
Issue 19
Dec 2011

An iOS Developer Takes on Android
by Nick Farina

http://bit.ly/a-or-b
http://visualwebsiteoptimizer.com

http://bit.ly/a-or-b
http://visualwebsiteoptimizer.com
http://www.getharvest.com/hackers

Curator
Lim Cheng Soon

Contributors
Nick Farina
Reginald Braithwaite
Clint Watson
Gabriel Weinberg
Jared Carroll
Rich Jones
Russ Cox
Kristian Storm

Illustrator
Jaime G. Wong

Proofreader
Emily Griffin

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Jaime G. Wong

For links to Hacker News dicussions, visit hackermonthly.com/issue-19

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://hackermonthly.com/issue-19.html

For links to Hacker News dicussions, visit hackermonthly.com/issue-19

Contents
FEATURES

6  An iOS Developer Takes on Android
By Nick Farina

14  I Make Dreams Come True
By Reginald Braithwaite

STARTUPS

18  How My Lifestyle Business Became a Startup
By Clint Watson

22  What I Learned From Raising Venture Capital
By Gabriel Weinberg

PROGRAMMING

30  Vim Text Objects: The Definitive Guide
By Jared Carroll

36  Python for the Web
By Rich Jones

HARDWARE

42  The MOS 6502 and the Best Layout Guy in the World
By Russ Cox

46  P-III Autopsy
By Kristian Storm MOS Technology 6502 CPU pinout

diagram, by Bill Bertram

http://hackermonthly.com/issue-19.html

6  FEATURES

FEATURES

By Nick Farina

An iOS Developer
Takes on Android

Recently, we released the
Android version of Merid-
ian, our platform for building

location-based apps.
We didn’t use one of these “Cross

Platform!” tools like Titanium. We
wrote it, from scratch, in Java, like you
do in Android.

We decided it was important to keep
the native stuff native, and to respect
each platform’s conventions as much as
possible. Some conventions are easy to
follow, like putting our tabs on the top.
Other conventions go deep into the
Android Way, like handling Intents,
closing old Activities, implement-
ing Search Providers, and being strict
about references to help the garbage
collector.

Now, our platform leverages HTML5
(buzzword, sorry) in many places for
branding and content display, so we
got a fair amount of UI for free. But

there was much platform code written
in Objective-C that needed transla-
tion into Java, such as map navigation,
directions, and location switching.

So, we rolled up our sleeves, down-
loaded the Android SDK, and got to
work.

Development Environment

Apple has made it pretty easy to start
writing iOS apps. Of course, Step
One is “Buy a Mac.” Easy! Then just

  7

download the free Xcode Installer
from the Mac App Store, and start
writing code when it’s done.

Android is a bit more involved. You
can download the SDK easily, but to
actually start writing code, you’ll want
to setup Eclipse and install Google’s
ADT Plugin.

If you want to waste a week or so
playing around and not getting work
done, you could explore the many
tempting alternatives to writing Java in
Eclipse. You could download Netbeans,
or write in Scala, or finally start learn-
ing VIM.

But let’s assume you are on a dead-
line and want to do things the way
that Google endorses. The first thing
you’ll need to do is accept the reality
of Eclipse.

You’re going to just hate Eclipse.
You’re going to hate it with the heat of
a thousand suns. It’s going to feel slow
and bloated and it won’t taste like real
food.

Eclipse is a world unto itself. It’s the
IDE to end IDEs. Consequently, it has
many abstract-sounding concepts you’ll

have to learn. There are Workspaces,
and Perspectives, and Run Configura-
tions. And Eclipse itself is just an empty
shell of sorts; all non-trivial functional-
ity is provided via a complex network
of interdependent Plugins, similar to
Linux distributions. Come to think of
it…

Of course, IDE weirdness isn’t
unique to Eclipse; Xcode was pretty
damn weird at first, too, and it’s getting
more meta with each release (Schemes,
anyone?).

The upside is, after acclimating to
Eclipse, you’ll enjoy some seriously
amazing, productivity-boosting code
completion, refactoring, and automatic
fixing. It’ll basically write your code for
you.

A great way to get comfortable with
Eclipse is to spend a couple hours, and
I’m being dead serious, tweaking the
hundreds of options and checkboxes
and fiddly things in the Preferences
section.

8  FEATURES

Again, being serious here, I felt a lot
more comfortable and familiar and
happy with Eclipse after getting to
know it this way. Does this mean that
other programs should expose every
conceivable preference imaginable?
Jesus, no. Are you crazy?

The Java Language
Java is a high level programming lan-
guage. It’s unproductive to have an
opinion about it. Instead, consider how
Android uses Java.

This [hn.my/async] is how you do
something on a background thread.
This [hn.my/uievents] is how you
listen for events (it’s actually just like a
delegate in ObjC). This [hn.my/activ-
ities] explains the lifecycle of Activi-
ties, which are exactly like UIView-
Controllers in Cocoa.

Overall, the Android frameworks
are very well designed and consistent,
and the API works harmoniously with
the Java language. It’s actually similar
enough in the fundamentals that our
app has almost the exact same class
structure on Android as on iOS.

And the code ended up looking
strikingly similar as well. Here’s a snip-
pet of ObjC from our app that draws
an arrowhead, followed by the Java
version.

Freaky, right? A lot of our source is
like that.

Debugging
Now that you’ve written some code,
you’ll want to try running it. In Apple’s
world, we have the iOS “Simulator.”

It’s called a Simulator because it’s
phony (ha!). It’s not the real iPhone
OS. When you run your app “in the
simulator,” Xcode compiles your app
into a desktop application, and runs it

natively on your
Mac. If you look
in Activity Moni-
tor, you’ll see
your app right
there, running
alongside Mail
and iCal and
iTunes.

http://hn.my/async
http://hn.my/ui-events
http://hn.my/activities
http://hn.my/activities

  9

The downside to the Simulator is
that it doesn’t exactly replicate the iOS
environment. And your code isn’t the
same either; it must be compiled for
x86/64 instead of ARM, so there’s no
guarantee things will work the same on
an iOS device.
The upside to the Simulator is that
it’s not an “Emulator.” What’s an
Emulator?

Behold, the Android Emulator. Its
goal is noble: to run your app on the
complete unaltered Android OS inside
a virtual machine that executes ARM
instructions.

What is the primary quality of the
Android Emulator?

 I thought the iPhone Simulator was
a terrible idea when I first heard of it,
until I remembered that we built the
exact same thing for Windows Mobile
back in the day, because the Windows
Mobile Emulator was so goddamn slow.

It takes the Android Emulator about
2 minutes to boot up on my perfectly
modern machine. But what really hurts
is the edit/debug cycle. Every time I
change a bit of Java and need to rerun
the app, it takes about 30 seconds to
redeploy and start up in the Emulator.
Compare that to 5 seconds on the iOS
Simulator. It may not sound like much
but remember you’ll be doing this hun-
dreds of times throughout your day.

Fortunately, it turns out to be much
quicker to deploy and boot up your
app on a physical device over USB.
So trust me, just go out and buy an
Android phone. Better: buy a few of
them to test against fragmentation.

Not that fragmentation is unique to
Android; it’s just exaggerated a lot in
the media. We need quite a few iOS
devices in our lab, too. One tiny unex-
pected OS or device difference can
bring your app crashing down on any
platform.

UI Design Tools
For laying out widgets on iOS, we have
Interface Builder.

10  FEATURES

Your experience with Interface
Builder may differ from mine, but I’ve
learned to use it very sparingly. It’s
great when you want to create static
layouts with precision. But for dynamic
content, especially UITableViews, it
tends to make things more complex
than they would be in code. Especially
when you come back after a while
and forget all the little dependencies
between your Controller and your
XIB.

On Android, you can create UI lay-
outs in XML.

It’s a bit like HTML, except it’s not
HTML. It has a basic styling system
that’s kind of like CSS, except it’s not
CSS.

Lots of well-meaning developers
in positions of power have tried to
reinvent HTML and CSS over the
years. Mozilla created XUL for cross-
platform UI in Firefox. Adobe created
MXML for Flash. Microsoft created
XAML for Windows.

I myself am guilty of creating my
own XML-based layout system for
Flash called Bent, back when I had too
much free time. So I can tell you that
inventing these systems is the most
fun you will ever have as a developer.
It feels like you are creating the One

True Framework, and once it’s com-
plete everyone will embrace it and get
excited about it and learn it and build
on it and hold you up and sing epic
poems about your genius!

But the reality is, it’s not HTML and
CSS and so it’s another thick layer of
stuff that you have to learn and under-
stand and fight with when things don’t
work like you expect.

On the plus side, you can preview
your XML at design-time in a nice
visual editor, much like Interface
Builder:

Which is pretty grand.
Now, technically you could write

everything in Java, just like on iOS you
can eschew Interface Builder entirely
and write only Objective-C. But you’ll
find that when you scour the Inter-
net for how to do a thing on Android,
you’ll end up needing to understand
all these XML formats anyway just to
understand code samples on the web.

