
Session ID:

Session Classification:

Pankaj Rohatgi
Cryptography Research Inc

DSP-W22

Advanced

NSA Suite B Crypto, Keys,

and Side Channel Attacks

Mark Marson
Cryptography Research Inc

► NSA-approved cryptographic algorithms for government

use (CNSSP-15)

► http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

► Encryption: AES-128 and AES-256 (FIPS PUB 197)

► Hashing: SHA-256 and SHA-384 (FIPS PUB 180-4)

► Key Exchange: ECDH using curves with 256 and 384-

bit prime moduli (NIST Special Publication 800-56A)

► Digital Signature: ECDSA)using curves with 256 and

384-bit prime moduli (FIPS PUB 186-3)

What’s Suite B ?

http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

► Approved for protecting classified information

► SECRET

► AES-128, SHA-256, 256-bit ECDH, 256-bit ECDSA

► TOP SECRET

► AES-256, SHA-384, 384-bit ECDH,384-bit ECDSA

► Significant commercial usage:

“ our …. product uses military-grade, Suite B cryptography

to provide the highest level of security ”

Why Suite B matters

► Suite B algorithms were designed to resist all known

cryptographic attacks

► But implementations have no inherent protections

against non-invasive attacks !

► E.g., side-channel attacks, fault attacks

► Without countermeasures all Suite B implementations remain

vulnerable

► We will demonstrate typical side-channel vulnerabilities

in AES-128, ECDSA-384 and HMAC-SHA256.

Is it really that secure?

How side channel analysis works

NMOS (N-Channel) Transistor

Integrated circuits contain transistors, which consume electricity as

they operate. The total power consumption of an integrated circuit

and its EM emissions depend on the activity of its individual

transistors.

Power Trace: AES-256 decryption

EM Trace: AES-256 decryption

other

activity

other

activity
AES + other activity

other

activity

other

activity
AES + other activity

► Keys can be recovered from a single trace

Simple Power (EM) Analysis

 Double-and-add algorithm
to compute m*Q

 In ECC, double and add
are very different
operations

ECC: point multiplication by secret m
for each bit i of secret m
 perform “Point Double”
 if (bit i == 1)
 perform “Point Add”

D D D D D D D D D A D A D A D A D A D

 m = 10 0 0 0 0 0 0 0 1 1 1 1 1

Data dependence in Power/EM traces

Data dependent differences in Power/EM traces can be quite small

– However, statistical influence remains…

Distribution of signal amplitude where register 7 bit 1= 0 is
different from distribution where register 7 bit 1 = 1
• e.g, mean is different

Signal Amplitude P
ro

b
.

d
e

n
si

ty

Register 7, bit 1=0

Register 7, bit 1=1

Power signal amplitude at time t0
t0

Differential Power Analysis (DPA) test
Process for testing data dependence in

power/EM traces

► Perform multiple device operations with

differing data

► Record power traces and corresponding

data

► Partition power traces into subsets,

according to a data dependent

property

► E.g., data bit of an intermediate state

during processing

► Calculate difference of means

between the subsets

► Vector approach (over each time instant)

Results:

► Difference trace shows spikes at time offsets

wherever data dependent property affects

power consumption !

Message

…0111011110110110…

…0100111101010110…

…1000011111001010…

…1001101010101101…

…0011111001010010…

…0111110000011111…

…1010100010101111…

…1110110111011010…

 Power trace

0

1

1

0

1

0

0

1

.

.

.

Value of
data dependent
property

.

.

Difference trace x 25

► With enough traces, a DPA

test can isolate the tiniest data

dependent leakage

► Bits moving on buses, wires,

switches

► Bits written to registers

► Bits that change when a

register is overwritten

► Switching activity in

combinatorial circuits

► A single transistor switching

► ……..

DPA tests are extremely powerful..

ShiftRows

MixColumns

S S S S S S S S S S S S S S S S

Kj

X0 X1
X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2

I0 I1
I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2

Kj+1

AES

DPA attack: AES example
► DPA tests can also recover secret keys by focusing

on intermediates that depend on few key bits

► Although the key is not known, K3 is only an 8 bit number

► Its value must be between 0 and 255, inclusive

► Perform 256 DPA tests on a bit of I3 using

all possible 256 guesses for the value of K3

► For the correct guess of K3, the DPA test on the I3 bit

will show spikes:

► For incorrect guesses of K3, the derived I3 bit will be

uncorrelated to device activity: DPA tests will show

no spikes

(I3,7,…,I3,0)

