cane  at each  point of the curve.

3. A particle moves in space SO that its position at time t has cylindrical coordinates r = sin t,
0  = t,  z = log sec t,  where 0 5  t < +rr.
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(a) Show that the curve lies on the cylinder  with Cartesian equation x2 + (y - 4)” = a.
(b) Find a formula (in terms of t)  for the angle which the velocity vector makes with k.

4. If a curve is given by a polar equation r =f(0), where a < 8 < b 5  a + 2~, prove that its
arc length is

[j-d6

5. The curve described by the polar equation r = a(1 + COS e),  where a > 0 and 0 < 0  < 2~,
is called a cardiod. Draw a graph of the cardiod r = 4(1 + COS 8) and compute its arc length.

6. A particle moves along  a plane curve whose polar equation is r = ece,  where c is a constant
and 0  varies from 0 to 2~.
(a) Make a sketch indicating the general shape of the curve for each  of the following values
of c: c = 0, c = 1, c = -1.
(b) Let L(c)  denote  the arc length of the curve and let a(c) denote  the area  of the region swept
out  by the position vector as 0  varies from 0 to 2~. Compute L(c)  and a(c) in terms of c.

7. Sketch the curve whose polar equation is r = sin 2 0,  0 5  0  I 277,  and show that it consists
of two loops .
(a) Find the area  of region enclosed  by one  loop of the curve.
(b) Compute the length of one  loop  of the curve.

In each  of Exercises 8 through 11, make a sketch of the plane curve having the given polar
equation and compute its arc length.

8. r = 8, 0<6lT. 10. r = 1 + cas  8, OIBIT.
9. r = ee, 0<6<T. 11. r = 1 -Cos@, 0 < 8 5  2?r.

12. If a curve has the polar equation r =J(e>,  show that its radius of curvature p  is given by the
formula p  = (r2 + r'2)3/2/lr2  - rr”’  + 2r’2/,  where r’ =Y(e)  and r”  =,f”(O).

13. For each  of the curves  in Exercises 8 through 11, compute the radius of curvature for the
value of 0  indicated.
(a) Arbitrary 0  in Exercise 8. (c) 0  = &T  in Exercise 10.
(b) Arbitrary 8  in Exercise 9. (d) 6  = $,v in Exercise 11.

14. Let + denote  the angle, 0 5 4 5  rr,  between the position vector and the velocity vector of a
curve. If the curve is expressed in polar coordinates, prove that v sin + = r and v COS 4 =
dr/dO,  where v is the speed.

15. A missile is designed to move directly toward its target. Due to mechanical failure, its direc-
tion in actual  flight makes a fixed angle tl # 0 with the line from the missile to the target.
Find the path if it is fired at a fixed target. Discuss how the path varies with a. Does  the
missile ever reach  the target? (Assume the motion takes place in a plane.)

16. Due to a mechanical failure, a ground crew has lost control of a missile recently fired. It is
known that the missile Will proceed at a constant speed on a straight course of unknown
direction. When the missile is 4 miles away, it is sighted for an instant and lost again. Imme-
diately an anti-missile missile is fired with a constant speed three times that of the first missile.
What should be the course of the second missile in order for it to overtake the first one?
(Assume both missiles move in the same  plane.)

17. Prove that if a homogeneous first-order differential equation of the form y’ = ,f(x,  y) is re-
written in polar coordinates, it reduces to a separable equation. Use this method to solve
y’ = (y - 4Ky  + 4.

18. A particle (moving in space)  has velocity vector u  = wk  x r, where o is a positive constant
and r is the position vector. Prove that the particle moves along  a circle  with constant angular
speed w. (The angular speed is defined to be ]dO/dtl, where 8  is the polar angle at time t.)

19. A particle moves in a plane perpendicular to the z-axis. The motion takes place along  a
circle  with tenter  on this axis.
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(a) Show that there is a vector w(t) parallel to the z-axis such that

u(t) = w(t) x r(t),

where r(t) and u(t) denote the position and velocity vectors at time t.  The vector w(t) is called
the angular uelocity  vector and its magnitude o(t) = Ilw(t)ll  is called the angular speed.
(b) The vector a(t) = w’(t) is called the angular acceleration  vector. Show that the accelera-
tion vector u(t) [ = u’(t)] is given by the formula

a(r) = [w(t) . r(t)]w(t) - d(r)r(t)  + a(t) x r(t) .

(c) If the particle lies in the xy-plane and if the angular speed o(t) is constant, say o(t)  = o,
prove that the acceleration vector a(t)  is centripetal and that, in fact, u(t) = -02r(t).

20. A body is said to undergo a rigid motion if, for every pair of particles  p and g in the body,
the distance llr,(t)  - r,(t) 11 is independent of t,  where r,(t) and r,(t) denote the position vectors
of p and g at time t.  Prove that for a rigid motion in which each  particle p rotates  about
the z-axis we have vD(t)  = w(t) x r,(t), where w(t) is the same for each particle, and v,(t) is
the  ve loci ty  of  par t ic le  p.

14.20 Applications to planetary motion

By analyzing the voluminous data on planetary motion accumulated up to 1600, the
German astronomer Johannes Kepler (1571-1630) tried to discover the mathematical
laws governing the motions of the planets. There were six known planets at that time
and, according to the Copernican theory, their orbits  were thought to lie on concentric
spherical shells about  the sun. Kepler attempted to show that the radii of these shells
were linked up with the five regular solids of geometry. He proposed an ingenious idea
that the solar system was designed something like a Chinese  puzzle. At the tenter  of the
system he placed  the sun. Then, in succession, he arranged the six concentric spheres
that cari be inscribed and circumscribed around  the five regular solids-the octahedron,
icosahedron, dodecahedron, tetrahedron, and cube, in respective order (from inside out).
The innermost sphere, inscribed in the regular octahedron, corresponded  to Mercury’s
path. The next sphere, which circumscribed the octahedron and inscribed the icosahedron,
corresponded  to the orbit  of Venus. Earth’s orbit  lay on the sphere around  the icosahedron
and inside the dodecahedron, and SO on, the outermost sphere, containing Jupiter’s
orbit,  being circumscribed around  the cube. Although this theory seemed correct to
within five percent, astronomical observations at that time were accurate to a percentage error
much  smaller than this, and Kepler finally realized that he had to modify this theory.
After much  further study it occurred to him that the observed data concerning the orbits
corresponded  more to elliptical paths than the circular paths of the Copernican system.
After several more years of unceasing effort, Kepler set forth three famous  laws, empiri-
cally discovered, which explained a11 the astronomical phenomena known at that time.
They may  be stated as follows:

Kepler’sjrst  labv: Planets move in ellipses with the sun at one  focus.

Kepler ‘s  second la\c-  : The position vector from the sun to a planet  sweeps out  area at a
constant rate.
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Kepler’s third law:  The square of the period of a planet is proportional  to the cube of its
mean distance from the sun.

Note: By the period of a planet  is meant the time required to go once around  the
elliptical orbit.  The mean  distance from the sun is one  half the length of the major axis
of the ellipse.

The formulation of these laws from a study of astronomical  tables was a remarkable
achievement. Nearly  50 years l.ater,  Newton proved that all three of Kepler’s laws are
consequences  of his own second law  of motion and his celebrated universal law  of gravi-
tation. In this section we shall  use vector methods to show how Kepler’s laws may be
deduced from Newton’s.

Orbit

FIGURE 14.19 The  position vector from the suri  to a planet.

Assume we have a fixed sun of mass M and a moving planet of mass n?  attracted to
the sun by a force F.  (We neglect the influence of a11 other forces.) Newton’s second law
of motion states that

(14.28) F=ma,

where a is the acceleration vector of the moving planet. Denote by r the position vector
from the sun to the planet (as in Figure 14.19), let r = Ilr]l,  and let  u,  be a unit vector with
the same direction as r, SO that r = ru, The universal law  of gravitation states that

F = -G@$,
r2

where G is a constant. Combining this with (14.28),  we obtain

(14.29)
G Ma=--u
r2 T'

which tells us that the acceleration is radial. In a moment we shall  prove that the orbit
lies in a plane. Once we know this, it follows at once from the results of Section 14.17 that
the position vector sweeps out  area at a constant rate.
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TO prove that the path lies in a plane we use the fact that r and a are parallel. If we
introduce the velocity vector v = drldt,  we have

Since r x a = 0, this means that r x v is a constant vector, say  r x v = c.

If c = 0, the position vector r is parallel to v and the motion is along a straight line.
Since the path of a planet is not a straight line, we must have c # 0. The relation r  x  v  =  c

shows that r * c = 0, SO the position vector lies in a plane perpendicular to c.  Since the
acceleration is radial, r sweeps out  area at a constant rate. This proves Kepler’s second
law.

It is easy to prove that this constant rate is exactly half the length of the vector c. In
fact,  if we use polar coordinates and express the velocity in terms of U, and u,  as in Equation
(14.25),  we find that

(14.30) c  = r X v = (ru,) x
dr de
~4+r~ue

2 de
=r  dfurx  uo,

and hence  I\CI~  = lr2de/dtI.  By (14.27) this is equal to 2/A’(t)l,  where A’(t) is the rate at
which the radius vector sweeps out  area.

Kepler’s second law is illustrated in Figure 14.20. The two shaded regions,  which are
swept out  by the position vector in equal time intervals, have equal areas.

We shall prove next that the path is an ellipse. First of all, we form the cross product
a x c,  using  (14.29) and (14.30),  and we find that

U X c= ( -  yur)  x  (rz$ur x  uo) =  -GM$u,  x tu, x  ue> = ~~42~~.

Since a = dvldt  and uO = du,/dO,  the foregoing equation for a x c cari also be written
as follows :

2v x c)  =  ft (GMU,)  .

Integration  gives us
vxc=GMu,+b,

where b is another constant vector. We cari  rewrite this as follows:

(14.31) v x c = GM(u, + e)  .

where GMe = 6.  We shall combine this with (14.30) to eliminate v and obtain an equation
for r. For this purpose  we dot multiply both sides  of (14.30) by c and both sides  of (14.31)
by r. Equating the two expressions for the scalar triple product r * v x c,  we are led to the
equation

(14.32) GMr(1  + e COS 4) = c2,

where e = l\e\l,  c = IlcIl, and 4 represents the angle between the constant vector e and the
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radius vector r. (See Figure 14.2.1.)  If we let d = cs/(GMe), Equation (14.32) becomes

(14.33) e dy=-- or
e cas q3  + 1

r = e(d - r cas  4) .

By Theorem 13.18, this is the polar equation of a conic section with eccentricity e and a
focus  at the sun. Figure 14.21 slhows the directrix drawn perpendicular to e at a distance
d from the sun. The distance from the planet to the directrix is d - r COS C#J,  and the ratio

Orbit Directrix

rcos 4 d-rcos&

d m1

FIGURE 14.20. Kepler%  second law.  The
two shaded  reg ions ,  swept  out  in equal t ime

interva ls ,  have  equal  areas.

FIGURE 14.21. The ratio r/(d  - r COS +)
is the eccentricity e = Ilell.

W - r COS I#)  is the eccentricity e. The conic is an ellipse if e < 1, a parabola if e = 1,
and a hyperbola if e > 1. Since planets are known to move on closed  paths, the orbit
under consideration must be an ellipse. This proves Kepler’s first law.

Finally, we deduce Kepler’s third law. Suppose the ellipse has major axis of length 2a
and minor axis of length 2b. Then the area of the ellipse is rab. Let T be the time it takes
for the planet to go once around.  the ellipse. Since the position vector sweeps out  area at
the rate +c,  we have ;cT = rab,  or T = 2nab/c. We wish to prove that T2  is proportional
to a3.

From Section 13.22 we have b” = a2(1  - e2),  ed = a(1  - e2),  SO

and hence  we have

c2 = GMed  = GMa(1 - e2) ,

T2  = k2a2b2 4n2a4(1  - e”)  47r2 3
- = GMa(l  _ e”)  = G M  a ’2

Since T2  is a constant times a3, tlhis proves Kepler’s third law.
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14.21 Miscellaneous review exercises

1. Let r denote  the vector from the origin to an arbitrary point on the parabola y2  = x, let CC
be the angle that r makes with the tangent line, 0 < CL  < VT, and let 6  be the angle that r makes
with the positive x-axis, 0 5  8  5  n.  Express OL  in terms of 0.

2. Show that the vector T = yi + 2cj is tangent to the parabola y2  = 4cx  at the point (x, y),
and that the vector N = 2ci  - yj is perpendicular to T.

[Hint: Write a vector equation for the parabola, using  y as a parameter.]

3. Prove that an equation of the line of slope m that is tangent to the parabola y2  = 4cx  cari
be written in the form y = mx + C/m.  What are the coordinates of the point of contact?

4. (a) Salve  Exercise 3 for the parabola (y - y0)2 = 4c(x - x0).
(b) Solve Exercise 3 for the parabola x2 = 4cy  and, more generally, for the parabola
(x - x0)2 = 4c(y  - yo).

5. Prove that an equation of the line that is tangent to the parabola y2  = 4cx  at the point
(xi , yr)  cari  be written in the form yry = 2c(x  + x1).

6. Solve Exercise 5 for each  of the parabolas described in Exercise 4.
7. (a) Let P be a point on the parabola y = x2. Let Q be the point of intersection of the normal

line at P with the y-axis. What is the limiting position of Q as P tends to the y-axis?
(b) Solve the same  problem for the curve  y = f(x), wheref’(0) = 0.

8. Given that the line y = c intersects the parabola y = x2 at two points. Find the radius of
the circle passing through these two points and through the vertex of the parabola. The radius
you  determine depends  on c. What happens to this radius as c --t  O?

9. Prove that a point (x,, , y,,) is inside,  on, or outsz’de  the ellipse x2/a2  + y2/b2  = 1 according as
x$a2 + y$b2 is less  than, equal to, or greater than 1.

10. Given an ellipse x2/a2  + y2/b2 = 1. Show that the vectors T and N given by

T =  -$i+$j, N=$i+$j

are, respectively, tangent and normal to the ellipse when placed  at the point (x, y). If the
eccentric angle of (x0,  y,,) is 0,,, show that the tangent line at (x,, , y,,) has the Cartesian equation

X
- C O S  0 +Ysin  19 = 1
a ’ b 0 *

11. Show that the tangent line to the ellipse x2/a2  + y2/b2 = 1 at the point (x0 , yo)  has the
equation xox/a2  + yoy/b2  = 1.

12. Prove that the product  of the perpendicular distances from the foci  of an ellipse to any  tangent
line is constant, this constant being the square of the length of half the minor axis.

13. Two tangent lines  are drawn to the ellipse x2 + 4y2 = 8, each  parallel to the line x + 2y = 7.
Find the points of tangency.

14. A circle passes through both foci  of an ellipse and is tangent to the ellipse at two points.
Find the eccentricity of the ellipse.

15. Let Vbe one  of the two vertices  of a hyperbola whose transverse axis has length 2a and whose
eccentricity is 2. Let P be a point on the same  branch  as V. Denote  by A the area of the
region bounded by the hyperbola and the line segment VP, and let r be the length of VP.
(a) Place the coordinate axes in a convenient  position and Write  an equation for the hyperbola.
(b) Express the area  A as an integral and, without attempting to evaluate  this integral, show
that Arp3  tends to a limit as the point P tends to V. Find this limit.
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16. Show that the vectors T = (y/b’)i  + (X/C?)~  and N = (x/a2)i - (y/b2)j  are, respectively, tan-
gent and normal to the hyperbola x2/a2  - y2/b2  = 1 if placed  at the point (x, ,v)  on the curve.

17. Show that the tangent line to the hyperbola x2/a2  - y2/b2  = 1 at the point(x,  , yo)  is given
by t he equation x,x/a2 - yoy/b2 = 1.

18. The normal line at each  point of a curve and the line from that point to the origin form an
isosceles triangle whose base is on the x-axis. Show that the curve is a hyperbola.

19. The normal line at a point P of a curve intersects the x-axis at X and the y-axis at Y. Find
the curve if each  P is the mid-point of the corresponding line segment XY and if the point
(4, 5) is on the curve.

20. Prove that the product of the perpendicular distances from an arbitrary point on a hyperbola
to its asymptotes is constant.

21. A curve is given by a polar equation r =f(e). Findfif an arbitrary arc joining two distinct
points of the curve has arc length proportional to (a) the angle subtended at the origin; (b)
the difference  of the radial distances from the origin to its endpoints; (c) the area  of the sector
formed  by the arc and the radii to its endpoints.

22. If a curve in 3-space  is described by a vector-valued function  r defined on a parametric in-
terval  [a, b], prove that the scalar triple product r’(t) . r(a) x r(b) is zero for at least one  t in
(a, b). Interpret this result geolmetrically.



15
LINEAR SPACES

15.1 Introduction

Throughout this book we have encountered many examples of mathematical abjects
that cari  be added to each  other and multiplied by real numbers. First of all, the real
numbers themselves are such  abjects.  Other examples are real-valued functions, the complex
numbers, infinite series,  vectors in n-space,  and vector-valued functions. In this chapter we
discuss a general  mathematical concept, called a linear space, which includes a11 these
examples and many others as special  cases.

Briefly, a linear space is a set of elements of any  kind on which certain operations (called
addition and multiplication by numbers) cari  be performed. In defining a linear space, we
do not specify the nature of the elements nor do we tel1 how the operations are to be per-
formed  on them. Instead, we require that the operations have certain properties which
we take as axioms for a linear space. We turn now to a detailed description of these axioms.

15.2 The definition of a linear space

Let V denote  a nonempty set of abjects,  called elements. The set V is called a linear
space if it satisfies the following ten axioms which we list in three groups.

Closure axioms

AXIOM 1. CLOSURE UNDER ADDITION. For every pair of elements x and y in V there
corresponds a unique element in V called the sum of x and y, denoted by x + y.

AXIOM 2. CLOSURE UNDER MULTIPLICATION BY REAL NUMBERS. For every x in V and
every real number  a there corresponds an element in V called theproduct ofa  and x, denoted
by ax.

Axioms for addition

AXIOM 3. COMMUTATIVE LAW. For a11  x and y in V,  we have x + y = y + x.

AXIOM 4. ASSOCIATIVE LAW. ForalZx,y,andzinV,wehave(x+y)+z=x+(y+z).

5.51
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AXIOM 5. EXISTENCE OF ZERO E;LEMENT. There is an element in V,  denoted by 0, such  that

x + 0 = x for a11  x in V .

AXIOM 6. EXISTENCEOF NEGATIVES. For every x in V,  the element (- 1)x has the property

x +  ( -1)x  =  0 .

Axioms for multiplication by numbers

AXIOM 7. ASSOCIATIVE LAW. For every x in V and a11  real numbers a and b, M*e  have

a(bx) = (ab)x .

AXIOM  8. DISTRIBUTIVE LAW FOR ADDITION IN V. For all  x andy in V and all  real a,
we have

a(x + y) = ax + ay .

AXIOM 9. DISTRIBUTIVE LAW FOR ADDITION OF NUMBERS. For aIl x in V and aIl real
a and 6,  we  have

(a + b)x = ax + bx .

AXIOM 10. EXISTENCE OF IDENTITY. For every x in V,  we  have lx = x.

Linear spaces, as defined above, are sometimes called real  linear spaces to emphasize
the fact that we are multiplying the elements of V by real numbers. If real  number is re-
placed  by complex number in Axioms 2, 7, 8, and 9, the resulting structure is called a com-
plex linear space. Sometimes a hnear space is referred to as a linear vector space or simply
a vector space; the numbers used. as multipliers are also called scalars. A real linear space
has real numbers as scalars; a complex linear space has complex numbers as scalars.
Although we shall deal primarily with examples of real linear spaces, a11 the theorems are
valid for complex linear spaces a:s  well. When we use the term linear space without further
designation, it is to be understood that the space cari  be real or complex.

15.3 Examples of linear spaces

If we specify the set V and tel1 how to add its elements and how to multiply them by
numbers, we get a concrete example of a linear space. The reader cari easily verify that each
of the following examples satisfies a11  the axioms for a real linear space.

EXAMPLE 1. Let V = R, the set of a11  real numbers, and let x + y and ax be ordinary
addition and multiplication of real numbers.

EXAMPLE 2. Let V = C, the set of a11 complex numbers, define  x + y to be ordinary
addition of complex numbers, artd define  ax to be multiplication of the complex number x
by the real number a. Even though  the elements of V are complex numbers, this is a real
linear space because the scalars are real.
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EXAMPLE 3. Let V = V,  , the vector space of a11 n-tuples of real numbers, with addition
and multiplication by scalars defined in the usual way in terms of components.

EXAMPLE 4. Let V  be the set of a11  vectors in V,  orthogonal to a given nonzero vector
N. If ut = 2, this linear space is a line through 0 with N as a normal vector. If n = 3,
it is a plane through 0 with N as normal vector.

The following examples are called jknction  spaces. The elements of V are real-valued
functions, with addition of two functions f and g defined in the usual way:

u- + g)(x) = f(x) + g(x)
for every real x in the intersection of the domains off and g. Multiplication of a function
f by a real scalar a is defined as follows: af is that function whose value at each  x in the
domain  offis af(x). The zero element is the function whose values are everywhere zero.
The reader cari  easily verify that each  of the following sets is a function space.

EXAMPLE 5. The set of a11 functions defined on a given interval.

EXAMPLE 6. The set of a11  polynomials.

EXAMPLE 7. The set of a11 polynomials of degree 5 n,  where n is fixed. (Whenever we
consider this set it is understood that the zero polynomial is also  included.) The set of
a11 polynomials of degree equal  to y1 is not a linear space because the closure axioms are not
satisfied. For example, the sum of two polynomials of degree n need not have degree n.

EXAMPLE  8. The set of a11 functions continuous on a given interval. If the interval is
[a, h],  we denote  this space by C(a, 6).

EXAMPLE 9. The set of a11 functions differentiable at a given point.

EXAMPLE 10. The set of a11 functions integrable on a given interval.

EXAMPLE 11. The set of a11  functions f defined at 1 with f(1) = 0. The number 0 is
essential in this example. If we replace 0 by a nonzero number c, we violate the closure
axioms.

EXAMPLE 12. The set of a11 solutions of a homogeneous linear differential equation
y” + ay’ + by = 0, where a and b are given constants. Here again 0 is essential. The set
of solutions of a nonhomogeneous differential equation does  not satisfy the closure
axioms.

These examples and many others illustrate how the linear space concept permeates
algebra, geometry, and analysis. When a theorem is deduced from the axioms of a linear
space, we obtain, in one  stroke, a result valid for each  concrete example. By unifying
diverse examples in this way we gain a deeper insight into each. Sometimes special  knowl-
edge of one  particular example helps to anticipate or interpret results valid for other
examples and reveals relationships which might otherwise escape  notice.
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15.4 Elementary consequences  of the axioms

The following theorems are easily deduced from the axioms for a linear space.

T H E O R E M  15.1.  U N I Q U E N E S S  O F  T H E  Z E R O  E L E M E N T . In any linear space there is one
and only  one zero element.

Proof. Axiom 5 tells us that there is at least one  zero element. Suppose there were two,
say  0, and 0,. Taking x = 0, and 0  =  0 ,  i n Axiom 5, we obtain OI + 0, = 0,.
Similarly, taking x = 0, and 0 := 0,) we find 0, +  0 ,  = 0 , .  B u t  0 ,  +  0 ,  = 0 ,  +  0 ,
because of the commutative law, SO 0, = 0,  .

THEOREM 15.2. UNIQUENESS OF NEGATIVE ELEMENTS. In any linear space every element
has exactly one negative. That is,,for  every x there is one and only  one y such  that x + y = 0.

ProoJ Axiom 6 tells us that each  x has at least  one  negative, namely  (- 1)~.  Suppose
x has two negatives, say  y1  and y::. Then x + y1  = 0 and x + y2  = 0. Adding y2  to both
members of the first equation and using Axioms 5, 4, and 3, we find that

and
Y2 -t (x +  y11 =  y2  +  0  =  y2 )

Y2 + (x + Y11 = (y2  + 4 + y1 = 0 + y, = y1  + 0 = y1  .

Therefore y1  = y,, SO x has exactly one  negative, the element (- 1)~.

Notation. The negative of x is denoted by -x. The difference y - x is defined to be
the sum y + (-x).

The next theorem describes a number of properties which govern elementary algebraic
manipulations in a linear space.

T H E O R E M  15.3. In a given linear space, let x and y denote  arbitrary elements and let
a and b denote  arbitrary scalars. Then we have the following properties:

(a) 0x = 0.
(b) a0 = 0.
(c) (-a)x = -(ax) = a(-x).
(d) If ax = 0, then either a = 0 or x = 0.
( e )  Zfax=ayanda#O,thenx=y.
(f) If ax = bx and x # 0, then a = b.
(g)  4x  +  y> =  c-4  +  (---y:)  =  -x - y .

(h) x + x = 2x, x + x + x =:  3x, andin general,  J& x = nx.

We shall prove (a), (b), and (c) and leave the proofs of the other properties as exercises.
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Proof of (a). Let z = 0x. We wish to prove that z = 0. Adding z to itself and using
Axiom 9, we find that

z + z = 0x + 0x = (0 + 0)x = 0x = z .

Now add -z to both members to get z = 0.

Proof of(b). Let z = a0,  add z to itself, and use Axiom 8.

Proof of(c). Let z = (-a)x. Adding z to ax and using Axiom 9, we find that

z + ax = (-a)x + ax = (-a + a)x = 0x  = 0,

SO z is the negative of ax, z = -(ax). Similarly, if we add a(-x) to ax and use Axiom 8 and
property (b), we find that a(-x) = -(ax).

15.5 Exercises

In Exercises 1 through 28, determine whether each  of the given sets is a real linear space,  if
addition and multiplication by real scalars are defined in the usual way. For those that are not,
tel1  which axioms fail to hold. The functions in Exercises 1 through 17 are real-valued. In Exer-
cises  3, 4, and 5, each  function  has domain containing 0 and 1. In Exercises 7 through 12, each
domain contains  a11 real numbers.

1. Al1 rational functions.
2. Al1  rational functionsflg,  with the degree off 5  the degree of g (including f = 0).
3. Allfwithf(0)  =f(l). 8. Al1  even functions.
4. Allfwith 2f(O)  =f(l). 9. Al1  odd functions.
5. Allfwithf(1)  = 1 +J(O>. 10.  Al1  bounded functions.
6. Al1  step functions defined on [0, 11. 11. Al1  increasing functions.
7. Allfwithf(x)  -) 0 as x + + 00. 12. Al1 functions with period 2~.

13. Allfintegrable on [0, l] with Jhf(x)  dx = 0.
14. Allfintegrable on [0, l] with JO~(X)  dx > 0.
15. Allfsatisfyingf(x)  =f(l - x) for a11 x.
16. Al1  Taylor polynomials of degree < n for a fixed IZ (including the zero polynomial).
17. Al1  solutions of a linear second-order homogeneous differential equation y” + P(x)y’  +

Q(x)y = 0, where P and Q are given functions, continuous  everywhere.
18. Al1  bounded real sequences. 20. Al1  convergent real series.
19. Al1  convergent real sequences. 21. Al1  absolutely convergent real series.
22. Al1  vectors (x, y, z) in V, with z = 0.
23. Al1  vectors (x, y, z) in Va with x = 0 or y = 0.
24. Al1  vectors (x, y, z) in V, with y = 5x.
25. Al1  vectors (x, y, z) in Va with 3x + 4y = 1, z = 0.
26. Al1  vectors (x, y, z) in Va which are scalar multiples of (1, 2, 3).
27. Al1  vectors (x, y, z) in I/,  whose components satisfy a system of three linear equations of the

form :

allx  + a,,y  + a13z  = 0 , azlx + a,,y + U33Z  = 0, 031X + a33y + U33Z  = 0.

28. Al1  vectors in V, that are linear combinations of two given vectors A and B.
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29. Let V  = R+, the set of positive real numbers. Define  the “sum” of two elements x and y in
V  to be their product  x .y (in the usual sense), and define  “multiplication” of an element x
in V by a scalar c to be xc.  Promve  that Vis a real linear space with 1 as the zero element.

30. (a) Prove that Axiom 10 cari  be deduced from the other axioms.
(b) Prove that Axiom 10 cannolt  be deduced from the other axioms if Axiom 6 is replaced  by

Axiom 6’: For every x in Y there is an element y in V  such  that x + y = 0.

31. Let S be the set of a11 ordered pairs (x1 , x2) of real numbers. In each  case determine whether
or not S is a linear space with the operations of addition and multiplication by scalars defined
as indicated. If the set is not a linear space, indicate which axioms are violated.
(a>  (XI Yx2)  + (Yl,.!J,) = (Xl  +y,, x2 +y219 4x1,  x2>  = @xl,  0).

(b)  (XI  > x2>  + (y1 > yz)  = (XI  + y, ,O), 4x1  , x2>  = (axl , ax2).

cc> (Xl  > x2)  + (y1,y,)  = (Xl  > x2 +y2)9 4x,,+.)  = GJx,,ax,).

(dl  (XI  9x2) + (y1 ,y~>  = (1x1 + ~21, I~I +yzl>, 4x1,  -4 = Wll, b-4.

32. Prove parts (d) through (h) of Theorem  15.3.

15.6 Subspaces of a linear space

Given a linear space V, let S be  a nonempty subset of V. If S is also a linear space, with
the same operations of addition and multiplication by scalars, then S is called a subspace
of V. The next theorem gives a simple criterion for determining whether or not a subset of
a linear space is a subspace.

THEOREM 15.4. Let S be a nonempty subset of a Iinear space V. Then S is a subspace
if and only  if S satisjies  the closure axioms.

Proof. If S is a subspace, it satisfies a11 the axioms for a linear space, and hence,  in
particular, it satisfies the closure axioms.

Now we show that if S satisfi’es  the closure axioms it satisfies the others as well. The
commutative and associative laws for addition (Axioms 3 and 4) and the axioms for
multiplication by scalars (Axioms 7 through 10) are automatically satisfied in S because
they hold for a11 elements of V. 1 t remains to verify Axioms 5 and 6, the existence of a zero
element in S, and the existence of a negative for each  element in S.

Let x be any  element of S. (S has at least one  element since  S is not empty.) By Axiom
2, ax is in S for every scalar a. Taking a = 0, it follows that 0x is in S. But 0x = 0, by
Theorem 15.3(a), SO 0 E  S, and Axiom 5 is satisfied. Taking a = - 1, we see that (- 1)x
is in S. But x + (- I)x  = 0 since  both x and (- 1)x are in V,  SO Axiom 6 is satisfied in
S. Therefore S is a subspace of V.

DEFINITION. Let S be a nonempty subset of a linear space V. An element x in V of the
fo r m

k

x = 2 cixi,
i=l

where x1,  . . . , xk  are a11  in S and cl,  . . . , ck are scalars, is called afinite linear combination
of elements of S. The set of a11  jïnite  linear combinations of elements of S satisjîes  the
closure axioms and hence  is a subspace of V. We cal1  this the subspace spanned by S, or the
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linear span of S, and denote  it by L(S). If S is empty, we  dejne L(S) to be {0}, the set con-
sisting  of the zero element alone.

Different sets may span the same subspace. For example, the space V, is spanned by
each  of the following sets of vectors: {i, j}, {i, j, i + j}, (0,  i, -i, j, -j, i + j}. The space of
a11 polynomialsp(t)  of degree 5 n is spanned by the set of n + 1 polynomials

(1, t,  t2,  . . . ) P}.

Jt  is also spanned by the set (1, t/2,  t2/3,  . . . , t”/(n  + l>>, ad by (1,  (1 + t),  (1 + tj2,. . . ,
(1 + t)“}.  The space of a11 polynomials is spanned by the infinite set of polynomials
(1, t, t2,.  . .}.

A number of questions arise naturally at this point. For example, which spaces cari be
spanned by a finite set of elements? If a space cari  be spanned by a finite set of elements,
what is the smallest number of elements required? TO discuss these and related questions,
we introduce the concepts of dependence, independence, bases, and dimension, These
ideas were encountered in Chapter 12 in our study of the vector  space V,  . Now we extend
them to general linear spaces.

15.7 Dependent and independent sets in a linear space

DEFINITION. A set S of elements in a linear space V is called dependent if there is ajnite
set of distinct elements in S, say x1,  . . . , xk  , and corresponding set of scalars cl,  . . . , ck ,
not a11  zero, such  that

The set S is called independent fit is not dependent. In this case, for a11  choices  of distinct
elements x1  , . . . , xk  in S and scalars cl  , . . . j ck  ,

jlcixi =  0 implies Cl = c2 = ’ . * = Ck  = 0.

Although dependence and independence are properties of sets of elements, we also apply
these terms to the elements themselves. For example, the elements in an independent set
are called independent elements.

If S is a finite set, the foregoing definition agrees with that given in Chapter 12 for the
space V,  . However, the present definition is not restricted to finite sets.

EXAMPLE 1. If a subset T of a set S is dependent, then S itself is dependent. This is
logically equivalent to the statement that every subset of an independent set is independent.

EXAMPLE 2. If one  element in S is a scalar multiple of another, then S is dependent.

EXAMPLE 3. If 0 E  S, then S is dependent.

EXAMPLE 4. The empty set is independent.
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Many  examples of dependent :and  independent sets of vectors in V,, were discussed in
Chapter 12. The following examples illustrate these concepts in function spaces. In each
case the underlying linear space Vis the set of a11 real-valued functions defined on the real
line.

EXAMPLE 5. Let ul(t) = cos2  I, u2(t)  = sin2  t,  ug(f)  = 1 for a11 real t.  The Pythagorean
identity shows that u1  + u2 - ug = 0, SO the three functions u1  , u2, ug  are dependent.

EXAMPLE 6. Let z+Jt)  = t”  for k = 0, 1,2,  . . . , and t real. The set S = {u,  , u1  , u2  , . . .}  is
independent. TO prove this, it suffices  to show that for each  n the n + 1 polynomials
uo, 111,.  . .Y U,  are independent. A relation of the form 2 ckllk = 0 means that

(15.1) i c,t”  = 0
k = O

for a11 real t.  When t = 0, this gives c. = 0. Differentiating (15.1) and setting t = 0,
we find that c1  = 0. Repeating the process, we find that each  coefficient ck  is zero.

EXAMPLE 7. If a,,..., a, are distinct real numbers, the n exponential functions

ul(x)  = eu’“, . . . , u,(x) = ean”

are independent. We cari  prove this by induction on n. The result holds trivially when
n = 1. Therefore, assume it is true for n - 1 exponential functions and consider scalars
Cl,.  . . > c, such  that

(15.2) ickeakx  = 0.
k=l

Let aAM  be the largest of the n numbers a, , . . . , a, . Multiplying both members of (15.2)
by e-O,Mx, we obtain

(15.3) i
CkekwaM)x  = 0.

k=l

If k # M,  the number aR  - a, is negative. Therefore, when x + + CO  in Equation (15.3),
each  term with k # A4 tends to zero and we find that c,~ = 0. Deleting the Mth term from
(15.2) and applying the induction hypothesis, we find that each  of the remaining n - 1
coefficients ck  is zero.

THEOREM 15.5. Let S be an independent set consisting of k  elements  in a linear space V
and let L(S) be the subspace spanned  by  S.  Then every set of k + 1 elements in L(S) is
dependent.

Proof: When V = V, , Theorem 15.5 reduces to Theorem 12.8. If we examine the proof
of Theorem 12.8, we find that it is based only on the fact that V, is a linear space and not
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on any  other special  property of V, . Therefore the proof  given for Theorem 12.8 is valid
for any  linear space V.