But it’s not really that bad, because
you also get…

  11

A Real Box Model

Here’s a list item on iOS that repre-
sents a search result.

And here’s just a snippet of the ObjC
that renders that item:

Talk about a bag of hurt. You could
create the initial layout in Interface
Builder, of course, but then you’d have
to kiss that silky smooth scrolling good-
bye. Maybe in the future when iOS
devices are blazing fast.

As humans, we don’t typically think
“The title should be positioned at 30
pixels by 40 pixels, with a maximum
height of 35 pixels.” Instead, we think
“The title should be above the sub-
title, and to the right of the thumbnail
image, and have at most 2 lines.”

Android has a system of layout con-
tainers (similar to HTML) that let you
describe where content should be, rela-
tive to everything else. Here’s a similar
snippet from the same search result in
Android:

Now, you’ll have
to study up on all
these layout con-
tainers like Frame-
Layout, LinearLay-
out, RelativeLay-
out, and learn all
their quirks, but in

the end you’ll get a very natural, flex-
ible UI layout system.

The best part is that it’s zero-effort-
easy to make layouts that automatically
resize for portrait/landscape device ori-
entations and varying screen sizes. This
is in stark contrast to the absolutely
primitive springs and struts system in
Cocoa/iOS.

But here’s the thing about the sim-
plistic layout system in iOS that I just
mocked, it turns out to be a reasonable
compromise when you consider…

12  FEATURES

Animation
The thing to realize about Android is
that it used to look like this:

It was conceived and designed during
the pre-iPhone days of Blackberry and
Windows Mobile, and the influence of
those platforms goes very deep into the
Android OS.

For instance. The rendering system,
that is, the method by which UI wid-
gets like menus and buttons and such
get painted on the screen, is primarily
software-based.

What does that mean? Let’s take
the screenshot above as an example. If
you pressed the Down key, you would
expect the “Homepage” entry to be
selected instead of “Go to.” So you press
the Down key. This causes an “invali-
date,” meaning, “please repaint the
screen.” So the screen is cleared, then:

➊ The OS redraws the status bar at the
top

➋ The WebView redraws the Google.
com website

➌ The Menu draws its translucent
black background and border

➍ All the menu text is drawn

➎ The blue gradient highlight is drawn
over “Homepage.”

This all happens very quickly, and
you only ever see the final result, so
it looks like just a few pixels have
changed, but in fact the whole screen
must be reconsidered and redrawn.

If this sounds familiar, it’s because
this is the basic method used in GDI,
the rendering system introduced with
Microsoft Windows 1.0. That sounds
damning, but really most GUIs oper-
ated this way.

Until the iPhone came along…
When you’re using an iPhone, you’re

playing a hardware-accelerated 3D
game. You know, the kind of 3D where
everything is made out of hundreds of
little triangles.

When you flick through your list
of friends in the Contacts app, you’re
causing those triangles to move around.
And there’s a “camera,” just like a 3D
shooter, but the camera is fixed above
the Contacts app’s virtual surface and
so it appears 2D.

  13

Which is a long way of saying that
everything on iOS is drawn using
OpenGL. This is why animation on
iOS is so hopelessly fast. You may have
noticed that -drawRect is not called for
each frame of an animation. It’s called
once, then you draw your lines and cir-
cles and text onto an OpenGL surface
(which you didn’t even realize), then
Core Animation moves these surfaces
around like pulling on the strings of a
marionette. All the final compositing
for each frame is done in hardware by
the GPU.

Android seems to have made the
decision early on that they wouldn’t
force their manufacturing partners to
include a GPU. This decision made
total sense back in the pre-iPhone days,
but now it’s causing pain, as even the
new hardware acceleration in Android
3.0 is limited by the original software-
based compositing system.

So here’s the catch with the wonder-
ful flexible layout system in Android:
You must be very careful. If you ani-
mate certain kinds of properties, you
can easily force the CPU to do all that
fancy, expensive layout on each anima-
tion frame. And the CPU is very busy
right now parsing some JSON from a
web API or something, OK?

Meridian For Android
All in all, it took us about 4 months of
development time to build and release
Meridian for Android.

When we first released Meridian,
our number one piece of feedback
was “Will you make an Android ver-
sion please?” Except often without the
“please.”

And it turns out Android is the third
platform for Meridian. The first was
Windows Mobile, if you can believe
that.

We started building what we now
call “Meridian,” back before the iPhone
existed. At the time, Windows Mobile
was the only mobile platform capa-
ble of delivering the experience we
wanted.

So you could say I’ve got a rather long
view of things now. There will always
be new platforms and new paradigms to
learn. The best we can do is to under-
stand where each one came from, and
to embrace the positives and overcome
the negatives as quickly as possible so
we can ship some awesome features
before everything changes again. n

Nick is the CTO and cofounder of Meridian
[meridianapps.com], the location-based soft-
ware platform. He also cofounded Spotlight
Mobile, creator of award-winning apps for
brands like Nike, Vogue, and Barnes & Noble.

Reprinted with permission of the original author. First appeared in hn.my/iosandroid (nfarina.com)

http://meridianapps.com
http://hn.my/iosandroid

14  FEATURES

By Reginald Braithwaite

I Make Dreams
Come True

Recently,
I read
“Don’t

Call Yourself a
Programmer.”
[hn.my/callprogm]
Right away, I’m
going to say that
in my nearly
thirty years of
experience turn-
ing software into money, just about
everything Patrick says about the
business of software and how to get
ahead is absolutely true. Sure, you can
quibble with something or other. After
all, getting ahead in business is a huge
subject and this is an essay. Something
has to be over-generalized or insuffi-
ciently explained. That’s the nature of

trying to cram so many bits of informa-
tion into a fixed container.

“Don’t Call Yourself a Programmer”
contains a lot of the stuff I would want
to tell a young Mr. Braithwaite. There
are some other things I’d want to tell
myself. One of them is, I’m not in the
“programming” business, or the “adding
value to the economy” business. I pro-
gram and add value, but my motivation

“
”

Visions are worth fighting for.
Why spend your life making
someone else’s dreams?
		 — Orson Welles in the film “Ed Wood”

Photo: flickr.com/photos/jsorbie/2953147267

http://hn.my/callprogm
http://flickr.com/photos/jsorbie/2953147267

  15

for programming and for finding ways
to add value is to finance my real busi-
ness: the “making dreams come true”
business.

Consider movies. Sure, there are
incredible documentaries. And moving,
gritty, realistic dramas. But many great
movies have a dream-like quality to
them. I don’t mean the movies depict
dreaming. But movies like Amelie
[hn.my/amelie] have a dreamy feeling,
something that connects with us in a
deep way, something that takes us out
of where we are and places us in the
past, future, or parallel reality. Some-
thing that breaks the laws of physics or
society.

Such movies aren’t just about what
the filmmakers were dreaming; they
connect with us because they’re a
realization of our dreams. Filmmakers
make dreams come true. Just like I do.
And I don’t just mean that I make my
dreams come true. I write software that
makes its users’ dreams come true.

The Dream Feeling
Software (like films) realizes dreams
with a visual look and feel, a new
programming notation, or perhaps a
library that makes you think about
doing an old thing in a new way. Great
software and great programming
languages have a dream-like quality.
Learning to use them has this strange
feeling of needing to relearn everything
you know while feeling natural.

I want that from the software I build.
If it doesn’t change the way users
think, what damn good is it? When
someone uses my software or programs
with one of my libraries, I want “Aha!” I
want, “Of course it works this way, why
did everyone screw this up before?” I
want, “Now that you’ve given it to me,
you can have it back when you pry it
from my cold, dead fingers.”

“Now that I’ve dreamt in color, I
don’t want to wake up and live
in black and white.”

http://hn.my/amelie

16  FEATURES

As a user, I had this experience look-
ing at a Macintosh in 1985. The GUI
seems obvious today, but to someone
who hadn’t seen The Mother of all
Demos [hn.my/demo], or hadn’t fol-
lowed what PARC was up to, the illu-
sion of direct manipulation and WYSI-
WYG was like being in a dream. It had
felt so different from everything I’d seen
before, but somehow connected deeply
with how things ought to be. It wasn’t
alien.

Speaking of drawing things, when I
started to learn object-oriented pro-
gramming, I bought a book that walked
me through writing a vector drawing
program step-by-step using Object
Pascal. I won’t say that Objects were an
“Aha!” for me. I grokked the style and
my response leaned towards, “Oh, fine,
that’s how we’ll do it.” Polymorphism
was more of a “Neat-o” than an “I must
be dreaming.” To this day, I’m reserved
about OOP. But something else blew
my mind: the book explained how to
implement an Undo Stack using what
is now called the Command Pattern.

When I figured out what was going
on, my mind immediately told me
that I wasn’t in Kansas any more.
Here I was thinking about programs
as a collection of data types and some
procedures and functions operating on
those data types. OOP reorganized the
data types and functions, but it wasn’t
a huge leap of thought. You still oper-
ated with data types and functions.
But Commands were something new:

Now the idea of changing the data was
a piece of data itself. To this day, the
Command Pattern feels very related
to the essential idea of Lisp’s equiva-
lence between programs and data, to
the idea of a programmable program-
ming language, to the idea of functions
operating on functions and not just on
data. It felt like the basic laws of phys-
ics were disrupted, like someone had
shown Newton the two slit experi-
ment or general relativity.