S

X3

K3

I3

8

8

8

(I3,7,…,I3,0)

S

X3

K3

I3

8

8

8
∈

0
1
2
3
4
5
6
…
𝟕𝟏
…
255

K3 = 71

K3 ≠ 71

Demo: DPA on hardware AES
► Typically AES is implemented in hardware to perform bulk

encryption

► CBC-mode or counter-mode

► 20k block cipher operations for a 320KB buffer

► Power trace from single bulk encryption contains multiple
independent AES operations with same key

► Can use multiple AES ops from a single trace to perform DPA

Individual AES operations within AES-CBC bulk encryption trace

AES AES AES AES

Demo: Results

Average (filtered) AES trace

DPA trace: incorrect key guess

Average (filtered) AES trace

DPA trace: correct key guess

For incorrect key guess,

DPA test does not have peak
For correct key guess,

DPA test has peak

Elliptic curves over prime fields

► Elliptic curves: prime fields

► For a and b in ZP, an elliptic curve is the set of all points Q = (x, y), x, y in ZP,
which satisfy the equation:

► y2 = x3 + a*x + b mod P

► Q along with a special point O (identity, or point at infinity) forms a group with the
following addition formulae

► Adding distinct points P = (x1, y1) and Q = (x2, y2)
► R = P + Q = (x3, y3)

► m = (y2 - y1)/(x2 - x1)

► x3 = m2 - x1 - x2

► y3 = m(x1 – x3) – y1

► Adding a point P = (x1, y1) to itself
► R = P + P = (x3, y3)

► m = (3x1
2
 + a)/(2y1)

► x3 = m2 - 2x1

► y3 = m(x1 – x3) – y1

► P + O = P = O + P,

x

y

y
2
 = x

3
 – 6x + 2

ECDSA
► Let E be an elliptic curve over Fp and G an element of order n (n * G = O)

in E. Let H(M) denote the hash of the message to be signed.

► Key Generation

► Generate a random private key a, 1 < a < n, and compute public key Q = a * G.

► Signature Generation

► Generate a random secret nonce k, 1 < k < n, and computes T = k * G = (x,y)

► Compute r = x mod n

► Compute s = k-1 * (H(M) + a * r) mod n

► Signature of M is (r, s)

► Signature Verification

► Compute u1 = s-1 * H(M) mod n and u2 = = s-1 * r mod n

► Compute (x,y) = u1 * G + u2 * Q

► Compute v = x mod n

► Signature is valid if and only if v = r

► Point multiplications during key generation and signature
generation
► Q = a * G

► T = k * G

► Inversion of the secret nonce k
► k-1 mod q

► Multiplication of secret key with first half of signature
► a * r mod q

SPA/DPA vulnerabilities in ECDSA

SPA leakage during point multiplication may
leak information about secret scalars a and k

SPA leakage during may leak
information about some bits k

Classic DPA vulnerability:
Fixed secret a, used with many different

(known) r’s over multiple signatures

SPA: Point multiplication

► Double and Add algorithm can leak scalar (see earlier)

► Point double and add have different formulae

► For ECDSA, more efficient algorithms using a pre-

computed table of points are popular

► E.g., Signed comb algorithm for computing T=k*G

► SPA on efficient algorithms can provide several bits of k

► The leak is fatal

► Lattice (LLL) based methods can recover secret key “a” from a

few ECDSA signatures + corresponding bits of k

For computing m*G for p-384 using a 7-teeth signed comb

► If m is even, m  m + q, where q is the order of the curve

► m + q fits into 385 bits (Note 385 / 7 = 55 exactly)

► Store 64 pre-computed points for a signed comb with 7 teeth

 Pi = (26*55 + bi,52
5*55 + … + bi,12

55 + bi,0)*G where bi,j  {-1,1}

Example: Point multiplication using signed comb

Signed_comb_point_multiply (Point G, Integer m)

x = 329m || 274m ||…|| 109m || 54m

 Point result = xP

for i = 53 to 0

 result = point_double(result)

 x = 275im || 220im ||…|| 55im || im

 if(1330 im)

result = point_add (result, xP)

else

result = point_subtract (result,
x

P)

Conditional

operation

on bits of m

Demo: ECDSA-384 on smart-card

Scalar multiplication Signing (hashing, add, mult invert…) Initial part (generate nonce)

Initial double Final add 53 adds and doubles

Double Double Subtract Double Add Subtract Double

► SPA reveals 54 bits of the ephemeral nonce k

► Bits revealed: ki+330 (53 ≥ i ≥ 0)

► LLL attack can recover secret “a” from 9 ECDSA-384

signatures, and 54 bits of the corresponding nonces

ECDSA-384: Completing the attack

► 6-bits of k leak during inversion of k: k  k-1

► Bleichenbacher attack to reveal secret “a”

► During s = k-1 * (H(M) + a * r) mod n calculation

► DPA tests show that all bits of (a*r) mod n leak

► Classic DPA attack targeting secret unknown key “a”, with known

(random) r’s.