15.8 Bases and dimension

DEFINITION. A jinite set S of elements in a linear space V is called a jînite basis for V
if  S is independent and spans V. The space V is called jïnite dimensional if  it has a jînite
basis, or if  V consists of 0 alone. Otherwise V is called intnite dimensional.

THEOREM  15.6. Let V be ajnite-dimensional  linear space. Then every finite basis for V
has the same number of elements.

Proof. Let S and T be two finite bases for V. Suppose S consists of k elements and T
consists of m elements. Since S is independent and spans V, Theorem 15.5 tells us that
every set of k + 1 elements in Vis dependent. Therefore, every set of more than k elements
in V is dependent. Since T is an independent set, we must have m 5 k. The same argu-
ment with S and T interchanged shows that k < m. Therefore k = m.

DEFINITION. If a linear space V has a basis of n elements, the integer n is called the
dimension of V. We Write  n = dim V. If V = {0}, we say  V has dimension 0.

EXAMPLE 1. The space V, has dimension n. One basis is the set of n unit coordinate
vectors.

EXAMPLE 2. The space of a11  polynomials p(t) of degree 5 n has dimension n + 1. One
basis is the set of n + 1 polynomials (1, t,  P, , . . , tT1). Every polynomial of degree < n is a
linear combination of these n + 1 polynomials.

EXAMPLE 3. The space of solutions of the differential equation y” - 2y’  - 3y = 0 has
dimension 2. One  basis consists of the two functions u,(x)  = eë”,  uz(x) = e3x. Every
solution is a linear combination of these two.

EXAMPLE 4. The space of a11 polynomials p(t) is infinite-dimensional. Although the
infinite set (1, t,  t2,  . . . } spans this space, nofinite  set of polynomials spans the space.

THEOREM 15.7. Let V be a jinite-dimensional linear space with dim V = n. Then we
have the following  :

(a) Any set of independent elements in V is a subset of some basis for V.
(b) Any set of n independent elements is a basis for V.

Proof. The proof  of (a) is identical to that of part (b) of Theorem 12.10. The proof  of
(b) is identical to that of part (c) of Theorem 12.10.

Let V be a linear space of dimension n and consider a basis whose elements e, , . . . , e,
are taken in a given order. We denote  such  an ordered basis as an n-tuple (e,,  . . . , e,).



560 Linear spaces

If x E  V, we cari express x as a linear combination of these basis elements:

(15.4) x = i c,e,  .
i=l

The coefficients in this equation determine an n-tuple of numbers (ci,  . . . , c,) that is
uniquely determined by X.  In fact,  if we have another representation of x as a linear
combination of e, , . . . , e, , say  x = ZL, diei  , then by subtraction from (15.4),  we find that
IL1 (ci  - d,)e, = 0. But since  .the basis elements are independent, this implies ci  = di
for each  i, SO we have (cl,  . . . , c,) = (4, . . . , d,).

The components of the ordered n-tuple (cl,  . . . , c,) determined by Equation (15.4) are
called the components of x relative to the ordered basis (e, , . . . , e,).

15.9 Exercises

In each  of Exercises 1 through 10, let S denote  the set of a11 vectors (~,y,  z) in Y, whose com-
ponen t s  sa t i s fy  the  cond i t ion  g iven . Determine whether  S is  a  subspace of  V, .  If  S is  a subspace,
compute dim S.

1. x =o. 6. x = y or x = z.
2. x + y = 0. 7. x2 - y2  = 0.
3.x+y+z=o. 8. x +y = 1.
4. x = y. 9. y = 2x and z = 3x.
5. x =y =z. lO.x+y+z=Oandx-y-z=O.

Let P,  denote  the linear space of a11 real polynomials of degree 5 n,  where n is fixed. In each
of Exercises 11 through 20, let S denote  the set of a11 polynomialsfin P,  satisfying the condition
given. Determine whether or not S is a subspace of P,  . If S is a subspace, compute dim S.
11. f(0) = 0. 16. f(0) =f(2).
12. f’(0) = 0. 17. fis even.
13.f”(O) = 0. 18. fis odd.
14. f(0) +fyo>  = 0. 19. f has degree 5 k, where k < n,orf  = 0.
15. f(0) =I(l). 20. f has degree k, where k < n,or  f = 0.
21. In the linear space of a11  real polynomialsp(t),  describe  the subspace spanned by each  of the

fol lowing subsets  of  polynomials  and determine the  d imension of  th is  subspace .
(a>  (1, t2,  t4); (b)  14 t3,  4; cc>  (4 4; (d)  (1 +  t,  (1 +  t,“}.

22. In this exercise,  L(S) denotes  the subspace spanned by a subset S of a linear space V. Prove
each  of the statements (a) through (f).
(a) S 5 L(S).
(b) If S E T C V  and if T is a subspace of V, then L(S) 5 T. This property is described
by  say ing  tha t  L(S) i s  t he  smallest  subspace of  V  which  contains  S.
(c) A subset S of Vis a subspace of Vif and only if L(S) = S.
(d) If S s T C V, then L(S) C L(T).
(e) If S and Tare subspaces of V, then SO is S A T.

(f) If S and Tare subsets of V, then L(S fi T) c: L(S) n L(T).

(g) Give an example in which L(S n T) # L(S) n L(T).

23. Let V  be the linear space consisting of a11  real-valued functions  defined on the real line.
Determine whether each  of  the  fo l lowing subsets  of  Vis  dependent  or  independent .  Compute
the  d imension of  the  subspace  spanned by each  s e t .
(4 ll,  eax, eb2},  a # b. (c) { 1, car,  xeaz}.
(b) {e”“,  xeaz}. (d) {car,  xeax,  x2eaz}.
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(e) {e2,  evz,  cash  x}. (h) { 1, COS 2x, sin2  x}.
(f) {COS x, sin x}. (i) {sin x, sin 2x).
(g) {COS~  x, sin2  x}. (j) {e5  Cos  x, eë”  sin x}.

24. Let V be a finite-dimensional linear space, and let S be a subspace of V. Prove each  of the
following statements.
(a) S is finite  dimensional and dim S 5  dim V.
(b) dim S = dim Vif and only if S = V.
(c) Every basis for S is part of a basis for V.
(d) A basis for V  need not contain  a basis for S.

15.10 Inner products, Euclidean spaces. Norms

In ordinary Euclidean geometry, those properties that rely on the possibility of measuring
lengths of line segments and angles between lines are called metric properties. In our study
of V, , we defined lengths and angles in terms of the dot product. Now we wish to extend
these ideas to more general linear spaces. We shall introduce first a generalization of the
dot product, which we cal1  an innerproduct, and then define  length and angle in terms of the
inner product.

The dot product x * y of two vectors x = (x1,  . . . , x,) and y = (yl,  . . . , yn)  in V, was
defined in Chapter 12 by the formula

(15.5) x * y = $ x,y, .
i=l

In a general linear space, we Write  (x, y) instead of x *y  for inner products, and we define
the product axiomatically rather than by a specific formula. That is, we state a number of
properties we wish inner products to satisfy and we regard these properties as axioms.

DEFINITION. A real linear space V is said to have an inner product iffor  each pair of
elements x and y in V there corresponds a unique real number (x, y) satisfying the following
axioms for a11  choices of x, y, z in V and a11  real scalars c.

(1) (X?Y>  = (YY  4 (commutativity, or symmetry).
(2) (4 y + 4 = (x,  y> + (x,  4 (distributivity, or linearity).
(3) 45  y) = ((.x9 y> (associativity, or homogeneity).
(4) (XT  4 > 0 if x#O (positivity).

A real linear space with an inner product is called a real Euclidean space.

Note: Taking c = 0 in (3),  we find that (0, y) = 0 for a11 y.

In a complex linear space, an inner product (x, y) is a complex number satisfying the
same axioms as those for a real inner product, except that the symmetry axiom is replaced
by the relation

(1’) CT  y>  = (y, x>  3

where (y, x) denotes  the complex conjugate of (y, x). In the homogeneity axiom, the scalar
multiplier c cari  be any  complex number. From the homogeneity axiom and (l’),  we get



562 Linear spaces

the companion relation

- -
(x, cy>  = (cy, 4 = f(y, 4 = 4x9 y>.

A complex linear space with an inner product is called a complex Euclidean space.
(Sometimes the term unitary  space is also  used.) One example is complex vector  space
V,(C)  discussed briefly in Section 12.16.

Although we are interested primarily  in examples of real Euclidean spaces, the theorems
of this chapter are valid for com’plex  Euclidean spaces as well. When we use the term
Euclidean space without further designation,  it is to be understood that the space cari  be
real or complex.

The reader should verify that each  of the following satisfies all the axioms for an inner
product.

EXAMPLE 1.  In V, let (x, y) = x * y, the usual dot product of x and y.

EXAMPLE 2. Lf X = (X,, x2) and y = (y1  , yJ  are any  two vectors in V, , define  (x, y) by
the formula

(x,y)  = 2x,y,  + %y2 + x,y,+ x2y2.

This example shows that there may be more than one  inner product in a given linear space.

EXAMPLE 3. Let C(a, b)  denote  the linear space of a11 real-valued functions  continuous
on an interval  [a, b]. Define an inner product of two functionsfand g by the formula

This formula is analogous to Equation (15.5) which defines  the dot product of two vectors
i n  V,. The function valuesf(t)  and g(t) play the role of the components xi and yi  , and
integration takes the place of summation.

EXAMPLE 4. In the space C(a, b), define

where kt’  is a fixed positive function in C(a, 6). The function ~3  is called a n~eightfuncfion.
In Example 3 we have u’(t)  = 1 for a11 t.

EXAMPLE 5. In the linear space of a11 real polynomials, define

Because of the exponential factor, this improper integral converges for every choice  of
polynomials f and g.
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THEOREM 15.8. In a Euclidean space V,  every inner product satisjes  the Cauchy-Schwarz
inequality :

I(x,  y)]”  I (x, x)(y, y) for all  x andy in V.

Moreover, the equality sign holds if and only  if x and y are dependent.

Prooj When we proved the corresponding result for vectors in V,  (Theorem 12.3),
we were careful to point out  that the proof was a consequence  of the properties of the dot
product listed in Theorem 12.2 and did not depend  on the particular definition used to
deduce these properties. Therefore, the very  same  proof is valid in any  real Euclidean
space. When we apply this proof in a complex  Euclidean space, we obtain the inequality
(x, y>& 4 I (x, ~)(y,  y), w ic is the same  as the Cauchy-Schwarz inequality sinceh h

(A $(y, 4 = (x9  Jw, y>  = I(x, yv .
EXAMPLE. Applying Theorem 15.8 to the space C(a, b) with the inner product (f,  g)  =

Jif(t)g(t)  dt, we find that the  Cauchy-Schwarz inequality becomes

(j~f(tkW  dt)‘l  (j;f2(t)  df)(  j; g”(t) dt) .
The inner product cari  be used to introduce the metric concept of length in any  Euclidean

space.

DEFINITION. In a Euclidean space V,  the nonnegative number I~X[\ dejned by the equation

IIXII  = 6, xY2
is called  the norm of the element x.

When the Cauchy-Schwarz inequality is expressed in terms of norms, it becomes

I(X,Y)l I IIXII I IY II -

Since  it may  be possible to define  an inner product in many  different ways, the norm
of an element Will depend  on the choice  of inner product. This lack  of uniqueness is to be
expected. It is analogous to the fact  that we cari  assign different numbers to measure the
length of a given line segment, depending on the choice  of scale  or unit of measurement.
The next theorem gives fundamental properties of norms that do not depend  on the choice
of inner product.

THEOREM  15.9. In a Euclidean space, every norm has the folowing  properties for a11
elements  x and y and a11  scalars c:

(4  Ilxll = 0 1y x=0.
(b)  llxll  > 0 i f  x#O (positivity).
Cc)  Ibll = ICI  Ilxll (homogeneity).
(4  lb + .YI I I Ilxll + IIyII (triangle inequality).
The equality sign holds in (d) ifx  = 0, ify  = 0, or ify  = cxfor some c > 0.



564 Linear spaces

Proof. Properties (a), (b) and (c) follow at once from the axioms for an inner product.
TO prove (d), we note that

Ilx+Yl12=(x+y~x+y)=(x,x)+(y,y)+(x,y)+(y,x)
= llxl12 + llyl12  + (&.Y)  + (%y)  *

The sum (x,~) + (G)  is real. The Cauchy-Schwarz inequality shows that [(~,y)/  <
Ilxll  Ilyll  and  Ib,y)l 5 IIxII llyll,  SO we have

I IX +yl12  I 11~112  + llyl12  + 211x11  Ilyll  = (Ilxll  + Ilyll)”  *

This proves (d). When y = cx, ,where  c > 0, we have

lb  +y/  = llx  + cxll  = (1 + c)lIxll  = llxll  + llcxll  = llxll  + llyll.

DEFINITION. In a real Euclidean space V,  the angle between two nonzero elements x and
y is dejned to be that number 0 in  the interval  0 5  0 < rr which satisjïes  the equation

(15.6) COS  8 =&J!ly)
I I4 IIYII

Note: The Cauchy-Schwarz, inequality shows that the quotient on the right of (15.6)
lies in the interval  [ - 1,  11,  SO there  is exactly one  0  in [0, W]  whose cosine  is equal to this
quotient.

15.11 Orthogonality in a Euclidean space

DEFINITION. In a Euclidean space V,  two elements x and y are called orthogonal if their
inner product is zero. A subset S of V is called an orthogonal set if(x,  y) = 0 for every pair
of distinct elements x and y in S. An orthogonal set is called orthonormal if each  of its
elements has norm 1.

The zero element is orthogonal to every element of V; it is the only element orthogonal to
itself. The next theorem shows a. relation between orthogonality and dependence.

THEOREM 15.10. In a Euclidean space V, every orthogonal set of nonzero elements is
independent. In particular, in a jinite-dimensional  Euclidean space with dim V = n, every
orthogonal set consisting of n nonzero elements is a basis for V.

Proof. Let S be an orthogonal set of nonzero elements in V, and suppose some finite
linear combination of elements of S is zero, say

where each xi E S. Taking the dot product of each member with x1  and using the fact
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that (x1,  xi)  = 0 if i # 1, we find that cl(xl,  xl) = 0. But (x1,  x1) # 0 since  x1 # 0 SO

cr  = 0. Repeating the argument with x1 replaced by xj , we find that each  ci  = 0. This
proves that S is independent. If dim V = n and if S consists  of n elements, Theorem 15.7(b)
shows that S is a basis for V.

EXAMPLE. In the real linear space C(O,277)  with the inner product  (f,  g)  = Jyf(x)g(x)  dx,
let S be the set of trigonometric functions {uO  , ur  , u2,  . . .}  given by

uo(4  = 1 > u~~-~(x)  = COS nx , uZn(x)  = sin nx , for n = 1,2,  . . . .

If m # n,  we have the orthogonality relations

i

277

.”
u,(x)u,(x) dx = 0,

SO S is an orthogonal set. Since  no member of S is the zero element, S is independent. The
norm of each  element of S is easily calculated. We have (ZQ,  , uO)  = si” dx = 2~ and, for
n 2 1, we have

(u~~-~,  u2n-l)  =~oz~cos”  nx dx = m,
i

(uZn,  u2,) = i2’sin2  nx dx = n.
.O

Therefore, //uoll  = dg  and jlu,  /j = & for n 2 1. Dividing each  u, by its norm, we
obtain an orthonormal set {plo  , pli, P)~,  . . .}  where qn  = un/  11 U, 11. Thus, we have

vo(x) = & > p&X) = Cos  )
G

p2,(x)  = !!!!-E  )
4,

f o r  nkl.

In Section 15.13 we shall prove that every finite-dimensional Euclidean space has an
orthogonal basis. The next theorem shows how to compute the components of an element
relative to such  a basis.

THEOREM 15.11. Let V be a finite-dimensional Euclidean space with dimension n, and
assume that S = {e,, . . . , e,> is an orthogonal basis for V. If an element x is expressed as
a linear combination of the basis elements, say

(15.7) x  =  iciei,
i=l

then its components relative to the ordered basis (e, , . . . , e,) are given by the formulas

(-5  4
Cj=(ej,) for j = 1,2,.  . . , n.

In particular,  tf S is an orthonormal basis, each cj is given by

(15.9) ci  = (x, eJ .



566 Linear spaces

Proof: Taking the inner product of each  member of (15.7) with ej  , we obtain

(x, ej>  = $~<q.  ej>  = cj(ej,  ej)

since  (ei  , eJ  = 0 if i # j. This implies (15.8), and when (ej  , eJ = 1,  we obtain (15.9).

If {e, , . . . , e,} is an orthonormal basis, Equation (15.7) cari  be written in the form

(15.10) x = 5 (x, eJe,.
2=1

The next theorem shows that in a finite-dimensional Euclidean space with an ortho normal
basis the inner product of two elements cari  be computed  in terms of their components.

THEOREM 15.12. Let V be a jnite-dimensional  Euclidean space of dimension n, and
assume that {e,, . . , , e,)  is an orthonormal basis for V. Then for every pair of elements
x and y in V,  we  have

(15.11) (Parseval’s  formula).

Inparticular,  when  x = y, we  have

(15.12)

Proof: Taking the inner product of both members of Equation (15.10) with y and using
the linearity property of the inner product, we obtain (15.11). When x = y, Equation
(15.11) reduces to (15.12).

Note: Equation (15.11) is named  in honor of M. A. Parseval (circa  1776-1836),  who
obtained this type of formula in a special  function  space.

1 5 . 1 2  Exercises

1. Let x = (x1, . . . , x,) and y = (y1  , . . . , y,) be arbitrary vectors in V, . In each  case, determine
whether (x, y) is an inner product for V, if (x, y) is defined by the formula given. In case
(x, y) is not an inner product, tel1  which axioms are not satisfied.

(4 (2, y>  =txi lyil.2=1 .

(4 (x2  Y)  =zilxijilYi  .

2. Suppose we retain the first three axioms for a real inner product (symmetry, linearity, and
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homogeneity) but replace the fourth axiom by a new axiom (4’): (x, x) = 0 if and only if
x = 0. Prove that either (x, x) > 0 for a11 x # 0 or else (x, x) < 0 for a11  x # 0.

[Hint: Assume (x, x) > 0 for some x # 0 and (y,  y) < 0 for some y # 0. In the
space spanned by {x, y}, find an element z # 0 with (z, z) = 0.1

Prove that each  of the statements in Exercises 3 through 7 is valid for a11  elements x and y in a
real  Eucl idean space.
3. (~,y)  = 0 if and only if /Ix  + yIl  = 11x  - $1.
4. (~,y)  = 0 if and only if /1x + yil  = //x11’  + Ilyl12.
5. (x,~)  = 0 if and only if [/x  +  cyII  2 //x// for a11 real c.
6. (x + y, x -y)  = 0 if and only if /~XI/ = Ilylj.
7. If x and y are nonzero elements making an angle 0 with each  other, then

llx - yIl  = llX;i2  + 11~112  - 2 Il.+ ll,Jll COS  0 .

8. In the real linear space C(l, e), define an inner product by the equation

(a) Iff(x) = 2,/X,  compute IlfIl.
(b) Find a linear polynomial g(x) = u + bx that is orthogonal to the constant function
J’(x) = 1.

9. In the real linear space C( - 1, 1), let (f,  g) =ST,  f(t)g(t)  dt. Consider the three functions
u1  , u2  , u2  given by

zzJt)  = 1 ) u,(r)  = t > ug(t)  = 1 + t .

Prove that two of them are orthogonal, two make an angle ~13 with each  other, and two
make an angle ~/6 with each  other.

10. In the linear space P,  of a11 real polynomials of degree < n, define

(a) Prove that (f,g) is an inner product for P,  .
(b) Compute (f,g) whenf(t)  = t andg(t)  = ut + b.
(c) If ,f(t)  = t,  find a11  linear polynomials g orthogonal to f.

11. In the linear space of a11  real polynomials, define (Jg)  = JO  e-tf(t)g(t)  dt.
(a) Prove that this improper integral converges absolutely for a11  polynomialsfand g.
(b)  Ifx,(t) =tnfor.  =0,1,2,...,provethat(x,,x,)  =(m +n)!.
(c) Compute (Jg)  whenf(t)  = (t + 1)2  andg(t)  = t2  + 1.
(d) Find a11  linear polynomialsg(t) = a + bt orthogonal tof(t)  = 1 + t.

12. In the linear space of a11  real polynomials, determine whether or not (A  g) is an inner product
if (f,  g) is  def ined by the  formula  given. In case (J  g) i  s  no t  an  inner  p roduc t ,  ind ica te  which
axioms are  violated. In (c),  f’ a n d  g ’  denote  de r iva t ives .

(a> CJg> =f<l)gU>.

(b)  <J  g> = 1 j,$OgW  dt 1.
Cc> Cf, g> = j,f  f '(t)g'(t) dt.

(4 (f,g) = (j;fW  dt)( j;gW dl).
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13. Let V consist  of a11 inflnite  sequences  {xn} of real numbers for which the series  2 xi converges.
If x = {x,} and y = {yn} are two elements of V,  define

(x3 y) =n&&  *

(a) Prove that this series  converges absolutely.
[Hirtt: Use the Cauchy-Schwarz inequality to estimate  the sum ziL1 Ixnynl.]

(b) Prove that Vis a linear space with (x, y) as an inner product.
(c) Compute (x, y) if x, = I/n  and yn  = I/(n  + 1) for n 2 1.
(d) Compute (x, y) if x, = 2” and yn  = I/n!  for n  2 1.

14. Let V be the set of a11 real functions f continuous on [0, + m) and such  that the integral
j: eCf  2(t)  dt converges. Define  (f, g) = JO  eëtf(t)g(t)  dt.
(a) Prove that the integral for (,fig)  converges absolutely for each  pair of functions f and g
in V.

[Hint: Use the Cauchy-Schwarz inequality to estimate  the integral J$ e-t 1 f (t)g(t)i  dt.]
(b) Prove that Vis a linear space with (hg)  as an inner product.
(c) Compute (f,g) iff(t)  = e+ andg(t)=r”,wheren=0,1,2  ,... .

15. In a complex Euclidean space, prove that the inner product has the following properties for
a11 elements x, y and z, and a11 complex a and 6.
(a>  (ax, by)  = &x, y>. (b) (x, uy  + bz) = a(x, y) + b(x, z).

16. Prove that the following identities are valid in every Euclidean space.
(a)  llx + yl? = llxl/2 + llyl12  + @,y>  + (y,  4.
(b)  ~IX  + yIl* - I I X - y112 = 2(x.,y)  + 2(y, xl.
(C)  /IX  + yli2  + I/X  - .d2 = 2 lIJ:d2  + 2 Ilyl12.

17. Prove that the space of a11 complex-valued functions continuous on an interval  [a, b]  becomes
a unitary space if we define  an inner product by the formula

(s,&‘)  =/)“(t)fOg(t)  dt >

where w  is a fixed positive function,  continuous on [a, b].

15.13 Construction of orthogonal sets. The Gram-Schmidt process

Every finite-dimensional linear space has a finite basis. If the space is Euclidean, we cari
always construct an orthogonal basis. This result Will be deduced as a consequence  of a
general theorem whose proof  shows how to construct orthogonal sets in any  Euclidean
space, finite or infinite dimensional. The construction is called the Gram-Schmidt orthog-
onalizationprocess, in honor of J. P. Gram (1850-1916) and E. Schmidt (1845-1921).

THEOREM 15.13. ORTHOGONALIZATION  THEOREM. Let x 1 ,x2 ,..., be a$nite  or injïnite
sequence  of elements in a Euclidean space V, and let L(x,  , . . . , x,J denote  the subspace
spanned by  the$rst  k of these elements. Then there is a corresponding sequence  of elements
y1,y2,..*> in V which has the fo/lol~~ing  properties for each  integer k:

(a) The element yle  is  orthogonal to every element in the subspace L(yl  , . . . , y,-,).
(b) The subspace spanned by y1  , . . . , yk is the same as that spanned by x1  , . . . , xK  :

L(y1  3 * * . > yk)  = L(x,  ) . . . ) XJ .
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(c) The sequencey, , y,, . . . , is unique, exceptfor scalar factors. That is, if y; , y; , . . . , is
another sequence  of elements in V satisfying  properties (a) and (b), then for each  k there is a
scalar ck such  that y; = cky,  .

Proof. We construct the elements y1  , y2  , . . . , by induction. To start the process, we
take yr  = x1 . Now assume we have constructed y1  , . . . ; y,. SO that (a) and (b) are satisfied
when k = r. Then we define  yr+l by the equation

(15.13)

where the scalars a, , . . . , a7  are to be determined. For-j  < r, the inner product  of y,,
with yj  is given by

(Y7+1  7 YJ  = (x,+1  3 YJ  - i&(Y,  > YJ  = (x,+1  9 YJ  - a,(y, 3 YJ  ?

since  (yi , yj) = 0 if i # j. If yj  # 0, we cari  make yr+r orthogonal to yj  by taking

(15.14)

If yj  = 0, then ~r+~ is orthogonal to yj  for any  choice  of aj  , and in this case we choose
aj  = 0. Thus, the element y,, is well defined and is orthogonal to each  of the earlier
elements y1  , . . . , y+. . Therefore, it is orthogonal to every element in the subspace

qv1  3 . . . > y,> .

This proves (a) when k = r + 1.
TO prove (b) when k = r + 1, we must show that L(y, , . . . , Y~+~)  = L(x,,  . . . , x,+r),

given that L(yr , . . . , y,.) = L(x, , . . , xr).  The first r elements y1  , . . . , y7  are in

and hence  they are in the larger subspace L(x,,  . . . , x,.+r). The new element y7+1 given by
(15.13) is a difference of two elements in L(x, , . . . , x,+~)  SO it, too, is in L(x, , . . . , x,+~).
This proves that

UYl 2 . . . 7 yr+J  c L(x1  > * * . > XT,& .

Equation (15.13) shows that xi+1 is the sum of two elements in L(y, , . . . , yr+r) SO a similar
argument gives the inclusion in the other direction:

wl,...,xT+l)  E L(y1,. ..,y7+1).

This proves (b) when k = r + 1. Therefore both (a) and (b) are proved by induction on k.



5 7 0 Linear spaces

Finally we prove (c) by inducti~on  on k. The case k = 1 is trivial. Therefore, assume (c)
is true for k = r and consider the element yLl  . Because of(b), this element is in

SO we cari  Write
L(yl~...~Y7+1)9

r+l

y:+1 = &Y, = z, + Crt1Yrt1,
i=l

where z, E  L(y,  , . . . , y,.). We wish  to prove that z, = 0. By property (a), both y:,,  and
~,+~y~+~  are orthogonal to z, . Therefore, their difference, z, , is orthogonal to z, . In other
words, z, is orthogonal to itself, SO z, = 0 . This completes the proof  of the orthogonaliza-
tion theorem.

In the foregoing construction, suppose we have y7+1 = 0 for some r. Then (15.13)
shows that x,+~ is a linear combination of yl,  . . . , yr,  and hence  of x1, . . . , x, , SO the
elements x1 , . . . , x,+~ are dependent. In other words, if the first k elements x1 , . . . , xlc
are independent, then the corresponding elements y1  , . . . , y, are nonzero. In this case the
coefficients ai  in (15.13) are given by (15.14),  and the formulas defining y1  , . . . , yk  become

(15.15) y, = x1 ) Y7+1 = x,+1 - for r = 1,2, . . . , k - 1 .

These formulas describe  the Grarn-Schmidt process for constructing an orthogonal set of
nonzero elements y1  , . . . , yk  which spans the same subspace as a given independent set
x1 ) . . . ) Xk  . In particular, if x1 , . . . , xk is a basis for a finite-dimensional Euclidean space,
thenyl,.  . . , yk  is an orthogonal basis for the same space. We cari  also convert this to an
orthonormal basis by normalizing each  element y,, that is, by dividing it by its norm.
Therefore, as a corollary of Theorem 15.13 we have the following.

THEOREM  15.14. Every Jinite-dimensional  Euclidean space has an orthonormal basis.

If x and y are elements in a Euclidean space, with y # 0, the element

is called the projection of x along  y. In the Gram-Schmidt process (15.15),  we construct
the element yT+l by subtracting from x,+r  the projection of x,+~ along each  of the earlier
elements y1  , . . . , y, . Figure 15.1. illustrates the construction geometrically in the vector
space V, .

EXAMPLE 1. In V, , find an orthonormal basis for the subspace spanned by the three
vectors x1 = (1, -1, 1, -l), x2 = (5, 1, 1, 1), and xJ = (-3, -3, 1, -3).
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FIGURE 15.1 The Gram-Schmidt process in Vs.  An orthogonal set {y1  , yZ  , ys}  is
constructed from a given independent set {x1, x2,  xs).

Solution. Applying the Gram-Schmidt process, we find

y, = Xl  = (1, -1, 1, -1))

(x2  3 Y,)~ Y, = x2 - Y, = (4,2,0,2)  ,
y2=x2-(Y1d1)

(x3  9 Y,) (x3  9 Y2)
~ Y2 = x3 - Y, + Y2 = (O,O, o,o>.

y3 = x3 - (Yl,Yl) y1 - (Y29Y2)

Since y3  = 0, the three vectors x1, x2, xs must be dependent. But since  y, and y2  are
nonzero, the vectors x1 and x2 are independent. Therefore L(x,,  x2, xs) is a subspace of
dimension 2. The set {yl,  y2} is an orthogonal basis for this subspace. Dividing each  of

y1  and y2  by its norm we get an orthonormal basis consisting of the two vectors

&=
g1,  - 1 ,  1 ,  - 1 ) and - -

,,Y:,, - 4%
-L (2, 1, 0, 1) .

EXAMPLE 2. The Legendre  polynomials. In the linear space  of a11 polynomials, with the
inner product  (x, y) = j’, x(t) y(t) dt, consider the infinite sequence x0 , x1 , x2 , . . . , where
x,(t)  = tn. When the orthogonalization theorem is applied to this sequence it yields
another sequence of polynomials y,, , y1  , y2, . . . , first encountered by the French mathe-
matician A. M. Legendre (1752-1833) in his work on potential theory. The first few
polynomials are easily calculated by the Gram-Schmidt process. First of all, we have
yo  = x0(t)  = 1. Since

we find that

(Y, 3 Y,) = j’y dt  = 2 and (Xl  ) y,) = j’,t dl  = 0 f

Yl(9  = Xl(0  - (&!2-J!d  yo  = x1(t) = t ,
(Y0 Y Yo)
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Next, we use the relations

Linear spaces

(x2 , y,) =j-’  t2  dt = t,
-1

to obtain

(x2 , y,) =/-;  t3  dt = 0 , (y, , y,) =c t2  dt = ;

Similarly, we find  that

y3(t)  = t3  - :J t ) y4(t)  = t4  - ; t2  + $ ) y5(t)  = t” - f
5

t3  + ; t .

We shall encounter these polynomials again in Volume II in our further study of differential
equations, and we shall prove that

Y,,(0 = n!  d”  (t”  _ 1)“.
(2n)! dt”

The polynomials P,  given by

P,(t)  =
(2n)!
-  y,(t)  = & $0”  - 1)”
2”(n  !)”

are known as the Legendre polynomials. The polynomials in the corresponding orthonormal
seque= cpo  , y1 , cp2  , . . , @en by <pIL = Y,/  ilY II Il are called the normalized Legendre poly-
nomials.  From the formulas for yo, . . . , yj given above, we find that

Po(t1 = -& c%(t) = J 32 t 9 m2(t> => 1 J 2(3t”  5Yj - 1) , q%(t) = ‘2 J $3” - 3t) )

J
-

l%(O = jj 9(35t”  - 30t2  + 3) )2 cp5(t)  = $ - 70t3  + 15t).

15.14 Orthogonal complements.  Projections

Let V be a Euclidean space and let S be a finite-dimensional subspace. We wish to
consider the following type of approximation problem: Given an element x in V,  to deter-
mine an element in S ,r)hose  distarxe from x is as small  as possible. The distance between
two elements x and y is defined to be the norm //x  - ,Y  11.

Before discussing this problem .in its general form, we consider a special  case, illustrated
in Figure 15.2. Here Vis the vector  space V3  and S is a two-dimensional subspace, a plane
through the origin. Given x in V, the problem is to fmd, in the plane S, that point s
nearest to zc.

If x E  S, then clearly s = x is the solution. If x is not in S, then the nearest point s
is obtained by dropping a perpendicular from x to the plane. This simple example suggests
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an approach to the general approximation problem and motivates the discussion that
follows.

DEFINITION. Let S be a subset of a Euclidean space V. An element in V is said to be
orthogonal to S if  it is orthogonal to every element of S. The set of ail  elements orthogonal
to S is denoted by S-L  and is called “Sperpendicular.”

Ii is a simple exercise  to verify that S’ is a subspace of V, whether or not S itself is one.
In case S is a subspace, then S1 is called the orthogonal complement  of S.

EXAMPLE. If S is a plane through the origin, as shown in Figure 15.2, then SL  is a line
through the origin perpendicular to this plane. This example also gives a geometric inter-
pretation for the next theorem.

FIGIJRE 15.2 Geometric interpretation of the orthogonal decomposition theorem
in V,.

THEOREM 15.15. ORTHOGONAL DECOMPOSITION THEOREM. Let V be a Euclidean  space
and let S be a$nite-dimensional  subspace of V. Then every element s in V cari  be represented
uniquely as a sum of ttco  elements, one  in S and one  in SI. That is, rce  have

(15.16) x = s + SI ) where  s E S a n d  S~ES’.

Moreover, the norm  of x is given by the Pythagorean formula

(15.17) 1/-~112 = lIsIl  + I/~~II2 .
Proof. First we prove that an orthogonal decomposition (15.16) actually ex;sts.  Since

S is finite-dimensional, it has a finite orthonormal basis, say  {e, , . . , e,}. Given X,  define
the elements s and sL  as follows:

(15.18) S  = fi (x, e,)e,  , s’ = x - s .
i=l
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Note that each  term (x, e,)e,  is the projection of x along e,  . The element s is the sum of the
projections of x along each  basis element. Since s is a linear combination of the basis
elements, s lies in S. The definition of &- shows that Equation (15.16) holds. TO prove that
d lies in SI, we consider the inner product  of .Y~ and any  basis element ej  . We have

(s’,  ej) = (x  - s, ej> = (x, eJ - (s, eJ .

But from (15.18),  we find that (s,  eJ = (x, e,), SO SI is orthogonal to ej  . Therefore SI
is orthogonal to every element in S, which means that sL  E  SI.

Next we prove that the orthogonal decomposition (15.16) is unique. Suppose that x
has two such  representations, say

(15.19) x = s ,f SI and x = t + tl  )

where s and t are in S, and sL  and tL are in Sl. We wish to prove that s = t and SI = ti.
From (15.19),  we have s - t = tl  - SI, SO we need only prove that s - t = 0. But
s - t E  Sand t’-  - SI E  SI SO s -- t is both orthogonal to tL - SI and equal to tL - SI.
Since the zero element is the onky  element orthogonal to itself, we must have s - t = 0.
This shows that the decomposition is unique.

Finally, we prove that the norm of x is given by the Pythagorean formula. We have

ll⌧112 = (⌧, ⌧) q = (s + SI, s + sl>  = (s, s) + (SI,  d) )

the remaining terms being zero since  s and & are orthogonal. This proves (15.17).

DEFINITION. Let S be a finite-dimensional subspace of a Euclidean space V, and let
{el  , . . . , e,} be an orthonormal basis for S. If x E  V, the element s defined  by the equation

s = i (x, e,)e,
i=l

is called  the projection of x on the  subspace S.