Did I just talk about the Command
Pattern? I went to the first Startup
School. Naturally, I could tell you
about seeing Woz in person or some
such, but do you know what blew my
mind? Seeing a crowd of people use
SubEthaEdit to take notes. Collabora-
tive editing was another dream-like
feature, something which made me feel
like I was in an alternate reality where
software and operating systems worked
on an entirely different basis. Collabora-
tive editing takes the Command Pattern
and runs it through an algorithm called
Operational Transformation and out
comes magic: people around the world
editing a document like a spreadsheet
or a program in real time.

http://hn.my/demo

  17

Now that I have seen Operational
Transformation, I can’t help thinking
that all of the CRUD software I’m
writing is Doing It Wrong, that nearly
everything ought to be live and in real
time and collaborative. That every
web program should be manipulating
commands or edits or whatever you
want to call them, that undo and col-
laboration and a list of who did what
should all be basic and baked into the
architecture. Once again, everything
is different, yet somehow feels like it’s
always been this way.

And now that I’ve dreamt in color, I
don’t want to wake up and live in black
and white.

The Business of Dreams
I strongly suspect that most people will
either agree or disagree with my feel-
ings at a visceral level. It’s a little like
invention: you probably have some
deep-seated attraction to the idea of
inventing new things. You may also
have a perfectly healthy aversion to
going down the rabbit hole when you
could be getting things done with the
tools and processes that already exist.

So I’m not going to tell you that you
are going to be taller, more attractive,
or make more money if you try to
make dreams come true. I can tell you
that there is money to be made in the
dreams business. You know how I don’t
want to wake up from my dreams?
Other people are just the same. Do
you want to give up your GUI and do
everything on the command line? Or
do you think phones should be teth-
ered to a twisted pair of copper wires?

Maybe a few people with Emacs
think so. Congratulations, retro-
grouches. Everyone else in the world
is addicted to GUIs and watching a
movie on a tablet and collaboratively
editing a spreadsheet. Once you show
someone a dream and let them live
in it for a moment, they don’t want
to leave. Dreams are habit-forming.
Dreaming is addictive. And if you make
dreams, your business supplies dreams
to people who never want to give them
up.

That’s a powerful business model.
Use it wisely. n

Reginald is a software developer and
development lead with Unspace Inter-
active. He writes code and words about
code in homoiconic. Follow him on Twitter
@raganwald

Reprinted with permission of the original author.
First appeared in hn.my/dreams

http://twitter.com/raganwald
http://hn.my/dreams

18  STARTUPS

STARTUPS

By Clint Watson

I chuckled when I read this in a recent
article by Gabriel Weinberg of Duck-
DuckGo fame [hn.my/ddgtimes],

“Things take time. We’ve been live
now for about 3 years. They don’t need
to take that long of course, but don’t
expect results overnight.”

Things take time indeed. Three years?
I’ve been at this for over 10 years now.
Are we even a “startup?” At this point,
I’ve got to own up to the fact that
FASO is an ongoing concern that hap-
pens to be entering a startup-like phase
later in life. Maybe we’re not truly a
startup, in the sense of being new and
not-yet-profitable (we’re old and profit-
able), but the challenges and growth
we face today have changed us from a
lifestyle business into a startup.

The missive below outlines how
FASO went from a sideline project,
almost a hobby, to the full-blown

“startup” we are today. Our path was
very different from what you nor-
mally read about in the current angel/
VC-fueled environment. Perhaps our
story will give hope to other weekend
warriors who don’t have the luxury of
quitting their job, moving to the valley,
and working on their startup full-time.

Starting sometime in mid-2000, our
growth looked like this:

Year Number of Paying Users

2000 ideas, planning

2001
early coding, first few
customers

2002 35

2003 100

2004 170

[started full time]

2005 350

How My Lifestyle
Business Became a

Startup

http://hn.my/ddg-times

  19

Year Number of Paying Users

2006 683

2007 1,130

2008 1,978

2009 2,656

2010 3,561

2011 4,382

Today
5,637 active users
4,608 paying users +
1,029 active free users

A Short History of My Long Startup
I had an early background in comput-
ers, but had taken a 16-year detour to
follow a career in one of my other pas-
sions: the visual arts. During those 16
years, I ran and later owned an art gal-
lery. I was able to use some of my early
hacker skills while in the gallery busi-
ness and had cobbled together a nice,

dynamic, functional website to show-
case art for the gallery. This was back
when such things were still a novelty,
at least for smaller concerns. However,
by the time the idea for FASO started
to percolate in my mind, my coding
skills were, to understate the issue,
rusty. Nevertheless, I laid down the
first code that eventually became our
web application in February of 2001,
at 32 years old — already ancient for
a tech startup founder. Joel said that
good software takes 10 years, but Joel’s
a great programmer. I’m not nearly as
good as him. Plus, FASO was part-time
for the first 5 years, so I’m going to
allow us a few more years on achieving
“good” status with our software.

I started FASO, not because I was
seriously planning a startup but
because I wanted to solve a friend’s
problem. My friend, an artist, wanted
a nice website to display his art, and so
he asked me for help. “Make something
people want” is what Paul Graham says.

“The idea was wasn’t to build a start-
up and exit. The idea was to make a
great living doing something I loved.”

*All figures are mid-year numbers to coincide
with number of full years since launch.

20  STARTUPS

And I inadvertently stumbled onto
that. My friend had a problem that he
wanted solved, so I decided to build
the solution that had been percolating
in my mind.

Turns out, a few other artists wanted
the same solution. After a few months,
I had given my solution away to a
few more artists. In fact, I had to give
it away: I had no idea how to easily
collect money online anyway. One
day, I ended up on the phone with
a guy who, of all things, ran a credit
card gateway and, as luck would have
it, he had an ASP library. So I set up
an account with him and was able to
accept credit cards! Honestly, this was
all a bit simpler in those days because
it predated PCI. (Not that we weren’t
careful anyway — we were. Today, we
process payments via Braintree Pay-
ment Solutions’ excellent API, which
handles all the difficult compliance
stuff for you.)

Probably six months after setting
up my friend’s site, I landed my first
cash-paying customer (she’s still a
customer), even though I still had no
signup process. I didn’t even have a
front-end website (other than a page
where the users could log in). I would
simply meet an artist, in real life, sell
them on the idea and then go manually
add their record to the database, after
which point they could log in.

For the first 5 years, while I ran this
thing as a part-time “nights and week-
ends” project, it was pretty stress-free;

I just hacked on it when I had time.
Once I went full-time, I spent the
next couple of years learning how to
do things properly, refactoring code,
migrating onto more serious platforms,
etc. I thought I could just build a nice
little lifestyle business. The idea was
wasn’t to build a startup and exit. The
idea was to make a great living doing
something I loved.

However, once we reached a certain
point, I looked up and realized that we
were now a startup.

Becoming a “Real” Startup
As your customer load grows, as you
face scaling decisions, as you attract
competitors, all of the “normal” things
you read about startup life start to
happen. Serious competitors, especially,
change the game. Like Paul Graham
said, “your competitors decide how
hard you work. And they pretty much
all make the same decision: as hard as
you possibly can.” So much for my life-
style business. That’s okay; I still love
what I do. Startups are fun.

So now, after 10 years, I find myself
running a startup and working harder
than I ever did at the beginning. But
I always did tend to do things a little
backwards.

  21

How to Follow the Slow, Safe Road
I suspect many people want to start a
startup, but already have obligations: a
mortgage, a family, etc. Risking it all is
fine when you’re in college, but, if you
can’t risk it all and move to the valley,
then perhaps there is another path.

I think the trick to starting slow is to
pick the right industry or niche. You
can’t compete slowly with Facebook,
Twitter, Google, or even Y-Combinator
startups. They’re just going to move
way too fast. However, I still think our
long road to success can be followed
by others, as long as you solve a real
problem (especially if it’s currently
unsolved or poorly solved) for real
users who are willing to pay. Look in
niches outside of tech for those (please
don’t build another URL shortener,
Twitter client, or, for Pete’s sake, a
photo-sharing app).

It helps tremendously to have expe-
rience in your niche’s industry. I see
would-be founders on HN saying that
it seems like most of the good ideas
have been done. That’s because they’re
not looking outside of the narrow
world of tech. Really, how many bug
trackers does the world need? Look
somewhere else.

Go get a job in another industry that
interests you. You’ll be amazed at how
many problems are unsolved. Watch
how we solve problems in tech, and
then ask how you can mimic those
solutions specifically for your niche.

Don’t worry about losing too much
time, starting a few years later isn’t the
end of the world and may just give you
a huge competitive advantage.