► 100,000 traces

ECDSA-384 on smart-card: Other attacks

DPA test on 8th bit of a*r mod n,

for correct guess of 12 msb’s of a

Average trace during (a*r) mod n calculation

► Arbitrary sized input

► 512 bit input block size

► Input blocks are “chained”

together, incomplete last block

is padded and length field

added

► Magic constants as initial IV, to

set 8, 32-bit state variables

A,B,C,D,E,F,G,H

► Result of previous block used

as “IV” for next block

► 64 rounds, 256-bit output

SHA-256

SHA-256 round function

Keying SHA-256

► SHA family is unkeyed

► HMAC is the standard way to key SHA to create a MAC

► FIPS 198-1, RFC 2104, used in IPSEC, SSL, etc.

► HMAC-SHA-256 (message)

 = SHA-256((key  opad) || SHA-256((key  ipad) || message))

 = SHA-256IV-Key1(SHA-256IV-Key2(message))

► Essentially keys SHA-256 through its IV

DPA on inner SHA-256 in HMAC

a b c d e f g h

a b c d e f g h

Ch

Σ1

Wr

Kr

Ma

Σ0





Secret unknowns

Create new secret

unknowns  and 
a =  + Wr

e =  + Wr

Use DPA to recover  and 
for each round

known

round

input

SHA-256 on FPGA

LSB of 

LSB of 

Power trace DPA attack targeting least
significant byte of  and 

DPA to recover other bytes of  and 

► For single cycle/round implementations:

► Use overlapping bit-ranges to distinguish bits of  from bits of 

► Last bits of ,  and distinguishing  from  may not be possible

Bits 16-8

 

Bits 24-16

 

Bits 31-24

 

► Focus on addition and chosen messages to attack inner

SHA-256

► Fix W1, then W2 and then W3 to extract corresponding values of

,  at each round.

► State after inputs W1, W2, W3 and W4 becomes fully known.

► Invert to recover initial secret state a, b, c, d, e, f, g, h

► Exploit additional leakages to attack outer SHA

► Known message scenario after the inner SHA-256 is broken

Completing the HMAC-SHA-256 attack

► SPA/DPA countermeasures: fundamental categories

 Obfuscation

 Leak Reduction

 Balanced HW / SW

► Leak Reduction, Balanced HW/SW and Noise based

countermeasures reduce attacker S/N ratio

► No. of traces to attack proportional to (S/N)-2

► Incorporating Randomness:

► Computation is masked/blinding with random values to de-

correlate intermediates from keys and inputs/outputs

► Protocol level countermeasures: Protocols modified to

limit number of side-channels traces available per key

SPA/DPA countermeasures

 Amplitude & Temporal Noise

 Incorporating Randomness

 Protocol Level CM

► Signed comb: Leak reduction

► Store 128 pre-computed points instead of 64

► 64 points Px as before + 64 points -

► Removes conditional branch in point multiplication

► Blinding to protect k  k-1inversion and a*r mod n

► To compute s = k-1*(H(M) + a*r)

► Generate random blinding value t

► Compute k*t mod q and y = (k*t)-1 mod q

► Compute z = a*y = a*(k*t)-1

► Compute b = z*r = a*(k*t)-1*r

► Compute c = H(M)*y = H(M)*(k*t)-1

► Compute d = b + c (mod n) = (k*t)-1*(H(M) + a*r) (mod n)

► Unblind by computing t*d (mod n) = k-1*(H(M) + a*r) (mod n) = s

Example ECDSA-384

► Suite B provides strong, standards based cryptography

► But, Suite B implementations have no inherent defenses

against non-invasive, side-channel attacks

► Side-channel countermeasures should be adopted in all

implementations that need tamper-resistance.

Conclusion

Pankaj Rohatgi

Director of Engineering

Cryptography Research Inc

415.397.0123 x4338

rohatgi@cryptography.com

Mark Marson

Technical Director

Cryptography Research Inc

415.397.0123 x4326

mark@cryptography.com

Questions ?

mailto:rohatgi@cryptography.com
mailto:mark@cryptography.com