We prove next that the projection of x on S is the solution to the approximation problem
stated at the beginning of this section.

15.15 Best approximation of elements in a Euclidean space by elements in a finite-
dimensional subspace

THEOREM 15.16.  APPROXIMATION THEOREM. Let S be a finite-dimensional subspace of
a Euclidean space V, and let x be an-y  element of V. Then the projection of x on Sis nearer to
x than any  other element of S. That is, ifs is the projection of x on S,  M>e  have

I/x  - sll I I/x  - tl l

for a11  t in S;  the equality sign holds if and only  if  t = s.
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Proof. By Theorem 15.15 we cari  Write  x = s + SI,  where s E  S and sl  E  SI. Then,
for any  t in S, we have

x - t = (x - s) + (s - t) .

Since  s - t E  S and x - s = SI E  S l, this is an orthogonal decomposition of x - t,  SO

its norm is given by the Pythagorean formula

But ]js - tl12  2 0, SO we have I]x  - tllz  2 I]x  - S]I~, with equality holding if and only if
s = t.  This completes the proof.

EXAMPLE 1. Approximation of continuous jiinctions on [0, 2771  by trigonometric polyno-
mials.  Let V = C(0, 27~),  the linear space of a11 real functions continuous on the interval
[0,271],  and define  an inner product  by the equation (f,  g)  = ~~~f(x)g(x)  dx. In Section 15.11
we exhibited an orthonormal set of trigonometric functions vu,  p1  , p2  , . . . , where

(15.20) pO(x)  = -& ,
COS kx

PlZk-1(x)  = - fpBk(X)  = s* f o r  k>l.
7r VG  ’ z/;  ’

The 2n + 1 elements vo,  q1  , . . . , vzn  span a subspace S of dimension 2n + 1. The elements
of S are called trigonometric polynomials.

Iffe C(0,2~),  letfn  denote  the projection off on the subspace S. Then we have

(15.21) where  CL  ~4  =J’~rf(x)p,(x)  dx .

The numbers (f, P),J are called Fourier coejîcients  off. Using the formulas in (15.20),  we
cari  rewrite (15.21) in the form

(15.22)

where

f,(x) = $a, fL$ph  COS kx + b, sin kx) ,

ak  = i Slf(x)  COS kx dx , b, = k  02>(x) sin kx dx
s

fork=O, 1,2 ,...,n. The approximation theorem tells us that the trigonometric poly-
nomial in (15.22) approximates f better than any  other trigonometric polynomial in S,
in the sense that the norm ]If - fn /] is as small as possible.

EXAMPLE 2. Approximation of continuous functions on [- 1, l] by polynomials of
degree < n. Let V = C( - 1,  l), the space of real continuous functions on [ - 1, 11, and let

Cf, g>  = S’,  f(x)&)  dx. The n + 1 normalized Legendre polynomials y,, , vl,  . . . , vn,
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introduced in Section 15.13, span a subspace S of dimension n + 1 consisting of a11 poly-
nomials of degree 5 II. If f E  C( - 1, l), let fn denote  the projection off on S. Then we
h a v e

.fn  = fCf>  Ykh 2 where (f,  yk)  = ’ f(t>vk(t>  dt  .
k = O s-1

This is the polynomial of degree :Ç n for which the norm I]f-fil  /I is smallest. For example,
whenf(x)  = sin TX, the coefficients (f,  Y~) are given by

(f?  Fk)  = j: sin nt pk(t)  dt .

In particular, we have (f,  9,)  = 0 and

(f,  pl)  ;=j: Ji t sin nt dt = ,&i.

Therefore the linear polynomialJcl(t)  which is nearest to sin rt on [-1, l] is

J1(t) = J322 ; pl(t) = ; t .
Since  (f,  qr) = 0, this is also the nearest quadratic approximation.

15.16 Exercises

1. In each  case, find an orthonormal basis for the subspace of V’,  spanned by the given vectors.
(4 x1 = (1,  1,  11, x2 = (1,  0, 11, x3  = (3, 2, 3).
(b)  xl = (1,  1,  11, x2 = (-l,l, -l), x3 = (l,O,  1).

2. In each  case, find an orthonormal basis for the subspace of V, spanned by the given vectors.
(4 x1 = (1 1,  0, 01, x2 = (0,  1,  1,  01, x3 = (0, 0, 1, 1>, xq = (l,O,O,  1).
(b)  xl = (1,  l,O,  11, x2 = (l,O, 2, 1), x3 = (1,2,  -2, 1).

3. In the real linear space C(0,  T), with inner product (x, y) = j; x(t)y( I) dt, let x,(t)  = COS nt
forn =0,1,2  ,... . Prove that the functions y, , y1  , y, , . . . , given by

yo  = 1
2

z/=  and YnCf>  = J ;COS  Ut for n 2 1 ,

form an orthonormal set spanning the same  subspace as x0 , x1 , x2 , . . . .
4. In the linear space of all real polynomials, with inner product (~,y) = JO x(t)y(t) dt, let

xn(t)  = tn  for n  = 0, 1, 2, . . . . Prove that the functions

yo  = 1 , Jdt) = 43(2t  - 1) ) J%(t)  = 1/?(6t2  - 6t + 1)

form an orthonormal set spanning the same  subspace as {x0, x1 , x2}.
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5. Let V  be the linear space of a11  real functions  f continuous  on [0, +  cc) and such that the
in tegra l  j: e+f’(t)  dt converges . Define (f, g) = JO  eëff(f)g(f)  dt,  and let y,, , y1  , y, , . . . , be
the set obtained by applying the Gram-Schmidt process to x,,  , x1 , x2 , . . . , where x,(t) = tn
forn 2 0. Provethaty,(t)  = l,rr(t)  = t - l,ya(f)  = t2  - 4t + 2,y3(t)  = t3  - 9t2  + 1st  - 6.

6. In the real linear space C(l,  3) with inner product (Jg)  = j: f(x)g(x)  dx, let f(x) = 1/x
and show that the constant polynomial g nearest to f is g = 3 log 3. Compute Ilg -f Il2  for
this g.

7. In the real linear space C(O,2) with inner product (f,g) = &f(x)g(x) dx, let f(x) = ez and
show that the constant polynomial g nearest to fis g = i(e” - 1). Compute ilg -f Il2  for
this g.

8. In the real linear space C( -1, 1) with inner product (Jg)  = j?i f(x)g(x)  dx, let f(x) = ex
and find the linear polynomialg nearest tof.  Compute llg -f Il2  for thisg.

9. In the real linear space C(O,27r)  with inner product (f,  g) = soi; ,f(x)g(x)  dx, let f(x) = x.
In the subspace spanned by u,Jx) = 1, +(x) = COS x, us(x) = sin x, find the trigonometric
polynomial  neares t  to  J

10. In the linear space V of Exercise 5, let f (x) = e-” and f ind  the  l inear  polynomial  tha t  i s  neares t
tof.



16
LINEAR TRANSFORMATIONS AND MATRICES

16.1 Linear transformations

One of the ultimate goals of analysis is a comprehensive study of functions whose
domains and ranges are subsets of linear spaces. Such  functions are called transformations,
mappings,  or operators. This chapter treats the simplest examples, called linear trans-
formations, which occur in a11 branches of mathematics. Properties of more general
transformations are often obtained by approximating them by linear transformations.

First we introduce some notation and terminology concerning arbitrary functions. Let
V and W be two sets. The symbol

T:V-+W

Will be used to indicate that T is a function whose domain  is V and whose values are in W.
For each  x in V, the element T(x) in W is called the image of x under T, and we say  that T
maps x onto  T(x). If A is any  subset of V, the set of a11 images T(x) for x in A is called the
image of A under T and is denoted by T(A). The image of the domain  V, T(V), is the range
of T.

Now we assume that V and W .are  linear spaces having the same set of scalars, and we
define  a linear transformation as follows.

DEFINITION. If V and W are linear spaces, a function T: V-t W is called a linear trans-
formation of V into W if  it has the.following  two properties:

(a) T(x + y) = T(x) + T(y) for a11  x and y in V,
(b) T(cx)  = CT(X) for a11  x in V and a11  scalars c.

These properties are verbalized by saying that T preserves addition and multiplication by
scalars. The two properties cari  be combined  into one  formula which states that

T(ax + by)  = aT(x) + bT(y)

for a11 x, y in V and a11 scalars a and b. By induction, we also have the more general
relation

for any  n elements x1 , . . . , x, in 17 and any  n  scalars a, , . . . , a, .

5 7 8
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The reader cari  easily verify that the following examples are linear transformations.

E~AMPLE  1. The identity transformation. The transformation T: V - V, where T(x) = x
for each  x in V, is called the identity transformation and is denoted by Z or by Z,.

EXAMPLE  2. The zero transformation. The transformation T: V-f V which maps each
element of V onto  0 is called the zero transformation and is denoted by 0.

EXAMPLE 3. Multiplication by afixedscalar  c. Here we have T: V-L V, where T(x) = cx
for a11 x in V. When c = 1, this is the identity transformation. When c = 0, it is the zero
transformation.

EXAMPLE 4. Linear equations. Let V = V, and W = V,  . Given mn real numbers aik ,
wherei=1,2 ,..., mandk=1,2  ,..., n,defineT:  V,+V,asfollows: Tmapseach
vector x = (x1,  . . . , x,) in V, onto  the vector y = (y1  , . . . ,y,) in V, according to the
equations

yi  = 2 aikxk for i = 1,2,.  . . , m.
k=l

EXAMPLE 5. Inner  product with  a$xed  element. Let V be a real Euclidean space. For a
fixed element z in V, define  T : V--f R as follows: If x E  V, then T(x) = (x, z), the inner
product of x with z.

EXAMPLE 6. Projection on a subspace. Let V be a Euclidean space and let S be a finite-
dimensional subspace of V. Define T : V + S as follows: If x E  V, then T(x) is the
projection of x on S.

EXAMPLE 7. The clyerentiation  operator. Let V be the linear space of a11 real functions
f differentiable on an open  interval (a, b). The linear transformation which maps each
functionfin V onto  its derivativef’ is called the differentiation operator and is denoted by
D. Thus,  we have D : V - W, where Z)(f)  = f’ for each  f in V. The space W consists  of
a11 derivativesf’.

EXAMPLE 8. The integration operator. Let V be the linear space of a11 real functions
continuous  on an interval [a, b]. IffE  V, define  g = T(f) to be that function in V given by

g(x) = juj(t)  dt i f  a<x<b.

This transformation T is called the integration operator.

16.2 Nul1  space and range

In this section, T denotes  a linear transformation of a linear space V into a linear space W.

THEOREM 16.1. The set T(V) (the range of T) is a subspace of W. Moreover, T maps
the zero element of V onto  the zero element of W.
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Proof TO prove that T(V) is a subspace of W, we need only verify the closure axioms.
Take any  two elements of T(V), say  T(x)  and T(y). Then T(x) + r(y)  = T(x + y), SO

T(x)  + T(y) is in T(V).  Also, for any  scalar c we have CT(X)  = QC~), SO CT(X)  is in T(V).
Therefore, T(V) is a subspace of W. Taking c = 0 in the relation T(cx)  = CT(X),  we find
that T(0) = 0.

DEFINITION. The set of a11  elements in V that T maps onto  0 is called  the nul1  space of
T and is denoted by N(T). Thus,  we have

N(T) = .(x  1 x E  V and T(x) = 0} .

The nul1  space is sometimes called the kernel of T.

THEOREM 16.2. The null  space of T is a subspace of V.

Proof If x and y are in N(T), then SO are x + y and cx for a11 scalars c, since

T(x  + y) = T(x)  + T(y) = 0 and T(cx)  = CT(X)  = 0.

The following examples describe  the nul1  spaces  of the linear transformations given in
Section 16.1.

EXAMPLE 1. Identity transformation. The nul1  space is {0}, the subspace consisting of
the zero element alone.

EXAMPLE 2. ZerO  transformation. Since every element of V is mapped onto  zero, the
nul1  space is V itself.

EXAMPLE 3. Multiplication by cr,fixed  scalar c. If c # 0, the nul1  space contains only 0.
If c = 0, the nul1  space is V.

EXAMPLE 4. Linear equations. The nul1  space consists of a11  vectors (x1 , . . . , x,) in V,
for which

for i = 1,2,  . . . , m .

EXAMPLE 5. Inner product  with ajixed element z. The nul1  space consists of a11 elements
in V orthogonal to z.

EXAMPLE 6. Projection on a subspace S. If x E  V, we have the unique orthogonal
decomposition x = s + SI (by Theorem 15.15). Since T(x) = s, we have T(x) = 0
if and only if x = sl. Therefore, the nul1  space is SlL, the orthogonal complement  of S.

EXAMPLE 7. DifSerentiation  operator. The nul1  space consists of a11 functions that are
constant on the given interval.

EXAMPLE 8. Integration operator. The nul1  space contains only the zero function.
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16.3 Nullity and rank

Again in this section T denotes  a linear transformation of a linear space V into a linear
space W. We are interested in the relation between the dimensionality of V, of the nul1
space N(T), and of the range T(V). If V is finite-dimensional, then the nul1  space is also
finite-dimensional since it is a subspace of V. The dimension of N(T) is called the nulfity
of T. In the next theorem, we prove that the range is also  finite-dimensional; its dimension
is called the rank of T.

THEOREM 16.3. NULLITY PLUS RANK THEOREM. If V is jinite-dimensional,  then T(V)
is also  jnite-dimensional, and we have

(16.1) dim N(T) + dim T(V) = dim V .

In other words, the nullity  plus the rank of a linear transformation is equal to the dimension
of its domain.

Proof. Let n = dim V and let e, , . . . , ek  be a basis for N(T), where k = dim N(T) 5 n.
By Theorem 15.7, these elements are part of some basis for V, say  the basis

(16.2) el,.  . . , ek,  ek+l,.  . . ? ek+r,

where k + r = n. We shall prove that the r elements

(16.3) T(e >R+I , * . ’ > T(ek+r)

form a basis for T(V), thus proving that dim T(V) = r. Since  k + r = n, this also proves
(16.1).

First we show that the r elements in (16.3) span T(V). If y E  T(V), we have y = T(x)
for some x in V, and we cari  Write  x = c,e, + * . . + ck+,.ek+r  . Hence, we have

since T(e,) = * * * = T(ek)  = 0. This shows that the elements in (16.3) span T(V).
Now we show that these elements are independent. Suppose that there are scalars

ck+l  Y ’ ’ . Y  ck+T such  that
kfr
2 ciT(eJ = 0.

This implies that
i=k+l

SO the element x = ck.+rekfl  + * * * + ck+rek+T is in the nul1  space N(T). This means there
are scalars cr  , . . . , ck  such  that x = c,e, + . . . + ckek  , SO we have

k k+r
x - x = 2 c,e, - 2 c,e, = 0 .

i=l i=lc+1
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But since  the elements in (16.2) are independent, this implies that a11  the scalars ci are zero.
Therefore, the elements in (16.3) are independent.

Note: If V  is infinite-dimensional, then at least one of N(T) or T(V) is infinite-
dimensional. A proof  of this fact  is outlined in Exercise  30 of Section 16.4.

16.4 Exercises

In each  of Exercises 1 through 10, a transformation T: V, + V, is  def ined by the formula given
for T(x, y), where (x, y) is an arbitrary point in Ve  . In each  case determine whether T is linear. If
T is linear, describe  its nul1  space and range, and compute its nullity and rank.

1.  TO, y>  = (y,  4. 6. T(x, y) = (eZ,  e”).
2. T(x, y) = (x, -y). 7. T(x, y) = (x, 1).
3. T(x, y) = (x, 0). 8. T(x, y) = (x + 1, y + 1).
4. T(x, y) = (,Y,  x). 9. T(x,y)  =(x  -y,x  +y).
5. T(x, y) = (x2, y2). 10. T(x, y) = (2x -y, x + y).

Do the same as above for each  of Exercises 11 through 15 if the transformation T: V2 + V,
i s  desc r ibed  as  ind ica ted .
11. T rotates  every point through the same angle 4 about  the origin. That is, T maps a point

with polar coordinates (r, 0) clnto  the point with polar coordinates (r, 0 + $),  where + is
fixed. Also, Tmaps 0 onto  itself.

12. T maps each  point onto its reflection with respect to a fixed line through the origin.
13. T maps every point onto the point (1, 1).
14. T maps each  point with polar coordinates (r, 0) onto  the point with polar coordinates (2r, 0).

Also, T maps 0 onto itself.
15. T maps each  point with polar coordinates (r, 0) onto the point with polar coordinates (r, 20).

Also, T maps 0 onto itself.

Do the same as above in each  of Exercises 16 through 23 if a transformation T: Va + V, is
defined by the formula given for T(x, y, z), where (x, y, z) is an arbitrary point of Va.

16.  T(x, y, z>  = k y, x>. 20. T(x, y, z) = (x + 1, y + 1, z - 1).

17. Ux, y, z>  = (x, y,  0). 21. T(x,y,z)=(x+l,y+2,~+3).
18. T(x, y, z) = (x, 2y, 3~). 22. T(x, y, z) = (x, y’, .z3).

19. T(x, y, z)  = (x, y, 1). 23. T(x, y, z) = (x + z, 0, x + y).

In each of Exercises 24 through 27, a transformation T: V -) V  is described as indicated. In
each case, determine whether T is linear. If T is linear, describe  its nul1  space and range, and
compute the nullity and rank when they are finite.
24. Let V  be the linear space of a11 real polynomials p(x) of degree I n. If p E V, y = T(p) means

that y(x) =p(x  + 1) for a11  real X.
25. Let V  be the linear space of a11  real functions differentiable on the open interval  (-  1, 1).

Iffe  V, g = T(f) means  that g(x) = X~‘(X)  for a11 x in ( - 1,  1).
26. Let V be the linear space of a11  real functions continuous on [a, b]. If fE  V, g = T(f) means

that

g(x) =j:f(t)  sin (x - t) dt for a 5 x 5 b.

27. Let V’ be the space of a11  real functions twice differentiable on an open interval  (a, b). If
y E V, define T(y) = y” + Py’ -F  Qy, where P and Q are fixed constants.

28. Let V be the linear space of a11  real convergent sequences  {x,}. Define a transformation
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T: V + V as follows: If x = {x,} is a convergent sequence  with limit a, let T(x) = {,vn},
where 1~~ = a - x, for n  2 1. Prove that Tis linear and describe  the nul1 space and range of T.

29. Let V denote  the linear space of a11 real functions continuous  on the interval  [ -71, x].
Let S be that subset of V consisting of a11 f satisfying the three equations

sTrf(t)  dt = 0, sIJ(Ocostdt  =O, Jnnf(f)sintdt  =O.

(a) Prove that S is a subspace of V.
(b) Prove that S contains  the functionsf(x)  = COS nx  andf(x)  = sin nx  for each  n  = 2,3,.  . . .
(c) Prove that S is infinite-dimensional.

Let T: V --f  V be the linear transformation defined as follows: IffE V, g = T(f) means  that

g(x) =y, (1 + COS (x - t>}f(t>  dt .

(d) Prove that T(V), the range of T, is finite-dimensional and find a basis for T(V).
(e) Determine the nul1 space of T.
(f) Find a11 real c z 0 and all nonzero f in V’ such  that T(f) = cj-.  (Note that such  an f
lies in the range of T.)

30. Let T: V + W be a linear transformation of a linear space V into a linear space IV. If Vis
infinite-dimensional, prove that at least one  of T(V) or N(T) is infinite-dimensional.

[Hinr: Assume dim N(T) = k, dim T(V) = r,  let e,  , . . . , e, be a basis for N(T)
and Iet e,  , . . . , ek  , eh+1  , . . . , ek+n be independent elements in V, where n  > r. The
elements T(ek+J,  . . . , T(e,+,) are dependent since  n  > r. Use this fact  to obtain a
contradiction.]

16.5 Algebraic operations on linear transformations

Functions whose values lie in a given linear space W cari  be added to each  other and cari
be multiplied  by the scalars in W according to the following definition.

DEFINITION. Let 5’:  V+  W and T: V- W be two functions with a common  domain  V
and with values in a linear space W. If c is any  scalar  in W, we de$ne  the sum S + Tand the
product  CT  by the equations

(16.4) (S + T)(x) = S(x) + T(x), @T)(x) = CT(X)

for all x in V.

We are especially interested in the case where V is also a linear space having the same
scalars as W. In this case we denote  by T( V, W) the set of a11  linear transformations of V
into W.

If S and Tare two linear transformations in -44( V, W), it is an easy exercise  to verify that
S + T and cT are also linear transformations in Y( V, W). More than this is true. With the
operations just defined, the set 2( V, W) itself becomes a new linear space. The zero
transformation serves as the zero element of this space, and the transformation (- 1) T
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is the negative of T. It is a straightforward matter  to verify that a11 ten axioms for a linear
space are satisfied. Therefore, we have the following.

THEOREM 16.4. The set A?(V,  W) of all  Iinear transformations of V into W is a linear
space with the operations of addition and multiplication by scalars dejned as in (16.4).

A more interesting algebraic operation on linear transformations is composition or
multiplication of transformations. This operation makes no use of the algebraic structure
of a linear space and cari  be defined quite generally as follows.

F I G U R E  16 .1 Illustrating  the composition of two transformations.

DEFINITION. Let U, V, W be sets. Let T: U + V be a function with domain  U and
values in V, and Iet  S : V-f W be another function bvith  domain  V and values in W. Then
the composition ST is the function ST : U + W dejned by the equation

(ST)(x) = S[T(x)] for every x in U .

Thus,  to map x by the composition ST, we first map x by T and then map T(x) by S.
This is illustrated in Figure 16.1.

Composition of real-valued functions has been encountered repeatedly in our study of
calculus, and we have seen  that the operation is, in general, not commutative. However,
as in the case of real-valued functions, composition does  satisfy an associative law.

THEOREM 16.5. If T: U + V,  S: V + W, and R : W + X are three functions, then we have

R(ST) = (RS)T.

Proof. Both functions R(ST) and (RS)T have domain  U and values in X.  For each  x
in U,  we have

W’Wl(4 = RWTx)l  = NG‘WII

which proves that R(ST) = (RS)T.

and UW’l(4  = WNW)l  = WKWII,
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DEFINITION. Let T: V + V be a function which maps V into itself.  We dejîne  integral
powers of T inductively as follows:

TO= Z, T” = TTn-1 f o r  n>l.

Here Z is the identity transformation. The reader may verify that the associative law
implies the law of exponents T”T”  = T m+n for a11 nonnegative integers m and n.

The next theorem shows that the composition of linear transformations is again linear.

THEOREM 16.6. lf  U, V, W are linear spaces with the same scalars, and if  T: U + V
and S : V + W are linear transformations, then the composition ST : U + W is Iinear.

Proof. For a11 x, -y  in U and a11 scalars a and b, we have

(ST)(ax  i-  4v> = S[T@ + by)l = S[aT(x) + bT(y)] = aST(x)  + bST(y)  .

Composition cari  be combined  with the algebraic operations of addition and multiplica-
tion of scalars in 2(V,  W) to give us the following.

THEOREM 16.7. Let U, V, W be linear spaces b+ith  the same scalars, assume S and T
are in Y( V, W), and let c be any  scalar.

(a) For any  function R wlith  values in V, bise  have

(S + T)R = SR + TR a n d (cS)R  = c(SR) ,

(b) For any  linear transformation R : W -+ U, we have

R(S + T) = RS + RT a n d R(cS) = c(RS) .

The proof  is a straightforward application of the definition of composition and is left as
an exercise.

16.6 Inverses

In our study of real-valued functions we learned how to construct new functions by
inversion of monotonie  functions. Now we wish to extend the process of inversion to a
more general class  of functions.

Given a function T, our goal is to find, if possible, another function S whose composition
with T is the identity transformation. Since  composition is in general not commutative,
we have to distinguish between ST and TS. Therefore we introduce two kinds of inverses
which we cal1  left and right inverses.

DEFINITION. Given tvo  sets V and W and a function T: V-f W. A function S: T(V) -+ V
is called  a left inverse of T ~~S[T(X)]  = x for a11  x in V, that is, if

S T =  I,,
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where I, is the identity transformation on V. A function R : T(V) -f V is called  a right inverse
of T if  T[R(y)]  = y for a11  y in T(V), that is, if

TR  = I,,,, >

M:here  ITtvj is the identity transformatim  on T(V).

EXAMPLE. A function with no left inverse but kth  tcr’o  right inverses. Let V = { 1, 2)
and let W = (0). Define T : V+  W as follows: T( 1) = T(2) = 0. This function has
two right inverses R : W-t V and R’ : W-t V given by

R(0) = 1 , R’(0) = 2 .

It cannot have a left inverse S since this would require

1 = S[T(l)] = S(0) and 2  = S[T(2)]  = S(0).

This simple example shows that left inverses need not exist and that right inverses need not
be unique.

Every function T : V-f W has at least one  right inverse. In fact,  each  y in T(V) has the
form y = T(x) for at least one  x in V. If we Select  one  such  x and define  R(y) = x, then
T[R(y)]  = T(x) = y for each  y in T(V), SO R is a right inverse. Nonuniqueness may occur
because there may be more than one  x in V which maps onto  a given y in T(V). We shall
prove presently (in Theorem 16.9) that if each  y in T(V) is the image of exactly one  x in V,
then right inverses are unique.

First we prove that if a left inverse exists it is unique and, at the same time, is a right
inverse.

THEOREM 16.8. A function T: V+ W cari  have at most one  left inverse. If T has a left
inverse S,  then S is also  a right inverse.

Proof. Assume T has two left inverses, S: T(V) + V and S’: T(V) + V. Choose any
y in T(V). We shall prove that S(y) = S’(y). Now y = T(x) for some x in V, SO we  have

S[T(x)] = x and S/[T(x)]  = x,

since both S and S’ are left inverses. Therefore S(y) = x and S’(y) = x, SO S(y) = S’(y)
for a11 y in T(V). Therefore S = S’ which proves that left inverses are unique.

Now we prove that every left inverse S is also a right inverse. Choose any  element y in
T(V). We shall prove that T[S(y)]  = y. Since  y E  T(V), we have y = T(x) for some x in
V. But S is a left inverse, SO

x = S[T(x)] = S(y).

Applying T, we get T(x) = T[~(Y)].  But y = T(x), SO y = T[S(y)],  which completes the
proof.

The next theorem characterizes a11 functions having left inverses.
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THEOREM 16.9. A finction T: V + W has a left inverse IY and only  if  T maps distinct
elements of V onto  distinct elements of W; that is, ifand  only  if, for a11  x and y in V,

(16.5) XfY implies T(x) Z T(y).

Note: Condition (16.5) is equivalent to the statement

(16.6) T(x) = T(y) implies x  = y .

A function T satisfying (16.5) or (16.6) for a11 x and y in Vis said to be one-to-one on V.

ProoJ: Assume T has a left inverse S, and assume that T(x) = T(y). We wish to prove
that x = y. Applying S, we find S[T(x)] = S[T(y)]. Since  S[T(x)] = x and S[T(y)] = y,
this implies x = y. This proves that a function with a left inverse is one-to-one on its
domain.

Now we prove the converse. Assume T is one-to-one on V. We shall exhibit a function
S: T(V) --f V which is a left inverse of T. If y E  T(V), then y = T(x) for some x in V. By
(16.6), there is exactly one  x in V for which y = T(x). Define S(y) to be this x. That is,
we define  S on T(V) as follows:

S(Y)  = x means that T(x) = y .

Then we have S[T(x)] = x for each  x in V, SO ST = Zy-.  Therefore, the function S SO

defined is a left inverse of T.

DEFINITION. Let T: V + W be one-to-one on V. The unique left inverse of T (which
we know is also  a right inverse) is denoted by T-l. We say  that T is invertible, and we cal1
T-l the inverse of T.

The results of this section refer to arbitrary functions.  Now we apply these ideas to
linear transformations.

16.7 One-to-one linear transformations

In this section, V and W denote  linear spaces  with the same scalars, and T: V-t W
denotes  a linear transformation in 2Y(V, W). The linearity of T enables us to express the
one-to-one property in several equivalent forms.

THEOREM 16.10. Let T: V - W be a linear transformation in 9(  V,  W). Then the
following  statements are equivalent.

(a) T is one-to-one on V.
(b) T is invertible and its inverse T-l : T(V) --+  V is linear.
(c) For a11  x in V,  T(x) = 0 implies x = 0. That is, the nul1  space  N(T) contains  only

the zero element  of V.
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Proof:  We shah  prove that (a) implies (b), (b) imphes (c), and (c) implies (a). First
assume (a) holds. Then T has an inverse (by Theorem 16.9), and we must show that T-l
is linear. Take any  two elements u and u in T(V). Then u = T(x) and v = T(y) for some
x and y in V. For any  scalars a and b, we have

au  + bu  = aT(x) + bT(y) = T(ax + by),

since T is linear. Hence, applying T-l,  we have

T-l(au + bv) = ax + by = aT-l(u)  + bT-l(v),

SO T-l is linear. Therefore (a) implies (b).
Next assume that (b) holds. Take any  x in V for which T(x) = 0. Applying T-l,  we

find that x = T-l(O)  = 0, since T-l is linear. Therefore, (b) implies (c).
Finally, assume (c) holds. Take any  two elements u  and v in V with T(u) = T(v). By

linearity, we have T(u - v)  = T(u) - T(v) = 0, SO u  - v = 0. Therefore, Tis one-to-one
on V, and the proof  of the theorem is complete.

When V is finite-dimensional,  the one-to-one property cari  be formulated in terms of
independence and dimensionality, as indicated by the next theorem.

THEOREM 16.11. Let T: V - W be a linear transformation in 2’(  V, W) and assume that
V isjnite-dimensional,  say  dim V = n. Then the follo\6g  statements are equivalent.

(a) T is one-to-one on V.
(b)  If e,, . . . , e, are independent elements in V, then T(e,), . . . , T(e,) are independent

elements in T(V).
(c) dim T(V) = n.

(4  If@,,..., e,} is a basis for V, then {T(e,), . . . , T(e,)} is a basis for T(V).

Proof: We shall prove that (a) implies (b), (b) implies (c), (c) implies (d), and (d) implies
(a). Assume (a) holds. Let e,  , . . . , e, be independent elements of V and consider the
elements T(e,), . . . , T(e,) in T(V). Suppose that

for certain scalars c1  , . . . , c, . By linearity, we obtain

and hence

since T is one-to-one. But e, , . . . , e, are independent, SO c1  = * * * = c, = 0. Therefore
(a) implies (b).

Now assume (b) holds. Let {e,, . . . , e,} be a basis for V. By (b), the n  elements
T(el), . . . , T(e,) in T(V) are independent. Therefore, dim T(V) 2 n. But, by Theorem
16.3, we have dim T(V) 5 II. Therefore dim T(V) = n,  SO (b) implies (c).
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Next, assume (c) holds and let {e, , . . . , e,} be a basis for V. Take any  element y in
T(V). Then y = T(x) for some x in V, SO we have

X = jlVi  3 and hence y = T(x) =itlc,T(ei).

Therefore (T(e&  . . . , T(e,)} spans T(V). But we are assuming dim T(V) = n, SO

GW,  . . . , T(e,)} is a basis for T(V). Therefore (c) implies (d).
Finally, assume (d) holds. We Will prove that T(x)  = 0 implies x = 0. Let {e, , . . . , e,}

be a basis for V. If x E  V, we may Write

x = i c.e.2 1) and hence T(x)  =  i qT(e,)
i=l i=l

If T(x)  = 0, then c1  = * * * = c, = 0, since  the elements T(e,), . . . , T(e,)  are independent.
Therefore x = 0, SO T is one-to-one on V. Thus, (d) implies (a) and the proof  is complete.

16.8 Exercises

1. Let V = {0, 1). Describe  a11 functions T: V  -+  V. There are four altogether. Label them as
Tl,  Tz  , T, , T4  and make a multiplication table showing the composition of each  pair. Indicate
which functions are one-to-one on V  and give their inverses.

2. Let V  = (0,  1,2}. Describe  ail functions T: V+ V’ for which T(V) = V. There are six
altogether. Label them as Tl , . . . , T, and make a multiplication table showing the com-
position of each  pair. Indicate which functions are one-to-one on V, and give their inverses.

In each  of Exercises 3 through 12, a function T: Vz -t V, is defined by the formula given for
T(x, y), where (x, y)  is an arbitrary point in V, . In each  case determine whether T is one-to-one
on Vz  . If it is, describe  its range T(V,);  for each  point (u,  u)  in T(V&, let (x,~)  = T-l(u,  v>  and
give formulas for determining x and y in terms of u  and v.

3. %,y)  = (y,  4. 8. T(x,y)  = (ez,eY).
4. T(x, y) = (x, -y>. 9. T(x, y) = (x, 1).
5. T(x, y) = (x, 0). 10. T(x, y) = (x + 1,~ + 1).
6. T(x, y) = (x, x). 11. T(x,y)  =(x  -y,”  +y).
7. T(x, y) = (x2,  yz). 12. T(x,  y>  = (2x - y, x + y).

In each  of Exercises 13 through 20. a function T: V, -f V, is defined by the formula given for
T(x, y, z), where (x, y, z) is an arbitrary point in V, . In each  case, determine whether Tis one-to-
one on  V,. If it is, describe  its range T( V,); for each  point (u,  u,  w)  in T( V,), let (x, y, z) =
T-l(u,  v, IV) and give formulas for determining x, y, and z in terms of u,  u,  and w.

13. T(x, y, z> = (z, y,  4. 17. T(x,y,z)  =(x  + 1,~ + 1, z - 1).
14. T(x, y, z) = (x, y, 0). 18. T(x,y,z)  =(x  + 1,~ +2,z  +3).
15. T(x, y, z) = (x, 2y, 32). 19. T(x,y,z)  =(x,x +y,x  +y +z>.
16. T(x, y, z) = (x, y, x + y + 2). 20. T(x,y,z)  =(x  +y,y  +z,x  +z).

21. Let T: V + V be a function which maps V into itself. Powers are defined inductively by the
formulas Ta = Z, Tn = TTn-l  for >r 2  1. Prove that the associative law for composition
implies the law of exponents: TmTn = Tmfn.  If Tis invertible, prove that T”  is also invertible
and that (Tn)-l  = (T-l)n.
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In Exercises  22 through 25, S and T denote  functions with domain V  and values in V. In
general, ST #  TS. If ST = TS, we say  that S and T commute.

22. If S and T commute, prove that (ST)n = SnTn  for a11  integers n 2 0.
23. If S and Tare invertible, prove that ST is also  invertible and that (ST)-1 = T-lS-l.  In other

words, the inverse of ST is the composition of inverses, taken in reverse order.
24. If S and Tare invertible and commute, prove that their inverses also commute.
25. Let Y be a linear space. If S and T commute, prove that

(S + T)2  = S2  + 2ST + T2 a n d (S + T)3  = S3  + 3S2T + 3ST2  + T3.

Indicate how these formulas must be altered if ST # TS.
26. Let S and T be the linear transformations of V3 into V3 defined by the formulas S(x,  y, Z) =

(z, y, x) and T(x, y, z) = (x, x + y, x + y + z), where (x, y, z) is an arbitrary point of V3  .
(a) Determine the image of (x, y, z) under each  of the following transformations: ST, TS,
ST - TS, S2,  T2, (ST)2,  (TS)2,  (ST - TS)2.
(b) Prove that S and Tare one-to-one on Y, and find the image of (u,  v, w)  under each  of the
following transformations : S-l,  T-l,  (ST)-l,  (TS)-l.
(c) Find the image of (x, y, z) under (T - Z)n  for each  n  2 1.