For example, at 32, I had run or
owned an art gallery for 12 years.
That’s a huge competitive advantage
in terms of knowledge, experience,
and industry contacts that can’t easily
be duplicated by our competitors. So,
yeah, while it took us several years
to stand on our own two legs — our
extended search for our MVP — we
now have several advantages. Includ-
ing the fact that VC’s don’t own 80%
of the company. They own 0%. I own
100% (I’ve had one offer to purchase
it. The offer was a lot of money...but
not enough).

“Things take time,” Gabriel said. He
wasn’t kidding. We’re the poster boys
for that motto. Fortunately for Gabriel,
he’s much further along at 3 years
than we are at 10. Kudos to him.

With any luck, you’ll get there in a
lot less time than a decade. But even if
it takes that long, don’t worry, it’s a fun
ride. n

Clint is the single founder and lead developer
of FineArtStudioOnline [faso.com], a web
company (founded in 2001) that creates web
applications for visual artists. His company’s
(and his personal) core belief is “Sharing Art
Enriches Life.” Before FASO, Clint ran (and was
part-owner) of an art gallery for about 16 years.

Reprinted with permission of the original author.
First appeared in hn.my/lifestyle (faso.com)

http://faso.com
http://hn.my/lifestyle

22  STARTUPS

By Gabriel Weinberg

I’m new at this
I recently raised venture capital for
the first time. I’m going to relate what
happened below and highlight my
mistakes/takeaways in the bold section
titles. However, please bear in mind my
lack of experience in these matters and
that this is written from the entrepre-
neur’s perspective.

Background
DuckDuckGo raised a series A round
from Union Square Ventures and a
handful of awesome angel investors.
While we did talk to over 30 VC firms,
I realized our path ended successfully
and had been relatively quick and pain-
less. So first off, I want to say I sympa-
thize with everyone who struggles with
the funding process.

The funding process is not to be
taken lightly
Even though our round went relatively
smoothly, it was still a massive time
sink. It was the top idea in my mind,
and it pretty much consumed my life
for four months. In other words, it
seems like you should commit to being
all-in, all-consumed for a while, or you
might as well not do it.

This reality is especially troublesome
for two reasons. First, you’re distracted,
and so your business suffers. Second,
every VC expects you to keep making
forward progress (as if you’re just talk-
ing to just them and have the rest of
the time to work on the business —
yeah right).

What I Learned From
Raising Venture Capital

  23

Save up good news for the middle of
the process
We did not do this, but it ended up
working out that way anyway, and so I
saw the value in it first hand. I started
raising right after releasing dontbubble.
us, which is demarcated by C in our
traffic graph. Then in the middle of the
process, we got picked as one of TIME’s
top 50 websites for 2011 (annotated as
D in the graph). It was nice recognition
(and traffic growth) at just the right
time.

A similar (also unplanned) thing hap-
pened when selling my last business.
In the middle of that process, we had
released a feature that really exploded
our user growth. I don’t think it was
completely random that these things
happened at the right time, however. I
generally try to operate in such a way
as to maximize my luck.

People would talk to me because of
traction and track record
I waited three and half years before
seeking funding, much longer than
most people would. I basically waited
until we had significant (not huge, but
significant) traction in a large market.
Traction trumps everything.

I’m not suggesting it’s great to wait,
and I realize most people cannot wait
for a variety of reasons. I’m just high-
lighting that we did and it clearly
helped get VCs talking to us.

We probably could have raised
earlier
If you checked out our graph, it’s nice,
but looking back, it is unclear to me
how different things would have been
if I had tried to raise after reaching
1,000,000 direct searches a month
instead of 7,000,000. When talking to
people, for most, it didn’t really seem
that it would have made a huge dif-
ference, though there is of course no
control.

However, the business difference in
those two numbers is large. Granted
they’re both still very small numbers
when considering the search market as
whole, but moving orders of magnitude
is really de-risking the business a great
deal.

If you try to raise between signifi-
cant milestones, unless you can show
other reasons why you’re killing it (the
nice graph in our case), you’re risk-
ing getting hit on valuation (or lack
of funding) because your momentum
is unclear and/or people can’t per-
ceive the real progress your making.
On the other hand, after just reaching
a milestone people care about, your
momentum is large and people gener-
ally extrapolate what you’re doing in
your favor.

The subtext here is that it has to be
a milestone people care about and not
just one that you care about, even if
you have great reasons to care.

24  STARTUPS

There are a lot of VCs
Let’s get to some numbers. I talked to
31 VC firms, 5 seed funds, and about
14 angels. These numbers do not
include firms or people that I never
actually connected with on the phone,
on Skype video, or in person. There
were countless more I didn’t get to or
weren’t on my radar.

In the end we got funded by a big
name, but I met plenty of lesser names
from whom I would have gladly been
funded. In a second I’d choose some-
one I like/respect/trust/think is a good
fit at a no-name firm vs. someone I
don’t at a big name firm.

Your VC is essentially buying in as a
co-founder
Would you chose a co-founder that
sucks? Of course not willingly. It is a
major reason startups die.

I treated the VC decision in a similar
way. They’re going to be with me long-
term. They have a significant equity
stake and other significant terms.

But I’m not just thinking negative
here. Like a great co-founder, they can
also help me in strategic ways at the
right time.

I realize a lot of people don’t think
they have choices, but that’s a bit of
a fallacy. You are making choices by
deciding who to talk to in the first
place.

It’s good to know people ahead of
time
I only knew a handful of VCs coming
into the process, but I wish I had
known more. I just never made a con-
certed effort to meet them.

There is conflicting advice in the
blogosphere about whether to take VC
“informational interviews” or not. But
from my perspective, people take you
much more seriously if you are a known
quantity. You see firms backing the same
entrepreneur again and again. And more
generally I think people do invest (at
least more easily) in lines, not dots.

To blast or not to blast
I also got conflicting advice on how to
seek VC intros. You can either a) get
intros in concentric circles based on
who you think is best (first tier, second,
etc.), or b) try to get introduced all at
once to everyone you want.

The idea behind the former is that
you give the best people a sense you’re
coming to them somewhat exclusively
because of fit, which they like and
will be more inclined to listen/fund,
while the idea behind the latter is to
get people moving along faster because
you’re a “hot” deal.

  25

Don’t pitch ideal VCs first because
you’ll mess up
Ultimately, I decided to blast, but not
after messing up some early pitches with
people I really wanted to work with.

Quite frankly, I didn’t have my pitch
down and I’m not sure you can get it
down without giving it to some real
VCs and seeing what resonates and
what falls flat.

Get your story straight
Another reason I messed up my early
pitches is I was a bit wishy-washy on
how much I wanted to raise and what
I would do with the funds. Bad idea.
People like confidence. Perhaps it is a
good idea to have those exploratory
meetings ahead of time, but I learned
they should not be combined with a
pitch because it is just communicating
either you’re not serious or you’re not
ready.

It’s awkward to pitch people you
know, but give them the real pitch

Yet another reason I messed up my
early pitches is I treated people I knew
too casually. I should have given them
the real pitch. You can still ask them
to introduce you to others that may be
good fits after the fact, which is one of
the reasons I wanted to talk to them
about it as well.

But by changing the pitch into a
friendly conversation, I was again send-
ing a signal that they shouldn’t take me
seriously. And they didn’t.

Use AngelList
I got significant value out of AngelList.
Most importantly, I got high quality
inbound requests from people I would
have never connected with otherwise.

I also think we were perceived as
somewhat hot by the VCs who hang
out on AngelList because our startup
was getting a lot of followers/intro-
ductions and going out on a lot of the
associated emails.

Intro channel breakdown
Of the connections made, I broke them
down into categories of how I got the
initial introduction:

■■ I knew them and reached out: 4 VCs,
2 seed funds, 4 angels.

■■ Suggested intro from someone: 14
VCs, 2 seed funds, 5 angels

■■ AngelList inbound: 9 VCs, 1 seed
fund, 5 angels

■■ AngelList outbound: 2 VCs

■■ Cold inbound: 2 VCs

Of the VCs, I broke them down into
categories of how far I got with them:

■■ Talked with non-partners: 9

■■ Talked with a partner: 12

■■ Talked with multiple partners: 7

■■ Got a terms sheet: 3

26  STARTUPS

Of the VCs I got to the multiple
partners (MP) / terms sheet (TS) level,
the original categories broke down like:

■■ I knew them and reached out: 2 MP,
1TS.

■■ Suggested intro from someone: 3MP,
1TS

■■ AngelList inbound: 1MP, 1TS

■■ AngelList outbound: 0

■■ Cold inbound: 1MP

Getting to the right partner initially
really matters
Pretty soon after that first meeting,
you need a partner to convince their
other partners this is a deal the part-
nership should move forward with.
Not one of the partners I talked to
handed the deal off to another partner
to manage, which says to me you have
to figure out a priori which partner at a
given firm would be most likely to get
excited about your deal. Otherwise it is
likely to be dead on arrival.

Often the right partner is unclear
without talking to someone else
Like I said, when I started raising this
round, I only knew a few VCs per-
sonally. I also thought that they may
not want to fund or be a right fit for
DuckDuckGo. Sure, I had heard of a
bunch of VC firms, but when I went to
their websites and looked at their team
pages, I may have heard of one of their
2-10 partners. For all I knew, this guy

I’ve never heard of would be the best
fit for us.