27. Let V  be the linea?  space of a11 real polynomialsp(x). Let D denote  the differentiation operator
and let T denote  the integration operator which maps each  polynomialp onto  the polynomial
q given by q(x) = lzp(t)  dt. Prove that DT = Z but that TD #  Z. Describe  the nul1 space
and range of TD.

28. Let Vbe the linear space of a11 real polynomialsp(x). Let D denote  the differentiation operator
and let T be the linear transformation that mapsp(x) onto  X~‘(X).
(a) Let p(x) = 2 + 3x - x2 + 4x3 and determine the image ofp under each  of the following
transformations: D, T,  DT, TD, DT - TD, T2D2  - D2T2.
(b) Determine those p in V  for which T(p) = p.
(c) Determine thosep in V for which (DT - 20)(p)  = 0.
(d) Determine those p in V  for which (D T - TD)n(p)  = D”(p).

29. Let Yand D be as in Exercise 28 but let T be the linear transformation that mapsp(x)  onto
X~(X).  Prove that DT - TD = Z and that DT” - TnD  = nTn-’ for n 2 2.

30. Let S and T be in 9(V, V) and assume that ST - TS = Z. Prove that ST” - TnS  = nTn-l
foralln 2 1.

3 1. Let V  be the linear space of a11 real polynomialsp(x). Let R, S, T be the functions which map
an arbitrary polynomial p(x) = c,,  + clx  + . . + c,xn in V  onto  the polynomials r(x),  s(x),
and t(x), respectively, where

r(x)  = p(O) , s(x)  = i cILxk-1, t(x)  = 2 CkXkfl  .
k=l k = O

(a) Let p(x) = 2 + 3x - x2 + x3 and determine the image of p under each  of the following
transformations: R, S, T, ST, TS, (TS)2,  T2S2,  S2T2,  TRS, RST.
(b) Prove that R, S, and Tare linear and determine the nul1 space and range of each.
(c) Prove that T is one-to-one on V and determine its inverse.
(d) If n 2  1, express ( TS)n  and SnTn  in terms of Z and R.

32. Refer to Exercise 28 of Section 16.4. Determine whether T is one-to-one on V. If it is, describe
its inverse.

16.9 Linear transformations with prescribed values

If V is finite-dimensional, we cari always construct  a linear transformation T: V+ W
with prescribed values at the basis elements of V, as described in the next theorem.
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THEOREM 16.12. Let e,, . . . , e, be a basis for an n-dimensional linear space V. Let
4,.  . '> u, be n arbitrary elements in a linear space W. Then there is one  and only one  linear
transformation T: J’-t  W such that

(16.7) T(e,) = uK for k=l,2  ,..., n.

This T maps an arbitrary element x in Vas follows:

(16.8) I f  x  =ix,e,, then T(x)  = ix,u,.
k=l k = l

Proof. Every x in V cari  be expressed uniquely as a linear combination of e, , . . . , e, ,
the multipliers x1,  . . . , x, being the components of x relative to the ordered basis
Ce,,  . . . , 4. If we define  T by (16.8), it is a straightforward matter to verify that T is
linear. If x = ek  for some k, then a11 components of x are 0 except the kth, which is 1, SO

(16.8) gives T(e,) = ut,  as required.
TO prove that there is only one  linear transformation satisfying (16.7),  let T’ be another

and compute T’(x). We find that

=kiIxkT’(ek)  = ixku,  = T(x).
k=l

Since T’(x) = T(x) for a11 x in V, we have T’ = T, which completes the proof.

EXAMPLE. Determine the linear transformation T: V, + V, which maps the basis elements
i = (1,0) and j = (0, 1) as follows:

T(i) = i + j , T(j) = 2i - j

Solution. If x = x,i  + x,j is an arbitrary element of V, , then T(x) is given by

T(x) = x,T(i)  + x,T(j)  = x,(i  + j) + x,(2i - j) = (x1  + 2x,)i  + (x1  - xz)j.

16.10 Matrix representations of linear transformations

Theorem 16.12 shows that a linear transformation T: V-t W of a finite-dimensional
linear space V is completely determined by its action on a given set of basis elements
e, , . . . , e, . Now, suppose the space W is also finite-dimensional, say  dim W = m, and let
Wl,.  * * 3 )Y, be a basis for W. (The dimensions n and m may or may not be equal.) Since T
has values in W, each  element T(e,) cari  be expressed uniquely as a linear combination of the
basis elements u’~, . . . , w, , say

T(ek)  = f tir”‘i  ,
i=l

where t,, , . . . , t,,  are the components of T(e,) relative to the ordered basis (wl, . . . , w,).
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(16.9)

t2k

Ilt m k

This array is called a column vector or a column matrix. We have such  a column vector for
each  of the n elements T(e,), . . . , T(e,). We place them side  by side  and enclose them in
one  pair of brackets  to obtain the following rectangular array :
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We shah  display the m-tuple (t,,  , . . . , tmk)  vertically, as follows:

‘t11 t,, *** Ll

t21 t22  - * * t2n

. .

. .

. .

tml t,,  * ** t,,

This array is called a matrix consisting of m rows  and n columns. We cal1  it an m by n matrix,
or an m x n matrix. The first row is the 1 x n matrix (t,, , t12,  .  . . , tl,).  The m x 1
matrix displayed in (16.9) is the kth column. The scalars tik  are indexed SO the first sub-
script i indicates the row, and the second subscript k indicates the column in which tik
occurs. We cal1  tik  the ik-entry or the ik-element of the matrix. The more compact notation

is also used to denote  the matrix whose ik-entry is tik  .
Thus,  every linear transformation T of an n-dimensional space V into an m-dimensional

space W gives rise  to an m x n matrix (tir)  whose columns consist  of the components of
T(e,), . . . , T(e,) relative to the basis (u’r, . . . , w,). We cal1  this the matrix representation
of T relative to the given choice  of ordered bases (e, , . . . , e,) for V and (MI~,  . . . , wm) for
W. Once we know the matrix (tik),  the components of any  element T(x) relative to the
basis (wl , . . . , ul,,J  cari  be determined as described in the next theorem.

THEOREM 16.13. Let T be a linear transformation in Z( V,  W), where dim V = n and
dim W= m. Let (e,, . . . , e,) and(w,,  . . . , wm)  be ordered basesfor V and W, respectively,
and let (tik)  be the m x n matrix whose entries  are determined by the equations

(16.10) Tcek)  =  2 tikwi , for k = 1,2,  . . . , n .
i=l

Then an arbitrary element

(16.11)
71

x  = Ixkek
k=l
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in V with components (x1,  . . . , x,) relative to (e, , . . . , e,) is mapped by T onto  the element

(16.12) T(x) = zflYiwi

in W with components (yl,  . . . , y,) relative to (wl, . . . , wm).  The yi  are related to the
components of x by the linear equations

(16.13) yi  = i tikxk for i=l,2 ,..., m.
k=l

Proof. Applying T to each  member of (16.11) and using (16. IO),  we obtain

where each  yi  is given by (16.13). This completes the proof.

Having chosen  a pair of bases (e, , . . . , e,) and (wr  , . . . , w,,) for V and W, respectively,
every linear transformation T: V --f W has a matrix representation (tik).  Conversely, if
we start with any  mn scalars arranged as a rectangular matrix (tik)  and choose a pair of
ordered bases for V and W, then it is easy to prove that there is exactly one  linear trans-
formation T: V + W having this matrix representation. We simply define  T at the basis
elements of V by the equations in (16.10). Then, by Theorem 16.12, there is one  and only
one  linear transformation T: V + W with these prescribed values. The image T(x) of an
arbitrary point x in V is then given by Equations (16.12) and (16.13).

EXAMPLE  1. Construction of a linear transformation from a given matrix. Suppose we
start with the 2 x 3 matrix

3 1 -21 110 4’

Choose the usual bases of unit coordinate vectors for V, and V, . Then the given matrix
represents a linear transformation T: V, + Vz which maps an arbitrary vector  (x1,  x2,  x3)
in V3 onto  the vector  (y1  , yJ  in V, according to the linear equations

y1  =  3x, +  x2 - 2x,

y 2  =  X l  +  0 x 2  +  4x,.

EXAMPLE  2. Construction of a matrix representation of a given linear transformation.
Let V be the linear space  of a11 real polynomialsp(x) of degree 5 3. This space  has dimen-
sion 4, and we choose the basis (1, x, x2, x3). Let D be the differentiation operator which
maps each  polynomial p(x) in V onto  its derivative p’(x). We cari  regard D as a linear
transformation of V’ into W, where W is the 3-dimensional  space  of a11 real polynomials
of degree 5 2. In W we choose the basis (1, x, x2). TO find the matrix representation of D



594 Linear transformations and matrices

relative to this choice  of bases, we transform (differentiate) each  basis element of V and
express it as a linear combination of the basis elements of W.  Thus, we find that

D(1)=o=o+oX+ox~, D(x) = 1 = 1 + 0X + 0x2 )

D(x2) = 2x = 0 + 2x + 0X2, D(x3) = 3x2 = 0 + 0x + 3x2.

The coefficients of these polynomials determine the columns  of the matrix representation of
D. Therefore, the required representation is given by the following 3 x 4 matrix:

0 1 0 0

[ 1
0 0 2 0 .

0 0 0 3

TO emphasize that the matrix representation depends  not only on the basis elements but
also on their order, let us reverse the order of the basis elements in W and use, instead, the
ordered basis (x2, x, 1). Then the basis elements of V are transformed into the same poly-
nomials obtained above, but the components of these polynomials relative to the new
basis (x2, x, 1) appear in reversed order. Therefore, the matrix representation of D now
b e c o m e s

Let us compute a third matrix representation for D, using  the basis (1, 1 + x, 1 + x + x2,
1 + x + x2 + x3) for V, and the basis (1, x, x2) for W. The basis elements of V are trans-
formed  as follows:

D(1) = 0, D(l  +  x)  =  1, D(l  + x + x2) =  1 + 2x,

D(l  + x + x2 +  x3) =  1 +  2x + 3x2,

SO the matrix representation in this case is

ro i i 17

0 0 2 2 .L 10 0 0 3

16.11 Construction of a matrix representation in diagonal form

Since  it is possible to obtain different matrix representations of a given linear transforma-
tion by different choices  of bases, it is natural to try to choose  the bases SO that the resulting
matrix Will have a particularly simple form. The next theorem shows that we cari  make
a11 the entries 0 except possibly along the diagonal starting from the Upper  left-hand corner
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of the matrix. Along this diagonal there Will be a string of ones  followed by zeros, the
number of ones  being equal to the rank of the transformation. A matrix (tik)  with a11
entries tik  = 0 when i # k is said to be a diagonal matrix.

THEOREM 16.14. Let V and W be jînite-dimensional linear spaces,  with dim V = n and
dim W = m. Assume TE 9(  V,  W) and let r = dim T(V) denote  the rank of T. Then there
exists a basis (e, , . . . , e,) for V and a basis (wl, . . . , wm)  for W such  that

(16.14) T(eJ = wi for i=l,2  ,..., r,

a n d

(16.15) T(eJ =  0 f o r  i = r +  l,...,n.

Therefore, the matrix (tik)  of T relative to these bases has a11  entries  zero except for the r
diagonal en tries

t,,  =  tzz  =  * * * = t,, = 1 .

Proof. First we construct a basis for W. Since T(V) is a subspace of W with dim T(V) =
r, the space T(V) has a basis of r elements in W, say  wl,  . . . , w,  . By Theorem 15.7, these
elements form a subset of some basis for W. Therefore we cari  adjoin elements w,+~,  . . . ,
W,  SO that

(16.16) (Wl? . . * 9 w, > w,+1, . . . , WA

is a basis for W.
Now we construct a basis for V. Each of the first r elements wi  in (16.16) is the image of at

least one  element in V. Choose one  such  element in Vand cal1  it ei  . Then T(eJ = wi for
i =  1,2,...,r SO (16.14) is satisfied. Now let k be the dimension of the nul1  space N(T).
By Theorem 16.3 we have n = k + r. Since dim N(T) = k, the space N(T) has a basis
consisting of k elements in V which we designate as e7+1,  . . . , e7+k.  For each  of these
elements, Equation (16.15) is satisfied. Therefore, to complete the proof, we must show
that the ordered set

(16.17) Ce,,  . . . , eTF  e,+, , . . . , erfk)

is a basis for V. Since dim V = n = r + k, we need only show that these elements are
independent. Suppose that some linear combination of them is zero, say

(16.18)
r+k

zlciei  = O .

Applying T and using Equations (16.14) and (16.15),  we find that
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But r~‘r  , . . . > II’, are independent, and hence c1  = * * . = c, = 0. Therefore, the first r
terms in (16.18) are zero, SO (16.18) reduces to

.
1 c,ei  = 0  .

i=r+l

But e,,,  > .  .  .  > er+k are independent since  they form a basis for N(T), and hence c,+~ =
... =  crtk = 0. Therefore, a11 the ci  in (16.18) are zero, SO the elements in (16.17) form a
basis for V. This completes the proof.

EXAMPLE. We refer to Example 2 of Section 16.10, where D is the differentiation operator
which maps the space Y of polynomials of degree < 3 into the space W of polynomials of
degree < 2. In this example, the range T(V) = W,  SO T has rank 3. Applying the method
used to prove Theorem 16.14, we choose  any  basis for W,  for example the basis (1, ,Y, x2).
A set of polynomials in V  which map onto  these elements is given by (,Y, $,Y~,  .&Y”).  We
extend this set to get a basjs for V  by adjoining the constant polynomial 1, which is a basis
for the nul1  space of D. Therefore, if we use the basis (,Y,  :.Y%,  .$x3, 1) for V  and the basis
(1, x, s2)  for W,  the corresponding matrix representation for D has the diagonal form

-1 0 0 o-

0 1 0 0

0 0 1 0

16.12 Exercises

In  a11  exerc ises  involving  the  vector  space  V, , the  usual  bas i s  o f  un i t  coord ina te  vec tors  i s  to  be
chosen  un less  another  bas i s  i s  spec i f ica l ly  mentioned. In exercises concerned  with the matrix of
a linear transformation T: V  -f W where V = W, we take the same  basis in both V and W unless
another  choice  i s  i nd i ca t ed .

1. Determine the matrix of each  of the following linear transformations of V, into V, :
(a) the identity transformation,
(b) the zero transformation,
(c) multiplication by a fixed scalar c.

2. Determine the matrix for each  of the following projections.
(a) T: V, + V, , where T(x, , x2, x.J  = (x1, x2).
(b) T: V, - V2 , where T(x, , x2, x3)  = (x2, x.J.
(c) T: V, --f V, > where Wq,  x2  , x3,  x4  , x5)  = (x2, x3,  x4).

3. A linear transformation T: V, - VZ maps the basis vectors i and j as follows:

T ( i ) = i + j , T(j)=2i-j.

(a) Compute T(3i - 4j) and T”(3i  - 4j) in terms of i and j.
(b) Determine the matrix of T and of T2.
(c) Solve part (b) if the basis (i,  j) is replaced  by (el  , e2),  where e,  = i - j, e2  = 3i + j.

4. A linear transformation T: V2 --f Vs  is defined  as follows: Each  vector (~,y) is reflected in
the y-axis and then doubled in length to yield 7(x,  y).  Determine the matrix of T and of T2.

5. Let T: V, -f V, be a linear transformation such  that

T(k) = 2i + 3j + 5k  , T(j  + k) = i , T ( i + j + k ) = j - k .
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(a) Compute T(i + 2j + 3k) and determine the nullity and rank of T.
(b) Determine the matrix of T.

6. For the linear transformation in Exercise 5, choose  both bases to be (er  , e2  , e,), where e,  =
(2, 3, 5),  e2  = (1, 0, 0), es  = (0, 1, -l), and determine the matrix of T relative to the new
bases.

7. A linear transformation T: Va - Va maps the basis vectors as follows: T(i) = (0, 0), T(j) =
(1,  11,  T(k)  = (1,  -1).
(a) Compute T(4i - j + k) and determine the nullity and rank of T.
(b) Determine the matrix of T.
(c) Use the basis (i,j,  k) in Va and the basis (wr  , w2)  in Va,  where wr = (1, 1), wa  = (1,2).
Determine the matrix of T relative to these bases.
(d) Find bases (er  , e2,  ea)  for Va and (wr  , wa)  for V, relative to which the matrix of T Will be
in diagonal form.

8. A linear transformation T: V,  - Va maps the basis vectors as follows: T(i) = (1, 0, 1),
T(j) = (-l,O,  1).
(a) Compute T(2i  - 3j) and determine the nullity and rank of T.
(b) Determine the matrix of T.
(c) Find bases (er  , eJ for Vz and (wr  , w2, wa)  for Va relative to which the matrix of T Will  be
in diagonal form.

9. Solve Exercise 8 if T(i) = (1, 0, 1) and T(j) = (1, 1,  1).
10. Let Vand  W be linear spaces, each  with dimension 2 and each  with basis (el,  ea).  Let T: V + W

be a linear transformation such  that

T(e,  + eJ = 3e,  + 9e,, T(3el  + 2e,)  = 7e,  + 23e,.

(a) Compute T(e, - el) and determine the nullity and rank of T.
(b) Determine the matrix of T relative to the given basis.
(c) Use the basis (el, e,) for V  and find a new basis of the form (er  + ae, , 2e,  + be,)  for W,
relative to which the matrix of T Will be in diagonal form.

In the linear space of a11 real-valued functions,  each  of the following sets is independent and
spans a finite-dimensional  subspace V. Use the given set as a basis for V  and let D: V  - V’ be
the differentiation operator. In each  case, find the matrix of D and of Dz  relative to this choice
of basis.

11. (sin x, COS x). 15. (-COS x, sin x).
12. (1, x, ez). 16. (sin x, COS x, x sin x, x COS x).
13. (1, 1 + x, 1 + x + eZ>. 17. (eZ  sin x, e”  cas  x).
14. (e”,  Xe=). 18. (e2e sin 3x, e2x  COS 3x).

19. Choose the basis (1, x,x2,  x3) in the linear space V  of a11 real polynomials of degree 5  3.
Let D denote  the differentiation operator and let T: V + V’ be the linear transformation
which maps p(x) onto  X~‘(X). Relative to the given basis, determine the matrix of each  of the
following transformations: (a) T; (b) DT; (c) TD; (d) TD - DT; (e) T2;  (f)T2D2  - D2T2.

20. Refer to Exercise 19. Let W be the image of V  under TD. Find bases for V and for W
relative to which the matrix of TD is in diagonal form.

16.13 Linear spaces of matrices

We have seen  how matrices arise in a natural way as representations of linear trans-
formations. Matrices cari  also be considered as abjects existing in their own right, without
necessarily being connected  to linear transformations. As such,  they form another class  of
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mathematical abjects on which algebraic operations cari  be defined. The connection
with linear transformations serves as motivation for these definitions, but this connection
Will be ignored for the moment.

Let m and n  be two positive integers, and let Z,,, be the set of a11 pairs of integers (i, j)
such  that 1 < i < m, 1 -< j 5 n.  Any  function A whose domain  is Znl,n  is called an m x n
matrix. The function value A(i,j)  is called the ij-entry  or ij-efement of the matrix and Will
be denoted also by aZj  . It is customary to display a11 the function values in a rectangular
array consisting of m rows and n  columns, as follows:

ail a12  * * * 6,

azl aZ2  . . * a2n
. .
. .
. .

-a,,  am2  . . - a 4nn

The elements a,) may be arbitrary abjects of any  kind. Usually they Will be real or complex
numbers, but sometimes it is convenient  to consider matrices whose elements are other
abjects,  for example, functions. We also denote  matrices by the more compact notation

or A = (a,J  .

If m = n, the matrix is said to be a square matrix. A 1 x n  matrix is called a row matrix;
an m x 1 matrix is called a column  matrix.

Two functions are equal if and only if they have the same domain  and take the same
function value at each  element in the domain. Since  matrices are functions, two matrices
A = (a,J and B = (bJ  are equal if and only if they have the same number of rows, the
same number of columns, and equal entries aii = bij for each  pair (i,j).

Now we assume the entries are numbers (real or complex) and we define  addition of
matrices and multiplication by scalars by the same method used for any  real- or complex-
valued functions.

DEFINITION. If A = (a,,) and 0  = (bij)  are two m x n matrices and if  c is any  scalar,
we dejine  matrices A + B and CA  as follows:

A + B = (a,j  + b,j)  > CA  = (caJ  .

The sum  is dejîned only when A and B have the same size.

EXAMPLE. If

A=[-: 0 -41 and B=[f  -2 t],

then we have
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We define  the zero matrix 0 to be the m x n  matrix a11 of whose elements are 0. With
these definitions, it is a straightforward exercise  to verify that the collection of a11 m x n
matrices is a linear space. We denote  this linear space by M,,,  . If the entries are real
numbers, the space M,,,, is a real linear space. If the entries are complex, M,,,  is a complex
linear space. It is also easy to prove that this space has dimension mn. In fact,  a basis for
M consists  of the mn matrices having one  entry equal to 1 and a11 others equal to 0.
For’example,  the six matrices

form a basis for the set of a11 2 x 3 matrices.

16.14 Isomorphism hetween linear transformations and matrices

We return now to the connection between matrices and linear transformations. Let V
and W be finite-dimensional linear spaces  with dim V = n and dim W = m. Choose a
basis (e, , . . . , e,) for V’ and a basis (wr  , . . . , ns,)  for W. In this discussion, these bases are
kept fixed. Let -Y( V, W) denote  the linear space of a11 linear transformations of V into
W. If TE J?(  V, W), let m(T) denote  the matrix of T relative to the given bases. We recall
that m(T) is defined as follows.

The image of each  basis element ek  is expressed as a linear combination of the basis
elements in W:

(16.19) T(e,) = f tikwi for k=l,2  ,..., n.
i=l

The scalar multipliers ti,  are the ik-entries  of m(T). Thus, we have

m(T)  = (ti,d~;Zl  .

Equation (16.20) defines  a new function m whose domain  is Z( V, W) and whose values
are matrices in M,,,,  . Since  every m x n  matrix is the matrix m(T) for some T in P’(  V, W),
the range of m is M,,, . The next theorem shows that the transformation m: 9(  V, W) +
M WL.77 is linear and one-to-one on Z( V, W).

THEOREM 16.15.  ISOMORPHISM THEOREM. For a11  S and T in LZ’(V,  W) and all  scalars
c, we have

Moreover,

m(S  + T) = m(S) + m(T) a n d m(cT)  = cm(T).

m(S) = m(T) implies  S  =  T  ,

so m is one-to-one  on .JZ(V,  W).
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Proof. The matrix m(T) is formed  from the multipliers ti, in (16.19). Similarly, the
matrix m(S) is formed  from the multipliers szk  in the equations

(16.21) S(e,) = $ sikwi for k = 1,2,.  . . , II.
i=l

Since  we have

we obtain m(S + T) = (sik  + tik)  = m(S) + m(T)  and m(cT) = (ct,,)  = cm(T). This proves
that m is linear.

TO prove that m is one-to-one, suppose that m(S) = m(T), where S = (sik)  and T =
(tik).  Equations (16.19) and (16.21) show that S(e,) = T(e,) for each  basis element e, ,
SO S(x) = T(x) for a11 x in V, and hence  S = T.

Note: The function  m is called an isomorphism.  For a given choice  of bases, m
establishes a one-to-one correspondence between the set of linear transformations
5?(V,  W)  and the set of m x n matrices 1!4~,~ . The operations of addition and multipli-
cation by scalars are preserved under this correspondence. The linear spaces  Z(  V, W)
and  Mm,, are said to be isomorphic. Incidentally, Theorem 16.11 shows that  the domain
of a one-to-one linear transformation has the same  dimension as its range. Therefore,
dim Y( V, W)  = dim M,,,  = mn.

If V = W and if we choose  the same basis in both Vand  W,  then the matrix m(1)  which
corresponds to the identity transformation Z:  V --f Vis an n x II diagonal matrix with each
diagonal entry equal to 1 and a11 others equal to 0. This is called the identily or unit rnatrix
and is denoted by I or by In.

16.15 Multiplication of matrices

Some linear transformations cari be multiplied by means of composition. Now we shall
define  multiplication of matrices in such  a way that the product  of two matrices corresponds
to the composition of the linear transformations they represent.

We recall that if T: U--f  V and S: V + W are linear transformations, their composition
ST: U - W is a linear transformation given by

ST(x) = S[T(x)] for a11 x in U .

Suppose that U,  V, and W are finite-dimensional, say

dim U = n , dim V =p, dim W = m .

Choose bases for U,  V, and W. Relative to these bases, the matrix m(S) is an YIZ x p
matrix, the matrix T is a p x n matrix, and the matrix of ST is an ~II x n matrix. The
following definition of matrix multiplication Will enable us to deduce the relation m(ST) =
m(S)m(T).  This extends the isomorphism property to products.
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DEFINITION. Let A be any  m x p matrix, and let B be any  p x n matrix, say

A = <aij>“;Pl a n d B = (bij);;jnI  .

Then theproduct AB is dejned  to be the m x n matrix C = (cij)  whose  ij-entry is given by

(16.22)

Note: The product AB is not defined unless the number of columns of A is equal to
the number of rows of B.

If we Write  Ai for the ith row of A, and Bj for the jth column of B, and think of these as
p-dimensional vectors, then the sum in (16.22) is simply the dot product Ai * B3.  In other
words, the ij-entry of AB is the dot product of the ith row of A with the jth column of B:

Thus, matrix multiplication cari  be regarded as a generalization of the dot product.

EXAMPLEI.  LetA=  [-: : i] andB=  1 -I

A

. Since  A is 2 x 3 and B is 3 x 2,

the product AB is the 2 x 2 matrix

A,.  B1 A ,  .  B2

1 [

17 21.
A B =

=A,.  B1 A,.  B2 1 -7-

The entries of AB are computed as follows:

A,.B1=3+4+  1.5+2.0= 17, A,.B2=3.6+  l.(-1)+2.2=21,

A,. B1 = ( - 1). 4 + 1 .5 + 0.0 = 1 , A,.B2=(-1).6+ l.(-1)+0.2= - 7 .

EXAMPLE 2. ht

2
A =

1

1 -3

2 41 and

Here A is 2 x 3 and B is 3 x 1, SO AB is the 2 x 1 matrix given by

A B =  [;::;:] =  [-a],

sinceA,.Bl=2*(-2)+  1.1 +(-3)*2=-9andA,*Bl=l.(-2)+2.1+4.2=
8.
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EXAMPLE 3. If A and B are both square matrices of the same size,  then both AB and
BA are defined. For example, if

3 4
and B= ,[ 1

we find that

B A =  [-; ;;,.

This example shows that in general AB # BA. If AB = BA, we say  A and B commute.

EXAMPLE 4. If I, is the p x p identity matrix, then IDA  = A for every p x n matrix A,
and BZ, = B for every m x p matrix B. For example,

Now we prove that the matrix of a composition ST is the product  of the matrices m(S)
and m(T).

THEOREM  16.16. Let T: U --+  V and S: V-+  W be linear transformations, where U, V, W
arejnite-dimensional linear spaces. Then, for a jxed  choice  of bases, the matrices of S,  T,
and ST are related by the equation

m(ST) = m(S)m(T)  .

Proof. Assume dim U = n, dim V = p, dim W = m. Let (ul  , . . . , u,)  be a basis for
u, (01 7 . . . 3vP) a basis for V, and (wl, . . . , w,) a basis for W. Relative to these bases, we
h a v e

m(S)  = <sij>~;Zl, where S(u,) = f sikwi for k=l,2 ,..., p,
i=l

a n d

m(T)  = (4J%, where T(U~)  = i tkjv, for j = 1,2,.  . . , n.
k=l

Therefore, we have

ST(uj)  = S[T(uj)l  =~ltk~s(vk)  =~>j~ls,wi  =z (.&ktkj)  wi,

SO we find that

= m(S)m(T)  .

We have already noted that matrix multiplication does  not always satisfy the com-
mutative law. The next theorem shows that it does  satisfy the associative and distributive
laws.
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THEOREM 16.17. ASSOCIATIVE AND DISTRIBUTIVE LAWS FOR MATRIX MULTIPLICATION.
Given matrices A, B, C.

(a) rf the products  A(BC) and (AB)C are meaningful, we have

A(BC) = (AB)C (associative Zaw) .

(b) Assume A and B are of the same size. If AC and BC are meaningful, we have

(A + B)C = AC + BC (right distributive law) ,

whereas if CA and CB are meaningful, we have

C(A + B) = CA + CB (leji distributive Zaw)  .

Proof. These properties cari  be deduced directly from the definition of matrix multi-
plication, but we prefer the following type of argument. Introduce finite-dimensional
linear spaces  U, V, W, X and linear transformations T: U + V, S: V -+ W, R: W-f X
such  that, for a fixed choice  of bases, we have

A = m(R), B = m(S), C = m(T).

By Theorem 16.16, we have m(RS) = AB and m(ST) = BC. From the associative law for
composition, we find that R(ST) = (RS)T.  Applying Theorem 16.16 once more to this
equation, we obtain m(R)m(ST)  = m(RS)m(T)  or A(BC) = (AB)C,  which proves (a). The
proof  of(b) cari  be given by a similar type of argument.

D E F I N I T I O N. If A is a square matrix, we deJine  integral  powers of A inductively as
follows :

A0  = I, An  = AA-1 for n 2 1.

16.16 Exercises

l.IfA= [-i -1 -21,  B=[-! -i], C=E  Ii], computeB+C,  A B ,

BA, AC, CA, A(2B  - 3C).
0 1

2. Let A = [ 10 2’
Find a11 2 x 2 matrices B such  that (a) AB = 0; (b) BA = 0.

3. In each  case find a, b, c, d to satisfy the given equation.

0 0 1 0

1 0 0 0

(a> ; 10 1 0 0

0 0 0 1

‘a

b

.l

=
C

d

; (b)
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4. Calculate AB - BA in each  case.

(a)A=[ t il,  B=[-%  i p];

@)A=[-;  ; ;j, B=[-;  -i rf

5. If A is a square matrix, prove that AnAm  = Arn+?’  for a11 integers m 2  0, n  2 0.

1 1 1 2
6. Let A = [

0
1
1.

Verify that A2 = [ a n d
0 1

1 compute An.

7. Let A = n

*. Let A = r; ~~~~f~~~A~~c~~!~~~~~~s~ a general

formula for A”  and prove it by induction.

1 0
9. Let A = [ 1-1 1 .

Prove that A2  = 2A - Z and compute AIOo.

10. Find a11 2 x 2 matrices A such  that A2  = 0.
11. (a) Prove that a 2 x 2 matrix A commutes with every 2 x 2 matrix if and only if A commutes

with each  of the four matrices

(b) Find a11 such  matrices A.
12. The equation A ’ = Z is satisfied by each  of the 2 x 2 matrices

[O 3 [1. -39 [A -3 3

where b and c are arbitrary real numbers. Find a11 2 x 2 matrices A such  that A2  = Z.

13 .  IfA =  [-: -:] a n d  B  =  [i  81, find 2 x 2 matrices C and D such  that AC = B

and DA = B.
14. (a) Verify that the algebraic identities

(A + B)2  = A2  + 2AB + B2 a n d (A + B)(A - B) = A2  - B2

do not hold for the 2 x 2 matrices A = [A -3 andB=  [: J.

(b) Amend the right-hand members of these identities to obtain formulas valid for a11 square
matrices A and B.
(c) For which matrices A and B are the identities valid as stated in (a)?
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16.17 Systems of linear equations

Let A = (a,J be a given m x n matrix of numbers, and let cl,  . . . , c, be m further
numbers. A set of m equations of the form

(16.23) for i = 1, 2, . . . , m ,

is called a system of m linear equations in n  unknowns. Here x1, . . . , x, are regarded as
unknown. A solution of the system is any  n-tuple of numbers (x1 , . . . , x,) for which a11 the
equations are satisfied. The matrix A is called the coefJicient-matrix  of the system.

Linear systems cari  be studied with the help of linear transformations. Choose the usual
bases of unit coordinate vectors in V, and in V, . The coefficient-matrix A determines a
linear transformation, T: V, --f V,  , which maps an arbitrary vector x = (x1 , . . . , x,) in V,
onto  the vector y = (yl,  . . . , y,) in V, given by the m linear equations

yi = iaikxk for i = 1,2,.  . . , m.
k=l

Let c = (cl  , . . . , cm) be the vector in V, whose components are the numbers appearing in
system (16.23). This system cari  be written more simply as

T(x) = c .

The system has a solution if and only if c is in the range of T. If exactly one  x in V, maps
onto  c, the system has exactly one  solution. If more than one  x maps onto  c, the system
has more than one  solution.

EXAMPLE 1. A system with  no solution. The system x + y = 1, x + y = 2 has no solu-
tion. The sum of two numbers cannot be both 1 and 2.

EXAMPLE 2. A system with  exactly one  solution. The system x + y = 1, x - y = 0 has
exactly one  solution: (x, y) = (+, g).

EXAMPLE 3. A system with  more than one  solution. The system x + y = 1, consisting
of one  equation in two unknowns, has more than one  solution. Any  two numbers whose
sum is 1 gives a solution,

With each  linear system (16.23) we cari  associate another system

&%Xk  = 0 for i = 1,2,  . . . , m ,

obtained by replacing each  ci  in (16.23) by 0. This is called the homogeneous system corre-
sponding to (16.23). If c z 0, system (16.23) is called a nonhomogeneous system. A vector
x in V, Will satisfy the homogeneous system if and only if

T(x) = 0,
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where T is the linear transformation determined by the coefficient-matrix. The homogene-
ous  system always has one  solution, namely x = 0, but it may have others. The set of
solutions of the homogeneous system is the nul1  space of T. The next theorem describes the
relation between solutions of the homogeneous system and those of the nonhomogeneous
system.

THEOREM 16.18. Assume the nonhomogeneous system (16.23) has a solution, say  b.
(a) If a vector x is a solution of the nonhomogeneous system, then the vector v = x - b

is a solution of  the corresponding homogeneous system.
(b) If a vector v is a solution of the homogeneous system, then the vector x = v + b is a

solution of  the nonhomogeneous system.

Proof.  L e t  T :  V, + V, be the linear transformation determined by the coefficient-
matrix, as described above. Since  b is a solution of the nonhomogeneous system we have
T(b) = c. Let x and v be two vectors in V, such  that v = x - b. Then we have

T(v) = T(x - b) = T(x) - T(b) = T(x) - c

Therefore T(x) = c if and only if T(v) = 0. This proves both (a) and (b).

This theorem shows that the problem of finding a11  solutions of a nonhomogeneous
system splits naturally into two parts: (1) Finding  a11 solutions v of the homogeneous
system, that is, determining the nul1  space of T; and (2) finding one  particular solution b of
the nonhomogeneous system. By adding b to each  vector v in the nul1  space of T, we thereby
obtain a11 solutions x = u + b of the nonhomogeneous system.

Let k denote  the dimension of N(T) (the nullity of T). If we cari  find k independent
solutions v1  , . . . , vk  of the homogeneous system, they Will form a basis for N(T), and we
cari  obtain every v in N(T) by forming a11 possible linear combinations

v = t,v, + * * 9 + t,v,  )

where t, , . . . , t, are arbitrary scalars. This linear combination is called the general solution
of the homogeneous system. If b is one  particular solution of the nonhomogeneous system,
then a11  solutions x are given by

x = b + t,v,  + * * * + t,v,  .