So what I did was try to find the
right partners by:

➊ Asking the VCs I knew

➋ Asking the angels I knew

➌ Researching related investments

Having a good network to get intros
really matters
As you can see from the intro catego-
ries, #1 and #2 yielded most of my
introductions. If I didn’t know these
people, my job would have been much,
much harder. Not only would it have
been harder to meet people, but I
wouldn’t have known the right people
to target.

A warm intro >> cold intro
Obvious.

Principal intro is OK if not right part-
ner intro
Less obvious, and I think there is con-
flicting advice here, too. Some say don’t
bother if you can’t get a partner intro.
Partner intros always trump non-part-
ner intros.

First of all, my funding stands as a
counter-example, because I was intro-
duced to Christina at USV, and that led
to my funding.

But more broadly, if you don’t know
the right partner or don’t have a part-
ner intro, and you get introduced to
a well-respected principal/associate/

  27

analyst and they get excited about
what you’re doing, they can help a)
determine the right partner; and b)
rope them into the next meeting with
good framing.

I never walked through my 6 slides
I have no idea how my demeanor or
pitch varied from the countless ones
VCs get. All I know is what I did. I
had a six-slide deck that I would send
beforehand.

Then I would spend my time telling
my story, starting well before Duck-
DuckGo (briefly), and then taking
them through what had happened
until now, why I was raising money
now, and what my future plans were.

I got very few No’s
Like people say, most people just stop
emailing you. They don’t say no. I
just kept moving forward, so beyond
a thank you note after a meeting, I
didn’t really press people. Ultimately I
wanted to see who was excited about
me, so I figure the least they could do
is follow-up like they said they were
going to do.

Some firms did follow-up promptly
with no’s and specific reasons, and I
was really grateful for that. They were:

■■ Andreessen Horowitz

■■ Matrix Partners

■■ SV Angel

■■ Redpoint

■■ Mergenthaler

■■ Greylock

■■ Charles River Ventures

■■ DFJ

Having multiple term sheets really
matters
I realize most companies can’t get mul-
tiple term sheets. But if you can, they
can really be used as a forcing function
to move people along, and that’s what
happened in my case.

It’s a double-edged sword though. It
moved people to say yes or no more
quickly. As for the no’s, sometimes
people felt things were moving too fast
for them and they couldn’t catch up.

Blasting matters to align with
timelines
The process takes time, but once you
get the term sheet, there is more pres-
sure to move quickly. To get multiple
term sheets, you need to get people
somewhat aligned in the process, and
the best way to do that is to start them
all at the same time.

I did not do that very well for a
couple of reasons.

➊ I didn’t blast right away

➋ I tried this in July/August

28  STARTUPS

VCs really do take vacations in
August
Some of my initial meetings were
delayed a month or more because of
vacation schedules. Ultimately I have
no regrets of course, but it should give
you pause to raise in August if you are
trying to align everyone time-wise.

Some partners I really liked
I met a lot of people I really liked in
this process. Here are a few (besides
everyone at USV of course).

■■ Todd Hixon and John Backus at New
Atlantic Ventures

■■ Michael Dearing at Harrison Metal

■■ Saar Gur at Charles River Ventures

■■ Dan Beldy at Steamboat

And I already knew these partners but
can’t speak more highly of them:

■■ Antonio Rodriguez at Matrix

■■ Gilman Louie at Alsop Louie

I did not push for a bidding war
I did have multiple term sheets at
the same time, and that did work as a
forcing function. But I did not try to
actively use it to create some kind of
bidding war. Instead, I went in with
terms in mind that I thought were fair
for everyone, and I tried to stick to
those terms.

I focused on what value the VC
would bring
I really did try to get the right VC in
the deal, and so I tried to focus on
figuring out how individual firms and
people could be particularly useful
to DuckDuckGo over the life the
company.

I did reference checks
I talked to a bunch of portfolio com-
panies that had various VCs on their
board. I asked them all sorts of ques-
tions about that relationship and their
experiences with the particular partner
and firm in general. This information
was very interesting. Entrepreneurs
really do stick together, and I found
people would speak freely — even if I
didn’t know them very well (or at all)
ahead of time.

I didn’t travel much
I’m sure I could have gotten more
interest and higher terms if I did a
huge road show. But I hate travelling,
so I did most of this entire raise via
Skype video and phone. I did make two
trips to New York and one to DC. And
a few VCs came down to Philadelphia
to meet me.

I’m really not sure how much that
turned people off or not. I’m sure it
seemed different. I got a sense for most
West-coast VCs it was a big turn off
and that location does matter, even
though they do invest in New York a
decent amount.

  29

Having a mentor really helped
Someone who has been there, done
that is great. I actually talked to people
and picked their collective brains, but
my uncle (again) proved invaluable
throughout the process. I was talking
to him constantly. I suggest you find
someone like that. If you’ve previously
raised an angel round, it’s probably one
of those angels.

Congratulations
I got more congratulations from
this funding than from any previous
DuckDuckGo milestone. I understand
why, and I thank you, everyone! But it
still feels wrong somehow.

Conclusion
I realize that’s a lot to take in, and I
don’t expect anyone to make it this far.
I wanted to write this for people in the
process. n

Gabriel Weinberg is the founder of DuckDuckGo,
a search engine. He is also an active angel
investor, based out of Valley Forge, PA.

Reprinted with permission of the original author.
First appeared in hn.my/raisefund (gabrielweinberg.com)

http://hn.my/raisefund

30  PROGRAMMING

PROGRAMMING

By Jared Carroll

Vim Text Objects:
The Definitive Guide

To edit efficiently in Vim, you
have to edit beyond individual
characters. Instead, edit by

word, sentence, and paragraph. In Vim,
these higher-level contexts are called
text objects.

Vim provides text objects for both
plaintext and common programming
language constructs. You can also define
new text objects using Vim script.

Learning these text objects can take
your Vim editing to a whole new level
of precision and speed.

Structure of an Editing Command
In Vim, editing commands have the
following structure:

<number><command><text object or
motion>

■■ The number is used to perform the
command over multiple text objects
or motions, e.g., backward three
words, forward two paragraphs. The
number is optional and can appear
either before or after the command.

■■ The command is an operation, e.g.,
change, delete (cut), or yank (copy).
The command is also optional, but
without it, you only have a motion
command, not an edit command

■■ The text object or motion can either
be a text construct, e.g., a word, a
sentence, a paragraph, or a motion,
e.g., forward a line, back one page,
end of the line.

■■ An editing command is a command
plus a text object or motion, e.g.,
delete this word, change the next
sentence, copy this paragraph.

Plaintext Text Objects
Vim provides text objects for the three
building blocks of plaintext: words,
sentences and paragraphs.

Words

■■ aw → a word (includes surrounding
white space)

■■ iw → inner word (does not include
surrounding white space)

  31

daw

Text objects beginning with a include
the surrounding white space in the text
object, those starting with i do not.
This convention is followed by all text
objects.

The motion w may seem similar to
the text object aw. The difference is
in the allowed cursor position. For
example, to delete a word using dw the
cursor must be at the start of the word,
any other position would delete only
part of the word; however, daw allows
the cursor to be at any position in the
word.

Sentences

■■ as → a sentence

■■ is → inner sentence

cis

Notice how the “inner” text object
does not include the trailing white
space.

Like aw, as offers the same cursor
position advantage over its motion
counterparts (), forward and back-
ward a sentence. To operate on the
entire previous sentence, (requires the
cursor to be at the end of the sentence;
to operate on the entire next sentence,
) requires your cursor to be at the start
of the sentence.

Paragraphs

■■ ap → a paragraph

■■ ip → inner paragraph

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nos-
trud exercitation ullamco laboris
nisi ut aliquip ex ea commodo
consequat.

 Ut enim ad minim veniam, quis
nostrud exercitation ullamco labo-
ris nisi ut aliquip ex ea commodo
consequat.

Lorem ipsum dolor sit amet, con-
sectetur adipisicing elit, sed do eius-
mod tempor incididunt ut labore
et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehen-
derit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet...

Lorem dolor sit amet...

32  PROGRAMMING

dap

Again, ap and ip provide the same
cursor position advantage that Vim’s
sentence and word text objects pro-
vide: your cursor can be anywhere
within the paragraph in order to oper-
ate on it.

Motion Commands vs. Text Objects
Commands
A command using a motion, e.g., cw,
operates from the current cursor posi-
tion. A command using a text-object,
e.g., ciw, operates on the whole object
regardless of the cursor position. We
saw this behavior in each of the various
plaintext text objects. Although this
requires one more character, it saves
you the time and effort of moving the
cursor into the “right” position.

Programming Language Text
Objects
Vim provides several text objects based
on common programming language
constructs.

Strings

■■ a” → a double quoted string

■■ i” → inner double quoted string

■■ a’ → a single quoted string

■■ i’ → inner single quoted string

■■ a` → a back quoted string

■■ i` → inner back quoted string

ci"

Notice that the cursor was not even
within the double-quoted phrase
(“world”); the command defaulted
to changing the first double-quoted
phrase in the line.

ci'

Current line searches offer an alterna-
tive way to delete a quoted phrase. Con-
tinuing with the previous example, plac-
ing the cursor on the first ' and execut-
ing ct' would delete the contents of the
single quoted string and place us in insert
mode. However, this is less flexible than
using a text object, because it requires
the cursor to be on the opening '.

puts 'Hello "world"'

puts ''

puts 'Hello "world"'

puts 'Hello ""'

Duis aute irure dolor in reprehen-
derit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui
officia deserunt mollit anim id est
laborum.

  33

A search pattern /' could also be
used, but it, too, requires the cursor to
be on the opening '. It also deletes the
closing '.

It’s best to use search commands for
searching and not editing.

Parentheses

■■ a) → a parenthesized block

■■ i) → inner parenthesized block

da)

Both of these text objects are also
available as ab and ib; however, I find
these less intuitive than using the
version that includes a parenthesis
character.

The % motion is another way to
match a pair of parentheses. Entering
% on an opening parenthesis will move
the cursor to the closing parenthesis.
Combined with a command, this can
provide the same functionality as a),
e.g., c% is equivalent to ca). However,
the disadvantage to using % is that the
cursor must be on the opening or clos-
ing parenthesis; with a) the cursor can
be anywhere on or the parenthesized
phrase. There is also no way to repli-
cate i) using %.

Brackets

■■ a] → a bracketed block

■■ i] → inner bracketed block

di]

The % movement can also be with
[]. However, it has the same limited
flexibility when using it with ().

Braces

■■ a} → a brace block

■■ i} → inner brace block

ci}

Both of these text objects are also
available as aB and iB; however, I find
these less intuitive than using the ver-
sion that includes a brace character.

Again, the % movement can also be
with { }. However, it has the same
limited flexibility when using it with (
) or [].

Project.all(:conditions => {
:published => true })

Project.all

(defn sum [x y]
 (+ x y))

(defn sum []
 (+ x y))

puts "Name: #{user.name}"

puts "Name: #{}"

34  PROGRAMMING

Markup Language Tags

■■ at → a tag block

■■ it → inner tag block

cit

Notice that the cursor was not even
within the <h2>. This is a very efficient
way to quickly replace tag content.

■■ a> → a single tag

■■ i> → inner single tag

di>

This text object can be used to
quickly operate on a single tag and its
attributes.

Vim Scripts Providing Additional
Text Objects
Using Vim script, it’s possible to create
new text objects. Here’s a few of my
favorite scripts that introduce new pro-
gramming language text objects.

CamelCaseMotion
CamelCaseMotion provides a text
object to move by words within a
camel or snake-cased word.

■■ i,w → inner camel or snake-cased
word

ci,w

VimTextObj
VimTextObj provides a text object for
function arguments.

■■ aa → an argument

■■ ia → inner argument

cia

Indent Object
Indent Object provides a text object
based on indentation level. This script
is aimed at programming languages
that use significant whitespace to
delimit code blocks, e.g., Python, Cof-
feeScript, because its text object does
not include the line after the last line
of the indentation level.

<div id="content"></div>

<></div>

BeanFactoryTransactionAttrib-
uteSourceAdvisor

FactoryTransactionAttribute-
SourceAdvisor

foo(42, bar(5), 'hello');

foo(42, , 'hello');

<h2>Sample Title</h2>

<h2></h2>

  35

■■ ai → the current indentation level
and the line above

■■ ii → the current indentation level
excluding the line above

dai

Ruby Block
Ruby Block provides a text object
based on a Ruby block, i.e., any
expression that is closed with the end
keyword.

■■ ar → a Ruby block

■■ ir → inner Ruby block

cir

Vi Command Line Editing
If you use Vi command line editing in
your shell, enabled with set -o vi in
bash and bindkey -v in zsh, Vim’s text
objects are not available. Text objects
were introduced by Vim, but shell
command line editing is based on Vi.

Precision Editing
Vim’s text objects provide an incred-
ible level of precision. The key is to try
to always edit by text objects. Editing
by motions e.g., by part of a line, to
the next occurrence of a character, is
tedious, clumsy, and slow. Instead of
correcting a misspelling character by
character, change the entire word and
re-type it.

Don’t be discouraged by the large
number of text objects. Their conven-
tions make them intuitive and easy to
learn. After some practice, like every
other Vim command, they’ll quickly
become just another muscle memory. n

Jared Carroll is a programmer currently
practicing agile development at Carbon
Five in Los Angeles, CA. He has been coding
in a variety of programming languages at
start ups and consultancies for the past 6
years. His main interests are ergonomics and
productivity.

def foo():
 if 3 > 5:
 return True
 return "foo"

def foo():
 return "foo"

hash.each do |key, value|
 puts key
 puts value
end

hash.each do |key, value|

end

Reprinted with permission of the original author.
First appeared in hn.my/textobjects (carbonfive.com)

http://hn.my/textobjects

36  PROGRAMMING

By Rich Jones

Python for the Web

Python is the best language in
the world for interacting with
the web, and I’m going to show

you why.
This article will give an extremely

high-level overview of how to use
Python for the web. There are many
ways you can interact with the web
using Python, and this article will cover
all of them. This includes Python web
scraping, interacting with APIs (Appli-
cation Programming Interfaces), and
running your own Python web site
using Python server software. There
are many ways to do all these things
in Python, but I’m going to show you
how to do it the right way using the
most modern techniques.

Interacting with Websites and APIs
Using Python
The single best package for interact-
ing with the web using Python is
“Requests” by Kenneth Reitz. I really
cannot stress what a good library this
is. I use it every single day of my life

and I absolutely love it. It is the reason
that Python is the best language for the
web.

First, you’ll need to install it. The
best way to do this is using “pip,” the
Python package manager. If you don’t
have pip, read this article [hn.my/pip]
and follow the instructions, or, if you
are on Windows, look at this post on
Stack Overflow [hn.my/pipwin].

Once you have pip installed, run:

pip install requests

And now you have Requests
installed! You may need to run this
as “sudo” if you’re on Linux or OSX.
Now let’s look at a few examples.

The two methods you’ll need the
most are GET and POST. GET does
exactly what it says, it gets a web page.
POST is similar, only it sends informa-
tion to a web page.

First let’s take a look at GET. Let’s
say we want to grab all of Gun.io’s
front page.

http://hn.my/pip
http://hn.my/pipwin

  37

import requests

r = requests.get('http://gun.io')
print r.content

That’s it! In only three lines of
Python, you can grab a whole webpage
and print it to the screen. Awesome!

Now let’s look at a slightly more
complicated example. Let’s try a case
where we have to use a username and
password.

import requests

r = requests.get('https://api.
github.com', auth=('YOURUSERNAME',
'PASSWORD'))
print r

Here, YOURUSERNAME and
YOURPASSWORD will be sent as
login credentials to the server.

Now, let’s try a POST request to
send some data TO the server. This is
for the case where there is a form, and
you want to use Python to fill in the
values.

import requests
url = 'https://testexample.com/
form'
data={'title': 'RoboCop',
'description': 'The best movie
ever.'}
r = requests.post(url, data=data)
print r

This code will send the values “Robo-
Cop” and “The best movie ever” for the
fields “title” and “description,” respec-
tively. You can use the “auth” parameter
from the previous example if you are
posting to a password-protected form.

Processing JSON in Python
Many times you interact with an
API in Python, you will be given a
response in a form called JSON, or
JavaScript Object Notation. JSON is
almost identical to the Python diction-
ary format. The best way to interact
with JSON in Python is by using the
“simplejson” Python library, which
you can find documentation for here
[hn.my/simplejson]. Again, use pip to
install it like so:

pip install simplejson

Let’s take a look at an example.

import requests
import simplejson

r = requests.get('https://github.
com/timeline.json')
c = r.content
j = simplejson.loads(c)

for item in j:
 print item['repository']
['name']

http://hn.my/simplejson

38  PROGRAMMING

This code will get a list of recent
events from GitHub, in JSON format,
and parse that JSON using Python. As
the resulting object (in this example,
“j”) is a Python dictionary, we can loop
over it and print the information it
contains. This code will then print out
the name of each repository for each
item in the response.

Scraping the Web Using Python
Unfortunately, we can’t always inter-
act with the web in a nice format like
JSON. Most of the time, websites
only return HTML, the kind that your
browser turns into the nice-looking
webpages you see on your screen. In
this case, we have to do what’s called
“scraping,” taking that ugly HTML
and turning it into usable data for our
Python program.

The best way to do this is by using
a Python package called LXML. If
I had to describe LXML, I would
call it shitty and awesome. LXML is
extremely fast and very capable, but it
also has a confusing interface and some
difficult-to-read docs. It is certainly the
best tool for the job, but it is not with-
out fault.