This linear combination is called the general solution of the nonhomogeneous system.
Theorem 16.18 cari  now be restated as follows.

THEOREM 16.19. Let T: V, -+ V, be the linear transformation such  that T(x) = y, l+*here
x=(x~,...,xJ,y=(y~  ,... ,y,)and

Yi =k$pikxk for i = 1,2,  . . . , m .
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Let k denote  the nullity  of T. If v1  , . . . , vk  are k independent solutions of the homogeneous
system T(x) = 0, and if  b is one  particular solution of the nonhomogeneous system T(x) = c,
then the general solution of the nonhomogeneous system is

x = b + t,v, + . . . + t,v,  ,

where t,  , . . , , t, are arbitrary scalars.

This theorem does  not tel1 us how to decide  if a nonhomogeneous system has a particular
solution b, nor does  it tel1 us how to determine solutions v1  , . . . , vk  of the homogeneous
system. It does  tel1 us what to expect when the nonhomogeneous system has a solution.
The following example, although very simple, illustrates the theorem.

EXAMPLE. The system x + y = 2 has for its associated homogeneous system the equation
x + y = 0. Therefore, the nul1  space  consists of a11  vectors in Vz of the form (t,  -t),
where t is arbitrary. Since  (t,  -t) = t(1, - l), this is a one-dimensional  subspace of V,
with basis (1, - 1). A particular solution of the nonhomogeneous system is (0, 2). There-
fore the general solution of the nonhomogeneous system is given by

(~,y)  = (0,  2)  + t(l, -1) or x = t, y=2-t,

where t is arbitrary.

16.18 Computation techniques

We turn now to the problem of actually computing the solutions of a nonhomogeneous
linear system. Although many methods have been developed for attacking this problem,
a11 of them require considerable  computation  if the system is large. For example, to solve
a system of ten equations in as many unknowns cari  require several hours of hand com-
putation, even with the aid of a desk calculator.

We shall discuss a widely-used method, known as the Gauss-Jordan elimination method,
which is relatively simple and cari  be easily programmed for high-speed electronic computing
machines. The method consists of applying three basic types of operations on the equations
of a linear system:

(1) Znterchanging two equations;
(2) Multiplying  a11  the terms of an equation by a nonzero scalar;
(3) Adding  to one  equation a multiple of another.

Each time we perform one  of these operations on the system we obtain a new system having
exactly the same solutions. Two such  systems are called equivalent.  By performing these
operations over  and over  again in a systematic fashion we finally arrive at an equivalent
system which cari  be solved by inspection.

We shall  illustrate the method with some specific examples. It Will then be clear how the
method is to be applied in general.

EXAMPLE 1. A system with a unique solution. Consider the system

2x-5y+4z=  - 3

X-2y+  z=5

x - 4y + 62 = 10.
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This particular system has a unique solution, x = 124, y = 75, z = 31, which we shah
obtain by the Gauss-Jordan elimination process. TO save labor we do not bother to copy
the letters x, y, z and the equals sign over  and over  again,  but work instead with the aug-
mented matrix

2 -5 4 -3

(16.24) 1-21 5

1 -4 6 10

obtained by adjoining the right-hand members of the system to the coefficient matrix. The
three basic types of operations mentioned above are performed on the rows of the augmented
matrix and are called row operations. At any  stage of the process we cari  put the letters
x, y, z back  again and insert equals signs along the vertical line to obtain equations. Our
ultimate goal is to arrive at the augmented matrix

1 0 0 124

(16.25) 0  1 0 75

0 0 1 31

after a succession of row operations. The corresponding system of equations is x = 124,
y = 75, z = 31, which gives the desired solution.

The first step is to obtain a 1 in the Upper  left-hand corner of the matrix. We cari  do this
by interchanging the first row of the given matrix (16.24) with either the second or third
row. Or, we cari  multiply the first row by 4. Interchanging the first and second rows, we get

1 -4 6 10

The next step is to make a11 the remaining entries in the first column equal to zero, leaving
the first row intact. TO do this we multiply the first row by -2 and add the result to the
second row. Then we multiply the first row by - 1 and add the result to the third row.
After these two operations, we obtain

(16.26)

New we repeat the process on the smaller matrix [ 1: : 1 -‘i] which appears

adjacent to the two zeros. We cari obtain a 1 in its Upper  left-hand corner by multiplying
the second row of (16.26) by - 1. This gives us the matrix
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Multiplying the second row by 2 and adding the result to the third, we get

(16.27)

At this stage, the corresponding system of equations is given by

X-2y+  z= 5

y--22=  13

z = 31.

These equations ean be solved in succession, starting with the third one  and working
backwards, to give us

z = 31, y = 13 + 2z = 13 + 62 = 75, x = 5 + 2y - z = 5 + 150 - 31 = 124.

Or, we cari  continue the Gauss-Jordan process by making a11  the entries zero above the
diagonal elements in the second and third columns. Multiplying the second row of (16.27)
by 2 and adding the result to the first row, we obtain

L 0 0 1 0 0 1 -3 -2 1 31 31 13 1 .

Finally, we multiply the third row by 3 and add the result to the first row, and then multiply
the third row by 2 and add the result to the second row to get the matrix in (16.25).

EXAMPLE 2. A system with  more than one  solution. Consider the following system of 3
equations in 5 unknowns:

2x-5y+4z+  u - v = - 3

(16.28) x-2y+ z -  u+v=5

x - 4y + 62 + 2u - u = 10.

The corresponding augmented matrix is

2 -5 4 1 -1 - 3

1-21-1 1 5.
1 -4 6 2-l 101

The coefficients of x, y, z and the right-hand members are the same as those in Example 1.
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If we perform the same row operations used in Example 1,  we finally arrive at the augmented
matrix

[ 0 0 1 0 0 1 0 0 1 -16 -3 -9 19 11  4 124 75 31 1 .

The corresponding system of equations cari  be solved for x, y, and z in terms of u  and v,
giving us

x = 124 + 16~ - 19v

y  =  7 5  +  9U- l l v

z = 31 + 3U - 4v.

If we let u  = tl and v = t, , where tl and t, are arbitrary real numbers, and determine
x, y, z by these equations, the vector (x, y, z, U,  v) in V, given by

(~,y,  z, u,  v) = (124 + 16t,  - 19t,, 75 + 9t,  - llt, ) 31 + 3t,  - 4tz  ) t,  ) tz)

is a solution. By separating the parts involving t, and t, , we cari  rewrite this as follows:

(~,y,  z, u,  v) = (124, 75, 31, 0, 0) + t,(16,  9, 3, 1,O)  + tz(-19,  -11, -4,O,  1).

This equation gives the general solution of the system. The vector (124, 75, 31,0,0)  is a
particular solution of the nonhomogeneous system (16.28). The two vectors (16, 9, 3, 1,O)
and (- 19, - 11, -4, 0, 1) are solutions of the corresponding homogeneous system. Since
they are independent, they form a basis for the space  of a11 solutions of the homogeneous
system.

EXAMPLE 3. A system with no solution. Consider the system

2x - 5y+4z=  - 3

(16.29) x-2y+ z =  5

X-4y+5z=  1 0 .

This system is almost identical to that of Example 1 except that the coefficient of z in the
third equation has been changed  from 6 to 5. The corresponding augmented matrix is

i 2 1 1 -5 -21 -4 4 5 -3 10 5. 1
Applying the same row operations used in Example 1 to transform (16.24) into (16.27),  we
arrive at the augmented matrix

(16.30)
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When the bottom row is expressed as an equation, it states that 0 = 31. Therefore the
original system has no solution since  the two systems (16.29) and (16.30) are equivalent.

In each  of the foregoing examples, the number of equations did not exceed the number
of unknowns. If there are more equations than unknowns, the Gauss-Jordan process is
still applicable. For example, suppose we consider the system of Example 1, which has the
solution x = 124,~  = 75, z = 31. If we adjoin a new equation to this system which is also
satisfied by the same triple, for example, the equation 2x - 3y + z = 54, then the elimina-
tion process leads to the agumented matrix

0 10 7.5

0 0 1  3 1

000 0

with a row of zeros along the bottom. But if we adjoin a new equation which is not satisfied
by the triple (124, 75, 31), for example the equation x + y + z = 1, then the elimination
process leads to an augmented matrix of the form

‘1 0 0

0  1 0 75

0 0 1

124 13 1 ’

, 0 0 0 a

where a # 0. The last row now gives a contradictory equation 0 = a which shows that
the system has no solution.

16.19 Inverses of square matrices

Let A = (u,~)  be a square n x n matrix. If there is another II x II  matrix B such  that
BA = Z,  where Z is the IZ  x IZ identity matrix, then A is called nonsingular and B is called a
left inverse of A.

Choose the usual  basis of unit coordinate vectors in V, and let T: V, -f V, be the linear
transformation with matrix m(T) = A. Then we have the following.

THEOREM 16.20. The matrix A is nonsingular if  and only  if  T is invertible. If BA = I,
then B = m(T-l).

Proof. Assume that A is nonsingular and that BA = I. We shah  prove that T(x) = 0
implies x = 0. Given x such  that T(x) = 0, let X be the n x 1 column matrix formed  from
the components of x. Since  T(x) = 0, the matrix product  AX is an n x 1 column matrix
consisting of zeros, SO B(AX)  is also a column matrix of zeros. But B(AX)  = (BA)X  =
IX = X, SO every component  of x is 0. Therefore, Tis invertible, and the equation TT-l  = Z
implies that m(T)m(T-l)  = Z or Am(T-‘)  = Z. Multiplying on the left by B, we find
m(T-l)  = B. Conversely, if T is invertible, then T-lT  is the identity transformation SO

m( T-l)m(  T) is the identity matrix. Therefore A is nonsingular and m(T-‘)A  = Z.
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Al1 the properties of invertible linear transformations have their counterparts for non-
singular matrices. In particular, left inverses (if they exist) are unique, and every left
inverse is also a right inverse. In other words, if A is nonsingular and BA = Z,  then
AB = Z. We cal1  B the inverse of A and denote  it by A- l. The inverse A-l is also nonsingular
and its inverse is A.

Now we show that the problem of actually determining the entries of the inverse of a
nonsingular matrix is equivalent to solving n separate nonhomogeneous linear systems.

Let A = (a,,) be nonsingular and let A-’ = (bij) be its inverse. The entries of A and
A-l are related by the n2  equations

where c?,~  = 1 if i = j, and 6$+ = 0 if i # j. For each  fixed choice  ofj, we cari  regard this
as a nonhomogeneous system of n linear equations in n unknowns blj,  bzj, . . . , bnj  . Since
A is nonsingular, each  of these systems has a unique solution, the jth column of B. Al1
these systems have the same coefficient-matrix A and differ only in their right members.
For example, if A is a 3 x 3 matrix, there are 9 equations in (16.31) which cari  be expressed
as 3 separate linear systems having  the following augmented matrices:

If we apply the Gauss-Jordan process, we arrivi : at the respective aL U .gmented  matrices

b 1 3

b 23 .

b 331

In actual  practice we exploit the fact that a11 three systems have the same coefficient-matrix
and solve all three systems at once by working with the enlarged matrix

I ail azl a31 a12  a32  a22 a13  a23  a33 0 0 1 0 0 1 0 0 1 1 .

The elimination process then leads to

1 0 0 b,, bu bn
0 1 0 b,, b,, .
0 0 1 b,, b,,

b,,  1
b,,

The matrix on the right of the vertical line is the required inverse. The matrix on the left
of the line is the 3 x 3 identity matrix.
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It is not necessary to know in advance  whether A is nonsingular. If A is singular  (not
nonsingular), we cari  still apply the Gauss-Jordan method, but somewhere in the process
one  of the diagonal elements Will become zero, and it Will not be possible to transform A
to the identity matrix.

16.20 Exercises

Apply the Gauss-Jordan elimination process to each  of the following systems. If a solution
exists, determine the general solution.

1 .  x+y+3z=  5 5. 3x -2y + 5z + II = 1
2x -y +4z  = 11 x+ y-3z+2u=2

-y+ z= 3. 6x + y - 4z + 3u = 7.

2. 3x +2y + z = 1 6. x+y-3zf  u=5

5x + 3y + 3z = 2 2 x - y +  z-2u=2
x +  y -  z = l . 7x +y - 72 + 3u = 3.

3.3x+2y+  z = l 7. x + y + 2z + 3u + 411 =o
5x + 3y + 32 = 2 2x + 2y + 72 + Ilu + 140 = 0
7x + 4y + 5z = 3. 3x + 3y + 6z + 10~ + 150 = 0.

4. 3x +2y + z = 1 8. x -2y+ z f2u = -2
5x + 3y + 32 = 2 2x +3y - z -5u = 9

7x + 4y + 5z = 3 4 x - y +  z -  u= 5
x +  y -  z=o. 5x - 3y +2z  + u = 3.

9. Prove that the system x + y + 2z = 2, 2x - y + 32 = 2, 5x -y + az  = 6, has a unique
solution if a #  8. Find a11 solutions when a = 8.

10. (a) Determine a11 solutions of the system

5x+2~-6z+2u=  -1
x -  y +  z -  u=-2.

(b) Determine a11 solutions of the system

5x+2y-6z+2u=-1

x-ysz- u = - 2

x+y+z = 6.

11. This exercise  tells how to determine a11 nonsingular 2 x 2 matrices. Prove that

[; ;][-c -3 =(ad  -bc)Z.
a b

Deduce that [ 1c d
is nonsingular if and only if ad - bc #  0, in which case its inverse is

1 d -b[ 1a d - b c - c  a’
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Determine the inverse of each  of the matrices in Exercises  12 through 16.

1 2

! 2 - l

2

13.

1 3

1. 1

-0 1 0 0 0 o-

2 0 2 0 0 0

2 0 3 0 1 0 0
16.

0 0 1 0 2 0

0 0 0 3 0 1

0 0 0 0 2 0-

16.21 Miscellaneous exercises  on matrices

1. If a square matrix has a row of zeros or a column of zeros, prove that it is singular.
2. For each  of the following statements about  n x n matrices, give a proof  or exhibit a counter

example.
(a) If AB + BA  = 0, then A2B3  = B3A2.
(b) If A and B are nonsingular, then A + B is nonsingular.
(c) If A and B are nonsingular, then AB is nonsingular.
(d) If A, B, and A + B are nonsingular, then A - B is nonsingular.
(e) If A3 = 0, then A - Z is nonsingular.
(f) If the product of k matrices Al  . . Ak  is nonsingular, then each matrix Ai  is nonsingular.

1 2

[ 1

-6 0
3. IfA  =

5 4’
find a nonsingular matrix P such that P-‘AP  = L 10 -1 .

a i
4. The matrix A = [ 1i b

, where i2  = -1, a = i(l +  dj),  and b = $(l - &),  has the prop-

erty that A 2 = A. Describe  completely a11  2 x 2 matrices A with complex entries  such that
A2 = A.

5. If A2 = A, prove that (A + Z)”  = Z + (2k  - 1)A.
6. The special theory of relativity makes use of a set of equations of the form x’ = a(x - ut),

y’ = y, z’ = z, t’ = a(t - ~X/C~.)  Here v represents the velocity of a moving abject,  c
the speed of light, and a = C/~/C~  - v2, where lu/  < c. The linear transformation which
maps the two-dimensional vector  (x, t)  onto (x’, t’)  is called a Lorentz transformation. Its
matr ix  re la t ive  to  the  usual  bases  i s  denoted  by  L(v)  and  i s  g iven  by

L(u)  = a[-ic-,  y’].
Note that L(u)  is nonsingular and that L(0) = Z. Prove that L(z;)L(u)  = L(w), where w =
(u + u)c2/(uo  + c2). In other words, the product of two Lorentz transformations is another
Lorentz transformation.
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7.  If  we interchange the rows and columns of  a  rectangular  matrix A, the new matrix SO ob ta ined
is called the transpose of A and is denoted by At.  For example, if we have

i 1 2 3

A = 4 5 16 ’

Prove  tha t  t ransposes  have  the  fo l lowing  proper t i es :
(a) (Ai)t  = A. (b) (A + B)t  = At + Bt. (c) (CA)~  = CA~.
(d) (/tB)t  = BtAt. (e) (At)-l  = (A-l)t if A is nonsingular.

8. A square matrix A is called an orthogonal matrix if AA t = 1.  Verify that the 2 x 2 matrix
COS  0 -sin 19

s in  8 COS 8 1
is orthogonal for each  real 0.  If A is any n x n orthogonal matrix, prove

that its rows, considered as vectors in V, , form an orthonormal set.
9. For each  of the following statements about  n x n matrices, give a proof  or else exhibit a

counter  example.
(a) If A and B are orthogonal, then A + B is orthogonal.
(b) If A and B are orthogonal, then AB is orthogonal.
(c) If A and AB are orthogonal, then B is orthogonal.

10. Hadamard matrices, named  for Jacques Hadamard (l%S1963),  are those n x n matrices
wi th  the  fo l lowing  p roper t i e s :

1. Each  entry is 1 or -1.
II. Each  row, considered as a vector in V, , has length z/n  .

III. The dot product of any two distinct rows is 0.
Hadamard matrices arise in certain problems in geometry and the theory of numbers, and
they have been applied recently to the construction of optimum code words in space com-
munication. In spite of their apparent simplicity,  they present many unsolved problems. The
main unsolved problem at this time is to determine a11 n for which an n x n Hadamard matrix
exists. This exercise  outlines a partial solution.
(a) Determine a11  2 x 2 Hadamard matrices (there are exactly 8).
(b) This part of the exercise  outlines a simple proof  of the following theorem: Zf A is  an
n x n Hadamard matrix, where n > 2, then n is a multiple qf  4. The proof  is based on two
very simple lemmas concerning vectors in n-space. Prove each  of these lemmas and apply
them to the rows of Hadamard matrix to prove the theorem.

LEMMA 1. If X, Y, Z are orthogonal vectors in V, , then M‘e  have

(x+ Y>.(X+Z)  = (IXll2.

LEMMA 2. Write X = (x1,  . . . , x,), Y = (y1  , . . . , y,), Z = (zl,  . . . , zJ. Zf each  com-
ponent xi,  yi , zi  is either 1 or - 1, then the product (xi  + yi)(xi + ZJ is either 0 or 4.





ANSWERS TO EXERCISES

In t roduc t ion

*1 1.4 Exercises (page 8)

1. (a) $b3 (b)  b3 ( c )  =&b” (d) $b3 +  b (e) +ab3 + bc
2. (c) &b4 + bc

bkfl .bk+l
3 .  (b) s,  < k+l < S, (c) k+l + b c

12.5 Exercises (page 15)

1 . A = (1, -l},  B = {l},  C = {l},  D = {2},  E = (1,  -17},
F = (1, -17, -8 + &?, -8 - 2/4?}.

2 .  Ac A,Bs A,B& B,Bc C,Bç  E,Bc F,Cs  A,C& B,Cc C,Cc  E,Cc F,
D E D, E c E, E c F, F c F. (Not counting “proper” inclusions.)

3. (a) True (b) True (c) False (d) True (e) False (f) False
4. (a) True (b) True (c) True (d) True (e) False (f) False
5. !a{119  (21,  (31,  {4),  {1,2), {1,3), {1,4), {2,3), (2,419  13941,  {1,2,3),  {1,2,4),  (1939  41,

{2,3,4),  s
6. (a) False (b) False (c) False (d) True (e) False (f) False

Cg)  nue (h) False (i) True
17. (c) A c C (d) Yes (4 No

14.4 Exercises (page 35)

2 .  1  -4+9-16+~~~+(-l)n+1n2=(-l)n+1(l +2+3+...+n)

3 .  1+;+;+...+;=2-f

4 .  ( 1  -i)(l  -y .  ..(l -5> =;

n+l
5. 3-7

6. (b) A(1) is false (c) 1 + 2 +
(2n  + 1)2

* * ’ + n <8

7 . n1 = 3

14.7 Exercises (page 39)

1 . (a) 10 (b) 15 (c) 170 (d) 288 Ce>  3 6 (f) f
8 . (b) n + 1

617
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9. Constant = 2
11.  (a )  True (b) False (c)  F a l s e (d) False (e) False (f) False

n
1 2 .  -

n+l

14.9 Exercises (page 43)

2. (a1 , b,), (a2 > b,), 6%  > bJ,  6%  > ho),  6%  > bJ> b6 > b,), (a7, b,), (a*, bd>  (ug  > bd,  (a10  > bl)
3. (a) False (b) True (c) True (d) False (e) False

*14.10 Miscellaneous exercises involving induction (page 44)

1 . (a) 10 (b) 1 (cl 7 (4 21 (e) 6 8 0 (0 1
2 . (b) 17 (cl 9 (4 No

5 .  hak  =
nfl

li cluk = an-tl'  17 ak
k=l

8 . 2n
9 . True if each a, 2 0

11. n24

Chapter 1

1.5 Exercises (page 56)

1.  f(2) = 3,f’(-2)  = -1, -f(2) = -3,f(&)  = ;, l/f(Z) = ;,f(a -t-  b) = a + b + 1,
,f<u>  +f(b) = a + b + 2,f(u)f(b)  = ab + a + b + 1

2. ,f(2) + g(2) = 2,f(2)  - g(2) := 4, ,f(2)g(2) = -3,f(2)&(2)  = -3,f[g(2)] = 0,
g[,fWl  = -2,,/(a)  +g(-a)  = 2 + 2u,f(t)g(-r)  = (1 + tj2

3 . q’(O)  = 4, y)(l)  = 2, p(2)  = 2, ‘p(3) = 2, ~(-1)  = 6, ~(-2)  = 8, t = 1.
4. (a) Al1 x (b) Al1 x and y (c) All x and h (4 AIl  y (e) All  t

(f) All a

5. (a>  Ix/  I2 (b) lyl  I 1 cc>  )tl  2 4 (d) 0 < a < 4 Ce)  1~1  54
(0 1x1 12, x+0

6. (b) {x  10  < x 5 l} (cl {x I 2 I x I 4) (d) Domain  is empty
7 . Intersect when x = 0, 1, - 1
8. Intersect when x = -1, -3

10. (a) p(x) = 1 (b) p(x) = +,x(x  - 1) + 1 (c) p(x) = ax(x - 1) + 1, a arbitrary
(d) p(x) = ~X(X  - 1) + b, a and b arbitrary

11. (a) p(x) = ax(l - x) + b, a and b arbitrary (b) p(x) = c, c arbitrary
(c) p(x) = ux, a arbitrary (d) p(x) = c, c arbitrary

1 2 .  ( a )  $(2cjxk (b) 2 xk cc> ““$lxk

k=O k=O k=O

1.11 Exercises (page 63)

5. [nxl  = 2 [x + y
k = O

1.15 Exercises (page 70)

1 . (a) 2 (b) 4 Cc) 6 (4 4 (4 6 (0 -6
2 . Oneexample: s(x) = g if 0 5 x < 2 , S(X) = - 1 if 2 < x 5 5
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5. (b) 2.& k(2/k - dk) = 2(21 - 32/2 - dj - & - 46 - 45)
6. (c) x=1,x=$
7. (a) 1 3

10. (a> f(3) = l,f(4) = -l,f[f(3)1  = 0 (b) p = 14,~ = 15

11. (ah (4,  (4
12.  (a>, @A Cc>

1.26 Exercises (page 83)

1 . 9 6. 2 11. “a’-
2. 1 8 1. 0 12. 1 8
3. 1 6 8. 0 13. 4
4. 0 9. 6 14. -4
5. 1 10. 1 1 15. 2

21. (a) 0, i (b)  0
22. (a) 8 (b)  42
23. p(x) =6x - 6x*
24. p(x) = 4x + 8x2 + 3x3
27. (l/A)  ~A::H~(X)  dx if A # 0; (b - a),f(B) if A = 0.

16. f;
17. -78
18. 2QZ.35
19. 5”/21
20. -211111

Chaptrr 2

2.4 Exercises (page 94)

1.  3;~

2. 3:

3. ii
4. :

5. j12-

6 4d2 3vz 1. -
3 -2+ïi

42/2 3vz 1
7. 3-y+;

8. i(10 - 41/2)
17. (a) 9x/2 (b)  42

2.8 Exercises (page 104)

9. 4:52/5  - 3)

10. $

11. 3
12. ;

13 92/3-l

27

14. 5

15. c =+

(c) -6~
16. a = -2

No@: In Exercises 1 through 13, n  denotes  an arbitrary integer.

1 .  ( b )  &~+m
2. (a) &T + 21277 ( b )  2m ( c )  $7 +2m (d) (2n + 1)~

6. tan (x + y) =
tanx + tany cotxcoty - 1

1 - tanxtany
; cet  (x + y) = cet  x + coty

7. A=$,B=;1/3

8. A = CCOSU,  B = Csinu
9 . C = (A2  + B2)1’2. If A2 + B2 #  0, choose GI SO that COS c(  = AIC,  sin t(  = BIC.

If A = B = 0, choose any  CL
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10.

11.
12.
13.
17.

18.
19.
2 0 .

c = 242,  a = 5ir/4
c = 1/2, a = -a/4
$77  i- n?r
$77 +2m;  r +2m
(4 1 - ;y’3 (b) 1
(I-4 +(2/3 - vt’)
&r” + 2
1 + ~~124
0

- ;dZ (c) ; (4 1 Ce) 2 (0 0 (g) 0

2 1 . 22/2 - 2
2 2 . &r
2 3 . 16  + 7~16

24.  d? +$x+sinx  +x/6ifO <x 12a/3;  243  -&x  -sinx  +5n/6if2a/3  Ix <n
2 5 . (x6 - x3)/3 + COS x -.cos (x2)
2 6 . 1
2 7 . 1

2.11 Exercises (page 110)

5 . 47?/3 9. 8~
6 . T 10. 748
7 . 2rr 11. 4
8 . 4~ 12. 2

2.13 Exercises (page 114)

1. =c2b3/3  5. ,y2
2 . 42  6. n2/4
3 . 2~13  7. 2
4 . 33x/5  8. n/2

17. ; (B,  + 4M  + B,)

18. (a) Sa/5 (b)  277 (c)  107r/3

2.15 Exercises (page 116)

1. 60 ft-lb
2 . 125 joules; 0.8 meter
3 . (a) 441 joules (b) 425 joules
4 . a=3,b=-2

2.17 Exercises (page 119)

1. (a2  + ab + b2)/3
2 . 3%
3 . Q
4 . *g

5 . 2/n
11. c = a/2/3;  c = a/(n  + l)lln
12. (a) w(x) = x (b) w(x) = x2
14. Al1  three
16. (a) L/2 (b)  L3/3 (cl L/ýj ,-

9 . 3a/lO 13. (332  - 4d3)7rr3
10. a/2 14. a = Q
11. 2Try3 15. 16&/3
12. g 16. 4a5/5

( d )  16~/15

5 . 3750 ft-lb
6 . 5000 ft-lb
7 . 20,000 ft-lb
8 . 21,800 ft-lb

6. 2/a
7. 2/x
8. 11~
9. ;

10. &

(c) w(x) = x3

17. (a) 7L/12 ( b )  5L3/8 ( c )  1/13  L/6
18. (a) 2L/3 (b)  L414 (4 dz u2
19. (a) llL/lS ( b )  31L4/192 ( c )  %G y12

13. 2
1 4 .  3~12
1 5 .  9~~12
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20 .  ( a )  3L/4 (b)  LV cc>  v% Y5
2 1 .  ( a )  21L/32 ( b )  19L5/240 Cc)  l/lgo  L/2Q
22. p(x) = x2 for 0 5  x 1. L gives X = 3L/4
23. (a) 6/7~ (b)  3dl2
24. T = 2~ sec; 802/3

2.19 Exercises (page 124)

1 .
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

x + x2/2  + x3/3

2y  + 2y2  + 8y3/3
s + 2x + 2x2  + 8x3/3
-2x + 2x2 - x3

(3x5  + 5x3  + 136)/15
x10/5  + 2x6/3  - x5/5  - 2x3/3  + x2  - x
x + gx3/2 _  3
f(x3 - x3/3) + Q(X5/3  - x5/4)

sin x
$x2 + sin (x2)
$x2 - +x + COS (x2)  - COS x
+(x3 - COS 3X + 1)
g(x6  - x3 + COS 3x - COS (3x2))
*yy”  + &y  - * sin 2y

15. 2sin5  - +COS~~ + +

16. 8(x + r) + sin x + $ sin 2x
17. 0, zkv?
18. (c) P(x) = ;(x  - [XI)~ - $(x - [xl) (4 $5
20. (b) g(2) = 2A,g(5)  = 5A (c) A = 0

Chapter 3

3.6 Exercises (page 138)

1 . a 5. 2t 9. 0 13. 1
2. - 1 6. -1 10. 0 14. - 1
3. 4 7. 1 11. 1
4. 1 8. 0 12. -1

22. a = (sin c - b)/c  if c #  0; if c = 0 there is no solution unless b = 0, in which case any  a
Will do.

23. a = (2 COS c - b)/c2  if c #  0; if c = 0 there is no solution unless b = 2, in which case any  a
Will do.

24. The tangent is continuous everywhere except at x = 3~ + m, where n is any  integer; the
cotangent is continuous everywhere except at x = m,  where II is any  integer.

25. f(x) + 1 a s x -+ 0. Definef(0) = 1 for continuity at 0.
28. No
29. No
30. f(x) -f 0 as x - 0. Definef(0) = 0 for continuity at 0.
32. f(x) - 0 a s x -t 0. Definef(0) = 0 for continuity at 0.
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3.8 Exercises (page 142)

1 . x2 - 1, allx 6 . - x , x 20

2 . (x - 1)2,  a11 x 7 . sin 6, x 2  0
3 .  (xl, a11 x 8. dGx, 2ksr  5  x I (2k + I)n,  k an integer

4. 0, cleflned  only at x = 0 9 . J x  i-2/x,x  > o

5 . x,x > 0 10. Jx+dX+  JX+xxo

11. -3 13. 1 15. 1 17. 0 19. 1
12. ti  14. 1 16. 2 18. 2 20. +j
2 1 .  x2ifx 20; Oifx  <0
22. 1 if 1 5  1x1 I &; 0 otherwise
2 3 .  x2ifx 20; Oifx  <0

3.15 Exercises (page 149)

1 . g(y) - 1; ally= y
2. g(y) = +(y  - 5); a11 y
3. g(y) = 1 ally- y ;
4. g(y) = y1/3; a11 y
5.  g(y) =yif-y  < 1; djif 1 <,y  Il6; (y/8)2ify  > 16

3.20 Exercises (page 155)

3 . 0.099 669 rounded off in the sixth decimal  place

4.6

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10.

11.

12.

13.

14.
16.

Chapter 4

Exercises (page 167)

;yl=y(:)  = O,f(l)  = -l,f’(-10) = -19
a

2x + i
(b)  0, -1 (cl 3, -4

4x3 + COS x
4x3 sin x + x4 cas  x
-1/(x + 1)2
-2x/(x2  + 1)2  + 5x4 cas  x - x5 sin x
-1/(x - 1)2
sin x/(2 + cas  x)2

2x5  + 9x4  + 8x3  + 3x2  + 2x - 3-
(x4 + x2 + l)Z

1 - 2(sin  x -t cas  x)
(2 - COS xy

sin x + x cas  x 2x2  sin x
1 +x2 -(1

(b) vo/32 sec (c) -vo ft/sec (d) 16 ft/sec;  160 ft/sec;  16Tft/sec
(f) f(t) = u,t - lot2  is one  example
3x2,  where x is the length of an edge
&x-ll2
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- 1

17*  22/X(1 + IL,”
18. ~x112
19. -2-x 3 -512

2 0 . ;x-l/2  + g,-2/3 + &-3/4

2 1 . -1 -3/2 _ 1 -4/3 _2x  3X
&5/4

1  - x
2 2 .

2dX(l  + x)2

2+v5

23*  2(1 + &>”

2 6 . sec x(1 + 2 tan2  x)
2 7 . x sec2 x + tan x

2 8 . -(x-2 + 4x-3 + 9x-4)

2(1 + x2)
29.  (1 - ,2)2

2(1  - 2x)

30.  (1 - x + x2)2

x COS x - sin x
3 1 .

X2

32. -
1 + COS x

(x + sin x)~

ad - bc
3 3 .  ~

(cx + dj2

34. -
(2x2 + 3) sin x + 4x COS x

(2x2 + 3)2

35  (2ax  + b)( sin x + COS x) + (ax2  + bx + c)(sin x - COS x)
1 + sin 2x

36.  a=d=l;  b = c = O
z (y-4  -h+j~

3 7 .  a=c=e=O;  b=f=2; d = - 1

38.  (a)
nx”+’ - (n + l)xn  + 1

( x  - 1)2

(b)
n2xnf3  - (2n2 + 2n - l)xn’2  + (n + l)Zxn+’  - x2 - x

( x  - 1)3

4.9 Exercises  (page 173)

1. 1, 3
2. (a) -l,* (b) 4, 0 (c) -2, $
3 . (2n + 1)x, where n is any integer
4 .  a=-2,b=4
5. a = l ,b  =O,c = -1
6. (a) x1 + x2 + a (b)  ;<XI + ~2)

7 . Tangent at (3, -3); also intersect at (0,O)
8 . m = -2, b = -2, a = 4, c = j$
9. a = 2c, b = -c2

10. a = k, b = - h3

11. a =cosc,b  = s i n c  -~COS~

&(lY  G)r;

1+34x 31+42/x+5x
12. -

2(x + dx)Q; - 4 &(x  + 4X>”

13. a = -4, b = 5, c = -1, d = -2

14. (a) y (b) 2 cc>  t
15.  (a )  True (b) T r u e (c) False ifJ’(a)  # 0. Limit is 2f’(a)

(d) False iff’(a)  # 0. Limit is if’(a)
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16. (a) o*(f  +g)  = (1 +g/f>D*f  + (1 + f/g)D*g when f(x) andg(x)  are not 0;
D*(f.g)  =g2D*f  +f” D*g;
D*(flg) = Cg2  D*f - .f 2 D*gYg4  when  g(x)  z 0

(b)  D*f(x) = 2f(x)  pf(x)
(c) f(x) = c for a11 x

4.12 Exercises  (page 179)

1 .
2.
3 .
4.
5.
6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

-2 Cos  x(1 + 2 sin x)
x/Yl +x2
(2x3 - 4x) sin x2 - 2xcosx2  + 2sinx3  + 6x3cosx3
-sin 2x COS (COS 2x)

n Sir+  x COS (n + 1)x
Cos  x Cos  (sin x) cas  [sin (sin x)]

2 sin x(cos x sin x2 - x sin x COS x2)
sin2  x2

2/(sin2  x)

16 COS 2x-~
sin3  2x

1 + 2x2

41 +x2

4(4 - x7-313

2x2 1 + x3 1/3

y-I-77-3c 1
--ci  + 2)-3/2

1 + 2YX  + 4dXg(x)

8d~gCx)dx  + g(x)
, wheregb)  = ix + 4X

6 + 3x + 8x2 + 4x3 + 2x4 + 3x5
(2 + xyq3  + x3)2/3

f’(x) = (x + 1)-Z;  g’(x) = (2x + 1)-Z

x g’(x)  g”(x)
-~~

0 0 0
1 3 10
2 30 36



Amwers  to exercises 625

1 9 .  ( a )  2xf’(x2) cc>  f’[fWfW
(b) [f’(sin2  x) -~(COS~ x)] sin 2x (4 f’<x>f’[,f<x>I.f’{f[f(x>l:

2 0 . (a) 75 cm3/sec (b) 300 cm3/sec (c) 3x2 cm3/sec
21. 400 mph
2 2 .  ( a )  20&  ft/sec ( b )  SO&  ft/sec
23. 7.2 mi/hr
24. (a) and (b) 5/(4~)  ft/min
2 5 . c = 1 + 36~
26 .  dV/dh  =  75~  ft3/ft;  dr/dt  =  1/(15~)  ft/sec

27. T cm2/sec

28. n = 33

29. (a) x = 4, y = $ (b)  id?