Let’s say there is a webpage that
has a value you want to get into your
Python program. You know from look-
ing at the source of the webpage that
the value you want is inside an element
which has a specific “id” attribute. Let’s
use LXML to get that value.

First, install it using pip:

pip install lxml

Okay, now let’s try it.

import requests
import lxml
from lxml import html

r = requests.get('http://gun.io')
tree = lxml.html.fromstring(r.
content)
elements = tree.
get_element_by_id('frontsubtext')
for el in elements:
 print el.text_content()

This code uses Requests (from
before) to get our webpage. Then, it
uses the HTML parser in LXML to get
the “tree” of parsed HTML elements.
The next line calls the “Get Element
By Id” function to return a list of all
elements which have the id value of
“frontsubtext.” Then, we iterate over
the items in that list, and print the text
content of each element. Ta-da!

Python Web Sites
The other side of using Python on the
web is for making websites. The best way
to do that is to use a web “framework”
called Django [djangoproject.com].

Now, Django can be tricky. Django
isn’t the fastest or the easiest way to
get your Python code executing on the
web, but Django has the largest com-
munity and the most documentation
available, so it’s the best thing to learn

http://djangoproject.com

  39

in the long run. This is going to be a
very, very brief introduction to Django;
I’m just going to teach you how to get
your Python code to return a result to
an HTML web page.

So, let’s get started!
First things first: install Django using

pip. This should be easy by now!

sudo pip install django

Okay, now you’ve got Django
installed on your system. Let’s make a
new Django project. Let’s say we want
a website which returns an uppercase
version of a string we pass, and we’re
going to call it UppercaseMaker. So,
call this to make a new Django project:

django-admin.py startproject
UppercaseMaker

Then, go into the directory it made:

cd UppercaseMaker

You’ll see some files in there, like set-
tings.py and urls.py. We’ll get back to
those in a second. Now that you’re in
the folder, you’ll need to make a new
“application.” In Django, applications
are where the actual work is done.
Let’s make one called “upper.”

django-admin.py startapp upper

For this application to be activated
in our Django project, we’ll need to
edit settings.py and add it to the list of
INSTALLED_APPS. So, you need to
change the settings.py (at around line
111) so that it looks like this:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 # Uncomment the next line to
enable the 	 # admin:
 # 'django.contrib.admin',
 # Uncomment the next line to
enable admin
 # documentation:
 # 'django.contrib.admindocs',
 'UppercaseMaker.upper',
)

While you’re here, you should also
change the TEMPLATE_DIRS variable
so that it looks like this:

import os
TEMPLATE_DIRS = (
 os.path.join(os.path.dir-
name(__file__), 'templates'),
)

This will make it so when Django
needs to render templates, it will look
in the “templates” directory of your
project’s folder.

Now in your project directory, you’ll
see that there is a directory called
“upper.” Let’s go in and take a look.
You’ll see there’s a file called “views.
py” — that’s where the magic happens.
Let’s put some code in it.

40  PROGRAMMING

from django.shortcuts import
render_to_response

def home(request, input="No input
supplied"):
 output = input.upper()
 return render_to_
response('home.html', {'output':
output})

So this is defining a function called
“home,” which takes two parameters,
“request,” which contains information
about the request which was sent to
the server (information about the user,
their browser, etc), and a string called
“input,” which defaults to “No input
supplied.” The next line is pretty obvi-
ous: it takes the input string, puts it in
uppercase, and makes a variable called
“output.”

Then we pass that in a dictionary to
a Django function called “render_to_
response,” which takes a template file
and a dictionary of variables and makes
it into the nice HTML you see as the
final website. We haven’t looked at the
template file yet, so let’s do that now.

Go back to the project directory and
make a new folder called “templates”
and inside it, make a file called
“home.html,” and put this in it:

<html>
 <head><title>{{output}}</
title></head>
 <body>
	 Your output is: {{output}}.
 </body>
</html>

This is an extremely simple HTML
page which takes whatever value we
put in the “output” variable from our
views.py and puts it on the screen
wherever we wrap it with double curly
braces.

Only one thing left now! Let’s take a
look at urls.py in the project folder. Put
this in it:

from django.conf.urls.defaults
import patterns, include, url

urlpatterns = patterns('',
 url(r'^(?P<input>[^/]+)$',
'UppercaseMaker.upper.views.
home'),

)

This says, for the empty path (the
blank space in between the “^” and
the “(”), call the function “Uppercase-
Maker.upper.views.home” and pass it
the trailing value and call it “input.” So,
when somebody visits “http://www.
ourwebsite.com/test” , the value “test”
is sent to our “home” function from
before, made uppercase, and printed to
the screen.

  41

Now, you can try this for yourself
by running this command from your
project’s directory.

python manage.py runserver

Then, in your web broswer, go to
the URL “http://localhost:8000/test”,
and you should see the output, “Your
output is: TEST.” on the screen.

Hooray! You’re now executing your
own Python code as a website. Pretty
cool!

I’ve made this example as a git
repository, so if you want to have your
own copy of this example to play with,
execute

git clone https://Gunio@github.
com/Gunio/UppercaseMaker.git

Conclusion
So there you have it: a very high-level
introduction to the major ways you’ll
be interacting with the web using
Python. This guide is by no means
meant to be exhaustive, but hopefully
you are now on the right path.

The key take-aways are: to make
HTTP requests, use the Requests
library. To parse JSON, use simplejson.
To parse HTML, use LXML. And to
serve your own Python websites, use
Django. Other guides will tell you to
use things like “urllib2” and “Beauti-
fulSoup” — don’t waste your time!
Those packages and the tutorials which
recommend them are now outdated.
Requests and LXML are the best tools
for the job. Django is still the best
Python web framework, but make
sure that any tutorials you are read-
ing are compatible with the version of
Django you are using, as the project
can change quite quickly, and there are
lots of outdated Django tutorials on
the web. n

Rich Jones is a traveling hacker and transpar-
ency activist. He is the director of the Open-
Watch police monitoring project. His new
startup is Gun.io, a crowd-funding platform
for hackers to hire each other for small tasks.

Reprinted with permission of the original author.
First appeared in hn.my/pythonweb (gun.io)

http://gun.io
http://hn.my/pythonweb

42  HARDWARE

By Russ Cox

The MOS 6502 and
the Best Layout Guy

in the World

HARDWARE

  43

The MOS 6502 was ubiquitous
in its day. The 6502 and its
slight variants were at the

heart of the Apple II, the Atari 2600,
the BBC Micro, the Commodore 64,
and the Nintendo Entertainment
System, among others. It’s amazing to
think that all five — each a very influ-
ential system in its own right — were
built around the same chip.

The 6502 was the brainchild of
Chuck Peddle, at the time an engineer
with Motorola. Peddle was one of the
engineers who worked on the Motorola
6800, and one of his jobs was to, well,
peddle the 6800 to customers. The
customers loved everything about it
except its $300 price tag. Peddle tried
to convince management at Motorola
to create a lower-cost microprocessor,
but Motorola didn’t want to have such
a chip cut into their not insubstantial
profits from the 6800, and they told
him in no uncertain terms that they
wouldn’t build such a chip. In response,
Peddle and a handful of other 6800
engineers left Motorola and built one
themselves. It was the MOS Tech-
nology 6502 and sold for $25. Even
though both the 6800 and 6502 had
a clock rate of 1 MHz, the 6502 had a
minimal instruction pipeline that over-
lapped the fetch of the next instruction
with the execution of the current one
when possible, giving it a significant
performance boost. And of course it
sold for ten times less. So it ended up
everywhere.

The story of the 6502 makes up the
first chapter of Brian Bagnall’s On the
Edge: the Spectacular Rise and Fall of
Commodore. My favorite part of the
description of the development of the
6502 is the actual chip layout. These
days, you can’t design and lay out a
computer chip without a computer.
An Intel Core 2 chip has hundreds of
millions of transistors. The 6502 had
3,510, and an engineer — a person, not
a computer — had to draw each one by
hand to lay out the chip. Mainly it was
a single engineer, Bill Mensch.

But it gets better. Once the layout
was completed and double-checked —
a process that meant months using a
ruler! — it still had to be converted into
a Rubylith photomask that would etch
the right patterns onto the silicon. The
photomask for the 6502 was the size of
a large table — large enough that the
engineers crawled around on top of it
to perform the job of cutting the layout
out of the mask, all the while being care-
ful to wear clean socks with no holes, so
that stray toenails didn’t insert traces in
the mask where they didn’t belong.

The most amazing part about the
whole process is that they got the 6502
right in one try. Quoting On the Edge:

Bil Herd summarizes the situation.
“No chip worked the first time,” he
states emphatically. “No chip. It took
seven or nine revs [revisions], or if
someone was real good, they would get
it in five or six.”

44  HARDWARE

Normally, a large number of flaws
originate from the layout design.
After all, there are six layers (and six
masks) that have to align with each
other perfectly. Imagine designing a
town with every conceivable layer of
infrastructure placed one on top of
another. Plumbing is the lowest layer,
followed by the subway system, under-
ground walkways, buildings, overhead
walkways, and finally telephone wires.
These different layers have to connect
with each other perfectly; otherwise, the
town will not function. The massive
complexity of such a system makes it
likely that human errors will creep into
the design.

After fabricating a run of chips and
probing them, the layout engineers
usually have to make changes to their
original design, and the process repeats
from the Rubylith down. “Each run is
a couple of hundred thousand [dol-
lars],” says Herd.

Implausibly, the engineers detected no
errors in Bill Mensch’s layout. “He
built seven different chips without ever
having an error,” says Peddle with
disbelief in his voice. “Almost all done
by hand. When I tell people that, they
don’t believe me, but it’s true. This
guy is a unique person. He is the best
layout guy in the world.”

The first chapter of On the Edge is
posted on Bagnall’s web site
[hn.my/bagnall]. The chapter says
that Peddle “created a concept called
pipelining,” which could be interpreted
as saying that the 6502 was the first
pipelined processor and that Peddle
invented it. Does anyone know?

Fast forward thirty years. Computers
are now old enough that there can be
significant interest in maintaining the
history of these old, venerable designs.
The actual paper designs of the 6502
are long gone.

A team of three people — Greg
James, Barry Silverman, and Brian
Silverman — accumulated a bunch
of 6502 chips, applied sulfuric acid to
them to strip the casing and expose
the actual chips, used a high-resolution
photomicroscope to scan the chips,
applied computer graphics techniques
to build a vector representation of
the chip, and finally derived from the
vector form what amounts to the
circuit diagram of the chip: a list of all
3,510 transistors with inputs, outputs,
and what they’re connected to. Com-
bining that with a fairly generic (and,
as these things go, trivial) “transistor
circuit” simulator written in JavaScript
and some HTML5 goodness, they cre-
ated an animated 6502 web page that
lets you watch the voltages race around
the chip as it executes. For more, see
their web site visual6502.org.

http://hn.my/bagnall
http://visual6502.org

  45

Oh, and it actually works. They
applied the same technique to build
the transistor map for an Atari 10444D
TIA chip, which connected the 6502
to the television in the original Atari
2600, and then they simulated both
chips together and were able to run
actual Atari 2600 games. So the tran-
sistor map is probably (very close to)
correct. More impressively, they got to
that point without debugging. Their
SIGGRAPH 2010 abstract explains
that there were only 8 errors in the
map of 20,000 components, and all the
errors were spotted during the vector-
ization process. History repeats itself.

Michael Steil took the circuit infor-
mation and started looking closely
at how the chip did what it did. At
last week’s Chaos Communication
Congress 27C3 conference, he gave
a 50-minute talk that introduces the
6502 architecture and then uses the
circuit diagram to explain various
details and undocumented features of
the chip. The original announcement is
at Steil’s blog [hn.my/steil]. There is a
version of the talk on YouTube
[hn.my/27c3], and in the blog com-
ments you’ll find links to higher-reso-
lution copies. It’s well worth watching
in any form, and it’s fun to see how
much Peddle, Mensch, and the rest of
the 6502 team packed into that tiny
number of transistors. n

Russ Cox wrote his first programs on a
Commodore 64 powered by a MOS 6502.
Today, he works at Google on Go. His blog is
research.swtch.com

Reprinted with permission of the original author.
First appeared in hn.my/6502 (swtch.com)
Photo of MOS 6502 Processor taken by Dirk Oppelt.

http://hn.my/steil
http://hn.my/27c3
http://research.swtch.com
http://hn.my/6502

46  HARDWARE

By Kristian Storm

P-III Autopsy

For teaching a course I needed
to take a closer look at a CPU. I
asked around and got my hands

on an old P-III Coppermine that was
about to get thrown out. I’ll start with
a disclaimer: I know virtually nothing
about CPUs, so if I claim something to
be true, it probably isn’t.

The first challenge is to get the actual
silicon processor chip off of the plastic
bonding board. In the picture beside,
the blue thing you see is the back side
of the processor chip. When the pro-
cessor is finished, it is turned upside
down and bonded to the green circuit
board. This allows the metal pads on
the silicon chip and the pads on the
circuit board to join, creating a con-
nection (this is one of those claims...).
I believe that the CPU at that stage is
heated up in order to melt the joints
and thereby solder them together.

I figured I should be able to remove
the chip by heating it. I first tried using
a heat gun, but that just made some
bad smelling fumes. I instead turned to
brute force and used a power-saw to
cut out the part containing the actual
chip. Using pliers I managed to get a
few pieces off of the board and got the
rest off by using a scalpel.

Back side of the circuit board containing the
CPU. Each pin you see (give or take) should be
connected to a pad on the silicon chip.

The blue part in the middle is the actual Si chip.
I needed to remove it in order to further inspect
the CPU.

A saw comes in handy sometimes....

  47

Below you can see the result. On the bottom side of the piece that came off,
you can see all the connector pads that were previously connected to the pins on
the backside of the circuit board.

Now the interesting part begins. I looked at the piece above in an optical
microscope. The picture below shows an enhanced version of the little dots in
the above picture.

A piece of the processor chip came off. This is the piece that came off. It’s been flipped
so that the side you see was originally facing
towards the circuit board. Each little dot contains
a metal pad that connects the interior of the chip
to the leads on the board.

This is a piece of the processor. The side you’re
seeing was once facing towards the plastic circuit
board. Each little hole is a metal pad connecting
the interior of the chip to a macroscopic lead on
the circuit board.

Looking closer, we start seeing some structure
inside the holes.

48  HARDWARE

Furthermore, by changing the focus of the microscope, we can see multiple
layers within each hole.

Focus is on upper layer.

Focus is on middle layer.

Focus is on bottom layer.

A processor contains many layers of metal leads in
order to connect the transistors at the surface of the
silicon chip into useful units. The metal layers are
clearly visible through the small holes in the chip.

  49

In a CPU there are multiple layers
of sandwiched metal leads going down
to the transistors at the bottom (at the
surface of the silicon wafer). I believe
what we’re seeing is simply those dif-
ferent layers.

Since optical microscopy doesn’t
show very much detail, I decided to
load the chip into a scanning electron
microscope (SEM).

What I did was to cleave the chip
into smaller pieces. This way I can peek
from the side of the chip and get some
cross-sectional images. Below is a series
of images that shows a zoom-in on the
surface of the Si chip. For some reason
I had a lot of trouble getting a good
focus. I’m not sure what kind of Si is
used for these CPUs, but if it’s a non-
conducting silicon, the electron beam
in the SEM can charge the material,
making it difficult to focus. Another
possibility is that all the plastic encap-
sulation material caused charging
effects.

You’re looking at the processor chip from the
side. In the top part of the image you see the
metal pads that were once connected to leads
on the circuit board when the chip was bonded
face down.

We still don’t see a lot. The light stuff between
the metal pads is probably some kind of poly-
mer used to fill up the space.

We start to get more detail at the surface of the
silicon chip (bottom part of the image. The Si
starts somewhere at the bottom of the large
metal blob). The texture in the polymer filler
(next to the metal blob) could be due to some-
thing being mixed into the polymer to increase
its thermal conductivity.

50  HARDWARE

At this point they are clearly visible. I count about
six layers of metal leads visible in the image.

The feature size of the lowest metal layer is
around 200-250nm. Since the P-III started out
at 250nm process but developed into 180nm
(according to Wikipedia), the transistor layer
must be fairly close to the lowest visible metal
layer in the image.

We start seeing something below the metal blob.
The vertical lines that are barely visible would be
the multiple layers of metal leads. To the right you
see the same structure, but from another angle,
since the cut changes direction.

  51

Just a nice overview.

This is not a cross-sectional image. It is taken
from the top (along the sample normal, for those
of you who speak science). I accidentally chipped
the processor, and this is how it looks. Several of
the metal layers are visible, and as we go down in
the image, we go down through the metal layers.
I would guess that the bright spots you see are
vias connecting leads lying in different layers. n

Reprinted with permission of the original author.
First appeared in hn.my/p3 (sciencystuff.com)

Kristian is currently part-time doing a PhD in solid state physics and nano-devices at Lund
University in Sweden developing nanowire devices, and part-time working at a company
developing the first generation nanowire LED technology. As a hobby, he enjoys playing around
with robotics, building various remote-controlled and autonomous aerial vehicles.

http://hn.my/p3

Trying to read
your customers’
minds?

Our simple engagement tools help you understand your customers,
prioritize feedback, and give great customer support even faster.
Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
mindreader at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=mindreader

Trying to read
your customers’
minds?

Our simple engagement tools help you understand your customers,
prioritize feedback, and give great customer support even faster.
Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
mindreader at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=mindreader
http://cloudkick.com

54  HARDWARE

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	An iOS Developer Takes on Android
	I Make Dreams Come True

	STARTUPS
	How My Lifestyle Business Became a Startup
	What I Learned From Raising Venture Capital

	PROGRAMMING
	Vim Text Objects: The Definitive Guide
	Python for the Web

	HARDWARE
	The MOS 6502 and the Best Layout Guy in the World
	P-III Autopsy