4.15 Exercises (page 186)

3. (b) c = +, c = dz
6. (a) 0  =i, 0  -*

(b) 0  =
x + gl

x + dx2 + xh + p12
; o+g i f  x>O

7 . (b) f has at most k + r zeros in [a, b]

4.19 Exercises (page 191)

1. (a) 2 (b)
2 .  ( a )  *Id?

fdecreases if x <-i ; increases if x > $ (c) f’ increases for a11 x
(b) f increases if 1x1 > $43 ; decreases if 1x1 < $43

(c) f” increases if x > 0; decreases if x < 0
3. (a) fl (b) f increases if 1x1 > 1; decreases if 1x1 < 1

(c) f' increases if x > 0; decreases if x < 0
4. (a) 1,3 (b) f increases if x < 1 or if x > 3 ; decreases if 1 < x < 3

(c) f’ increases if x > 2; decreases if x < 2
5. (a) 1 mcreases if x > 1; decreases if x < 1
6 .  ( a )  none  f’

(c) f' increases for a11 x
(b) f increases if x < 0; decreases if x > 0

(c) f’ increases if x < 0, or if x > 0
7. (a) 21/3 (b) f increases if x < 0, or if x > 2113;  decreases if 0 < x < 21/3

(c) f’ increases if x < 0, or if x > 0
8. (a) 2 ( b )  fincreasesifx<l,orifl  <x<2; decreasesif2<~<3,orifx>3

(c) f' increases if x < 1, or if x > 3 ; decreases if 1 < x < 3
9. (a) %l (b) f increases if 1x1 < 1; decreases if Ix 1 > 1

(c) f’increases if -45 < x < 0, or if x > &; decreases if x < -&, or if 0 < x < ti
10. (a) 0 (b) f increases if x < -3 or if -3 < x < 0; decreases if 0 < x < 3, or if x > 3

(c) f’ increases if 1x1 > 3 ; decreases if 1x1 < 3

Note. In Exercises 11, 12, and 13, n  denotes  an arbitrary integer.

11. (a) $n~ (b) f increases if ~TT  < x < (n + 4)~;  decreases if (n - 4)~  < x < rzrr
(c) f’ increases if (n - $)TT  < x < (n + 2)~; decreases if (n + f)~ < x < (n + 8)~

12. (a) 2n~ (b) f increases for a11 x
(c) f’ increases if 2n~  < x < (2n  + I)n;  decreases if (2n  - l)m < x < 2nn
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13. (a) (2n + $)77 (b) fincreases for ah x
(c) f’  increases if (2n + $T S:  x < (2n  + I)n; decreases if (2n  - 3)~ < x < (2n  + $)T

14. (a) 0 (b) fincreases if x > 0; decreases if x < 0 (c) f’  increases for ah x

4.21 Exercises (page 194)

2 . tL  ft wide, +L  ft long

3. Width id!%,  length 1/g
7 .  %EL

10. r = $h = RIZ/;
12. r = $R,  h = 4H
13. r = 2R/3,  h = H/3
14. h  =  ‘1R,  r  =  $d?-R
15. A rec tangle  whose  base  i s  twice  the  a l t i tude
16. Isosceles  trapezoid, lower base the diameter, Upper  base equal  to the radius
17. (a) 6$,  6$,  s

(b) 8 + 2dï,  2 + 22/?,  5 - \‘?
1 8 .  &

19. (a)  202/3  mi/hr;  $10.39
(b) 4042  mi/hr;  816.97
(c) 60 mi/hr;  $22.00
(d) 60 mi/hr;  827.00
(e) 60 mi/hr;  $32.00

2 0 .  ?rr/4
2 1 . Crease = $2/3  inches; angle := arctan  $&’
22. (a) max = 343  r; min = 4r

(b) fL
2 3 . Rectangle has base 4P/(3~i  + S),  altitude P(4 + ~)/(67~ + 16)
2 4 .  V=448nforO  <h <2;  k’=4a(4+h)3/(9h)for/r  22
26  A = 2(““)7/2

27. m(t) = 8 if f2  2 $; m(t) = p - !$ if t2  2 i

“4.23 Exercises (page 201)

1 .

2 .

3 .
4 .

5 .

6 .

7 .

af af-=4x3-8xy2;a;=4y3 azf a?-
ax

_ gxzy;  A = 12~2 - 8y2;  - = 12y2  - 8x2;
ax2 av2

a2f  a-f ’
=y =- = -16xy

i

,fz  = sin(x + y) +~COS(~  +y); .fy = xcosb  + y); ,fyy = -xsin(x +Y);
fzz = 2 COS (X  + y) - x sin (x + y); ,fzv  =fyl  = Cos (x + y>  - x sin (x + y)
Dl,f  = y + y-‘; D,,f  = x - xr2;  D,,,,f  = 0;  D,,,f = 2
f = ( 2 +my2)-1/2.  f = ( 2’+  2)-1/2.  f = ( + D12f  = DzLf = l - y-2
jzv =xx2<x2  +y2)-3;2;ufTu  :jgz  =y-xy(;i;y2;:f Y
fgy  = 6x2y  COS (x2y3)  - 9x4y4  sin (x2y3);
,fzy  =fgz  = 6xy2  COS <x2y3)  - 6.r3y5  sin (x2y3)
fzy =,fyz  = 6 COS (2x - 3y)  COS [COS (2x - 3y)l  + 6 sin2  (2x - 3~)  sin [COS  (2x - 3~11

azf  ay-
- = - = -2(x + y)(x -y)- a2f aY-
axay  ayax 3; z2  = 4y(x  - y)-3;  ay = 4x(x - y)-3

8. fzz = -3Xy2(X2 + y2)-512;  fuy  .= -X(X2  - 2y2)(X2  + ye5j2;

fzy =,fyz  = y(2x2 - y2)(x2  + y”)-5/2
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5.5

1 .
2 .
3 .

Exercises (page 208)

a(b4  - a4)
Q(b5  - a5)  + 6(a2  - b2)
$(b5  - a5)  + a(b”  - ~4)  - (b2  - a2)  - 2(b  - a)

4 . ;(b2-<11)-(a-;>  +;(;-$1

5 .
6 .
7 .
8 .
9 .

10.
14.
15.
16.
17.
18.
19.
2 0 .

(b - a) + $(b3/2  - u3/2) + $.(b2  - a2)
#j(b3/2  - a3/2)

2 1 .

2 2 .
2 3 .
2 4 .
2 5 .
2 6 .

2 8 .

#5/2  _ .5/2) _ 2(b3/2  - a3/2) + 7(b1/2  _ &/2)

@4/3  _ a4/3 - b2/3 + a2/3)

$(b6  - d) - ~(COS  b  - COS a)
$(b7/3  - ~"3) - S(sin  b - sin a)
f($r) = 4gT;  f’&r) = 2 - x

f( t )  = -sin  t;  c  =x/3
f(t) = sin t - 1; c = 0
f(x) = 2x15;  c  =  -g
p(x) = 3 + ix  + $x2
,f”(l)  = 2; f “1  (1) = 5
(a)  (1 + x2)F3 (b) 2x( 1 + x4)-3 (c) 2x( 1 +  x4)-3  - 3x2(1  + x6)-3

2x13 3x20
--~
1 +xs 1 +x12

(a> 16 (b) 1 + ;2/i ( c )  (36)1’3 (4 l
f(u)  = a(3 - COS up
(a> -= (b) 1 -71 (cl 0 ( d )  -rr2 69 3x/2

= - .l

iii  None2
(b) 4 (c)  4 + (x - ;xt - 1) (d) ‘,(t  - 1) + (r - i)(r  - 1)2/2
(b) One example isf(x) = x + x2 ( c )  None

(d) One example isf(x) = 1 + x + x2 for x 2 O,f(x)  = l/(l - x) for x < 0
(a) implies x and c); (b) implies a; (c) implies c(  and y; (d) implies E and d;
(e) implies G(,  6,  and E.

5.8

1 .
2 .
3 .
4 .

5 .

Exercises (page 216)

g2x + 1)3/2 + c

(,$)(l  +  3x)5/2  - (,27)(1  +  3x)3/2  + c

$(x + 1) 7’2 - -5;(.~ + 1)5/2 + gx + 1)3/3  + c
- 2"7

1 12. î(cos  2 - COS 3)
-

4(x2 + 2x + 2)2
+c

COS x”

6 .
7 .
8 .
9 .

10.

11.

~COS3X-COSX+C
13. - -  + c

& - 1)7/3 + & - 1)4/3 + c

,-csc;x  +  c
14. $1 - x6 + c
15. $(l + t)9/4  - -j;(l + t)5/4  +  c
16. x(x2 + 1)-1/2  +  C

&G+c

17. &(8x3  + 27)5’3 +  C
18. $(sin x - cas  x)2/3  +  C

19. 22/1+  dïT?  +  c
2 0 . -gx - 1)2'5 + c

Chapter 5
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5.10 Exercises (page 220)

Answers to exercises

1 .
2.
3.
4.
5.
6.

15.
17.
18.
19.
20.

sin x - x COS x + c
2xsinx + 2cosx  -x2cosx  + C
x3sinx  + 3x2cosx  - 6xsin.r  - 6cosx  + C
-x3 COS x + 3x2 sin x + 6x COS  x - 6 sin x + C

3 sin2  x + C
+sin2x  - axcos2x  + C
( b )  (%/32)a6
$(3%%l  + 43 - 11.35)
tanx -x; *tan3x  - tanx +x
-cet x - x; -$cot3x  + c o t x  + x
(4 n=4 (b)  2

*5.11 Miscellaneous review exercises (page 222)

1 .
2.
6.
7.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
22.
23.
24.
26.

g(“)(O)  = 0 if 0 5  k < n - 1 ;  g(n)(O) = n!
6x5 - 15x4 + 10x3 + 1

3
s,’
y = 16x2/9
(b)  j-‘(O)  = 0
-5 cas  5x + -,35 sin 5x - $x cas  5x
$(l + x2)3/2

-3l”/20
3718281
&(l  + x5)6

1/265650
COS 3  - COS 1
[12(x - 1p - 241 sin (x - l)l/*  - 4[(x - 1)3’4 - 6(x - 1)1/4] COS (x - 1)lj4
* sin2  x2
-$(l + 3 COS2  x)3/2
a=9, b==  2
isg ‘8 pz zse> 3.59 ’ 693

1 x13I?i +  ix12  +  Lx11

3

27.;
1

; + - -
a+2

A

34. (a) p(x) = -x2 + x - 1
35. (a) PI(x)  = x - $; P2(x) = x2 - x + 4; P3(x) = x3 - %x2 + +x;

P4(x) = x4 - 2x3 + x2 - $6; P,(x)  = x 5  - :x4 + 8x3  - +x

Chapter 6

6.9 Exercises (page 236)

1. (a) 1 (b)  (a + b)/(l + ab)
e - l

2. (a) 0 (b)  - (cl  4
Ce”

e + l (4 +

3. Increasing if 0 < x < e, decreasing if x > e; convex  if x > e312,  concave if 0 < x < e312
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4 .

5 .
6.
7.
8.
9.

15.
16.
17.
18.
19.
20.
21.

22.

23.

24.
25.
26.

27.

34.
35.
36.

(2x)/(1  + -6
n(x  +  d l  +  X2)n

10. -
1/1 +x2

X/(l  + x2) 11 .  1/[2(1  +  dx  +  l)]
x/(x2 - 4)
1/(x  log  x)

12. log (x + dx2 + 1)

(2/x)  + 1/(x  log  xl 1 3 .  l/(a  - bx‘q
x/(x4 -1 ) 14.
-1/(x log2  x)

2 sin (log x)

ilog  12 + 3x1 +  c
x log2  1x1 - 2x log 1x1 + 2x + c
$x2 log 1x1 - ix” + c
$x21og2  1x1 - zlx21og 1x1 + $X2  +  c
3
log Isinxl  + C

2  log laxl - G2S C  i f  nf-1; *10g21axl + C  i f  n  =  - 1

X3
3 (log2  1x1 - + log 1x1 + 8) + C

log pog  XI + c
- 2
Q(-2 + log ~x~)dl + log 1x1 +  c
X4
4 1ogs  1x1 - -&x” log2  Ix( + $$X”  log 1x1 - &x4 + C

4logx
3 + 3 log x.
aloga

6.17 Exercises (page 248)

2: 1 3e3$-l  8xe4r2
3. - 2xeexz

ez/Z

4. 2&
el’”

5. -7

13. e”(x  - 1) + C
14. -e-=(x  + 1) + C
15. eZ(x2 - 2x + 2) + C
16. -&eëzz(x2 + x + 4) + C
17. 2(1/X  - l)ed5 + C

2 4 . CIax’+l  + axa-%z””  log u + u5uaz(log  u)~
25. l/[x  log  x log (log x)]
26 .  eZ(l  +  e2x)-1’2

2 7 .  xXxX’ f + log x + (log x)2 1

6. 2” log  2
7. 21+x2x log 2
8. (Cos x)esin  z
9. -(sin 2x)ecoszz

10. 1
11. exee”
12. exeezee

ez

18. -$(x2 +l)e&  + C
19. b = eu,  a arbitrary
21. x5(1  + log x)
22. 1 + (1 + 2x + 2x2)ez2
23. 4(er  + e-r)-2

28.
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29. 2x-lf’og  sz  log x

3. (log XF
. - [x - 2(log  x)2 + x log  x log  (log x)]$+log  CE

31. (sin x)lfCoSZ [c0t2 x - log (sin x)] - (Cos x)lfsinz [tan2  x - log (cas  x)]
32. ~-~+~/~(l  - log x)

33.
54x - 36x2 + 4x3 + 2x4

3(1 - x)2(3  - x)‘q3  + x)5/3
n n

34.
T-T (x - ai)bi

c
b,-

i=1 k = l
x - aL

6.19 Exercises (page 251)

16. Q
17. t
18. sinh x = &,  cash  x = +$
19 * 31

1 2
20  * zo

2 5

6.22 Exercises (page 256)

1
12. y4  _  x2 if Ix( < 2

13.
dl  + ix - x2

if Ix - 11  8:  fi

COS x
15. F, i f  x # (k  +  &,  k  a n  integer

VG
1 6 .  -

2(1 +x>
i f  x20

1 +x4
1 7 .  -

1 +x6

18. - i f  x#O

2 9 .  arcsin i + C

x+1
3 0 .  arcsin -

dz  +c

1
31. - arctan  x +  C

a a

19.

20.

21.

22.

23.

24.

25.

27.

sin 2x
sin4  x  +  cos4  x

if x #  (k  + 3)~

C O S  x + sin x

Ysin
if kn  < x < (k  + $>n

1x1 d; - x2
if 0 < 1x1 <  1

l/(l  +x2) if x #  1
4x

dl  - x4(arccos  x2)3
if (xl < 1

1

2x dx  - 1 arccos  (I/d;)
if

3x
(1 - x2)2

+ (1 + 2x2)  arcsin x

(1 - x2)5/2

X>l

3 2 .  $arctan($x)+  C i f  a b  >  0 ;

a

2 la\4 -ab log
%q  +xqq
diai-xd--i  i-C i f  a b < O
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3 3 .

3 4 .

3 5 .

36.

37.
38.

3 9 .

4 0 .

4 1 .

4 7 .

-$ arctan  $-j$ + C

&I(l  + x2)  arctan  x - x] + C

X3
- arccos  x -
3

2+d1 -x2+c

&(l  +  x2)(arctan  x)2  - x arctan  x + i log (1 + x2)  +  C

(1 + x) arctan  1/X  - 2/X  + C
(arctan  &)2 + C

+(arcsin x + xl/1 - x2) + C
(x _ ‘)pctan  z

2dl  +x2
+ c

(x + ‘)clrct;rn  x
+ c

2dl  +x2

4 2 .

4 3 .

44.

4 5 .

4 6 .

1 X
- arctan  x - -
2 ( 1 +x2 1

+ c

arctan  e” +  C

arccot  ez
$ log (1 + eë2’) - ~

e”
S C

(I arcsin X - du2 - x2 + C

2(b  - a) x - u

T-7  arcsin J-X+c

4 lb  - a/ (b - a) arcsin
J
E + iz/(x  - a)@  - x) [2x  - (a + b)]  +  c

6.25 Exercises  (page 267)

1 .

2 .

3 .

4 .

5 .

6 .
7 .
8 .

9 .

10.

11.

12.

13.

14.

15.

log Ix - 21 + log jx + 51  +  c

4 l o g
(x + 214

(x + 1)(x  +  3)3 + c
1 x - l-~

3(x - 1) + g l”g x+2 + c
I 1

4x2 - x + log
x3(x + 2)

/ 1x - l
+c

lodx+‘I  -&+2&+c
2 log Ix - 11  +  log (x2 + x + 1) + c
x + + arctan  x - 8 arctan  (x/2) + C
2 log 1x1 - log [x + 11  +  c

log 1x1 - $log(x2 + 1) +
$TÏ)+c

9x2 + 50x + 68

4(x + 2)(x + 3)2
+ g log

(x+1)(x+2)16  +c
(x + 3117

-& + log Ix + l/ +  c

$log  1x2 - 1 1 - log 1x1 +  c

x+$logIx-21  -$log(x+31  + c

log Ix - 21 - & + c

1
- - arctan  (x - 2) + C
2 - x
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.
38.
39.

40.

4 log  Ix + 11  - $ log  [XI  - 2 log Ix + 21 +  c

1 log
x+1I I X
-
x - l

--+c
2(x2 - 1)

(x - 1>2
mx2+x+1 +c

1%  I-4 + & + c
1 1 1 x - 2

G + 4x2  + jj 1% y--l /
-l c

1x1
‘%2/1  - x + arctan  x + C

2 log I(x  - 1)/(x  + l)l - 4 arctan  x + C

1 log
x2+xdZ+1  1 Xz/Z

4d2 x2-xdZ+l
+ -7 arctan  -

2d2
+C

1 -x2

(x2 + 2x + 2)-l  + arctan  (x + 1) + C

-x/(x5 + x + 1) + c

a + cas  x + du2  - 1 sin x
S C

1 + a COS x

x - iz/Z arctan  (V? tan x) + C

1
- arctan
ab

C O S  x
a(a sin x + b COS x)

+C

(Tr/4) - fr log 2

4x1/3 - x2 + $ arcsin

-Y3 -x2+c

1/3 - x2 - v?  log
(
Y3--- x2 + %/3
- -

)
+C

X

4-x2+x+~log(2~+2x+1)+c- -
$xdx2 + 5 + & log  (x + 4x2 + 5) + c
.t/xZ+x+l  -qlog(2xfl +22/x2+x-I-l)+C
log(2x+l  +22/xZ+l)+C

-42-x-x2 $4
X

+41og
(
“‘-X-*-$) -ap-sin(??$!)  +C
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6.26 Miscellaneous review exercises (page 268)

1. f(x) +f(l/x) = ;(logx)2

2. f(x) = log 2/3/(2  + COS x)
4. 1

6. (a) x 2 1 (c) F(ax) - F(a); F(x) - - + e;
X

7. (a) No such  function (b) -2” log 2 (c)  Jx f 1
9. (a) g(3x)  = 3ezzg(x) (b) g(nx)  = .etn-l)zg(x) cc>  2 (d) C = 2

10. f(X) = b”‘“g(x), whereg is periodic with period a
1 2 .  ( a )  -Ae+ (b)  iM (c) A + 1 - te (d) e log 2 - A
13. (b) c,,  + nc,  + n(n  - l)c,  + n(n  - l)(n - 2)c,

(cl  IfpW  =zckxk,
k = O

thenf(“)(O)  =sk!  (b)  ck
k = O

16. (a) ~X”(X  + (xl)

(b) x - +x3
11x1  .if 1x1 < 1; x -3x 1x1 + 6~ If 1x1 > 1

(c) 1 - eëz if x 2 0; e” - 1 if x < 0

214  .(d) x if 1x1 < 1; $x3 + 3; if 1x1 > 1

17. f(x) = d(2x  + l)/n
18. )a)
19. (a)
20. (a)

25. (d)

27. (a)
(b)

Id>

28. (b)

$(l  1 e-2t) (b) &r( 1 - e-4t) (c) +v[l  - e-2t(2t  + 1)]
log3 - 2log2 (b) No real x exists
True (b) False (c) True (d) False if x < 0

(4 =

0

f(t) = 2QG  - 1 if t >  0
f(t) = t - +t2  + 4 if 0 < t 5 1
f(t) = t - if3 + + if jtl  5 1
f(t)=t i f  t<O;  f(t)=et-1  i f  r>O

(c) b = log 2 (d) e2  Li (e22-2)

29. g(y) = -eu;  a11 y
30. (b) constant = s .

Chapter 7

7.8 Exercises  (page 284)

8.  (b)
55$4 dz
672  + R, where IRI 1~  <2.10-4

9. 0.9461 + R, where IRI < 2. lO-*
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7.11 Exercises (page 290)

1 . 1 +x1og2  +4x21og22
2 .  cosl +(cosl  -sinl)(x-l)-i(2sinl  +cosl)(x-1)2+Q(sin1  -3cosl)(x-1)3

3. X-X2--5+;-$+;

4 .  a=o,  b=l,  c=-$
5 . -g 10. 1 15. *
6 . a/b  11. 1 16. -1
7 . 3 12. loga/log  b 17. -1
8 . -8 13. + 18. Q
9 . 3 14. 4 19. 1

30. a =2;  limit =f
33. f(0)  =  0 ;  r(O)  =  0 ;  ,7(O) := 4; l imit = e2

2 0 . - 2 2 5 .  -e/2
2 1 . g1oga 2 6 .  ed2
2 2 . Q 27 e116
2 3 . l/e 28: 4
2 4 . e3 29. +

7.13 Exercises (page 295)

1 . y 5. (a/b)2 9. 1
2 . -2 6. + 10. - ;

3 . Q  7.. l/#% 1 1 .  n(n + 1)/2
4 . -Q  8. - 2 1 2 .  $(a2 - b2)/(a2b2)

13. 6 a s x  - 0 ;  4/nasx -7112
14. a = -3; b = f
15. a = 4; b = 1
16. (a) T(x)  = tan ix  - + s in  x (b) S(x) = 1x - 4 sin x (cl s
17. tE/L

At COS kt
18.

- 2 k

7.17 Exercises (page 303)

1 . 0 8 . e/2 15. 0
2 . 1 9 . +m 16. 1
3 . & 10. 1 17. - 1

4 . I/&l 11. 0 18. 1
5 . 2’4 12. 0 19. e
6 . 1 13. * 2 0 . 1
7 . 0 14. 0 2 1 . l/e

2 9 . 4
30. c = 1; limit = $43
32. (b) 11.55 years (c) 11.67 years

2 2 . 1
2 3 . ee
2 4 . e21n

2 5 . -3
2 6 . log2
2 7 . +
2 8 . c = 5; limit = 6

Chapter 8
8.5 Exercises (page 311) -

1.  y =e3r  -e2z

2.  y  =  3x2 + +x5 8 .  y  =  s in  x  +  C/sin x

3 . y = 4 COS x - 2 COS2  x
x - 2 2

9 .  y =  x-3
( Ii

x+--&+c
1

4. y = x2 - 2 + 2eëx212
5. x = +ezt  +  $eet
6. y = (x + C)/sin x

10. y = XT(X) + cx
11. f(x) = 1 +1ogx
12. Only  the  function  g iven
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14.
15.
16.
17.

y = (dZe2X + e22 - ey2
y = 1/(x2 - x + 2 - e-l)
y = (x3 - x)2

18.

y = 1/(x2 + x - x2logx)

(b) y = jey,” (c)  y2 =  F

2 0 .
Ce3x  + 2 b+2 e3x  + 2C b - l

( a )  y  = m w i t h  C =-
b - l

( b )  y  = e32 wi th  c = -
b+2

8.7 Exercises (page 319)

1 . lOO(1 - 2-1/16)  = 4.2 percent
2 . Four times the initial amount
3 . (a) T = (log  n)/k (b) vv(t)  = (b - t)/(b  - a)
4 . 256(1  - eetls) : if 0 5 t 5 10; 16 + 166e20P2’  if t 2 10

6 . V4mglk

7 .

8 .
9 .

10.
13.

(c) 54.5 min

55O
19.5 lb
54.7 lb

(d) T = k [l + (600 - t)k  + (1400k - l)eëkf]

For Equation (8.20), x = xoek(t-@; for Equation (8.22),  c(  = Mk

15.

16.
17.
18.

x =  M [ l  +  expi-M/~~k(~)du)]P1

(a) 200 million (b) 217 million
(a) 0.026 per year (b) 0.011 per year; 260 million; 450 million
dx/dt  = kx(  1 - ut); x = xoek(fpnf2/2)  ; curve (d)

8.14 Exercises (page 328)

a 1. y = c1e2z + c2eë2’ 6 .  y = c,e” + c2eë3x
2 . y = cl cas  2x + c2 sin 2x 7 . y = e”(c’,  cas  x + c2 sin x)
3. y = cl + c2e4x 8 . y = e”(c, COS 2x + c2 sin 2x)
4 .  y  =  cl +  c2eë4x 9 .  y  =  eë”(c,  +  c2x)
5 . y = eî(cl  cas  l/x + c2 sin ~ZX) 10. y = e”(c, + c2x>

11. y =+  -$e-342
12. y = -cos(5x  - 15)

13.  y  =te dz-1) + i @(î-l), where a = 2 - 45, b = 2 + dJ

14. y = 2eë2”(cos  x + sin x)
15. u(x) = $e2x-R  sin 5x; v(x) = $eë2x-R  sin 3x
16. u(x)  = 6(ed5 - eP)/S;  v(x) = e” - eë5%
17. k = n2n2;  bC(x)  = Csin n~x (n = 1, 2, 3, . . .)
19. (b) No (c) If k # 0 the condition is a1 - a2 # nx/k
20. (a) ys  -y = 0

(b) y” - 4y’  + 4y  =  0
(c) y” + y’ + iy  = 0
(d) y” + 4y  =  0
( e )  y ”  - y  =  0
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8.17 Exercises (page 333)

1.  y  =cIe5  +c,eë” -x
2 . y = Cl8 + c2 - 2x - x2 - 3.x”
3. y = cleëX  + c2 + +x3

4 . y = e”(cl cas  &ix  + c2 sin 42x) - & + ix  + fx” + +x3
5 . y = c,e” + c2eax + $$ + Qx i- $x2
6.  y  =  clezx +  c3e-3s  - & +  ix - X2 _ ix3

7. y = (cl + &x)ezz  + c2eë2s
8 . y = cl COS 2x + c2 sin 2x + &-2x
9. y = c1eë2”  + (c2 + &x)e”

10. y = c,e-22 + c2ex + $e2z
11. y = cIeë2x  + (c2 + $x)e” + @2x
12. y = (cl + c2x  + *x3)er + x l t- 2
13. y = (cl + c2x  - log Ixl)eP
14. y = cl sin x + (cl + log Icsc  x + cet  xl)  cas  x - 2
1 5 .  y=c,ez+c2eë”+(e5-e-“)log(l  t-e%)  -Xe”-1
16. y = (cl + $x)e” + $eëx  + c2ewm2= - i - &(ez + ec2”)  log (1 + ez)

17. y =
(

(cl +  c2x)eë3z  if x < 1 or x > 2,

(a + hx)eë3” + i- if 1 < x < 2

18. y = c1e3%  + c2e-3î:  + ixe3%
19. y = (Cl - 8X)  COS 3X + (C2  - ï’g) sin 3X
20. y = (Cl - $x)  cas  x + c2 sin x
2 1 . y = c1  cas  x + (c2 + ix) sin x
2 2 . y = cl cas  2x + c2 sin 2x + x COS x + t sin x
2 3 . y = cl COS 2x + c2 sin 2x + x sin x - $ COS x
2 4 . y = cl +  c2e3z - ke2”(3  sin x + COS x)
2 5 . y = cl sin x + c2 COS x + &ezCC(3  sin 3x - cas  3x)

8.19 Exercises (page 339)

1 .  2&
2 .  fl40rr
3 .  A=C,  m=k,  ~=u-&T
4. y = 3 COS 47Tx
5 .  c  = (y;  +  u31/2
6 .  y  =  +\/6, ym  = - 12y  = -446

7. y = -A sin y, where A i s  p o s i t i v e

1 sin t + 1 - cost  if 0 < t < 27~,
8. Z(t)  =

sm  t if t 2 27~

9 .  ( a )  ~/(~TIC!) ( b )  R  < di

10. r(t) = &gt2 - ct + c t - k log( “)  (1 -y

1 1 .  r(t)=ct+c(F-t)log(l  -z)

W
12. r(t) = 7 log -

w - kt
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8.22 Exercises (page 344)

1. y’+$=0 6. (x2 - y2  - 1)y’  - 2xy = 0
2. y’ + 2y = 0 7. (x - 1)y’  - = 0xy
3. yy’ - x  =  0 8. (x2  - 4)~’  = 0- y
4. xy’ + = 0y 9. y’ + tan x = 0y
5. 2xy’ = 0- y 10. dï=Tyi,, y2  =+ + 1 0

11. (x2 - y2  - 1)y’ - 2xy = 0
12. (x2 + 2xy - y2 - 2)y’ - y2 - 2xy + x2 + 2 = 0
14. x + y = -1 is both an integral curve  and an isocline
15. y = cx + cs; envelope: y = -ix2

8.24 Exercises (page 347)

1 .  y3=Qx4+C
2. cas x = Cel’cOsY
3 .  y(C+log~x+l~)=l
4. y - 2 = C(y  - l)es
5 .  y2+2$G=T=c

11. (y +i)e-2y  =@(cosx  -sinx) +C
12. x2 - 1 = C(y2  + 1)
13. f(x) = 2P-’
14. f(x) = 45x2 +  1
15. f(x) = -log(l  + x2)

6. y = C(x - l)er
7. arctan  y + arcsin  x = C
8. (1 + y2)(  1 + x2) = Cx2
9. y4(x  + 2) = C(x  - 2)

10. 1 + y2  = Cx2er2

16. f(x) = fl ; f(x) = sin (x + C); also, those continuous  functions  whose graphs may  be
obtained by piecing together portions of the curves  y = sin (x + C) with portions of the
lines  y = f 1. One  such  example isf(x) = - 1 for x 5  O,f(x)  = sin (x - &T)  for 0 5  x 5  3~,
f(x) = 1 for x 2  3~

17. f(x) = c
18. f(x) = Ae@
19. f(x) = 0
20. f(x) = 0

8.26 Exercises (page 350)

2. x2  + y2  = c
3. y = xlog Icxl
4 .  x2  + y2  = cx4
5. y2  = C(x2  + y2)3
6. x2  + 2Cy  = C2,  C > 0
7. y(Cx2 - 1) = x

8. arctan;  + log  jyj  =  C

9.  2-xx y+log~=C

10. tank  = Cx

11 .  (x +y)3  =  cx4y4

8.28 Miscellaneous review exercises (page 355)

1. 3x-2y=C 7. xy =  c
2. x2  - y2  =  c 8. y2  - log (sin2  x) = C
3. x2+y2-Cx+l = o 9. (x-c)s+y2=c2-1
4. 2x2 + y2  = c 10 .  x2+y2--C(x+y)+2=0
5. 2y2  - x2  =  c 11. y =  - 2 x l o g x
6. y2  = x + C
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12. y = -;xtogx 16. y = ;(l -8-l); b =; - 3

13 .  f (x )  =  Cx”, orf(x)  =  Cxlln 17. y = -6x2 + 5x + 1
14. f(x) = Cx@, orf(x) = CX’/(~~) 18. 59.6 s e c

20.
2nR22/h
~ sec, where R is the radius of the base and h is the height of the cane  (in feet)

9A0
21 .  y=@
22.  y3  =  -ix +  Cxe1j2 for x > 0, or y3  = -3x for a11 x
23. m = -1; y2  log lyl  = ieë2=  -t Cy2
24. (a) a = 0, b  = $
25. (b) y = egs  - e-x3/3

(b) f(x) = 2x1’2

26. (a) l/(t  + 1) grams in t years (b) 1 gm-‘yr-l

27. [l - 9(2  - 1/)t12  grams in t years; 2 + d  years

28. (a) 365e-2.65t  citizens in t years (b) 365(1  - e-2.65t)  fatalities in r years

29. 6.96 mi/sec  = 25,056 mi/hr
30. (a) Relative minimum at 0 (b) a = $, b  = 2,” (4 $
31. (b) Minimum (4 B

Chapter 9

9.6 Exercises (page 365)

1. (a) 2i (b) -i (c) $ - ii (d) 18 + i (e) -5  + si (f) 1 + i
(8)  0 (h) 1 + i

2. (a) z/Z (b)  5 cc>  1 (4 1 Ce)  42 (0 465
3. (a) r = 2, 8 = L (b) r == 3, fl  = -in

(e) r = 243,  0”: 5~16
( c )  r=1,0=x ( d )  r=l,0=0

( f )  r=l,O=’ (g) r = 21/2,8  = &T
(h) r = 22/2,8  = -$TT (i)l  r  =  $42,  il +T (j) r = 4, 0 = -&7

4. (a) y = 0, x arbitrary ( b )  x>O,y=O (c) Al1  x and y (d) x = 0,
y arbitrary; or y = 0, x arbitrary ( e )  x=l,y=O (f) x=l,y=O

9.10 Exercises (page 371)

1. (a) i ( b )  - 2 i (cl  -3 (4 1 (e)  1 + i (0 (1 + i>/dZ
(g)  2/2  i (h) -i

2. (a) y = 0, x arbitrary (b) x = y = 0 (c) x = 0, y = (2n  + l)~, where n is any
integer (d) x = 1, y = &r  + 2n~, where n is any  integer

3. (b) z = 2mi, where n is any  integer
6 .  ck =&,  +ib-J  f o r k  =1,2  ,..., n
8. (c) $&  + si, -i&  + ii, -i

(d) a + bi, -a - bi, -b -t ai, b - ai, where a = &/2 + dj  and b = $J2  - 42
(4 a - bi, -a + bi, b + ai, -b - ai, where a and b are as in (d)

Il.  ( a )  1 ,  eeT12,  eën (cl -H  <: arg(z,) + arg (z2)  I x
13. B = A/(b  - w2  + ami)
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Chapter 10

639

10.4 Exercises (page 382)

1 . (a) Converges (b) 0
2 . (a) Converges (b) -1
3 . (a) Diverges
4. (a) Converges (b) Q
5 . (a) Converges (b) 0
6 . (a) Diverges
7 . (a) Converges (b) 0
8 . (a) Diverges
9 . (a) Converges (b) 1

10. (a) Diverges
11. (a) Converges (b) 0
23. N > l/c
2 4 .  N  > l/ç
2 5 . N > 116
26.  N > l/~
27.  N > 2/qc

12. (a) Converges
13. (a) Converges
14. (a) Converges
15. (a) Converges
16. (a) Converges
17. (a) Converges
18. (a) Diverges
19. (a) Converges
2 0 . (a) Diverges
2 1 . (a) Converges
2 2 . (a) Diverges

(b) 4
(b) 0
(b) 0
(b) 0
(b) 0
(b) 2

(b) 0

(b) 0

log E

28.  N > log (9/10)

34. (c) Let s,  = - and define t, similarly as a sum from 1 to n. Both

sequences  {s,}  and  {tn}  converge  to  the  in tegra l  jij’(x) dx.

10.9 Exercises (page 391)

2 2 . (a) 1 (b) 2e - 3 (c) e + 1
2 3 . (b) 5
24. (a) Identical (b) Not identical (c) Not identical (d) Identical

“10.10 Exercises on decimal  expansions (page 393)

1 . 2
2. 5’00
3. zw?99
4 * -41.

333
5 . +-

10.14 Exercises (page 398)

1 . Divergent 8 . Convergent
2 . Convergent 9 . Divergent
3 . Convergent 10. Convergent
4 . Convergent 11. Divergent
5 . Convergent 12. Convergent
6 . Convergent 13. Divergent
7 . Convergent 14. Convergent

15. Convergent for s > 1; divergent for s < 1
16. Convergent
17. Convergent
18. Convergent
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10.16 Exercises (page 402)

1. Convergent 7. Divergent
2. Convergent 8. Convergent
3. Convergent 9. Convergent
4. Divergent 10. Divergent
5. Divergent 11. Convergent
6. Divergent 12. Divergent

13. Convergent
14. Convergent if 0 < r < 1, or when x = kn, k any  integer

10.20 Exercises (page 409)

1. Conditionally convergent
2. Conditionally convergent
3. Divergent for s 5 0; conditionally convergent for 0 < s < 1; absolutely convergent for

s>l
4. Absolutely convergent 15. Divergent
5. Absolutely convergent 16. Absolutely convergent
6. Absolutely convergent 17. Absolutely convergent
7. Divergent 18. Absolutely convergent
8. Divergent 19. Conditionally convergent
9. Divergent 20. Conditionally convergent

10. Conditionally convergent 21. Divergent
11. Absolutely convergent 22. Conditionally convergent
12. Divergent 23. Divergent
13. Absolutely convergent 24. Conditionally convergent
14. Absolutely convergent
25. Divergent for s I; 0; conditionally convergent for 0 < s 5  1; absolutely convergent for

s>l
26. Absolutely convergent 38. Al1  z #  1 satisfying IzI  5  1
27. Absolutely convergent 39 .  (11 <  eda5
28. Divergent 40. Al1  z
29. Absolutely convergent 41 .  A l l z  #OsatisfyingO < Iz  - 11  I l
30. Absolutely convergent 42. Al1  z #  -1 satisfying (22 + 31 I 1
3 1. Absolutely convergent 43. Al1 z = x + iy with x 2  0
32. Absolutely convergent 44. Al1  z satisfying 12 + l/z) > 1
33. z = 0 45. Ali  z satisfying (2 + l/z( > 1
34. Al1  z 46. Al1  z #  0
35. Al1  z satisfying IzI  < 3 47. Ix - knl 5  n/4,  lc any  integer
36. Al1  z 48. Ix - k=l  5  ~16, b  any  integer

37. Al1  z except  negative integers

10.22 Miscellaneous review exercises (page 414)

1. (a) 0
(b) Converges if c 5  1; limit is 0 if c < 1; limit is 1 if c = 1; diverges if c > 1

2. (a) 1 (b) The larger of a and b
3. &7l  + $az
4 .  $(l +  V%
5. 0
7. Divergent
8. Convergent ifs < 4; divergent ifs 2  4
9. Convergent
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10. Divergent
11. Divergent
14. c 5 3
15. a 2 3

a+1
17. When u 2 -1, limit is -

a + 2
; when a < -1, limit is 0

10.24 Exercises (page 420)

1 . Divergent 6 . Convergent
2 . Convergent 7 . Convergent
3 . Convergent 8 . Convergent
4 . Convergent 9 . Divergent
5. Convergent 10. Convergent ifs > 1; divergent if s < 1

11. C = 4 ; integral has  va lue 4 l o g  4
12. C = 3; integral has value Q  log Tj

3
13. C = id?; integral has value 1/~ log 45

14. a = b = 2e - 2

15. a = 1; b=l-,$
77

16. (b) Both diverge
17. (c) Diverges

Chapter 11

11.7 Exercises (page 430)

1. Y = 2; convergent for jz[  < 2
2 . r = 2; convergent for IzI  I2,  z # 2
3 .  r  =2;  convergentforlz  +31 12,~ # - 1
4. r = 4; convergent for \zI  < $
5 . r = 4; convergent for jzj  < $
6. r = e; convergent for IzI  < e
7 . Y = 1; convergent for Iz + 11 I 1
8 . r=+a,
9. r = 4; convergent for IzI  <  4

10. r = 1; convergent for IzI  < 1
11. r = 1
12. r = l/e
13. r  = +co ifa =kx,kaninteger;  r  = 1 ifa #kn
14. r = eëa
15. r = max(n,  b)
16. r  = min(l/a,  l/b)

11.13 Exercises (page 438)

1. Ix(  < 1; l/(l +  x2)
2 . Ix(  < 3; 1/(3  - x)
3 . 1x1 < 1; X/(l - x)2
4. 1x1 < 1; -X/(l + x)2



642 Answers to exercises

6 . -g Ix <&; -1og  (1 - 2x)

7 . -2 I x < 2 ;  1 arctan  5
X

8 .  Al1  x ;  ëz3
9 . Al1 xp3(ex  - 1 - x -X; 4x2)  if x # 0 , 0 if x = 0

10. Al1 x; s if x # 1., *ifx=l

22. - Y?$

23. u.  = 4&, a, = 0, a2  = 52/‘??,  a3  = 0,  a4  = -2&

11.16 Exercises  (page 443)

1 .  u,+z =
(n + 3)(n  - 2)

(n + 2Nn  + 1)
a,forn  20;  f(x) = 1 -3x2

2 . (n + 4)(n - 3) 10
an+2

=

(n + mn + 1)
a,forn  20; f(x) =2x-7x3

3. Al1 x
4. Al1 x
5 .  A l l x ;  u =  l , b  = 0
6. Al1 x; f(x) = ez2
7. Al1 x; f(x) = e” - x - 1
8 . Al1 x; f(x) = COS 2x
9 . All x; f(x) = x + sinh 3x

12. y = 1 + x + x2 + $x” + .  .
13. y =x + gx4 + ïLx'  + ï~pLxlo  + . . .

14. y  = ix” + iIsx5  +  o;ox8  + 8~A!oxll  +

1 5 .  y’$T
n=o

n=l  (2 3)(5  6) [(3n  - 1) (3n)]

x3n+l

18. a, = -1, a2 = 0, a3 = $; ,f(x)  = (x + l)e-2”

19. a5 = 0, a6 = - 87; ;
s i n  x

f(x) = 7 + cos;2-  l i f  x z 0 ;  f(0) =  $; ,fCT>  =  -2/rr2

20. (c) 2/2 = 1.4142135623

21. (b) fi = 1.732050807568877
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Chapter 12

12.4 Exercises (page 450)

1.  (a>  (5,0,9) (b) C-3,6,3) (cl ( 3 ,  -194) ( d )  (-7,24,21) Ce)  (0,  0, 0)
5. x = 1;(3c,  - cz).  y = i(2c,  - CJ
6. (a) (x + z,x +y  +  z,x + y ) (c) x = 2, y = 1, z = -1
7 . (a) (x + 22, x + y + z,  x + y + z) (b) One example: x = -2, y = z = 1
8 . (a) (x + z, x + y + 2,  x + y, .Y) ( c )  x =  - 1 ,  y=4,  z=2

12. The diagonals of a parallelogram bisect each other

12.8 Exercises (page 456)

1 .
2 .

5 .
6 .
7 .

8 .

9 .
10.

11.

12.
13.

14.
15.
16.
17.

18.

2 0 .

2 2 .

2 3 .

2 4 .

(4 -6 (b)  2 (cl  6 (4 0 Ce)  4
( a )  (A  B)C = (21,28,  -35) (b) A (B + C) = 64 (c) (A + B) C = 72

(d) A(B. C) = (30,60,  -105) te) AI(B.C)  = (;,A,<)

Oneexample: (1, -5, -3)
One example: x = -2, v =  1
C = $(-1,  -2,2),  D = ;(22, -1, 10)

C =iW,2,3,4,5),  D =
t

5 7 1 - 5  - 7
~,~,z,yg,c

)

(a) V% (b) ~~ Cc)  6 (4 5
(4 (1, -1) or  C-1,  1) (b) (1, 1) or  (-1,  -1) (cl t3,2)  or  ( - 3 ,  - 2 )
(4 (b, -a)  or  t-b,  a>

(4 kz(4.  -1,5) (b) g4 ( - 2 ,  - 3 ,  1)
1

(cl z (1, 0, 1)

1 1
Cd)  y42 ( - 5 ,  - 4 ,  -1) te) y42 C-1,  -5,4)

A and B, C and D, C and E, D and E
(a) (2, -1) and (-2, 1) (b) (2, 1) and (-2, -1) (c) (1, 2) and (-1, -2)
(d)  (1,2)  and ( -1 ,  -2)
One example: C = (8, 1, 1)
One example: C = (1, -5, -3)
P = +5(3,4), Q = &j -4,3)
P = $(l,  1, 1, 1), Q = +(-3,  -1, 1, 3)

1
f -&O’l,  1)

The sum of the squares of the sides of any parallelogram is equal to the sum of the squares
of  the  d iagona ls .
4 ;  1245

C=&(l,2,3,4,5),  D =; 10,;,&5,+4
c 1

C = tA, D = B - tA, where t = (A B)/(A  . A)

12.11 Exercises (page 460)

1 . A91  B

2 . ;B
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3 .  ( a )  f,i,q ( b )  (;,i,q)  a n d  ($,q,G]

5.
6 .
8 .
9 .

10.
14.
17.
18.

7?r/8
74
0
(b) Equation holds for a11 x and y if COS 0  = 1; if COS 0  #  1 the only solution is x = y = 0
Al1  except (b).
(c) Al1  except Theorem 12.4(a).
( a )  Al1

12.15 Exercises (page 467)

1 .  ( a )  x=y=Q (b) x = -4, y=$ ( c )  x = 4 ,  y=-1

(4 ; =y’~  =6
2. x= ) 7

3 . x = 3, = -4y
7 . Al1  t #  0
9 . (c) 7i - 4(i + j)

10. (b) j = B - A, k =+(C  - 13) (c) g(15A  - 14B + 5C)
11. {Al,  @l>  {Cl, {Dh 64 w, {A,  (2-t  {A,  a,  {B, Cl, {C, D>
12. (a) Independent (b) One  example: D = A (c) One  example: E = (0, 0, 0, 1)

(d) For the choice  E = (0, 0, Cl,  l), we have X = 2A + B - C + 3E

13. (c) t = 0, dz,  -dz
1 4 .  (a>  {(LO,  1,  Oh  (0,  l,O,  l), (2,R  -1,O)) (b) The set given (c) The set given
17. KO,  1,  l), (1,  1,  11,  (0,  1,  O)h  ((0, 1,  l), (1,  1,  l), (O,O,  1))
18. {(l, 191,  l>,  (0,  1,  1,  11,  c-40, 1,1),  (0,  o,o,  l>>,

N,  1,  1,  l>,  641,  1,  l>,  (0,  LO, Oh  640,  1,  ON
19. L(U) =L(T) =L(S)
20. One  example: A = {El, . . . , Es>,  B = {El  + E,, Ez  + E,,, . . . , E,,W1  + En, Es + El}

12.17 Exercises (page 470)

1. (a) -1 -i (b)  -1 Si (c) 1 - i (d) -1 + i (e) -1 - i
(f) 2 - i Cg)  -i Ch> -1+2i  (i) -3 - 2i C j > 2i

2. One  example: (1 + i, -5 - 3i:,  1 - 3i)

8 . PI3
9 .  3 A  - B  +2C

Chapter 13

13.5 Exercises (page 477)

1.  (b), Cd),  and  Ce>
2. (a) and (e)
3. Cc), (4,  and  Ce)
4. (b), (4, and  (0
5. (a) No (b)  No (c) No
6. A, B, C, D, F are collinear
7. Intersect at (5,9,  13)
8. (b) No
9. (a) 9t2 + 8t + 9 ( b )  &k
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13.8 Exercises (page 482)

1 .
2.
3.

4.
6.
7.

8.
9.

10.
11.
13.

(4 and (4
(a>, (b), and Cc>
( a )  x=l+t,  y=2+s+t,  z=1+4t
( b )  x=s+t,  y=l+s,  z=s+4t
(a) (1, 2, 0) and (2, -3, -3) (b) ~4  = {(1,2,0>  + ~(1,  1,2) + t(-2,4,  1))
(a), (b), and (c) x - 2y + z = -3
(a) (0, -2, -1) and (-1, -2,2)
(b) M = ((0, -2, -1) + s(  -1, 0,3)  + t(3,  3,6)}
Two examples: (-5, 2, 6) and (-14, 3, 17)
( a )  Yes (b) Two examples: (1, 0, -1) and (-1, 0, 1)
C-2,$,  - $1
(a>, (b) ad (cl No
x - y = - 1

13.11 Exercises (page 487)

1 .  ( a )  (-2,3,  -1 ) (b)  (4, -5, 3) (cl  ( 4 ,  -4,2) (4 (8,  10,4)
Ce)  (8,3,  - 7 ) (0 (10,  11, 5 ) Cg)  C-2, -8,  -12) (h)  (2, -TO)
(9 C-2,0,4)

1 1 1
2. (4 f rz6 (-4,3,  1) Cb)  *dm4(-419  -18,7)  cc>  *T6(1,2,1)

3. (a) -2 (b) ;y% cc>  $4
4 .  8i+j-2k
6. (b) COS 0  is negative (cl  Ah
9. (a) One  solution is B = -i - 3k (b) i -j - k is the only  solution

11. (a) Three possibilities; D = B + C - A = (0, 0,2), D = A + C - B = (4, -2,2),

D=A +B-C=(-2,2,0) (b) #6
12.

13 . 14YL~~~‘(p~~~~l)

1. (a) 96 (b)  27  (c)  -84
2. 0, 45, -dz
3. 2
6. (a) (2b - 1)i  + bj + ck, where b and c are arbitrary ( b )  -ii  +  zj

11. -3i + 2j + 5k
14. (b) 2
1 5 .  ( b )  d2005/41
17. X = 1, = -1, z = 2y
18. x = 1, = -1, z = 2y
19. x =l, y =4,  z = 1

13.17 Exercises (page 496)

1. (a) (-7, 2, -2) (b) -7x + 2y - 22 = 0 (c) -7x + 2y - 2z = - 9
2.  64 (8,  $, -3 (b) -7, -8,; (c) 23 (d) (-7 -14 ‘ 4 )cl>  999
3 .  3x-y+2z=-5;  9/fi
4 .  ( b )  ;$d6
5. (4 (L2, -2) (b) x + 2y - 2z = 5 (4 5
6. 10x  -3y -72 + 17 =0
7. Two angles: ~13  and 2n/3
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8 . x + 2y + 91 + 55 = 0
9 . X(r) = (2, 1, -3) + r(4, -3, Ii)

10. (b) N = (1, 3, -2) (c) 1 = 1 (d) 2~+3y+2z+15=0
( e )  x+3y-2z+19=0

11, x+1/Zy+z=2+1/2
12. 6

13. h2(7, -8, -3)

14. x-y+z=2
15. (Q, 0, +)
17. X(r) = (1,2,  3) + t(1,  -2, 1)
19.  (b)  P = -+(5,  -14,2)

13.21 Exercises (page 503)

3. r = ed/(l  - e sin 0); r = -ed/(l + esin  0)
4 . e=l,  d=2
5 . e=$,  d=6
6 . e=$,  d=6
7 . e=2,  d = l
8 . e=2,  d=2
9 . e=l,  d=4

10. d = 5, r = 25/(10 + 3 COS 0 + 4 sin 0)
11. d = 5, r = 25/(5  + 4 COS 0 -t 3 sin  0)

1 2 .  d=$& r=l/(cose+sinO+-:1/2),  r=l/(cose+sinO-$&)
13. (a) r = 1.5 X lO’/(l + cas  0);  7.5 x 1O’miles (b) r = 5 x lO’/(l - COS~);

2.5 x 1O’miles

13.24 Exercises (page 508)

1 .
2 .
3 .
4 .
5 .
6 .
7 .

8 .

Center at (0,O); foci at (f8:  0); vertices at (flO,O);  e = 2
Center at (0,O); foci at (0, k8); vertices at (0, i-10); e = $

Center at (2, -3); foci at (2 f 2/?, -3); vertices at (6, -3),  (-2, -3); e = 2/?/4
Center at (0,O); foci at (k-i.,  0); vertices at (&a,  0); e = 2
Center at (0,O); foci at (ft’3/6,  0); vertices at (+1/3/3, 0); e=&
Centerat(-1,  -2) ;  foc ia t  ‘(-1,1),(-l,  -5 ) ;  ve r t i c e sa t  (-1,3),(-l,  -7);  e =.z
7x2 + 16y2  =  7

(x + 3)2
16

1 (y - 4)2 - 1
9

(x + 3T I (y - 4)2 _ 1
9 16

9 .

10.

11.

12.

13.
14.
15

(x + 4)2
~ + (y - 2>2  = 1

9

(x - 8)2
25

+W+2)2
9

(x - 2>2
16

+(Y=1
4

Center at (0,O); foci at (*2&iï,  0); ver t ices  a t  (  f 10,O); e =  1/41/5

Center at (0,O); foci at (0, &22/41);  vertices at (0, &lO); e = y41/5
,- ,-

.s. Center at (-3, 3); foci at (-3 f V5,  3); vertices at (-1, 3),  (-5, 3); e = V 5/2
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16. Center at (0,O); foci at (f.5, 0); vertices at (f4,O);  e = 5/4
17. Center at (0,O); foci at (0, f3);  vertices at (0, f2);  e = $
18. Center at (1, -2); foci at (1 f 413,  -2); vertices at (3, -2),  (-1, -2); e = *dïj

23 8(y  3Y 5(x 2)2 =l
+ -

2 7  -7

2 4 . &2/9
2 5 . 4x2  - y2  = 11
26. Vertex at (0,O); directrix x = 2; axis y = 0
27. Vertex at (0,O); directrix x = -2 ; axis y = 0
28. Vertex at ($,  1); directrix x = -5; axis y = 1
29. Vertex at (0,O); directrix y = -a ; axis x = 0
30. Vertex at (0,O); directrix y = 2; axis x = 0
31. Vertex at (-2, -2);  directrixy = -$a;  axis x = -2
32. x2  = -y
33. y2  = 8x
34. (x + 4)2 = -S(y  - 3)
35. (y + 1)2  = 5(x - $,
36. (x - 2)”  = 2(y  $ +)
37. (y - 3)2 = -8(x - 1)
3 8 . x2  - 4xy + 4y2  + 40x + 2Oy  - 100 = 0

13.25 Miscellaneous exercises on conic  sections (page 509)

3. B > 0, A = $(l + 2/5)B
4 . +bh
5 . 167r
6 . (a) 3 (b) 277  (c) 48~/5
7 . x2/12  + y2116  = 1
8 . x2-2xy+y2-2x-2y=l
9 . y2  - 4x2  - 4y  + 4x = 0

10. (a) e = 1/2/(p  + 2); foci at (42,  0) and (-z/?,  0) (b) 6x2 - 3y2  =  4
15. (b) y = Cx2,  C # 0
16. (4, 8)
17. (a) x = +u (b) 27py2  = 4a3
18. (x--j-)” +(y -2)”  =$

Chapter 1 4

14.4 Exercises  (page 516)

1 . F’(i) = (1, 2r, 3t2 + 4t3); F”(t) = (0, 2, 6r,  12t2)
2 . F’(t) = (-sin t,  sin 2t,  2 Cos 2t,  sec2 t); F”(t) =  (-COS I, 2 cas  2t,  -4 sin  2t,  2 sec2 t tan t)
3. F’(r) = ((1 - t2)-1’2,  -(l  - t2)-1’2);  F”(r) = (r(1  + P-3’2,  -t(1  + Pp)
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4. F’(t) = (2et, 3et); F”(t) = (2et, 3et)
5. F’(t) = (sinh t,  2 cash  2t, -3e-3t); F”(t) = (cash  t, 4 sinh 2t, 9e-3t)
6. F’(t) = (2t/(l + t2),  l/(l  + t2),  -2t/(l  + t2));

F”(t) = ((2 - 2t*)/(l + t2)2, -2t/(l  + t2)2, (6t2 - 2)/(1  + t2)3)
8. ($,i,e  - 1)

9. (1 - 442,  $2/2,  log $42,

( 1 -te
10.

1 +e
log2,l  -1og2

ï
11. (1, e - 2, 1 - 2/e)
12. 0
15. G’(t)  = F(t) x F”(t)
2 0 . F(t) = ;t3A  + $t2B + tC + D
22. F”(1) = A, F(3) = (6 + 3 log 3)A
23. F(x) = e”(x  + l)A - eA

14.7 Exercises (page 524)

1. u(t) = (3 - 3t’)i + 6tj  + (3 + 3t2)k;  a(t) = -6ti + 6j + 6tk; v(t) = 32/2  (1 + t2)
2 . u(t) = -sin  t i + COS t j + etk; u(t) = -COS  t i - sin tj + etk; u(t) = (1 + ezt)li2
3 . u(t) = ~(COS  t - t sin t)i + 3(sin  t + t COS t)j + 4k; u(t) = -3(2 sin t + t COS t)i +

3(2 COS t - t sin r)j; u(t)  = (9t2 + 25)li2

4. u(t) =(1 -cost)i+sintj+Z!cosik;
t

u ( t )  =sinti+costj-sin?k;  u(t)  =2

5. u(t) = 6ti + 6t2j  + 3k; a(t) =:  6i + 12tj;  u(t)  = 6t2 + 3

6 . u(t) = i + COS tj + sin t k; u(t) = -sin  tj + COS t k; u(t) = di
9. A = abo3,  B = a2w3

11. (b) 8e4t/cos2  0
15. (a) x(t) = 4 cas  2t, y(t) = 3 sin 2t (b) x2/16  +y2/9 =  1
16 .  3T/4

14.9 Exercises (page 528)

1 . (a) T = && (-3i + 4j + 5k); N = -+i  - i j ( b )  a  =12\/jT+6N

2 . (a>
(1 + e28)i  -t e2”j  + e”k

T = -(l + e2T1/zj + e71 + e29-lt2k;  N = (1 + e27)l,2(1  + 2e2R) 1,2

3 .

4 .
5 .

6 .
9 .

11.

12.
13.
14.
15.

(b) a = (1 + e2r)-1’2[e2”T  + (1 + 2e2R)1’2N]
( a )  T=Si+ak;  N = j (b) a = 6N
(a) T = i; N = -4fi (j + k); (b) a = di  N
( a )  T=i(2i+2j+k);  N==$(i+2j-2k) (b) a = 12T+6N
( a )  T=$dzi+ij+qk;  N =  -iy’ij+i&k (b) a = N
Counter example for (b) and (d): motion on a helix
One  example: r(t) = 2se2t COS t dt i + 2je2t sin t dtj + e2tk; v(t) makes a constant angle
with k, but u(t) is never  zero nor  parallel to u(t)
(a) Counterclockwise (b) 3 Cc)  WY3
x2/3 + y214 = 1
y2 = 4x; y2 = 8 - 4x

(b)  IlAil I I B I I  sin 0
14.13 Exercises (page 535)

1 . 8 a

2 . 1/2 (e2 - 1)
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5 .

6 .
7 .
8 .

9 .

10.

11.

13.

14.

16.

19.

2n2a
4(a3  - b3)/(ab)

22/2  77

- 1/i  a log
z/!i  cash (T/2)  + l/cosh T

1 +dZ

101  du2  + b2  (tl - to)

j:d + [g’(y)12  gY
26413  - 16

2 7

(4
f

‘dl + e2’ dx (b)
0

2 + f dt

2
cc> c sinh -

c

u(t)  = 1 + 2t; 3 units of time

14.15 Exercises (page 538)

1. (1) -+g (2) (1 + 2e2R)*‘r(l  + eyy)-3/2 ( 3 )  $5 ( 4 )  tz/Z ( 5 )  i”7 (6) i

3’ 11i311  lsin 0

4. (a) x = z
7 . K  = 114/11~112
9. a = $, b = 2; intersect at (0,O)

10. Vertex a t -4 cas 0 A + $ Cos2 0 B
1 1 .  ( a )  a(t)=&7~-5t~ (b) u(t)  = 5 sin 5t2 i + 5 COS 5t2j

1 2 .  2/2i  + dZj

14.19 Exercises (page 543)

1. u(t)  = II, +  tue; a(t) = -tu,  + 2u,; K(t)  = (2 + t2)(1 + P-3’2
2.  (a)  u(t)  = u, +  tu ,  +  k; a(t) = -tu, + 2u,; K(t)  = (t4 + 5t2 + 8)1/2(2  + t2)-3’2

(b) arccosd2/(2  + t2)
3. (b) +r - t
5. 32

6 .  ( b )  L(c) = s (@c  - 1 )  i f c  # 0; L(O)  = &.
!a(O)  = 77

C
a(c)  = y ifc  # 0;

7. (ai 3~/16 (b) 2 + id?  log (2 + d,

8 . &-r(n”  +  1)1’2  + 4 log (v +  4~” + 1)

9 . 42 (eV - 1)
10. 4
11. 8
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13. (a)  (e2 + 1)3’2/(02 + 2) ( b )  d?ee (cl  w2 + dz ( d )  $42
15. r = rOe  e c”t J;  target at origin, missile starts at r = ro,  0 = 0; CI  denotes  the angle,  0 < ct  < =,

determined by u and -r;  for 0 < GI  < ~rr/2  the path is a spiral for which r -f  0 as 0 increases

indefinitely; for tl  = ~/2 it is a circle about  the origin; for x/2 < C( < r it is a spiral  for
which  r increases  indef in i te ly  as  8 increases  indefïnitely.

16. Use as  posi t ive  x-axis  the  l ine  f rom posi t ion s ighted four  mi les  away to  ground  crew. Proceed
three miles along  this line (to allow for the possibility that the missile is returning to base)
and then follow the spiral r = eS/dS

17. log dx2 + y2  + arctan  (y/~) = C

14.21 Miscellaneous review exercises (page 549)

1 . tan d(  = tan 0/(2  + tan2  0)
3 .  (c/m2,  2c/m)
4 . (a) y - y, = m(x - x0)  + c/m; tangent at (x0 + c/m2,  y, + 2c/m)

(b) y - yo  = m(x  - x0)  - cm::; tangent at (x0 + 2cm,  y0  + cm2)
6. (y1 - ydy - yo) = 24~ + xl -- 2x0); xly  = 2ylx  - ~,y,;

(Xl - xdy - yo) = 2(y1 -y& - x0> - (Xl - xJCy1 -y&
7. (4 (0,  t>

(b) Write Q = (0, b(x)). Iff”(0)  # 0 then b(x) -f(O) +j& as x + 0.

Otherwise, lb(x)/ + + CU  as x -f 0.

1+c  1
8 .  r=- -+-asc-0

2 2

13. (2, l), (-2, -1)
1 4 .  ;fi

A(r)
1 5 .  3x2 -y2  =  3a2;  y 3  -ka

21. (a) f(0)  = k sin (0 + C), or,f(fI) = k
(b) f(0)  = Ce”/dkL-l,  where k2  > 1
(c)  f(O) = (2/k)  sec (0 + C),  orf(0)  = 2/k

Chapter 15

15.5 Exerc&es  (page 555)

1 . Yes 8 . Yes
2 . Yes 9 . Yes
3 . Yes 10. Yes
4 . Yes 11. No
5. No 12. Yes
6 . Yes 13. Yes
7 . Yes 14. No

31. (a) No (b) No (c)  No

15.9 Exercises  (page 560)

1 . Yes; 2 5. Yes; 1
2 . Yes; 2 6 . No
3 . Yes; 2 7 . No
4 . Yes; 2 8 . No

15. Yes
16. Yes
17. Yes
18. Yes
19. Yes
2 0 . Yes
2 1 . Yes

(4 No

9 . Yes; 1
10. Yes; 1
11. Yes; n
12. Yes; n

2 2 . Yes
2 3 . No
2 4 . Yes
2 5 . No
2 6 . Yes
2 7 . Yes
2 8 . Yes

13. Yes; n
14. Yes; n
15. Yes; n
16. Yes; n



17.
18.
19.
20.
21.
23.
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Yes; dim = 1 + in if n is even, $(n + 1) if n is odd
Yes; dim = in if n is even, $(PI  + 1) if n is odd
Yes; k+l
No
(a) dim = 3 (b) dim = 3 (c) dim = 2 (d) dim = 2
(a) If a f 0 and b z 0, set is independent, dim = 3; if one of a or b is zero, set is dependent,
dim = 2 (b) Independent, dim = 2 (c) If a # 0, independent, dim = 3; if a = 0,
dependent, dim = 2 (d) lndependent; dim = 3 (e) Dependent; dim = 2 (0
Independent; dim = 2 (g) Independent; dim = 2 (h) Dependent; dim = 2
(i) Independent; dim = 2 (j) Independent; dim = 2

15.12 Exercises (page 566)

1. (a) No (b) No (cl No (dl No ( e )  Yes

-8. (a) +z/e”  + 1 (b)  g(x)  =b(x  -F),barbitrary

10. (b)
(n + 1)(2n  + 1) a + n + 1

6n -Tb
(c) g(t) =a(,  --y],  aarbitrary

II.  (c) 43 (d) g(f)  = a(1 - $0, a arbitrary
12. (a) No (b)  No (cl No (4 No
13. (c)  1 Cd)  e*  - 1
14. ( c )  ?2!/2n+l

15.16 Exercises (page 576)

1 . (a) and (b) i&(l, 1 , 1 ) ,  &6(1, - 2 , 1)

2.  (a) $tiZ(l,  l,O,O), $&(--1,  1,2,0),  ;A(I,  - 1 ,  1,3)

(b) +d(l, l,o,  I), -&(L -296, 1)

6. 8 - ; log2 3
7 . S-1

8. Q(e - e-l)  + 3 1x ; - 7eë2
e

9. 57 - 2 sin x
10. -2  - $X

Chapter 16

16.4 Exercises (page 582)

1 . Linear; nullity 0 , rank 2
2 . Linear ; nullity 0 , rank 2
3 . Linear; nullity 1 , rank 1
4 . Linear; nullity 1, rank 1
5 . Nonlinear
6 . Nonl inear
7 . Nonlinear
8 . Nonl inear
9 . Linear; nullity 0 , rank 2

10. Linear nullity; 0 , rank 2
11. Linear ; nullity 0 , rank 2
12. Linear ; nullity 0 , rank 2

13. Nonlinear
14. Linear; nullity 0 , rank 2
15. Nonlinear
16. Linear; nullity 0 , rank 3
17. Linear; nullity 1 , rank 2
18. Linear ; nullity 0 , rank 3
19. Nonlinear
20. Nonlinear
21. Nonlinear
22. Nonl inear
23. Linear; nullity 1, rank 2
24. Linear; nullity 0 , rank n + 1
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25. Linear ; nullity 1, rank infinite 26. Linear; nullity infinite, rank 2
27. Linear; nullity 2, rank infinite
28. N(T) is the set of constant sequences; T(V) is the set of sequences with limit 0
29. (d) (1,  COS X,  sin x} is a basis for T(V); dim T(V) = 3 (e) N(T) = S (f) If T(f)  =

cf with c #  0, then c E  T(V) SO we have f(x) = cr  + c2  COS x + ca sin x; if c1  = 0, then
c = T and j(x) = c1  COS x + c2  sin x, where cr, c2  are not both zero but otherwise arbitrary;
if cr  #  0, then c = 2~ and j(x) = cr,  where cr is nonzero but otherwise arbitrary.

16.8 Exercises  (page 589)

3.
4.
5 .
6 .
7 .
8.
9 .

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
25.

26.

28.

31.

32.

Yes; x = v ,  y=u
Yes; x=u,  y = - v
No
No
No
Yes;  x=logu,  y =logv
No
Yes; x=u-1, y=v-1
Yes  ; x = $(v  + u),  y = +<v  - u)
Yes;  x  =$(v  +u),  y  =&!v -u)
YeS;  X=W,  y=V, Z=hf

No
Yes;  x = II, y = tu, z = +w

Yes  ;

Yes;

;c;,-yl=v, z=w-u-v

>  y=v-Ii,  z=w+l
Yes  ;Yes

>
.xx~-$yy~-:” z = w - 3

z = w - v
Yes; x=&-v+w),‘y=$(v-W+U); z = gw - u + v)
(S+T)‘=S2+ST+TS+T2;
(S + T)3  = S3  + TS2  + STS ,f S2T  + ST2  + TST + T2S  + T3
(4  W%,y,z)  =(x  + y  +z,x  +y,~);  (TS)(x,y,z)  =(z,z  +y,z  + y  +x);
(ST - TWx,  y, z) = (x + y, x - z, -y - t); 9(x,  y, z) = (x, y, z);
T2(x,  y, z) = (x,  2x + y, 3x + 2y  + z);
(ST)2(x,y,z)  =(3x  +2y  +z,2x  +2y  +z,x  +y +z);
(TS)2(x,y,z)=(x+y+z,x+2y+2z,x+2y+3z);
(ST-TS)2=(2x+y-z,x+2y+z,-x+y+2z);
(b) S-‘(u, v, w) = (w, v, u); T-‘(u,v,w)=(u,v  -u,w -v);
(ST)-+,  v, w) = (w, v - w, u  - v); (TS)-‘(u, v, w) = (w - v, v - u, u)
Cc) CT  - 0(x,  y, z) = (0,  x, x + y); (T  - 02(x,  y, z) = NO,  x);
(T - I)“(x,  y, z) = (0, 0,O) if n 2  3
(a) D~(X)  = 3 - 2x + 12x2;  T~(X)  =  3x - 2x2  + 12x3; (DT)p(x)  = 3 - 4x + 36x2;
(T@~(X)  = -2x + 24x2; (DT - T&(x)  = 3 - 2x + 12x2;
(T2D2  - D2T2)p(x)  = 8 - 192x (b) p(x) = ax, a an arbitrary scalar
(c) p(x) = ux2 + b, a and b a.rbitrary scalars (d) AIl  p in V
(a) I?~(X)  = 2; SP(X)  = 3 -. x + x2; T~(X)  = 2x + 3x2  - x3  + x4;
(ST&(x)  = 2 + 3x - x2  + x3; (TS)p(x)  = 3x - x2  + x3; (T~)%(X)  = 3x - x2  + x3;
(T2S2)p(x)  = -x2  + 2;  (S2T2)p(x)  = 2 + 3x - x2  + x3;  (TRS)p(x)  = 3x;
(RST)p(x)  = 2(RST)p(x)  = 2
(b)(b) N(R) = {p 1 p(O)  = O};N(R) = {p 1 p(O)  = O}; R(V) = {p 1 p is constant};R(V) = {p 1 p is constant}; N(S) = {p 1 p is constant};N(S) = {p 1 p is constant};
S(V)= V; N(T)=(O) ;  T(V)={plp(O)  =0}S(V)= V; N(T)=(O) ;  T(V)={plp(O)  =0} (c) T-l =  S(c) T-l =  S
(4  VW(4  VW = 1 - R;= 1 - R; .‘jnT” =  1.‘jnT” =  1
T is not one-to-one on V because it maps a11 constant sequences onto  the same  sequenceT is not one-to-one on V because it maps a11 constant sequences onto  the same  sequence
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16.12 Exercises  (page 596)

1 . (a) The identity matrix Z = (gjk),  where 6j, = 1 ifj = k, and iii, = 0 ifj #  k
(b) The zero matrix 0 = (ajk)  where each  entry ujk = 0
(c) The matrix (cBjk),  where (gjk)  is the identity matrix of part (a)

2. (a) [A : ‘j W [: 0 y] (c) [ i % 8 a]
3. (a) -5i + 7j, 9i - 12j

(b)  [:  -y]*  [; y] (c)  [-: -;]3  [: y]

- 1 - 1 2

5. (a) 3i + 4j + 4k; nullity 0, rank 3

- 1 - 5 5

7. (a) T(4i - j + k) = (0, -2); nullity 1 , rank 2 Cb) [: : -:]

(c)  [u u -:] (d) e,  =j, e,=k,  ea=i,  w1 =(I,I),  w2=(1,  -1)

8. (a) (5,0, -1); nullity 0, rank 2

Cc) el  = i, e,=i+j,  w,=(l,O,l), w,=(O,O,2), w,=(O,l,O)

1 1

9. (a) ( - 1 , -3, -1); nullity 0, rank 2 (b) L  01 1 11

(cl e,  = i ,  e2  = j - i , w1 = u,o,  l), w2 = (0, 1, o>, w3 = (090, 1)
10. (a) e,  - e,; nullity 0, rank 2 ( c )  a=5,  b=4
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o - 1

:
1 0

1 0 0 1

Ï!
-1 0 0 - 2

o-1 2 0

16.

0 0 o - 1 ’ 0 o-1 0

0 0 1 0 0 0 0 - 1

17. [; -;], [; -;]

18.  [; -;]y  [ 7;  -‘:]

‘0 0 0 0

0 0 2 0

0 0 0 6

0 0 0 0

0 O - 8 0

(f) I 0 0

0 -48

0 0

0 0 0 0 1
2 0 . Choose (x3,  x2,  x, 1) as a basis for V, and (x2,  x) as a basis for W. Then the matrix of TD is

[ 0  6 0  2 0  0 0 0 1
16.16 Exercises  (page 603)

0
AC =

0

I 1 5
AB =

- 1 5

-28

2 8 1
a b

2.  6-4 [ 1 - 2 a  a

0 0’
a and b arbitrarq (b) [ 1-2b b ’

a and b arbitrary

3 . (a) a = 9 , b = 6 , c = 1 , d = 5 (b) a=l, b = 6 , c = 0 , d = - 2

4. (a) [ya  yi  y!]  (b) [ :! -,i -i]
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6. A” =

7. An = -sin  nO

cas  n0 1
n(n  + 1)

1  n  2
8. A” = I 101 n

00 1

, where b and c are arbitrary, and a is any solution of the equation a2  = -bc

the equation a2  = 1 - bc

where b and c are arbitrary and a is any solution of

14. (b) (A + B)2  = A2 + AB + BA + B2; (A + B)(A - B) = A2 + BA - AB - B2
(c) For those which commute

16.20 Exercises  (page 613)

1. (x,  y, z)  = (<,  4, 5)
2 . N o  s o l u t i o n
3. (x,y,z)  = (1, -1,O)  + t(-3,4,  1)
4. (x,y,z)  = (1, -1,O)  + t(-3,4,  1)
5 .  (x,y,z,u)  =(l,l,O,O)  +r(l,14,5,0)
6 . @,y, z,  u)  = (1,  890,  -4) + r(2,7,  3,O)
7 .  ky,z,u,u)  =t1(-l,l,O,O,O)  +r,(-1,0,3,  -3,l)
8.  (x,y,z,u) =(l,l,l,  - 1 )  +t,(-1,3,7,0)  +r,(4,9,0,7)
9 . (x,y,  z)  = (3, $,O)  + t(5,  1,  -3)

10. (4 (x,  z,y , u) = (1, 6 , 3,O) + r,(4, 11, 7,0) + f2(0, 0 , 0 , 1 )
0) (x,  y, z,  u>  = C-1,-,  4, :-y,  0) + r(4, - 11, 7,22)

-1 2 1

12. 14.

-3 5 4

- 5% Fi 43

13. [ - 1 0 1  15 -$ -Q 1 I
1 -2 1 0

0 l-2 1

15.
0 0 l-2

10  0 0 1
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-
0 * o-1 0 1-

1 0 0 0 0 0

0 0 0 1 0 -1

16.

- 3 0 1 0

!

0 0

0 0 0 0 0 +

9 o-3 0 1 0-

16.21 Miscellaneous exercises on matrices (page 614)

1
3 .  P = [ 1
4 .  [o i;, c’y],and  [I 1 “d,where b and c are arbitrary and a is any solution of the

quadratic equation a2 - a + bc = 0

1 0 .  (a) [-: :1* [: -:1*  [--i :]T [: -:12  [-i I:l?  [Ii -:]y

[-: I:l*  [I: -:1
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ABEL, NIELS HENRIK, 407
Abel’s partial summation formula, 407
Abel’s  tes t  for  convergence ,  408
Abscissa, 48
Absolute  convergence of series, 4 0 6
Absolute maximum and minimum, 150
Absolute  va lues ,  41 ,  363
Acceleration,  160, 521

in  po la r  coord ina tes ,  541
normal  and tangent ia l  components  of ,  527

Addition formulas for the sine and cosine, 96
Addi t ive  p roper ty :

of arc length, 532
of area,  59
of averages,  119 (Exercise 13)
of  convergent  series, 3 8 5
of  der ivat ives ,  164
of finite  sums, 40
of the integral, 66, 67, 80, 514
of the supremum  and infimum, 27
of volume, 112
of work, 115

Alternating series, 403
Analyt ic  geometry ,  48,  471
Analyt ic  mode1 of  Eucl idean geometry,  471
Angles :

in a Euclidean space, 564
in n-space, 458
radian measurement of, 102

Angular acceleration,  545 (Exercise 19)
Angular  speed,  522,  545 (Exercise  19)
Angular  ve loci ty ,  545 (Exerc ise  19)
Ant ider iva t ive  (pr imi t ive) ,  205
APPOLONIUS, 498
Approximations:

by polynomials, 272-304, 575
by t r igonometr ic  polynomials ,  575
in a Euclidean space, 574

Arbitrary constant, 211, 307
ARBOGAST, LOUIS, 171
Arc cos ine ,  254
Archimedean property of real numbers, 26

ARCHIMEDES, 2-9,  26
Arc  leng th :

as an integral, 534
def ini t ion of ,  530,  531
funct ion ,  533
in polar coordinates, 544 (Exercise 4)

Arc  s ine ,  253
Arc  tangent ,  255
Area :

and similarity transformations, 92
axiomatic definition of, 57-59
in polar coordinates, 110
of an ordinate set, 75
of a radial set, 110
of  a  region between two graphs ,  88

Argument of a complex  number, 363
Arithmetic mean,  46, 117
Associative law :

for addition of numbers, 18, 359
for addition of vectors, 447
for composition of functions,  141, 584
for multiplication of numbers, 18, 359
for  union and in tersec t ion  of  se ts ,  14
in a linear space, 551, 552

Asymptote ,  190
of a hyperbola, 506

Asymptot ica l ly  equal ,  396
Average,  46,  149

of a function, 117-l 19
rate of  change,  160
ve loc i ty ,  157
weighted ,  118

Axes, 48, 197
Axiom(s)  :

completeness (continuity),  2 5
field,  17
for a linear space, 551, 552
for area,  58, 59
for the real-number system, 17-25
for volume, 112
leas t -Upper-bound,  25
order, 20

657
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Axiomatic development :
of area,  57-59
of  inner  products ,  561
of the real-number system, 17-25
of vector algebra, 551, 552
of volume, 11 l-l 12

BARROW, ISAAC, 157
Base of  logari thms,  232
Basis ,  327 ,  466
Bernoulli :

d i f ferent ia l  equat ion,  312
inequality, 46 (Exercise 14)
polynomials, 225 (Exercise 35)

BERNOULLI, JOHANN, 235, 292, 305, 331
BERNSTEIN, SERGEI, 437
Bernste in’s  theorem,  437
Bessel  funct ions ,  443 (Exercise  10)
Binary scale, 393
Binomial coefficient, 44, 383, 442
Binomial series, 377, 441
Binomial theorem, 44 (Exercise 4),  378, 442
BOLYAI, JOHANN, 474
BOLZANO, BERNARD, 143
Bolzano’s  theorem,  143
BOOLE, GEORGE, 11

Bound:
greates t  lower ,  25
least Upper,  24
Upper  and lower, 23-25

Bounded funct ion ,  73
Bounded sequence,  3 8  1
Bounded set  of  real  numbers,  23
Boundedness  of  continuous  funct ions ,  150
BROUNCKER, WILLIAM, 377, 390

Calculation:
of e,  281
of logarithms, 240-242
of rr,  285 (Exercise 10)
of square roots, 444 (Exercises  20, 21)

Calculus, fundamental theorems of, 202, 205,
515

CANTOR, GEORG, 11, 17
CARDANO,  HIERONIMO, 3
Cartesian equation, 49, 475, 494
Cartesian geometry,  48
CAUCHY, AUGUSTIN-LOUIS, 3, 42, 127, 172, 186,

284, 368, 378, 397, 399,411, 452
Cauchy-Schwarz  inequal i ty ,  42 ,  452,  563
Cauchy’s mean-value  formula, 186
Cauchy’s remainder in Taylor’s formula, 284
CAVALIER&  BONAVENTURA, 3, 111
Cavalieri solid, 111
Cavalieri’s principle,  111, 112

CAYLEY, ARTHUR, 446
Center of mass, 118
Centr i fugal ,  522
Centr ipe ta l ,  522
Chain rule, 174, 514
Charac ter i s t ic  equat ion ,  327
Circle, 49, 521

of convergence,  428
Circular  helix, 523
Circular  motion, 521
Class  of  se ts ,  14
Closed  in te rva l ,  60
Closure axioms,  551
Coefficient matrix, 605
Column matrix (column vector), 592, 598
Commutative law:

for addition of numbers, 18, 359
for  addi t ion of  vectors ,  447
for  dot  products ,  451
for  inner  products ,  561
for multiplication of numbers, 18, 359
for  union and in tersec t ion  of  se ts ,  14
in a linear space, 551

Comparison tests  for  convergence:
of improper integrals, 418
of series, 394-396

Comparison theorem for integrals, 67, 81
Complement of a set, 14
Complex Euclidean space, 562
Complex function, 368
Complex linear space, 552
Complex numbers, 358-373
Complex vector space, 468
Composi te  funct ion,  140,  584

continuity  of, 141
differentiation of, 174, 514

Composition of transformations, 584
Concave funct ion,  122,  189
Condi t iona l  convergence ,  406
Congruence of  sets ,  58
Conic  sec t ions ,  497-507
Conjugate complex number, 364
Constant  funct ion ,  54
Cont inuous  func t ions :

definition of, 130, 369, 513
integrab i l i ty  of ,  153
theorems on, 132, 141-154

Contour lines, 197
Convergence  :

of improper integrals, 416, 418
of sequences, 379
of series, 384-425
poin twise ,  422
tests for, 394-408
uniform, 424

Convex function, 122, 189
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Convex set ,  112
Coord ina t e s  :

cy l indr ica l ,  543
polar, 108, 540
rectangular ,  48 ,  197

Copernican theory ,  545
Cosine  funct ion  :

cont inu i ty  of ,  134 ,  139
different ial  equat ion for ,  323
differentiation  of, 162
integration of, 100, 207
power series for, 436
propert ies  of ,  96

Cotangent  funct ion ,  103
Crame?s  rule, 491
Critical point, 188
Cross  product  (vector product ) ,  483
Curvature ,  537
Curve :

def ini t ion of ,  517
length of, 529-535
nonrectifiable, 530, 536 (Exercise 22)
rect i f iable ,  530

Cycloid, 536 (Exercise 20)
Cyl indr ica l  coord ina tes ,  543

Damped vibra t ions ,  335
DANDELIN, GERMINAL P., 498
Decimal  expansion of real numbers, 30, 393
Decreasing funct ion,  76
Decreasing sequence,  381
DEDEKIND, RICHARD, 17
Deduc t ive  sys tems ,  8
Def in i te  in tegra l :

def ini t ion of ,  73
proper t ies  of ,  80,  81

De Moivre’s theorem, 371 (Exercise 5)
Dependence,  l inear ,  463,  557
Derivatives :

and  con t inu i ty ,  163
functions  of one variable, 160
functions  of several variables, 199-201
notations for, 160, 171, 172, 199, 200
of complex-valued  functions, 369
of higher order, 160, 200
of vector-valued functions,  5 1 3
partial, 199-201
theorems on,  164

DESCARTES, RENÉ, 48, 446
Determinant, 486
Difference:

of functions, 132
of real numbers, 18
of sets ,  14
of  vectors ,  447

Difference  quotient, 157, 159, 517
Differential equations, 305-357

first-order linear, 308
homogeneous f i rs t -order ,  347-350
power-series  solutions of, 439-443
second-order  l inear ,  322
separable ,  345

Dimension of a linear space, 559
Direction field, 343
Directrix of conic  sections, 500
DIRICHLET, PETER GUSTAV  LEJEUNE,  407
Dir ichle t ’s  tes t  for  convergence ,  407
Discontinuity:

infinite, 13 1
jump, 131
removable,  13 1

Di s jo in t  s e t s ,  14
Distance:

be tween  two p lanes ,  495
be tween  two  po in t s ,  364 ,  462
from a point to a line, 476, 477
from a point to a plane, 494

Distributive law :
for cross products,  483
for inner products,  451, 561
for numbers, 18, 359
for set operations, 16 (Exercise 10)
in a linear space, 552

Divergent improper  integral, 416, 418
Divergent  sequence ,  379
Divergent series, 384
Division :

of functions,  55
of numbers, 18, 360

Domain  of a function, 50, 53, 196, 512, 578
Dot product (inner product), 451, 469, 562
Duodecimal  scale, 393

e (base of natural logarithm):
computation  of, 281
defini t ion of ,  231
irrationality of, 282

Earth, 545
Eccentr ic i ty  of  conic sec t ions ,  500
Electric  circuits, 317, 336
Element  :

of a determinant, 486
of a matrix, 592, 598
of a set ,  11

Elementary function, 282
Ellipse, 498, 500, 506
Elliptic integral, 535 (Exercise 17)
Elliptic reflector, 519
Empty set, 13
Endpoints of an interval, 60
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Envelope ,  342
Equality :

of complex  numbers, 358
of functions,  54
of sets ,  12
of  vectors ,  447,  468

Equipotential lines, 351
Error in Taylor’s formula, 278, 280
EUCLID, 9, 471
Eucl idean geometry,  9 ,  471
Eucl idean space ,  472,  561
EULER,  LEONARD, 231, 377, 396, 405,420
Eule r ’ s  cons tan t ,  405
Even function, 84 (Exercise 25)
Even integer, 28 (Exercise 10)
Exhaustion, method of, 2-8

property of area,  59
Existence theorems,  308,  323
Exponential function:

complex-valued,  367
def ini t ion of ,  242
der ivat ive  of ,  243
integral of, 246
power series for, 436

Extremum:
defini t ion of ,  182
tests for, 182, 188, 189

Extreme-value theorem for continuous func-
tions, 151

Factorials, 44, 52
Family of curves, 341, 351
FERMAT, PIERRE DE, 3, 156
FERRARI, LODOVICO, 3
FIBONACCI (Leonardo of Pisa), 379
Fibonacci numbers, 46 (Exercise 16),  379
Field axioms, 17
Fixed point, 145 (Exercise 5)
Focus of a conic section, 498
FOURIER, JOSEPH, 127,  575
Fourier  coeff icients ,  575
Frequency of simple harmonie  motion, 339
Function(s):

bounded ,  73
character is t ic ,  64 (Exercise  8)
complex-valued,  368
concave,  122
cons tan t ,  54
con t inuous ,  130
convex,  122
decreas ing,  76
def ined by an  in tegra l ,  120
domain  of, 53
elementary,  282
even,  84 (Exercise 25)

exponential, 242, 367
factorial,  52
forma1 definit ion of,  53
gamma, 419, 421 (Exercise 19)
greates t - in teger ,  63
hyperbolic, 25 1
identity, 51
increas ing ,  76
informa1 description of, 50-52
integrable ,  73
inverse ,  146 ,  252
inverse trigonometric, 253-256
linear, 54
logarithmic, 229-235
monotonie,  76
notation for, 50, 196, 512
odd, 84 (Exercise 25)
of  several  var iables ,  196
per iodic ,  95
piecewise  l inear ,  123
piecewise  monotonie,  7 7
polynomial, 55
power ,  54
range of,  53
rational, 166, 258-266
real-valued, 5 1
Riemann zeta, 396
step ,  52
trigonometric, 95-107
unbounded ,  73
vector-valued,  5 12

Function  space,  553
Func t iona l  equa t ion ,  227

for the exponential function, 243
for the logarithm, 227

Fundamental theorem of algebra, 362
Fundamental  theorems of calculus,  202,205,515

GALILE:O,  498
Gamma function, 419, 421 (Exercise 19)
GAUSS, KARL FRIEDRICH, 358, 362, 378, 473
Gauss-Jordan e l iminat ion process ,  607
Gauss’  tes t  for  convergence,  402 (Exercise  17)
Geometric interpretation:

of  der ivat ive  as  a  s lope ,  169
of integral as area,  65, 75, 89

Geometric mean,  47 (Exercise 20)
Geometric series, 388-390
GIBBS,  JOSIAH WILLARD, 445
GRAM, J0RGEN  PEDERSON, 568
Gram-Schmidt process, 568
Graph of a function, 51
GRASSMANN, HERMANN, 446
Gravitational attraction, Newton’s law of, 546
Greates t - in teger  funct ion,  63
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GREGORY, JAMES, 390, 403
Gregory’s series, 403
Growth laws, 320, 321

HADAMARD, JACQUES, 615
Hadamard matrices, 615 (Exercise 10)
Half-life, 313
HAMILTON, WILLIAM ROWAN, 358, 445
Harmonie  mean,  46
Harmonie  motion, 334
Harmonie  series, 384
HEAVISIDE, OLIVER, 445
Helix, 523
Heron’s formula, 493
Higher-order  der iva t ives ,  160,  200
HILBERT,  DAVID, 471
HOLMES, SHERLOCK, 7
Homogeneous di f ferent ia l  equat ion,  347-350
Homogeneous  proper ty  :

of finite  sums, 40
of infinite series,  385
of  in tegrals ,  66

Homogeneous system of  equat ions ,  605
HOOKE, ROBERT, 50
Hooke’s law, 50, 116
Hyperbola, 498, 500, 506
Hyperbol ic  funct ion ,  251
Hyperbol ic  parabolo id ,  198

Ident i ty  e lement  :
for addition, 18
for multiplication, 18

Ident i ty ,  funct ion ,  51
matrix, 600
transformation, 579

Implicit differentiation,  179
Implicit function, 179
Improper  in tegra l  :

of the first kind, 416
of  the  second k ind ,  418

Improper rational function, 259
Increas ing funct ion,  76
Increasing sequence,  3 8  1
Indefinite integral, 120, 134
Indeterminate forms, 2899302
Induction :

def in i t ion  by ,  39
proof  by, 32-37

Induct ive  se t ,  22
Inequa l i ty ,  20

Bernoulli, 46
Cauchy-Schwarz,  42,  452,  563
for the sine and cosine, 95
triangle, 42, 364, 454, 563

Infimum, 25
Infinite limits, 299, 300
Inf in i ty ,  297
Inflection  point, 191
Initial condition, 307
Initial-value problem, 307
Inner product, 451, 469, 561
Integer ,  22
In teg rab i l i ty :

of a continuous  function, 153
of a monotonie  function, 77

Integral  :
curve, 341
defini te ,  73,  211
improper, 416-420
indef in i te ,  120
lower and Upper,  74
of  a  bounded funct ion,  73
of a complex-valued function,  369
of  a  s tep funct ion,  65
of  a  vector-valued funct ion,  513
tes t ,  397

Integrand,  74
In tegra t ion :

by partial fractions, 258-264
by parts, 217-220
by  subs t i t u t i on ,  212 -216
of monotonie  functions,  79
of polynomials ,  79,  81
of rational functions,  258-264
of trigonometric functions,  100, 207, 264

Intercepts,  190, 495
Intermediate-value theorem:

for continuous  functions,  144
for derivatives, 187 (Exercise 10)

Intersect ion of  se ts ,  14
Intervals, 60, 310
Inverse :

function, 146, 252
matrix, 612
transformation, 585,  586
trigonometric functions, 253-256

Invers ion ,  146 ,  253
Invertible transformation, 585-588
Irrational numbers, 17, 22, 28, 31, 282
Isoc l ines ,  344 ,  348
Isomorphism, 361, 600
Isothermals ,  198,  351

Jump discontinuity,  131
Jupiter, 545

KEPLER, JOHANNES, 498, 545
Kepler ’ s  l aws ,  545 ,  546



662 Index

LAGRANGE, JOSEPH LOUIS, 171, 331, 445
Lagrange’s  iden t i ty ,  483
Lagrange’s  remainder  in  Taylor’s  formula,  284
Laplace’s  equa t ion ,  305
Lattice points, 60 (Exercise 4)
Least  squares,  method of ,  196 (Exercise 25)
Least-Upper-bound axiom, 25
Left-hand continuity,  126
Left-hand coordinate  system,  485
Left-hand limit, 130
Left  inverse ,  585,  611
LEGENDRE, ADRIE.N-MARIE,  571
Legendre  polynomia ls ,  571
LEIBNIZ, GOTTFRIED WILHELM, 3, 113, 157, 172,

210, 222, 305, 403
Leibniz%  formula for the nth derivative of a

product, 222 (Exercise 4)
Leibniz’s notation :

for  der ivat ives ,  172
for primitives, 210

Leibniz’s rule for alternating series, 404
Leng th :

of a curve, 530, 531
of a vector ,  453
other definitions of, 461 (Exercises  17, 18)

LEONARD~  OF PISA (Fibonacci), 379
Level  curve ,  197
L’HÔPITAL, GUILLAUME FRANÇOIS ANTOINE, 292
L’Hôpital’s rule, 292-298
Limit(s) :

inf in i te ,  298
left- and right-hand, 129, 130
of a function, 128
of a sequence,  379
of integration, 10, 74
theorems on,  132

Line(s) :
Car tes ian equat ion of ,  475
def ini t ion of ,  472
normal vector to, 476
parallelism of, 473
slope of ,  169,  475
tangent ,  170 ,  518
vector  equat ion of ,  475

Linear combination, 459, 556
Linear  dependence and independence,  463,  557
Linear differential equation, 308, 3:!2
Linear function, 54
Linear space (vector space), 551, 552
Linear span, 462, 557
Linear  sys tem of  equat ions ,  605
Linear transformation, 578
Linear i ty  p roper ty :

of  convergent  series, 3 8 5
of  der ivat ives ,  164
of integrals, 67, 80

of Taylor operators, 276
LOBATCHEVSKI, NIKOLAI  IVANOVICH, 474
Logar i thms  :

base  b ,  232
base e (Napierian or natural logarithms),

229-232
Logarithmic differentiation,  235
Logarithmic function:

calculation of, 240-242
defini t ion of ,  227
in tegra t ion  of ,  235
power series for, 390, 433

Lorentz transformation, 614 (Exercise 6)
Lower  bound,  25
Lower integral, 74

MACHIN, JOHN, 285
Major axis of an ellipse, 505
Mass  dens i ty ,  118
Mathematical induction, 32-37
Mathematical  model,  3 13
Matr ix  :

a lgebra ic  opera t ions  on ,  598 ,  601
definition of, 592, 598
diagona l ,  595
representa t ion ,  592

Maximum element, 23
Maximum of a function :

abso lu te ,  150
re la t ive ,  182

Mean, 46, 149
arithmetic, 46
geometric, 47 (Exercise 20)
harmonie,  46
pth-power, 46, 149

Mean distance from the sun, 546
Mean-value theorem:

Cauchy’s  extens ion of ,  186
for  der ivat ives ,  185
for integrals. 154, 219

Measurable  se t ,  58,  111
MERCATOR, NICHOLAS, 377, 390
Mercury,  545
Minimum element, 25
Minimum of a function:

abso lu te ,  150
re la t ive ,  182

Minor axis of an ellipse, 505
Modulus of a complex number, 363
Moment,  118

of inertia, 119
Monotone  proper ty :

of area,  59
of averages,  119 (Exercise 13)
of volume, 112
of work, 115
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Monotonie  function, 76
Monotonie  sequence,  381
Mot ion  :

along  a curve,  521
of a rocket, 337
simple harmonie,  334

Mul t ip l i ca t ion :
of functions,  55, 63, 132
of matrices,  601
of numbers, 17, 44, 358
of transformations,  584
of  vectors  (cross  product) ,  483
of vectors (inner product), 451, 469, 552
of  vectors  by scalars ,  447,  552

NAPIER, JOHN, 232
Napierian (natural) logarithms, 229-232
Necessary  and suff ic ient  condi t ions ,  394
Neighborhood ,  127
NEWTON, ISAAC, 3, 157, 171, 305, 377, 498, 522
Newton’s law :

of  cool ing ,  315
of motion, 314, 546
of  universa l  grav i ta t ion ,  546

Non-Archimedean geometries,  26
Non-Eucl idean geometr ies ,  474
Nonsingular matrix, 611
Norm :

of a vector, 453
of an element in a linear space, 563

Normal  :
to a line, 476
to a plane, 493
to a plane curve, 529 (Exercise 14)
to a  space curve,  526

No ta t i ons :
for derivatives, 160, 171, 172, 200
for integrals, 10, 65, 69, 210, 211, 513
for products,  44
for  sets ,  12
for sums, 37
for  vectors ,  446,  512

n-space, 446
nth  der iva t ive ,  160
nth root, 30, 145
Nul1  space,  580
Nullity,  581
N u m b e r  :

complex,  358
irrational, 17, 22
rational, 17, 22, 393
real, 17

Odd function, 84 (Exercise 25)
Odd integer, 28 (Exercise 10)

One-sided  limits, 129-l 30
One-to-one  correspondence,  360, 412
One-to-one  transformation, 587
o-no ta t ion ,  286
Open interval, 60
Opera to r  :

difference,  172
differentiation,  172, 329, 579
integration,  579
linear, 578
Taylor, 274

Orbits of planets, 545-548
Order axioms, 20
Ordered pairs, 48, 53, 358
Ordinate, 48
Ordinate set, 58, 60, 61, 75
Origin  of  coordinates ,  48
Or thogona l  bas i s ,  466 ,  568
Orthogonal complement,  573
Orthogonal matrix, 615 (Exercise 8)
Or thogonal  t ra jec tory ,  351
Or thogona l i t y :

in  a  Eucl idean  space ,  564
of curves, 351
of lines, 170
of planes ,  496
of the sine and cosine, 106 (Exercise 31)
of  vectors ,  455

Orthonormal set, 466, 564
Oscula t ing  p lane ,  526

Parabola, 2, 54, 498, 500, 507
Parabolic mirrors, 519
Parabolic segment, area  of, 3
Paradox, Zeno’s, 374-377
Para l le lep iped ,  112
Parallelism:

of lines, 473
of planes ,  479
of  vectors ,  450

Parallelogram law, 362, 449
Parameter,  5 17
Parametric equations, 475, 517

of a circle, 521
of a helix, 523
of a hyperbola, 524 (Exercise 12)
of a line, 475
of  an  e l l ipse ,  522

PARSEVAL, MARK-ANTOINE, 566
Parseval’s  formula,  566
Par t i a l  de r iva t ives ,  196-201
Partial fractions, integration by, 258-264
Partial sums, 375, 383
Partition, 61
PASCAL, BLAISE, 3
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Pascal’s  triangle, 44 (Exercise 3)
PEANO, GUISEPPE, 17
Peano postulates for the integers, 17
Periodic function, 95
Periodic motion, 335, 339, 546
Permutation, 412
Perpendicularity :

of lines,  170
of planes, 496
of vectors, 455

77 (pi) :
computation  of, 285 (Exercise 10)
definition of, 91

Piecewise monotonie  functions, 77
Planes, 478-482
Polar coordinates, 108, 540
Polar form of complex numbers, 367
Polynomial approximations, 272-304, 575
Polynomial functions, 55

continuity of, 133
differentiation of, 166
integration of, 79, 81
of two variables, 264

Population growth, 320, 321
Position function, 521, 540
Power, functions, 54, 80

series,  428-436
circle  of convergence, 428
differentiation and integration of, 432
interval  of convergence, 431

Prime numbers, 36 (Exercise ll),  50
Primitive (antiderivative), 205, 210-219
Product(s)  :

cross, 483
dot (inner), 451, 469, 561
notation for, 44
of functions, 55
of numbers, 17, 44, 358
scalar triple, 488

Projections, 457, 458, 574
Proper rational function, 259
pth-power mean,  46, 149
Pursuit  problems, 352
Pythagorean identity, 96, 455, 469, 573
Pythagorean theorem, 49, 196

Quadrant, 48
Quadratic equation, 362
Quadratic polynomial, 54
Quotient, of functions, 55

of numbers, 18, 360

RAABE, JOSEF LUDWIG, 402
Raabe’s convergence test, 402 (Exercise 16)

Radial acceleration,  542, 546
Radial set, 109
Radian measure, 102
Radioactive decay, 3 13
Radius :

of convergence, 428
of curvature, 537
of gyration, 119

Range of a function, 53, 578
Rank, 581
Rate of change, 160
Rational function, 166

of two variables, 264
Rational number, 17, 22, 393
Rational powers, 30, 135, 166, 206
Ratio test, 400
Real function (real-valued function), 51
Real line (real axis), 22
Real linear space,  552
Real numbers, axioms for, 18-25
Rearrangements of series,  411-413
Reciprocal, 18, 360
Rectifiable curves,  530
Recursion  formula, 220 (Exercise 8),  264, 379
Recursive  definition, 39
Refinement of a partition, 62
Related rates, 177
Relative maximum and minimum, 182, 183
Remainder in Taylor’s formula, 278-287
Removable discontinuity,  13 1
Ricatti differential equation, 312 (Exercise 19)
RIEMANN, GEORG FRIEDRICH BERNHARD, 3, 396,

413
Riemann’s rearrangement theorem, 413
Riemann zeta function, 396
Right-hand continuity, 126, 13 1
Right-hand coordinate system, 485
Right-hand limit, 129
Right inverse, 586
ROBERVAL, GILES PERSONE DE, 3
ROBINSON, ABRAHAM, 172
Rocket  with variable mass, 337
ROLLE, MICHEL, 184
Rolle’s theorem, 184
Root mean  square, 46
Root test, 400
Roots of complex numbers, 372 (Exercise 8)
Row, matrix (row vector),  598

operations, 608

Scalar, 447, 468
Scalar product  (dot product),  451
Scalar triple product,  488
SCHMIDT, ERHARD, 568
Sections of a cane,  497
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SEIDEL, PHILLIPP LUDVIG VON, 423 of numbers, 18, 358
Separable  different ia l  equat ion,  345 of  vectors ,  447,  551
Sequence,  378-381,422-426 Summation notation, 37
Series  : Surface, 197

abso lu te ly  convergen t ,  406
a l te rna t ing ,  403
condi t iona l ly  convergen t ,  406
convergent  and  d ivergent ,  384
differentiation of, 427, 432
exponent ia l ,  436
geometric,  388
harmonie,  384
integra t ion  of ,  432
logarithmic, 433
pointwise  convergence  of ,  425
power, 389, 428
sine and cosine, 436
Taylor ’s ,  434
te lescop ing ,  386
uniformly convergent ,  425

Set ,  funct ion,  57
theory, 1 l-16

Systems of  l inear  equat ions ,  605

Similarity transformation, 91, 349
Simple harmonie  motion, 334
Simul taneous  l inear  equat ions ,  490,  605
Sine  funct ion:

complex-valued, 372 (Exercise 9)
continuity of, 134, 139
different ial  equat ion for ,  323
differentiat ion of ,  162
integration of, 100, 207
power series for, 436
propert ies  of ,  96

Singular matrix, 613
Skew-symmetry, 483
Slope of a curve, 170
Slope of a line, 169
Small-span  theorem (uniform continuity), 152
Solut ion of  a  d i f ferent ia l  equat ion,  306
Space spanned by a  se t  of  vectors ,  556
Speed,  521
Sphere,  volume of,  114
Square  roots ,  29

computation  of, 444 (Exercises  20, 21)
Squeezing principle for limits, 133
Step funct ion,  62

integral of, 65

Tangent  funct ion,  103
Tangent line, 170, 518
Tangent vector, 518
T A R T A G L I A ,  3
TAYLOR, BROOK, 274
Taylor polynomial, 274-277
Taylor’s formula with remainder, 278
Tavlor’s series of a function. 434
Teiescoping  p r o p e r t y :  ’

of finite  sums. 40
of infinite series, 386
of products,  45

TORRICELLI, EVANGELISTA, 3
Tractrix, 353
Transpose of a matrix, 615 (Exercise 7)
Transverse axis  of  a  hyperbola,  505
Tr iangle  inequa l i ty  :

in a Euclidean space, 563
for complex numbers, 364
for real numbers, 42
for  vectors ,  454

Trigonometric functions:
complex-valued, 372 (Exercise 9)
continuity of, 134, 139
differentiat ion of ,  162
fundamental  propert ies of ,  95
geometric description of, 102-104
graphs of ,  107
integration of, 100
power series for, 436

Step region ,  58
STOKES,  GEORGE GABRIEL, 423
Straight lines in n-space, 472
Subse ts ,  12
Subspace of a linear space, 556
Subs t i tu t ion ,  in t eg ra t ion  by ,  212-216
Sum:

Unbounded func t ion ,  73 ,  416
Unbounded  sequence,  3 8  1
Undetermined coeff icients ,  332,  333,  441
Uniform continuity theorem, 152
Uniform convergence,  424
Union of  se ts ,  13
Uniqueness  theorems,  309,  324
Uni t  coord ina te  vec tors ,  459
Unit tangent vector, 525
Unitary space, 562
Upper  bound ,  23
Upper integral, 74

Variation of parameters, 331
Vector(s) :

of  a  convergent  series, 3 8 4
of functions, 55, 63, 132

addi t ion  and  sub t rac t ion ,  447
angle  between,  458,  470 (Exercise  7)
components  of ,  446
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Vector(s)  (Contd.)
cross product of, 483
direction of, 450
dot product (inner product) of, 451
equality of, 447
geometric, 448
length (norm) of, 453
multiplication by scalars, 447
orthogonality of, 455
parallelism of, 450

Vector  space (linear space), 552
Velocity, 159, 521

in polar coordinates, 541
Venn diagram, 13
Venus, 545
Vertex,of ellipse or hyperbola, 505

of a parabola, 507
Vibrations, 335
Volume :

axiomatic definition of, 112
solids of known cross section, 113
solids of revolution, 113, 114

Index

WALLIS, JOHN, 3
WEIERSTRASS, KARL, 17, 423, 427
Weierstrass M-test for uniform convergence,

427
Weighted average of a function, 118
Weighted mean-value  theorem, 154
Well-ordering principle,  34
Work, 115, 116
WRONSKI, J. M. HOENE, 328
Wronskian, 328 (Exercise  21),  330

ZENO, 374
Zeno’s paradox, 374-377
Zero, 18

complex  number, 359
element in a linear space, 552
matrix, 599
transformation, 579
vector,  447

Zero-derivative theorem, 205, 369
Zeta function of Riemann, 396


